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“If we knew exactly the laws of nature and the

situation of the universe at the initial moment, we

could predict exactly the situation of the same

universe at a succeeding moment.”

- Henri Poincaré



Abstract

In recent years various authors have developed a new numerical approach to cosmologi-

cal simulations that formulates the equations describing large scale structure (LSS) for-

mation within a quantum mechanical framework. This method couples the Schrödinger

and Poisson equations. Previously, work has evolved mainly along two different strands

of thought: (1) solving the full system of equations as Widrow & Kaiser attempted,

(2) as an approximation to the full set of equations (the Free Particle Approximation

developed by Coles, Spencer and Short). It has been suggested that this approach can

be considered in two ways: (1) as a purely classical system that includes more physics

than just gravity, or (2) as the representation of a dark matter field, perhaps an Axion

field, where the de Broglie wavelength of the particles is large.

In the quasi-linear regime, the Free Particle Approximation (FPA) is amenable to

exact solution via standard techniques from the quantum mechanics literature. How-

ever, this method breaks down in the fully non-linear regime when shell crossing occurs

(confer the Zel’dovich approximation). The first eighteen months of my PhD involved

investigating the performance of illustrative 1-D and 3-D “toy” models, as well as a

test against the 3-D code Hydra. Much of this work is a reproduction of the work of

Short, and I was able to verify and confirm his results. As an extension to his work

I introduced a way of calculating the velocity via the probability current rather than

using a phase unwrapping technique. Using the probability current deals directly with

the wavefunction and provides a faster method of calculation in three dimensions.

After working on the FPA I went on to develop a cosmological code that did

not approximate the Schrödinger-Poisson system. The final code considered the full

Schrödinger equation with the inclusion of a self-consistent gravitational potential via

the Poisson equation. This method follows on from Widrow & Kaiser but extends

their method from 2D to 3D, it includes periodic boundary conditions, and cosmo-

logical expansion. Widrow & Kaiser provided expansion via a change of variables in

their Schrödinger equation; however, this was specific only to the Einstein-de Sitter

model. In this thesis I provide a generalization of that approach which works for any

flat universe that obeys the Robertson-Walker metric.

In this thesis I aim to provide a comprehensive review of the FPA and of the

Widrow-Kaiser method. I hope this work serves as an easy first point of contact to the

wave-mechanical approach to LSS and that this work also serves as a solid reference

point for all future research in this new field.
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Chapter 1

Introduction

Large Scale Structure (LSS) is the study of the very largest scales in cosmology, essen-

tially it is the study of the distribution of galaxies in the Universe. The distribution, or

pattern, of galaxies is thought of as “structure”. A triumph of modern cosmology has

been to construct a model that plausibly describes how this distribution was created.

All models of structure formation are guided by observation but the lack of data has

often meant that cosmology was a ‘playground’ for theoreticians. We had to make

assumptions from the data that we had and then extrapolate where such assumptions

would lead to. This is an inherently tricky problem for researchers in structure for-

mation as the distribution of galaxies is a many body problem; it lacks an analytical

solution. (Peacock 1999; Bertschinger 1998)

In the past when there was a lack of observational data and no analytic solution,

researchers heavily relied upon the aid of computers to perform the necessary calcula-

tions of how many bodies move under the force of gravity. Computer simulations have

proven to be a robust platform for testing our assumptions about structure formation.

The key paradigm of computational structure formation has been to use an N -body

code to study the evolution of Cold Dark Matter (CDM) particles. This paradigm

arguably took off in the 1980s with some of the first N -body CDM simulations. Such

simulations allow us to follow the evolution as it might have happened since the start

of the Universe. However, observations have been unable to provide all the evidence



2

needed to determine how structure has evolved.

While simulations have driven the research of structure formation, it is observations

that are illustrations of the true Universe. While observations may be lacking for

some epochs of structure evolution, they are wholly necessary to test assumptions and

calibrate our simulations.

For a simulation to faithfully represent the Universe we must be sure of our ini-

tial assumptions and to be clear on what physical processes are involved. A faithful

representation is one where the end result of the simulation is statistically equivalent

to our observations of the real Universe. The assumptions are often simplifications:

for example, a computer simulation might assume that the Universe is flat and that

structure formation is dominated by gravity. While our Universe is observed to be

flat and dominated by gravity at the large scales (in a comoving sense, otherwise it

is dominated by so called Dark Energy), these assumptions will breakdown at small

scales.

The current paradigm is known as the “Standard Model of Cosmology”, or Concor-

dance Model, and comprises a list of generally accepted assumptions and predictions

(Lahav & Liddle 2006). The assumptions and supporting evidence of the standard

model, with particular highlight on structure formation, are presented later in this

chapter.

The most common way to simulate structure formation is to use an N -body code;

however, such simulations are not without limitation or error. An N -body code is one

that integrates the equations of motion of many bodies (particles), in a cosmological

simulation the only force present is gravity. More is said on this in Chapter 2.

In this thesis an alternative and newer method is presented: wave-mechanics. The

main aims of this new method are to overcome some of the N -body limitations. This

method involves coupling the Schrödinger wave equation to the Poisson equation of

gravity. The less obvious part of these equations is what the Schrödinger equation

actually does: it is the governing equation of motion. The equation uses a free particle

Hamiltonian plus a gravitational potential. Hence, it describes the movement of matter
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subjected to a self-consistent gravitational field (from the Poisson equation).

This provides two possible interpretations, one where matter is treated as a clas-

sical “fluid” obeying the Schrödinger equation. The other interpretation is where the

matter has a large de Broglie wavelength which behaves classically at the scales of

interest. Both interpretations are assuming a classical gravitational field, that is to say

the gravitational field is not quantized. We assume a flat background metric which in-

corporates expansion and assumes a simply connected topological space-time manifold.

A fuller understanding of our system of equations is presented in Chapter 3.

Whether these equations can be applied to the study of quantum nature of gravity

is less clear. A yet-unsolved problem in quantum physics is the cause of wavefunc-

tion collapse: “why one version of reality over another?”. Penrose (Penrose 1998)

has suggests a way that gravity might cause the collapse of a wavefunction (Penrose

Interpretation of quantum mechanics). He used the Schrödinger-Newton (same as:

Schrödinger-Poisson) equations to describe the basis states of his theory. This theory

incorporates ideas of quantum mechanics and gravity but does not appear to be a

typical theory of quantum gravity. The latter is based upon the notion that space, as

well as time, is quantized into discrete amounts.

However, the notion of a discretized space-time seems to be superfluous to this

theory. Penrose is merely stating that wavefunction collapse (in general) may be caused

by gravity. From this, it seems that he does not make any stronger statement about

the truly quantum nature of gravity itself, although he has pursued alternate theories

that do look at quantum gravity specifically (for example, Twistors) (Penrose 2004).

To read more specifically about quantum gravity, the reader is referred to, for example,

the easy to read history of quantum gravity by Carlo Rovelli (Rovelli 2000).

The goals of this PhD are:

• To recapitulate previous work in the paradigm of wave-mechanics as applied to

LSS. A literature review of the relevant publications appears in Chapter 3. As

a part of the review process I will reconstruct the main code used in Short’s

PhD (Short 2007) to verify his methodology and results. This seemed like an
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appropriate and easy way of introducing myself to the wave-mechanical approach

to LSS.

• To develop a full 3D wave-mechanical code for cosmic LSS simulations. This will

include 3D coordinates, periodic boundary conditions, self-consistent gravity and

cosmological expansion.

The outline of this thesis is as follows:

• In the remainder of Chapter 1 I present a review of Concordance Model of Cosmol-

ogy and the appropriate mathematical framework that is relevant to all Cosmo-

logical models. We also highlight the most important features of the Concordance

model in relation to the current paradigm of Large Scale Structure formation.

• Chapter 2: reviews the necessity of using numerical simulations to understand

how LSS evolves. Particular focus is placed upon the N -body method which is

seen as an ‘industry’ standard for structure formation simulations. I provide an

overview of how an N -body code works and point out where it can be improved

upon. This chapter concludes with us considering why the wave-mechanical ap-

proach was first suggested and how it can improve upon the current methods of

simulation.

• Chapter 3: presents an overview of wave-mechanics, I believe that this chapter is

unique in the context of wave-mechanics as applied to LSS and hence constitutes

new work. I discuss how to interpret the relevant equations and I aim to clear

up previous confusions about how to interpret the equations of wave-mechanics

as applied to LSS. To do this I provide a brief review of where the Schrödinger

equation came from and why a wave-mechanical system is different to a quantum

mechanical system. I also provide a review of the interpretations of Madelung

and Bohm and discuss their relevance to the topic of this thesis. This chapter

also provides a brief review of previous work in the area of astrophysical wave-

mechanics.
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• Chapter 4: presents my initial work in the wave-mechanical method which was to

investigate and hence confirm the results of Short and the Free Particle Method.

• Chapter 5: presents my work on the full Schrödinger-Poisson system and shows

explicitly how to solve the equations numerically. I highlight the ways in which

this method is different to the FPA and from the other previous methods of wave-

mechanics. Mathematical derivations are provided where necessary, while longer

derivations appear in the appendices. Results and analysis are also included.

This chapter provides a clear extension to the work of Widrow & Kaiser and

hence constitutes an incremental but important advancement in the field of LSS-

Wave-mechanics.

• Chapter 6: Concludes this thesis with a review of the main concepts that were

introduced and a review of the main results from Chapters 4 and 5. In the

future work section of this chapter I suggest new ways in which the Schrödinger-

Poisson system can be used to probe beyond standard simulation techniques.

I suggest possible ways in which the final wave-mechanics code of thesis could

potentially improved by a neater implementation of the boundary conditions

using Watanabe’s adhesive operators. I also sketch details about how to use these

same adhesive operators to include Adaptive Mesh Resolution and parallelization.

• Chapter 7: The final chapter presents more speculative ideas about how to in-

clude intrinsic and extrinsic angular momentum (spin and vorticity) into a wave-

mechanics simulation. I suggest how to achieve this and why such concerns may

be relevant for astrophysical simulations.

1.1 Large Scale Structure

At the heart of the current paradigm in cosmological structure formation is the Grav-

itational instability model. In the early Universe, observations (for example, from

WMAP (Dunkley et al. 2009)) show that the distribution of matter was almost per-
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fectly smooth; however, the small ripples (perturbations) that do exist means that

some regions are slightly more dense than others. These regions of higher density will

gravitationally attract matter from less dense regions to begin the long-term process

of structure formation. The perturbations in the initial density field are assumed to be

small deviations (∼ 10−5) from the mean density. Without such perturbations there

is no gravitational instability, the forces on all the matter in the Universe would be

equal and hence cancel out (assuming an infinite or periodic Universe). With no insta-

bility then there is no evolution of structure. Hence, the small deviations provide the

instability necessary to seed large scale structure. The theory also hypothesizes that

the initial density perturbations arose from anisotropies in the quantum Inflaton field

moments after the Big Bang (Peebles 1980, 1982; Peacock 1999).

The gravitational instability model is simply the notion that small initial perturba-

tions in density (seeds of structure) attract more and more matter to create larger and

larger structures hierarchically. Eventually, these regions will allow stars, galaxies and

clusters of galaxies to form, all of which are gravitationally bound structures, where

matter has come together in their formation. A collection of galaxies is known as a

cluster. These clusters attract other clusters and so on to form larger structures known

as superclusters. At the largest scale we observe a spider-web-like pattern where the

self-attraction of galaxy clusters has created a filamentary structure (the web). The

spaces between the spider-web are called voids and denote a deficit of matter, and

hence galaxies, as compared to the mean density. This is shown in Figure 1.1.

The LSS patterns that are seen from observations are the same patterns researchers

in structure formation hope to reproduce with their simulations. Figure 1.1 shows the

observational results two galaxy surveys: 2dF and Sloan. These slices are compared

with data from the Millennium Simulation (Virgo Consortium 2005a). Qualitatively,

we can see similarities between the observations and the simulation. Filamentary

structure is clearly seen in both. The simulation is an implementation of the grav-

itational instability model, hence simulations are currently the strongest evidence for

this paradigm.
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Figure 1.1: This figure shows slices from observational data (2dF, Sloan) and from the

Millennium Simulation. Qualitatively, all slices look similar; however statistically there

are small but notable differences which indicates that current simulations are not yet

advanced enough to reproduce a complete picture of our Universe. (Virgo Consortium

2005b)

As mentioned earlier in this chapter, when one constructs a code for simulation

one needs to consider the appropriate physical laws to use and what initial conditions

are needed in order to reproduce the spider-web pattern as seen in observation. In

the case of an N -body code the initial particle positions and velocities are determined

from the power spectrum of density fluctuations (Yepes 1997). As an input to the

process of creating initial conditions is a list of cosmological parameters that are taken

from observational results (for example, from the Cosmic Microwave Background and

Supernovae surveys). These parameters are determined empirically and known to a

good level of precision; for example, the age of the Universe is now known to better

than 1% (Dunkley et al. 2009) (if the assumptions of the Standard Model of Cosmology

are true).

The evolution of structure is not always directly observable so understanding the
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physical laws involved requires more educated guesswork. In the simplest scenario, we

assume that gravity is the only relevant force and hence describe the evolution of the

Universe as non-interacting but self-gravitating (dark) matter.

From a computational perspective there is inherent difficulty associated with the

fact that the equations are non-linear and that the problem has a large dynamic range

of interest (kilo-parsecs to giga-parsecs) (Couchman 1995). Bertschinger (Bertschinger

1998) notes that there are three types of dynamic range important “for a faithful

simulation: mass resolution (number of particles), initial power spectra sampling (range

of wavenumbers present in the initial conditions), and spatial resolution (force-softening

length compared with box size).” In wave-mechanics there is no ‘number of particles’ so

mass resolution is limited by machine precision, while the spatial resolution is limited

by the number of gridpoints (array size – which is limited by the amount of memory in

the computer). The power spectra limitation is a problem for the generation of initial

conditions and is independent of the simulation method used.

As a simplification of the full problem of structure formation, LSS simulations

assume that gravity is the dominant force and in the simplest scenario the only force.

This reduces structure formation to become an initial value problem (most physics

problem are of such a nature but it need not be necessarily true of all problems or

models in physics). That is to say that the simulations only require a list of inputs

at the beginning of the code’s run-time and that it requires no further input from the

user or from parameter lists. Naturally, this allows the code to be fast as it doesn’t

rely upon slow processes such as reading in files or waiting for a human input.

Despite the simplifications, the latest simulations are getting better at reproducing

the structure formation in the Universe with mild discrepancies. One of the most

recent developments is the Millennium Simulation (Springel 2005; Virgo Consortium

2005a) and the Aquarius project (Virgo Consortium 2008) by the Virgo Consortium

which is a collaboration mainly of Durham University and MPIA. Both projects are

undertaken using N -body codes, the former used GADGET-2 while the latter used

GADGET-3. On a technical point, these codes are not pure N -body codes but are
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sometimes referred to smoothed N -body codes. Gadget also features Smoothed Particle

Hydrodynamics which is not technically N -body either but for simplicity we will lump

all such techniques together and refer to all such codes as N -body.

Another recent simulation project is Via Lacta (Via Lacta 2007), which has been

used to study the dark matter halo of the Milky way. Part of the investigation has been

looking at the number of dwarf galaxies that surround a Milky Way -mass galaxy; for

many years, the number of dwarf galaxies seen in observations was factor of 10 - 100

times smaller than predicted from N -body simulations (see also (Tollerud et al. 2008)

for the comparison).

The Millennium Simulation was one of the first billion body gravity simulations and

focussed upon the formation of large scale structure (similar in spirit to this thesis)

while the Aquarius project is looking at understanding the evolution of galactic halos

and subhalos (Springel et al. 2008).

1.2 Λ - CDM : Concordance model

The simplest theory which is most consistent with observations is the Λ - CDM model

of Cosmology, sometimes alternatively called the Concordance model or the Standard

Model of Cosmology (Lahav & Liddle 2006). The latter name not only shares an

etymological link with the Standard Model of Particle Physics but cosmologists assume

that the particle physics model is a subset of the Standard Model of Cosmology. The

model attempts to explain the whole Universe in terms of the notions of ‘why the

Universe exists’ to ‘how it evolves’. It brings together all the key observations and

theories into the simplest framework that is still consistent with observations. That

is to say that it includes the major concepts and observations, mainly: the Big Bang,

Inflation, the Cosmic Microwave Background, Large Scale Structure, abundances of

the content of the Universe (baryons, dark matter etc), and the titular role of the

cosmological constant Λ (a source of the accelerating expansion as first detected in the

light of distant supernovae).
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The focus of this thesis is to investigate a simulation technique based in wave-

mechanics that reproduces the observed patterns of Large Scale Structure. The key

concepts of the Standard Model (listed above) feed into the generation of initial condi-

tions and the evolution of the background space-time model; these ideas and parameters

instruct us on how to write a code that faithfully reproduces the patterns of LSS. It is

not be obvious that the Schrödinger formalism can be applied to Large Scale Structure,

so part of our work was to perform numerical experiments that investigates how the

Schrödinger equation behaves (such as reflection and tunnelling, although these results

are omitted for brevity). Consequently, the LSS simulations in this thesis were con-

structed in a way that is consistent with this Standard Model (see Chapter 5). Some

ideas for using wave-mechanics to probe beyond the Standard Model are presented as

speculative ideas in Chapter 7.

1.2.1 A briefer history of time

To bring all of these ideas together it makes sense to present them in chronological order.

In this section I provide a non-technical overview of the main events in the Universe,

the concepts are expanded in the following section with the necessary mathematical

and technical detail. In doing so I will give an idea of where the simulations of LSS fit

into the overall picture of understanding the Universe.

The first event is either the Big Bang (a spacetime singularity) or Inflation, the

former might not have happened as inflation is an exponential expansion which means

that the scale factor can exponentially decrease towards zero as we go back in time

(Peacock 1999). The scale factor is the ratio of the size of the Universe, as seen today,

versus the size of the universe at any other moment in time. This relation is made

clearer below (see equation 1.5).

For simplicity let’s assume the Big Bang happened and that it was followed by a

period of Inflation. The small perturbations at the time of Inflation eventually grow

into perturbations in the distribution of matter (dark matter and ordinary baryonic

matter). As the Universe ‘cools’ and expands then matter eventually forms and, at
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this time, the dominant component of the Universe is radiation in the form of light.

This is known as the radiation dominated era of the Universe. Around fifty thousand

years after the Big Bang the Universe transitions from radiation dominated to matter

dominated (the so-called era of matter-radiation equality).

Around 400,000 years after the Big Bang, the photons become ‘free’ from the

baryons. This is the time when photons last scatter from the baryons and then free-

stream, travelling unhindered, through the Universe. This surface of last scattering

is what we observe today as the CMB. From observation of the CMB we can see

fluctuations in the wavelength of light (‘temperature’) which implies that there are

fluctuations in the distribution of matter. From a simulation point of view, this is the

start of structure formation. The Universe expands and cools as the light free-streams,

this allows the unhindered matter to self-attract gravitationally and hence form struc-

tures. Large clouds of gas, aided by dark matter, collapse to form stars and galaxies.

Most recently, the Universe is becoming dominated by dark energy: a repulsive force

that is accelerating the expansion of the Universe.

The evolution of the Universe post-Last Scattering is the domain of interest for

researchers in field of Large Scale Structure. As previously mentioned, the parameters

that are determined from the CMB are used as inputs to seed the simulations. The Λ-

CDM model is used to determine the rate of expansion of the Universe. In cosmological

simulations the concept of space-time is a background upon which cosmic structure

unfolds; the expansion of the coordinate system in the simulations is also part of

this ‘background’ of space-time. The particles of an N -body code evolve under the

relevant equations of motion but do not directly influence how the background space-

time evolves. That is to say that the dynamics of structure formation are in a co-moving

frame of reference. The evolution of the space-time background is explored next.

1.2.2 On space and time

If we can accept that space and time are united as a single entity denoted as space-

time then we encapsulate these 4 dimensions in an appropriate coordinate system with
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world-points (space-time events) as x1, x2, x3, t. By extension we can also write this

world-point using a different frame of reference as x′
1, x

′
2, x

′
3, t

′. The two frames of

reference describe the same point but can be moving arbitrarily with respect to each

other; however, the physical states and laws of the world-point must be the same in

both frames of reference. This is a statement of Einstein’s principle of equivalence.

Despite this, there are types of forces known as inertial forces that are coordinate

dependent. The result is that the notion of absolute objectivity (measurement of

invariant quantities) is applied, not to translations but, to rotations. That is to say

that rotational transforms are invariant (such as under Lorentz transformations) while

translational transforms are boosted (not invariant).

Hermann Weyl explains, in his book Space-Time-Matter (Weyl 1922), that special

relativity comes to the same conclusion that Newton did: the source of inertial forces

comes from the metric structure of the world; and hence, must be a real force. To

solve this dilemma, Einstein took the ideas of Riemann and applied them to the four-

dimensional world of Minkowski (the world of a united space-time). This does not

require one to specify the form of a metric. One assumes that there exists a measure

on the four-dimensional manifold that has a non-degenerate quadratic differentiable

form. Just as in (Weyl 1922), we can give an example of this measure as:

Q =
∑

µν

gµνdxµdxν (1.1)

here the summation is given explicitly (not by convention) and the indices run 0, 1, 2, 3.

The quantity xµ and xν are world-points of space-time, as Weyl called it, or simply

4-vectors of space-time. dxµ and dxν are the corresponding infinitesimal intervals that

correspond to these 4-vectors. The metric tensor gµν performs a similar function to the

dot-product of 3-space: it is used to define length and angles between two vectors.

Essentially, this is a reformulation of Pythagoras’s theorem to a four-dimensional

manifold. Now it is possible to formulate physical laws that are invariant under any

arbitrary (including non-linear) continuous transformation of the coordinates xµ. This

quantity Q is readily recognisable as the invariant length ds2 as seen in special relativity:
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ds2 = gµνdxµdxν (1.2)

What is unique to General Relativity is the idea that geometry and physics are insep-

arable, and that the origin of the gravitational force is actually the same as that for

the inertial forces: the metric structure of space-time. Under this realization Einstein

has shown an isomorphism between geometry and gravity; another way to see this is

that the quantities gµν are the potentials of the gravitational field.

Field equations. In Newtonian gravity, there is a field equation that expresses the

curvature of the gravitational potential field φ in relation to the density of matter ρ

in the field. This equation is the familiar Poisson equation of gravity which features

prominently in this thesis: ∇2φ = 4πGρ. Here G is Newton’s gravitational constant.

Using this as inspiration along with the newly discovered idea of using the metrics g as

potentials, Einstein was able to formulate a field equation for General Relativity. In a

more general formulation the curvature in the Newtonian expression becomes a second

order covariant derivative of the metrics, the appropriate tensor to describe this is the

fourth rank Riemann tensor Rµναβ (definition omitted for brevity). However, due to

the symmetries of the equations this tensor can be simplified to one of rank-two (the

Einstein tensor Gρλ). The symmetry appears on the right hand side of the equation

where the density, ρ, in the Newtonian equation is replaced by the symmetric Energy-

Momentum tensor. This yields the following equation:

Gνµ + Λ gνµ =
8πG

c4
Tνµ (1.3)

The field equations are a set of tensor relations that describe the relativistic movement

of matter due to gravity in some arbitrary space-time. The field equations allow a way

of determining the appropriate metric to use given some distribution of matter and

energy. Matter and energy cause space-time to curve and consequently the curvature

of space-time will influence the trajectory of the matter and energy. The above for-

mulation includes the cosmological constant Λ, it was originally included as a way of
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making the solutions to the field equations describe a static Universe but is now used

to describe what we call Dark Energy.

Einstein unveiled his General Theory of Relativity in 1915 and then in 1917 he found

a solution to his field equations that assumed rotational and translational symmetry

(this set of symmetries is called the Cosmological Principle and is an essential part of

the Standard Model of Cosmology). This modelled a Universe that is spatially finite

with no boundary but unstable – gravity forces collapse. As Universe was thought to

be static, he chose to add the cosmological constant in order to make his model Uni-

verse static. However, the addition of a cosmological constant provided solutions that

were still ‘unstable’: it would still expand or contract as more matter or cosmological

constant is added. An important breakthrough came in 1922 from Friedmann, he used

the same symmetries as Einstein and found an equation that governed the evolution of

a relativistic Universe. The appropriate metric for these symmetries has the following

form:

ds2 = c2dt2 − a(t)2dξ2 (1.4)

As above, ds is the invariant 4-length, while t is the coordinate time. The metric

for 3-space, ξ2, is independent of time. The dependence for time comes from the

multiplication by the scale-factor a(t). The scale factor can be interpreted in two

ways, one as a scale factor is the ratio of a physical distance (r) to a comoving distance

(x):

r = a x (1.5)

or two, as the ratio between any measurement of the Universe at two different times.

Typically, the scale factor is used in reference to the size of the Universe. We set the

scale factor to be a = a0 = 1 as the value of the Universe today, hence the size of the

Universe at some previous (or later) time is some multiple of today’s size. Values of

0 > a > 1 correspond to moment in the past, while a > 1 is any time in the future.
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To describe rotational symmetry we can re-write the 3-metric part of equation 1.4

in polar coordinates ξ(r, θ, ϕ):

dξ2 =
dr2

1 − kr2
+ r2[dθ2 + sin2 θdϕ2)] (1.6)

the only unfamiliar term here is k the spatial curvature which is generally taken as a

constant in most models. For the various cases of curvature (negative curvature, flat,

positive curvature) the corresponding values of the constant are: k = −1, 0, 1.

Friedmann equation. The above metric for space-time is often called the Robertson-

Walker (R-W) metric, named after the two American physicists that discovered it inde-

pendently of Friedmann. However, it was from this metric that Friedmann went on to

find his famous solution to the field equations 1.3 and hence derive equations of motion

for the Universe. In addition to using the RW metric, he also assumed the energy-

momentum tensor of a perfect fluid which ensures energy and momentum conservation

(Tµν;ν = 0) (Schutz 2009). His equation is given as:

ȧ2 =
8πGρ

3
a2 − kc2 (1.7)

This equation can be derived from classical arguments using Birkhoff’s theorem and

Newtonian gravity, but the full treatment from General Relativity is needed to get

the curvature term kc2 which is essentially a constant of integration (Peacock 1999).

Birkhoff proved that for a spherically symmetric distribution of matter Einstein’s field

equations have a unique solution. A corollary to this is that a the force (or acceleration)

upon a spherical mass is determined solely by the matter lying within the sphere (when

external forces cancel, that is to say that the distribution of matter outside the sphere

is uniform).

A more useful form of Friedmann’s equation is a rescaled version using the the

density parameters Ω, defined as the ratio of density to the critical density:

Ω ≡ ρ

ρc

=
8πGρ

3H2
(1.8)
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The density, ρ, here is left without a subscript as it can denote any density component

of the Universe. It can also be used to denote the total density of the Universe, which

we can write ρtot with the corresponding density parameter: Ωtotal.

The critical density is the density required to ensure that the Universe is flat. Using

this rescaled parameter we can now rewrite the Friedmann equation:

H2 = H2
0

[

Ωr0(1 + z)4 + Ωm0(1 + z)3 + Ωk0(1 + z)2 + ΩΛ0

]

(1.9)

H = ȧ/a is Hubble’s parameter. Also by convention the scale factor (call it R) is

rescaled such that a = R/R0. All symbols with the subscript zero are taken as today’s

values. The Ω’s are the density parameters for the following components (in order of

appearance above): radiation, matter, spatial curvature, cosmological constant (dark

energy, for example, contributes to this final density parameter). The summation of

these components is Ωtotal = Ωr + Ωm + Ωk + ΩΛ.

The various powers of the redshift (which is related to the scale factor via: 1 + z =

1/a) show how each component scales with the age of the Universe. First the Universe

was radiation-dominated, then matter- and finally dark energy-dominated. The value

of Ωk = 1−Ωtotal is assumed to be close to zero, hence a flat Universe. The assumption

of flatness is confirmed by the observations of WMAP (Dunkley et al. 2009).

Cosmic expansion. Friedmann’s equation essentially tells us how the scale factor

changes over time, hence it tells us the rate of the Universe’s expansion given that we

know the appropriate Cosmological parameters (one such of these parameters is from

the WMAP data as mentioned in section 1.1). It plays a key role in simulations for

determining how the background space-time expands. It is also used to rescale the

equations of wave-mechanics as will be shown in Chapter 5.

While Einstein claims his biggest blunder was not to realise that he could have

discovered the concept of a dynamical Universe, it turns out that his Cosmological

constant would become part of the modern paradigm of Cosmology. Part of the reason

that he disregarded his constant was that it was assumed that the Universe was in a
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steady state; somehow the gravitational self-attraction of matter was balanced against

a repulsive force. It was the combination of Friedmann’s solution plus the discovery

of galaxy redshifts by Slipher (Slipher 1917) that lead to the notion of a dynamical

Universe. Einstein is famously remembered as being dismayed by the fact that he

essentially discovered this idea before them but initially discarded it as incorrect. This

result was also known to Newton, in as much as he realised that there was a problem

with gravity’s self-attraction for a static and ‘perfect’ Universe.

Slipher found that most galaxies are moving away from the Earth. However, it

was Hubble (Hubble 1929) that realised that galaxies that were twice as far away were

receding twice as fast. These culminated in what is now known as Hubble’s law:

v = H0d (1.10)

This states that the recession velocity v is linearly proportional to the distance d, where

the constant of proportionality H0 is today’s value of the Hubble parameter as seen in

the Friedmann equation 1.9. This requires knowing the distance to the galaxies which

Hubble did by measuring the variability of Cepheids. Since Hubble’s publication it

has been found that many were not Cepheids but the principle of using Cepheids to

measure distances is still correct.

Due to the principle of General Covariance then General Relativity has no preferred

observers, physics should be the same everywhere. This in combination with the pre-

vious assumed symmetries (R-W metric plus the symmetric tensor Tµν) come together

neatly with Slipher’s and Hubble’s observations to show that all points (and observa-

tionally, all galaxies) are mutually moving away from each other hence the Universe

appears to be expanding. However, this requires a caveat: while General Relativity ad-

mits a smooth and continuous density field across the whole Universe but it is assumed

that space is empty. General Relativity says that empty space is truly empty hence

talking about the expansion of space itself is contentious as there is nothing to stretch.

The Cosmological constant provides little help here as it is a coordinate relationship

and does not provide a mechanism that induces expansion.
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The observation Hubble made is that of redshifted electromagnetic radiation: this

is not a proof or observation of space itself expanding, at least not locally. The redshift

observations are not enough to determine whether a force, internal or external to the

Universe, exists to cause this expansion. It is unlikely that anything can exist ’external’

to the universe, if this were the case then a re-definition of the term ‘Universe’ would

then include this external region. I mention this as it may not be entirely obvious that

everything we see should constitute the whole Universe.

At the largest scale (non-locally) then the Universe could be expanding but this

does not necessitate an expansion of space-time in a local frame of reference (Peacock

2008). This may sound paradoxical but Peacock notes that the evidence is seen from

the looking at the equations of motion (see reference for details). At least this is the

case in General Relativity. If in some theory of Quantum Gravity it turns out that

empty space is not actually empty but has some structure to it then the conclusion

here may need to be modified.

The Big Bang. If all galaxies are moving away from each other then if we extrapolate

backwards in time then all galaxies must have met at some singular point when a → 0.

There is a formal singularity in both space and time, consequently the density becomes

singular too: ρ → ∞. This singularity is called the Big Bang.

Friedmann’s solution to Einstein’s field equations implies a finite space-time. This

corroborates with Olber’s paradox: the Universe is not infinitely bright hence it must

not contain an infinite number stars or be of an infinite age. The original version of the

paradox suggests that if the Universe is infinite then it should be infinitely bright, as

the latter is not true then the Universe cannot be infinite in extent. It has been since

shown, using General Relativity, that a similar paradox can arise in a finite universe

where the brightness is that of stellar surface brightness (not infinite).

The idea of the Big Bang originated from Georges Lemâıtre, while the name was

condescendingly given by the theory’s most vocal critic Fred Hoyle. The idea of a

finite expanding Universe combined with the Cosmological Principle (isotropic, homo-
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geneous Universe) are the fundamental building blocks of the standard model. The

Cosmological Principle is an assumption that matches observations well at the largest

scales. Such a Universe evolves according to the Friedmann equation (See equation

1.9).

At the world-point of the Big Bang there are many singularities in our physical

laws, it is fair to say that our current laws of physics are no longer valid at this point.

As scale factor tends to zero we can also notice that density and temperature also tend

to infinity. Curvature will also be singular, infinite density will give infinite curvature

unless there is uniform infinite density across the entire Universe in which case the

curvature is zero.

The concept of temperature is not valid in this regime as temperature is only de-

fined for a system under Maxwell-Boltzmann statistics. In such a highly relativistic

and quantum dominated regime such as (shortly after) the Big Bang then talking of

temperature is misleading. However, it is possible to calculate the energy of elemen-

tary particles at this time (as order of magnitude estimates) and hence establish a

pseudo-temperature. From the Cosmological Principle it is possible to extrapolate

that the Universe by necessity should be isotropic and homogeneous at this time too.

By implication then the Universe will have a near constant energy density.

From the Friedmann equation 1.9 we can see the Universe is dominated by radiation

in the very early Universe, that is to say that the expansion of the Universe scales with

the radiation energy density (a−4). Of interest is the timescale of expansion versus

the timescale of thermal interaction. If we can assume a thermal background then it

turns out that the Universe is also in a state of “thermal equilibrium”. The dynamical

timescale of expansion is t ∼ (Gρ)−1/2 ∼ a2 (radiation dominated) while thermal rates

scale as n1n2 (for a two-body interaction) where this scales like ni ∝ a−3 (ni is one

species of particle in the afore mentioned two-body interaction).

Despite the success of the Big Bang model (the forerunner to the current Standard

Model), it has some problems too. The initial singularities are only a part of it, they

are a problem with our understanding of the physical laws but the more pressing issues
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are the currently observed features that the Big Bang model doesn’t explain (Peacock

1999; Baumann & Peiris 2008). These unexplained features are:

• the horizon problem;

• the flatness problem;

• the structure problem;

• the monopole problem;

• matter-antimatter asymmetry;

• the cosmological constant problem.

They are outlined in the following paragraphs about Inflation.

Inflation. It is not necessarily the case that the Universe started as a singularity

(the Big Bang) as suggested above. In the 1980s the concept of Inflation was in-

vented: it posits that the Universe underwent accelerated (superluminal) expansion

(Baumann & Peiris 2008). There are now several different variations of the original

inflation idea however all theories of Inflation require that expansion is exponential;

therefore, it is possible for expansion to start slowly (when the expansion factor, a, is

exponentially close 0) and then finish after a period rapid expansion (the end of the

exponential). (Peacock 1999)

The general idea behind inflation is that a scalar quantum field, dubbed the Inflaton

field, drives the expansion of the Universe. The behaviour of this Inflaton is like a

negative pressure, that is to say that a positive energy density gives negative pressure

rather than positive pressure. This is built on the idea of the vacuum energy causing

a de Sitter like expansion, in the case of the Friedmann equation where k = 0 then we

have a solution for the scale factor: a ∝ exp(Ht). Consequently, Inflation requires the

Universe to be incredibly flat (1 part in 1060). Which ties in well with observations:

previously there was no known mechanism for why the Universe should be as flat as it is.
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This was known as the flatness problem. The Friedmann equation and the Cosmological

Principle hold equally well in a flat, open or closed Universe (k = −1, 0, 1). For the

Universe to be closed would require enough matter density to make it positively curved.

If there is not enough matter then the Universe would be open (negatively curved).

Inflation occupies a time period believed to be from 10−35 to 10−34 seconds after

the Big Bang (Peacock 1999). Little is known about this period but many speculative

theories have been developed. Fortunately, there are some key observations that help

to confine what a theory must produce. Such a quantum field may also be responsible

for the symmetry breaking required to produced the matter-antimatter asymmetry.

The rapid expansion also causes any particles present at that time to be diluted in

density. This dilution would also be true of monopoles; such ‘particles’ are hypothetical

point-like topological defects that predicted to arise in any GUT phase-transition (t ∼
10−35 after the Big Bang). GUT is an acronym for Grand Unification Theory, this

theory has proposes that three of fundamental forces (electromagnetic, weak and strong

interactions) in the Universe are in fact a single force but this would only be observable

at high energies. As the energy density decreases when the Universe expands the period

before where the fundamental forces are no longer a single force is known as the GUT

phase-transition.

This argument of dilution is also true of smoothing out anisotropies or perturbations

of any density field that exists. This is part of the explanation of why we believe the

Cosmological Principle is valid today: the Universe was isotropic and homogeneous at

the end of inflation and has remained so (at large scales) until today.

Observations show that the Universe at the time of Last Scattering is larger than

the causal horizon, this means that we shouldn’t necessarily see a Universe in thermal

equilibrium (isotropic and homogeneous in energy density). This problem of causality is

solved if inflation is the correct. For the Universe to appear to be in thermal equilibrium

across the entire sky, even though the horizon size is far smaller than the real size of the

Universe, then the Universe must have undergone a period of superluminal expansion

where the property of thermal equilibrium is preserved from an early time.
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That is to say that the the Universe would be in causal contact before inflation and

because of the superluminal expansion the Universe will still appear to be in thermal

equilibrium even though the actual horizon size is much smaller than the size of the

Universe. This is why the Universe can appear to be in thermal equilibrium at the

time of Last Scattering.

The small perturbations that survive from Inflation will eventually grow into per-

turbations of the latter-time energy and matter densities. Immediately after inflation

is the radiation dominated era of the Universe (consistent with the scaling relations

from Friedmann’s equation) and then eventually this becomes a matter dominated Uni-

verse. Through out all epochs the initial perturbations in the Inflaton field will carry

through to the next. This is suggested to be the mechanism for seeding structure in

the Universe and hence solve the structure problem. (Baumann & Peiris 2008)

Cosmic Microwave Background. Further evidence of the Big Bang is the Cosmic

Microwave Background (CMB). It is often described as relic radiation left over from

the Big Bang. The information contained in the CMB gives hints, not only of the

Big Bang but, of Inflation and also the nature of dark matter. The observations from

the CMB are perhaps the most crucial evidence for supporting the Standard Model of

Cosmology, it allows accurate measurements of key cosmological parameters.

These parameters are fed into LSS simulations which help our understanding of how

the Universe has evolved. So it is important for LSS researchers to obtain the most

accurate parameters from the CMB (used as initial conditions) in order to accurately

reproduce the evolved density field of the Universe. Soon the new satellite, Planck

(launched in May 2009), will provide improved parameter estimates by measuring the

CMB more accurately than has been done before. The current parameters were pro-

vided by the WMAP satellite which launched in 2001. How to obtain these parameters

is briefly later in this section.

The CMB radiation created during the time of Last Scattering, or time of Recombi-

nation, so called because it is the last time that photons are scattered with the matter
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of the Universe and are allowed to free-stream. The light emitted from this last scat-

tering surface is what we call the CMB relic; this relic radiation gives us an insight

to the physical processes that occurred at Last Scattering.. Also at this time, all free

electrons are thought to have been captured by the protons and Helium nuclei, the key

physics at this time is that of a recombining plasma. (Peacock 1999; Lahav & Liddle

2006; Baumann & Peiris 2008)

Observations of the CMB temperature fluctuations show a deviation from the mean

at about 10−5, this number is subsequently used as the deviation from the mean of the

matter density. These measurements are further evidence of an (almost) isotropic and

homogeneous Universe. A key problem of physical Cosmology is to understand where

these fluctuations come from: we need to reconcile the concept of a flat, isotropic and

homogeneous Universe as demanded by the Cosmological Principle versus the small

fluctuations that we observe the wavelength of light of the CMB.

The brightness temperature (intensity) of the CMB is almost a perfect black-body,

in fact the fluctuations in brightness (otherwise seen as the deviation from a perfect

black-body) were not detected until 1992, which was 25 years after they were first

proposed (Peacock 1999).

The fluctuations can be put into two broad categories: primary and secondary

anisotropies. The former are effects that happen at the time of recombination, while

the latter are generated by scattering (along the line of sight) while the photons are

in transit (from the surface of last scattering to the detector). The secondary effects

are mostly ignored for dark matter simulations of Large Scale Structure, so I will forgo

explaining them in this thesis.

