
 

 
 

 
 
 
 
 
 

 
MacKerron, Graham Henry (2011) The detection of unknown waveforms in 
ESM receivers: FFT-based real-time solutions. EngD thesis. 
 
 
 
http://theses.gla.ac.uk/3007/  
 
 
 
 

Copyright and moral rights for this work are retained by the author 

A copy can be downloaded for personal non-commercial research or study, without prior 
permission or charge 

This work cannot be reproduced or quoted extensively from without first obtaining 
permission in writing from the author 

The content must not be changed in any way or sold commercially in any format or 
medium without the formal permission of the author 

When referring to this work, full bibliographic details including the author, title, 
awarding institution and date of the thesis must be given 

 
 
 
 
 
 
 
 

Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

http://theses.gla.ac.uk/3007/
http://theses.gla.ac.uk/
http://theses.gla.ac.uk/
mailto:theses@gla.ac.uk


the detection of unknown

waveforms in esm receivers:

fft-based real-time solutions

Graham Henry MacKerron

MPhys (Hons)

Submitted in fulfilment of the requirements for the Degree of

Doctor of Engineering in System Level Integration (EngD)

School of Engineering

College of Science and Engineering

University of Glasgow

October, 2011



Abstract
Radars and airborne electronic support measures (ESMs) systems are locked in a tac-

tical battle to detect each other whilst remaining undetected. Traditionally, the ESM

system has a range advantage. Low probability of intercept (LPI) waveform designers

are, however, more heavily exploiting the matched filter radar advantage and hence

degrading the range advantage.

There have been literature and internal, SELEX Galileo proposals to regain some ESM

processing gain of low probability of intercept (LPI) waveforms. This study, however,

has sought digital signal processing (DSP) solutions which are: (1) computationally

simple; (2) backward-compatible with existing SELEX Galileo digital receivers (DRxs)

and (3) have low resource requirements. The two contributions are complementary and

result in a detector which is suitable for detection of most radar waveforms.

The first contribution is the application of spatially variant apodization (SVA) in a

detection role. Compared to conventional window functions, SVA was found to be

beneficial for the detection of sinusoidal radar waveforms as it surpassed the fixed

window function detectors in all scenarios tested.

The second contribution shows by simulation that simple spectral smoothing tech-

niques improved DRx LPI detection capability to a level similar to more complicated

non-parametric spectral estimators and far in excess of the conventional (modified)

periodogram.

The DSP algorithms were implemented using model-based design (MBD). The im-

plication is that a detector with improved conventional and LPI waveform detection

capability can be created from the intellectual property (IP). Estimates of the improve-

ment in SELEX Galileo DRx system detection range are provided in the conclusion.
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Contributions

This thesis contains two main areas of original contribution: (1) the use of SVA as a

detector and (2) the application of the multitaper methods (MTMs) and periodogram

smoothing techniques in pursuit of the detection of LPI radar waveforms. Both of

these contributions are set in the context of achievable, real-time application in an

ESM DRx. The supporting chapters (2 and 4) and appendices (A–I) greatly expand

on these two themes.

The use of SVA in a detector has been filed as patent application number 1104107.6 with

reference 001510GB, entitled “Radio Frequency Digital Receiver System and Method”.

Subsequently the use of SVA as a detector was included as an aspect in a paper for

Defense Applications of Signal Processing (DASP) 2011, entitled “Spatially Variant

Apodization for Conventional and Sparse Spectral Sensing Systems”.

Both of these documents have been inserted exactly as filed/submitted in appendix J.



Preface

Stephen Clark and Robert Cooper at SELEX Galileo originally posed the problem for

this EngD project in terms of the detection of LPI radar waveforms. The problem

statement was

Classically the best way of detecting a particular signal in noise is to use a

matched filter. In fact, if the noise is white and Gaussian, it is the optimal

procedure. Many communications and radar systems use the matched filter

as the first line or corner stone of all detection and decoding.

Electronic warfare (EW) receivers must detect radar pulses and use the

measured characteristics of the transmission to identify whether they are

associated with potentially hostile systems. An important consideration is

that the Electronic Warfare receiver should be able to make this observation

before the radar is able to form a track on the host platform this is known

as the range advantage. The disadvantage suffered by the EW receiver is

in it not being matched to the transmitted pulse, and the worse the match

is the more the range advantage is degraded. Modern EW systems employ

digital receiver technology similar to that used in software defined radios.

Digital EW receivers offer the ability to improve detection of radar pulses

over earlier technology based on video detection, but current techniques

have limited efficacy.

The matched filter technique employed by all modern radars is very power-

ful, inspiring the use of transmitted signals that are observed with degraded

signal/noise by the opportunistic listener but which are readily detected by

an appropriate listener who has knowledge of the transmitted signal. Faced

with an environment of transmitted signals, what can we do as an oppor-

tunistic listener who does not know the transmitted waveform and thus

cannot access the signal/noise improvements offered by the matched filter?

This is the challenge of the current project. One way forward, for exam-

ple, is to exploit the restrictions imposed on the engineers who design the

transmitted waveforms; a further possibility is to pursue recently developed

concepts to do with soft detection theory and time-frequency analysis. The

problem is multi-faceted and there are many dimensions to the solution

space, but all solutions have to be mindful of the constraints of available

processor speed, architecture and power.
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Later the problem was expanded to improve the detection of conventional radar wave-

forms as it became clear that the use of the signal processing technique SVA would

help with this. There were many signal processing techniques explored during the

course of the research for this EngD problem, such as exploiting cyclostationarity and

goodness-of-fit techniques to name a couple. However only the interesting and signifi-

cant findings have made it into this thesis as main chapters, with internal reports being

produced for SELEX Galileo on the other topics. During the course of the research

the interesting signal processing techniques were applied in a MBD methodology as we

were keen for the EngD to have a tangible output for SELEX Galileo.

The thesis is organised such that after the first background chapter, the next two

chapters contain the SVA findings and the following two chapters contain the MTM

and periodogram smoothing findings. These chapters are believed to be of most interest

to examiners.

The appendices contain details of the signal processing techniques chosen for imple-

mentation in a MBD methodology, i.e. the practical side to the EngD.

— Graham Henry MacKerron
Edinburgh, 2011
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Ŝ
(SP)
xx Smoothed periodogram spectral estimate

λ(N,Wh) Spectral concentration

λp(N,Wh) Spectral concentration of pth taper

Sxx(f, αc) Cyclic spectrum density function

S C xx(f, αc) Spectral correlation function

spf Power spread factor

s(t) Complex baseband pulse

Tν Nuttal’s power law detector

T DCW period

t Time

T0 Absolute standard temperature (290 Kelvin)

τ Delay

TC Coherent integration time of the radar

Tdwell Radar dwell time on a target

TESM Non-coherent integration time of the ESM sys-

tem

θ Angle

WB(k) Bartlett window function in frequency-domain

W (f) Continuous frequency-domain window func-

tion

Wh Normalised half-bandwith parameter

W (k) Discrete frequency-domain window function

wK Order-K time-domain window function

WN Twiddle factor

w(n) Time-domain window function

Wp(k) pth MTM taper in frequency-domain

wp(n) pth MTM taper in time-domain

WV Wigner Ville distribution

x(t) Complex waveform in time-domain

Xa(k) Filtered DFT

X(f) Complex waveform in frequency-domain

XI(k) Imaginary part of DFT

X(k) DFT output

X̂
(MTM)
p pth DFT for MTM

X̂
(WOSA)
p pth DFT for WOSA

XR(k) Real part of DFT



CHAPTER 1

Introduction & Background

1.1 Introduction

This thesis is laid out such that the content of academic interest is located in the main

body of chapters whilst the industrial, practical implementation side is provided by

the appendices.

The background to: (1) low probability of intercept (LPI) radar signals; (2) conven-

tional system detection and (3) grouped techniques for improved LPI detection by

electronic support measures (ESM) is given later in this chapter.

Following on from this two chapters describe the theory behind spatially variant apodiza-

tion (SVA) and its application in the detection of conventional sinusoidal radar signals.

Chapters 4 and 5 describe computationally-efficient spectral estimation techniques

which are suitable for improved detection of broader-band LPI radar signals in ESM

systems.

Conclusions drawn from the main body of chapters and suggested future work feature

in chapter 6. Estimates are provided for the improvement in the SELEX Galileo digital

receiver (DRx) system detection range in the conclusion.

The appendices are designed to show the work is aligned with the subject matter of

system level integration. This is through the concept of model-based design (MBD),

which is specifically described in appendix C. Its application to SVA and a broader-

band LPI radar signal detection method (periodogram smoothing) are methodically

described with an appendix (D, F, H, I) devoted to each stage in the MBDmethodology.

Interspersed throughout the MBD flow appendices are details of experiments conducted

to apply the SVA and broader-band detection techniques to field data (appendices A

and G) and suggested computational savings for applied SVA (appendix E).

1.2 The Range Advantage

The tactical situation between a radar and an ESM system is something of a competi-

tion in which both attempt to detect the other first. A particularly colourful analogy

of this is given in [1] between Greek legends Achilles and Hector where the central
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message is that both sides wish “to see and not be seen.” However there are different

fundamental limitations which are placed on both sides and these are well documented,

for example in [1, 2]. The ESM system has the strong advantage that it is a one-way

path from the radar to the platform on which the ESM system is installed whereas a

radar requires a two-way path from radar to platform and back again to the radar. In

the highly simplified and idealised form the power density which arrives at the plat-

form decreases with the square of the distance between the radar and platform but the

power density of the received returns at the radar decreases with the fourth power of

the distance. This effect is depicted in Fig 1.2.1.

∝ R
-4

∝ R
-2

Figure 1.2.1 Range advantage of an ESM system on an airborne
platform

A rigorous demonstration of the range advantage of the ESM system is given in [2].

When the simplifying assumption is made that the target the radar wishes to detect

and the ESM platform are the same (i.e. detection of the radar’s mainlobe with a

radar warning receiver (RWR)), the detection range of the ESM system in terms of the

detection range of the radar is given by

RESM
2 = RRad

4

[

4π

δdet

1

σc

GAESM

GR

LESM

LR

]

(1.2.1)

where:

• δdet is the ratio of power required to detect at the ESM receiver to the power

required at the radar receiver;

• GR is the gain of the radar receive antenna in the direction of the ESM platform;

• GAESM is the gain of the ESM’s antenna in the direction of the radar (close to

unity for omnidirectional antennas, i.e. the tactical situation);

• LESM and LR are losses suffered in the ESM and radar receivers respectively;

• σc is the radar cross-section of the ESM platform.
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The range advantage is evident from Eq (1.2.1) with the square and fourth powers due

to the one-way and two-way paths.

The strong advantage of the radar is it knows to a high degree of accuracy the waveform

that was transmitted. This concept is exploited by some LPI radar waveform designers

through utilisation of more and more complicated coded waveforms which allow the

radar to maximise its coherent integration time and thus its sensitivity. This concept

would result in increases in the value of δdet in Eq (1.2.1). In fact in [2] δdet is defined

as

δdet = (BESMTC)
1−γe (Tdwell/TESM)

γe

where:

• BESM is the bandwidth of the ESM system (which is almost certainly much larger

than the radar bandwidth);

• γe is a non-coherent integration efficiency factor;

• TC is the coherent integration time of the radar;

• Tdwell is the radar dwell time on a target;

• TESM is the non-coherent integration time of the ESM system.

Coherent integration time in a radar is maximised through the use of a matched filter,

which is the conjugate time-reversal of the filter used to code the transmitted waveform.

The matched filter concept is illustrated for digital filters in Fig 1.2.2 where panel (a)

shows the transmitter side and panel (b) shows the receiver side.

FILTER
x(n)

y(n)

z-1 z-1 z-1

A B C D

++ +

x(n)

y(n)

h(n), FIR filter diagram

(a)
Transmitter

MATCHED
FILTER

y(n)

z-1 z-1 z-1

D* C* B* A*

++ +

y(n)

u(n')

h*(n'-n), FIR filter diagram

(b)
Receiver

u(n')

ADCDAC

Figure 1.2.2 Matched filter concept with digital filters

The advent of LPI waveforms and the associated increase in the value of δdet means

radars which exploit this tactic can not be simply countered to the range advantage

that was once offered when only pulsed sinusoid radars had to be considered.
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The theme for this thesis is to attempt regain some of the lost ESM range advantage

due to coded LPI waveforms in the tactical situation.

1.3 History of ESM System Development

This section gives a very brief summary of the main types of receivers upon which

ESM systems have been typically based. The types of receivers are detailed in a

loosely historical order.

The general trend for ESM systems over the years has been:

• to intercept a greater proportion of the electromagnetic (EM) spectrum;

• to incorporate greater degrees of autonomy;

• to increase azimuth and elevation coverage.

For airborne platforms, the bandwidth from 500MHz to 20GHz is considered essential

for an ESM system. Likewise, antenna coverage of 360° azimuth and significant ele-

vation is considered essential. The most advanced airborne ESM systems cover up to

40GHz and have an almost spherical coverage.

The simplest view of the role of an ESM system is shown in Fig 1.3.1. The most

important stage in Fig 1.3.1 as an initial building block for improved detection of LPI

waveforms is the detection stage and this is considered in this thesis.

Detection Classification
Parameter 
Estimation

Exploitation

Identification
Cataloguing
& Sorting 

Radar Warning Receiver  (RWR)

Electronic Support Measures (ESM)

Figure 1.3.1 A top-level view of the functionality of a RWR and its rela-
tionship within an ESM system

Early ESM systems were based on wide-band crystal video receivers. These are ana-

logue receivers which essentially accept a radio frequency (RF) input, remove the RF

carrier and form an envelope signal. The envelope signal is passed through the func-

tional blocks shown in Fig 1.3.1, where the pulses are detected on a pulse-by-pulse basis

and attempts are made to reconstruct the original radar pulse train. The detection

component is closely related to the concepts in a radiometer. Early ESM systems were

used to counter simple radar signals in a relatively “quiet” operational environment.
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As technology improved instantaneous frequency measurements (IFMs) were added

to crystal video detectors which afforded the ESM system extra information about

the frequency of a pulse. Unfortunately IFM measurements are only reliable against

one signal at a time. This became a greater concern when complicated operational

environments emerged where many pulses can be temporally coincident at the ESM

receiver. This is indicative of the general trend in electronic warfare (EW) where a

greater proportion of the EM spectrum is utilised as time passes.

Therefore chronologically the next feature to be added to ESM systems was frequency

selectivity, generally in the form of rapidly-swept superheterodyne receivers (RSSRs),

which are tunable, channelised systems. The RSSR sweeps across an enormous band-

width in narrower-band “ESM dwells”. The ESM dwell times must be very short in

comparison to the radar dwell time if the ESM system is to be able to capture the

radar pulses.

As such, these receivers process only a small RF bandwidth or ESM dwell at a time,

which leads to greater receiver sensitivity and ESM detection range (RESM) but has

the disadvantage that the receiver is instantaneously “blind” to the other ESM dwells.

The superheterodyne component of a RSSR downconverts the input RF signal to an

intermediate frequency (IF), which is passed to a crystal video receiver which acts as

the detector.

RF

AOA

 Data clusters, 

 sent to deinterleaver

Figure 1.3.2 Clustering in frequency and AOA

By itself the frequency selectivity offered by an RSSR is typically insufficient and many

more signal processing stages exist between the detection and classification/identification

stages shown in Fig 1.3.1. These extra stages are required to handle the sheer number

of detected pulses per second before a deinterleaver attempts to reconstruct the radar

pulse trains in the classification and identification stages. The pulse trains are recon-

structed through the use of clustering. This is demonstrated in Fig 1.3.2 which shows

detected pulses by two characteristics: RF frequency and AOA (frequency and spatial

selectivity). Pulses from the same emitters tend to cluster and these data clusters are
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sent to the deinterleaver.

Clustering to vastly reduce the number of pulses passed to the deinterleaver is used for

two reasons:

1. Only a dozen or so pulses from multiple “looks” at the same ESM dwell are

required for identification (several pulses are required to identify stable emitters

but tens of pulses are required for complicated emitters).

2. Technological limitations mean that signal analysis in software cannot cope with

∼ 50 000 pps.

The next milestone in the development of ESM systems was to replace the crystal video

receiver with a DRx and create a hybrid system. Besides permitting digital processing

techniques, use of a DRx: (1) removes the requirement for as many expensive RF, IF

and video signal cables and (2) is not as expensive to maintain or replace as analogue

equivalents.

The generic operation of the rapidly-swept superheterodyne system and DRx combi-

nation is to:

1. obtain an RF input;

2. downconvert to IF;

3. digitise through an analog-to-digital converter (ADC);

4. apply a variant of the Fourier transform (FT) to the samples in data capture

windows (DCWs).

The FT is usually implemented with the use of a fast Fourier transform (FFT) algo-

rithm or less often as a sliding discrete Fourier transform (SDFT). An excellent resource

on the operation of DRxs is given by Tsui in [3].

It could be argued that the “instantaneous blindness” of the superheterodyne and DRx

combinations could be overcome with a fully channelised system which consists of a

number of DRxs each assigned to constantly monitor contiguous RF channels. However

the cost to build such a system would be prohibitive. This is especially true because

most ESM systems operate on data from a number of antennas to form maximal angular

coverage and hence this multiplies up the number of channels.

The FFT algorithm in DRxs provides frequency-domain data which is passed to the

detection stage in Fig 1.3.1. The FFT serves to further channelise the ESM dwells and

provides greater frequency selectivity.

The next logical step which involves the FFT algorithm for DRxs is to link together

consecutive DCWs to form a short-time Fourier transform (STFT). This forms a time-

frequency history of the operational environment and can be subjected to a greater
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number of digital signal processing (DSP) techniques. This trend is highlighted by

research such as in [4].

1.4 Windowing/Apodisation

Windows are snapshots of data over a finite interval. Window functions themselves are

defined to be zero outside the interval and a particular shape inside the interval such

that the product of data multiplied by the window function is zero outside the interval

and tapered by the window function shape inside the interval. Almost all practical

window functions have a shape which resembles a bell-shaped curve, although their

exact mathematical descriptions vary.

Window functions play a major role in spectral analysis which takes place in a DRx as

part of an ESM system. The ESM system must periodically make decisions on whether

it believes threats are present in the operational environment (decisions made in the

order of hundreds of nanoseconds). In order to do so it is forced to take windows (given

the name DCWs) of the constant stream of data and perform some spectral analysis

by means of a discrete Fourier transform (DFT) to assess if there are any spectral

peaks caused by potential threats. The discrete window functions are applied through

multiplication of the window function sample by sample with the DCW.

The action of windowing causes some side-effects in the spectral estimate and these

side-effects are directly linked to the shape of the window function. Harris’s key paper

[5] discussed shapes for windows, or in other words, window functions and the metrics

by how they might be compared. A diagram which summarises the metrics by way

of an example (a rectangular window function) is shown in Fig 1.4.1. Table 1.4.1

displays the values of the metrics for the window functions mentioned throughout this

thesis. The table is based on the window functions table in Harris’s paper. The metrics

described in Harris’s paper are described below.

1.4.1 NEB

The noise equivalent bandwidth (NEB) or equivalent noise bandwidth of a window

function is a measure of the increase in the noise floor caused by the use of a window

function (w(n)) relative to a rectangular window function. The increase in the noise

floor is equivalent to an increase in the bandwidth of a hypothetical rectangular window

which acts as a filter. Therefore it is given by the normalised ratio of the noise power

to the peak signal power

NEB =

∑N−1
n=0 w(n)2

[

∑N−1
n=0 w(n)

]2 (1.4.1)

where the non-rectangular window function (w(n)) consists of N coefficients from n =

0, . . . , N − 1. Processing gain, also defined in [5], is the reciprocal of NEB.
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The NEB parameter is not apparent in Fig 1.4.1. To see this, additive white Gaussian

noise (AWGN) would need to be processed (alongside the constant envelope signal)

with a few different windows and the results would be required to be normalised to the

rectangular-windowed noise floor. The NEB of other non-rectangular window functions

would show as a loss in the peak response.

1.4.2 Overlap Correlation

Successive DFTs which overlap in the time-domain not only assist in mitigation against

the unknown times-of-arrival (TOAs) of signals (as described in section 1.7) but they

also help recover some signal information which is lost due to attenuation at the edges

of bell-shaped window functions. This is useful to obtain as much signal information

as possible for non-coherent integration or averaging of successive DFTs. However the

overlapped samples contain a small amount of noise which is correlated and this reduces

the variance reduction during non-coherent integration. The overlap correlation

parameter quantifies this feature.

1.4.3 Cusping Loss

The DFT is a sampled version of the discrete-time Fourier transform (DTFT) in the

frequency-domain. However the frequency samples are unlikely to match up exactly

to the target signal frequency and therefore there is a processing loss (or cusping loss)

which increases up to a maximum scalloping loss when the target frequency is exactly

midway between DFT frequency samples. Therefore the scalloping loss represents

the worst case and is given by

Scalloping Loss =
W (1/2)

W (0)
(1.4.2)

The scalloping loss and NEB move in opposite directions for different window functions.

Therefore the two can be combined in a third metric, a worst case net processing loss,

which adds the NEB in decibels to the scalloping loss in decibels.

The cusping loss is demonstrated in Fig 1.4.1 as the peak sample of the DFT which

does not occur at the same frequency as the peak response of the DTFT. The scalloping

loss is also marked on the diagram.

1.4.4 Sidelobe Level

The spectral leakage pattern due to the window function is given by the magnitude-

squared of the transform of the window function. The size and location of the spectral

leakage sidelobes affects the ability of a detector to find weak signals which are close

in frequency to strong signals. The level of the first sidelobe is usually specified as an

important metric.
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The relative level of the first sidelobe is shown in Fig 1.4.1.

1.4.5 Minimum Resolution Bandwidth

This metric also describes the spectral leakage pattern. The width of the mainlobe

of the magnitude-squared of the transform of the window function is measured at its

3.0-dB and 6.0-dB points. The width is specified in terms of DFT frequency bins.

This signifies the ability of the window function to discriminate between closely spaced

signals of similar power. The conventional 3.0-dB resolution is the width at the

half-power points, however it is the 6.0-dB resolution which actually determines the

resolution of the window.

Both the 3.0-dB and 6.0-dB resolutions are shown in Fig 1.4.1.

1.4.6 Summary

Window First
Sidelobe
Level
(dB)

NEB
(dB)

Scalloping
Loss
(dB)

Net
Proc.
Loss
(dB)

3.0-dB
Res.
(bins)

6.0-dB
Res.
(bins)

Rectangular −13.3 0 3.92 3.92 0.89 1.21

Hann −31.5 1.76 1.42 3.18 1.44 2.00

Hamming −42.7 1.34 1.78 3.12 1.30 1.81

Dolph-

Chebychev

−60.0 1.79 1.44 3.23 1.44 2.01

Bartlett −26.5 1.24 2.60 3.84 1.28 1.78

Table 1.4.1 The metrics of selected window functions mentioned in this thesis

1.4.7 Relevance to ESM

The previous section alluded to the two main weaknesses of a DFT-based detector: (1) a

window of a waveform results in spectral leakage and (2) the unknown frequency of the

target signal fT usually results in a cusping loss up to a maximum scalloping loss. It is

important to note that the choice of shape of the window in front of the DFT greatly

affects both of these features. As an example, the rectangular (i.e. uniform) window

function, which is constant within the DCW interval (if the constant is equal to one then

the rectangular window function is the same as no window function), creates a spectral

leakage pattern where the signal mainlobe is narrow but the sidelobes are quite high.

Therefore to avoid erroneous detections from the sidelobes of strong signals, DRxs in

ESM systems conventionally use bell-shaped window functions because they cause the

sidelobe spectral leakage to be relatively low. The price to pay is a diminished frequency

resolution because such bell-shaped window functions broaden the signal mainlobe to
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Figure 1.4.1 Window function parameters

some degree and an increase in NEB. Fig 1.4.2 describes the window process in a DRx

as a graphic which shows a DCW of part of a sinusoid which is subsequently processed.

The process could be undertaken with a rectangular window which would result in a

spectral leakage pattern with a narrow mainlobe but high sidelobes or a bell-shaped

curve which would result in a spectral leakage pattern with a wide mainlobe and low

sidelobes.

1.4.8 Decision Rules

To prevent spurious detections caused by spectral leakage the detector in an ESM

system usually has a crude knowledge of the approximate shape of the envelope of

the spectral leakage pattern caused by the window function in use. For example if

the window function used was a Hann window, then detections around the peak of

a strong signal would be prohibited unless they were at least 1.0 × fs/N away from

the peak. Records of the spectral leakage pattern of windows that permit or prohibit

further detections are termed decision rules.

1.5 Super-resolution Techniques

There are so-called super-resolution techniques which can improve the frequency es-

timation of a target signal and therefore mitigate against one of the weaknesses of

the FFT-based detector. These spectrum estimators are parametric and include some

assumptions about the signal in their formulation. Examples of super-resolution tech-

niques include:
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Figure 1.4.2 Introduction to the window process in a DRx

• the autoregressive (AR) method;

• multiple signal classification (MUSIC);

• estimation of signal parameters via rotational invariance techniques (ESPRIT);

• Prony’s method;

• minimum norm method.

The route of the super-resolution techniques was not followed in this thesis primar-

ily because the problem statement in section 1.2 does not call for a superresolution

requirement.

1.6 Envelope and Energy Detection

Most traditional detection methods are based on signal energy detection or signal

envelope detection. Both of these methods produce a statistic which is compared
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against a threshold value to make the decision whether a signal is present (the alternate

hypothesis H1) or not (the null hypothesis H0). Envelope detection examines the

magnitude of a waveform, x(t), which may be complex or real-only and energy detection

examines the square of the envelope over a chosen window period of time, T . The

physical energy of a waveform which might exist in a continuous-time crystal video

detector over time T is given by

Ex =
1

ρ

T
∫

0

|x(t)|2 dt (1.6.1)

where ρ is the resistance driven by x(t). Where appropriate, a value of ρ = 1Ω was

taken in simulations in this thesis. In a discrete-time detector such as that in a DRx,

Eq (1.6.1) is estimated by

Ex =
1

ρ

N−1
∑

n=0

|x(n)|2 ∆t where T = N∆t

The simplest energy detector is a radiometer, which performs the operation in Eq (1.6.1)

on a waveform as a function of time over a window of duration T and particular band-

width BESM. This creates a value for Ex which is compared against a threshold value.

Such a process is termed integrate-and-dump.

The energy detector is a type of detector from the group of Nuttal’s power law detectors

(Tν), so-called because they were described by Nuttal in [6]. The Nuttal power law

detector in discrete-time is described by

Tν =
N−1
∑

n=0

|x(n)|ν (1.6.2)

and if ν = 2 then the energy is estimated.
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Other important definitions are (assuming ρ = 1Ω):

envelope: |x(n)|

instantaneous power: |x(n)|2

average power:
Ex

N∆t

root mean square (rms):

√

√

√

√

1

N∆t

N−1
∑

n=0

|x(n)|2

Power itself is actually composed of two contributions from the constant direct current

(DC) offset and the non-constant alternating current (AC) components.

Power is conventionally taken to be energy per unit time but a waveform can also

be described in terms of its frequency content and it becomes meaningful to use the

description (spectral) energy density. According to Parseval’s theorem the energy in a

window will be the same whether measured in the time-domain or frequency-domain.

The theory behind envelope detection and energy detection of square-integrable (or

square-summable) waveforms is well documented, for example in [7, 8, 9].

The theory of envelope and energy detection includes many techniques to improve upon

the basic threshold scheme through the use of non-coherent integration techniques such

as the L-out-of-M detection method (also called a binary moving window detector

(BMWD)[10] or double threshold detection method). L-out-of-M detection utilises a

second, larger time window or larger frequency bandwidth which spans M detection

trials and within this L smaller window detections are required to trigger a detection.

It can be instructive to look at the input (x(t) or X(f)) over different time periods

and different frequency bands and perform envelope or energy detection in different

time-frequency cells. True channelisation involves subdivision of the entire bandwidth

into smaller frequency bands and the simultaneous application of detectors to each

smaller bandwidth channel. The superheterodyne component of the superhet and DRx

combination means that these detectors do not quite fulfill this channelisation criterion

but the DFT component in a DRx does. The DFT can be viewed as a filter bank which

is composed of N filters with an integration time of the sampling rate (fs) multiplied
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by the N points in a DCW. The filter bandwidths are approximately fs/N and are

immediately followed by a downsample factor of N . Detection can be performed on

the output of these filters simultaneously.

The most desirable outcome for an ESM system is when the time-frequency cell size

is exactly matched to the unknown radar signal. In other words, when the signal time

hops and frequency hops match the cell size. In this case, the radar signal would

be entirely localised within the cell and the detector would be more likely to find it

against the background noise without the need for further non-coherent integration.

Thus the superhet and DRx combination is well-suited against pulsed sinusoidal signals

because the FT is the matched filter for sines and cosines, however there are still some

weaknesses in this type of detector which are worsened by the use of LPI waveforms.

1.7 Ideal Detection

The previous section describes how it would be highly desirable for a detector in an

ESM system to concentrate radar signals into a single time-frequency cell. For a DRx

which utilises an FFT, this would happen if the FFT was synchronised with a sinusoidal

radar signal at the correct frequencies and intercepted pulses at exactly the right times.

In this case the detector would act in a similar fashion to a matched filter, however

this synchronisation is unlikely and there are weaknesses in the FFT-based DRx:

1. The arrival time and duration of a radar pulse is unknown to the DRx. These

problems are alleviated if the FFTs are overlapped in time. However this adds

considerably to the requirements of the ESM system.

2. An inherent difficulty with FFTs is that they operate on a window or snapshot of

the waveform and hence the spectral estimate which results is the convolution of

the transform of the window shape and the transform of the windowed waveform.

The usual practice is to use a bell-shaped window function due to their more

preferential transform shape, however this results in a loss in the ability of the

DRx to resolve between closely-spaced signals in the frequency dimension and a

loss in processing gain.

3. The frequency of the radar signal (fT ) is unknown to the DRx. Therefore the

radar frequencies are unlikely to line up exactly with the FFT frequency bins and

thus there is a cusping loss up to a maximum scalloping loss.

Radars which utilise LPI waveforms make ideal detection even harder for the detector

in an ESM system because they spread their signal energy out over broader bandwidths

which makes localisation more difficult.

The impact of the second of these weaknesses is minimised in the first contribution of

this thesis.
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Despite the difficulties, DRxs in ESM systems are almost certain to include an FFT

signal processing element somewhere in the signal processing path due to its strong

advantages of:

• the ability to separate radar signals at different frequencies which overlap in time

(part of the frequency selectivity feature);

• provision of a frequency estimate for a pulse descriptor word (PDW);

• a processing gain which approaches that of a matched filter against pulsed sinu-

soids;

• its extremely efficient computational method.

1.8 Radar Designer’s Concerns

The situation from a radar designer’s point of view has been considered in the course

of the analysis of this thesis problem. A radar designer has many factors such as cost,

space, power consumption and bandwidth which limit what can be designed and built.

Two important limitations which have been incorporated into all simulations in this

project are:

1. The vast majority of radar pulses are approximately constant amplitude. This is

a consequence of the use of saturated power amplifiers (more efficient than linear

amplifiers at high radiated powers).

2. Radars generally have to operate within certain bandwidths to prevent out-of-

band-interference. The spectral “skirt” of any radar transmissions are usually

required to sit below a predetermined threshold. In the case of phase-coded

waveforms this usually translates to a finite period of time for phase transitions.

The radar waveform which is used is very much linked to the philosophy of the radar

platform. The waveform chosen depends on the purpose of the radar, as described in

[11] and demonstrated by the waveforms in [12]. For example the LPI philosophy is to

detect and take action against unsuspecting targets whereas the opposite philosophy

is to be bold and allow the radar to be detected as a show of force.

It is believed in sources such as [13, 14, 15] that continuous wave (CW) waveforms

will constitute the majority of LPI waveforms. By their nature CW waveforms present

a few issues to a radar designer. For example, some method to transmit and receive

at the same time must be employed. This can prove costly if the decision to go with

two separate antennas is used. If two antennas is not feasible then a reflected power

canceller must be used, however the radar would be limited to low radiated powers and

hence short ranges.

Another consequence of long coded LPI waveforms is that it is difficult for the radar

to have rapid revisit times in its scan modes. Therefore it is likely that LPI waveforms
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are more useful for short ranges without the need for scan modes.

An advantage of CW waveforms is that large coherent integration gains can be obtained

from long codes. The use of certain long codes also allows perfect cancellation of

sidelobes in the periodic autocorrelation function (zero-Doppler cut of the periodic

ambiguity function (PAF), see below for a description of the aperiodic version, the

ambiguity function (AF)). These codes are termed perfect codes and examples which

are categorised in section 1.9 include: the Frank codes, the Zadoff-Chu codes, the P4

code and Golomb codes.

It is stressed in [14] that the main tool used in the design of a radar waveform for

finite duration signals is the AF (χAF(τ, f)). This is formed from the application of a

matched filter to a delayed and Doppler-shifted version of the transmitted waveform

signal as thus

χAF(τ, f) =

∞
∫

−∞

s(t)s∗(t− τ)e−ı̇2πft dt

where s(t) is the complex baseband pulse (similar notation has been used as from

[14]). The ideal AF surface has the shape of a “thumbtack” or Dirac delta function

at the origin1 such that the autocorrelation function at the zero-Doppler cut and the

zero-delay cut would both be impulses.

Some example AF magnitude surfaces are shown in Fig 1.8.12. Panel (a) was pro-

duced from an uncompressed i.e. uncoded sinusoidal pulse of length N = 64 samples.

The large ambiguity at zero-Doppler in delay is clearly visible as a triangular-shaped

autocorrelation. The magnitude surface in panel (b) was created from an linear fre-

quency modulation (LFM) pulse which was also composed from N = 64 samples but

it also included a compression ratio (i.e. time-bandwidth product) of 13. In panel (b)

the sidelobes were suppressed at zero Doppler because a Hamming window function

was used to weight-on-receive. Therefore panel (b) actually depicts a cross-ambiguity

function. The range-Doppler coupling (a phenomenon of chirps) is just visible in the

plot.

Panel (c) was produced from a Barker-13 coded pulse of length N = 65 samples and

the compression ratio was 13. The Doppler tolerance of the Barker-13 code is not as

appealing as that of a chirp with a similar time-bandwidth product.

Panel (d) shows the AF magnitude surface created from a polyphase, Frank-coded pulse

with a compression ratio of 16 and pulse length of N = 64 samples. The Frank code

is a stepped-phase approximation to a linear chirp and the AF bears some similarities

to (b), albeit with degradation.

1With some form of Doppler processing executed elsewhere
2Negative Doppler range not shown in the plots because |χAF(τ, f)| = |χAF(−τ,−f)|
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Figure 1.8.1 Ambiguity function magnitude surfaces for: (a) sinusoidal pulse;
(b) Hamming-weighted chirp; (c) Barker-13 coded pulse; (d) Frank-coded pulse

1.9 LPI Waveforms

There are several techniques which radars may use to operate with a low probability

of intercept. These include:

• bistatic techniques

• minimisation of transmit times

• use of special LPI waveforms.

The third technique of LPI waveforms is the subject of this thesis.

As succinctly described by Stove in [16] and which is the motivation behind the paper

in [17], the notion behind the reduction of the probability of detection of a waveform is

to spread its energy over as wide a set of dimensions as possible, be it time, frequency

or space. To do so in time and frequency tends to result in a high duty cycle mod-

ulated waveforms or CW broaderband waveforms. Doing so in space results in wider

transmitter beams. In chapter 5 the LPI waveforms were modelled such that they were

of the type which spread their energy out over the frequency dimension.

To achieve the spreading over many dimensions LPI waveforms may employ:

1. frequency hopping (FH)
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2. power management (transmission of the minimum power necessary)

3. pulse compression

4. broader bandwidths for phase-coded pulses or CW waveforms.

Chapter 5 concentrates more on the detection of LPI waveforms which utilise the third

and fourth method of generating a LPI waveform from the above list. For the purposes

of this thesis, radar waveforms are grouped into three categories, two of which are LPI

and the other a conventional:

• chirps

• pseudo-noise (PN) waveforms (phase-coded waveforms)

• sinusoids.

The main difference between the chirps and PN waveforms is that the chirps tend to

appear more deterministic in a time-frequency representation (TFR) with a definite

structure which changes with time, whereas PN waveforms appear less well defined and

are characterised through the occupation of a certain bandwidth. A pictorial example

of this is given in Fig 1.9.1 which shows two spectrograms for a chirp category signal and

a PN category signal. The spectrograms have a linear rather than logarithmic scale and

were produced from parameters which are typical for an ESM system with a superhet

and DRx and CW radar waveforms. The spectrograms shown are actually zoom-ins

of regions of interest from the whole spectrograms. Panel (a) shows the deterministic

nature of an up-ramp for an frequency modulated continuous wave (FMCW) waveform

and panel (b) shows the band of energy characteristic of a length (212 − 1) binary m-

sequence waveform.
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category
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There are types of waveforms which do not easily fit into any of the above categories, for

example polytime-coded waveforms [18] or hybrid-coded waveforms which combine FH

and phase-shift keying (PSK) characteristics [19]. However the most common LPI code

schemes are encapsulated by the above groups. The code structure of these categories

is achieved through:

Frequency-coding In such waveforms the carrier frequency (fc) of the waveform is

directly changed according to a code scheme. Examples of waveform code schemes

which are considered to be members of this category are:

• Pulsed LFM chirps and FMCW. Pulsed LFM chirps tend to be classified by chirp

rate (slow, medium and fast). FMCW tactics are described in [15].

• Pulsed non-linear frequency modulation (FM) chirps[20, 21].

• Costas[22] or modified Costas[23] FH waveforms (a member of frequency-shift

keying (FSK)).

Phase-coding In such waveforms the phase of the carrier is switched in accordance

with a code scheme. These phase changes result in phase transitions in the instan-

taneous phase of the transmitted waveform. For CW waveforms the individual

phase codes form the radar range cells. Examples of waveforms considered to be

members of this category are:

• binary phase-shift keying (BPSK)-coded waveforms. For example with the use of

Barker codes[24], binary m-sequences, Golomb biphase codes[25] or Ipatov codes3.

As BPSK-coded waveforms involve π phase shifts, the codes are easily applied

through sign changes and thus implementation with an inverter in a radar.

• Polyphase-coded waveforms. For example with the use of polyphase Barker

codes[26, 27, 28, 29, 30] or Huffman codes[31].

• Polyphase-coded waveforms which are phase-stepped approximations to LFM

chirps. These include codes such as Frank[32, 33], P1, P2[34, 35], P3, P4[36],

palindromic P4[37], Px[38] (P2 - palindromic P4 examined in [39]), Golomb[40],

Zadoff[41] and Zadoff-Chu[42].

• Polyphase-coded waveforms which are phase-stepped approximations to non-

linear FM chirps[43].

• Polytime-coded waveforms with the use of coding schemes such as the T1, T2,

T3 or T4[18].

3Original paper in Russian but description given in [14]
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1.10 LPI Waveform Detection Methods

Detection of LPI waveforms with the use of a DRx which employs the conventional

methodology of the application of a threshold to the magnitude-squared of the FFT

frequency bins is more difficult than detection of narrowband, sinusoidal waveforms.

This is due to the lower peak power and broader bandwidth of LPI waveforms.

There are many proposed techniques to improve the ability of ESM systems to detect

LPI radar waveforms. Included in these suggestions are readily understood ideas, such

as from [44, 45, 16]. For example Stove suggests the use of correlation techniques or

an ESM antenna with a higher directional gain. The link between parameters such

as antenna pattern and LPI detection is described in [46]. However antennas with a

higher directional gain are of less interest to the tactical problem posed in section 1.2

but they are of more interest in the strategic situation.

In contrast to this there are also algorithmic suggestions from other references. A

summary of the algorithmic suggestions, loosely based on [47, 48] includes:

• Detection with the use of adaptive thresholds[49].

• Detection based on the statistics of sampled waveforms.

• Detection with the use of linear transforms.

• Detection with the use of quadratic transforms.

• Detection exploiting the cyclostationarity of signals.

Camuso et al. recently investigated selected techniques from the above list and com-

pared their detection performances in [50]. These include wavelet and cyclostationary

techniques.

Schemes such as that in [51] are attractive to improve the ability of ESM systems to

detect LPI waveforms. In this scheme a simple, fast discriminator was used to discrim-

inate between possible LPI and conventional waveform detections which were sent to a

slower algorithm for further analysis and classification. This highlights that ESM sys-

tems need to be multi-functional and sensitive to both conventional radar waveforms

and LPI radar waveforms. This also implies the requirement of fast algorithms with a

circular buffer which occasionally send data sequences to more complicated algorithms

for further analysis. The further analysis may involve attempts to recognise the class

of waveform modulation with the use of methods such as in [52, 53].

A short description of some of the different detection techniques follows.
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1.10.1 Stove’s Suggestions

Stove’s suggestions of correlation techniques or antennas with higher directional gains

from [16] are more conventional solutions to the problem.

Correlation techniques could involve correlation of an input waveform with guesses of

possible LPI waveforms from a library. However this would necessitate thousands of

cross-correlations to be processed, which is highly impractical.

Correlation techniques could also involve the autocorrelation of an incoming waveform.

However this technique has no advantage over energy detection (zero delay in an au-

tocorrelation) for initial detection except when the ESM system has prior knowledge

of the cycle frequency of the LPI waveform.

The use of an antenna with a higher directional gain would increase the value of GAESM

from Eq (1.2.1) and improve the probability of detection of an LPI waveform in an ESM

system. However this is less applicable for the tactical situation posed in section 1.2

because this would be at the expense of lower sensitivity at other off-boresight angles,

which is undesirable for an ESM system designed to give good angular coverage from

a single antenna.

