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Abstract

Current observational evidence does not yet exclude the possibility that dark energy

could be in the form of phantom energy. A universe consisting of a phantom con-

stituent will be driven toward a drastic end known as the ‘Big Rip’ singularity where

all the matter in the universe will be destroyed. Motivated by this possibility, other

evolutionary scenarios have been explored by e.g. Barrow, including the phenomena

which he called Sudden Future Singularities (SFS). In a model consisting of such

events it is possible to have a blow up of the pressure occurring at sometime in the

future evolution of the universe while the energy density would remain unaffected.

The particular evolution of the scale factor of the universe in this model that results

in a singular behaviour of the pressure also admits acceleration in the current era.

In this thesis we will present the results of our confrontation of one example class

of SFS models with the available cosmological data from high redshift supernovae,

baryon acoustic oscillations (BAO) and the cosmic microwave background (CMB).

We then discuss the viability of the model under consideration in light of the data.

More importantly however in this pursuit, we will make the case that the cosmo-

logical constraints employed in this analysis were not blindly applied to the non-

standard model in question, which is not unfortunately the practice that is always

followed in the cosmology community. This applicability issue is a very important

one which if neglected could potentially result in biased and unreliable outcomes.

Hence, although we have worked on one example non-standard cosmological model

in this thesis, this work could be viewed as a demonstration of a thought through

process of testing one’s model against observations which can be applied to every

other preferred model.
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Foreword

This thesis is a result of the work undertaken at the University of

Glasgow during the period from September 2007 to September 2011.

I present this work in seven chapters which are organised as follows:

Chapter 1 presents a brief overview of modern cosmology and the

standard model while in addition it detours into the non-standard

world regarding the ultimate fate of the universe which is relevant to

the non-standard cosmological model investigated.

Chapter 2 details the Sudden Future Singularity (SFS) model at

length by providing a thorough review of the relevant literature.

Chapter 3 discusses the data analysis methodology and techniques

employed in testing the SFS model.

Chapter 4 provides an account of all the cosmological probes utilised

in our model investigations and their confrontation with the data.

Chapter 5 & 6 report the results of our investigations of the SFS

model which are divided into two separate sections corresponding to

two different paths of investigation.

Chapter 7 concludes the thesis by summarising this work and dis-

cussing future directions.

11



Chapter 1

A Brief Review of Modern

Cosmology

Cosmology is itself a modern science. Despite that truth that the

skies have always caused humankind to wonder about its bewildering

mysteries and our place within it, it was not until the 1960s that (as

Douglas Scott [2] puts it) cosmology transformed from an armchair ac-

tivity in people’s free time to a proper science. What began as such an

armchair activity has now given us the Standard Cosmological Model

which could be considered as one of the greatest scientific achievements

of the 20th century. Cosmology, this “bold endeavour” as Andrew Lid-

dle [3] puts it, has come to progress so remarkably through advances

made in the technology of observations and the mathematical machin-

ery. With ever more precise observations that are being made now we

should interpret modern cosmology really as “precision cosmology”, a

term first coined by Michael Turner [4].

We will now take a very brief look at what one might refer to as a

cosmological journey of thought, considering the scales involved, that

has taken us to where we are now.
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1.1 The Journey...

Throughout history one observes humankind’s desire for seeking spe-

cial stances in the universe from Ptolemy’s Earth-centred to Coper-

nicus’ Sun-centred universes. Even after the Herschels discovered the

Milky Way in the 1700s, they thought that we are located at the

centre of this cosmic structure. Not to disappoint this expectation,

the works of Shapley and Baade in early 1900s and 1952 respectively

showed that we are in fact located at some two thirds of the distance

from the centre of the galaxy and that our Milky Way galaxy is a typ-

ical galaxy in the universe [3]. We have therefore come a long way to

comprehend that we occupy a not so special place in this fantastically

vast universe.

What we perceive as modern cosmology today has its roots laid down

in the Copernican Principle which states that the Earth is not in any

special and centred position and rather it revolves around the Sun

together with the other planets. Nicolaus Copernicus brought back to

life the idea of a heliocentric universe in 16th century some 1800 years

after its first proposition by Aristarchus whose idea could not overcome

Ptolemy’s geocentric model at the time. Copernicus’ motivation for

his model was to do with explaining the apparent retrograde motions

of the planets in the sky. He demonstrated that one can do away with

Ptolemy’s complicated epicycle system which was proposed to explain

the observed apparent reversing of the motion of the planets in the

sky.

Generalising the Copernican Principle to the whole universe, we arrive

at a much more powerful assumption known as the Cosmological Prin-

ciple, which states that the universe is homogeneous and isotropic on

sufficiently large scales. Homogeneity implies that the universe looks
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the same at every point in space and isotropy means that the uni-

verse looks the same in all directions. We think the minimum scale

above which the cosmological principle starts to hold is about 100

Mpc, which is the scale of the largest structures observed in galaxy

redshift surveys. This scale is still very small compared to the size of

the observable universe.

Now to see how the Cosmological Principle shapes a standard model

for us, we require a basic foundation of General Relativity.

1.2 Some essential General Relativity

Einstein’s theory of General Relativity (GR) forms the basic founda-

tion of modern cosmology as we know it today. It is an essential tool

in understanding our expanding universe. The theory of GR, which

was published in 1916 relates the curvature of the universe to the force

of gravity. Gravity is included in the metric of the space-time under

consideration. This metric is what provides us with invariant, observer

independent distances. Indeed this observer/coordinate independency

is the beauty of GR and it implies that all laws of physics are un-

changed from one coordinate system to another. In our 4-dimensional

universe (comprised of 3 spatial and 1 time coordinates) the invariant

interval between space-time events is written as:

ds2 =
3∑

µ,ν=0

gµνdx
µdxν, (1.1)

where the indices µ and ν run over 0 to 3 corresponding to time

(dx0 = dt) and the 3 other spatial coordinates and gµν is the metric

which is a symmetric matrix. As an example, Special Relativity as
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described by the flat Minkowski space-time has the metric, gµν=ηµν

which is:

ηµν =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , (1.2)

where the signature (− + ++) has been used. Since we already have

gravity included in the metric we need not to consider gravity as an

external force which would require to be accounted for separately and

instead we can imagine a distorted or curved space-time where par-

ticles move freely on what are known as geodesics. A geodesic is the

shortest path a particle would follow in a space-time when not acted

upon by any forces. The way geodesics behave is therefore dictated

by the form of the metric adopted.

More specifically two point particles starting to move in parallel lines

will deviate from straight lines in a curved space-time dictated by a

curved metric. This curvature is mathematically given by the amount

of deviation of the point particles’ geodesics known as geodesic de-

viation. More precisely, curvature is mathematically related to the

acceleration of geodesic deviation that occurs in a non-uniform grav-

itational field. Hence this shows the equivalent treatment of gravity

and acceleration in GR and how the metric includes gravity.

In an expanding universe, the proper distance between two points is

scaled by the universe’s expansion. That is if the universe is scaled up

according to a scale factor, a(t), distances will be multiplied by this

factor too. Therefore, if we take the space-time in the universe to be

flat as in the Minkowski space-time for now, the metric would take
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the form of:

gµν =


−1 0 0 0

0 a2(t) 0 0

0 0 a2(t) 0

0 0 0 a2(t)

 . (1.3)

This metric is the famous Friedmann-Lemaitre-Robertson-Walker

(FLRW) metric which is the general form of the metric satisfying the

Cosmological Principle. We will generalise this metric later on in §1.3

to account for the curvature of the universe as well.

Energy and matter as the sources of gravity have not entered the

discussion thus far. This is where Einstein’s field equations come in.

In the theory of GR it is the Einstein’s field equations that relate the

curvature of space-time to the matter/energy that it contains. These

equations can be written as:

Gµν + Λgµν =
8πG

c4
Tµν, (1.4)

where Gµν is the Einstein tensor, which encodes information about

the curvature of the universe, Λ is the non-zero cosmological constant,

gµν is the metric of the space-time, G is Newton’s gravitational con-

stant, Tµν is the energy-momentum tensor which relates to the matter

content of the universe and c is the speed of light. Einstein first intro-

duced Λ in his equations to create a static solution which was believed

to be the model of the universe at that time. But after the discovery of

the expansion of the universe by Hubble’s observation in 1929 [5] that

demonstrated that galaxies are receding away from us at a rate pro-

portional to their distance from us, Einstein reasoned that Λ should

be set to zero and famously referred to this mistake as his “greatest
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blunder”. After some 50 years however, cosmologists discovered that

direct and indirect observations (which shall be discussed later) all

call for the return of a positive cosmological constant [6].

The other component of the Einstein equations is the energy-momentum

tensor. The Cosmological Principle’s assumptions of homogeneity and

isotropy of the universe on large scales means that we can therefore

treat the cosmological fluid as a perfect fluid which has an energy-

momentum tensor of the form:

Tµν = (p+ ρ)uµuν + pgµν, (1.5)

where, ρ is the mean density, p is the isotropic pressure, uµ is the

4-velocity of the fluid element and gµν is the metric tensor describing

the geometry of the background space-time.

Equipped now with the necessary GR tools that we require, in the next

section we will see how cosmological models are constructed from the

GR foundations set out here.

1.3 Cosmological Models

It is not possible to solve Einstein’s equations analytically without

making some simplifying symmetrical assumptions. The Cosmological

Principle provides us with such assumptions. As talked about earlier,

it implies that the universe is homogeneous and isotropic on sufficiently

large scales. The best evidence for this assumption comes from the

uniformity of the temperature of the Cosmic Microwave Background

(CMB) radiation to a high degree across the sky (which will be ex-

plained in more detail in §1.4.2). Putting this and the fact that we
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occupy no special place in the universe (the Copernican Principle) to-

gether we see that the Cosmological Principle is indeed a well-justified

assumption (on large scales).

The metric describing a homogeneous and isotropic space-time is the

FLRW metric. We introduced the FLRW metric for a flat space-time

in §1.2. We now generalise that for a space-time with any curvature

which can be written in the form:

ds2 = −c2dt2 + a2(t)

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

)
, (1.6)

where a(t) is the scale factor, which measures the expansion of the

universe, (r, θ, φ) are the so-called comoving spatial coordinates and

k is the curvature constant which can be scaled to take up discrete

values of 0, -1 and +1 corresponding to flat, open and closed models.

In a comoving coordinate system, observers are “attached” to the ex-

panding background and hence the coordinate distance between them

does not change with the expansion. To work out the proper distance

between these observers we use the scale factor at the required mo-

ment in time: d = a(t)s, where d is the proper distance at time t

between two observers separated by the comoving distance, s.

Now with the metric of the underlying space-time and the energy-

momentum tensor specified through simplifying assumptions of the

Cosmological Principle we can solve Einstein’s field equation. Alexan-

der Friedmann first solved these equations in 1922 and arrived at the

most important equations in cosmology, the well-known Friedmann

equations which describe the evolution of the scale factor in an ex-

panding universe:
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(
ȧ

a

)2

=
8πG

3
ρ− kc2

a2
+

Λc2

3
(1.7)

and

(
ä

a

)
= −4πG

3
(ρ+

3p

c2
) +

Λc2

3
, (1.8)

where a is the scale factor, an overdot denotes derivative with respect

to cosmic time, ρ and p are the energy density and the pressure, G is

Newton’s gravitational constant and Λ is the cosmological constant.

Now to be able to solve these equations we need to know how the

matter content evolves in the universe. This is given by the fluid

equation which can be derived through requiring the conservation of

energy in an expanding universe:

ρ̇+ 3
ȧ

a

(
ρ+

p

c2

)
= 0. (1.9)

Furthermore, the other ingredient needed for solving Friedmann equa-

tions is a relation between the energy density, ρ and the pressure, p.

This is known as the equation of state:

w =
p

ρc2
, (1.10)

where, w is called the equation of state parameter. For pressure-less

(non-relativistic) matter w = 0 and for radiation w = 1/3. Moreover,

in general for a fluid with an equation of state parameter of w, from

Equation 1.9 we have:
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ρ = ρ0

(a0

a

)3(1+w)

, (1.11)

where the subscript 0 denotes the present day value, here and through-

out. Therefore, for non-relativistic matter we have: ρ ∝ a−3, which is

as expected; density drops as the volume expands. And for radiation

the relation is: ρ ∝ a−4, which is also to be expected. That is, in the

case of radiation which has both pressure and energy density, in ad-

dition to the drop in density due to the expansion, the wavelength of

radiation is stretched by the scale factor and hence ρ ∝ a−3a−1 = a−4.

This phenomenon of the stretching of the wavelength of electromag-

netic radiation due to the expansion of the universe is called the cos-

mological redshift. The name arises from the fact that the stretching

of a wavelength makes it longer and hence towards the red end of the

electromagnetic spectrum. We define redshift, z, by the change in the

wavelength of light divided by the emitted wavelength:

z =
λobs − λem

λem
=
a0

a
, (1.12)

where λobs and λem correspond to the observed and emitted wave-

lengths respectively.

We now define the parameter known as the critical density to be the

density required for the universe, with Λ = 0, to be flat. Setting

k = Λ = 0 in Equation 1.7 corresponding to a flat universe with no

cosmological constant we get:

ρcrit =
3H2

8πG
, (1.13)

where we define the Hubble parameter, H, as the rate of expansion
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as:

H =
ȧ

a
, (1.14)

where again an overdot represents derivative with respect to cosmic

time. We write today’s Hubble parameter as:

H0 = 100h km s−1Mpc−1, (1.15)

where the dimensionless, h parameterises our lack of certainty in the

Hubble parameter. However we do know that 0.5 ≤ h ≤ 1 and the

latest observations by the Hubble Space Telescope suggest that h =

0.738± 0.024 [7]. We can now write the current critical density, ρcrit,0

as:

ρcrit,0 =
3H2

0

8πG
= 1.88h2 × 10−29g cm−3, (1.16)

where G = 6.67× 10−11 m3 kg−1 s−2 has been used. The critical den-

sity is used to define the useful dimensionless density parameter, Ω

which is easier to work with than actual physical values:

Ω =
ρ

ρcrit
. (1.17)

Writing the first Friedmann equation (1.7) in terms of today’s value

of the critical density we have:

H2 =
8πG

3
ρcrit,0ΩM −

kc2

a2
+

Λc2

3
= H2

0ΩM −
kc2

a2
+

Λc2

3
. (1.18)
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Here ΩM represents the matter and radiation constituents of the en-

ergy budget of the universe. That is, ΩM = Ωm+Ωr, where Ωm and Ωr

are the matter and radiation density parameters. Dividing Equation

(1.18) through by H2
0 we get:

E2(z) =
H2

H2
0

= ΩM −
kc2

a2H2
0

+
Λc2

3H2
0

, (1.19)

where E(z) was first introduced in Peebles’ books and papers (e.g. [8])

and has been later called the “Hubble function”. It is straightforward

to show that the Friedmann equation can be written in the useful

form:

E(z) =
√

Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + Ωk,0(1 + z)2 + ΩΛ,0, (1.20)

where, Ωm,0 and Ωr,0 are the current dimensionless matter and radia-

tion density parameters respectively and we define Ωk,0 and ΩΛ,0, the

respective current curvature and cosmological constant density param-

eters, as:

Ωk,0 = − kc2

a2
0H

2
0

and ΩΛ,0 =
Λc2

3H2
0

. (1.21)

While Ωk does not have anything to do with the actual physical density

of the universe, ΩΛ can be interpreted as the energy density of vacuum

in the particle physics world. We will go on to explain these density

parameters along with some other cosmological parameters in more

detail in §1.3.1.

With the Friedmann equation written in the form of Equation 1.20 we

can see how the evolution of the universe depends on its various matter
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constituents and its curvature. In particular we can see that as we go

back in time to the early universe, i.e. as a → 0 which is equivalent

to z → ∞ the dominant term in Friedmann equation becomes the

radiation term with the highest power for the redshift. We call this

era in the universe’s evolution the radiation-dominated era where the

expansion of the universe is described as a ∝ t1/2. But the higher

power for the redshift in the radiation term also means that it loses

energy more rapidly than the pressure-less matter (the cosmological

constant density parameter is negligible in the early universe). Hence

there will come a time when the densities of radiation and matter

will equal each other. We refer to this epoch as the matter-radiation

equality epoch. Continuing this trend we will eventually reach the so-

called matter-dominated era where it can be shown that a ∝ t2/3. After

that the curvature-dominated era follows (although since it appears

that curvature is zero, this era is not usually considered) and finally

we get to the present Λ-dominated era. A universe dominated by Λ will

continue its expansion into an exponential phase where a ∝ exp(Ht).

A flat (k = 0), matter-dominated (ΩM = 1) universe is known as the

Einstein-de Sitter universe. This type of universe is different from

the de Sitter universe, which is the name given to the exponentially

expanding Λ-dominated universe.

The different phases of the universe talked about above are possible

in universes that are flat or open as the scale factor is constantly

increasing. However, if the universe has positive curvature and is

indeed closed, it might not even make it to the matter-dominated

phase and recollapse on itself in a Big Crunch before reaching this

phase.

Furthermore, provided Λ is not too large, a universe with matter,

radiation and cosmological constant will always start from a Big Bang
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singularity. This forms the basis for hot Big Bang models. The ‘hot’

comes from the fact that we know the temperature of radiation evolves

as T ∝ a−1, hence as a → 0 the universe becomes hotter and hotter

ultimately culminating in a Big Bang singularity.

We now look at some of the parameters in the standard model of

cosmology which are most relevant to the work in this thesis.

1.3.1 Cosmological Parameters

As in every model attempting to describe a certain physical phe-

nomenon, any cosmological model also consists of a set of free param-

eters which are to be determined by observations. Moreover, indeed

for any model to be testable against observations, free parameters are

generally required. Here in this section we take a brief look at some

of the most important cosmological parameters defined to shape the

standard cosmological model.

The Hubble parameter

Perhaps the most fundamental cosmological parameter is the Hubble

parameter, H, which measures the rate of expansion of the universe.

This parameter is named after Edwin Hubble who first discovered the

expansion of the universe in 1929 [5] through observation of distant

galaxies. The current value of the Hubble parameter is known as the

‘Hubble constant’, H0, which measures the current rate of expansion

of the universe. From Hubble’s law, which (as will be described more

fully later) states that the rate of recession of galaxies is proportional

to their distance from us, we know that: v = H0d, where v is the

velocity and d the distance. From this relation we see that we need to

determine velocities and distances of galaxies for determining H0.
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We measure velocities through the redshift of spectral lines which is

easily done today, but with the knowledge that we need to go to great

distances to overshadow what are known as the peculiar velocities of

galaxies, which are not to do with the expansion of the universe, we

are faced with difficulty. Peculiar velocities of galaxies result from

their motions relative to one another due to the gravitational pull of

their neighbouring massive galaxies. Peculiar velocities are of order a

few hundred km s−1 and from the cosmological principle we know that

this range of values should be the same throughout the universe (i.e.

they do not increase with distance as the velocity due to expansion

does). With the redshift method only resulting in radial velocity mea-

surement of galaxies we therefore need to use other distance indicators

to measure the distances to these galaxies to be able to subtract off

their peculiar velocities. For an accuracy limit of about 10% (which

is the limit currently achievable) using redshift-independent distance

indicators, we need to go to distances of about tens of Mpc to over-

shadow peculiar velocities. For such great distances we need to use

standard candles, which are objects with a narrow range of luminosi-

ties everywhere in the universe, such as Cepheid variable stars and

Type Ia supernovae (SNe Ia).

Cepheid variable stars are pulsating stars for which the period of lumi-

nosity is related to their absolute brightness providing us with a very

useful standard candle. These objects are found in the Local Group

which means that they can be well-calibrated for use at larger dis-

tances. And SNe Ia (as will be discussed further in §1.4.1) are explod-

ing white dwarf stars which reach the Chandrasekhar limit through

mass accretion from a binary companion. Therefore since the under-

lying mechanism for their creation is the same, their absolute mag-

nitudes could be assumed to be constant hence yielding a standard
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candle.

By measuring the apparent brightnesses of SNe Ia we should hence be

able to infer their relative distances from us provided we know their

absolute magnitude, which is not trivial to determine. For this we need

to calibrate the distance to SNe Ia host galaxies using some other rel-

atively closer objects like Cepheid variable stars. Prior to the launch

of the Hubble Space Telescope (HST) we could only observe Cepheids

up to a distance of about 4 Mpc, but after this space telescope went

live the team led by Wendy Freedman [9] extended our distance mea-

surements to about 20 Mpc through the so-called HST Key Project to

determine the Hubble constant to be H0 = 72±8 km s−1 Mpc−1. This

then allowed us to calibrate SNe Ia as secondary distance indicators

and to therefore go much farther to about 400 Mpc. Such difficult long

distance determinations therefore demonstrate why we parameterise

the Hubble parameter as shown in Equation 1.15, where we set the

dimensionles h as the placeholder for the true value [3]. As quoted

before the latest observations of HST give h = 0.738± 0.024 [7].

Density Parameters

Earlier we saw how the Friedmann equation could be written in a

format where its dependence on the various density parameters cor-

responding to different mass-energy components in the universe could

be seen clearly. This showed that the Friedmann equation describes

the evolution of the universe depending on the material it contains.

Here we will expand on each mass-energy component, reviewing the

most important aspects of each in turn.

Matter

By matter we mean any kind of non-relativistic and pressure-less ma-

terial which in cosmology is referred to as “dust”. Considering the
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fully relativistic energy equation, E2 = m2c4+p2c2, for non-relativistic

matter we have: pc� mc2 which means that the energy is dominated

by the mass.