The primary temperature fluctuations are caused by:

1. Gravitational perturbations (Sachs-Wolfe effect)

2. Intrinsic perturbations (adiabatic)

3. Velocity perturbations (Doppler effect)
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The first effect is caused when photons from a high-density region have to climb

out of a potential well and are hence red-shifted. The second effect is also from high-

density regions, where the coupling of matter and radiation compresses the radiation

to give a higher temperature. The third effect is due to the plasma having a non-zero

velocity which gives Doppler shits in frequency and hence brightness.

The fact that any perturbations exist in the first place is a problem, it suggests that

there must be fluctuations that existed before Last Scattering. Such inhomogeneities

are thought to be relics of inflation, as discussed previously. These relics of inflation

are the seeds of all futures perturbations and hence evolve into Large Scale Structure.

Therefore the fluctuations in the temperature of the CMB light can tell us something

about the fluctuations from inflation (primordial density perturbations). The theories

of the two epochs should be consistent with one another. The correlation between

inhomogeneities, at either epoch, is characterized by a power spectrum. More precisely,

the Fourier transform of the power spectrum is the correlation function and tells us

about the typical scales at which we should see fluctuations. That is to say that

the power spectrum from the primordial density perturbations at the end of inflation

should be consistent with that of the power spectrum given by the temperature of the

CMB fluctuations (the latter will, of course, show that the Universe has evolved in the

interim period).

For inflation we should start from a minimal set of assumptions about the power

spectrum of the density variations: that is to say, that they should follow a featureless

power law. If there was a preferred length then we’d need an explanation as to why this

feature exists. Given the Cosmological Principle there should be no preferred length.

We can express the power spectrum as:

Pk =< δkδ
∗
k′ >= Akn (1.11)

here power, in Fourier space Pk, is assumed to be linearly proportional to the wavenum-

bers k (length scales in real space). The parameter A sets the overall normalization of

each mode. The power spectrum tells us about the correlations in the density (here,
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over-density δ) field.

The spectral index n is close to 1 for a scale-invariant power spectrum, this is known

as the Harrison-Zel’dovich spectrum (Harrison 1970; Zeldovich 1972) and states that

the curvature of fluctuations have constant amplitude on all scales. Such an idea has

a good match to the observed spectra from the CMB. (Baumann & Peiris 2008)

The amplitude of the fluctuations in the Inflaton field are a free parameter of the

theory of Inflation. This freedom is part of the problem known as cosmic variance and

is hard to measure in observation as it is only apparent at the largest scales of the

Universe. I will return to the idea of cosmic variance below.

In figure 1.2 I show the evolved non-linear power spectrum (thick black line) on

top of the input power spectrum (dashed black line). At the end of inflation we expect

this dashed line to be straight as mentioned above. This figure shows that is the

case, however, it does show some evolution at the larger scales (left side of the graph)

however at inflation the power spectrum is simply just a straight a line. As the universe

evolves then the power drops for large scales. Power eventually evolves on the small

scales too as the density perturbations become non-linear; the dashed line therefore

bends outwards as the power increases on small scales (right side of the graph). I give

thanks to Teodoro for providing this figure (Teodoro 2008).

There are two main contributions to primordial density perturbations: an adiabatic

component and and isocurvature component. In general, the perturbations will be a

mixture of both. The abundance of each type is a feature of power spectrum of the

CMB, therefore it is clearly possible to say something about the nature of inflation

given the CMB power spectrum (see below).

For primordial density perturbations, adiabatic means that the over-density in each

component of the energy density is the same. That is the over-density of baryons in a

given region will be the same as the over-density of photons in the same region. For

isocurvature perturbations, however, the sum of the over-density components is zero.

As the name implies, this ensures that curvature is the same everywhere. The theory

of structure formation from cosmic strings relies upon the isocurvature model.
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Figure 1.2: This figure shows the evolved non-linear CDM power spectrum (think

black line) as generated by Smith et al, this power spectrum was calculated from the

Λ-CDM theory. The input power spectrum is the initial power spectrum at the start

of the simulation, which is post Last Scattering. The straight part of the dash line

shown is what we expect the inflation power spectrum to look like. The coloured lines

and datapoints are from power spectra generated from various runs of a Large Scale

Structure code used by Teodoro (Teodoro 2008). L0 is the length of the simulation

box (in h−1 Mpc) and N is the number of particles in the simulation.
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In figure 1.3 I show the angular power spectrum of the CMB. From the data used

to construct this power spectrum it is possible to determine whether the CMB favours

the existence of adiabatic of isocurvature primordial density perturbations. The two

types will produce peaks in the power at different locations (different angular scales, or

different multipole number l). Adiabatic perturbations favour a series of ratios 1 : 2 :

3 : . . . in k (wave-number) or l (multipole number); while isocurvature perturbations

favour the ratio 1 : 3 : 5 : . . . (Hu & White 1996).

The angular power spectrum of the CMB tells us that the primordial density per-

turbations are entirely adiabatic. This supports our model of inflation and rules out

the model of structure formation from cosmic strings.

It is also possible to link the two power spectra of the temperature fluctuations in

the CMB light to the density perturbations at the time of the CMB (and not just to the

primordial density perturbations). As mentioned above there are three main types of

sources of anisotropies in the CMB light. I will focus upon the adiabatic perturbations

(item 2 in the list) which originate from the time of Last Scattering.

The first peak in the angular power spectrum (figure 1.3) is known as the acoustic

peak (at l = 220), this is the sound horizon at Last Scattering. If the Universe was

significantly more open (in terms of curvature) then this peak would be further to the

right. The position of this peak therefore tells us the Universe is flat (see Peacock

(1999) for more details).

The heights of the peaks in the power spectrum are determined by the driving

force of feedback and the baryon drag. The recombining plasma is a coupling of the

photons and baryons, the positive energy density naturally tends to make dense regions

self-gravitate; however, the photons tend to resist this compression and so act to erase

these anisotropies while the baryons, essentially tracers of the CDM potentials, tend

to form dense haloes. The competition between the photons and baryons creates an

oscillatory structure that is present in the power spectrum.

A larger abundance of neutrinos would decrease the amplitudes of the peaks and

the driving force would not be present if the gravitational potentials are dominated by
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Cold Dark Matter (Hu & White 1996).

It is expected that hot and cold spots should thermalize and hence appear as a

uniform temperature (that of Hydrogen ionization); however, denser spots actually

recombine later and so they are less red-shifted and therefore hotter. Crudely, we

can state the fractional density difference δρ/ρ in terms of the fractional temperature

difference δT/T :

δT

T
= − δz

1 + z
=

δρ

ρ
(1.12)

here we assume that the growth of density perturbations is linear, δ ∝ (1 + z)−1.

So to linear order we expect the fluctuations in temperature to be the same as the

fluctuations in density. Therefore the size of density perturbations at this time will

also be about 10−5.

The tail of the power spectrum on the right hand side shows damping which is

caused by diffusion damping (or collisionless damping). The fluid approximation of

the plasma breaks down as the mean free path of the photons increases due to the

Universe expanding and the finite depth of the last scattering surface. Therefore the

acoustic peaks are exponentially damped at smaller angular scales.

Lastly, the large angular scales (left of the main peak in figure 1.3) are dominated by

gravitational effects, such as the Sachs-Wolfe effect (item 1 above). As previously men-

tioned, this is an effect where photons are red-shifted as they climb out of gravitational

potential wells.

With all of this information combined it is possible to generate an analytic power

spectrum and fit it to data from (say) the WMAP satellite. This process is one of the

reasons that we can be confident in the Concordance (or Λ-CDM) model of Cosmology:

it provides the most concise fit to the data. The data yields the following cosmological

parameters (Jarosik et al. 2011):
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H 70.4 ± 1.3km/s/Mpc

Ωb 4.56% ± 0.16%

ΩCDM 22.7% ± 1.4%

ΩΛ 72.6% ± 1.5%

Ων < 1%

Ωk 0.0179 < Ωk < 0.0081

The age of the universe is 13.75 ± 0.11 billion years (better than 1% precision),

H is the Hubble parameter, Ωb is the abundance of baryonic matter, ΩCDM is the

abundance of cold dark matter, and ΩΛ is the abundance of dark energy in the form of

a cosmological constant. Ων < 1% is the abundance of neutrinos. The data also shows

that the Universe has flat Euclidean geometry (shown by Ωk near zero).

Cosmic Variance. This is an expression about the lack of statistical reliability at

extreme distance scales. At large distances the number of independent data points is

low, so it is difficult to make statistical statement about the Universe at these scales.

As we can only see one Universe, our own, then it is more difficult to use the notion of

ensemble averages. There is only one observed realisation of the Universe: the one we

see. This provides an inherent inaccuracy of using the CMB to constrain the amplitude

of fluctuations from Inflation.

Dark Matter. The idea of Dark Matter was postulated as a method which accounts

the missing matter in galaxy rotation curves and clusters of galaxies. Fritz Zwicky

(Zwicky 1933) is credited with being the first researcher to encounter a problem of

“missing matter”. He estimated the total mass of the Coma cluster based on the

motions of galaxies near its edge and compared that to the total mass based upon

total brightness and number of galaxies in the cluster. His calculations yielded a result

that suggested the cluster was 400 times more massive (implied by the motion) than

expected (implied by visible light). This lead Zwicky to believe that there must be an
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Figure 1.3: This figure shows the angular power spectrum of the temperature fluctua-

tion of the CMB. The (lower) x-axis is the effective multipole number (l) while at the

top of the picture is the angular scale (degrees) (Wright 2008).

abundance of non-luminous matter in the cluster.

The confirmation of Zwicky’s proposed non-luminous matter came 40 years later

with the work of Rubin and Ford (Rubin & Ford 1970). They noticed that the edges

of galaxies appeared to be rotating faster than he expected from using simple mass-

to-light ratios with the Virial theorem. The total amount of light from the edges of

galaxies suggested that the total mass of the galaxy should be lower than the mass

inferred from the speed of rotation. This implies that some mass was missing, on top

of that it must be dark in the sense that it emits no light.

As mentioned in the section about the CMB, the angular power spectrum indicates

the abundance of dark matter in the Universe. From this power spectrum it is clear

that the CDM enhances the gravitational potential of the baryons and so increases the
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height of the acoustic peaks (larger than without CDM). It is thought that this dark

matter is produced in the early Universe along with ordinary matter; however, there is

no interaction signature in the observable light (such as from scattering) therefore the

two types of matter must be weakly coupled; perhaps only coupled via gravity, this

flavour of dark matter is called Cold Dark Matter (CDM). Currently, CDM is believed

to exist and is a key component of the Standard Model (the Λ − CDM model) and

makes up around 22% of the total energy budget. (Dunkley et al. 2009)

The height of the peaks provides a parameter for the fluctuation amplitude that

seeds the initial conditions in LSS simulations. The superparticles in N -body simu-

lations are assumed to be similar to CDM in nature. A superparticle is a particle in

a computer simulation that represents many real particles (more details are given in

2. In a highly idealised way, these particles only interact via gravity. In the simplest

simulations baryons are ignored. CDM and the superparticles of N -body simulations

has the following features collisionless (non-interacting, no scattering), dissipationless

(don’t cool by photon radiation), non-relativistic (speed is much less than that of light).

Despite no direct detection of CDM it is seen indirectly in weak lensing surveys of

the Universe which are able to accurately map out where the dark matter is distributed.

Notably, CDM is thought to be present in galaxy clusters as well as in galaxies them-

selves (so called galaxy halos). Due to the weak coupling with ordinary matter, and

currently no observable interaction signature (such as, from scattering), then CDM

only contributes to the total mass and not the total light observed in a galaxy. This

explains why galaxies are observed to be moving faster in clusters than would otherwise

be expected without CDM. (Peacock 1999; Navarro et al. 1996)

Around each galaxy (and filling the distances between galaxies in clusters) is the

presence of a dark matter “halo”, it is expected to extend beyond the edge of the visible

edge of galaxies and is the principal component of a galaxy’s gravitational potential (as

the dark matter dominates the total mass of the galaxy). This idea is a consequence

from the results of Rubin & Ford (1970). The shape of the density profile is known as

the Navarro-Frenk-White (NFW) profile, see Navarro et al. (1996) for more details.
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Dark Energy. The last piece of the puzzle that needs to be mentioned is that of the

ambiguously named Dark Energy, which bares no resemblance to Dark Matter. The

two are not equivalent or interchangeable as one might naively guess from Einstein’s

relation of mass to energy. Unfortunately, the name has stuck despite the misleading

nature of its meaning.

Dark Energy is thought to behave like the Cosmological Constant (Lahav & Liddle

2006) that appears in Einstein’s Field equations, in fluid terms it acts like a negative

pressure. That is to say that the pressure is negative (unlike ordinary pressure) but

results from a positive energy density: PDE = −ρDE (Padmanabhan 2008). However,

it is hypothesized to be an effect from the vacuum of space. At a simplistic level it

acts in the opposite direction to gravity and, hence, is a repulsive force. Padmanabhan

indicates that the source of geodesic acceleration is ρ + 3p and not just ρ; gravity is

attractive because this quantity is greater than zero, however, if this quantity was less

than zero (due to say a negative pressure contribution from Dark Energy) then it would

lead to ‘repulsive’ gravitational effects.

In the current epoch, a → 1, the Cosmological constant is the dominant term of

the Friedmann equation for governing the dynamics of expansion (see the Friedmann

equation 1.9). As Dark Energy is synonymous with the Cosmological constant, it is

believed that Dark Energy is causing the Universe to expand at an accelerated rate,

similar to the suggested vacuum driven expansion of Inflation.

Observations in the mid-70s strongly suggested that the dominant matter compo-

nent of the Universe was non-baryonic (Padmanabhan 2008). This is the Dark Matter.

However, these observations show that this component is 20% - 30% of the Universe’s

energy density (Ωm = 0.2 − 0.3). At the same time, as Padmanabhan (2008) notes,

there was a “theoretical prejudice” for Ωtot = 1. That is to say that there is another

missing component (beyond Dark Matter) in the total energy of the Universe. This

component is ‘unclustered’ (in Padmanabhan’s words; that is to say that it appears to

be an isotropic effect across the whole observable Universe (at high-redshifts).

The observational evidence for the existence of Dark Energy came in the late-90s.
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The original paper (Riess et al. 1998) published observations of type Ia supernovae,

these observations were used to place constraints on key cosmological parameters (such

as Hubble’s parameter (H0), the mass density (Ωm), the cosmological constant (ΩΛ),

the deceleration parameter (q0), and the dynamical age of the Universe (t0)).

The key result from this publication was that “the distances of the high-redshift SNe

Ia are, on average, 10% to 15% farther than expected in a low mass density (Ωm = 0.2)

Universe without a cosmological constant. Different light curve fitting methods, SN

Ia subsamples, and prior constraints unanimously favour eternally expanding models

with positive cosmological constant (i.e., ΩΛ > 0) and a current acceleration of the

expansion (i.e., q0 < 0).”

The team measured the redshift and apparent brightness of the supernovae and

found that they were dimmer than expected for the redshift they gave. Type Ia su-

pernova are thought to explode at a known absolute brightness which is thought to

be a standard, or fixed, value. One can determine the distance to these supernova,

accurately, by measuring its apparent brightness. This is why Type Ia are known for

their reliability of measuring distances in the Universe, and are also called ‘standard

candles’.

As the supernovae have a known brightness, and therefore a known distance, then

it should be easy to match this distance to that given by the redshift. This is where

the contention arises: Riess et al. (1998) show that the supernovae are dimmer than

expected for their measured redshift. This suggests the Universe is expanding at an

accelerated rate.

The latest data from WMAP (Jarosik et al. 2011) gave an estimate of the Dark

Energy to be around 73% (ΩΛ72.6%±1.5%) of the total energy budget of the Universe.

Large Scale Structure. A lot has been said already about LSS, most of the relevant

science is in the earlier section 1.1 devoted to LSS which is one of the central topics of

this thesis. The clustering of galaxies is a perturbation to an otherwise isotropic and

homogeneous system and hence they can be treated as an extension of the isotropic,
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homogeneous metric. Here I make a note of how to describe the evolution of LSS as a

fluid. This line of thinking ties in well with the wave-mechanical approach as will be

highlighted in Chapter 3.

The Friedmann equation assumes and requires the expansion of the Universe to be

adiabatic. This necessitates that the Universe is described as a perfect fluid, an exam-

ple is a CDM dominated Universe. This suggests describing structure formation using

the fluid equations. For a general fluid description, the Universe will behave according

to Boltzmann statistics. The Boltzmann equation describes the statistical distribution

of one particle in a fluid using a 7 dimensional function f(x, y, z, vx, vy, vz, t). The posi-

tions are denoted by (x, y, z) and the components of velocity are denoted by (vx, vy, vz).

As usual, time is denoted by t.

∂f

∂t
+

∂f

∂x
· p

m
+

∂f

∂p
· F =

∂f

∂t

∣

∣

∣

∣

coll

(1.13)

F is the force acting upon the particle, m and p are the mass and the particle’s

momentum (respectively). It is worth noting that the Boltzmann equation is more

general than a fluid description; however, the two concepts are often stated as being

synonymous with each other (Peacock 1999). Under the simplification of no collisions

( ∂f
∂t

∣

∣

coll
= 0) the Boltzmann equation reduces to the Vlasov version and leads to the

collisionless fluid equations (in comoving coordinates with additional Hubble term):

∂ρ

∂t
+

1

a
∇ · (ρv) = 0 (1.14)

∂v

∂t
+

1

a
v · ∇v + Hv = −1

a
∇Φ (1.15)

Here v is the velocity and ρ is the density, H and a are the Hubble parameter and

expansion factor (respectively), and Φ is the gravitational potential. The extra Hubble

term accounts for the dynamics of an expanding Universe, even in comoving coordinates

the dynamics are modified. A derivation of these equations in a cosmological context

is given in Chapter 15 of Peacock (1999).
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It is possible to directly code these equations on a computer and generate simple

results for LSS. Using the Boltzmann equation is only one such approach, as already

stated the main technique is the N -body method. The next chapter (2) provides a

review of the standard simulation techniques in LSS.



Chapter 2

Review of Numerical Simulations

Modern cosmology aims to combine the observations of the Universe with the math-

ematical description provided by the Standard Model. However, all assumptions and

theories must be tested. Many predictions made by the Standard Model are not always

directly observable, such as predictions about Inflation, but there must be a way to

verify whether the ideas of the Standard Model are self-consistent and match up with

observation. This is difficult and essentially requires a computational effort. In the

context of this thesis it is appropriate to look at the computational efforts that have

been developed to study LSS.

Galaxy clustering is a non-linear process where the mean density of a cluster

or galaxy is thousands or millions times denser than the mean background density

(Peacock 1999). As the evolution of such a system is inherently non-linear and in gen-

eral lacks an analytic solution then one must resort to ‘brute force’ methods of analysis

via a computer. The idea here is to use a computer simulation to study the evolution

of one possible realization that should be statistically equivalent to the real Universe.

Such an idea is similar to exhaustive proofs in mathematics where an elegant proof is

non-trivial. One such method of simulation is called an N -body simulation: it follows

the motion of many particles that are guided by the physical laws encoded in the simu-

lation. Observations and physical intuition provide constraints on the parameter space

that such a simulation will explore. The end result should be a statistical equivalence
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between the simulated Universe and the observed one.

Bertschinger reviews the main concepts and history of cosmological simulations in

his 1998 paper: “Simulations of structure formation in the Universe” (Bertschinger

1998). This paper covers the underlying theory and offers insight into each of the

various methods of performing LSS simulations. In this paper he says that the first

gravitational simulation was performed on an analogue optical computer by Holm-

berg in 1941, where lightbulbs and photo detectors were used to replicate the inverse

square law of gravity. The first digital gravitational simulations were by von Hoerner

in 1960 and 1963, and Aarseth in 1963. Bertschinger attributes the first cosmological

simulation to Press and Schechter in 1974; what they did was to investigate the mass

distribution of bound clumps formed by hierarchical clustering. They constructed

a model for predicting the number of objects of a certain mass within a given vol-

ume of the Universe, and has come to be known as the “Press-Schechter formalism”

(Press & Schechter 1974) (also known as the cloud-in-cloud problem).

In the thirteen years since Bertschinger’s review paper further progress has been

made and one of the first billion-body (N = 10243) gravitational simulations (Millen-

nium Simulation (Springel 2005)) was carried out in the year 2005. The code used

(GADGET-2) in this simulation was a mix of the direct summation (particle-particle,

P-P) and particle mesh methods, sometimes denoted as a P3M code, it also uses the

Tree and SPH methods (omitted in this thesis for brevity). Both P-P and P-M methods

are outlined below in sections 2.1.1 and 2.1.2.

By today’s standards, running an LSS code with N = 5123 resolution is considered

coarse (Couchman 1995). The latest simulations have a resolution of about one hundred

billion (1011) particles, the RAMSES code by Teyssier et al. (2009) claimed to simulate

LSS using 70 billion particles. The number of particles, denoted by N , in an N -body

code (or the number of grid-points in fluid/mesh codes) dictates the resolution of the

simulation; more particles allows for higher resolution.

As mentioned in the previous chapter there are alternatives to the N -body method.

Large Scale Structure can also be simulated as a hydrodynamical pressureless fluid
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whereby each particle, or mass-containing fluid element, may represent a galaxy.

For computational purposes, the most natural approach is to treat each galaxy as

a particle in the simulation and to directly calculate the gravitational force between

each particle. The computational particles, here, only account for the gravitational

force all other physics is essentially smoothed out. It is more accurate to say that

the computational particle represents collection of real particles that have the same

mass as a galaxy. Hockney & Eastwood (1988) say that the computational particle

is a superparticle: it represents many real particles, where the underlying physics is

either unknown or otherwise not included in the simulation.

Calculating the direct gravitational force between all such superparticles in a simu-

lation is perhaps the slowest method and scales as N×N . This is not the most efficient

way but a variant of this algorithm is still used. Here is a mostly complete list of the

standard computational methods:

• Direct Force calculation of Particle-Particle interactions

• Particle Mesh and P3M

• Tree Codes

• Fluid approaches

• Phase space methods

In the following sections I provide a review of the first two techniques on this list. The

last two techniques are mentioned in the last section 2.4 of this chapter but further

discussion of tree codes is omitted; however, details on tree codes can be found in

Bertschinger (1998).

2.1 N-Body simulations

The N -Body problem considers N point masses that under go classical gravitational at-

traction. Such a system is deceptively simple but ultimately has many caveats that need
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to be considered. N -body systems have a tendency to be chaotic, only for simulations

of two-bodies can there be a trivial general solution. In the case of celestial mechan-

ics, stability and chaos are central themes (Aarseth, S. J., Tout, C. A., Mardling, R. A.

2008). In a simulation of the solar system one particle might represent each celestial

body (for example, the Sun and the planets). However, in a cosmological simulation it

is less obvious what we mean by a “particle”. (Hockney & Eastwood 1988; Couchman

1995)

In simulations of LSS, the point particles may represent real masses of whole galaxy

clusters down to sub-galaxy sized objects. For a given box size, a high mass resolution

in the simulation comes from having a large number of particles. In a simulation of a

large box size but low mass resolution then one particle may represent a galaxy cluster

in terms of mass. Likewise, having a large number of particles in a large box will allow

for sub-galaxy masses for each particle as seen in the Millennium Simulation (Springel

2005). This begs the question of “what is a particle in a simulation?” Clearly, one

particle in the simulation represents many real particles. For this reason particles in

simulations are commonly referred to as superparticles (Hockney & Eastwood 1988).

The more particles there are, the higher the resolution and the better the approximation

gives to the underlying continuous density field (although not necessarily a better

approximation to the physical processes involved). Consequently, the minimum useful

mass resolution is 109 (this dimensionless ratio is, the mass range from sub-galactic

scales to super-clusters) (Couchman 1995).

Couchman arrives at this resolution by using the following considerations: to model

a fair sample of the Universe requires a box size of at least (100Mpc)3, this volume

will contain about 104 bright galaxies. Allowing for 100 particles per galaxy halo (in

terms of mass) suggests that a simulation should have at least 108 resolution elements

or particles (Couchman 1997).

In Newtonian physics the gravitational force between any two objects is a non-linear

function of position, although the force can at least be approximated as linear when

the system has barely evolved. Literature suggests that finding a solution to a general
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‘many-body’ problem is impossible, at least to the extent of only considering first

integrals. A general solution for N = 3 (Where N is the number of bodies) was found

by Karl Sundman in 1912 through a process known as regularization (which assumes

zero angular momentum — a fair assumption for gravity which is a radial force). The

process of regularization is a way of dealing with collisions of bodies (singularities in

the equations), Sundman avoided three body collisions by choice of initial conditions

(Sundman 1912). However, it has also been shown that regularization cannot be found

analytically for collisions of more than two bodies. Singularities (for example, collisions)

become more complicated for N > 2 and were omitted by Wang in his generalization

of Sundman’s result to N > 3 (Wang 1991). Given the difficulty of finding a general

analytic solution to N -body problems one must perform simulations that solve the

equations of motion via numerical integration.

The process of regularization will arise again in the following section on Direct Force

Summation, as it deals with the singularities that can arise from particles coming too

close together.

2.1.1 Direct Force Summation

The simplest method of performing an N -body simulation is to perform the direct

calculation of force on each particle from every other particle. The force is calculated

at every time-step and is put into the equations of motion in order to determine the

new velocity and position of all the particles. Typically, this is done by using the simple

Newtonian gravitational force between two particles:

F ij = −G

N
∑

j=1,6=i

mimj

ri − rj

|ri − rj|3
(2.1)

here ri is the position vector of the ith particle. Besides cosmological simulations,

which I will frequently return to in this chapter, another example of a gravitational

N -body problem is that when the “role of the particle model appears in the simulation

of systems in which a star may be considered as a mass point with no other properties

than gravitational attraction and mass” (Chapter 11, Hockney & Eastwood (1988)).
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One of the first examples of an N -body gravitational code was that of Aarseth

(1963), he applied his code to a cluster of galaxies with the number of particles in the

range N = 25 − 100. Aarseth explains that “galaxies are extended bodies but can

generally be regarded as mass points. When two galaxies are involved in a collision,

however, this is no longer a good approximation because the forces are not convergent.”

Softening parameter. From equation 2.1 we can see that as the separation between

two particles decreases then the denominator of equation 2.1 will tend to zero, hence

the force (or, acceleration) would tend to infinity. As we approach this situation then

the system will become numerically unstable. Aarseth introduced a small constant ǫ

which is to be associated with the effective size of a galaxy.

Hockney & Eastwood (1988) note that this ǫ parameter was soon introduced into

simulations of star systems, by necessity to keep the simulation numerically stable,

even though a point-mass simulation (ǫ = 0) is a better physical model. These au-

thors point out that it is not good computational practise to allow any variables to

reach exceptionally large values as time integration becomes inaccurate and arithmetic

overflow may occur.

To avoid these problems Aarseth introduced a regulator, that is a minimum dis-

tance (ǫ) for impact ǫ. This is known as the process of regularization. In N -body

literature this parameter is called a softening parameter. It will ‘smooth’ out, or

‘soften’, the computed forces. As the regulator is finite then the force is also finite

(Aarseth, S. J., Tout, C. A., Mardling, R. A. 2008; Heggie & Hut 2003).

In Chapter 7 I will discuss the nature of point-particles in simulations and a possible

method of giving them a non-point like distribution by including higher order moments

of the mass distribution. The zeroth order any mass distribution is the total mass of

the particle, it has no structure or width: that is to say that it is a point. To the best

of my knowledge, this is the order at which all N -body simulations work. The addition

of a softening will be some perturbation about this zeroth order and hence provide an

effective width (or size) for the particle.
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For the GADGET-2 code, Springel (2005) says that the single particle density

function is a delta function convolved with a normalized gravitational softening kernel

of comoving size ǫ. He says that the particles will have a Newtonian potential of a

point that is the same as Plummer sphere of size ǫ.

Explicitly we can see that the addition of a softening parameter (or minimum

distance) prevents the denominator of the gravitational force equation (acceleration,

here) reaching zero, hence the acceleration itself is finite:

r̈i = −G

N
∑

j=1,6=i

mj

ri − rj

(|ri − rj|2 + ǫ2)3/2
(2.2)

|ǫ| << 1 is the softening parameter. The softening parameter is non-derivable (that

is, phenomenological) hence it does not appear naturally in the equations, instead it

is a computational fix. This addition of a softening parameter is a phenomenological

way of preventing artificial two-body relaxation. However, it is clear that without this

parameter then two such particles can dominate the entire energy distribution of the

system.

Couchman (1997) suggests that the softening scale should be larger enough to avoid

two-body relaxation but not too large to cause over-merger of “fluffy” substructures,

that is why he recommends using a softening length which is an order of magnitude

smaller than the interparticle separation.

A good discussion of two-body relaxation is provided in Heggie (Heggie & Hut

2003), here I will paraphrase the discussion:

Maxwell used the term relaxation to apply to a deformed elastic body

returning to equilibrium. The idea can also be applied to the theory of

gases and to stellar dynamics. However, in the latter case equilibrium is

never achieved because particles can escape so it is quasi-equilibrium. In

a simulation the energy of one particle is altered by its interaction with

another. Normally, the interactions between two particles is slight and the

trajectory is not greatly altered. In the case of two body relaxation the

position and velocity (hence energy) of the particles is greatly altered.
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Integrator type. Typically, the equations of motion are solved using a ‘Leapfrog’

integrator. While this method only gives positions accurate to third order (total error

is O(h2)) it is a symplectic integrator hence it conserves energy (see 2.2 for a definition

of symplectic). An alternative scheme would be to use the fourth order Runge-Kutta

integrator (RK4) which potentially computes positions accurately up to fifth order

(but total error is O(h4)); however, it is not symplectic so does not conserve energy.

(Press et al. 1992)

Algorithm speed. The speed of any algorithm is quoted to “scale as” the slowest

part (most expensive) of the calculation, in the direct summation case here the slowest

part of the algorithm is the force calculation. It is clear from the form of the force

calculation that there are N(N − 1) force-pairs to be calculated every time-step hence

this method is said to “scale as N2”, where N is the number of particles. In the modern

cosmological simulations the above force equation (2.1) for gravity is substituted with

the Poisson equation of gravity. This method is outlined in the following subsection.

This is designed to provide an improvement on the simulation time.

Direction summation methods have been used to study many astrophysical sys-

tems and still prove to be popular. They have been used to study solar system

dynamics, planet formation, galaxy formation and galaxy clustering (Quinn 2001;

Aarseth, S. J., Tout, C. A., Mardling, R. A. 2008). Modern Cosmology codes prefer a

mix of direction summation (P-P) and the particle-mesh (P-M) method (Bertschinger

1998; Couchman 1995), which are colloquially called P 3M (“P -cubed-M”).

2.1.2 Particle-Mesh N-Body

The particle-mesh replaces the force-pair calculations of the direct summation method

(above) with a method where the forces upon a particle are calculated with reference

to a background gravitational potential. As matter moves it in turn changes the shape

of the potential. Particles do not interact directly but via the potential field. They do

so using the Poisson equation of gravity, which is equivalent to the Newtonian equation
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for gravity.

∇2Φ = 4πGa2ρ̄δ (2.3)

which can be read as the curvature of the gravitational potential Φ being equivalent to

the density ρ = ρ̄δ (up to some factor). The above version of the equation is in a typical

cosmological form that accounts for expansion via the scale factor a. This eventually

leads to the calculation of force (or acceleration) that appears in the equations of

motion for a cosmological N -body code.

The first step in calculating the potential requires the interpolation of particle

positions in density. The density field is constructed to be on a regular grid that covers

the entire box. The width of the grid spacing (or cell length) is normally that of the

interparticle separation in the initial conditions. A typical interpolation scheme is the

Triangular Shaped Cloud method (TSC) which appears in the simulation code Hydra

(Couchman et al. 1995; Couchman 1995). The density is then transformed into Fourier

space where it is manipulated to give the transform of potential; crudely Φk ∼ ρk/k
2.

There are several methods for calculating Φ in Fourier space, one can crudely divide

by k2 or use something more advanced such as a cosine expansion (Press et al. 1992)

or via Green’s functions, as Hydra does. The cosine expansion is used in the final code

that appears in Chapter 5, some details are given there. Here I will highlight how k2

is replaced by cosines:

Φk =
4πGρk

2κ − 3

κ = (cos(2πn/L) + cos(2πm/L) + cos(2πo/L)) (2.4)

L is the number of gridcells per side of the simulation box, m,n, o are indices that run

from 0 to L − 1.

For wave-mechanics it turns out that calculating the potential is sufficient as it

appears directly in the Schrödinger equation. However, in order to calculate the force

a further step is required for N -body codes; such codes have to choose an appropriate
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differencing operator to calculate the force given some potential. Couchman suggests a

10-point differencing operator in the Hydra code, this is more accurate than the usual

2-point operator but far more expensive computationally. A differencing operator is

the numerical (or discrete) approximation to the differential operator of calculus, as an

example the 2-point forward difference operator is ∆un = un+1 − un.

Algorithm Speed. In terms of speed, a P-M code is an improvement over direct

force summation: it scales as O(N log2 N), so at large N this is considerably faster than

O(N2). The slowest part of the particle-mesh calculation is still the force calculation

but now the speed is not due to the pair-wise nature of calculation but due to the inher-

ent speed of the FFT algorithm. Even though modern N -body codes rely upon both

Particle-Particle interactions and Particle-Mesh interactions, the dominant calculation

is still the Particle-Mesh force routine. The use of direct summation is limited to inter-

actions at short distances, while the interactions at longer distances are dealt with using

the P-M method described in this section. The use of adaptive space and time stepping

can also improve resolution and speed. (Aarseth, S. J., Tout, C. A., Mardling, R. A.

2008; Press et al. 1992)

This method forces softening at scales smaller than the gridcell length which trun-

cates the gravitational force. The fundamental limit for force resolution is the Nyquist

frequency (Couchman 1995); a resolution set by the number of gridpoints and hence

the total number of wavenumbers in Fourier space. Naturally, this is a drawback for

any simulation method that proceeds in this way. The gridcell length is often shortened

to just cell length and “gridpoints” is often used interchangeably with “mesh points”.

From this overview of the P 3M method we believe that some of the key differences

and strengths of wave-mechanics should already be apparent. Wave-mechanics requires

no interpolation from particle positions to density, so wave-mechanics is always dealing

with continuous fields (to machine precision). Secondly, the last step of using a differ-

encing operator to calculate force is not necessary as wave-mechanics uses the potential

directly.
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The advantage to using P 3M is that they also use explicit P -P calculation (direct

summation) when needed. The P -P calculation is necessary for calculating force ac-

curately at short distance scales (as the P -M method is truncated at short scales). As

explained, the P -P is slower than it needs to be for larger distance scales but this is

the regime when the P -M part of a P 3M is used.

2.2 Definition of symplectic

The word symplectic is synonymous with the word Hamiltonian; therefore, symplectic

numerical integrators are specific to Hamiltonian systems and enforce the conservation

laws of Hamiltonian dynamics. See (Saha & Tremaine 1992) and references therein.

The word symplectic is a construction by Weyl, see his book on Classical groups

for the etymology (Weyl 1939). Now we provide a definition of a symplectic manifold

which, in turn, will illustrate how a symplectic integrator works:

Definition A non-degenerate closed differential 2-form, ω, on M is called a symplectic

(or Hamiltonian) form, and the pair (M,ω) is a symplectic (or Hamiltonian) manifold.

(Wasserman 1992)

To make sense of this we should see how ω is defined in Hamiltonian dynamics.

Using the canonical, or generalized, coordinates for position and momentum (q, p;

respectively) then ω (a 2-form) is defined in the following way:

ω =
∑

i

dqi ∧ dpi. (2.5)

here an (exterior) wedge product between the two coordinates is a phase-space volume.

Requiring this quantity to be non-degenerate is merely the formal requirement that

there are no zero multipliers: if ω = 0 then either dq or dp must be zero. For real

quantities this is always the case (also note that ω is real by construction).

The definition of closed means that it is divergenceless (dω = 0). The requirement

of ω to be differentiable means that it is differentiable everywhere, to arbitrary order,
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on the manifold; hence, the manifold endowed with such a structure is said to be

smooth. (Wasserman 1992)

In simple terms this says that the Hamiltonian (energy function) of a system is a

smooth real-valued function on a symplectic manifold (commonly referred to as phase

space). Given this explanation it becomes quite obvious that any transformation that

preserves all of the above can be called a symplectic transformation, or symplectomor-

phism (which is inherently diffeomorphic). Such a transformation is one of time evolu-

tion. Liouville’s theorem demonstrates that a symplectomorphism preserves volume in

phase-space (dq ∧ dp). As the phase-space volume is conserved then the Hamiltonian

(total energy of the system) is also conserved.

Of note is that all symplectic manifolds (therefore, groups) are simply connected

(Weyl 1939): hence, all points in phase-space can be continuously transformed from

one to another. This is an inherent statement of conservation, the end points are fixed

but the path between the two can be continuously deformed however there is only

one path: this is much like the variational principle (essentially the principle of least

action).

From Noether’s theorem we know that the Poincaré group, of which the Abelian

(symplectic) group is a subgroup, is a fundamental statement about the symmetries

and conservation laws of nature. To restate Noether: behind every conservation law

is a differentiable symmetry (Noether 1918). It is clear that the topological nature of

symplectic manifolds corroborates with the definition of the manifold being smooth

and differentiable; it also agrees with the notion of a symplectomorphism. The various

mathematical definitions reinforce one another and make sense with what we expect

from a physical (Hamiltonian) system. (McDuff & Salamon 1998)

Therefore we are inclined to look for a numerical integrator that is symplectic

and hence conserves energy. This is an important property for Cosmological codes

as the exact positions of particles are less relevant due to the statistical nature of

the system. One specific realisation of particle positions is no more important than

another, provided they are statistically equivalent (for example, the same degree of
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clustering: equal values of σ8,0).

2.3 Fluid dynamics and perturbation theory

The lack of an (easily computable) analytic solution for the N -body codes makes it

more difficult to verify whether the simulations are correct. To circumvent this short

coming, it is possible to look at the evolution of the Universe using a different technique:

perturbation theory. This section looks at the possible advantages of considering a per-

turbation approach. Similar to the N -Body approach, the main idea is to introduce

perturbations in density expanded around the mean value. Instead of following a large

number of particles this approach evolves the fluid equations (1.14). This can be done

in two ways, (1) follow the gravitational collapse of objects within the fluid in config-

uration space (essentially a mesh based approach), or (2) follow the evolution of the

different perturbation modes in Fourier space (Ma & Bertschinger 1995; Hu & White

1997; Seljak & Zaldarriaga 1996; Lewis & Challinor 1999).

Most perturbation modes will evolve in a linear manner and hence can be evaluated

using Newtonian physics (weak gravitational fields and slow speeds). These equations

linearize the fluid equations and hence discard perturbations greater than first order.

The procedure for linearizing the fluid equations is found in (for example) Peacock

(Peacock 1999) and in the thesis of Short (Short 2007). Here are the fluid equations

in expanding coordinates:

∂δ

∂t
+

1

a
∇ · v = 0

∂v

∂t
+ Hv = −1

a
∇Φ

∇2Φ = 4πGa2ρ̄δ (2.6)

The first line is the continuity equation of the perturbation δ while the second

equation is the Euler equation. The third is the Poisson equation for gravity. The

simplest models of perturbation theory often have an analytic solution. One example
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is the evolution of a CDM-fluid that only includes linear terms in the dynamics: the

solution is the well known Einstein de Sitter Universe where a ∝ t2/3 and corresponding

solutions for δ ∝ tn are n = 2/3 (growing mode) or −1 (decaying mode).

The analytic solutions provide a way of calibrating the simulations and also for

providing intuition in to harder problems. Given some result from a code that follows

non-linear evolution it is necessary to consider what the result means and how to

verify it against the real Universe. Such a complex result can be matched with (1)

observations and (2) against linear perturbation theory.