1.10.2 Detection using Statistics

For a superhet and DRx and for a noise-only input, captured windows of samples tend

to be normally-distributed. This is because the noise in a superhet and DRx is usually

thermal noise dominated. A typical example of recorded noise from a DRx is shown in

Fig 1.10.1.
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Figure 1.10.1 Typical example distribution of noise from a DRx: (a) time-domain, real
channel; (b) real part in frequency-domain; (c) imaginary part in frequency-domain

The noise in Fig 1.10.1 was recorded on trials at Baddow on 03/07/2008 with the use of

the SELEX Galileo DRx4. The 130938 real-only samples were recorded and panel (a)

shows a normalised histogram of the ADC levels and an overlaid normal distribution

4The relevant file is Baddow 03 07 08 Noise-FTDR1-0077.txt
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fit. It is not particularly clear from panel (a) that the noise-only input samples are

normally-distributed because the ADC levels are quantised as integers. However upon

transformation of the real data to the frequency-domain in panels (b) and (c), it is

clear that the real and imaginary parts are approximately normally-distributed (with

half the variance in each). The data in (b) and (c) was suitably normalised upon

transformation to the frequency-domain and normalised further to produce normalised

histograms.

If a radar signal is present in the samples sent to the DRx detection stages, the envelope

of the samples tends to be drawn from a Rice distribution5. Accordingly the concept

of deviation away from normality or “Gaussianity” is exploited in some detection tech-

niques.

Higher-order cumulants and moments are useful to provide some measure of the de-

viation away from Gaussianity and can be used as decision statistics in detectors, for

example [54, 55]. In addition there exists other goodness-of-fit techniques to measure

the deviation by comparison to the normal probability density function (PDF) fit to

the data[56, 57, 58].

Despite the success of techniques such as these in speech detection, in for example [59],

the usefulness of these techniques does not translate well to the detection of LPI wave-

forms against AWGN. This is because in the case of signals hidden in AWGN, higher-

order statistics are less-optimal than the use of a square-law detector, i.e. Eq (1.6.2)

with ν = 2 as a decision statistic. This is essentially stated in [60] for Gaussian-

distributed signals but the criterion is also stated to be asymptotically true for non-

Gaussian signals. Therefore detectors which utilise higher-order statistics are confined

to the identification of LPI waveforms[61, 62] and detection amongst coloured noise

such as in [63].

1.10.3 Linear Transforms

These transforms are formed from the projection of an input waveform onto a set of

“mother” or reference functions. The DFT, which is the staple of most DRxs in ESM

systems, falls into this category because it projects onto a set of complex exponentials.

The windowed version of this is described in Eq (1.10.1).

X(k) =
N−1
∑

n=0

w(n)x(n)WN
−kn, where k = 0, 1, 2, . . . , N − 1 (1.10.1)

where w(n) is a window function of length N and WN= e
−2πı̇
N .

Linear transforms are related to the square-law detectors because they attempt to

5Provided that the statistics of the samples have not been altered too greatly by filters before this
point
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concentrate signal power into as few coefficients as possible and simple detection is

based on the square of these coefficients. This type of detection is described in [64, 65,

66].

Another common transform under this heading is the wavelet transform which projects

onto a scaled and translated mother wavelet. However the one-dimensional form of

this transform is more commonly found in speech and music analysis, for example

[67, 68, 69], rather than the DRxs in ESM systems. This is because the wavelet

transform characteristic of a longer duration DCW at higher frequencies and a shorter

duration DCW at lower frequencies is less meaningful for radar signals. The discrete

wavelet transform (DWT) can be understood as a series of two filters: (1) a low-

pass filter (common notation: h, see Eq (1.10.2a)) and (2) a high-pass filter (common

notation: g, see Eq (1.10.2b)).These two filters are quadrature mirror filters and are

cascaded off the low-pass component at each layer. A downsample occurs at the output

of each filter. Thus the high frequency components are analysed with a shorter duration

DCW and broader frequency resolution, but the low frequency components are analysed

with a longer duration DCW and narrower frequency resolution.

yl(n
′) =

∞
∑

n=−∞

x(n)h(2n′ − n) (1.10.2a)

yh(n
′) =

∞
∑

n=−∞

x(n)g(2n′ − n) (1.10.2b)

Nevertheless the DWT is often mentioned in the same field as LPI radar waveforms

such as in [70, 71].

A closely-related concept to the DWT is wavelet packet decomposition, which involves

the cascade of the quadrature mirror filters off the high frequency components in addi-

tion to the low frequency components. In [72, 73], detection and feature extraction of

LPI waveforms is based on examination of several layers of successive decomposition.

One transform which is well suited to the chirp category of radar signals is the chirplet

transform. An example of its use against FMCW signals is given in [74] where an

estimate of the chirp rate is used before projection of the input waveform onto many

different guesses of the exact chirp rate.

1.10.4 Quadratic Transforms

These transforms are essentially formed from the comparison of an input waveform with

itself. In a general comparison with linear transforms, the quadratic transforms create

TFRs with better spectral resolution but they are degraded by cross-term interference

between the components at the input to the waveform.

Cohen’s class of functions falls under the header of quadratic transforms and perhaps
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the two most well-known implementations are the AF and the Wigner Ville distribution

(WV , continuous-time formulation shown in Eq (1.10.3)). The former is related to the

latter by a two-dimensional Fourier transform (forwards in the direction of the delay

dimension and backwards in the direction of the Doppler dimension).

WVxx(t, f) =

∞
∫

−∞

x(t+ τ/2) ∗ x(t− τ/2)e−2πı̇fτ dτ (1.10.3)

where ∗ denotes convolution.

A windowed version of Eq (1.10.3) must be used in any implementation in a DRx as

part of an ESM system to make it compatible with DCWs created in the DRx. The

windowed version of the Wigner Ville distribution is called the pseudo-Wigner Ville

distribution.

The Wigner Ville distribution has been explored as an analysis technique for the de-

tection and/or classification of LPI radar waveforms or equivalent in, for example,

[75, 76, 77, 78, 79, 80, 81]. However the cross-terms are a very large weakness of the

technique and severely limit its usefulness in busy operational EM environments. In

addition to this the Wigner Ville distribution, in common with all quadratic trans-

forms, is extremely computationally complex which hampers real-time application in a

DRx. With many TFRs it is quite common to require a second transform on the TFR

output to successfully detect signals and this would further add to the complexity.

Time and frequency window functions (which have a smoothing filter interpretation)

can be used to ease the impact of the inherent cross-term interference, however this

comes at the expense of a reduction in time and frequency resolution. For example

the Choi Williams distribution is produced from the application of a filter to the cross-

terms which exist off the delay-Doppler axes in the AF interpretation. An attempt to

quantify the best smoothing filters to use is given in [82]. Alternatively, in [83], the

Wigner Ville distribution is combined with the STFT in an attempt to achieve the

best of both. Ultimately, however with window functions or combined transforms, the

cross-terms can never be removed to the level of the linear transforms.

The use of the Choi Williams distribution as an LPI waveform detection and classifi-

cation mechanism was explored in [81, 84, 85], however in [84], as with other quadratic

transforms, the conclusion was drawn that current technology would not permit it to

be calculated in real-time in a feasible DRx.

1.10.5 Cyclic Feature Detectors

Broader-band LPI waveforms, and in general all signals which carry information, con-

tain some modulation scheme. This results in signal adherence to a cyclostationary

model, where the statistical parameters vary periodically with time. The square-law
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detectors which are essentially used in most ESM DRxs assume a stationary model for

both signals and noise. This may approximate in most cases because the modulation

period is much longer than a DCW duration, but in certain circumstances detection

based on the square-law may become confused[86]. For example the background noise

level may change in the course of a DCW or LPI waveforms may be hidden amongst

other signals in the same band.

Gardner brought the use of cyclic feature detectors to prominence in [87, 88, 89, 90,

91, 92, 93, 94, 95, 96, 97] and more recently there have been attempts to research and

implement comprehensive cyclic feature detectors in systems such as in [98, 99]. In

particular there are efforts which are aimed towards the integration into ESM systems

such as [100, 101, 102, 103, 13] or similar systems [104, 105].

Figure 1.10.2 Cyclic-feature extraction with the aid of a CSC estimate:
(a) from the side; (b) from above

Cyclic-feature detectors can be used to detect through the use of the hidden periodicity

of LPI waveforms or extract cyclic-features, such as the chip-rate (and its harmonics),

to provide information for classification. An investigation was undertaken during this

project on cyclic-feature detectors and it was found that for typical, stationary thermal

noise-dominated DRxs, cyclic-feature detectors offer no initial detection advantage over

conventional (square-law) based techniques. A similar conclusion was found in [106].

However they could prove useful in the classification stage as found in [107]. An

example of cyclostationary analysis is shown in Fig 1.10.2. A random BPSK signal

with a normalised chip-rate of fchip = 0.141 rad/π against a background of AWGN at

signal-to-noise ratio (SNR)in = 5dB was analysed6. The analysis involved:

1. initial detection with the use of conventional spectral thresholds;

2. estimation of the target frequency;

3. shift to approximately baseband;

6SNRin refers to the SNR after the ADC in a DRx
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4. filter and sub-sampling;

5. cyclostationary analysis.

The cyclostationary technique used was a CSC function estimate which is a type of

normalised cyclostationary function. The chip-rate frequency peak is clearly visible in

both panels (a) and (b) which are simply different views of the same data.

The simplest cyclic-feature detector is the delay-and-multiply or self-mixer, as shown

in Fig 1.10.3. The delay-and-multiply detector is unsuitable for all-purpose detection

because it must be designed with delay parameter (τ) and bandpass filter centre fre-

quency (αc) to match the approximate characteristics of the LPI waveform which the

detector wishes to detect. For example if the delay-and-multiply detector was loaded

with parameters similar to the periodicity of class A chirps it would be unsuitable for

the detection of class B and class C chirps (see Glossary for chirp class description).

Therefore the delay-and-multiply detector must be loaded with parameters with help

from a priori knowledge or the parameters must be scanned methodically.

postfilter
BPF

x(n) y(n)×prefilter

delay

αc

τ

Figure 1.10.3 Self-mixer detector

A more general example is a cyclic spectrum analyser or spectral correlation analyser.

The spectral correlation analyser creates a surface over all possible cycle frequencies αc

called a spectral correlation function (SCF). This is equivalent to the two-dimensional

Fourier transform of the instantaneous autocorrelation function (Rxx(t, τ)). With the

use of similar notation to [108], this is given by

S C xx(f, αc) =

∞
∫

−∞

∞
∫

−∞

Rxx(t, τ)e
−i2παcte−i2πfτ dtdτ

and forms a surface-wise density with units of W/Hz2. The cyclic spectrum analyser

creates a series of evenly spaced lines (spaced apart by ∆αc) because it evaluates the

cyclic power spectrum (CPS) at a finite number of cycle frequencies. It is the equivalent

of the Fourier transform of the cyclic autocorrelation function

Sxx(f, αc) =

∞
∫

−∞

Rαc

xx(τ)e
−i2πfτ dτ
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which forms a line-wise power density with units W/Hz.

The cyclic spectrum analyser is applicable to DRxs and can be estimated with ex-

tensions to familiar non-parametric spectral estimators. A prime example is the cyclic

periodogram and smoothed or averaged versions thereof. A large disadvantage of cyclic

spectrum analysers, which they share with the other quadratic transforms is their com-

putational complexity. However there are some techniques which enable computational

complexity to be reduced at the expense of resolution. For example in [109] a coarse

search for cycle frequencies is initiated before a fine cycle frequency estimation is un-

dertaken on cycle frequencies of interest. Also in [110], two computationally efficient

techniques for estimation of the CPS are presented which utilise the FFT algorithm

and the topic is discussed further in [111, 112].

The SCF is related to the other quadratic transforms, such as the Wigner Ville dis-

tribution and AF, through various forwards and backwards combinations of the two-

dimensional Fourier transform. The argument put forward by Gardner in [88] about

the SCF and CPS seem true for ESM. That is, cycle frequency parameters about a

signal extracted from an SCF or CPS are more useful to an ESM system for exploita-

tion than information from a Wigner Ville distribution. However, like other quadratic

transforms, the SCF and CPS suffer from cross-term interference when multiple signals

are present. This interference manifests as beat cycle frequencies.

1.11 Summary

Whilst there are many proposed techniques to improve the detection performance of

ESM systems against LPI waveforms, many are too computationally complex or ex-

pensive for real-time implementation across the entire ESM bandwidth (∼ 500MHz–

20GHz).

For a proposed initial detection algorithm to be easily implemented in a real-time

ESM system, it should desirably be FFT-based, offer better performance than a simple

energy detector and not compromise detection of conventional waveforms.

Chapters 2–5 discuss FFT-based algorithms which are shown to offer better detection

performance than conventional FFT-based DRxs as part of ESM systems.



CHAPTER 2

SVA Theory

2.1 Introduction to SVA

This chapter aims to show that there is a way to avoid the seemingly inevitable window-

feature trade-off between NEB, sidelobe level and frequency resolution described in

section 1.4. Thereby the performance of DRxs which use a DFT for spectral analysis

can be optimised. This is achieved through the use of a technique from the domain of

synthetic aperture radar (SAR) and inverse synthetic aperture radar (ISAR) imagery

called SVA and its application in the domain of EW.

SVA is effectively an adaptive window technique. Some important properties of SVA

are: its simplicity; compatibility with a DFT-based DRx and the fact it requires no a

priori information about the input waveform.

One interpretation of the SVA algorithm is as a special case of the minimum variance

spectral estimation (MVSE) algorithm, first introduced by Capon. However SVA lacks

the matrix inversion and therefore the associated computational complexity. SVA is

constrained to window functions from the raised-cosine family[113].

As shown in Fig 1.4.2, it is conventional to apply a window function (data taper) to

the DCW in the time-domain. The key concept behind SVA is transplanting the time-

domain weight process to the frequency-domain and restricting the window functions

to those from the raised-cosine family.

The next section describes the shapes and properties of raised-cosine window functions

and the following sections describe how SVA applies them in the frequency-domain.

2.2 Raised-cosine Windows

Members of the raised-cosine window family derive from the generalised Hamming

family of windows. The following is a commonly-quoted definition of the generalised

Hamming family of windows of length N

w(n) = a1 − 2a2 cos

(

2πn

N

)

With the a1 parameter set to the constant 1 and the a2 parameter as a variable, a
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definition for the conventional set of (first-order) raised-cosine windows of length N is

obtained

w(n) = 1− 2α cos

(

2πn

N

)

(2.2.1)

where α is restricted to values {α ∈ R | 0 6 α 6 1/2} in order to keep the window always

positive-valued in the time-domain. A selection of raised-cosine windows in the time-

domain with N = 128 data points with varying α parameters are plotted in panel (a)

of Fig 2.2.1.
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Figure 2.2.1 Some members from the raised-cosine window family with different α param-
eters: (a) in the time-domain; (b) in the frequency-domain (negative bin numbers same as
positive bin numbers above Nyquist frequency)

At the α = 0 limit, a uniform, rectangular window function is obtained, whilst at the

α = 1/2 limit a Hann window function is obtained.

Window functions such as those in panel (a) of Fig 2.2.1 are applied through multipli-

cation of the N time-domain data samples in a DCW with the corresponding window

weight in the time-domain. This is followed by a transformation of the data with a

DFT

X(k) =
N−1
∑

n=0

w(n)x(n)WN
−nk k = 0, 1, . . . , N − 1 (2.2.2)

The trade-offs mentioned in section 1.4 involved in the choice of window function

in conventional spectral analysis are well-known and shown qualitatively in Fig 2.2.2.

Fig 2.2.2 explains why in EW applications a moderate resolution and moderate dynamic

range window function such as a Hann, Hamming or Dolph-Chebychev window function

is used: they are a safe option when it is uncertain what signals are in the operational

environment.

Inevitably in conventional spectral analysis some resolution and sensitivity will be lost

when, say, a Hann window function is chosen over the rectangular window, but it

will have some positive benefits in dynamic range over, say, over a Blackman-Harris
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Figure 2.2.2 Window characteristics are all fixed once the choice of window function is
made

window. If greater resolution or sensitivity is desired the current best solution is to

choose a different window function for the next DCW.

However in the next section it will be shown that the raised-cosine window functions

have an interesting frequency-domain response which will allow the window function

trade-off to be mitigated somewhat.

2.3 DFT of Raised-cosine Windows

According to the convolution theorem it is entirely equivalent to perform the window

function multiplication in the time-domain as a convolution in the frequency-domain.

Specifically, instead of the multiplication of N window function weights with the data

samples in the time-domain, the DFT of the window function can be convolved with

the DFT of the data samples. Superficially this seems a retrograde idea because extra

computational work is required as convolution is generally more computationally in-

tensive than multiplication. However the NFFT = N DFT of the generic raised-cosine

window function from Eq (2.2.1) is a simple 3-point frequency-domain response

W (k) = δ(k)− αδ(k + 1)− αδ(k − 1) (2.3.1)

Variation of α from Eq (2.3.1) between its limits (the shape of the time-domain win-

dow function) increases the magnitude of the Kronecker deltas one Nyquist-sampled

frequency bin to the right and left of the central unit impulse Kronecker delta. This

effect is illustrated in panel (b) of Fig 2.2.1.

The 3-point frequency-domain response when convolved with the unwindowed DFT of
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a DCW is

Xa(k) = X(k)− αX(k + 1)− αX(k − 1) (2.3.2)

There are two significant advantages from the application of a window function in the

frequency-domain via convolution:

1. The unwindowed DFT dataX(k) can be made available for other processing tech-

niques. This is useful for other processes which require an orthogonal transform

of the data.

2. The window function applied at one frequency bin can be different from adjacent

frequency bins, in effect they can each have their own corresponding time-domain

window function. In the case of raised-cosine window functions, this idea can be

simplified down to the adaptive selection of α parameters at each frequency bin.

This concept is central to the SVA algorithm.

2.4 Spatially Variant Apodization (SVA)

The second point at the end of the last section is the basic SVA adaptive window

concept. One of the simplest interpretations from [114] of the mechanism for selection

of α parameters is achieved through consideration of dual apodization. This is a

crude form of SVA, whereby two different α values (e.g. α = 0 and α = 0.5) are used in

Eq (2.2.1) to create two different window functions which are then applied in Eq (2.2.2).

The minimum magnitude-squared result at each frequency bin is selected from the two

spectral estimates. This process is highlighted in Fig 2.4.1.

Naturally, the logical extension of dual-apodization is to select the minimummagnitude-

squared value for each frequency bin from multiple spectral estimates in a process called

multiapodization in [114, 115].

The calculation of many spectral estimates only to subsequently discard most of the

results has a significantly negative impact on computational efficiency. A more rigorous

process is to search for the optimal window function at each frequency bin. This search

is undertaken in SVA through optimisation of the α parameter from Eq (2.3.2).

There are two established methodologies in SVA for selection of an optimal α parameter

for the in-phase (i.e. real part XR(k)) and quadrature (i.e. imaginary part XI(k))

components of the complex output of a DFT. These are described in [114]:

1. search by the joint optimisation of XR(k) and XI(k);

2. search by the separate optimsation of XR(k) and XI(k).

In the first procedure, the cost function which is minimised in order to choose the

optimal value for α is |Xa(k)|2. This quantity is recognisable from section 1.6 as the

instantaneous (spectral) energy density at the kth frequency bin. The minimisation



G H MacKerron, October 31, 2011 Original in Colour Chapter 2. SVA Theory, 56

(a)

Normalised Frequency (rad/π)

d
B

 

 

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−100

−80

−60

−40

−20

0 α = 0 spectral estimate
α = 0.5 spectral estimate

(b)

Normalised Frequency (rad/π)

d
B

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−100

−80

−60

−40

−20

0

Figure 2.4.1 Example of dual-apodization: (a) two spectral estimates produced from same
DCW but different window functions; (b) dual-apodized spectral estimate result

is solved by the partial derivative of |Xa(k)|2 with respect to α equal to zero and

rearranged for α to yield the solution

α = ℜ
{

X(k)

X(k + 1) +X(k − 1)

}

(2.4.1)

Equation (2.4.1) is subject to the constraint {α ∈ R | 0 6 α 6 1/2}. Therefore the com-

bination of Eq (2.3.2) and Eq (2.4.1) yields

Xa(k) =



















X(k), if {α < 0} ;
X(k)− αX(k + 1)− αX(k − 1), if {0 6 α 6 1/2} ;
X(k)− 1/2X(k + 1)− 1/2X(k − 1), if {α > 1/2} .

(2.4.2)

The Xa(k) vector is the filtered DFT after joint-SVA has been applied and thus a

spectral estimate can be obtained from |Xa(k)|2. In effect, the smallest magnitude-

squared response in the frequency-domain is chosen for the kth frequency bin through

minimisation of the cost function |Xa(k)|2. This has the effect of simultaneous minimi-

sation of the sidelobe levels and mainlobe width of any signals present in the spectral

estimate. A similar result would be obtained by multiapodization. Multiapodization,

however would involve the application of many possible window functions from the set
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described by Eq (2.2.1) to the same DCW in the time-domain; transformation with as

many DFT operations and selection of the minimum magnitude-squared result at each

frequency bin. The SVA approach is far less computationally expensive.

The other SVA technique described in [114] is the separate-I&Q SVA technique. It

follows a similar mathematical derivation, however, the cost function is separated into

its real (XR,a(k)) and imaginary (XI,a(k)) parts before the magnitude-squared of each

is minimised with respect to an α parameter. The unconstrained solutions for the α

values are

αR =
XR(k)

XR(k + 1) +XR(k − 1)
(2.4.3)

αI =
XI(k)

XI(k + 1) +XI(k − 1)
(2.4.4)

The similarity with Eq (2.4.1) is clear. These α parameters are also constrained to

{αR, αI ∈ R | 0 6 (αR, αI) 6 1/2}. The real and imaginary parts of Xa(k) show filtered

DFTs according to the following rules

XR,a(k) =



















XR(k), if {αR < 0} ;
0, if {0 6 αR 6 1/2} ;
XR(k)− 1/2XR(k + 1)− 1/2XR(k − 1), if {αR > 1/2} .

(2.4.5)

XI,a(k) =



















XI(k), if {αI < 0} ;
0, if {0 6 αI 6 1/2} ;
XI(k)− 1/2XI(k + 1)− 1/2XI(k − 1), if {αI > 1/2} .

(2.4.6)

In [115], the separate-I&Q SVA technique is rigorously examined. The thorough treat-

ment includes a derivation of the PDF of the apodized I&Q channels and the statistical

moments of generic order. The PDF of either the XR(k) or XI(k) channel is derived

as

f(X; σ) =
1

2σ

1√
2π

e−
X2

2σ2

+
1

2σ

1√
3π

e−
X2

3σ2

×
[

1− erf

( |X|√
6 σ

)]

+
1

π

(π

2
− arctan(

√
2 )
)

δ (X)

It is noted in [115] that the separate-SVA technique is more “aggressive” in terms of the

minimisation of sidelobes of possible signals as it assigns values drawn from a normal

population to the value zero approximately 20% of the time, whereas the joint-SVA
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technique is more likely to better preserve the statistics of the data. Therefore separate-

SVA deforms the data PDF badly but represents the best sidelobe level reduction and

joint-SVA is a compromise between PDF deformation and sidelobe level.

Examples of the use of the separate-SVA technique, joint-SVA technique, Hann window

function and rectangular window function when a single tone is present throughout

the entire DCW in the absence of noise are shown in Fig 2.4.2. Panel (a) shows

the behaviour of the α parameter of joint-SVA for the spectral estimate in panel (b).

Panel (b) shows the case without noise present whilst panel (c) shows the case with

noise present. In panel (b) the mainlobe of the rectangular-windowed, joint-SVA and

separate-SVA sit on top of each other. The “setting values to zero” effect of separate-

SVA is apparent in the both plots as absent data points since the logarithm of zero is

undefined. In both plots the separate-SVA sidelobe level oscillates between zero and the

sidelobe level of the joint-SVA technique. Therefore for applications in DRxs in ESM

systems the use of separate-SVA instead of joint-SVA would offer no advantage because

the frequency bin location of the zeros is unknown a priori and so the sidelobe level

of the joint-SVA must be assumed. Overall the use of the separate-SVA technique in a

DRx would be to deform the data statistics badly for no extra gain. The simple nature

of separate-SVA (even simpler than joint-SVA) makes it attractive as a fast technique

to use in real-time on SAR data, but Chapter 3 studies only joint-SVA because it has

better properties and conceivably should be possible to run in real-time in an ESM

DRx.

The alternative interpretation of SVA to the multiapodization explanation was briefly

mentioned in section 2.1. SVA can be shown to be a special case of MVSE. Indeed,

MVSE is an adaptive window technique that utilises a window function which changes

shape in accordance with the frequency of interest and the second-order statistics of the

signal. Therefore MVSE provides some control over sidelobe levels. To obtain MVSE

estimates, however, requires an inversion of the covariance matrix of the observations.

This can be computationally intensive for large numbers of data samples. The SVA

technique strips down MVSE complexity through its restriction of the window function

to the raised-cosine window family from Eq (2.2.1) and assumes a simplistic estimate

for the covariance matrix of the data samples. The SVA technique is simple enough that

it could be implemented as a series of N adaptive 3-tap finite impulse response (FIR)

filters in the frequency-domain. The central Kronecker delta in Eq (2.3.1) keeps the

gain of each filter at unity for the frequency of interest, which reflects the distortionless

requirement in MVSE.

The SVA techniques outlined so far are for the one-dimensional case. They can be

applied to a single DFT output at a time and can be used along the frequency columns

of an STFT as demonstrated in [116, 117].

As the SVA technique was primarily invented for use in SAR and ISAR imagery it
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Figure 2.4.2 Comparisons of separate-SVA, joint-SVA, Hann-windowed DFT and
rectangular-windowed DFT of: (a) a single tone; (b) a single tone plus AWGN at SNRin

= 20dB

was originally extended for use in two dimensions. The mathematical steps for this are

explained in [114], however in the context of a DRx in an ESM system based around

an FFT processor, the two-dimensional formulation of SVA is not applicable.

As a point of interest the separate-SVA technique from Eqs (2.4.5) and (2.4.6) is

patented for use in imaging systems in [118].

There are variations on the basic SVA concept, which are detailed in the following

sections although they are disregarded for further study.

2.5 5-point and 7-point SVA

In Eq (2.3.1) there are three Kronecker delta points in the convolution formula, which

as previously mentioned, are important since they create a very simple circular convo-

lution in the frequency-domain. The relationship with the set of raised-cosine windows

in the time-domain from Eq (2.2.1) however means that the maximum sidelobe roll-

off of a signal peak in the frequency-domain is approximately limited to the sidelobe

roll-off derived from the transform of the limiting case of a Hann window function at

α = 0.5.

A greater sidelobe roll-off rate can be achieved by extending the convolution formula to
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include more Kronecker delta functions. This is done in [119] and it is described here.

Using five points in the convolution formula is the equivalent to the use of window

functions from the set of order-2 raised-cosine windows. Similarly, seven points in the

convolution formula corresponds to the use of window functions from the set of order-3

raised-cosine windows. The general equation for the set of (unnormalized) raised-cosine

windows of any order is

wK(n) = 1 +
K
∑

m=1

am(−1)m cos

(

2πmn

N

)

(2.5.1)

To remove discontinuities at the DCW boundaries of the raised-cosine window func-

tions, the derivatives of Eq (2.5.1) are desired to be zero. This is because the discon-

tinuities determine the sidelobe roll-off rate: the fewer discontinuities, the greater the

roll-off rate. Therefore for higher order raised-cosine windows, a greater roll-off rate is

possible. All the odd-order derivatives of Eq (2.5.1) are zero at the boundaries because

sin(m2π) = 0 for all integer values of m. The even-order derivatives of Eq (2.5.1) with

respect to n are the source of continuity equations which are described later.

In [119] the 5-point and 7-point convolution formulas are explicitly calculated. Firstly,

the 5-point SVA technique is outlined. The derivation starts by substitution of K = 2

into Eq (2.5.1) to obtain an order-2 raised-cosine window function of the form

w2(n) = 1− α1 cos

(

2πn

N

)

+ α2 cos

(

4πn

N

)

(2.5.2)

Equation (2.5.2) can be specified in terms of one unknown α parameter upon exami-

nation of the zeroth derivative of Eq (2.5.1) with K = 2 (the order of the raised-cosine

window) and the requirement that it sum to zero at the edges (where {n = 0, N}).
This gives the continuity equation

1− α1 + α2 = 0

which after dropping the subscript on the α parameter leads to

w2(n) = 1− α cos

(

2πn

N

)

+ (α− 1) cos

(

4πn

N

)

(2.5.3)

To find the convolution formula, the DFT of Eq (2.5.3) is taken to obtain the result

W2(k) = δk − α/2δ(k − 1)− α/2δ(k + 1) + (α− 1)/2δ(k − 2)

+ (α− 1)/2δ(k + 2)

= (δ(k)− δ22(k)/2)− α/2 (δ11(k)− δ22(k))

(2.5.4)

where Eq (2.5.4) has been simplified by grouping terms together to create the variables
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δ11(k) = δ(k − 1) + δ(k + 1) and δ22(k) = δ(k − 2) + δ(k + 2). The convolution of

Eq (2.5.4) with a DFT output in the frequency-domain, gives

Xa(k) = (X(k)−X22(k)/2)− α/2 (X11(k)−X22(k)) , (2.5.5)

where X11(k) = X(k − 1) +X(k + 1)

and X22(k) = X(k − 2) +X(k + 2)

In the same situation as the 3-point SVA techniques, there is one α parameter in

Eq (2.5.5) for which an optimal value is chosen at each frequency bin in the frequency-

domain. An analogous procedure is followed to the 3-point joint-SVA procedure where

the cost function to be minimised is |Xa(k)|2. The partial derivative of |Xa(k)|2 with

respect to α is calculated and the result set equal to zero. This yields the optimal

values for α

α = ℜ
{

2X(k)−X22(k)

X11(k)−X22(k)

}

(2.5.6)

The limits to be placed on α, in order to keep the time-domain order-2 raised-cosine

windows always positive, are {α ∈ R | 0 6 α 6 4/3}. Therefore the DFT in Eq (2.5.5)

is

Xa(k) =



















X(k)−X22(k)/2, if {α < 0} ;
X(k)− α/2X11(k) + (α− 1)/2X22(k), if {0 6 α 6 4/3} ;
X(k)− 2/3X11(k) + 1/6X22(k), if {α > 4/3} .

The start of the derivation for 7-point SVA technique is obtained upon subsitution of

K = 3 into Eq (2.5.1). This gives the order-3 raised-cosine window function formula

w3(n) = 1− α1 cos

(

2πn

N

)

+ α2 cos

(

4πn

N

)

− α3 cos

(

6πn

N

)

(2.5.7)

Equation (2.5.7) can be expressedin terms of one unknown α parameter. This can be

done with the help of two continuity equations. The first, Eq (2.5.8a), is obtained

through the requirement of the zeroth derivative of Eq 2.5.1 with respect to n and with

K = 3 (the order of the raised-cosine window) to sum to zero. The second, Eq (2.5.8b),

is obtained through the requirement of the second derivative of (2.5.1) with respect to

n and with K = 3 to sum to zero

1− α1 + α2 − α3 = 0 (2.5.8a)

−α1 + 4α2 − 9α3 = 0 (2.5.8b)

When the unnecessary subscript on α is dropped and Eqs (2.5.7),(2.5.8a) and (2.5.8b)
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are combined, the order-3 raised-cosine window function formula becomes

w3(n) = δ(k)− α cos

(

2πn

N

)

+ (1.6α− 1.8) cos

(

4πn

N

)

− (0.6α− 0.8) cos

(

6πn

N

) (2.5.9)

Upon application of the DFT to Eq (2.5.9) and grouping terms (with the use of δ33(k) =

δ(k−3)+δ(k+3) and the same δ11(k) and δ22(k) formulas as in 5-point SVA) produces

the 7-point convolution formula

W3(k) = δ(k)− α/2δ11(k) + (0.8α− 0.9)δ22(k)− (0.3α− 0.4)δ33(k) (2.5.10)

Convolution of Eq (2.5.10) with the DFT of a DCW creates a filtered DFT with the

formula

Xa(k) = X(k)− α/2X11(k) + (0.8α− 0.9)X22(k)− (0.3α− 0.4)X33(k) (2.5.11)

where X33(k) = X(k− 3)+X(k+3). The same cost-function-minimisation procedure

to find the optimal value for α at each frequency bin gives

α = ℜ
{

X(k)− 0.9X22(k) + 0.4X33(k)

0.5X11(k)− 0.8X22(k) + 0.3X33(k)

}

The restrictions on α, in order to keep the time-domain order-3 raised-cosine window

functions always positive, are {α ∈ R | 0.5 6 α 6 1.5} . Therefore the overall filtered

DFT from Eq (2.5.11) is

Xa(k) =































X(k)− 0.25X11(k)− 0.5X22(k)− 0.25X33(k), if {α < 0.5} ;
X(k)− 0.5αX11(k) + (0.8α− 0.9)X22(k)

− (0.3α− 0.4)X33(k), if {0.5 6 α 6 1.5} ;
X(k)− 0.75X11(k) + 0.3X22(k)− 0.05X33(k), if {α > 1.5} .

The next section explores whether it is worthwhile to attempt to use the 5-point or 7-

point SVA techniques over the joint 3-point SVA technique and conventional windowing

as an algorithm in a DRx as part of an ESM system.

2.5.1 Evaluation of 5-point and 7-point SVA

To begin to draw comparisons between the different windowing techniques, some ex-

amples of spectral estimates are shown in Figs 2.5.1–2.5.2. These were produced by

the:
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• rectangular window

• Hann window

• (joint) 3-point SVA

• 5-point SVA

• 7-point SVA.

To produce Fig 2.5.1, a single tone, present throughout the DCW, was processed with

the different window techniques. No noise was present in Fig 2.5.1. The spectral

estimates are all normalised such that their peak frequency-domain responses rest on

0 dB. This was done to allow for an easy comparison of the spectral leakage patterns.
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Figure 2.5.1 (Joint) 3-point SVA, 5-point SVA, 7-point SVA, Hann-windowed and rectan-
gular windowed spectral estimates: (a) full view; (b) zoom-in on mainlobe

Panel (a) shows the 5-point and 7-point SVA window techniques are excellent at re-

ducing sidelobe levels (the decibel level is close to machine numerical precision). Panel

(b) is a zoom-in on the mainlobe in panel (a) without the rectangular window plot

for clarity (its mainlobe sits on top of the (joint) 3-point SVA mainlobe). Panel (b)

shows the expected result that the mainlobes are broader for the 5-point and 7-point

SVA spectral estimates than for the 3-point SVA spectral estimates (although only

marginally so in the case of the 5-point SVA). This is because the two (in the case of

5-point SVA) and three parameters (in the case of 7-point SVA) were combined into a

single α parameter in the formulations and therefore there are additional constraints
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on the window function shape. In other words the rectangular window function is

no longer an option for the 5-point and 7-point SVA. What Fig 2.5.1 does not show

because it has been normalised is that 5-point and 7-point will also not recover the

window loss due to the lack of rectangular window function choice. This is a strong

indication that it would be detrimental to use 5-point and 7-point SVA over 3-point

SVA in an ESM system DRx.

Fig 2.5.2 examines the spectral estimates produced when the same signal is processed

with AWGN also present in the DCW at SNRin = 20 dB. This scenario with noise

present was more realistic and the results reveal the noise floor of 5-point and 7-

point SVA is exactly the same as for the 3-point SVA and Hann-windowed DFT (the

rectangular-windowed FFT also has the same noise floor but the rectangular-windowed

spectral estimate is dominated by sidelobes close to the mainlobe). Again, the mainlobe

of the rectangular-windowed and 3-point SVA sit on top of each other.

The SVA techniques are sidelobe-reducing algorithms not noise floor reducing algo-

rithms, as implied in [117], therefore in noise-dominated regimes there would be no

advantage in the use of 5-point or 7-point SVA over the 3-point SVA. This is especially

true as the 5-point and 7-point SVA involve extra computation.
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Figure 2.5.2 (Joint) 3-point SVA, 5-point SVA, 7-point SVA, Hann-windowed and rectan-
gular windowed spectral estimates for signal plus AWGN

Extra arguments against the use of 5-point and 7-point SVA over 3-point SVA in an

ESM system DRx are provided in Figs 3.2.7 and 3.4.13 and explained in sections 3.2

and 3.4.

2.6 SVA using the Kaiser Window

The previous section detailed a variation of the basic 3-point SVA with the use of

higher order raised-cosine window functions. There are also varieties of SVA which

do not rely solely on the use of window functions drawn from the family of raised-

cosines. Again the idea of SVA as a special case of the MVSE method is used. When



G H MacKerron, October 31, 2011 Chapter 2. SVA Theory, 65

other weighted window functions are used for the estimation of the sample covariance

function, different results can be obtained.

According to [120, 121], where this formulation is derived, the use of the Kaiser window

in SVA provides better spectral estimate results in comparison to the set of raised-cosine

window functions. However the enormous disadvantage in departing from raised-cosine

windows is the loss of the very simple 3-point convolution formula of Eq (2.3.1). This

contrasts with theNFFT = N frequency-domain response of the Kaiser window function

W (k) =
N

I0(αKπ)

sin

(

√

αK
2π2 −

(

Nk
2

)2
)

√

αK
2π2 −

(

Nk
2

)2
, (2.6.1)

for k = −π, · · · ,−2π/N, 0, 2π/N, · · · , π

where I0 denotes the modified zero-order Bessel function.

To make it easier to find the optimal αK parameter for Eq (2.6.1), assumptions need

to be made. These include:

• empirical relationships between the value of αK and the rate of sidelobe roll-off;

• how many k values contribute a significant amount to the convolution with the

DFT of a DCW

The computation of an optimal αK requires substantially more computational effort as

was described in [120]. Therefore it would be unrealistic to expect it to run in real-time

for use in a DRx in an ESM system. Therefore SVA using the Kaiser window function

was not studied further.

2.7 Noninteger SVA Algorithm

The original formulation of SVA detailed in section 2.4 require data to be sampled at

integer multiples of the Nyquist grid in the frequency-domain. If the data is sampled

at a non-integer multiple of the Nyquist grid, upsampling and interpolation must be

implemented. This method is described in [122, 123] under the name Super-SVA.

However the intended application for this method is two-dimensional upsampled SAR

images and it would be difficult to envisage a situation in a DRx in an ESM system

where Nyquist-sampled data or integer multiples thereof would not suffice.

The computational complexity of upsampling and interpolation SVA algorithms makes

them impractical for a DRx as part of an ESM system and the methods were not

studied further in this work.
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2.8 Complex-parametered SVA

This section details a novel idea for SVA, which is not detailed in the established

literature. The approach for this SVA technique not only adaptively alters the window

function shape but also the time shift of the window. These two degrees of freedom are

shown in the panels of Fig 2.8.1. Panel (a) shows the effect of variation of the shape

parameter whilst keeping the shift parameter fixed and panel (b) shows the effect of

variation of delay whilst shape is constant. The motivation behind this technique was

to improve the reduction of sidelobes further whilst maintaining mainlobe resolution.
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Figure 2.8.1 Variation in: (a) shape parameter whilst delay constant; (b) delay parameter
whilst shape constant

2.8.1 Mathematical Basis

The equation which governs the shape of raised-cosine window functions, i.e. Eq (2.2.1),

is modified such that it is circularly shifted (i.e. delayed) by τ samples (not necessarily

integer samples) to become

w(n) = 1− 2α cos

(

2π(n− τ)

N

)

(2.8.1)

As with 3-point joint-SVA (hereafter referred to simply as SVA), to keep the time-

domain window function values positive, the α parameter is restricted to
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{α ∈ R | 0 6 α 6 1/2}. Upon transformation of Eq (2.8.1) by a length NFFT = N DFT

W (k) = δ(k)− αe−
i2πτ
N δ(k + 1)− αe

i2πτ
N δ(k − 1)

= δ(k)− βδ(k + 1)− β∗δ(k − 1)
(2.8.2)

The time delay (τ) in Eq (2.8.1) in the time-domain is equivalent to a phase shift (eı̇φ) in

Eq (2.8.2) in the frequency-domain. The characteristic parameter from SVA, α, which

defines the shape of the raised-cosine window function in Eq (2.2.1) is generalised to

a complex parameter β, which defines the shape and time delay (i.e. cyclic position).

Explicitly, β as a complex number in polar co-ordinates, is

β = α exp

(

− ı̇2πτ

N

)

(2.8.3)

In the special case of no time delay in Eq (2.8.3) the original SVA α parameter is recov-

ered. Therefore the magnitude of β (that is, α) is restricted to {α ∈ R | 0 6 α 6 1/2}
to keep the time-domain window functions always positive.

Equation (2.8.2) convolved with the DFT of a DCW yields

Xa(k) = X(k)− βX(k + 1)− β∗X(k − 1) (2.8.4)

Equation (2.8.4) shows that the process of the application of a complex-parametered

version of SVA requires only a simple calculation to be done at each frequency bin in

the frequency-domain.

The choice of the complex value to assign to the β parameter at each frequency bin in

Eq (2.8.4) is more difficult. It can be chosen via cost function (C) minimisation. A

suitable cost function may be C = |Xa(k)|2, as in the SVA formulation. However the

cost function is minimized with respect to a complex parameter. If the cost function

is minimized in cartesian co-ordinates then the form of β that is used is β = βR + ı̇βI

and there are two resulting partial differential equations (PDEs)

∂C

∂βR

= 2AβR − 4BβI − 2E

∂C

∂βI

= 2DβI − 4BβR − 2F

where A,B,D,E and F are constants and are defined in appendix B. Full derivation

of the PDEs is given in appendix B.

The following stationary point is obtained after combining the PDEs

(βR, βI) =

(

2BF +DE

AD − 4B2
,
2BC + AF

AD − 4B2

)

(2.8.5)
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This stationary point is shown to be a minimum or in the worst case part of a valley

in appendix B.
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Figure 2.8.2 Example cost function surface for β variation

Unfortunately this minimum may not correspond to a time-shifted raised-cosine win-

dow function that is always positive-valued in the time-domain because the aforemen-

tioned minimisation of C was unconstrained. SVA requires that the α parameter of

the raised-cosine window functions be limited in the interval [0, 1/2]. For complex-

parametered SVA this requires the magnitude of the β parameter to be less than 0.5.