We can divide the types of matter we have in the universe into the

two types: baryonic and non-baryonic dark matter. Therefore we can

write the matter density parameter as: Ωm = Ωb + Ωdm, where Ωb and

Ωdm are the baryon and dark matter density parameters respectively.

We will expand on these two matter components below:

• Baryonic Matter : This type of matter includes any form of lumi-

nous (like stars) or non-luminous matter (like low mass stars and

brown dwarfs) made up of baryons. By baryons we mean protons

and neutrons, which are the most stable types of baryons. Fur-

thermore, cosmologists also traditionally include electrons in this

class while they are not really baryons. While baryonic matter is

the only type of “ordinary matter” we expect to see in the uni-

verse, observations suggest otherwise. Specifically, the observed

rotation curves of spiral galaxies showed that instead of the ve-

locity of objects falling off as 1√
r
, where r is the distance from the

centre of the galaxy, they remain almost constant as one moves

towards the edge of the galaxy. This situation calls for a greater

gravitational pull from the matter inside the galaxy, which could

hold these high speed objects bound to the galaxy than could be

provided by the luminous matter we observe. The same kind of

observations have been made in the case of the motion of galaxies

in clusters and clusters of galaxies in superclusters. Naturally, one

might think that the required extra gravitational pull could come

from non-luminous baryonic matter. But this option has been

ruled out through construction of models based on non-luminous

baryonic matter. Some kind of non-baryonic dark matter must
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therefore be present.

• Dark Matter : This type of non-baryonic matter does not inter-

act with electromagnetic radiation (neither absorbs nor emits)

and hence cannot be directly detected but only through its grav-

itational effects as was discussed in the case of baryonic matter.

While we have firmly established the fact that non-baryonic mat-

ter must be present through gravitational considerations, we have

other lines of evidence to support this claim.

The density of baryons is determined through various different

ways, from the gas between galaxies in galaxy groups to the

anisotropies in the cosmic microwave background. Remarkably

however, all these techniques agree with each other pretty well

[10]. Currently the baryon density parameter is estimated to be

about 0.02 which makes up about 4-5% of the total energy bud-

get of the universe. This upper bound on the baryon density is

indeed much lower than that required to explain the gravitational

considerations discussed earlier. Furthermore, as we will see later

on in this section the cosmic microwave background data suggest

that we live in a nearly flat universe with a total matter density

nearly equal to 1. Putting these data together we end up with

strong evidence for the existence of non-baryonic dark matter.

Moreover, we usually mean the collision-less, slow moving Cold

Dark Matter (CDM) when we refer to dark matter as opposed

to Hot Dark Matter (HDM) which has a large pressure and is

not desirable for structure formation. More specifically, by HDM

we mean light dark matter particles which were relativistic (v ≈
c) at the time when they decoupled from baryons and photons

of the early universe (noting that dark matter interacted more

strongly with matter at early times), such as neutrinos with mass
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of order a few eV. And by CDM we mean the kind of heavy

dark matter particles that were moving slowly (v � c) when

decoupled from baryons and photons such as neutralinos. CDM

particles have masses in the range of 10 to 1000 GeV. There is also

the Warm Dark Matter (WDM) which had speeds intermediate

between those of HDM and CDM with mass of order 1-10 keV.

Similar to baryon density, various methods for measuring dark

matter agree well with one another. For instance, dark mat-

ter estimates from galaxy redshift surveys and cosmic microwave

background fluctuations observations (which we will discuss in

§1.4.2) yields a value of about 25% of the total density for this

matter constituent corresponding to Ωdm ' 0.25.

Many experiments are now underway to try and detect the

dark matter particles through the effects of their hopefully non-

gravitational interaction with ordinary matter. It is believed that

in this case dark matter particles interact through the weak nu-

clear force with ordinary matter. These hypothetical dark matter

particles are therefore called Weakly Interacting Massive Particles

(WIMPs)“ one example of which was given above, the neutralino.

WIMPs are predicted by supersymmetric extensions to the stan-

dard model of particle physics. Other exotic particles hypothe-

sised as CDM candidates are the axions, WIMPzillas, photinos

and gravitinos.

Radiation

Once the dominant form of energy in the universe, radiation density

is almost negligible today. The dominant portion of radiation in the

universe in all wavelengths is found in the Cosmic Microwave Back-

ground (CMB) which is the relic radiation left over from the Big Bang
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and fills up the whole universe. We will expand on this later in §1.4.2

but for now we will mention that the energy density of radiation can

be calculated from the temperature of the CMB, T = 2.7K, to be:

Ωr = 2.47× 10−5h−2. (1.22)

Therefore we can see that it is much smaller compared to the matter

density today but not completely negligible.

Dark energy

The realisation of the existence of this energy component came

through two sets of evidence. Firstly, when it was shown theoreti-

cally through inflation and observationally through the CMB (as will

be discussed in §1.4.2) that the universe is very nearly flat with a total

density equal to the critical density, there appeared a deficiency in the

total energy budget of the universe. The observations of matter had

corresponded to only about 1/3 of the critical density. Therefore, cos-

mologists reasoned that the rest must be in a kind of as yet unknown

energy, dubbed dark energy. And the second evidence laid in the ob-

served distance-redshift relation as probed by SNe Ia [11], [12]. To

see how exactly this was done, we can write the luminosity distance,

dL(z), in an expanding universe as:

dL(z) =
c(1 + z)

H0

∫ z

0

dz′

E(z′)
, (1.23)

where the integral is from now (z = 0) to the redshift of the object,

z, c is the speed of light, H0 is the Hubble constant and E(z) is the

Hubble function as defined before. Considering a flat universe with

negligible radiation density, the luminosity distance reduces to:
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Figure 1.1: The plot shows the variation of the luminosity distance, dL, (in units
of the Hubble radius, cH−1

0 ) as a function of redshift, z, for varying matter and
cosmological density parameters in a flat model (ΩM +ΩΛ =1, which follows from
Equation 1.20 by neglecting the radiation term today). Figure from [13].

dL(z) =
c

H0

∫ z

0

dz′√
Ωm(1 + z′)3 + ΩΛ

, (1.24)

where, Ωm and ΩΛ are the usual matter and cosmological constant

density parameters. Hence, we can see how the luminosity distance

is dependent on the expansion of the universe through Ωm and ΩΛ.

Figure 1.1 shows different luminosity distance-redshift relations for

varying matter and cosmological constant contents.

Through observations of distant SNe Ia cosmologists therefore con-

cluded that – at least within the standard model – there must be

other forms of energy present in the universe. We now know that
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dark energy must fill up about 70% of the total energy density of the

universe corresponding to ΩΛ ' 0.7.

Dark energy in the standard model is in the form of the cosmological

constant, Λ, which has negative pressure and constant energy density.

For the cosmological constant therefore w = −1.

The cosmological constant can be physically interpreted as the en-

ergy density of vacuum which fills space-time in the absence of any

particles. However, there is a large discrepancy between the observed

energy density of this effective fluid and the value derived for it by par-

ticle physicists. The difference is of order a mere 10120! This is known

as the cosmological constant problem. Therefore, even though cosmo-

logical observations are generally consistent with a dark energy in the

form of Λ as we will see in §1.5, cosmologists have been looking for

alternatives to it, which include varying equation of state (w = w(t))

dark energy known as quintessence to phantom energy with super

negative equation of state (w < −1). It can be shown easily that

in general in order to have acceleration we need to have w < −1/3.

Furthermore, one can now rewrite the Friedmann equation (1.20) in

the more general form:

E(z) =
√

Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + Ωk,0(1 + z)2 + Ωde,0(1 + z)3(1+w),

(1.25)

where, Ωde,0 would be the current value of the dark energy density

parameter and w is its constant equation of state parameter.

The consequences of different dark energy candidates for the final fate

of the universe (as will be discussed in §2.1) are immense and yet

current observations cannot still distinguish between these options.
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Indeed finding the source of the enigmatic dark energy is one of the

biggest mysteries facing cosmologists today.

To clarify further the situation we are in with this mysterious dark

energy, here we briefly mention some of the possible dark energy can-

didates proposed to date. As mentioned above dark energy equation

of state can vary in time hence it could take the form of a scalar field

similar to that which drove inflation. Several scalar-field dark energy

model have been proposed such as the abovementioned quintessence

and phantom fields. There are also the K-essence [14, 15] and tachy-

onic models [16]. As mentioned previously the phantom field corre-

sponds to w < −1 and K-essence also could have this equation of

state. This is an unusual property which requires a negative kinetic

energy term as will be discussed in Chapter 2. Furthermore, the prob-

lem of explaining the current acceleration of the universe could be

solved by questioning the general relativistic gravity of Einstein. In

other words, the other approach to solving the dark energy problem

is by modifying the general relativistic Friedmann evolution equations

for the universe. Such investigation is done in theories such as f(R)

gravity theories which modify the Einstein’s GR field equations.

Curvature

As was mentioned before, curvature is presented in the form of a den-

sity parameter while it bears no physical meaning related to the actual

physical density of the universe. Therefore, it is usually expressed as:

Ωk = 1− Ω, (1.26)

where Ω = Ωm+Ωr+ΩΛ is the total density of the universe. Equation

1.26 follows directly from the Friedmann equation (1.7). In the same
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Figure 1.2: As the description under every section reads, the sizes of the spots of
temperature variation in the CMB sky will be the same as the original size, smaller
or larger than the actual size in flat, open and closed universes respectively. This
results from the fact that light rays follow geodesics. Figure from: http://find.
spa.umn.edu/~pryke/teaching/natsci102/spring-2005/cmbmaplab/.

way as we can use the total sum of the interior angles of triangles to

work out the curvature in 2-dimensional flat, spherical and hyperbolic

spaces, we can determine the curvature of the space-time manifold in

our universe using light rays. This is because in GR light rays follow

geodesic paths. We can use the CMB for this task. The basic principle

follows that we can compare the observed sizes of hot and cold patches

in the CMB sky created through temperature anisotropies (as will be

discussed in §1.4.2) with the theoretically predicted sizes for universe

with different curvatures. Figure 1.2 shows a schematic representation

of the argument.

The observed value of the curvature is found in this way to be very

close to 0 and hence we believe that we are living in a flat universe.

Current constraints from SNe Ia redshift-magnitude relation obser-

vations, baryon acoustic oscillation (BAO) (as will be discussed in

Chapter 4) and the cosmic microwave background (CMB) (again as
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will be discussed in Chapter 4) on ΩM , Ωk and the equation of state

parameter, w, could be summarised as shown in Table 1.1.

Table 1.1: Current constraints on ΩM , Ωk and w from SNe Ia, BAO and CMB.
These results are taken from the latest SNe data release in [17] which incorporate
the latest results for the CMB [18] and the BAO [19].

ΩM Ωk w

SNe Ia + BAO + CMB 0.281+0.016
−0.015 −0.005±−0.007 −1.026+0.055

−0.059

Deceleration parameter

After the discovery of the expansion of the universe, the deceleration

parameter was introduced to measure the deceleration of the universe

which was a logical expectation from the universe consisting of only

gravitating matter. In such a universe surely gravity would win over

the expansion one day and result in a decelerating universe which is

doomed to recollapse. To the great astonishment of cosmologists how-

ever it was found through observations of high redshift supernovae

that the universe is indeed accelerating [11], [12]. The name “decel-

eration” parameter has nevertheless historically remained unchanged

since. We now require the deceleration parameter to be negative to

imply acceleration.

To derive the deceleration parameter, consider a Taylor series expan-

sion of the scale factor about the current time:

a(t) = a(t0) + ȧ(t0)[t− t0] +
1

2
ä(t0)[t− t0]2 + . . . . (1.27)

Dividing through by a(t0) yields:

a(t)

a(t0)
= 1 +H0[t− t0]−

q0

2
H2

0 [t− t0]2 + . . . , (1.28)

where the current deceleration parameter will be defined by:
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q0 = −a(t0)ä(t0)

ȧ2(t0)
. (1.29)

Using the Friedmann equations, (1.7) and (1.8) and the definition

of the critical density in Equation 1.13, it can be shown that for a

universe with matter and cosmological constant:

q0 =
Ω0

2
− ΩΛ, (1.30)

where Ω0 is the total current matter density parameter and ΩΛ is the

cosmological constant density parameter. If we assume a flat universe

this equation reduces to q0 = 3Ω0/2 − 1, which means that we will

have acceleration, provided ΩΛ > 1/3.

As a final note in this section, we go back to the comment we made

regarding the relevance of the parameters discussed here to our model

at the end of §1.2. The particular model we investigate in this thesis

is built through kinematical considerations. That is, as we will see,

the feature of the model is a specific form for the scale factor of the

universe. Now the parameters discussed here are relevant in the sense

that they are either kinematical parameters themselves i.e. H and q

or related to kinematical considerations i.e. the density parameters.

As we saw in §1.2 the density parameters appear in the Friedmann

equation (1.20) which describes the evolution of the scale factor of the

universe which is hence relevant to our purpose.

1.4 The Celebrated Observations

Unsurprisingly, this section must start with perhaps the most renowned

cosmological observation of all time: the Hubble’s discovery of the
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Figure 1.3: The original Hubble diagram made by Edwin Hubble himself in 1929
displaying the velocities of distant galaxies versus distance. Velocity unit should
read km s−1. Figure from [5].

expansion of the universe. Figure 1.3 shows the famous and revolu-

tionary plot of velocity against distance of distant galaxies made by

Edwin Hubble himself in 1929. Through the data presented in this

plot he demonstrated that the velocities of galaxies are proportional

to their distances from us and hence established the law of expansion

of the universe which became known as Hubble’s law :

v = H0d, (1.31)

where v is the velocity of object, d is the distance to the object and

H0 is the constant of proportionality known as the Hubble constant,

which measures the current rate of expansion of the universe.

Subsequent revolutionary observational discoveries followed the work

of Hubble. We will discuss some of these below.
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1.4.1 Type Ia Supernovae

After the discovery of the expansion of the universe, this expansion

was further probed using Type Ia supernovae (SNe Ia) which are ideal

astronomical objects for distance determination. These objects are

created through the explosion of accreting white dwarf stars when

they reach the Chandrasekhar limit. Therefore since they all have the

same progenitors and are triggered through a consistent underlying

mechanism we can assume that they have constant absolute magnitude

and can hence use them as standard candles. Although SNe Ia are not

perfect standard candles as they exhibit an intrinsic scatter in their

absolute magnitude which could be the result of e.g. the evolution of

their progenitors with redshift.

Furthermore, these objects possess a characteristic correlation between

their maximum brightness and the rate at which this brightness fades.

Again the intrinsic scatter of SNe Ia results in slight variations in

their light curves but putting this correlation together with the almost

constant absolute magnitudes of SNe Ia we arrive at an improved

standard candle.

The extreme brightness of SNe Ia which may temporarily exceed that

of their host galaxy can be viewed from great distances and the fact

that they have almost the same absolute magnitudes make them ideal

standard candles with which to probe the distances to far away galax-

ies. Indeed it was the observations of SNe Ia that culminated in the

discovery of the acceleration of the universe by two independent teams

of Riess et al. [11] and Perlmutter et al. [12]. This was understand-

ably a shocking discovery. After all, how could a universe governed

solely by the attractive force of gravity accelerate? As we saw ear-

lier such an unexpected behaviour has therefore been attributed to
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a form of as yet unknown dark energy. Figure 1.4 shows the SNe

Ia redshift-magnitude relation observed by the Supernova Cosmology

Project (SCP) [20] (the team led by Saul Perlmutter), which clearly

indicates that the best-fit flat cosmology (solid curve) includes a form

of dark energy in the standard model.

1.4.2 Cosmic Microwave Background

About 300,000 years after the Big Bang, the universe cooled to a tem-

perature of about kT ' 0.3 eV (where k is the Boltzmann constant) at

which point Thomson scattering between electrons and protons which

held the cosmic plasma ionised stopped as it was no longer favourable.

This allowed protons and electrons to form neutral atoms in a pro-

cess known as recombination. This event in turn set the photons free

from their interaction with matter and hence they began propagating

throughout the universe from the surface of last scattering at a red-

shift of about 1100. We now observe this Big Bang remnant as the

Cosmic Microwave Background (CMB) radiation as the wavelength of

this primordial radiation has now been stretched (as a result of energy

loss due to the expansion of the universe) to the microwave part of

the spectrum. The CMB was first predicted by George Gamow and

colleagues in 1948 [22] and the observational evidence for it was first

found by Penzias and Wilson in 1965 [23], who measured the tem-

perature of this radiation to be T = 3.5K. Later in 1992 the Cosmic

Background Explorer (COBE) satellite found the temperature of the

CMB to be T = 2.7K with a spectrum described by a black-body

extremely well [24].

The next step in the CMB exploration is the discovery of spatial tem-

perature anisotropies in the CMB. It was again the COBE satellite [24]
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comparison. Figure from [21].
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Figure 1.5: The sky map of temperature fluctuations in the cosmic microwave
background as seen by WMAP over 7 years. Figure from: http://map.gsfc.

nasa.gov/news/.

which first measured these temperature fluctuations to be of order 1

part in 100,000. Figure 1.5 shows the CMB temperature fluctuation

sky map. These anisotropies, which are thought to have been gener-

ated by small density perturbations, are filled with valuable informa-

tion about the cosmological parameters. After COBE, the Wilkinson

Microwave Anisotropy Probe (WMAP) satellite [25] measured these

anisotropies with higher accuracy and today the Planck satellite [26]

is pushing the accuracy of these measurements to the limit, hence

providing us with ever so precise cosmological parameters.

We will be returning to the CMB in Chapter 4, where we will discuss

the two associated distance priors, namely the shift parameter, R and

the acoustic scale, la in relation to the application of the CMB data

to constraining cosmological models.

1.4.3 Baryon Acoustic Oscillations

Another important observational discovery is the Baryon Acoustic Os-

cillations (BAO) which arise from the same density perturbations that

cause the anisotropies in the CMB temperature. As talked about in
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the CMB section, in the early pre-recombination universe photons and

baryons were tightly coupled to each other through Thomson scatter-

ing. In that epoch perturbations resulted in the creation of gravi-

tational instability in the “photon-baryon” fluid and the collision-less

dark matter. These gravitational instabilities continued to grow in the

dark matter part but the baryons could not collapse under the force of

gravity as the radiation pressure of photons would oppose this. This

is basically the mechanism that holds a star together but in the case

of a star the two opposite forces are balanced. In the early universe

plasma however there is an imbalance between the forces leading to

oscillations in the photon-baryon fluid like sound waves in spherical

shells. After recombination photons free-stream, and these acoustic

oscillations leave their imprint both on the CMB and the distribu-

tion of matter. Of course the oscillations occur at many different

wavelengths but there will be a characteristic resonant wavelength,

which we can measure. This distance scale has grown with the uni-

verse’s expansion which means that we observe it in the distribution

of galaxies today to be about 100 Mpc. This length scale translates

into about 1 degree between the hot and cold patches of the CMB sky.

Putting these two information together we can thus use this natural

“standard ruler” to trace the universe’s expansion history back to the

time when the CMB was emitted. The BAO was first convincingly

detected in 2005 by two international teams, namely the Two degree

Field Galaxy Redshift Survey (2dFGRS) [27] and the Sloan Digital

Sky Survey (SDSS) [28]. Figure 1.6 shows an SDSS map of galaxy

distribution, where the arrows point towards increasing redshift. The

red bullseye on the map shows the characteristic scale set by the BAO

in the early universe which can now be detected in redshift surveys.
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Figure 1.6: An SDSS map of distribution of galaxies with a bullseye indicating
the characteristic scale of the Baryon Acoustic Oscillations in the early universe
imprinted on the distribution. Figure from [29].

1.5 Concordance Cosmology

The best picture of the universe we have at the current time con-

structed through observations, some of which were discussed in §1.4

is known as the Concordance Cosmology or the Standard Model of

Cosmology. This model is based on the hot Big Bang model which is

outstandingly successful at explaining the abundance of light elements

and the origin of cosmic microwave background. We have discussed

the CMB earlier but the former corresponds to the abundance of light

elements created through Big Bang nucleosynthesis in the early uni-

verse as it expanded and cooled, which can be accurately calculated in

the hot Big Bang theory. Furthermore, the resulting required baryon

density from such calculations is precisely what we deduce from CMB

data.

In addition to the above, the standard model includes an early period
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of inflation (extremely rapid expansion) which is needed to account

for the production of density perturbations which serve as seeds for

the creation of the large scale structure that we observe today. More-

over, the standard model contains CDM and a positive cosmological

constant, Λ to be able to satisfy observations like the ones we have

seen earlier, and therefore is given the nomenclature ΛCDM.

Current constraints on the ΛCDM parameters deduced from the lat-

est 7-year CMB observations of the WMAP satellite known as the

WMAP7 results [18] together with the latest (at the time when

WMAP7 data were interpreted) H0 measurements [30] and the lat-

est BAO data [19] gives baryon density, Ωb = 0.0458 ± 0.0016, dark

matter density Ωdm = 0.229±0.015 and cosmological constant density,

ΩΛ = 0.725 ± 0.016. In Figure 1.7 we see the famous (ΩM , ΩΛ) plot

with cosmological constraints from the latest SNe Ia observations [17]

together with the latest CMB and BAO data.

The drawback of Figure 1.7 is that it allows for too much freedom in

the values that the matter and dark energy densities can take. That is,

the flatness condition corresponding to ΩM + ΩΛ = 1 is only satisfied

on the designated diagonal line. In comparison Figure 1.8 shows the

same constraints on the (ΩM , w) plane while assuming flat universes

throughout.

