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Abstract 

The percentage of singleton livebirths resulting in low birthweight deliveries has re- 

mained constant in the last 20 years, with between 6 and 10% of singleton pregnan- 

cies resulting in such a delivery. Low birthweight infants have been shown to develop 

medical problems in infancy and childhood, such as visual impairment, lower IQs 

and neuromotor problems, and as such it is important to identify those pregnancies 

that may result in low birthweight infants. This thesis considers factors that may 

be related to low birthweight, and uses these factors in the construction of a model 

to predict the probability of a woman delivering a low birthweight infant in order to 

identify high risk mothers. 

One factor that may be thought of as being related to low birthweight is depri- 

vation. In this thesis a new deprivation measure is proposed which updates previous 

work in the area by using the 1991 small area census data to create a continuous de- 

privation measure, based on postcode area of residence, within the Greater Glasgow 

Health Board. This new measure of deprivation is included in the model referred to 

above. 

As there are many possible risk factors involved in modelling the probability of 

delivering a low birthweight infant multiple comparisons are involved in the produc- 

tion of the model and it is important to produce a model that incorporates most of 

the relevant factors and relatively few of the unimportant factors. The first order 

Bonferroni bound is one method used to correct for multiple comparisons by giving 

an upper bound on the actual p-value. This thesis considers the second order Bonfer- 

roni bound which gives a lower bound on, he p-value and, when used in conjunction 

with the first order bound, gives a better correction method than the first order 

bound alone. These two bounds are then extended into logistic regression models. 
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Chapter 1 

Introduction 

1.1 Motivation 

Approximately 6 to 10% of singleton pregnancies result in a low birthweight infant, 

a proportion that has changed very little in the past 20 years. There are many 

possible factors affecting birthweight, one of which may be deprivation. This area 

is of interest as low birthweight may cause an extended stay in hospital for mother 

and infant, and will affect the resource usage within hospitals. There is also the 

likelihood of the infant being placed in a special care baby unit (SCBU) and having 

an increased risk of mortality and morbidity. If the probability of low birthweight can 

be accurately modelled and factors relating to birthweight identified, then high risk 

mothers can be identified and monitored carefully throughout the pregnancy. This 

thesis is concerned with modelling the probability of delivering a low birthweight 

infant. 

1.1.1 Low Birthweight 

Low birthweight infants, and in particular those very low birthweight infants born 

under 1500 g, have been shown to face problems in later life. Examples of these 

problems are visual impairment, lower IQs, and neuromotor problems, and as such 

it is important to identify these pregnancies which may result in low or very low 

birthweight infants. 

In order to investigate factors related to low birthweight, all births in the Greater 

Glasgow Health Board area between 1981 and 1991 are considered. Attention is 

1 



CHAPTER 1. INTRODUCTION 2 

restricted to the Greater Glasgow Health Board as this area has the largest number of 

high deprivation sectors in Scotland. It is hoped that this will increase understanding 

of the role deprivation plays in birthweight. Data on births in this area were collected 

from all six hospitals in the area on a form known as an `SMR2' form. This form 

is completed for each hospital visit during pregnancy and records maternal data, 

previous pregnancy data, and details of the current pregnancy, including infant data 

if the hospital visit results in delivery of an infant. 

Births shall be categorised as low birthweight (under 2500 g), and normal birth- 

weight (2500 g or more). In some cases low birthweight shall be sub-categorised 

as very low birthweight (under 1500 g) and low birthweight (1500 g to 2499 g), as 

very low birthweight may be thought of as being caused by obstetric problems in the 

mother and therefore as being distributed differently to those births between 1500 

g and 2499 g. Factors shown previously to be related to low birthweight will be 

investigated in order to see if they are also related in the population of interest. 

This work differs from that carried out previously in that there is a second data 

set which has been `linked'. Each woman is given a unique maternal identification 

number and as a result all forms for each pregnancy can be identified and linked to 

other pregnancies to the same mother. 

1.1.2 Defining a Glasgow Specific Deprivation Measure 

Social class has recently been thought of as an unreliable measurement of deprivation, 

and various techniques have been explored in order to find an improved method for 

measuring deprivation. Several measurements have been proposed, the best known 

being the Carstairs score [10], the Townsend score [45], and the Jarman index [26,27]. 

Jarman and Townsend are calculated for areas in England, while the Carstairs score 

is derived for all postcode sectors in Scotland. The postcode sector can be derived 

from the postcode by removing the final two letters of the postcode, for example, if 

the postcode is G74 3HT, then the postcode sector is G74 3. The Carstairs score 

is calculated from the 1981 small area census data, which records the proportion 

of households in each postcode sector satisfying various criteria. Examples of these 

criteria are households with 1 or 2 rooms, with no car, with no children, with pen- 

sioners living alone and with male unemployment. For each sector, the Carstairs 
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score is calculated as the sum of the standardised proportions of households with 

low social class, male unemployment, overcrowding and car ownership. This score is 

then categorised from 1 (most affluent) to 7 (most deprived). 32 (23.7%) of the post- 

code sectors in Greater Glasgow Health Board fall into the most deprived Carstairs 

category. 

A Glasgow specific deprivation score will be defined for two reasons. Firstly, in 

creating a Glasgow specific score it should be possible to separate those 32 post- 

code sectors in Glasgow which Carstairs categorises `most deprived'. Secondly, as 

the population of interest is geographically constrained to Greater Glasgow Health 

Board (GGHB), the population involved in the deprivation calculations should be 

similarly constrained in order to give a clearer perspective of the relationship between 

birthweight and deprivation in the GGHB area. 

1.1.3 Variable Selection 

In regression models there are often a large number of explanatory variables, some 

of which may be related to the response variable, some which may be correlated 

with each other, and some which may be neither. In these cases, it is preferable to 

fit a model that adequately describes the data without including variables that are 

unnecessary or misleading. 

There are various selection techniques that can be used to produce a model 

containing a subset of these explanatory variables. The most common techniques 

are backwards elimination and forward selection. These techniques involve multiple 

comparisons at each step in the procedure, and a correction method should be em- 

ployed to produce a bound on the true level of significance for a variable entering 

or leaving the model, based on the number of variables involved. The first order 

Bonferroni bound is one possible correction method. This produces an upper bound 

on the actual level of significance for fitting the variable of interest. If this Bonferroni 

bound is not used, the final model selected will tend to have too many variables in 

the model, which may cause unnecessary measurements to be taken if the model is 

to be used for prediction of further cases. 

As there are many possible explanatories involved in the case of low birthweight, 

variable selection techniques and Bonferroni corrections will be applied in the selec- 
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tion of a model for the probability of delivering a low birthweight infant. 

1.2 Aims 

The aims of this thesis are: 

" To investigate possible factors related to low birthweight using univariate meth- 

ods. This shall update previous work in the area and be carried out using data 

from all births in the Greater Glasgow Health Board area between 1981 and 
1991. 

" To produce a model for the probability of delivering a low birthweight infant 

based on maternal factors. This shall also use data from all births in the 

Greater Glasgow Health Board area between 1981 and 1991. 

" To create a deprivation measure for the Greater Glasgow Health Board area, 

and to compare this with current methods. The 1991 small area census data 

shall be used in the derivation of this measure. 

" To investigate the relationship between birthweights of the first two children 

to each mother. The birthweight of a first child is thought to have an effect 

on the birthweight of a second child and the linked data set will be used to 

investigate this. 

" To investigate the use of Bonferroni bounds in regression models assuming 

Normally distributed data. The first order Bonferroni bound is used in regres- 

sion modelling with variable selection to give an upper bound on the p-value 

obtained by adding the most significant variable into the model, in order to 

correct for multiple comparisons. If this bound is not used too many variables 

may be added to the model. In the same way, the second order Bonferroni 

bound can be used to give a lower bound on the same p-value and these can 

be used together to give a better estimate of the p-value. 

" To extend the use of Bonferroni bounds into logistic regression models, and use 

these bounds to model the probability of delivering a low birthweight infant. 
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1.3 Outline 

The contents of each chapter are as follows: 

Chapter 2: Overview of Low Birthweight. Low birthweight may be due 

to pre-term birth or to the infant being small for their gestational age. This chapter 

gives an overview of work previously carried out in these fields and discusses the 

factors thought to be related to low birthweight, such as maternal age and height, 

marital status, the number of previous pregnancies to the mother and their outcomes, 

and smoking history. In addition, there is a brief overview of the disadvantages low 

birthweight infants encounter in later life, such as visual impairment, lower IQs and 

neuromotor problems. 

Chapter 3: Analysis of Unlinked Data. Low birthweight within the geo- 

graphical constrains of Greater Glasgow Health Board is considered. This updates 

previous work carried out on birthweight data [35]. Various maternal factors, such 

as maternal age and height, deprivation category of the area lived in, and marital 

status are considered univariately to investigate their relationship with birthweight. 

This is carried out by taking a data set where the SMR2 forms have not been linked 

by maternal identification number, and considering data from those visits where de- 

livery occurred. A regression model of the probability of delivering a low birthweight 

infant is then fitted. 

Chapter 4: Deprivation Measures. This chapter discusses several methods 

for assigning a deprivation score to a small area. Various scoring systems have been 

created in order to measure small area deprivation. A new deprivation measure for 

postcode sectors in the Greater Glasgow Health Board area is proposed using the 

1991 small area census data. This new measure is compared with measures that have 

previously been calculated for the same sectors. 

Chapter 5: Analysis of Linked Data. The aim of this chapter is to consider 

mothers who delivered their first child in 1980 and subsequently had a second child 

in the twelve year period 1980 to 1991. These pregnancies will be investigated to 

determine whether the birthweight of the second child is related to the birthweight 

of the first child. The outcome of previous pregnancies is expected to have an effect 

on the birthweight of subsequent pregnancies. 



CHAPTER 1. INTRODUCTION 6 

Chapter 6: Variable Selection. The aim of this chapter is to consider several 

methods that can be used in forward subset selection to decide which variables should 

be included in a regression model. Several types of subset selection and stopping rules 

that can be used in selection procedures will be discussed. The sizes and powers of 

these stopping rules and their ability to select the best variable for entry into a model 

are then investigated and compared using simulation studies. 

Chapter 7: Bonferroni Bounds in Variable Selection. This chapter fo- 

cuses on how to fit the `best' model to a set of data, taking into account the effect 

of multiple comparisons on the overall p-value of any tests that are carried out in 

order to determine which explanatory variables should be included. A method is 

introduced to calculate both upper and lower bounds on the p-value to test whether 

a variable should be added when a linear regression model is fitted. This method 

is then extended to the logistic regression case and is used to fit a model of the 

probability of delivery a low birthweight baby using 1991 data. 

Chapter 8: Discussion and Conclusions. This chapter will discuss the re- 

suits of this thesis and draw conclusions. Ideas for further work will also be suggested. 



Chapter 2 

Overview of Low Birthweight 

Low birthweight is one if the few obstetrical problems that has not decreased in 

proportion in the last 20 years, with approximately 6- 10% of all births resulting in 

a low birthweight baby. There are several maternal factors that may be though of 

as having an adverse effect on birthweight, including maternal age, maternal height, 

and active or passive smoking. This chapter considers previous literature where 

the relationships between these factors and birthweight have been investigated. In 

addition, previous literature has discussed the disadvantages which low birthweight 

infants face in later life and this is also considered here. 

2.1 Maternal Risk Factors 

2.1.1 Maternal Age 

Maternal age is a factor that is often thought of as being a high risk factor for 

delivering a low birthweight baby. Rosenberg and McEwan [42] summarised the 

trends and risks of teenage pregnancy in Scotland using data from between 1975 and 

1988. Data for the latest of these years, 1988, indicated that low birthweight and 

pre-term delivery were slightly more common in teenagers (8% and 7%) than in the 

20-24 year old age bracket (7% and 6%). However, Rosenberg and McEwan state 

that no attempt was made to correct for social deprivation in this assessment and 

that if this was added to the analysis it would be expected that there would be no 

difference between the age groups. 

De Sanjose and Roman [14] examined the effect of various maternal factors on 

7 



CHAPTER 2. OVERVIEW OF LOW BIRTHWEIGHT 8 

low birthweight, pre-term delivery, and small for gestational age births, using data 

from 1981 to 1984 in Scotland. Maternal age was split into 4 categories - under 20,20- 

29,30-34 and over 34. Low birthweight was shown to have a `U'-shaped relationship 

with age, with the under 20 and over 34 age groups having the highest proportions 

of low birthweight deliveries, and this was shown to be significantly higher than for 

those mothers aged 20-29. 

Bakketeig et al. [2] attempted to categorise those mothers who repeat small-for- 

gestational-age (SGA) births, and compare them with mothers who have had either 

no SGA births, or only one SGA birth. The data used were those women in Norway 

who had delivered after 16 weeks of gestation between 1967 and 1976. Mothers were 

identified by a unique maternal identification number, making linkage over successive 

pregnancies possible. As no information on social conditions was collected by the 

Medical Registration of Births, record linkage was carried out for births between 1970 

and 1973 with the 1970 Norwegian census data. Mothers were excluded from the 

analyses if, for at least one pregnancy, gestational age or birthweight were unknown, 

or gestational age was less than 28 weeks or greater than 46 weeks. Births were ex- 

cluded if congenital abnormalities were recorded in the birth registry, or if the mother 

had recorded diseases before or during pregnancy. SGA was defined as births with 

birthweight for gestation below the 10th percentile. Mothers were included in this 

analysis if they had three successive singleton births in the study period. Maternal 

age was categorised as under 20,20-34 and 35 or over. As maternal age increased, 

the proportion of SGA deliveries decreased from 11.6% to 8.5%. In addition, if age 

at first delivery was considered, the relative risk of delivering one SGA birth was 

significantly higher in the under 20 age group than in the reference group of 20-34 

year olds. However, the relative risk for more than one SGA birth was significantly 

higher for both the under 20 and over 35 age groups, and in both cases the risk of 

more than one SGA birth was 1.2 times higher than in 20-34 year olds. 

Rodriquez et al. [41] investigated the effect of different social and demographic 

factors on low birthweight and used data from the National Institute of Statistics, 

covering births in Spanish provinces in 1988 and using only those provinces where 

over 99.5% of births recorded had a record of the infant's birthweight. Low birth- 

weight was split into two categories, pre-term, defined as less than 37 weeks gestation, 
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and term, defined as between 37 and 42 weeks gestation, and these were considered 

separately. Maternal age was split into 5 categories - under 20,20-24,25-29,30-34 

and over 34. For pre-term low birthweight, Rodriquez at al. also showed that after 

adjustment for variables of interest, low birthweight had a `U'-shaped relationship 

with age, with the under 20,30-34 and over 34 groups having the highest proportions 

of low birthweight deliveries. Of these the 30-34 and over 34 groups were shown to 

be significantly higher than mothers aged 25-29. However for those low birthweight 

deliveries at term there was no evidence of a 'U'-shaped relationship and the propor- 

tion of low birthweight deliveries decreased as maternal age increased, with both the 

under 20 and 20-24 age groups being significantly higher than the 25-29 age group. 

Rasheed and Rahman [37] considered sociodemographic, biological, genetic and 

medical factors as possible predictors of Saudi Arabian birthweight. The data used 

were those of all singleton livebirths delivered between October 1985 and September 

1986 at the King Fahd Hospital of the University in Al-Khobar. Only those cases 

with a previous sibling birth were considered. Maternal age was split into the same 

categories as Rodriquez et al. with the under 20 category being described as 12- 

19. After a multiple regression of various factors on birthweight was carried out, 

maternal age was shown to have a significant effect on birthweight, which increased 

as maternal age increased, with the 25-29 and over 35 categories being significantly 

higher than the 20-24 age group. 

Lang et al. [31] estimated the effects of 23 possible risk factors on the prevalence 

of premature labour and fetal growth retardation, both of which may occur with or 

without low birthweight. The data used were those of all singleton pregnancies at 

the Boston Hospital for Women between August 1977 and March 1980. The risk 

factors were studied among small-for-gestational-age babies born at term (10,889 

cases), and premature births with an appropriate size for gestational age outcome 

(9,490 cases). All livebirths between 22 and 45 weeks of gestation were included if 

birthweight and sex of the infant were also recorded and if the mother did not suffer 

from chronic disease before pregnancy. Maternal age was split into 5 categories - 

under 16,16-19,20-24,25-34 and over 34. Pre-term delivery was defined as being 

less than 37 completed weeks of gestation, and small-for-gestational-age (SGA) was 

defined as having a birthweight less than the 10th percentile for gestation using sex- 
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specific criteria. Multivariate regression was used to adjust for possible confounding 

effects of other risk factors. Using this model, all maternal age groups had a greater 

risk of pre-term labour than the 25-34 age group, although in no case was this risk 

statistically significant. The under 16 and 20-24 age groups also had a greater risk 

of a term SGA delivery than the 24-34 age group, while the 16-19 and over 34 age 

groups had a smaller risk; again none of these risks were significantly different to the 

24-34 age group. 

An antenatal screening program was introduced in the African republic of Cape 

Verde in 1977 and Wessel et al. [46] carried out a prospective study to evaluate 

antenatal risk screening by relating possible maternal risk factors to pre-term birth 

and low birthweight. The data used were that of pregnant women presenting for 

antenatal care between October 1991 and December 1992. A cohort of 358 women 

was selected, which was reduced to 353 women after restricting the study to singleton 

births only. Pre-term delivery was defined as less than 37 weeks completed gestation, 

calculated from last menstrual period. Low birthweight was defined as less than 2500 

g. In 30 cases birthweight was determined after 7 days and birthweights for 23 infants 

were unknown. Maternal age was categorised as 15-19,20-24,25-29,30-34 and 35 or 

over. Adjustments were made using multiple regression analysis to take into account 

confounding variables. As there were low numbers of both pre-term birth and low 

birthweight (44 and 27 respectively), maternal age was analysed as 15-19 and 20 or 

over. While the adjusted relative risk for pre-term delivery in the 15-19 age group 

was 1.6, this was not significantly higher than the control group of 20 or over. The 

adjusted relative risk for a low birthweight delivery for the 15-19 age group was 3.7, 

significantly higher than that for the 20 and over group. 

The above studies seem to suggest that low birthweight is a higher risk in teenage 

mothers than mothers in their twenties, and also in mothers who are in their thir- 

ties, while the risk of small-for-gestational-age infants decreases as maternal age 

increases. As many of the results are adjusted for known and expected obstetric and 

socio-economic factors, it appears that maternal age is an important factor in the 

birthweight of infants and that teenage mothers run a high risk of delivering either 

and SGA infant or a low birthweight infant. 
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2.1.2 Previous Pregnancies 

Bakketeig et al. [2] investigated the risk of a small for gestational age (SGA) delivery 

to mother who have delivered 0,1 or 2 previous SGA babies. For mothers whose 

first delivery was SGA, the relative risk of delivering a subsequent SGA birth was 

3.27, significantly higher than the reference category of those mothers whose first 

delivery was not SGA. In addition, those mothers with two previous births that were 

not SGA had a significantly lower risk of delivering a subsequent SGA infant (0.68). 

The risk of a subsequent SGA baby after a first birth that was SGA and a second 

that was not SGA was significantly higher than the reference category (2.12), with 

the risk for those mothers whose first birth was not SGA and whose second was SGA 

was slightly higher at 2.71. The relative risk for a mother delivering two previous 

SGA babies was 5.07, significantly higher than all other possible combinations. 

When parity and age were combined, some interesting differences were discov- 

ered. It appeared that for women aged 35 or over, the proportion delivering an SGA 

baby was significantly higher than for women in the 20-34 age group for primaparous 

women, but for those women with 2 previous births, the proportion of women aged 

35 or over delivering an SGA baby was significantly lower than the 20-34 age group. 

Bratton et al. [5] attempted to estimate the risk of repeat low birthweight de- 

liveries among women whose first infant was born very low birthweight (<1500 g). 

The data used in this analysis were those women who delivered their first and sec- 

ond singleton births between 1984 and 1991. The analysis was restricted to white 

women due to the very small number of non-white women whose first infant was 

very low birthweight (VLBW), and infants with congenital deformities at birth were 

excluded. 182 women in the population had a first delivery resulting in a VLBW 

infant. In addition, a control group was selected from the population and consisted 

of 619 women who had a first birth with a birthweight of over 2500 g. Birthweights 

for the second infant were categorised as 500-1499 g, 1500-2499 g and 2500 g or more. 

Using the control group as a reference, women who had a previous VLBW delivery 

had a relative risk of 8.2 of a low birthweight delivery, and a relative risk of 53.3 

of a second VLBW delivery. As there were so few VLBW deliveries in the second 

pregnancy (15 in total), VLBW and LBW deliveries were combined and the relative 

risk of a delivery under 2500 g was 11.1. 
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Goldenberg et al. [20] examined the effect of a previous low birthweight birth 

on birthweight in the current pregnancy. In this paper, low birthweight is defined 

as being less than 2750 g. The data used in this study were from multiparous, 
low income women delivering at the University of Alabama between December 1985 

and October 1988. The population was oversampled for risk factors associated with 

decreased fetal growth. Women were excluded from the study if they delivered pre- 

term (<27 completed weeks gestation), had a multiple pregnancy, or suffered fetal or 

neonatal death. Infants whose measurements were not completed before discharge 

were also excluded. The resulting population were categorised as those who had 

a history of LBW and those who did not. A regression analysis was carried out 

in order to determine the effect of a history of LBW on the birthweight in the 

current pregnancy, while correcting for risk factors of gestational age, race, infant 

sex, hypertension in the mother, body mass index, maternal height, maternal age, 

maternal weight gain and use of tobacco, alcohol and drugs. After correcting for 

these factors, history of LBW accounted for a decrease in birthweight of 107 g. 

De Sanjose and Roman's [14] paper, mentioned previously, also investigated the 

effect of previous perinatal death on birthweight and discovered that mothers with 

at least one previous perinatal death were more than twice as likely to deliver a low 

birthweight infant than those mothers with no previous perinatal deaths. This was 

shown to be the strongest predictor of low birthweight in their study. 

Rasheed and Rahman [37] considered the birth interval between the birth of 
interest and the previous birth as a possible predictive factor of low birthweight, and 

also the parity of the mother. Parity was categorised as 1-2,3-4,5-6 and over 6, 

while birth interval was categorised as less than 1 year, 1-1.99 years, 2-2.99 years 

and 3 or more years. While neither of these had a statistically significant effect 

on birthweight, there appeared to be an increase in birthweight with birth interval. 

There also appeared to be an increase with parity until parity became more than 6, 

where birthweight then dropped to almost 70 g less than those mothers with a parity 

of 1-2. 

Lang et al. [31] consider parity, outcome of last pregnancy, and previous induced 

abortions, spontaneous abortions (miscarriages) and stillbirths. Parity was split into 

primaparous and multiparous, and the outcome of the last pregnancy was categorised 
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as term, pre-term, or less than 22 weeks gestation. Previous induced and sponta- 

neous abortions were categorised as 0,1,2 and 3 or more, while previous stillbirths 

were categorised as 0,1 and 2 or more. Parity and outcome of last pregnancy had 

an effect on both pre-term births and term SGA deliveries. Primaparous women 

had a significantly higher risk of both pre-term delivery (1.8) and SGA delivery at 

term (also 1.8) than multiparous women. Multiparous women with a last pregnancy 

outcome of less than 22 weeks gestation had a significantly higher risk of SGA de- 

livery (1.5) then those with a term delivery in their last pregnancy. Mothers with 

a last pregnancy outcome of pre-term delivery had higher risks than those with a 

term delivery in their last pregnancy for both pre-term delivery (5.9) and term SGA 

delivery (2.3). 

Previous induced and spontaneous abortions and previous stillbirths had an ef- 

fect on the risk of pre-term delivery only, and this effect was statistically significant 

if the mother had suffered at least 2 stillbirths or induced or spontaneous abortions. 

For induced abortions, the risk of pre-term delivery after 2 or 3 or more abortions was 

significantly higher than those mothers with no induced abortions (1.9 and 3.6 re- 

spectively), while for spontaneous abortions the risk was less than those with induced 

abortions but still significantly higher than the reference category of no spontaneous 

abortions (1.8 and 2.7 for 2 and 3 or more spontaneous abortions). For women with 

at least 2 stillbirths the risk of pre-term delivery was significantly higher than the 

reference category of none, having a relative risk of 4.7. 

Parity, previous perinatal death and previous low birthweight deliveries were 

possible risk factors considered by Wessel et al. [46]. Parity was categorised as prima- 

parous and multiparous, while previous perinatal death and previous low birthweight 

deliveries were both categorised as yes or no. None of these had any effect on the 

risk of pre-term delivery. However, primaparous women had a significantly higher 

risk of delivering a low birthweight baby (5.2 times the risk of multiparous women). 

In addition, multiparous women with a previous low birthweight delivery were at a 

higher risk of delivering a low birthweight baby than those women whose previous 

pregnancies had not been low birthweight (6.5 times higher). 

These studies indicate that an unfavourable outcome in previous pregnancies can 

have a bearing on the outcome of the current pregnancy. A previous pregnancy that 
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resulted in low birthweight has an increased risk of low birthweight in the current 

pregnancy, while a previous pre-term delivery, or two or more stillbirths, induced 

abortions or spontaneous abortions produce a higher risk of pre-term delivery in the 

current pregnancy. Previous SGA births and pre-term births increase the risk of an 

SGA birth in the current pregnancy. This indicates that obstetric history is another 

important factor in the investigation of low birthweight, and that many variables in 

a woman's obstetric history may affect birthweight. 