The problem is illustrated in Fig 2.8.2 where the magnitude-squared cost function has

been plotted for three adjacent frequency bins with variation in β. The black circle rep-

resents the maximum magnitude of 0.5 that the β parameter can assume. However the

minimum point in the cost function surface occurs outside of the maximum-allowable

magnitude of the β parameter. This is indicated by the blue arrow. It would be incor-

rect to simply use the phase at the minimum point of the cost function and limit the

magnitude of the β parameter to 0.5. This is because the minimum point within the

black circle may not necessarily be at that particular phase with a magnitude of 0.5.

If the solution to the unconstrained minimisation is used to produce a spectral estimate,

it will not be useful because it is not distortionless. Therefore unconstrained complex

SVA is not used in this work. An example of this failure is shown in Fig 2.8.3 for a

single tone of SNRin = 20 dB which is processed with various window techniques. The

resultant spectral estimates are normalised.
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Figure 2.8.3 Example spectral estimates for different windowing techniques

2.8.2 Minimisation using a Lagrangian Multiplier

As a simple extension, which can be generalised later, a constrained minimisation

problem can be solved with the use of a Lagrangian multiplier. The constraint could

be taken to be α = 0.5. This is not entirely correct but the Lagrangian multiplier

technique operates with equality constraints. This would limit the solutions to those

on the black circle in Fig 2.8.2. The solution satisfies the following equation

G sin(2φ)−B cos(2φ) + E sin(φ)− F cos(φ) = 0 (2.8.6)

where G = − (XR(k + 1)XR(k − 1) +XI(k + 1)XI(k − 1)) and the complex parame-

ter β is in polar coordinate form (βR = α cos(φ) and βI = α sin(φ)). An example of

the use of constrained minimisation with the use of a Lagrangian multiplier is shown

in Fig 2.8.4. In both panels the constrained minimisation with the use of a Lagrangian

technique is compared against simpler window methods. The example graphs demon-

strate there would be no advantage in the use of this constrained minimisation version

of SVA (i.e. Lagrangian SVA) over SVA. The Lagrangian SVA spectral estimate has

a broader mainlobe and does not have better sidelobe reduction (in fact it virtually

sits on top of the Hann-windowed estimate in panel (a) and its mainlobe sits on top

of the Hann-windowed estimate in panel (b)). This is because the Lagrangian SVA is

constrained to the use of Hann window functions albeit time-shifted.

2.8.3 Constrained Minimisation

Since Eq (2.8.6) has no simple analytical solution it is natural to extend the constraint

α = 0.5 to the desired α 6 0.5 and use the Karush-Kuhn-Tucker (KKT) conditions.

This also has no analytical solution but can be solved numerically in programs such as

MATLABr.



G H MacKerron, October 31, 2011 Original in Colour Chapter 2. SVA Theory, 70

d
B

Normalised Frequency (rad/π)

(a)

 

 

0.15 0.2 0.25 0.3 0.35 0.4

−80

−60

−40

−20

0 Rectangular-windowed
Hann-windowed
SVA
α = 0.5 SVA

d
B

Normalised Frequency (rad/π)

(b)

0.15 0.2 0.25 0.3 0.35 0.4

−80

−60

−40

−20

0

Figure 2.8.4 Example rectangular-windowed, Hann-windowed, SVA and Lagrangian SVA
spectral estimates for: (a) a single tone present in all samples; (b) single tone with noise
present at SNRin = 20dB

2.8.4 Evaluation of Constrained Complex SVA

The first example of how the constrained minimisation version of complex SVA com-

pares to other windowing techniques is given in Fig 2.8.5. In this, a single tone of

normalised frequency 0.109 rad/π was present throughout the DCW and processed by

the rectangular window, the Hann window, SVA and constrained complex SVA tech-

niques. Panel (a) shows the result when no noise is present and panel (b) shows the

result when the input DCW SNRin was 20 dB. In panel (a) the constrained complex

SVA technique appears to have sidelobes greatly reduced over the SVA technique and

the complex SVA mainlobe appears even narrower than in the SVA technique (as usual,

the rectangular-windowed and SVA mainlobes sit on top of each other).

In panel (b) the addition of AWGN brought the noise floor of the complex SVA tech-

nique up to the same level as the SVA technique and Hann-windowed technique. This

was to be expected because, like the SVA technique, the complex SVA technique is a

sidelobe-reduction technique not a noise-reduction technique.

Another example of the constrained complex SVA is given in Fig 2.8.6. In this example

two tones which are closely spaced in frequency and of equal amplitude were processed

by the different window techniques. The frequency spacing between the tones was

actually 1.5fs/N . Panel (a) shows the case with no noise present and panel (b) shows
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Figure 2.8.5 Example rectangular-windowed, Hann-windowed, SVA and constrained com-
plex SVA spectral estimates for: (a) a single tone present in all samples; (b) single tone with
noise present at SNRin = 20dB

the case at SNRin = 20 dB. The results from panel (a) are encouraging because they

show the ability of the constrained complex SVA technique to distinguish between two

tones was better than the other window techniques. This ability was degraded to the

noise floor by the addition of AWGN in panel (b).

However there are two major failings of the constrained complex SVA: (1) it struggles

to produce accurate spectra when a weaker signal is below the SVA sidelobe level of

another, stronger signal and (2) it is not distortionless in the case of interception of a

partial pulse in a DCW.

The first of these disadvantages is demonstrated in Fig 2.8.7. In panel (a) two tones are

clearly visible at frequencies 0.109 rad/π and 0.137 rad/π. The relative power difference

between the two tones was 20 dB and between the stronger tone and the noise floor

the SNRin was 100 dB. However, in panel (b), when the power of the second tone

was reduced beneath the sidelobes of the SVA technique so that the power difference

between strong and weak tones was 80 dB, the constrained complex SVA struggled to

produce a spectral estimate which could detect the presence of the weaker tone. This

is a large failing because it implies that the sidelobe reduction of constrained complex

SVA is meaningless as it is unable to uncover any additional information below the

sidelobe level of SVA.



G H MacKerron, October 31, 2011 Original in Colour Chapter 2. SVA Theory, 72

Normalised Frequency (rad/π)

d
B

(a)

 

 

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

−300

−200

−100

0

Rectangular-windowed

Hann-windowed

SVA

Constrained Complex SVA

Normalised Frequency (rad/π)

d
B

(b)

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

−300

−200

−100

0

Tone at 0.109 rad/π Tone at 0.121 rad/π

Figure 2.8.6 Example rectangular-windowed, Hann-windowed, SVA and constrained com-
plex SVA spectral estimates for: (a) two tones present in all samples; (b) the same tones with
noise present at SNRin = 20dB

The second of these failings is displayed in Fig 2.8.8. In this example, a tone was cap-

tured after appearing halfway through the DCW. Therefore only part of the available

signal power was captured. This situation is pictorially explained in panel (b) by the

blue captured signal. Panel (a) shows that whilst the SVA technique performed well

for only half of the signal in time (it sits virtually on top of the rectangular-windowed),

the constrained complex SVA did not. This is because constrained complex SVA min-

imised at the tone frequency by using a Hann window function which was shifted in

the time-domain such that the zero or null was over the centre of the captured signal

portion as demonstrated by the red window function in panel (b).

The two failings are major disadvantages of constrained complex SVA. Additional

arguments against the usage of constrained complex SVA instead of SVA are given in

section 3.4 where the performance of constrained complex SVA is compared against

other windowing techniques in a Monte Carlo simulation.
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CHAPTER 3

Floating-Point SVA

Section 2.4 advocated the use of SVA in a DRx as part of an ESM system. However

section 2.4 did not offer rigorous simulation or experimental results to support the claim

for the use of SVA. This floating-point SVA chapter aims to provide evidence for the

advantages which SVA would offer when applied in a DRx. Section 2.4 showed that the

joint 3-point SVA algorithm was the most likely candidate for eventual implementation

in an EW DRx and all references to SVA hereafter refer to this particular flavour of

SVA. Also some additional information is given in this section to show the merits of

the joint 3-point SVA algorithm over other SVA varieties.

During algorithmic development it is not always clear that a candidate algorithm would

be appropriate for implementation until modelling, simulation and testing are com-

pleted. In terms of MBD, the process may begin but then be abandoned because it

becomes clear that the simulation results show that the algorithm, on balance, is inap-

propriate for the application. Therefore this chapter contains simulation results, which

in addition to providing evidence for the advantages of the use of SVA in a DRx, also

represent the start of the MBD process. With reference to appendix C, the start of

the MBD process is the golden reference floating-point model.

This chapter compares simulation results from detectors which utilised SVA against

conventional detector architectures. The simulated SVA detectors and conventional

simulated detectors were essentially the same. However the former used the SVA

technique whilst the latter used fixed window functions. There are many different

scenarios in which the detectors could be tested. This is because in the field of EW,

very few assumptions can be made about unknown signal waveforms that may be

present in an operational environment. Nevertheless some scenarios were chosen and

are detailed in this chapter. They were chosen because they were judged to be the

most pertinent for an ESM system. The simulation results were obtained with the use

of floating-point arithmetic. The chosen scenarios, which will be detailed later in this

chapter were:

• full DCW

• randomly-filled DCW

• interference present in full DCW
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• randomly-filled DCW with interference present

• LPI signals in DCW.

3.1 Detectors Summary

A summary of the detectors used in this chapter is shown in Table 3.1.1.

Detector Algorithm

A1
Rectangular-windowed periodogram (single sig)

Hann-windowed periodogram (single sig)

Chebychev-windowed periodogram (single sig)

B1 SVA periodogram (single sig)

C1
Rectangular-windowed periodogram

Hann-windowed periodogram

Chebychev-windowed periodogram

D1 SVA periodogram (with decision rules)

E1 SVA periodogram (no decision rules)

F1 Complex-parametered SVA periodogram

Table 3.1.1 Conventional and SVA detectors

3.2 Full DCW

3.2.1 Scenario and Simulation Description

In this scenario a sinusoidal signal of unknown frequency (fT ) and unknown initial

phase (φ0) within the monitored bandwidth was present amongst background noise.

The sinusoidal signal used was actually a complex exponential and the background

noise was complex, with both real and imaginary components drawn from a normal

distribution. The real and imaginary components of the noise were independent iden-

tically distributed (i.i.d.). The signal, by definition, was therefore extremely narrow

band and would fall under the sinusoid radar signal category from chapter 1. The situ-

ation for this scenario was that each input sample was composed of both instantaneous

power from the simulated radar signal and the background noise. In other words the

DCW was full of signal power and hence the title for this section.

This scenario is preferable for detection algorithms in a DRx because the DCW happens

to have intercepted as much of the signal as possible as permitted by the length of the

DCW. The full DCW approach is demonstrated in Fig 3.2.1 where the eventual DCW
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is formed from the summation of a complex signal and complex noise. It is clear that

some of the signal is present in every sample in the DCW.

The monitored bandwidth of the detectors was the equivalent of one frequency bin

width (fs/NFFT) but the exact frequency of the sinusoid was randomly chosen at the

start of each DCW trial the frequency bin interval. This concept is illustrated in

Fig 3.2.2 where it can be seen that most of the time fT will not line up with the

frequency samples of the DFT in the frequency-domain. Similarly, the initial phase of

the sinusoid was randomly chosen at the start of each DCW trial.

A
m

p
li
tu

d
e

ℜ{Captured Signal}

0 20 40 60 80 100 120

−1

−0.5

0

0.5

1

ℑ{Captured Signal}

0 20 40 60 80 100 120

−1

−0.5

0

0.5

1

A
m

p
li
tu

d
e

ℜ{Noise}

0 20 40 60 80 100 120

−1

−0.5

0

0.5

1

ℑ{Noise}

0 20 40 60 80 100 120

−1

−0.5

0

0.5

1

Sample Number (n)

A
m

p
li
tu

d
e

ℜ{DCW}

0 20 40 60 80 100 120

−1

−0.5

0

0.5

1

Sample Number (n)

ℑ{DCW}

0 20 40 60 80 100 120

−1

−0.5

0

0.5

1

(a)

(b)

(c)

+

=

Figure 3.2.1 (a) complex signal; (b) complex noise at every sample; (c) the full DCW
formed from the summation

There were no simulated interference radar signals in this simulation. Two different

FFT lengths were tested for the same DCW length of N = 128 samples such that

there was a non-zeropadded case of NFFT= 128 data points and a zeropadded case

consisting of NFFT = 256 data points. Zeropadding the FFT up to twice the DCW’s

original length was done to allow for a performance comparison with non-zeropadded

case. This is because calculating the odd frequency bins allows for more accurate peak

detection and peak frequency location.

The conventional simulated detector applied one window function to the DCW out of

a choice of: (a) a rectangular window function; (b) a Hann window function or (c) a

(Dolph-)Chebychev window function. The system level diagram of the conventional

simulated detector is illustrated in Fig 3.2.3. In this work, this detector architecture is
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referred to as detector A1. The simulated SVA detector applied the SVA technique to

the FFT output. A flowchart of the data flow for the SVA detector used in this scenario

is shown in Fig 3.2.4. In this work, it is referred to as detector B1. A comparison

of the two detectors allowed the effect of each windowing technique to be seen. There

are a large number of possible window functions which could be used in detector A1,

any of which could have been chosen for the comparison. However the reason for the

choice of the rectangular window function and Hann window function is that they are

the two limiting cases from which SVA can select its equivalent time-domain window

functions. Meanwhile the reason for the inclusion of the Chebychev window function

is that it is commonly used within the aerospace industry as it provides a constant

sidelobe envelope which is helpful for designing aspects such as threshold levels. A

constant sidelobe level of −60 dBc was used in all of the simulations that involved the

Chebychev window function.

Typical ESM system DRx parameters were used to populate the parameters of detec-

tors A1 and B1 in this scenario and they are listed in Table 3.2.11.

DRx: sampling rate [1.0, 1.75] GHz
sampling period [571, 1000] ps
DCW length 128 samples
FFT mode complex
DCW overlap 0 samples
non-zeropadded frequency bin width [7.8, 13.7] MHz
DCW period [73, 128] ns

Table 3.2.1 Typical parameters for a DRx as part of an ESM system

1The exact parameters used are not shown
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The simulated detectors placed a threshold on the monitored frequency bin and made

decisions on whether a signal was present or not after each DCW. These decisions were

tallied in a 2× 2 contingency table or confusion matrix, an example of which is given

in Table 3.2.2.

Pd was calculated such that it could be plotted in a receiver operating characteristic

curve against either Pfa or SNRout dependent on the parameter that was kept fixed

during the simulation (SNRout or Pfa respectively). SNRout is defined as the SNR at

the output of the FFT block

SNRout = 10 log10

(

NAmp2

Np

)

where Amp is the constant envelope amplitude of the simulated radar pulse signal and

Np is the noise power. This allowed the results to be the same regardless of DCW

length because the coherent processing gain introduced by the FFT was addressed.

The number of trials for each data point in the plots was 1× 105.

For the Pfa against Pd plots, the empirical Pfa was calculated from the summation of

the total number of false alarms divided by the total number of DCWs when there was

no signal present (X). In a comparable way, the empirical Pd was calculated from the

summation of the total number of correct detections and divided by the total number of

DCWs when a signal was present (Y ). For the SNRout against Pd plots the thresholds

necessary to achieve a particular Pfa were required all detectors. Therefore simulations

to obtain Pfa against Pd preceeded simulations to obtain SNRout against Pd in order

to calculate the thresholds (except in the minority of cases where thresholds could

be calculated analytically). For simulation purposes and project-time constraints, a

relatively high Pfa of 0.01 has been used in most scenarios in this thesis.

Actual
H1 H0 Total

Decision
H ′

1 Correct Detection False Alarm Y ′

H ′
0 Miss Correct Rejection X ′

Total Y X

Table 3.2.2 Contingency table used in computing Pfa and Pd

3.2.2 Results and Discussion

The receiver operating characteristic (ROC) curves for Pfa against Pd are shown in

Fig 3.2.5. Panel (a) shows the results for the non-zeropadded case and panel (b) for the

zeropadded case. The nearer the curves to the top-left corner of the plot, the better the

performance of the detector which produced the plot. From the results, it is clear that

the rectangular-windowed and SVA detectors had better detector performances than
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the Chebychev-windowed and Hann-windowed detectors. The drop-off in performance

of the Hann-windowed and Chebychev-windowed detectors was caused by the poorer

NEB of these bell-shaped window functions. At the edges of the bell-shaped window,

the input samples were attenuated and since all of the samples in the DCW in this full

DCW scenario contained signal power, this resulted in a loss of some signal power. This

effect for bell-shaped window functions is directly related to the NEB of the window

function and is termed the window loss throughout this work.

In Fig 3.2.5, there is also a jump in detector performance from the non-zeropadded case

to the zeropadded case which also widens the performance gap between the two groups

of detectors: (1) the rectangular-windowed detector and the SVA-detector (i.e. detec-

tor B1) and (2) the Hann-windowed detector and Chebychev-windowed detector.The

reason for the non-zeropadded and zeropadded performance difference is that twice ze-

ropadding the DCWs allowed the detectors to more accurately estimate spectral peaks.
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Figure 3.2.5 The simulated detector ROC curves of Pfa against Pd for: (a) the non-
zeropadded FFT; (b) the zeropadded FFT

Typically this type of Pfa against Pd ROC plot is less useful for systems engineers

wishing to get a feel of the processing gain of an algorithm and so they are shown in

this full DCW scenario but later omitted from the other scenarios which show only

SNRout against Pd. One method to compare detectors is to specify the algorithmic

processing gain at Pd = 0.5 which has been done throughout this thesis.
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The ROC curves of SNRout against Pd are shown in Fig 3.2.6. Panel (a) depicts the

non-zeropadded case whilst panel (b) depicts the zeropadded case. For these results a

threshold was set such that Pfa = 0.01. The results again show that the SVA detector

(i.e. detector B1) and simulated rectangular-windowed detector have the strongest de-

tector performances. In panel (a) the performance advantage associated with the use

of SVA or a rectangular window is ∼ 1 dB and in panel (b) it is ∼ 1.5 dB. As in the

other type of ROC curve plot, this performance difference is attributed to the window

loss which the Hann and Chebychev window functions suffer. Although they have been

grouped together in this analysis, there is a very slight difference in performance be-

tween the rectangular-windowed detector and SVA detector in both panels (a) and (b).

This slight drop-off in performance of the SVA detector was caused by the algorithmic

noise introduced during estimation of α parameters.
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Figure 3.2.6 The simulated detector ROC curves of SNRout against Pd for: (a) the non-
zeropadded FFT; (b) the zeropadded FFT

In section 2.1 it was explained that in EW, signals in the environment and their param-

eters are inevitably unknown and to be cautious a moderate dynamic range window

function such as a Hann or Chebychev window is almost always used. The important

point therefore from these results is that the SVA technique retains the cautious ap-

proach of a moderate dynamic range window and is able to mostly recover the window

loss of a moderate dynamic range window.

A full DCW situation is common for a DRx in an ESM system when a signal is present

because for most real-life signals the pulse duration is much greater than the DCW



duration and therefore some of the DCWs will be full of signal power. There are

however other scenarios to be considered. The scenario in section 3.3 removes one of

the ideal conditions (the full DCW) by randomising the TOA of the signal pulse.

3.2.3 5-point and 7-point SVA Comparison

It was stated at the end of section 2.5 that further arguments would be provided

against the use of 5-point SVA and 7-point SVA over the simpler (joint 3-point) SVA.

Fig 3.2.7 presents one of these arguments. It depicts the use of 5-point SVA and 7-point

SVA in the full DCW scenario described above. The data from the simulated (joint

3-point) SVA detector, Hann-windowed detector, Chebychev-windowed detector and

rectangular-windowed detector from Fig 3.2.6 are simply redisplayed in Fig 3.2.7. The

new 5-point SVA and 7-point SVA data originated from more simulations of detector

B1 with the obvious change that the SVA block of detector B1 referred to the 5-point

and 7-point SVA.

The results in Fig 3.2.7 show that the 5-point and 7-point SVA did not recover the

window loss as well as the 3-point SVA. In fact in this scenario, the trend for the per-

formance of the simulated SVA-based detectors was for them to fall in performance for

each higher order of SVA. The performance of the 7-point SVA simulated detector was

actually worse than that of the Hann-windowed and Chebychev-windowed detectors.

Therefore Fig 3.2.7 provides strong evidence for sticking with joint 3-point SVA and

not utilising 5-point SVA or 7-point SVA in a detector.
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Figure 3.2.7 The results from Fig 3.2.6 alongside results using 5-point SVA and 7-point
SVA in simulated detectors for: (a) the non-zeropadded FFT; (b) the zeropadded FFT
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3.3 Randomly-filled DCW

3.3.1 Scenario and Simulation Description

This scenario introduced the random TOA aspect of a signal pulse. As a results of

this the DCWs tested contained a fraction of the signal pulse. This was an informative

scenario because a real-life DRx is unlikely to be time-synchronised to unknown radar

signal pulses. A number of important assumptions were made about real-life DRxs in

ESM system in order to create this scenario environment:

1. The DRx designer would select the DCW length in time to be matched to the

shortest duration radar pulse that the designer would like to detect.

2. There would be no sample overlap between consecutive DCWs.

3. Where a radar pulse spans two DCWs, the DCW which contains the largest

proportion of signal would be retained to test.

4. There are several DCWs per ESM dwell and they are considered separately.

The first point is a common design assumption, see for example [3]. The second as-

sumption was included because DRxs as part of ESM systems operate in real-time and

would struggle with the extra computational overhead associated with time-overlapped

DCWs. Whenever a rectangular window (and therefore by extension SVA) is used it is

unnecessary to overlap DCWs for the purposes of mitigating against window loss. The

only reason to attempt to overlap when a rectangular window function (or SVA) is used

would be to make it more likely that one of the DCWs would be better matched in time

to the signal pulse arrival time. On balance, the extra computational effort required

to overlap was deemed too great for the benefit it would provide because the typical

signal pulse width is much greater than the typical DCW duration and therefore some

DCWs would be full of samples which contain signal power.

With the third and fourth assumption, it should be stressed that a real-life DRx in an

ESM system would constantly monitor its operational environment by capturing data

in consecutive DCWs. The panels in Fig 3.3.1 illustrate this point. Urgent decisions

over whether threats are present are made after each DCW. A signal pulse may arrive

partway through a DCW and be partially present in the next DCW, but detection

decisions are made after each DCW.

The extreme case, from point 1 above, was used in this scenario whereby the signal

pulse duration was as short as the duration of the DCW. The detection process was

simulated through examination of the processed DCW that contained the most signal

after each test iteration. Therefore, with this pulse duration, the worst case occurred

when the unknown signal appeared or finished in the middle of a DCW. This concept

is illustrated in panel (b) of Fig 3.3.1, where, in this picture the DCW used in the test
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iteration would be half-filled with signal power.

For a pulse as short as the DCW duration, the best case occurred when it arrived

exactly at the start of a DCW because this created a DCW maximally filled with

signal power. This is exactly the same DCW case dealt with in section 3.2. This case

is illustrated in panel (a) of Fig 3.3.1.

All other partially-filled DCW cases occurred with equal probability between the best

and worst cases. An example of this is shown in panel (c) of Fig 3.3.1, where in this

picture, DCW 3 would be retained for testing. Aside from the random arrival time of
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Figure 3.3.1 Random arrival time of pulses: (a) pulse completely fills DCW 2; (b) pulse
is split equally across DCW 2 and DCW 3; (c) pulse partially fills DCW 2 and DCW 3,
detection test performed on DCW 3

the signal pulses, this scenario used the same situational environment and typical DRx

parameters as the full DCW scenario in section 3.2. The simulated detectors operated

were detector A1 from Fig 3.2.3 and detector B1 from Fig 3.2.4.

3.3.2 Results and Discussion

The Pd against SNRout results of Monte Carlo simulations are shown in Fig 3.3.2 for

constant Pfa = 0.01. Each data point was produced from 1× 105 detection decisions.

Panel (a) in Fig 3.3.2 displays the results from the non-zeropadded case, whilst panel (b)

shows the results from the zeropadded case. The results show that there was a smaller

performance difference between the different simulated detectors when compared to
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Fig 3.2.6 for the full DCW scenario in section 3.2. In panel (a) the performance gap

is only ∼ 0.4 dB and in panel (b) the performance gap is only ∼ 0.6 dB. This closure

of the gap is because the window loss effect was much reduced. As with the full DCW

scenario results, there is also a slight discrepancy between the rectangular-windowed

detector and the SVA detector due to SVA algorithmic noise.
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Figure 3.3.2 The simulated detector ROC curves of SNRout against Pd for: (a) the non-
zeropadded FFT; (b) the zeropadded FFT

As an explanation of why the performance gap between the different detectors was

smaller in this scenario when compared against the full DCW scenario results, it is nec-

essary to consider the many instances when the signal pulse was only partially present

in a DCW. In this instance the rectangular-windowed and SVA detectors included only

noise power at one end of the DCW during calculation of spectral estimates. Mean-

while the Hann and Chebychev window functions attenuated both ends of the DCW

and hence effectively discarded noise samples at one end of the DCW. This contrasts

with the full DCW scenario in section 3.2 where the rectangular-window and SVA had

the advantage of the inclusion of signal power from both ends of the DCW. However in

this scenario, in most trials, they only included signal power from one end. The overall

effect was that the Hann-windowed and Chebychev-windowed detectors were able to

close the performance gap in comparison to the full DCW results in section 3.2.

It should be noted that this randomly-filled DCW scenario is an extreme case because

in this scenario the shortest possible signal pulse duration was used for which the

detectors were designed. This scenario tested detectors A1 and B1 to their design
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limits. In real-life, radar signal pulses tend to be longer in duration than the duration

of a DCW in a DRx in an ESM system.

The scenario in section 3.2 favoured the use of the rectangular-windowed detector and

also the SVA detector over the Hann-windowed and Chebychev-windowed detectors

because the rectangular window function and SVA maximised the amount of possible

signal power that could be sent to the FFT block and then onto the detector block.

This was also the case, although only marginally so, for the scenario in this section.

This scenario and the scenario in section 3.2 monitored a frequency bin of interest

and did not consider the output of other frequency bins. Therefore the effect of high

sidelobes caused by the use of the rectangular window function was irrelevant. This is

not an effect which can be ignored in real-life DRx signal processing and is the main

reason why the rectangular window function is seldom chosen for use in detectors. The

effect of sidelobes is considered in the following two sections.

In the partially-filled DCW and full DCW scenarios, the SVA detector performed al-

most as well as the rectangular-windowed detector because the SVA technique causes a

distortionless response at the frequency bin of interest. The slight detector performance

discrepancy between the SVA detector (i.e. detector B1) and rectangular-windowed de-

tector was caused by the algorithmic noise from the estimation of the α parameter from

the data.

The situations described in the next two scenarios deal with more complicated situa-

tions which highlight the advantages of the use of SVA over the rectangular window

function by no longer ignoring the effects of high sidelobes.



G H MacKerron, October 31, 2011 Chapter 3. Fl-pt SVA, 89

3.4 Interference in Full DCW

3.4.1 Scenario and Simulation Description

A third scenario was tested where more than one radar signal was present against a

background of AWGN. In this scenario the monitored bandwidth was extended from

the previous scenarios in section 3.2 and section 3.3. This multiple signal situation

was simulated by two sinusoids of unknown carrier frequencies (fT,A and fT,B) present

throughout the entire DCW to represent two radar signals from the sinusoid category

from section 1.8. In this scenario both signals were full DCW. In all interference

scenarios the H0 case was AWGN plus interference present and the H1 case was signal

plus AWGN plus interference present.

The sinusoids were complex exponentials and whilst their exact frequencies were chosen

at random from a frequency bin width interval (fs/NFFT), the separation between them

in frequency was, on average, a particular multiple of fs/N . The signals were tested

at different powers and as such the power ratio between them was defined as the

signal-to-interference ratio (SIR). SIRout is used to keep consistent notation, although

SIRout = SIRin. The simulated detectors were set up to detect one of the sinusoids

(the desired, SA) in the presence of the other sinusoid (the interference, SB). Where

SNRout,B is mentioned in this section it refers to the ratio of powers between SB and the

noise floor both of which were held constant throughout the simulations. For clarity,

it was the power of SA which was varied to produce the results.

The simulated detector architectures used were those shown in Figs 3.4.1 and 3.4.2.

In this work these are referred to as detectors C1 and D1. Detectors C1 and D1

more closely resemble the process stages in a real-life DRx in an ESM system than

detectors A1 and B1. The additional stages over detectors A1 and B1 are related to

the estimation of the effect of sidelobe spectral leakage and mainlobe width caused

by a strong signal which impacts on other frequency bins. A real-life DRx might not

even be as complicated as the architectures shown for detectors C1 and D1 and may

only include a few rough decision rules which attempt to prevent sidelobe spectral

leakage or broad mainlobes causing erroneous detections in adjacent frequency bins.

For example a real-life detector might contain a rule which states that if a rectangular

window function is used no further detections are allowed in neighbouring bins until

the sidelobe level drops 13 dB.
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In this scenario, the different stages of how the detectors estimated the spectral leakage

from an interfering signal are illustrated in Fig 3.4.3. These stages are described here.

The first stage in the calculation of the spectral leakage was to identify the interference

signal SB, which is easily done in Fig 3.4.3 as it is the largest spectral peak. The

peak calculated could suffer from a cusping loss because the true frequency (fT,B)

was unknown. Therefore the simulated detectors attempted to account for this by

interpolation for the true peak of SB where possible. This concept is demonstrated

with the red peak in Fig 3.4.3. The estimated true peak was used to create a spectral

leakage envelope around the peak. An envelope as opposed to the actual spectral

leakage pattern was used because the estimated true peak was only an estimate and

therefore there was no certainty of the exact location of the sidelobe peaks and troughs.

A demonstration of the spectral leakage envelope for a Hann window is shown in

Fig 3.4.3 as a green envelope. Fig 3.4.3 shows how this envelope was used to form

a variable component of threshold, which was used in the detectors to attempt to

detect the desired signal SA. The other part of the threshold was derived to ensure

a certain false alarm rate above the noise floor and was thus a fixed component of

threshold. In the example in Fig 3.4.3, the desired signal is at the normalised frequency

of 0.3 rad/π and it would be detected because it is greater than the sum of the variable

component of threshold and the fixed component of threshold. Theoretical formulas
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Figure 3.4.3 How spectral leakage is estimated in the simulated detectors

were used initially to calculate the spectral leakage envelopes for the different detector

C1 window functions. The spectral leakage envelopes were oversampled (Nov ≫ N)

in the frequency-domain and stored in detector C1 such that it was unnecessary to

calculate the envelopes for each trial. The basis for the rectangular window was the

Dirchlet (aliased-sinc) function

W (k) =
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∣
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∣
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The basis for the Hann window spectral envelope was the sum of three Dirchlet func-

tions

W (k) =
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The basis for the Dolph-Chebychev spectral envelope was

W (k) =
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where b = cosh

[

1

Nov

arccosh (10a)

]

and k = 0, 1, . . . , Nov − 1

and where a = 3 was selected to create sidelobe levels of −60 dBc.

A quick comment is required on the interpolation method that was used in this sce-

nario. It was quadratic peak interpolation and the reason for the choice was one of

simplicity. As always, a real-time DRx would struggle with more complicated inter-

polation methods. To zeropad is the most accurate method of interpolation and this

has been used in the previous scenarios in section 3.2 and 3.3. The simulations in this

scenario attempted quadratic peak interpolation with and without zeropadding. The

zeropadding served to make the quadratic peak interpolation more accurate. Quadratic

peak interpolation in a zeropadded FFT, or quadratic interpolated FFT (QIFFT), is

popular in audio applications due to its simplicity and accuracy.

The use of quadratic interpolation is described here. It required the frequency bin and

magnitude (fq and q) of the maximum magnitude peak of the interference signal in the

FFT output data. The frequencies (fq − fs
NFFT

and fq +
fs

NFFT

) and magnitudes (p and

r) of the two surrounding nearest neighbour frequency bins were also required. The

condition that, of these magnitude samples, the main central frequency bin magnitude

peak was the largest, was also necessary (q > p and q > r). In this case, the interpolated

peak was located in the frequency-domain at the frequency given by

ftrue = fq +∆f

where ∆f is in the interval [−0.5, 0.5]×fs/NFFT and was estimated using the following

equation

∆f =
p− r

2 (p− 2q + r)
(3.4.4)
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The estimate for the magnitude of the true peak (Q) at ftrue is given by

Q = q − ∆f

4
(p− r) (3.4.5)

In [124], quadratic peak interpolation is described as the most successful technique,
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Figure 3.4.4 Quadratic peak interpolation

notwithstanding zeropadding, in low noise environments and in situations where mul-

tiple signal carrier frequencies are present and are not closely spaced in the frequency

dimension. It is also described as most accurate when used over shorter distances

between the three frequency-domain samples (fp, fq and fr).

Obviously the calculation of the spectral leakage from one signal onto another used here

was not entirely accurate as it ignored the interaction between the phases of the signals.

It was an acceptable approximation however because it would only ever overestimate

the variable component of threshold. This consideration is another example of trading-

off accuracy so that rapid detection decisions can be made in real-time DRxs.

The other features of the simulations were otherwise the same as in section 3.2 and

section 3.3.

3.4.2 Results and Discussion

ROC curve results of SIRout against Pd at a constant SNRout,B = 8dB for an average

frequency separation of 2fs/N are shown in Fig 3.4.5 and for an average frequency

separation of 5fs/N are shown in Fig 3.4.6.

The SNRout,B was increased to 15 dB whilst the separations were kept the same to

produce the ROC curves in Figs 3.4.8 and 3.4.7. The SNRout,B was further increased

to 25 dB to create the results in Figs 3.4.9 and 3.4.10. Every point in the ROC curves

was calculated from 1× 105 detection decisions within the simulated detectors and the

probability of false alarm was set at Pfa = 0.01. Panel (a) in all figures shows the
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results when a non-zeropadded FFT was used and panel (b) in all figures shows the

results when a twice-zeropadded FFT was used in the detectors.

The reason for undertaking simulations at three different SNRout,B levels was to un-

derstand detector performances in low-, medium- and high-SNRout,B regimes. The

SNRout,B used to produce the results in Figs 3.4.5 and 3.4.6, was low at 8 dB. Therefore

the noise floor was the dominant factor which limited the performance of the detectors

and the sidelobe spectral leakage and mainlobe width from SB were less significant.
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Figure 3.4.5 Simulated detector ROC curves for the full DCW interference scenario at
SNRout,B = 8dB with an average separation of 2fs/N for: (a) the non-zeropadded case;
(b) the zeropadded case

At SNRout,B = 8dB, the noise floor was dominant both close to the mainlobe of SB,

which equates to the average separation of 2fs/N test, and further away from the main-

lobe of SB, which equates to the average separation of 5fs/N test. This explains why

the results at SNRout,B = 8dB in Figs 3.4.5 and 3.4.6 hardly differ in the two different

average frequency separation cases. As the noise floor was the dominant factor, the

window loss was the principal effect in determining the performance of the different

detectors. From panel (a) of both Fig 3.4.5 and Fig 3.4.6 the rectangular-windowed

detector and SVA detector (i.e. detector D1) are shown to have a performance advan-

tage of ∼ 1 dB over the Hann-windowed and Chebychev-windowed detectors. In panel

(b) of Figs 3.4.5 and 3.4.6 this advantage grew to ∼ 1.5 dB. All the detector perfor-

mances improved when they utilised a twice-zeropadded FFT because this improved

their spectral peak estimation. This is evident in the changes in detector performances
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from panel (a) to panel (b) in both Figs 3.4.5 and 3.4.6. The results at both separations

were almost as if SA was the only signal present and the results resemble those from the

full DCW scenario in Fig 3.2.6. In this low-SNRout,B regime, the results imply, either

the rectangular-windowed detector or the SVA detector should be used in a real-life

DRx as they do not suffer from the window loss. However the rectangular-windowed

detector would need to be used with caution because there would be no guarantee that

for an all-purpose DRx the regime would always be low-SNRout,B.
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Figure 3.4.6 Simulated detector ROC curves for the full DCW interference scenario at
SNRout,B = 8dB with an average separation of 5fs/N for: (a) the non-zeropadded case;
(b) the zeropadded case

When the SNRout,B was raised to 15 dB, the noise floor continued to be dominant

in further apart signals. The results to produce Fig 3.4.7 were from signals which

were separated by an average of 5fs/N . At this relatively large separation and at

SNRout,B = 15 dB, the spectral leakage from SB into SA was negligible compared to

the noise level. Therefore, in this case, the principal effect which limited the detec-

tor performances was the window loss. This explains why the rectangular-windowed

detector and SVA detector had performances ∼ 1 dB better than the Hann-windowed

and Chebychev-windowed detectors in panel (a) of Fig 3.4.7 and ∼ 1.5 dB better in

panel (b) of Fig 3.4.7.

However the results in Fig 3.4.8 were produced from signals separated by an average

of 2fs/N and show the level of spectral leakage became important at closely-spaced

frequencies. The results displayed in panel (a) show that the SVA detector had a
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Figure 3.4.7 Simulated detector ROC curves for the full DCW interference scenario at
SNRout,B = 15dB with an average separation of 5fs/N for: (a) the non-zeropadded case;
(b) the zeropadded case

better performance than the other detectors by ∼ 0.8 dB. This was due to the sidelobe

spectral leakage and mainlobe width minimisation properties of SVA and therefore the

performance of the SVA detector was only limited by the noise floor. At the same

time the rectangular-windowed detector suffered greatly from sidelobe spectral leakage

which explains the fall in its performance from SNRout,B = 8dB (panel (a) of Fig 3.4.5)

to SNRout,B = 15 dB (panel (b) of Fig 3.4.8). However because detector C1 utilises a

QIFFT, the rectangular-windowed detector was able to recover its performance when

the FFT was twice zeropadded. This was because the sidelobe spectral leakage level

was fairly accurately estimated so that the rectangular-windowed detector became noise

floor dominated again. This is shown by panel (b) of Fig 3.4.8, which overall shows

that the rectangular-windowed detector and the SVA detector had a performance ∼
1.3 dB better than the Hann-windowed and Chebychev-windowed detectors.

In the medium-SNRout,B regime, the SVA detector was clearly the best option for a

non-zeropadded FFT detector.

Figs 3.4.9 and 3.4.10 display the results when the SNRout,B was increased to 25 dB.

From the closely-spaced in frequency plots the merits of the use of SVA should become

clear. Fig 3.4.9 displays these results. In these simulations the signals were closely

spaced in frequency and there was a significant amount of spectral leakage from the

interference tone (SB) into the desired tone (SA). The sidelobe spectral leakage and
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Figure 3.4.8 Simulated detector ROC curves for the full DCW interference scenario at
SNRout,B = 15dB with an average separation of 2fs/N for: (a) the non-zeropadded case;
(b) the zeropadded case

mainlobe width were no longer masked by the noise floor as occurred in the lower

SNRout,B regimes. Spectral leakage was the dominant factor in this high-SNRout,B

and closely-spaced-frequency regime. Therefore SVA, which minimises sidelobe spec-

tral leakage and mainlobe width, is shown as the best detector in both panel (a) and

panel (b). Interestingly the results also show that the Hann-windowed detector had

a better performance than the Chebychev-windowed detector because the Hann win-

dow frequency domain response has a sidelobe roll-off whereas the Chebychev window

frequency domain response has constant sidelobes. Therefore there was scope for the

Hann-windowed detector to minimise spectral leakage more so than the Chebychev-

windowed detector. The QIFFT-based detector C1 enabled the rectangular-windowed,

Hann-windowed and Chebychev-windowed detectors to close the performance gap when

the DCWs were zeropadded but even the QIFFT-based detector C1 could not com-

pletely mitigate such large levels of spectral leakage.

This is evident as a closure of the gap from panel (a) to panel (b) of Fig 3.4.9. For the

simulations which produced the results in Fig 3.4.10 the frequency separation between

the signals was greater and hence the spectral leakage from SB into SA was smaller.

However the results from panel (a) to panel (b) show that the rectangular-windowed

detector, which was obviously suffering due to large amounts of spectral leakage, was

able to recover somewhat when a zeropadded FFT was used. This was because detector
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Figure 3.4.9 Simulated detector ROC curves for the full DCW interference scenario at
SNRout,B = 25dB with an average separation of 2fs/N for: (a) the non-zeropadded case;
(b) the zeropadded case

C1 was able to account for the spectral leakage better when it was zeropadded. As a

result panel (b) starts to resemble the familiar full DCW scenario results, where only the

window loss is the significant effect. In panel (a) of Fig 3.4.10 the Hann-windowed and

Chebychev-windowed detectors appear to match the performance of the SVA detector.

This was because the high-SNRout,B regime was spectral-leakage-dominated even at

larger separations and with reference to panel (a) of Fig 2.4.2 the sidelobe reduction

levels of SVA and other bell-shaped windows are quite similar. This meant that the

performances of the Hann-windowed, Chebychev-windowed and SVA detectors were

similar.

In the high-SNRout,B regime, the SVA detector was clearly the best option to use in an

all-round detector.

Since the spectral leakage caused by the SVA technique is in actual fact extremely

low, a different, simpler detector architecture was attempted for the SVA technique

to be compared against the results from the more complicated detector D1. This new

detector was called detector E1 and is shown in Fig 3.4.11. The core difference over

detector D1 is the removal of the variable threshold and associated calculations.

A comparison of the results from detector D1 and the simpler detector E1 are shown

in Fig 3.4.12. The left column shows the results for the nominal separation of 2fs/N
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Figure 3.4.10 Simulated detector ROC curves for the full DCW interference scenario at
SNRout,B = 25dB with an average separation of 5fs/N for: (a) the non-zeropadded case;
(b) the zeropadded case

and the right column shows the results for the nominal separation of 5fs/N .