A fuller treatment would require studying perturbations using General Relativity

(Einstein’s field equations). The Boltzmann equation would be recast in a fully rel-

ativistic form and all of the constituents of the Universe (radiation, baryonic matter,

dark matter, dark energy etc) would combine together to give a full picture. This is

difficult computationally but many have tried to write codes that correspond to this

fuller picture of perturbation evolution (Hu & White 1997; Peacock 1999). Such mod-

ifications are needed for following super-horizon perturbations or in regions of strong

gravity where a General Relativistic treatment would be necessary. Simpler alterna-

tives have been suggested but they go beyond the scope of this thesis.

2.4 From old to new: wave-mechanical approach

conceived

The first attempt to describe Cosmic Large Scale Structure using wave-mechanics was

by Widrow & Kaiser (Widrow & Kaiser 1993) in 1993. They aimed to overcome the

limitations of the previous methods (eg N -body, Phase space and Fluid methods).

Their goal was to find a model for collisionless matter that: (1) describes matter as a

field rather than particles, (2) is a function only of space and time (3 + 1D), (3) can

follow multiple streams in phase space, and (4) is competitive with the computational

time of N -body techniques.

Widrow & Kaiser (Widrow & Kaiser 1993) provide a summary of each the simula-



2.4: From old to new: wave-mechanical approach conceived 50

tions methods. It is worth re-iterating their comments in order to see why they decided

to pursue wave-mechanics (the following comments are paraphrased from their paper).

N -Body (most popular): N ‘superparticles’ with ‘random’ initial positions (deter-

mined by the cosmic power spectrum) and velocities. The particles’ equation of motion

uses simple Newtonian gravity. The positions and velocities approximate the under-

lying continuous distribution. The aim of cosmological N -body codes is to follow the

evolution of a large number of particles. Expansion is accounted for by re-writing the

equations into comoving coordinates.

Phase Space method: works directly with distribution function and describes CDM

as continuous fluid. It avoids two-body relaxation but has a large number of dimen-

sions and there is difficulty following fine structure in phase space.

Fluid method: Peebles (Peebles 1987) used a pressureless fluid (∇.v = 0) in an

expanding Universe. He evolved the Euler equation for density and velocity fields (see

equation 2.6), this ensures mass and momentum conservation. Matter is treated as a

continuous field; however, velocity dispersion must be negligible.

As the N -body discrete particles to model a fluid (or something which is similar

enough to a fluid) it only approximates the underlying continuous field. Further-

more it requires an additional softening length to prevent two body relaxation. While

phase-space methods deal with a continuous distribution function and avoid two-body

relaxation they explicitly deal with a single function of a large number of dimensions

(6 + 1), N -body methods have proven more tractable when it comes to computer cod-

ing. Fluid methods are also continuous; however, the velocity field is single valued,

hence cannot handle “hot” systems.

The idea proposed by Widrow & Kaiser is equivalent to the N -Body method;

however, Szapudi & Kaiser (2003) developed wave-mechanics in another direction:
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Schrödinger perturbation theory which is an idea similar to the fluid perturbation the-

ory considered in the previous section 2.3. Now that the purpose of why wave-mechanics

was chosen is made clear, I will go on to explain what the system of equations mean

and how to interpret them in the next chapter.



Chapter 3

Wave-mechanics

In this chapter the general ideas of wave-mechanics and the Schrödinger equation are

explored. I introduce the equations of interest and provide an interpretation of what

the equations represent. I briefly mention the general principle behind solving the

Schrödinger equation (with details to follow in later chapters: 4 & 5), I outline the

basic procedure of generating cosmic initial conditions and also investigate various

methods of computing velocity. All of these ideas can be used in the FPA and in the

full Schrödinger-Poisson system. Hence, this chapter provides information that pertains

equally well to both the FPA and the full S-P system. Information that relates only to

one particular method is found in the relevant chapters, 4 for the FPA and 5 for the

full S-P system.

3.1 Introduction to wave-mechanics of LSS

The wave-mechanical approach to large scale structure models the density and velocity

field of collisionless matter as a complex scalar field that obeys the coupled Schrödinger

and Poisson equations:

i~
∂

∂t
ψ(x, t) =

(

− ~
2

2m
∇2 + mV

)

ψ(x, t) (3.1)
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∇2V (x, t) = 4πGψψ∗ (3.2)

Here V (x, t) is the potential, mV (x, t) is potential energy. ~ sets the limit of spatial

resolution, it can be considered as the unit size of a grid cell in phase space (∆x∆p ∼ ~)

or as the classical diffusion coefficient. The wavefunction, ψ, is a complex function

where the norm of the function, |ψ| = ψψ∗, provides the amplitude of the wave which

we interpret as density.

3.1.1 Interpretation of the Schrödinger equation

A frequently asked question is “why use the Schrödinger equation and not just a wave

equation?” The main reason is that the Schrödinger equation is an energy equation

with an obvious Hamiltonian form. This is not so obvious when using a wave equation.

The link between operators and observables is also very clear, the p2 operator ap-

pears directly in the Hamiltonian and is interpreted as the momentum. Furthermore,

the wavefunction encapsulates the density and velocity fields as a single continuous

function. For a wave equation (say, the Klein-Gordon equation) ψψ∗ could not be

interpreted as a (probability) density, unitarity is not necessarily preserved and the

relation of operators and observables is less clear. Hence the Schrödinger equation

provides a useful description with easy to interpret functionality.

In 1928 Arnold Sommerfeld wrote in his book Wavemechanics (Sommerfeld 1930)

that there is a fundamental difference between the wave-mechanics of Schrödinger and

the quantum mechanics of Heisenberg. While the Schrödinger equation appears in

this thesis, the system is classical. Hence, this is a wave-mechanical approach to LSS

and not a quantum mechanical approach. It is best to ignore the original context and

purpose of the Schrödinger equation and just consider it as an energy equation. The

role of ~ can be interpreted as a classical diffusion coefficient as explained later in

section 3.1.2.

Sommerfeld explains that the Schrödinger equation describes a single point-mass

in a conservative field. It was derived from Hamilton’s partial differential equation of
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mechanics which was constructed from a method of describing waves via an “action

function”. Schrödinger modified this equation in an attempt to describe microscopic

mechanics, it was derived from Hamilton’s equation under a set of approximations

(such as a “slowly” varying wavefunction).

The Schrödinger equation originally described a single particle; however, it is pos-

sible to ‘multiply’ it up to describe N particles. In this limit, one assumes a high

occupation number (which is the number of particles in each quantum state). The

actual number of particles is not known (quantized) as this would require the usual

step of second quantization (a process for explicitly quantizing the number of parti-

cles per state); however, this suggestion is attractive as a field theory as there are

no divergences (unlike in the relativistic version, the Klein-Gordon equation) (Valatin

1961). The divergences were observed as infinities arising in the calculation of simple

quantities such as the self-energy of an electron. The divergences of the Klein-Gordon

and Dirac equation can also be seen from the energy eigenvalues extending to −∞.

A many particle Schrödinger equation is a step towards developing a full field the-

oretical description of quantum processes. This description is known as Quantum field

theory (QFT) (Wilczek 1999). It relies upon the second quantization where quantum

states are expressed in terms of occupation numbers. That is to say, the quantum

states list the number of particles occupying each of the single-particle states. So a

high occupation number is where all of the low energy states are full. In QFT, the

system’s degrees of freedom are the occupation numbers and it is typical for a system to

have many (in fact, infinite) degrees of freedom: as is the case for macroscopic systems

such as a fluid or a solid.

The interaction potential of the second quantized Schrödinger equation is non-

linear and involves creation and annihilation operators. This would be more difficult

to solve and is more advanced than is currently needed. The application of the basic

Schrödinger equation to LSS (without such an interaction potential) is an idea in its

infancy, so until the basic system has been better tested and shown to be reliable then

this extra complication is less justified. However, this thesis aims to provide those
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reliable tests and hence establish whether or not such a method is robust. The main

feature of second quantization is to provide an enumeration of the- particle number and

subsequently allow particle number to fluctuate. This would also deal with particle-

particle interactions, possibly allowing for collisions (scattering) and hence the inclusion

of a temperature parameter. In the context of cold dark matter such an extension is

not part of the standard model.

In the application of wave-mechanics to LSS we are saying that the Schrödinger

equation describes many point-like particles as a continuous field. The model includes

no spin or charge. The approach is purely classical. Similar to N -body codes, it could

be seen as describing a field of many collisionless Cold Dark Matter particles. If dark

matter is collisional with an appropriately measurable cross-section, velocity dispersion

and hence finite temperature, then the method presented in this thesis would serve as

an approximation to that field. To fully account for such modifications would require

a second quantization of the Schrödinger equation for a non-relativistic variety of dark

matter, or the Klein-Gordon equation for fully relativistic dark matter. That would

be an interesting future direction (however, Widrow has worked on the Klein-Gordon

equation for describing CDM (Widrow 1997)).

The potential term V in this thesis provides the force of gravity but is not an

interaction term as is used in quantum mechanics literature (Valatin 1961). The po-

tential is calculated as a continuous field that is similar to a two-point function of force

(Newton’s law of gravity). This means that two dense regions of matter will attract

towards each other and then pass through each other. There is no internal interaction

or scattering.

If the gravitational potential is expanded as a Taylor series about a point then it

becomes apparent that a particle in an N -body simulation or a single element of wave-

mechanics code is equivalent to the zeroth order of the Taylor expansion (monopole

moment). This moment (the lowest order) can be interpreted as the mass contained

within the particle / element. It is a well known result that the dipole moment of a

gravitational field is zero (due to symmetry) but a quadrupole moment would allow for
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a gravitational differential and hence a torque upon the particles. While still point-like

in nature, the inclusion of higher order terms of the Taylor expansion would provide

the particles with an internal structure. The particles would have additional spin-like

degrees of freedom, at long range the force would be like the ordinary Newton force;

however, at short scales the interactions between particles would become important. I

refer the reader to read more of the details of this extension in Chapter 7.

3.1.2 Hydrodynamic form of wave-mechanics

In 1927 Erwin Madelung suggested a transform which demonstrated that the Schrödinger

equation 3.1 resembles the hydrodynamic equations: the continuity equation and the

Euler equation of fluid dynamics (Madelung 1927). This is now known as a Madelung

transform. A translation of the paper appears in appendix A.1. The transformation is

performed by replacing ψ with the following (ansätze) form:

ψ = αe(ıϕ/ν) (3.3)

α =
√

ρ, ν = ~/m and the phase φ will be identified as giving v = ∇ϕ. A full

derivation of the fluid equations from the Schrödinger equation using modern notation

appears in appendix B.1. Here the main results of the derivation are given in order

to illustrate the connection between the fluid equations and the Schrödinger equation.

By inserting the Madelung form of the wavefunction into the Schrödinger equation we

get the following for the left hand side (LHS) and the right hand side (RHS):

LHS = iν
∂ψ

∂t
=

iνψ

α

∂α

∂t
− ∂ϕ

∂t
(3.4)
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RHS =

(

−ν2

2
∇2 + V

)

ψ (3.5)

= −ν2ψ

2α
(∇2α) − iνψ

α
(∇ϕ).(∇α)

− iν

2
ψ∇2ϕ +

1

2
ψ(∇ϕ)2

+ V ψ

The first term on the RHS was unexpected by Madelung but he postulates that it

would describe ‘internal forces’ of a particle. It is identified as being a pressure-like

term. Madelung described the pressure term as ‘internal forces’ but was perplexed by

its appearance. He offers some philosophical insight as to what it is. At first I believed

that it was an artefact of the transformation, possibly a reference frame issue and hence

the associated force is fictitious rather than fundamental.

It became clear that a free particle, that is a fundamental particle such as an

electron, should not gain an internal pressure via transformation or rather it is may

not be wise to pick a reference frame where this happens. That is to say, a free particle

is truly free and does not have an internal pressure. The resolution to this problem,

with more details about the pressure term are given later. David Bohm offered a

different interpretation of this term, see the following section 3.1.2.1 for a brief review

of Bohm’s ideas.

Now I will show the equivalence of this transformed equation to the fluid equations.

The potential term gives the Bernoulli equation (after dividing the following by ψ):

V ψ = −∂ϕ

∂t
ψ − 1

2
ψ(∇ϕ)2 (3.6)

after taking this equation away from the transformed Schrödinger equation then we

are left with:

iνψ

α

∂α

∂t
= −ν2ψ

2α
(∇2α) − iνψ

α
(∇ϕ).(∇α) − iν

2
ψ∇2ϕ (3.7)
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The first term has already been identified as pressure like and, admittedly, is un-

expected. Omitting this term we see that the rest of this equation (3.7) gives the

continuity equation of fluid dynamics (recalling the definitions of α2 = ρ and ∇ϕ = v):

∂α2

∂t
+ ∇.(α2∇ϕ) = 0 (3.8)

Interestingly, the pressure term comes from putting the wavefunction into the ∇2ψ

term of the Schrödinger equation. It does not rely upon the potential term, V . So

this requires reconciliation between a free particle Schrödinger equation and the fluid

equations. Any free particle described by the Schrödinger equation experiences no inner

forces but a fluid does have internal forces (pressure). So the reconciliation comes from

noticing that a free particle will behave like a fluid if you add an internal pressure to

it. That is to say that one must add a pressure term to the Schrödinger equation and

work in the classical limit in order to properly describe a fluid. This suggests that the

pressure should be defined in the following way:

− Pψ = − ν2

2α
(∇2α)ψ = − ν2

2|ψ|2 (∇2|ψ|2)ψ (3.9)

This definition is consistent with the Madelung transformation as the sign of the pres-

sure term is negative (as it is in the transformed Schrödinger equation), suggesting that

it should be subtracted from the fluid equations, not added. Expressed in another way:

Free Particle Schrödinger = Fluid − Pressure. Conclusively, the Schrödinger-Poisson

system is pressure-free. Madelung points out that the flux (velocity) is vortex free and

acted on by conservative forces. This is also true if we use Newton’s gravitational force

and the simple Poisson potential. I expect that the real dark matter field should have

some non-zero velocity dispersion and vorticity but all computer simulations are an

approximation to this real field.

Furthermore, the pressure term is the only term that has an effective Planck’s

constant after transformation. Bohm suggests that it is a “quantum potential” (see

Bohm’s interpretation in section 3.1.2.1). If the classical limit of quantum mechanics

~ → 0 is applied then this pressure term goes to zero. This is the approach suggested
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by Short (Short 2007) for neglecting the so-called ‘quantum pressure’ term.

Short has already shown that it is also possible to start from the fluid equations (con-

tinuity and Euler) and work the other way to arrive back at the Schrödinger equation

with the addition of the pressure term (Short 2007). In this thesis I am assuming that

the Schrödinger equation is the fundamental equation to use, not the fluid equations.

Dark Matter particles, whatever they are, are quantum in nature, so working with a

Schrödinger equation (albeit in the classical limit of a large occupation number) seems

like a natural approach to take. So the particles are collisionless but self-attract under

gravity. Adding a pressure term to the Schrödinger equation may make it describe

something that is fluid like but this adds extra computational difficulties: equations

are not necessarily mass conserving and may require a more advanced technique to

solve them. Our approach is not so different from the N -body case as the N -body

codes do not have a pressure term so they cannot properly describe a fluid either.

Short notes that the pressure term is only important in the domain of shell crossing

(Short 2007): this is when particles come close together, the particle orbits are said

to cross and corresponds to a singularity in density. This is not in regime where

we expect a singularity in density but it is the limit of the approximation used. It

occurs when the determinant of the Jacobian in the Lagrangian coordinate system

is zero. Once ‘particles’ (or fluid elements) into the regime of shell crossing then we

could describe the flow as ‘hot’, or that the fluid has ‘hot’ streams. Eulerian and

Lagrangrian fluid descriptions can only describe “single streams” of flow, that is to say

that there is a unique one-to-one mapping of the coordinates. This is one problem that

the Schrödinger equation is able to avoid (this is shown in the results of Chapter 5).

Short is able to show that the pressure term makes his Free Particle Approximation

(FPA, see Chapter 4 equivalent to the Zel’dovich approximation (Zel’Dovich 1970) that

includes an adhesion term. This latter model is an approximate solution to the growth

of perturbations of pressureless matter in an expanding universe. He states that the

solution is qualitatively correct even for large perturbations.

The adhesion term, of a later version of the Zel’dovich approximation, and the
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pressure term of the FPA is roughly negligible before shell crossing. He also performed

some simulations where ν = ~/m >> 0. This suggests that the approximation of a

free particle to a fluid is good in regions of low density. Naturally, in regions of high

density then the approximation of a free particle to a fluid will break down as a the

fluid’s pressure will play a more significant role.

Johnston et al. (2010) simulate a CDM fluid using the Schrödinger equation but in-

clude the pressure term, this approach will exhibit different behaviour from that with

no pressure in regions of shell crossing. See section 3.2.10 for a review of Johnston.

It should be noted that this fluid approach is only valid in the non-relativistic

limit of quantum mechanics. The Schrödinger equation is non-relativistic so it would

be incorrect on two counts to consider a conventional fluid approach for relativistic

particles. This reinforces the idea of the Schrödinger equation describing a distribution

of classical particles (a continuous field in space). Widrow & Kaiser also suggest that

it may describe the evolution of the wavefunction of a single ‘exotic’ quantum particle

with a large de Broglie wavelength. The latter can be considered as the wavefunction

of many particles by application of the Ergodic theorem.

It is common to say that the classical limit of the Schrödinger equation is when

~ → 0 but this causes the equation to break down. This limit is the classical limit

for quantum mechanics as characterized by non-commuting operators. If ~ = 0 then

all operators would commute. For example, position and momentum would commute

(as they do classically) in this limit. The quantum mechanical relationship between

position and momentum is the following commutation relation: [x, p] = xp − px = i~.

In the limit of ~ → 0 then the phase-space resolution tends towards infinity, which

allows variables to be deterministic and without error. This is another aspect of clas-

sical behaviour. However, taking this limit forces the LHS and the kinetic energy term

of the Schrödinger equation to be zero which renders the equation inconsistent. Sug-

gesting ~/m → 0 is more acceptable but not sufficient.
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Thinking of the ~/m term as a diffusion coefficient (as a number that dictates

viscosity) makes more sense when thinking of the Schrödinger equation as describing

a classical fluid. A larger diffusion coefficient means that a fluid will disperse faster

(like water falling out of a bucket), while a smaller diffusion coefficient means that a

fluid will disperse slower (like trying to pour jam from a bucket). This view is also

consistent with viewing particles as having larger or small de Broglie wavelengths. A

large diffusion coefficient provides a larger de Broglie wavelength and hence the particle

has a smaller mass (we can assume ~ to be fixed). Such a particle would display wave-

like behaviour. Conversely, when the diffusion constant is small (slower diffusion) then

the de Broglie wavelength is small (particle has higher mass) and hence the particle is

more classical in nature.

A useful paper that explores the correspondence of the classical picture with quan-

tum mechanics is by Skodje (Skodje et al. 1989). It appears as a reference in the

Widrow & Kaiser paper. Skodje explores this correspondence through the study of

quantum phase space without initially invoking the usual semi-classical limit but does

show that it can be reduced to a classical system of Liouville dynamics.

3.1.2.1 Bohmian mechanics

Bohmian mechanics is mentioned in Short (Short 2007) in reference to the mysterious

pressure term that arises from the Madelung transform. The main features of Bohm’s

interpretation are presented here as an alternative way of understanding the ‘pressure’

term, the two interpretations (Bohm and Madelung) appear to be similar but differ

at a fundamental level. Bohm cites Madelung in his first paper on the idea in 1952

(Bohm 1952a,b). It should be noted that the Bohmian interpretation agrees with the

results of the Schrödinger equation.

Bohm acknowledges that quantum mechanics is self-consistent but believes that

it relies upon an assumption that cannot be tested. The wavefunction can only give

probabilities of measured quantities and not deterministic quantities: such as wave in-

tensity giving probability density instead of density. He dislikes the non-deterministic
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nature of quantum mechanics and hypothesizes that at a fundamental level the Uni-

verse is deterministic regardless of whether this can ever be measured with infinite

precision or not. He also accepts that quantum mechanics is complete but could be an

approximation of something more fundamental or that it is missing non-local “hidden

variables”. Bohm’s belief in a more fundamental description is driven by the difficulty

that quantum mechanics has in describing systems with a fundamental length smaller

than 10−13 m (Bohm 1952a,b). Bohm states that experiments do not agree as well

with quantum mechanics at distances of this scale or smaller, or for times of the order

of this distance divided by the speed of light t ∼ (10−13m/c).

Bohm’s theory allows for the Universe to be deterministic at a fundamental level

but Heisenberg’s uncertainty principle prevents measurements that could completely

determine a particle’s position and momentum. We can see agreement between the

interpretations of Schrödinger and Bohm. It is in the regime of length scales less than

10−13 m that Bohm suggests a new understanding is really needed.

Bohm’s interpretation is also known as Pilot-Wave theory or de Broglie-Bohm the-

ory. The concept was first introduced by de Broglie, at the Solvay conference in 1927,

as a way of understanding quantum mechanics, the idea met much criticism and was

not developed further until Bohm revived the idea in 1952. Bohm admits that he did

not know about de Broglie’s idea when the paper was first written but acknowledges

the similarities when he finally published the work (Bohm 1952a,b). Bohm’s inter-

pretation received more attention after John Bell (of Bell’s inequality) championed de

Broglie-Bohm theory in the late 80s (Bell et al. 1989).

The original Pilot-Wave theory is a type of hidden variable theory that attempts to

describe quantum mechanics in a deterministic way. The position and momentum of a

particle are well-defined but hidden variables (from the observer). The initial conditions

can not known be exactly known (so Heisenberg’s uncertainty principle still applies)

but the particle undergoes a chaotic trajectory that is guided by a well-defined pilot-

wave (the wavefunction). As before, the density of the particles gives the amplitude

of the wavefunction. The evolution of the wavefunction (pilot-wave) is given by the
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Schrödinger equation.

The wavefunction is a function of the position and momentum of all configurations

of the Universe, hence the theory is non-local. The evolution of the particles (con-

figurations) are given by a guiding equation. A generic configuration q is given by

coordinates qk which corresponds to the guiding equation:

mk
dqk(t)

dt
= ~ ∇k I(ln ψ(q, t)) = ~ I

(∇kψ

ψ

)

(3.10)

if q is position then the above equation is that of the velocity (as expected). On the

left side is the time-derivative of position with respect to time (velocity) and on the

right side is the quantum version as given in a following section by equation 3.52.

Without getting as far as mentioning the pressure term it is worth considering Bohm’s

interpretation of quantum mechanics as applied to cosmic Large Scale Structure. The

underlying particles, whether they are CDM particles or, latterly, a rough representa-

tion of galaxies, the Schrödinger equation does not give the exact trajectory of these

particles but a rough estimate of their trajectory as given by the trajectory of the

pilot-wave (wavefunction).

In the same year of the publication of the Pilot-Wave theory, Madelung developed

the hydrodynamic interpretation of Schrödinger’s equation. The two differ philosoph-

ically on a fundamental level. Here I provide a sketch derivation of the equations of

Bohmian mechanics and note how similar they are to that of Madelung. This is where

the ‘quantum pressure’ term of Madelung becomes apparent in Bohm’s interpretation

as the quantum potential.

Bohm transformed the Schrödinger equation into two coupled equations: the con-

tinuity equation and the Hamilton-Jacobi equation. The wavefunction is:

ψ(x, t) = R(x, t)eiS(x,t)/~. (3.11)

here R2 corresponds to the probability density ρ = ψψ∗ = R2. The continuity equation

is:

− ∂ρ

∂t
= ∇ ·

(

ρ
∇S

m

)

(3.12)
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and the Hamilton-Jacobi equation is:

∂S

∂t
= −

[

V +
1

2m
(∇S)2 − ~

2

2m

∇2R

R

]

. (3.13)

The potential term, as Bohm sees it, is a mix of the ordinary Newtonian potential V

and a new quantum potential − ~
2

2m
∇2R

R
. The velocity is given by ∇S

m
. We can now

compare the quantum pressure term of Madelung and the quantum potential term of

Bohm:

− ~
2

2m

∇2R

R
= −ν2

2

∇2α

α
(3.14)

Essentially, the equations have the same form but a different meaning. Madelung’s

interpretation was examined in the previous section (3.1.2). For Bohm, we note that

the force acting upon a particle is the gradient of the total potential which would imply

an additional quantum force than one would expect from simply taking ∇V . The

additional force presumably only acts upon the particle (configuration) and not upon

the wavefunction. This is clearly a contentious point of interpretation and one that

won’t be dwelt upon. This analysis was merely another way of looking at Madelung’s

interpretation. The rest of this thesis is closer to that of Madelung than Bohm. The

classical behaviour of Bohm’s interpretation is apparent when the quantum potential

is negligible.

3.2 Overview of wave-mechanics as applied to LSS

3.2.1 Timeline

Here I provide a brief timeline of work in the field of wave-mechanics as applied to

astrophysical / cosmological systems. I ignore works that are arguably more related to

Quantum Gravity such as the Wheeler-DeWitt equation (also coined the “Schrödinger-

Einstein” equation) and the works of Penrose that look at quantum state reduction via

gravity.
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• 1993 - Widrow and Kaiser - Using the Schrödinger equation to simulate collision-

less matter

• 1995 - Reid - A numerical study of the time dependent Schrödinger equation

coupled with Newtonian gravity (doctorate thesis)

• 1996 - Widrow - Modelling Collisionless Matter in General Relativity

• 1996 - Davies and Widrow - Test-bed Simulations of collisionless, self-gravitating

systems using the Schrödinger method

• 2000 - Hu, Barkana, Gruzinov - Fuzzy Cold Dark Matter: The wave properties

of Ultralight particles

• 2001 - Harrison - A numerical study of the Schrödinger-Newton equations (doc-

torate thesis)

• 2002 - Woo - 3D simulation of ultra light scalar field dark matter

• 2002 - Szapudi & Kaiser - Cosmological perturbation theory using the Schrödinger

equation

• 2002 - Coles - The Wave Mechanics of Large-Scale Structure

• 2003 - Coles and Spencer - A Wave-Mechanical Approach to Cosmic Structure

Formation

• 2006 - Short and Coles - Wave mechanics and the adhesion approximation

• 2006 - Short and Coles - Gravitational Instability via the Schrödinger equation

• 2007 - Short - Large-scale structure formation: a wave-mechanical perspective

(doctorate thesis)

• 2008 - Woo and Chiueh - High-resolution simulation on structure formation with

extremely light bosonic dark matter

• 2009 - Johnston - Cosmological fluid dynamics in the Schrödinger formalism
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3.2.2 Widrow and Kaiser

The original paper to consider Large Scale Structure in a wave-mechanical framework

was by Widrow & Kaiser (Widrow & Kaiser 1993). The paper was introduced in the

chapter on numerics, see 2.4. The idea was conceived as a method of improving on all

known simulation techniques. This was an ambitious aim but one that has almost been

realised. As already suggested it has numerous advantages over previous methods (for

example, it has a continuous density field and can follow ‘hot’ streams) but the idea

was not developed into a fully three dimensional cosmological code in the first paper.

The extension of Widrow & Kaiser’s method to a fully three dimensional cosmological

code forms the backbone of the research presented in this thesis and is described in full

detail in chapter 5. Here I will present a briefer review of the paper without too many

details.

The authors note a possible transformation from the Schrödinger equation to that

of the Boltzmann equation. This is similar in spirit to the Madelung transformation;

however the wavefunction is said to be a coherent state (or Husimi) representation.

Details can also be found in the paper by Skodje et al (Skodje et al. 1989).

The key results of their paper are the two models developed using the Schrödinger-

Poisson system. The first is that of one dimensional collapse of a wavefunction. Es-

sentially, they modelled a free-particle Schrödinger equation with the addition of a

(self-) gravitational potential (from Poisson’s equation for gravity). They re-write the

Schrödinger equation in terms of dimensionless quantities and arrive at:

2iL∂χ

∂τ
= ∇2

yψ + 2L2U(y)χ (3.15)

∇2
yU = χχ∗ (3.16)

here y = x/L, τ = t/T and χ = (4π/ρ)1/2ψ. These are simple rescalings to make

the variables dimensionless. L is defined as L = mL2/~T , and is roughly the ratio

of the size of the system to the de Broglie wavelength (Widrow & Kaiser 1993). This

could be seen as a toy model that is similar to the Plummer sphere. Their method
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of solving the Schödinger equation is derived from a paper by Goldberg et al in 1967

(Goldberg & Schey 1967). I also use Goldberg’s algorithm and provide an outline in

Chapter 5.

The second model of their paper considered a two dimensional Einstein-de Sitter

(Ωm = 1) Universe that used cosmological initial conditions (see 3.3.1; however, it is

unclear if their code implements periodic boundary conditions. The final cosmological

code that I construct is an extension of their ideas, in that I provide a more general

implementation that works for general, flat FLRW Universes and has similar mathe-

matics to that of Widrow & Kaiser. For comparative purposes I will present the scaled

Schrödinger equation that they use below but will leave all the details until Chapter 5.

i
4L
3

∂χ

∂ ln a
= −∇2

yψ +
4L2

3
Uχ (3.17)

∇2
yU = χχ∗ − 1 (3.18)

3.2.3 Guenther

Not long after the original paper from Widrow & Kaiser, a PhD thesis from Guen-

ther (Guenther 1995) was released that studied the Schrödinger-Poisson system (not

applied to LSS). He used a different method from Widrow & Kaiser to solve the equa-

tions: an Alternating Direction Implicit (ADI) method of evolving the wavefunction.

He interprets the wavefunction as a scalar field that describes bosonic matter, or a

Bose condensate. As a test of the code, the author attempts to model an idealised

Boson star using the Schrödinger-Poisson equations. The equations were re-scaled to

be more computationally tractable and then eventually rewritten into spherical polar

coordinates. Guenther also considered the possibility of adding a rotational degree of

freedom to the equations.
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3.2.4 Widrow and Davies

The study of wave-mechanics was continued by Widrow (Widrow 1997) using the Klein-

Gordon equation and attempted to include General Relativistic effects into the simu-

lations. He tests his method upon a 1D wavefunction in a static and plane symmetric

background. As with the one dimensional model in the original paper, the density is

gaussian and the initial velocities are zero (cold collapse). A second test of the method

follows “hot” particles that have some initial velocity distribution. The mathemati-

cal details are far beyond the scope of this thesis but I believe this is an interesting

direction for future researchers.

Widrow also performed simulations of spherical collapse with Davies and com-

pared them to N -body simulations (Davies & Widrow 1997). This paper considers

the Schrödinger equation again rather than the Klein-Gordon equation, it follows the

same rescaling of variables procedure (see Widrow and Kaiser above) which renders the

final equations dimensionless. The authors evolve the wavefunction using a different

algorithm known as Visscher’s method which they claim is three times faster.

These authors make the same point I do about the Schrödinger equation being

applicable to “any collisionless system regardless of what form the constituent particles

take.” The intra-gridcell physics is smoothed out or otherwise not accounted for. The

same is true for N -body and phase-space methods. The constituent particles could

be anything from black holes to elementary particles, the dynamics is independent of

their true nature (at least at the scales of interest using the S-P system). Here, the

authors promptly note that if dark matter is an ultra-light scalar field then quantum

mechanical effects could affect the dynamics but the S-P equations would provide their

exact (non-relativistic) motion.

3.2.5 Hu et. al.

An interesting paper from Hu et al (Hu et al. 2000) considers what the relevant mass

of a CDM particle should be if it displays wave-like nature at large scales. They call

such candidates Fuzzy Cold Dark Matter particles (FCDM). Allowing for a large finite
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ν may provide insight to structure formation on small scales which is still currently

not well understood. It is therefore hoped that the Schrödinger method may improve

theoretical limits on the ‘cuspy-ness’ of galaxies and its impact on galaxy formation.

If we accept that CDM particles exist and have a large de Broglie wavelength would

it be possible to see wave-like nature at astrophysical scales? Quick calculations yield

that the mass of such a particle is lighter than any other CDM candidate (10−22 ev,

(Hu et al. 2000)). Hu et al believe that such a candidate cannot be ruled out from

current experimental evidence despite unnaturalness (as he calls it) from a theoretical

point of view. Theory current favours the Axion as the best CDM candidate it has a

mass that is about 10−6 ev.

These authors suggest that ultralight scalar particles in an initially cold Bose-

Einstein condensate would provide the correct characteristics that would stabilize grav-

itational collapse and suppress small-scale linear power. They state that the de Broglie

wavelength is the ground state of a particle in a potential well: λdb ∼ (mv)−1 ∼
m−1(Gρ)−1/2r−1, setting rJ = λ = r returns the Jeans scale (or Jeans length). Sta-

bility is guaranteed by the uncertainty principle as an increase in momentum opposes

any attempt to confine the particle further.

They perform a series of one dimensional simulations of a free-particle wavefunction

under going gravitational collapse. Unfortunately no numerical details are supplied.

As with my simulations, they also use periodic boundary conditions. Their conclusions

are that:

• For rJ >> L (Jeans scale much greater than the length of the simulation box)

their model does not form a gravitational halo;

• For rJ ∼ L a gravitationally bound halo is formed but the cusp is not observed.

They note that the acceleration is smooth, hence the forces will be less affected

by the “wiggles” of interference;

• For rJ << L the density has larger interference effects. They also find a small-

scale cutoff (in the power spectrum) at the Jeans scale.
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Interference effects are not necessarily quantum in origin and are readily seen in

(low viscosity) fluids. Another worry is whether the interference pattern is a numerical

effect. In Chapter 5 I show spurious interference effects in a one dimensional simulation

whenever the wavefunction is allowed to pass through the boundaries and self-interfere

over a long time (thousands of time steps, and longer than time of interest, if code is

to be kept stable). In the results of Hu et al, I don’t believe that is the case but I offer

this as a word of warning for future simulations of wave-mechanics.

In the cosmological simulations of this thesis (see Chapter 5) the wavefunction

is supposed to represent some underlying distribution of matter that is CDM-like in

nature. I claim that the underlying physics on scales much less than a grid cell as

smoothed out and in principle could be anything, we need not assume the matter is

CDM, just as in an N -body code. However, we do use initial conditions that come

from the theory of the evolution of CDM perturbations. I implicitly assume that the

matter has a small de Broglie wavelength and hence behaves classically. As mentioned

in Chapter 3, a high occupation number and that the CDM ‘fluid’ is classical in nature.

Any quantum nature in the simulations would not be present. Hence, the parameter of

ν = ~/m will be seen as an effective Planck’s constant which I argue is like a classical

diffusion coefficient in the limit ν → 0.

3.2.6 Harrison

The PhD thesis of Harrison (Harrison 2001) builds upon the work of Penrose (who is

cited as a supervisor) which suggests that gravity might be the cause of wavefunction

collapse in quantum mechanics. This work is not strictly astrophysical but the numeri-

cal considerations presented are very much in line with what is presented in this thesis.

He notes the system should conserve probability density (or mass), momentum and

angular momentum from a theoretical point of view and also uses a Crank-Nicolson

integrator for evolving the Schrödinger equation. As we will discuss later in Chapter

5, the implicit method that we call the Cayley method is actually the same as the

Crank-Nicolson method.
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The author looks at high order states (excitation states) of the system, again such

a concept is ignored in all astrophysical wave-mechanics as we implicitly assume the

scalar field to be in the ground state. The latter is true for a Bose condensate but

I would not rule out the interesting possibility of trying to model an astrophysical

problem with higher order quantum states.

Harrison also performs tests that include “sponge boundaries” that absorb the

wavefunction to prevent back scatter. Such boundaries have not been found in any

of the astrophysical wave-mechanics publications although they may yet find a place

in astrophysical simulations. Lastly, he considers adding a second dimension to his

system. In the 2D case he considers the possibility of a rigidly rotating object. He

shows that they exist but are unstable.

3.2.7 Szapudi and Kaiser

Separately, Szapudi and Kaiser (Szapudi & Kaiser 2003) studied non-linear perturba-

tion theory using the Schrödinger method. They note that the formalism is equivalent

to the collisionless Boltzmann equations but remains valid even after shell-crossing. All

other formulations explicitly break down at shell-crossing. The mathematical details

are beyond the scope of my project; trying to understand if they are consistent and as

powerful as described would have taken too long to verify. If I were writing a thesis

on perturbation theory then it might be appropriate to review it in full. I chose not to

go down the path of developing a perturbation code as creating a code that is closer

in spirit to an N -body code is more appealing.

These authors show the connection between the Schrödinger Perturbation Theory

(SPT) with conventional perturbation theories at the tree-level at third order. That

is they show the connections for the bispectrum, skewness, cumulant correlator and

three-point function. The authors go on to show that cumulants up to N = 5 from

Eulerian PT agree with SPT.

This paper also presents an alternative version of the Schrödinger equation, one

that is also used by Hu et al (Hu et al. 2000). It takes the following form:



3.2: Overview of wave-mechanics as applied to LSS 72

i~ψ̇ +
3

2
Hψ + Hψ = 0 (3.19)

This version explicitly includes expansion as a separate term, rather than as a modi-

fication to the time variable as appeared in the original paper wave-mechanics paper

of Widrow & Kaiser. Here the term H is the Hubble parameter as defined in equation

1.9; it dictates the expansion of the coordinate system. This should not be confused

with H which is the Hamiltonian from the regular Schrödinger equation. The extra

Hubble term is not necessarily obvious at first sight; however, if one starts from the

equations of an expanding fluid and transform to the Schrödinger equation then this

term appears naturally.

Unlike the original paper this one does not work directly with the Schrödinger

equation but rather a transformed set of equations. First they introduce a particular

form of the wavefunction:

ψ(r, t) = ψ0

(

a

a0

)−3/2

eA(r,t)+iB(r,t)/~ (3.20)

The fields A and B are real scalar fields that are introduced but the intention of doing

so is not clearly stated. The authors note that the resultant equations are similar to

the Eulerian fluid equations. That is to say that the transformed equations are similar

to what Madelung found (see 3.1.2).

Common to all versions of wave-mechanics is the notion that the sesqui-linear quan-

tity ψψ∗ is always taken to be the density ρ. In calculating this quantity it is clear that

the imaginary (iB(r, t)) term in the exponential disappears, which I crudely identify

as a “velocity” term. When considering cold collapse B is zero by definition, hence the

wavefunction is only constructed from / or a statement about the density. From the

original paper by Widrow & Kaiser the imaginary term is related to the momentum p

in the following way: ∇B = p.

The real term in the exponential A does not disappear when computing ψψ∗: this

term is a function that shapes the density distribution. In the work of Watanabe

(Watanabe & Tsukada 2000a) the A term is equal to a squared variable (position-
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squared: x2), hence the exponential of the squared variable provides a gaussian distri-

bution for density (and also for velocity when the same is true of the B term). The

value ψ0 is likely to be a constant although that is not stated explicitly, and the a
a0

term is a time-dependent scaling term that corresponds to coordinate expansion.

After inserting this wavefunction into the Schrödinger equation the authors produce

two transformed equations that have a similar form to the fluid equations. This is not

wholly surprising given previous published work and the idea of relating the wavefunc-

tion amplitude to density. In addition to these two equations is an appropriate version

of the Poisson equation in order to include gravity.

Ȧ = − 1

2ma2
(∇2B + 2∇A∇B), (3.21)

Ḃ =
~

2

2ma2
(∇2A + |∇A|2) − 1

2ma2
|∇B|2 − mV, (3.22)

∇2V = 4πGa2ρ̄(a2A − 1). (3.23)

The final equation here is the Poisson equation and the first equation looks similar in

form to the continuity equation. The so-called pressure term is omitted from here but

appears as the first term in the second equation, I identify it by ∇2A. The second

equation is perhaps an alternative form of the familiar Bernoulli equation which I

conclude from noting that B is like a velocity potential and that this equation holds

the potential term V . This is not explicit in the paper but I make such identifications

here in order to understand how it relates to other published work and to try and

understand what the authors are trying to achieve. As mentioned, the authors use

these two transformed equations instead of the Schrödinger equation.

This identification becomes slightly clearer once we see that the authors identify

the density contrast with A in the following way: δ = e2A − 1.