2.1.3 Maternal Active and Passive Smoking 

Eskenazi et al. [19] investigated how maternal exposure to tobacco smoke affects 

birthweight. Asking women how much they smoke may lead to imprecise or incorrect 

data and so serum cotinine was used as a marker of tobacco exposure, as this is a by- 

product of nicotine metabolism. The data used were those of women participating in 

the Child Health and Development Studies in Oakland, California, between 1964 and 

1967. Those women whose smoking status was constant throughout the pregnancy 

and who delivered a singleton livebirth between 20 and 44 weeks gestation with known 

birthweight were included. Serum cotinine levels were used to categorise women into 

three groups, non-smokers, non-smokers exposed to environmental tobacco (passive 

smokers), and smokers. The smokers were then split into three groups of low, medium 

and high exposure. 49 women who claimed to be non-smokers but were classified 

by serum cotinine to be smokers were excluded from the analysis. Relative risks 

of low birthweight using serum cotinine levels only showed that with non-smokers 

as the reference, the relative risk of low birthweight increased with cotinine levels, 

with medium and high exposure smokers having a significantly greater risk of a low 

birthweight infant (1.6 and 3.3). While the risk of pre-term birth also increased with 

cotinine, this increase was much less marked and only high exposure smokers had a 

significantly greater risk of pre-term birth (1.47). A multiple regression model fitting 

several factors including categorised cotinine levels showed similar results in that 

birthweight decreased as the level of cotinine increased. 

Wisborg et al. [48] investigated the association between smoking during preg- 

nancy and pre-term birth by using data from women presenting for routine antena- 

tal care between August 1989 and September 1991 at Aarhus University Hospital in 
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Denmark. The women were asked to fill in 2 questionnaires. Primaparous women 

who had a singleton pregnancy lasting at least 28 weeks, and completed both ques- 

tionnaires including data on smoking habits and gestational age, were included in 

the study. Women were categorised as smokers or non-smokers depending on their 

smoking habits at 16 weeks gestation, and the smokers were also categorised as 1-5 

cigarettes per day, 6-10 cigarettes per day, and 11 or more cigarettes per day. Other 

variables of interest included caffeine intake, maternal height, pre-pregnancy weight, 

maternal age, marital status, years of education, working status and alcohol con- 

sumption. Pre-term delivery was defined as delivery before 37 completed weeks of 

gestation, where gestation was determined by an ultrasound scan before 21 weeks of 

gestation (81% of cases), time since last menstrual period (8%), or a combination of 

late ultrasound scan and menstrual history (11%). Relative risks of pre-term birth 

using non-smokers as a reference showed that smokers had a significantly greater 

risk of pre-term birth, and this risk increased as cigarette exposure increased, with 

the 6-10 and 11 or more groups having a significantly greater risk than non-smokers 

(1.5 and 1.8). Correcting for the various factors mentioned above showed that none 

significantly changed the results except caffeine intake. This was categorised as less 

than 400 mg per day and 400 mg or more per day. There was no difference between 

smokers and non-smokers for women with a caffeine intake of less than 400 mg per 

day, but for those women with a caffeine intake of 400 mg or more per day it was 

shown, using non-smokers as a reference, that smokers had a significantly greater 

risk of pre-term birth, and this risk increased as cigarette exposure increased, with 

the 6-10 and 11 or more groups having a significantly greater risk than non-smokers 

(2.9 and 4.9). 

Ellard et al. [18] investigated whether an estimate of nicotine intake based on 

a urine sample can predict smoking related birthweight deficits with more accuracy 

than patient reported cigarette use, by using data over a period of 20 months from 

women presenting for routine hospital visits at the Simpson Memorial Maternity 

Pavilion in Edinburgh. Data were recorded at 12-13 weeks gestation and at approx- 

imately 32 weeks gestation. At each visit the women were asked if they smoked and 

if so, how many cigarettes they smoked per day. Maternal weight was recorded at 

both visits and maternal age and parity were recorded at 12-13 weeks only. Ges- 
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tational age was also confirmed at this visit by ultrasound screening, and maternal 

social class was determined. Urine samples were taken to determine each woman's 

nicotine intake. The presence of nicotine metabolites in the urine sample was indi- 

cated by pink-red chromophores in a diethylthiobarbituric acid extraction method 

and this gave an indication that the woman smoked. Concentrations of nicotine 

metabolites and creatinine were determined in those samples that tested positive for 

nicotine metabolites, and the ratio of nicotine metabolites to creatinine was calcu- 

lated. These were then corrected for the mean value taken from a random sample of 

urine samples that did not indicate the presence of nicotine metabolites. 139 women 

who claimed to be non-smokers gave positive results when tested by the diethylth- 

iobarbituric acid method, while 20 women who claimed to be smokers gave negative 

results. These women were excluded from the analyses. Birthweights were adjusted 

for the effects of maternal weight, maternal age, parity, gestation and infant sex 

using a multiple regression model. Cigarette consumption was categorised as 0 per 

day, 1-12 per day and more than 12 per day. The ratio of nicotine metabolites to 

creatinine was categorised as 0,0.01-11.0 and greater than 11.0. Placental weight 

was not affected by maternal smoking status. However, birthweight decreased if the 

mother was a smoker, with this effect being more apparent if the nicotine metabo- 

lites to creatinine ratios were considered. This may be due to inhalation patterns 

of smokers, in that women who smoke a high number of cigarettes inefficiently may 

have a lower nicotine intake than mothers who smoke a low number of cigarettes 

efficiently. 

Wilcox et al. [47] investigated the effect of smoking on birthweight after adjust- 

ment for the effects of physiological factors, by using data collected from University 

and City Hospitals in Nottingham and Derby City Hospital between August 1988 

and December 1991. Data were recorded at the point of patient contact. Gestational 

age was calculated from ultrasound measurements made before 25 weeks gestation, 

and ethnic group, maternal height, booking weight, parity, birthweight and infant 

sex were also recorded. Data on smoking and alcohol use were obtained at the 

booking visit. At one hospital, vaginal bleeding data were recorded and this was 

categorised as `mild' if there was no pain and hospitalisation was not required or 

`moderate' otherwise. Maternal weekly weight gain was calculated from the first and 
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last hospital visits with maternal weight data. Jarman index [26] was assigned by the 

electoral ward of the patient's address. The individualised birthweight ratio (IBR) 

was calculated for each infant by dividing the observed birthweight by the predicted 

birthweight from a multiple regression model containing gestational age, maternal 

weight, height, parity, ethnic group and infant sex. The adjusted birthweight was 

calculated by multiplying the IBR by the mean birthweight of a reference infant - 

male, 40 weeks gestation, European mother of parity 1, height 163 cm and weight 64 

kg. Infants who had a gestational age under 259 days or over 300 days were excluded, 

as were multiple births, stillbirths, infants with congenital abnormalities and in utero 

transfers. All subjects with complete data were used in the analysis. Smoking was 

defined by the number of cigarettes smoked per day - none, 1 to 9,10 to 19 and 20 

or more. After correcting for gestational age, maternal weight, height, parity, ethnic 

group and infant sex in a multiple regression model, smoking was shown to have an 

effect of a reduction in birthweight as the number of cigarettes consumed increased, 

the difference between non-smokers and those who smoked 20 or more cigarettes per 

day being 219 g, assuming all other factors were identical. 

Lang et al. [31] also investigated the effect of smoking on both pre-term delivery 

and SGA births at term. Smoking history was categorised as no smoking during 

pregnancy, stopped smoking early in pregnancy, started smoking later in pregnancy 

and smoked throughout pregnancy. Smoking was shown to have an effect of an 

increased risk of pre-term labour if the mother smoked throughout the pregnancy. 

The risk of a term SGA delivery increased compared to the reference of no smoking 

during pregnancy if the mother smoked throughout the pregnancy (relative risk of 

2.3) or started smoking later in the pregnancy (relative risk of 2). 

Smoking during pregnancy has been shown to increase the risk of low birthweight, 

pre-term birth and SGA births. In addition, maternal smoking is one of the few 

factors though to be related to low birthweight that can be changed by the mother. As 

such, while this may not be the most important factor in low birthweight deliveries, 

it is a factor that should be stressed to the mother as a risk that can be lessened. 
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2.1.4 Maternal Height 

Lang et al. [31] categorised maternal height as 5' or under, 5' 1" - 5' 4", 5' 5" - 5' 7", 

and greater than 5' 7". Using the 5' 5" - 5' 7" category as a reference, the categories 

of 5' or under and 5' 1" to 5' 4" had an increased risk of both pre-term delivery (1.4 

and 1.2 respectively) and term SGA delivery (3.0 and 1.6 respectively). In addition 

those women over 5' 7" had a decreased risk of term SGA delivery (0.7). 

Wessel et al. [46] categorised maternal height as 154 cm or under and 155 cm 

or over. The risk of a pre-term birth was greater in the 154 cm or under group, but 

this was not statistically significant. Similarly, the risk of a low birthweight infant 

was less in the 154 cm or under group, but this was also not statistically significant. 

2.1.5 Marital Status 

De Sanjose and Roman [14] investigated the marital status of women and the effect 

this had on low birthweight. It was found that mothers who were not married were 

more likely to deliver a low birthweight baby. 

Marital status was also investigated by Rodriquez et al. [41]. The results were 

similar to those of De Sanjose and Roman in that a higher proportion of unmarried 

mothers delivered a low birthweight baby in both term and pre-term births. 

Lang et al. [31] also investigated marital status, which was categorised as single, 

married and other. The risk of pre-term delivery was significantly higher for single 

mothers (2.2) compared to the reference of married mothers, while the risk of a term 

SGA delivery was increased for both single (2.0) and other (1.8) mothers. 

Unmarried mothers appear to have a higher risk of low birthweight babies. How- 

ever, it is likely that marital status and maternal age are highly correlated, with most 

of the high risk teenage pregnancies discussed earlier falling into the unmarried cat- 

egory, and as a result this is likely to be restating the result of the investigation of 

maternal age on birthweight. 

2.1.6 Obstetric factors 

Wessel et al. [46] investigated the effect of maternal hypertension or convulsions on 
both birthweight and pre-term delivery. While this had no effect on the risk of a low 

birthweight delivery, it was the only factor to show a significant effect on the risk 
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of pre-term birth, with women suffering from hypertension or convulsions having a 

relative risk of 2.6 over those women who did not. 
Bakketeig et al. [2] investigated the association between SGA and three types 

of maternal condition - pre-eclampsia, vaginal bleeding and pathological conditions 

of the placenta. Pathological conditions of the placenta included abruptio placenta, 

placenta previa and placental infarctions. For those women with pre-eclampsia, the 

relative risk of mothers delivering their first child as SGA was 2.1, compared with 

the reference category of mothers without pre-eclampsia delivering their first child. 

Similarly, the risks for mothers delivering their second and third children SGA, com- 

pared to women of the same parity but without pre-eclampsia, were 1.3 and 1.1. 

Similar results were obtained for those women with vaginal bleeding during preg- 

nancy, with the relative risks in the first, second and third pregnancies for women 

with vaginal bleeding delivering an SGA baby compared to those women with the 

same parity but with no vaginal bleeding being 2.1,1.6 and 1.6. For mothers who 

reported pathological conditions of the placenta, the relative risks of SGA deliveries 

in the first, second and third pregnancies were 2.1,1.7 and 2.1 compared to women 

of the same parity but with no placental conditions. 

2.1.7 Other Factors 

As described previously, Rasheed and Rahman [37] considered many factors that 

were similar to those in European studies. They also considered whether the fact 

that the child's parents were first cousins had any effect on birthweight. Of the 278 

cases considered, 166 (59.7%) were children born to parents who were first cousins. 

While this was not statistically significant in the model, children born to parents 

who were first cousins had a predictive birth weight of 74 g less than those whose 

parents were unrelated. 

2.2 Environmental Risk Factors 

2.2.1 Social Class 

Deprivation is often measured by social class, which is dependant on the occupation of 

the mother, or more usually the father. De Sanjose and Roman [14] investigated both 
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maternal and paternal social class. For maternal social class, the risk of delivering 

a low birthweight baby increased from social class I (professional) to HIM (the first 

manual class), and then remained similar between classes HIM and V (manual). For 

paternal social class there was a steady rise in the risk of a low birthweight baby 

from social classes I to V. 

Rodriquez et al. [41] also investigated the effect of maternal and paternal occu- 

pation. `Maternal activity' was categorised as outside the home, at home and other, 

while paternal occupation was categorised as manual, non-manual and other. For 

pre-term births, the proportion of low birthweight was lowest in mothers who worked 

outside the home and highest in mothers with `other' occupations. The proportion 

of low birthweight deliveries to mothers who stayed at home was significantly higher 

than those who worked outside the home. The proportion of low birthweight deliv- 

eries where the paternal occupation was manual was significantly higher than those 

where the paternal occupation was non-manual. Similar results were presented for 

term low birthweight deliveries, although there was no significant difference between 

maternal activity categories. 

Rasheed and Rahman (37] used number of rooms in the home, presence of a 
home help or housemaid, and mother's education as indicators of socio-economic 

status. The predictive birthweight of infants increased with the number of rooms, 

presence of help in the home and educational status of the mother, although none of 

the variables indicated a significantly different birthweight. 

2.2.2 Maternal Education 

Bakketeig et al. [2] considered maternal education as the number of years of school- 

ing, categorised as 7,9,12 and more than 12. Using mothers with more than 12 

years of schooling as the reference category, all other categories had a larger relative 

risk of delivering an SGA baby, with this risk increasing as the years of education 

decreased and with 7 and 9 years of education having a significantly higher risk. If 

the risk of delivering more than one SGA baby is considered then all categories had 

a significantly higher risk than that of those mothers who had more than 12 years of 

education, and this risk increased as the number of years of education decreased. 

Lang et al. [31] considered health insurance and maternal education, which can 
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be thought of as indicators of socio-economic status. Both public and other health 

insurance had a significantly higher risk of pre-term labour (1.8 and 2 respectively) 

and term SGA delivery (2.1 and 1.2 respectively) than the reference of private health 

care. Using a reference of high school graduate for maternal education, those mothers 

who were not high school graduates had a higher risk of both pre-term delivery and 

term SGA delivery (1.3 in both cases), and those mothers who had some college 

education had a lower risk of both pre-term delivery and term SGA delivery (0.5 and 

0.7 respectively). 

2.2.3 Deprivation Measures 

Wilcox et al. [47] considered the Jarman score [26], as discussed in Chapter 4, as 

a measure of social deprivation. This was categorised into 6 groups - under -20, 

-20 to -11, -10 to -1,0 to 9,10 to 19 and 20 or more, where a high Jarman score 

indicated increased area deprivation. As the Jarman score increased, the individu- 

alised birthweight ratio decreased significantly from 1.011 to 0.988, and so adjusted 

birthweight decreased from 3715 g to 3631 g. After correcting for gestational age, 

maternal weight, height, parity, ethnic group and infant sex in a multiple regression 

model, there was a significant effect of continuous Jarman score on birthweight, in 

that as the Jarman score increased, birthweight decreased. 

2.3 Conditions Related to Low Birthweight 

2.3.1 Infant Mortality and Morbidity 

The Scottish Low Birthweight Study Group [21,22] considered livebirths weighing 

under 1750 g who were born in Scotland in 1984.99% (896) of these births were 

enrolled in a prospective study to document survival and to determine the prevalence 

of sensory, neuromotor and cognitive impairments, language attainment, cognitive 

status and behavioural problems and to relate these to morbidity, social circum- 

stances and perinatal experiences. At 4.5 years an assessment of surviving children 

was carried out. 636 (71%) had survived to 4.5 years and of these 611 were assessed. 

Of those who had not survived, 217 died before 28 days, with most of these deaths 

being infants weighing under 1000 g, 36 died in the first year, 6 in the second year 
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and 1 between 2 and 4 years. Of the 204 infants born under 1000 g, only 60 survived 

to 4 years. Birthweights were categorised into 3 groups, under 1000 g, 1000-1499 

g, and 1500-1749 g, and the results of the assessments carried out were tested for a 

birthweight effect. The proportion of children with neuromotor impairment showed 

a significant trend with birthweight, with children under 1000 g being almost twice 

as likely to have some level of impairment compared with children between 1500 and 

1749 g. This was mainly due to those children with severe or moderate disability. 

Of all other impairments assessed, squints had an overall prevalence of 11.6%, and 

all other impairments had overall prevalences under 5%. Language attainment was 

assessed by two tests, the Renfrew action picture test (APT) and the bus story test 

of continuous speech (BSTCS). In the information part of the APT, significantly 

more children with a birthweight of under 1000 g scored below the 25th centile than 

in the other birthweight groups, and in the grammar part of the test, significantly 

less children with a birthweight less than 1000 g scored above the 75th centile than 

other birthweight groups. In the BSTCS there were very little differences between 

the birthweight groups, but in the information part of the test significantly more 

children with a birthweight of under 1000 g scored below the 25th centile than in 

the other birthweight groups. Cognitive ability was assessed using British ability 

scales (BAS) which in turn was used to calculate the IQ of the children assessed. 

There was no difference between the mean IQ in each of the birthweight groups. The 

mean scores in each section of the BAS were significantly lower than the standards. 

In the number skills section of the BAS there was a statistically significant effect of 

birthweight, this being that the number of children performing below the 10th centile 

decreased as the birthweight category increased. 

Hall et al. [24] considered a subgroup of the population discussed by the Scottish 

low birthweight study group [21,22] of children born under 1500 g who were still 

resident in Scotland at the age of eight to nine years. Two control classmates of each 

child were chosen for a comparison group to identify how these very low birthweight 

(VLBW) children differ from their classroom peers. Children in both the VLBW 

population and the control population had growth, blood pressure, respiratory func- 

tion, cognitive ability, school attainment, visual acuity and hearing measured. The 

VLBW population was split into two groups dependent on birthweight - under 1000 
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g at birth, and 1000 - 1499 g at birth. The control patients were also split into two 

groups dependent on the birthweight of the classmate they were controlling for. Both 

the children born under 1000 g and those born between 1000 and 1499 g performed 

significantly worse in movement tests than their control classmates, with many more 

children than expected falling below the 10th centile of the tests. Similarly the 

VLBW groups performed less well in the neurological screening tests, with 24% of 

the under 1000 g group having a normal score compared with the control group of 

88%, and 42% of the 1000 - 1499 g group having a normal score compared to 74% 

of the control group. In cognitive testing, there were significant differences between 

both VLBW groups and their controls in both verbal and visual IQs, and similarly 

with word reading and number skills. 

Kollee et al. [30] attempted to determine the 5-year outcome of VLBW infants 

who were referred to tertiary perinatal centres. The data used were of infants born 

in 1983 in the Netherlands at less than 32 weeks gestation or weighing less than 1500 

g, or both. The five-year outcome assessment was carried out on a subset of these 

infants, where antenatal care had not been received in one of the eight university 

hospitals serving as tertiary centres, gestation was between 26 and 31 completed 

weeks, normal cardiotocographic tracings were available and tocolysis had lasted 

more than 24 hours. This subset of infants was then split into those who were born 

after maternal transport to a tertiary centre (113) and those who were not, and these 

infants were then sub-divided into those who were transferred to a tertiary centre 

(124) and those who were not referred for tertiary care but were only treated in 

local hospitals (131). Of these 368 infants, 252 were available for investigation at 

the five-year follow-up, where the infants were assessed for congenital malformation, 

neuromotor function, mental development, hearing and visual function, language and 

speech development, musculoskeletal system, respiratory tract, and ear, nose and 

throat disorders, and from this it was determined whether the child was disabled 

or handicapped. Kolle et al. then investigated the relationship between mode of 

referral and outcome (disability, handicap or neither) using logistic regression and 

correcting for 20 possible risk factors. While the odds ratios for disabilities and 

handicaps for maternal transport versus infants born in local hospitals were 1.33 

and 0.87 respectively, these were not statistically significant. However, it was shown 
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that 31% of the infants were considered to be disabled and 15% were considered 

handicapped, which was a high percentage of those infants born VLBW. 

Kitchen et al. [29] assessed the outcome at 2 years of age of infants who were born 

with a birthweight between 500 g and 999 g. Two cohorts of infants were considered, 

those born between 1977 and 1982, and those born between 1985 and 1987. All 

births occurred at the Royal Women's Hospital in Carlton, Australia. Stillbirths were 

included in the study if there was a possibility that the foetus may have been alive at 

the start of labour. The outcome at 2 years of age was categorised as unacceptable if 

fetal or infant death occurred, or if the infant was severely disabled, and as acceptable 

if the infant survived to 2 years and was not severely disabled. The survival rates for 

the two cohorts were quite low (25.3% and 37.4%), and in each cohort the survival 

rate increased as the birthweight increased from 500 - 599 g to 900 - 999 g. Logistic 

regression, accounting for obstetric and sociodemographic variables, showed that 

gestational age, cervical suturing and the presence of antenatal haemorrhaging had a 

statistically significant effect on the 2 year outcome, as did antenatal steroid therapy, 

birthweight and sex of the infant. In addition the regression showed that those infants 

born in the second cohort had a significantly higher chance of an acceptable outcome, 

indicating the presence of a time effect on the outcome. 

2.3.2 Growth Impairment 

Powls et al. [36] compared the growth of VLBW children to that of normal birth- 

weight children of the same age group, examining factors that contribute to growth. 

The data used were of two groups of VLBW children treated at the Merseyside re- 

gional neonatal unit. The first group were children with a birthweight of 1200 g or 

less born between January 1980 and June 1981. The second group were children of 

1500 g or less, with a gestational age of less than 31 weeks, born between January 

1982 and November 1983. There were 137 children in total, none of who had any ma- 

jor neurodevelopmental handicap. A control population of 160 normal birthweight 

infants was recruited from classmates of the same sex and similar age to the VLBW 

children. Standing and sitting height, weight, occipito-frontal circumference (OFC), 

skinfold thickness and pubertal staging were measured in both populations, and stan- 

dardised tests of cognitive and educational ability were carried out on all children. 
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Bone age assessment was carried out on 96 of the VLBW population. There were sig- 

nificant differences between the VLBW and normal birthweight populations in both 

standing and sitting heights. VLBW boys were on average 3.8 cm shorter standing 

and 1.3 cm shorter sitting than their normal birthweight controls, while VLBW girls 

were on average 4.4 cm shorter standing and 2.2 cm shorter sitting than their normal 

birthweight counterparts. The VLBW children were also lighter than their controls, 

with the average difference in girls being larger than that in boys (3.8 kg and 1.1 kg 

respectively). Head circumference was significantly smaller in the VLBW children, 

being on average 0.7 cm less for boys and 1.1 cm less for girls compared with the con- 

trol population. A difference between the populations still existed after correction for 

standing height, indicating that the VLBW children had disproportionately smaller 

heads. There were no differences between the populations in the stage of pubertal 

growth reached. OFC was associated with cognitive and educational ability, those 

with a smaller OFC having poorer results in the educational tests. 



Chapter 3 

Analysis of Unlinked Data 

This chapter updates previous work carried out on birthweight in Scotland by Pick- 

ering [35], using more recent data. A univariate approach to those factors that may 

possibly be related to low birthweight is considered in order to choose variables to use 

in modelling the probability of delivering a low birthweight infant. Maternal length 

of stay is considered to investigate whether this differs over hospital or deprivation 

score, as are the caesarean section rates and the survival rates of infants. All low 

birthweight infants are considered to investigate whether medical complications can, 

in some way, explain low birthweight. Deprivation and maternal height are then 

investigated after correction for gestational age, and then some of the variables in- 

vestigated are considered as explanatory variables in fitting a possible model for low 

birthweight. 

3.1 Introduction 

In this chapter low birthweight within a geographically constrained population - 

namely Greater Glasgow Health Board (GGHB) - is considered, and previous work 

carried out on birthweight data is updated using a more recent data set. Specifically, 

it is intended to see whether the occurrence of low birthweight is in any way related to 

the Womersley score, also known as neighbourhood type -a score based on the 1981 

census data, and allocated to households by postcode sector. This scoring method is 

discussed in detail in chapter 4. Low birthweight is divided into two categories, very 

low birthweight, which is defined as a new born baby weighing 1500 g or less, and 

26 
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low birthweight, where the baby weighs between 1501 g and 2500 g. Both categories 

of low birthweight, and `normal' birthweight, which is defined here as a birth weight 

of more than 2500 g, are considered in the following analyses. 

The full data set was obtained from the Information and Statistics Division 

(ISD) of the Scottish Health Service and contained data for all admissions during 

pregnancy for all mothers either resident in Glasgow, or attending Glasgow hospi- 

tals, between January 1981 and December 1991. This data comes from one of the 

Scottish Morbidity Records (SMR), the SMR2. This form was introduced in 1969 

and was designed for use in maternity hospitals to obtain information for every hos- 

pital discharge. By 1975 96% of hospital deliveries in Scotland were recorded on it, 

incorporating the following sections: general information on the mother, including 

age, occupation and marital status; information on the current pregnancy, including 

date of admission, date of last menstrual period, and abortion details if relevant; the 

outcomes of any previous pregnancies, indicating the number of previous abortions, 

miscarriages, deaths and caesarean sections; maternal discharge data, including the 

date of discharge; a record of labour, including the number of births, mode of de- 

livery and sex of the infant; postnatal infant details, including whether the infant 

was sent to a Special Care Baby Unit; and any conditions or complications present. 