The results in Fig 3.4.12 indicate that there was little to be gained from the variable

threshold calculations in the SVA detector. This was due to the negligible amount of

spectral leakage caused by the SVA technique. There would be no point in the cal-

culation of the variable component in a real-life DRx which used SVA as the variable

component is a small number and likely to be below the quantisation noise in most

cases. Therefore a decision was made that all subsequent models which utilised SVA in

the MBD methodology would omit the calculation of the variable component of thresh-

old for SVA and be based on the detector E1 architecture. The results in Fig 3.4.12

also have another important implication for a real-life DRx. A real-life DRx often

does not have the luxury of the ability to calculate an accurate variable component

of threshold from spectral leakage patterns in the time with which they are provided.

This is the reason why many simply use decision rules which are approximations to

spectral leakage patterns. However as the spectral leakage caused by SVA is negligible,

decision rules are no longer necessary and therefore computational savings can be ob-

tained from their omission in a real-life DRx. In fact, this point was hinted at in [117],

which states that “the SVA [technique] reduces the sidelobes until it reaches the noise

floor”, which is equivalent to “the spectral leakage caused by SVA is negligible.”
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Overall the SVA technique is expected to provide a performance improvement when

used in a DRx as part of an ESM system in situations where there are multiple sinu-

soidal signals present in the DCW because SVA minimises spectral leakage from signals

into neighbouring frequency bins. In particular SVA is expected to:

• have an advantage over moderate dynamic range window functions such as the

Hann or Chebychev windows when signals are closely spaced in frequency and

are of a similar amplitude;

• have an advantage over low dynamic range window functions such as the rectan-

gular window when signals are of disparate amplitude.

The interference scenario detailed in this section suited the problem that SVA was

designed to tackle. However this scenario, that the DCW was always full of signal

power, may not always be the case as random TOAs can produce partially-filled DCWs.

To consider this scenario, section 3.5 tested the detectors against a scenario where a

random proportion of both the signals was captured in a DCW.

3.4.3 5-point and 7-point SVA Comparison

The end of section 2.5 declared that further lines of reason would be provided against

the use of 5-point and 7-point SVA over the simpler (joint 3-point) SVA in a detection

role. One of these arguments was provided at the end of section 3.2 which showed that

the 5-point and 7-point SVA were not as successful as the 3-point SVA in recovering

the window loss. The results in Fig 3.4.13 provide another strong case against the use

of 5-point and 7-point SVA. It shows the performance of simulated detectors which

utilised the 5-point and 7-point SVA techniques in the full DCW interference scenario.

Furthermore, the scenario parameters were copied from the case where 3-point SVA

was the best performer so that the performance of 5-point SVA and 7-point SVA could

be compared against this. These parameters were SNRout,B = 25 dB and a nominal

frequency separation of 2fs/N between SA and SB, where SNRout,B, SA and SB are as

defined earlier in the full DCW interference section.

The data from the simulated 3-point SVA detector, Hann-windowed detector, Chebychev-

windowed detector and rectangular-windowed detector from Fig 3.4.9 were replicated

into Fig 3.4.13. The new 5-point SVA and 7-point SVA ROC data curves derived from

the simulation of detector D1 with 5-point or 7-point SVA techniques.

The results demonstrate that the 5-point and 7-point SVA simulated detectors per-

formed badly when presented with closely-spaced in frequency signals in a scenario

where spectral leakage was the dominant factor over the noise floor. As before, in the

full DCW scenario, the 7-point SVA detector suffered a performance drop relative to

the 5-point SVA detector due to extra algorithmic noise. The use of twice-zeropadded
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FFT blocks enabled an improvement in performance of all detectors. The main conclu-

sion to draw, however, is that there is no advantage in the implementation of 5-point or

7-point SVA over 3-point SVA in a detection role. This is because 5-point and 7-point

SVA do not offer further optimisation over 3-point SVA in spectral leakage-dominated

scenarios where it might be expected that they would.
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Figure 3.4.13 The results from Fig 3.4.9 alongside results from the use of 5-point and
7-point SVA detectors for: (a) the non-zeropadded case; (b) the zeropadded case

3.4.4 Constrained Complex SVA Comparison

The interference scenario was also used to compare the constrained complex SVA

technique against rectangular-windowed, Hann-windowed, Chebychev-windowed and

(joint, 3-point) SVA detectors. The reason for the use of the interference scenario test

was to uncover whether it was worth extensively exploring constrained complex SVA

over the 3-point SVA algorithm.

The simulation conditions here were mostly the same as those described earlier, specif-

ically:

• The signals were sinusoids in the form of complex exponentials.

• During the simulations both strong and weak signals were sinusoids and were

present for the duration of the DCW.
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• The actual frequencies (fT,A and fT,B) of the signals were random over the interval

of fs/NFFT.

• The initial phase of the signals (φ0,A and φ0,B) was random.

• The signals were nominally separated by the equivalent of 3.5fs/N .

However in this scenario the weak signal was very much buried in the sidelobes of the

strong, interference signal. The data flowchart for the rectangular-windowed, Hann-

windowed and Chebychev-windowed detectors was detector C1, depicted in Fig 3.4.1.

The data flowchart for the SVA detector was detector D1 depicted in Fig 3.4.2.

Detectors C1 and D1 used the variable component and a fixed component to produce a

threshold. As in simulations in the interference section, the variable component derived

from the envelope of the spectral leakage of the identified strong, interference signal

and the fixed component derived from a threshold set to achieve a desired false alarm

rate. For an illustration of how the variable component was calculated see Fig 3.4.3

and refer back to the discussion at the start of section 3.4.

The data flowchart for the constrained complex SVA detector is shown in Fig 3.4.15

as detector F1. There is no well-defined spectral leakage pattern for the constrained

complex SVA technique. Therefore a variable component of threshold was not used.

Without a variable component, only a fixed threshold was used which was calculated

to produce a constant false alarm rate with the interference signal and AWGN present.

The constant false alarm rate was set such that Pfa = 0.01.
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Figure 3.4.14 A comparison of the performance of detectors which use a rectangular win-
dow, Hann window, Chebychev window, SVA and constrained complex SVA in a difficult
detection scenario

The ROC curve results are shown in Fig 3.4.14. The results show that SVA and

constrained complex SVA simulated detectors had the best performance in this difficult

scenario. The rectangular-windowed detector performed particularly poorly as a result

of large sidelobes through this window function choice.
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Ultimately the main conclusion to draw from this set of results is that there would be

no advantage to be gained with the use of constrained complex SVA over the compu-

tationally faster SVA. Therefore the constrained complex SVA was not studied further

as a viable algorithm for possible application in an DRx in an ESM system.
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Figure 3.4.15 Detector F1 flowchart describing the structure of the
constrained complex SVA detector
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3.5 Interference in Randomly-filled DCW

3.5.1 Scenario and Simulation Description

The simulations from section 3.4 indicated that SVA affords a performance improve-

ment in the case of interception of the maximal amount of signal power from two

sinusoidal radar signals close in frequency. The next step was to test whether the SVA

technique could still perform reasonably well in comparison to conventional window

detectors in the case where the DCW contained only part of either of the signal pulses.

This conceptual step was exactly the same as the one that was taken from the full

DCW scenario in section 3.2 to the randomly-filled DCW scenario in section 3.3. As

such, the randomly-filled part of this scenario was arranged in an analogous way to the

randomly-filled DCWs in section 3.3 and used the same set of assumptions. The most

important aspect of this scenario was that it tested detectors C1 and E1 to their limits

through the extreme case that the signal pulses of SA and SB were as short in duration

as the detector DCW. As mentioned in section 3.3, in the worst case this translated

to a half-filled DCW with samples that had a signal contribution. This had important

consequences for detector C1 which utilised conventional windows. The accuracy of

detector C1 was most affected by the missed SB signal power from the samples as when

the spectral leakage envelope was calculated the mask was no longer entirely accurate

and hence the variable component of threshold was no reliable. This happened because

absent signal samples in a DCW have a similar effect to zeropadding, in that in the

frequency-domain the spectral peak and sidelobe pattern are generally broadened due

to a loss of information.

This effect is illustrated for a Hann-windowed detector in Fig 3.5.1. In panel (a)

there is a DCW full of signal power from a single signal. When the Hann window

function is applied and an FFT taken, the frequency-domain picture shown in panel

(b) results. The sidelobe envelope pattern can be predicted with the use of the Hann

window function frequency-domain response. This was exactly the mechanism that was

exploited in detector C1 in section 3.4. In panel (c) the worst case is shown where the

DCW is only half-filled with signal power. After a Hann window function is applied

and an FFT taken, the predicted spectral leakage envelope is no longer accurate in

panel (d).

The number of missing signal samples in a DCW in this scenario would be unknown

and therefore the extent of this effect would also be unknown. This means it would be

very difficult to compensate for this effect. Therefore this scenario was simply to test

the existing detector C1 architecture through application in a case where it was not

entirely accurate.

The interference signal in this scenario was arranged in an analogous way to the in-

terference signal in section 3.4, except the interference was also partially captured in
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Figure 3.5.1 The effect missed signal samples has on the variable threshold calculation
blocks: (a) a full DCW; (b) the Hann window spectral pattern and Hann spectral leakage
envelope; (c) a half-full DCW; (d) spectral leakage pattern and incorrect Hann spectral
leakage envelope

the DCWs. For a pictorial reminder of how the randomly-filled DCWs would have

appeared an example is shown in Fig 3.3.1.

3.5.2 Results and Discussion

The ROC results for the detectors are shown in Figs 3.5.2–3.5.7. The results set was

created from a similar variety of parameters to the interference scenario in section 3.4.

Namely, a relatively low-SNRout,B, medium-SNRout,B and high-SNRout,B were tested.

These SNRout,B regimes were further broken down into closely-spaced frequency and

spaced-apart frequency tests.

Fig 3.5.2 displays the results for an average frequency separation of 2fs/N and Fig 3.5.3

shows the results for an average of 5fs/N . Both of these figures show the situation at

SNRout,B = 8dB.

The SNRout,B was increased to 15 dB and the results are displayed in Fig 3.5.4 and

Fig 3.5.5. It was further increased to 25 dB and the results obtained feature in Fig 3.5.6

and Fig 3.5.7. The same two different average frequency separations were tested at

all the SNRout,B regimes. Panel (a) in each figure displays the results obtained when

non-zeropadded DCWs were used and panel (b) in each figure shows the results when
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twice-zeropadded DCWs were used. Every data point was calculated from 1×105 trials

and the probability of false alarm was set at Pfa = 0.01.

One instantly noticeable aspect about all of the randomly-filled interference results in

comparison to the full DCW interference results is that where there is a performance

gap between detectors in the interference full DCW scenario, it is smaller in the inter-

ference randomly-filled DCW scenario. Another obvious change in the results from full

interference DCW to randomly-filled interference DCW is that the general performance

of all the detectors is worse. This feature is easily explained by the reduced SA signal

power that the detectors received as a result of the randomly-filled DCWs.
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Figure 3.5.2 ROC curves for randomly-filled DCW interference scenario at SNRout,B =
8dB with average separation of 2fs/N for: (a) the non-zeropadded case; (b) the zeropadded
case

Upon examination of the results in Fig 3.5.2, which were produced from the low-

SNRout,B regime, the SVA detector was the best performer as shown by both panels

(a) and (b). This time in the interference randomly-filled DCW scenario the SVA

detector was marginally better than the rectangular-windowed detector, whereas in

the interference full DCW scenario the rectangular-windowed detector was marginally

better than the SVA detector due to the additional algorithmic noise associated with

the SVA detector. The switch in performance was because the rectangular-windowed

detector was affected by the randomly-filled DCW aspect more significantly than the

SVA detector due to the variable threshold component calculation in detector C1,

which was not entirely accurate. The results in Fig 3.5.3, which were produced from
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the same SNRout,B but from an average separation of 5fs/N , are similar in nature in

that the SVA detector is seen to be the best. The reason behind this is that SNRout,B

= 8dB is a low SNRout,B regime and therefore the noise floor was the dominant factor

which constrained detection performance rather than spectral leakage level.
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Figure 3.5.3 ROC curves for randomly-filled DCW interference scenario at SNRout,B =
8dB with average separation of 5fs/N for: (a) the non-zeropadded case; (b) the zeropadded
case

Consideration of the results from both separations, revealed that the window loss was

the dominant effect at both closely spaced frequencies, shown in Fig 3.5.2, and further

apart frequencies, shown in Fig 3.5.3. When zeropadded the detection performance

of all the detectors improved because the use of zeropadded DCWs allowed for more

accurate spectral peak estimation. This is shown by the performance improvement

visible from panel (a) to panel (b) in both Figs 3.5.2 and 3.5.3.

In the medium-SNRout,B regime, for which results are displayed in Figs 3.5.4 and 3.5.5,

the SVA detector continued to be the best detector because its detector architecture was

affected less severely by the randomly-filled DCW. At the average separation of 5fs/N ,

the noise floor was still the dominant factor which limited detector performance and

therefore the window loss was the chief effect which determined the relative detector

performances in Fig 3.5.5. This explains why Fig 3.5.5 closely resembles Fig 3.5.2 and

Fig 3.5.3, as they were produced from noise-floor-dominated regimes. However at an

average separation of 2fs/N and at the medium-SNRout,B regime, the spectral leakage

could not be ignored. In fact spectral leakage was the dominant factor over the noise
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floor and hence the reason why the SVA detector was the best detector by a wider

margin in Fig 3.5.4 than in Fig 3.5.5.
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Figure 3.5.4 ROC curves for randomly-filled DCW interference scenario at SNRout,B =
15dB with average separation of 2fs/N for: (a) the non-zeropadded case; (b) the zeropadded
case

As in the interference full DCW scenario, the use of a high SNRout,B clearly portrayed

the benefits of the use of SVA in a detector. This is especially true of closely spaced

frequencies and can be seen from the results in Fig 3.5.6 where the spectral leakage of

SB was large. Fig 3.5.7 displays the results when the average frequency spacing was

5fs/N and it shows the SVA detector was still the best performer in both panels (a)

and (b) and definitely preferable to the rectangular-windowed detector but perhaps

only marginally better than the Hann-windowed and Chebychev-windowed detectors.

Like the outcome from the interference full DCW scenario the SVA, Hann-windowed

and Chebychev-windowed results can be explained by noting that at greater frequency

spacings the sidelobe reduction of the SVA technique and other non-rectangular win-

dowing techniques becomes similar (for example panel (a) of Fig 2.5.1).
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Figure 3.5.5 ROC curves for randomly-filled DCW interference scenario at SNRout,B =
15dB with average separation of 5fs/N for: (a) the non-zeropadded case; (b) the zeropadded
case
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Figure 3.5.6 ROC curves for randomly-filled DCW interference scenario at SNRout,B =
25dB with average separation of 2fs/N for: (a) the non-zeropadded case; (b) the zeropadded
case
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Figure 3.5.7 ROC curves for randomly-filled DCW interference scenario at SNRout,B =
25dB with average separation of 5fs/N for: (a) the non-zeropadded case; (b) the zeropadded
case
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3.6 LPI signal in DCW

From the previous sections it can be concluded that the SVA detector is successful as

an all-round technique for many different scenarios in which a sinusoidal radar signal

could be captured. The SVA technique seems able to assist with the detection of

multiple sinusoids, which are necessarily narrowband. However SVA is not specifically

designed to help with the detection of LPI radar signals that can be broader-band. In

this section, results are obtained for an SVA detector tested against LPI waveforms.

3.6.1 Frequency-coded LPI Waveforms

FMCW Waveform: bandwidth sweep 10MHz
sweep period 1ms
sweep rate 10GHz/s

DRx: sampling rate [1.0, 1.75] GHz
sampling period [572, 1000] ps
DCW length 1024 samples
FFT mode complex
DCW overlap 0 samples
non-zeropadded frequency bin width [0.97, 1.71] MHz
DCW period [585, 1024] ns

Table 3.6.1 Typical parameters for an FMCW waveform and DRx as part of an ESM
system

One type of frequency-coded LPI waveform known to be in use in the PILOT radar

system is linear FMCW[13, 15]. Essentially a single period of an FMCW waveform

is composed of an up chirp ramp immediately followed by a down chirp ramp. The

units are repeated indefinitely until the configuration is altered in some way, hence the

CW part of the abbreviation. FMCW signals come under the chirps category of radar

signals from section 1.8.

Typical parameters taken from [15] for an FMCW period are 10MHz swept in 1ms.

This, along with typical parameters for a DRx as part of an ESM system are shown

in Table 3.6.1. A longer FFT size and hence DCW duration than was used in the

previous scenario is shown in Table 3.6.1. These parameters were used to form the

simulations in this section. Notably, the FMCW sweep is greater than the bandwidth

of an individual frequency bin but the sweep is not rapid enough to pass through a

typical frequency bin width over the course of a typical DCW.

3.6.2 Scenario and Simulation Description

The scenario was created with detectors A1 and B1 attempting to detect a captured

portion of the FMCW waveform through detection on the central frequency bin of the

signal which was spread out in frequency. The parameters of the FMCW pulse were
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taken from Table 3.6.1. However the central frequency bin of the captured portion of the

FMCW signal was chosen randomly over the interval of fs/NFFT and the initial phase

of the captured portion was also chosen at random. This was done so that the FMCW

signal did not neatly coincide with the detector parameters. No interference signals

were present in this scenario. The probability of false alarm was set at Pfa = 0.01.

3.6.3 Results and Discussion

The simulation results are shown in Fig 3.6.1. The results are almost identical to those

of Fig 3.2.6 for the full DCW scenario. This was because the channelisation caused by

the FFT decomposing the digitised IF into frequency bins in the simulated detectors

was large relative to the bandwidth swept by the FMCW signal in the time taken for

one DCW. Even with a relatively large DCW size of N = 1024 samples the bandwidth

of the individual frequency bins was still relatively large. Therefore the FMCW signal

appeared to the simulated detectors to have a bandwidth narrower than that of a single

frequency bin after each DCW detection event.
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Figure 3.6.1 ROC curves for detection of an FMCW signal in detectors in two cases:
(a) the non-zeropadded case; (b) the zeropadded case

The results in panel (a), which derived from the use of a non-zeropadded DCW in all

the detectors, show the rectangular-windowed and SVA detectors had the best perfor-

mance. The window loss associated with the Hann and Chebychev window functions

caused their respective detectors to have a detector performance loss in comparison to
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the rectangular-windowed detector. The interpretation of the SVA technique results

is that it recovered the window loss. Panel (b) displays the results obtained through

the use of a twice-zeropadded DCW in all the detectors. Upon examination of the

differences between the results from panel (a) to panel (b), it is seen that all the de-

tectors improved upon their performances, however the rectangular-windowed detector

and SVA detector (i.e. detector B1) increased their performances at a greater rate than

the Hann-windowed and the Chebychev-windowed detectors. Zeropadding improved

detection because it enabled better estimation of the location of the spectral peaks.

The purpose of this scenario was to check whether the use of SVA would adversely affect

the detection of chirp-like signals in a real-life, DFT-based DRx in an ESM system. This

is because in DRxs the same mechanism for detection of sinusoidal signals is usually

used for the detection of chirps, that is, through the detection of spectral peaks. The

usual method for the identification of chirps is to track the movement of spectral peaks

as they shift to adjacent frequency bins in subsequent DCWs. Therefore, the results

show if SVA was added to a DRx it would not reduce the ability to detect the spectral

peaks of part of an FMCW period and therefore the SVA technique would not interfere

with the established procedure for identifying chirps.

3.6.4 Phase-coded LPI Waveforms

Another common type of LPI waveform known to be used in radar systems are Barker-

coded, BPSK waveforms. In this scenario pulses were created which were encoded

with a Barker-13 code. A technique sometimes called modulation-on-pulse (MOP).

This signal falls under the category of a pseudo-noise radar signal from section 1.8. To

create the simulations, the typical parameters from Table 3.6.2 were used. The pulse

parameters were based on data captured by SELEX Galileo in the year 20062.

Barker-13 Pulse: chip-rate 3.25MHz
pulse width 4 µs
PRF 60 kHz
IF cycles/chip ∼ 21

DRx: sampling rate [1.0, 1.75] GHz
sampling period [572, 1000] ps
DCW length 1024 samples
FFT mode complex
DCW overlap 0 samples
non-zeropadded frequency bin width [0.97, 1.71] MHz
DCW period [585, 1024] ns

Table 3.6.2 Typical parameters for a Barker-13 pulse and DRx as part of an ESM system

2Based on intercepted pulses from the TTCP Trials 2006
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3.6.5 Scenario and Simulation Description

The assumption was made that the simulated detectors would process data from full

DCWs. This assumption was made because with the use of the parameters in Ta-

ble 3.6.2, the detectors would record the 4 µs long pulses and at least four consecutive

DCWs would always be completely filled with samples which contain signal power

(assuming several DCWs per ESM dwell).

In this scenario one test iteration involved the retention of one of the four DCWs which

would contain a random portion of the pulse and an attempt to detect it. Another

interpretation of this methodology is that the DCW could capture a random portion of

the signal pulse but the random portion must be within the pulse temporal boundaries

in order to satisfy the full DCW requirements. This concept is illustrated in Fig 3.6.2,

where panel (a) shows a Barker-13 coded pulse and panel (b) shows the DCW can

capture any part of this pulse within its limits. 1× 105 trials were used per data point

in the ROC curves.
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Figure 3.6.2 Capture of a random portion of LPI pulse: (a) a Barker-13-coded pulse;
(b) DCW capturing a random portion within limits

As with all previous simulations, it was desirable to keep the parameters of the signal

separate from the parameters of the simulation detectors. To that end, the frequency

(fT ) of the Barker pulses had a nominal value but it was chosen at random at the

start of each DCW test such that it was random over the equivalent of fs/NFFT around

the nominal value. The initial phase (φ0) was also selected at random at the start



G H MacKerron, October 31, 2011 Chapter 3. Fl-pt SVA, 119

of each DCW. The phase jumps associated with the actual Barker code were made

over finite transitions (5% of chip interval) instead of theoretical discontinuous jumps

which are often described in textbooks, for example in [13]. This was done to simulate

the output from a real-life signal generator. The detector architectures were similar

to those used for FMCW detection, however the detection logic was slightly different.

In fact detector N1 from section 5.1.5 was used for the conventional window detection

and detector O1 was used for SVA detection. More detail on these detectors is given

in section 5.1.5. With a signal chip-rate of 3.25MHz and with a frequency bin width

of [0.97, 1.71] MHz, the signal was expected to be spread across a few frequency bins.

However since the exact target frequency was unknown and the number of frequency

bins is always an integer number, 3 frequency bins were checked for peaks caused by

the Barker-13 coded pulse. For the twice-zeropadded detectors the number of bins that

were checked was 5.

Overall the detectors captured a random part of the Barker-13 coded pulse and at-

tempted to detect on the frequency bins which could contain signal power from the

Barker-13 pulse. Like the FMCW scenario, no interfering signals were present and the

probability of false alarm was set at Pfa = 0.01.

3.6.6 Results and Discussion

The simulation results are shown in Fig 3.6.3. As with the FMCW ROC curves in

Fig 3.6.1, the picture is pretty similar to that obtained from the full DCW scenario in

Fig 3.2.6. That is, the SVA technique helped to recover the window loss from which

a detector would suffer if it used a moderate dynamic range window function like

the Hann or Chebychev window function. Also the zeropadding improved detection

performance for all detectors because it gave a better estimate of the location and

magnitude of any spectral peaks.

The incentive for this scenario was exactly the same as for the FMCW scenario. It

was desirable to uncover whether the use of SVA would somehow penalise detection

of LPI radar signals. In this scenario, the simulated detectors attempted to detect a

pseudo-noise radar signal in the form of a Barker-13 pulse and the results show that

the detection was not adversely affected through the use of SVA.
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Figure 3.6.3 ROC curves for detection of a Barker-13 pulse in detectors in two cases:
(a) the non-zeropadded case; (b) the zeropadded case
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3.6.7 Summary Table

The results from this chapter are summarised in Table 3.6.3.

Scenario Best Detector(s) Description

Full DCW, no interference Rectangular-windowed de-
tector, SVA detector

The SVA detector over-
came the window loss
suffered by Chebychev-
windowed detector and
Hann-windowed detector

Randomly-filled DCW, no
interference

Rectangular-windowed de-
tector, SVA detector

The window loss effect was
much reduced but SVA
still recovered the loss to
a similar level of perfor-
mance as the rectangular-
windowed detector

Full DCW, interference
present

SVA detector The SVA detector reduced
the impact of spectral
leakage from the interfer-
ence and recovered the
window loss

Randomly-filled DCW, in-
terference present

SVA detector The window loss and spec-
tral leakage effects were
smaller but SVA remained
the best detector

LPI signal, no interference Rectangular-windowed de-
tector, SVA detector

The rectangular detector
performed well because it
allowed as much signal
power to be collected as
possible. The SVA detec-
tor performed almost as
well as the rectangular-
windowed detector

Table 3.6.3 Floating-point simulation results summary



CHAPTER 4

Non-Parametric

Spectral Estimation

4.1 Detection

Detection and identification of radar threats is the primary goal of a DRx as part of an

ESM system. As many radar signals are sparse in the frequency-domain, the common

method to detect and identify threats is to estimate the true operational environment

power spectral density (PSD) over different time intervals and detect peaks from this.

Forming a good spectral estimate from which initial detections are found can be the

basic building block for a good ESM detector. The initial detections can be passed to

more complicated classification algorithms for further filtering as per Fig 1.3.1.

The PSD is, for wide-sense stationary processes, the Fourier transform of the autocor-

relation function (F {Rxx(τ)}), for which it would be possible to exactly specify if x(t)

was known for all t. Naturally however in an ESM DRx, x(t) is sampled in DCWs

and never fully known because it is corrupted by background noise and interference.

Therefore many ESM DRxs employ a spectral estimation technique.

This is commonly achieved through the use of an FFT algorithm due to its simplicity.

However the use of the magnitude-squared of an FFT is one of many spectral estimation

techniques.

Spectral estimation can be neatly split into two groups:

Parametric Assume a data-generating process or model.

Non-parametric Use only the data provided in the DCWs.

In general, non-parametric methods are computationally simple but have limited ac-

curacy. A DRx in an ESM system processes vast amounts of data in short periods

of time and therefore computational simplicity is usually of greater importance than

limited accuracy. In addition to this a DRx generally can not assume much about

the characteristics of unknown signals initially. Therefore non-parametric methods are

generally employed by DRxs in ESM systems.

There are a few properties of spectral estimators to consider:
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Bias Whether the spectral estimate will asymptotically converge to the true PSD (Sxx)

with greater N , i.e.

lim
N→∞

E
{

Ŝxx(f)
}

= Sxx(f).

Variance Does the amount of deviation from the PSD change with a bigger or smaller

N , i.e.

lim
N→∞

Var
{

Ŝxx(f)
}

= 0.

Resolution The extent of the blurring of the spectral estimate compared to the PSD.

The magnitude-squared of an FFT is a simple spectral estimator and is valid because

the Fourier transform of the sampled autocorrelation function would be used which is

given by

Rxx(l) = lim
N→∞

{

1

2N + 1

N
∑

n=−N

x(n+ l)x(n)

}

, l = 0,±1,±2, . . . ,±N − 1 (4.1.1)

however a real-life DRx would have only a finite number of samples N , with which to

work. Therefore it would approximate the ideal autocorrelation in Eq (4.1.1) with a

finite sample autocorrelation

R̂xx(l) =
1

N

N−1−|l|
∑

n=0

x(n+ l)x(n) (4.1.2)

The implicit assumption in Eq (4.1.2) is that x(n) is zero outside of the DCW and

therefore simplifies to

R̂xx(l) =
1

N
x(l) ∗ x(−l) (4.1.3)

and upon the DFT of Eq (4.1.3), the method of “FFT and magnitude-squared” is

recovered

Ŝ(P)
xx (k) =

1

N
|X(k)|2 , where k = 0, 1, 2, . . . , NFFT − 1 (4.1.4)

This spectral estimation method, which was used in chapter 3, is called the peri-

odogram. The bias of a periodogram is

E
{

Ŝ(P)
xx (k)

}

= WB(k) ∗ S(k)

whereWB(k) is the Fourier transform of the Bartlett window (i.e.WB(k) =
1
N

[

sinπkN
sinπk

]

).

When N → ∞, WB(k) → δ(0) and therefore the periodogram is asymptotically un-

biased. This is a beneficial feature of the periodogram, however the variance of the

periodogram is

Var
{

Ŝ(P)
xx (k)

}

≈ Sxx
2(k)

The variance is large and independent of N and therefore no matter how many samples

are processed in a DCW the variance never decreases. This property of the variance
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was evident in the jagged nature of many of the periodogram-type plots in chapter 2,

for example Figs 2.5.2 and 2.8.5.

There are other non-parametric spectral estimators which seek to remedy the variance

issue of the periodogram through a trade-off of variance for bias or resolution. A list

of possible non-parametric spectral estimators is given in Table 4.1.1. The SVA work

is included in the table and highlighted as orange as a modification of the periodogram

method. The methods highlighted in red trade some spectral resolution of the peri-

odogram for a reduction in variance. In terms of computational complexity, they are

the next most computationally complex methods after the periodogram (and its rela-

tions: the modified periodogram and SVA periodogram). The candidate methods are

examined in chapter 5 and some theory follows in this chapter.
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Method Procedure Comment

Periodogram DFT of a time series and
calculate the magnitude-
squared

Large variance, inconsis-
tent estimator

Modified Periodogram Apply window function to
time series prior to DFT
and magnitude-squared

Same as above, some spec-
tral resolution traded-off
against spectral leakage

SVA Periodogram Apply DFT to time series,
execute SVA algorithm
and take magnitude-
squared

Same as periodogram, but
spectral leakage much re-
duced

Blackman-Tukey Fourier transform of
truncated autocorrelation
function after weighted
with a lag window

Obsolete since advent of
fast computers and FFT
as Fourier coefficients di-
rectly estimated with FFT

Smoothed Periodogram Estimate periodogram,
apply a smoothing filter
such as moving average
filter

Spectral resolution traded
for reduction in variance.
Frequency-domain equiva-
lent of Blackman-Tukey

WOSA Divide the time series into
smaller, overlapped, win-
dowed segments. Find
periodogram of each seg-
ment and average. When
no window function or
overlap used, known as
Bartlett’s method

Trades spectral resolution
for variance reduction.
Bias problems for short
time series.

Multitaper Method Orthogonal window func-
tions applied to same
time series, DFT and
magnitude-squared. Re-
sults averaged

Spectral resolution traded
for reduction in variance.
Trade-off easily quantified

Singular Spectrum Analy-
sis

Decompose time series
into sum of components.
Identify components due
to noise and reconstruct
time series without them.
Form spectral estimates
from de-noised time series

Largest computational
load out of all the above

Table 4.1.1 Non-parametric Spectral Estimators
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4.2 Multitaper Theory

4.2.1 Introduction

In addition to the information in Table 4.1.1 this section provides some additional

reasons for the study of the multitaper method (MTM) as an algorithm of interest for

a DRx as part of an ESM system. The MTM is often overlooked, however its usefulness

is highlighted by its success in spectral holes sensing in cognitive radio in [125], where

it is also combined with cyclostationarity in a Loéve transform to detect and classify

signals in [126, 127].

Some common characteristics of the MTM and SVA are revealed in this section and in

section 4.3 the smoothed periodogram is examined as it is similar to one of the MTMs.

Some common characteristics of the MTM and SVA:

• The MTM attempts to overcome the window loss when a window function is

applied to a DCW prior to a DFT.

• The MTM can be applied in an automatic fashion as it is a non-parametric

spectral analysis technique, which requires no a priori information.

• The MTM is fully compatible with spectral analysis based on an FFT.

• The MTM is a relatively, computationally simple technique.

• One particular version of the MTM involves simple convolutions in the frequency-

domain.

As a technique, the MTM was formulated in [128] as an alternative to Welch’s over-

lapped segment averaging (WOSA), which is a popular technique for the reduction of

variance in non-parametric spectral analysis. WOSA can have bias problems for shorter

DCWs as it comprises the steps of: (1) split the DCW into shorter, overlapping seg-

ments and (2) average the spectral estimates from each segment. This is an important

point in ESM as there may be no knowledge of the target signal pulse duration a priori.

Therefore our DCW length may be a poor choice which could be worsened by WOSA.

Additionally the variance reduction in WOSA is not proportional to the number of

segments averaged due to correlation between noise samples in overlapped segments.

WOSA was not considered further for study

The MTM, can however, use the full DCW through the steps of: (1) application of

multiple orthogonal tapers (i.e. window functions) to the DCW (2) perform FFTs and

(3) average the spectral estimates from each window function. Fig 4.2.1 pictorially

contrasts the basic operations in WOSA and the MTM.

A further contribution came from [129] which introduced a different set of tapers to the

original discrete prolate spheroidal sequence (DPSS) tapers from [128]. This different
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Figure 4.2.1 Basic operations in WOSA and MTM

set is called the sine tapers and possess the advantages of an analytical formulation

and a simple frequency-domain representation.

In the following sections the rationale for the investigation of the MTM in terms of the

detection of unknown LPI radar waveforms is explained, which leads onto a discussion

of even simpler smoothed periodogram methods.

4.2.2 MTM

Here the motivation for investigation of the MTM is explained. LPI radar signals may

attempt to be covert through a spread of their peak power across a frequency band by

the use of, for example, phase-modulation (see section 1.9). If the intercepted signal is

strong enough, such LPI radar signals appear as a band of energy in spectrogram-based

or periodogram-based techniques (the periodogram is merely 1 DCW or slice through

the spectrogram). A pictorial example of this is displayed in panel (b) of Fig 1.9.1.

When conventional spectrograms and periodograms are applied in this manner in a

DRx it effectively over-resolves the LPI signal in the frequency dimension. This is

because the filter shape of the individual FFT bins is too narrow for the signal. The

magnitude filter response of each FFT bin is the same as the magnitude frequency-

domain response of the window function that was used at the input of the FFT. A

better match to the bandwidth of the signal bandwidth is obtained through the MTM.

In the MTM, as the number of tapers used increases, so too does the bandwidth of
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each frequency bin. This effect is demonstrated in the series of plots in Fig 4.2.2. For

NFFT = 1024 and a design half-bandwidth (in normalised terms) of Wh = 0.0195 rad/π,

the average of the MTM taper magnitude-squared responses is shown on a logarithmic

scale for an increasing number of tapers used up to the Shannon number. The Shannon

number and parameter Wh are explained in section 4.2.5. The number of tapers used,

from top to bottom, is p = 10, 20, 30, 40. The response becomes more brick-wall-like as

more tapers are added up to the Shannon number. This shape more closely resembles

the band of energy shown in panel (b) of Fig 1.9.1 and therefore the MTM could be

used to collect as much signal power as possible into the bin upon which the signal band

is centred, provided the correct half-bandwidth parameter Wh is chosen. Therefore this

is a strong motivation for the investigation of the MTM implemented in an ESM DRx

as a simple means to improve LPI radar signal detection.

As the average MTM taper response shape becomes wider and flatter, the frequency

resolution of the MTM spectral estimate becomes coarser. The normalised frequency

resolution approximates to P/N rad/π, where P is the number of tapers used and N is

the number of samples in the DCW. However this may not be a problem for a real-life

DRx which could use SVA for the detection of narrower band signals like sinusoids and

the MTM to detect broader-band, LPI, pseudo-noise signals.
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Figure 4.2.2 Average of the magnitude-squared fil-
ter responses of MTM tapers for increasing numbers of
tapers designed for Wh = 0.0195 rad/π
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The simplest formulation of the MTM is an average of P spectral estimates (Ŝ
(MTM)
p,xx )

formed from the same DCW as

Ŝ(MTM)
xx (k) =

1

P

P−1
∑

p=0

Ŝ(MTM)
p,xx (k), where k = 0, 1, . . . , N − 1 (4.2.1)

Ŝ
(MTM)
p,xx are simply modified periodograms formed from: (1) the application of nor-

malised window functions (wp(n) with n = 0, 1, 2 . . . , N − 1), which are pairwise or-

thogonal to each other to a DCW, (2) application of a DFT and (3) the calculation of

the magnitude-squared of the Fourier coefficients.

The orthogonality condition is

N−1
∑

n=0

wp(n)wq(n) =







1, if p = q;

0, otherwise.

and application of a DFT and subsequent calculation of the magnitude-squared yields

Ŝ(MTM)
p,xx (k) =

∣

∣

∣

∣

∣

N−1
∑

n=0

wp(n)x(n)WN
−nk

∣

∣

∣

∣

∣

2

There are MTM spectral estimators other than that of Eq (4.2.1) which use a non-

uniformly weighted average scheme but the discussion is limited to the uniformly

weighted case for now.

The use of any non-rectangular window function on white noise amounts to removal of

some information in a DCW as the spectrum is smoothed and has an increased variance

as described in [130]. Throughout the SVA work this phenomenon was termed a window

loss. As shown in [131, p. 347–349], this loss can be overcome through the use of the

MTM as many orthogonal spectral estimates or eigenspectra are formed from the same

DCW and averaged. If all possible tapers are used then the window loss is recovered.

However, as is shown in Fig 4.2.6, higher-order tapers, past the Shannon number, are

undesirable because they actually increase the “broadband bias” of the MTM spectral

estimate (Ŝ
(MTM)
xx (k)) outside the normalised bandwidth of interest [−Wh,Wh] rad/π.

Therefore they are not generally included in the averaging process. Fortunately, in [131]

it is shown that the higher-order tapers, when used in the average process, contribute

only a relatively modest amount to a decrease in variance of Ŝ
(MTM)
xx (k). Therefore their

omission from the MTM process has little impact on the variance reduction property.
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When complex AWGN is input into the MTM, each eigenspectrum consisting of fre-

quency bins (X̂
(MTM)
p (k)) is distributed as an exponential random variable (RV)

f(X;λ) =







λ exp (−λX) if X > 0;

0 if X < 0.

When the AWGN has unit variance σ2 = 1, this is the same as a chi-square RV with 2

degrees of freedom (typically denoted as Q ∼ χ2 (2)). The chi-square distribution arises

from the sum of the squares of independent, standard normal RVs A1, A2, . . . , AM as

Q =
M
∑

m=1

Am
2

The PDF for a chi-square distributed RV is given by

f(X; d) =
1

2 d/2Γ (d/2)
X

d/2−1 exp (−X/2) Pos{X> 0}

where d denotes the degrees of freedom, Γ (. . .) denotes the Gamma function and

Pos{x> 0} shows that the chi-square distribution is only defined for non-negative x.

The summation of the squares of independent RVs resembles the process which oc-

curs in the MTM when P eigenspectra are averaged. This is because the eigenspectra,

which are theoretically pairwise orthogonal and independent, are, in the simplest MTM,

summed and divided by the number of eigenspectra. Therefore, when complex AWGN

is processed, the multitaper spectral estimate Ŝ
(MTM)
xx (k) should approximately be dis-

tributed as a scaled version of the chi-square distribution with 2P degrees of freedom.

A scaled chi-square distribution would be given by

f(X; d) =
d d/2

2 d/2 σdΓ (d/2)
X

d/2−1 exp

(

−Xd

2σ2

)

Pos{X> 0} (4.2.2)

where σ2 is the noise power and the degrees of freedom (d) would be replaced by 2P .

An example of the agreement between the PDF given by Eq (4.2.2) and empirically

obtained MTM data is shown in Fig 4.2.3. Here complex AWGN with variance σ2 = 1

was processed by the MTM using DCWs and FFTs of length N = NFFT = 128.

The time-bandwidth product was arbitrarily chosen to be NWh = 5. 1 × 103 DCWs

were processed such that a total of 128, 000 data points were grouped into bins in a

normalised histogram. The number of degrees of freedom was 2 × (2NWh) = 20 and

this was used to create the theoretical PDF curve from Eq (4.2.2).

Such theoretical results are useful because through integration of Eq (4.2.2) between

a chosen lower limit and an upper limit of +∞ probabilities of false alarm can be

obtained. The lower limit on integration would represent a threshold in a real-life
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detector which utilised the MTM and therefore from the theoretical distributions it is

possible to get an idea of the thresholds which would need to be set in order to achieve

a particular Pfa. This concept was used where possible in the simulations in chapter 5.
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Figure 4.2.3 Q ∼ χ2 (20) PDF overlaid on a nor-
malised histogram of 128, 000 MTM values

The theoretical PDF given in Eq (4.2.2) is valid for the simplest version of the MTM

where the eigenspectra are uniformly weighted by 1, however there are variations on the

weight scheme which are detailed in the next section for which the PDF in Eq (4.2.2)

is only be a good fit for large P .

4.2.3 MTM Variants

The uniformly-weighted average MTM is the simplest MTM spectral estimator. How-

ever in [131] a derivation of an unbiased MTM spectral estimator is given which essen-

tially weights each eigenspectrum by its eigenvalue

Ŝ(MTM)(k) ≡
∑P−1

p=0 λpŜ
(MTM)
p

∑P−1
p=0 λp

(4.2.3)

The significance of the eigenvalues is explained in the next section, however, from

Fig 4.2.4 it can be seen that as the order of the eigenvalue increases, the size of the

eigenvalue decreases towards 0. Evidently from Eq (4.2.3) less emphasis is placed on

the higher-order eigenspectra, which is intuitively better as higher-order eigenspectra

become more polluted with spectral leakage. The difference between the uniformly-

weighted MTM and the eigenvalue-weighted MTM is slight since the number of tapers

(P ) is usually chosen to be P = 2NWh, 2NWh − 1 or 2NWh − 2 and therefore most

of the eigenvalues are close to the value of 1 anyway. The importance of the Shannon

number 2NWh is explained further in the next section.
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Also in [131] the derivation of another estimator which has adaptive weights is shown

as

Ŝ(MTM)
xx (k) ≡

∑P−1
p=0 bp(k)

2λpŜ
(MTM)
p,xx (k)

∑P−1
p=0 bp(k)2λp

(4.2.4)

where the value of bp(k) is estimated from

bp(k) =
Ŝxx(k)

λpŜxx(k) + (1− λp) σ̂x
2

(4.2.5)

Initially with 1 eigenspectrum or 2 eigenspectra, a spectral estimate (Ŝ
(MTM)
xx (k)) is

formed from Eq (4.2.4), which along with an estimated variance is substituted into

Eq (4.2.5) to obtain estimates for all the weights bp(k). The weights allow a new, up-

dated spectral estimate to be made with the use of Eq (4.2.4), which can subsequently

be inserted back into Eq (4.2.5) to iterate the process. As stated in [131], a reasonable

result is usually obtained after a few iterations.