3.2.8 Coles, Spencer, Short

Perhaps the most widely developed form of cosmic wave-mechanics to date is the Free

Particle Approximation (FPA), which was developed and studied in various papers
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by Coles, Spencer and Short. It is reviewed more thoroughly in Chapter 4. I spent

the first 18 months understanding the FPA, checking the results of Short’s 3D simu-

lations and developing a new approach to computing the peculiar velocity field within

this framework. The FPA is unitary but sacrifices accuracy for speed (Coles 2003;

Coles & Spencer 2003; Short & Coles 2006a,b; Short 2007). It should be noted that

Short has shown that this method is equivalent to the Zel’dovich approximation with

adhesion (Short 2007).

3.2.9 Woo and Chiueh

More recently a group from Taiwan has published two papers relevant to LSS simula-

tions using the wave-mechanical method (Woo & Chiueh (Woo 2002; Woo & Chiueh

2009)). I believe their publications draw direct lineage to the Hu paper and extend

those ideas into three dimensions. Hitherto, Woo & Chiueh have produced the highest

resolution wave-mechanical simulations with 10243 grid points. Similar to the approach

of Widrow & Kaiser (Widrow & Kaiser 1993), they choose to re-scale the Schrödinger-

Poisson system into variables that are more appropriate for cosmological simulations.

They appear to consider an Einstein-deSitter Universe hence it is less general than the

re-scaling I suggest in section 5.2.3.2. Their equations are:

i
∂

∂τ
ψ = − 1

2a2ν
∇̃2ψ +

3Ωmη

2a
Uψ (3.24)

∇̃2U = |ψ|2 − 1 (3.25)

here η = m∆2H0/~ is said to set the Jeans length, ∆ is the computational grid spac-

ing. The dimensionless gravitational potential is U(x) = V (x)/(3Ωmη/2a), the time

parameter is τ = H0t, and ∇̃ = 1
∆
∇.

In a similar manner to myself they note that the evolution of a wavefunction is

simply the exponential of the Hamiltonian:

ψj+1 = e−iHdtψj (3.26)
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From Quantum Mechanics we know this is a unitary transformation. Caveat: the

quantity j denotes the time-step, in later chapters I also use an upper index on the

wavefunction to denote a time step but I use n while using j (as a lower index) to

denote spatial position.

Woo & Chiueh split the Hamiltonian into two parts (kinetic K and potential V )

and solve each part separately: e−iHdt = e−i(K+V )dt. In one dimensional simulations

there is no problem; however, at higher dimensions there are problems of commuta-

tion: e−i(K)e−i(V )dt 6= e−i(V )e−i(K)dt. These authors suggest expanding both of these

exponentials as a Taylor series and writing the final evolution as a combination of the

two:

e−i(K+V )dt ≈ 1

2
[e−iKdte−iV dt + e−iV dte−iKdt] (3.27)

Prima facie: it is not obvious if this particular method of splitting the kinetic and

potential energy operators preserves the unitary nature of time evolution that Quantum

Mechanics requires. Specific calculations of mass conservation are not present in either

paper. In section 5.2.4.1, I suggest a different method of splitting the operators that

preserves unitarity to within machine precision (also see results in section 5.6.4.2).

Their method further differs from my own in that they perform the calculation of the

Kinetic energy in Fourier space and appear to calculate Potential energy in real space.

This is the opposite way around from my approach.

These authors strongly emphasize the idea of their simulations representing CDM as

a Bose-Einstein condensate. The particles share a coherent wavefunction with particle

mass of the order 10−22 eV (as suggested by Hu et al (Hu et al. 2000)) but they state

that such particles are also known as Extremely Light Bosonic Dark Matter or ELBDM

(see references contained within Woo & Chiueh). Particles of such a light mass imply

that the parameter ν = ~/m ∼ 10−15/10−22 is of order 107 (eV.seconds). It is clear that

this is much larger than the classical limit of ~ → 0, hence the associated de Broglie

wavelength will be large and we expect non-classical behaviour. According to Hu et al

a mass of 10−22 eV would correspond to a visible effect on astrophysical scales.
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Just as Widrow & Kaiser, and Hu et al suggested; Woo & Chiueh are suggesting

that these particles will exhibit quantum behaviour at astrophysical scales. Their de

Broglie wavelength is expected to be large enough. This would be a truly quantum

description of dark matter but an interpretation that I’ve been slower to adopt. I

treat ν as an effective Planck constant in a classical system; all quantum behaviour is

suppressed. However, until dark matter is detected and the mass becomes known then

the idea of ELBDM cannot be ruled out.

The interesting result they show is that their code suppresses the formation of low-

mass (subgalactic) halos but still yields galaxy halos (as described in the dark matter

section in Chapter 1) that are cuspy (cores tend to a singularity). The profiles yielded

are similar to but not the same as the Navarro-Frenk-White profiles (Navarro et al.

1996). It was speculated in the Hu paper that this approach could eliminate the

sub-galactic sized halos. The current N -body simulations predict that there should

be ∼ 1000 sub-galactic halos for every milky way sized galaxy. Observational data

previously suggested that the number of these ‘dwarf’ galaxies should be ∼ 10 → 100;

however, a recent comparison of theory and data by Tollerud et al. (2008) suggests

that the two are now consistent. He notes that the data from Via Lacta provides

∼ 300 → 600 satellites within 400 kpc of the Sun, and potentially up to ∼ 1000 on

estimates of the faintest satellites. Using limits from the Sloan data, Tollerud notes

that observations and theory are consistent.

The over abundance of such structures in N -body codes was suggested to be an

artefact of the simulations. The cuspy nature of the density profiles were also believed

to be artefacts of the simulations; however, the most recent simulations (Aquarius

project (Virgo Consortium 2008; Navarro et al. 2010)) show that the NFW profile is

still a good fit. So the truth could be that halos are cuspy.

The cuspy-ness may not be eliminated in wave-mechanics simulations but the de-

creased abundance of low-mass halos may provide a better comparison than the N -body

codes with observations. (Woo & Chiueh 2009)
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3.2.10 Johnston et. al.

The most recent paper of wave-mechanics in an LSS context comes from Johnston et

al (Johnston et al. 2010). This paper from Johnston forms the backbone of her PhD

(unpublished at the time of writing). Most publications in this field have focussed

upon the numerical problems rather than the cosmological problems, as it is necessary

to have a working and reliable code before we can tackle the key problems of modern

cosmological simulations. Johnston et al focus less upon the numerical issues and

attempt to apply their equations directly to cosmological models.

There are many unique considerations in this paper that are not present in any

other astrophysical wave-mechanics publication. Johnston adopts the philosophical

standpoint that they are modelling a dark matter fluid within the Schrödinger formal-

ism, this is crucially different from my own approach as their system is describing a

fluid and not free-particles in a self-gravitational potential. What this means is that

Johnston adds the pressure term to the Schrödinger equation. The equations used are

as follows:

iν
∂ψ

∂t
=

ν2

2
∇2ψ + V ψ +

ν2

2

∇2|ψ|
|ψ| ψ (3.28)

∇2V = 4πG|ψ|2 − Λc2 (3.29)

here Johnston adopts the same notation as Short and used ν = ~/m, the last term in

the Schrödinger equation is the so-called pressure term. Also unique to the Johnston

paper is the inclusion of the Cosmological constant in the equation of the Poisson

equation.

The first cosmological model tackled within this framework is the homogeneous

background evolution of the dark matter field. Johnston found numerical solutions to

this model that were based upon a piecewise analytic solution for the evolution of a

compensated spherical overdensity (that is, a tophat). The simulation of the spherical

overdensity considers two fluid species, a first for astrophysical wave-mechanics hence

Johnston has demonstrated the possibility of using multiple fluid species within the
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wave-mechanics framework.

This paper includes has some similarities to the papers by Woo & Chiueh in that

it separates the wavefunction into two degrees of freedom and then solves two sets of

differential equations. One for the real part and one for the imaginary part. Ultimately,

it appears that Johnston integrates two sets of fluid equations, one for each fluid species

and within these sets of fluid equations the two degrees of freedom are integrated

separately. The potential V is, of course, common to both species. The numerical

integration is performed via a set of two interleaved Simpson’s rules: this method

is not symplectic and would not conserve probability; however, Johnston states the

inclusion of the pressure term is a non-linear operator. Such an operator does not

preserve the unitary structure of Quantum Mechanics.

The PhD thesis of Johnston may also include her currently unpublished work about

a Pauli-Poisson system. In this work she considers a self-gravitating fluid that includes

possible sources of vorticity. I’ve taken a different approach to find a Pauli-like equation

in Chapter 7.

3.3 Solving the Schrödinger equation

Numerical Recipes (Press et al. 1992) suggests two methods of solving the Schrödinger

equation, the first is an an implicit method, that is unconditionally stable, but not

unitary. The second method, which uses Cayley’s decomposition of exponentials, is

stable, implicit and unitary. In Chapter 5 the latter method is explored and was used

in all codes. The Free-Particle method in Chapter 4 will be treated separately as it

sets the potential in the Schrödinger equation to zero.

The evolution of the Schrödinger equation is given by:

ψ(x, t + dt) = e(−iHdt)ψ(x, t) (3.30)

= e(−i(K+V )dt)ψ(x, t) (3.31)
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but non-commutation must be observed:

e(−i(K+V )dt) 6= e(−i(V +K)dt) (3.32)

Solving this equation numerically turns out to be trickier than it first appears.

Computationally, this is difficult because of the non-commuting operators in the ex-

ponential. There are many different methods for solving the Schrödinger equation and

there seems to be no general consensus of which approach is the best, the schemes vary

from using finite difference to spectral methods.

In this work a unitary method was chosen as it conserves density and hence mass.

When expanding coordinates are included the calculations are performed in comoving

coordinates and it is the comoving density that is conserved. Renormalization might

be an option but as fast unitary methods exist it seems unnecessary to consider them.

If the potential is self-consistent (not an external field) then we expect the total energy

of the system to be conserved. The Schrödinger equation naturally conserves energy

and momentum but this property is only preserved when a unitary solver is employed

as such a method is inherently symplectic.

3.3.1 Wave-mechanics and cosmological initial conditions

The early work of Short, the work of Johnston and of myself (for testing purposes) have

looked at applying wave-mechanics to ‘toy’ models. These are systems where there is a

high degree of symmetry and at best are only a rough approximation to any real astro-

physical example. Some of the tests performed in the section on the FPA method of this

thesis differ from that of the fully solved version of the equations; those tests and their

initial conditions are investigated in their own subsections. What is presented in this

subsection is an overview of initial conditions that are relevant to a proper cosmological

simulation and how they are generated. Such simulations were performed both using an

FPA code and a full S-P code. The aim of such simulations is to be similar in nature to

the ‘industry standard’ simulations such as the N -body code Hydra (Couchman et al.

1995) or those used in the Millennium simulation / Aquarius project: GADGET 2
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(Virgo Consortium 2005a; Springel 2005) and GADGET 3 (Virgo Consortium 2008).

Also, Via Lacta is a modern N -body code (Via Lacta 2007).

The construction of a cosmological initial conditions generator is not a simple cod-

ing task, especially if all components of the Universe are to be included as well as

general relativistic effects (see comments in section 2.3). Given these difficulties it is

therefore a better use of time to use an already existing initial conditions generator.

The easiest approach was to use the initial conditions generator supplied with the Hy-

dra cosmological code. The overall paradigm of modern cosmology was explained in

the opening chapter but that theory will now be re-used to explain how a cosmological

initial conditions generator works.

Most LSS simulations start from redshifts in the region z ∼ 100 → 50, this is

well after the epoch of recombination (CMB) which occurs around z ∼ 1100, t ∼
400, 000 years. In order to know how the Universe looks at a redshift of 50 or 100

then it is necessary to know the equations and conditions which evolve the Universe

from the Big Bang until z ∼ 100. The distribution of density over the Universe can

be described via a power spectrum (the amount of mass clustering at different length

scales). The Λ-CDM model assumes a power spectrum P that corresponds to a scale-

invariant Gaussian random field at the time of Inflation (Harrison-Zel’dovich power

spectrum).

Pinf(|k|) = A|k|n (3.33)

k is the wave vector in Fourier space and corresponds to distance scale. The power

spectrum during Inflation is almost scale-invariant with n ∼ 1 (Baumann & Peiris

2008); the spectrum changes over time as the distribution of matter and energy moves

under different processes: gravity, free-streaming of radiation, particle collisions, radi-

ation pressure and so on with other possibilities that might change how matter and

energy is distributed in the Universe. The cumulative effect of these different processes

is expressed as a transform from an earlier power spectrum to a later power spectrum

through a transfer function. The transfer function for a particular mode k is:
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Tk =
δk(zf )

δk(zi)D(zi)
(3.34)

zi denotes the initial redshift while zf denotes the final redshift. D is the linear growth

factor between the two redshifts. This gives the transfer of linear perturbations and

assumes the decaying mode is negligible. The Hydra initial conditions generator uses

the (linear) transfer function that corresponds to adiabatic CDM from Bardeen et al

1986 (BBKS) (Bardeen et al. 1986):

T (q) =
ln(1 + 2.34q)

2.34q
[1 + 3.89q

+ (16.1q)2 + (5.46q)3 + (6.71q)4]1/4 (3.35)

q(|k|) =
|k|ς1/2

0

Ωcdmh2
Mpc−1 (3.36)

ς0 =
Ωr,0

1.68Ωγ,0

(3.37)

Pi(|k|) = T 2
k Pinf(|k|) (3.38)

The final line gives the new power spectrum at a later time (redshift zf ). All of the

functions have an analytic form and are completely deterministic at this point. All of

the functions are dependent only upon the modulus of k. In all simulations, however,

the over-densities δ are a gaussian random field. To create a gaussian realization

of over-densities from the power spectrum one must distribute the δk’s with random

phases in the domain [0, 2π) for the same k = |k| =
√

k2
x + k2

y + k2
z . The over-density

in configuration space, δ(x), is obtained via the inverse FFT (see 3.40). The imaginary

part of the transformed δ(x) is ignored as δ is a real quantity. See the following relations

and note the Fourier transform in the second line:

δk = P
1/2
i eiθ, 0 ≤ θ < 2π (3.39)

δ(x) =
∑

δke
−ik.x (3.40)
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3.4 Velocity calculations

The calculation of velocity is independent of the method used to evolve the Schrödinger-

Poisson system. Hence, I provide a general overview of the different methods in this

chapter. The preferred method is the probability current (unique to this study of

astrophysical wave-mechanics), it appears in both the Free-Particle method (chapter

4) and in the full Schrödinger-Poisson system (chapter 5).

3.4.1 Phase Unwrapping

In order to calculate the velocity potential (ϕv), it must be extracted from the wave-

function ψ; it is the argument of the wavefunction. See equation 3.3 for the definition

of the wavefunction that we are using, it is the so-called Madelung transform. The

variable ϕv is ‘wrapped’ to lie in the interval [−π, π). This wrapping will in general

lead to ‘phase aliasing’, these lead to discontinuities in the computed velocity field.

This problem will be worse where the phase varies rapidly from grid point to grid

point. Coles and Short (Short & Coles 2006a) implemented a ‘phase unwrapping’ pro-

cedure: a simple numerical algorithm designed to check for rapid variations in phase

between neighbouring mesh points. The unwrapping procedure is simple and fast in

one dimension but is much more complex in higher dimensions. Such an algorithm is

computationally intensive in three dimensions. An alternative approach is to calculate

velocities using the probability current.

The argument of ψ is, in general, discontinuous then a continuous phase can be

defined via an unwrapping procedure (denoted W−1), which provides a continuous

velocity potential.

ϕ = −νW−1(arg(ψ)) (3.41)

Taking the comoving gradient of the potential gives the comoving velocity on the mesh:

v = −∇ϕ (3.42)
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The gradient of ϕv can be calculated from finite difference or via standard Fourier

techniques. As mentioned in Short (Short 2007): the phase unwrapping procedure is

complicated, with a high-running time, in three dimensions.

3.4.2 Phase-angle method

From the definition of an arbitrary complex number c = a + ib the associated phase

angle, ϕ, as shown on an Argand diagram, can be computed from tan(ϕ) = b
a
. Hence

in the above Schrödinger formalism the phase angle ϕ is computed as follows:

arctan

(ℑ(ψ)

ℜ(ψ)

)

= −ϕv

ν
+ nπ (3.43)

v = −∇−ϕv

ν
(3.44)

ℑ(ψ) is the imaginary part of ψ and ℜ(ψ) is the real part. ψ can also be written as:

ψ = cos(−ϕ
ν
) + i sin(−ϕ

ν
) . However, this does not bypass the problem of wrapped

phase angles. It merely states a way of obtaining the angle given ψ. Unwrapping is

not necessary if one can negate the nπ term, that is setting n = 0. If n 6= 0 then we

expect the derivative of ϕ to be large, this may have physical significance. A highly

wrapped phase may indicate a high concentration of mass; so to ignore unwrapping one

can appeal to a method of cross-checking the velocity potential with the density field.

If the velocity field is tending to infinity because of a non-zero n value then we can

check what the density field is doing at the same point in space. This would allow us

to determine if the phase is wrapped due to an accumulation of mass, even though we

still expect the system to be stable, or if it is an unexpected numerical problem. The

other possibility is a deficit of mass which we will later identify as a possible source of

vorticity. This latter point would should a singularity of zero mass and would also give

a singularity in the velocity.
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3.4.3 Probability current method

In non-relativistic quantum mechanics there exists a relationship between the wave-

function, ψ, and the probability current, J :

J =
~

2mi
(ψ∗∇ψ − ψ∇ψ∗) (3.45)

This equation allows us to compute the velocity directly from the wavefunction using

the relationship between probability current and particle (phase) “velocity”:

v =
J

ψψ∗
(3.46)

which therefore by-passes the problem of wrapped phases. This method is fourth order

as it contains four fields: ψ, ψ∗,∇ψ,∇ψ∗. Meaning that it should lead to greater

accuracy than the phase method, that is to say that it will be more sensitive to non-

linearities. The phase method, above, is second order. Recall that:

v = ∇ϕ =
d

dx
ϕ and − ϕ

ν
≃ tan−1(

ψim

ψreal

) (3.47)

Therefore v is a second order calculation as:

d

dx
arctan x =

1

1 + x2
(3.48)

However the form of the probability current can be re-stated in a simpler and easier to

compute format:

v =
J

ψψ∗
=

~

2mi
(ψ∗∇ψ − ψ∇ψ∗)

ψψ∗
(3.49)

v =
~

2mi

(∇ψ

ψ
− ∇ψ∗

ψ∗

)

(3.50)

Re-writing the velocity enables direct computation of v from ψ without having an

intermediate step of explicitly computing the probability current, J . This expression

can be further simplified by using the alternative definition of the probability current:

J =
~

m
ℑ(ψ∗∇ψ) = ℜ(ψ∗ ~

mi
∇ψ) (3.51)
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which yields a simple form of the velocity as follows:

v =
~

m
ℑ

(∇ψ

ψ

)

(3.52)

Appendix B.2 shows the consistency of the the probability current and the phase

unwrapping method. It demonstrates that the probability current recovers the same

form of the initial velocity as given by Short (Short 2007). A quick way of obtaining

the last velocity equation is to note that ik = ∇ψ/ψ and p/m = v.

3.5 Singularities as points of vorticity

From an astrophysics point of view, it would be interesting to be able to identify points

of vorticity in nature and in simulations. In the Λ-CDM model vorticity is not said

to exist. A basic assumption of the model is that velocity comes from the gradient of

a scalar potential (irrotational) which is consistent with the observation of a gaussian

random field in the CMB and with models of Inflation. This is a statement of zero

angular momentum: while it is not unreasonable to expect the net angular momentum

of the Universe to be zero, it is not obvious why we see any in the first place. That is

to say that the origin of angular momentum is not known.

Galaxies are observed to spin, so at that level of resolution modern simulations

should consider the effects of spinning objects (my suggestions are presented in Chapter

7). The concern of this section is to illustrate how to identify possible points of vorticity.

The possibility of the CDM being a Bose-Einstein condensate is an interesting one and

one that may allow for non-zero angular momentum and the generation of vorticity.

It is a related topic to this thesis but was not investigated so we make no further

comment.

The velocity at a grid point is undefined when the phase of the wavefunction be-

comes undefined. This happens whenever the wavefunction becomes singular at some

grid point. As before, the phase can be calculated from: ϕv = −ν arctan
(

ℑ(ψ)
ℜ(ψ)

)

. From

this definition it is clear that the wavefunction becomes singular with an undefined
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phase when I(ψ) = 0. The most readily identifiable points of singularity occur when

both real and imaginary parts of the wavefunction are zero.

If ψ = (0, 0), ψ ∈ C then the density is zero and the phase is undefined. This

corresponds to a void. Another type of vorticity would be at the centre of a spinning

mass, such as a galaxy. Such phenomena do not exist in current simulations, they

are strictly forbidden. Intrinsic angular momentum (spin) is zero by definition as the

ordinary Schrödinger equation does not admit spin. This is also true of N -body codes

as the particles do not account for spin either.

Extrinsic angular momentum (such as vorticity) is forbidden by Kelvin’s circula-

tion theorem. This theorem holds for bodies under conservative forces in an inviscid,

barotropic flow. The force of gravity is a conservative force and given our review of the

Schrödinger equation in Chapter 3 we do not expect there to be any pressure or pres-

sure gradients. These conditions are met hence we do not expect to see any vorticity

or circulation.

Kelvin’s circulation theorem forbids vorticity forming in a system where none ini-

tially exists. According to Short (Short 2007), Kelvin’s theorem is only true before

shell-crossing. However, the FPA breaks down at shell-crossing so the results from the

FPA are no longer valid anyway. As vorticity is not expected from a standard simula-

tion then identifying singularities is a diagnostic for determining the robustness of the

code.

Numerically, these singularities may not be identically equal to zero but are close

within machine precision. The velocity vectors at nearby gridpoints should be indica-

tive of a vortex too.



Chapter 4

Free Particle Approximation

Recently, the Schrödinger method has been developed by Coles, Spencer and Short

(Coles 2003; Coles & Spencer 2003; Short & Coles 2006a,b) in a series of papers that

implements an approximation method called the Free Particle Approximation (FPA).

This method relies upon the free particle Schrödinger equation and excludes an explicit

potential term. This system can be solved using an exact solution via the standard

techniques of Quantum Mechanics. This means that the system is entirely deterministic

and that a simulation can jump to any time step without computing the intermediate

time steps (say from timestep t = 0 straight to t = 1000). Accuracy is sacrificed for

speed but time evolution is unitary (that is, it conserves energy).

Short & Coles were the first to introduce the Madelung transform to wave-mechanics

of LSS (Short & Coles 2006b). They outlined the consistency between the Schrödinger

equation and fluid mechanics, and hence also made progress in understanding the

role of the pressure term. Short and Coles have also shown that the FPA reduces to

the Zel’dovich Approximation in the semi-classical limit (ν = ~/m → 0) where the

quantum pressure term tends to zero (Short 2007).

They note a similarity between the ‘quantum pressure’ term and the viscosity term

in the Adhesion Model of the Zel’dovich Approximation. This suggests that the FPA

is a useful numerical approximation method capable of accurately describing the quasi-

linear evolution (δ → 1) of a self-gravitating system.



88

After taking the initially coupled equations of the Schrödinger-Poisson system, the

FPA is constructed by creating an effective potential, V , that is identically zero. This

idea was originally proposed by Coles such that the effective potential is the difference

between the gravitational potential Φg and the the velocity potential φv; hence, the

potential term in the Schrödinger equation is: V = Φg − φv. In the regime where

perturbations grow linearly these two potentials are essentially equal to each other.

Formally, Φg = 3Ωcdm

2f2D
φv; however, the multiplicative factor is close to one (Short

2007) in the linear regime hence the two potentials are essentially equal: Φg ≈ φv,

therefore the FPA assumes that the resultant effective potential V is identically zero.

This decouples the Schrödinger equation from the Poisson equation.

The gravitational potential no longer has to be calculated, as we will now show;

however, this system is only an approximation and so its validity is restricted. The

FPA is valid in the linear regime and will hold fairly well into the mildly non-linear

regime, as is shown by its close approximation to the Zel’dovich model. Here I present

the Schrödinger-Poisson equations as they appeared in Short (Short 2007):

iν
∂

∂D
ψ(x,D) = (−ν2

2
∇2 + V )ψ(x,D) (4.1)

∇2Φg(x,D) = 4πGρb,c(|ψ|2 − 1) (4.2)

V = Φg −
3Ωc

2f 2D
φv = 0 (4.3)

here ν = ~/m, it is an effective Planck’s constant and sets the limit of spatial resolution.

D is the linear growth factor (which is equivalent to time), ψ is the wavefunction,

Φg is the gravitational potential, ρb,c is the CDM density in the homogeneous FRW

background. As stated, the effective potential (V ) is zero but the gravitational potential

and velocity potential are not. Structure can not form if the gravitational potential is

zero, as the gradient of the potential (force) would also be zero. By virtue of this trick

the gravitational potential does not have to be explicitly calculated.
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The FPA can be solved exactly in the linear regime (before shell crossing) as in

the Zel’dovich approximation. This solution relies upon the free particle Schrödinger

equation having an analytic solution for all times. Following the prescription of Short,

the wavefunction (ψ) is constructed as a complex scalar field such that |ψ|2 defines the

density field (ρ = ψψ∗). The argument of the complex number defines the velocity

potential, ϕv. The following relations are the key equations for defining this system:

ψ = (1 + δ)1/2e(
−iϕv

ν )

δ ≡ ρ(x)− < ρ >

< ρ >
= ψψ∗ − 1

v = −∇ϕv (4.4)

Here δ(x) is the density contrast, < ρ > is a spatial average of density and v is the

comoving velocity. The evolution of the wavefunction is governed by finding a solution

to the Free Particle Schrödinger equation. The usual solution to the Schrödinger equa-

tion (see 3.30) still applies but is, of course, simpler as there is no potential term. Left

with just the kinetic energy operator in the Hamiltonian, Short opted for a solution

that used Fast Fourier Transforms. The evolution of the wavefunction including the

Fourier transform is:

ψ = − 1

(2π)3

∫

ψ̂init(k)e

„

−iν(D−1)k2

2

«

e(ik.x)d3k (4.5)

In should be obvious that there is no problem with commutativity in the FPA, as

all momentum operators (Kx, Ky, Kz) commute with each other. From the evolved

wavefunction one can calculate the evolved density and velocity fields as given by the

equations in 4.4.

4.0.1 Linear Growth Factor

The linear growth factor, D, was the preferred choice of time unit in Short’s thesis. I

kept this variable for my own work in order to have the simplest comparison between
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his work and mine. The evolution of linear density perturbations δ can be expressed

as a second-order PDE:

∂2δ

∂t2
+ 2H

∂δ

∂t
− 4πGρ̄δ = 0 (4.6)

Here H is the familiar Hubble parameter and the first order time derivative is the rate

of change of the over-density δ. The last term can be recognised as the right hand side

of the Poisson equation. As stated in Short (Short 2007), equation 4.6 is obtained by

taking the divergence of the linearized Euler equation of fluid dynamics. The solution

to the equation δ can be expressed as a growing and decaying mode: δ = D+ + D−.

It is now clear that the factor D in this thesis is actually the growing mode D+ of the

general solution. A convention in the Cosmology community is to ignore the decaying

mode, as it scales slower than the growing mode. These solutions scale with time in

the following way:

D+ ∝ H

∫

da

(aH)3
(4.7)

D− ∝ H (4.8)

here H is the usual Hubble parameter that is statement of expansion and a is the

expansion factor. From Short, the integral for the growing mode in the case of a flat

Universe (Ωcdm + ΩΛ = 1) can be expressed as:

D+ ∝ 5

6
βα(5/6, 2/3)

(

Ωcdm,0

ΩΛ,0

)1/3 (

1 +
Ωcdm,0

ΩΛ,0a3

)1/2

(4.9)

here βα is the incomplete Beta function and α is defined as:

α =
ΩΛ,0a

3

Ωcdm,0 + ΩΛ,0a3
(4.10)
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4.1 1D Free Particle Approximation

One of the goals of writing a 1D code was to verify the results of Short and Coles. The

FPA was first tested as a toy model in one dimension. The density and wavefunction

have a simple form and evolve in a manner that is similar to a standing wave in a

box. This section reproduces the test that Short performed in his thesis. The results

confirm his findings. The initial conditions are as follows:

δinit = −δa cos

(

2πx

p

)

ϕv,init = −
( p

2π

)2

δi

ψinit = (1 + δi)
1/2e

“

−iϕvinit
ν

”

(4.11)

Here 1 ≫ δa > 0, this ensures that the initial perturbation is small. Recall ν is defined

as ν = ~/m, p is the comoving period and the functions are defined over the domain

1 > x ≥ 0. The number of gridpoints used was 512. Short has shown that the initial

velocity can be found analytically by taking the spatial derivative of the initial velocity

potential (Short & Coles 2006a). This analytic form is also shown to be consistent

with the equation for the probability current (see appendix B.2 for derivation). The

initial velocity field, vinit, is given by:

vinit = ∇ϕv,init (4.12)

vx,init =
( p

2π

)

δa sin

(

2πx

p

)

(4.13)

The second equation is the analytic form of the initial velocity. The evolution of the

wavefunction was given by equation 4.5.

4.1.1 1D Results

The results of both density and velocity profiles agree very well at all times (D) with

those of Short and Coles. Figures 4.1 and 4.2 show density contrast and velocity at
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typical values of time (growth factor). They show a resemblance to a plane wave in a

box, except the solutions oscillate very slowly between two modes (an up mode and a

down mode).

The graphs of over-density (figure 4.1) and velocity (figure 4.2) correspond to the

same results in Short’s thesis on page 77. The initial conditions are also the same,

hence this is a like-for-like comparison. The Γ parameter in Short’s thesis is not used

explicitly here but it is the combination of the effective Planck constant and the period:

Γ = ν/p2.

The parameters for the initial conditions are: δa = 0.01, ν = 1, p = 1 and the initial

mass = 1.0. As expected, the final mass of the system is also 1.0. This follows from the

fact that the FPA method is unitary and conserves mass. It is worth noting that Short

calculated shell crossing to occur at the time D = 101, so the results after this point

will be unreliable. The FPA does not ‘blow up’ for large values of the effective Planck’s

constant (ν = 1), not even after the time of shell crossing, as the large ν value prevents

collapse and hence appears to prevent singularities from forming. This effect is similar

in spirit to what was proposed by Hu et al (Hu et al. 2000), as previously mentioned

(in 3.2.5); those authors noted that density singularities as found in N -body codes may

be avoided in the Schrödinger method for large de Broglie wavelengths (corresponds to

large ν). Large values of ν are a statement of the diffusion being large and hence the

smoothing length is also large. This effect acts oppositely to the force of gravity.

For smaller values of the effective Planck constant ν → νcrit then the density from

the FPA will form singularities in density at shell crossing (gravity wins over diffusion

and so causes collapse). The critical value of ν is when it approaches the Nyquist

limit, which is the smallest theoretical value that it can meaningfully take. However,

while the density appears to ‘collapse’ into a singularity, the total mass of the system

is conserved. This indicates that the FPA is highly robust and not susceptible to

singularities, there is no two-body relaxation or infinities in mass or energy.

As our method of calculating the velocity differs from that of Short and Coles

then a statistical comparison was carried out to test whether both methods agree.
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Figure 4.1: The graphs here replicate the results of Short, hence I show them in

the same format of log(2 + δ) against x/d at ‘times’: D = 1, 59.06 (top) and D =

117.16, 174.98 (bottom); here ν = 1.0. Note: taking log(2 + δ) avoids taking log(0) for

δ = −1.

The different velocity calculations should be equivalent, as I have shown that the two

are formally equivalent for the initial velocity (again, see B.2). The results of the

comparison confirm that they show excellent agreement at later times. The RMS

deviation and the correlation coefficient were calculated for both density contrast and

velocity.

RMS deviation, for a physical quantity X, is defined as:

Xrms =

√

√

√

√

1

n

n
∑

i=1

(Xi− < X >)2 (4.14)
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Figure 4.2: These graphs show the one dimensional velocity that corresponds to the

over-densities of figure 4.1. The times are D = 1, 59.06 (top) and D = 117.16, 174.98

(bottom). The axes are v/d and x/d

The average (or mean value) takes the usual form:

< X >=
1

n

n
∑

i=1

Xi (4.15)

The Correlation Coefficient is calculated using (not to be confused with density which

uses the same symbol ρ):

ρ(X,Y ) =
< XY > − < X >< Y >

XrmsYrms

(4.16)

The correlation coefficient was very close to 1 for both density and velocity: indicating

a tight fit. The velocity from the two codes used different calculations but the densities

were calculated in the same way ρ = ψψ∗. We can quantify the difference in velocity
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(statistically) and show that there is very strong agreement between the velocities at

all times of interest (from the initial time up to shell crossing D = 1 → 101).

The following figure (4.3) shows the RMS deviation of the difference of the two

velocities (Ve is myself and Vc is Chris Short). The result shows that the statistic

is very close to zero for all times (linear growth factors) of interest. This indicates

(along with the correlation coefficient being very close to 1) that the two methods of

calculating the velocity agree.

Figure 4.3: This is the RMS deviation, ρ(Ve, Vc), of the difference of the two velocities

(y-axis) at different ‘times’ D as shown along the x-axis. The deviation is very small

hence the two methods for calculating velocity agree very well.

The equations relating to the RMS are provided here:

Vdifference = Ve − Vc

< Vdiff > =
1

n

n
∑

i=1

Vei
− Vci

(Vdiff )rms =
1

n1/2

n
∑

i=1

(Vdiff− < Vdiff >)2 (4.17)

From these results I can conclude that the algorithm I wrote to implement the

FPA in 1D is in very strong agreement with the results of Short (Short 2007). This
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proves that the outline presented in his PhD thesis is adequate to reproduce the FPA

algorithm and that his results are consistent with what we expect from theory (more

plots appear in Short (2007) which show the agreement with the Linearised Fluid

Approximation and the Zel’dolvich Approximation). In the fourth chapter of Short’s

thesis he implemented a 3D version of the FPA, he demonstrated good agreement given

that his approach is an approximation. As a further test of Short’s work I also created

a 3D version of the FPA algorithm and tested it against an N -body code (see 4.2.2).

4.2 3D Free Particle Approximation

From the one dimensional example it is expected that the generalization to three di-

mensions is a simple extension to the existing equations. The evolution equation 4.5 is

already in a general form, the wavevector k will have one component in a 1D simulation

but 3 components (x, y, z) in a 3D simulation.

4.2.1 Toy Model

Before testing my 3D FPA code against an N -body code I decided to try a toy model

first, one that is an extension of the toy model Short implemented in his 1D code (the

same one that appears in 4.1). Short did not test his 3D code in such a way, as such

he only presents the comparison of his 3D FPA code with that of an N -body code (in

Chapter 4 of his thesis).

Recall the equations of the 1D toy model (equation 4.11). They form the initial

conditions; they tell us what the initial density and phase should look like (given the

free parameters δa, ν, p). These equations extend to 3D in the following way:

δinit(x, y, z) = −δa cos

(

2πx

p

)

cos

(

2πy

p

)

cos

(

2πz

p

)

(4.18)

ϕv,init(x, y, z) = −
( p

2π

)2

δinit(x, y, z) (4.19)

ψinit(x, y, z) = (1 + δinit(x, y, z))1/2e

„

−iϕvinit (x,y,z)

ν

«

(4.20)
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Again δa = 0.01, p is the period and x, y, z have been defined in the usual manner:

1 > x, y, z ≥ 0. Also dx, dy and dz are chosen such that there are 64 gridpoints for

each of the three dimensions (total of 643).

4.2.1.1 Results - 3D Toy Model

The extension of the FPA to higher dimensions is straight forward as there is no problem

of commutation, this is unlike the case of the full S-P system as I will show in Chapter

5. The trickiest part of implementing a 3D FPA code is working the FFT algorithm

and understanding how it re-arranges the data. This means that manipulating the

density field in the Fourier domain was far trickier in 3D that it was in 1D. In order

to know that our 3D code was correct we tested with an extension of the toy model

used by our 1D code. Given that our 3D toy model eventually gave us results that we

expected then we could have confidence in using our 3D code with cosmological initial

conditions.

Figure 4.4 shows similarity to the 1D results although not much more is gained in

terms of physical insight.

4.2.2 Real Cosmological Test

Now with some confidence that the 3D FPA code works (gravity makes an over-density

tend towards collapse), the next test was the important one which involved using proper

cosmological initial conditions. In language appropriate to N -body codes: we consid-

ered a distribution of CDM particles in an expanding spacetime ‘box’ with periodic

spatial boundaries. In terms of a fluid code we would talk about the number of grid-

points or the number of mesh points, I use the two interchangeably; there are no longer

particles but rather fluid elements. The Schrödinger approach to Large Scale Struc-

ture simulation is, as should be clearly identified by, closer to a fluid approach (the

difference appears in Chapter 3).

The initial conditions for the 3D FPA code are adapted from the initial condi-

tions generated for the Hydra code. These initial conditions were generated using
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Figure 4.4: These graphs from the 3D toy model show density contrast, δ, the horizontal

axes are x/d and y/d. The plots are shown at linear growth factors D = 0, 10, 30, 50.

In these plots we can see the peaks of over-density are growing while the under dense

regions are depleting.

the generator supplied with the Hydra N -body package. Using N = 643 parti-

cles, I created a realization of particles using the following cosmological parameters:

h = 0.71, Ωcdm,0 = 0.27, ΩΛ,0 = 0.73, Ωb,0 = 0, σ8,0 = 0.81.

As the initial conditions generator from Hydra produces particle positions then we

have to use a smoothing routine to calculate the density contrast, δx. The Triangular

Shaped Cloud (TSC) algorithm (found in a subroutine of the Hydra initial conditions

generator) creates a continuous density distribution from the particle positions. Given

the initial density field I then calculated the velocity potential from the gravitational

potential. As before, the assumption here is that the initial velocity potential is equal
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to the initial gravitational potential, then one can solve the Poisson equation using

standard Fourier techniques (for example: φk ∼ δ/k2). Then we construct the initial

wavefunction using the Madelung transform. The wavefunction was a 643 mesh of

complex numbers that is equivalent to 643 superparticles of an N -body code at the

initial timestep: the mass per particle is the same as the mass per fluid element (at

t = 0). Here I present the solution to the Poisson equation and the initial wavefunction

as given by the Madelung transform:

φg,init(x, y, z) =

∫ ∫

4πGδinit(x, y, z)dV

ϕv,init ∼ φg,init

ψinit(x, y, z) = (1 + δinit(x, y, z))1/2e

„

−iϕvinit (x,y,z)

ν

«

(4.21)

To make this process clear I present an overview of the computational algorithm

for the 3D FPA code.

3D computational algorithm

• Generate near-isotropic density distribution;

• Determine velocity potential;

• Construct wavefunction;

• Evolve wavefunction (ψ). Jump to any D;

• Calculate new psi and v at some later ‘time’ D (the end time. User input);

• Perform consistency checks: mass, energy, momentum;

• Statistical analysis; compare with n-body codes / Universe.
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4.2.3 Results - Cosmological Test

In this section I present a comparison between the outputs from the Hydra (v 4.2.1)

N -body code and from my 3D FPA code. The simplest way to do this is to compare

density outputs (density contrast in this case). I chose outputs from each code that

correspond to the same physical time and then calculated the correlation coefficient

between the two density fields for a given time. This follows the same procedure that

Short outlined in Chapter 4 of his thesis.

In the previous section 4.2.2 I outlined how I created initial conditions for both

codes. The Hydra code takes an input file of user defined parameters (includes the

cosmological parameters) as well as a file that includes the initial positions and veloc-

ities. To re-iterate, I used the following cosmological parameters: h = 0.71, Ωcdm,0 =

0.27, ΩΛ,0 = 0.73, Ωb,0 = 0, σ8,0 = 0.81; in a box of 643 particles (which eventually

corresponds to 643 gridpoints in the FPA code). The code chooses particular output

times based upon the parameters used; for simplicity I have chosen four of the outputs

that I believed would give the best comparison: a mix of times from early to late.

The outputs chosen are at computational timesteps of t = 162, 531, 739, 936, which

correspond to expansion factors a = 0.33, 0.62, 0.78, 0.93.