As one record is completed at each discharge, one record per pregnancy contains 

delivery details but there may be other records indicating periods of antenatal ad- 

mission [12]. The variables in this data set are shown in appendix A. In order to give 

a well-defined geographically constrained population, the subset of these data used 

were those women who were resident in the Greater Glasgow Health Board area, and 

delivering in or attending Glasgow hospitals. The analyses in this chapter exclude 

those women who had either a stillbirth or a multiple birth unless otherwise stated. 

Four analyses were considered -a descriptive analysis of the type of mother 

delivering a baby in each of the three birthweight groups; the average length of 

stay in hospital by neighbourhood type and by hospital; caesarean section rates 

by neighbourhood type and by hospital, and finally survival rates for livebirths by 

neighbourhood type and by hospital. 
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3.2 Descriptive Analysis 

Here tabulations of variables that may be thought of as being relevant to the oc- 

currence of low birthweight are provided. Statistical modelling is discussed in later 

chapters. 

As the data set used provided has a large number of records - over 130,000 - it 

was decided to use data from 1981 and 1991 only. For both years, the birthweight 

category and 9 other variables pertaining to the mother were considered. These other 

variables were : 

9 Maternal age 

" Womersley neighbourhood type (1=affluent, 8=deprived) 

" Marital status 

" Parity 

" Hospital 

" Previous induced abortions 

" Previous spontaneous abortions 

" Maternal height 

" Gestational age 

Maternal age was grouped into the following categories: less than 16,16-19,20- 

24,25-29,30-34,35-39,40-44,45-49 and 50-54, and maternal height into the following 

categories: under 150cm, 150-154cm, 155-159cm, 160-164cm, 165-169cm, 170-174cm, 

175-179cm, 180-184cm and 185-189cm. In order to compare over categories of the 

above variables, and between the two years, the proportions in each of the three 

birthweight categories were calculated for the different categories in the variables of 

interest. All tables not shown here are presented in appendix B. 

Maternal age has been shown previously to be an indicator of low birthweight as 

discussed in chapter 2 [14,42,37,46]. As can be seen from table B. 1, most women 

have a maternal age between 20 and 34, with more 20-24 year old mothers in 1981 



CHAPTER 3. ANALYSIS OF UNLINKED DATA 29 

than in 1991, while the numbers of mothers in other age categories is reasonably 

similar over the two years. There does not appear to be much difference for 1981 

deliveries in the proportion of very low birthweight, low birthweight, or normal birth- 

weight babies in each age group unless the mother is in her early forties, or is under 

sixteen. In both of these cases the proportion of very low birthweight babies becomes 

much higher. In 1991 there was again not much difference in proportions unless the 

mother was a teenager, in which case the proportions of very low birthweight and 

low birthweight babies were slightly higher. There does not seem to be a difference 

in proportions between the two years. 

The Womersley neighbourhood type, which is discussed in detail in chapter 4, 

is an ordered categorical measurement of deprivation, with a Womersley neighbour- 

hood type of 1 indicating the most affluent areas and a Womersley neighbourhood 

type of 8 indicating the most deprived area. There are similar numbers of mothers 

in the neighbourhood type areas over 1981 and 1991, with types 5 and 8 having 

more deliveries and type 6 having less than the other types. It can be seen from 

table 3.1 that for both years, as the neighbourhood type increases from 1 to 8, i. e. 

from affluent areas to deprived areas, the proportion of normal birthweight babies 

steadily decreases. However there is no apparent trend in the proportion of very low 

birthweight babies, while the proportion of low birthweight babies increases. This 

suggests that while neighbourhood type does have an effect on birthweight, the effect 

is not present in those cases where the babies are very low birthweight. One rea- 

son for this may be that while neighbourhood type has an effect on low birthweight 

babies, very low birthweight babies are born as a result of underlying obstetrical 

problems, which are not related to neighbourhood type. 

Marital status has been considered an indicator of the possibility of low birth- 

weight [14,41]. The results in table B. 2 appear to bear this out, as for both years the 

proportion of very low birthweight and low birthweight babies appears to be higher 

for those mothers who are either single or separated, and there does not seem to be 

much difference between the two years. However, the number of single mothers has 

more than doubled in the 11 year period between 1981 and 1991, and many more 

women have been categorised as 'other', resulting in a drop in the number of married 

mothers. 
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1981 1991 

Womersley 

VLBW LBW NBW 

Womersley 

VLBW LBW NBW 

1 (n=1354) 0.0052 0.0281 0.9668 1 (n=1526) 0.0046 0.0315 0.9640 

2 (n=1155) 0.0069 0.0398 0.9532 2 (n=1102) 0.0109 0.0381 0.9510 

3 (n=1241) 0.0040 0.0371 0.9589 3 (n=1149) 0.0078 0.0383 0.9539 

4 (n=1219) 0.0049 0.0500 0.9450 4 (n=1689) 0.0065 0.0491 0.9443 

5 (n=2549) 0.0090 0.0596 0.9313 5 (n=2406) 0.0087 0.0615 0.9298 

6 (n=889) 0.0056 0.0641 0.9303 6 (n=713) 0.0056 0.0547 0.9397 

7 (n=1827) 0.0088 0.0805 0.9108 7 (n=1339) 0.0082 0.0792 0.9126 

8 (n=2307) 0.0069 0.0728 0.9202 8 (n=2323) 0.0121 0.0762 0.9118 

Table 3.1: Relationship between birthweight category and Womersley neighbourhood 

type. 

Considering next the parity of the mother, table B. 3 shows that if the mother 

has had less than three previous pregnancies, there seems to be no difference in the 

proportions in each birthweight category. For those with more than four previous 

pregnancies, the proportion of low birthweight babies seems to increase with the 

parity of the mother. Again these proportions do not differ much over the two years. 
If the case mix of patients was similar in each hospital, it would seem reasonable 

to assume there should be no differences between hospitals in the same year, and this 

is borne out in table B. 4. There are 6 hospitals in Greater Glasgow Health Board 

(GGHB) with data, labelled 1 to 6 here for convenience. Of these one, denoted here 

as hospital 4, was a private hospital with under 100 births per year which closed 

down before 1991. In the light of this, it was decided to consider mothers who had 

delivered in hospital 4 in all other tables, but to remove them from any analyses 

that were carried out by hospital. In considering all hospitals except hospital 4, the 

proportions in each birthweight category are similar over hospitals. More deliveries 

occur in hospitals 1 and 6 than in hospitals 2,3 and 5. 

In looking at the obstetric history of the mother two possibly relevant factors 

are considered - the number of previous spontaneous abortions (miscarriages), and 

the number of previous induced abortions. Each has been shown by Lang et al. [31] 

to affect the length of future pregnancies and hence from this it may be possible 
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that the birthweight in future pregnancies will also be affected. From table B. 5 it 

can be seen that although the proportion of low birthweight babies remains fairly 

constant as the number of induced abortions increases, the proportion of very low 

birthweight babies is higher for those mothers with two previous induced abortions. 

It is difficult to interpret the figures for three and four previous induced abortions, 

as the number of mothers involved is very small, with under 1% of women having 

more than one induced abortion. The proportions of both very low birthweight and 

low birthweight babies increase as the number of spontaneous abortions increases, as 

shown in table B. 6. This may be expected, as a spontaneous abortion may suggest 

an obstetric abnormality that may be present in further pregnancies, although it may 

not have the same effect, and this may increase the likelihood of a low birthweight 

baby. 

In considering maternal height, an increase in low birthweight babies as maternal 

height decreases may be expected, as small mothers would be thought of as more 

likely to produce small babies. As maternal height increases, table 3.2 shows that the 

proportion of very low birthweight decreases and that of normal birthweight babies 

increases. Also, for mothers over 174 cm in 1981, and 179 cm in 1991, no very low 

birthweight babies were born. Most mothers are between 150 cm and 169 cm in 

height, with very few women over 175 cm tall. 

1981 1991 

Height (cm) VLBW LBW NBW Height (cm) VLBW LBW NBW 

<150 (n=696) 0.0057 0.1049 0.8894 <150 (n=334) 0.0089 0.1228 0.8683 

150-154 (n=2162) 0.0065 0.0828 0.9107 150-154 (n=1412) 0.0113 0.0899 0.8987 

155-159 (n=3635) 0.0074 0.0572 0.9354 155-159 (n=2936) 0.0078 0.0647 0.9275 

160-164 (n=3350) 0.0057 0.0418 0.9525 160-164 (n=3459) 0.0066 0.0442 0.9491 

165-169 (n=1653) 0.0042 0.0357 0.9601 165-169 (n=2179) 0.0060 0.0358 0.9582 

170-174 (n=429) 0.0070 0.0187 0.9744 170-174 (n=876) 0.0023 0.0285 0.9692 

175-179 (n=68) 0.0000 0.0147 0.9853 175-179(n=192) 0.0052 0.0156 0.9792 

180-184 (n=7) 0.0000 0.1429 0.8571 180-184 (n=26) 0.0000 0.0000 1.0000 

185-189 (n=3) 0.0000 0.0000 1.0000 185-189 (n=1) 0.0000 0.0000 1.0000 

unknown (n=538) 0.0223 0.0855 0.8922 unknown (n=832) 0.0264 0.0841 0.8894 

Table 3.2: Relationship between birthweight category and maternal height. 
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Gestational age clearly must have an effect on the birthweight of the baby. Ta- 

ble 3.3 shows that most deliveries take place between 38 and 41 weeks gestation, 

with less than 1% taking place before 32 weeks. For gestations under 32 weeks, most 

babies are very low birthweight, and those that are not are mostly low birthweight. 

Then, as the gestational age increases the proportion of very low birthweight and 

low birthweight babies decrease. 

1981 1991 

Gestation 

(weeks) VLBW LBW NBW 

Gestation 

(weeks) VLBW LBW NBW 

<32 (n=108) 0.5918 0.3571 0.0510 <32 (n=110) 0.7000 0.3000 0.0000 

32-36 (n=574) 0.0296 0.5383 0.4321 32-36 (n=628) 0.0414 0.4857 0.4729 

37 (n=553) 0.0018 0.1591 0.8391 37 (n=695) 0.0000 0.1482 0.8518 

38 (n=1563) 0.0000 0.0678 0.9322 38 (n=1684) 0.0000 0.0635 0.9365 

39 (n=2624) 0.0000 0.0282 0.9718 39 (n=2492) 0.0000 0.0261 0.9739 

40 (n=4566) 0.0000 0.0160 0.9840 40 (n=4067) 0.0000 0.0140 0.9860 

41 (n=2203) 0.0000 0.0104 0.9896 41 (n=2179) 0.0000 0.0073 0.9927 

>41 (n=350) 0.0000 0.0200 0.9800 >41 (n=392) 0.0000 0.0026 0.9974 

Table 3.3: Relationship between birthweight category and gestational age. 

3.3 Rates of Survival 

In this section the survival rates of babies born in different birthweight categories, 
hospitals, and to mothers of different neighbourhood types are investigated. Again 

all singleton livebirths are considered, and are divided into VLBW, LBW, and NBW 

as before. Only 1981 and 1991 are considered for LBW and NBW births, and 1981 

to 1991 inclusive for VLBW babies. The SMR2 form gives five possibilities for the 

outcome of a pregnancy, those being: 

9 Livebirth 

" Stillbirth 

" Livebirth, died aged <7 days 

" Livebirth, died aged 7-28 days 
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" Livebirth, died aged >28 days 

All singleton livebirths, whether or not they subsequently died, are considered. 

Those babies who were livebirths and were not categorised as dying at any point are 

considered survivors. Many stillbirths occur at an early gestation and thus the baby 

is likely to be low birthweight. For this reason stillbirths are not considered here as 
they may bias the conclusions. 

3.3.1 Neighbourhood Type 

Womersley Total 

Survivals 

Total 

Livebirths 

Proportion 

Surviving 

1 57 70 0.8143 

2 52 76 0.6842 

3 65 85 0.7647 

4 95 116 0.8190 

5 157 204 0.7696 

6 59 73 0.8082 

7 117 147 0.7959 

8 185 238 0.7773 

Table 3.4: Proportion of survivals for VLBW by Womersley neighbourhood type, 

singleton livebirths between 1981 and 1991. 

For each neighbourhood type, the total number of singleton livebirths and the 

number of those who survived were calculated, and from this the proportion of sur- 

vivals for each neighbourhood type was calculated. The results for VLBW babies are 

shown in table 3.4, and are quite similar, with the exception of type 2, which seems 

to be lower than the others. 

The proportions of LBW babies surviving, shown in table 3.5, do not appear 

to change much with neighbourhood type. The exception to this, in both 1981 and 

1991, is type 6, which is slightly lower than the rest. Comparing the two years, the 

proportion of babies surviving in 1991 is similar to the proportion in 1981. For NBW 
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1981 1991 

Womersley Total 

Surv. 

Total 

Births 

Prop. Of 

Survivals 

Womersley Total 

Surv. 

Total 

Births 

Prop. Of 

Survivals 

1 37 38 0.9737 1 48 48 1.0000 

2 45 46 0.9783 2 41 42 0.9762 

3 46 46 1.0000 3 43 44 0.9773 

4 59 61 0.9672 4 83 83 1.0000 

5 150 152 0.9868 5 146 148 0.9865 

6 53 57 0.9298 6 37 39 0.9487 

7 145 147 0.9863 7 105 106 0.9906 

8 162 168 0.9643 1 18 176 177 0.9944 

Table 3.5: Proportion of survivals for LBW by neighbourhood type, singleton live- 

births in 1981 and 1991. 

babies, the figures in table 3.6 are all very similar, and it would be difficult to say 

that there is a difference anywhere, either between the two years, or between the 

neighbourhood types. Comparing the three tables together, the proportion of NBW 

and LBW babies surviving are comparable, but the proportion of VLBW babies 

surviving is less than the proportion of NBW and LBW survivals, as is expected. 

1981 1991 

Womersley Total 

Surv. 

Total 

Births 

Prop. Of 

Survivals 

Womersley Total 

Surv. 

Total 

Births 

Prop. Of 

Survivals 

1 1307 1309 0.9985 1 1470 1471 0.9993 

2 1099 1101 0.9982 2 1045 1048 0.9971 

3 1189 1190 0.9992 3 1094 1096 0.9981 

4 1150 1152 0.9983 4 1593 1595 0.9987 

5 2372 2374 0.9992 5 2232 2237 0.9978 

6 827 827 1.0000 6 670 670 1.0000 

7 1661 1664 0.9982 7 1218 1222 0.9967 

8 2123 2123 1.0000 1 18 2114 2118 0.9981 

Table 3.6: Proportion of survivals for NBW by neighbourhood type, singleton live- 

births in 1981 and 1991. 
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3.3.2 Hospital 

For each hospital, the proportion of babies surviving was calculated as with neigh- 

bourhood type. For VLBW babies, shown in table 3.7, hospitals 5 and 6 have a 

slightly higher survival rate than the other hospitals. 

Hospital Total 

Survivals 

Total 

Births 

Proportion 

Surviving 

1 243 320 0.7594 

2 106 139 0.7626 

3 93 121 0.7686 

5 140 170 0.8235 

6 204 257 0.7938 

Table 3.7: Proportion of survivals for VLBW by hospital, singleton livebirths between 

1981 and 1991. 

1981 1991 

Hospital Total 

Survivals 

Total 

Births 

Proportion 

Surviving 

Hospital Total 

Survivals 

Total 

Births 

Proportion 

Surviving 

1 203 210 0.9667 1 219 224 0.9777 

2 121 123 0.9837 2 74 74 1.0000 

3 107 109 0.9817 3 126 126 1.0000 

5 129 132 0.9773 5 120 121 0.9917 

6 135 139 0.9712 6 140 142 0.9859 

Table 3.8: Proportion of survivals for LBW by hospital, singleton livebirths in 1981 

and 1991. 

The proportions of LBW babies surviving in each hospital are quite similar, 

and there is a slight increase in the proportions between 1981 and 1991 as shown 

in table 3.8. For NBW babies there is little difference anywhere, either between 

hospitals or between years, as shown in table 3.9. 
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1981 1991 

Hospital Total 

Survivals 

Total 

Births 

Proportion 

Surviving 

Hospital Total 

Survivals 

Total 

Births 

Proportion 

Surviving 

1 3028 3030 0.9993 1 3184 3191 0.9978 

2 1930 1932 0.9990 2 1709 1713 0.9977 

3 1895 1898 0.9984 3 1939 1940 0.9995 

5 2013 2015 0.9990 5 1841 1844 0.9984 

6 2754 2757 0.9989 1 16 2762 2768 0.9978 

Table 3.9: Proportion of survivals for NBW by hospital, singleton livebirths in 1981 

and 1991. 

3.3.3 Year Effect 

If all data from the eleven year period are used with babies separated into VLBW, 

LBW, and NBW, then table 3.10 shows that there appears to be an upwards trend 

in the proportion of VLBW babies surviving over the eleven year period. 

Year Total 

Survivals 

Total 

Births 

Proportion 

Surviving 

1981 56 86 0.6512 

1982 51 82 0.6220 

1983 65 81 0.8025 

1984 77 100 0.7700 

1985 70 88 0.7955 

1986 77 93 0.8280 

1987 70 82 0.8537 

1988 81 101 0.8020 

1989 71 98 0.7245 

1990 81 95 0.8526 

1991 88 103 0.8544 

Table 3.10: Proportion of survivals for VLBW by year, singleton livebirths between 

1981 and 1991. 
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For LBW and NBW babies, as shown in tables 3.11 and 3.12 the numbers are 

so close to unity that it is impossible to conclude anything about a trend. From this 

it can be seen that while the proportion of babies weighing over 1500 g who survive 
does not appear to change, the proportion of VLBW babies surviving increases. This 

may be due to increased specialist care in special care baby units (SCBUs) of VLBW 

babies. 

Year Total 

Survivals 

Total 

Births 

Proportion 

Surviving 

1981 697 715 0.9748 

1982 657 670 0.9806 

1983 635 646 0.9830 

1984 649 665 0.9759 

1985 716 720 0.9944 

1986 713 719 0.9917 

1987 712 721 0.9875 

1988 687 698 0.9842 

1989 652 658 0.9909 

1990 584 591 0.9882 

1991 679 687 0.9884 

Table 3.11: Proportion of survivals for LBW by year, singleton livebirths between 

1981 and 1991. 

3.4 Maternal Complications 

There are various complications that can occur in pregnancy, and some of these 

are thought to increase the likelihood of an early birth, which in turn increases the 

risk of low birthweight. In this section only VLBW and LBW births are of inter- 

est. All births where the mother suffered from placenta previa, premature placental 

separation, antepartum haemorrhaging, or hypertension shall be defined here as an 

`explained' low birthweight, and the proportion `explained' by one or more of these 
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Year Total 

Survivals 

Total 

Births 

Proportion 

Surviving 

1981 11728 11740 0.9990 

1982 11335 11355 0.9982 

1983 11203 11215 0.9989 

1984 11277 11286 0.9992 

1985 11542 11559 0.9985 

1986 11538 11546 0.9993 

1987 11533 11542 0.9992 

1988 11539 11554 0.9987 

1989 10983 10994 0.9990 

1990 10563 10576 0.9988 

1991 11436 11457 0.9982 

Table 3.12: Proportion of survivals for NBW by year, singleton livebirths between 

1981 and 1991. 
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maternal conditions is investigated. 

3.4.1 Neighbourhood Type 

Womersley Total 

Explained 

Total 

Cases 

Proportion 

Explained 

1 19 70 0.2714 

2 23 76 0.3026 

3 27 85 0.3176 

4 34 116 0.2931 

5 69 204 0.3382 

6 20 73 0.2740 

7 44 147 0.2993 

8 64 238 0.2689 

Table 3.13: Proportion of explained LBW deliveries by Womersley neighbourhood 

type, singleton livebirths between 1981 and 1991. 

In the case of VLBW babies, shown in table 3.13, there does not appear to 

be much difference between neighbourhood types. Considering LBW babies, in ta- 

ble 3.14, again there is not much difference between neighbourhood types, except 

that in 1981, types 1 and 2, and 7 and 8, the most affluent and deprived areas, seem 

to have a higher proportion of explained low birthweight than the others. Also, for 

LBW babies, there does not appear to be much difference between the two years. 

3.4.2 Hospital 

Considering first VLBW babies in table 3.15, the proportion of explained VLBW 

births is similar for each hospital, with the exception of hospital 3 which is slightly 
higher. For the LBW babies table 3.16 shows that in 1981 hospitals 3 and 5 had a 

smaller proportion of explained LBW than the others, and in 1991 hospital 5 had a 

smaller proportion of explained LBW than the other hospitals. Over the years, the 

proportion decreases in all hospitals except hospital 3. 
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1981 1991 

Womersley Total 

Expl. 

Total 

Cases 

Prop. 

Expl. 

Womersley Total 

Expl. 

Total 

Cases 

Prop. 

Expl. 

1 11 38 0.2895 1 6 48 0.1250 

2 10 46 0.2174 2 9 42 0.2143 

3 5 46 0.1087 3 10 44 0.2273 

4 12 61 0.1967 4 12 83 0.1446 

5 26 152 0.1711 5 21 148 0.1419 

6 6 57 0.1053 6 6 39 0.1538 

7 36 147 0.2449 7 15 106 0.1415 

8 36 168 0.2143 8 22 177 0.1243 

Table 3.14: Proportion of explained LBW deliveries by neighbourhood type, singleton 

livebirths in 1981 and 1991. 

Hospital Total 

Explained 

Total 

Cases 

Proportion 

Explained 

1 100 320 0.3125 

2 38 139 0.2734 

3 46 121 0.3802 

5 46 170 0.2706 

6 70 257 0.2724 

Table 3.15: Proportion of explained VLBW deliveries by hospital, singleton livebirths 

between 1981 and 1991. 
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Although the proportions of explained VLBW and LBW births seem to differ 

over hospitals, it must be pointed out that there may be several reasons for this. 

One major reason is the difference in referral strategies of doctors and hospitals 

themselves. A hospital may have the policy that a life threatening complication may 

be better dealt with at a neighbouring hospital with better facilities to deal with the 

problem, in which case the first hospital would have a smaller proportion of explained 

VLBW and LBW babies than the second. Clearly conclusions cannot be drawn from 

this data without further investigation of such possible factors. 

1981 1991 

Hospital Total 

Explained 

Total 

Cases 

Prop. 

Expl. 

Hospital Total 

Explained 

Total 

Cases 

Prop. 

Expl. 

1 55 210 0.2619 1 28 224 0.1250 

2 25 123 0.2033 2 11 74 0.1486 

3 12 109 0.1101 3 25 126 0.1984 

5 12 132 0.0909 5 8 121 0.0661 

6 37 139 0.2662 6 29 142 0.2024 

Table 3.16: Proportion of explained LBW deliveries by hospital, singleton livebirths 

in 1981 and 1991. 

3.5 Correcting For Gestational Age 

As mentioned in the previous section, it is possible for one specific variable to sug- 

gest a trend in birthweights, but when other factors are taken into account this 

trend may no longer exist as it is explained by other factors. Several variables pre- 

viously discussed in this chapter have appeared to be related to the occurrence of 

low birthweight. This section discusses two factors that are undoubtedly related to 

birthweight, gestational age and maternal height, and also investigates Womersley 

neighbourhood type. 

In order to correct the proportions of each birthweight category for gestational 

age, the data were divided into eight gestational age categories, and for each of these 
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categories, the proportion of VLBW and LBW babies for each neighbourhood type 

or maternal height category were calculated. The data used in this section are from 

all Glasgow resident mothers, delivering singleton livebirths in Glasgow hospitals in 

1981 to 1991 inclusive. 

3.5.1 Neighbourhood Type 

The proportions of babies born in each birthweight category and neighbourhood 

type for each gestational category are shown in table 3.17. This shows that although 

there seems to be no difference over neighbourhood type for these babies born at 

less than 32 weeks, or for those babies born at 41 weeks or beyond, for all other 

gestational ages there appears to be an increase in the proportion of LBW babies 

as the neighbourhood type increases. This suggests that unless the baby is very 

pre-term, or late, then those women living in less affluent areas of Glasgow are more 

likely to give birth to a LBW baby. 

3.5.2 Maternal Height 

The numbers of babies born in each maternal height category and birthweight cat- 

egory are shown in table 3.18. Excepting those babies born at under 32 weeks 

gestation, and at 41 weeks and over, there seems to be a clear trend in the rate of 

LBW. The proportion of babies that are LBW at a given gestational age decreases as 

the height of the mother increases. This is to be expected, as it would be supposed 

that smaller mothers would be more likely to give birth to smaller babies. 
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Under 32 weeks 32-36 weeks 
Womersley Prop. 

VLBW 
Prop. 
LBW 

Prop. 
NBW 

Womersley Prop. 
VLBW 

Prop. 
LBW 

Prop. 
NBW 

1 (n=85) 0.612 0.353 0.035 1 (n=582) 0.029 0.469 0.502 
2 (n=83) 0.711 0.289 0.000 2 (n=450) 0.033 0.453 0.513 
3 (n=100) 0.720 0.260 0.020 3 (n=573) 0.021 0.480 0.499 
4 (n=131) 0.687 0.305 0.008 4 (n=774) 0.031 0.465 0.504 
5 (n=253) 0.656 0.324 0.020 5 (n=1392) 0.026 0.508 0.466 
6 (n=75) 0.667 0.280 0.053 6 (n=461) 0.048 0.469 0.484 
7 (n=174) 0.603 0.368 0.029 7 (n=1116) 0.036 0.528 0.436 
8 (n=282) 0.652 0.337 0.011 8 (n=1385) 0.038 0.512 0.451 

37 weeks 38 weeks 
Womersley Prop. 