4.2.4 Spectral Concentration Problem

Qualitatively, it is beneficial if the required P window functions have low sidelobe levels

in the frequency-domain in order to minimise spectral leakage. Put differently, window

functions which maximise the ratio of power in a given frequency interval [−Wh,Wh]

rad/π to the total power in the normalised frequency band interval [−1/2, 1/2] rad/π

are required. This power ratio is typically called the spectral concentration (com-

mon notation: λ(N,Wh)) of the particular window function. Explicitly the spectral

concentration is given by

λ(N,Wh) =

∫Wh

−Wh
|W (f)|2 df

∫ 1/2

−1/2
|W (f)|2 df

where the DTFT of the window functions (W (f)) is defined as

W (f) =
N−1
∑

n=0

w(n)WN
−nf

The spectral concentration problem is solved by maximising
∫Wh

−Wh
|W (f)|2 df subject to

the total power being fixed to unity,
∫ 1/2

−1/2
|W (f)|2 df = 1. This leads to the eigenvalue

equation

N−1
∑

n′=0

sin 2πW (n− n′)

π (n− n′)
w(n′) = λw(n), n = 0, 1, 2, . . . , N − 1 (4.2.6)
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The eigenvectors of the eigenvalue equation are the tapers which solve the spectral con-

centration problem. These eigenvectors are termed DPSS tapers or Slepian sequences.

The tapers are normalised such that the sum of the squares of the eigenvectors is equal

to unity
N−1
∑

n=0

wp(n)
2 = 1

Contained within Eq (4.2.6) is an N×N positive-definite, real, symmetric matrix given

by

Vn,n′ =
sin 2πW (n− n′)

π (n− n′)

λp
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Figure 4.2.4 First eight eigenvalues for N = 64 and NWh = 2

Since this matrix is positive-definite, the eigenvalues must be positive. Each eigenvalue

has a corresponding eigenvector. For example the λ0(N,Wh) eigenvalue has the zeroth-

order DPSS taper associated with it. When these eigenvalues are sorted into descending

order (λ0(N,Wh) > λ1(N,Wh) > . . . > λP−1(N,Wh)), the first 2NWh eigenvalues

have significant values close to 1 and the rest are close to 0. 2NWh is the Shannon

number. Since the eigenvalues are also spectral concentrations, it follows that only the

first 2NWh DPSS tapers have good spectral leakage properties and concentrate power

within the frequency interval [−Wh,Wh] rad/π. In fact in [128] to be cautious, it is

recommended that only the first 2NWh − 1 or 2NWh − 2 DPSS tapers be selected for

use.

As an example, with the use of the parameters N = 64 and NWh = 2, the first

eight eigenvalues are shown in Fig 4.2.4. The Shannon number is apparent as the first

2NWh = 4 eigenvalues are closer to 1 than 0 and thereafter the eigenvalues are closer to

0 than 1. The reason for the recommendation to use 2NWh − 1 or 2NWh − 2 tapers is

also clear because the indexed eigenvalues after this number drop more rapidly towards

0. The DPSS tapers which correspond to the first eight eigenvalues are displayed in the

left-hand side of Figs 4.2.5 and 4.2.6. The frequency-domain responses of the tapers
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are displayed alongside each of them in the right-hand column of Figs 4.2.5 and 4.2.6.

The dotted red lines indicate the design half-bandwidth Wh = 0.0313 rad/π in which

it would be desirable if the frequency response were mostly concentrated.

The relationship between the spectral concentrations (eigenvalues) and the DPSS ta-

pers is obvious upon examination of Figs 4.2.4–4.2.6. As the eigenvalues fall away

from the value of 1, the corresponding DPSS tapers becomes more pronounced at the

taper edges and the amount of spectral leakage outside the design half-bandwidth Wh

becomes greater.
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Figure 4.2.5 With N = 64 and NWh = 2, DPSS tapers of orders 0, 1, 2, 3 from top to
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4.2.5 DPSS Windows

The MTM allows for a reduction in variance over the periodogram through an average

of P spectral estimates. A reduction in variance is important because it allows a lower

detection threshold to be set for a given Pfa. In order for the variance to be reduced by

an approximate factor of 1/P , the spectral estimates need to be pairwise uncorrelated

with each other. For this to be possible the tapers need to be orthogonal. The DPSS

tapers fulfill this requirement. They are characterised by the half-bandwidth parameter

Wh and the number of discrete points in the sequence N .

The DPSS tapers can be found from the direct solution of Eq (4.2.6) for eigenvectors

w0(N,Wh),w1(N,Wh), . . . ,wP−1(N,Wh) subject to the constraints that:

• they are normalised:
∑N−1

n=0 wp(n)
2 = 1 (along with the orthogonality condition

this makes them orthonormal);

• the even-order tapers have a positive average:
∑N−1

n=0 wp(n) > 0;

• the odd-order tapers start with a positive lobe:
∑N−1

n=0 (N − 1− 2n)wp(n) > 0.

However direct solution of Eq (4.2.6) is non-trivial. For example if a mathematical

software tool is used numerical precision needs to be carefully monitored and the rate

of convergence to a solution for the higher-order eigenvalues can be slow.

In [128], an alternative method for the calculation of the DPSS tapers is suggested

which utilises numerical integration. However this method can also suffer from precision

difficulties. A third method from [132] involves the use of a tridiagonal matrix from

which it is possible to solve for only the required eigenvectors. This is generally the

method that is used to find the DPSS taper coefficients in modern software tools.

Regardless of the method used to find the tapers it would be far too demanding for a

real-life DRx in an ESM system to calculate the DPSS tapers to use for every DCW.

A more feasible scheme would involve pre-computation of the DPSS tapers for a va-

riety of N and Wh parameters and store the results in a look-up table (LUT). The

storage requirements would be predictable because values for the N parameter would

be chosen as the values which the FFT core in the DRx can assume, for example

NFFT = 64, 128, 256, 512, 1024, 2048. Likewise the Wh parameter would be chosen as a

consequence of the operational environment in which the DRx is likely exist and what

signals it may be required to intercept.

4.2.6 Sine Tapers

There are 2 practical disadvantages involved with the MTM when DPSS tapers are

used:
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1. The DPSS tapers are required to be calculated for each combination of the pa-

rameters N and Wh.

2. Each DPSS taper requires an FFT operation.

For large numbers of tapers, these two points create a significant computational burden.

The first point can be mitigated in a real-life DRx through precalculation of the tapers

for all possible combinations of N and Wh which the DRx may encounter.

There exists a lesser-known MTM which can overcome the problem stated in the second

point. This MTM utilises sine tapers which have a sparse representation in the

frequency-domain. Therefore in a similar fashion to SVA, the sine tapers can be applied

in the frequency-domain via convolution for a relatively small computational cost.

Therefore only one FFT operation per DCW is necessary. The sine tapers briefly

feature in [133], but its unique advantages over the DPSS tapers are not explored.

Additionally, the only reference to the use of the sine tapers in the field of radar and

EW is [134]. Although useful, this analysis of radar signals with the use of the sine taper

MTM does not utilise the sparse frequency-domain representation of the sine tapers

nor mention the other important property of the sine taper MTM in that different

frequency bins can have different numbers of tapers. These advantages are explored in

chapter 5.

The sine tapers were originally formulated in [129] in order to produce tapers which

create a minimum in “local bias” within the bandwidth of interest [−Wh,Wh] rad/π at

the expense of slightly greater spectral leakage than the DPSS tapers. The fortunate

property of the sine tapers is that they have an analytical expression and do not require

calculation from eigenvalue decomposition unlike the DPSS tapers. The time-domain

equation for the orthogonal set of P normalised sine tapers is given by1

wp(n) =

√

2

N
sin

(

π(p+ 1)n

N

)

, n = 0, 1, . . . , N − 1 (4.2.7)

The prefactor at the front of the right-hand side of Eq (4.2.7) normalises the sine

tapers. In the frequency-domain the sine tapers have the response

Wp(k) = δ

(

k + p

2

)

− δ

(

k − p

2

)

, k = 0, 1, 2, . . . , NFFT − 1 (4.2.8)

Therefore if a DCW is twice-zeropadded, rectangular-windowed and an FFT applied,

it is possible to apply as many or as few sine tapers as desired at each frequency

bin in the frequency-domain via a two point circular convolution. For example if the

1Often N +1 and n = 1, 2, . . . , N are used in the definition of the sine tapers to: (1) avoid window
functions with zero valued samples (which throw away samples for little apparent gain), (2) make the
odd-order windows symmetric and (3) give the even-order windows a 180° rotational symmetry. To
recover these definitions replace N with N+1 and adjust the indices n and k in Eqs (4.2.7) and (4.2.8)
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eigenspectrum from the zeroth-order sine taper was desired then a length NFFT = 2N

FFT would be performed on a rectangular-windowed DCW and each frequency bin

would be replaced by the complex difference between its neighbour to the left and

its neighbour to the right. The magnitude-squared would be calculated to create the

eigenspectrum. The first four orders of sine tapers characterised by N = 128 sample

points are shown in Fig 4.2.7. The left-hand column, (a), shows the time-domain

representation of the sine tapers and the right-hand column, (b), shows the imaginary

part of the corresponding frequency-domain representation. The frequency-domain

representation has been shifted so that the DC term is in the centre of the plot and the

index k has been renumbered from k = 0, 1, . . . , NFFT−1 to k = −NFFT/2,−NFFT/2+

1, . . . , NFFT/2− 1.
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Figure 4.2.7 Sine tapers for first four orders in:
(a) time-domain; (b) frequency-domain

As before in Eq (4.2.1), eigenspectra Ŝ
(MTM)
p,xx (k) are averaged to get the full MTM

spectral estimate:

Ŝ(MTM)
xx (k) =

1

2P

P−1
∑

p=0

∣

∣

∣

∣

X

(

k + p

2

)

−X

(

k − p

2

)∣

∣

∣

∣

2

(4.2.9)

The minimum bias property of the sine tapers is a little more obvious from Eq (4.2.9) as

the frequency sidelobe from X
(

k+p
2

)

cancels with the sidelobe of X
(

k−p
2

)

as described

in [129].
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There are two important points to draw from the use of the sine tapers for practical

applications in real-life detectors:

1. As the tapers are applied in the frequency-domain via convolution, only one FFT

on a twice-zeropadded, rectangular-windowed DCW is required to be calculated.

2. It is optional to execute the convolution at every frequency bin. If desired, only

the bins of interest can have as many or as few tapers applied to them.

These points provide opportunities for computational savings in a real-life DRx which

utilises the sine taper MTM. The second point in particular highlights the flexibility

of the sine taper MTM in that the DPSS MTM is for fixed bandwidth estimation

only but different numbers of sine tapers can be used at different bins in the same

spectral estimate. This is because the DPSS tapers are functions of the half-bandwidth

parameter Wh whereas the sine tapers are not.

The possibility of using a variable number of tapers in the frequency-domain and hence

a variable resolution and error across frequency was exploited in the original formulation

of the sine tapers in [129]. In the reference, the optimal number of tapers, in the sense

of minimisation of the local loss (within [−Wh,Wh]), was found to be

Popt ∼
[

12Sxx(k)N
2

S ′′
xx(k)

]2/5

(4.2.10)

Equation (4.2.10) states that fewer tapers should be used when the true spectrum varies

rapidly from bin to bin. In a real-life DRx, the true discrete PSD (Sxx(k)) and its second

derivative (Sxx
′′(k)) would both be unknown and therefore direct use of Eq (4.2.10)

would not be possible. However a spectral estimate with a variable number of tapers

in the frequency-domain can be achieved by performing a mean square error (MSE)

adaptive estimation. This entails: (1) a pilot spectral estimate with an appropriately

low number of tapers Ŝ
(MTM)
xx (k), (2) estimation of Sxx

′′(k) and (3) utilisation of a form

of Eq (4.2.10). This would provide an estimate of the optimum number of tapers at

each bin, which in turn provides an updated estimate of Sxx(k), from which Sxx
′′(k)

can be estimated to insert back into Eq (4.2.10). The process is iterated several times

to converge on a solution for the optimal number of tapers Popt and hence a good

estimation of the true discrete PSD (Sxx(k)).

Where the adaptive sine taper MTM has been used in this work, the estimation of

S ′′(k) has followed a similar procedure to that in [135]. This involves a quadratic fit

to lnSxx(k) and rather than the estimation of |Sxx(k)/S
′′
xx(k)|, the use of

1

Y ′′(k) + Y ′(k)2
, where Y (k) = lnSxx(k)

In this work, some approximation of the algorithm has been used to:
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1. provide an upper limit on the number of tapers so that the time-bandwidth

product does not exceed (N/2− 1);

2. overcome points where Sxx
′′(k) vanishes (which is fairly common in most spectra);

3. manage the growth of the number of tapers so that frequency intervals are not

engulfed by neighbour frequency intervals.

All of the same conclusions with respect to the MTM but not specific to the DPSS

tapers hold. These include that for an AWGN input, the output from the uniformly-

averaged sine taper MTM follows a chi-square distribution and eigenspectra within the

MTM spectral estimate can be individually weighted. In [129] parabolic weights for

the eigenspectra are proposed as the preferred weight scheme for the subject matter

(nuclear physics) in order to decrease the weights smoothly down to zero.

An example comparison of the adaptive sine taper MTM against uniformly-weighted

eigenspectra and parabolically-weighted eigenspectra is shown in Fig 4.2.8. The use of

the parabolic weight scheme tends to results in more tapers at each frequency bin in

the adaptive algorithm.
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Figure 4.2.8 Spectral estimates of same DCW with use of: (a) periodogram, modified
periodogram and SVA; (b) DPSS MTM variants; (c) sine taper MTM variants

The sine tapers are more convenient to calculate and manipulate than the DPSS tapers

and according to [108], DPSS tapers are relevant only for nearly white signals. However

in [136] the sine tapers are not recommended for use on processes which have highly
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coloured background noise or involve a very large dynamic range due to the inferior

spectral leakage properties of the sine tapers over the DPSS tapers.

An example of spectral estimates from different MTMs is given in Fig 4.2.8. Also

included for comparison are two conventional spectral analysis techniques and SVA in

panel (a). The conventional spectral analysis techniques are simply formed from the

rectangular-windowed and Hann-windowed FFT, in other words, the periodogram and

modified periodogram respectively.

To create the spectral estimates a particular test vector was used to form a length

N = 256 DCW. This test vector consisted of four signals and an AWGN background.

The signal parameters are listed in Table 4.2.1. All the signals were created so that they

were present throughout the duration of the DCW. The signals were chosen such that

Ssig1 and Ssig2 were relatively strong and close together in frequency, Ssig3 was relatively

weak and further apart from the Ssig1 and Ssig2 group and Ssig4 was broader-band. The

length of FFT used in all the estimates was NFFT = 512.

Signal 1: Type Sinusoid (Ssig1)
SNRout 20 dB
Frequency 0.2278 rad/π
Initial phase 0.9950 rad

Signal 2: Type Sinusoid (Ssig2)
SNRout 20 dB
Frequency 0.2587 rad/π
Initial phase 5.2842 rad

Signal 3: Type Sinusoid (Ssig3)
SNRout 12 dB
Frequency 0.3954 rad/π
Initial phase 4.9574 rad

Signal 4: Type Pseudo-noise (Ssig4)
SNRout 15 dB
Target centre frequency 0.7972 rad/π
Initial phase 5.680 rad
Chip-rate 0.0287 rad/π

Table 4.2.1 MTM test vector parameters

In panel (a) the large variance of the periodogram, modified periodogram and SVA

technique are clearly visible as the estimate is extremely jagged. The peaks of the

sinusoidal signals (Ssig1,Ssig2 and Ssig3) are apparent but Ssig4 is over-resolved as it is

not clear if it is broader band than the sinusoids. There are also many other peaks due

to the AWGN background which would be erroneously marked as additional detections

in a detector which relied on these estimation techniques. Also of note in panel (a)
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is the spectral leakage between the peaks of Ssig1 and Ssig2 for the periodogram. The

modified periodogram and SVA-periodogram do not suffer from this spectral leakage.

In panel (b), the DPSS MTMs were estimated with the use of tapers calculated for

NWh = 4,Wh = 0.0156 rad/π, i.e. with the use of 2NWh − 1 = 7 tapers (the eighth

taper was dropped). This was close to but not an exact match to the half bandwidth

of Ssig4 (Wh,sig4 = 0.0143 rad/π). In reality, the NWh parameter must be estimated

according to a heuristic or automatic approach. The heuristic approach is used for

the MTMs in this thesis for computational efficiency reasons, however automatic ap-

proaches such as described in [137] could be used.

There is very little difference between the DPSS MTM spectral estimates. The four

largest humps correspond to the four signals. The resolution of the DPSS MTM of

P/N rad/π is also noticeable as the sinusoidal peaks appear flat-topped. There are

additional peaks but these are far fewer in number than in panel (a) as the variance is

reduced by approximately ∼ σ2/7, which causes the appearance of the noise floor to

be much flatter.

With the use of P = 7 tapers in the fixed NWh sine taper MTM spectral estimate, the

differences between the DPSS taper MTMs and the sine taper MTM is evident. Use of

the sine taper MTM results in spectral peaks which are more rounded (smaller bias to

the actual spectral peak shape) and the spectral estimate appears smoother. As with

the DPSS MTM, the four largest humps in the sine taper MTMs correspond to the

actual four signals and the noise floor is fairly flat.

The variable NWh sine taper MTMs result in sharper spectral peaks of Ssig1 and Ssig2 as

fewer tapers are used around those points. Of the sine taper MTMs, the method which

uniformly-weighted the eigenspectra appears to work best as it better preserves the

peaks of Ssig3 and Ssig4. The parabolic weight scheme appears to smooth the spectral

estimate too much away from Ssig1 and Ssig2.

4.3 Smoothed Periodogram

In section 4.2 the sine taper MTM is highlighted as a computationally efficient flavour

of the MTM. It was declared in section 4 that the periodogram smoothing method

is also a computationally simple technique to obtain a spectral estimate with a lower

variance than that of the periodogram. Hence some consideration is given to it in this

section so that its use in a detector can be compared against a detector which employs

a MTM.

For completeness the WOSA method has been discounted as a spectral estimator for

two reasons: (1) the actual target signal duration is assumed unknown and subdividing

the DCW into smaller segments may worsen the spectral estimate and (2) the variance

reduction is not proportional to the number of segments being averaged due to the
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correlation between noise in overlapped samples.

Periodogram smoothing has its origins with the Blackman-Tukey method. In ac-

cordance with the Wiener-Khinchin theorem, the true PSD is given by the Fourier

transform of the autocorrelation function. However in a real-life DRx the autocorrela-

tion function is approximated by the sample (biased) autocorrelation R̂xx(l) given in

Eq (4.1.2). Unfortunately the number of terms used in Eq (4.1.2) at various lags (l)

decreases as the value of |l| gets larger. Ultimately at the ends of the sample autocor-

relation only one term is used to obtain an estimated data point. This is the origin of

the large variance of the periodogram. To deal with this, the Blackman-Tukey method

(Ŝ
(BT)
xx ) deemphasises the ends of the sample autocorrelation through multiplication of

R̂xx(l) by a lag window as2

Ŝ(BT )
xx (k) =

N−1
∑

l=−(N−1)

R̂xx(l)w(l)WN
−kn, k = 0, 1, 2, . . . , NFFT − 1; (4.3.1)

n = 0, 1, 2, . . . , N − 1.

By the convolution theorem, Eq (4.3.1) in the frequency-domain is

Ŝ(SP )
xx (k) = F

{

R̂xx(k)
}

∗ F
{

w(l)
}

which upon use of the step from Eq (4.1.3) to Eq (4.1.4) yields

Ŝ(SP )
xx (k) =

1

N
|X(k)|2 ∗W (k) (4.3.2)

where W (k) is the DFT of the lag window (w(l)).

The choice of coefficients for w(l) has a direct effect on the convolution in the frequency-

domain. If suitable weights are chosen for w(l), then the convolution could be imple-

mented with the use of a simple FIR filter.

Equation (4.3.2) shows a smoothed periodogram (Ŝ
(SP)
xx ) is achieved through applica-

tion of filters of various spans to the periodogram or one of its variants such as the

modified periodogram. The simplest such filter is a moving average filter. The de-

gree of smoothness, frequency resolution and variance of the final spectral estimate

are controlled by the properties of the filter. Longer filters provide smoother spectral

estimates, whilst narrower filters provide rougher estimates. There is a balance to be

struck, for, if too long a filter is used then signal peaks may become merged, if too

short a filter is used then the detection threshold could not be lowered significantly.

Periodogram smoothing in this fashion closely resembles the sine taper MTM both

2The unbiased sample autocorrelation, R̂u(l) =
1

N−|l|

∑

N−1−|l|
n=0

x(n)x(n+l), is not used as a means

to deemphasise the end points because its use in the Wiener-Khinchin theorem results in a spectral
estimate with an even larger variance
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in terms of the mathematical equations and computational load (see Table 4.3.1).

Therefore it is better to compare the MTMs against this method than it would be to

compare the MTMs against the WOSA technique. In fact, as is shown in Table 4.3.1,

spectral smoothing in this way is even more computationally efficient than the best

MTM and is easier to implement. Therefore the comparison of detectors which use

the MTMs and periodogram smoothing is of great interest. For example, if there is

only a small advantage in the use of the MTMs over periodogram smoothing, then it

is not worth the extra effort to implement the MTM. This is the question which is

investigated in chapter 5.

One interpretation of periodogram smoothing is that it is like the power summation

of neighbour frequency ordinates and concentrates the result in the ordinate under

test. This is similar to the MTM although the actual filter shape does not resemble

a brick-wall shape as strongly as in the MTMs. As was mentioned in section 4.2.2,

the filter shape interpretation provides extra motivation for the study of the smoothed

periodogram because it is like the use of a filter whose shape is a better match to

broader-band LPI radar signals.

For a selected half bandwidth Wh ≈ 0.0352 rad/π, the equivalent average response for

various spectral estimators are shown in Fig 4.3.1. The notion would be to choose the

response to match the bandwidth of an LPI radar signal. The plot series shown in

Fig 4.3.1 were created from: (1) the sine taper MTM with uniform weights, (2) the

periodogram smoothing method with the use of a moving average filter on a twice-

zeropadded FFT, (3) the DPSS MTM with uniform weights and (4) the periodogram

smoothing method with the use of a moving average filter on a non-zeropadded FFT.

The length of the time series was N = 128 samples and for the MTMs the number

of tapers used was 2NWh − 1 = 8. The smoothed periodograms used moving average

filters of span L = 8.

The advantages and disadvantages of each spectral estimator can be extracted from

Fig 4.3.1. The cut-off frequency is related to the spectral leakage of the method,

the passband ripple is related to the local bias and the stopband attenuation is re-

lated to the broad band bias. The sine taper MTM has a similar cut-off frequency

to the smoothed periodogram methods and good broad band bias properties. The

non-zeropadded smoothed periodogram has poor local bias but reasonable broad band

bias. The zeropadded smoothed periodogram improves the passband ripple at the ex-

pense of the stopband attenuation. The DPSS MTM has the best transition rate from

passband to stopband as would be expected because the DPSS tapers offer the best

spectral leakage protection.

By smoothing a periodogram with a moving average filter, effectively a summation of

independent values is performed. Therefore the discussion on chi-square distributed



G H MacKerron, October 31, 2011 Original in Colour Chapter 4. Non-Para Estimation, 145

Normalised Frequency (rad/π)

d
B

 

 

0 0.05 0.1 0.15 0.2 0.25 0.3
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5
Sine taper MTM
ZP SP
DPSS MTM
NZP SP

Design Wh ≈ 0.0352 rad/π

Figure 4.3.1 Wh ≈ 0.0352 rad/π filter responses for different spectral estimators: (1) sine
taper MTM; (2) twice-zeropadded smoothed periodogram; (3) DPSS MTM; (4) non-
zeropadded smoothed periodogram

RVs in section 4.2.2 applies. For example, if the input to the periodogram is com-

plex AWGN, the moving average filter outputs applied to the periodogram follow the

scaled chi-square distribution from Eq (4.2.2) with 2L degrees of freedom. As with

the uniformly-weighted MTMs, this theoretical distribution is useful for the determi-

nation of detection thresholds. However the output from the smoothing filters is not

chi-square distributed if the modified periodogram or SVA periodogram are smoothed.

This is because the ordinates are not independent. An additional condition to ensure

the filter outputs follow a chi-square distribution is that the filter is required to have

uniform coefficients (like the moving average filter).

4.3.1 Tree Smoothed Periodogram

This section describes a scheme for smoothing the periodogram with a primitive filter.

The motivation to devise such a scheme is to reduce the computational load for a poten-

tial implementation of a smoothed periodogram. This is achieved through restrictions

on the filter design and hence limitations on the different possible bandwidths which

can be heuristically tested.

In this scheme, the filter span (L) is limited to two frequency bins, however this filter

can be implemented in layers such that the output from one layer is used as the input

to the next. Fewer possible bandwidths can be tested as a result in comparison to the

moving average filter periodogram smoothing method because the possible bandwidths

increase as the power of two.

With a filter span of two bins at each layer, the same filter is reused at successive layers.

Not only does this cut down on the resources required in an implementation, but the

previous layer results form the summation for the next layer. Additionally with a filter



G H MacKerron, October 31, 2011 Original in Colour Chapter 4. Non-Para Estimation, 146

span of two there are further computational savings because the normalisation of the

summation by 1/2 can be implemented with fixed-point barrel shifts.

The reuse of the results from the previous layer is the reason for the name tree

smoothed periodogram (TSP). For clarity, there is no downsampling by a factor

of two after each layer. A comparison of the smoothing filter methodologies is shown

in Fig 4.3.2. Panel (a) illustrates the concept behind periodogram smoothing with the

use of a moving average filter. A filter is selected with a chosen span and a new value

is calculated for each frequency bin as the filter is applied across the spectral estimate.

Meanwhile panel (b) illustrates that the TSP can be composed of a multitude of filters

which average two adjacent frequency bins in a series of filters. The filters are, like the

moving average filter, applied across the periodogram to produce a new value for each

frequency bin.

Moving average filter

(a)

layers
1

2

3…

(b)

2=L12/,7,5,3, FFT −== NmmL K

Figure 4.3.2 Methodologies of: (a) smoothed periodogram with the
use of a moving average filter; (b) TSP

The loss in bandwidth resolution may not impact greatly on the performance of a

real-life detector because for the tree periodogram smoothing method the bandwidth

resolution is finer for small possible bandwidths and this is where LPI radar signals are

likely to be found in a superhet-DRx combination.

One consequence of the average of an even number of ordinates (in this case two) is the

filter output at each layer is offset by the equivalent of 0.5 × fs/NFFT and this needs

to be considered in the results.

The same conclusion with respect to the smoothed periodogram and chi-square distri-

bution also holds for the TSP, since it is simply a different way of summing ordinates.

Therefore if a periodogram of complex AWGN is calculated (as opposed to a modified

periodogram or SVA periodogram) the ordinate values follow a chi-square distribution

with 2hyp+1 degrees of freedom, where hyp is shorthand for a hypothesis layer number.

4.3.2 Complexity

In this section a brief analysis of the computational complexity of some of the sim-

plest MTMs and smoothed periodogram methods is given. The methods analysed
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are: (1) uniformly-weighted DPSS MTM, (2) uniformly-weighted sine taper MTM,

(3) smoothed periodogram with the use of a moving average filter and (4) TSP.

Table 4.3.1 displays the number of operations required for each of these methods. N

denotes the number of samples in a DCW and P denotes the number of eigenspectra

required or the number of smoothed periodograms required, each with a different test

half-bandwidth parameter Wh. Although the TSP method does not have the same

bandwidth resolution as the other methods the number of operations is given for com-

parative purposes as if it was desired to have P eigenspectra.

The number of operations is defined as the number of real additions/subtractions and

multiplies, but not trivial operations such as barrel shifts. There are amendments

required to the details in Table 4.3.1 if other methods are used. For example smoothing

a modified periodogram with a moving average filter adds N operations to the total

in the periodogram smoothing column as the length N DCW would be required to be

multiplied by a window function.

For the uniformly-weighted DPSS MTM each term in Table 4.3.1 corresponds to a

required operation. These are to:

1. multiply the DCW by P tapers;

2. perform P FFTs on the windowed-DCWs;

3. take the magnitude-squared of each FFT output;

4. sum the eigenspectra;

5. normalise the spectral estimate.

Similarly, for the uniformly-weighted sine taper MTM, the operations are to:

1. perform one twice-zeropadded FFT;

2. apply P sine tapers by convolution in the frequency-domain;

3. form the eigenspectra through the magnitude-squared of each output;

4. sum the eigenspectra.

Also, for the periodogram smoothed with a moving average filter:

1. perform an FFT;

2. take the magnitude-squared of the output;

3. filter;

4. normalise the spectral estimate.

Lastly, for the TSP:

1. perform an FFT;
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2. take the magnitude-squared of the output;

3. filter.

DPSS Sine Taper Periodogram Tree Periodogram
MTM MTM Smoothing Smoothing

PN 10N log2 (2N) 5N log2 (N) 5N log2 (N)
+5PN log2 (N) +10PN +3N +3N
+3PN +2PN +2PN +N round {log2 (P )}
+PN +2N +N
+N

Table 4.3.1 Algorithmic complexity (O(. . .)) of MTMs and periodogram smoothing meth-
ods

Table 4.3.1, for realistic N and P , in order of increasing computational complexity is:

(1) TSP; (2) smoothed periodogram (3) sine taper MTM; (4) DPSS and MTM. This

complexity was a consideration which affected the decision of which algorithm to im-

plement in fixed-point and on field-programmable gate array (FPGA) in appendices H

and I.

4.3.3 Bandwidth Hypothesis Testing

The ability of the MTMs and periodogram smoothing techniques to detect broader-

band LPI signals more successfully than basic periodogram techniques is demonstrated

in Fig 4.3.3. The picture shows how the MTMs may be used at greater and greater

hypothesis bandwidths (2Wh) or the smoothing filters may be used at greater and

greater spans (L). Around the approximate frequency and bandwidth combination of

the signal, detection is more likely.

Fig 4.3.3 was created from the accumulation of detections at all possible hypothesis

bandwidths applied to one thousand length N = 128 full DCWs. The input LPI wave-

form was a CW m-sequence signal at SNRin = −10 dB and the processing technique

utilised was the twice-zeropadded unity-weighted DPSS MTM. The signal parameters

were fT ≈ 0.36 rad/π and B ≈ 0.12 rad/π, but otherwise random. The ordinates at the

output of DPSS MTM were thresholded at the hypothesis bandwidths (Wh = [0, 0.992]

rad/π, i.e. 1–127 tapers) such that the Pfa for an AWGN input would be 1×10−6. The

thresholds were calculated from the scaled chi-square distribution (see Eq (4.2.2)). The

detections after each DCW trial were accumulated to produce the plot and are shown

to indicate the correct bandwidth and frequency, much like the clustering technique

(section 1.3). The accumulation of the detections is akin to the non-coherent BMWD

techniques described in section 1.6.

The bandwidth hypothesis tests increase the probability of detection of LPI signals

and indicate the approximate frequency and bandwidth of the signal. The left-hand

edge of Fig 4.3.3 shows that in this example no detections would be made with the
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modified periodogram which is the non-parametric technique generally used in ESM

DRxs. Similar plots can be produced for the other MTMs and periodogram smoothing

techniques. This heuristic bandwidth hypothesis testing is the premise used in the

detectors in section 5.

Figure 4.3.3 Clustering of detections with the use of frequency and
bandwidth selectivity

4.4 Conclusions

As a result of its computational efficiency and lack of assumptions, non-parametric

spectral estimation is essential for ESM systems to quickly detect threats. The MTMs

and spectral smoothing are more appropriate for the detection of broader-band LPI

radar signals than periodogram-based techniques because they can be better matched

to the signal bandwidth.

The next chapter investigates the candidate MTMs and smoothing techniques against

conventional ESM spectral detection methods.



CHAPTER 5

Floating-Point MTM &

Periodogram Smoothing

5.1 Background

The previous chapter 4.2 claims that the MTMs and periodogram smoothing methods

would be better suited to the detection of broader-band LPI radar signals, which would

normally have their signal power spread across a few periodogram ordinates, because

the equivalent average response shapes of these methods are better matched to broader-

band LPI radar waveforms. The goals of this chapter are to provide an indication that

these methods do indeed improve detector performance and to show their relative

performance. Furthermore, as these methods vary in computational complexity it was

essential to find the best candidate algorithm and balance its performance gains against

the computational load it entails.

The intention was that the best candidate algorithm would be selected and taken

further along the MBD methodology. Hence the selected simulated detector from this

chapter represented the golden reference model. All models at this stage were created

in the floating-point domain. The other candidate simulated detector models which

were not chosen as the golden reference were dropped from the MBD methodology.

This section examines the performance of various simulated detectors for their ability

to detect LPI waveforms. The detection of sinusoids was not investigated because

the MTMs and periodogram smoothing methods are less well suited to this signal

type. Rather, the conclusion from chapter 3 is that the SVA periodogram would be

a favourable method to improve detection of sinusoidal radar signals. The LPI signal

coding schemes inspected and reported in this section are:

Barker 13 Pulse This is a type of BPSK-coding which is commonly used due to the

ease of implementation. This coding scheme was previously used in simulations

in section 3.6. This falls into the category of a pseudo-noise signal.

Binary M-Sequence CW This is another type of BPSK-coding scheme which like

the Barker-13 code is easily generated. As the code sequence generated increases,

it provides an asymptotically ideal PAF with low sidelobes. As such, this coding

scheme was used as a phase code in a CW waveform. This also falls into the
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category of pseudo-noise signal.

This means one pulsed LPI waveform and one CW LPI waveform were tested. Whilst

this is not enough to prove anything conclusively, it is a start. The detection scenarios

deemed important for an ESM DRx which feature in this section are:

• full DCW

• randomly-filled DCW

• interference present in a full DCW

• randomly-filled DCW with interference present.

Suffice that the randomly-filled scenarios were not applicable for the CW waveform.

Greater detail is given on each of these scenarios later in this chapter.

The simulated algorithms, which were of interest and were employed in each of the

scenarios were:

• DPSS MTM

• sine taper MTM

• smoothed periodogram (SP)

• smoothed modified periodogram (SMP)

• smoothed SVA periodogram (SSP)

• tree smoothed periodogram (TSP)

• tree smoothed modified periodogram (TSMP)

• tree smoothed SVA periodogram (TSSP).

These candidate algorithms were expressly considered because it was conjectured they

would provide better detection capability against the LPI signals than conventional

detection techniques. Therefore some conventional algorithms were also used within

simulated detectors for comparative purposes and these were:

• OR periodogram

• OR modified periodogram

• OR SVA periodogram

• periodogram

• modified periodogram

• SVA periodogram

• total power (TP).
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The detectors (except those which used the the sine taper MTMs algorithms) were

tested with both twice-zeropadded and non-zeropadded DCWs. Chiefly, this was done

to examine if zeropadding offered any advantage in the scenarios.

The sine taper MTMs were only tested with a twice-zeropadded DCW because the for-

mulation of the sine taper MTMs utilised was the computationally-efficient frequency-

domain formulation which relied on convolution with a twice-zeropadded DFT. Twice-

zeropadding the other detectors therefore also allowed for a fair comparison with the

sine taper MTMs.

A short section on each detectors follows.

5.1.1 DPSS MTM Detector

The DPSS MTM is a function of two parameters: N and Wh. Whenever a new

combination of N and Wh is required, calculation of a new set of tapers is required

and the MTM must be performed with these tapers. In typical applications, the MTM

is only calculated with the use of a small number of small-valued time-bandwidth

products (NWh) to enjoy its benefits. The examples of [131, p. 371] demonstrate this.

An exhaustive search of all possibleN andWh combinations is seldom used. Thankfully

this is actually appropriate for the detection of LPI signals. This is because LPI

radar signals usually utilise a bandwidth of a few MHz in a large baseband bandwidth

typically in the interval [1.0, 1.75] GHz in a DRx and therefore upon an FFT the LPI

signal power is spread across only a few frequency bins.

Therefore the DPSS MTM detector searched for detections across multiple time-band-

width hypotheses. The various time-bandwidth products tested were NWh = 0.5,

1.0, 1.5, . . . , 3.5. This encompassed the actual NWhs for the test LPI signals which

were: NWh ≈ 2.73 for the Barker-13 pulse and NWh ≈ 2.90 for the m-sequence

CW waveform. A diagram of how detection decisions were made is shown Fig 5.1.1.

The diagram shows there were multiple hypotheses tested and an “OR” operation

was performed on all of the logical decisions derived from each hypothesis NWh. The

multiple hypotheses are denoted with the shorthand hyp. The probability of false

alarm was defined for the overall system rather than the probability of false alarm for

the individual hypotheses. The probability of false alarm for the individual multiple

hypotheses detectors were set to have equal individual probabilities of false alarm

(Pfa,individual) subject to the overall system Pfa = 0.01. This was followed for all of the

detectors which used multiple hypotheses.
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At each hypothesis NWh, the simulated detector, represented as a system flowchart

in Fig 5.1.2, was used. This detector architecture is called detector G1. The tapers

required calculation at each hypothesis and there were P = 2NWh tapers required at

each hypothesis. For example, at one extreme for the hypothesis of NWh = 0.5, only

one taper was used but at the other extreme of NWh = 3.5, seven tapers were used.

Only the results from the unity weight scheme are described in this work because, as

demonstrated in Fig 4.2.8, the different DPSS MTM spectral estimates do not give

noticeably different detector performances.

Although not a great concern in the floating-point simulations, each individual detector

G1 requires to calculate P FFTs in a serial manner or it would require the resources

to perform P FFTs in parallel.
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5.1.2 Sine Taper MTM Detectors

Only two of the three different sine taper MTMs are portrayed in this work: (1) the

unity-weighted sine taper MTM and (2) the adaptive sine taper MTM. The sine taper

MTMs algorithms are described in section 4.2.6.

The unity-weighted sine taper MTM was used rather than the parabolically-weighted

sine taper MTM because the parabolic weight scheme did not appear to be applicable

to the type of spectrum which an ESM DRx might encounter as it caused the detector

performance to be degraded over the use of the unity weight scheme. This is partially

evident from inspection of the spectral estimates in panel (c) of Fig 4.2.8.

The same small-valued hypothesis time-bandwidth products were tested in the unity-

weighted sine taper MTM detector as in the DPSS MTM detectors. This was NWh =

0.5, 1.0, 1.5, . . . , 3.5 and these hypotheses were indexed by hyp = 1, 2, 3, . . . , 7. The

same method of detection through the application of an OR operator to all of the

logical outcomes of the individual hypotheses was used. This is illustrated in Fig 5.1.1.

The probability of false alarm was defined for the output of the overall system.

The sine tapers have an analytical expression, which is given in Eq (4.2.7). Therefore

there was no requirement to calculate different sine tapers for different time-bandwidth

products. Furthermore the sparse frequency-domain representation of the sine tapers

was utilised by convolution in the frequency-domain. This is clear from Fig 5.1.3

where detector H1, utilises the unity-weighted sine taper MTM. In the unity-weighted

sine taper MTM, the closed-form expression for the sine tapers also meant that the

eigenspectra from previous smaller valued NWh detectors were re-used in larger valued

NWh detectors. The pattern was thus: the eigenspectra from hyp = 1 were reused

in hyp = 2, the eigenspectra from hyp = 2 were reused in hyp = 3 and so on up to

hyp = 7. The analytical sine taper expression, the use of a single FFT and the re-use

of the eigenspectra all enabled computational savings to be made over the DPSS MTM

(although this was less of a concern during floating-point simulation).

The sine taper definition in Eq (4.2.7) wastes one sample as it contains a zero-weight

coefficient, but this was found to have a negligible impact on all results for the length

of FFT tested in the simulations in this chapter. This was found through comparison

with results where the DCW length included an extra sample. Therefore the sine taper

definition used was Eq (4.2.7), albeit in the frequency-domain.

The unity-weighted sine taper MTM uses a fixed number of tapers at each frequency

bin at each hypothesis (hyp). However the adaptive sine taper MTM detector can use

as many or as few sine tapers as necessary at each frequency bin. Thus there was no

hypothesis bandwidth involved in the adaptive sine taper MTM detector. The use of

a variable number of tapers at each frequency bin has advantages as the adaptive sine

taper MTM detector is not restricted to a maximum of P tapers (instead it is limited
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to N/2 − 1). The disadvantage was that it is far more computationally intensive than

the unity-weighted sine taper MTM. A system flow diagram of the adaptive sine taper

MTM is shown in Fig 5.1.4. It is named detector I1.
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5.1.3 Smoothed Periodogram Detectors

Although the title of this section is “smoothed periodogram detectors”, this section

covers the SP detector, the SMP detector and the SSP detector because they are

closely related. The basic algorithm involved in these detectors was the calculation

of the periodogram/modified periodogram/SVA periodogram and application of odd-

valued uniformly-weighted smoothing filters of increasing span (L) up to a length limit.

Uniformly-weighted filters were used for simplicity reasons so that the operation was

simply the summation of adjacent ordinates and division by the summation length.

The periodogram (rectangular window function) includes as much signal power as

possible because it does not suffer from a window loss. The modified periodogram

(bell-shaped window function) suffers window loss but attenuates sidelobe spectral

leakage. Therefore it was expected that the SP detector would perform better than the

SMP detector in scenarios where only one signal was considered, however the situation

would be reversed in scenarios where sidelobe spectral leakage could not be ignored.