From equation 4.9 the relevant linear growth factors (D) were calculated for the

FPA code: I found these numbers to be D = 15, 25, 30, 34. These growth factors

correspond to the expansion factors of the outputs from Hydra. The D factors are

scaled such that the initial value is 1. This means that the outputs from Hydra can be

matched up to the outputs from the FPA code at the correct times. The first figure

4.5 shows the density contrast from the 3D FPA code at the times (D) stated. The

second figure here, 4.6, corresponds to the appropriate outputs of Hydra. As required,

the particle positions of the Hydra outputs were smoothed using the TSC routine and

then subsequently turned into a density contrast (δ) field.

The third figure 4.7 shows a point-by-point comparison of the density contrast field

from the two codes. As noted, Hydra’s particle positions were smoothed (using the

Triangular Shaped Cell routine) to give the density contrast then the points of the two
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fields are matched by their position in the respective fields.

In figure 4.7, the density contrast values from the Hydra code are along the x-axis,

while the corresponding density contrast value for the FPA code is on the y-axis. Each

point on the graph corresponds to the same position in the Hydra and FPA density

arrays. To keep with the convention of Short (Short 2007), I present these density

contrast values as ln(2 + δ).

This correlation comparison for density contrast was done at four different time

steps (t = 162, 531, 739, 936), and shows the evolution from the start to the end of the

simulations. At the initial timestep the correlation coefficient is 1. The correlation

coefficients for the four fields are r = 0.9795, 0.8336, 0.7871, 0.8109. This shows

a good agreement between the two codes at all times. The initial conditions are,

of course, the same, hence the correlation parameter is 1.0. It is not clear why the

correlation steadily decreases but then improves for the last comparison. However the

general conclusion is that the FPA code provides a good comparison to the results of

an N -body code but is far faster.

4.2.4 Consistency checks

As a further test of robustness, we performed a series of checks upon the initial condi-

tions to see if they are consistent with theory. So far we treated the initial conditions

generator from Hydra as a black box. We put in cosmological parameters and obtain

positions and velocities of the particles (the positions are later turned into density for

the FPA code); however, we can examine how well these quantities fit with theory. We

expect the histogram of density (and density contrast) to obey a gaussian distribution;

although I expect this to be true it is more reliable to check it than just assume it is

true. After applying the TSC routine to the positions, we then created a histogram of

(over) density and found as gaussian distribution as expected. This is shown in figure

4.8. Further evidence of this is given by a plot of I(ψ) vs R(ψ), as will be shown later

in figure 4.11.

We also performed a check of the velocity components which we also expect to be
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Figure 4.5: The plots here show the evolution of dimensionless density contrast δ from

the 3D FPA code. The x and y axis show dimensionless lengths x/d and y/d as with

previous FPA outputs. The output times are D = 1, 15, 25, 30, 34. As the simulation

evolves we can see structure forming due to gravitational collapse.

gaussian distributed for each component x, y, z. The results of this are shown in the

tables below and in figure 4.9. We created histograms for each velocity component and
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Figure 4.6: The plots here show the evolution of density contrast from the Hydra

code. The output times correspond to those in the FPA code, they are at timesteps :

t = 162, 531, 739, 936. Note that the initial density contrast for the two codes is exactly

the same hence a plot for timestep 0 (D = 1) has been omitted from this figure.

found them to be gaussian, each graph shows an overplot of a theoretical gaussian.

The generated velocities are not perfect gaussians but close enough for our purposes.

The absolute velocity is shown in the bottom right plot of this figure and it closely

follows a Maxwellian distribution as expected. This last plot shows a tighter fit to the

underlying theoretical distribution than each of the component velocities. In the tables

that follow we tabulate the key parameters of each velocity component.
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Figure 4.7: These plots show the correlation between the density contrasts of the N -

body code (Hydra) and the 3D FPA code. There is a one-to-one correspondence of

points from each code, the outputs were matched at the same redshift (that is, time).

The x-axis is ln(2 + δnb) for Hydra, while the y-axis is ln(2 + δFPA). The correlation

coefficients are r = 0.9795, 0.8336, 0.7871, 0.8109.

quantity value (km/s)

max(Vx) 169.92818

min(Vx) -184.58659

mean(Vx) 9.51 × 10−9

σvx 43.513917
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quantity value (km/s)

max(Vy) 190.18232

min(Vy) -181.42162

mean(Vy) 2.888 × 10−11

σvy 43.513917

quantity value (km/s)

max(Vz) 176.98939

min(Vz) -179.60949

mean(Vz) −2.71 × 10−9

σvz 43.513916

While the maximum and minimum values of velocity are not exactly the same, the

width of the three distributions is very similar. The difference only appears in the

6th decimal place. All of the components have mean velocities zero (within machine

precision) which denotes that the particles are not experiencing a net bulk motion in

some direction. The slight skewing of the distributions is a cause of some concern but

the overall behaviour of the simulations are at least believable, hence we do not suspect

that something is terribly wrong.

An interesting artefact of wave-mechanics is the apparent deformation of velocities

when constructing the wavefunction. From the FPA code, we constructed the velocity

field from the probability current (equation 3.45) and then plotted the output against

that from the N -body code. Figure 4.10 shows a simple point-by-point comparison of

the vx components from the two codes.

4.2.5 Vorticity

In section 3.5 we mentioned the possibility of detecting vorticity in our velocity outputs.

From theory we do not expect vorticity to exist, hence the presences of vortices in our

results may indicate when the code has reached the end of its reliability. As previously
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Figure 4.8: This plot shows a histogram of density at the start of the simulation. It

fits well to a gaussian distribution as expected from theory.

mentioned, we expect to find the centre of a vortex at a gridpoint where the velocity

is undefined. That is when v = ∇φ no longer makes sense. This occurs most obviously

when ψ = (0, 0), ψ ∈ C which corresponds to a region of no density: that is a vortical

void. Such a region is easy to find computationally. For illustrative purposes I will

present graphs of I(ψ) vs R(ψ) at 3 different linear growth factors D = 1, 10, 30.

At the initial time the distribution of points of the wavefunction corroborate with

the fact that the density and velocity follow a gaussian distribution. The circular ring

we see has unit radius and the points appear to be even in distribution. At later

times the distribution is still evenly distributed (a statement that physics is acting

isotropically as required) but the points are no longer a tight ring but smeared out.

Eventually the distribution has a closer resemblance to a solid circle. Only at the later

times we will see a gridpoint where ψ = (0, 0) and hence possibly detect vorticity. From

figure 4.11 we can see that at D = 30 there is potentially a number of gridpoints that

are very close to zero.

In figure 4.12 we can see an x − y slice at some z of the velocity field. This slice

contains a point where the wavefunction is zero. A potential candidate for vorticity. If

we look carefully we can see an anomalous velocity vector that has far greater magni-

tude than the rest of the field. If we zoom into to look closer at this slice then we can
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Figure 4.9: The plots here show vx, vy, vz, (v
2
x +v2

y +v2
z)

1/2 (left-right, top-bottom). The

velocity components have a theoretical gaussian overplotted upon them to show how

far they deviate from theory. The last plot is overplotted with a theoretical Maxwellian

curve which shows a tight comparison between the generated velocity distribution and

the expected distribution from theory.

see the rest of the velocity vectors ‘circling’ around the wavefunctions null-point.

4.3 Conclusion and evaluation of FPA

The FPA is a fast and efficient method for probing the quasi-linear regime of density

perturbations, it proves to be a good match for the Zel’dovich approximation but breaks

down at shell crossing as the Zel’dovich method does. The 1D and 3D toy models were

a demonstration of the mathematics providing a consistent framework that is able to

be coded in such way that gravity (from the Poisson equation) can be coupled to the
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Figure 4.10: This plot shows the vx components from N -body along the x-axis and

the FPA along the y-axis in the initial conditions. We expected a tight straight line.

The turn-over at each end is unexpected and is an artefact from the construction of

the wavefunction.

Schrödinger equation.

After testing the toy models, I have confirmed that the FPA can handle ‘real’

cosmological initial conditions and provide simulation results that are comparable to

the widely available N -body codes (at least in the quasi-linear regime). The benefit of

the FPA is that it runs much faster than all known N -body codes.

4.3.1 From FPA to solving the full system

To plan our subsequent work it is useful to consider the weaker points of the FPA,

such as the inability of the FPA to probe far beyond the linear regime. Like the

Zel’dovich approximation it breaks down at high densities. In the dense regions where

shell crossing occurs, singularities in density prevent the code from being reliable after

shell crossing. The evolution, essentially, becomes ‘stuck’ and does not progress after

such a time. This can be circumvented by solving the full Schrödinger-Poisson system

which allows for multi-streaming (density peaks can pass through one another).

As an extension to the FPA, Short tried a perturbative approach as presented in

Chapter 5 of his thesis. This involved adding a perturbation term to the free particle
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Figure 4.11: The plots show I(ψ) vs R(ψ) at growth factors D = 1, 10, 30. The first

plot shows a ring of unit radius as expected from the initial conditions generator. The

smearing out of this ring is indicative that the wavefunction is evolving and hence the

over-densities are spread further from the mean.

Hamiltonian. The effective potential is still set to zero, so this approach will only allow

for small deviations from the kinetic energy term of the free particle Hamiltonian. This

approach is still valid in the FPA frame work, hence the code can still jump to any time

step. Including the potential term in the Hamiltonian is a non-perturbative approach

and is consequently much slower as each intermediate time step has to be calculated. In

the next Chapter I present my solution to tackling the full Schrödinger-Poisson system.
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Figure 4.12: The left plot shows a slice of x and y components of the velocity at time

D = 30 (showing array element on each axes). On the right is a plot that zooms in,

and centres, upon the gridpoint where the velocity vector is largest.



Chapter 5

Solving the full Schrödinger-Poisson

system

This chapter provides the main work of this thesis. We consider applying the full

Schrödinger-Poisson system to the evolution of Large Scale Structure. Any computer

code that simulates cosmic structure formation must satisfy some basic requirements

in order to provide a fair representation of the Universe. These requirements are:

1. 3D coordinates;

2. self-consistent gravity;

3. expanding coordinates;

4. periodic boundaries;

5. mass conserving.

Hitherto, no published wave-mechanical code seems to meet all of these requirements.

The closest publication to meet these requirements is the work of Woo & Chiueh

(Woo & Chiueh 2009), they seem to have 3D coordinates, self-consistent gravity and

expanding coordinates but there is no mention of periodic boundaries or if their code

conserves mass. In this thesis we provide full transparency of our method and show
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how a future researcher could implement their own version of a wave-mechanics code

and compare it with our results. The five requirements above are ones that we feel are

necessary for all wave-mechanical LSS codes.

In addition to the basic requirements of a generic cosmological code there are a

few specific requirements of a code that solves the Schrödinger equation, which are

unique to this formalism and do not feature in any N -body code. This requirements

are outlined in the following section 5.1; they are fundamental requirements of our

equations of interest and include: consideration of non-commutative operators, the

expression of a exponential of a matrix, and in our particular case we need to have a

fast method for matrix inversion to solve the Cayley exponential. The problem of non-

commuting operators is not present in N -body codes, we circumvent this problem by

using splitting operators which do appear in some N -body codes (for example, Springel

(2005)).

Here I shall re-iterate the equations of interest:

i~
∂

∂t
ψ(x, t) =

(

− ~
2

2m
∇2 + mV

)

ψ(x, t) (5.1)

∇2V (x, t) = 4πGψψ∗ (5.2)

The potential term V of the Schrödinger equation is found by solving the Poisson

equation 5.2, hence the equations are coupled. The wavefunction ψ is a complex scalar

field and the combination ψψ∗ is the density ρ.

The coupled Schrödinger-Poisson (S-P) method overcomes many limitations of the

FPA but also presents new challenges. The solution to the Schrödinger equation is an

exponential containing the Hamiltonian operator. Manipulating an exponential that

contains a non-diagonal matrix requires careful consideration. Complication is further

added by the non-commutativity of the operators. Any computational implementation

of the equations should preserve the unitary nature of quantum mechanics and hence be

symplectic. As previously mentioned there are many different methods for solving the

Schrödinger equation and there seems to be no general consensus as to which approach
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is best. A non-exhaustive list of possible methods follows:

1. Cayley method;

2. Alternating-Direction Implicit (ADI);

3. Visscher scheme;

4. Chebyshev polynomials;

5. Density Functional Theory.

I decided to use the same method as Widrow & Kaiser, which is a finite difference

scheme based upon using Cayley’s decomposition of an exponential (colloquially called

the Cayley method).

5.1 Specific requirements of a Schrödinger solver

The first concern of solving the Schrödinger equation requires thought of how to deal

with the exponential term. The main problems are dealing with the exponential of a

matrix and the non-commutativity of the operators. I shall highlight each problem in

turn.

The solution to the Schrödinger equation is given by:

ψ(x, t + dt) = e(−iHdt)ψ(x, t) = e(−i(K+V )dt)ψ(x, t) (5.3)

The operators K and V are represented as matrices. Operating upon these matrices

requires extra care. The exponential of a matrix is not the same as a matrix of ex-

ponentials. The diagonal matrix is a special case where one can simply exponentiate

all the elements along the diagonal. The kinetic energy operator can be expressed as

a band diagonal matrix if we use a simple centred difference differentiation method;

however, the potential energy term will contain off diagonal elements.

To deal with the matrix exponential, one must use a Lie map to expand the expo-

nential as a power series:
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e(M) =
∑

n=0

Mn

n!
= 1 + M +

M2

2!
+ . . . (5.4)

This essentially states that the Taylor series for a matrix has the same form as that for

a scalar. There are two useful theorems from Cayley that are relevant to this work. The

first theorem is called the Cayley-Hamilton theorem that states that a matrix satisfies

its own characteristic polynomial. This provides an expression for matrix inversion (for

an n × n matrix). Matrix inversion is important because we will write the evolution

of the wavefunction in such a way that we will require the inversion of the evolution

matrix. The extra complication ensures unitarity at the stage of computation, while

the evolution as given by a single exponential does not preserve unitarity in computer

code (Press et al. 1992).

e(i 1
2
Hdt)ψ(x, t + dt) = e(−i 1

2
Hdt)ψ(x, t) (5.5)

hence, we need to find the evolved wavefunction by inversion as follows:

ψ(x, t + dt) = (e(i 1
2
Hdt))−1e(−i 1

2
Hdt)ψ(x, t) (5.6)

Here the power −1 that is attached to the first exponential denotes matrix inversion.

So we will re-write the exponential using the Lie map but find a formula for invertibility

from Cayley.

The second useful theorem from Cayley is that skew-symmetric matrices map to

rotation matrices (known as the Cayley transform). For any orthogonal matrix, A, we

can write:

A = (I + M)(I − M)−1 (5.7)

provided A does not have an eigenvalue of −1 and we require that (I−M) is invertible.

The matrix M is a skew-symmetric matrix (MT = −M), and by definition AT A =

I. Technically, what is shown here applies to real matrices; however, it also holds

true for complex matrices when we substitute skew-symmetric by skew-Hermitian,
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and orthogonal by unitary. Unsurprisingly, we should note that the space for skew-

Hermitian matrices forms the Lie algebra u(n) of the Lie group U(n).

Now we will write our evolution equation as the exponential of a matrix (to first

order) using Cayley’s transform:

(e(−M))−1e(M) = (1 + M)(1 − M)−1 (5.8)

The order of the terms on the right hand side does not matter, as the “top” and

“bottom” brackets commute with each other.

It is clear that there is a deep connection between the notion of exponential ma-

trices being generators for rotation groups as shown by Lie and the exponential of the

Hamiltonian being expressed as a “rotation” matrix as given by the Cayley transform.

We refer the reader back to Noether’s theorem (see section 2.2) that states that all

continuous (or rotational) symmetries of a system provide laws of conservation.

Non-commutative operators The final complication comes from the fact that the

operators within the exponential are non-commutative. In 1D this is not a problem

but becomes a significant problem in higher dimensions. The explicit problem is due

to the nature of quantum mechanics where the momentum and position operators do

not commute.

[x, p] = xp − px = i~ (5.9)

In turn, this means that the kinetic energy (function of momentum) and potential

energy (function of position) operators do not commute.

eKeV 6= eV eK (5.10)

So it would be wrong to evolve the wavefunction in such a way that two operators (say

P̂ and X̂) were assumed to commute.

P̂ X̂ψ 6= X̂P̂ψ (5.11)
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These operators are assumed to be right associative and are multiplied using the usual

matrix product. The problem arises due to the fact that the evolution of a 3D wave-

function requires each dimension to be treated independently. For example, the kinetic

energy operator must deal first with the direction x then the direction y. For a free

particle then the problem of commutativity disappears as each dimension of the mo-

mentum operator commutes with itself. When a potential term is added then it is

tempting to proceed with computing each dimension independently via the simple 1D

Goldberg scheme:

ψ(t + dt) = [e(−i(Kx+Vx)dt)[e(−i(Ky+Vy)dt)[e(−i(Kz+Vz)dt)ψ(t)]]] (5.12)

However, the Goldberg scheme does not solve the problem of commutativity. Hence

it breaks the unitarity evolution of quantum mechanics, and so the evolution of the

Schrödinger equation is no longer unitary and would not (exactly) conserve mass. To

counter the problem of commutativity, Watanabe suggests the use of splitting operators

as devised by Suzuki (Suzuki 1990). The splitting operator technique is a fractal

decomposition of exponential operators which provides a robust solution that does

not break unitarity. In the main results of this thesis I show that unitarity is well

preserved as the mass is conserved (see figure 5.22), hence the splitting operators fulfil

their required role.

e(a(P+X)) = [Sm(a/n)]n + O(am+1/nm

) (5.13)

Note: many authors call these splitting operators by different names, using any com-

bination of Trotter-Suzuki-Lie. For this work we will stick with calling them (Suzuki)

splitting operators. The simplest decomposition is first order in a and is given by:

e(a(P+X)) ≈ f1(P,X) = eaP eaX (5.14)

The second order decomposition is given by:

f2(P,X) = S(a) + O(a3) = e(a/2)P eaXe(a/2)P (5.15)
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The computational implementation of splitting operators is outlined later in this chap-

ter (section 5.2.4.1). The problem of non-commutativity does not disappear but the

use of splitting operators provide a better way of dealing with the operators. Watanabe

notes that energy is no longer exactly conserved but does not appear to blow up either,

it is oscillatory around its initial value. Suzuki mentioned in his paper that he aims to

construct his splitting operators in such a way that the higher order terms may vanish.

As there appears to be no method that can simultaneously deal with all dimensions

and not break the rules of commutativity, Suzuki’s suggestion is adopted as the best

solution.

5.2 Numerical method for solving the Schrödinger

equation

By now we have a clear idea of how to solve the Schrödinger equation; we are fol-

lowing the procedure as suggested by Widrow & Kaiser. They used a method that is

given in a paper by Goldberg et al (Goldberg & Schey 1967) which uses the Cayley

transform. Goldberg only considers a 1D system, while Widrow & Kaiser explored a

2D system – although it is not clear how they dealt with the problem of commutativ-

ity. To expand the Goldberg method to higher dimensions requires a modification via

splitting operators. This idea is first presented in the work by Watanabe and Tsukada

(Watanabe & Tsukada 2000a).

The two methods of Goldberg and Watanabe are very similar in that both use

the Cayley transform. The Goldberg paper provides a clearer outline for solving the

equation but some of the subtleties are omitted and the extension to higher dimensions

is missing. Watanabe, however, provided a method for extending the Cayley method

to higher dimensions in his original paper. (Watanabe & Tsukada 2000a)

At the heart of the numerical solution is Cayley’s unitary time transformation. Here

we are approximating exponentials to first order. The time evolution of a wavefunction
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using the Cayley transform is:

ψ(x, t + dt) =
1 − 1

2
iHdt

1 + 1
2
iHdt

ψ(x, t) (5.16)

Numerical Recipes points out that this method is an implicit method similar to Crank-

Nicolson (Crank et al. 1947). The Crank-Nicolson method is a 2nd order finite differ-

ence scheme that is implicit and unconditionally stable. The scheme employed here is

implicit but conditionally stable as it requires a small enough time step. In practice,

for particular initial conditions the solver was stable for any choice of dt but this does

not appear to be generally true.

5.2.1 One dimension

This section outlines the prescription as given in Goldberg. It provides a numerical

method for solving the Schrödinger equation on a discrete mesh. We wish to see how

ψ evolves from time step n to time step n + 1. For this derivation ~ = 1 and m = 1/2.

The evolution of the wavefunction can be written as:

(1 +
1

2
iHdt) ψn+1

j = (1 − 1

2
iHdt) ψn

j (5.17)

Or:

(1 +
1

2
i(K + V )dt) ψn+1

j = (1 − 1

2
i(K + V )dt) ψn

j (5.18)

For the kinetic energy term (K), we can write the second derivative, using the centred

difference approximation, as:

ψ′′
j = (1/ǫ2)(ψj+1 − 2ψj + ψj−1) + O(ǫ3) (5.19)

ǫ is the grid spacing, dx, and dt will be replaced with δ. Inserting the above form of

the second derivative into equation 5.18 we get:

LHS = ψn+1
j +

iδ

2
(
1

ǫ2
(ψn+1

j+1 − 2ψn+1
j + ψn+1

j−1 ) + V n+1ψn+1
j )

RHS = ψn
j − iδ

2
(
1

ǫ2
(ψn

j+1 − 2ψn
j + ψn

j−1) + V nψn
j ) (5.20)
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After some manipulation this can be written as:

ψn+1
j+1 + (iλ − ǫ2V n+1

j − 2)ψn+1
j + ψn+1

j−1

= −ψn
j+1 + (iλ + ǫ2V n

j + 2)ψn
j − ψn

j−1 (5.21)

where λ = 2ǫ2

δ
. We make an assumption which relates ψj+1 and ψj. This is the key

assumption that enables the system to be solved. Full matrix inversion is far too

expensive in terms of computational time. Note that ψ is at the same time on both

sides of the equation.

ψn+1
j+1 = en

j ψ
n+1
j + fn

j (5.22)

where e and f are auxiliary equations. It should be noted that the potential should be

given at both the original time and the advanced time in this formulation. However,

the advanced potential cannot be known as the system has not evolved. This is a

problem for an implicit code. However, under the auxiliary function approximation,

we will use the potential at the current time (n). This approximation is fine provided

the timestep is small enough such that the phase does not evolve too rapidly. The

results become unreliable when the latter happens.

This work also differs from Goldberg as a non-static potential was used. Using the

assumption given above the evolution is now written as:

en
j ψ

n+1
j + fn

j + (iλ − ǫ2V n
j − 2)ψn+1

j + ψn+1
j−1 = Ωn

j (5.23)

The function Ω is introduced here, it is another auxiliary function and is set equal to

one side of the evolution equation (compare with equations 5.18 and 5.21). Then we

can re-write as:

ψn+1
j = (−iλ + ǫ2V n

j + 2 − en
j )−1ψn+1

j−1 + (−iλ + ǫ2V n
j + 2 − en

j )−1(fn
j − Ωn

j ) (5.24)

This provides a formula for the auxiliary functions:

en
j−1 = (−iλ + ǫ2V n

j + 2 − en
j )−1

fn
j−1 = en

j−1(f
n
j − Ωn

j ) (5.25)
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Hence:

en
j = 2 − iλ + ǫ2V n

j − 1

en
j−1

fn
j =

fn
j−1

en
j−1

+ Ωn
j (5.26)

No recursion is needed for Ω:

Ωn
j = −ψn

j+1 + (iλ + ǫ2V + 2)ψn
j − ψn

j−1 (5.27)

These recursion relations are the key equations for solving this system. In Goldberg,

destructive boundaries were assumed where the wavefunction disappears at the bound-

ary: (ψ(L, t) = ψ(0, t) = 0, ∀ t). To prevent artificial destruction of the wavefunction

all simulations by Goldberg kept the wavefunction far from the edges of the system.

As ψ(0, t) = 0 (both real and imaginary parts) then we can also assume e0 = 0.

Which then gives:

en
1 = 2 − iλ + ǫ2V n

1

fn
1 = Ωn

1 (5.28)

As ψ(L, t) = 0 then we also have:

ψn+1
L−1 = −fn

L−1/e
n
L−1 (5.29)

The last formula here provides the expression needed to evaluate the wavefunction

at the advanced time. This concludes the method that Goldberg used to solve the

1D Schrödinger equation. It is now possible to simulate a simple 1D system, such

as reflection from/ and tunnelling through a barrier; these examples were performed

during testing as means to checking to see if the code behaved as expected. The results

are not directly relevant for a classical simulation and so are omitted for brevity.

Before confronting higher dimensions, and splitting operators, it makes sense to

outline how to deal with periodic boundaries and expansion. These features are inde-

pendent of the use of splitting operators.
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5.2.2 Periodic boundaries

In all cosmological simulations, periodic boundaries should be implemented. This

ensures that there is no exterior force acting upon the system and hence allows for a

statistical way of describing a Universe without end (isotropic and either periodic or

extending to infinity). Particles are allowed to cross the boundaries and re-appear on

the other side. The exact trajectory of each particle is not important in cosmology, it is

more important to analyse the statistical properties (for example, amount of clustering)

of the particles at the end of the simulation. Statistically, the amount of clustering in

a simulation should be the same as it is in the real Universe.

Considering only 1D for now and instead of assuming ψ(L, t) = ψ(0, t) = 0, ∀ t, we

will allow the wavefunction to have a non-zero value at the boundary. There is almost

no previous work devoted to solving this problem, in all the papers found it seems that

only Watanabe has suggested a method for implementing periodic boundary conditions.

My attempts to reproduce Watanabe’s “adhesive operators” (Watanabe & Tsukada

2000a) for solving periodic boundaries has been unsuccessful; however, I developed my

own method that appears to work well. Unfortunately, it almost doubles the amount

of processing required but mass is conserved as required.

Woo & Chiueh (Woo & Chiueh 2009) consider a fully 3D simulation of Large Scale

Structure formation; however, it is not entirely obvious if the boundary conditions are

periodic and non-zero. Goldberg (Goldberg & Schey 1967) did not consider periodic

boundaries and consequently set the wavefunction equal to zero at the boundaries.

Watanabe (Watanabe & Tsukada 2000a) provides a clear method for implementing

non-zero periodic boundaries but he did not apply wave-mechanics to LSS formation.

Our approach is to re-iterate the recursion relations for e, f and ψ. From the original

method we should notice that e0 is arbitrarily set to zero, this result is used to seed the

next value e1. The rest of the function e tends towards some value as it is recursively

computed. As the first few values have not converged then there is a discontinuity

between the left side (ψ(x = 0)) and right side of the system (ψ(x = L)). Whenever

dealing with a system that is far away from the boundaries in the computer then this



5.2: Numerical method for solving the Schrödinger equation 122

is not a problem. In some 1D tests I observed that the shape of e looked somewhat

similar to that of V , which suggests that a discontinuity in e at the boundaries will act

like a potential barrier.

This was the key to implementing periodic boundaries: we need to send the wave-

function across the boundary with conserved probability density and without unnatural

impedance. These clues point to the natural suggestion of iterating the e function again

but instead of assuming that e0 = 0 on the second iteration, I assume that it takes

on the value of eL from the right hand side of the system. That is to say that the

function is continuous across the boundary. Doubly iterating e alone isn’t enough to

ensure periodicity of the system as f, Ω and ψ also need to be updated “across” the

boundary.

For the first iteration I will not assume e0 = 0 but rather give it the form that e1

had in the Goldberg paper. This is a simple shift in the recursion relation and is not

a problem given that we will re-iterate anyway.

en
0 = 2 − iλ + ǫ2V n

0

en
1 = 2 − iλ + ǫ2V n

1 − 1

en
0

. . .

en
i = 2 − iλ + ǫ2V n

i − 1

en
i−1

(5.30)

Then we perform the second e recursion but use the last value of the first recursion to

seed the second recursion. So e0 now uses eL:

en
0 = 2 − iλ + ǫ2V n

0 − 1

en
L

en
1 = 2 − iλ + ǫ2V n

1 − 1

en
0

. . .

en
i = 2 − iλ + ǫ2V n

i − 1

en
i−1

(5.31)
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After calculating e, we perform the first of the f recursions:

fn
0 = Ωn

0

. . .

fn
j = Ωn

j +
fn

j−1

en
j−1

(5.32)

The second f recursion follows, naturally (using fL from the first iteration to seed the

second iteration):

fn
0 = Ωn

0 +
fn

L

en
L

. . .

fn
j = Ωn

j +
fn

j−1

en
j−1

(5.33)

Lastly, we perform the recurrence relation for ψ, which recurs (backwards) from L to

0 rather than the other way round. The following relations are performed twice to

correctly calculate ψ in the same way that e and f are doubly recursed. The values of

Ω, however, do not need to be performed twice as they do not involve recursion.

ψn+1
L = (ψn+1

0 − fn
L)/en

1

. . .

ψn+1
L−1 = (ψn+1

L − fn
L−1)/e

n
L−1 (5.34)

In practice we found that the recursion relations only have to be performed twice.

The relations have converged by the second iteration so we do not require further

recursion. This result will be shown explicitly in section 5.6.1.

5.2.3 Expansion

The evidence for an expanding Universe is well known and is accepted as part of the

standard model of cosmology. From a coding point of view, the first consideration is

whether to deal with physical density or comoving density. This work follows Widrow
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& Kaiser in only considering comoving densities which are, by definition, a conserved

quantity. The first model of an expanding Universe that we try is the same one as

presented by Widrow & Kaiser: the Einstein de Sitter model. Then we go on to

provide more general equations that can model all flat FLRW Universes.

5.2.3.1 Einstein de Sitter model

The latter part of the Widrow & Kaiser paper deals with a particular Cosmological

scenario: the Einstein de Sitter model. This model is a flat, matter only Universe

(curvature parameter k = 0 and Ω = Ωm = 1). Note that Ω here is the density

parameter from Cosmology and not the Ω as it appears in the Goldberg method above

in equation 5.27.

We take the usual S-P system but re-write the equations using expanding coordi-

nates:

i~
∂

∂t
ψ =

( −~
2

2ma2
∇2 + mV

)

ψ (5.35)

∇2V =
4πG

a
(ψψ∗− < ψψ∗ >) (5.36)

We perform the following transformations into dimensionless quantities:

χ = ψ(6πGt20)
1/2 (5.37)

y = x/L (5.38)

U = 3t20aV/2L2 (5.39)

L is the physical length of the system, in our final results we use L = 500 Mpc. Here a

is the scale factor between the physical position r to the comoving position x, r = ax.

The Einstein-de-Sitter Universe has an analytic form for the expansion scale factor

a = (t/t0)
2/3. The usual condition for the present day scale factor is: a(t0) = 1.

In studying the methodology of Widrow & Kaiser we identified a significant ty-

pographical error and an apparent inconsistency in the definitions presented in their
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paper. In the interests of pedagogy and clarity it is instructive to explain thoroughly

the logical steps that led us to this conclusion.

In the Widrow & Kaiser paper they suggest tracking the physical density rather

than the comoving density: < ψψ∗ >= ρa3 = ρcrit. The critical density ρcrit of the

Universe is the density require to make the Universe have a flat geometry. We assumed

this statement to be true and then implemented their suggested equations in a code but

found that the density was conserved (physical density should decrease as the Universe

expands). This prompted further investigation into the equations and assumptions

presented in their paper. We found that from the definition of the wavefunction, and

from the definition of the transforms presented, that the density must be comoving

and hence a conserved quantity.

Initially we wondered if ψ was physical but χ is comoving; however, we soon found

that this cannot be the case. The suggested scaling relation between the two variables

does not account for expansion, the proportionality between the two quantities is a fixed

constant. This means that both are physical or both are comoving. In the Schrödinger

equation the scaling factor that transforms ψ to χ drops out, which means that this

factor could be arbitrary. This means that the two quantities could be either physical

or comoving and the Schrödinger equation would be the same in either case. This was

unexpected as we expected a transformation from physical to comoving (or vice-versa)

to affect the dynamics. Resolution to this conundrum is found in the Poisson equation;

we found that there is an extra factor of a left over from such a transformation.

Here we will show that the wavefunction represents a comoving density. If we start

from the assumption that density is physical (< ψψ∗ >= ρa3 = ρcrit), as Widrow &

Kaiser did, then we see the following:

< ψψ∗ > = ρcoma3 = ρcrit =
3H2

8πG
(5.40)

=
1

6πGt2
(5.41)

< χχ∗ > =
6πGt20
6πGt2

(5.42)
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If the density is comoving then: < ψψ∗ >= ρcom = ρcrita
3. This gives the following

expression for < χχ∗ >:

< ψψ∗ > = ρcom = ρcrita
3 =

3H2a3

8πG
(5.43)

=
a3

6πGt2
=

t2

6πGt2t20
=

1

6πGt20
(5.44)

< χχ∗ > =
6πGt20
6πGt20

= 1 (5.45)

Here we can see that the expression for < χχ∗ > is a fixed constant over time, hence

the latter version of < χχ∗ > represents a comoving rather than a physical density. We

believe that our result is consistent with the original transformation χ = ψ(6πGt20)
1/2;

hence < ψψ∗ >= 1
6πGt20

and < χχ∗ >= 1 are comoving quantities.

Equation (17) of Widrow & Kaiser has a typographical error, the coupled equations

erroneously appear as one equation. The derivation of those equations is in Appendix

B.3, here I provide them as they should have appeared:

i
4L
3

∂

∂ ln a
χ = −∇2

yχ +
4L2

3
Uχ (5.46)

∇2
yU = χχ∗ − 1 (5.47)

here L = ma1/2L2

~t0
.

These equations are solved in the same manner as before: we use Goldberg’s method

with a gravitational potential and implement periodic boundary conditions. This new

version of the equations will account for the expansion. The evolution of the wavefunc-

tion is written as:

χ(x, t + dt) = exp(−i3H

4L d ln a)χ(x, t) (5.48)

Computationally, this exponential term will be re-expressed using Cayley’s transform.

The timesteps dt are of equal size such that the time in the computer code is discrete

and evenly spaced. The computational time steps represent real (physical) steps in the
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natural log of the expansion factor, that is dt = d ln a. This means that the timesteps

are evenly spaced in ln a but obviously not so in terms of a. Initial conditions for this

model are discussed later.

5.2.3.2 Flat models with non-zero cosmological constant

In this section an algorithm is outlined that describes a flat Universe with non-zero

cosmological constant. We assume that the geometry is still flat k = 0 but the back-

ground Universe does not have to be matter dominated (Ω = 1 but Ω 6= Ωm). We

adopted an approach of finding a set of dimensionless variables that create a dimen-

sionless Schrödinger equation as Widow & Kaiser have done but in a way that also

accounts for non-zero cosmological constant. The assumption of working with a comov-

ing density is still true: < ψψ∗ >= ρcom = ρphysa
3. The further necessary assumptions

are:

y = x/L

∇2U = χχ∗ − 1 (5.49)

(5.50)

These assumptions plus the Friedmann equation will lead to the necessary form of the

Schrödinger equation. The Friedmann equation dictates expansion and hence provides

the background cosmological model. However, a simplified form can be written by

noting the relation between the density parameters Ω.

H2 = H2
0 [Ωm0(1 + z)3 + (1 − Ωm0)]

Ωm =
Ωm0(1 + z)3

Ωm0(1 + z)3 + (1 − Ωm0)
(5.51)

This leads to the simplified form of the Friedmann equation:

H2Ωma3 = H2
0Ωm0 (5.52)
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Here H = ȧ/a is the Hubble parameter (has units that are 1/time, in this case we

used 1/years). With the two assumptions and the Friedmann relations above then it

is possible find the other dimensionless quantities χ and U :

χ =

(

8πG

3H2
0Ωm0

)1/2

ψ

U =

(

2a

3L2H2
0Ωm0

)

V (5.53)

These relations are consistent with the desired form of the Poisson equation: ∇2U =

χχ∗ − 1. The corresponding Schrödinger equation is:

2iL
[

Ωm0 + (1 − Ωm0)a
3
]1/2 ∂χ

∂ ln a
=

[

−∇2 + 3Ωm0L2U
]

χ (5.54)

Here L = ma1/2L2H0

~
. This version of the Schrödinger equation will reduce to the

Einstein de Sitter version using the appropriate scaling relations in the case where

Ωm0 = 1.

5.2.4 Higher dimensions

To implement a Schrödinger solver in more than one dimension requires solving the

equation for each spatial dimension sequentially. This is to say that we solve for the x

dimension first then the y and z dimensions, one after the other. This poses a problem

if the time steps are too large: there must be enough spatial resolution to approximate

the correct three dimensional trajectory.

Without the knowledge of using splitting operators it is tempting to try a simple

extension to the Goldberg method:

ψ(t + dt) = [e(−i(Kx+ 1
3
V )dt)[e(−i(Ky+ 1

3
V )dt)[e(−i(Kz+ 1

3
V )dt)ψ(t)]]] (5.55)

The operators are right associative, so the the operator closest to the wavefunction

on the right hand side is the first operator to act upon the wavefunction. The newly

updated wavefunction is then acted upon by the next closest operator and so on until
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all three dimensions are done. So far there appears to be no way to combine all three

spatial dimensions in one operation. Commutation relations must be observed and

unitarity must be preserved in order to ensure energy and mass conservation. Under

this method there is a clear problem with energy conservation as P and V do not

commute.

5.2.4.1 Splitting Operators

The naive approach of extending the Goldberg method to higher dimensions is not as

robust as Watanabe’s suggestion to use splitting operators. Here I will present the

approach that I adopted, it is one that uses Suzuki’s method of operator splitting.

ψ(x, t + dt) = e−i(K+V )dtψ(x, t) = e−iKdt/2e−iV dte−iKdt/2ψ(x, t) (5.56)

In higher dimensions it is possible to make use of the following commutation relation:

[Px, Py] = 0. Here Px and Py are the momentum in the x and y directions. Only

considering the kinetic energy would give:

e−i(Kx+Ky+Kz)dt = e−iKxdte−iKydte−iKzdt

ψ(x, t + dt) =
1 − idt

2
Kx

1 + idt
2
Kx

1 − idt
2
Ky

1 + idt
2
Ky

1 − idt
2
Kz

1 + idt
2
Kz

ψ(x, t) (5.57)

Updating the wavefunction in this way allows for a modular code. Kinetic energy and

potential energy operators can be switched on or off as desired: that is to say that we

can easily run our code with the potential energy routine turned ‘off’ by using a simple

check flag in our initial conditions. This should allow the code to run quicker than just

setting Newton’s gravitational constant G to zero.

As a consequence of re-writing our code in such a modular way, the form of e will

change as it does not contain the potential term V (confer: equations in section 5.2.1).

Now it will have a form resembling:

e = 2 − iλ (5.58)
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Here λ = 4ǫ2/δ. The form for f remains unchanged while the Ω now has no V term.

Updating the wavefunction for the potential is straight forward:

e−iV dtψ(x, t) = (1 − iδ

2
V )(1 +

iδ

2
V )−1ψ(x, t) (5.59)

5.3 Solving the Poisson equation

The final piece of coding needed is a method for computing the potential. This term

is the ‘interaction’ term in the Schrödinger equation, it provides the gravitational in-

teraction between the otherwise free particles. As previously mentioned it is not an

interaction term as is used in the quantum mechanics literature. There is no scattering

or creation/annihilation: two dense regions of matter will attract towards each other

and then pass straight through each other. The Poisson equation for the gravitational

potential is equivalent to Newton’s equation of gravitational force (a two-point func-

tion). The potential field is continuous; however, this method forces softening at scales

smaller than the cell length which truncates the gravitational force.

The equation relating potential to density is:

∇2V = 4πGψψ∗ (5.60)

To solve for V , this can be re-written as:

V =

∫

4πGψψ∗dV (5.61)

A possible method for solving this equation would be to replace the nabla operator

with an equivalent expression in Fourier space. The k subscripts denotes the Fourier

space equivalent version of the variable.

k2Vk = 4πGψkψ
∗
k

Vk =
4πGψkψ

∗
k

k2
(5.62)

This requires solving the equation in Fourier space. As noted in Numerical Recipes

(Press et al. 1992), when dealing with a finite number of Fourier modes it is possible
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to improve upon the simple method proposed above of dividing by k2 using cosines:

Vk =
4πGψkψ

∗
k

2κ − 3

κ = (cos(2πn/L) + cos(2πm/L) + cos(2πo/L)) (5.63)

m,n, o are indices that enumerate the grid points, they run from 0 to L − 1.