An important feature of Figure 1.8 is that in addition to showing

that the cosmological constant gives a good fit to the data, it also

clearly allows for dark energy with an equation of state of less than

−1. This means that phantom energy with w < −1, leading to a

Big Rip singularity is indeed still currently a legitimate candidate for

dark energy. At a Big Rip, which will be explained further in §2.1 the

universe is literally ripped apart down to its smallest constituents.
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Figure 1.7: The contours show 68%, 95% and 99% credible regions in the
(ΩM ,ΩΛ) space calculated using SNe Ia, CMB and BAO data. Dark energy
is assumed to be the cosmological constant with w = −1 as in the concordance
model. Figure from [17].
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Figure 1.8: The contours show 68%, 95% and 99% credible regions in the
(ΩM , w) space calculated using SNe Ia, CMB and BAO data. It can be seen
that w < −1 is allowed. Figure from [17].
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1.5.1 ΛCDM Problems

Despite its remarkable successes at describing the various available ob-

servational data, there are also fundamental problems with the con-

cordance model. For example, as mentioned before there is a large

discrepancy between the observed and predicted values for the energy

density of vacuum which is what the cosmological constant is thought

to be interpreted as. This is the famous cosmological constant prob-

lem as introduced before. This problem therefore naturally calls for

alternatives to the cosmological constant to be sought for where as

discussed the equation of state of dark energy is different from that

of the cosmological constant, w = −1 and instead varies with time,

w = w(t).

Furthermore, the problem known as the flatness problem, basically

questions the very nearly flat curvature of the universe in ΛCDM as

observed through the CMB data. The reason for this is that, a flat

universe must have either always been flat or extremely fine tuned at

early times. Any deviations from this fine-tuning would grow in time

to result in a non-flat model. The way to see this is by writing the

Friedmann equation (1.20) in the form:

|Ω− 1|≡ |Ωk|=
|k|c2

a2H2
, (1.32)

where we are assuming Λ = 0, which is a reasonable assumption for the

most part of the history of the universe’s evolution. In this decelerating

universe, H is constantly decreasing and the scale factor is effectively

increasing as a ∝ t2/3 (assuming a matter-dominated universe which is

also a good approximation for the majority of the universe’s evolution).

We can see that the term on the right hand side is constantly increasing
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as a function of time. Thus, if k 6= 0, a small deviation can grow to

result in a significantly non-flat model today.

Another example is the horizon problem. We can work out the angle

subtended by the horizon at the time when the CMB was emitted.

Today this is about 1 degree on the sky. This means that two patches

on the CMB sky further than about 1 degree apart must not have

been in causal contact with each other, yet we see that the whole of

sky (about 40,000 square degrees) has the same temperature. That is,

these patches could not have communicated with one another to reach

an equilibrium to give us the isotropic CMB that we observe today.

And of course there is the problem with the dark matter and dark

energy in the standard model introduced to account for observations.

The unknown nature of these dominating components is a major prob-

lem with the ΛCDM.

Hence, for the problems listed here and also some others that are

not considered here, many other non-standard models for the universe

have been sought which attempt to explain observations as well as

ΛCDM is able to, while at the same time resolve the issues with this

standard model. In the next chapter where we discuss the future

state of the universe and the particular model we have investigated,

we come across some non-standard cosmologies proposed to serve as

alternatives to the standard ΛCDM model.

1.5.2 Conclusions

In this first chapter we have laid the theoretical foundations of our in-

vestigations to follow in later chapters. We talked about the standard

ΛCDM cosmological model and the observational evidence supporting

it. However, we also argued how in some circumstances the observa-
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tions also allow for theories that are considered beyond the standard

model such as phantom dark energy. As we will see in Chapter 2, this

has encouraged new paths of investigations to be followed by cosmol-

ogists.
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Chapter 2

The Exotic World

Having become familiar with the standard cosmological paradigm in

Chapter 1, in this chapter we will start our journey into the world of

exotics, which will take us to the specific model that we investigated

in this thesis. Arguably, the definition of “exotic” is not fixed. Until

about a decade ago we could not have imagined to have to consider

a negative pressure energy component to dominate the total energy

budget of the universe and yet now this does not seem as bizarre

perhaps. Therefore, more correctly we present here some ideas which

are considered to be exotic now.

Seeing as our model of interest, as we will see, concerns a possible fu-

ture evolution for the universe, we will discuss some of the possibilities

for the fate of the universe in non-standard models first.

Throughout this chapter references have been made to some papers in

the literature where the contents of these works have only been very

briefly touched upon in the text just to convey an impression of the

subjects discussed. The reason for the inclusion of these references

is mainly to demonstrate the place occupied by the model of inter-

est, Sudden Future Singularities, within the literature. More detailed

descriptions of these investigations lie beyond the scope of this work.
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2.1 The Fate of the Universe and Exotic Singu-

larities

“Some say the world ends in fire, some say in ice” [31]. Although

perhaps other thoughts served as Robert Frost’s motivation for writing

this poem in 1916, he unknowingly summarised our understanding of

the end of the universe in his later years to come pretty well. Until the

late nineties of the twentieth century the only kinds of possible fates

for the universe in Big Bang models were considered to be the two

cases of eternal expansion in an open or a flat universe or an eventual

recollapse known as a Big Crunch in a closed model. The universe

would start out from a Big Bang in all these models but would end in

one of the possible fates depending on the curvature of the universe.

When in early- to mid-1990’s astronomers set out to discover by how

much the expansion of the universe was decelerating, due to the grav-

itational attraction of all the matter within it, by observing standard-

isable candles such as Type Ia supernovae the least they could imagine

to find was that the universe was indeed accelerating! Later this re-

sult was supported by other cosmological observations such as the

anisotropies in the cosmic microwave background radiation and the

baryon acoustic oscillations.

Geometry no longer determined destiny after this discovery since now

with the inclusion of an extra component in the mass-energy content

of the universe, which causes this speeding up of the expansion of

the universe, a closed universe could expand indefinitely and an open

universe could recollapse [32]. More specifically, the equation of state

of this extra, dominant mass-energy constituent of the universe, the

so-called dark energy which acts against gravity will determine its

ultimate fate. Hence the search for the nature of this mysterious
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cosmological fluid now thought to be making up about 70% of the

mass-energy content of the universe began.

If we look at the second Friedmann equation (or the acceleration equa-

tion) in Equation 1.8 we notice that in order to obtain acceleration,

when Λ = 0, we necessarily need a substance that has negative pres-

sure. Various forms of negative-pressure components have been pro-

posed since the discovery of acceleration to account for this repulsive

force. As we have seen earlier, in the standard concordance cosmology

the dark energy responsible for this behaviour is the cosmological con-

stant, Λ with an equation of state parameter, w = −1. A Λ-dominated

universe will continue to expand exponentially into an empty de Sitter

type universe.

As talked about in Chapter 1, another leading candidate is quintessence

with w < −1/3 which varies in time and space. Phantom energy

[33, 34] with w < −1 is a special case of quintessence whose energy

density increases with time. Phantom energy is indeed very unusual

as mentioned in Chapter 1. The way to see this is by noting that the

pressure and density of a scalar field, φ are defined as:

p =
1

2
φ̇2 − V (φ) (2.1)

and

ρ =
1

2
φ̇2 + V (φ) (2.2)

where 1
2φ̇

2 is the kinetic energy and V (φ) is the potential energy of the

scalar field. Now to have w = p
ρc2 < −1 would require the introduction

of a negative kinetic energy term. This is where the abnormality of

phantom energy comes from.

A phantom-dominated universe will expand towards a Big Rip singu-

larity [35] where all the matter in the universe will also take part in
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the expansion and will hence be torn apart. The Big Rip singularity

violates all energy conditions of GR (which will be discussed in §2.2.1).

While current cosmological data are consistent with a dark energy in

the form of a cosmological constant, they are not yet able to rule out

other more exotic candidates, including most intriguingly phantom

energy which drives the universe towards a Big Rip singularity. This

has encouraged the study of the possibility of the occurrence of other

non-standard events in the future evolution of the universe which could

be stemming from various other kinds of matter. And indeed at the

same time that the inclusion of a negative pressure dark energy would

be a solution to the acceleration problem, cosmologists have also been

looking at other ways to modify Einstein’s theory of gravity to achieve

this goal.

These studies have brought a zoo of new cosmological singularities to

the table which are different from the standard singularities of Big

Bang and Big Crunch. Not all of these extremal events mark the

end of the universe however and the evolution of the universe may

continue beyond some of them [36, 37, 38]. Here I aim to provide a

list of the most important possible non-standard fates for the universe

discovered by now.

Exotic extremal events have been classified in different ways in a num-

ber of works. Nojiri et al. [39] first produced a classification of cos-

mological singularities in terms of the three quantities of the scale

factor, a, the density, ρ and the pressure, p. In this classification,

which remains the basic and classic one to date, we have four types of

singularities:

• Type I (“Big Rip”): For t→ ts, a→∞, ρ→∞ and |p|→ ∞
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• Type II (“Sudden”): For t→ ts, a→ as, ρ→ ρs and |p|→ ∞

• Type III: For t→ ts, a→ as, ρ→∞ and |p|→ ∞

• Type IV: For t → ts, a → as, ρ → 0 and |p|→ 0 and higher

derivatives of H diverge.

In the above, as, ρs and ps are constants and also as 6= 0. I will now

explain these types of singularities further detail below:

Type I, Big Rip: As mentioned before these singularities happen in

phantom dark energy models with w < −1 [33, 34]. In such a uni-

verse the very negative equation of state parameter results in a super

negative pressure (resulting in super acceleration following the second

Friedmann equation (1.8)) of the dominating dark energy component

which together with its ever increasing energy density dissociate ev-

erything in the universe. Starting from the largest structures of super

clusters of galaxies and continuing to the smallest constituents of mat-

ter, namely nuclei and nucleons. This drastic end to the universe has

not been ruled out by observations of Type Ia supernovae, the CMB

and large scale structure which seem to allow for a dark energy with

w < −1 [18, 19, 17]. And indeed this very discovery has been a

great encouragement for searching for other exotic possible fates for

the universe.

Dabrowski and Denkiewicz in [40], make an estimate of the time at

which this singularity may occur in the future. They report this time

to be about 20 Gyr.

Type II, Sudden: Sudden singularities were first discovered by Barrow
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[41] as pressure singularities which are accompanied by the divergence

of the second derivative of the scale factor. In fact Barrow [41] first

put forward the idea of Sudden Future Singularities and constructed a

class of models which could accommodate such extremal events. Since

then almost all the research done on the subject has been concerned

with future events. Throughout this work therefore when I talk about

sudden singularities I really mean sudden future singularities. Just to

mention an interesting viewpoint here, Cattoen and Visser [42] regard

the discussion of a past sudden singularity as implying an alternative

beginning for the universe and they comment that this would form

“the most unusual and disturbing” beginning that could be envisaged

for the universe.

Furthermore, when Barrow’s particular sudden singularity model is

meant, the term Sudden Future Singularity is used, as the name has

in a way become a trademark for Barrow’s finding. Strictly speak-

ing however, all the singularities discussed here belong to the sudden

singularities group since they all occur at some finite time in the fu-

ture. Barrow chose the name “sudden” for his discovery to translate

finite-time. And sudden singularities has indeed been used in the lit-

erature (e.g. in Copeland et al. [43]) to mean finite-time singularities

in general .

Type III : This type of extremal event was first discovered by Nojiri et

al. [44]. Later it was found by Bouhmadi-lopez et al. [45] in phantom

models where the universal fluid is expressed as generalised Chap-

lygin gas (GCG). In this work the singularity has been dubbed Big

Freeze. The fluid considered by Bohmadi-lopez has come to be known

as phantom generalised chaplygin gas (PGCG). Dual phantom fluids

[46], which result in two Big Rip singularities both in the past and in

the future, have been considered in this context as well [47]. In this
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case the fluid is known as a dual phantom generalised Chaplygin gas

(DPGCG). Both PGCG and DPGCG are referred to more simply as

GCG and DGCG. To briefly go through GCG and DGCG definitions,

we start from the Chaplygin gas which is a perfect fluid that obeys an

exotic equation of state of the type:

p = −A
ρ
, (2.3)

where p is the pressure, ρ the energy density and A a positive con-

stant. This type of fluid has been named after the Russian mathemati-

cian and mechanical engineer, Sergey Chaplygin following his works

in aerodynamics. He proposed the above relation as a mathemati-

cal approximation for measuring the lifting force on the wings of an

airplane.

The energy density of the Chaplygin gas is positive and it has been

shown that such a fluid would naturally provide the transition from

a decelerating matter-dominated epoch to an accelerating epoch as

Kamenshchik et al. show in [48]. In this work, the authors further

introduce the GCG which takes on the following form for its equation

of state:

p = −A
ρα
, (2.4)

with 0 ≤ α ≤ 1 . This has been studied in [49]. The same evolution

from early deceleration to acceleration at late times is achievable with

this fluid but in this case a cosmological constant will be mimicked at

the current accelerating epoch.

At a Big Freeze singularity the phantom energy density diverges, filling

the whole of the universe which means that nothing can move any
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further. This fact led the authors to call this standstill state a Big

Freeze singularity. This nomenclature may not be confused with the

big freeze that occurs in an open or a flat universe where there is an

obvious cooling of the universe due to the dilution of the matter it

contains as a result of the expansion. (Strictly speaking closed models

with a sufficient amount of dark energy could expand to end up in a

similar fate as open and flat models.) Bouhmadi-lopez et al. in [45]

further show that in models with GCG and DGCG fluid types such

described Big Freeze singularity is what replaces and hence avoids the

Big Rip singularity. Moreover, Yurov, Astashenok and Gonzalez-Diaz

[50] confronted these models against observational data and showed

that the only way these models could match current observations is

by including an amount of dark matter.

Another name for a type III singularity is the Finite Scale Factor

(FSF) singularity as given by [40]. In this work, the authors confront

the FSF model they consider with the Riess et al. Gold supernovae

data [51]. This way they show that an FSF could occur in less than

0.3 Gyr in the future in the model they studied.

Type IV : Such singularities which were first discovered in the tachyonic

cosmological model studied by [52] were named Big Brake singulari-

ties. They are regarded as a subclass of sudden singularities as they

also feature an infinite deceleration of the universe at some time in

the future evolution of the universe. What distinguishes Big Brake

singularities from sudden singularities is the fact that the first time

derivative of the scale factor is zero at this singularity whereas this

quantity is finite in the case of the sudden singularity. Therefore, at

a Big Brake singularity the universe stops its evolution to zero speed

while at a sudden singularity this final speed is finite. To better make

sense of the situation with the Big Brake and the sudden singularity
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we use the analogy of a moving car. At the Big Brake singularity the

situation would be like when the driver pushes on the brakes suddenly

and brings the car to a complete halt but in the case of the sudden

singularity the driver pushes suddenly on the brakes just to reduce

the speed to a lower value. It should be noted that as Copeland et

al. [43] describe, type IV singularities also include singularities with

finite values for the density, the pressure or both.

Big Brake singularities also take place in models with the exotic fluid

in the form of the so-called anti-Chaplygin gas which has an equation

of state of the same form as the Chaplygin gas but with the opposite

sign: p = A
ρ , where A is a positive constant [52]. This is the only type

of equation of state that can be considered for singularities of this sort

[40]. As will be discussed in full detail later on in this chapter, sudden

singularities do not admit any type of an equation of state. While

the Big Brake would be the only fate possible in anti-Chaplygin gas

models, tachyonic models discussed above, could end up in either an

infinitely accelerating expansion state of de Sitter type or in a Big

Brake singularity depending on initial conditions, as they put it [52].

The aforementioned tachyonic cosmological model where the Big

Brake singularity naturally occurs has been confronted against su-

pernovae data in [53] and has successfully passed this cosmological

fitting.

Furthermore, as shown by Dabrowski et al. in [40] the earliest time

when a Big Brake singularity could occur in the future of a tachyonic

model is 1 Gyr and the latest time is 44 Gyr. The authors in [40]

claim that although these events happen in a very distant future, they

could potentially serve as a dark energy candidate.

Moreover, the type IV singularity is given the name, the Big Sepa-
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ration in [40]. We will discuss one aspect of this type of singularity

as noted by Dabrowski and Denkiewicz who came up with the name

“Big Separation” further below.

Going back to the issue of the classification of singularities, after the

above classification, Cattoen and Visser [42] classified these “cosmo-

logical milestones”, as they call them, in terms of generalised power

series expansion of the scale factor and studied them kinematically. In

addition they also considered their dynamical behaviours through the

Friedmann equation to analyse the energy conditions in the vicinity

of these events. As will be talked about later in §2.2.1, energy condi-

tions are no longer as physically reasonable as they were when they

were first introduced but nonetheless as Cattoen and Visser [42] put

it, they can make a good first guess at determining the strangeness of

the cosmological events under study.

Fernandez-Jambrina and Lazkoz then considered the behaviour of

causal geodesics in classifying cosmological singularities to comple-

ment previous classifications [37]. As they argue, Cattoen and Visser

[42] only analyse the singularities in terms of the curvature and cur-

vature is a static concept. They claim rightly that what would be

more enlightening in the study of singularities is to dynamically fol-

low observers’ trajectories along causal geodesics, which are subject to

gravitational forces only, up to the singularity. Whether or not causal

geodesics can be extended beyond a singularity can be an indication

of the strength of the singularity under study. Briefly, that is, sin-

gularities beyond which the geodesics can be extended are regarded

as weak singularities and those where the geodesics halt are strong

singularities. In the former case the spacetime is said to be geodesi-

cally complete and in the latter geodesically incomplete. Fernandez-

Jambina and Lazkoz [37] therefore classified singularities according to
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their strengths as well. This issue of the strength of singularities is

further discussed and more carefully analysed in the case of sudden

singularities in §2.2. We only note in passing that they are regarded

as weak singularities in the scheme.

In one of their latest works, [54], Fernandez-Jambrina and Lazkoz

continue further to classify singularities in terms of the generalised

power series expansion of the equation of state.

Fernandez-Jambrina and Lazkoz’s approach in [38] to the issue of ex-

otic singularities in modified gravity theories is a rather interesting

one. They present a compact form for modifications to the Friedmann

equation which comprises modified gravity theories such as the f(R)

theory and braneworld models. They then classify the kind of exotic

singularities that occur in various modified gravity models.

In [40] a list of exotic singularities which could serve as dark energy

is presented. The reason why this claim is made by the authors is

that many of these extremal events arise naturally in alternative dark

energy and modified gravity models which attempt to explain the cur-

rent acceleration of the universe. For instance, as Dabrowski and

Denkiewicz [40] claim, the curious w-singularity (which will be ex-

plained towards the end of the section) appears in theories such as

f(R) gravity, scalar field gravity and in brane gravity models. More-

over, sudden singularities plague loop quantum cosmology.

Dabrowski and Denkiewicz in [40] specifically discuss the following

extremal events: the Big Rip (type I), the SFS (type II), the FSF

(Finite Scale Factor, type III), the GSFS (Generalised Sudden Future

Singularity), the Big Separation (type IV) and the w-singularity. We

mentioned FSF and Big Separation singularities before in the discus-

sion of their respective singularity types of III and IV. As can be seen
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there are more names than events.

From these listed singularities, the GSFS and the w-singularity are

new types which we will now explain in turn below:

GSFS : Generalised Sudden Future Singularities comprise an infinite

family of finite-time singularities arising in isotropically expanding

universes where all the energy conditions are satisfied. The singular

behaviour at these events occurs in arbitrarily high order derivatives

of the pressure with respect to cosmic time [55]. That is to say that

the density and pressure remain finite at a GSFS. Another way to look

at it is that these singularities can be regarded as moderated forms

of sudden future singularities where the singularity occurs in a time

derivative of the pressure rather than itself. If the pressure derivative

singularity occurs at the rth order, the scale factor singularity will

occur at the (r + 2)th order. This relation could be understood by

looking at the second Friedmann equation (1.8). One can see that

the second time derivative of the scale factor is related to the 0th or-

der time derivative of pressure, i.e. the pressure itself. Hence there

are two differentiation orders difference between the scale factor and

the pressure which explains the abovementioned relation between the

derivatives. These events will be further discussed by the use of the

appropriate formulae in §2.2.2. Furthermore, as was mentioned in the

type IV singularity discussion, Copeland et al. [43] consider this type

of singularity as comprising events where both density and pressure are

finite and those where these vanish alongside the divergence of higher

order derivatives of H. This will then mean that GSFS with its finite

density and pressure could also be thought of as a type IV singular-

ity. And as a final note regarding this type of singularity, Dabrowski

and Denkiewics assert in [40] that by their estimations these singu-

larities take place always further into the future than sudden future
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singularities.

The Big Separation is similar to GSFS with the difference that w →∞
in the Big Separation case even though the pressure and the density

vanish [40]. That is:

w =
p

ρc2
→∞ as ρ→ 0 and p→ 0. (2.5)

This claim by Dabrowski and Denkiewicz is however not approved by

Fernandez-Jambrina [56] who asserts that this fact is not necessarily

true for type IV singularities. Nevertheless this issue is not noted in

the previous considerations of this type of singularity, but as we will

now see below, Dabrowski and Denkiewicz’ creation, w-singularities,

features the same behaviour for the equation of state.

w-singularity : This type of singularity is similar to type IV singular-

ity but with the difference that the higher derivatives of the Hubble

parameter do not diverge [57]. Moreover, w-singularities are different

from Big Brake singularities specifically since they do not conform to

an anti-Chaplygin gas equation of state. As a w-singularity is ap-

proached, i.e. t → ts (where ts is the time of the singularity), we

have:

a(0) = 0, a(ts) = const. ≡ as, ȧ(ts) = 0, ä(ts) = 0,

where the subindices, s, correspond to the quantities evaluated at the

singularity. These conditions would be interpreted as a Big Bang

type beginning, fixed and finite size for the scale factor at ts, halt of

expansion at ts and end of acceleration at ts respectively. Requiring

the above conditions, Dabrowski and Denkiewicz [57] arrived at a

particular form for the scale factor for a model with a w-singularity.
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With such a scale factor they then show that the equation of state

diverges despite the fact that the pressure and the energy density

both vanish. They prove this fact by making use of the l’Hopital’s

rule of calculus.