This was the justification as to why both the SP detector and SMP detector were

tested as they were expected to perform differently depending on the scenario. The

SVA periodogram approaches the processing gain of the periodogram and has good

spectral leakage minimisation like the modified periodogram. This was the rationale

for the inclusion of a SSP detector in the comparison.

The system diagram for the SP and SMP detectors is shown in Fig 5.1.5 and labelled

detector J1. In this diagram the window function block can be taken to mean either

the rectangular window function in the case of the SP detector or the Hann window

function in the case of the SMP detector. Fig 5.1.6 illustrates the system diagram for

the SSP detector, labelled as detector K1. The only change between Fig 5.1.5 and

Fig 5.1.6 is the location of the window from the time-domain to the frequency-domain.

To enable a fair comparison against the MTMs, the filter span (L) was limited to

a maximum value which was the equivalent of NWh = 3.5. Therefore for the non-

zeropadded case, this involved spans of L = 1, 3, 5, 7 and for the zeropadded case this

involved spans of L = 1, 3, 5, 7, 9, 11, 13. This corresponded to four hypotheses to test

for the presence of a signal in the non-zeropadded case and seven hypotheses to test

in the zeropadded case. The individual hypotheses test outcomes were combined to

produce a signal-present or no-signal-present declaration in an analogous way to that

shown in Fig 5.1.1, except that hyp = 4 was the maximum for the non-zeropadded

case. As with the MTMs, the probability of false alarm was defined at the output of

the overall system.

The multiple hypotheses involved the calculation of moving average filters of increasing,

although odd-numbered, spans and therefore there was no need to recalculate the entire

summation for each filter because an accumulated sum was stored and reused. For

example, from an L = 3 filter to an L = 5 filter, the sets of three ordinates which
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were summed in the L = 3 filter were stored as an accumulated total to which only

sets of two further ordinates were added for the L = 5 filter. This reuse of previous

results is symbolised in Figs 5.1.5 and 5.1.6. Although not a major concern in floating-

point simulations, the reuse of previously calculated results would enable computational

savings in a real-life DRx.
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5.1.4 Tree Smoothed Periodogram Detectors

The descriptions given in this section encompass not only the TSP detector but also

the TSMP and TSSP detectors. These detectors are grouped together because the

differences between them are trivial. The fundamental processes which took place

in these detectors were to calculate either: (1) the periodogram or (2) the modified

periodogram or (3) the SVA periodogram. The neighbour ordinates of these spectral

estimates were averaged in increasing powers of two up to a limit. The tree smoothed

detectors are thus a special case of the moving average filter detectors as the spans are

restricted to powers of two. For clarity no special weight scheme was applied to the

ordinates prior to the average to maintain simplicity.

The motivation for the calculation of averages in increasing powers of two was that the

results from a previous “layer” could be reused in the subsequent “layer”. For example,

if sets of two ordinates are averaged in the first layer, then the results from this could

be used in the formulation of the sets of averages of four ordinates. This would provide

great computational savings for a real-life DRx.

The restriction of the filter span to powers of two caused the number of hypothesis

bandwidths which could be tested to be curtailed. For example, a hypothesis band-

width which is the equivalent of three ordinates could not be tested. This loss in

bandwidth test accuracy becomes coarser as the bandwidth increases. However for the

DRx parameters given in Table 5.2.2 most LPI signals would span only a handful of

frequency bins where the loss in bandwidth test accuracy is not so severe. Therefore

the loss in detector performance was conjectured to be tolerable when traded against

the computational savings.

For the same reasons given in section 5.1.3, the use of a rectangular window function,

Hann window function and SVA was explored in the periodogram tree-like smoothing

detectors. The names given to these detectors were: (1) the TSP detector; (2) the

TSMP detector and (3) the TSSP detector respectively.

It was expected that the TSP detector would perform well in scenarios where spectral

leakage is not a problem whilst the TSMP detector would perform well in scenarios

where spectral leakage could not be ignored and the TSSP detector would perform well

in both of these scenarios. The TSP and TSMP detectors are shown at the system

level in Fig 5.1.7. The detector in Fig 5.1.7 is labelled detector L1. The choice of

the window function used in Fig 5.1.7 was either a rectangular window function or

Hann window function, depending on whether detector L1 operated as a TSP detector

or TSMP detector. Likewise, the TSSP detector is described at a system level in

Fig 5.1.8. The detector in Fig 5.1.8 is labelled as detector M1. The only change

from detector L1 to detector M1 is the location of the window. In detector L1 it is

in the time-domain and in detector M1 it is in the frequency-domain. In Figs 5.1.7

and 5.1.8 the simple periodogram-based spectral estimation is perceptible as the Ŝ(k)
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estimate formed after the magnitude-square operation. The smoothing in a tree-like

architecture is represented in the diagram with the subsequent operations. The loop

and the sigma symbol show the tree smoothed spectral estimate results in one layer

are accumulated and reused to produce the next tree smoothed spectral estimate for

the next layer. The >> symbol represents a barrel shift (hyp− 1) places to the right

(i.e. division by 2hyp−1). The layers are labelled with the index hyp.

To compare the tree smoothed detectors with the other detectors, four different band-

width hypotheses were tested in the non-zeropadded case hyp = 1, 2, 3, 4 and five

hypotheses in the zeropadded case hy = 1, 2, 3, 4, 5. This was the equivalent of moving

average filters of spans L = 1, 2, 4, 8 in the non-zeropadded case and L = 1, 2, 4, 8, 16

in the zeropadded case. In terms of the hypotheses time-bandwidths being tested,

this corresponded to NWh = 0.5, 1.0, 2.0, 4.0 in the non-zeropadded case and NWh =

0.5, 1.0, 2.0, 4.0, 8.0 in the zeropadded case. The individual hypothesis bandwidths were

tested for the presence of signals and the multiple hypotheses were combined into a

single signal-present or no signal-present declaration in exactly the same manner as in

Fig 5.1.1.
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5.1.5 OR Periodogram Detectors

This is the first of the descriptions about the conventional detection techniques which

were used for comparative purposes. The title of this section is “OR periodogram

detectors” but the explanations cover the OR periodogram detector, OR modified pe-

riodogram detector and OR SVA periodogram detector. As a conventional detection

technique, the processes involved in these detectors were fairly basic. Essentially the

periodogram, modified periodogram or SVA periodogram were calculated and the or-

dinates within the bandwidth of interest were checked against a threshold to determine

if a signal was present. This detection mechanism was already used in the detection of

the Barker 13 signal in the SVA chapter in section 3.6.

These detectors represent the best detection procedure which could be achieved in a

conventional FFT-based DRx as part of an ESM system. In fact these detectors may be

considered to be generous to conventional DRx processes because in a real-life situation

the bandwidth of a target signal is initially unknown and if there were detections

encountered in a few adjacent ordinates it would be difficult for a conventional DRx

to decide if these were due to many closely-spaced in frequency, individual sinusoidal

signals or a broader band signal. The purpose of the OR detectors was to provide

a best possible case benchmark against which the MTM detectors and periodogram

(tree) smoothing detectors could be compared.

In this scenario the number of ordinates that were checked for the presence of LPI

signals was seven in the non-zeropadded DCW case and thirteen in the zeropadded

DCW case. This was done so that these detectors could be fairly compared against

the MTM detectors and the periodogram (tree) smoothing detectors which searched

up to a maximum hypothesis time-bandwidth of NWh = 3.5. The ordinates checked

were centred around the target frequency of the LPI signal.

The same arguments apply from the previous two sections as to why the periodogram,

modified periodogram and SVA periodogram were chosen as the fundamental opera-

tions in the detectors. A representation of the OR periodogram and OR modified peri-

odogram detectors is given in Fig 5.1.9 and labelled as detector N1. In Fig 5.1.9 the

window function block is a rectangular window function for the OR periodogram detec-

tor and a Hann window function for the OR modified periodogram detector. The block

which shows the indices selected from the spectral estimate,
[

Ŝxx(k − P ), Ŝxx(k + P )
]

,

indicates that seven ordinates were checked in the non-zeropadded case and thirteen

ordinates were checked in the zeropadded case. All of the ordinates were checked

against the same fixed threshold to produce seven or thirteen Boolean values depend-

ing on whether the DCW was non-zeropadded or zeropadded. The Boolean values were

then short-circuited by an OR operation into one signal-present or no signal-present

decision.

The system level diagram of the OR SVA periodogram detector is given in Fig 5.1.10
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and is labelled as detector O1. The difference which detector O1 exhibits in compar-

ison to detector N1 is that the window is in the frequency-domain.
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5.1.6 Periodogram Detectors

Detectors A1, B1, C1 and E1 from the SVA chapter were also reused in the simulations

in this chapter as additional benchmarks.

Both the periodogram-based detector and modified periodogram-based detector were

tested as variations of detectors A1 and C1. To produce a periodogram detector, a

rectangular window function was chosen for the window function block in Fig 3.2.3 and

to produce a modified periodogram, a Hann window function was chosen for the window

function block. The SVA periodogram was tested with the use of detector B1 and E1

models. These detectors are grouped under the category “periodogram detectors”. As

with the periodogram smoothing detectors and the OR periodogram detectors, the

Hann window function, rectangular window function and SVA were chosen as window

techniques for simulation to link to the SVA chapter and its conclusions.

The periodogram detectors differed from the OR periodogram detectors in that only

the ordinate of the LPI signal target frequency was checked for the presence of a

signal. This type of architecture more closely resembles real-life DRx decision logic

which traditionally searches for the presence of narrow band sinusoidal signals and

was therefore a more realistic benchmark against which the MTM and periodogram

smoothing methods were tested. As a consequence there were no bandwidth hypotheses

involved in these detectors.

5.1.7 Total Power Detector

The final conventional detector model which was used to provide another benchmark

was the total power detector. This was selected as another benchmark because the

total power methodology is used in older conventional ESM systems (see chapter 1.3).

In older systems the envelope or square of the envelope of an analogue DCW was

thresholded, typically with an integrator circuit. However the digital equivalent of

the square of the envelope was modelled in these total power detectors through the

summation of the magnitude-squared of the complex samples from a DCW (i.e. square-

law detection). The total power was calculated in the time-domain. This is indicated

in Fig 5.1.11.

The summation of the magnitude-squared of the complex samples in a DCW produced

a single decision statistic therefore there were no bandwidth hypotheses to be tested

in the total power detectors.

The decision statistic obtained was tested against a fixed threshold to make the decision

whether a signal was present or not. This fixed threshold was set at a level such that

the probability of false alarm was Pfa = 0.01. To find such a Pfa in the full DCW

scenario, the formula for the PDF of the sum of N independent, normally distributed
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RVs was used. This is given by

f(x;N) =
1

2Nσ2NΓ (N)
xN−1 exp

(

− x

2σ2

)

Pos{x>0} (5.1.1)

The derivation of Eq (5.1.1) is described in [3, p. 294–295]. The PDF expression

in Eq (5.1.1) is similar to that of Eq (4.2.2). The main difference between the two

expressions is that the PDF in Eq (4.2.2) is for the summation of P independent,

standardised, normal RVs whereas the PDF in Eq (5.1.1) is for the summation of N

independent, normal RVs.

There are similarities between the total power detector and the SP detector or TSP

detector because they are both summations of RVs. The main difference between the

total power detector and the SP detector or TSP detector is that the SP or TSP

truncate the summation at a much lower number of ordinates and test the decision

statistic after each term is added to the accumulated sum.
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Figure 5.1.11 Detector P1 for single signal scenarios
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5.1.8 Detectors Summary

A summary of the algorithms and corresponding detectors used in this chapter is shown

in Table 5.1.1.

Detector Algorithm Notation

A1
Periodogram (single sig) P

Modified periodogram (single sig) MP

B1 SVA periodogram (single sig) SVA P

C1
Periodogram P

Modified periodogram MP

E1 SVA periodogram SVA P

G1 Unity-weighted DPSS MTM DPSS MTM

H1 Unity-weighted sine taper MTM Sine MTM

I1 Adaptive sine taper MTM Sine MTM adapt

J1
Smoothed periodogram (single sig) SP

Smoothed modified periodogram (single sig) SMP

K1 Smoothed SVA periodogram SSP

L1
tree smoothed periodogram (single sig) TSP

tree smoothed modified periodogram (single sig) TSMP

M1 tree smoothed SVA periodogram TSSP

N1
OR periodogram (single sig) OR P

OR modified periodogram (single sig) OR MP

O1 OR SVA periodogram OR SVA P

P1 total power TP

Q1
smoothed periodogram SP

smoothed modified periodogram SMP

R1
tree smoothed periodogram TSP

tree smoothed modified periodogram TSMP

S1
OR periodogram OR P

OR modified periodogram OR MP

Table 5.1.1 Conventional, MTM & periodogram smoothing detectors
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5.2 Full DCW

5.2.1 Scenario and Simulation Description

The detectors in this scenario searched for the presence of signals against a background

of AWGN. As indicated above, the signals tested were LPI and used the coding schemes:

Barker-13 and m-sequence. The coding was applied to a sinusoidal carrier using phase

shifts. Where phase changes between 0 and π occurred they were implemented over a

very short although finite time interval (∼ 5% of the chip interval).

The sinusoidal carrier was actually a complex exponential with an unknown target

frequency (fT ) and unknown initial phase (φ0). In a similar fashion to the simula-

tions from chapter 3, the sinusoidal carrier frequency was chosen at random from a

frequency bin interval (fs/NFFT) at the start of each test run. This concept is illus-

trated in Fig 5.2.1 for the Barker-13 pulse. Panels (b) and (c) illustrate that the whole

approximate bandwidth shifted up or down in frequency along with the centre target

frequency. A similar picture would occur for the m-sequence CW signal but it would

show a slightly wider approximate bandwidth.

Barker-13 Pulse: chip-rate 4MHz
pulse width 3.25 µs
PRF 50 kHz
IF cycles/chip ∼ 79

M-Sequence CW: chip-rate 4.25MHz
compression ratio 255 : 1
IF cycles/chip ∼ 75

Table 5.2.1 LPI Waveform parameters

In the case of the Barker-13 MOP, the signals were created as a series of pulses and each

pulse was individually coded with the phase code scheme. In the case of the m-sequence

code, the signal was created as a CW waveform, where periods of the waveform were

coded with the phase code scheme. The parameters of the LPI waveforms used are

given in Table 5.2.1.

In this scenario, the DCWs which were tested for the presence of a signal at each

test iteration were full of signal instantaneous power, or in other words, each sample

contained a power contribution from the signal. This is always true for CW signals.

For the Barker-13 pulses, the full DCW scenario was important because typically an

ESM DRx DCW duration is much less than the duration of a signal pulse. Therefore

when typical parameters were applied in the Barker-13 simulations it was possible to

always find a DCW which was full of signal power. The typical DRx parameters which

were used in this scenario are listed in Table 5.2.2. Despite a relatively long DCW and
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Figure 5.2.1 Monitored bandwidth where
the Barker-13 target frequency: (a) coincides
with central monitored bin; (b) is offset by
+fs/NFFT; (c) is offset by −fs/NFFT

application in a non-overlapped fashion, the DCW duration was still much less than

the Barker-13 pulse duration.

In the test procedure it was necessary to simulate that it would be unlikely in real-life for

the DCW start times and Barker-13 pulses or m-sequence periods to be synchronised.

Therefore a random portion of the pulse or CW was captured in the DCW. For the

Barker-13 pulses this entailed the obvious caveat that the DCW was full of signal

power. This was arranged such that the pulse did not start after the start time of the

DCW nor did it finish before the end time of the DCW. A diagram of how this was

achieved is shown in Fig 3.6.2 in section 3.6.

A similar definition of random target frequency to that in Fig 3.2.2 was used. However

the difference between here and the simulations from chapter 3 was that the LPI signals

were broader-band. Fig 5.2.1 shows how the random choice of fT at the start of each

test could shift the whole bandwidth up or down in frequency. Panel (a) shows the

ideal case where fT happened to be coincident on the frequency bin of interest. Panel
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(b) and (c) show the two extreme cases where fT is offset by the equivalent of plus

or minus half a frequency bin. The broader band nature of the LPI signals required

information from the frequency bin of interest and a number of its neighbours to be

processed. The detectors themselves processed the frequency bins in different ways in

order to make detections.

DRx: sampling rate [1.0, 1.75] GHz
sampling period [571, 1000] ps
DCW length 2048 samples
FFT mode complex
DCW overlap 0 samples
non-zeropadded frequency bin width [488, 855] kHz
DCW period [1.17, 2.05] µs

Table 5.2.2 DRx parameters

Empirical probabilities of detection (Pd) were found with the same procedure detailed

in chapter 3, in that 1× 105 trials per ROC data point were analysed by the detectors.

The thresholds for all detectors were selected from earlier Pfa against Pd simulations

such that they gave Pfa = 0.01.

The variable which was altered to produce the ROC curve results was SNRout. As

before in chapter 3, SNRout referred to the SNR after the FFT block and therefore was

independent of the FFT length and its processing gain.

5.2.2 Results and Discussion

ROC curves were obtained for the algorithms of specific interest. These were results

based on the detectors::

• DPSS MTM (detector G1);

• sine taper MTM (detector H1);

• adaptive sine taper MTM (detector I1);

• SP (detector J1 variant);

• SMP (detector J1 variant);

• SSP (detector K1);

• TSP (detector L1 variant);

• TSMP (detector L1 variant);

• TSSP (detector M1).

However for clarity only the detectors with the best performance and one of the worst

performances are shown in the figures. Fig 5.2.2 displays the results for the Barker-13
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pulse input whilst Fig 5.2.3 displays the results for the m-sequence CW input

Panels (a) of Fig 5.2.2 and 5.2.3 display the results from the non-zeropadded case and

panels (b) from each figure show the results from the twice-zeropadded case (results for

detectors that employed one of the sine taper MTM can only be included only in (b)

panels because the frequency-domain interpretation of the sine taper MTM was used

in detectors H1 and I1 and this by its nature involved a twice zeropadded FFT).
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Figure 5.2.2 ROC curves of SNRout against Pd for Barker-13 input and LPI detectors:
(a) the non-zeropadded case; (b) the zeropadded case

In the results obtained and in the figures it is immediate from panel (a) to panel

(b) that a twice-zeropadded DCW provided a negligible increase in performance for

the detectors where this was an option. This result is significant because if there is

no major advantage to be gained from a twice-zeropadded DCW in a DRx then the

computational cost of its implementation would outweigh its benefits. From the full

DCW scenario evidence in Figs 5.2.2 and 5.2.3 it would appear that to zeropad affords

no improvement in detector ability to find LPI signals.

The results obtained showed two groups of detectors, separated by ∼ 1.5 dB, with

similar performances. This is also evident across Figs 5.2.2 and 5.2.3. The group of

detectors with the poorer performances were derived from the modified periodogram

(detectors J1 and L1 variants). The reason the detectors based on the modified peri-

odogram did not perform so well as the other detectors was due to the window loss.

This mirrors the conclusions drawn from the results obtained in the floating-point SVA

section 3.2 for the full DCW scenario.
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Figure 5.2.3 ROC curves of SNRout against Pd for m-sequence input and LPI detectors:
(a) the non-zeropadded case; (b) the zeropadded case

All the other detectors of interest belonged in the group with the better performance.

In the (b) panels, the adaptive sine taper MTM (detector I1) and sine taper MTM

(detector H1) had the best performances (ROC curves on top of each other, but only

adaptive sine taper MTM shown in panels (b) Figs 5.2.2 and 5.2.3). In the (a) panels the

smoothed periodogram (detector J1 variant) and tree smoothed periodogram (detector

L1 variant) had the best performances (again, ROC curves on top of each other so only

smoothed periodogram shown in Figs 5.2.2 and 5.2.3). However this was by a very

small margin (∼ 0.5 dB).

The explanation for the ∼ 0.5 dB degradation in performance of detector G1 in com-

parison to the other MTM detectors (H1 and I1) is because the sine taper MTM is a

minimum bias method whereas the DPSS MTM is concerned with the minimisation

of spectral leakage. Since spectral leakage is of no concern in this single signal present

scenario, the sine taper MTMs were better suited to the detection process.

The results across Figs 5.2.2 and 5.2.3 were similar because in this full DCW scenario

they both appear as BPSK-coded waveforms with only slightly different chip-rates and

hence slightly different NWh products. This manifests itself as only slight changes to

the ROC curve patterns between Figs 5.2.2 and 5.2.3.

The results obtained from the conventional detection algorithms demonstrated the dan-

gers of simple reliance on the modified periodogram (detector A1 variant), periodogram
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(detector A1 variant), total power (detector P1) or even the SVA periodogram (detec-

tor B1) for detection of an LPI signal from an FFT output where the equivalent filter

bandwidths are less than the LPI signal bandwidth. These techniques, except the SVA

periodogram, are all well-established techniques for use in DRxs. Therefore the results

indicated that simple thresholds on individual ordinates, which is the norm in many

detectors, is a poor method for the detection of LPI signals whose power is spread-out

across frequency space. As extracted results, the periodogram (detector A1 variant)

and total power (detector P1) are shown in Figs 5.2.4 and 5.2.5 alongside the best

performance conventional detector (OR periodogram, detector N1).
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Figure 5.2.4 ROC curves of SNRout against Pd for Barker-13 input and conventional de-
tectors: (a) the non-zeropadded case; (b) the zeropadded case

The performance of detector P1 which was based on the total power contained within

a DCW did not change across the two different signal types. This was because the

total signal power in the DCWs did not change with modulation type in the full DCW

scenario.

Another point was that the use of a twice-zeropadded DCW (similar to the findings

from the algorithms of interest) did not make a significant difference to the performance

of the conventional detectors against LPI signals.

The SVA periodogram (detector B1) performed particularly poorly against the Barker-

13 pulse. In general, this is because the SVA technique is ideally suited to narrowband

sinusoidal signal detection. However the detector performance of the SVA periodogram
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Figure 5.2.5 ROC curves of SNRout against Pd for m-sequence input and conventional
detectors: (a) the non-zeropadded case; (b) the zeropadded case

in addition to the periodogram and modified periodogram all improved once the detec-

tion logic included an OR operation between the monitored ordinates for the presence

of the LPI signal. This is precisely how the Barker-13 pulse was detected in section 3.6.

The improvement in performance with OR gates is illustrated in Figs 5.2.4 and 5.2.5 by

the jump from the periodogram to the best detector from the conventional technique,

i.e. the OR periodogram (detector N1).

Despite the use of an OR operation, detectors N1 and O1 did not perform as well as

the detectors based on the MTMs or the best smoothing detectors. Their detector

performance was found to be ∼ 1.5 dB poorer. The conclusion from this result was

that most of the algorithms of interest (except for the SMP and TSMP) were better

than the best conventional detection techniques in the full DCW scenario.
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5.3 Randomly-filled DCW

5.3.1 Scenario and Simulation Description

For this scenario, the simulations were designed to use the same Monte Carlo framework

as the previous full DCW scenario. Within the framework, the signal characteristics,

noise characteristics and detectors were the same. The only change was that the full

DCW constraint was relaxed. In this scenario the effect on detector performances of

the interception of a random part of the Barker-13 LPI pulse was studied.

Although the duration of the test Barker-13 pulse from Table 5.2.1 was longer than the

design DCW from Table 5.2.2, there could conceivably be cases where only the leading

or trailing part of the pulse would be captured by a superhet and DRx combination.

Therefore in this scenario a random portion of the Barker-13 pulse was captured in

the same detectors from the full DCW scenario in section 5.2. The constraint on this

randomly-filled DCW scenario was that a DCW would contain at least one sample

with a contribution from the signal power. This concept is illustrated in Fig 5.3.1.

1 sample
minimum
captured

DCWDCW

Barker-13 Pulse

Figure 5.3.1 Barker-13 pulse captured in a DCW

This constraint was necessary in order to produce ROC curves of SNRout against Pd.

The constraint was also different to that used in the randomly-filled DCW scenario in

section 3.3 which tested detectors A1 and B1 against sinusoidal pulses (i.e. here the

assumption of several DCWs per ESM dwell was removed). In section 3.3 the detectors

were tested to their design limits through searches for sinusoidal pulses whose duration

was the same as the DCW duration. Clearly in this section the pulses have a much

longer duration. In fact in many instances, in the randomly-filled DCW scenario in this

section the DCWs would be completely filled with samples which contained a signal

power contribution (as the Barker-13 pulse duration was over twice as long as the DCW
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duration). Therefore to obtain at least some partially-filled DCWs the assumption of

several DCWs per ESM dwell was removed.

The m-sequence CW LPI signal was not tested under this scenario because the results

would be identical to those from the full DCW scenario in section 5.2.

5.3.2 Results and Discussion

For clarity, only the extracted best and one of the worst detectors which utilised the

algorithms of interest are shown in Fig 5.3.2 and only a few conventional detectors are

shown in Fig 5.3.3 to illustrate the important trends.

The ROC curve results were very distorted from the conventional ROC curve shape as

a consequence of the capture of a random portion of the Barker-13 pulse (this effect

is evident in Figs 5.3.2 and 5.3.3). The results showed that each individual detector

performance was degraded in comparison to its performance in the full DCW scenario.

This was expected because on average there was less signal energy in the randomly-

filled DCWs.
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Figure 5.3.2 ROC curves of SNRout against Pd for Barker-13 input and LPI detectors:
(a) the non-zeropadded case; (b) the zeropadded case

For the algorithms of interest and low SNRout values the relative detector performances

remained the same as in the full DCW scenario. However as the SNRout increased past

∼ 13 dB, the gradient of the performances of the: (1) SMP (detector J1 variant);
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(2) TSMP (detector L1 variant); (3) SSP (detector K1) and (4) TSSP (detector M1)

diverged from the rest of the detectors. This was caused by the loss of signal power at

the edges of the DCWs. The same effect was observed with the detectors which utilised

the SVA algorithm as SVA minimised spectral leakage, which in this scenario had the

adverse effect to select the equivalent of a Hann window function for some frequency

bins. The effect was not quite as severe as the application of a fixed Hann window

across all frequency bins, nevertheless it had a detrimental effect on the performance

of the SSP and TSSP (detectors K1 and M1). This effect of the utilisation of SVA

was not noticeable in the partially-filled DCW scenario in section 3.3 because in that

scenario the condition had been set that at least one DCW would be at least half full

of samples with a signal power contribution.

From the algorithms of interest, aside from the detectors based on the modified pe-

riodogram (detectors J1 and L1 variants) and SVA periodogram (detectors K1 and

M1), the other detectors demonstrated similar relative performances to the full DCW

scenario. Therefore the same conclusions that were drawn about those detectors in

section 5.2 also hold in this scenario.
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Figure 5.3.3 ROC curves of SNRout against Pd for Barker-13 input and conventional de-
tectors: (a) the non-zeropadded case; (b) the zeropadded case

From the conventional detectors, the results based on the modified periodogram (detec-

tors A1 and N1 variants) and SVA periodogram (detectors B1 and O1) were similarly

affected by the attenuation of samples at the edges of DCWs. However the overall
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relative detector performances remained the same as the corresponding detector per-

formance from the full DCW case.

With consideration of the results from the full DCW scenario and partially-filled DCW

scenario, it is clear that the algorithms of interest outperformed the detectors which

utilised conventional methods. The performance difference can be very large at ∼ 10 dB

if a comparison is made between the simplest conventional periodogram (detector A1)

and the more complicated sine taper MTMs (detectors H1 and I1). However within

the algorithms of interest the increase in computational cost does not lead directly to

an increase in detector performance. For example sine taper MTM (detector H1) was

only fractionally better than the SP (detector J1).

Upon this evidence it would be tempting to state that the SSP or TSSP (detectors K1

or M1) would be the best all-round detectors because the SVA algorithm would ensure

good detector performance against narrowband, sinusoidal signals and the smoothing

would ensure good performance against LPI signal. These detectors are certainly less

computationally complicated than the detectors based on the MTMs so their imple-

mentation would make good engineering sense. However it was necessary to examine

the scenarios where there was interference present as it was unknown how the algo-

rithms of interest would perform under these conditions. The next two sections deal

with this issue.
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5.4 Interference in Full DCW

5.4.1 Scenario and Simulation Description

The task for the detectors became more difficult in the interference DCW scenario.

The detectors searched for one of the LPI signals from Table 5.2.1 with an interference

sinusoid (SB) of frequency fT,B present adjacent to the bandwidth of the LPI signal.

The desired LPI signal (SA) and the interference sinusoidal signal (SB) were both

present for the duration of the DCW. This represented the scenario where a DRx

would coincidentally capture as much signal power from SA and SB as temporally

possible in a DCW.

The target frequencies of SA and SB were chosen at random from a frequency bin in-

terval at the start of each test run. Therefore, although the exact frequency separation

between SA and SB varied, there was, on average a nominal frequency separation. The

relationship between the frequencies, in the case of the Barker-13 signal, is demon-

strated in Fig 5.4.1. As examples of the randomly chosen frequencies, panel (a) shows

the case where the frequencies of SA and SB align exactly on frequency bins, panel (b)

shows the case where the frequencies are maximally separated and panel (c) displays

the case where the frequencies are minimally separated.

A very similar relationship was true for the m-sequence signal and the interference

sinusoid except the bandwidth of the m-sequence signal was slightly larger than for the

Barker-13 pulse. The larger bandwidth led to a smaller possible frequency separation

between SB and the bandwidth edges of SA.

The differences between the power levels of SA and SB and the power levels of SB

and the noise floor were expressed as SIRout and SNRout with the use of the previous

definitions from section 3.4. To produce ROC curve results the SIRout level was varied

for Pfa = 0.01 using the methodology and definitions of H0 and H1 from section 3.4.

Essentially all aspects of the LPI signals from the full DCW scenario in section 5.2 were

maintained and the introduction of an interference tone (SB) was the major difference.

Therefore the comments on the LPI signals (SA) from section 5.2 are also valid for this

section. For example remarks on the random initial phase and random code portions of

the signal captured remain accurate. The introduction of an interference tone (SB) was

a simple extension to the signal generation simulation such that the same basic ideas

were reused. The sinusoid (SB) was generated with a random initial phase and it was

present throughout the duration of the DCW. Therefore every time-domain sample in

a DCW contained a power contribution from the LPI signal, the interference tone and

the AWGN background.
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Some of the detectors used in the full DCW and randomly-filled DCW scenarios were

simply re-implemented with the trivial change of the addition of the interference tone

(SB) at the input in this scenario. Pictorially this small alteration is shown in Fig 5.4.2.

This was because these detectors were designed with the use of techniques which do not

require explicit steps to remove sidelobe spectral leakage or take account of mainlobe

width. This is a positive feature of these detectors since they are naturally more

versatile to different scenarios and do not require post-FFT steps to manually mitigate

against sidelobes spectral leakage or broader mainlobes. From the algorithms of interest

these were:

• DPSS MTM (detector G1)

• unity-weighted sine taper MTM (detector H1)

• adaptive sine taper MTM (detector I1)

• SSP (detector K1)

• TSSP (detector M1).

All that is required to obtain a system level description is to replace the input section

of each detector diagram from Figs 5.1.2–5.1.11 with that of Fig 5.4.2.

The conventional detection techniques which did not require alterations for this scenario

were the:

• OR SVA periodogram (detector O1)

• SVA periodogram (detector E1)

• total power (detector P1).

The detectors which utilised the SVA technique did not require post-FFT processing

steps due to the conclusion drawn in section 3.4 from Fig 3.4.12, that is, the SVA

technique reduced sidelobe spectral leakage and mainlobe width sufficiently that they

could be ignored in realistic scenarios.

However the detectors which were fundamentally based on the procedure which in-

volved the application of a weighted window function and an FFT did require steps

to recognise the frequency-domain response of the window function. These necessary

steps are analogous to the decision rules which exist in ESM DRxs to minimise erro-

neous detections as a result of spectral peaks in neighbour ordinates. The steps are

outlined in section 3.4 and demonstrated visually in Fig 3.4.3 and therefore are not

repeated here.

From the set of the algorithms of interest the following were modified from their cor-

responding form in the full DCW and partially-filled DCW scenarios:

• SP (detector J1)
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• TSP (detector L1).

Also from the conventional techniques the following required modification:

• OR periodogram (detector N1)

• periodogram (detector A1).

The changes resulted in detectors with different labels:

detector J1 → detector Q1

detector L1 → detector R1

detector N1 → detector S1

detector A1 → detector C1

A diagram of detector C1 is shown in Fig 3.4.1 in section 3.4 and diagrams of detectors

Q1, R1 and S1 are shown in Figs 5.4.3–5.4.5.
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5.4.2 Results and Discussion

Low SNRout,B

In the low SNRout,B regime the power ratio between SB and the noise floor was SNRout,B

= 8dB and the nominal frequency separation between test signal (SA) and interference

tone (SB) was 5fs/N (which was also maintained in the medium and high SNRout,B

regimes). For the algorithms of interest tested against a Barker-13 pulse the relative

performance of the detectors in Fig 5.4.6 from best to worst in both zeropadded and

non-zeropadded cases was:

1. DPSS MTM (detector G1)

2. unity-weighted sine taper MTM (detector H1), SP (detector Q1 variant) and TSP

(detector R1 variant)

3. SSP (detector K1) and TSSP (detector M1)

4. adaptive sine taper MTM (detector I1)

5. SMP (detector Q1 variant) and TSMP (detector R1 variant).

For clarity, only the best and worst detectors from the algorithms of interest are shown

in Fig 5.4.6. The smoothed and tree smoothed detectors for all the various periodogram

types are grouped together in the above list however there was a small performance drop

in the tree smoothed equivalent detectors. This was caused by the coarser bandwidth

hypothesis reduction of the tree smoothed detectors at larger hypothesis bandwidths.

The SMP (detector Q1 variant) and TSMP (detector R1 variant) had the worst perfor-

mance and were separated from the next best detector by ∼ 1 dB. The other detectors

were grouped together in a performance range of ∼ 0.6 dB in the non-zeropadded case

and ∼ 0.8 dB in the zeropadded case.

Overall the relative results were as expected. In the low-SNRout,B = 8dB regime, the

noise rather than the spectral leakage was dominant and hence the results obtained

to some extent resemble those obtained from the full DCW scenario. However there

were slight differences in the results between this scenario and the full DCW scenario.

Specifically, in the full DCW scenario the DPSS MTM (detector G1) had a performance

which was almost the same as the SP (detector J1 variant) and also the sine taper

MTMs (detectors H1 and I1) actually had the best detector performance. In this

scenario, however, the best detector was the DPSS MTM (detector G1) and this was

attributed to its slightly better spectral leakage protection properties than the sine

taper MTM (detector H1) (although the impact of spectral leakage was very small in

this low-SNRout,B regime).

The relative detector performance for the algorithms of interest against an m-sequence

input was almost identical to the results obtained against the Barker-13 pulse in the



G H MacKerron, October 31, 2011 Original in Colour Chapter 5. Fl-pt MTM & Smooth, 191

SIRout (dB)

P
d

(a)

−20 −15 −10 −5 0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

(b)

SIRout (dB)

P
d

 

 

−20 −15 −10 −5 0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

DPSS MTM (det. G1)
TSMP (det. R1)

Figure 5.4.6 ROC curves of SIRout against Pd for Barker-13 input and LPI detectors at
SNRout,B = 8dB for: (a) the non-zeropadded case; (b) the zeropadded case

low-SNRout,B regime. Extracted results for the best and worst detectors and shown in

Fig 5.4.7.

In the same regime and for the conventional detectors against the Barker-13 signal

input the relative detector performances in order from best to worst was found to be:

1. OR periodogram (detector S1 variant)

2. OR SVA periodogram (detector Q1 variant)

3. OR modified periodogram (detector S1 variant)

4. modified periodogram (detector C1 variant)

5. periodogram (detector C1 variant)

6. SVA periodogram (detector E1 variant).

For clarity only some results are shown in Fig 5.4.8.

In the results there were slight differences in the relative detector performances be-

tween the non-zeropadded case and zeropadded case. In the non-zeropadded FFT case

there was a performance gap of ∼ 0.12 dB between the OR periodogram (detector S1

variant) and the OR SVA periodogram (detector O1) but in the zeropadded case the

performance gap widened to ∼ 0.22 dB.
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Figure 5.4.7 ROC curves of SIRout against Pd for m-sequence input and LPI detectors at
SNRout,B = 8dB for: (a) the non-zeropadded case; (b) the zeropadded case
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Figure 5.4.8 ROC curves of SIRout against Pd for Barker-13 input and conventional de-
tectors at SNRout,B = 8dB for: (a) the non-zeropadded case; (b) the zeropadded case
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The results obtained from the conventional detectors against the m-sequence input had

some noteworthy differences in comparison to the Barker-13 input. The main difference

was the modified periodogram (detector C1 variant) and periodogram (detector C1

variant) switched places in the relative detector performances. Another difference was

that the performance gap between the OR periodogram (detector S1 variant) and

OR SVA periodogram (detector O1) actually widened in both zeropadded and non-

zeropadded cases for the m-sequence test signal. Extracted results for the m-sequence

test signal and conventional detectors are shown in Fig 5.4.9.
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Figure 5.4.9 ROC curves of SIRout against Pd for m-sequence input and conventional
detectors at SNRout,B = 8dB for: (a) the non-zeropadded case; (b) the zeropadded case

The clear message from the conventional detector results was that the periodogram,

modified periodogram and SVA periodogram (detectors C1 and E1) from the SVA

chapter can be greatly improved upon for the detection of LPI signals. The ROC

curves for these detectors were heavily distorted by the presence of an interference

tone and they are less suitable as LPI signal detectors in comparison to those based

on the algorithms of interest and the conventional OR detectors.

The total power detector ROC curve shape was undistorted, however as it non-coherently

sums power in samples it had a poorer processing gain than the OR detectors. The

observed performance difference between the worst OR detector and the total power

detector was ∼ 8 dB.
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In a situation where only a conventional detector could be used, the OR periodogram

(detector S1 variant) or OR SVA periodogram (detector O1) would clearly be the

best options. However these two conventional detectors had a performance which

was degraded by ∼ [1.1, 1.6] dB (depending on the zeropad case and signal input)

against the best detector which used an algorithm of interest (the DPSS MTM (detector

G1) in this low-SNRout,B regime). All the detectors which used algorithms of interest

had reasonably close performances except the SMP (detector Q1 variant) and TSMP

(detector R1 variant). Therefore on the evidence from the low-SNRout,B regime, the

algorithms of interest (except the aforementioned variants of detectors Q1 and R1)

are improvements over conventional DRx detection techniques in the search for LPI

signals.

Moderate SNRout,B

In this regime the SNRout,B was set at 15 dB. For both Barker-13 and m-sequence test

signals the relative performance of the algorithms of interest was broadly consistent

with the SNRout,B = 8dB results except for one significant difference. The sine taper

MTM (Detector I1) had the worst detector performance in the moderate-SNRout,B

regime from the algorithms of interest. The apparently erratic detection performance

of the sine taper MTM (detector I1) from one of the best detectors in the low-SNRout,B

regime to the worst detector in the moderate-SNRout,B regime can be ascribed to the

particular set of parameters with which it was configured for all the simulations in this

chapter. In other words, in some scenarios the parameters were a good match, whereas

in others they were a poor match.

The best and worst detectors for the algorithms of interest are shown in Fig 5.4.10 for

the Barker-13 test signal and in Fig 5.4.11 for the m-sequence test signal.

The slight degradation in the performance results between the smoothed and corre-

sponding tree smoothed detectors was also present in the moderate-SNRout,B regime

results as it had been for the low-SNRout,B regime results. This was for the same reasons

that the tree smoothed detectors were coarser in terms of bandwidth hypothesis.

In comparison to the low-SNRout,B regime results, the performance of the sine taper

MTM (detector H1) improved slightly in the moderate-SNRout,B regime such that there

was no discernible difference between the sine taper MTM (detector H1) and DPSS

MTM (detector G1). This was true for both Barker-13 pulse and m-sequence test

signals in both non-zeropadded and zeropadded cases.

In comparison to the low-SNRout,B regime, the moderate-SNRout,B regime saw the in-

fluence of sidelobe spectral leakage grow and the dominance of the noise floor diminish.

This was demonstrated by the smaller detector performance gap from the low-SNRout,B

regime to moderate-SNRout,B regime between the grouping of the SP/TSP (detectors

Q1 variant/R1 variant) and the grouping of the SSP/TSSP (detectors K1/M1).
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Figure 5.4.10 ROC curves of SIRout against Pd for Barker-13 input and LPI detectors at
SNRout,B = 15dB for: (a) the non-zeropadded case; (b) the zeropadded case
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Figure 5.4.11 ROC curves of SIRout against Pd for m-sequence input and LPI detectors
at SNRout,B = 15dB for: (a) the non-zeropadded case; (b) the zeropadded case
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The SVA algorithm offers better protection against spectral leakage with a small win-

dow loss. Therefore as sidelobe spectral leakage became a more significant effect, the

SSP and TSSP (detectors K1 and M1) improved their performance relative to the SP

(detector Q1 variant) and TSP (detector R1).

The results obtained from the conventional detectors for the moderate-SNRout,B regime

showed that for the Barker-13 pulse, the OR SVA peridogram (detector O1) performed

the best in the non-zeropadded case but in the zeropadded case the OR periodogram

(detector S1 variant) was able to match the performance of the OR SVA periodogram

(detector O1). This was due to similar reasons given in section 3.4, that is, the QIFFT

used in the zeropadded OR periodogram (detector S1 variant) was able to mitigate

against sidelobe spectral leakage in this moderate-leakage regime. Extraced results for

the Barker-13 test signal are shown in Fig 5.4.12.
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Figure 5.4.12 ROC curves of SIRout against Pd for Barker-13 input and conventional
detectors at SNRout,B = 15dB for: (a) the non-zeropadded case; (b) the zeropadded case

The main limitation of the OR modified periodogram (detector S1 variant) was the

window loss which the QIFFT cannot improve. Therefore the performance of the OR

modified periodogram (detector S1 variant) was relatively unchanged from the non-

zeropadded to zeropadded case in this regime and for the Barker-13 input.