5.4 Computational algorithm

In this section I will bring together all of the previous ideas in order to outline the flow of

computation in my wave-mechanics code. This algorithm satisfies the five requirements

(3D, self-consistent gravity, expansion, periodic boundaries, mass conserving) presented

at the start of this chapter. The results section (5.6) of this chapter will validate this

claim.

1. Construct initial wavefunction

2. Start time loop

3. Perform first split-operator of kinetic energy

(a) calculate auxiliary function e

(b) calculate Ω

(c) calculate auxiliary function f

(d) update wavefunction

4. Perform potential energy operation

(a) gravitational potential calculated using standard Fourier technique

(b) update wavefunction

5. Perform second split-operator of kinetic energy (as before)

6. End time loop
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5.5 Initial Conditions

Through out the code testing process the main initial condition used was that of a

gaussian density profile. This manifests itself as a gaussian envelope: the real part of

the wavefunction. In some cases it was appropriate to add a velocity component to the

wavefunction, an initial ‘kick’, which appears as a carrier wave of the wavefunction.

This allowed the code to be tested for a free particle with and without an initial velocity.

They were applied in the testing phase of the code in all dimensions (1 to 3). The initial

1D wavefunction is:

ψi =
1

(2πw2)1/2
e

„

−
(xi−x0)2

4w2 +ip0xi

«

(5.64)

Here p0 is the initial momentum, x0 is the offset of the peak from the origin, xi is the

gridpoint at which the function is being evaluated, w is the standard deviation of the

gaussian. The pre-factor before the exponential is the usual normalization factor.

In further testing, two or more gaussian density profiles were combined to see the

effect of waves passing through each other (both as free waves and as gravitationally

interacting waves). The initial wavefunction for two waves starting at points x0, x1

with initial momenta p0, p1 and widths w0, w1 is:

ψi = e

„

−
(xi−x0)2

4w2
0

+ip0xi+
(xi−x1)2

4w2
1

+ip1xi

«

(5.65)

the normalization factor has been dropped, it is not necessary to include this as it

merely normalizes the total of the wavefunction to 1. This total can be any number

that one desires so long as the total is constant for the duration of the simulation.

Another common and useful test of any cosmological code is a tophat collapse. The

name of this test takes its name from the shape of the (1D) density profile it has. If

we take a Universe which has uniform density everywhere and then create an area of

increased density about the origin in a spherically symmetric manner. This should

produce a step function in density at the boundary between the uniform density of

the Universe and the central area which has an increased amount of density. In one
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dimension this produces a tophat shape in the density profile (that is, a step at the

boundaries on either side of the origin. This is a test that typically uses periodic

boundary conditions which ensures that only the central density will collapse while the

rest of the Universe (the background) remains static. This is a direct test of Birkhoff’s

theorem (which is also described in 1.2.2).

I performed this test in 3D in order to understand how different choices of pa-

rameters affect the system. There are many parameters to consider so searching this

parameter space is daunting. Running the tophat tests mainly helped to guide the

choice of the ν parameter to pick when running the code for proper cosmological initial

conditions. The results of tophat testing can be found in section 5.6.3.

5.5.1 Cosmological Initial Conditions

The main test of my cosmological wave-mechanics code is to compare it with an N -

body code. The choice of N -body code is GADGET-2 (Springel 2005), it is perhaps

the most popular code in use today. The N -body simulations were performed by Sabiu

of UCL. The prescription of comparing these results with my wave-mechanics code

will follow the methodology suggested by Short as seen in Chapter 4. The underlying

theory of cosmological initial conditions is provided in Chapter 3.

The number of mesh points will determine the density (or mass) resolution available,

1283 gridpoints is roughly equivalent to 1283 super-particles in an N -body code. As

previously mentioned, the amount of mass per particle in N -body code is fixed but in

our case the amount of mass per fluid element can change (although the total of the

entire box is fixed). In the initial conditions, the mass per fluid element or mass per

mesh in our Wave-mechanics code is the same as the mass per particle of an N -body

code. It also sets the spatial resolution as we will take some length for our box (say

100 Mpc on the side) and divide it up into 32, 64, 128 gridpoints (or mesh points) as

we require. In this way, the number of mesh points in a Wave-mechanics code sets the

density resolution as it sets both spatial and mass resolutions.

Here I will briefly recapitulate the method used in Chapter 4: we generated a
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smooth density field from the particle positions in the initial conditions file. Then we

constructed the wavefunction from this density field. Finally, we evolved the wave-

mechanics code and compared the outputs with those from the Gadget code. The

latter code always outputs particles positions which were smoothed to give a density

field. The results from the cosmological simulations are presented in section 5.6.4.

5.6 Results

In all of the wave-mechanics literature hitherto the codes are presented as mature

and fully developed but few details are presented of how such codes were constructed.

As this thesis has highlighted, there are many barriers to creating a successful wave-

mechanics code. It is not obvious that previous codes overcame such difficulties. Con-

sequently, as a wave-mechanics code requires many components working together then

it is necessary to show the pieces working individually in simple scenarios before pre-

senting the full 3D results.

At the heart of the wave-mechanics code presented in this thesis is an extension

of the algorithm as presented by Goldberg et al (Goldberg & Schey 1967). Naturally,

the first step was to create a one dimensional code that reproduced the results from

this publication. For expediency, I do not reproduce these results in this thesis. Their

results illustrated a one dimensional wave-packet incident upon different energy barri-

ers. I believe that the results that do appear in this thesis section corroborate with the

results of Goldberg. That is to say that the Schrödinger equation works as expected.

Presented in this thesis are tests of the periodic boundaries, a three dimensional two-

body gravitational interaction and a three dimensional tophat collapse. The first two

do not seem to appear in previous literature. Our method for implementing periodic

boundaries is entirely new and previously unpublished. Lastly, I will present my results

from a full cosmological simulation.
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5.6.1 Periodic Boundaries

My first attempt to create periodic boundaries mimicked the work presented in Watan-

abe (Watanabe & Tsukada 2000a). In that work the method used is called the ‘adhe-

sive operator’ (not to be confused with the Zel’dovich adhesion approximation). Mild

success came from adopting this approach, periodicity worked in the simplest tests but

mass was not conserved. Hence, the adoption of Watanabe’s solution is temporarily

rejected on grounds of mass not being conserved. It is a possible direction of future

work. It is worth reiterating that the method used by Watanabe is very similar to that

of Goldberg. Both methods avoid explicit matrix inversion and make use Cayley’s of

decomposition of exponentials.

The intrinsic problem of using the Goldberg method is that it requires the wave-

function to be kept far away from the boundaries. The wavefunction is not defined at

the boundaries and the method for updating the evolution at every timestep requires

the wavefunction to be zero at the boundaries. Simply allowing the wavefunction to be

non-zero at the boundaries is not enough. The functions that evolve our system must

update across the boundary: that is to say that the left and right side of the system

must connect to one another smoothly (without a discontinuity).

As discussed in section 5.2.2, the evolution functions e, f, and Ω must smoothly

connect across the boundary. We can see from the form of e that it is a recursion

relation which converges to some value. We notice that e0 is arbitrarily set to zero and

that this result is used to seed the next value e1. This function then tends towards

some value for the rest of the gridpoints.

As I will show in figure 5.1, the function e takes on some of the shape of the potential

V . This was the crucial breakthrough in understanding why the recursion relations are

at the heart of the periodic boundary problem. In the simple 1D tests I noticed that

once e has fully converged it resembles the exact shape V ; however, as the first few

values have not converged then there is a discontinuity between the left side (ψ(x = 0))

and right side of the system (ψ(x = L)). This discontinuity will act like a potential

barrier.
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It was natural to guess that the e function would be free from discontinuities if we

iterate through the recursion relation for a second time. In the second iteration, I use

the value of eL from the right hand side of the system to seed the new value for e0 on

the left hand side of the system. In practice I found that I also had to doubly iterate

the equations for f, Ω and ψ (to ensure mass conservation).

Figure 5.1 also shows that it is unnecessary to perform a third iteration as the second

and third iteration are exactly the same. If the relations had not completely converged

by the second iteration then the system would not conserve mass. Furthermore, I

provide the caveat that while the graphs for all three iterations look similar there is

enough of a difference that the first iteration of e does not allow for complete mass

conservation when the wavefunction approaches the edge of the system.

From Watanabe’s paper it is not apparent if his solution to periodic boundaries

overcomes this problem of recursion; however, the solution he offered is admittedly

more elegant if it can be made to work.

As corroborative evidence I present the outputs from a 3D simulation; figure 5.2

shows a 2D slice where the wave-packet (shown as ψ∗ψ) passes through all 4 boundaries

in the plane. There is no underlying potential well so the wave-packet behaved as a

free particle and shows dispersion over time.

In testing, we explored what would happen to a wavefunction near the boundary

when using a simple Goldberg algorithm – that is, without the re-iteration of the

auxiliary functions e and f . As the edges of the system are not defined then the

wavefunction appears to hit a hidden boundary. This effect was seen as a type of

feedback (the wavefunction spikes up as if compressed by a potential barrier). This

also resulted in a loss of mass at the boundaries whenever the wavefunction ‘escapes’

out of the system. The feedback is obviously a numerical problem as the edge of the

system should not be a barrier. With a smooth transition across the edge of the system

then there should be no feedback.

An interesting result from running a wave-mechanics code is that of a stationary

gaussian wave that is allowed to freely disperse without an underlying potential. If
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Figure 5.1: The plots here show recursion of the e function over first, second and

third iteration (top-right, bottom-left, bottom-right). The top-left graph is potential

V and is here to show the resemblance between its shape and that of e. On the first

e iteration we note that there is a ‘blip’ (the start of the recursion relation). The

last graph (bottom-right) is a third iteration and shows the same result as the second

iteration. Number of gridpoints: Ng = 600.

the code includes periodic boundaries then it is possible for the edges of the gaussian

wavefunction to disperse across the boundary and eventually come back to interfere

with itself.

The result is something that is akin to beat phenomena, where two frequencies

compete with each other. The gaussian wavepacket is the envelope (ψψ∗) with a certain

characteristic length but the wavefunction also has a (higher) carrier frequency. When

the wave interferes with itself (or a neighbouring piece of the Universe, adopting the
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Figure 5.2: The plots here show a wave-packet (or the ‘envelope of the wavefunction’,

which is the density ψ∗ψ) passing through all four boundaries of a 2D plane, the results

were generated from a 3D code.
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cosmology analogy where a simulation is quasi-infinite) under periodic boundaries the

envelope acquires an additional frequency on top of the underlying gaussian envelope.

A brief look at this effect is presented in figure 5.3. The results were generated using

a 1D code that implements periodic boundary conditions, the outputs are at timesteps

0, 2000, 3000, 4000. The effect of interference is minorly apparent in the second-last

output but becomes a dominant feature in the last output where it is assumed that the

wavefunction has passed through the boundary on both sides wrapped back in upon

itself.

Figure 5.3: The outputs at timesteps of t = 0, 2000, 3000, 4000. The initial gaussian

wave-packet ψ∗ψ is thin and centred within the box. Periodic boundaries were im-

plemented. The wave-packet disperses and self-interferes once the wavefunction has

crossed significantly pass the boundary.

Such a result is important when considering the full cosmological simulations later.
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We need to ask ourselves what do we expect when the wavefunction crosses over the

boundary and how far must it travel in order to create this (feedback) interference

effect.

The results from the cosmological simulations in a later subsection (5.6.4) have

greater variation in the range of densities than first expected. In this later subsection

I show a comparison with the ‘industry standard’ code Gadget which is providing our

benchmark and hence provides what we expect from a cosmological code. The variation

shown in the density outputs from wave-mechanics is far greater than that of Gadget.

At first we considered that this variation was due to feedback this is now thought to

be unlikely. From the wave-mechanics results it is clear that the waves (in general)

have not crossed the entire length of the box, it even appears unlikely that any wave

has travelled half of one box length.

In our study of feedback in this section the wavefunction must have dispersed a

minimum of one box length and hence it gives a self-interaction pattern (shown in

figure 5.3). Here the wave-packet ψ∗ψ (the density) has dispersed and is free of an

internal or external potential. As is clear from the figure, the central density decreases

in height as the width increases.

We performed several tests of the codes in all dimensions, with one of the tests

being to see how fast a wavefunction will disperse. We found that the dispersion and

subsequent feedback effect is dependent on the choice of ν. Large values of ν will

allow for faster dispersion and hence feedback will be seen earlier. However, such an

effect requires the waves to pass far across each boundary which is further than should

be typically allowed in a cosmological simulation. The typical ν values used in the

cosmological simulations are quite small – for example, 10−7; during our tests such a

small value showed only a small degree of dispersion and hence the time required to

see feedback is far longer than the simulation time.

We modified this test to include a second gaussian peak in the box. The peaks are

situated in such a way that the system is symmetric about the midpoint of the x-axis.

We performed three such tests and kept the initial conditions the same (except for an
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additional kinetic boost in the second test). In the first case we had no gravity; the

second test involved an initial kick in velocity but no gravity while the third test had

no initial kick in velocity but the peaks were subjected to gravitational interaction.

In the first test (see figure 5.4) we wished to see what happened when the two peaks

are allowed to freely disperse with no initial kinetic energy and are not subject to the

force of gravity. As expected the two peaks disperse and eventually overlap each other.

The pattern of the overlap is what we expect from a wave-mechanics code. We see

interference effects when the wavefunctions over lap; ideally, we would not see this in

a classical code which raises a point of contention when using a wave-mechanics code.

Such effects should be minimized when simulating a classical system.

Another test of our code is to provide two gaussian peaks with some initial kinetic

energy, rather than let them freely disperse. We also omitted gravity from this test.

The results are shown in figure 5.5; we plot normalized density, ρ, against a normalized

length, x. This simulation used 512 grid elements. The two peaks have met by timestep

40 and are almost apart in the last plot at timestep 100. The speed of dispersion is set

by the parameter ν = ~/m.

One of the most important tests in one dimension is that of two peaks passing

through each other under the influence of gravity. In this test the peaks had no initial

kinetic energy. The results of this test are shown in figure 5.6. The peaks appear to

move slowly at first then accelerate through each other; the initial timesteps show little

happening as the attraction towards each other is slow. The maximum peak achieved is

when the two peaks fully meet in the middle (shown at timestep 160) but soon appear

as two separate peaks not long after (timestep 200).

One of the most interesting features of this third test is that gravity appears to sup-

press the interference effects observed in the previous two tests. It does not, however,

appear to be completely free of interference effects. This is expected as the two peaks

are actually part of the same wavefunction, that is to say that they are coherent. This

also explains why interference effects are seen in the previous tests. Such interference

patterns, as mentioned, as not classical in nature hence should not be present in the
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Figure 5.4: This figure shows the dispersion of gaussian peaks in a box. The output

times are at timesteps of 0, 60, 100, 120, 140, 180.

simulation of a classical system.
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Figure 5.5: In this figure two gaussian peaks with some initial kinetic energy pass

through each other and their evolution is observed. The peaks move with a constant

velocity. The outputs are at timesteps of 0, 20, 40, 60, 80, 100.

5.6.2 2D Two-body gravitational interaction

The first test of gravity in the 3D wave-mechanics code was that of a two-body grav-

itational interaction. In a traditional N -body code this test would involve two point
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Figure 5.6: This figure shows the evolution of two gaussian peaks under the influence

of gravity. The peaks move slowly at first as they attracted towards each other. The

peaks speed up as they meet in the middle of the box and eventually pass through each

other. The output times are at timesteps of 0, 40, 80, 120, 160, 200.

particles interacting under the force of gravity (note: it is possible to give these particles

an effect length via the softening length as mentioned in Chapter 2). In wave-mechanics
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the particles are replaced by two gaussian wave-packets. As these two wave-packets are

no longer point-like then there is no concern about two-body relaxation – a problem

that was highlighted earlier in section 2.1.

The outputs of this test are shown in the series of plots 5.7, 5.8, 5.9. The full

test shows the two gaussians being attracted towards one another (during timesteps,

t = [0, 30]). As the two peaks move towards each other they are observed to squeeze

themselves under gravity: the peaks to become taller and thinner (as seen in the plot for

time 10). Interestingly, they appear to relax and then repeat the process as they move

towards the system’s centre of mass where the two peaks pass through one another.

The next series of plots (5.8) shows the two peaks passing through each other. At the

mid-point when the peaks overlap they display a spiky pattern akin to the interference

pattern of the double slit experiment (during timesteps, t = [35, 50]). After the pass

through the two peaks move apart and journey to the starting point of the opposite

peak. In the plot for timestep 65 we can see that some of the mass has been left in the

middle after the interaction, this eventually disappears before the next collapse but

it indicates that the masses have already passed through each other. This could be

a potential way of tracing astrophysical objects that resemble this simple toy model

(perhaps the Bullet Cluster – where two distinct distributions of mass have passed

through one another). A residual mass should follow the interaction but eventually

this mass could be attracted towards their parent peaks.

By timestep 100 we can see that the two peaks have hit their turn-around radius.

The residual mass has disappeared however the two peaks sit at these positions and

re-arrange themselves under internal gravitational and presumably tidal forces. Then

they begin their collapse again and are attracted towards each other. This time appears

to be slightly different that the first pass through, as seen in the plot of timestep 125,

there is a build up of mass at the centre before the two main peaks have interacted.

By timestep 140 we can see the two peaks are starting to overlap and then have passed

through each other by timestep 150.
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Figure 5.7: The plots here show two gaussian wave-packets (ψ∗ψ, which is density)

interacting under gravity. The output times are 0, 10, 15, 25, 30, 35, they show the start

of the simulation where the two peaks are attracted towards each other.
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Figure 5.8: In these plots we can see the two waves pass through each other. The waves

collide in the first plot and are then shown to have fully passed through each other in

the last plot. The output times are at timesteps of 40, 45, 50, 65, 80, 100.
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Figure 5.9: These plots show that after the peaks have passed through each other

they will turn around and collapse again. The pattern is similar to before but

with some slight differences as noted in results section. The output times are

120, 125, 130, 140, 145, 150.
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5.6.3 Tophat collapse

The two-body interaction was a test of the gravitational routine, while the test of the

tophat collapse will test gravity as well as expansion. Implicitly assumed so far, as in

all 3D tests, is the use of splitting operators for implementing wave-mechanics in more

than one spatial dimension. The code used here is one that will be used to conduct

the full cosmological simulations; hence it is 3D, has periodic boundary conditions,

includes self-consistent gravity and cosmological expansion.

The tophat collapse is a classic test of N -body codes. Due to the high symmetry

of the problem then it is one of the simplest models for analysing non-linear evolution

(Coles, (Coles 1997)). As Coles notes, the tophat is “not directly relevant to interesting

cosmological models because the real fluctuations are expected to be highly irregular

and random.”

In an N -body code then the dynamics will be determined by the cosmological

parameters chosen as well as the distribution of the mass. In wave-mechanics there

is, as always, one more parameter to consider: the ν parameter that determines the

speed of dispersion as outlined before (section 3.1.2). When the mass distribution of

the tophat is tall (relative to background density) and thin then collapse will happen

more quickly. For a distribution that is short and flat then collapse is suppressed.

The parameters used in this test were: H0 = 72, ai = 0.04, Ω = 1, Ωm,0 = 0.3, L =

100Mpc/h, ν = 10−8. The resolution used is 643 gridpoints where a central over-density

that is 8 pixels in diameter and is at a level of δ = 2. See figure 5.10 for the resultant

plots.

The results show that the over-density collapses to a nearly singular point by

timestep 1800 (δ = 6.67) , the over-density grows until a maximum peak of δ = 8.33

at timestep 2200. From there it stays at that peak until the end of the simulation

(timestep 3200) in an apparently static state.

As point of comparison, we will provide an alternative set of plots (figure 5.11) that

use a larger value of ν (10−7). This alternative set of plots shows that collapse happens

faster, as is expected from using a higher value of ν. The parameters were otherwise
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held constant, that is to say that we used the same initial conditions. Collapse to the

same peak (δ = 8.33) has now occurred by timestep 800; however, the peak soon drops

in height and fattens until the end of the simulation. The over-density is still centralized

but it appears that gravity is not strong enough to hold the region as a quasi-singular

point of density. In tests where ν is much larger the over-density expands so fast that

the wavefunction crosses over the boundaries. This provides feedback into the system

where different frequencies within the wavefunction can cause an interference pattern.

The result is an unsmooth wavefunction with rapid variability.

5.6.4 Cosmological simulation

The key results of this thesis focus upon the application of the 3D code for one set

of cosmological parameters, for various mass resolutions (323 − 1283). The parame-

ters are appropriate to a flat FLRW Universe and were chosen by Sabiu for his own

purposes. Sabiu ran some N -body simulations and has donated his initial conditions

files (at resolutions of 643 and 1283 plus end time outputs for comparison with my

wave-mechanics code. He generated initial conditions that were suitable for use with

the code GADGET-2. These files include all the key cosmological parameters as well

as the positions and velocities of all particles. The details of generating the initial

conditions was presented in section 3.3.1.

The process of generating initial conditions appropriate for a wave-mechanics code

involves turning the particle positions into a continuous density field. To do this I

used the Triangular Shaped Cloud (TSC) routine as provided by the Hydra N -body

code, this code takes particle positions and outputs the number density. It constructs

the density by performing a number count in each cell. This is then multiplied by the

critical density of the Universe in order to construct a proper cosmological density field.

From the density, a gravitational potential can be calculated using standard Fourier

techniques (see 5.3) which is then used to create the initial wavefunction ψ. This seems

like the fairest way to make a comparison with the industry standard, N -body, codes.

It is not, however, the only way to create initial conditions.
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Figure 5.10: The (comoving) plots here show a 2D slice of a 3D tophat collapse. The

top left plot shows the initial condition (a = 0.04, δ = 0.1, ν = 10−8). The plots (left

to right) are t = 0, 200, 600, 1000, 2000, 3000 (a = 0.04, 0.05, 0.07, 0.1, 0.3, 0.8).

Woo & Chiueh (Woo 2002; Woo & Chiueh 2009) constructed their initial conditions

by assuming the following form: ψ = 1 + R + I, where R, I << 1. The R and I are

the real and imaginary perturbations about the mean value (= 1) of the wavefunction.
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Figure 5.11: Here is an alternative set of plots of a 3D tophat collapse. The top

two plots show the initial condition (a = 0.04, δ = 0.1, ν = 10−7) and the associated

gravitational potential. The outputs are at times of t = 600, 800, 1000, 1600, 2000, 3000

(a = 0.07, 0.09, 0.1, 0.19, 0.3, 0.8).

These perturbations are supposed to form a gaussian random field as required by

cosmological structure theory. Such a method is attractive as if it can be done in a
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manner that faithfully represents a “cosmological wavefunction” then it would avoid

the necessity of smoothing particle positions. Performing this smoothing operation

will inherently introduce error into the system as the particles positions were originally

populated within an underlying smooth density field. Simply smoothing the positions

will not give a completely faithful representation of the original field. An alternative

possibility and perhaps the simplest approach would be to take the initially continuous

density field from an initial condition generator (before one populates it with particles)

and use that to construct the wavefunction.

Sabiu generated his initial conditions using the following parameters: a = 0.03125,

Ωm,0 = 0.279, ΩΛ,0 = 0.721, Ωb,0 = 0.04554, H0 = 70.1, Box size = 500Mpc h−1. Box

size is the side length of the box in physical units. This corresponds to a system of

physical units where one computational unit of length is 3.08568 × 1024 cm, one unit

of mass is 1.98892 × 1043 g and the unit of velocity is 100000 cm / s.

After running the TSC routine to compute density for the initial conditions, a

further calculation was performed to construct the over-density field. This was done

for all subsequent outputs too. The maximum and minimum over-density in the initial

condition were |δ| ∼ 0.3. The simulations at resolutions of 323 and 643 prove to be

unsatisfactory as the magnitude of δ appears to be too high (this could be a problem

of conversion from the discrete particle distribution, a simple yet crude solution is to

smooth the data). The simulations are unreliable because the maximum value of δ

grows too quickly: from a value of ∼ 0.3 to ∼ 6 after only a few hundred timesteps

(compare this to an end time of 3500 timesteps ∼ a = 1).

Figure 5.12 shows this problem from the results of a 643 simulation. Manipulating

the value of ν is not sufficient to give reliable results, collapse either comes too fast or

not at all.

Simulations of higher resolution (such as 1283) do not seem to suffer from the same

problem: the increase in δmax is more gradual. This suggests that resolutions of 643

and below are just too rough for our implementation of wave-mechanics; however, we

believe this problem can be resolved. We suspect the problem is to do with the initial
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Figure 5.12: These plots show histograms of over-density as generated from the wave-

mechanics code. The outputs are for timesteps = 0, 10, 100. This corresponds to

a = 0.03125, 0.0315, 0.0345. The maximum over-density in the final plot δ ∼ 6 is much

higher than is expected from present structure formation theory.

density field generated by the TSC routine. If we take an initial field and decrease

the initial magnitude of δ such that the new field is δ′ = δ/10 then the increase in the

over-density is more gradual (as expected).

Before running the wave-mechanics simulation we checked the Gadget files (initial

and late times) to see if they were what we expected (that is, the results produce

the behaviour we expected). One such test is to create histograms of the density (ρ)

and the over-density (δ) fields. The histogram of density should be gaussian in shape

and show an increase in width over time. The highest density reached in each output

is higher than the previous output, indicating that dense regions are accreting more
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material and collapsing under the force of gravity. The under dense regions are losing

more mass over time (the material is attracted away from these regions in the higher

density regions), hence the troughs of the density are lower with each output. The

histogram at later times are also gaussian. They are plotted in figure 5.13 and come

from a 643 simulation.

The behaviour of the over-density fields (from Gadget) corroborates with the be-

haviour of the density field. The histogram of over-density is initially gaussian but

tends towards a log-normal in later outputs as seen in figure 5.14. The initial density

field is smooth where deviations from the mean density are small, as indicated by the

tight distribution in the first histogram of over-density (a standard deviation of about

0.02). The over-density field is skewed as the minimum value (by definition) is -1 while

the maximum can increase (almost) without bound.

The evolution of density and over-density from the wave-mechanics code is similar

to that of Gadget but not the same. The initial conditions are the same, as required.

However, in the wave-mechanics outputs (see figure 5.15), the gaussian shape of the

density field skews over time with the peak leaning towards the higher mass end. It also

develops a long tail, to balance the skewing towards the top end, as the under-dense

regions evacuate. The highest peak of density (and over-density) never goes as high

as it does in the Gadget outputs. However, the lowest trough of density is far lower

than that of Gadget: ρmin ∼ 106 for wave-mechanics while Gadget only goes as low as

ρmin ∼ 109.5. The under-dense regions are evacuated faster in wave-mechanics, hence

the over-density histogram (figure 5.16) approaches a log-normal shape more rapidly

than it does for Gadget. This was not expected but seems to be an inevitable result

of wave-mechanics. All resolutions and choice of ν tested seem to produce similar

behaviour, the results shown in figure 5.16 are typical plots.

A further unexpected outcome of wave-mechanics is the rapid variability in the

height of density (ρ) from gridpoint to gridpoint (see figure 5.17). Naturally, the

Gadget outputs can be expected to be smoother as they density field is not continuous

but rather is calculated from the discrete distribution of particles. The wave-mechanics
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Figure 5.13: These plots show histograms of density as generated from the Gadget

outputs. They have a distinctly gaussian shape and widen over time. The outputs are

for z = 32, 3, 2, 1, 0.5, 0.05.

code gives more lows and more highs (by number count) than Gadget, while the lowest

trough and highest peak are lower than that of Gadget. Again, this appears to be true

regardless of resolution.
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Figure 5.14: These plots show histograms of over-density as generated from the Gadget

outputs. The outputs are for z = 32, 3, 2, 1, 0.5, 0.05.

The plots in figure 5.17 have a resolution of 643 with ν = 10−7 and |δ|initial ∼ 0.03,

otherwise all initial conditions are the same as for the Gadget simulation. In figure

5.12, we noted there was a problem with the maximum value of δ being too large.

There, δmax = 6 after 100 timesteps when |δ|initial ∼ 0.3. In the latest run where
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|δ|initial ∼ 0.03, the δmax from this simulation after 100 timesteps run was δmax = 0.7.

This is of a more acceptable magnitude.

In addition to the histograms (5.15, 5.16) and the surface plots of density (5.17), I

provide a contour plot of over-density (figure 5.18) which has levels at δ = −1, 0, 1, 2, 5.

From the surface plots (5.17) it is hard, at first, to tell if the structure is random as

it appears to rapidly change from timestep to timestep. The data is messier than

from Gadget, so the conclusion is not as immediately obvious. The contour plots give

the clearest picture of how the structure is fragmentary but not completely random.

Implicitly, the data has been smoothed to hide the finest structure.

A possible source of such messiness is due to the fact that the whole simulation

uses a single coherent wavefunction. As shown in the results of section 5.6.1, a single

wavefunction can lead to interference effects. Although we hope to limit this effect by

using a small ν we may not have completely suppressed these effects. That is despite

the fact gravity also acts to suppress such interference effects.

In contrast to the Gadget density, the plots of wave-mechanics show more struc-

ture. For comparison we can look at the contour plots generated for Gadget (figure

5.19). These latter plots are far smoother than that of wave-mechanics. It seems also

impossible to tell that the results of wave-mechanics and Gadget come from the same

initial conditions. It should be noted that the highest value of δ for Gadget was δ ∼ 23,

which is far higher than that of wave-mechanics δ ∼ 9 → 14 (depending on parameter

choice: such as varying ν).

All of the following outputs are shown for timesteps: 0, 200, 1000, 2000, 3000, 3500,

or a = 0.03125, 0.038, 0.085, 0.23, 0.63, 1.03. The slices through the data were all taken

at the some point on the z-axis: L/2.

5.6.4.1 Gaussian smoothing

Given the magnitude of the over-densities in the initial condition |δ|initial ∼ 0.3 we

previously suppressed this value by dividing the values across the whole field by 10.

This was an arbitrary choice, however in cosmology there is a an accepted standard for
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Figure 5.15: These plots show histograms of density (ρ) as generated from the

wave-mechanics code. They have a distinctly gaussian shape but widen and skew

over time. The outputs at t = 0, 200, 1000, 2000, 3000, 3500 (a = 0.03125, 0.038,

0.085, 0.23, 0.63, 1.03).

smoothing that advocates smoothing the data with a gaussian window with a standard

deviation of σ = 8 Mpc. It is an accepted standard because, statistically, all structures
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Figure 5.16: These plots show histograms of density contrast (δ) as generated from the

wave-mechanics code. Outputs at t = 0, 200, 1000, 2000, 3000, 3500.

larger than 8 Mpc are roughly linear.

This method of smoothing was chosen and applied to both the initial density field

and to the output density fields. The smoothed initial density field was supplied to the

wave-mechanics code for another run of the simulation to be performed.
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Figure 5.17: These plots show a surface plot of density ρ from the wave-mechanics

code. The outputs are for timesteps 0, 200, 1000, 2000, 3000, 3500.

The smoothing operation is defined in the following way:

ρgauss =
1

W

σz
∑

−σz

σy
∑

−σy

σx
∑

−σx

ρTSC e

„

−(r−r′)2

2σ2

«

(5.66)

here ρgauss is new smooth field and ρTSC is the density field as generated by the TSC

smoothing routine in case of the Gadget outputs. Recall that the TSC routine smooths
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Figure 5.18: These plots show a contour plot of density contrast (δ) from the wave-

mechanics simulation. The box length is L = 500 Mpc/h on each side. The contour

levels are δ = −1, 0, 1, 2, 5. The outputs are for timesteps 0, 200, 1000, 2000, 3000, 3500.

particle positions onto a uniform grid and hence gives a continuous density field. The

weight, W , is defined as:

W =
σz

∑

−σz

σy
∑

−σy

σx
∑

−σx

e

„

−(r−r′)2

2σ2

«

(5.67)



5.6: Results 163

Figure 5.19: These plots come from the Gadget simulation and show a contour plot

of density contrast (δ). The box is 500 Mpc/h on each side. The contour levels are

δ = −1, 0, 1, 2, 5.

where it is already assumed that we will truncate the gaussian to a certain precision,

in this case 3 standard deviations (σ). In the simulation performed, a physical length

of 500 Mpc was chosen, and the resolution was 643. This means that one pixel has a
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length of 7.8 Mpc hence 3 pixels roughly corresponds to 3 standard deviations.

Figures 5.20 & 5.21 show contour plots of over-density, δ, from Gadget and wave-

mechanics respectively. The peaks have been well smoothed out by roughly a factor of

6. The contour levels are black for δ < 0 and blue for δ ≥ 0. The results for Gadget

look almost static over the full run of the simulation but there is some movement within

the structure.

The results for wave-mechanics look less random at later times, there are definite

structures in the smoothed density fields at late times (a ∼ 1). In the previous un-

smoothed outputs (such as figure 5.16) long-term structure was not as distinguishable

as in these newer results.

The problem seems to have been due to the initial density peaks being too high

for our chosen resolution. The maximum over-density peak was δ ∼ 0.3 in the original

initial conditions, here in the smoothed initial condition it is ∼ 0.05. The growth of

the maximum value of δ is also much slower and reaches a maximum of δ = 9.1 in

the final output. This is comparable to the unsmoothed initial density field of wave-

mechanics in the previous section. The big improvement now is that the outputs from

wave-mechanics look closer to those from Gadget (after gaussian smoothing).

Like previous results we can see regions of multi-streaming which resemble an in-

terference pattern. The outputs from wave-mechanics are noticeably less clean but this

isn’t a surprise given the added complexity inherent in wave-mechanics and the fact

that we are now dealing with a continuous density field.

5.6.4.2 Robustness of results — conserved quantities

Given the high variability of density peaks spatially, it is not apparent that the code

is well-behaved. Hence it is worth performing consistency checks, such as plotting

histograms but as mentioned through out this thesis we are ideally concerned with

conserved physical quantities. The stability and robustness of the wave-mechanics

code is verified by the conservation of mass and momentum. Over the whole simulation

from the initial conditions until redshift z = 0 (3500 timesteps), the variation of mass



5.6: Results 165

Figure 5.20: This series of contour plots shows the previously seen Gadget outputs for

over-density (δ) after gaussian smoothing has been applied. z = 32, 3, 2, 1, 0.5, 0.05.

The contour levels are black for δ < 0 and blue for δ ≥ 0.

is less than 7 significant figures. While momentum conservation (denoted by P ) is

only slightly worse but an unnoticeable effect in the simulation. Together these two

conserved quantities dictate that energy must also be conserved, as is required from a

symplectic integration scheme. Figure 5.22 shows how these quantities vary over the

course of the simulation.
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Figure 5.21: This series of contour plots shows the previously seen wave-mechanics

outputs for over-density (δ) after gaussian smoothing has been applied. The outputs

at t = 0, 200, 1000, 2000, 3000, 3500 (a = 0.03125, 0.038, 0.085, 0.23, 0.63, 1.03). The

contour levels are black for δ < 0 and blue for δ ≥ 0.

The quantities were calculated as follows:
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Mtotal =

∫ V

ψψ∗ dx3 (5.68)

Ptotal =

∫ V

|ψ∗∇ψ|2 dx3 (5.69)

Naturally, these quantities have regimes where they are not conserved and the code

is has huge errors. The regimes of stability are dictated by the resolutions lengths

dx and dt as with any finite difference (or finite element) code. However, there is

an additional parameter that dictates stability: ν. When ν is relatively large (as

dictated by choice of ng, the number of gridpoints per side) then the dispersion of the

wavefunction is higher but if this value is too large then the wavefunction allows for

matter to move too quickly. When this happens, mass and momentum are no longer

conserved.

Figure 5.22: The conservation of total mass (left) and total momentum (right) over

time in the wave-mechanics code. The flatness of the distribution shows that the

quantities do not vary significantly over time.

5.7 Velocity & Vorticity

The main focus of this section is to show the comparison between the “industry stan-

dard” code, Gadget, and our own wave-mechanics code. In figure 5.23 we present the
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velocity in the form of histograms of the x component of velocity. From symmetry we

require that the other velocity components, y & z, have the same shape (height and

width) at all output times. The histograms of the other velocity components confirm

this is the case; for brevity, those plots have been omitted from this thesis.

Overplotted on each of the Gadget velocity histograms is that of a theoretical

gaussian with the same amplitude and standard deviation. We can see very good

agreement between the data and the theoretical gaussian. The velocity data from the

Gadget output files requires a simple scaling in order to calculate the real physical

velocities: vreal =
√

avcode (km/s).

The velocity from the wave-mechanics code can be calculated using the probability

current as given by equation 3.45. This technique was presented as the big difference

between my FPA code that that of Short (Short 2007). We have shown that the

velocity from the probability current is consistent with the results of Short who used

a phase unwrapping technique. As shown in Chapter 3, we can use a simpler form of

the probability current:

v =
~

m
ℑ

(∇ψ

ψ

)

(5.70)

Figure 5.25 shows a series of graphs of the x, y components of velocity (at a fixed

value of z) and correspond to the density and over-density plots from the wave-

mechanics code shown above (figures 5.17 & 5.18, respectively). The velocities at

earlier times appear isotropic as expected and of roughly equal magnitude (with a

gaussian distribution).

For comparison with the Gadget histograms (5.23), I also provide histograms for

the x component of velocity from the wave-mechanics code. It also appears as a

gaussian at earlier times by evolves in a slightly different way to Gadget, the tails of

the distributions become much longer than they are in Gadget. Also, I must point out

that this data has been smoothed using a gaussian smoothing routine. The effect of this

smoothing makes the distribution shorter and fatter, both pre- and post- smoothing

distributions are however gaussian. This partly what we expect: we expect a gaussian
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distribution but it is not entirely obvious why the wave-mechanics code produces a

distribution with longer tails. This likely to be a fundamental issue of wave-mechanics

rather than our specific implementation.

Worth noting is that the range of velocities calculated over time is greater in the

wave-mechanics code than in Gadget. Strangely, the initial velocities that we calculated

in wave-mechanics is not the same as those in the Gadget code. Currently, this is an

unsolved problem and may be due to how the initial wavefunction is constructed:

ψ ∝ ρ1/2 exp(iΦg). Which uses the gravitational potential rather than the velocity

potential. Physically, the two fields are not the same but at early times in the Universe

are believed to be linearly proportional to each other. That is to say that this problem

is unexpected and the scaling between the two fields may not be the problem. We may

then have to consider if the calculation of the gravitational potential from the density

field is somehow deficient. Not only does this affect the initial velocity field but it

affects the dynamics of our system and hence could be a source of a large systematic

error.

The velocity results are contradictory with the fact that momentum is conserved

(as just shown in figure 5.22) for the duration of the simulation. To the best of our

knowledge the calculations are correct but unfortunately we have not found the root

error of this conundrum.

The initial density field is identical to that of Gadget hence the source of discrep-

ancy has to come from either (1) the scaling of gravitational potential to the velocity

potential or (2) the calculation of the velocity field is incorrect. The latter might sug-

gest that an additional constant scaling factor must be added to the results. This

would force the width of the velocity distribution from wave-mechanics to be identical

to that of Gadget, this would also mean that subsequent outputs of velocity will be

wider too. At later times this would provide an even greater discrepancy between the

maximum and minimum velocities of wave-mechanics versus that of Gadget.

The following table provides the key values of the velocity distribution (over time)
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from the wave-mechanics code:

t = 0 200 1000 2000 3000 3500

a = 0.03125 0.038 0.085 0.23 0.63 1.03

z = 31 25.3 10.8 3.3 0.6 -0.03

max[Vx] 26.9 32.8 277.9 1824 5332 5768

min[Vx] -35.4 -43.6 -261.1 -4711 -4571 -7452

mean[Vx] -3.7 -4.5 -9.12 -29.32 -65.24 -165

σ[Vx] 7.5 9.2 30.79 173.8 398.9 687

As previously stated, the other velocity components y, z are roughly the same as the

x component. For brevity the other components are omitted from the table. The

quantity σ(Vx) in the table is the standard deviation of velocity.