In [57] the authors further go on to demonstrate a curious duality

between the w-singularity and the Big Bang (BB) singularity which is

shown as:

pBB ↔
1

pw
, ρBB ↔

1

ρw
, wBB ↔

1

ww
.

To translate exactly what these relations mean, we have [57]:

pBB →∞ and pw → 0,

ρBB →∞ and ρw → 0,

wBB → 0 and ww →∞.

Regarding the strength of this type of singularity, Fernandez-Jambrina’s

work on w-singularities in [56] shows that they are weak singularities.

Some of the events discussed so far have been tested against obser-

vational data and have proven to be viable with the accuracy of the

measurements that is available to us today. An example is the Big Rip

singularity as mentioned before. Initially sudden future singularities

were also thought to be possible when compared against high redshift

supernovae data only [1]. What the authors did in [1] was to find

out that for a particular set of SFS model parameters the luminosity

redshift-magnitude relation matches that of the concordance model

very well. Their plot of distance modulus, µ = 5 log dL + 25 against
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Figure 2.1: Distance modulus against redshift for the concordance model with
H0 = 72.8km s−1Mpc−1, Ωm0 = 0.26 and ΩΛ0 = 0.74 (dashed blue curve) and
the SFS model with m = 2/3, n = 1.9999, δ = −0.471 and y0 = 0.99936 (solid
red curve). The SNe Ia data shown correspond to the Gold [51] (open circles) and
the SNLS [58] (filled circles) datasets. One can see that the concordance and the
SFS models are almost indistinguishable. Figure from [1].

redshift is shown in Figure 2.1.

This work demonstrated that if the age of the universe in the SFS

model is the same as in the standard concordance model, an SFS

could happen in as early as 8.7 million years. Of course we go on to

show in this thesis what happens to this conclusion once one considers

other available cosmological data like the CMB and the BAO.
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2.2 Sudden Future Singularities

After observing where Sudden Future Singularities stand in various

currently available classification schemes for exotic singularities in

§2.1, here in this section we aim to put Sudden Future Singularities

under the microscope and study them in full detail. To do this we

will present an overview of Sudden Future Singularities and the mod-

els accommodating them, reviewing the key theoretical and physical

ideas that have underpinned their development in recent literature.

2.2.1 Sudden Singularities

In 2004 Barrow [41] first published the results of his discovery of the

existence of Sudden Future Singularities, which arise in the expanding

phase of a standard Friedmann universe and violate the dominant

energy condition only [59]. This was an intriguing discovery since

until then the theoretical search for expanding universes with possible

violent ends had identified only the Big Rip singularity [35] where all

the energy conditions of GR are violated. As we have seen before at

such an extremal event, which is befittingly named Big Rip, all the

matter in the universe down to its smallest constituents is dissociated

[35].

Energy conditions are physically reasonable inequalities imposed on

the energy-momentum tensor, Tµν, which in general is made from

many different matter fields. It would be immensely complicated to

describe the exact energy-momentum tensor even if one knew precisely

what forms of matter were present and what equations of motion gov-

erned their behaviour as Hawking explains [60]. Energy conditions

are designed to extract as much information as possible about the
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energy-momentum tensor through classical GR without assuming any

particular form for its equation of state [61]. Recall Einstein’s field

equations from Equation 1.4:

Gµν + Λgµν =
8πG

c4
Tµν. (2.6)

One sees that with no complete description for the right hand side

regarding the energy-momentum tensor, it would not be possible to

solve this equation in any way. GR therefore is both a powerful theory

in the sense that it allows for any kind of matter field to be consid-

ered, and a weak one at that since it does not give much information

about the type of matter we ought to have. One should note however

that this problem also exists in Newtonian gravity. That is when one

considers a falling mass under the force of gravity, a measure of the

rate at which the object accelerates says nothing about the nature of

the falling mass.

We can therefore see how the energy conditions could be helpful by

placing constraints on the energy-momentum tensor that all physically

reasonable kinds of matter should satisfy. It should be emphasised that

these conditions are still not able to tell us about the type of matter

we should be dealing with but they could be utilised in constructing

general theorems regarding the strong field behaviours of gravitational

fields [62].

A generic feature of matter that we observe is that its energy den-

sity is (almost) always positive. The energy conditions of GR are

basically different ways of making this quality more precise [62]. The

elaboration of these conditions occurred at the same time as when

many powerful mathematical theorems were developed. And the con-

struction of different kinds of energy conditions in use today has been
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in fact considerably driven by the technical necessity brought about

for the derivation of these theorems [62]. These energy conditions

have turned out to be sufficient to prove the singularity theorems of

Hawking and Ellis [60] which attempt to show in what circumstances

gravitation results in singularities. The energy conditions also form

the basic foundation for other well-known theorems such as the topo-

logical censorship theorem, which postulates that no observer could

determine the topology of space-time, and the no-hair theorem, which

asserts that all black holes are describable by only the three quantities

of mass, electric charge and angular momentum.

The energy conditions can be fundamentally expressed in terms of the

components of the energy-momentum tensor [62] but for FRW uni-

verses these conditions specialise to the following inequalities in terms

of the pressure, p, and density, ρ, of a perfect fluid (where c is the

speed of light):

• The null energy condition (NEC): ρc2 + p ≥ 0.

• The weak energy condition (WEC): ρc2 ≥ 0 and ρc2 + p ≥ 0.

• The strong energy condition (SEC): ρc2 +p ≥ 0 and ρc2 +3p ≥ 0.

• The dominant energy condition (DEC): ρc2 ≥ 0, −ρc2 ≤ p ≤ ρc2.

Physically these conditions, and their violation or otherwise, may be

interpreted as follows:
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NEC : The density drops as the universe expands [62]. The violation

of the NEC results in super acceleration of the scale factor as occurs

in phantom models [63]. Not violating this condition corresponds to

allowing dark energy to exist in the form of quintessence.

WEC : This condition embodies the NEC and further adds to it the

fact that the energy density is positive [62].

SEC : Gravity is an attractive force. The violation of this condition

comes through negative energy density or a large negative pressure [60]

which could occur in inflationary processes such as that in the early

universe. Not violating the SEC results in a decelerating universe.

Moreover, the SEC provides a lower bound on the energy density [62].

DEC : Matter cannot travel faster that light [64]. The DEC provides

an upper bound on the energy density [62]. This energy condition is

interpreted as expressing the same conditions as the WEC plus the

fact that pressure should not exceed energy density [60].

Given all that we said about the energy conditions, we note that their

validity has been challenged over the years since they were first set.

In particular the SEC is in fact almost completely abandoned now

since it corresponds to a decelerating universe. The other conditions

are also beginning to lose their validity. More fundamentally, there

exist quantum effects that are capable of violating the NEC, which

is the weakest of the energy conditions whose violation results in the

violation of all the energy conditions [65]. Furthermore, there are se-

rious classical violations of the energy conditions [65]. An example

of an energy condition completely abandoned now is the trace energy

condition (TEC). This condition asserted that the trace of the energy-

momentum tensor should be negative (or positive, depending on the

metric conventions). But as Barcelo and Visser [65] discuss, the real-
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isation that stiff equations of state similar to those found in neutron

stars violate this energy condition, resulted in the rejection of this

assertion.

Nevertheless, despite the situation we are in with the energy conditions

today, for the lack of more successful replacements, these conditions

are still widely used in the GR community [65]. And indeed although

we know these conditions are not truly fundamental, as Barcelo and

Visser put it, they provide us with a good first pass at the problem of

determining how strange physics may get at the vicinity of cosmolog-

ical milestones, a term coined by Cattoen and Visser [42].

Now to apply these conditions to the main subject of this chapter, we

see that at an SFS all the energy conditions except for the DEC are

satisfied. It should be noted that this fact is true only when one con-

siders a positive diverging pressure. In such a case one could therefore

argue that SFSs appear to be very odd indeed by complying with the

SEC and not the DEC. In other words at these events one has decel-

eration along with superluminal speeds for the matter! Nonetheless,

again compared to the Big Rip singularity they could be thought of as

less pathological perhaps since they violate only one energy condition

in comparison with Big Rip singularity that violates all.

In [40] Dabrowski et al. show how the occurrence of exotic singulari-

ties could be linked to the blow up of the statefinders. Statefinders are

observational parameters which are made from time derivatives of the

scale factor like the well-known Hubble parameter and the decelera-

tion parameter. Dabrowski in [66] specifically demonstrates that the

occurrence of the SFS type singularity is accompanied by the blow up

of the deceleration parameter and the GSFS, which was introduced

earlier in §2.1, is accompanied by the divergence of what is known as

the jerk parameter which is one order higher than the deceleration
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parameter:

j =
1

H3

...
a

a
=

...
aa2

ȧ3
. (2.7)

In the same way as for the Hubble constant and the deceleration pa-

rameter, the jerk parameter has also been observationally investigated.

Using supernovae data it has been shown that, j0 > 0 [67] which is

equivalent to saying that the evolution of the universe changed from

a decelerating phase to an accelerating one.

Dabrowski further discusses in [66] how the classic energy conditions

may be modified to higher-order versions related to the statefinders,

making up more sophisticated energy conditions, as he puts it, which

could prohibit the occurrence of exotic singularities. Such discussions

regarding the modification of the energy conditions are also presented

in e.g. Barrow and Tsagas’ work [55].

The name Sudden Future Singularities was chosen by Barrow for these

singularities as they are temporal singularities and occur in a finite

future comoving proper time. Barrow considers sudden future singu-

larities as belonging to the larger group of ‘big rip’ singularities as

they were discovered while searching for possible violent ends to the

universe at a finite future time. And indeed what got researchers in-

terested in sudden future singularities following Barrow’s work was

most importantly the fact that they resembled the Big Rip singular-

ity in many ways but at the same time were much milder and not

catastrophic at all as we will see shortly.

In discovering such singularities Barrow sets out by searching for any

type of singularity in which a physical scalar becomes infinite in a finite

future comoving proper time while the scale factor and the Hubble
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expansion rate remain finite. Consider the Friedmann equations in

the following form:

ρ =
3

8πG

(
ȧ2

a2
+
kc2

a2

)
, (2.8)

p = − c2

8πG

(
2
ä

a
+
ȧ2

a2
+
kc2

a2

)
, (2.9)

where ρ is the energy density, p the pressure, a the scale factor, k

the curvature index, c the speed of light, G the gravitational constant

and an overdot represents derivative with respect to time. Barrow

found that by keeping the scale factor and the Hubble expansion rate

finite one will also necessarily maintain a finite density, but that the

pressure can still diverge. The divergence of pressure is accompanied

by the blow up of the acceleration, as can be seen from Equation 2.9,

which leads to a scalar polynomial curvature singularity even when

the energy density and the Hubble expansion rate are finite and the

scale factor is finite and non-zero [41].

The standard definition of scalar polynomial curvature singularities

appears in [60] where they are prescribed as types of singularities

where any of the scalar polynomials of the curvature tensor diverges.

To very briefly explain this, these kinds of singularities were created

due to the fact that to consider an unboundedly large curvature for a

singularity would require specification of a coordinate system. How-

ever a way round this problem would be by looking at scalar polyno-

mials in the curvature tensor. In this way one has a scalar polynomial

curvature singularity when any of these scalar polynomials diverges.

Furthermore, we consider the scalar curvature term in an FLRW back-

ground cosmology as given by e.g. [43]:
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R = 6

(
ä

a
+
ȧ2

a2
+
k

a2

)
, (2.10)

where a is the scale factor, k is the curvature constant and an overdot

denotes derivative with respect to Comic time. We can see clearly

that the diverging acceleration at an SFS would naturally result in a

scalar curvature singularity.

Barrow shows in [68] that similar sudden singularities (moderated

forms of the type discussed here) are possible in modified gravity the-

ories where the divergence of the pressure is accompanied by the di-

vergence of higher order derivatives of the scale factor. Furthermore,

an SFS of the sort studied here happens regardless of the curvature of

the universe [41].

Shortly after their discovery, Nojiri and Odintsov [69, 70] showed that

these singularities may be avoided (or moderated) when quantum ef-

fects are taken into account. As they argue in [69], as a singularity is

approached curvature invariants grow and energies increase which sig-

nals the beginning of the dominance of quantum effects on the system.

They then explain conformal anomaly back-reaction in investigating

how these quantum effects influence the evolution towards a singular-

ity.

The fate of these singularities along with the other four types of exotic

singularities mentioned before in §2.1 are also investigated in effective

dynamics of quantum cosmology by Sami et al. in [71]. As they ex-

plain, the existence of future singularities in an FRW cosmology marks

the beginning of the end of the validity of GR at such events. They

show that sudden singularities again may be avoided depending on the

magnitude of the density at the singularity and in such a framework

an oscillating universe without a sudden singularity is created.
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We can see that the divergent behaviour of the pressure at an SFS

cannot be linked explicitly to that of the energy density, which re-

mains finite, or we will not have an SFS. Hence we need to release

the assumption of an equation of state which imposes a link between

these two quantities. Of course then in order to avoid an SFS one

would just need to impose an equation of state which will bound the

pressure. Or as Barrow puts it, to avoid an SFS, it would be sufficient

to require dp/dρ to be continuous or p/ρ to be finite [41].

Sudden future singularities are similar to another type of singularity

termed Finite Density singularities which are spatial singularities and

happen in inhomogeneous models of the Universe. It should be noted

that an SFS can occur also in inhomogeneous models [72] where they

may violate all energy conditions. The isotropy of the Universe is not

a requirement for the occurrence of such singularities either and they

may take place in anisotropic models as well [41]. Barrow and Tsagas

in [55] show in fact that finite-time singularities feature in a wide class

of cosmological solutions to Einstein equations irrespective of special

symmetries. Sudden singularities are also immune to quantum particle

production as investigated by [73] which could not be the case for the

Big Rip singularity.

Similar to sudden singularities are the so called ‘quiescent’ singularities

which occur in braneworld models [74]. These are a type of sudden

singularities whereby the pressure remains finite alongside the density

and the Hubble parameter while higher derivatives of the scale factor

diverge. Alam and Sahni confronted braneworld models with quiescent

singularities with SNe Ia and BAO data in [75] and concluded that

they would not fit observations.

Furthermore the exact same sudden future singularity with the diver-

gent pressure occurs in nonlocal cosmology as found by Koivisto [76].
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Such models attempt to provide an explanation for the current accel-

erating expansion of the universe through modifications of Einstein’s

gravity which take the form of nonlocal distortions of the Einstein

tensor in addition to possessing other properties. The accelerating

universe in this model will lead it towards an SFS rather than a de

Sitter type epoch. Koivisto however shows that these singularities

may be avoided by a slight modification of the nonlocal model.

Other works where it has been shown that sudden singularities arise in

various other models include Abdalla et al.’s study of modified f(R)

gravity models where the current dark energy dominance is explained

simply by the universe’s expansion [77]. Finite-time sudden future sin-

gularities naturally occur in such gravitational dark energy models as

they put it. These may however be removed by quantum effects just

as it was shown by Nojiri and Odintsov [69] to be the case for the sud-

den singularities in Barrow’s model. In general if we had a complete

theory of quantum gravity, we would be able to resolve the problem

of singularities in cosmology but of course such a theory does not yet

exist [78]. As the authors argue in [78], finite-time future singularities

plague current black hole and stellar astrophysics. Specifically, they

show that in general modified gravity dark energy theories are more

immune to singularities than the general exotic fluid dark energy.

Furthermore, GCG models, that were talked about before in the con-

text of Big Freeze singularity, also allow the occurrence of sudden

singularities [79]. Another example is the oscillating equation of state

dark energy which as Nojiri and Odintsov in [80] show if the universe

is dominated by phantom energy now, the oscillating dark energy may

allow all known four types of singularities introduced earlier in §2.1.

Moreover, sudden singularities occur in dark energy models with the

equation of state, p = −ρ− Aρα where A and α are real parameters,
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as Stefancic shows in [81]. Type III and Big Rip type singularities

also occur in this dark energy model for appropriate choices of model

parameters.

Physically sudden future singularities manifest themselves as momen-

tarily infinite peaks of tidal forces. That is, they are temporal sin-

gularities happening everywhere in the universe at the same moment.

The peaks of tidal forces occur in the derivatives of the tidal forces

in general sudden future singularities (GSFS) which were introduced

before. Sudden future singularities therefore fall into the category of

curvature singularities and specifically as was mentioned before they

are scalar polynomial curvature singularities. Since curvature is asso-

ciated with gravity, curvature singularities in general occur either in

the case of infinite energy density (like the Big Bang) or infinite tidal

forces (like in black holes) where in both cases gravity is infinite [82].

It should be noted however that curvature singularities of the SFS

form could be classified as weak curvature singularities [36] according

to Tipler and Krolak’s definitions. The idea of the strength of singu-

larities and analysing their physical behaviours was first put forward

by Ellis and Schmidt [83] who argued that a singularity is considered

weak if an object falling into it arrives intact at the singularity and

otherwise it would be strong. These works were then further refined by

Tipler [84] and Krolak [85] independently. When Fernandez-Jambrina

and Lazkoz [36] evaluated the strength of sudden singularities as was

prescribed by Tipler and Krolak, they concluded that sudden singu-

larities are weak singularities both in the sense of Tipler’s definition

and that of Krolak’s.

In comparison with strong curvature singularities this should therefore

mean that the weak sudden singularities are geodesically complete but

nevertheless this issue is still up for debate among cosmologists. The
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geodesic completeness is the standard definition for the nonexistence

of singularities in GR, implying the eternal existence of the universe

in question.

Fernandez-Jambrina shows in [36] that causal geodesics in universes

where an SFS occurs at a finite future time do not see these singular-

ities but the geodesic deviation equation, which diverges at an SFS,

does feel them. This would mean that point-like objects pass through

such singularities without noticing them and even extended objects

like classical strings may survive these weak singularities and cross

through them [86]. As a result in-falling observers or detectors are

not destroyed by the instantaneous infinite tidal forces. According to

Newton’s second law, infinite force is equivalent to infinite accelera-

tion/deceleration. Therefore, to reiterate the moving car analogy, the

momentary infinite tidal forces act in the same way as the sudden

braking of the car. Hence no damage is caused to even finite objects

at these singularities which act only momentarily.

In this view a universe with an SFS will continue its expanding evolu-

tion beyond such weak singularities until for example the occurrence

of a more serious singularity that is geodesically incomplete like the

Big Rip singularity which can end the universe [1]. In [37] the authors

specifically regard sudden singularities as not real singularities. The

discovery of the weak nature of SFS and the fact that the evolution of

the universe will not come to an end at these events were made after

Barrow made the statement that SFS can halt the expansion before

an expansion maximum is reached in closed models in [41]. Further-

more, he stated that closed models are prevented from recollapsing to

a second singularity of Big Crunch type, which is of course a conclu-

sion one can make following the first idea of the halt of expansion.

It should be noted that here the recollapse in closed models is talked
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about with no mention of a dark energy influence and this idea follows

solely from the discussion of geometry which Barrow seems to have

chosen to consider.

Notwithstanding Fernandez-Jambrina and Lazkoz’ works, Cotsakis

and Klaoudatou show in [87] that sudden singularities are indeed

geodesically incomplete. The two points of views have their propo-

nents and as mentioned before this issue is still open for question. In

fact, through a recent private communication, Dr Cotsakis reaffirmed

the situation concerning SFS models and their debatable nature with

regard to the issue of geodesic completeness.

2.2.2 Sudden Future Singularity Models

As was mentioned earlier, the divergence of the pressure at an SFS is

accompanied by infinite acceleration (or more correctly, deceleration).

Therefore in searching for a model that accommodates an SFS one

needs to look for one where the scale factor and its first derivative or

the Hubble expansion rate remain finite at some finite future time ts

while the second derivative blows up.

Barrow constructs an example SFS model where the scale factor takes

the form:

a(t) = A+Btm + C(ts − t)n, (2.11)

where A > 0, B > 0, m > 0, C and n > 0 are free constants to be

determined.

Barrow also constructs the most general form of the solution for the

scale factor [68] which takes the following form:
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a(t) =

(
t

ts

)q
(as−1)+1−(ts−t)n


∞∑
j=0

Nj∑
k=0

ajk(ts − t)j/Q(logk [ts − t])

 ,

(2.12)

where the quantity in {...} brackets is a convergent double Psi-series

which tends to zero as t → ts; ajk are constants, Nj ≤ j are positive

integers and Q ∈ Q+ [68].

Barrow then shows that if we take n to lie in the range (N,N + 1) for

N ≥ 2 where N ∈ Z+ we can create a singularity where,

dN+1a

dtN+1
→∞, (2.13)

but
dra

dtr
→ 0, for r ≤ N ∈ Z+. (2.14)

He then explains that through the above formulation for the scale

factor in Equation 2.12 one will be able to obtain a pressure singularity

that is accompanied by higher time derivatives of the scale factor in

Friedmann equations of higher-order gravity theories. This will then

mean that in these theories, higher-order curvature corrections to the

Friedmann equation are not able to remove singularities but they can

make them milder.