Fig 5.4.13 shows some extracted conventional detector results for the m-sequence input

under this regime. As per the Barker-13 test signal input, the results for the m-

sequence input showed the group of OR detectors to be the best out of the conventional
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techniques for the detection of these LPI signals.
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Figure 5.4.13 ROC curves of SIRout against Pd for m-sequence input and conventional
detectors at SNRout,B = 15dB for: (a) the non-zeropadded case; (b) the zeropadded case

The OR SVA periodogram (detector O1) improved its performance relative to the OR

periodogram (detector S1 variant) from low-SNRout,B regime to moderate-SNRout,B

regime. This was due to the greater importance of sidelobe spectral leakage.

Detection based on the modified periodogram, periodogram and SVA periodogram

(detectors C1 and E1) was found to be poorly suited for LPI signal detection. In

addition the notion that the best detector based on conventional techniques was poorer

than the majority of detectors based on the algorithms of interest was reinforced.

In the moderate-SNRout,B regime the advantage associated with the use of a MTM or

a smoothing technique over the best conventional technique ranged from ∼ 0.9 dB to

∼ 1.3 dB dependent on whether it was zeropad and the LPI signal type.

High SNRout,B

For the high spectral leakage regime where the SNRout,B was 25 dB. Extracted results

for the best and worst detectors from the algorithms of interest are shown in Fig 5.4.14

for the Barker-13 test signal and in Fig 5.4.15 for the m-sequence test signal. The sine

taper MTM (detector H1) gave the best detector performance in the zeropadded case

(as it obviously did not exist in the non-zeropadded case). However this was only by

a negligible margin because all the MTMs (detectors G1, H1 and I1) were grouped
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together with similar performance levels. Closer inspection of the results revealed

the adaptive sine taper MTM (detector I1) had a degraded performance relative to

the others in this group from Barker-13 to m-sequence input. This was because the

adaptive sine taper MTM was less well suited in the m-sequence case.
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Figure 5.4.14 ROC curves of SIRout against Pd for Barker-13 input and LPI detectors at
SNRout,B = 25dB for: (a) the non-zeropadded case; (b) the zeropadded case

It was also clear that in the high-SNRout,B regime the SSP and TSSP (detectors K1

and M1) had better detector performances than the SP and TSP (detector Q1 and R1

variants). This was a consequence of the dominance of the sidelobe spectral leakage

rather than the noise floor at the monitored ordinates. The SSP (detector K1) was only

∼ 0.4 dB poorer in terms of detection performance than the sine taper MTM (detector

H1) in the worst case analysed. The TSSP (detector R1) was only slightly degraded

from this value. These performance drops could comfortably be tolerated when traded

against other engineering advantages which the use of a smoothed SVA periodogram

would provide.

The final set of results examined the conventional detection techniques in the high-

SNRout,B regime (extracts of which to show the best conventional detector are in

Figs 5.4.16 and 5.4.17). The OR SVA periodogram (detector O1) had the best de-

tector performance. The ROC curves of the OR modified periodogram (detector S1

variant) were the next best, followed by the OR periodogram (detector S1 variant).

However the OR SVA periodogram (detector O1) was between ∼ [1.5, 1.6] dB worse
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Figure 5.4.15 ROC curves of SIRout against Pd for m-sequence input and LPI detectors
at SNRout,B = 25dB for: (a) the non-zeropadded case; (b) the zeropadded case

than the DPSS MTM (detector G1) for both the Barker-13 pulse input and the m-

sequence input in both the non-zeropadded and zeropadded cases.

The overall trend from low-SNRout,B regime to high-SNRout,B regime was the detector

performance of the SSP and TSSP (detectors K1 and M1) to improve at a faster

rate than the SP and TSP (detectors Q1 and R1 variants). Solely from the analysis

in this chapter it could be concluded that the DPSS MTM and sine taper MTM

(detectors G1 and H1) would be the best algorithms to choose due to their superior

detection performance. This would not give due consideration to the impact of their

implementation. The SSP and TSSP (detectors K1 and M1) are a compromise solution.

This is partly due to their reasonable performances in detectors K1 and M1 and partly

due to their simpler computational demands than MTMs MTM (detectors G1 and H1).

The limitations of the periodogram, modified periodogram, SVA periodogram and

total power (detectors C1, E1 and P1) against LPI signals was highlighted from the

results in this scenario. The use of OR detectors offered an improvement over the

basic periodogram, modified periodogram and SVA periodogram (detectors C1 and

E1). However the OR detectors in general lagged behind the MTMs and smoothing

techniques by > 1 dB. This performance gap was found to widen as greater spectral

leakage from the interference tone was found in the monitored ordinates.

The next section deals with the scenario when the TOAs of SA and SB are random.
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Figure 5.4.16 ROC curves of SIRout against Pd for Barker-13 input and conventional
detectors at SNRout,B = 25dB for: (a) the non-zeropadded case; (b) the zeropadded case
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Figure 5.4.17 ROC curves of SIRout against Pd for m-sequence input and conventional
detectors at SNRout,B = 25dB for: (a) the non-zeropadded case; (b) the zeropadded case



G H MacKerron, October 31, 2011 Chapter 5. Fl-pt MTM & Smooth, 201

5.5 Interference in Randomly-filled DCW

5.5.1 Scenario and Simulation Description

The simulations in section 5.4 revealed the relative detector performances for the al-

gorithms of interest and the conventional detection techniques. The unity-weighted

sine taper MTM (detector H1), the SSP (detector K1) and the TSSP (detector M1)

performed particularly well over the range of conditions tested. The scenario in this

section extended the interference full DCW scenario in the same manner that the full

DCW scenario was extended to the partially-filled DCW scenario.

Since the CWm-sequence signal would always be present in a DCW, only the Barker-13

pulse signal was used as the desired LPI signal (SA). The same mechanism to capture

a random proportion of the desired Barker-13 pulse (SA) in a DCW as in Fig 5.3.1 in

section 5.3 was used in this scenario. Whereas the mechanism to capture a random

proportion of the interference tone (SB) was the same as was used in section 3.3 and

illustrated in Fig 3.3.1.

In this scenario the detectors which incorporated steps to estimate sidelobe spectral

leakage and mainlobe width were tested to their limits. The estimates which these

detectors created became less and less accurate as the proportion of SB in a DCW

decreased. The explanation for this is given in section 3.5 and exhibited in Fig 3.5.1.

Therefore this scenario was expected to reveal the limitations of detectors Q1, R1, S1

and C1.

All other aspects of the interference full DCW scenario were maintained in the inter-

ference in randomly-filled DCW scenario.

5.5.2 Results and Discussion

Low SNRout,B

The first set of results were created with:

• a Barker-13 pulse input;

• SNRout,B = 8dB;

• utilisation of the algorithms of interest;

• nominal target frequency separation of 5fs/N .

From the results, the detector performances in descending order were:

1. DPSS MTM (detector G1), unity-weighted sine taper MTM (detector H1), SP

(detector Q1 variant) and TSP (detector R1 variant)
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2. SSP (detector K1) and TSSP (detector M1)

3. adaptive sine taper MTM (detector I1)

4. SMP (detector Q1 variant) and TSMP (detector R1 variant).

The best and worst detectors from the algorithms of interest are shown in Fig 5.5.1.
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Figure 5.5.1 ROC curves of SIRout against Pd for Barker-13 input and LPI detectors at
SNRout,B = 8dB for: (a) the non-zeropadded case; (b) the zeropadded case

The ROC curves of all the detectors were distorted. This was a consequence of the

capture of SA and SB with random TOAs. The proportion of SA power captured in a

DCW could be as low as one sample whereas the proportion of SB captured could go

as low as half of the samples in a DCW. Therefore the ROC curves were distorted such

that they approached Pd = 1 more slowly than in the interference full DCW scenario.

The adaptive sine taper MTM (detector I1) was poorly suited to this particular scenario

in comparison to the interference full DCW scenario from section 5.4. However its

performance surpassed the SVA-based detectors K1 and M1 at higher SIRout ratios.

This was because in cases of partially-filled DCWs, the SVA technique tended to select

bell-shaped window functions to apply to the DCWs which thus attenuates the power

of the desired signal (SA). The same effect was seen through the use of the SMP

because in this detector variant it applied a Hann window. Therefore the SVA-based

detectors K1 and M1 and the SMP (detector Q1 variant) and TSMP (detector R1

variant) asymptotically approached Pd less rapidly than the other detectors.
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The results demonstrated that the relative detector performances were the same re-

gardless of whether the FFT was zeropadded. The results also closely resembled those

obtained for the partially-filled DCW scenario, which suggested that spectral leakage

was fairly insignificant in this scenario and SNRout,B regime.

The results for the conventional technique detectors bore a resemblance to the results

from the partially-filled DCW scenario. That is, the order of detector performance in

from best to worst was:

1. OR periodogram (detector S1 variant) and OR SVA periodogram (detector O1)

2. OR modified periodogram (detector S1 variant)

3. total power (detector P1)

4. periodogram (detector C1 variant)

5. modified periodogram (detector C1 variant)

6. SVA periodogram (detector E1).

The relative detector performances were the same regardless of zeropadding. Extracted

results to demonstrate the best conventional detector are shown in Fig 5.5.2.
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Figure 5.5.2 ROC curves of SIRout against Pd for Barker-13 input and conventional de-
tectors at SNRout,B = 8dB for: (a) the non-zeropadded case; (b) the zeropadded case

The OR periodogram (detector S1 variant) and OR SVA periodogram (detector O1) are

grouped together in the above list because their detection performances were almost
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identical. However at high SIRout levels, the OR SVA periodogram (detector O1)

asymptotically approached Pd = 1 at a slower rate. This was due to the previously

described effect where SVA attenuates the signal power in a DCW where the signal is

mostly concentrated at the DCW band edges.

The detector performance gap between the grouping of the OR periodogram/OR SVA

periodogram (detectors S1 variant/O1) and the OR modified periodogram (detector S1

variant) was∼ 0.6 dB in the non-zeropadded case and∼ 0.75 dB in the zeropadded case.

This was typical for the low-SNRout,B regime where the modified periodogram-based

detectors (which used a Hann window function) suffered a window loss. Additionally

the OR modified periodogram (detector S1 variant) displayed the same pattern as the

OR SVA periodogram (detector O1) whereby its performance approached Pd = 1 at a

slow rate.

The total power (detector P1) was heavily handicapped by the inclusion in its sum-

mation of ordinates that contained noise power only. Also the periodogram, modified

periodogram and SVA periodogram (detectors C1 and E1) were again found to be

ill-suited to the detection of LPI signals.

In this low-SNRout,B regime and with a random proportion of SA in the DCW, the

DPSS MTM (detector G1) had the best performance and was better than the OR pe-

riodogram (detector S1 variant), which had the best performance from the conventional

technqiues, by ∼ 1.6 dB in the non-zeropadded case and ∼ 1 dB in the zeropadded case.

Therefore in this scenario and regime there are strong arguments for the use of a MTM

or smoothing technique over the conventional techniques.

Moderate SNRout,B

In the moderate-SNRout,B = 15 dB regime the relative detector performances changed

very little from the low-SNRout,B = 8dB regime. The best and worst detectors for the

algorithms of interest are shown in Fig 5.5.3.

There was a fairly large performance gap between the TSSP (detector M1) and the

SMP (detector Q1 variant) of ∼ 1.3 dB in the zeropadded case and ∼ 1.4 dB in the non-

zeropadded case. This was caused by the fixed Hann window applied to every DCW

which attenuated captured signal power when it was concentrated at the DCW edges.

Meanwhile the SSP and TSSP (detectors K1 and M1) results were better because they

had the ability to be somewhat more flexible in their choice of window function and

did not always attenuate DCW edges in all cases.

Again the adaptive sine taper MTM (detector I1) did not perform as well as the other

MTMs because of the poor match between its adaptive parameters and this particular

regime and scenario. However the attenuation of SA power at the DCW edges caused

the SVA and modified periodogram-based detectors to be the worst at most SIRout

points. The results for the SVA and modified periodogram-based detectors approached
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Figure 5.5.3 ROC curves of SIRout against Pd for Barker-13 input and LPI detectors at
SNRout,B = 15dB for: (a) the non-zeropadded case; (b) the zeropadded case

Pd = 1 very slowly.

The relative performance results for the conventional detectors for the moderate-

SNRout,B regime were almost identical to those from the low-SNRout,B regime. One

minor difference was that the performance gap between the OR SVA periodogram

(detector O1) and the SMP (detector S1 variant) expanded to ∼ 0.75 dB in the non-

zeropadded case and ∼ 0.8 dB in the zeropadded case in the moderate-SNRout,B regime.

Extracted ROC curves for the conventional detectors are shown in Fig 5.5.4.

The point that the algorithms of interest are superior for the detection of LPI waveforms

was reinforced by the DPSS MTM (detector G1) which exhibited a performance that

bettered the OR periodogram (detector S1 variant) by ∼ 1.5 dB in the non-zeropadded

case) and ∼ 1.25 dB in the zeropadded case.

Since the results from the low-SNRout,B regime and moderate-SNRout,B regime were

almost identical in this scenario, it is reasonable to conclude that between these levels

the loss of signal samples from the DCW outweighed any effects due to spectral leakage.

High SNRout,B

For the algorithms of interest and in the high-SNRout,B = 25 dB regime there were many

similarities with the relative detector performances in the low and moderate regimes.

There were however two details of interest in the results. One concerns the fact that
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Figure 5.5.4 ROC curves of SIRout against Pd for Barker-13 input and conventional de-
tectors at SNRout,B = 15dB for: (a) the non-zeropadded case; (b) the zeropadded case

adaptive sine taper MTM (detector I1) had a performance imbetween the sine taper

MTM (detector H1) and the SP (detector Q1 variant). This differed from the other

regimes and is explained by the better match between the set choice of parameters for

the adaptive algorithm and this scenario and regime.

The second detail relates to the larger performance gap between the grouping of the SSP

and TSSP (detectors K1 and M1) and the grouping of the SMP and TSMP (detector

Q1 and R1 variants) than in the previous regimes. This was because the modified

periodogram-based detectors could not catch up with the other detectors due to the

constant attenuation of the DCW edges where SA power is likely to be concentrated.

The problem was exasperated in comparison to the results from the section 3.5 by the

strict conditions in this scenario of the minimum proportion of samples which contained

signal power that could be captured (this was as low as one sample). The best and

worst detectors from the algorithms of interest are shown in Fig 5.5.5.

The conventional detectors were also tested in the high-SNRout,B regime and some

results are displayed in Fig 5.5.6. There were some differences in comparison to the

two previous SNRout,B regimes. In the non-zeropadded case the OR SVA periodogram

(detector O1) was actually the best detector with the caveat that at higher SIRout,B

levels its approach to Pd = 1 slowed relative to the OR periodogram (detector S1

variant). This indicated that in this high-SNRout,B regime the effect of sidelobe spectral
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leakage in monitored frequency bins was as important as the random TOAs of SA and

SB.

Another difference was that the performance gap between the OR modified peri-

odogram (detector S1 variant) and the other OR detectors expanded to a large dif-

ference of ∼ 3.9 dB in the non-zeropadded case and ∼ 2.8 dB in the zeropadded case

in comparison to the lower SNRout,B regimes. This highlights the potential detector

processing gains to be achieved through the avoidance of the conservative approach of

a modified periodogram as the basis of a DRx detection circuit against LPI waveforms.

In a similar situation to the other regimes, the high-SNRout,B regime results revealed

that the best algorithm of interest detector provided a better detector performance than

the best conventional detector. This difference was ∼ 2.6 dB in the non-zeropadded

case and ∼ 2.2 dB in the zeropadded case.
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Figure 5.5.5 ROC curves of SIRout against Pd for Barker-13 input and LPI detectors at
SNRout,B = 25dB for: (a) the non-zeropadded case; (b) the zeropadded case
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Figure 5.5.6 ROC curves of SIRout against Pd for Barker-13 input and conventional de-
tectors at SNRout,B = 25dB for: (a) the non-zeropadded case; (b) the zeropadded case
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5.6 Conclusions

The aim of this chapter was to investigate whether detection algorithms which tested

for LPI signals spread across a broad frequency band would offer an improvement over

conventional techniques.

One general finding from this chapter was that the use of the DPSS MTM (detector G1)

and the unity-weighted sine taper MTM (detector H1) provided an improvement over

all the conventional techniques tested in the examined scenarios. In addition, most of

the detectors which utilised smoothing techniques also surpassed the performance of the

conventional techniques. In that regard, this investigation was able to show the MTMs

and smoothing techniques were improvements over conventional DRx techniques. Out

of the smoothing techniques, the SSP and TSSP (detectors K1 and M1) were relatively

consistent across all the scenarios tested.

Although a smoothed SVA detector, whether SSP or TSSP (detectors K1 or M1),

would not necessarily offer the best detection performance in all scenarios, as an im-

plementable algorithm in a real-life DRx it would certainly be more feasible than the

MTMs because the MTM would require multiple FFT core instantiations. Detector G1

which utilised the DPSS MTM would provide the best performance in most scenarios

but it would require a great deal of computational power as evidenced from Table 4.3.1.

Detector H1 based on the unity-weighted sine taper MTM would be more feasible than

the DPSS MTM (detector G1) because it would require only one FFT block. However

from Table 4.3.1 it would still be more computationally complex than a smoothing

technique. Another important consideration was that the SVA technique was shown in

chapter 3 to be a successful method for the detection of sinusoidal signals. Therefore if

the recommendation from chapter 3 was followed and an SVA periodogram was formed

for the detection of pulsed sinusoidal radar signals in an ESM DRx, then it could be

reused in a SSP or TSSP in detectors K1 or M1 for the detection of broader-band LPI

radar signals.

Since the performances of the SSP and TSSP (detectors K1 and M1) had almost

negligible differences between them in the scenarios tested, the computational sav-

ings provided by the TSSP (detector M1) would outweigh any slight degradation in

performance. Whilst the MTMs are of more academic interest and possible future im-

plementation, the use of the TSSP (detector M1) was chosen for further investigation

due to engineering considerations. The appendices H–I detail the translation of the

TSSP (detector M1) down the MBD methodology.
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5.7 Summary Table

The results for the various scenarios examined are summarised in Table 5.7.1.

Scenario Best Detector(s) Description

Full DCW, no interference Sine taper MTMs (detec-
tors H1 and I1), SP (detec-
tor J1 variant), TSP (de-
tector L1 variant), DPSS
MTM (detector G1), SSP
(detector K1), TSSP (de-
tector M1)

Techniques which collect
together the most signal
power

Randomly-filled DCW, no
interference

As above Detector performances
were degraded by random
loss of signal power but
the best techniques still
gathered as much signal
power as possible from
bandwidth

Full DCW, interference
present

DPSS MTM (detector
G1), unity-weighted sine
taper MTM (detector
H1), SSP (detector K1),
TSSP (detector M1)

The DPSS MTM, unity-
weighted sine taper MTM
and SSP techniques min-
imise impact of spectral
leakage and result in
best detector perfor-
mances over a range of
interference regimes

Randomly-filled DCW, in-
terference present

DPSS MTM (detector
G1), unity-weighted sine
taper MTM (detector
H1), SP (detector Q1
variant), TSP (detector
R1 variant), OR peri-
odogram (detector S1
variant), SSP (detector
K1), TSSP (detector M1)

Detector performances de-
graded in comparison to
the above. The loss
more noticeable in the SSP
techniques than the other
“best” detectors

Table 5.7.1 Floating-point simulations results summary



Original in Colour

CHAPTER 6

Thesis Conclusions

& Future Work

6.1 Conclusions

For real-time applications of detector algorithms in ESM systems the importance of

computational efficiency is paramount and algorithms tend to be based around the

FFT.

The approach taken in this thesis was to enhance the ability of a typical FFT-based

DRx as a constituent part of an ESM system to detect both sinusoidal radar signals and

broader-band LPI radar signals. This was achieved through the use of SVA against si-

nusoidal, narrowband signals and the MTMs and spectral smoothing techniques against

broader-band LPI signals.
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Figure 6.1.1 Advantages of the use of SVA for full DCW scenario

The SVA technique is a computationally efficient, FFT-based algorithm. In “quiet”

scenarios, where only one signal is present in a bandwidth of interest, the SVA technique

overcomes the window loss of conventional fixed window analysis suffered in modified

periodograms. Although a similar performance can be achieved with the use of the

rectangular window, this is seldom used in practice due to its consequential spectral

leakage. SVA can minimise spectral leakage and overcome the window loss. Extracted

non-zeropadded floating-point results in Fig 6.1.1 demonstrate this effect where SVA

recovered the ∼ 1 dB window loss suffered by a detector using a bell-shaped window
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function. This would translate to an estimated real-life detector range improvement of

∼ 17.1 km for the SELEX Galileo DRx and extended low band (ELB) antenna system

against a typical unmodulated pulsed radar

Against narrowband sinusoidal signals, SVA demonstrably affords a detection advan-

tage over conventional fixed window techniques in scenarios with strong narrowband

interferers which are close in frequency. Extracted non-zeropadded FFT floating-point

results (separation 2fs/NFFT and SNRout,B = 15 dB) in Fig 6.1.2 demonstrate this ef-

fect where SVA improves the detector performance by ∼ 0.8 dB. This would lead to an

estimated real-life detection range improvement of ∼ 14.8 km for the SELEX Galileo

DRx and ELB antenna system (which does not currently able to use a zeropadded

FFT) against a typical unmodulated pulsed radar.
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Figure 6.1.2 Advantages of the use of SVA for full interference DCW scenario

As members of non-parametric spectral estimation, the MTMs and spectral smoothing

techniques are relatively computationally efficient. They are appropriate for the detec-

tion of broader-band LPI radar signals in FFT-based detectors where simple (modified)

periodograms would over-resolve the signal. In contrast to this the MTMs and smooth-

ing techniques can be used to test for the presence of broader-band signals at a few

different hypothesis bandwidths.

The results showed the MTMs and all smoothing techniques were a great improvement

in detector performance over conventional ESM DRx techniques.

For the scenario of detection of a single Barker-13 pulse in a full DCW, extracted

floating-point results show the best MTM/smoothing technique (sine taper MTM,

detector H1) outperformed the best conventional technique (OR periodogram, detector

N1) by∼ 1.5 dB which would lead to an estimated real-life detection range improvement

of ∼ 12.5 km for for the SELEX Galileo DRx and ELB antenna systema against a

typical pulsed radar.

For the scenario of detection of a Barker-13 pulse in the presence of a close-in fre-

quency interference tone, extracted results in Fig 6.1.4 (SNRout,B = 15 dB) show the
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Figure 6.1.3 Advantages of the use of the MTMs/smoothing techniques for full DCW
scenario

best MTM/smoothing technique (DPSS MTM, detector G1) outperformed the best

conventional technique (OR SVA periodogram, detector O1) by ∼ 1.3 dB which would

lead to an estimated real-life detection range improvement of ∼ 11.4 km for the SELEX

Galileo DRx and ELB antenna systema against a typical pulsed radar.
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Figure 6.1.4 Advantages of the use of the MTMs/smoothing techniques for interference
full DCW scenario

A similar pattern of results was achieved for the MTMs and smoothing techniques in

pursuit of broader-band LPI radar signals as was observed for SVA and conventional

window techniques in pursuit of narrowband, sinusoidal radar signals. That is, the

MTMs (which as a by-product overcome the window loss) and smoothing techniques,

which used the periodogram or SVA periodogram as their basis, excelled in the scenarios

where only one broader-band signal in a bandwidth of interest had to be considered.

This was due to the maximisation of the amount of signal power processed in these

algorithms, i.e. there was no or virtually no window loss. Also as a strong interference

tone was introduced to a frequency close to the desired signal, the MTMs and SVA

periodogram smoothing algorithms surpassed the performance of the other smoothed

fixed window detectors owing to their better spectral leakage protection.

The application of SVA should be employed in the pursuit of narrowband, sinusoidal
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radar signals and a MTM or smoothing technique should be employed against broader-

band LPI radar signals. The next section for future work describes how these algorithms

may be combined as part of an all-round detector.

The appendices describe the progress which has already been made in taking the SVA

and the TSSP (one of the smoothing techniques) through the MBD process to integrate

these algorithms into an ESM system.

6.2 Future Work

The problem space for successful conventional and LPI radar waveform detection and

classification is huge. The contributions offered in this thesis have simply dealt with

the question of initial detection to gain or recover some range advantage. In doing so

many algorithms (such as those based on signal cyclostationarity or signal statistical

properties) were by-passed. Decisions were taken in the course of research to by-pass

these algorithms because they are currently too computationally complex to run in

real-time on data supplied from a superhet and DRx combination at a rate within

[1.0, 1.75] GHz or they did not offer an initial detection performance improvement over

energy detection in AWGN.

The algorithms investigated in this thesis concentrated on those based on the FFT

which would be viable for real-time operation. However the problem of classification

remains and here is where more computationally intensive algorithms may find a more

suitable role as they may be sent small subsets of data from clusters. These clusters

may derive from data flagged as possible detections by the algorithms studied in this

thesis. Therefore future work could concentrate on the creation of a system with a

rapid FFT-based core for initial detection and slower algoirthms processing occassional

interesting frames of data to assist with detection confirmation and classification. This

system would require at the very least an extended PDW.

The SVA and broader-band LPI waveform detection algorithms described in this thesis

are complementary. However some work is required to research a system which com-

bines the two in one system. Fig 6.2.1 shows two options for an all-round detector:

(a) with the use of the TSSP described in appendices H and I and (b) with the use of

the sine taper MTM. Such a system would have the advantage of conventional radar

waveform and LPI waveform detection but some work would be required for the control

logic and decision circuitry to make it successful.

The immediate further work is to continue the research into the separate application

of SVA and the TSSP algorithms into the SELEX Galileo DRx. This would entail:

(1) detection tests at a lower Pfa; (2) implementation of the suggested design improve-

ments from sections F.5 and I.4 and (3) further computational improvements to the

SVA implementation. The first point is important because the Pfa used in the simu-

lations in this thesis was relatively high for a real application. It was selected at this
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level so that the simulations would achieve results within project timescales and to

prove the concept.

The second point is explained in the relevant appendices. The third point follows on

from a technical review by other SELEX Galileo engineers of the SVA work covered

in this thesis. The avenues of exploration for further computational improvements in

the implementation of SVA are to observe the effect of a reduction of the input/output

(IO) number of bits and the effect of replacing the divide operator with a set of discrete

α parameters (more akin to the multiapodization interpretation).

Work packages have been drawn up to tackle the immediate separate application of

SVA.

FFT

SVA

TSSP

Digitised data
Orthogonal transform data

available for other algorithms

Sinusoidal signal
detection on ordinates

Broader -band LPI
signal detection

(a)

FFT

SVA

Digitised data
Orthogonal transform data

available for other algorithms

Sine MTM

Sinusoidal signal
detection on ordinates

Broader-band LPI
signal detection

(b)

Figure 6.2.1 Proposed integrated ESM systems: (a) with the use of TSSP; (b) with the
use of sine taper MTM
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APPENDIX A

Helicopter Trials

A.1 General Information

The floating-point simulation results obtained with the

use of SVA in section 3 were promising. These Monte

Carlo simulation results were rigorous in that they pro-

duced ROC curves for different simulated scenarios. How-

ever it should be noted that both the data input and the

simulated detectors in these results were from high-level,

floating-point software models. This is not a negative

point because algorithms developed using a MBD methodology always begin at this

level. However it was desirable to test these software models against some real-life

signal data captured using a DRx in an ESM system.

The “helicopter trials” lasted from 18th August to 20th August 2009 and provided a

unique opportunity to subject the SVA algorithm to further scrutiny with the use of

real-life data captured with the use of a DRx from the field. From the SELEX Galileo

point of view the opportunity also demonstrated what could be achieved with their

DRx design.

Originally the plan was to attempt to detect a Captor radar in keeping with the “tac-

tical situation” described in section 1.2. However this was not possible due to staff

shortages during the trials. Therefore a backup plan was used to fly over the Firth

of Forth. Whilst not exactly the desired tactical situation, this provided a wealth of

shipping radar emitter activity against which the SVA algorithm could be tested.

A.2 Constraints

There were some engineering constraints which applied at the time of the experiment:

1. The DRx hardware could not switch between a “sample capture mode” and a

threat display mode whilst in-flight.

2. The specific superhet frequency band to which the DRx was tuned could not be

changed in-flight (i.e. the ESM dwell).

3. The global positioning system (GPS) location system in the DRx was offline.
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Working within these constraints, the DRx was used in sample capture mode to obtain

buffered ADC data which then provided an input to a laptop taken on-board the

helicopter to execute MATLABr functions. These functions performed spectrogram

techniques on the data, with and without the application of SVA. Before each flight, the

DRx was tuned to a dwell which covered the shipping navigation range of frequencies.

A.3 Aims

Predictions of which emitters would be active during the flight was too difficult, even

with a partial list of known emitters, because the time of arrival of the signals at the

helicopter’s antennas would be unknown. In this kind of situation, when faced with

the analysis of an unknown spectrum, the standard engineering practice is to apply a

bell-shaped window function (such as a Hann or Chebychev window function) before

the FFT to ensure a moderate dynamic range of signals can be detected. This cautious

approach has been mentioned in section 1.4. The penalty to pay with the use of bell-

shaped windows is that the DRx spectral estimate frequency resolution is effectively

reduced because the mainlobes of all spectral peaks become wider. An explanation

of this effect is because the window effectively diminishes the significance of samples

(which contain signal power) at the ends of the DCW. Use of the SVA technique on

the captured data however permits the frequency resolution of a rectangular window

function, suppresses the sidelobe level and approximately maintains the processing gain

of the rectangular window.

Therefore the aim of the experiment was to capture opportunistically real-life data,

process it with the use of SVA and other conventional window functions and prove

the advantages of SVA were evident on real-life data. It was expected that the SVA

technique would afford advantages in the following possible scenarios which could have

been encountered:

1. When there are emitters very closely spaced in frequency and at similar received

power. A Hann window function or Chebychev window function would be unable

to tell them apart.

2. When signal spectral peaks occur over a moderately-large dynamic range, in other

words, when there are strong spectral peaks and weak spectral peaks. The weak

spectral peaks would be masked by the sidelobes of the strong spectral peaks if

a rectangular window function was used.

3. When a processing gain similar to the rectangular window function was required.



G H MacKerron, October 31, 2011 Original in Colour Appendix A. Heli Trials, 219

A.4 Experiment

The advantages of SVA are prominent in the detection of

narrowband signals. This is described and shown in chap-

ter 3. Marine radar beacons, or racons for short, are radar

emitters with very simple sinusoidal pulses. Therefore the

SVA algorithm would be expected to perform well in their

detection. Racons usually operate in both the X-band and

the S-band. The S-band emissions normally occur within

the frequency band 2.920–3.100GHz. To cover this, the ESM dwell that was selected

pre-flight in the DRx was ESM dwell number 41.

It was also known that the Glasgow airport Watchman A radar and the Edinburgh

airport Watchman A radar operated within the frequency range of this ESM dwell and

therefore it was predicted that some of their pulses would also be captured at the same

time. The Watchman radars had been recorded during previous trials with parameters

displayed in Table A.4.12 and so it was known what possible parameters their pulses

might exhibit in intercepted data.

Identity RF (MHz) Pulse Train
Width (ms)

Radar Dwell
(ms)

Watchman A
radars

[2750, 2950] [0.5, 20] [40, 1050]

Agile from
pulse-

train to pulse-
train Agile Staggered

Table A.4.1 Watchman A Parameters

The ESM dwell input was mixed down by the local oscillator (LO) in the superhet

to a lower IF frequency band. This bandwidth was sampled using real-only sampling

with an ADC at a particular sampling rate fs from the interval [1.0, 1.75] GHz. The

superhet mixed the bandwidth down into the second Nyquist band of the ADC which

promptly folded down into the first Nyquist band (conjugate symmetry about the

Nyquist frequency, see panel (b) of Fig A.4.1 for a pictorial explanation of this). The

Nyquist frequency was greater than the desired sampled bandwidth, i.e. the input was

oversampled. The reason for this was because it allowed a less-than-perfect analogue

filter with a gentle roll-off to be used after the LO. Consequentially, the degree of

complexity of the analogue filters was traded-off against the number of useful digital

1This number is an index for a frequency range not shown here
2Exact parameters are not shown
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FFT frequency bins because some bins at the edges representing the analogue filter

transition band were discarded.

Figure A.4.1 Experimental set-up: (a) system design (detail omitted); (b) depiction of
the ADC Nyquist bands

A.5 Results

The captured sample data were processed in MATLABr with the use of an on-board

laptop. The custom MATLABr functions were designed to model a real-life DRx.

For example the sample data was processed with non-overlapped and non-zeropadded

NFFT = 1024 FFTs of which the magnitude-squared was taken. This was chosen as it

is a reasonably sized FFT which a real-life DRx would be able to process within time

constraints.

The actual experiment produced twenty-one 8MB files which contained sample data
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and a full report was produced on these results however only a selection of the most

relevant data is shown in Figs A.5.1–A.5.9. The dynamic range of the z-axis scale is

maintained between plots of the same sample file. The units of the z-axis are dB/Hz,

i.e. power spectral density. To convert to physical units of dBm/Hz the following

conversion is required:

S(f, T )dBm/Hz ≈ FSdBm − ρ
S(f, T )dB/Hz

20
− 3.01Nb + 33.01 (A.5.1)

where T is the duration of a DCW, ρ is the reference resistance, Nb is the number

of ADC bits, FSdBm is the full-scale level of the ADC and there is an addition of

30 involved to convert Watts to milliWatts. The conversion is approximate because

full-scale is slightly asymmetric for positive and negative levels in a linear ADC.

Plots of rectangular-windowed and Hann-windowed spectrograms are compared against

the same data processed with the use of the SVA algorithm. The SVA algorithm was

applied along the frequency axis of the rectangular-windowed STFT. There is one plot

for each type of window technique under the three example sample files selected. Only

relevant frequency bins which contain a 500MHz portion of the S-band mentioned in

section A.4 are displayed in the spectrogram plots. Also only real data which was

analysed from one antenna are displayed in the plots because the results obtained from

analysis of other antennas were almost identical to the first.

A.5.1 Sample File 0

This sample file was created to test the system design was working correctly inside the

hangar before the flight. However it was useful as it served as an indication of the

noise floor and any interference signals present inside the helicopter. There was clearly

a continuous interference tone present with frequency ∼ 2.74GHz. This is marked on

the plots in Figs A.5.1–A.5.3.

Although there are no clear external signals of interest in this sample file, the broad-

mainlobe effect which the Hann window function causes is conspicuous upon exami-

nation of the continuous interference in Figs A.5.1–A.5.3. This results in the Hann-

windowed spectrogram having a coarser resolution in the frequency direction. The

spectral line caused by the continuous interference in the Hann-windowed spectrogram

is roughly double the width in the frequency dimension than that of the rectangular-

windowed spectrogram and SVA-spectrogram.



Original in Colour

Figure A.5.1 Sample file 0 rectangular-windowed spectrogram



Original in Colour

Figure A.5.2 Sample file 0 Hann-windowed spectrogram



Original in Colour

Figure A.5.3 Sample file 0 SVA spectrogram
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A.5.2 Sample File 8

A racon signal was the strongest signal captured in this sample file. This is visi-

ble from the results shown in Figs A.5.4–A.5.6 which were produced with the use of

a rectangular-windowed spectrogram, Hann-windowed spectrogram and SVA spectro-

gram respectively. The racon signal had a centre frequency of approximately 2.965GHz

and a pulse repetition interval (PRI) of approximately 0.7ms. The PRI parameter was

obtained from examination of later samples. Upon closer examination of the fine struc-

ture of the signal it appeared as a small chirp signal of span a few megahertz.

The strong signal is interesting because it corresponded to the second scenario listed

from section A.3. The results from the strong signal neatly demonstrates one of the

advantages of the use of SVA. In Fig A.5.4 the results show that the use of a rectangular-

windowed spectrogram resulted in large amounts of spectral leakage from high sidelobes

of the strong signal. This helps to support the point repeated throughout the study,

that a DRx designer will usually avoid the rectangular window function because high

sidelobes can cause erroneous detections. The use of the Hann-windowed spectro-

gram and SVA spectrogram resulted in much lower sidelobes for the strong signal in

Figs A.5.5 and A.5.6 respectively.

A weaker signal from the Watchman radar at Edinburgh airport was also present in the

sample file and is noticeable in all the plots. When analysed alongside later samples,

this captured signal appears as pulse trains of three or four pulses which then hop to

a different carrier frequency. The continuous interference tone was also still present in

the sample file.

From inspection of the general features of the plots in Figs A.5.4–A.5.6, the other

advantages of the use of SVA become clear. The use of SVA resulted in an improved

frequency resolution than when the Hann window was used. This is similar to the first

point from the list in section A.3. In addition to this, visually, the use of SVA in a

spectrogram creates a lower noise floor than the use of the Hann window.

Overall the conclusion which can be drawn from the examination of the data from this

sample file is that the use of the SVA algorithm did provide the expected advantages

over the use of a rectangular window function and a bell-shaped window function in

the guise of the Hann window.
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Figure A.5.4 Sample file 8 rectangular-windowed spectrogram



Original in Colour

Figure A.5.5 Sample file 8 Hann-windowed spectrogram



Original in Colour

Figure A.5.6 Sample file 8 SVA-windowed spectrogram
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A.5.3 Sample File 11

There were several signals contained within this sample file however only a few are

visible in Figs A.5.7–A.5.9 because these display only an extract of the samples from

the file. The spectral peaks due to the Watchman radar are again visible and when

viewed alongside later samples they appear as pulse trains of three or four pulses

between the approximate frequencies ∼ 2.89GHz and ∼ 2.94GHz. There were also

two different racon signals collected in the sample file one of which is marked on the

plots. As from the previous sample file, the same conclusions were drawn with regards

to the differences between the spectrograms in Figs A.5.7–A.5.9 which were calculated

with the use of the rectangular window, Hann window and SVA:

• The SVA spectrogram has better sidelobe attenuation than the rectangular-

windowed spectrogram.

• The SVA spectrogram has a better frequency resolution than the Hann-windowed

spectrogram.

• The SVA spectrogram has a better response to the noise floor than the Hann-

windowed spectrogram.



Original in Colour

Figure A.5.7 Sample file 11 rectangular-windowed spectrogram



Original in Colour

Figure A.5.8 sample file 11 Hann-windowed spectrogram



Original in Colour

Figure A.5.9 Sample file 11 SVA spectrogram
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A.6 Summary of Results

The results of the helicopter trials (for clarity not all are shown) can be summarised

by three main points, which confirmed the claims about SVA made in chapter 2:

1. The SVA algorithm maintains the frequency-domain representation resolution of

that of the rectangular window function. The use of the Hann window, which is

a bell-shaped window function, broadens the mainlobe of any spectral peaks.

2. The SVA algorithm provides good sidelobe attenuation. The attenuation is sim-

ilar to that of a Hann window function. However a rectangular window function

results in noticeable spectral leakage due to relatively high sidelobes.

3. The processing gain of the Hann window function is poorer than that of the

rectangular window function and SVA. This is directly related to the NEB of the

window functions. For the Hann-windowed spectrograms, the spectral peaks are

noticeable lower in relation to the noise floor, however the SVA algorithm does

not significantly raise the noise floor in the same manner.

To illustrate further and reinforce these three advantages of the SVA algorithm, some

captured sample data from the flight were extracted and are shown below.

Fig A.6.1 contains periodograms formed using NFFT = 2048 and N = 1024. These

periodograms display a snapshot of the estimated frequency content of the data samples

at that time interval. The periodograms are analogous to taking slices through full

spectrograms. In the plots the full digitised IF frequency range is not drawn so that

the plots can concentrate on a range of interest which contains a signal. Fig A.6.1 was

produced from the captured data samples in the file sample 200809 0007.txt. The

specific 1024 data samples were taken after τ ≈ 799 µs, where τ = 0 µs was defined as

the start of a sample capture file. The periodograms show the mainlobe of a spectral

peak from the SVA technique is similar to that of the rectangular-windowed FFT

mainlobe. However the mainlobe of the spectral peak when a Hann window function

was used before the FFT is approximately double that of the rectangular-windowed

periodogram and SVA-periodogram. This illustrates point one in the above summary

list.

The periodograms also show that the SVA technique and the Hann window function

have good sidelobe attenuation in comparison to the rectangular window function,

which thus illustrates point two from the above summary list.