The table indicates that there is a net motion in the x direction, this is also true

of the other components. This is worrying as it suggests that the simulation is expe-

riencing a net bulk motion, which will look like an external force is acting upon the

system. This is undesirable but hopefully not an unsolvable problem. In this work we

do not have enough time to investigate the matter and will have to leave it open for

future work.

Vorticity In section 3.5 we discussed how to identify possible regions of vorticity,

this proved fruitful when analysing the results from the 3D FPA code as sen in section

4.2.5. In figure 5.26 the plots show I(ψ) vs R(ψ); we suggested that analysing the

patterns of these graphs will help to find areas of vorticity and for providing another

check of robustness. The first plot shows a ring with an isotropic distribution which

implies that both density and velocity are isotropic, this is what we expect from the

initial conditions generator supplied by Gadget. It also shows that our construction of

the wavefunction is consistent with the initial conditions generator.
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Figure 5.23: These plots show a histogram of the Vx component of velocity from the

Gadget code. The other velocity components are essentially the same. Overplotted is

a theoretical gaussian, shown as asterisks, with the same standard deviation (calcu-

lated from the outputted velocity data, shown as diamonds). The times shown are at

redshifts: z = 31, 3, 2, 1, 0.5, 0.05.
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Figure 5.24: These plots show a histogram of the Vx component of velocity from the

wave-mechanics code. The other velocity components are essentially the same. Over-

plotted is a theoretical gaussian, shown as asterisks, with the same standard devia-

tion (calculated from the outputted velocity data, shown as diamonds). As before,

the histograms are at times of t = 0, 200, 1000, 2000, 3000, 3500 (a = 0.03125, 0.038,

0.085, 0.23, 0.63, 1.03)
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Figure 5.25: This figure shows quiver plots of the x, y components of velocity from

the wave-mechanics code. The velocities are of roughly equal magnitude at early

times but this is not true of the later plots. The outputs correspond to the same x,y

slice of the data as seen in the previous wave-mechanics plots and at the same times:

t = 0, 200, 1000, 2000, 3000, 3500.
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The results from the full S-P simulation do not seem to show any signs of vortic-

ity, the wavefunction does not appear to get close enough to zero (min[ψfinal ∼ 10])

to become singular. While the lack of vorticity agrees with the standard theory of

cosmology, it is not obvious that singularities are prohibited in our formalism. These

singularities were shown in the results of the FPA but there is no good reason for their

omission in the results of the full S-P system. Given sufficiently enough time to in-

vestigate this phenomena I would try running the simulations for longer to see if they

will ever produce a singularity in the wavefunction and hence produce an undefined

velocity.

5.8 Summary

This chapter has shown how implement a wave-mechanics code for Large Scale Struc-

ture that satisfies our five original requirements: 3D coordinates, self-consistent grav-

ity, expanding coordinates, periodic boundaries, mass conserving. The use of the full

Schrödinger-Poisson equations goes beyond the FPA model of Short. That is to say

that we have extended the original paper of Widrow & Kaiser; which includes a gen-

eralization of their Schrödinger equation to allow for more cosmological models.

The most similar work to what we have done is the full 3D code from the team

in Taiwan. Unfortunately, their publication does not provide enough details to make

a full comparison with their technique. There are some open questions about their

work that are worth addressing: does it conserve mass and momentum? Does it

properly implement periodic boundaries? I suspect that the latter is true because it

is a necessary requirement of a cosmological code. I’m less sure of the answer to the

former question as they do not address the issue and they may regard it as a less

important concern. A key strength of our work is that we have shown that our method

conserves mass and momentum.

We have provided a clear roadmap for any reader that would like to create their

own wave-mechanics code in order to reproduce our results or to be used for their own
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Figure 5.26: The plots show I(ψ) vs R(ψ). The first plot shows a ring with an isotropic

distribution, however the radius is not unity as it was in the FPA, as expected from

the initial conditions generator. The smearing out of this ring is indicative that the

wavefunction is evolving and hence the over-densities are spread further from the mean.

The outputs are at the same times, t = 0, 200, 1000, 2000, 3000, 3500.
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purposes. All the necessary mathematics has been provided and clear explanations have

elucidated why each piece of the code is necessary and how these pieces fit together. It

is clear from the works of Watanabe that the Suzuki splitting operators should be used

for any simulation of higher dimension than one. Fortunately, they can be implemented

with the Goldberg scheme as suggested by Widrow & Kaiser (essentially the same as

Watanabe’s approach). Furthermore, we have shown that the use of splitting operators

and the Goldberg scheme can be consistently implemented with periodic boundary

conditions and coordinate expansion.

We believe that the implementation of periodic boundaries is completely new as

previous publications have not mentioned such considerations. As such, we can confi-

dently state that this is the first illustration of such a method. Also new to this thesis

is the generalization of Schrödinger equation to describe more general cosmological

models.

Proof of multi-streaming (described in section 3.1.2), or shell crossing, is clearly

shown in the results from the 3D code as seen in section 5.6.2. The tophat results show

the inclusion of gravity and of a simple cosmologically-based scenario. Such results

combined with the conservation of key quantities (mass and momentum) suggest that

our final results in section 5.6.4 may be correct but require further investigation. That

the whole simulation shares a single wavefunction allows for the possibility of interfer-

ence, despite our intention to suppress these effects it is still possible that interference

is present in our final results (given the apparent messiness of our 3D cosmological

results).

A key concern to address is why the density outputs from the wave-mechanics

code are not closer to that of Gadget. We expect the results from wave-mechanics

to differ from Gadget but it appears that the variation in densities and the patterns

produced by wave-mechanics are far greater than expected. As shown in Chapter

4, the densities from wave-mechanics provided reasonable correlation coefficients with

the densities from Hydra. Mass is conserved and the distributions are not completely

random; they show a clear pattern of evolution that is different from what we expected
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but not necessarily wrong. Unfortunately we cannot conclude whether our results

are completely correct within the wave-mechanics framework. That is to say that we

suspect the wave-mechanics framework is robust and can be correctly applied to LSS

simulations but we have not been able to prove that beyond all doubts in this thesis.

The biggest problem of the wave-mechanics code is the off-centre velocity distribu-

tion which suggests a net bulk motion. From theory, the net motion of the Universe

should be zero (ignoring suggestions that the Universe might be rotating as a whole).

The velocity scaling also appears to be wrong and will need to be addressed in future

research.



Chapter 6

Conclusion

This thesis provides an overview of wave-mechanics as applied to LSS. The interpreta-

tion of the Schrödinger equation was re-examined in Chapter 3, previous inconsistencies

and misconceptions were explored and resolved to the best of our ability. Our under-

standing of wave-mechanics as applied to LSS should now be clearer and more concise.

The approach in this thesis is purely classical due to the high particle occupation num-

ber in each quantum state, so pure quantum mechanics is never present. The quantum

nature of dark matter particles is mostly unknown but not thought to be significant.

However this does not affect the main outcome of this work.

Chapter 3 made clear the reason for choosing the Schrödinger equation, and not

a generic wave-equation, for simulating LSS using a wave-mechanical method. The

Schrödinger equation is an energy equation where the terms can be easily interpreted

in a physical manner using well-developed techniques; there is an obvious link between

observables and operators; and the wavefunction is a single complex field that provides

a simple method of obtaining the density and velocity.

We have shown the correct interpretation of the Schrödinger in this context is that of

a generic energy equation that describes the evolution of waves but does not necessarily

have to describe a quantum system. In a classical system the effective Planck constant

is now analogous to the diffusion coefficient of fluid dynamics. In order to describe such

a classical system of N particles one must ‘multiply up’ the single-particle Schrödinger
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equation which assumes a high occupation number.

Also included in Chapter 3 is a modern derivation of the fluid equations from the

Schrödinger equation. This is lacking in previous literature. In addition to providing

a sketch of the derivation we delved further into the interpretation of the equations,

building upon a translation of the original publication by Madelung (see Appendix

A.1), as well as new insights from later literature and further study.

Crucially, we believe that it is important not to confuse the role of the so-called

pressure term. It is a term that highlights the difference between a free particle and a

fluid. It is not a term that is ‘added’ in by the Schrödinger equation; there is no new

or added pressure into the system. In fact, the opposite is closer to the truth. The

free particle Schrödinger equation describes a fluid that has no internal pressure. Short

discovered (under the limit of ~ → 0) that the term is only important in regions of

high-density. This suggests that the subtraction of the pressure term is negligible and

hence a free-particle is the same as a fluid in regions of low density. In high density

regions it is natural to expect the pressure to dominate the fluid’s evolution.

Johnston, considered a different approach from myself and Short and adds in (by

hand) the pressure term in her calculations. Thus, the wavefunction that she describes

is truly a fluid.

In Chapter 4, we presented the results of our investigation of the Free Particle

Approximation (FPA) model and confirmed the robustness of the results provided by

Short. Our tests were based upon the mathematics provided in his thesis but were

carried out using entirely independent codes – thus representing a fully independent

test that reinforces the idea that the FPA is a sound approximation scheme. We were

able to conclude that the FPA is a fast and efficient method for probing the quasi-

linear regime of density perturbations, it proves to be a good match for the Zel’dovich

approximation and breaks down at shell crossing as the Zel’dovich method does. Short

proved that the FPA is formally equivalent the Zel’dovich approximation with adhesion

(in the limit of ν → 0).

The 1D and 3D toy models considered in Chapter 4 were a demonstration of a
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consistent framework. I have shown that the FPA can handle cosmological initial

conditions by providing results that are comparable to the widely available N -body

codes (at least in the quasi-linear regime). The benefit of the FPA is that it runs much

faster than all other known methods of simulation. It merely requires a single step of

computation due to the symmetry of the equations.

After developing and testing the FPA, I went on to investigate another method of

solving the Schrödinger equation, colloquially we call it the Cayley method (Chapter

5) as it involves describing the exponentials via Cayley’s approximation. In this ap-

proach we no longer assume the trick that was inherent to the FPA, where the effective

potential is zero. In the Cayley approach we solved the full system of equations: both

the kinetic term and solved Poisson’s equation of gravity.

As shown in Chapter 5, this process is trickier than it may first appear. Under the

recommendation of Watanabe’s publication we adopted Suzuki splitting operators and

also adopted Widrow & Kaiser’s method of re-writing the equations into a simplified

form that deals with timesteps as equal steps in ln a. Fortunately, each component

works consistently with one another. The simulations prove to be robust and sta-

ble. Consequently, the main goals of developing a wave-mechanics code for LSS were

achieved. Those goals were: (1) 3D coordinates, (2) self-consistent gravity, (3) expand-

ing coordinates, (4) periodic boundaries, (5) mass conserving (as a bonus it conserves

momentum too). In addition this also satisfies the original goals suggested by Widrow

& Kaiser: A model that describes collisionless matter; matter is described as a field,

not particles: that is, continuous; function only of space and time (3+1 d); follow mul-

tiple streams in phase space (‘hot’ / dispersive); competitive with N -body techniques

for computing time. Sabiu’s run with Gadget took approximately the same time to

complete as my Wave-mechanics code, of the order of a few hours; however, no rigorous

speed testing was conducted in this thesis. Both codes were run on different machines

so does not represent a fair comparison but I do expect both codes to be a comparable

speed. The number of operations required in each case are similar in magnitude.

The last of our goals (mass conserving) is an indicator of the reliability of our results.
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Not only did we achieve our goals but have done so in a manner that is consistent with

the physics. This was only possible by our strict choice of a symplectic integrator

such that the norm of the wavefunction is conserved over time. Hence, this choice of

integrator is consistent with unitary time evolution in Quantum Mechanics and further

hence that it should be less of a surprise that momentum is conserved as well as mass.

Through out this work I have highlighted the similarities between wave-mechanics

and N -body simulations. The latter was used as a benchmark for speed and accuracy.

However, I have shown wave-mechanics provides a different method for simulating

Large Scale Structure. It has many benefits but it lacks the maturity and development

seen in modern N -body codes. It seems fair to assume that if wave-mechanics is

developed further and allowed to run on high-performance machines then it should

have no difficulty matching and, perhaps, beating equivalent N -body codes for speed

and accuracy (in terms of density resolution). This is a guess based on the assumption

that the wave-mechanics code can be written to have fewer or less expensive operations

than an N -body code. In terms of resolution, we believe that a continuous density field

representation should ultimately lead to better resolution of the density field. We also

believe that wave-mechanics should provide a better representation of the Universe

(over N -body codes) because they describe a continuous density field and suffers less

from discretization problems. The allowance of multi-streaming also prevents two-body

relaxation that is a critical issue for N -body codes, the current solution to that problem

is unphysical and is completely avoided in wave-mechanics.

The main problems with the results presented in this thesis were the unexpected,

although not necessarily inconsistent, results for density and velocity. The messiness

of the evolved density fields is potentially due to interference, this is unique to a wave-

mechanics but not something that desire from a classical system. This effect requires

further investigation.

The simulations presented were run at a coarse spatial resolution of 643, this was

a problem for generating our initial conditions and hence our subsequent results. At

higher resolutions the results look better behaved but were prohibitively more expensive
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to run within the time frame of this thesis. In order to make sense of the lower resolution

simulations we smoothed the data using a gaussian filter (essentially a low pass filter

that takes out high frequency ‘noise’). This operation gave data that looked closer to

the Gadget data. We would have liked to use the raw, unsmoothed data, for our point

of comparison but it did not look consistent with what we first expected.

The histograms of both density and velocity are initially gaussian and this distri-

bution is fairly well maintained for velocity at all times, while the density becomes a

skewed gaussian. The under-dense regions in our wave-mechanics results are evacuated

quicker than seen in an N -body code but the peaks do not seem to collapse as fast,

nor do the peaks reach the same height as seen in the results from Gadget. The choice

of the ν parameter influences the dynamics in such a way that it can greatly affect

the collapse speed; in some cases, collapse can be completely prevented. Naturally, the

lack of evolution would be inconsistent with what we observe in the real Universe.

These issues will require further investigation but it is our belief that they do not

rule out wave-mechanics as a viable method for simulating Large Scale Structure. One

of the main concerns we have had is the lack of time needed to run high resolution

simulations, although we did some very simple tests at 1283 our final runs were at

643 resolution. Initially, we incurred problems from running low resolution simulations

where collapse was too fast in the initial timesteps. As mentioned in section 5.6.4, this

effect disappeared for simulations at a resolution of 1283. The effect also went away

whenever we applied gaussian smoothing to our initial density field.

Given the positive results from this work, we now propose future directions and

possible extensions to wave-mechanics codes. We would greatly welcome any reader to

reproduce the results from this thesis and / or attempt to implement any of the future

work.
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6.1 Future work: extending the full Schrödinger-

Poisson system

In this final section I present ideas that expand upon the standard techniques of wave-

mechanics as presented in the previous chapters of this thesis. The aim of this section

is for me to develop ideas that will help advance wave-mechanics further and show that

our method of evolving structure formation is capable of achieving everything that can

be done in an N -body code. I see my thesis and all previous work as being the first

generation of wave-mechanics codes. The next generation of codes will build upon all

previous literature so that they are more diverse in what they achieve, while being also

robust.

The best N -body codes (such as GADGET and RAMSES) have many more fea-

tures than current wave-mechanical codes presented hitherto. A short list of features

that I believe are desirable for the next generation of wave-mechanics codes, and are

already prominent in the best N -body codes, are: (1) multiple particle/fluid species,

(2) adaptive mesh refinement, (3) parallelization.

In this chapter I will review each item in the above list and expand upon how

one might implement these features into a wave-mechanics code. Fortunately these

ideas have already been explored to some extent in previous publications; however,

they are yet to be featured in a full cosmological wave-mechanics code. Johnston

(Johnston et al. 2010) has already written a code that models two species of fluid and

Watanabe (Watanabe & Tsukada 2000a) has provided many ideas that can be included

in a next generation of wave-mechanical LSS codes: such as a possible method for

implementing mesh refinement and parallelization. The following ideas are presented

in the remainder of this thesis:

• Multiple fluids

• The splitting operator approach to including more physics (such as pressure)

• Periodic boundaries via adhesive operators
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• Mesh refinement

• Parallelization

• Including vorticity and spin

The last bullet point will be presented in the next chapter, they are less conventional

and hence far more speculative. They are effects that are not currently accounted for

in standard LSS simulations. These ideas are the inclusion of gravitomagnetism and

spinning objects into a wave-mechanics code. Both ideas might allow wave-mechanics

codes to potentially probe beyond the standard model of cosmology.

6.1.1 Multiple fluids

The idea of a multiple particle-species is not new to N -body codes. Special variants

(Couchman et al. 1995) of the Hydra code (Couchman 1995) allows for Baryons as

well as CDM particles to be present, these codes have been written to account for

gas dynamics where the Baryons will behave as dispersive particles with an associated

temperature.

Johnston has shown how to include another fluid of the same mass into a Schrödinger

code. The two species have separate wavefunctions with separate Schrödinger equa-

tions except that they have a common gravitational potential. In principle this is easy

to extend to N species of particles (or fluids). The initial mass of each fluid is allowed

to be different, this will be expressed by the fact that the total mass of the wavefunc-

tion for each species will be different. It would also be possible to alter the value of

ν = ~/m for each species, hence account for different dispersion properties.

I believe that the splitting operators presented in this thesis provide a natural way

of adding new particle species in a modular way. Here I will briefly recapitulate how

this method evolves the wavefunction:

ψ(x, t + dt) = e−i(K+V )dtψ(x, t) = e−iKdt/2e−iV dte−iKdt/2ψ(x, t) (6.1)
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We have chosen to split the kinetic energy operator such that one half timestep is per-

formed before and then after the potential energy operator. I envisage performing each

half-step kinetic operator sequentially for 1 to N (the number of species / fluids) then

performing the calculation of a common gravitational potential. Here is an overview

of how I expect the evolution part of the algorithm to look:

1. ψ1...N(t + 1
2
dt) = K̂1...N ψ1...N(t)

2. ψ1...N(t + 1
2
dt) = V̂1...N ψ1...N(t + 1

2
dt)

3. ψ1...N(t + dt) = K̂1...N ψ1...N(t + 1
2
dt)

Here I denote the kinetic energy operator by K̂ and the potential energy operator by

V̂ . The subscripts 1 . . . N denote the different particle species.

The operator K̂ above is stated generically so the kinetic operator for each species

could have a different value of ν. It would also be possible to modify the kinetic energy

operator of each species too, although there are limits to how far the operator can

be modified: for example, the addition of any term that does not commute with the

kinetic energy is very likely to break the energy conservation of the code.

To properly account for additional physics one would need to split the operators

(in a nested fashion) as Suzuki suggests. For example it should be possible to include

Baryons having internal interactions.

6.1.2 Including additional physics

If I was to add pressure into my code (as Johnston did) I think I would need to include

it as a separate split-operator. I don’t believe that it would be entirely correct to

modify the kinetic energy operator to account for pressure, for example simply writing

ˆ̃K = K̂ + P̂ . The evolution would then be written as (this is in short hand form, I

omit i, dt, etc in the exponential):

exp( ˆ̃K)ψ(t) = exp(K̂ + P̂ )ψ(t) (6.2)
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To properly account for pressure in a robust manner in the Cayley method then one

would need to separate the operators in a way that is consistent with Suzuki’s method

of decomposition. The full decomposition of the Hamiltonian (including all 3 terms:

kinetic, potential and pressure) is:

exp(K̂ + V̂ + P̂ )ψ(t) → exp(
1

2
K̂) exp(

1

2
P̂ ) exp(V̂ ) exp(

1

2
P̂ ) exp(

1

2
K̂)ψ(t) (6.3)

I believe this would be true for the inclusion of any number of operators, provided they

are split up in the manner that Suzuki suggests. In a second paper from Watanabe

& Tsukada (Watanabe & Tsukada 2000b), they show how to use the Suzuki splitting

operators to include a magnetic potential when simulating the dynamics of an electron

in a magnetic field.

6.1.3 Periodic boundaries via adhesive operators

As mentioned in section 5.2.2, Watanabe (Watanabe & Tsukada 2000a) suggested a

method for implementing periodic boundary conditions that he coined ‘adhesive op-

erators’ (not to be confused with the Zel’dovich adhesion model). These ‘operators’

connected one boundary to another (connects the boundaries like an adhesive) such

that waves that exited on the left-hand-side of the system and would reappear on the

right-hand-side. I believe that if these operators can be successfully implemented in a

cosmological wave-mechanics code then it would save on computing time as my method

(section 5.2.2) involves a double iteration of each recursion relation can be avoided. As

already mentioned, I made a brief attempt to implement periodic boundaries in this

way but it did not conserve mass. Any possible method that can cut computing time

but preserve unitarity would be worth investigating.

Watanabe’s idea is simple and elegant; the mathematics is relatively straight for-

ward but it seems that not enough details are provided in the publication of Watanabe

to ensure perfect implementation. Also, as previously mentioned, it is not obvious that

such operators would overcome the inherent problem of the recursion relations for the
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auxiliary functions (e and f).

Watanabe’s adhesive operators are ubiquitous, he uses them for the implementation

of periodic boundaries, mesh refinement and parallelization. Hence, we believe that

such a method if it can be independently proven to work would yield a powerful method

for improving speed, accuracy and size of simulations.

Here is a brief sketch of Watanabe’s idea. He notes that in a crystal the wavefunction

can be taken as periodic, that is to say that some region far from the real boundaries

of the crystal will look like a repeating unit of a larger lattice. Hence, the extent of

the lattice is pseudo-infinite. This is the same type of argument that is made for using

periodic boundary conditions in cosmological simulations. The wavefunction obeys the

periodic relation:

ψ(r + R, t) = ψ(r, t)e(iφ), φ = k.R (6.4)

k is the Bloch wavenumber and R is the length of the lattice (although Watanabe calls

this the unit vector, implying it should be the spacing between gridpoints). Bloch’s

theorem requires the modulus of the exponential to be one, hence the modulus of

the wavefunction is also preserved. This is necessary for a smooth transition at the

boundary and for unitary time evolution. For code implementation, these modifications

appear in the Ω function of Goldberg. Recall that when using splitting operators the

potential V is separate from the kinetic operator K and hence taken out of the Ω

function as seen in Goldberg. Hence the adhesive operators are a modification to the

kinetic energy operator. Copying Watanabe’s notation we write the matrices for the

time evolution in the following manner (V is omitted):



6.1: Future work: extending the full Schrödinger-Poisson system 188























A −1 0 0 . . . e+iφ

−1 A −1 0 . . . 0

0 −1 A −1 . . . 0
...

...

e−iφ 0 . . . 0 −1 A













































ψ(0, t + dt)

ψ(1, t + dt)

ψ(2, t + dt)
...

ψ(L − 1, t + dt)























(6.5)

=























B −1 0 0 . . . e+iφ

−1 B −1 0 . . . 0

0 −1 B −1 . . . 0
...

...

e−iφ 0 . . . 0 −1 B













































ψ(0, t)

ψ(1, t)

ψ(2, t)
...

ψ(L − 1, t)























(6.6)

the definitions of A and B are not necessary for understanding the method. In the

simplest case A and B take the expected form as you would expect from the kinetic

energy matrices as they appear in section 5.2.1. Here we use L to denote the length of

the lattice, so L − 1 is the last element of the array.

As Watanabe notes, the addition of these off-diagonal elements should prevent the

matrices finding an efficient solution. The usual methods of inversion work well for

diagonal, or band-diagonal, matrices but not non-diagonal matrices. However, the

trick is to note that the first line and the last line of the operator matrices can be

solved independently from the rest of the matrix: ∂2
x = ∂2

x−td + ∂2
x−ad. The kinetic

energy can be written as the matrix addition of the tridiagonal contribution ∂2
x−td and

the off-diagonal terms (the adhesive operator) ∂2
x−ad.

An alternative method for periodic boundaries would be the use of Fourier trans-

forms as they are inherently periodic. However, our attempts to implement the kinetic

energy operator via an FFT method have been unsuccessful.

6.1.4 Mesh refinement

Mesh refinement is a method of improving the code’s efficiency. Regions that are known

to grow into large densities can be pre-binned before the simulation starts. That is,
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the mesh can be of a finer resolution in areas of higher density. Alternatively, a more

computationally expensive way would be to allow the computer to determine how to

bin the data on the fly using so-called Adaptive Mesh Refinement (AMR). Static mesh

refinement requires the user to know where the high density regions form and would

require a lot of effort for each new simulation.

AMR is not a new idea, nor are ideas of adaptive quadrature, but such an idea is

missing in the current wave-mechanics of LSS literature. Watanabe (2000a) has shown

how to include mesh refinement in a Schrödinger solver. Mesh refinement is easily

achievable for the kinetic energy operator by use of Watanabe’s adhesive operators.

The potential energy calculation requires separate consideration. Such an idea is par-

ticularly attractive for LSS simulations and should perhaps be one of the first avenues

for future wave-mechanics research. It can provide increased spatial resolution in the

areas that need it most.

For mesh refinement, Watanabe decomposes the kinetic energy operator into two

parts: one part that is easy to solve (the diagonal) and the part that requires a separate

calculation in the manner of the adhesive operator. The main difference between the

refined calculation and the non-refined is that the kinetic energy operator may require

more than 3 gridpoints for calculation and that the weightings for each gridpoint are

not necessarily the usual -1, +2, -1 as seen for the central difference method. The

weightings can be fractional, as in equations (32 - 34) of Watanabe (2000a).

6.1.5 Parallelization

Another key development for increasing the size of simulations is to develop a way

of parallelizing the wave-mechanics code. Some parallel Schrödinger solvers (Lee et al.

2008; Schneider et al. 2006; Strickland & Yager-Elorriaga 2010) exist but their method

is different from the Goldberg/Cayley scheme as used in this thesis. Furthermore, it is

not entirely obvious how reliable these codes are. The recursion relations are inherently

difficult, if not impossible, to put into a parallel code. Ideally, the wavefunction can

be split up into independent regions and then evolved by dt. The regions would then
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be reconciled with the whole simulation at the end of each time step.

For parallelization Watanabe suggests the use of his adhesive operators again: they

can connect two regions, or two boundaries, with ease. Each region is calculated

independently and then matched at the boundary.

Without the adhesive operators, one would need to run a single set of recursion

relations over multiple processors. Each processor would rely upon the processor before

it in the chain. This is much slower than if each processor can work independently then

pass data at the end of each calculation set. This becomes very expensive when periodic

boundaries are required.

In the absence of periodic boundaries, where only one recursion is necessary, the

recursion relations can be staggered: while the second processor continues the recursion

relation for e, processor one could start the recursion relation for f . When periodic

boundaries are implemented this inevitably means that the first processor is idle while

the next second processor continues with the recursion. This is necessary as the second

iteration of each recursion relation requires the last value in the sequence (comes from

the last processor) before starting again.

The lack of a clear parallelization scheme will inhibit progress in wave-mechanics.

Future research into this area may have to choose a different Schrödinger solver if such

a solver is able to be parallelized while being reliable.



Chapter 7

Epilogue: Vorticity and spin

This chapter is not part of the work of this thesis. The aim of this chapter is to

demonstrate that wave-mechanics is a method of simulation that may be naturally

suited to including vorticity and spin. In section 3.5 I pointed out that singularities in

the wavefunction (ψ = (0, 0), ψ ∈ C) may indicate the centrepoint of a vortex. In a

standard N -body or wave-mechanical simulation we do not expect to see any vorticity,

as previously mentioned, due to Kelvin’s circulation theorem. This rules out vortical

motion at small distance scales. We expect the circulation theorem to hold as gravity

is a conservative force and can be expressed as the derivative of a scalar potential,

hence the curl of the force is identically zero: ∇× Fg = ∇×∇φg ≡ 0.

When the wavefunction is singular (ψ = (0, 0), ψ ∈ C) then the velocity at such a

point is undefined (see equation 3.52). It could be possible that such a region is not

a vortex at all but is rather a region of numerical unreliability; however, there is an

interesting similarity between this type of singularity in the wavefunction and a vortex:

the velocity vector at the centre of a vortex is also undefined.

In Short’s thesis he provided the caveat that the circulation theorem only holds

before shell crossing (Short 2007); therefore, the existence of small scale vorticity does

not contradict Kelvin’s theorem as their existence would only occur after or in regions of

shell crossing. Kelvin’s theorem does not forbid large scale rotation either, for example

such phenomena are clearly visible in the published video of the Millennium Simulation
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(Virgo Consortium 2005a). Given that singularities and possible sources of vorticity

exist in our wave-mechanics data (for example, see 4.11 & 4.12), then to what extent

do we expect vorticity to be relevant in the dynamics of an arbitrary astrophysical

system?

We know that vorticity occurs naturally in electromagnetism and that regions with a

strong magnetic field should display vortical or helical motion, such as charged particles

following the magnetic field in a solar flare. However, we don’t expect to see vorticity

at cosmological scales. In cosmological simulations the initial angular momentum is

set to zero which is observationally motivated as suggested in Chapter 1; furthermore,

we expect the vorticity to be zero in the Universe now as it is related to the decaying

mode of density perturbations (as mentioned in section 4.0.1). Despite the fact that

this thesis has focussed upon applying wave-mechanics to large scale structure it should

be possible to simulate systems of smaller scales such as individual galaxies or proto-

planetary disks where vorticity may be more relevant.

In the conclusion to Short’s thesis (Short 2007) he suggests that the wave-mechanical

method might be able to model the rotation of CDM haloes, he suggests that this could

potentially be done by incorporating spin in a similar way that the Pauli equation does.

In this chapter we present two bold ideas that can (1) be used to probe regions of vor-

ticity and (2) investigate the spin of self-gravitating masses. The latter deals with the

intrinsic spinning motion of a single object (which could be infinitesimal in size), while

the former deals with circular or spinning motion at the scale of a few particles.

In this chapter I will show, particularly in section 7.2, that adding spin is not

necessarily the same as adding vorticity. It should be possible to include spin effects in

a system that has a Newtonian gravitational potential. If we combine both spin and

vorticity then we could account for spin-orbit coupling; admittedly, this is likely to be

a more profound effect in simulations of highly dense or high spinning systems such as

AGN or neutron star / black hole binaries but it could have interesting and unforeseen

consequences in a cosmological simulation.
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7.1 Vorticity

In order to properly handle vorticity we will need to modify our equation for the force

of gravity in such a way that the curl of the force is no longer forbidden. We could we

propose a phenomenological fix to the problem of vorticity by invoking a gravitational

vector-potential, let’s call it Vc and note that the curl of the gravitational force is now:

∇×Fg = ∇× (∇φg +Vc) 6≡ 0. This expression is no longer identically equal to zero; it

is possible that the new potential is negligible and hence the curl of force is very close

to zero anyway.

We wish to add this extra complication as an extra degree of freedom such that it

may yield additional physical effects. We are primarily interested in setting this vector

potential to zero initially but then watching the evolution of our system to see if the

potential is non-zero by the end of the simulation. As noted we have seen rotation on

large scales in the Millennium Simulation (Virgo Consortium 2005a) but by providing

this additional freedom we might see rotation, and hence vorticity, on smaller scales

than we currently do without radically increasing the resolution of the simulation.

This could provide a more reliable way of simulating how gravity can ‘torque up’ an

extended body such as a galaxy or a group of bodies like our Local Group.

It is not obvious if such torque effects would be significant for LSS simulations,

torques should be present without the existence of vortices. It is possible to study

torque and angular momentum in current N -body simulations without the inclusion

of a vector potential; however the existence of a vector potential would naturally allow

for torquing force (one that acts tangentially to the ordinary force of gravity).

The effects of torque upon galaxies have been considered in a publication by González-

Sánchez & Teodoro (González-Sánchez & Teodoro 2010). These authors considered the

torque upon galaxies in clusters that is generated from the gravitational force and a

dynamical force of friction. They used this to study the possible origin of small-scale

alignment effects of galaxies within clusters. Their motivation for torque is more like

the second idea proposed in this chapter, where the galaxies are dipole-like masses

(that is to say that they are not point particles). The suggestion for this section is to
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study the inclusion of a gravitational vector-potential but the particles (in an N -body

code) are still point particles.

If a region of vorticity is identified in an LSS simulation then finding the cen-

tre of the vortex could be a possible method of identifying spiral galaxies or a small

group of galaxies. Such a method is probably unable to identify elliptical galaxies.

Researchers in the field of N -body simulations use the Halo Model (Cooray & Sheth

2002) to populate their density field (actually a CDM density field) with galaxies. This

model is only appropriate to particle simulations and could not be translated into a

wave-mechanical perspective as easily. Hence, wave-mechanics requires an alternative

method of populating the density field with galaxies; therefore, identifying vortical

regions with non-zero mass is one possibility.

I provide the caveat that a singular region where the wavefunction is zero requires

the density to be zero as well. The original suggestion for finding vorticity was to look

at gridpoints where the wavefunction is zero; however, for the velocity to be undefined

it requires only the imaginary part of the wavefunction to zero. It should be possible

to identify regions where the density ρ = ψ∗ψ is non-zero but the velocity is undefined;

the wavefunction would take a form ψ = (a, b) where a 6= 0, b = 0; a, b ∈ R; ψ ∈ C.

7.1.1 Gravitoelectromagnetism

In the previous few paragraphs we suggested that including vorticity could be done

using a vector-potential. Clearly, this potential does not need to be gravity but could

be some other force. It could perhaps be the magnetic field from electromagnetism; a

wave-mechanics simulation that includes Newtonian gravity and a magnetic field might

be useful in simulating, for example, neutron star binaries where the magnetic field is

non-negligible. Otherwise the stipulation of a gravitational vector-potential will seem

like a phenomenological proposition.

From searching into previous literature on vector-potentials in gravity we discov-

ered that the idea called Gravitoelectromagnetism (GEM) (Mashhoon 2003) provides

such a potential (it provides a gravitational vector potential). GEM is attractive on
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two counts: (1) it already provides a gravitational vector-potential and (2) the idea

is well established and relies upon equations that are analogous to Maxwell’s equa-

tions. On the latter point, the Maxwell equations have already been shown to fit

into the Schrödinger equation and Watanabe (Watanabe & Tsukada 2000b) has also a

suggested a way for handing the vector potential using the Cayley method.

GEM is formally analogous to the Maxwell equations, the vector-potential A is no

longer associated with electromagnetism but is instead a gravitational vector-potential

(denoted Ag). This potential can be called the gravitomagnetic potential but has

nothing to do with classical magnetism. Under certain conditions it can be shown that

GEM is a valid approximation to Einstein’s field equations (Mashhoon 2003).

GEM equations Maxwell’s equations

∇ · Eg = −4πGρg ∇ · E = ρ
ǫ0

∇ · Bg = 0 ∇ · B = 0

∇× Eg = −∂Bg

∂t
∇× E = −∂B

∂t

∇× Bg = −4πG
c2

Jg + 1
c2

∂Eg

∂t
∇× B = 1

ǫ0c2
J + 1

c2
∂E
∂t

On the right hand side are the standard Maxwell equations with the usual meanings

from electromagnetism. On the left we have new quantities. Here, Eg is the gravi-

toelectric field, or the field from static gravity. It is directly comparable to Poisson’s

equation: ∇2Φg = −4πGρg. Likewise the new field Bg is the gravitomagnetic field; ρg

is simply the mass density as it appeared earlier in this thesis and has a corresponding

mass-current density which is denoted by Jg. This latter quantity, Jg, is essentially

the same one found earlier in this thesis although it will account for some relativistic

effects given the context.

Vorticity From a theoretical point of view it is easy to imagine vorticity being gener-

ated by a force analogous to the magnetic field. The magnetic field in electromagnetism
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merely bends trajectories of particles rather than increasing their speed. Therefore it

is natural to construct a Lorentz force for GEM:

Fg = m (Eg + v × 2Bg) (7.1)

The gravitoelectric field Eg = ∇φg will provide the usual curl-free Newtonian force

of gravity, whenever the gravitomagnetic field Bg is zero then the usual Newtonian

force of gravity is recovered. The gravitomagnetic force will act perpendicular to the

direction of velocity, which would act to bend the trajectory of the mass it acts upon.

It is clear that this field is not necessarily curl free, hence the generation of vorticity is

not formally forbidden.

Any system that obeys the GEM equations can be described using a Schrödinger-

like equation, as has been shown for the dynamics of an electron in a magnetic field

(Watanabe & Tsukada 2000b).

Schrödinger equation Watanabe’s publication (Watanabe & Tsukada 2000b) that

describes electrons in a magnetic field presents the following Schrödinger equation:

i~
∂

∂t
ψ(x, t) = − ~

2

2m

(

∇2 − ie

~
A

)2

ψ(x, t) (7.2)

For simplicity, this equation omits the usual scalar potential V . In the GEM case

then the electric charge e would be replaced by the gravitational “charge” (mass) m.

As for electromagnetism, there is the expected relation that Bg = ∇ × Ag. The EM

version of this equation is consistent with the EM Maxwell equations; therefore, by

construction, the gravitational Maxwell equations will be consistent with the GEM

Schrödinger equation by making the appropriate replacements (such as A → Ag).

Watanabe only presented a 1D magnetic force but it is straight forward to generalize

this to a 3D (gravito-)magnetic force. As expected he decomposes the evolution of

this Schrödinger equation using splitting operators. He notes “the magnetic field just

changes the phase of the wavefunction, so it is very easy to compute.”
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7.1.1.1 Test of Gravitomagnetism

We expect the gravitomagnetic force to provide a torque, or twisting force, to the

masses in our simulations. In the previous section we mentioned that simulations of

Large Scale Structure already display regions under going rotational motion, hence they

have non-zero angular momentum. We therefore expect the gravitomagnetic field to be

non-zero in existing simulations; naturally, the effect is not included in the equations

of motion but the field Bg is proportional to the angular momentum, L, of the system

(L 6= 0 ⇒ Bg 6= 0).

In an LSS simulation we expect the the effect would be small even if the field was

included in the equations of motion; therefore, the effect is likely to be smaller in a

simulation that does not have the field Bg in its equations of motion. We performed

a test of the latter to see if we could find a non-zero Bg field from the data of our

Hydra simulations (as seen in Chapter 4. We constructed a code that would take an

output from Hydra (position and velocities of all particles) and then calculate the field

Bg which is defined as follows:

Bg =
G

2c2

L − 3(L · r/r)r/r
r3

(7.3)

here L is the angular momentum of a particle in the simulation and r is the position

of the particle (relative to the centre of mass). The angular momentum is defined as:

L =

∫

ρ(v × r)dV =
∑

m(v × r) (7.4)

here v is the velocity of a particle relative to the centre of mass, ρ is the density and

forms the definition of a continuous angular momentum field however it is sufficient

to work with discrete masses using the version of L on the right-hand side above. As

suggested, we transform the particle positions and velocities from the Hydra outputs

into the centre of mass frame for the system. The centre of mass is very close to being

the centre of box for the simulation outputs. The mass of each particle and the other

units such as G c have been set equal to 1 for simplicity.
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We refer the reader back to Chapter 4, where we compared the Hydra N -body

code to the 3D FPA code. From the same results we computed the angular momen-

tum and the gravitomagnetic field with some interesting results in the following table.

The outputs are the same as they were before, the timestep is denoted by t and the

corresponding expansion factor is given by a. Our calculations of the angular momen-

tum, the gravitoelectric and gravitomagnetic fields are comoving rather than physical

quantities.

The key result from this test is characterized by the ratio of the two gravito-forces,

that is the ratio of the gravitomagnetic field to the gravitoelectric field (Newtonian

gravity): FBg/FEg.

t = 0 162 531 739 936

a = 0.25 0.33 0.62 0.78 0.93

L (x) 1.6 × 10−5 -10.42 -12.17 -12.57 -11.97

L (y) 1.2 × 10−5 5.57 2.18 0.88 1.423

L (z) 2.0 × 10−5 5.45 4.61 4.35 4.08

max(Bg) 795 1096 106.68 55.9 53.27

max(FBg/FEg) 0.55 0.18 0.11 0.065 0.055

here L(x, y, z) is the angular momentum for the respective components. max(Bg) is

the maximum value of the gravitomagnetic field for the corresponding output time.

max(FBg/FEg) is maximum value of the ratio of the two gravito-force fields. The

minimum value of this ratio is close to zero in all outputs (∼ 10−7).