Let us now go back to the specific form for the scale factor in Equation

2.11 that was first proposed by Barrow. In order to be able to assess

a model with such a scale factor in light of the data, we first need

to familiarise ourselves with the parameters of this model. The next

section is devoted to such considerations.
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2.2.2.1 Model parameters

We now return to the special form of the solution for the scale factor

first considered by Barrow given in Equation 2.11, which is the one

considered in this work following its earlier investigation in Dabrowski

et al. [1]. In [1] the authors confronted an SFS model with a scale

factor of this form with the luminosity distance redshift relation for a

sample of high redshift supernovae.

By fixing the zero of time, i.e. setting a(0) = 0, and the time of

the singularity, a(ts) = as, the scale factor may be written in the

equivalent form:

a(t) = A+ (as − A)(
t

ts
)m − A(1− t

ts
)n. (2.15)

Dabrowski et al. [1] changed the original parametrisation for the scale

factor by using A = δas, to obtain:

a(t) = as[δ + (1− δ)ym − δ(1− y)n] , y =
t

ts
, (2.16)

where as, n, m, δ and ts are constants to be determined. This way

they created a non-standardicity parameter, δ, which, as it tends to

zero, recovers the standard Friedmann limit (i.e. a model with no

SFS). We therefore note that the proposed SFS scale factor is only an

approximate solution to the Friedmann equation which becomes exact

only when δ → 0.

Now, writing the expression for the rth derivative of the scale factor:
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a(r) = as

[(
m(m− 1)...(m− r + 1)

trs

)
(1− δ)ym−r

+ (−1)r−1δ

(
n(n− 1)...(n− r + 1)

trs

)
(1− y)n−r

]
, (2.17)

which is related to the pressure derivative p(r−2), shows that in general

one can have a pressure derivative p(r−2) singularity which is accom-

panied by the blowing up of the rth derivative of the scale factor a(r).

From Equation 2.17 one can see that for a pressure derivative singu-

larity to occur we need:

r − 1 < n < r , r = integer. (2.18)

We note that, for r ≥ 3, all energy conditions are fulfilled. These sin-

gularities are Generalised Sudden Future Singularities (GSFS) [1] as

talked about in §2.1 and they may occur in theories with higher-order

curvature corrections [39]. For an SFS however we need r = 2 which

means that 1 < n < 2. Furthermore, we note that in Barrow’s defini-

tion δ = A/as should be positive but Dabrowski et al. [1] argue that

δ should be allowed to be either positive or negative corresponding to

a decelerating or an accelerating universe respectively if one considers

Equation 2.17. We shall return to this point later on in this section

when we present our method of determining a suitable range for the

possible values for this parameter.

To obtain the asymptotic behaviour of scale factor close to an SFS we

perform a change of coordinates and place the singularity at t = 0 and

Taylor expand the scale factor around it to get:

a(t) = as(1 +m(1− δ)(y − 1)) + . . . . (2.19)
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An important requirement is that the asymptotic behaviour of the

scale factor close to the Big Bang singularity follows a simple power law

aBB = ym which will simulate the behaviour of flat k = 0 barotropic

fluid models with m = 2/3(w + 1). This will ensure that all the stan-

dard observed characteristics of the early universe such as the CMB,

density perturbations and Big Bang nucleosynthesis are preserved.

Additionally we realise that all the energy conditions are satisfied if

we require m to lie in the range,

0 < m < 1. (2.20)

Therefore in accordance with Equation 2.20 if for a standard dust-

dominated universe we take m = 2/3 our SFS model will reduce to

the Einstein-de Sitter universe at early times. As discussed before,

an Einstein-de Sitter universe is one which is a flat matter-dominated

(Ωm = 1) universe where the evolution of the scale factor can be shown

to take the following form:

a(t) ∝ t2/3. (2.21)

The other parameters of the model that we should consider are: as, ts

and δ. The parameter as, which sets the physical size of the universe

at the time of the SFS, will cancel out in the equations of the standard

cosmological probes we have used to test the model. Thus we do not

need to consider this parameter further.

For constraining the time, ts, when an SFS might occur, we can intro-

duce the dimensionless parameter y0 = t0/ts, where t0 is the current

age of the universe. Since the singularity is assumed to be in the

future, it follows that 0 < y0 < 1.
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The current acceleration obtained in the SFS model, as a result of the

particular form adopted for the scale factor, leads to a divergence of the

pressure at sometime in the future evolution of the model. Dabrowski

et al. [40] refer to the cause of this late time acceleration in the SFS

model as a ‘pressure-driven dark energy’.

With the parameters n, m and y0 having definite values or ranges,

it remains to identify a suitable range of investigation for the non-

standardicity parameter δ. In [1] negative values of δ were associated

with acceleration, but we revisited this question in order to check

rigorously the range of values of δ which should be considered, tak-

ing into account all relevant physical constraints. We came to find

out about some of these conditions through experimentation with the

codes written to calculate some required functions of the scale fac-

tor. For instance we realised we have to check that the scale factor is

positive at all times or else the code would crash. Another example

is the physical condition that positive and negative redshifts should

correspond to past and future events respectively. Now one does not

normally consider the unbounded future but in our case we have a

milestone in the future, namely, a hypothetical SFS. Therefore, by fu-

ture we really mean the time until an SFS. Therefore we checked the

redshift conditions and also the sign of the scale factor up to such an

event at y = 1.

Interestingly, through these considerations we discovered something

quite unusual about the parametrisation of the scale factor for the

SFS model we are investigating. If we look at the SFS scale factor

again,

a(t) = as[δ + (1− δ)ym − δ(1− y)n] (2.22)

we can see that for y > 1 which corresponds to a time after an SFS, the

term (1−y)n where 1 < n < 2, is in fact complex! That is because for
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y > 1, (1− y) is negative which when raised to a decimal power, n in

this case, it will be complex. Nevertheless, since we are not concerned

with times after an SFS, this should not affect our investigations.

Furthermore, we imposed the established observational facts that both

the first and second derivatives of the scale factor are currently posi-

tive. That is to say, we rejected any combination of SFS model param-

eters for which ȧ0 ≤ 0 or ä0 ≤ 0 corresponding to current contraction

and deceleration.

Finally, we checked the sign of ȧ throughout the evolution of the SFS

model and rejected parameter combinations that would predict a con-

tracting universe (where ȧ < 0) at any point in the interval 0 ≤ z ≤ 1,

where the Hubble diagram of Type Ia supernovae over this range of

redshifts securely confirms the expansion of the universe. However,

we did not require that the expansion history of the universe outside

of this range continues in the same manner. Neither did we make

assumptions about the future evolution of the universe and therefore

we did not exclude parameter combinations that would predict e.g.

future contraction of the universe.

Thus by fixing m = 2/3, as previously discussed, and varying n and y0

over their theoretically permitted ranges, we set out to identify those

values of δ which were consistent with the above physical constraints.

However, it quickly became apparent that this task was not possible

analytically. Therefore we carried out a numerical exploration of the 3-

dimensional parameter space (n, y0, δ). This then told us that δ should

not be positive. Although we have arrived at the same result as was

first given by Dabrowski et al. [1], our result stands on a much firmer

footing as we have extended our requirements to the satisfaction of

various other necessary physical conditions which were not discussed

before.
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2.2.3 Conclusions

In this chapter we have examined some of the possibilities discussed

in the literature for the fate of the universe and exotic singularities

in non-standard cosmologies. After monitoring where Sudden Future

Singularities stand in the current classifications of exotic singularities,

we then solely focused on Sudden Future Singularities and the models

containing them and presented a selective overview of the literature

on the subject. We started from the motivation behind the creation

of Sudden Future Singularities which was to do with the energy con-

ditions of GR. We then talked about the energy conditions and their

debatable applicability today. Then we went on to talk about the SFS

from the viewpoint of the statefinders, which we briefly explained.

Moreover, we discussed how exactly Barrow came up with the idea of

this kind of singularity. Quantum effects near SFSs and how they can

remove sudden singularities were also briefly touched upon together

with various other non-standard models where SFSs might arise. Fur-

thermore, SFS removal was discussed as possible in modified gravity

theories. We then moved on to detail at length the specific SFS model

of Barrow which we investigated in this thesis. It now remains to be

seen how well this particular SFS model fits the available data, an

investigation which we will begin in Chapter 3.
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Chapter 3

Data Analysis Methodology

“Data analysis is simply a dialogue with the data.”

Stephen F. Gull, Cambridge 1994

What use is a hypothesis if it is not to conform to the data? Indeed

if we are to make progress in our understanding of nature we must be

able to test our hypothetical models with the data and hence conse-

quently make modifications to our models accordingly and repeat this

process until we reach a coherent model whose accurate predictions

we can rely on. We can think of data as our only guiding light in the

dark of our quest to discover. Therefore we need to be able to take as

much as possible from it in correct ways to ensure that we are being

guided in the right way. Data analysis methodology provides us with

the necessary tools and skills needed to allow us speak to the data, as

Gull puts it.

In the context of cosmology, where our guiding light is indeed light

itself, data analysis techniques play a more significant role today than

ever before with the increasing bulk of ever more precise data that

is becoming available through state of the art experiments such as
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the Planck [26] satellite for measuring temperature anisotropies in the

CMB. With no sign of letting up of this trend, such a situation calls

for not only reliable data analysis techniques but also ones that are

cleverly designed to tackle large datasets ever more efficiently. This

is because with the computing power available to us today we simply

cannot afford brute-force and exhaustive searches.

With regards to the data in general, since we are limited by accuracy

and we can never be certain that we have a complete set of data,

our inference about nature is therefore inevitably probabilistic [88].

We therefore require to base our investigations on a probability the-

ory and try to find the most probable models that describe our data.

Now, there are two different frameworks where the notion of proba-

bility takes on different definitions. These two paradigms are known

as frequentist and Bayesian. In the frequentist regime, the proba-

bility of an event is measured through in principle infinitely many

repetitions of the same experiment. Then the event with the highest

frequency of occurrence is assigned the highest probability and oth-

ers are allocated probabilities according to their relative frequencies.

In the second Bayesian approach however, probability is interpreted

as our degree of belief that something is true which is based on our

prior knowledge and background information, modified in the light of

any new data that we acquire. Frequentists argue that the Bayesian

approach is subjective as it depends on background information and

our logical reasoning. But indeed probability itself is subjective since

by nature it depends on the available information. What is crucial

to note in the Bayesian way of thinking is that given the same back-

ground information, different Bayesian analyses should produce the

same probabilities. This is where objectivity in the Bayesian approach

shows itself. Bayesian probability theory which is basically probabil-
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ity theory as logic, is becoming increasingly popular in physics and

astronomy today [88].

Cosmology is perhaps an extreme example of a physical phenomenon

where in order to understand it, a Bayesian analysis would seem to

be the only option and hence essential. This is seen by realising that

we have only one universe of which to make sense. In other words,

our inability to start over another universe to investigate its properties

tells us that we ought to rely on plausible reasoning rather than on

the frequency of occurrence. And indeed the Bayesian framework is

the one we adopt in this work too.

3.1 Bayesian Inference

Bayesian inference, named after Thomas Bayes (whose ideas were pub-

lished after his death in 1763 by his student) is a method of assessing

the viability of a certain hypothesis, H, according to the available

observational data, D, through calculating the probability of the hy-

pothesis given the data and any prior information, I, that we might

have concerning the hypothesis and the data. We write this probabil-

ity as p(H|D, I), which reads as the probability that the hypothesis,

H, is true given the data, D, and any prior information, I. Bayesian

inference follows specific rules for combining probabilities. These are:

The sum rule:

p(H|I) + p(H|I) = 1. (3.1)

Here H denotes the negation of H. This rule implies that the total

probability is divided between the possible different outcomes. Here
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we have two possible outcomes: H or H.

The product rule:

p(H,D|I) = p(H|I)p(D|H, I). (3.2)

This rule states that the probability that both H and D are the

outcomes is the product of the individual probabilities given that

H has already happened. An equal statement is that the proba-

bility that both H and D are the outcomes is the product of their

individual probabilities given that D has happened before, that is:

p(H,D|I) = p(D,H|I), where:

p(D,H|I) = p(D|I)p(H|D, I). (3.3)

We can now solve for p(H|D, I) by equating Equation 3.2 and Equa-

tion 3.3 to get:

p(H|D, I) =
p(H|I)p(D|H, I)

p(D|I)
. (3.4)

This is Bayes’ theorem which is one of the most important rules for

calculations in Bayesian inference [88]. The terms in Equation 3.4 are

described below:

• p(H|I) is called the prior probability of H and it arises from the

knowledge we already have about the hypothesis regardless of the

data. If we do not have much prior information we often set this

probability equal to a constant.

• p(H|D, I) is the posterior probability which calculates the prob-

ability of the hypothesis after the data are taken into account
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together with our prior knowledge and therefore calculates our

state of knowledge about the hypothesis.

• p(D|H, I) is called the likelihood of H and it gives the probabil-

ity that the data is obtained given the hypothesis and our prior

knowledge. In effect the likelihood function modifies the prior in

light of the data to yield the posterior.

• p(D|I) is called the evidence which can be treated as the nor-

malisation factor when we realise that the sum of the posterior

probability over all the parameters of the hypothesis should equal

1, that is in the continuum limit:

∫
∆H

p(H|D, I)dH = 1, (3.5)

where ∆H indicates the range of integration for the hypothesis

parameter space. Therefore, since the evidence does not depend

on the hypothesis parameters, in the context of parameter esti-

mation for a given hypothesis we can ignore it and hence present

Bayes’ theorem as a proportional relation:

p(H|D, I) ∝ p(D|H, I)p(H|I). (3.6)

Therefore putting together the above we see that what Bayes’s theo-

rem does is to combine what new data have to say about the hypothesis

through the likelihood, together with our prior knowledge on it in the

prior probability, to give us an updated knowledge of the hypothesis

in the form of the posterior probability. And hence, it can be seen how

the Bayes’ theorem describes a learning process whereby the probabil-

ity of the hypothesis is updated in light of new data. In doing so for

every new data the old posterior probability becomes the new prior

and so on.
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3.1.1 Parameter Estimation

Now assuming that the hypothetical model under study is correct, we

then want to determine its parameters from data through using Bayes’

theorem. This is called parameter estimation. If we are dealing with

continuous parameter spaces, the parameters we are looking for are

in a probability density function or a pdf. But a more general name

for a pdf is a probability distribution function which also includes

discrete parameter spaces. To reiterate the definition of parameter

estimation more correctly, we use Bayes’ theorem to determine the

full posterior pdf of the parameters rather than one single parameter

value. Then to describe the pdf and make sense of it in relation to

the parameter we are seeking, we quote the posterior mode (the most

probable value for the parameter) or the posterior mean (these two

match for a normal distribution) as our “best-fit” parameter together

with error bars. We will explain these quantities and how to obtain

them in the next section.

As a final discussion in this section, we will talk about marginalisa-

tion which is an essential and useful calculation tool that lets us infer

more relevant information from our full posterior pdf. In many prob-

lems we might be confronted with situations where a particular set of

model parameters are more important to us than the rest. In these

circumstances we integrate out the uninteresting parameters, which

are called nuisance parameters. This integration procedure is called

marginalisation and the resulting posterior pdf is called the marginal

posterior pdf for the interesting parameters. To see an example of this

explicitly, if we have a model, M , with parameters α and β, where we

are interested to know more about the latter, we integrate the full

posterior pdf over the former. That is:
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p(β|D,M) =

∫
p(β, α|D,M)dα. (3.7)

Next in §3.1.2 we will talk about parameter estimation methods which

follow from Bayes’ theorem discussed in this section.

3.1.2 Maximum Likelihood and χ2 Fitting

We employed the χ2 test for comparing our SFS model with the data

which, in the case of normally distributed likelihood function, is equiv-

alent to applying the principle of maximum likelihood. Following from

Equation 3.6 if we further assume that the prior probability takes on

a uniform distribution (i.e. p(H|I) = constant) implying that we have

no a priori information regarding our hypothesis (which is safe choice

and indeed what we often need to do in practice) we can rewrite Bayes’

theorem as:

p(H|D, I) ∝ p(D|H, I) = L. (3.8)

And therefore we have the posterior probability proportional to the

likelihood. This means that maximising the likelihood is equivalent to

maximising the posterior probability. Hence we can now work with the

likelihood, which we assume to be a Gaussian distribution, and deter-

mine which sets of SFS model parameters are most likely to produce

the observed data. To this end, we maximise the likelihood function

such that its first derivative is zero and its second derivative is nega-

tive i.e. for Θ0 representing the maximum likelihood set of parameters

of the model under study:
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dL
dΘ

∣∣∣∣
Θ0

= 0 and
d2L
dΘ2

∣∣∣∣
Θ0

< 0. (3.9)

This will define the best-fit value of the parameter. Then in order to

determine the reliability of our best guess, we need to find the error

on this value. The error is a measure of the spread of the likelihood

function around the best-fit value. We can work this out by Tay-

lor expanding the likelihood function about our best guess. Instead

of working with the likelihood function which could consist of sharp

peaks, it is better that we work with the logarithm of it which varies

more slowly with the parameter(s) and so can be better approximated.

Therefore, for lnL expanded about the best-fit value of Θ0 we have:

lnL(Θ) = lnL(Θ0) +
1

2

d2 lnL
dΘ2

∣∣∣∣
Θ0

(Θ−Θ0)
2 + . . . , (3.10)

where at the maximum likelihood parameter(s), Θ0 we have:

d lnL
dΘ

∣∣∣∣
Θ0

= 0. (3.11)

The second linear term which in addition to the first derivative term

(3.11) also involves (Θ−Θ0) (both of which are zero at Θ0) is therefore

missing in the expansion in Equation 3.10 [89]. And with the first term

a constant which does not say anything about the function and also

ignoring all the higher order terms, we are left with:

L(Θ) ≈ C exp

(
1

2

d2 lnL
dΘ2

∣∣∣∣
Θ0

(Θ−Θ0)
2

)
, (3.12)

where C is a normalisation constant. This takes the form of the well-
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known Gaussian distribution and demonstrates that adopting a Gaus-

sian likelihood function from the beginning is a natural choice and is

indeed well-justified provided we neglect the higher order terms. Now

writing the Gaussian function in a more familiar form, we have:

p(x|µ, σ) =
1

σ
√

2π
exp

[
−(x− µ)2

2σ2

]
, (3.13)

where the maximum occurs at x = µ with the width of the function

proportional to σ. When we now compare this general Gaussian func-

tion with the function we arrived at in Equation 3.12 we see that as

expected the maximum occurs at Θ0, the normalisation constant is

C = 1
σ
√

2π
and that σ corresponds to:

σ =

(
−d

2 lnL
dΘ2

∣∣∣∣
Θ0

)−1/2

. (3.14)

Hence, we have now derived the spread of our likelihood function which

tells us about the errors on our best-fit values and therefore their reli-

ability. The two quantities of the best-fit and a measure of the spread

of our likelihood function well-summarise the likelihood function we

were looking for. We present this summary of the likelihood function

in the following form:

Θ = Θ0 ± σ. (3.15)

With the best-fit and error we have effectively determined what are

called the first and second moments of our likelihood function which

are enough to describe a Gaussian likelihood function. In general, one

can determine the shape of a likelihood through its moments. Obvi-

ously, the more peaked the distribution is at the maximum value, the
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more confidence we have that we have estimated the correct parame-

ter values. The central rth moment of a probability density function,

p(x) with a mean of µ, where the “central” refers to taking the mean

as the origin, is:

〈(x− µ)r〉 =

∫ +∞

−∞
(x− µ)rp(x)dx. (3.16)

As mentioned previously a Gaussian distribution is described only by

the first and second moments and since we have assumed a Gaussian

likelihood function we are interested in these two, which are:

First central moment (the mean):

〈(x− µ)〉 = 〈x〉 − µ = 0. (3.17)

Second central moment (the variance):

var(x) = σ2 = 〈(x− µ)2〉. (3.18)

To see the above, we expand it to get:

〈(x− µ)2〉 = 〈(x2 − 2µx+ µ2)〉 = 〈x2〉 − 2µ〈x〉+ µ2

= 〈x2〉 − 2µ2 + µ2 = 〈x2〉 − µ2 = 〈x2〉 − 〈x〉2

σ2 = 〈x2〉 − 〈x〉2. (3.19)

This is the definition of the variance which is the square of σ, the

standard deviation, that gives a good measure of the spread of the

pdf. We can express the spread of the pdf in multiples of the standard
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deviation, i.e. 1σ, 2σ and 3σ where if we are farther than 3σ from the

true value then we do not have such reliable results. In a Gaussian

likelihood function these levels correspond to 68.3%, 95.4% and 99% of

the posterior pdf respectively. We will see below how we can calculate

these so-called credible regions for our parameters. They are called

credible regions, since we can say that we are e.g. 68.3% confident

that the true value lies in a certain fraction of the posterior pdf.

We now show how exactly the above procedure is done in practice. If

we assume that our data are independent, we can write their joint pdf

as the product of the individual pdfs (which recall we are assuming

are Gaussian):

L(Θ) =
n∏
i=1

1

σi
√

2π
exp

[
−(Di − fi(Θ)2)

2σ2
i

]
, (3.20)

where Di is an independent datum with an uncertainty of σi and fi(Θ)

is our model predicted value for the ith datum, Di. We can now write

the likelihood function in the form:

L(Θ) ∝ exp

[
−1

2
χ2

]
. (3.21)

where,

χ2 =
n∑
i=1

(
Di − fi(Θ)

σi

)2

, (3.22)

which is the sum of the normalised residuals, being the differences

between the model predicted values and the data divided by the errors

on the data, i.e. (Di−fi(Θ))/σi. And indeed this quantity is called the

χ2 since provided the residuals are drawn from a normal distribution
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Figure 3.1: As the title reads, the table is showing ∆χ2 values as a function of
confidence level and degree of freedom or the number of parameters of the model,
ν. Table from: http://apps.nrbook.com/c/index.html.

then this quantity follows a χ2 distribution.