VLBW 
Prop. 
LBW 

Prop. 
NBW 

Womersley Prop. 
VLBW 

Prop. 
LBW 

Prop. 
NBW 

1 (n=636) 0.000 0.101 0.899 1 (n=2022) 0.000 0.044 0.956 
2 (n=461) 0.000 0.126 0.874 2 (n=1516) 0.001 0.043 0.956 
3 (n=584) 0.002 0.108 0.890 3 (n=1692) 0.000 0.046 0.954 
4 (n=817) 0.001 0.154 0.845 4 (n=2066) 0.000 0.072 0.928 
5 (n=1307) 0.001 0.151 0.848 5 (n=3553) 0.000 0.073 0.927 
6 (n=488) 0.000 0.129 0.871 6 (n=1264) 0.000 0.080 0.920 
7 (n=1047) 0.001 0.172 0.827 7 (n=2628) 0.000 0.080 0.920 
8 (n=1284) 0.001 0.166 0.833 8 (n=3460) 0.000 0.070 0.930 

39 weeks 40 weeks 
Womersley Prop. 

VLBW 
Prop. 
LBW 

Prop. 
NBW 

Womersley Prop. 
VLBW 

Prop. 
LBW 

Prop. 
NBW 

1 (n=3440) 0.000 0.013 0.987 1 (n=5609) 0.000 0.007 0.993 
2 (n=2677) 0.000 0.021 0.979 2 (n=4338) 0.000 0.009 0.991 
3 (n=2825) 0.000 0.017 0.983 3 (n=4634) 0.000 0.007 0.993 
4 (n=3272) 0.000 0.027 0.973 4 (n=5278) 0.000 0.014 0.986 
5 (n=5656) 0.000 0.033 0.967 5 (n=9188) 0.000 0.015 0.985 
6 (n=2065) 0.000 0.033 0.966 6 (n=2901) 0.000 0.012 0.988 
7 (n=3827) 0.000 0.038 0.962 7 (n=5475) 0.000 0.021 0.979 
8 (n=5200) 0.000 0.039 0.961 8 (n=8286) 0.000 0.019 0.981 

41 weeks 42+ weeks 
Womersley Prop. 

VLBW 
Prop. 
LBW 

Prop. 
NBW 

Womersley Prop. 
VLBW 

Prop. 
LBW 

Prop. 
NBW 

1 (n=2733) 0.000 0.004 0.996 1 (n=404) 0.000 0.000 1.000 
2 (n=2203) 0.000 0.001 0.999 2 (n=321) 0.000 0.006 0.994 
3 (n=2409) 0.000 0.006 0.994 3 (n=325) 0.000 0.000 1.000 
4 (n=2832) 0.000 0.005 0.995 4 (n=529) 0.000 0.006 0.994 
5 (n=4336) 0.000 0.006 0.994 5 (n=692) 0.000 0.006 0.994 
6 (n=1476) 0.000 0.007 0.993 6 (n=252) 0.000 0.008 0.992 
7 (n=2369) 0.000 0.011 0.989 7 (n=326) 0.000 0.012 0.988 
8 (n=4052) 0.000 0.006 0.994 8 (n=652) 0.000 0.006 0.994 

Table 3.17: Proportion of births in each birthweight category by Womersley neigh- 
bourhood type and gestational age, singleton livebirths between 1981 and 1991. 
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Under 32 weeks 32-36 weeks 
Maternal 
Height (cm) 

Prop. 
VLBW 

Prop. 
LBW 

Prop. 
NBW 

Maternal 
Height (cm) 

Prop. 
VLBW 

Prop. 
LBW 

Prop. 
NBW 

<150 (n=74) 0.595 0.405 0.000 <150 (n=393) 0.041 0.583 0.377 
150-154 (n=188) 0.622 0.351 0.027 150-154 (n=1148) 0.048 0.524 0.428 
155-159 (n=279) 0.685 0.290 0.025 155-159 (n=1759) 0.024 0.512 0.464 
160-164 (n=282) 0.638 0.344 0.018 160-164 (n=1702) 0.026 0.484 0.490 
165-169 (n=147) 0.619 0.361 0.020 165-169 (n=809) 0.037 0.423 0.540 
170-174 (n=40) 0.800 0.200 0.000 170-174 (n=220) 0.032 0.368 0.600 
175-179 (n=7) 0.857 0.143 0.000 175-179 (n=45) 0.022 0.222 0.756 
180-184 (n=0) - - - 180-184 (n=7) 0.000 0.286 0.714 
185-189 (n=0) - - -1 1 185-189 (n=1) 0.000 0.000 1.000 

37 weeks 38 weeks 
Maternal 
Height (cm) 

Prop. 
VLBW 

Prop. 
LBW 

Prop. 
NBW 

Maternal 
Height (cm) 

Prop. 
VLBW 

Prop. 
LBW 

Prop. 
NBW 

<150 (n=418) 0.000 0.196 0.804 <150 (n=983) 0.000 0.137 0.863 
150-154 (n=1063) 0.001 0.205 0.794 150-154 (n=2856) 0.000 0.089 0.911 
155-159 (n=1827) 0.001 0.153 0.846 155-159 (n=4992) 0.000 0.067 0.933 
160-164 (n=1720) 0.000 0.122 0.878 160-164 (n=4808) 0.000 0.050 0.950 
165-169 (n=834) 0.001 0.096 0.903 165-169 (n=2484) 0.000 0.042 0.958 
170-174 (n=274) 0.000 0.106 0.894 170-174 (n=821) 0.000 0.040 0.960 
170-179 (n=53) 0.000 0.019 0.981 175-179 (n=146) 0.000 0.027 0.973 
180-184 (n=9) 0.000 0.000 1.000 180-184 (n=23) 0.000 0.000 1.000 
185-189 (n=0) - - - 185-189 (n=7) 0.000 0.000 1.000 
190-194 (n=0) - - - 190-194 (n=1) 0.000 0.000 1.000 
195-199 (n=0) - - - 195-199 (n=1) 0.000 0.000 1.000 

39 weeks 40 weeks 
Maternal 
Height (cm) 

Prop. 
VLBW 

Prop. 
LBW 

Prop. 
NBW 

Maternal 
Height (cm) 

Prop. 
VLBW 

Prop. 
LBW 

Prop. 
NBW 

<150 (n=1215) 0.000 0.077 0.923 <150 (n=1598) 0.000 0.039 0.961 
150-154 (n=4189) 0.000 0.046 0.954 150-154 (n=6229) 0.000 0.023 0.977 
155-159 (n=7727) 0.000 0.031 0.969 155-159 (n=11956) 0.000 0.016 0.984 
160-164 (n=7998) 0.000 0.023 0.977 160-164 (n=13028) 0.000 0.010 0.990 
165-169 (n=4450) 0.000 0.016 0.984 165-169 (n=7274) 0.000 0.006 0.994 
170-174 (n=1489) 0.001 0.010 0.989 170-174 (n=2507) 0.000 0.002 0.998 
175-179 (n=292) 0.000 0.014 0.986 175-179 (n=485) 0.000 0.004 0.996 
180-184 (n=39) 0.000 0.026 0.974 180-184 (n=65) 0.000 0.000 1.000 
185-189 (n=5) 0.000 0.000 1.000 185-189 (n=10) 0.000 0.000 1.000 
190-194 (n=1) 0.000 0.000 1.000 1 

1 
190-194 (n=0) - - - 

41 weeks 42+ weeks 
Maternal 
Height (cm) 

Prop. 
VLBW 

Prop. 
LBW 

Prop. 
NBW 

Maternal 
Height (cm) 

Prop. 
VLBW 

Prop. 
LBW 

Prop. 
NBW 

<150 (n=616) 0.000 0.010 0.990 <150 (n=93) 0.000 0.043 0.957 
150-154 (n=2734) 0.000 0.013 0.987 150-154 (n=433) 0.000 0.007 0.993 
155-159 (n=5889) 0.000 0.005 0.995 155-159 (n=915) 0.000 0.009 0.991 
160-164 (n=6426) 0.000 0.004 0.996 160-164 (n=1038) 0.000 0.003 0.997 
165-169 (n=3891) 0.000 0.002 0.998 165-169 (n=593) 0.000 0.002 0.008 
170-174 (n=1388) 0.000 0.004 0.996 170-174 (n=214) 0.000 0.000 1.000 
175-179 (n=278) 0.000 0.007 0.993 175-179 (n=51) 0.000 0.000 1.000 
180-184 (n=33) 0.000 0.000 1.000 180-184 (n=6) 0.000 0.000 1.000 
185-189 (n=2) 0.000 0.000 1.000 185-189 (n=1) 0.000 0.000 1.000 

Table 3.18: Proportion of births in each birthweight category by maternal height 

and gestational age, singleton livebirths between 1981 and 1991. 
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3.6 Modelling 

In this section, the probability of a mother giving birth to a baby of low birthweight 

is modelled using stepwise logistic regression with six possible variables - gestational 

age, maternal height, maternal condition, maternal age, marital status and Womer- 

sley neighbourhood type. As the Womersley neighbourhood type was created using 

data from the 1981 census, only 1981 births are used here. In addition only first 

time mothers are considered. Gestational age was used as an explanatory variable 

as it is obviously related to birthweight. Maternal height and Womersley neigh- 

bourhood type have been shown to be related to the occurrence of low birthweight 

after correction for gestational age. Maternal condition is defined as the presence 

of placenta previa, premature placental separation, antepartum haemorrhaging, or 

hypertension during pregnancy. This is an unknown quantity that may have some 

effect on birthweight and is included here in order to investigate this. Maternal age 

and marital status are thought to be related to birthweight. Maternal age was cate- 

gorised as less than 16,16-19,20-24,25-29,30-34,35-39,40-44,45-49 and 50-54, and 

maternal height was categorised as under 150cm, 150-154cm, 155-159cm, 160-164cm, 

165-169cm, 170-174cm, 175-179cm, 180-184cm and 185-189cm. Maternal condition 

was categorised as present or absent, gestation was split into four categories, very 

premature (<32 weeks), premature (32-36 weeks), term (37-41 weeks), and beyond 

term (42 weeks and beyond), and marital status was categorised as married or un- 

married, where unmarried included divorced, separated, widowed and other as well 

as single. 4755 cases were used in the analysis. Gestational age was the first variable 

entered into the model with a p-value of < 10-16. Neighbourhood type was then 

entered with a p-value of 5.2 x 10-4. The next variable to be added was maternal 

height with a p-value of 0.0065. At the next step the most significant variable was 

marital status with p=0.058. However this value is not significant at the 5% level, 

and taking multiple comparisons into account it is not significant at the 10% level 

either, and as a result this variable is not entered into the model. 

The results of the stepwise logistic regression are given in table 3.19.95 % confi- 

dence limits are given for each of the parameter estimates. The baseline categories for 

the variables were very premature, <150 cm, and neighbourhood type 1. In order to 

calculate the fitted value of the probability of a mother delivering a low birthweight 
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Parameter Estimate Upper Limit Lower Limit 

Intercept 3.129 5.268 0.990 

Premature -3.073 -1.055 -5.091 
Term -6.919 -4.916 -8.922 
Beyond term -7.368 -5.137 -9.599 
150-154 cm -0.019 0.576 -0.614 
155-159 cm -0.364 0.215 -0.943 
160-164 cm -0.755 -0.152 -1.358 

165-169 cm -0.799 -0.122 -1.476 
170-174 cm -0.975 0.132 -2.082 
175-179 cm -5.689 9.788 -21.167 
180-184 cm -5.616 55.246 -66.478 
185-189 cm -6.016 80.137 -92.169 
Neighbourhood 2 0.759 1.578 -0.060 
Neighbourhood 3 0.504 1.322 -0.314 
Neighbourhood 4 0.919 1.731 0.107 

Neighbourhood 5 0.912 1.653 0.171 

Neighbourhood 6 1.240 2.062 0.418 

Neighbourhood 7 1.378 2.126 0.630 

Neighbourhood 8 1.035 1.770 0.300 

Table 3.19: Parameter estimates for logistic regression, singleton livebirths in 1981. 
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baby, the intercept value is added to the parameter estimates for the categories that 

the mother falls into - for baseline categories there are no parameter estimates. After 

obtaining this value, t say, for the mother, the probability of a low birthweight baby 

is calculated from the formula 

Pr(low birthweight baby) = exp(t)/(1 + exp(t)). 

Type A Type B 

Neighbourhood 1 0.509 0.011 

Neighbourhood 2 0.689 0.022 

Neighbourhood 3 0.632 0.017 

Neighbourhood 4 0.722 0.026 

Neighbourhood 5 0.721 0.026 

Neighbourhood 6 0.702 0.035 

Neighbourhood 7 0.805 0.040 

Neighbourhood 8 0.745 0.029 

Table 3.20: Probability estimates for mothers by neighbourhood type, singleton live- 

births in 1981. 

In order to illustrate this, table 3.20 shows the fitted probabilities for two types of 

mother - mothers who are delivering prematurely (32-36 weeks) and are 150-154 cm 

tall (Type A), and mothers who are delivering at term and are 160-164 cm tall (Type 

B), for each of the eight different neighbourhood types. Comparing a mother of type 

A with a mother of type B, the fitted probabilities of a type A mother having a low 

birthweight baby are much larger than a type B mother. Comparing neighbourhood 

types shows a tendency for the probability of a low birthweight baby to increase as 

the neighbourhood type increases from affluent areas to deprived areas. 

3.7 Discussion 

The analyses carried out have raised some interesting points. Merely looking at 

the data from a univariate point of view suggests that several variables may have 
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an effect on the birthweight category of the baby, these being neighbourhood type, 

marital status, previous induced and spontaneous abortions, maternal height, and 

gestational age. However considering a multivariate point of view, a model that 

contains maternal height, gestational age and neighbourhood type seems to best fit 

the data, with marital status, maternal age, and maternal condition all shown to be 

insignificant after correcting for these variables. 

Work involving a linked data set containing first time pregnancies only, where 

each pregnancy rather than each visit is represented as a single record, is carried out 

in chapter 5. Successive pregnancies to the same mother are also linked together in 

chapter 5 in order to follow women through more than one pregnancy, and to link in 

any neonatal data recorded on the SMR11 form. 



Chapter 4 

Deprivation Measures 

Various scoring systems have been created in order to measure small area deprivation. 

This chapter considers four of these methods and discusses them in detail. Of these 

four measures, two were originally created from data in Scotland, one to explain 

trends in health inequalities and one to ease health status assessment. The remaining 

two were created from data in England, one to explain trends in health inequalities 

and one to improve GP services. A new deprivation measure for postcode sectors 

in the Greater Glasgow Health Board area is calculated using the 1991 small area 

census data, and this new measure is compared with those measures created from 

Scottish data. 

4.1 Previous Deprivation Measures 

4.1.1 The Townsend Score 

The Townsend score [45] was created in an attempt to explain trends in health 

inequalities within the United Kingdom. Townsend used the North East of England 

as a case study, and calculated a deprivation measure at local authority ward level 

for the 678 wards in that area. Townsend does not appear to back up his choice 

of census variables to be included in the deprivation measure with any statistical 

techniques. However the variables that he includes - unemployment, car ownership, 

overcrowding, and home ownership - are variables which one would intuitively expect 

to have some link with deprivation. 

In creating a deprivation score, Townsend firstly carries out a log transforma- 

49 
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tion on two of his chosen variables - unemployment and overcrowding - in order to 

produce distributions that are closer to Normality. All four variables are then stan- 

dardised and combined with equal weighting to give a deprivation index for each 

local authority ward. An advantage of the Townsend measure is that, assuming the 

four variables are available for the area of interest, it is quite simple to calculate an 

equivalent Townsend measure for any area of interest. 

The main disadvantage of this measurement is that it is not composed of any 

social variables. Townsend states that he believes social variables, such as colour 

or single parenthood, should not have a bearing on deprivation. In an ideal world 

this may be the case, but it appears obvious that some social variables should be 

considered in deriving a deprivation measure. Townsend also refuses to consider 

social class for the same reason. 

4.1.2 The Carstairs Score 

The Carstairs score [10] was also created in an attempt to explain trends in health 

inequalities. This score is Scotland specific as at the time, work was being carried 

out in England and Wales to explain these trends, and this work was not extended 

to Scotland. 

A deprivation measure was created for each of the 1010 postcode sectors in 

Scotland. The choice of census variables is the extension of some previous work, 

although the work does not appear to be based on any statistical analyses. However 

the variables used, as those involved in the Townsend score, are variables that would 

be expected to be linked to deprivation. These variables are overcrowding, male 

unemployment, low social class, and car ownership. These are standardised and 

then combined with equal weights to produce a continuous score, and this score is 

then used to split the postcode sectors into 7 categories, denoted 1 (most affluent) 

to 7 (most deprived). 

As with Townsend, it is relatively easy to calculate an equivalent score to Carstairs 

for any area of interest. Carstairs also uses social class as a variable, and this is useful 

as it has been used previously as a deprivation indicator. 

The disadvantage of the Carstairs score is that much of the information it gives 

is lost in the conversion from a continuous score into categories. Also, the method 
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behind the cut-off points for the categories is not apparent, as the categories are 

equal in neither sector size nor population size. 

4.1.3 The Womersley Score 

The Womersley score, or neighbourhood type [49], was created in order to make 

the health status of different communities within Greater Glasgow Health Board 

(GGHB) easier to assess. If a certain type of event occurs quite rarely, examining 

together different communities that are quite similar can achieve better results. 

Neighbourhood types were calculated by a series of procedures on the 1981 small 

area census data. Twenty-nine variables, shown in table 4.1, were selected to attempt 

to identify differences between postcode sectors in GGHB, and the percentage of 

the population of each postcode sector who were identified with each variable was 

calculated. The postcode areas of G1 and G2 were merged together because of 

their small population size, and there was no distinction made between two parts 

of a postcode sector which fell in different local government districts. Any postcode 

sector that, after checks for skewness, appeared to contain a noticeable outlier on 

one or more variables, was removed. 

In order to classify the remaining postcode sectors, a principal components anal- 

ysis was carried out on the correlation matrix of the 29 variables. It was decided 

to use the first 4 components in the procedure, as together these accounted for 86% 

of the total variance. A cluster analysis was then carried out on these components, 

using hierarchical clustering and the complete linkage method, in order to produce 

8 clusters of postcode sector, which are numbered 1 for most affluent to 8 for least 

affluent. 

This categorisation system takes into account far more variables than any other 

established method of calculating deprivation. While this will allow for variables that 

are not thought to influence deprivation but do, it will also include those variables 

that do not affect deprivation at all. The number of clusters created in the cluster 

analysis is arbitrary and could be chosen to be higher or lower. 
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% resident population less than 4 years old 

% resident population aged 4 to 15 years old 

% resident population at least 75 years old 

% population born in New Commonwealth or Pakistan 

% households with 1 or 2 rooms 

% households which are owner occupied 
% households rented from the Local Authority 

% households which are `other' rented furnished accommodation 

% households with spaces that are vacant 

% households with no car 
% households with at least 2 cars 

% households without exclusive use of amenities 

% resident population married 

% households with no children 
% households with at least 3 children under 15 years old 

% pensioners living alone 

% economically active residents - not employed 

% resident population over 16 who are students 

% residents in household aged 25 to 44 years old 

% residents in household aged 45 to 64 years old 

% single parent families 

% single non-pensioner households 

% working wives in full time employment, aged 16 to 59 years old 

% households with over 6 rooms 

% occupancy norm of -1 or more 

% resident population with low social economic group 

% resident population professional and managerial workers 
% resident population non-manual workers 
% resident population skilled manual workers 
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Table 4.1: Factors used in calculating Womersley neighbourhood type. 
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4.1.4 The Jarman Score 
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The Jarman score [26,27] was created in order to identify underprivileged areas 

with a view to improving GP services. Previous work had drawn attention to both 

geographical variations in problems dealt with by primary care services and variation 

in services provided between areas, and Jarman's work investigated this further. 

Approximately 4000 GPs and organisations involved in health care, all within 

London, were asked for comments on primary care services. Of these, less than 

10% replied - approximately 180 GPs and 190 organisations. Jarman analysed the 

replies and created 21 possible factors that may have increased a GP's workload or 

affected their pressure of work. From this a further questionnaire was sent out to 

2614 randomly selected GPs in England and Wales, asking them to score each of 

the 21 factors on a scale from 0 (no problem) to 9 (very problematic), according to 

the degree to which it affected pressure of work, or increased workload. Of the 2614 

questionnaires, 70% were analysed. 

Thirteen social factors were used in Jarman's questionnaire. Of these, the pro- 

portion of elderly over 65 was not included as this was already weighted for in GP's 

remuneration, and the proportion of elderly living alone was included. Also excluded 

were crime rate, as it is not a census variable and is highly correlated with over- 

crowding which is included; difficulty in being able to visit patients, which again is 

included in remuneration; non-married couple families, which was difficult to deter- 

mine from census data; and households lacking basic amenities, which was excluded 

as this ruled out poor housing estates where basic amenities are a council require- 

ment. The remaining variables together with the average score obtained are shown in 

table 4.2. The Jarman score was calculated for each London borough by calculating 

the average score for each variable over all boroughs and using these as the weights 

in a weighted sum of the proportion of the population of each borough satisfying 

each social factor. A higher Jarman score indicated more difficulty for primary care 

services. This scoring system was later extended to each electoral ward in England 

and Wales, using the weights calculated for London boroughs. 

The underprivileged area score can be considered as a measure of deprivation if 

we assume that those areas that require more primary care services do so because they 

are more deprived. Under this assumption, there are advantages to using Jarman 
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Social factor Weighting 

Elderly living alone 6.62 

Children under 5 4.64 

Lower social class 3.74 

Unemployment 3.34 

Single parent households 3.01 

Overcrowded households 2.88 

Highly mobile people 2.68 

Ethnic minorities 2.50 

Table 4.2: Social factors and weights used in the Jarman scoring system. 
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as a deprivation measure. It contains census variables, and of these there are some 

which would be expected to be related to deprivation. In addition it contains social 

class, which has been used previously as an indicator of deprivation. 

The weights used for calculation of the Jarman score are satisfactory for the 

evaluation of primary care requirements. However, in the case of a deprivation mea- 

sure, some variables are weighted too highly. For example, the proportion of elderly 

people living alone is weighted almost twice as much as the other variables, which 

would suggest that areas with sheltered housing schemes would be classed as de- 

prived. Clearly this is a failing of the scoring system in its application to deprivation 

measurement. In addition, factors involved in the calculation of the Jarman score 

are based on the results of a London based questionnaire with a low response rate 

and this may have weakened the analysis of the responses. 

4.1.5 Overview and Discussion 

The Jarman index has generated criticism from several authors. Davey Smith [43] 

states that the index is biased towards London, having originally been created from 

data on London alone, and relies on out of date census data in its calculations. 

Talbot [44] also states that the index is London biased, with no Northern region 

appearing in the list of the twenty most deprived regions. He also criticises the use 

of electoral wards as geographical areas of interest, as the size of such areas varies 
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greatly. Using psychiatric admissions in the London borough of Islington in 1985, 

Cotgrove et al. [13] showed that the Jarman index was correlated to neither admission 

rates nor to mean length of psychiatric stay, and concluded that the index should 

not be used for planning psychiatric service provision. 

Ben-Shlomo et al. [3] compared the Jarman index with both the Townsend and 

Carstairs scores in order to assess the ability of the three scoring systems to predict 

GP workload. Workload was defined as the sum of the number of surgery consulta- 

tions plus 2.5 times the number of consultations elsewhere, excluding preventative 

procedures. Using 25 practices in England and Wales it was shown that of the three 

scoring systems, Townsend was best at assessing GP workload, while Jarman was 

less valid than the others as it did not include car ownership or housing tenure. In 

addition, the weighting assigned by Jarman to children under five years old under- 

estimated the additional workload created by these patients. It was suggested that 

using the Townsend score and weighting the capitation fee for children under five 

would be a better method of allocating payments and would also remove the London 

bias of the Jarman index. 

Reading et al. [39] used the Townsend score to investigate differences in child 
health in over 21000 children resident in Northumberland between January 1985 and 

September 1990. Health measures of interest were the proportion of singleton live- 

births under 2800 g, the proportion of births to teenage mothers, the proportion of 15 

month old children not immunised against whooping cough, the proportion of infants 

not screened at 6 weeks of age, the proportion of infants not screened at 18 months, 

and the mean standardised height of children in each enumeration district. It was 

shown that there were significant differences between the most deprived 10% of areas 

and the most affluent 10% of areas for all of the health measures of interest except 

the proportion of infants not screened at 6 weeks, and in each case the proportions 

were higher in the most deprived areas. 

Campbell et al. [9] compared the Jarman index with the Townsend score, unem- 

ployment rates in 1981,1985 and 1990 and two Government departmental scoring 

methods in the Central Nottinghamshire Health Authority area. The health mea- 

sures of interest were the standardised mortality ratio for all ages and for ages under 

65, age specific hospital admission rates for 0-14 years and over 75 years, average ad- 
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mission rates for 1983-85 and 1989-90, standardised admission rates for 1983-85 and 

the permanent sickness rate. Correlations of the seven possible deprivation measures 

with health measures were calculated and ranked from 1 (highest correlation) to 7 

(lowest correlation) for each health measure. For each health measure the Jarman 

index was ranked 7th, with the exception of admission rates for the over 75 year old 

age group, where it was ranked 6th. For all admission rates except the over 75 age 

group, the 1990 unemployment rate was ranked first, while Townsend was ranked 

first for the standardised mortality ratios. 