It is clear the strength of the gravitomagnetic field is decreasing over time as is

expected from the standard model of cosmology. The ratios in the above table may

seem higher than expected but I will re-iterate by we “omitted” a large divisor of the

FBg calculation: 1/c2 = 1. The purpose of these calculations was to show the angular

momentum is present in N -body cosmological simulations and hence show that the
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gravitomagnetic field can be finite and non-zero.

We do not expect a large value for the strength of the Bg as it is omitted from the

equations of motion, if such an effect was fully considered then it might have a more

significant role; however, we don’t expect that the field will be significant in a cosmo-

logical simulation but rather in the simulation of a system that has stronger gravity

field than is provided by the simple Newtonian force of gravity. We admit that in the

case of very strong gravity, such as merging neutron stars, then the GEM equations will

only provide a rough approximation as a full general relativistic treatment is needed.

The same calculations above could be performed for our wave-mechanics outputs

but we expect the same results to be the same. The result is likely to be indepen-

dent of the simulation method used. The GEM equations could be used to modify the

equations of motion whether that is in an N -body code or a wave-mechanics code. Nat-

urally, we also strongly advocate extending the GEM equations into a wave-mechanics

context and believe that it is naturally suited to adding in these effects.

7.2 Spinning objects

The idea of spinning objects in cosmological simulations is under-developed in current

literature and to the best of our knowledge, no code currently exists to do as we suggest.

The Pauli-like equation that we eventually derive for a wave-mechanics implementation

of spinning objects is entirely new, as far as we are aware.

To include a spinning object in a simulation one does not necessarily have to include

gravity from a vector-potential (as seen in the previous section). In this section we show

that it could be possible to include spinning objects under ordinary Newtonian gravity.

In order to generate rotation from gravitating objects one needs a differential (a non-

constant) gravitational field across the object. This is not the inclusion of vorticity as

the gravitational field is still generated by scalar potential (Newtonian). The vector-

potential field will allow for the inclusion of vorticity but the fluid elements do not

have intrinsic spin (the centre of the vortex has undefined velocity in the usual fluid
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description).

Hence, with this idea I propose a ‘minimal’ extension to the current paradigm of

cosmological simulations. All simulations have Newtonian gravity: scalar potential,

non-relativistic. While we aim to incorporate this idea into wave-mechanics, it should

also be possible create an extension for an N -body code.

In this model, spin is introduced naturally as an extra degree of freedom, the

particles will spin if the physical conditions permit it. We expect this to occur in

regions of high density where large torques can be created by large differentials in the

gravitational field. We do not have to necessarily assume that the particles have an

initial spin.

The key idea that we wish to explore is if gravity can torque up our computational

super-particles causing them to spin. Hence, this is a separate approach to the same

question of determining whether a simulation of the Universe that displays no initial

spin may exhibit non-zero local spin at some later time. We believe the total spin of

the Universe should be conserved. This would allow theory to be checked by the results

of a simulation, naively we expect there to be a measurable difference in the results of

a universe with zero net-spin from that with non-zero net-spin.

Modelling spinning objects is naturally suited to a wave-mechanical formulation

as Pauli has already shown how to include spin into the Schrödinger equation; conse-

quently, we expect that it will be easier to include spin in wave-mechanics than in an

N -body code.

The standard model of cosmology requires that the Universe initially has zero vor-

ticity (extrinsic angular momentum) but I am uncertain on the requirements of spin;

however, our proposal is to add an additional degree of freedom but not to necessarily

include non-zero initial spin. I provide the caveat that this suggestion is not based

in quantum mechanics, it is a purely classical system and we are interested in the

macroscopic spin of extended objects (non-zero multipole moments).

Here we construct the model from first principles and derive a Pauli-like equation

suitable for a wave-mechanical simulation. We start by finding an equation for the
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gravitational potential of extended objects, we do this by adopting the same procedure

as Jackson (Jackson 1998) does for an extended charged object in an electromagnetic

field. Applying the derivative operator, ∇, to the potential yields an equation for the

force of gravity. The potential is still a scalar quantity hence we suspect that vorticity

will be identically zero. Given an equation for force, we note that it should be straight

forward to implement this in an N -body formulation.

In order to induce spin in a set of particles we need a gradient in the gravitational

field. As shown in figure 7.1, we see an amorphous distribution of mass placed in

an external gravitational field. This mass is infinitesimal in size, hence the internal

potential and forces are zero, but we use a Taylor expansion to generate the higher

order moments of the distribution. By including higher order moments we will see that

this provides enough freedom for the existence of spin.

Figure 7.1: This figure shows a particle with some arbitrary distribution of mass. The

vector R is the centre of mass vector.

The Taylor expansion for the potential energy U generated by such a ‘particle’ (external

to the particle) is the following:

U(R + r) = φ0

∫

ρ dV + ∂iφ

∫

ρri dV + ∂ijφ

∫

ρrirj dV + . . . (7.5)
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here R is the centre of mass, φ is the gravitational potential and the quantities ∂φ

are tensors that take the form of a product between the differential matrix and the

gravitational potential. The vector r is the position of the sub-particle mass with

respect to the centre of mass. Caveat: the potential is always a scalar quantity despite

the existence of vector and tensors in the expansion.

It is a well known result that for a gravitational field, the dipole moment of the

potential (first order in the expansion) is the centre of mass of the distribution. Hence,

in the centre of mass frame this quantity is zero. This is true for all gravitational

systems due to the symmetry inherent in the equations of gravity; despite the centre

of mass moment being zero there is no loss of generality. Electromagnetism is different

for the dipole moment as it cannot be easily set to zero without loss of generality: the

dipole moment is not intrinsically zero (even in the centre of mass reference frame).

In the gravitational case the dipole term disappears as mass ‘charges’ have the

same polarity. In electromagnetism, the two charges have opposite polarity and hence

non-zero dipole moment (but zero quadrupole moment).

We can illustrate this by considering a simple example where the distribution is that

of two masses displaced along the x-axis such that r(1) = (+x, 0, 0) and r(2) = (−x, 0, 0)

(figure 7.2 shows our suggested configuration of the masses). The dipole moment is:

Di =

∫

ρri dV = m
(

x 0 0
)

+ m
(

−x 0 0
)

(7.6)

= m
(

0 0 0
)

(7.7)

From a simple calculation we can show that the dipole moment D is zero in the

centre of mass frame. As already stated, from symmetry arguments the dipole moment

is always zero for any distribution of matter.

The first non-zero moment from the Taylor expansion (7.5) is the quadrupole moment

(second order in the expansion). In general, it cannot be set to zero. Continuing with

this simple model of two masses (as in figure 7.2), we can show that the quadrupole Q

for this exact configuration is non-zero:
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Figure 7.2: This figure shows the ‘dipole’ arrangement of mass.

Qij =

∫

ρrirj dV = m











x2 0 0

0 0 0

0 0 0











+ m











x2 0 0

0 0 0

0 0 0











(7.8)

= 2mx2











1 0 0

0 0 0

0 0 0











(7.9)

As the particles rotate their positions will change with respect to the centre of mass

but the quadrupole is always non-zero. This is the simplest example of a system with

non-zero quadrupole.

To calculate the potential energy from the relevant moments requires us to reduce

the moments a scalar quantity. This is done by tracing over the appropriate indices.

At dipole order we trace the derivative of the potential with the dipole moment:

U (d) = (∂iφ)di = (∂φ) · d (7.10)

= (∂xφ, ∂yφ, ∂zφ) · (dx, dy, dz) (7.11)

= ∂xφ dx + ∂yφ dy + ∂zφ dz (7.12)

The quadrupole is slightly more complicated and involves, essentially, a double trace (a

trace over two pairs of indices). The summation convention is implied for a repeated
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index of i or j, it is not implied for indices x, y, z which are labels for the specific

position of the relevant quantity in a vector or a matrix.

U (q) = (∂ijφ)Qij = (∂∂φ) · ·Q (7.13)

= (∂xxφ)Qxx + (∂xyφ)Qxy + (∂xzφ)Qxz (7.14)

+ (∂yxφ)Qyx + (∂yyφ)Qyy + (∂yzφ)Qyz (7.15)

+ (∂zxφ)Qzx + (∂zyφ)Qzy + (∂zzφ)Qzz (7.16)

7.2.1 N-body considerations

In order to implement this model into an N -body code we have to express the previous

potential equation as a force equation. Each term in the expansion must be pre-

multiplied by the differential matrix of appropriate order. Thus, it follows that the

force equation is:

F(R+r) = ∇⊗U(R+r) = ∂i(φ0)

∫

ρ dV +∂i(∂jφ)

∫

ρrj dV +∂i(∂jkφ)

∫

ρrjrk dV +. . .

(7.17)

The first term (the monopole) is the Newtonian force of gravity F = m(∇φ). The

quadrupole term in the force equation gives the following complicated relation that

involves a three indices but eventually reduces to a vector (as expected):

F(q) = ∂i(∂jkφ)

∫

ρrjrk dV (7.18)

= ∂i(∂jkφ)Qjk (7.19)

= ∂i











∂2
xφ ∂x∂yφ ∂x∂zφ

∂y∂xφ ∂2
yφ ∂y∂zφ

∂z∂xφ ∂z∂yφ ∂2
zφ











∫

ρ











r2
x rxry rxrz

ryrx r2
y ryrz

rzrx rzry r2
z











dV (7.20)

The first matrix is simply the third-order derivative of the potential, this can in prin-

ciple be calculated without too much difficulty. It will need to be discretized in an

appropriate manner. The second matrix will also be discretized in order to deal with
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a pseudo-discrete distribution of matter. For simplicity, one would adopt a model

as we suggest where the super-particle’s distribution of matter is similar to a dipole.

Therefore, the integral reduces to a sum of mass multiplied by the position vector r.

This is likely to be computationally expensive; however, we find that there may be

a simpler way to test this idea of spin without calculating the quadrupole moment. If

we truncate to first order (dipole moment) in the force equation and then try the model

suggested above (a mass ‘dipole’) then we find the usual result that the potential and

force produced by such a super-particle at this order is zero. This means that such a

configuration does not create any new additional force or potential. To dipole order of

the Taylor series, such an object would not produce gravitational radiation. However,

such an object can still spin due to an external force (a gravitational field generated by

other particles). The proof of that last statement comes from considering the following

equations of ‘force’:

F(R + r(1)) = ∂i(φ0)

∫

ρ dV + ∂i(∂jφ)

∫

ρr
(1)
i dV (7.21)

F(R + r(2)) = ∂i(φ0)

∫

ρ dV + ∂i(∂jφ)

∫

ρr
(2)
j dV (7.22)

here we expand about the centre of mass, R, with respect to r using the assumption

that |r| << 1. These equations are the force upon each of the sub-particles (see figure

7.2 ). These equations can be written as the addition and subtraction of each other as

follows:

m
∂2

∂t2
(r(1) + r(2)) = 2m

(

∂i(φ0) + ∂i(∂jφ)(r
(1)
j + r

(2)
j )

)

(7.23)

m
∂2

∂t2
(r(1) − r(2)) = 2m

(

∂i(∂jφ)(r
(1)
j − r

(2)
j )

)

(7.24)

The first equation is really the dipole term from the Taylor expansion. It is recognisable

as the force on the centre of mass (already shown to be zero), while the second equation

provides a difference vector that is confusingly similar to the dipole moment vector

found in electromagnetism. As before, ∂i∂j is the Hessian matrix which is a three-by-

three symmetric matrix with five degrees of freedom. The second equation that looks
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like the ‘dipole moment’ vector of electromagnetism is non-zero. The first equation

cancels due to symmetry but in the second case the same symmetry will cause the

sub-particles to ‘add’ together (we return to our example system as shown in figure

7.2):

2m
(

r
(1)
j − r

(2)
j )

)

= 2m[(x, 0, 0) − (−x, 0, 0)] = 4m(x, 0, 0) (7.25)

The gravitational potential φ (not the potential energy) is a single value at the

gridpoint of the super-particle as a whole. This vector is the difference of the forces

acting on the sub-particles and should change over time, hence the vector will change

orientation over time.

N-body implementation. This grants us an extension to simple Newtonian gravity.

We have point masses (the super-particles) that move under Newtonian gravity (radial

force, no vorticity) and will give the same results as a normal N -body simulation

would. This extension could be calculated post-processing of the simulation; this model

produces no new force at the dipole level but we expect the particles to spin due to

external forces. All the information needed to check whether the particles could spin

is already in the results of the simulation. One can calculate the potential field from

the density (from solving the Poisson equation). The particles merely need a gradient

across the potential field in order to spin.

A code would be written to take the evolution of the difference vector: d = (r
(1)
j −

r
(2)
j ). Given that we have it as a force equation then we know its equation of motion

and could attempt to implement this idea using a simple Leapfrog integrator.

In order to run a fully consistent code with gravitational radiation from spinning

bodies would require the inclusion of the force from the quadrupole moment. This

would change the overall force in the N -body simulations and, hence, could not be

done post-processing. If this is the case then we expect the energy of the objects to

be split evenly into translational and spin kinetic energy (principle of equipartition).

This presumably gives a different result to structure formation than simple Newtonian
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gravity which ignores gravitational radiation. It isn’t entirely clear relativity will work,

or ‘appear’, given that the form of the equation is purely Newtonian. So the concept

of gravitational radiation is likely to be a misnomer. Actual gravitational radiation

requires relativity; however, the force is no longer the simple form that is has from

Newton’s theory. That said, the force is still a vector. We are not suggesting a tensor

equation of force in this model. Relativity and hence gravitational radiation may

appear in the Gravitomagnetism model suggested before (section 7.1.1).

7.2.2 Pauli equation

Given the equations above for U , we wish to convert those into an appropriate form

for a Pauli-like equation. To begin with, I will try to find a Pauli equation at dipole

order. In the last section we established that the force generated by the dipole order

is zero; however, we have concluded that such a model could still be acted upon by

external forces and hence should still be able to rotate. This would provide a simple

approach to the problem, it won’t be fully consistent but would allow a simple test of

our idea.

It is worth noting that the quadrupole order potential relies upon a 3 × 3 matrix,

therefore we suggest testing our spinning object idea using a simplified version although

not one that is fully consistent.

We will consider the difference vector, d, between the two ends of a spinning object

that could resemble a dumbbell (again, see figure 7.2):

d = (r
(1)
j − r

(2)
j ) (7.26)

At each gridpoint the potential U is expanded (as shown before) and this vector d

will characterize the difference in the potential of the two sub-particles. Again, we

expect that this would allow for measurable spin of the super-particle due to external

gradients in the gravitational potential. However, the spin should not be able to feed

back into the surroundings (feedback requires the quadrupole term).
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In the actual Pauli equation the term that deals with spin is the term µ.B (alter-

natively, µB.S), where B is the magnetic field and S is the spin vector. The trace over

the indices of the two vectors in the Pauli equation is very similar to what we have

above for U . Hence, I suggest the following analogies at dipole order:

U = ∂i(φ)

∫

ρri dV ≃ B · S = Bxσx + Byσy + Bzσz (7.27)

Here I will make the association clearer, and also use the vector d instead of r:

B = ∂i(φ) (7.28)

S =

∫

ρ d dV (7.29)

This definition of B is not the same as Bg from GEM, in the above equation the term

B is actually Eg from the GEM equations. The vector d can be expressed in terms of

basis vectors as d = diei. However, from Lounesto (Lounesto 2001) we can see that

there is an isomorphism between the real algebras Cl3 ≃ Mat(2, C). This isomorphism

can be stated as ei ≃ σi and is (importantly) length preserving. The sigma matrices are

the familiar Pauli matrices. In Clifford algebra we single out the subspace of vectors

R
3 which is basically the traceless version of the matrix algebra Mat(2, C).

Hence we can write d = diei ≃ diσi (the quantity di is a scalar) and then construct

analogies of the terms B and S:

S ∼
∫

ρ d dV ≃
∫

ρ diσi dV (7.30)

This leads to:

B.S ∼ ∂i(φ)

∫

ρ(d e)i dV ≃
∫

ρ∂i(φ)(d σ)i dV (7.31)

In the above equations I’ve used the same convention as adopted previously where a

repeat i, j index implies a trace (summation convention), while repeated x, y, z indices

does not. I’ve taken the partial derivative of the potential inside the bracket as it is

independent of dV . The integral will change to a summation when we assume a discrete
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distribution of matter within the super-particle (“fluid” element in wave-mechanics).

Writing out the Pauli-like form of the potential energy, we have:

U = B · S =

∫

ρ Bi(d σ)i dV =

∫

ρ (Bxdxσx + Bydyσy + Bzdzσz) dV (7.32)

=
∑

j

mj (Bxdxσx + Bydyσy + Bzdzσz) (7.33)

=
∑

j

mj





Bzdz Bxdx − iBydy

Bxdx − iBydy −Bzdz



(7.34)

The last step in this equation is a 2 × 2 matrix and is a result describing a vector via

the Pauli matrices (Lounesto 2001). This matrix is also Hermitian as required for the

Schrödinger equation; this is due to the nature of the construction of spinor spaces.

For some details of spinors as applied to a 3-vector space I encourage the reader to

review chapter 41 of Gravitation by Misner, Thorne & Wheeler (Misner et al. 1973).

The di are the components of the vector d, the basis vectors ei are omitted for brevity

and clarity (extra indices can quickly become confusing). To clarify where the final

matrix comes I will recapitulate the definition of the Pauli matrices (Lounesto 2001):

σ1 = σx =





0 1

1 0



 ; σ2 = σy =





0 −i

i 0



 ; σ3 = σz =





1 0

0 −1



 (7.35)

The B field is obviously not a magnetic field but the vector quantity: ∇φ. The d values

are the scalar amplitudes of the position vector d. This gives the Pauli-like equation

for this model as:

i~
∂

∂t
ψ± =

(

− ~
2

2m
∇2 + mV

)

Iψ± − µB · Sψ± (7.36)

In the actual Pauli equation µ = q~

2m
, in this formulation I expect the multiplier of U

to be the same as it is for V : hence, µ = m. We can reach this conclusion by noting

that both quantities are the gravitational potential and so multiplying by the mass will

give potential energy as required by the Schrödinger equation. I is the two-dimensional
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identity matrix. The wavefunction is now a 2 component spinor, or 2-spinor, where

each component is a complex number. If the new term, U = B · S, is zero then

the above equation would reduce to two Schrödinger equations, which are essentially

independent except for the mutual gravitational interaction. This would simply be two

‘fluids’ under going Schrödinger evolution as seen in Johnston (Johnston et al. 2010).

ψ± =





ψ+

ψ−



 (7.37)

This model is limited in what it can achieve as it employed a trick using the difference

in potential rather than the actual potential. The centre of mass always yields no

extra force so we can’t simply add in a third particle. However, it might be possible

to add another pair of particles and keep on doing so to build up a more complicated

structure of the ‘super-particle’. Ultimately, to do this properly one should include the

quadrupole term and higher.

7.2.3 Quadrupole term and higher

The inclusion of the quadrupole and higher terms does not require any trick but the

equations are more complicated and hence more laborious to calculate. Here we will

employ the same isomorphism between Clifford and matrix algebras: Cl3 ≃ Mat(2, C).

The strength of the wave-mechanical approach for studying structured objects is about

to become apparent as we derive a Pauli equation that looks almost identical to the

Pauli equation derived in the last section. It would seem that under the isomorphism

used, that each successive term in the Taylor series will reduce to a 2-spinor Pauli equa-

tion. The higher orders will merely invoke the multiplication of more sigma matrices.

At quadrupole order I suggest that we should use the previously established iso-

morphism and write the exterior product of the two position vectors rei and rej as

rirjeiej = rirjeij ≃ rirjσiσj = rirjσij. The position vector r is the vector from the cen-

tre of mass of the ‘super-particle’ to the sub-particle (see figure 7.1). Each sub-particle

provides an individual contribution to the quadrupole. The total quadrupole of each
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super-particle is therefore the summation of all individual sub-particle contributions.

As before, we identify B and S in the quadrupole case as we did in the dipole case

(equation 7.32):

B = ∂ij(φ) (7.38)

S =

∫

ρ(r ei)(r ej) dV (7.39)

This gives the quadrupole potential as:

U q = B · ·S =

∫

ρ Bij(rσ)ij dV =

∫

ρ (Bxxrxxσxx + Bxyrxyσxy + Bxzrxzσxz + . . .) dV

=
∑

j

mj ((Bxx)j(rxxσxx)j + (Bxy)j(rxyσxy)j + . . .) (7.40)

This last equation states that to find the total potential at a gridpoint we must sum

over all sub-particle masses mj. Each mass will have a separate contribution to overall

quadruple matrix. For clarity, each mass has a quadrupole matrix of the following

form:

Qij =











rxxσxx rxyσxy rxzσxz

ryxσyx ryyσyy ryzσyz

rzxσzx rzyσzy rzzσzz











(7.41)

rxy is the multiplication of the x and y components of the position vector r. The

sigma matrices are the corresponding basis ‘vectors’ (after the isomorphism is applied).

Taking the double trace with the 3× 3 matrix B will yield a 2× 2 matrix just as it did

in the previous example for the pseudo-dipole. This is why we get another Pauli-like

equation where the wavefunction is a simply a 2-spinor.

The rules for multiplying the Pauli matrices (Lounesto 2001) are:

σ2
1 = I (7.42)

σ1σ2 = iσ3 = −σ2σ1 (7.43)

σ2σ3 = iσ1 = −σ3σ2 (7.44)

σ3σ1 = iσ2 = −σ1σ3 (7.45)
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Hence:

Qij =











rxxI irxyσz −irxzσy

−iryxσz ryyI iryzσx

irzxσy −irzyσx rzzI











(7.46)

Which leads to a 2 × 2 matrix, or 2,2-spinor:

(BijQij)
AU̇ =





X11̇ X12̇

X21̇ X22̇



 (7.47)

X11̇ = (Br)xx + (Br)yy + (Br)zz + i(Br)xy − i(Br)yx (7.48)

X12̇ = −(Br)xz + (Br)zxzx + i(Br)yz − i(Br)zy (7.49)

X21̇ = (Br)xz − (Br)zx + i(Br)yz − i(Br)zy (7.50)

X22̇ = (Br)xx + (Br)yy + (Br)zz − i(Br)xy + i(Br)yx (7.51)

Here I follow the same notation as in Gravitation (Misner et al. 1973): the capital letter

indices A, U̇ run over the values 1, 2 and indicate the position in the 2,2-spinor above.

In the convention of these authors a capital letter near the end of the alphabet is used

to denote a transform according to the complex conjugate of the Lorentz spin matrix.

The exact details are not necessary for our work but we’ve tried to be consistent with

our use of bold lettering for vectors, particularly with basis vectors. Spinors inherently

introduce extra indices which pushes the usual index conventions of tensor algebra to

the limits.

Given this matrix, we end up with almost the same Pauli equation as before (in

section 7.2.2) except that the expression for B.S is more complicated:

i~
∂

∂t
ψ± =

(

− ~
2

2m
∇2 + mV

)

Iψ± − µB · Sψ± (7.52)

I suggest that the solution to this equation is decomposed using the splitting operators

as suggested in section 6.1.2. Despite the extra complication of using spinors to find the

final Pauli equation, it has a simple form that is familiar. The old terms are exactly as

they appear in the Schrödinger equation of this thesis while the new term is constructed

to look the same as the usual Pauli equation of quantum mechanics.
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It is our belief that wave-mechanics can naturally include the consideration of spin-

ning objects. Achieving the same physical system in an N -body code could be harder;

the force at quadrupole order (equation 7.18) requires a third derivative to be applied

to the gravitational potential φ.
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Appendix A

Translation

A.1 Translation of Madelung’s 1927 paper

Quantentheorie in hydrodynamischer Form.

From E. Madelung in Frankfurt

(Accepted 25th October 1926)

Translated by T. Krämer and E. Thomson

14th August 2008

abstract

I show that the Schrödinger equation for a one-electron problem can be transformed

into the equations for hydrodynamics.

E. Schrödinger [1] has shown that the Quantum theory of the one-electron problem

is given an “amplitude equation”:
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∇2ψ0 +
8π2m

h2
(W − U)ψ0 = 0, ψ = ψ0e

i2πWt/h (A.1)

Here W is the energy of the system, U is the potential energy and is a function of the

coordinates of the electron, m is the electron mass. One must seek a solution that is

finite and continuous. That is to find a solution to the equation for a particular W .

These “eigenvalues” Wi are the energies of the system at the allowed “Quantum states”.

These can be investigated via spectroscopy. Comparison of theory and experience shows

that this is the right method 1.

For each eigenvalue there is an eigen-solution, which is normalised and has a time-

factor ei2πWt/h which is how Schrödinger describes the system. Schrödinger gives an

ansätze for interpreting his equation in his paper. I will show that his equation is

analogous to the equations for hydrodynamics.

The second equation can be derived from equation A.1 by eliminating W , including

time factors:

∇2ψ − 8π2m

h2
Uψ − i

4πm

h

∂ψ

∂t
= 0. (A.2)

This contains all the solutions of A.1 but also all of the linear combinations of

equation A.2. This is very important. Set ψ = eiβ, then in A.1 only β is linearly

dependent on t but in equation A.2 both α and β are time dependent.

By putting ψ = αeiβ into A.2:

∇2α − α(∇β)2 − 8π2m

h2
U − 4πm

h
α

∂β

∂t
= 0 (A.3)

and

α∇2β + 2(∇α.∇β) − 4πm

h

∂α

∂t
= 0 (A.4)

From (A.4) it follows ϕ = −2 βh
2πm

:

∇.(α2∇ϕ) +
∂α2

∂t
= 0 (4′)

(4’) has the characteristics of the hydrodynamic continuity equation, where α2 is density

and ϕ is the velocity potential of a flux2 u = ∇ϕ.

1‘This’ refers to the method / quantum description given by Schrödinger
2Strömung may be translated as flux or current
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(A.3) leads to (3’):

∂ϕ

∂t
+

1

2
(∇ϕ)2 +

U

m
− ∇2α

α

h

8π2m2
= 0. (3′)

Also this equation resembles a hydrodynamic equation, namely the flux u is vortex free

and acted on by conservative forces.[2]

This gives ∇× u = 0:

∂u

∂t
+

1

2
∇u2 =

du

dt
= −∇U

m
+ ∇∇2α

α

h

8π2m2
. (3′′)

−∇U
m

corresponds to the term f
̺

(density of force/ density of mass), ∇2α
α

h2

8π2m2 corre-

sponds to −
∫

dp
̺

and can be interpreted as the force-function of “inner” forces of the

continuum.

We can also see that (A.2) can be re-interpreted in a completely hydrodynamic

way and that an anomaly3 only occurs in the first term which represents the inner

mechanism of the continuum.

In fact equation A.1 gives ∂α
∂t

= 0 and ∂ϕ
∂t

= −W
m

. This means that the eigen-

solutions of A.1 just yield a picture of a stationary current although it has a time

factor. Quantum states in this picture have to be seen as static states of current4.

Additionally, when ∇β = 0 it would be a static object5.

Solutions to the general equation A.2 are also linear combinations of the eigen-

solutions. Set ψ = αeiβ = ψ1 + ψ2 = c1α1e
iβ1 + c2α2e

iβ2 , where ψ0 and ψ2 are eigen-

solutions to (A.1) and contain the time-factor ei2πWt/h, then:

α2 = c2
1α

2
1 + c2

2α
2
2 + 2c1c2α1α2cos(β2 − β1)

and

α2∇β = c2
1α

2
1∇β1 + c2

2α
2
2∇β2 + c1c2α1α2∇(β1 + β2)cos(β1 − β2),

∫

α2dV = c2
1

∫

α2
1dV + c2

2

∫

α2
2dV,

3Besonderheit
4Strömungszustände
5statische Gebilde
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i.e. “Density” and “current-strength” contain a term that is time dependent with

ν = W1−W2

h
. The “total quantity” is constant.

In the case of stationary current (3’) becomes:

W =
m

2
∇ϕ2 + U − ∇2α

α

h2

8π2m
(A.5)

Can re-write α2 = σ and σm = ̺, with the normalization
∫

σdV = 1:

W =

∫

dV

{

̺

2
u2 + σU −

√
σ.∇2

√
σ

h2

8π2m

}

(5′)

This form of the energy as volume integral over kinetic and potential energy-density

obviously. This can also be re-written in another form:

There is no obvious reason why this can’t be applied to non-stationary currents. The

conservation law dW
dt

= 0 is fulfilled by showing the orthogonality of the eigen-solutions.

One question of interest: do all the equations of interest (3’),(4’),(5’) contain all

the described anomalies? Especially:

1. the existence of discrete stationary current-states with energy Wi,

2. The fact that all non-stationary states exclusively have periodicity of the form

νik = Wi−Wk

h
.

Apparently (2) follows from (3’) and (4’), on other hand (1) follows from (5’). The

hydrodynamic equations are equivalent to the Schrödinger equation, i.e. as a model

they are adequate at describing all the important moments of the Quantum theory of

atoms.

It appears that the Quantum-problem seems to be tackled by the hydrodynamics of

continuously distributed electricity with the mass density is proportional to the charge

density. This tackles the Quantum-problem but a number of problems still exist:

1. mass density is not as expected from electrodynamics

2. the mutual interaction of electrons
√

σ∇2
√

σ h2

8π2m
should not depend only on

density at the location of the charge and the derivatives of the density but should

also depend on the total distribution of charge.
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I was not able to show if the two above can be fulfilled by employing a purely

mathematical transformation.

How do you treat a many electron problem? Schrödinger doesn’t give a specific

form — only says kinetic energy must be calculated in an equal way to the depiction

of movement in phase space: T =
∑

i mi
u2

i

2
and to be treated as if independent of each

other and not to assume that the electrons form one current field.

That could be an obvious possibility but here are a few alternatives:

1. do a few electrons flow together to form a bigger object?

2. or do they exclude each other and merge under certain conditions?

3. or do they penetrate each other without fusing?

I think option 3 is most likely. 1 would lead to the same solution as the one electron

problem but requires a different normalization and would give the wrong outcome. 2 is

unlikely regarding “dipping orbits” but still thinkable. In 3 a number of vectors have

to be defined at every point in space as well as the associated velocity potentials. The

continuum would possess the descriptive quality of a swarm whose constraints would

possess an infinite path length.

To decide which form the function U has, as far as it concerns the interaction of

electrons, as well as the quantum term in equation (3’), to be given it can only be

decided after having successfully calculated at least one of the above cases.

At least there is hope on this basis6 to deal with quantum theory of atoms. I

admit that all processes involving emission can only be handled partly 7. Although it

seems to explain that an atom within a certain quantum state does not emit radiation

and that the emission is at the expected frequencies and without a “jump” but rather

with a slow transfer in a non-stationary state. But a lot of other facts, e.g. Quantum

absorption, remain absolutely unclear. It is too early to speculate on these things.

6the hydrodynamic method
7only have part command to describe emission processes
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Appendix B

Mathematical appendix

B.1 Madelung transform

This derivation shows the mathematical equivalence of the Schrödinger equation and

the Continuity equation of fluid dynamics Schrödinger equation. This is similar to the

translated Madelung paper but uses notation that is consistent with this thesis and

that of Short. The role of the pressure term is discussed elsewhere and is extracted out

from this derivation in the appropriate place.

iν
∂ψ

∂t
= −ν2

2
∇2ψ + V ψ (B.1)

Apply the Madelung transform with the positive signed exponential. The dynamics for

a negative signed exponential are the same but require a sign change in the definition

of the potential V , this derivation is not provided as it is otherwise the same as the

following derivation.

ψ = (1 + δ)1/2exp

(

iϕ

ν

)

= αexp

(

iϕ

ν

)

(B.2)

LHS, Differentiate ψ with respect to time :

∂ψ

∂t
=

∂α

∂t
exp

(

iϕ

ν

)

+
iα

ν
exp

(

iϕ

ν

)

∂ϕ

∂t
(B.3)

iν
∂ψ

∂t
= iν

∂α

∂t
exp

(

iϕ

ν

)

− ψ
∂ϕ

∂t
(B.4)
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Tidy up:

LHS =
iνψ

α

∂α

∂t
− ∂ϕ

∂t
(B.5)

Now for RHS, find ∇2ψ

∇ψ = ∇
(

αexp

(

iϕ

ν

))

(B.6)

= (∇α)exp

(

iϕ

ν

)

+
iα

ν
exp

(

iϕ

ν

)

∇ϕ

∇2ψ = ∇.(∇ψ) (B.7)

= ∇.[(∇α)exp

(

iϕ

ν

)

+
iα

ν
exp

(

iϕ

ν

)

∇ϕ]

= (∇2α)exp

(

iϕ

ν

)

+
i

ν
exp

(

iϕ

ν

)

∇ϕ.∇α

+
iα

ν
exp

(

iϕ

ν

)

∇2ϕ +
i

ν
exp

(

iϕ

ν

)

∇ϕ.∇α

+
i2α

ν2
exp

(

iϕ

ν

)

∇ϕ.∇ϕ

Note the expressions for V (Bernoulli equation) and P:

V = −∂ϕ

∂t
ψ − 1

2
ψ(∇ϕ)2 (B.8)

P =
ν2

2

(∇2α)

α
(B.9)

Leads to (RHS = K + V):

RHS = −ν2ψ

2α
(∇2α) − iνψ

α
(∇ϕ).(∇α) (B.10)

− iν

2
ψ∇2ϕ +

1

2
ψ(∇ϕ)2

− ∂ϕ

∂t
ψ − 1

2
ψ(∇ϕ)2

The last two terms above are from the potential. Now compare LHS and RHS, can-

celling terms. The pressure and potential terms have been omitted here.

iνψ

α

∂α

∂t
= −iνψ

α
(∇ϕ).(∇α) − iν

2
ψ∇2ϕ (B.11)
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Which yields the continuity equation and hence showing that the Madelung transfor-

mation casts the Schrödinger equation into fluid dynamic form (Madelung: ‘hydrody-

namischer’).
∂α

∂t
+ (∇ϕ).(∇α) +

α

2
ψ∇2ϕ = 0 (B.12)

To show that this is the continuity equation, work from the continuity equation until

arriving at the above equation:

∂ρ

∂t
+ ∇.(ρ∇ϕ) = 0 (B.13)

Re-call the following definitions:

ρ = ψψ∗ = |ψ|2 = α2 (B.14)

Then re-write the continuity equation as:

∂α2

∂t
+ ∇.(α2∇ϕ) = 0 (B.15)

2α
∂α

∂t
+ α2∇2ϕ + 2α∇α.∇ϕ = 0 (B.16)

Finally leading to the desired form of the continuity equation that one arrives at when

inserting the Madelung transformation into the Schrödinger equation:

∂α

∂t
+

α

2
∇2ϕ + ∇α.∇ϕ = 0 (B.17)

B.2 Derivation of the initial velocity of the FPA

For determining the velocity in this work the probability current was employed as

opposed to the phase unwrapping method. Hence, I show agreement between this

probability current method and the unwrapping method by demonstrating that the

former gives the expected form of the initial velocity (as given by Chris Short). The

FPA model allows for the initial velocity to be derived analytically. The form of

the velocity is not necessarily analytic once evolution has begun. The initial density

contrast δi represents a symmetric distribution of CDM particles and corresponds to an
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initial velocity potential ϕi as given below. The subscript i refers to the initial states

and does not the imaginary party of a complex number.

δi = −δa cos

(

2πx

p

)

ϕi = −
( p

2π

)2

δi (B.18)

Given both the density potential velocity field, one can combine these into a single

function known as the Madelung transform:

ψi = (1 + δi)
1/2 exp

(−iϕi

ν

)

, ψ∗
i = (1 + δi)

1/2 exp

(

iϕi

ν

)

(B.19)

ψ∗ is the complex conjugate of ψ. Written out fully these functions are:

ψi =

(

1 − δa cos

(

2πx

p

))1/2

exp

(−i

ν
(

p

2π
)2δa cos

(

2πx

p

))

(B.20)

ψ∗
i =

(

1 − δa cos

(

2πx

p

))1/2

exp

(

i

ν
(

p

2π
)2δa cos

(

2πx

p

))

(B.21)

Now I will define:

α1 =

(

1 − δa cos

(

2πx

p

))1/2

(B.22)

α2 = exp

(−i

ν
(

p

2π
)2δa cos

(

2πx

p

))

α2∗ = exp

(

i

ν
(

p

2π
)2δa cos

(

2πx

p

))

α3 =
1

2

(

1 − δa cos

(

2πx

p

))−1/2 (

δa(
p

2π
) sin

(

2πx

p

))

= ∇α1

α4 =
i

ν

p

2π
δasin

(

2πx

p

)

=
∇α2

α2

Such that:

ψi = α1 ∗ α2 ψ∗
i = α1 ∗ α2∗ (B.23)

∇ψi = (α3 ∗ α2) + (α1 ∗ α2 ∗ α4) (B.24)
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∇ψ∗
i = (α3 ∗ α2∗) − (α1 ∗ α2∗ ∗ α4) (B.25)

In quantum mechanics one can find a relation for J , the probability current, as

follows:

Ji =
~

2mi
(ψ∗

i ∇ψi − ψi∇ψ∗
i ) (B.26)

Recall that ν = ~

m
. Using the initial conditions one can compute the initial velocity

field.

Ji =
~

2mi
[(α1∗α2∗)(α3∗α2+α1∗α2∗α4)−(α1∗α2)(α3∗α2∗−α1∗α2∗∗α4)] (B.27)

Ji =
~

2mi
[α1α2∗α3α2 + α1α2∗α1α2α4 − α1α2α3α2∗ + α1α2α1α2∗α4] (B.28)

Note that α2 ∗ α2∗ = 1

Ji =
~

2mi
[α1 ∗ α3 − (α1)2α4 − α1 ∗ α3 − (α1)2α4] (B.29)

Ji =
~

2mi
[2 ∗ (α1)2α4] =

~

mi
[(α1)2α4] (B.30)

Essentially, α4 = i
ν
∇ϕi and α1 = |ψ|. Hence:

Ji = |ψ|2∇ϕi (B.31)

The probability current is related to the velocity of the distribution as follows:

vi =
Ji

ρ
=

Ji

|ψi|2
(B.32)

vi = ∇ϕi (B.33)
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So:

vi = ∇
(

−
( p

2π

)2

δa cos

(

2πx

p

))

(B.34)

vi =
( p

2π

)

δa sin

(

2πx

p

)

(B.35)

QED. This matches the result of Short in his PhD thesis.

B.3 Derivation of the Schrödinger and Poisson equa-

tions in the EdS model

B.3.1 Poisson equation

This is equation (17) in Widrow & Kaiser except there is a mistake in their version of

the coupled equations.

∇2V =
4πG

a
(ψψ∗− < ψψ∗ >) (B.36)

∇2V/ < ψψ∗ > =
4πG

a
(ψψ∗/ < ψψ∗ > −1) (B.37)

∇2V (6πGt20) =
4πG

a
(ψψ∗(6πGt20) − 1) (B.38)

∇2V (6πGt20) =
4πG

a
(χχ∗ − 1) (B.39)

(6πGt20)
2L2

3t20a

1

L2
∇2

yU =
4πG

a
(χχ∗ − 1) (B.40)

∇2
yU = χχ∗ − 1 (B.41)

B.3.2 Schrödinger equation

Now for the derivation of the Schrödinger which appears incompletely in the Widrow

& Kaiser paper.
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i~
∂

∂t
ψ =

(−~
2

2m
∇2 + mV

)

ψ (B.42)

i~

(6πGt20)
1/2

∂

∂t
χ = − ~

2

(6πGt20)
1/2

(2ma2L2)
∇2

yχ +
2mL2

(6πGt20)
1/2

(3t20a)
Uχ (B.43)

i~
∂

∂t
χ = − ~

2

2ma2L2
∇2

yχ +
2mL2

3t20a
Uχ (B.44)

2ma2L2

~2
i~

∂

∂t
χ = −∇2

yχ +
2mL2

3t20a

2ma2L2

~2
Uχ (B.45)

i
4L
3

∂

∂lna
χ = −∇2

yχ +
4L2

3
Uχ (B.46)

Here L = ma1/2L2

~t0
.
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