Looking at Equation 3.21 we can see that to find the maximum like-

lihood parameters we need to minimise χ2. This method is known as

the least squares fitting method which is the most popular and most

widely used method in data analysis [89]. To recapitulate, such a sim-

ple and effective method results directly from Bayes’ theorem and the

assumptions of constant prior and Gaussian likelihood pdf.

Now to return to our credible regions discussion, we can calculate

contours of constant probability which enclose a certain percentage of

the posterior pdf by calculating ∆χ2 values which are measured from

χ2
min. These ∆χ2 values can be calculated for different numbers of

degrees of freedom (model parameters). These values are shown in

the table in Figure 3.1

As a final note in this section, it may be possible to minimise the χ2

analytically in some fitting problems, but this is usually done numeri-

cally in practice. That is, we either go through all the parameter space

in an n-dimensional grid, which is computationally viable only for low

values of n, or use MCMC methods which provide a fast and efficient
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way of generating samples from the posterior probability for high di-

mensional parameter spaces. We will explain the MCMC method in

detail in the next section but briefly, in this method a random walk

is carried out in the parameter space which moves around according

to the probabilities of different regions, identifying and exploring the

most probable areas much faster than exhaustive grid searches.

3.2 Markov Chain Monte Carlo

In this section we will introduce a very efficient mathematical tool

for estimating posterior distributions for high-dimensional models for

which direct and exhaustive calculations are not computationally fea-

sible at least at the current time [88]. This powerful method is called

Markov Chain Monte Carlo (MCMC). The method’s principal use

is in evaluating multi-dimensional integrals. The way this method

works is by generating random walks through the parameter space,

constructing Markov chains that will explore the distribution under

study. This procedure is led by suitable algorithms. Instead of drawing

independent samples from the posterior pdf, these algorithms create

random walks in the parameter space with the sampling probability

proportional to the posterior probability, p(H|D, I). Therefore what

all MCMC algorithms do and indeed what makes them so efficient is

the fact that they direct the walker towards more probable areas of

the parameter space and therefore waste less time and computational

power in low probability areas. This advantage is what a Monte Carlo

method, which gives equal attention to all points in the parameter

space, lacks.

The algorithm that we use which is the most popular one is the

Metropolis-Hastings algorithm. More precisely we use its special case
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where the proposal density is symmetric which is the Metropolis al-

gorithm. This algorithm works in two stages. Firstly, one samples a

tentative point in the parameter space, say x′ using a proposal density

which is typically chosen to be Gaussian with the mean of the previous

sample, x in the chain and a standard deviation which can be adjusted

to yield more efficient sampling. Secondly, one will decide whether to

accept or reject the new sample based on the ratio of probabilities, r:

r =
p(x′|D, I)

p(x|D, I)
, (3.23)

where p(x′|D, I) is the probability at x′ and p(x|D, I) the probability

at x. If r ≥ 1 then x′ is accepted as the next link in the chain. If

r < 1, x′ is accepted with probability = r. The way this is done

is by generating a random number, say y from a uniform distribution

between 0 and 1. Then the probability of y being less than r is exactly

r, so we accept the new point in the chain provided y is less than r,

otherwise the new sample in the chain is a copy of the old point i.e. x.

The Markov chain is therefore constructed such that each new sample

depends on the previous one based on a transition probability. When

the process is completed, the constructed Markov chain’s sequence

of x’s will then be a full representative sample of the posterior pdf

after an initial burn-in period has been discarded. The burn-in period

comprises the initial samples which are not to be trusted that are

drawn from the desired posterior pdf since the MCMC chain has not

come to stabilise at the beginning.

It should be noted that by only accepting points in the chain for

which r ≥ 1 we would only be going uphill in the likelihood function

but by also accepting points for which r < 1 with probability r we are

allowing the chain to explore the neighbourhood of the maximum as
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Figure 3.2: Example plot of an MCMC exploration of in this case the parameter
space of (n, δ) in light of SNe Ia data. The chain starts from the point with
coordinates n = 1.7 and δ = −1.2 and after an initial burn-in period it reaches the
desired posterior pdf. The chain presented here is 105 steps long and the proposal
density chosen for this MCMC search is a Gaussian with a width of 0.01 for both
parameters. The green contours have been calculated through a grid-based search
over a 100×100 grid. To demonstrate the numerical consistency between the two
methods we note that the grid-based search results in: n = 1.951 ± 0.036 and
δ = −0.37±0.02 and the MCMC method gives: 1.943±0.041 and δ = −0.37±0.02.
One can see how well the methods agree with each other.

99



well to map out this area. This is valuable information as it will let

us determine errors on the maximum likelihood parameters.

One other very useful property of the MCMC method is to do with

the way the marginalised likelihoods of the parameters of the posterior

distribution are obtained. This is simply the sequence of the coordi-

nates of the samples, x’s, explored by the chain. Furthermore in this

method, we can easily determine what regions correspond to required

fractions of the sample, which is now the posterior pdf. To do this,

when we are certain that our chain has converged, we order the ran-

dom chain points based on their likelihood values and then find the

points which correspond to 68.3%, 95.4% and 99% of the chain. These

fractions will then be good estimators of the 1σ, 2σ and 3σ credible

regions of the likelihood function.

In Figure 3.2 we show an example of an MCMC chain exploring the

posterior pdf of in this case the SFS parameters, n and δ in light of

the SNe Ia data. It can be seen how well the chain identifies the set of

contours calculated through a grid search starting from n = 1.7 and

δ = −1.2. One can clearly see the burn-in period before the chain

reaches the posterior pdf and stabilises. This demonstration is for

a 2-dimensional problem but of course the real power of the MCMC

method become apparent in higher dimensional problems as we will

see later in Chapter 6.

3.3 Conclusions

In this chapter we have discussed the Bayesian data analysis tech-

niques we used to confront our SFS model with the data we will talk

about in Chapter 4. We started by introducing the Bayes’ theorem
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and then talked about our parameter estimation method based on the

principle of maximum likelihood. We showed that in effect we used

least squares fitting in our analysis in producing contour plots for the

various kinds of data we will employ in the parameter space search of

our SFS model. Finally, we talked about the MCMC method and how

efficiently it works to construct our sought for pdfs. We used both

MCMC and exhaustive grid-based search methods in exploring our

parameter space in our analysis, the results of which are presented in

the next two chapters.

101



Chapter 4

Cosmological Constraints

In §1.4 we discussed the most important cosmological observations

that have helped shape the standard model of cosmology. Here in this

chapter we will talk in detail about the specific observational probes

derived from those ground breaking observational discoveries, which

we employed in our data analysis.

4.1 SNe Ia Luminosity Distance-Redshift Rela-

tion

By far the most common and indeed historical cosmological constraint

used in model fitting is the luminosity distance-redshift relation as

probed by SNe Ia. One can place constraints on one’s model pa-

rameters by comparing the luminosity distances as predicted by their

model with the observed values. What we actually do in practice is

work with the distance modulus, µ which gives the relation between

the flux of the source that we can observe and its intrinsic luminos-

ity, expressed in terms of m (apparent magnitude) and M (absolute

magnitude) respectively. The relation reads as:
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µ = m−M = 5 log dL + 25, (4.1)

where dL is the luminosity distance (in units of Mpc) to the source.

The luminosity distance is defined as the distance to a source of lumi-

nosity L with an observed flux F :

F =
L

4πd2
L

. (4.2)

But this relation only holds in a static universe with Euclidean geome-

try. To consider luminosity distance first in an expanding universe, we

need to invoke the comoving distance, r and multiply it by the scale

factor, a(t) at the time of observation which is now hence a(t0) = a0.

Therefore we can now write:

F =
L

4πa2
0r

2
. (4.3)

Now we need to take into account the effect of expansion on the energy

of the photons. This works in two ways. Firstly the number of photons

per unit time is diminished by a factor of (1 + z) since the space has

got bigger and secondly the energy of photons is redshifted by the

expansion by an additional factor of (1 + z), hence:

F =
L

4πa2
0r

2(1 + z)2
. (4.4)

Therefore we have the luminosity distance in a flat expanding universe

as:

dL = a0r(1 + z). (4.5)
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Now, to also take into account the geometry of the space-time consid-

ered, we know that the comoving distance is defined as:

r(z) =
c

a0H0

√
|Ωk|

S

(√
|Ωk|

∫ z

0

dz′

E(z′)

)
, (4.6)

where, S(x) = sin(x), x, sinh(x) for a closed, flat and open universe,

Ωk is the curvature density parameter, E(z) is the Hubble function as

introduced before in §1.3 and c and H0 are the speed of light and the

Hubble constant as usual and hereafter. Assuming flatness, we now

arrive at the luminosity distance relation we presented in Equation

1.23, i.e.:

dL(z) =
c(1 + z)

H0

∫ z

0

dz′

E(z′)
. (4.7)

Although as mentioned in the previous section an SFS could occur

regardless of the curvature of the universe, to make our calculations

simpler, and also to be consistent with the present observational data,

we considered only a flat universe which bears an SFS. Furthermore,

since E(z) = H(z)
H0

and H(z) = ȧ
a , as discussed previously, we expressed

E(z) as a function of the SFS scale factor, as given in Equation 2.19,

and its first derivative in our dL calculation.

We used 557 supernovae from the Union2 dataset as compiled by [17]

which is the largest published SNe Ia sample to date and it consists of

SNe Ia in the redshift range, 0.015 < z < 1.4. A sample of these data

are shown in the table in Figure 4.1.

Moreover, in our analysis we treated the Hubble constant as a nui-

sance parameter, marginalising over a range of values using as a prior

distribution the most recent (at the time) results from the Hubble
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Figure 4.1: A sample of the Union2 SNe Ia dataset consisting of supernovae in
the redshift range 0.015 < z < 1.4 used in the redshift-magnitude fit. Table from
[17].
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Space Telescope (HST) Key Project [30], which assume no underlying

cosmology in measuring this parameter. The most recent value of the

Hubble constant, as we have mentioned before is given by [7], but the

shift in the new value is small compared to the size of the error bar.

Hence in practice this would not make a difference to our results and

so we did not redo our calculations with the most updated value for

H0.

For our SNe Ia likelihood function (similar to all the other probes’ like-

lihood functions) we adopt a Gaussian model with the corresponding

χ2 quantity given by:

χ2 =
n∑ (µobs − µpred)2

σ2
phot + σ2

int

, (4.8)

where µobs and µpred denote the observed and model predicted distance

moduli respectively, σphot is the measurement uncertainty tabulated

for each supernova (a sample of this is shown in the table in Figure 4.1)

and σint is the scatter intrinsic to every supernova because they are not

perfect standard candles. These two errors are added in quadrature

since they are uncorrelated with one another. We take σint to be 0.15

as advocated by Kowalski et al. [90] which is an average value derived

from consideration of recent analyses.

Figure 4.2 shows the distance modulus as a function of redshift for

the SFS model and the concordance model for their respective best-

fitting parameters and how they compare with the best SNe Ia dataset

available. One can see that the SFS model fits the data very well and

that it is almost distinguishable from the concordance model over the

redshift range probed by the Union2 sample.
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Figure 4.2: The predicted distance modulus plotted against redshift for the
SFS model and Concordance Cosmology standard model (CC). The SFS model
prediction is shown as the solid cyan line and is for parameters n = 1.995, δ =
−0.5, y0 = 0.805. (These are the best-fitting SFS parameters for the Union2 SNe
Ia dataset). The concordance model prediction is shown as the dashed pink line
and is for parameters Ωm = 0.2725, ΩΛ = 0.7275 (from the WMAP7 results [18]).
Both sets of calculations assume H0 = 74.2 km s−1 Mpc−1 from the HST Key
Project results [30]. Also shown are the observed data points (with quoted 1-σ
errors) for the Union2 SNe Ia dataset. One sees that the SFS model fits the data
very well and that the fit is almost indistinguishable from that for the concordance
model. Figure from [91].
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4.2 Cosmic Microwave Background Distance Pri-

ors

In order to test a model against the cosmic microwave background

(CMB) data one would ideally calculate the full angular power spec-

trum of the temperature anisotropies for the model, and compare it

with the observed angular power spectrum. However, since this pro-

cess is rather computationally intensive and complex, a simpler ap-

proach is instead to calculate the distance scales to which the power

spectrum is very sensitive. The positions of the peaks and troughs of

the CMB power spectrum, which can be measured precisely, provide a

measure of the distance to the decoupling epoch. The distance ratios

measured by the CMB are given below.

4.2.1 Acoustic Scale, la

This is defined as the angular diameter distance to the last scattering

surface (at redshift zCMB, which we take to be 1089), dA(zCMB), divided

by the sound horizon size at the decoupling epoch, rs(zCMB) which is

quantified by the ‘acoustic scale’ and is defined by:

la =
πdA(zCMB)

rs(zCMB)
, (4.9)

where dA(zCMB) and rs(zCMB) given as comoving quantities are:

dA(zCMB) =
c

H0

∫ zCMB

0

dz′

E(z′)
. (4.10)

and
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rs(zCMB) =

∫ ∞
zCMB

csdz
′

E(z′)
with cs =

1√
3(1 +Rba)

, (4.11)

where E(z) = H(z)/H0 as defined before and cs is the speed of

sound with Rb = 3ρb
4ργ

, where ρb is the baryon density and ργ, is

the photon density, is the baryon to photon ratio given by: Rb =

31500Ωbh
2(TCMB

2.7k )−4, where TCMB = 2.7K is the temperature of the

CMB [92, 28]. To see what the inclusion of baryon to photon density

means physically, we can think that in the early universe the sound

speed is lowered by Rb since the baryons effectively weigh down the

fluid.

4.2.2 Shift Parameter, R

This distance ratio is defined as the angular diameter distance to the

last scattering surface divided by the Hubble horizon size at the de-

coupling epoch, which is called the ‘shift parameter ’, R, and is given

by:

R(zCMB) =

√
ΩmH2

0

c
dA(zCMB), (4.12)

where Ωm is the matter density parameter. The shift parameter is

defined as the ratio of the position of the first peak in the CMB tem-

perature anisotropy angular power spectrum in a given model to the

same position in a reference flat model with the same baryonic and

dark matter densities. Therefore the shift parameter is a measure of

the amount by which the first peak ‘shifts’ with respect to a reference

model. The power spectra of the ΛCDM model and its corresponding

reference model (SCDM) are shown in Figure 4.3 It can be seen how

the first peak has shifted in the ΛCDM model with respect to SCDM.
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Figure 4.3: Definition of shift parameter: The CMB anisotropy angular power
spectrum of ΛCDM model and the corresponding reference flat model (SCDM)
with the same physical dark matter and baryon densities are shown together with
the WMAP3 data. One can see the shift in the location of the first peaks of the
two models. Figure from [93].
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It was shown by Wang and Mukherjee [92] that using these two pa-

rameters together is necessary in order to place tight CMB constraints

on the parameters of the model of interest. They found that models

with the same parameter R but different values for la, and vice versa,

in general gave different CMB angular power spectra. Furthermore,

Wang and Mukherjee show that R and la are almost uncorrelated with

one another even though they are taken from the same dataset of the

CMB. This therefore means that we can safely write down the fol-

lowing χ2 expressions for the shift parameter and the acoustic scale

respectively as:

χ2
R =

(Robs −Rpred)2

σ2
R

, (4.13)

χ2
la

=
(lobs
a − lpred

a )2

σ2
la

, (4.14)

where Robs and lobs
a are the observed shift parameter and acoustic scale

and Rpred and lpred
a are the respective model predicted values.

The observed values for these quantities: R = 1.725 ± 0.018 and

la = 302.09 ± 0.76, are obtained from the WMAP7 data and given

by Komatsu et al. [18]. However, as pointed out by Elgaroy and Mul-

tamaki [94], the shift parameter is not a directly measurable quantity

and it is in fact derived from the CMB data assuming a specific cos-

mological model. Care therefore needs to be taken when using this

quantity as a cosmological constraint.

The value for the shift parameter quoted above, as [95] explains, has

been derived assuming a standard FLRW universe with matter, ra-

diation, curvature and dark energy components. The SFS model we

are considering is also a standard Friedmann model but it assumes no
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explicit dark energy component; instead cosmic acceleration is driven

by the divergence of pressure resulting from the particular form of

scale factor adopted in the model. Matter is also permitted in the

SFS model and in fact since we require our model to reduce to the

Einstein-de Sitter case at early times, we adopt the same matter con-

tent as that in the concordance model. Concerning the radiation and

curvature components, we follow [95] and ignore these in the shift

parameter calculation.

Turning to the dark energy component, here we followed the approach

of Elgaroy and Multamaki [96] and expressed our SFS model in a form

equivalent to an evolving dark energy model by computing its effective

equation of state, weff(z). To derive the required expression we note

that a dark energy component with equation of state parameter w(a),

will correspond to a density that varies with the scale factor according

to:

ρ(a) = ρ0 exp

(
−3

∫ a

1

da

a
[1 + w(a)]

)
. (4.15)

The standard Friedmann equation for a flat model will therefore take

the form:

E(a)2 =
Ωm

a3
+ (1− Ωm) exp

(
−3

∫ a

1

da

a
[1 + w(a)]

)
, (4.16)

where, E(a) is the same Hubble function as introduced before, in terms

of the scale factor a here. Now, rewriting the above using a = (1+z)−1

(where we have assumed a0 = 1) we have:
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E(z)2 = Ωm(1 + z)3 + (1− Ωm) exp

(
3

∫ z

0

1 + w(z)d(z)

1 + z

)
, (4.17)

which means:

∫ z

0

1 + w(z)d(z)

1 + z
=

1

3
ln

(
E(z)2 − Ωm(1 + z)3

1− Ωm

)
. (4.18)

Now, differentiating both sides gives, where ′ ≡ d
dz :

w(z) = −1 + (1 + z)

(
2/3E(z)E ′(z)− 3Ωm(1 + z)2

E(z)2 − Ωm(1 + z)3

)
. (4.19)

We note also that if we consider a flat universe we can have an analytic

form for the equation of state parameter of the SFS model:

w(t) =
p

ρc2
=

1

3
[2q(t)− 1], (4.20)

where q(t) = −äa/ȧ2 is the deceleration parameter as introduced be-

fore. We emphasise here that this weff would work for a single “SFS

fluid” with pressure, p and energy density, ρ. One therefore does not

expect to necessarily see the same behaviour for the two definitions of

weff given above. This is because in the first case one assumes a dark

matter component along with an SFS dark energy term, while in the

second case there is one single SFS fluid which to comply with obser-

vations should behave like matter in the early universe and like a dark

energy in the current epoch. In [97] we attempt to formulate the the

function E(z) in such a way that it includes the one SFS fluid talked

about here, which behaves in the standard way in the early and late

universes. Please refer to Appendix A for a discussion on this issue.

113



0 5 10 15 20
−1.5

−1

−0.5

0

0.5

1

redshift

w
e
ff

0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

redshift

w
e
ff

Figure 4.4: The evolution of weff as a function of redshift in the SFS model, for
two representative sets of model parameters. Both plots show generic behaviour
as z → 0 and z → ∞ which is in good agreement with current observations,
although plot (b) also shows ‘fake’ singularities due to the parametrisation of
weff . It is noteworthy that qualitatively similar behaviour was obtained using the
weff expression in Equation 4.20.

Now to continue with our weff discussion, we investigated the evolution

of the effective equation of state as given in Equation 4.19 numerically

to see how it compared with the observed behaviour.

Figure 4.4 shows the evolution of the effective equation of state (using

the expression in Equation 4.19) over the redshift range 0 < z < 20,

for two representative sets of SFS model parameters and an Ωm of 0.24

as in the standard concordance model.

In both cases we see the same general features: weff ' −1 as z → 0 and

weff → 0 for large z. These limiting behaviours are in good agreement

with current observations. Note, however, that in 4.4(b) the particu-

lar SFS model parameters result in the divergence of weff at certain

redshifts, which is caused by the denominator in the expression on the

right hand side of Equation 4.19 tending to zero at these redshifts.

This behaviour is discussed in [98] where they make the case that in

models where dark energy is not treated as an explicit fluid or a field,

the equation of state cannot be used as a fundamental quantity and
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indeed an effective equation of state may display unusual properties

like singularities.

Again the same divergent behaviour in weff was found e.g. by Sola

and Stefancic [99] in computing an effective equation of state for their

evolving Λ model; indeed those authors refer explicitly to each diver-

gent feature as a ‘fake singularity, which is nothing but an artefact

of the EOS (equation of state) parametrisation’. In our case too the

divergence of weff is not seen as an indication of a fundamental phys-

ical problem with the model. Nevertheless the general similarity of

the limiting behaviour of weff to that of the concordance model gives

us confidence, following Elgaroy and Multamaki [94], that it remains

appropriate to use the ‘observed’ value of the shift parameter when

investigating our SFS model.

4.3 Baryon Acoustic Oscillations Distance Pa-

rameter

Baryon acoustic oscillations which originate from the excitation of

sound waves in the early universe photon-baryon plasma through cos-

mological perturbations are useful distance indicators at the current

epoch. We can use this to constrain very well the following quantity,

termed as the ‘distance parameter ’, using the current data:

A =

√
Ωm

E(zBAO)1/3

[
1

zBAO

∫ zBAO

0

dz

E(z)

]2/3

, (4.21)

where Ωm is the matter density parameter, E(z) is the Hubble function

as introduced before and zBAO is the effective redshift of the galaxy

sample used to measure the distance parameter and is equal to z =

0.35 for the SDSS galaxy sample [19]. For the BAO distance parameter
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constraint we adopt:

χ2
BAO =

(Aobs − Apred)2

σ2
A

, (4.22)

where Aobs and Apred are the observed and model predicted values of

A. Here the observed value for the distance parameter has been taken

from the latest SDSS results which is: A = 0.469(n/0.98)−0.35± 0.017

[28]. We used the value of n = 0.963 for the spectral index from

WMAP7 results [18].