McLoone and Boddy [331 compared mortality experience of Scottish postcode 

sectors as characterised by Carstairs scores for both 1980-82 and 1990-92. Carstairs 

scores for 1990-92 were calculated using the 1991 census data and using the same 

methods as for the 1981 census data. It was shown that areas that were deprived in 

1981 were more deprived in 1991, and that the mortality experiences in these areas 

worsened in comparison with affluent areas and with Scotland as a whole. 

Of the four methods described here, the Womersley score uses a very different 

technique to the others, involving several statistical methods. However, this is also 

the most computationally intensive method and thus makes the score difficult to 

reproduce for other areas of interest. Carstairs and Townsend use similar methods 

in that they combine census variables by way of an unweighted sum to produce a 

deprivation measure. The only differences between the two methods are the transfor- 

mations of some of the Townsend variables, and the categorisation of the Carstairs 

score. 

As we have seen, some variables are involved in more than one of the four mea- 

surements. Inspection of the data shows that two variables - overcrowding and 

unemployment - are involved in the calculation of all 4 scores, while car ownership 

and social class are involved in 3. However, this finding cannot be used to state 

categorically that these variables are related to deprivation, as one of the measure- 

ments uses 29 variables in its calculation and the other 3 involve subjective inclusion. 

The fact that these variables are included in 3 or 4 of the measurements is more an 

indication of which variables are thought of as being related to deprivation, rather 

than showing a relationship between these variables and deprivation. 

It appears that while Carstairs and Townsend are both correlated with health 
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measures, the Jarman index has several problems. It has been shown in the above 

papers to be biased towards London and to be less successful than other deprivation 

measures in assessing GP workload, an area for which it was specifically created. 

4.2 A Continuous Deprivation Score For Greater Glas- 

gow Health Board 

Within the Greater Glasgow Health Board (GGHB), there are 136 postcode sectors 

of interest. While some of these lie in the most prosperous areas of Europe, Glasgow 

as a whole compares unfavourably with the rest of Scotland. A Scottish score, such as 

Carstairs, will place many of the sectors in Glasgow into its most deprived category. 

With GGHB as the area of interest, it seems sensible to calculate a score that will give 

as much information as possible, yet not be influenced by other areas of Scotland. 

A categorised measure brings with it many problems. If a cluster analysis is 

carried out, there must be a decision made on the number of clusters to be used. If a 

continuous score is calculated, as in Carstairs [10], and then turned into categories, 

there is the problem of choosing cut-off points. Also, it is not ideal to calculate a 

continuous score and then lose information by converting it into categories. 

For these reasons the calculation of a continuous, Glasgow specific deprivation 

measure is considered. 

The data used in the calculation of this new deprivation measure come from the 

1991 small area census data. There are 29 variables, as detailed previously in table 

4.1, including variables that could be expected to have a bearing on deprivation. 

A principal components analysis (PCA) was carried out on the data to reduce 

the dimensionality of the problem. Various transforms of the data were considered, 

but it was decided to use untransformed data as it would be easier to interpret the 

results. The analysis was carried out on the correlation matrix of the data. From 

table 4.3, it can be seen that 78.7% of the variation is explained by the first three 

principal components. 

These principal components are difficult to interpret, as there do not appear to 

be any obvious contrasts or differences between various census variables. A different 

approach is suggested here, which is to group the census variables using the principal 
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Eigenvalue 11.27848 6.52565 5.02632 

Percentage 38.89132 22.50225 17.33214 

Cumulative 38.89132 61.39357 78.72571 

Variable No. Component 1 Component 2 Component 3 

1 0.08093 -0.27403 -0.23781 
2 -0.01373 -0.35142 -0.14389 
3 -0.00214 0.17730 0.31967 

4 -0.02219 0.18146 -0.21000 
5 0.15649 0.26511 -0.03488 
6 -0.28680 0.04195 -0.04145 
7 0.22262 -0.14932 0.13284 

8 0.00438 0.29139 -0.23785 

9 0.14690 0.02505 -0.23566 
10 0.29225 0.03158 0.02269 

11 -0.27001 -0.06409 0.00694 

12 0.02359 0.22797 -0.24104 
13 -0.24749 -0.14114 0.13882 

14 0.04744 0.35713 0.14343 

15 0.01246 -0.29543 -0.18753 
16 0.07193 0.17433 0.34212 

17 0.28011 -0.03718 -0.02702 
18 0.10809 0.23679 0.14986 

19 -0.07499 0.12412 -0.35440 
20 -0.02692 -0.02292 0.38505 

21 0.27152 -0.02995 -0.03273 
22 0.15559 0.26932 -0.18610 
23 -0.23165 0.11525 -0.15449 
24 -0.26159 -0.05924 0.02563 

25 0.24504 0.05127 -0.15296 
26 0.26854 -0.10425 0.02445 

27 -0.22832 0.14192 -0.05859 
28 -0.22496 0.09407 -0.01618 
29 0.18906 -0.16989 0.08982 
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Table 4.3: Analysis of correlation matrix of untransformed data. 
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components as a basis for deciding which group a variable should be placed in. This 

is done as follows: 

1. Consider the absolute values of the parameter value for every variable for each 

of the three principal components. 

2. If the parameter value for the first component is much larger than the other 

two then place the variable in group 1, and similarly for the second and third 

components with groups 2 and 3. 

3. For those variables with two or more similar parameter values, leave until all 

other variables have been considered and then place in whichever group seems 

to contain variables that are similar in nature. 

4. When all variables have been placed into one of the three groups, consider 

whether there are any patterns of variables and, if there are, consider moving 

some variables to groups that are more appropriate. 

Carrying out this procedure produces the three groups shown in table 4.4. The 

grouping of variables suggests there is a deprivation group, an age group, and a 

housing/general group. 

In order to compare these results with those from the principal component anal- 

ysis in terms of amount of variation explained, the parameters must be scaled so 

that for each group the sum of squares of the parameters is 1, as with principal 

components. Two possibilities are considered -a weighted score, where the amount 

of weighting a variable receives is proportional to its parameter, and an unweighted 

score, where all variables have equal weighting. The weighted score may be expected 

to fare better than the unweighted score, as this takes into account the size of the 

corresponding parameters in the principal components, and not just their sign. 

The percentage of variation explained by the groups using the unweighted score 

has dropped from 78% to 59%, as shown in table 4.5. This suggests that while the 

principal components were too difficult to interpret, this more simplistic method loses 

some of the explanation that the PCA gave us. 

The weighted scores shown in table 4.6 fare similarly to the unweighted scores, 

suggesting that attempting to correct for the size of the parameters in the princi- 
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Deprivation 

% households with 1 or 2 rooms 
% households which are owner occupied 

% households with spaces which are vacant 
% households with no car 
% households with at least 2 cars 

% resident population married 

% economically active residents - not employed 

% single parent families 

% working wives in full time employment, aged 16 to 59 years old 
% households with over 6 rooms 
% occupancy norm of -1 or more 
% resident population with low social economic group 
% resident population professional and managerial workers 
% resident population non-manual workers 

% resident population skilled manual workers 

Housing/General 

% population born in New Commonwealth or Pakistan 

% households rented from the Local Authority 

% households which are `other' rented furnished accommodation 
% households without exclusive use of amenities 
% households with no children 
% households with at least 3 children under 15 years old 

% single non-pensioner households 

Age 

% resident population less than 4 years old 
% resident population aged 4 to 15 years old 

% resident population at least 75 years old 

% pensioners living alone 

% resident population over 16 who are students 
% residents in household aged 25 to 44 years old 
% residents in household aged 45 to 64 years old 
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Table 4.4: Groups created from principal component analysis. 
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Group Variation Explained 

Deprivation 33.81444% 

Housing/General 11.74752% 

Cumulative Explained 

33.81444% 

45.56196% 

Age 13.52220% 59.08416% 

Table 4.5: Percentage variation explained by unweighted scores. 
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pal components makes little difference. As the weighted and unweighted scores are 

similar, the unweighted score shall be considered. 

Group 

Deprivation 

Housing/General 

Age 

Variation Explained Cumulative Explained 

34.86366% 34.86366% 

11.75046% 

12.57955% 

46.61412% 

59.19367% 

Table 4.6: Percentage variation explained by weighted scores. 

Looking at plots of the three variables, shown in figure 4.1, it can be seen that 

all are symmetrical, with no obvious outliers in the deprivation (first) variable. Con- 

sidering only the deprivation score, shown in figure 4.2, it can be seen that although 

there may be cut-offs to indicate the most affluent and deprived areas, there is noth- 

ing to indicate that the centre portion can be split into categories. 

This deprivation score is denoted by the `Murray Score' and shall be considered 

as a possible deprivation measure for GGHB. However it loses explanatory power 

as a result of grouping variables after the principal components analysis, and fur- 

ther investigation is needed to discover whether this measure will be of any use in 

measuring deprivation. In order to do this, it is compared with the Womersley and 

Carstairs scoring systems. 
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Boxplots of Unweighted Group Scores 

U, 

- 

°: 

Figure 4.1: Boxplots of all three groups produced. 

4.3 Comparison Of Deprivation Measures Calculated for 

the Greater Glasgow Health Board Area 

Here the Murray. Woiuersley and Carntairs scores are compared fur 1)Ost("(ide sectors 

in GGHB. The Carstairs and Womersley categories are compared in table 4.7. There 

are some sectors that fall within two districts in GGHB, for exanilplc Glasgow City 

and Bearsden, which Carstairs treats separately yet W)iiiersley does not. As a result, 

these sectors are not, compared leere. Postcode areas G1 and G2, which Carstairs 

splits up into postcode sectors but. Woiiicersiccy uxerges together arc also not compared. 

Altogether 104 postcode sectors are compared. 

With the exception of one or two sectors, the tank' shows scores clustered around 

the diagonal, suggesting that the two measures are comparable. However, where 

Carstairs places 54 postcode sectors in the 2 most, deprived areas, Wonmersley has 

only 45 in the 3 most deprived areas. This suggests that Wotuersley is able tu split. 

up deprived areas in Glasgow getter than Carstairs, as Carstairs is Scotland specific 
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Plot of Sorted Deprivation Score 
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Figure 4.2: Plot of deprivation scores. 

Carstairs : 1 2 3 4 5 6 7 

Womersley 

1 9 2 1 0 0 0 0 

2 2 3 1 0 1 0 0 

3 1 2 5 2 2 0 0 

4 0 0 1 3 6 7 0 

5 0 0 0 3 1 3 4 

6 0 1 0 3 1 3 2 

7 0 0 0 0 0 0 8 

8 0 0 0 0 0 10 17 

Table 4.7: Carstairs score versus Womersley neighbourhood type in GGHB. 
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and Womersley is Glasgow specific. 

Next the Womersley categories and Murray score are compared. The Murray 

score is created from census data collected ten years after the data used in the 
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calculation of the Womersley score, so some differences are to be expected. A plot of 

the Murray score for each postcode sector against the Womersley score for the same 

sector is shown in figure 4.3. 

Comparison of Murray and Womersley Scores 
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Figure 4.3: Murray score versus Womersley neighbourhood type. 

As can be seen from the plot, the Murray score increases along with the Wom- 

ersley category. The only exception to this is Womersley category 6, where postcode 
sectors seem to have a lower Murray score than those sectors in Womersley category 
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5. These sectors lie in the Hillhead and Gorbals areas of Glasgow, which improved 

over the ten year period 1981-1991 and so this difference is not unexpected. 

Finally the Murray score is compared with the Carstairs categories, and also the 

continuous scores obtained by Carstairs before creating categories. From figure 4.4 

it can be seen that as the Murray score increases the Carstairs category does also, 

and this is more pronounced than the comparison with Womersley, with only a few 

outliers in the plot. Comparison with the continuous Carstairs score in figure 4.5 

shows that the two scores are comparable, with again very few outliers. 
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Comparison of Murray Score and Carstairs Categories 
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Figure 4.4: Murray score versus Carstairs categories. 

4.4 Conclusions 
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From the discussion on deprivation measures it can be seen that while Carstairs and 

Townsend can be thought of as indications of deprivation, the Jarman index has 

generated some criticism, and it has been shown that the Jarman index is not the 

best method for calculating GP workload, which it was expressly created for. 

The derived Murray score, while losing 20% of the variation explained by princi- 
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Comparison of Murray and Carstairs Scores 

0 

N 

0 

C 
C 
0 

0 

m 
0 
U 

LA 
ro 
N 

(d 
U 

" 

" 
. 

" 
. 

."0. 

" 

" " 

S" 

LO 

0 

N 

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 

Murray Score 

Figure 4.5: Murray score versus continuous Carstairs score. 
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pal components analysis, is similar to both the Womersley and Carstairs categories, 

and also to the Carstairs continuous score, which contains more information than 

the Carstairs categories. The scores are not expected to be identical as the Murray 

score is calculated from 1991 census data while the others use 1981 data. In addi- 

tion to being calculated on more recent census data, the Murray score is Glasgow 

specific. As the main interest of this thesis is GGHB, the remainder of this thesis 
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will use Womersley as a category measure of deprivation, and the Murray score as a 

continuous measure. 



Chapter 5 

Analysis of Linked Data 

In this chapter a data set is considered that is similar to that used in chapter 3. In this 

data set each mother is given a unique maternal identification number. Each record 

in the data set belonging to a specific mother can be found by using this maternal 

number. Another difference between this and the previous data set is that each record 

refers to an entire pregnancy rather than one hospital visit. This data set is used to 

examine hospital resource use in GGHB, in particular to investigate whether there 

are differences in resource usage between hospitals, between deprivation types, and 

between the two years 1980 and 1991. Special care baby unit resources are considered, 

in order to investigate changes between 1983, when this care was first recorded on 

the neonatal SMR11 forms, and 1991. Finally those mothers who delivered their first 

child in 1980 and subsequently delivered a second child are considered to investigate 

whether the birthweight of the second child is in some way affected by the birthweight 

of the first child. 

5.1 Introduction 

The data received from the Information and Statistics Division of the National Health 

Service in Edinburgh has linked maternal SMR2 forms. This is done by using a 

weighted scoring system between two records in order to determine whether they 

belong to the same person or not [28]. The patients' surname, first initial, first 

name if available, sex, date of birth and postcode are used in this scoring system. 

Surnames are pre-processed to remove spelling inconsistencies and surnames which 
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sound similar are considered to be the same. Records are compared by using a 

blocking system. Firstly, records are compared on sex, processed surname and initial. 

The more uncommon a matching characteristic is, the higher weighting it receives. 

If these three variables are the same for both records, date of birth and postcode are 

compared. The weights for two records being compared are then combined, and if 

the total obtained is above a specific threshold value, the two records are considered 

to belong to the same woman and are given the same maternal identification number. 

It is estimated that 0.5% of true links are missed using this method, however the 

multiple comparisons involved in comparing records will increase the false positive 

rate. 

This method is also used to link the SMR2 forms to link to SMR11 forms, which 

are records of neonatal care, and this can be used to follow care and resource usage 

through the entire pregnancy and then into the first months of life, rather than 

focusing on individual hospital visits as in chapter 3. 

5.2 Linked Births - Birthweight Follow Up By Womer- 

sley 

In 1980 there were 4499 livebirth singletons to first time mothers where the Womers- 

ley category was known. 5 of these mothers appeared to have had 2 first pregnancies 

in 1980, so they were removed. A further 32 appeared to have their first pregnancy 

in 1980, and a subsequent first pregnancy between 1981 and 1991, so they also were 

removed. On following up the remaining 4457 women, 11 of them appeared to have 

had 2 second pregnancies, so they were also removed. This left us with 4446 moth- 

ers, 2556 of who had second children in the data set. These women are considered 

in order to see if the birthweight of the first child influences the birthweight of the 

second. 

Firstly data for the 1826 mothers whose Womersley score did not change over 

the two pregnancies is considered. A contingency table of this data is presented in 

table 5.1. 

A Chisquared test on this table gives a p-value of <0.0001, which implies that 

there is strong evidence of association between the two. Under a null hypothesis 
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Second Baby 

LBW NBW 

First LBW 20 82 

Baby NBW 65 1659 

Table 5.1: Mothers with first delivery in 1980 and a subsequent second delivery whose 

Womersley category did not change. 

of null hypothesis of no association, 5 women would be expected to have two low 

birthweight babies. There were 20 such women, indicating more cases of two low 

birthweight babies than expected. 

Second Baby 

LBW NBW 

First LBW 49 

Baby NBW 13 301 

Table 5.2: Mothers with first delivery in 1980 and a subsequent second delivery whose 

Womersley category did not change - Womersley category 5. 

Second Baby 

LBW NBW 

First LBW 11 25 

Baby NBW 15 288 

Table 5.3: Mothers with first delivery in 1980 and a subsequent second delivery whose 

Womersley category did not change - Womersley category 8. 

Splitting up by Womersley score indicates that neighbourhood types 5 and 8 

have an association between the two birthweights. The contingency tables are shown 

in tables 5.2 and 5.3. Chisquared values are 12.964 and 26.2845, giving p-values of 

0.0003 and <0.0001 respectively. 

All mothers, including those who have moved Womersley category between their 
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Second Baby 

LBW NBW 

First LBW 37 126 

Baby NBW 89 2304 

Table 5.4: All mothers with first delivery in 1980 and a subsequent second delivery. 

first and second pregnancies, are now considered, giving 2556 mothers. A contingency 

table is given in table 5.4. A Chisquared test on this table gives a p-value of <0.0001, 

which again implies that there is strong evidence of association between the two. In 

this case the number of women expected to have two low birthweight babies under 

a null hypothesis of no association is 9, indicating a much larger number of women 

with two LBW babies than expected. 

Second Baby 

LBW NBW 

First LBW 2 11 

Baby NBW 6 289 

Table 5.5: All mothers with first delivery in 1980 and a subsequent second delivery 

- Womersley category 2. 

Splitting up by Womersley score of the first pregnancy shows that neighbour- 

hood types 2,3,5,7 and 8 have an association between the two birthweights. The 

results are shown in tables 5.5-5.9. Chisquared values are 4.2888,16.3833,13.2489, 

11.604 and 34.3779, giving p-values of 0.0384,0.0001,0.0003,0.0007 and <0.0001 for 

neighbourhood types 2,3,5,7 and 8 respectively. In all of these cases, the number 

of cases where both babies are low birthweight is larger than the expected number 

under a null hypothesis of no association. 
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Second Baby 

LBW NBW 

First LBW 38 

Baby NBW 4 230 
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Table 5.6: All mothers with first delivery in 1980 and a subsequent second delivery 

- Womersley category 3. 

Second Baby 

LBW NBW 

First LBW 6 20 

Baby NBW 19 415 

Table 5.7: All mothers with first delivery in 1980 and a subsequent second delivery 

- Womersley category 5. 

Second Baby 

LBW NBW 

First LBW 6 20 

Baby NBW 18 362 

Table 5.8: All mothers with first delivery in 1980 and a subsequent second delivery 

- Womersley category 7. 
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Second Baby 

LBW NBW 

First LBW 13 33 

Baby NBW 20 430 

Table 5.9: All mothers with first delivery in 1980 and a subsequent second delivery 

- Womersley category 8. 

5.3 Logistic Regressions For Birthweight 

A logistic regression model was fitted using the linked dataset with all mothers who 

had a first delivery in 1980 followed by a subsequent delivery, with the response 

a binary variable to indicate whether the second baby was low birthweight (1) or 

not (0). 2556 cases were used in this analysis. Possible explanatories in the models 

were previous low birthweight (1=yes, O=no), Womersley neighbourhood type and 

maternal height. Previous low birthweight was entered first (p=7.2x10-15) and 

Womersley neighbourhood type was entered second (p=0.024). After these were 

added, maternal height was not significant (p=0.23). The most deprived category 

(8) was the baseline category, which is incorporated into the constant. 

The model calculated was: 

logit(Pr(2nd baby lbw)) = -2.99038 

+1.970089(if first baby lbw) 

-1.441946(if 1980 Womersley = 1) 

-0.7798942(if 1980 Womersley = 2) 

-0.7364242(if 1980 Womersley = 3) 

-0.6164404(if 1980 Womersley = 4) 

-0.04161894(if 1980 Womersley = 5) 

-0.04702384(if 1980 Womersley = 6) 

+0.02619255(if 1980 Womersley = 7) 

As shown in table 5.10, there is a much higher probability of the second baby being 
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First Baby 

Womersley LBW NBW 

1 0.0785 0.0117 

2 0.1418 0.0225 

3 0.1472 0.0235 

4 0.1629 0.0264 

5 0.2569 0.0460 

6 0.2559 0.0458 

7 0.2701 0.0491 

8 0.2650 0.0479 
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Table 5.10: Probability of delivering a low birthweight baby in the second pregnancy, 

mothers with first delivery in 1980 and a subsequent second delivery between 1981 

and 1991. 

low birthweight if the first baby was low birthweight, with this probability being at 

least six times higher. There is also an increase in the probability of low birthweight 

as Womersley neighbourhood type becomes more deprived, where the probability of 

a low birthweight second delivery is three times higher in deprived areas than in the 

most affluent ones. 

5.4 Conclusions 

This chapter has considered the association between the birthweight category of the 

first infant and that of the second infant. A chi-squared test using only women 

who did not change Womersley neighbourhood type over these pregnancies showed 

evidence of an association between birthweight in the first and second pregnancies, 

with a low birthweight first pregnancy more likely to be followed by a second low 

birthweight infant. Chi-squared tests carried out for each Womersley category in- 

dicated that this association was evident in categories 5 and 8, indicating that the 

association may be more prevalent in more deprived areas. 
Similar results were obtained when all mothers, including those whose Womersley 
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category had changed between the two pregnancies, were considered. Chi-squared 

tests on each Womersley category indicated that there was evidence of association 

in several of the categories. 

In modelling the birthweight of the second infant as a binary response, with 

deprivation, height and previous low birthweight as possible explanatory variables, 

it was shown that previous low birthweight and deprivation were significant vari- 

ables, with the probability of delivering a low birthweight baby being higher in more 

deprived areas and also if the previous pregnancy resulted in a low birthweight in- 

fant. This is consistent with other authors [5,20] who have discussed the effect of 

a previous low birtheight infant on subsequent pregnancies. 



Chapter 6 

Variable Selection 

The aim of regression modelling is to investigate how changes in explanatory variables 

affect the value of a response variable of interest. Regression modelling can be carried 

out to produce a model from a given set of data. This model can then be used on 

future data to predict the value of the response variable. This may be done when the 

value of the response variable is too difficult or too expensive to determine while the 

explanatories are not, or when the value that a response variable will take needs to be 

estimated in advance. The aim of this chapter is to consider several methods which 

can be used in forward subset selection to decide which variables should be included in 

a regression model. Several types of subset selection and stopping rules which can be 

used in selection procedures are discussed. The ability of these procedures to select 

the correct variable for the model is investigated and compared using simulation 

studies. 

6.1 Variable Selection Methods 

Often in regression models there are a large number of possible explanatory variables 

which may or may not be related to the response variable, or may be highly correlated 

with other variables so that the inclusion of all variables is neither necessary nor 

helpful. In previous chapters the birthweight dataset has been considered and this 

contains a large amount of variables which may or may not be related to birthweight. 

One way of investigating which variables are related to birthweight is to use variable 

selection techniques to remove the unrelated variables from the model. In this section 

77 
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various methods of selecting the `best' subset of all possible explanatory variables 

are discussed, and these methods will later be extended in order to apply them to 

the data in the birthweight dataset. 

6.1.1 All Subsets Selection 

All subsets selection [16,34,38], as the name suggests, considers all possible combi- 

nations of explanatory variables and for each of these combinations, fits a regression 

model to the data. The best model is then chosen from all possible models by a 

pre-specified criterion, e. g. Mallow's Cp statistic, the residual sum of squares, or the 

value of R2. While this method may be suitable for a small number of possible ex- 

planatory variables, the number of possible combinations of regression models rapidly 

increases with the number of possible explanatories, and 1024 regression models must 

be computed when there are only 10 possible explanatories. 

A refinement of the all subsets technique, discussed by Miller [34], is to compute 

the models in such an order that many of the models need not be fitted at all. 

This involves splitting all possible subsets into two `branches', one which contains 

all subsets including a specified variable, and one containing all subsets which do 

not include this variable. These branches are then split into sub-branches using the 

same technique. Sub-branches can be ignored if the residual sum of squares for all 

variables in the sub-branch is larger than that of a subset already tested. 

6.1.2 Stepwise Regression 

There are three types of method which attempt to find the best subset of explanatory 

variables without computing all possible regression models. At each step of the 

forward selection method [16,34,38] a model is fitted for each of the explanatory 

variables which are not already in the regression model, consisting of this variable and 

the variables already entered in the model. The most significant of these variables 

is then added to the model, assuming it is significant according to a pre-specified 

stopping rule. Without a stopping rule, this method will carry on until the full 

model is fitted. 

Backwards elimination [16,34,38] begins with the full regression model, and at 

each step the least significant variable is removed from the model, again according to 
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a pre-specified stopping rule. If this method continues without a stopping rule then 

a null regression model will be produced containing only an intercept. 

Stepwise regression, or the Efroymson algorithm [16,17,34,38] is a mixture of 

both forward selection and backwards elimination. Each step contains two stages. 

In the first stage, the most significant variable is added to the model using the 

same method as in forward selection, and in the second stage, each of the variables 

previously in the model are tested in order to determine which, if any, can be removed 

from the model. If the first stage does not enter a variable, and the second stage 

does not delete a variable, then the method stops. 