We find that the BAO distance parameter is not immune to the model

dependency issue in its derivation either. This issue is considered in

detail in e.g. Carneiro et al. [100] who, following Eisenstein et al.

[101], identify two (implicitly assumed) conditions which should be

valid in order that the BAO distance parameter is applicable. For the

model in question firstly the evolution of matter density perturbations

during the matter dominated era must be similar to the concordance

cosmology case, and secondly the comoving distance to the horizon

at the epoch of matter-radiation equality should scale inversely with

ΩmH
2
0 . While these conditions are not met for the Carneiro et al.

[100] model of a time varying cosmological constant, we can assume

that they are met in our case.

4.4 Age of the Universe

Using the standard Friedmann equation for calculating the age of the

universe we have:

t0 = tH

∫ ∞
0

dz′

(1 + z′)E(z′)
, (4.23)
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where tH = 1
H0

is the Hubble time and E(z) is defined as before. In

our Gaussian likelihood function for this constraint we used the χ2

expression:

χ2
age =

(tobs
0 − t

pred
0 )2

σ2
age

. (4.24)

where tpred
0 is the age of the universe predicted in our SFS model, as

computed from Equation 4.23. For tobs
0 , the observed age of the uni-

verse, we followed e.g. Balbi et al. [102] and used the best current

estimate derived from various astrophysical probes, including globular

cluster ages, that have been determined without assuming a particular

cosmological model. We adopt t0 = 12.6+3.4
−2.2 Gyr with an asymmetric

error distribution corresponding to 95% upper and lower confidence

limits, as reported in [103]. In practice however, we simplified this

analysis and used a symmetric standard deviation of (3.4 + 2.2)/2.

We reasoned that the small systematic change that would be caused

by this simplification would be negligible considering the weak con-

straining power of the age due to its large error bars.

4.5 Hubble Constant

The Hubble constant, derived from nearby observations of the cosmic

expansion, is the final constraint which we employed in our analysis.

Indeed the Hubble constant already features indirectly in the SNe

Ia and age constraints, since it enters into our calculations of the

predicted values for those two probes, we considered it would be useful

also to compare directly the observed value of H0 with its predicted

value calculated for our SFS model. Therefore, for H0 in the SFS

model we have:
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Hpred
0 =

(
ȧ

a

)
0

=

(
m(1− δ)y(m−1) + nδ(1− y0)

(1−n)

δ + (1− δ)ym0 − δ(1− y0)n

)
. (4.25)

We thus computed a likelihood function for this constraint using the

χ2 quantity:

χ2
H0

=
(Hobs

0 −Hpred
0 )2

σ2
H0

, (4.26)

where Hpred
0 is the model predicted Hubble parameter and Hobs

0 =

74.2 ± 3.6 km s−1Mpc−1, i.e. the (cosmology-independent) HST Key

Project value discussed earlier.

4.6 Conclusions

In this chapter a detailed list of all the cosmological probes we have

employed in our SFS model investigations was presented. These were,

the supernovae Type Ia redshift-magnitude relation, the cosmic mi-

crowave background distance priors known as the shift parameter, R

and the acoustic scale, la, the baryon acoustic oscillation distance pa-

rameter, A, the age of the universe and the Hubble constant, H0. In

Chapters 5 and 6 we will now present the results of employing these

cosmological probes in confronting our SFS model with the data.
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Chapter 5

Results with Fixed m

In this chapter we will present the results of the first part of our

investigations of the particular SFS model we introduced in Chapter

2. Specifically, we keep the parameter m constant in this chapter,

which as will be discussed, is a simplifying assumption that follows a

reasonable physical motivation. We shall explain in detail the methods

by which we tackled the various problems that arose along the way

of this exploration of our SFS model. We will then seek to physically

interpret the results often presented in the form of contour or scatter

plots.

To begin with, let us recapitulate the characteristics of our SFS model.

In Chapter 2 we introduced the SFS scale factor to be of the form:

a(t) = as[δ + (1− δ)ym − δ(1− y)n] , y =
t

ts
, (5.1)

with the free parameters of, as, δ, n, m and ts. Furthermore, we

introduced the dimensionless parameter y0 = t0/ts to account for the

time when an SFS might happen in the future, which meant that:
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0 < y0 < 1. (5.2)

Moreover, we saw how the parameters n and m are theoretically con-

strained to be in the following ranges:

1 < n < 2 and 0 < m < 1. (5.3)

It remains to mention the parameter known as the non-standardicity

parameter, δ, which was so called because when it was set to 0, our

SFS model would follow a standard Friedmann limit where the uni-

verse had no SFS. In Chapter 2, we discussed how we attempted to

redetermine a prior range for this parameter through the considera-

tion of all the basic and established physical observational facts such

as the observed current expansion along with the acceleration of our

universe. The latter was the only condition which was assumed for

this problem by Dabrowski et al. [1]. Please refer to §2.2.2.1 for a

complete discussion of this issue and a full list of the physical condi-

tions considered. From such investigations we can firmly say that δ

should only take on negative values.

We can see now that we have 4 free parameters to work with in deter-

mining the posterior pdfs of the SFS model parameters under study.

We started this task by simplifying the problem slightly and fixing the

parameter m to take the value of 2/3, which as discussed previously

will ensure that our SFS model corresponds to an Einstein-de Sitter

type universe at early times. By fixing m we are in fact continuing

Dabrowski et al.’s work in [1] where they first confronted SFS models

with SNe Ia data only. Later on we shall allow m to vary from 2/3

but for now we will start our investigations with the 3-dimensional

parameter space of (n, δ, y0).
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In addition to keeping m fixed to start with, we keep one other pa-

rameter fixed to assist us in our investigations and to better interpret

our results as will be discussed. This in turn is split into two different

paths of investigation: one with the parameter y0 kept constant and

the other with the parameter δ fixed. We start our discussion from

the fixed y0 case, which is indeed where we started from in practice

too.

5.1 Fixing y0

Initially we chose to keep the parameter y0 constant since then every

fixed value of y0 would correspond to an SFS at a particular time in

the future. We had therefore 2-dimensional (n, δ) spaces to search

over.

For every value of y0 considered we searched a grid of regularly spaced

n and δ values, computing χ2 values, both separately and jointly,

corresponding to the following three probes: the SNe Ia luminosity

distance-redshift relation, the CMB shift parameter, R and the BAO

distance parameter, A. This list of cosmological probes is certainly

not the complete one talked about in Chapter 4 since at the time we

had not considered the acoustic scale. Moreover, generally we wished

to keep the problem as simple as possible initially by considering only

the most important probes.

The joint χ2 statistic corresponding to the likelihood functions of all

of our cosmological probes’ χ2’s would read as:

χ2
total = χ2

SN + χ2
CMB + χ2

BAO. (5.4)
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Figure 5.1: The contours show conditional 68%, 95% and 99% credible regions
in the (n, δ) parameter space at fixed y0 = 0.99936 corresponding to an SFS in
8.7 million years. The contours are calculated using the probes: SNe Ia redshift-
magnitude relation (red), CMB shift parameter, R, (green) and BAO distance
parameter, A, (blue).

Note that χ2
total can be written in this way since the considered probes

are independent from each other.

We therefore sought the minimum of the χ2 statistic for both the

individual probes and also their sum. Note that in the latter case

the minimum χ2 will not in general occur at the same location in the

parameter space as the minimum χ2 for each individual probe.

Now to illustrate the results of this first investigation, we will present

a series of conditional ‘slices’ through our 3-dimensional posterior dis-

tribution. We present these conditional contour plots in Figures 5.1 -

5.6 (The contours presented in these plots and throughout have been

calculated on grids with a 100× 100 resolution.).

We started from y0 = 0.99936 in Figure 5.1, which was the value
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Figure 5.2: The contours show conditional 68%, 95% and 99% credible regions
in the (n, δ) parameter space at fixed y0 = 0.999 corresponding to an SFS in 13.7
million years.
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Figure 5.3: The contours show conditional 68%, 95% and 99% credible regions
in the (n, δ) parameter space at fixed y0 = 0.99 corresponding to an SFS in 138
million years.
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Figure 5.4: The contours show conditional 68%, 95% and 99% credible regions
in the (n, δ) parameter space at fixed y0 = 0.9 corresponding to an SFS in 1.5
billion years.
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Figure 5.5: The contours show conditional 68%, 95% and 99% credible regions
in the (n, δ) parameter space at fixed y0 = 0.8 corresponding to an SFS in 3.4
billion years.
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Figure 5.6: The contours show conditional 68%, 95% and 99% credible regions
in the (n, δ) parameter space at fixed y0 = 0.7 corresponding to an SFS in 5.8
billion years. Note that the shift parameter contours in this plot occupy a very
small region in the lowermost bottom left corner.
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for this parameter considered in the work of Dabrowski et al. [1]

who showed that the SFS model fits the SNe Ia data at this value of

y0. And therefore they concluded that an SFS might happen in 8.7

million years corresponding to y0 = 0.99936 if we assume the same

age for the universe as in the standard concordance model. However,

here we see that although there is a well-defined set of contours for

the SNe Ia probe, these contours do not seem to overlap with the shift

parameter credible regions at 99% level. Indeed the BAO distance

parameter credible regions overlap with those of the SNe Ia, which is

to be expected as both probes cover approximately the same range of

redshifts.

In Figures 5.2 - 5.6 we decrease y0 to lower values of 0.999, 0.99,

0.9, 0.8 and 0.7 which correspond to SFSs occurring in 13.7 Myr, 138

Myr, 1.5 Gyr, 3.4 Gyr and 5.8 Gyr respectively. One can see that the

same trend continues in these plots showing that there is no common

region where all the probes overlap to give a common fit to the data.

Furthermore, one can see that the shift parameter contours seem to

be moving out of the (n, δ) plane with decreasing y0. Of course, it

is legitimate to ask why not extend the range of values of δ to more

negative values. Indeed we looked at those values as well and found

that the shift parameter contours continue to move to lower δ values

and hence move further away from the SNe Ia contours.

One might wonder what would happen if we increased the value of y0

from the value of 0.99936 considered in Figure 5.1, so that the SFS

would occur even sooner in the future. Indeed we also investigated

those values. Such slices are presented in Figures 5.7 - 5.9. It can

be seen that still there appears to be no common overlap between

all the probes’ contours. Note that in such situations where at least

two of the probes disagree at 99% level, calculating the minimum for
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Figure 5.7: The contours show conditional 68%, 95% and 99% credible regions
in the (n, δ) parameter space at fixed y0 = 0.9999 corresponding to an SFS in 1.3
million years.

the total χ2 is not required, since the joint probability for n and δ

given the data is clearly negligible at all points in the parameter space

considered. Therefore we no longer performed such a calculation.

It would now be interesting to see how our results are affected if we per-

form a 3-dimensional search of regular grid of values in the (n, δ, y0) pa-

rameter space. To present the results of this investigation, we needed

to marginalise the resulting probabilities over every parameter in turn

to obtain sets of contours for the different cosmological probes used

for pairs of model parameters: (n, δ), (n, y0) and (δ, y0). As we will

see, it will suffice to show the results of this marginalisation over one

parameter which we choose to be y0 in keeping with the theme fol-

lowed so far. Figure 5.10 shows 68%, 95% and 99% credible regions in

the (n, δ) space marginalised over y0 for the three cosmological probes

considered before (which are presented in three separate labelled pan-
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Figure 5.8: The contours show conditional 68%, 95% and 99% credible regions
in the (n, δ) parameter space at fixed y0 = 0.99999 corresponding to an SFS in
137 thousand years.
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Figure 5.9: The contours show conditional 68%, 95% and 99% credible regions
in the (n, δ) parameter space at fixed y0 = 0.999999 corresponding to an SFS in
13,700 years.
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Figure 5.10: The contours show conditional 68%, 95% and 99% credible regions
in the (n, δ) space marginalised over y0 calculated using the cosmological probes:
SNe Ia redshift-magnitude relation (labelled SN), CMB shift parameter (labelled
CMB) and the BAO distance parameter (labelled BAO).

els). And Figure 5.11 shows the superposition of these marginalised

contours.

Looking at the plot in Figure 5.10 and 5.11 one might be led into

thinking that there is a fit to all the cosmological data used in the

analysis since there seems to be overlaps present among the contours

of the different cosmological probes. But this is certainly not the case

as we have seen in the 2-dimensional conditional posterior pdfs and

indeed the χ2 values suggest otherwise. In particular we found that

at the point where the χ2
total was minimum the other probes’ χ2’s were

unacceptable.

To quantify these results we show the reduced χ2 values for the probes

used. The reduced χ2 is simply the actual χ2 values divided by N −
ν − 1, where N is the number of observations and ν is the number of

the parameters of the model. The reduced χ2 values in this case were
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Figure 5.11: The superposition of the contours presented in Figure 5.10. One
can see more clearly in this plot that there appears to be an area of overlap
between the marginalised credible regions of the probes mentioned in Figure 5.10.

as follows:

χ2
SN = 0.917, χ2

CMB = 107.50 and χ2
BAO = 4.01.

We can assess these values using the ∆χ2 values table given in Figure

3.1. Since we have marginalised over one of the three parameters we

need to look at ∆χ2 values corresponding to 2 degrees of freedom. For

SNe Ia, we have a reduced χ2
min of 0.616 which means that at the point

of minimum of χ2
total it has a reduced ∆χ2 of 0.917− 0.616 = 0.3001,

which then means that the actual ∆χ2 is 0.3001×(N−ν−1) = 166.55

and that it lies well outside the 99% credible region for this probe. If

we do the same calculation for BAO we find it lies in the 90%, 2-

σ credible region. Also the CMB already has a very large χ2 that

we need not consider its ∆χ2 value. We therefore realised that the

apparent overlap that shows up in Figure 5.11 must come from a kind

of a projection effect that occurs between the non-overlapping sets of
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Figure 5.12: An illustrative 3-dimensional plot to demonstrate the idea
of the project effect that might follow after marginalisation discussed
in the text. Figure from: http://www.mathworks.com/matlabcentral/

fileexchange/16543-plotgaussianellipsoid.

contours. We can understand this effect schematically by considering

the cartoon plot shown in Figure 5.12. Note that the shape of the

contours shown serves only as an illustration and bears no relation to

the physical probes considered here.

We can see in this figure that there is a clear overlap between the two

blue/green ellipsoids but not between the red sphere and the ellipsoids

underneath it. However, if we were to marginalise the ellipsoids into 2-

dimensional contour plots along the vertical axis, say, it is clear that we

would indeed end up with overlapping regions. This projection effect

is what we believe is also occurring in the case of the marginalisation

of our 3-dimensional SFS parameter space pdfs.

Now, before we move onto the next phase of our ‘fixed m’ parameter

space exploration we point out a final consideration about the SNe Ia

contours. As mentioned previously in §4.1 we marginalised over the
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Figure 5.13: Contours showing the SNe Ia conditional 68%, 95% and 99% cred-
ible regions in the (n, δ) space at y0 = 0.9 marginalised over the Hubble constant
(blue) and unmarginalised (red).

Hubble constant, H0, as it could be treated as a nuisance parameter

in the luminosity distance fitting. To do this, we adopted a Gaussian

prior for H0 with a mean of 73.8 and a standard deviation of 2.4 in

accordance with the latest results of the HST Key Project experiment

[7]. That is, for our conditional posterior pdf fixed at y0, from Bayes’

law we have:

p(n, δ|y0) =

∫
p(n, δ|H0, y0)p(H0)dH0. (5.5)

We show an example plot of the SNe Ia luminosity distance contours

in Figure 5.13 where we marginalise over the Hubble constant. It can

be seen in Figure 5.13 that the marginalisation does not significantly

change the results. Put another way, the marginalisation over H0

would certainly not be sufficient to produce a consistent fit to the

data among the three cosmological probes. Hence for simplicity we

choose to omit this marginalisation procedure in what follows.
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Furthermore, as will be seen in the next section we include the Hubble

constant as a separate probe to take care of the SFS parameter depen-

dences on this constant. That is, one could either only use the SFS

parameters that give the correct Hubble constant today in the whole of

one’s analysis or more simply include the Hubble constant constraint

as a separate probe as we did. The two methods are equivalent.

5.2 Fixing δ

The investigations so far have been based on the condition that δ

should take on negative values to yield a currently accelerating uni-

verse as was claimed in Dabrowski et al. [1]. But as discussed in

§2.2.2.1, we decided to revisit the problem of identifying a suitable

prior range for δ considering all the observational constraints we have

available today (cf. §2.2.2.1 for a comprehensive list). As mentioned

before after realising that the solution to this problem was not possi-

ble to reach analytically, we resorted to numerical computation. To do

this we again sliced our 3-dimensional parameter space but this time

over the parameter δ since there was no definite derivable range for its

values as was talked about in §2.2.2.1. This way we could check every

single parameter combination in the 2-dimensional (n, y0) space at a

fixed δ against the physical conditions. Hence we changed our search

through the conditional slices of y0 to conditional slices of δ.

One might argue that if no overlap has been obtained in the set of

contours in one series of conditional 2-dimensional spaces, no such

overlap should be present in any other series of 2-dimensional spaces.

In other words, it should not matter which way one ‘slices’ the over-

all 3-dimensional space. Indeed that is true, but the reason why we

decided to look at δ slices was to investigate the effects of the newly
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considered physical conditions on the contours. And as mentioned

above δ now seemed like the best parameter for this slicing.

At the same time that we became aware of the necessity of the in-

clusion of the physical conditions, we realised through the work of

Elgaroy and Multamaki [94] the potential advantages of using the

acoustic scale, la, as well as the shift parameter, R, to provide a closer

estimate to the full CMB power spectrum fit, as was discussed fully

in Chapter 4. We also thought of extending our toolbox of cosmolog-

ical probes to further include the Hubble constant, H0 and the age of

the universe, t0, as was discussed in Chapter 4. Therefore, equipped

with six cosmological probes and the physical conditions, we recom-

puted each model parameter’s posterior. Some selected conditional

posteriors in the (n, y0) space have been shown in Figures 5.14 - 5.16.

These slices through the 3-dimensional parameter space, are sufficient

to illustrate the results obtained, as we will discuss below.

Figures 5.14 - 5.16 show our computed Bayesian 68%, 95% and 99%

credible regions for our six cosmological probes in the 2-dimensional

(n, y0) space for a series of fixed δ values. In each figure the contours

are shown separately for each cosmological probe in labelled (a) –

(f) panels. These correspond to: (a) the SNe Ia redshift-magnitude

relation; (b) the CMB shift parameter, R; (c) the CMB acoustic scale,

la; (d) the BAO distance parameter, A; (e) the Hubble constant, H0;

(f) the present age of the universe, t0.

Firstly, we see these sets of contours for δ = −0.7 in Figure 5.14.

This starting value for δ was chosen since we observed that for larger

(i.e. less negative) values of δ the posterior distributions for almost all

of the probes were qualitatively similar. However, in the case of the

shift parameter at greater values of δ, we found no credible regions for

the SFS model parameters at the 99% level. One can see in the shift
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Figure 5.14: The contours show conditional 68%, 95% and 99% credible regions
in the (n,y0) parameter space for a fixed value of δ = −0.7. The plots labelled (a),
(b), (c), (d), (e) and (f) correspond to the contours calculated using the probes,
SNe Ia redshift-magnitude relation, CMB shift parameter, R, CMB acoustic scale,
la, BAO distance parameter, A, the Hubble constant and the age of the universe
respectively.
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parameter contour plot at δ = −0.7 that this situation only starts

to improve with the appearance of a very small (hence magnified for

greater clarity) set of contours in the top right corner of panel (b).

Hence we decided not to present further sets of contours for δ > −0.7.

It is clearly apparent from Figure 5.14 that there is no region of com-

mon overlap in the (n, y0) plane between all the six cosmological probes

at the δ value of −0.7. We can see that there is indeed an overlap be-

tween the SNe Ia and BAO contours which is to be expected as both

probes explore similar ranges of redshifts and therefore depend on the

function E(z) in very much the same way.

Furthermore, the age constraint in panel (f) is shown to be weak and

non-constraining which reflects the large uncertainty in its observed

value. There appears only a very small area in the top left corner of

the contour plot that is excluded at the 99% level which is not very

useful as these parameter values are strongly excluded by the other

cosmological probes.

To reanalyse the shift parameter contours in panel (b) in terms of some

numbers, we note that the minimum χ2 value in this plot is 21.35

(corresponding to a predicted value of R = 1.641) which is already

very large and translates into an almost zero likelihood function (and

equivalently zero posterior probability) everywhere. As we increased

the value of δ to less negative values we observed a progressive in-

crease in the value of the minimum χ2, hence our decision to omit the

corresponding contours and starting from δ = −0.7.

Another interesting point to draw the attention of the reader to, is the

fact that the credible regions of the two CMB constraints R and la in

panels (b) and (c) respectively, do not show any overlap at 99% level

with one another. This must come through different model parameter
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dependences of the two probes. Recalling Wang and Mukherjee’s dis-

cussion [92] as talked about in Chapter 4, R and la ought to be used in

conjunction with one another for a fit to the CMB data to mimic the

full power spectrum fit closely. Here we can see that there is indeed

a disagreement between R and la themselves so there is definitely no

fit to the CMB data alone. Moreover, these contours do not appear

to overlap with any of the other four cosmological probes’ contours

which means that there is no fit to the data at δ = −0.7.

Now to illustrate the patterns followed by the six different contours,

we show these credible regions at two further values of δ: −1 and −1.5

in Figures 5.15 and 5.16. Starting with δ = −1 in Figure 5.15 we see

that the contours take the same overall shapes (though slightly shifted

from their previous positions in Figure 5.14) where we again have a

clear overlap between the contours of SNe Ia, BAO distance parameter,

Hubble constant and the age of the universe. These contours however

continue to show no overlap with either of the CMB probes’ contours

at the 99% level which themselves do not show any sign of tending to

overlap with each other.

And lastly, we see the credible regions at δ = −1.5 in Figure 5.16.

Again we see the same trend continued with more or less all the con-

tours. The CMB probes’ contours still neither show an overlap with

each other nor with the other probes both at 99% level. In addition,

one can see that the la contours appear to be moving down the (n, y0)

plane, approaching the y0 lower limit as δ decreases to more negative

values, indicating no possible fit to this probe in particular and hence

overall to the collection of data employed.

To more clearly demonstrate that there is indeed no overlap among

the cosmological probes employed in the analysis, we show in Figure

5.17 the most important contours of SNe Ia, CMB shift parameter,
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Figure 5.15: The contours show conditional 68%, 95% and 99% credible regions
in the (n,y0) parameter space for a fixed value of δ = −1. The labels are as
described in Figure 5.14.
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Figure 5.16: The contours show conditional 68%, 95% and 99% credible regions
in the (n,y0) parameter space for a fixed value of δ = −1.5. The labels are as
described in Fig. 5.14.

139



n

y
0

1.2 1.4 1.6 1.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n

y
0

1.2 1.4 1.6 1.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n

y
0

 

 

1.2 1.4 1.6 1.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SNe Ia

R

l
a

BAO (a) (b) (c)

Figure 5.17: The panels show a superposition of the credible regions in the
(n, y0) parameter space derived from the SNe Ia, CMB shift parameter, R, CMB
acoustic scale, la and BAO distance parameter, A data, for the values of δ = −0.7
(a), δ = −1 (b) and δ = −1.5 (c), as previously illustrated in Figs. 5.14 - 5.16
respectively. Note that in each panel there is no part of the parameter space
where all credible regions overlap.

R, CMB acoustic scale, la and BAO distance parameter superimposed

for values of δ previously considered in Figures 5.14 - 5.16.

Looking at Figure 5.17 one can conclude that although an SFS might

happen in a very near future when one considers the SNIa data only,

as shown in [1], such a fit is not consistent with the CMB data for the

same SFS model parameters.

As discussed earlier, in this second method of investigating our SFS

model by slicing the parameter space over δ we incorporated physical

conditions in our analysis. However, as we discovered that these condi-

tions did not modify the results, for the purpose of presenting clearer

and more easily readable contour plots we omitted these conditions

from our calculations that produce Figures 5.14 - 5.17.

To show a typical example of the impact of the physical conditions on

the contours, consider the acoustic scale, la’s contours in Figure 5.18.

It can be seen how these conditions abruptly cut off the contours when

they are included in the calculation of the la contours here. The con-

dition responsible for the cut off shown in Figure 5.18(b) is the current

acceleration of the universe. In other words, the section of the con-
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Figure 5.18: The impact of the imposition of the physical conditions discussed
in §2.2.2.1 is shown here for the la contours. The plot labelled (a) shows these
contours not considering the physical conditions while in plot (b) these conditions
are included.

tours cut off by the inclusion of the acceleration condition would have

given a good fit to the observed value of la in a currently decelerating

universe. The physical conditions apply to the other probe’s contours

in the same way but less severely it seems. And since we already

get no fit to the data without assuming the physical conditions as we

have seen, we will not present more figures regarding the effects of the

physical conditions.

To see what effect the physical conditions have on the explored (n, y0)

parameter space in Figures 5.14 - 5.16, we present these constraints in

Figure 5.19. This figure shows the effect of the physical conditions on

the (n, y0) plane at the three δ values of −0.7, −1 and −1.5 considered

in Figures 5.14 - 5.16. The coloured regions indicate the areas excluded

by the physical conditions which in this case turns out to be the current

acceleration only. In particular one can see that the la contours are

completely inside the excluded regions for all the three values of δ and

hence are most severely affected. In comparison, the shift parameter

contours never reach these forbidden regions.

We superimpose the plots presented in Figure 5.19 in Figure 5.20. We

141



1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

n

y 0

 

 

1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

n

y 0

 

 

1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

n

y 0

 

 
 = 1.5 = 1 = 0.7

Figure 5.19: The coloured regions show the excluded areas of the (n, y0) pa-
rameter spaces at δ = −0.7, δ = −1 and δ = −1.5 corresponding to parameter
combinations resulting in a currently decelerating universe.

can see that there exists a continuous transition between the excluded

areas as δ decreases.

5.3 Conclusions

This chapter presented our results and findings about testing our SFS

model when the parameter m, which is related to the early universe

properties, is kept fixed at the value 2/3 corresponding to a standard

Einstein-de Sitter universe at early times. The result was that we did

not find a common set of SFS model parameters which would give a

fit to all the considered cosmological probes.

Our results took the form of a series of ‘slices’ through the 3-

dimensional parameter space of (n, δ, y0). We first carried out this

task by slicing over the parameter y0 where each slice would then cor-

respond to an SFS at a particular time in the future. Thus we looked

at (n, δ) slices initially. The cosmological probes considered in this

analysis were the SNe Ia redshift-magnitude relation, the CMB shift

parameter, R and the BAO distance parameter, A. Furthermore, we

extended our cosmological probes to include the acoustic scale, la, the

Hubble constant, H0 and the age of the universe t0, while this time we

sliced over the parameter δ. We found δ was a more suitable choice
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Figure 5.20: The superposition of the excluded areas described in Figure 5.19
displaying a continuous transition between consecutive δ slices.

given its open-ended prior and the realisation that we needed to check

each parameter set against a certain list of observational facts such as

the expansion and acceleration of the universe. Indeed we ended up

with the same result that there was no fit to the data used.

As a final note in this chapter, we checked the results we obtained

through our grid-based searches with the MCMC method as well and

we got consistent results. We will now demonstrate the usefulness of

the MCMC method in the case of the higher dimensional problem we

investigate in Chapter 6.
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Chapter 6

Results with Varied m

This chapter concerns the effects of relaxing the fixed m = 2/3 as-

sumption and letting it vary within its theoretically allowed range of

0 < m < 1. First of all we should consider the theoretical consequences

of relaxing the fixed m assumption. We know that for m = 2/3 our

SFS model reduces to the matter-dominated Einstein-de Sitter uni-

verse. To relax this assumption we therefore need to be prepared to

be faced with other unusual properties for the early universe. Such a

recent proposal was made by Dabrowski and Denkiewicz and we are

currently considering it in detail in [97].

With m a free parameter now, we have a 4-dimensional parameter

space to explore. Hence to calculate posterior pdfs for the corre-

sponding parameters we employed the faster MCMC method for this

higher dimensional problem. To illustrate the power of this method,

in a 4-dimensional grid-based search with reasonable resolution the

computer would have to do certain sets of calculations 108 times

whereas we could reach the same results using the MCMC method

by doing the same sets of calculations 105 to 106 times. The MCMC

method therefore outperforms its counterpart grid-based method in

high-dimensional problems.
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We will utilise the same cosmological probes we employed in our anal-

ysis in the previous section for m = 2/3 but there is a slight issue here

with the acoustic scale, which we think is worth discussing. We saw

in §5.2 that after the realisation that the acoustic scale, la, should be

used together with the shift parameter, R, the former was included

in the analysis throughout. It so happened however that the acoustic

scale did not have any effects on the final results in the end. Nev-

ertheless using the two probes together, as discussed in Chapter 4 is

indeed important in placing tight constraints on one’s model using the

CMB data. We should however be careful when employing the acous-

tic scale in our analysis in the investigation of the model now that we

are letting m vary from its fixed value of 2/3. Recalling from Chapter

4, the acoustic scale is defined through two separate distance scales;

it is directly proportional to the angular diameter distance, dA, and

inversely proportional to the sound horizon, rs, both evaluated at the

redshift of recombination, zCMB:

la = π
dA(zCMB)

rs(zCMB)
, (6.1)

where the comoving sound horizon is defined as:

rs =

∫ ∞
zCMB

csdz
′

E(z′)
with cs =

1√
3(1 +Rba)

, (6.2)

where E(z) = H(z)/H0 as defined before and cs is the speed of sound

with Rb = 31500Ωbh
2(TCMB

2.7k )−4, TCMB = 2.7K. Now the difficulty in the

la calculation for the varied m case really comes from the sound speed

calculation. As mentioned before, when we let m vary from 2/3, we no

longer have the standard Einstein-de Sitter early universe. Previously

in the fixed m case we would interpret the use of the acoustic scale in
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the analysis as a distance scale set at the time of recombination in the

“standard early universe” which would be measured differently now in

an SFS universe due to its particular scale factor and hence history of

evolution as taken care of by dA. But we can no longer use the same

reasoning in the case of m varied from 2/3.

On the one hand, one might argue that it would not be trivial to

determine the sound speed in such a non-standard early universe fluid

and on the other hand, it could be argued that it is after all standard

baryonic physics that sets the required distance scale. Since further

investigation of this issue is beyond the scope of this thesis, we let the

reader make their own judgement on this matter and will suffice to just

present the results of our investigations with and without including the

acoustic scale in what follows.

Furthermore, as it was shown in the previous section, the Hubble

constant and the age of the universe do not have very constraining

effects on the parameter space due to the inevitable relatively large

uncertainties in their measurements. We therefore do not consider

these any further here.

We employed the same physical conditions discussed in §2.2.2.1 in our

MCMC parameter space exploration. We did this such that these

conditions would be tested at every point in the chain and then the

violation of any of them would result in sampling a new point centred

on the last accepted point.

As described before, to carry out an MCMC search one needs to specify

a suitable proposal density. We adopted a Gaussian proposal density

and through experimentation with the program settled on a proposal

density of 0.01 and about 105 to 106 steps in the chain.

In order to make sense of our MCMC results we needed to marginalise
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the posterior pdf over two parameters at a time in order to then obtain

2-dimensional marginal distributions for the other two parameters. As

seen in Chapter 3, the marginalisation procedure is done very easily in

the MCMC method and without the need to integrate the full posterior

pdf as is the case for the grid-based search. In the MCMC method

one only needs to take the required coordinates of the chain points to

arrive at the corresponding marginalised distributions. Therefore in

our case we needed to plot 2 of the coordinates of the chain to obtain

2-dimensional marginalised posterior pdfs to be able to display the

results in 2-dimensional plots.

Furthermore, to determine 1σ, 2σ and 3σ credible regions in our 2-

dimensional parameter spaces, we carried out the procedure as pre-

scribed in Chapter 3. That is we ordered the chains from the highest

to lowest likelihoods. Then for a properly converged chain which is a

representative sample of the full target pdf, we took the top 68% of

the ordered chain to correspond to the 68% (1σ) credible region of the

pdf. Similarly, 95% and 99% of the chain would correspond to 2σ and

3σ credible regions.

First let us consider the three classic probes of SNe Ia redshift-

magnitude relation, CMB shift parameter and BAO distance param-

eter. In Figure 6.1 we present the marginalised credible regions ob-

tained for the these cosmological probes. We plot the chains calculated

using each of the cosmological probes separately in different colours,

where the marginal distributions for SNe Ia, the CMB shift parame-

ter, R and the BAO distance parameter, A are red, green and blue

respectively. To clarify how we intend to show that there is an overlap

between the chains of different probes, we show these chains in sepa-

rate plots in Figure 6.2 for the (m, y0) plane in Figure 6.1. By looking

at Figure 6.2 we note that the region explored by the CMB probe is

147



!

m

n

y0 m !

Figure 6.1: A series of overlay plots of 2-dimensional marginalised MCMC
chains calculated separately for each cosmological probe used which were: SNe
Ia redshift-magnitude relation (red), CMB shift parameter (green) and BAO dis-
tance parameter (blue).

slightly smaller than that of the SN probe, which lies on top of it in

Figure 6.1. But we found that this is only the case in the (m, y0) plane

and therefore decided that the order of the BAO (blue), underneath

all, CMB (green), in the middle and SN (red), on the top, as presented

in Figure 6.1 is the best way to illustrate the results. This way the

largest region would be placed underneath and the smallest would be

on the top hence clearly demonstrating overlaps.

Looking at the plots in Figure 6.1 we can see that there appears to

exist regions in all the 2-dimensional marginal distributions where all

the probes overlap, thus indicating a possible fit to the data used.

However, we should remember that we are looking at marginal plots

and hence we could indeed be dealing with the same projection effect

we saw earlier in Chapter 5. Therefore we decided to carry out some

more rigorous numerical checks. To do this we selected one of the
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Figure 6.2: The (m, y0) plane of Figure 6.1 separated out into the three probes’
marginals to illustrate the relative sizes of these. As labelled, the colours blue,
red and green correspond to the marginals of the probes BAO, SNe Ia and CMB
shift parameter respectively.

probes (e.g. the CMB shift parameter) and ordered its MCMC chain

by descending likelihood, in order to identify the ∆χ2 corresponding

to the top 68% of the chain. We called this ∆χ2 the critical ∆χ2

which, for a fully converged chain (as we believe our chain was) would

correspond to the 1σ credible region of the posterior pdf.

Then for all the points in the top 68% of the other two chains of

SNe Ia and BAO we calculated the CMB shift parameter ∆χ2’s. By

doing this we could examine whether or not these ∆χ2’s were smaller

than the critical shift parameter ∆χ2 and thus also lie within the 1σ

credible region of the CMB shift parameter posterior pdf. In this way

we could make absolutely sure whether an overlap in the 68% credible

regions existed.

In effect, we “thinned” our SNe Ia and BAO chains to only include

those point (if any) which lay within the 1σ credible region of the

CMB shift parameter.

The result of this investigation was positive and we can firmly say

that we could obtain a fit to the SNe Ia, CMB shift parameter and

the BAO distance parameter by relaxing the fixed m assumption. In

Figure 6.3 we attempt to show this result by presenting our thinned
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Figure 6.3: A series of overlay plots of 2-dimensional marginalised “thinned”
MCMC chains of SNe Ia (red) and BAO (blue) probes in light of the CMB shift
parameter. Also shown is the top 68% of the CMB shift parameter chain (green).
By “thinning” it is meant that only the points in the SNe Ia and BAO chains
which lie within the 68% of the CMB shift parameter chain are shown. To better
illustrate the overlap, the CMB shift parameter chain is underneath the other two
chains, the BAO chain is in the middle and the SNe Ia chain lies on the top.

out marginal SNe Ia (red) and BAO (blue) chains together with the

marginal top 68% of the CMB shift parameter chain (green). Looking

at Figure 6.3 one can see that there exists an overlap between the

three probes’ chains hence indicating a fit.

As promised we will also show the results with the acoustic scale in-

cluded in the analysis. The resulting plots are shown in Figure 6.4,

where the yellow chains of acoustic scale have been laid on top of the

rest.

One can see the same apparent overlapping of the different probes’

marginals. Therefore we performed the same checks as in the previous

case to reach definite results. The results of this check was however

negative. That is, we did not find any points in the acoustic scale
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Figure 6.4: A series of overlay plots of 2-dimensional marginalised MCMC
chains calculated separately for each cosmological probe used which were: SNe Ia
redshift-magnitude relation (red), CMB shift parameter and acoustic scale (green
and yellow respectively) and BAO distance parameter (blue).
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chain that laid within the 1σ credible region of the shift parameter.

Thus, we have found out that when one includes the acoustic scale in

confronting the SFS model with the data when one relaxes the fixed

m assumption, one does not obtain a fit.

6.1 Conclusions

This chapter concerned the consequences of varying the parameter m

from its fixed value of 2/3 which was the assumption in Chapter 5 and

which ensured that the SFS model reduced to the standard Einstein-

de Sitter universe at early times. Hence we discussed the physical

interpretation of letting m vary and also questioned the applicability

of the acoustic scale for this investigation since this probe is related

to the standard early universe properties which is arguably not the

case when one allows m to take up values other than 2/3. We then

presented the results of our investigations of the problem and showed

that in the varied m case one indeed obtains a fit to the SNe Ia, CMB

shift parameter and the BAO distance parameter but not the acoustic

scale.
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Chapter 7

Concluding Remarks

Current observations of SNe Ia, the CMB and the large scale struc-

ture have shown not to be able to exclude the possibility that dark

energy could be in the form of phantom energy with an equation of

state w < −1 [17, 18, 19]. The value of w could have drastic conse-

quences for the final state of the universe and in particular in the case

of phantom dark energy (w < −1) leads the universe towards a Big

Rip singularity where the universe down to its smallest constituents is

ripped apart by the phantom-driven super acceleration. The possibil-

ity of occurrence of such a fate for the universe prompted cosmologists

to look for various other exotic end days for the universe. The Sudden

Future Singularity is one such fate which was first proposed by Barrow

[41].

In addition to discovering such a possible event for the future evolution

of the universe, Barrow constructed an example model which could

accommodate such an event. Indeed a theoretical model bears no

value if it does not conform to observational data. And this is exactly

what Dabrowski et al. [1] thought regarding the SFS model. Hence

they confronted it with SNe Ia data and showed that there exist a set

of model parameters for which a fit to the data is obtained and which
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corresponds to an SFS occurring in 8.7 million years’ time. What we

have done in this thesis has been to go one step (or perhaps more than

one!) further to investigate whether the SFS model of Barrow indeed

conforms to other available datasets from the CMB to the large scale

structure.

In Chapter 2 we introduced the theory behind the SFS model examin-

ing its characteristics and discussing its free parameters. In particular

we gave details of our scrutinising of the model parameters in light of

established observational facts like the current expansion and accelera-

tion of the universe. We then discussed our data analysis methodology

in Chapter 3, where we made the case that a Bayesian framework was

indeed the suitable choice for our analysis, being in the cosmologi-

cal context and hence limited to observations from only one universe.

Furthermore, in Chapter 4 we gave a detailed account of the obser-

vational data we employed in our investigations taking care to clarify

the justification of using each probe i.e. the applicability of each to

our non-standard model fitting. The cosmological probes we employed

were: The SNe Ia redshift-magnitude relation, CMB shift parameter,

R, acoustic scale, la, the BAO distance parameter, A, the Hubble con-

stant, H0 and the age of the universe, t0. Finally, we presented the

results of our investigations in Chapters 5 and 6.

In summary our findings indicate that the SFS model does not appear

to fit all the cosmological probes employed in our analysis when we

fix the parameter m = 2/3, which ensures that our model reduces to

the standard Einstein-de Sitter model at early times. We noted that

while one could obtain a fit to the Union2 SNe Ia [17] and the SDSS

BAO data [19] the same model parameters did not fit the CMB data

of WMAP7 [18]. These results were given in Chapter 5. In Chapter

6 we considered the case of allowing the value of m to vary within
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its theoretically allowed range, 0 < m < 1. Whether it is physically

justifiable to vary m from 2/3 i.e. to change the standard Einstein-de

Sitter early universe to some other “non-standard” one remains an

open question. Nonetheless, we carried out the same tests as in the

m = 2/3 case. We found that indeed an overall fit to the SNe Ia, CMB

shift parameter and the BAO distance parameter may be achieved but

not when we include the acoustic scale in this analysis. To recap from

Chapter 4, Wang and Mukherjee [92] found that in order to place

tight constraints on one’s model from the CMB data, one ought to

use the shift parameter and the acoustic scale in conjunction with one

another. With this in mind, one can see that there is no overall fit

to the data in the varied m case with the predicted acoustic scale not

showing a fit to the data while the shift parameter does.

As a final note in this section we would like to point out once again the

remark made in the beginning of Chapter 3, that if a theoretical model

does not reproduce the observed data its usefulness in progressing our

knowledge of nature may be questioned.
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A P P E N D I X A

SFS Hubble Function

Here we will continue our discussion of the special form of the function

E(z) proposed for the SFS. Denkiewicz et al. in [97] show that such

a E(z) could take the form:

E(z)2 = ΩSFS(1 + z)3exp

[∫ z

0

dz
2q(z)− 1

1 + z

]
, (A.1)

where ΩSFS is the density parameter of the SFS fluid. To compare this

expression with the standard form of this function, we recall E(z) in

the standard model as:

E(z)2 = Ωm(1 + z)3 + ΩΛ(1 + z)3(w+1), (A.2)

where the Ωm and ΩΛ correspond to the dark matter and dark en-

ergy density parameters and the radiation and curvature terms are

neglected.

One can check the behaviour of the function in Equation A.1 e.g. in

early and late time cosmological epochs of matter domination and

dark energy domination respectively. We know that for a universe

with dark matter and dark energy the deceleration parameter takes
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the form:

q(z) =
Ωm

2
− ΩΛ, (A.3)

where Ωm and ΩΛ are the dark matter and dark energy density pa-

rameters. In the early matter dominated era (i.e. in an Einstein-de

Sitter universe), we have Ωm = 1 and ΩΛ = 0 therefore q(z) = 1/2

which when substituted back into Equation A.1 yields:

E2(z) = ΩSFS(1 + z)3. (A.4)

This is exactly the type of evolution we have in the standard matter

dominated universe. Furthermore for the late Λ-dominated universe,

(i.e. in a de Sitter universe) we have Ωm = 0 and ΩΛ = 1, we get

q(z) = −1 which when substituted into Equation A.1 we obtain the

following:

E2(z) = ΩSFS. (A.5)

This is again the type of evolution we would expect to see in a dark

energy dominated universe.
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