In certain extreme cases all three of these methods may produce different subsets 

of variables. In these cases it may be impossible to choose between these subsets 

without considering another method, such as comparing Mallow's C,, statistics for 

the models. 

Broersen [61 discusses a combination of forward selection and backwards elimi- 

nation, using Mallow's Cp statistic to compare subsets of different sizes. The method 

used carries out forward selection until all variables are entered into the model, tak- 

ing note of the Cp value at each stage. The backwards elimination is carried out, 

again taking note of the Cp value at each stage, until the null model is produced. Of 

all the models produced, that with the best Cp value for the number of variables in 

the model is chosen as the `best' model. 

Altman and Andersen [1]investigate the stability of Cox regression modelling 
by using bootstrap samples to validate the model produced partly by using forward 

selection on a set of 17 possible explanatory variables. In carrying out this investi- 

gation the variables which were most frequently selected in the bootstrap sampling 

were those which were selected in the original analysis of the data, but prediction 

intervals were much wider. This indicates that while there is no problem with the 

variable selection in forward selection, using such a model for prediction on an en- 

tirely new set of data may result in estimating confidence intervals as smaller than 

they actually are. 

Similarly, Chen and George [11) investigated the choice of prognostic factors 

and the regression parameters on a set of 9 prognostic factors in pediatric acute 

lymphocytic leukemia. A regresison model was seltected using forward selection and 
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bootstrapping methods were used to validate this model. Due to this validation 

the final variable selected was dropped from the model. 400 bootstrapping samples 

were then generated to produce regression estimates for the parameters, and these 

parameters were similar to those in the original model, suggesting again that there 

was little problem with the forward selection method. 

The remainder of this chapter shall consider simulations using the forward se- 
lection method. 

6.2 Stopping Rules Used in Variable Selection 

Four different selection rules are considered - the omnibus F statistic, a maximum 

R2 statistic, and two maximum t statistics, one which assumes independence of all 

possible t statistics, and one which does not. 
The theoretical properties of each of the four tests is discussed individually. 

In each case a response variable, y, of n observations and k possible explanatory 

variables, xl, ... xk are assumed, as is the fact that each explanatory variable x; has 

a mean of zero; this can easily be achieved by transforming each xi by subtracting 

its mean from every element of the variable, and that f- N(Q, a2I). By using a size 

of a=0.05, critical values are determined for each of the four tests. 

6.2.1 The Omnibus F Test 

The omnibus F test is, in effect, a test for any further information in the remaining 

variables. In using this test at the first stage, it is testing for relevant information in 

any of the explanatory variables. 
In order to carry out the omnibus F test two residual sums of squares must be 

calculated. The first is under the null model, i. e. E(y) = -y + E, and the second is 

under the full model, i. e. E(y) = 'y + ß19Z1 + ... + ßik +E 

Now, suppose RSS0 is the residual sum of squares under the null model, and 

RSS f. 11 is the residual sum of squares under the full model, and define 

F, - 
(n-p-1)(RSSo-RSSf�tt) 

pxRssj 11 
It can be shown that, under the null model, F, F(p, n-p- 1). The size of the F 

test, a, is 
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a= Pr(F > cl null model true) 

= Pr(F> cIF-F(p, n-p- 1)) 

= Pr(F(p, n-p- 1) > c) 
Hence c is chosen to be the upper 100a% point of the F(p, n-p- 1) distribu- 

tion, and if the observed value of F is greater than this, this indicates a significant 

result and concludes that by the F test, there is a variable amongst the explanatory 

variables which can be entered into the model. 

6.2.2 Maximum R2 

If a number of regression models are fitted with the same number of explanatory 

variables, in some sense the `best' of these models can be thought of as that with 

the maximum R2 value. Diehr and Hoflin [15] considered a Monte Carlo approach to 

the approximation of the distribution of the maximum R2. For 100 simulations, m 

independent variables and an independent response were sampled and each k variable 

regression model was fitted. The maximum R2 was evaluated for each simulation. 

From these simulations it appeared that the best estimate of the centiles of the 

maximum R2 distribution was of the form R2(k, m, n, a) = w(1 - vk), where w and 

v could be determined from k=1 and k=m. 

Rencher and Pun [40] stated that the distribution function of R2 is given by the 

incomplete beta function 

F(R2) =1 
ýRz 

(R2)a-1(1 - R2)b-ldR2 
B(a, b) J0 

where B(a, b) is the beta function with a= p/2 and b= (n -p- 1)/2, where p is 

the number of predictors in the model and n is the number of observations. They go 

on to approximate the extreme value distribution of the maximum R2, which can be 

shown to be approximately 

G(R2) = exp(-N(1 - F(R, ))), 

where N= (p) and k is the total number of possible explanatory variables. 

In order to use the maximum R2 test, k simple linear regressions must be carried 

out, and in the i-th regression, the model E(y) = ry; + Q; xi, i=1, 
... , 

k, is fitted. For 

each of these regressions Ri is calculated. The maximum R2 test takes the maximum 
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of the R? values and tests whether this maximum is significantly large to enter the 

variable which produces it into the model. The size of this test can be determined 

from tables of the incomplete beta distribution. 

a= Pr(maxiRi > C31 null model true) 

=1- Pr(max; R? < c31 null model true) 

=1- G(c3) 

=1- exp(-N(l - F(c3))) 
Hence c3 is the upper -N°1n (1-a) % point of the incomplete beta distribution 

with a and b as denoted above, So, if the observed maximum R, statistic is larger 

than c3, this is a significant result which concludes that the variable which gives this 

maximum R? value should be entered into the model. 

6.2.3 The Independence t Test 

To carry out the independence t test, k simple linear regressions must be carried out 

as before. In the i-th regression, fit a model E(y) = ryj + ß; x;, i=1, ... , k. For each 

of these regressions the t statistic for testing Qi =0 is calculated. 
Now, suppose all these t statistics are independent. Again this independence 

assumption is generally not true. Then the maximum of these t statistics is the value 

of interest. Under the null model, each t statistic follows a t(n - 2) distribution. The 

size of the test, a, can be calculated as 
a= Pr (max; lT; l> C21 null model true) 

=1- Pr(max1ITil < c21 null model true) 

=1- Pr (all IT2 < C21 null model true) 

= 1-fl 1Pr(ITiI <c2ITi-t(n-2)) 

= 1-flL 1Pr(-c2 <t(n-2) <c2) 

=1- (2Pr(t(n - 2) < C2) - 1)k 
Hence c2 is the upper 50(1-(1-a)l/k)% point of t(n - 2). So, if the observed 

maximum absolute t statistic is larger than c2, this implies a significant result and 
the conclusion from the independence t test is that the variable which gives this 

maximum absolute t value should be entered into the model. 
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6.2.4 The Bonferroni t Test 
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The Bonferroni t test is similar to the independence test although it does not use 

the false assumption that all of the t statistics are independent. Instead it uses a 

Bonferroni upper bound [4,7,8] on the required probability. This is calculated as 

follows: 

a= Pr (maxi ITi I> C31 null model true) 

= PT(U1 1 IT il > c31 null model true) 

Ei 1 Pr(IT2l > c31 null model true) 

_ Ej 1 Pr(jT2I > c3jTi - t(n - 2)) 

_E 1(Pr(-c3 > t(n - 2)) + Pr(t(rn - 2) > C3)) 

= 2k(1 - Pr(t(n - 2) < C3)) 
Hence c3 is the upper 50a/k% point of t(n - 2). So, if the observed maximum 

absolute t statistic is larger than c3i we have a significant result and the conclusion 

from the Bonferroni t test is that the variable which gives this maximum absolute t 

value should be entered into the model. 

6.3 Comparison Of Stopping Rules 

In this section, simulations are used to compare the size of these tests, using inde- 

pendent variables, and then the power of these tests, using variables correlated to 

the response. These simulations also investigate the ability of the selection rules to 

select the correct variable for entry into the model. 

6.3.1 Comparison of Test Size 

Here Fortran is used to generate a response variable with n observations, and k 

possible explanatory variables, each of which is independent of the response and of all 

other explanatory variables. This is carried out for a specified number of simulations. 

For each simulation, each of the four selection rules is used to determine whether any 

of the explanatory variables are significant. As the number of simulations increases, 

the proportion of times each rule selects a significant variable should tend to the 

actual size of the test. From tables 6.1 and 6.2, as the simulation size increases, the 

proportions tend to the 5% level of significance assumed in the selection procedures. 
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The proportions are similar for each of the four different rules, and these proportions 
do not seem to vary much as the number of explanatory variables increase. 

No. Explanatories =2 

No. Simulations 100 500 1000 5000 10000 50000 

F test 0.0600 0.0440 0.0370 0.0506 0.0483 0.0493 

Max R2 test 0.0400 0.0580 0.0430 0.0470 0.0517 0.0492 

Independence t test 0.0400 0.0560 0.0410 0.0468 0.0511 0.0485 

Bonferroni t test 0.0400 0.0560 0.0400 0.0460 0.5000 0.0481 

No. Explanatories = 10 

No. Simulations 100 500 1000 5000 10000 50000 

F test 0.0500 0.0400 0.0390 0.0486 0.0499 0.0500 

Max R2 test 0.0800 0.0360 0.0410 0.0544 0.0500 0.0495 

Independence t test 0.0800 0.0360 0.0410 0.0544 0.0498 0.0493 

Bonferroni t test 0.0800 0.0360 0.0400 0.0534 0.0490 0.0484 

Table 6.1: Proportion of simulations with significant explanatory variables for 25 

observations. 

6.3.2 Comparison of Test Powers 

In this section the case is considered where there is a correlation of p between the 

response and one of the explanatory variables, but all other correlations are zero. 

Here each selection rule tests for a significant variable, and determines how often 

the selection rule selects a variable for entry into the model. The proportion of 

times that a variable is selected for entry is an estimate of the power of the test. 

The results of these tests are shown in figures 6.1 to 6.7, where it can be seen that 

as the correlation between the response variable and the explanatory variable it is 

correlated with increases from 0 to 1, or decreases from 0 to -1, then the powers of 

all tests increase. As expected, as the number of explanatory variables increases, the 

power of the unadjusted t-test becomes much higher than the other tests, due to the 

fact that this test does not correct for multiple comparisons. Figure 6.4 shows how 

extreme this test can be, as at a correlation of zero the power of the test would be 
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No. Explanatories =5 

No. Simulations 100 500 1000 5000 10000 50000 

F test 0.0300 0.0360 0.0510 0.0554 0.0490 0.0485 

Max R2 test 0.0300 0.0280 0.0540 0.0488 0.0501 0.0492 

Independence t test 0.0300 0.0280 0.0540 0.0484 0.0499 0.0489 

Bonferroni t test 0.0300 0.0280 0.0510 0.0478 0.0496 0.0479 

No. Explanatories = 10 

No. Simulations 100 500 1000 5000 10000 50000 

F test 0.0200 0.0500 0.0430 0.0530 0.0513 0.0480 

Max R2 test 0.0200 0.0420 0.060 0.0474 0.0543 0.0492 

Independence t test 0.0200 0.0420 0.0600 0.0472 0.0539 0.0491 

Bonferroni t test 0.0200 0.0420 0.0590 0.0464 0.0522 0.0478 

No. Explanatories = 25 

No. Simulations 100 500 1000 5000 10000 50000 

F test 0.0400 0.0620 0.0460 0.0502 0.0470 0.0501 

Max R2 test 0.0200 0.0640 0.0550 0.0476 0.0501 0.0489 

Independence t test 0.0200 0.0640 0.0550 0.0476 0.0500 0.0488 

Bonferroni t test 0.0200 0.0620 0.0530 0.0472 0.0490 0.0479 

Table 6.2: Proportion of simulations with significant explanatory variables for 100 

observations. 

expected to be 0.05, and in this case, with 100 observations and 25 explanatories, 

the power is approximately 0.74. 

6.3.3 Selection of Variables 

The previous section does not take into account which explanatory variable is selected 

to enter the model. There is no distinction made between the variable correlated with 

the response being selected and any other variable being selected. This section inves- 

tigates how often the correlated variable is chosen, and how often any other variable 
is selected. Fortran simulations are carried out to calculate how many times any 
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Figure 6.1: Powers of tests with 100 observations and 2 explanatory variables. 
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Figure 6.2: Powers of tests with 100 observations and 5 explanatory variables. 
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Figure 6.3: Powers of tests with 100 observations and 10 explanatory variables. 
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Figure 6.4: Powers of tests with 100 observations and 25 explanatory variables. 
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Figure 6.5: Powers of tests with 25 observations and 2 explanatory variables. 
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Figure 6.6: Powers of tests with 25 observations and 5 explanatory variables. 
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Figure 6.7: Powers of tests with 25 observations and 10 explanatory variables. 

variable is selected, and what proportion of those tests where a variable is significant 

select the correlated variable. 
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Maximum R2 Test Bonferroni t Test Independence t Test 
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p Number 

Accepted 

Proportion 

Correct 

Number 

Accepted 

Proportion 

Correct 

Number 

Accepted 

Proportion 

Correct 

0.05 53 0.660 51 0.667 51 0.667 

0.10 99 0.707 98 0.704 99 0.707 

0.15 152 0.829 151 0.828 151 0.828 

0.20 228 0.930 227 0.930 227 0.930 

0.25 354 0.912 349 0.914 352 0.912 

0.30 482 0.969 476 0.968 476 0.968 

0.35 638 0.983 635 0.983 636 0.983 

0.40 748 0.991 748 0.991 748 0.991 

0.45 864 0.991 859 0.991 864 0.991 

0.50 937 0.999 937 0.999 937 0.999 

0.55 980 1.000 979 1.000 979 1.000 

0.60 993 1.000 993 1.000 993 1.000 

0.65 1000 1.000 1000 1.000 1000 1.000 

0.70 1000 1.000 1000 1.000 1000 1.000 

0.75 1000 1.000 1000 1.000 1000 1.000 

0.80 1000 1.000 1000 1.000 1000 1.000 

0.85 1000 1.000 1000 1.000 1000 1.000 

0.90 1000 1.000 1000 1.000 1000 1.000 

0.95 1000 1.000 1000 1.000 1000 1.000 

1.00 1000 1.000 1000 1.000 1000 1.000 

Table 6.3: Proportion of simulations with significant explanatory variables, for 2 

explanatories, 50 observations and 1000 simulations. 
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Maximum R2 Test Bonferroni t Test Independence t Test 
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p Number 

Accepted 

Proportion 

Correct 

Number 

Accepted 

Proportion 

Correct 

Number 

Accepted 

Proportion 

Correct 

0.05 55 0.236 53 0.245 55 0.236 

0.10 87 0.345 86 0.337 87 0.345 

0.15 101 0.594 99 0.596 101 0.594 

0.20 140 0.779 138 0.775 140 0.779 

0.25 250 0.864 247 0.862 249 0.863 

0.30 370 0.935 370 0.935 370 0.935 

0.35 483 0.936 479 0.939 482 0.938 

0.40 654 0.974 652 0.974 654 0.974 

0.45 778 0.983 774 0.984 777 0.983 

0.50 883 0.995 883 0.995 883 0.995 

0.55 942 0.996 941 0.996 941 0.996 

0.60 990 1.000 990 1.000 990 1.000 

0.65 999 0.999 999 0.999 999 0.999 

0.70 1000 1.000 1000 1.000 1000 1.000 

0.75 1000 1.000 1000 1.000 1000 1.000 

0.80 1000 1.000 1000 1.000 1000 1.000 

0.85 1000 1.000 1000 1.000 1000 1.000 

0.90 1000 1.000 1000 1.000 1000 1.000 

0.95 1000 1.000 1000 1.000 1000 1.000 

1.00 1000 1.000 1000 1.000 1000 1.000 

Table 6.4: Proportion of simulations with significant explanatory variables, for 5 

explanatories, 50 observations and 1000 simulations. 
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From tables 6.3 and 6.4, it is clear that as p increases, the number of times 

each test chooses as significant a variable which is not correlated with the response 

decreases. This should be intuitively obvious; as the correlation between the response 

and one of the explanatories increases, then the tests should be more likely to choose 

this variable as being significant and therefore less like to choose a variable which is 

not correlated with the response. 

6.4 Conclusions 

As can be seen in the previous sections, the unadjusted t-test deflates the p-values 

of interest, resulting in insignificant variables being selected in the above simulation 

studies. The remaining four tests give similar results in the simulations, with the 

power of the F-test being slightly smaller than that of the independent t-test and 

Bonferroni t-test at the first step of the selection procedure, with this difference 

becoming more obvious as the number of explanatory variables increases. In addition, 

as the number of observations increases, the power of the R2 test increases to become 

closer to the powers of both t-tests. 



Chapter 7 

Bonferroni Bounds in Variable 

Selection 

In the previous chapter it has been shown that in subset selection, failing to correct 

for multiple comparisons will produce deflated p-values and result in a model with 

too many variables entered. In this chapter, fitting the `best' model to a set of data 

is considered, taking into account the effect multiple comparisons will have on the 

overall p-value of any tests carried out. A method which calculates both upper and 

lower bounds on the p-value calculated to test whether a variable should be added 

when fitting a linear regression model is described, and this method is extended to 

the case of logistic regression. Finally a logistic model is fitted to the low birthweight 

data described previously, using techniques described in this chapter. 

7.1 Introduction 

Often in statistics, a model is fitted to a set of data in order to relate a response 

variable to one or more explanatory variables. If there are only a few explanatories, 

`best' subsets may be the easiest method to use. This is quite simple to do in 

the case of, say, three or four possible explanatories. All possible models are fitted 

using all subsets of explanatory variables, i. e. all possible combinations of possible 

explanatories, and from this we can decide which is the `best' subset, using a measure 

such as Mallow's Cp statistic, or the adjusted R2 from each model. As the number 

of explanatories increases, the total number of possible subsets increases rapidly - 

93 
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with 10 explanatories, there are over a thousand possible subsets - and clearly this 

procedure will be very computationally intensive. One idea to combat this is stepwise 

subset selection. There are many types of subset selection, some of the better known 

of which are described here. In forward selection, the null model is the starting point 

and at each step the procedure adds the most significant next variable into the model. 

Backwards selection begins with the full model and at each step removes the least 

significant variable from the model. A method devised by Efroymson [17] is similar 

to forward selection in that at each step the most significant variable is added, but 

it then tests whether any other variable already in the model can be removed. All of 

these methods stop if a notional significance probability is not attained by any of the 

explanatory variables. However they all involve the problem of multiple comparisons 

which, if not corrected for, can give a very large type I error for the problem. 

Another problem which often occurs in standard packages when using such se- 

lection techniques in regression is that any variable with a small p-value is accepted 

into the model. This problem suggests that any variable which may possibly be 

related to the response is added to the model. In order to combat these problems, a 

Bonferroni bound can be calculated in order to give an upper bound for the overall 

p-value, and this may then be used to decide whether the most significant variable 

at any stage of the stepwise procedure should be entered into the model. 

There are, however, cases where this upper bound on the p-value may be insignif- 

icant where the actual p-value is significant. In order to avoid rejecting a variable 

which is in fact significant, the calculation of a lower bound on the exact p-value is 

considered. 

7.2 Normal Theory 

In using stepwise selection to fit a linear model to a set of data with m explana- 

tory variables, the first stage of the procedure is to fit all simple linear regression 

models, calculate the p-value for the significance of each of the m variables, and ex- 

amine whether the variable with the smallest p-value (or largest t-value) is significant 

enough to be entered into the model. Here m p-values are compared in order to de- 

termine statistical significance, which clearly poses a multiple comparisons problem. 
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This problem can be solved by using Bonferroni bounds. 

Butler [8] states that, if we consider the event A�, Q., which is the maximum of 

the events Al, A2, .... A�t, then we can show that 

Pr(Amax)=S1-S2+S3-... +(-1)m-'Sm (7.1) 

where Sl = E; `_1 Pr(A1), S2 =m 11 Eý ; +1 Pr(A� A3), and so on, with 

Sm = Pr(Al, A2, 
... , 

Am). He then states that 

Sl-S2+... -S2j <Pr(Ama, x) 5 Sl-S2+... -S2j+52j+1 

for 1<j< [(m - 1)/2], while Bolviken [4] states that also 

Si - S2 < Pr(Amax) <_ S. (7.2) 

Suppose now we have identically distributed random variables T1,. .. , T�, and 

our events are Ai = ITi I>c, where c is the observed maximum of all the ITS I's, 

and we are interested in Pr(Amax) = Pr(ITImax > c). The form of the Bonferroni 

bounds in which we are interested can be written as 

m m-1 mm 

Pr(ITiI ? c) -> Pr(ITiI, ITjI ? c) <p< Pr(ITiI ? c), i=1 i=1 
, 
j=i+1 : =1 

where p= Pr(ITI�l. az > c). 

The idea behind the need for a lower bound is quite a simple one. Suppose the 

actual value of a significance probability is close to the required significance level 

for a given step in the stepwise procedure. It is possible that the upper bound may 

be above the required level, suggesting the variable should not be accepted into the 

model, when the actual significance probability is less than the required level and 

the variable should be accepted into the model. This may also be helpful when the 

upper bound is quite close to the required significance value, as calculation of the 

lower bound may show whether the actual value is significant or not. 

We now look at how the Bonferroni bounds are calculated when we use stepwise 

regression in the normal linear case. We assume that we have a response vector, Y, 

and m possible explanatory variables, xl, ... , x,,,. At the current step we assume we 

have k<m variables in the model, and denote the matrix of these variables by XF, 

where XF also contains a constant vector as one of its columns in order to allow for 
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an intercept. We shall denote those variables already in the model by 1111, ... , x(k] , 

and those l=m-k variables which may be additionally added to the model as 

x1, ... , ý. We assume that the model containing the variables x[l], ... , Z[k, can be 

written as 

Y=XFQF +E E-N(O, a2I) 

Given that we have a current model which was chosen in the previous step of a 

stepwise linear regression, we want to test the null hypothesis that nothing else need 

go into the model. This is equivalent to calculating all the possible models with one 

extra variable, and then testing that the parameters relating to the extra variables 

are all zero. In doing this, we control for multiple comparisons at each step. 

Consider one of the variables which has not been entered into the model, and 
denote this jji, i=1, ... , 1. If we denote ,3= [ßF 1/3; ], and X= [XF Iii], we fit the 

model Y= XF, OF + Ali + E, where g- N(0, Q2I). 

We know that Q- N(13, a2(XTX)-1), and from this we can calculate the distri- 

bution of /. Now, [9T; 1], Q, where 0 is a (k + 1) x1 vector of zero's, and as /i 

follows a Normal distribution, so then must A. 

Now, 

Elf) = E([OT ; 1]Q) 

_ SOT ; 1]E(Q) 

= [QT; 110 
= A. 

Also, 

var(4i) = var([OT; 1]Q) 

_ [QT; 1] var(Q)[QT; 1]T 

[OT; l]a2(xTx)-1 [QT; 1]T 

Now (XT X) can be written as the partitioned matrix 

XFXF XFl{ 

li XF 2Tli 
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Then we can write (XT X)-l as 

All A12 

A21 A22 

Healy [25] has shown that 

A22 = [2Tli 
- XTXFIXFXF)-1XFXil -1 

A21 = -A22! iT XF(XFXF)-1 

A12 = -(XFXF)-IXT FjjA22 

All = (XT - (XFXF)-1XFjiA21 

Thus we can easily show that var(ßi) = v2A22i i. e. Q; - N(ß;, a2A22). However, 

as a2 is unknown, we must estimate it, and so this gives the distribution as being 

Q' -'a' ,,, t(n - (k + 2)). 
ý2 Aaa 

Now, under the null hypothesis that all #i's are zero, i. e. we do not need any 

more variables after fitting XF, we have'- t(n - (k + 2)), i. e. 

t(n - (k + 2)), var(Qi) _ ý2[xT xi - xTXF(XFXF)-1XF-i]-l. 

Define Ti as being 
, and suppose for each possible additional variable xi 

var(pi) 
we calculate the point estimate of Ti, ti, and let t* be the maximum absolute value 

of the ti, i=1; ... 1. Then we can show that the overall significance probability, p, 

is 

p= Pr(maxlTjl > t*lNull hypothesis true) 
t 

<> Pr(ITjj> t*jT; - t(n - (k + 2))) 
i=1 

= 21(1-Pr(t(n-(k+2)) <t*)) 

In order to calculate the lower bound, we must calculate the bivariate distri- 

butions of each of the T's. As each T follows at distribution, the most sensible 

approximation to the joint distribution would be a bivariate t distribution. However, 

as the variances of the Q's from which the T's are derived are not equal, the bivariate 

t distribution is difficult to calculate and as a result a bivariate Normal approxima- 

tion will be used instead. As we are dealing with t variables, the univariate means 
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are zero and variances 1. Thus, we need only calculate the correlation between them. 

To do this, we consider the covariance between the corresponding A's, which we shall 

denote by 33i and /33. Denote 31, X1,02, and X2 as the corresponding (3's and X's for 

the models involving , ßt and ßj respectively. Now, 

COV(Ni, j) = COv([QT; 1}N17 [ei l]f. ) 

= [UT; 1]Cov((XI X1)-'XI L ýX2 X2)_1X2Y)[UT; 1]T 

[OT i l](XýXi)-lXl Cov(Y, Y)X2(X2 X2) -1[QT; 1]T 

_ g2[OT; 1](Xi Xi)-lXi Xa(X2 X2)-1[OT; 1]T 

which can be shown to be: 

COU(Qi, Qjý = U2[2T (I 
- XF(XFXF)-1XF)li]_1[1i (I 

- 
XF(XFXF)-'XF)Ilj] 

X[ (I - XF(XFXF)-1XF)ILj]-1 

From this we can easily calculate the correlation between Tt and Tj by noting that 

Ti =, and so 
var(p; ) 

corr(T1, Tj) = 
cov (Ti, Tj) 

var(Ti) var(Tj) 

cov (Qß, Qj) 

var(/) var(g3 ) 

as var(TT) = 1, var(Tj) = 1. We shall define p as corr(T;, Tj). 

Now, we know that 

1-1 1 
Pr(maxITil > t*) ?> Pr(ITil ? t*) - Pr(IT1IJ JTjI ? t; ), 

t=1 i=1, j=i+1 

where Ei=1 Pr(1Ti1 > t*) has already been calculated in the previous section. Denote 

the bivariate distribution function of T; and Tj by fa,. Now, 

)= j°°f°°fij(T, T3)dT2dT3 +ff 
00 

fij (Ti, Tj) dTi dTj Pr(ITjI, ITjI ? t* 

to (00 to ff fi3 (Ti, Tj)dTidTj +f- 
ft fi, j(Ti, Tj)dTidTj 

0o " o0 00 

As both Ti and Tj follow t(n - (k + 2)) distributions, this can be shown to be 

3- 4Pr(t(n - (k + 2)) < t*) +f tt" f tt. f; 3(T�Tj)dT; dT3 
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So, 

t-i t 
S2 => Pr(ITz1, IT3I ? t*) 

t-i t t-i t t" ý" 
_ (3 - 4Pr(t(n - (k + 2)) : t`)) +>ff fi, (Ti, Tj)dT, dTj 

i=i j=i+i 
t-i t t-i t ý. t. 

_ (3 - 4Pr(t(n - (k + 2)) 5 t`)) 1+f 
e" 

f 

t. 
ftj(Tt, Tj)aTiaTi 

i=i j=i+i i=i j=i+i 
l-1 l t" t" 

(3 - 4Pr(t(n - (k + 2)) < t*))1(l - 1)/2 +j 
t" 

f 
fsi(Ti, Tj)dT1dTj 

i=1, j-i+1 

Thus we can say that 

Pr(maxIT=I > t*) > 1(7 - 31)/2 + 21(1 - 2)Pr(t(n - (k + 2)) < t*) 
l-1 l 

-"" 
ftftfii(Ti, 

T3)dTidT3 
tt" i=l i=i+1 

where we approximate f2j by a standard bivariate Normal distribution function, with 

correlation p. 

Suppose that we have a special case, where there are only two possible explana- 

tory variables which can be added to the model. Then from equation(7.2) we know 

that 

Sl>p>Sl-S2, 

where p is the significance probability for adding the most significant of the two into 

the model. 

Now, from equation(7.1) we know that p= Sl -S2+... +(-1)ri-'S�j. However, 

it is clear from the definition that if we only have two possible variables then m=2, 

and hence p= Sl - S2. But this is the value that we have calculated for the lower 

bound. Hence we see here that in the case of only two explanatory variables, the 

calculated lower bound is, in fact, the exact p-value. 

7.3 Simulations 

In order to determine how these bounds work in practice, simulations are generated in 

FORTRAN. Firstly a number of explanatory variables are generated with a response 

variable which is independent of all the explanatories. All the simple linear regression 

models are calculated, and the maximum absolute t-statistic is determined. This is 
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used to calculate upper and lower bounds on the p-value. This is repeated for a set 

number of simulations. 

7.3.1 Simulations with 2 Variables 

In generating simulations in FORTRAN, 2 explanatory variables, x, and 12, and 

an independent response y, are generated from a Normal distribution. For each 

simulation, the two linear regression lines y=a+ ßxl and y=a+ 012 are fitted 

and the variable with the maximum t-statistic is used to calculate upper and lower 

bounds on the p-value. This is repeated for a set number (1000) of simulations and 

the results are shown. As there are only two variables, the lower bound is the exact 

p-value, and so bounds which either lie completely below the 5% level, or straddle 

it, give significant results. 

Number of Simulations Simulations Simulations 

Observations with with Straddling 

Lower<0.05 Upper<0.05 0.05 Line 

50 0.059 0.046 0.013 

75 0.054 0.048 0.006 

100 0.057 0.049 0.008 

150 0.047 0.045 0.002 

Table 7.1: Limits on p-values from simulations with 2 variables 

In each set of simulations, there are some, but not many, cases where the upper 

bound alone would have rejected variables. However, as the lower bound is the 

exact p-value in this case it should still be calculated. The number of significant 

simulations, when testing at the 5% level, is approximately 5% of the number of 

simulations, as expected. 

7.3.2 Simulations with 5 Variables 

In generating these simulations the same procedure is followed as in the two variables 

case, except for each simulation five simple linear regression lines are fitted. Again 

the most significant t-statistic is used to calculate upper and lower bounds on the 
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p-value. Due to the nature of the calculation, some of the upper and lower bounds 

range from less than zero to more than one. These are indicated in table 7.2. 

Number of Simulations Simulations Simulations Simulations 

Observations with with Straddling with 

Lower<0.05 Upper<0.05 0.05 Line Upper>1 

and Lower<0 

50 0.171 0.045 0.126 0.029 

75 0.144 0.044 0.100 0.036 

100 0.116 0.045 0.071 0.033 

150 0.118 0.063 0.055 0.032 

Table 7.2: Limits on p-values from simulations with 5 variables 

There are many cases which straddle the significance value for each set of simu- 

lations. Here it is no longer the case that those cases which straddle the 0.05 line are 

significant. As there are quite a large number of these cases, we shall take the simple 

step of locating the mid-point of the range and examine whether this lies above or 

below 0.05, as it seems reasonable to assume that those cases with more than half of 

the range less than 0.05 are more likely to be significant. 

Number of Simulations with Simulations with Simulations Straddling 

Observations Mid-point>0.05 Mid-point<0.05 with Mid-point<0.05 

50 0.923 0.077 0.032 

75 0.937 0.063 0.019 

100 0.941 0.059 0.014 

150 0.928 0.072 0.009 

Table 7.3: Mid-points of p-value range from simulations with 5 variables 

In doing this we see that the percentage of simulations with midpoint below the 

significance level is slightly more than 5%, indicating that the true p-value may be 

closer to the lower bound than the upper bound. 
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7.3.3 Simulations with 10 Variables 

Again the same procedure is followed as in the two variables case, except for each 

simulation ten simple linear regression lines are fitted. The most significant t-statistic 

is used to calculate upper and lower bounds on the p-value. 

Number of Simulations Simulations Simulations Simulations 

Observations with with Straddling with 

Lower<0.05 Upper<0.05 0.05 Line Upper>1 

and Lower<0 

100 0.407 0.049 0.358 0.131 

150 0.260 0.046 0.214 0.105 

200 0.230 0.041 0.189 0.104 

400 0.183 0.055 0.128 0.085 

Table 7.4: Limits on p-values from simulations with 10 variables 

In this case, the lower bound is again no longer the exact p-value and cases 

which straddle the 0.05 line can no longer be said definitely to be significant or non- 

significant. The mid-point of the range is again considered to determine whether it 

lies above or below 0.05. 

Number of Simulations with Simulations with Simulations Straddling 

Observations Mid-point>0.05 Mid-point<0.05 with Mid-point<0.05 

100 0.876 0.124 0.075 

150 0.920 0.080 0.034 

200 0.934 0.066 0.025 

400 0.927 0.073 0.018 

Table 7.5: Mid-points of p-value range from simulations with 10 variables 

Here the number of cases with mid-point below the significance level is again 

greater than would be expected to be significant, indicating that the true p-value 

may be closer to the lower bound than the upper bound. 
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7.4 Hald Data Set 

This data set comes from Hald [23] and is reproduced by Draper and Smith [16]. 

These data consider the heat evolved, in calories, per gram of cement, and the 

amounts of four chemicals measured as a percentage of the weight of the clinkers 

from which the cement was made. This is a small data set, in that there are only 

13 observations and 4 possible explanatory variables. The variables are described 

below. 

" xi - Amount of tricalcium aluminate 

" X2 - Amount of tricalcium silicate 

0 -13 - 
Amount of tetracalcium alumino ferrite 

" X4 - Amount of dicalcium silicate 

"Y- Heat evolved in calories per gram of cement after 180 days curing 

As mentioned previously, the amount of each chemical is measured as a percent- 

age of the weight of the clinkers from which the cement was made. 

Here the two Bonferroni bounds are used to attempt to fit a suitable model. 

Using stepwise linear regression, the most significant variable at the first step is X41 

with a t-statistic of 4.77478. From calculation of the upper and lower bound on 

the p-value it can be concluded that this variable is significant. Carrying out the 

procedure to its conclusion gives the following results. 

Step 

Most 

Significant V Upper Lower Accept? 

1 X4 4.77 0.0023 <0.001 Yes 

2 xl 10.40 3.6e-6 <0.001 Yes 

3 x2 2.24 0.1034 0.032 Yes 

4 x3 0.14 0.896 - No 

The variable at the third step, x2, is entered into the model because although 

the bounds straddle 0.05, at that step we have only 2 variables left and so the lower 

bound is the exact p-value. If only the upper Bonferroni bound were considered, this 



CHAPTER 7. BONFERRONI BOUNDS IN VARIABLE SELECTION 104 

variable would not have been entered into the model as the upper bound indicates 

this variable is not significant, yet the lower bound, in this case the exact p-value, is 

significant. 
This data set has previously been analysed by Draper and Smith [16] who showed, 

using a variety of techniques based on an upper bound on the p-value, that the best 

model consisted of both x4 and xl. However, the above method shows that while this 

is the best method if only the upper bound is considered, the lower bound, which is 

the exact p-value in this case, indicates that the x2 variable should also be added. 

7.5 Logistic Theory 

It has been shown that it is possible to calculate a second order Bonferroni bound 

which gives a lower bound on the significance value of the most significant test, 

when using linear regression. In this section these results are extended to the case of 

logistic regression, where the estimates are no longer Normal, but are asymptotically 

Normal. 

For the case of logistic regression, we shall suppose that we have unknown prob- 

abilities cri, where it = Pr ("success"), under conditions described by the subscript i, 

i=l ... p. If we assume that, for each i, we know the number of "successes", ri, and 

the number of trials, nti, then the model we are attempting to fit has three parts: 

i) Rz ^, Bi (n:, ii), 

ii) 77i = g(lri), where g() is the logistic transform. 

222) 1]i =IT {Q" 

It can be shown that, asymptotically, 

Q r� N((XTWX)-1XTW7J, (XTWX)-1), (7.3) 

where W is a diagonal matrix {w2j} with wii = n; iri(1- 7ri), X= [1; xl; ... ; xp], and 
1 is a vector with every element being 1. 

As with the linear regression case, we are interested in finding the most significant 

variable to add to our model, and testing whether or not it should be added. To 

do this, we consider the case where the model contains a constant and variables 

l[l]; ... ; ýýýý, and we wish to test whether we can add one of the remaining m-k 
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variables into the model. Let l=m-k, and for convenience, label the variables 

11;...; . 

Suppose we consider adding variable i to the model, i=1; ... ; 1. If we define the 

matrix XF = [1; 1[1];... ; . [k]I then we are interested in the case where our design 

matrix X= [XF; xz]. Then from equation (7.3), , 
Öa has the asymptotic distribution 

N((XTWX)-1XTW,?, (XTWX)-1), 

where /3. = [Q; Oj]. 

Now, we are interested in the distribution of f j, as we wish to test the null 

hypothesis that we do not need any additional variables in the model, i. e. for i= 

1, ... , 1,3 is zero, i=1; ... ; 1. 

Clearly, as is asymptotically Normal, then / must be also. Now, /_ 

[OT; 1]/ , where 0 is an (m + 1) x1 vector of zeros. Let pi be the expectation of 

, Oi, and o be the variance. Then 

µi = [OT ; 1]E(Qt) 

_ 
[OT; 1](XTWX)-1XTW77 

and 

Qi = [OT; 1]V (Qi)[OT; 1]T 

= [OT; 1](XTWX)-1[OT; 1]T 

In order to calculate these, we need to look more closely at the matrix XT WX. 

Now, X= [XF; ji], so we can show that XTWX can be written as the partitioned 

matrix 
XFT, WXF XFWxi 

xTWXF xTWj 

Then we can write (XTWX) -1 as 

Bii B12 
B21 B22 

where 

B22 =[ý 
'W 

xi - ýTWXF(XFWXF)-1XTWXs]-1 
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B12 = -(XFWXF)_1%'FWx1B22 

T B21 = -B22! iWXF(XFWXF)-l 

B11 = (XFWXF)-1 
- (XFWXF)-1XFWýiB21 

as shown by Healy [25]. Then 

µi = B21XFWr7+ B22xiTWI? 

= B221i[I-WXF(XFWXF)-1XF]WI? 

and of = B22. Thus the asymptotic distribution of / is 

Ni ^' N(1z , ýi ), 

where 

Ai = (! TWxi-xTWXF(XFWXF)-1XFT, Wxz)-11T(I-WXF(XFWXF)-'XF)W77, 

a? _ (! TWIT - xTWXF(XFWXF)-1)XFWx, ]-1. 

Now, under the null hypothesis that all Oz's are zero, i. e. we do not need any 

more variables after fitting XF, we have 17 = XFry, where ry is the vector of parameters 

when fitting XF. Then we notice that 

(I - WXF(XFWXF)-1XF)Wr7 = Wry - WXF(XFWXF)-1XFW? 
7 

11 
= WXF'y - WXF(XF VXF)-1XFWii'F- 

= tivXF'Y - WXF-Y 

= o. 

Hence pi is also zero and asymptotically, ß; - N(0, o) and 

Q` 
N N(0,1). 

Qi 

Define Ti as being and suppose for each possible additional variable I= we calculate 

the point estimate of Ti, ti, and let t* be the maximum absolute value of the ti, i= 

1; ... ; k. Then we can show that the significance probability, p, is 

p= Pr(maxITil > t*lnu11 hypothesis true) 
I 

<> Pr(ITjI > t*ITi ", N(O, 1)) 
i=l 

= 21(1 - 4D(t*)) (7.4) 
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Note that this is very similar to the linear regression case; the only difference is 

that here we are not estimating cr and thus have a Normal distribution rather than 

a t-distribution. 

We now show how the lower bound can also be extended. From the previous 

expressions for linear regression we have: 

1 1-1 1 

Pr(r, axITii > t*) > EPr(ITiI > t*) -E Pr(ITiI, ITuI >_ t*) (7.5) 
i=1 i=lj=i+1 

Thus we must consider the bivariate distribution of (T2, Tj). We know that 

Pr(jTTj, jTj > t*) = Pr(Ti, Tj > t*) + Pr(Ti > t*, Tj < -t*) 

+ Pr(Ti, Tj< -t*) + Pr(T2, < -t*, Tj> t*) (7.6) 

Suppose that the joint density function of Ti and Tj is f; j. Then equation (7.6) 

becomes 

*) f°°J°°fj(Ti, 7)dTdT3 +ff , 
fij(Ti, T. i)dTidTj Pr(ITl, I7, I >t 

+Lf fj(Ti, Tj)dTdTj +ff f(T1, Tj)dTdTj 
'o0 00 

This can easily be simplified to: 

00 00 00 t 
Pr(ITiI, IT. j1 > t*) = 

ff f 

00 
f ij (Ti, Tj) dTi dTj - 

t* 

ff23(Ti, T3)dT1dT3 

+ý-t" 
J 

00 
fij(T2, Tj)dTidTj -f 

-t" ýt' fij (Ti, Tj) dTi dTj 
00 00 0o t' 

00 00 00 t" 

= 
fjfij(Ti, Tj)dTdT3 -fff ij (Ti, Tj) dTi dTj 

t" t" t" f 00 
-11 fij (Ti, Tj) dTi dTj = L. L. fij(Ti, Tj)d7 dTj 

tt 
= 1- 

-t. 
fi(Ti)dTi -f fj(Tj)dTj 

t" 

+ fij (Ti, Tj) dTidTj 
t' t' 

t" 

J 

t" 
(7.7) 
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where fi and fj are the density functions of T; and Tj. This can be shown to simplify 

to 

Pr(jTij, ITJI ? t*) = 1-4(D(t*)+2+ 
c" 

Jt f>>(T1, T, )dT dT3 

and substitution into equation(7.5) gives us 

Pr(maxITTI > t*) > 21(1 - (D(t*)) 
t-i t t* 

(3 - 4, D(t*) +% 
1r fij (T1, T, )d7 dT,, ) - 

= 
2(7-3l)+2l(l 

-2)4)(t*) 
d-1 ! t" t" 

- . 
fij(Ti, Tj)dTidTj 

i=1 j=i+1 -t" -t" 

(7.8) 

Now as Ti and Tj are both univariate Normal it seems reasonable to approximate 

the joint distribution of Ti and T3 by a bivariate Normal distribution. As we know 

the means and variances, all that remains is to calculate the correlation between 

them. We know that Ti is a linear function of Q;, so we shall calculate the correlation 

between ßt and /3j. 

Using the same notation as before, it can be shown (for example, McCullagh & 

Neider [32]) that 

Ni = (XT WiXi)-1XT lvixi, 
-t 

where Xi = [XF; lli], Wi = diag(frik(1 - 7rik)nk), and 
Zik = logit(9rik) + (Yk - nk1rik)/(nk*ik(1 - *ik)- 

So, cov(/ ,f)= 
(XTWiXi)-'XTWicov(j, zj)WWjXjT(XjTWyjXj)-i 

Now, we can show that 

0 kl 
cov(ziki Zil) _ 

WI(I-W() k=1 na, j7r., j 1-a,. 1-7r, j 

Thus cov(z2, zj) is a diagonal matrix with elements as above. Call this matrix C,,. 
Then cov(Q1, /, ) = (XTW: X: )- 1XTWjCijTVjXj(XTIV3X3)-t. Thus 

cov (hi ,M= [Q; 
... ; Q; ll cov(A%, 

AJ) [0; 
... ; Q; 1T 

= [Q;...; Q; 11(XTIVsXi)-IX IV1ýi'1. 
); 

XT(XTIVjX))-l1]T 
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Define p as C-0i' ) Then p is the correlation between ß; and , 
Öj. Now, 

var(p, ) var(R, ) 

cov(Tj, Tj) = cov( 
A Q, 

var(Ai) var(Qj ) 

cov(p� Ai) 
var(A) var(ßj ) 

=p 

And as var(T=) = var(Tj) = 1, the correlation between T; and Tj is also p. 

Then the lower bound on the significance value will be 

c" 
f 

t. 
f, 3(T�Ti)dT; dTJ7.9) Pr(maxITil > t*) >2 (7 - 3l)+2l(l - 2)4i(t*) -E E ft 

t=1j=t+1 

where fib is the joint density function of Ti and Tj; approximated by a bivariate 

1 
Normal with mean 0, and variance-covariance matrix 

p 

P1 
The two bounds determined in equations (7.4) and (7.9) shall be used in the 

following section to determine wheher the calculation of a lower bound in logistic 

regression 

7.6 Simulations 

In generating simulations in FORTRAN, the same procedure is followed as for the 

normal case. 2 explanatory variables, x, and x2, are generated. A response variable, 

with success probability 8 at each observation is also generated. For each simulation, 

the two logistic regressions 16- = exp(a + ßx1) and 1-ST = exp(a + ßx2) are 

fitted and the variable with the maximum t-statistic is used to calculate upper and 

lower bounds on the p-value. This is repeated for 1000 simulations, which is large 

enough to avoid spurious results, but small enough for a reasonable run time for 

the simulations. The results are shown below. As there are only two variables, the 

special case holds and so the lower bound is the exact p-value, and so bounds which 

either lie completely below the 5% level, or straddle it, give significant results. 

In this case, very little is learned from the lower bound. In each set of simulations, 

only one case straddles the significance level. This suggests that for a logistic model 
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Number of Simulations Simulations Simulations Simulations 

Observations with with with Straddling 

Lower<0.05 Upper<0.05 Upper<0.1 0.05 Line 

50 0.036 0.035 0.088 0.001 

75 0.042 0.041 0.093 0.001 

100 0.048 0.047 0.102 0.001 

Table 7.6: Limits on p-values from simulations with 2 variables - logistic model 

with only two possible variables, it is sufficient to calculate the upper bound on the 

p-value. 

7.7 Low Birthweight Data Set 

7.7.1 Low Birthweight in 1991 

The low birthweight data set described in chapter 3 has been used to investigate the 

probability of delivering a low birthweight infant. As the response variable of interest 

is birthweight, specifically, whether the baby is low birthweight (under 2500 g) or 

not, and there are eight possible explanatory variables, the data shall be analysed 

using the upper and lower Bonferroni bounds for logistic regression. 

The data used in this regression model are from 1991 and consist of singleton 

livebirths to first time mothers in the Greater Glasgow Health Board area. There 

are 4272 cases used in the analysis. The variables are described below. 

" x1 - Gestational age (measured in weeks) 

" x2 - Maternal height (measured in cm) 

0 13 - Maternal age (measured in years) 

" X4 - Marital status (married/not married) 

" x5 - Maternal condition (yes/no) 

40 x6 - Neighbourhood deprivation score 
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" x7 - Neighbourhood age score 

0 X8 - Neighbourhood house score 

"Y-1 if baby is low birthweight, 0 if not 

The three neighbourhood scores are calculated from the 1991 small area census 

data as described in chapter 4, and are calculated at postcode sector level. Ma- 

ternal condition is defined as the presence of placenta previa, premature placental 

separation, antepartum haemorrhaging, or hypertension during pregnancy. 

The two Bonferroni bounds are used to fit a suitable model. Using stepwise 

logistic regression, at the first step the most significant variable is x1, gestational age. 

Calculation of the upper and lower bounds indicate that this variable is significant. 

Carrying out the procedure to its conclusion gives the following results. 

Most 

Step Significant Upper Lower Accept? 

1 X1 <0.001 <0.001 Yes 

2 x2 <0.001 <0.001 Yes 

3 X6 <0.001 <0.001 Yes 

4 X4 0.1346 0.1228 No 

Although the lower bound does not have an effect on the results, if there were no 

correction for multiple comparisons then X4, marital status, would have been added 

into the model also. The next variable which would be added to the model, X7, 

neighbourhood age score, has an uncorrected p-value of 0.29 and so would not be 

added to the model if multiple comparison corrections were ignored. 

The model calculated is 

logit(Pr(low birthweight)) = 45.02953 + 0.407 deprivation 

-0.075 height - 0.935 gestation 

This suggests that as gestation and height increase, the probability of a low 

birthweight baby decreases, but that as deprivation increases, the probability of a 
low birthweight baby increases. 
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The appropriateness of using linear terms in this model is considered by fitting 

three logistic regressions, one for each explanatory variable in the model. This model 

is then compared with the proportion of low birthweight infants in each of several 

categories of the explanatory variable, by comparing these proportions, with appro- 

priate standard errors, against the fitted logistic curve. This is shown graphically in 

figures 7.1 to 7.3. Each of these figures appears to indicate that the linear term is 

appropriate. 

0 

11 

E 

I 

I a 

Figure 7.1: Comparison of fitted logistic curve against proportion of low birthweight 

infants in each gestational age category. 

The height range used in determining this model was 137 cm to 180 cm. It 

would be inadvisable to use this model to determine the probability of delivering a 

low birthweight infant for mothers outside these extreme heights as the model was 

constructed using this height range. 

For a mother with a Murray score of 0 and a gestation of 38 weeks, a difference in 

height between 155 cm and 160 cm indicates a difference in probability of delivering 

a low birthweight baby from 0.119 for 155 cm to 0.076 for 160 cm. For a mother with 

G. raton. i  w (w.. k) 
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Figure 7.2: Comparison of fitted logistic curve against proportion of low birthweight 

infants in each Murray score category. 
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Figure 7.3: Comparison of fitted logistic curve against proportion of low birthweight 

infants in each height category. 
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a Murray score of 0 and a gestation of 40 weeks, the same height difference indicates 

a difference in probability of delivering a low birthweight baby from 0.018 for 155 cm 

to 0.012 for 160 cm. This suggests that for mothers with the same deprivation and 

gestation even a difference in height of 5 cm has a difference in the probability, with 

this difference being greater at shorter gestations. 

7.7.2 Effect of Previous Low Birthweight Infant 

Here the linked data set described in chapter 5 is used to investigate the probability of 

delivering a low birthweight infant using previous low birthweight as an explanatory 

variable. Again, as the response variable of interest is birthweight and there are a 

large number of possible explanatory variables, the data shall be analysed using the 

upper and lower Bonferroni bounds for logistic regression. 

The data used in this regression model consist of singleton livebirths to second 

time mothers in the Greater Glasgow Health Board area where the first birth occurred 
in 1980. There are 2556 cases used in the analysis. The variables are described below. 

All refer to the second pregnancy unless otherwise indicated. 

" xl - Gestational age (measured in weeks) 

" x2 - Maternal height (measured in cm) 

" X3 - Maternal age (measured in years) 

" x4 - Neighbourhood deprivation score 

" X5 - Neighbourhood age score 

" xs - Neighbourhood house score 

" X7 - Birthweight from first pregnancy 

"Y-1 if second baby is low birthweight, 0 if not 

The three neighbourhood scores are calculated from the 1991 small area census 
data as described in chapter 4, and are calculated at postcode sector level. Ma- 

ternal condition is defined as the presence of placenta previa, premature placental 

separation, antepartum haemorrhaging, or hypertension during pregnancy. 
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The two Bonferroni bounds are used to fit a suitable model. Using stepwise 

logistic regression, at the first step the most significant variable is xj, gestational 

age. Calculation of the upper and lower bounds indicate that this variable is highly 

significant. Carrying out the procedure to its conclusion gives the following results. 

Step 

Most 

Significant Upper Lower Accept? 

1 X1 <0.0001 <0.0001 Yes 

2 X7 <0.0001 <0.0001 Yes 

3 x4 <0.0006 <0.0004 Yes 

4 X5 0.404 0.334 No 

The model calculated is 

logit(Pr(low birthweight)) = 30.481 + 0.613 deprivation 

-0.001 previous birthweight - 0.798 gestation 

This suggests that as gestation and previous birthweight increase, the probability 

of a low birthweight baby decreases, but that as deprivation increases, the probability 

of a low birthweight baby increases. 

The appropriateness of using linear terms in this model is considered by fitting 

three logistic regressions, one for each explanatory variable in the model. This model 

is then compared with the proportion of low birthweight infants in each of several 

categories of the explanatory variable, by comparing these proportions, with appro- 

priate standard errors, against the fitted logistic curve. This is shown graphically in 

figures 7.4 to 7.6. Each of these figures appears to indicate that the linear term is 

appropriate. One possible exception is that of previous low birthweight, where the 

model does not appear to fit well at under 1300 g. However, this may be due to the 

small number of cases, which here is 12. 

For a mother with a Murray score of 0 and a gestation of 38 weeks, a differ- 

ence in previous birthweight between 2500 g and 2600 g indicates a difference in 

probability of delivering a low birthweight baby from 0.088 for 2500 g to 0.080 for 

2600 g. For a mother with a Murray score of 0 and a gestation of 40 weeks, the 

same previous birthweight difference indicates a difference in probability of deliver- 
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Figure 7.4: Comparison of fitted logistic curve against proportion of low birthweight 

infants in each gestational age category. 
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Figure 7.5: Comparison of fitted logistic curve against proportion of low birtbweight 

infants in each Murray score category. 
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Figure 7.6: Comparison of fitted logistic curve against proportion of low birtliwcight 

infants in each previous birthweight category. 
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ing a low birthweight baby from 0.019 for 2500 g to 0.017 for 2600 g. Similarly to 

the previous example, there is a difference between the probabilities of delivering a 

low birthweight infant for mothers with the same gestation and deprivation with a 

100 g difference in previous birthweight, with this difference being larger for shorter 

gestations. 

7.8 Conclusions 

This chapter has shown that the calculation of both upper and lower bounds on the 

p-value in stepwise subset regression gives a better estimation of the p-value than 

calculation of an upper bound only. This is usefully better if Normal regression 

models as, if the upper Bonferroni bound had been used on its own, the third step 

in the Hald example would have rejected adding any more variables into the model, 

yet calculation of the lower bound has shown that one of the variables was in fact 

significant. 

For larger numbers of possible variables, where the actual p-value is unknown, 

calculation of both bounds may help in those cases where the upper bound is in- 

significant, yet still close to the required significance level, for example where the 

upper bound is 0.06, and testing takes place at the 5% level. 

The extension of Normal theory to the case of logistic regression is reasonably 

straightforward, due to the asymptotically Normal nature of the parameter estimates. 

This implies that extensions to other generalised linear models may be routine. 

There are some possible avenues for further work which may be derived from this 

chapter. The first, mentioned above, is that the theory for logistic models may be 

extended to other generalised linear models. A second possibility is that it may be 

possible to extend some of the theory into survival analysis. Simulations investigating 

the power of tests may also be carried out, similar to those for size mentioned in this 

chapter. Simulations could also be carried out based on fitted models from real 

data, to investigate the proportion of simulations where the correct model is chosen. 

Finally, there is no firm conclusion about the treatment of those sets of bounds which 

straddle the significance level. In these cases the variable may or may not be accepted 

into the model. In this chapter, the view taken has been that for larger numbers of 
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variables acceptance or rejection should be decided on whether more than 50% of 

the bounds' range lies below or above the significance level. A more theoretical idea 

would be to note that from Butler [8], 

Si - S2 < Pr (Am. 
-. 

) C Si - 
S2 + S3 

and as the Si, i=1,... ,n are monotonically decreasing, Sl - S2 + S3 < S1. Then 

Sl - S2 + S3 is a tighter upper bound on the p-value. Calculation of this bound 

would remove some, but not all, of the cases which straddle the significance level. 



Chapter 8 

Conclusions 

In this thesis, we have been interested in modelling the probability of delivering a 

low birthweight baby. Low birthweight is defined as a birthweight of less than 2500 

g. Very low birthweight, which was also discussed in this thesis, is defined as a 

birthweight of less than 1500 g. The probability of delivering a low birthweight baby 

was modelled using logistic regression while correcting for multiple comparisions, 

and also by using upper and lower Bonferroni bounds to determine which variables 

should be entered into the model. In addition, a regression model was considered 

using previous low birthweight as an explanatory variable along with two variables 

that were significant in these models. 

Possible factors affecting low birthweight in the Greater Glasgow Health Board 

area were considered using univariate methods in order to determine those factors 

that had an effect on birthweight. Of the factors investigated, gestational age, mater- 

nal age, maternal height, marital status, Womersley neighbourhood type, previous 

spontaneous abortions (miscarriages) and previous induced abortions had an effect 

on birthweight when each was considered separately. These factors were then used 

as possible explanatory variables in a regression modelling the probability of low 

birthweight. Maternal height, gestational age and Womersley neighbourhood type 

were found to be statistically significant. 

A Glasgow specific deprivation measure by postcode sector was derived from the 

1991 small area census data by carrying out a principal components analysis. From 

this analysis the first three components were manipulated to produce three scores, 

the first of which contained variables linked to deprivation, and this was denoted the 

122 
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Murray score. This score differs from others currently used in Scotland in that it is 

a continuous score that is not converted into categories. 
The birthweights of the first two infants to each mother whose first infant was 

born in 1980 were considered. It was shown that there was evidence of an association 

between the two birthweights, with a low birthweight first pregnancy being more 

likely to be followed by a second low birthweight pregnancy. 

Finally, the use of first and second order Bonferroni bounds was investigated in 

regression models assuming Normally distributed data. The theory behind these two 

bounds was discussed and a model fitted to the Hald data set. This theory was then 

extended to the case of logistic regression, and first and second order bounds were 

produced for this case. Two models for the probability of delivering a low birthweight 

infant were fitted using these techniques, and it was found that gestational age and 

Murray deprivation score were significant in both models using Bonferroni bounds, 

along with height in the model from the unlinked dataset and previous birthweight 

on the model from the linked dataset. 

The aim of this thesis was to investigate possible factors related to low birth- 

weight using univariate methods and to produce a model for the probability of deliv- 

ering a low birthweight infant based on maternal factors. The four models produced 

used different sets of explanatory variables. In each model, a measure of depriva- 

tion was found to be significant, either the Womersley measure or the Murray score. 

Also, when gestational age was an explanatory variable, it was the first variable to 

be added to the model. These models are based on data from different years and 

as such it is inappropriate to make direct comparisons between them. However, the 

Bonferroni method gives a more reassuring model as both upper and lower bounds 

are produced and this can indicate definitely if a variable should not be added to the 

model as it will not significantly improve the model. 

Each distinct part of this thesis is now considered in greater detail. The following 

sections discuss new work carried out, results obtained and suggestions for future 

work. 
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8.1 Low Birthweight 

124 

Much of the previous work carried out in the field of low birthweight and related 

obstetric problems has found that unmarried mothers, teenage mothers and those 

over 35 carry an increased risk of delivering a low birthweight infant. In addition, 

an unfavourable outcome in previous pregnancies, be it a stillbirth, an induced abor- 

tion or a spontaneous abortion, increases the risk of pre-term delivery in successive 

pregnancies, while previous low birthweight deliveries carry an increased risk of low 

birthweight in the current pregnancy. 

The most recent unlinked Glasgow data has corroborated the findings of other 

authors. Low birthweight was split into two categories, very low birthweight (under 

1500 g), and low birthweight (1500 g- 2499 g). Using these definitions, it was possible 

to investigate factors related to low birthweight in greater depth as it has been 

thought that low birthweight and very low birthweight may be related to different 

factors. 

Consideration of the Womersley deprivation score shows that as the deprivation 

score increases the proportion of low birthweight deliveries increases. However, the 

proportion of very low birthweight infants remains constant over deprivation type, for 

both 1981 and 1991, implying that low birthweight may be related to socio-economic 

factors, while very low birthweight may be due to obstetric factors. 

As the number of previous pregnancies ending in spontaneous abortions in- 

creases, the proportions of low and very low birthweight infants subsequently de- 

livered increases. This is to be expected, as a spontaneous abortion may indicate an 

obstetric abnormality that may manifest itself differently in subsequent pregnancies. 

Similar results for very low birthweight infants occur as the number of previous in- 

duced abortions increases, although the proportion of low birthweight infants remains 

constant. This may indicate that an induced abortion may cause severe problems 

with subsequent pregnancies, or that factors linked with the induced abortion may 

make the mother predisposed to problems in any further pregnancies. 

Fitting a model to the probability of delivering a low birthweight infant showed 

that marital status, maternal age and maternal condition were not significant after 

gestational age, neighbourhood type and maternal height had been entered into the 

model. In this thesis a woman is defined as having a maternal condition if the 
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data collected indicates that she suffered from placenta previa, premature placental 

separation, antepartum haemorrhaging, or hypertension during the pregnancy. These 

are conditions that may cause a pre-term birth likely to result in low birthweight. 

Both marital status and maternal age may be correlated with deprivation type, and 

maternal condition and gestational age may also be correlated, indicating that when 

one of these variables is already fitted there is very little additional information to 

be obtained from the correlated variables. The model indicated that as gestational 

age and maternal height increased, and neighbourhood type became less deprived, 

the probability of delivering a low birthweight infant decreased. As maternal age 

and marital status have been shown to have an impact on low birthweight, it may 

be the case that the available data here are insufficient to demonstrate this. While 

a larger data set would have been possible from the data given, this was thought to 

be too computationally intensive to be viable. 

There were some possible factors, for example smoking, which had been shown 

by other authors to be related to low birthweight but could not be considered in 

this work due to the restrictions of the SMR2 form used for data collection. Further 

work may involve the setting up of a clinical study where data on alcohol, drug and 

tobacco consumption of women would be collected in addition to data on the SMR2 

form. 

8.2 Deprivation Measures 

Of the four deprivation measures discussed in the first part of chapter 4, the Townsend 

score and the Carstairs score are correlated with health measures and have been 

extended to geographical areas other than those used in their creation with no serious 

problems. The Jarman index has been shown to be biased towards London and to 

compare unfavourably with the Townsend and Carstairs scores in the prediction of 

GP workload, an area for which it was specifically created. 

A new deprivation measure, denoted the Murray score, was derived for the 
Greater Glasgow Health Board area, using 29 socio-demographic variables collected 

in the 1991 census and summarised by postcode sector of residence. This is based on 

the Womersley neighbourhood type method, differing in that the Murray score does 
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not carry out a cluster analysis after a principal components analysis of 29 census 

variables per postcode sector. It re-groups the census variables, based in part on the 

principal components analysis, into three distinct groups of variables, one of which is 

denoted the `Deprivation' group. The Murray score is then derived for each postcode 

sector from the values of the variables in this deprivation group. 

This new score was derived in order to produce a deprivation measure derived 

from the most recent data available. The Carstairs score is derived for the whole 

of Scotland, however as this thesis concentrated on the Greater Glasgow Health 

Board area it made more sense to focus on that area alone in the production of a 

new measurement. In addition, as the majority of the postcode sectors falling in 

the most deprived category of the Carstairs score are in Glasgow, it was felt that 

creating a score for Glasgow only would indicate how these postcode sectors differed. 

This method of creating a deprivation measure differs from those others derived 

from Scottish data in that a continuous score is produced, rather than a number of 

categories, as with both Carstairs and Womersley. In a categorised scoring system, 

two postcodes at the maximum and minimum values for a category will be given 

the same score, however with a continuous score it will be easier to see how these 

postcodes differ. 

While the Murray score is restricted to the Greater Glasgow Health Board area, 

the methods used in its calculation have a wider use. These methods can easily be 

used to create similar scores for other Health Board areas, or the whole of Scotland. 

At the moment, the Murray score is calculated for each postcode sector. Future work 

in this area may involve determining the Murray score by full postcode, or for each 

household, using similar methods. 

8.3 Effect of Low Birthweight on Successive Pregnancies 

A linked data set was provided by the Information and Statistics Division of the 

Scottish Health Service. This consisted of a record for each pregnancy in the Greater 

Glasgow Health Board area between 1980 and 1991, combining all hospital visits and 

antenatal visits for that pregnancy. The data were linked in that mothers could be 

followed throughout pregnancy, and also through successive pregnancies, by using a 
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unique maternal identification number. This enables us to consider all hospital visits 

during pregnancy. In order to investigate the effect of a low birthweight delivery on 

subsequent pregnancies, women were identified who delivered a singleton livebirth in 

their first pregnancy, and later were identified to have a second pregnancy. 

Infants were categorised as low birthweight or normal birthweight, and a chi- 

squared test on all women who did not change Womersley neighbourhood type in 

their first two pregnancies showed evidence of an association between birthweight in 

the first and second pregnancies, in particular, a low birthweight first pregnancy is 

more likely to be followed by a second low birthweight infant. A similar association 

was shown in those women who changed Womersley type between their first two 

pregnancies. 

Modelling the birthweight of the second infant as a binary response showed 

that as deprivation increased, the probability of a low birthweight infant in the 

second pregnancy increased, and this probability increased at least five-fold if the 

first pregnancy was also low birthweight. This is not unexpected, as if birthweight is 

related to socio-economic and obstetric factors, these factors may be expected to be 

similar over pregnancies for a woman, and as a result the factors which result in the 

first child being born low birthweight will also be present in subsequent pregnancies. 

As many factors that may be indicators of low birthweight are similar over preg- 

nancies, it would be of interest to investigate those factors that do change. One such 

variable is smoking status. Future work may involve investigating whether women 

who give up smoking between their first and second pregnancies have a lower risk of 

delivering a subsequent low birthweight baby than those women who do not give up 

smoking. 

8.4 Theory of Bonferroni Bounds 

Calculation of both upper and lower bounds on the p-value in stepwise subset regres- 

sion using a Normal regression model was found to be more useful than calculation 

of only an upper bound. In fitting a model to the Ilald data using upper and lower 

bounds it was shown that a variable that would have been rejected if only the up- 

per bound had been calculated was in fact significant. In this case the lower bound 
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was shown to be the exact p-value as there were only two remaining explanatory 

variables. 

This thesis has shown that the theory of upper and lower Bonferroni bounds 

can be extended from Normal models into the area of logistic regression modelling. 

A model using the upper and lower Bonferroni bounds as applied to the logistic 

regression case was fitted to model birthweight - specifically, whether an infant is low 

birthweight or not. The data are from 1991 and consist of singleton livebirths to first 

time mothers in the Greater Glasgow health Board area. The possible explanatories 

used were gestational age, maternal height, maternal age, maternal condition as 

described in chapter 3, marital status, and the three scores derived in chapter 4, a 

deprivation score, age score and house score. If the upper and lower bounds had 

not been considered, marital status would also have been entered into the model 

although age score, the next most significant variable, would not have been added. 

It was found that after fitting gestational age, deprivation score and maternal 
height into the model none of the remaining variables were significant. While the 

lower bound does not affect us rejecting marital status from the model, the differ- 

ence between the upper and lower bounds on the p-value for this variable is quite 

small, indicating that for variables close to significance the lower bound may make 

a difference. The model calculated suggested that as gestation and height increase, 

the probability of a low birthweight baby decreases, but that as deprivation increases 

the probability of a low birthweight baby increases. 

A second model was fitted to linked data of mothers who delivered their first in- 

fant in 1980 and subsequently had a second delivery. The possible explanatories were 

gestational age, maternal age, height, previous birthweight, and the deprivation, age 

and house scores derived in chapter 4. After firring gestational age, previous birth- 

weight and deprivation score into the model no remaining variables were significant. 

The model calculated suggested that as gestation and previous birthweight increase, 

the probability of a low birthweight baby decreases, but that as deprivation increases 

the probability of a low birthweight baby increases. 

The theory of the upper and lower Bonferroni bounds has been extended from 

Normal models to logistic regression models. In addition these bounds have been 

applied to both Normal and logistic examples, showing that the variables selected 
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would differ if the bounds had not been calculated. It would be interesting to in- 

vestigate whether these bounds can be extended into other areas of statistics, for 

example survival analysis, and if this extension was possible, whether it would affect 

the model produced. Some other future work would be to investigate further, using 

simulation studies, the size of studies where the lower bound is useful and should be 

calculated, and the size of studies where the calculation of this bound is unlikely to 

add any further information. 



Appendix A 

Data Recorded on SMR2 

The following variables are recorded for each visit during pregnancy. 

1. General Information 

Hospital code 

Hospital case record number 

Surname 

Forename 

Middle initial 

Maiden name 

Maternal age 

Date of birth 

Marital status 

Address 

Postcode 

Occupation 

Husband's occupation 

Marriage date 

Obstetrician 

Family doctor 

Type of antenatal care 
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2. Previous Pregnancies 

Number of previous pregnancies 

Number of previous spontaneous abortions (miscarriages) 

Number of previous therapeutic abortions 

Number of previous caesarean sections 

Number of previous perinatal deaths 

Number of children now living 

3. Current Pregnancy 

Date of admission 

Where admitted from 

Number of previous admissions this pregnancy 

Type of admission 

Date of booking 

Original booking for delivery 

Blood group 
Maternal height 

Type of abortion 

Management of abortion 

Sterilisation after abortion 

Principal complication of abortion 

Date of last menstrual period 

Estimated gestation at abortion or delivery 

Certainty of gestation 

4. Maternal Discharge Data 

Date of discharge 

Condition on discharge 

Discharged to 

Category of patient 

Unit on discharge 
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5. Record of Labour 

Method of induction 

Presentation at delivery 

Mode of delivery, for baby 1 and baby 2 

Duration of labour 

Sterilisation after delivery 

Date of delivery 

Number of births this pregnancy 

Outcome, for baby 1 and baby 2 

Birthweight, for baby 1 and baby 2 

Apgar score at 5 minutes, for baby 1 and baby 2 

Sex, for baby 1 and baby 2 

6. Postnatal Record of Infants 

Special care baby unit, for baby 1 and baby 2 

Baby discharged to, for baby 1 and baby 2 

Case record number, for baby 1 and baby 2 

Underlying cause of death or stillbirth, for baby 1 and baby 2 

7. Main Condition 

The main condition or complication suffered 

8. Other Conditions 

Any other conditions or complications 

9. Operation 

Any operations carried out 
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For multiple births, data are only recorded for the first two babies of the preg- 

nancy. In addition, there is space on the form to record smoking history of the 

mother. However, this is not routinely filled in and cannot be used in any of the 
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analyses carried out. 



Appendix B 

Descriptive Analysis 

1981 1991 

Mat. Age VLBW LBW NBW Mat. Age VLBW LBW NBW 

<16 (n=15) 0.0667 0.0000 0.9333 <16(n=26) 0.0385 0.0769 0.8846 

16-19 (n=1484) 0.0094 0.0842 0.9063 16-19 (n=1068) 0.0234 0.0815 0.8951 

20-24 (n=4254) 0.0073 0.0609 0.9318 20-24 (n=2956) 0.0074 0.0673 0.9252 

25-29 (n=3927) 0.0051 0.0456 0.9493 25-29 (n=4279) 0.0065 0.0483 0.9451 

30-34 (n=2122) 0.0071 0.0419 0.9510 30-34 (n=2826) 0.0060 0.0464 0.9476 

35-39 (n=621) 0.0032 0.0805 0.9163 35-39 (n=935) 0.0107 0.0578 0.9316 

40-44 (n=112) 0.0268 0.1161 0.8571 40-44 (n=150) 0.0000 0.0467 0.9533 

45-49 (n=5) 0.0000 0.0000 1.0000 45-49 (n=7) 0.0000 0.0000 1.0000 

50-54 (n=1) 0.0000 0.0000 1.0000 50-54 (n=0) - - - 

Table B. 1: Relationship between birthweight category and maternal age. 
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1981 1991 
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Status VLBW LBW NBW Status VLBW LBW NBW 

Single (n=1381) 0.0094 0.0985 0.8921 Single (n=3438) 0.0151 0.0765 0.9084 

Married (n=10782) 0.0065 0.0508 0.9427 Married (n=7822) 0.0059 0.0446 0.9495 

Widowed (n=33) 0.0000 0.0606 0.9394 Widowed (n=10) 0.0000 0.2000 0.8000 

Divorced (n=95) 0.0105 0.0842 0.9053 Divorced (n=123) 0.0000 0.0650 0.9350 

Separated (n=129) 0.0078 0.1008 0.8915 Separated (n=108) 0.0000 0.0833 0.9167 

Other (n=101) 0.0099 0.0495 0.9406 Other (n=714) 0.0070 0.0756 0.9174 

Unknown (n=20) 0.0000 0.1500 0.8500 Unknown (n=32) 0.0000 0.0625 0.9375 

Table B. 2: Relationship between birthweight category and marital status. 

1981 1991 

Prev. Pregnancies VLBW LBW NBW 1 1 Prev. Pregnancies VLBW LBW NBW 

0 (n=4755) 0.0074 0.0616 0.9310 0 (n=4541) 0.0106 0.0639 0.9256 

1 (n=3751) 0.0061 0.0483 0.9456 1 (n=3698) 0.0059 0.0468 0.9473 

2 (n=2128) 0.0060 0.0449 0.9491 2 (n=2178) 0.0078 0.0436 0.9486 

3 (n=1029) 0.0087 0.0554 0.9359 3 (n=1038) 0.0058 0.0626 0.9316 

4 (n=456) 0.0132 0.0921 0.8947 4 (n=442) 0.0181 0.0656 0.9163 

5 (n=197) 0.0000 0.1015 0.8985 5 (n=197) 0.0051 0.0812 0.9137 

6 (n=77) 0.0000 0.1299 0.8701 6 (n=88) 0.0000 0.1477 0.8523 

7 (n=46) 0.0000 0.1739 0.8260 7 (n=36) 0.0278 0.1111 0.8611 

8 (n=43) 0.0000 0.1395 0.8605 8 (n=16) 0.0000 0.1250 0.8750 

9 (n=5) 0.0000 0.0000 1.0000 9 (n=13) 0.0000 0.0000 1.0000 

Table B. 3: Relationship between birthweight category and parity. 
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Hospital VLBW LBW NBW Hospital VLBW LBW NBW 

1 (n=3266) 0.0080 0.0643 0.9277 1 (n=3456) 0.0119 0.0648 0.9233 

2 (n=2071) 0.0077 0.0594 0.9329 2 (n=1798) 0.0061 0.0412 0.9527 

3 (n=2014) 0.0035 0.0541 0.9424 3 (n=2080) 0.0067 0.0606 0.9327 

4 (n=110) 0.0000 0.0182 0.9818 4 (n=0) - - - 
5 (n=2162) 0.0069 0.0611 0.9320 5 (n=1976) 0.0056 0.0612 0.9332 

6 (n=2918) 0.0075 0.0476 0.9448 6 (n=2936) 0.0089 0.0484 0.9428 

Table B. 4: Relationship between birthweight category and hospital. 

1981 1991 
Abortions VLBW LBW NBW Abortions VLBW LBW NBW 

0 (n=11957) 0.0066 0.0570 0.9364 0 (n=11215) 0.0077 0.0556 0.9368 
1 (n=543) 0.0092 0.0589 0.9319 1 (n=941) 0.0149 0.0616 0.9235 

2 (n=39) 0.0513 0.0513 0.8974 2 (n=86) 0.0349 0.0581 0.9070 

3 (n=2) 0.0000 0.0000 1.0000 3 (n=4) 0.0000 0.2500 0.7500 
4 (n=0) - - - 4 (n=1) 0.0000 0.0000 1.0000 

Table B. 5: Relationship between birthweight category and previous induced abor- 

tions. 
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Miscarriages VLBW LBW NBW Miscarriages VLBW LBW NBW 

0 (n=10571) 0.0063 0.0538 0.9398 0 (n=10053) 0.0084 0.0534 0.9382 

1 (n=1529) 0.0092 0.0667 0.9241 1 (n=1680) 0.0071 0.0655 0.9274 

2 (n=320) 0.0125 0.0844 0.9031 2 (n=390) 0.0103 0.0795 0.9103 

3 (n=79) 0.0000 0.1519 0.8481 3 (n=84) 0.0357 0.0833 0.8810 

4 (n=23) 0.0435 0.0870 0.8696 4 (n=28) 0.0000 0.0714 0.9286 

5 (n=11) 0.0000 0.1818 0.8182 5 (n=8) 0.0000 0.0000 1.0000 

6 (n=3) 0.0000 0.0000 1.0000 6 (n=4) 0.0000 0.0000 1.0000 

7 (n=3) 0.0000 0.0000 1.0000 7 (n=0) - - - 
8 (n=2) 0.0000 0.5000 0.5000 8 (n=0) - - - 

Table B. 6: Relationship between birthweight category and previous spontaneous 

abortions. 
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