Fig A.6.2 was extracted from a particular area of three spectrograms which were cal-

culated with the use of the different windowing techniques: (1) SVA; (2) rectangular

window function and (3) Hann window function. It was produced from the sample

capture file sample 200809 0006.txt. A chirped pulse with a bandwidth spanning a

few megahertz is visible. Panel (a) illustrates high sidelobe spectral leakage as a result
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of the use of a rectangular window function (point one made in the above summary

list). Panel (b) depicts the coarser frequency resolution caused by the use of a Hann

window function and reinforces point two from the above summary list. Panel (c)

shows the SVA spectrogram has good frequency resolution, good sidelobe attenuation

and that the noise floor is not raised significantly in comparison to panel (a), which

supports point three made in the above summary list.
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Figure A.6.1 Twice-zeropadded periodogram spectral estimates using the various window-
ing techniques



Original in Colour

Figure A.6.2 Spectrogram extracts of a chirp with the use of: (a) rectangular windowing;
(b) Hann windowing; (c) use of SVA



APPENDIX B

Complex-Parametered SVA

B.1 Unconstrained Complex SVA

In a similar formulation to the SVA technique, the cost function (C) to be minimised

is formed from the complex-filtered 3-tap equation and its complex conjugate

Xa(k) = X(k)− βX(k + 1)− β∗X(k − 1)

Xa
∗(k) = X∗(k)− β∗X∗(k + 1)− βX∗(k − 1)

Given explicitly, the cost function to be minimised is

C = Xa(k)Xa
∗(k)

= (X(k)− βX(k + 1)− β∗X(k − 1))

× (X∗(k)− β∗X∗(k + 1)− βX∗(k − 1))
(B.1.1)

Upon expanding the brackets in Eq (B.1.1), the following terms are obtained

C = |X(k)|2 − β∗X∗(k + 1)X(k)− βX∗(k − 1)X(k)− βX(k + 1)X∗(k)

− β∗X(k − 1)X∗(k) + |βX(k + 1)|2 + |βX(k − 1)|2

+ β2X(k + 1)X∗(k − 1) + (β∗)2X∗(k + 1)X(k − 1)

(B.1.2)

Since β, X(k), X(k+1) and X(k−1) are all complex numbers, they can be represented

in terms of real and imaginary parts, specifically

β = βR + ı̇βI (B.1.3)

X(k) = XR(k) + ı̇XI(k)

X(k + 1) = XR(k + 1) + ı̇XI(k + 1)

X(k − 1) = XR(k − 1) + ı̇XI(k − 1)
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Therefore the β terms in Eq (B.1.2) can be substituted using Eq (B.1.3) to give

C = |X(k)|2 − (βR − ı̇βI)X
∗(k + 1)X(k)− (βR + ı̇βI)X

∗(k − 1)X(k)

− (βR + ı̇βI)X(k + 1)X∗(k)− (βR − ı̇βI)X(k − 1)X∗(k)

+ (βR + ı̇βI)(βR − ı̇βI) |X(k + 1)|2 + (βR + ı̇βI)(βR − ı̇βI) |X(k − 1)|2

+ (βR + ı̇βI)
2X(k + 1)X∗(k − 1) + (βR − ı̇βI)

2X∗(k + 1)X(k − 1)

To find the minimum value of the cost function (C) with respect to β, the first step

is to search for stationary points by taking the first partial derivatives. The partial

derivative of C with respect to the real part of β is

∂C

∂βR

= −X∗(k + 1)X(k)−X∗(k − 1)X(k)−X(k + 1)X∗(k)

−X(k − 1)X∗(k) + (βR + ı̇βI) |X(k + 1)|2 + (βR + ı̇βI) |X(k − 1)|2

+ (βR − ı̇βI) |X(k + 1)|2 + (βR − ı̇βI) |X(k − 1)|2

+ 2(βR + ı̇βI)X(k + 1)X∗(k − 1) + 2(βR − ı̇βI)X
∗(k + 1)X(k − 1)

= −2ℜ
{

X∗(k + 1)X(k) +X∗(k − 1)X(k)− (βR + ı̇βI) |X(k + 1)|2

− (βR + ı̇βI) |X(k − 1)|2

− 2(βR + ı̇βI)X(k + 1)X∗(k − 1)
}

(B.1.4)

Taking the real parts of Eq (B.1.4) gives

∂C

∂βR

= −2
(

XR(k + 1)XR(k) +XI(k + 1)XI(k) +XR(k − 1)XR(k)

+XI(k − 1)XI(k)
)

+ 2βR

(

|X(k + 1)|2 + |X(k − 1)|2
)

+ 4
(

βRXR(k + 1)XR(k − 1)− βIXI(k + 1)XR(k − 1)

+ βIXR(k + 1)XI(k − 1) + βRXI(k + 1)XI(k − 1)
)

(B.1.5)

The βR and βI terms in Eq (B.1.5) can be collected together to give

∂C

∂βR

= 2βR

[

(

XR(k + 1) +XR(k − 1)
)2

+
(

XI(k + 1) +XI(k − 1)
)2
]

− 4βI

(

XI(k + 1)XR(k − 1)−XR(k + 1)XI(k − 1)
)

− 2
(

XR(k)
(

XR(k + 1) +XR(k − 1)
)

+XI(k)
(

XI(k + 1) +XI(k − 1)
)

)

(B.1.6)

Since βR and βI are the variables with which C is being varied, Eq (B.1.6) can be
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rewritten as

∂C

∂βR

= 2AβR − 4BβI − 2E, where (B.1.7)

A =
(

XR(k + 1) +XR(k − 1)
)2

+
(

XI(k + 1) +XI(k − 1)
)2
,

B = XI(k + 1)XR(k − 1)−XR(k + 1)XI(k − 1),

E = XR(k)
(

XR(k + 1) +XR(k − 1)
)

+XI(k)
(

XI(k + 1) +XI(k − 1)
)

.

Equation (B.1.7) is mentioned in section 2.8.1, the derivation of which is the subject of

this appendix. It is one equation which involves two unknown parameters: βR and βI .

In order to find another equation involving these unknowns the first partial derivative

of C with respect to βI must be taken. This produces

∂C

∂βI

= ı̇
(

X∗(k + 1)X(k)−X∗(k − 1)X(k)−X(k + 1)X∗(k) +X(k − 1)X∗(k)

− (βR + ı̇βI) |X(k + 1)|2 + (βR − ı̇βI) |X(k + 1)|2 + (βR − ı̇βI) |X(k − 1)|2

− (βR + ı̇βI) |X(k − 1)|2 + 2(βR + ı̇βI)X(k + 1)X∗(k − 1)

− 2(βR − ı̇βI)X
∗(k + 1)X(k − 1)

)

= −2ℑ
{

X∗(k + 1)X(k) +X(k − 1)X∗(k) + (βR − ı̇βI) |X(k + 1)|2

+ (βR − ı̇βI) |X(k − 1)|2

+ 2(βR + ı̇βI)X(k + 1)X∗(k − 1)
}

(B.1.8)

Taking the imaginary parts of Eq (B.1.8) gives

∂C

∂βI

= −2
(

XR(k + 1)XI(k)−XI(k + 1)XR(k)−XR(k − 1)XI(k)

+XI(k − 1)XR(k)
)

+ 2βI

(

|X(k + 1)|2 + |X(k − 1)|2
)

+ 4
(

βRXR(k + 1)XI(k − 1)− βIXI(k + 1)XI(k − 1)

− βIXR(k + 1)XR(k − 1)− βRXI(k + 1)XR(k − 1)
)

(B.1.9)

In a similar step to before, the βR and βI terms in Eq (B.1.9) can be collected together

to give

∂C

∂βI

= 2βI

[

(

XR(k + 1)−XR(k − 1)
)2

+
(

XI(k + 1)−XI(k − 1)
)2
]

− 4βR

(

XI(k + 1)XR(k − 1)−XR(k + 1)XI(k − 1)
)

− 2
(

XR(k)
(

XI(k − 1)−XI(k + 1)
)

+XI(k)
(

XR(k + 1)−XR(k − 1)
)

)

(B.1.10)
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Also in a similar stage, Eq (B.1.10) can be rewritten as

∂C

∂βI

= 2DβI − 4BβR − 2F, where (B.1.11)

D =
(

XR(k + 1)−XR(k − 1)
)2

+
(

XI(k + 1)−XI(k − 1)
)2
,

F = XR(k)
(

XI(k − 1)−XI(k + 1)
)

+XI(k)
(

XR(k + 1)−XR(k − 1)
)

.

Equation (B.1.11) is also mentioned in section 2.8.1, again the derivation is the subject

of this appendix.

It is possible to combine the two partial derivatives with two unknowns to find a

stationary point solution. This is possible because there are no cross-terms between

βR and βI in Eqs (B.1.7) or (B.1.11). The stationary point is given by

(βR, βI) =

(

2BF +DE

AD − 4B2
,
2BC + AF

AD − 4B2

)

(B.1.12)

To uncover the nature of this stationary point it is necessary to inspect the second

partial derivatives, which are

∂2C

∂β2
R

= 2A

∂2C

∂βR∂βI

= −4B

∂2C

∂β2
I

= 2D

∂2C

∂βI∂βR

= −4B

This generates the Hessian matrix

H =

[

2A −4B

−4B 2D

]

This is tested for definiteness, which provides information on the nature of the station-

ary point

βtHβ =
[

βR βI

]

[

2A −4B

−4B 2D

][

βR

βI

]

= 2AβR
2 − 8BβRβI + 2DβI

2

= 2A

(

βR − 4B

2A
βI

)2

+

(

2D − 16B2

2A

)

(B.1.13)

The only part of Eq (B.1.13) which can be negative is the second bracket. This is
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because squares are always non-negative and therefore the first bracket is always non-

negative and the βI
2 is always non-negative. In addition to this the definition of A in

Eq (B.1.7) is composed of a sum of squares (also the definition of D in Eq (B.1.11)

is composed of a sum of squares). Therefore the relationship between 4AD and 16B2

determines the nature of the stationary point. To be a minimum point AD > 4B2

must be satisfied. If the second bracket is expressed in terms of its original constituent

constants this gives

AD − 4B2 =
[

(

XR(k + 1) +XR(k − 1)
)2

+
(

XI(k + 1) +XI(k − 1)
)2
]

×
[

(

XR(k + 1)−XR(k − 1)
)2

+
(

XI(k + 1)−XI(k − 1)
)2
]

− 4
(

XI(k + 1)XR(k − 1)−XR(k + 1)XI(k − 1)
)2

(B.1.14)

The smallest possible value for the function in Eq (B.1.14) is zero and occurs if XI(k+

1) = XR(k− 1) or if XR(k+ 1) = XI(k− 1). When that happens the surface given by

Eq (B.1.13) will degenerate from a bowl to a valley. The Hessian matrix in Eq (B.1) is

positive semidefinite and therefore the stationary point will always be a minimum or,

in limiting cases, a valley.

B.2 Lagrangian Multiplier complex SVA

It is stated in section 2.8.1 that the minimum found in Eq (B.1.12) does not necessarily

correspond to a time-domain raised-cosine window function that is always non-negative

because the minimisation was not constrained to a particular set of answers. A simple

extension of the minimisation technique is to use a Lagrangian multiplier with the

constraint α = 0.5 or equivalently βR
2 + βI

2 = 0.25. The Lagrangian is then given by

L(βR, βI , λ) = C(βR, βI)− λ
(

0.25− βR
2 − βI

2
)

(B.2.1)

The partial derivatives of the Lagrangian from Eq (B.2.1) are given by

∂L

∂βR

= 2AβR − 4BβI − 2E + 2λβR (B.2.2a)

∂L

∂βI

= 2DβI − 4BβR − 2F + 2λβI (B.2.2b)

∂L

∂λ
= βR

2 + βI
2 − 0.25 (B.2.2c)

At the constrained minimum all of the partial derivatives will be equal to zero. If

Eq (B.2.2a) and Eq (B.2.2b) are set equal to zero and combined to eliminate λ the

result is

(D − A)βRβI − 2B
(

βR
2 − βI

2
)

+ EβI − FβR = 0 (B.2.3)
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Since (D − A) is just another constant, it can be defined as

G = 1/4 (D − A) = −
(

XR(k + 1)XR(k − 1) +XI(k + 1)XI(k − 1)
)

(B.2.4)

If Eq (B.2.4) is substituted into Eq (B.2.3) and the complex co-ordinate system is

changed to polar co-ordinates using βR = α cos(φ) and βI = α sin(φ), the simplified

result is

2αG sin(2φ)− 2αB cos(2φ) + E sin(φ)− F cos(φ) = 0 (B.2.5)

Finally if the last partial derivative of the Lagrangian in Eq (B.2.2c) is used, which is

essentially the same as substituting α = 0.5 into Eq (B.2.5), the following is obtained

G sin(2φ)−B cos(2φ) + E sin(φ)− F cos(φ) = 0 (B.2.6)

Equation (B.2.6) has to be solved numerically as there is no analytical solution.

B.3 Constrained complex SVA

From the equations of the simplistic Lagrangian multiplier constraint it is natural to

consider relaxing the constraint to the desired constraint of α 6 0.5 and using the KKT

conditions to find a constrained solution. The necessary KKT conditions are

∂C(βR, βI)

∂βR

+ λ
∂g(βR, βI)

∂βR

= 0

∂C(βR, βI)

∂βI

+ λ
∂g(βR, βI)

∂βI

= 0

λ
(

0.25− g(βR, βI)
)

= 0

g(βR, βI) 6 0.25

λ 6 0



















































KKT conditions (B.3.1)

where g (βR, βI) = βR
2 + βI

2 = 0.25 describes the upper limit of the constraint.

As with the Lagrangian multiplier technique there is no analytical solution for the series

of equations in the KKT conditions, however it is possible to show that the stationary

point that can be found numerically is a minimum. This is from consideration of the

bordered-Hessian matrix given by

H(C, g) =







0 ∂g
∂βR

∂g
∂βI

∂g
∂βR

2A −4B
∂g
∂βI

−4B 2D






= 2







0 βR βI

βR A −2B

βI −2B D






(B.3.2)
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The determinant of the bordered-Hessian matrix in Eq (B.3.2) is given by

det(H) = −8
(

βR
2D + βI

2A+ 4BβIβR

)

(B.3.3)

When Eq (B.3.3) is expressed as squares, the following is obtained

det(H) = −8D

(

βR +
16B

8D
βI

)2

+

(

−8A+
256B2

8D

)

βI
2 (B.3.4)

The first term in Eq (B.3.4) is always negative due to the positive nature of squares.

The first bracket is a square and D is a sum of squares. Therefore the second term in

Eq (B.3.4) determines whether the determinant is positive, negative or zero. From in-

spection of the second bracket in Eq (B.3.4) it is clear that to be negative the condition

−64AD < 256B2 must apply. This implies the condition AD > 4B2, which is the same

result as for the unconstrained minimisation case and therefore the same conclusions

can be drawn about the nature of the stationary point: the stationary point is always

a minimum unless XI(k + 1) = XR(k − 1) or XR(k + 1) = XI(k − 1) in which case it

will be a minimum in a valley. Examples of the use of this constrained minimisation

are given in section 2.8.3.



Original in Colour

APPENDIX C

Model-Based Design

C.1 Introduction

Specification

Design

Implementation

Verification

Maintainence

Figure C.1.1 The waterfall design methodology

This section aims to explain the

context in which the research

for this thesis took place. That

is, the context in which modern

electronic systems are built.

The fast pace of technologi-

cal and market changes in the

electronics industry have stimu-

lated the development of tools

and design methodologies to

help minimise the risks involved

in this market. These tools

allow designs to be created

at a high-level of abstraction,

where reusable intellectual prop-

erty (IP) blocks are integrated together at a system level. Tools which place a greater

emphasis on the software-modelling-domain, rather than the hardware-domain, have

an advantage that they can be more easily changed and applied to re-configurable de-

vices like FPGAs many times over. The design methodologies used tend to be graphical

and model-based as opposed to the traditional waterfall design methodology where the

design process is strictly sequential as depicted in Fig C.1.1.

C.2 MBD Principles

MBD tools invariably involve the creation of a system from building blocks which

represent advanced functionality. These blocks are built up to form the system in a

hierarchy. Thus it is possible to work at a very high level of abstraction to get an

overall feel for the system design or alternatively it is possible to drill-down and work

at a lower level of abstraction as desired.

At a high-level of abstraction a graphical model is an important trait when systems are
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large and complicated. If, for example, traditional text-based editors or mathematical

equation modelling tools were used, systems can become very complicated and hard

to decipher. It would be difficult to conceptualise a whole system at once with a text-

based editor or mathematical equation, however it is easy to get a grasp of a system

with a top-level graphical model diagram. Also the fine control over code provided

by a text-based editor is not entirely lost in MBD because the lowest level blocks in

the hierarchy can be explored and since these block simply represent code they can be

viewed in a text-editor if desired.

The modular nature of MBD aids designers to reduce development time by the facili-

tation of design re-use of various IP blocks in different designs. This fits in neatly with

the rise of re-configurable hardware such as FPGAs to further reduce design times. For

commercial businesses the reduction in design time is important as it allows them to

meet time-to-market windows more successfully, especially when the trend is for these

windows to shrink.

The link with FPGAs in MBD is a strong one. MBD permits the involvement of hard-

ware at a very early stage in the design development. The process is called hardware-

in-the-loop. The inclusion of hardware early in the design process allows errors which

would only appear once the design had been transferred to hardware to be located

promptly. Therefore costs which are involved in designs changes occur towards the

start of design development and hence are smaller than they would have otherwise

been. It also allows the designer to draw some rough estimates on the characteristics

of the design in the hardware such as its footprint or speed early in the design devel-

opment. The involvement of hardware early in the design development is probably one

of the greatest advantages of MBD and the overall effect is a large reduction in the

test and verification time. This is particularly true of MBD tools where it is possible

to run a hardware co-simulation. Hardware co-simulation involves design execution

in simulation in the modelling tool and on the FPGA at the same time such that

any discrepancies between the two are apparent. More information on MBD and its

application in DSP can be found in references such as [138]. The MBD tools and

methodology used in the course of the research in this thesis are now be described.

C.3 SELEX Galileo MBD Methodology

The MBD methodology, for the purposes of algorithm research, which is promoted in

SELEX Galileo and followed in this thesis involves targeting FPGAs with the use of:

(1) MATLABr, (2) Simulinkr and (3) Xilinxr System Generatorr tools. In short, it

involves the translation from the highest-level golden reference to FPGA through the

addition of detail at each translation.

Fig C.3.1 describes the methodology. The feedback arrows on the left of the diagram

show that the models are verified against previous stages to prevent error propagation
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Figure C.2.1 The MBD methodology

down the design flow. The numbers on the right-hand side show a ranking of relative

level of abstraction, 1 denotes the highest level and 3 the lowest. The circular arrows

at the bottom-right of the diagram indicate the iterative refinement of the FPGA

design after inclusion of hardware in the loop. The golden reference is located at the
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Floating -point Model

MATLAB/Simulink Fixed -point 
Model

FPGA Hardware 
Co-simulation

Simulink/System Generator FPGA 
Model

1.

2.

3.

V
e

rif
ic
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Figure C.3.1 The SELEX Galileo MBD methodology

highest level of abstraction. As a model it captures all system requirements and is

the model against which all lower level models are verified. It is built with the use

of MATLABr functions and scripts in floating-point arithmetic which provides a high

degree of accuracy for a low amount of effort.

For the next model down in abstraction, the golden reference is translated into a
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MATLABr/Simulinkr model which utilises fixed-point arithmetic. Typically, with a

real-life system implementation in mind, there will be restrictions on the number of bits

of precision which the fixed-point model can use. The construction of the fixed-point

model within these limitations makes it possible to get an understanding of the error

level achievable between the floating-point golden reference and the fixed-point model

and whether or not the algorithm will remain useful in a real-life system in fixed-point

precision on FPGA. It is important at this stage to design the fixed-point model as well

as possible in order to ease the translation to the next stage of abstraction. One way

of doing this is to have a good knowledge of the target hardware. For example what

mathematical operations are possible and how the fixed-point arithmetic is handled by

the hardware. A good knowledge of the target hardware allows the fixed-point model

to be designed with the hardware in mind.

Provided the fixed-point model was well-designed, the translation to the next level of

abstraction should be straightforward. The model here consists of a set of building

blocks which represent basic operations and functions that can be carried out on the

target hardware. The preferred tools for this task are Simulinkr/Xilinxr System

Generatorr. The System Generatorr blocks are the ones which visually represent

the FPGA operations. Everything coded in these blocks can be literally translated to

FPGA. Alternative tools include Synplify DSPr from Synplicityr and DSP Builderr

from Alterar if the target hardware is not Xilinxr. The results from this FPGA model

may differ from the previous fixed-point model due to the differences in which certain

higher-level IP blocks are implemented. For example division may be coded with the

use of one particular algorithm in fixed-point and coded with the use of a different

algorithm in the FPGA model which would lead to slight discrepancies between the

two models. However as long as both models can be verified against the golden reference

this should not matter.

The use of System Generatorr allows for continuous test and verification of the al-

gorithm actually running on the Xilinxr target hardware through a hardware co-

simulation mode.

C.4 System Generatorr

System Generatorr essentially abstracts hardware description languages (HDLs) to a

high-level and takes care of the design flow through the invocation of other Xilinxr

ISE design suite tools so that the inner workings of the production of an FPGA bit file

can be treated as a black box process. A list of some of its benefits are described here:

• ability to synthesise HDL code in both Verilog and VHDL languages;

• fits in well with the Xilinxr ISE design suite;

• includes libraries of IP which can perform specific functions such as division or
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coordinate rotation digital computer (CORDIC);

• can import other core IP as HDL black boxes into System Generatorr;

• can handle all the FPGA design stages such as synthesis, map and place and

route to create an FPGA downloadable bit file through invocation of various

tools from the Xilinxr ISE design suite;

• the FPGA model built with System Generatorr blocks creates a model which is

cycle-true and bit-true to the actual FPGA implementation;

• can specify exactly the fixed-point precision and overflow handling at each stage

of the algorithmic data flow;

• algorithmic verification can be performed using hardware-in-the-loop.

The overall design flow followed by System Generator from start to finish is shown in Fig

C.4.1. Perhaps the most important point from the above list is the hardware-in-the-loop

ability. Such is the support from System Generatorr for hardware co-simulation that

the results from the system implementation on the FPGA can be displayed alongside

the results from any other model of the system from the MBD methodology shown in

Fig C.3.1, hence the overall design flow from golden reference to FPGA is accelerated

considerably and the FPGA implementation is easily verified.

Lack of hardware co-simulation is the primary reason why the HDL Coderr tool from

Mathworksr was not chosen as the MBD tool for the work in this thesis. Naturally for

good hardware co-simulation with the use of a Xilinxr FPGA, it is easier to work with

the Xilinxr tool because then it is not necessary to work with device drivers manually.

Hence the choice of System Generatorr for the work in this thesis. An example of how

to set up a hardware co-simulation with System Generatorr and a Xilinxr FPGA is

described in [139].

Other methodologies exist to map to FPGAs such as hand-coding directly in VHDL

or Verilog or the direct use of CORE generator. However the disadvantages of these

methods are more severe than the disadvantages of System Generatorr. For example,

hand-coding in VHDL or Verilog can be very time-consuming and proper usage of

CORE generator requires a good understanding of the signals and parameters in order

to match them to your specifications.

For completeness, the disadvantage of System Generatorr should be mentioned: the

tool may not always use the minimum possible FPGA resources (however this is a

small price to pay for a high level of autonomation in direct FPGA map design).
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Figure C.4.1 System Generatorr design flow from blockset to bitstream

Figure C.4.2 Example System Generatorr system
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The relationship between Simulinkr, System Generatorr and FPGA hardware be-

comes clear upon examination of Fig C.4.2. This shows a made-up example system

for illustrative purposes. Simulinkr code (and Embedded MATLABr code) exists in

the Simulinkr model window as various sources, process blocks and sinks. The System

Generatorr blocks which represent the IP and which eventually are downloaded onto an

FPGA must exist within special “Gateway” blocks which act as interfaces between na-

tive Simulinkr blocks and System Generatorr blocks. The System Generatorr blocks

are prominent because they are light blue in colour and are labelled with the Xilinxr

logo. The Gateway blocks also mark a data type conversion between Simulinkr data

types and the custom fixed-point data types on the FPGA. Essentially the Gateway

blocks signify the boundaries of the FPGA. One other important point which concerns

Fig C.4.2 is the actual System Generatorr block represented by a red Xilinx logo. The

purpose of this block is to set certain parameters for the target hardware and how far

System Generatorr should progress along the FPGA design flow from Fig C.4.1.

C.5 Xilinx ISE Suite

As mentioned in the previous section, System Generatorr can take a design all the way

from FPGA model to bit file download. It does so by the invocation of various Xilinxr

ISE tools in the background. For example Xilinxr iMPACT is invoked in the course

of the FPGA download process. If desired, the incremental design process shown in

the bottom-left pane of Fig C.5.1 can be stepped through with Xilinxr ISE Project

Navigator tool. The two main stages in the design flow of this tool are synthesis and

implementation. The reports are also selectable for view in the tool (see the middle

pane and right-hand pane of Fig C.5.1).

C.5.1 Synthesis Stage

The Project Navigator tool creates a synthesis report, a synthesis errors report, a warn-

ings report and a summary upon completion of the synthesis stage. After completion

of the synthesis stage, it is possible to see the register transfer level (RTL) diagrams

of any part of the design. The reason for a well planned System Generatorr model

becomes clear from inspection of the RTL diagrams because the Xilinxr ISE tools

tend to replicate the partitions and functional blocks in RTL. For example, with the

aid of the model from appendix F, there is a striking similarity between the System

Generatorr model from Fig F.2.6 and the RTL which describes it in Fig C.5.2.



Original in Colour

Figure C.5.1 Xilinxr ISE Project Navigator in use

Data stored for second 
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Figure C.5.2 RTL diagram of phase 2 SVA model. Labels have been added for clarity
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C.5.2 Implementation Stage

This stage maps synthesised code to target hardware and performs a place-and-route

on the design. Upon completion of this stage the following reports and summaries are

created:

• translation report and messages

• map report and messages

• place and route report and messages

• post-PAR Static Timing report and timing messages

• IOB properties

• module level utilization

• timing constraints

• pinout report

• clock report.

Any part of the placed and routed design can be viewed through the use of Xilinxr

FPGA editor. For example, Fig C.5.3 shows part of the phase 2 model from appendix F

after the place and route stage in the FPGA editor. This example is highly zoomed-in,

and it is difficult to attribute any specific structure to the SVA algorithm at this low

level. However it is possible to see an individual DSP48E embedded multiplier as a red

box surrounded by Xilinxr slices to the left and right, which are shown as transparent

boxes. The route between slices is visible as light-blue lines and the route between

DSP48E embedded multipliers is visible as green lines.
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Figure C.5.3 Close-up view of FPGA after the place and route of phase 2 model



APPENDIX D

Fixed-Point SVA

The results obtained using a floating-point software model of SVA in a simulated DRx

in chapter 3 indicated that SVA is a promising technique which enables DRx algorithm

designers to avoid the usual limitations imposed when using fixed-weight window func-

tions. These results are summarised in Table 3.6.3. In all the scenarios tested, SVA

performed better than or almost as well as the best conventional windowing technique.

In scenarios dominated by sidelobe spectral leakage, the detectors which utilised SVA

came out on top, whilst in scenarios dominated by the noise floor, SVA approached the

rectangular window performance. This is important because the conventional approach

to DFT processing in DRxs designed for EW is not to use a rectangular window but

rather to use a moderate-dynamic range window function like a Hann window function,

despite the associated increase in NEB and wider 3.0-dB and 6.0-dB mainlobe. Since

SVA reduces sidelobes, mitigates the windowing loss (i.e. the increase in NEB) and

maintains the rectangular-window frequency resolution, it is definitely advantageous

to use it over conventional moderate-dynamic range windows.

It was appropriate to continue the floating-point work by taking the next step in the

MBD methodology. This next step involved an SVA implementation working within

stricter, more realistic, fixed-point constraints. This determined whether the advan-

tages offered by SVA as a high-level floating-point algorithm were still present in im-

plementable fixed-point arithmetic.

D.1 Implementation Decisions

At the fixed-point stage in any MBD methodology it is useful to make decisions con-

cerning the implementation with some foresight because if the algorithm is shaped

towards eventual FPGA implementation at this stage, it minimises the difficulty at

subsequent stages in the MBD methodology. There were two particularly important

decisions made and these were: (a) what language to use to describe the algorithm

in fixed-point and (b) what hardware the algorithm should eventually target. Factors

which affected the decisions were:

• the software tools available;

• the prescribed SELEX Galileo MBD methodology;
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• the FPGA resources available.

Figure D.1.1 Implementation decisions

D.1.1 Target Hardware

Although writing the SVA algorithm to be completely hardware-independent would

have its merits, the available FPGA hardware at the time within the group at SELEX

Galileo was Xilinxr-manufactured which meant that the fixed-point code would be no

worse-off written with a Xilinxr application in mind. Indeed, by keeping the Xilinxr

target hardware in mind the code was able to take advantage of Xilinxr-specific features

and optimisations later in the MBD methodology. The target hardware used was an

experimental board from the Xilinxr Virtex-5r family. One of the attractive features

of the Xilinxr Virtex-5r FPGA fabric is it incorporates so-called DSP48E slices. This

feature allows designers to create fast DSP designs. Therefore the fixed-point code

which was written at this stage in the MBD methodology emulated the basic arithmetic

operations possible in the slices, which are:

• 48 bit input addition/subtraction (or equivalently two 24 bit additions/subtractions);

• multiply-accumulate (MACC) using 25×18 multiplication and addition/subtraction

of result with 48 bit value;

• 18 bit barrel shifts;

• 48 bit counter;

• 25× 18 bit two’s complement multiplication.

More complicated arithmetic operations had to be built from these above basic opera-

tions. For example, the simulated detectors which calculated a variable component of

threshold (detector C2 in section D.3 and detector C3 in section D.4) required a non-

standard operation in the form of a square-root. The usual solution to this is to use the

well-known square root iterative algorithm which consists of successive multiplication

and subtractions, however as is described later, the simulations in this appendix used

an alternative method which resulted in calculation of the square-root of a magnitude-

squared in a more indirect fashion. This alternative method has an accuracy advantage
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over the usual direct square-root iterative algorithm because the output results are not

limited to half the number of useful bits as the input.

D.1.2 Simulation Language

There are many different options for which language to choose for writing any potential

fixed-point algorithm with pros and cons for each. The main options which were

considered are listed below:

The C language Coding in C would produce highly portable code because the arith-

metic in American National Standards Institute (ANSI) C is very simplistic and

makes no assumptions about the handling of fixed-point numbers. For example

“floor” rounding, wrapping on overflow and fixed wordlengths are all used by

default. However ANSI C does not natively provide for non-standard data types

which were required in the fixed-point models such as 18 bit, 36 bit and 48 bit

unusual wordlengths.

MATLABr and Simulinkr A fixed-point model coded using these tools would in-

volve extensive use of the Fixed-Point Toolbox and Embedded Toolbox. Coding

in MATLABr and Simulinkr using fixed-point data types would be the natural

progression from the previous the floating-point simulations. It is also no accident

that the MBD methodology advocated at SELEX Galileo advises a fixed-point

MATLABr implementation following on from a floating-point one. The Fixed-

Point Toolbox is highly flexible and would allow the fixed-point arithmetic to

emulate the arithmetic and wordlengths of a DSP48E slice. However the disad-

vantage of fixed-point MATLABr is that it is still a fairly high level language

and may not translate as easily as other languages to different hardware. In other

words, it is less portable.

VHDL or other HDL The level of abstraction of this language is very low which

would allow a great degree of control over the hardware. However coding using

VHDL immediately would be a jump too far in the MBD methodology, which is

designed to make incremental steps in abstraction.

On balance, the decision was made to code the fixed-point SVA algorithm in fixed-point

MATLABr.

D.2 Coding Methodology

The task to code, simulate and verify the fixed-point SVA algorithm was approached

by conversion of the modules in detectors A1, B1, C1 and E1 to handle fixed-point

arithmetic. With this approach, each module could be tested in its own testbench

to ensure functionality before the separate modules were integrated into one large

simulation with its own accompanying testbench. Additionally, this approach allowed



G H MacKerron, October 31, 2011 Original in Colour Appendix D. Fx-pt SVA, 256

considerations to be made to optimise each module according to its functionality. For

example the fractional bit handling in each module was more easily formulated and

monitored given the task of the module. When the modules were translated to fixed-

point, there was also a literal translation of the new code generated using floating-point

data types to further verify the fixed-point code functionality. As an example, Fig D.2.1

shows the fixed-point output of the SVA module could be checked against a floating-

point translation of the same code for the purpose of verifying functionality. Panel (a)

shows that after the magnitude-squared is taken of the SVA output the two different

datatypes are almost on top of each other in the plot and more explicitly panel (b)

shows the actual error of the fixed-point SVA module for this particular data input.

The amplitude of a least significant bit (LSB) for the real or imaginary part of a

frequency bin of the fixed-point output is overlaid for comparison1.
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Figure D.2.1 The outputs from the SVA block: (a) the output of the SVA block run in
fixed-point and in the floating-point translation; (b) the difference between the two outputs

The specifics of the fixed-point arithmetic used in the fixed-point models were:

Rounding Mode = Floor This was done as it is the most elementary and natural

method of rounding a number for a fixed-point processor and therefore it is

the most computationally efficient method of rounding. Essentially this involves

solving the problem of a number with more fractional bits being cast to a number

with fewer fractional bits by allowing the LSBs to “drop off” the LSB end.

1For reference, a sinusoidal signal and AWGN at SNRin = 0dB were used in producing Fig D.2.1
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Overflow Mode = Wrap When a maximum overflow error occurs, this is the sim-

plest technique to deal with it by allowing significant bits to “drop off” the most

significant bit (MSB) end. Therefore, as a quick and efficient technique, the wrap

technique was used throughout.

Product Mode = Keep LSB This is another method which was chosen for its com-

putational simplicity. If a product is formed from two inputs which cannot be

represented in the multiplier register, then bits will “drop off” the MSB end.

In section D.5.1 it is explained that this characteristic was put to good use by

employing a common fixed-point arithmetic number representation.

Multiplier Register Size = 43 bit This unusual wordlength is the output wordlength

of the multiplier in a DSP48E slice and therefore the fixed-point models reflected

this.

Sum Mode = Keep LSB This method of dealing with a sum is computationally

simple. If a sum is formed from two inputs which cannot be represented in

the accumulator register, then under this method bits “drop off” the MSB end.

Therefore this method, like the others, was chosen to maintain a simple fixed-

point arithmetic scheme.

Accumulator Register Size = 48 bit This is the wordlength of the accumulator in

a DSP48E slice and therefore was used in the fixed-point models.

Cast Before Sum = No This is the general method used in FPGA boards as a sum

is usually cast to the accumulator register wordlength size after the summation

operation has taken place and therefore the fixed-point models mimicked this

characteristic.

D.3 Coding Phase 1

The actual coding of the fixed-point models took place in two phases so that the

changes were more incremental and verification could take place more often. The first

phase of conversion of the floating-point simulated DRx modules to fixed-point was to

code the post-FFT processing in fixed-point. The modules before this partition, such

as the DCW module and the FFT module, were left in the floating-point domain. As

was the case during the tests of SVA in the purely floating-point models (or golden

reference models), the models built during the first phase were such that the detector

performance could be evaluated with and without the use of SVA. However the post-

FFT processing was calculated in fixed-point. Essentially in the first phase of coding

detectors A1, B1, C1 and E1 became detectors A2, B2, C2 and E2. Modules such as the

DCW module and FFT module remained as floating-point code in anticipation of the

FFT being a complicated module to code in fixed-point and to provide some interim

results. Detectors A2, B2, C2 and E2 are shown in Figs D.3.1–D.3.4 respectively. As
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mentioned in the preceding section, when the modules were converted to fixed-point

a literal floating-point translation of the code was included for verification purposes.

Therefore in Figs D.3.1–D.3.4 modules contained within the domain labelled as “Fixed-

point” could also be run in floating-point as an extra check on their functionality.
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Figure D.3.1 Architecture of the conventional windowing detector
A2. The partition between floating-point and fixed-point is shown
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Figure D.3.2 Architecture of the detector B2, which utilises SVA.
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Figure D.3.3 Architecture of the conventional windowing detector C2, which includes
a variable component of threshold. The partition between floating-point and fixed-point
is shown
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clude a variable component of threshold. The partition between floating-
point and fixed-point is shown
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D.4 Coding Phase 2

Naturally, the second phase of coding was to complete the conversion of the detectors

from floating-point to fixed-point via translation of the other modules. In other words,

the modules within the floating-point partition in Figs D.3.1–D.3.4, which represent

processes in a real-life detector, were converted to fixed-point. From the diagrams these

modules were the DCW and FFT modules. The DCW module represents an idealised

gain control and ADC in a real-life detector ADC.

The remaining modules which did not represent processes in a real-life detector were left

in the floating-point domain because they represent continuous, real-world processes.

These modules were basically the signals and background noise modules. These pro-

cesses in front of the ADC in the real world would be: (a) receive by an antenna and

(b) mix, amplify and filter by an RF chain (the superhet is a component this).

With fully converted fixed-point detectors a direct comparison was made to the original

floating-point results obtained in chapter 3 and hence whether the use of feasible fixed-

point arithmetic allowed SVA to keep its advantages over conventional windowing.

For clarity the detectors which were modelled entirely in fixed-point are depicted in

Figs D.4.1–D.4.4.

The next section gives a detailed account of the actual considerations which were made

during the two phases of coding.
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Figure D.4.3 Architecture of the fixed-point conventional windowing detector C3
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D.5 Coding Explanation

In this section the important information and considerations that were taken into

account in production of the fixed-point DRx models are described. This information

is given to provide an understanding of the depth the models reached towards a Virtex-

5r implementation. Therefore, what follows is a description of the major fixed-point

modules from Figs D.4.1–D.4.4.

D.5.1 Gain Control & ADC

Note: this fixed-point module description is applicable for the detectors A3, B3, C3 and

E3

ADC

Gain
control

Firstly the input for the simulated detectors was created in the continu-

ous, floating-point domain in a testbench. The input consisted of either a

pulsed sinusoidal radar signal and AWGN or one desired pulsed sinusoidal

signal, one interference pulsed sinusoidal signal and AWGN depending on

whether detectors A2/A3 and B2/B3 or C2/C3 and E2/E3 were being

tested. In either case, the desired pulsed sinusoidal radar signal was present in the H1

case but not in the H0 case.

The gain control module served to adjust the received signal power to the dynamic

range covered by the ADC quantisation levels and prevent clipping. In a real-life DRx

the usual practice is to specify a “headroom” relative to the largest operational signal

anticipated. This signal is usually a sinusoid of a specific power. Therefore for wave-

forms with more complicated structures such as AWGN (with exponential magnitude-

squared statistics), the headroom accommodates the tail of the distribution such that

overflows are extremely unlikely. Suitable headroom values are not considered in this

thesis because the input waveforms can be controlled in the simulation environment.

As a conceptual construct the ADC was defined to produce fixed-point words which

consisted solely of fractional bits and no integer bits. This was done to make the fixed-

point calculations somewhat easier further down the data flow because for example

when multiplications were required the words which consisted only of fractional bits

could not produce products that overflowed. The wordlength chosen was 18 bit because

this is the main data port width in a DSP48E slice.
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D.5.2 Window Function

Note: this fixed-point module description is only applicable for the detectors A3 and C3

Window
Function

Window 
LUT

The application of a weighted window function in the time-

domain involves a simple multiplication between each sample

in the DCW and the indexed window function coefficient. In

floating-point MATLABr the coefficients can be calculated on-the-fly using functions

such as chebwin(...) or hann(...). This method of calculating on-the-fly would

create unnecessary work in a real-life DRx, so rather than proceed down that route the

fixed-point code that was created mimics a method of storing the window coefficients

in a LUT and multiplying them with the corresponding DCW sample in a pipelined

fashion. Assuming one clock cycle for looking-up a coefficient, three clock cycles for

a fully-pipelined multiplication and using an embedded multiplier in a DSP48E slice,

the total latency using one DSP48E slice for this task would be 4N sample clock cycles

for a detector with a non-zeropadded FFT.

D.5.3 FFT Filter Bank

Note: this fixed-point module description is applicable for the detectors A3, B3, C3 and

E3

FFT
An FFT can be implemented in fixed-point in many different guises, each

with their own benefits and drawbacks. However the FFT algorithm used

was the decimation-in-time unit-stride algorithm 1.6.2 from page 45 of [140] with the

inclusion of a scaling factor of 1/2 at each butterfly stage. This was done to counteract

the FFT gain, so there was no danger of the intermediate products within the algorithm

causing a fixed-point overflow error. The eventual FFT filter bank output had a scaling

of 1/N in both real and imaginary parts. As a result of the scaling and with the number

of data samples at N = 128 and the number of fractional bits at frac = 18, the error

bound for the FFT bins was

Error =
1

2
log2 (N) 2−frac

= 1.3352× 10−5

One of the advantages of this fixed-point FFT algorithm was that the twiddle factors

(complex roots of unity, WN), were pre-computed and stored in a LUT, which allowed

different twiddle factors to be called upon depending on the FFT length. This was

important as the simulations examined the effect of zeropadding the DCW and there-

fore different twiddle factors were required to be stored and recalled as necessary. The

floating-point translation of the fixed-point code used the MATLABr built-in FFT

algorithm.
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D.5.4 SVA Filter

Note: this fixed-point module description is applicable for the detectors B2/B3 and

E2/E3

SVA
In chapter 3, SVA is occasionally referred to as an adaptive FIR filtering

technique. Under this interpretation the FIR filters would be composed

of three coefficients (i.e. taps) and two FIR filtering operations would be required per

frequency bin: one for the real part and one for the imaginary part. If the FIR filter

coefficients were constant, it would be a simple case of designing a detector to use

pipelined FIR filters. However the complication with the SVA technique is that the

coefficients for the FIR filters at each FFT frequency bin have to be calculated from the

FFT output before any FIR filter-like operations can take place. In other words, the

value for two of the taps has to be calculated from Eq (2.4.1) before any FIR filter-like

operations can occur. The final fixed-point code generated for the SVA technique takes

this two stage process into account.

The calculation of the α coefficients from Eq (2.4.1) is a trivial affair in floating-point,

but in fixed-point the situation is more difficult because the dividend and divisor are

complex and division must be done with the use of a fixed-point division algorithm.

During complex division, the real and imaginary parts of the dividend are multiplied

by the complex conjugate of the divisor, then real and imaginary parts are collected

together and divided by the magnitude-squared of the divisor. This process is described

in Eq (D.5.1) below

a+ ı̇b

c+ ı̇e
=

(ac+ be) + ı̇ (bc− ae)

(cc+ ee)
=

(ac+ be)

c2 + e2
+ ı̇

(bc− ae)

c2 + e2
(D.5.1)

where a and c are the real parts of two complex numbers and b and e are the imaginary

parts. However to calculate the α coefficients only the real part of the right-hand

side of Eq (D.5.1) is actually retained. In other words, only the following in Eq (D.5.2)

is required to calculate the α coefficients

α =
(ac+ bd)

c2 + e2
(D.5.2)

≡ ℜ{X(k)}ℜ{X(k + 1) +X(k − 1)}+ ℑ{X(k)}ℑ{X(k + 1) +X(k − 1)}
[ℜ{X(k + 1)}+ ℜ{X(k − 1)}]2 + [ℑ{X(k + 1)}+ ℑ{X(k − 1)}]2

Therefore for each α coefficient, the dividend calculation would involve two multipli-

cations and one summation, which would consume seven sample clock cycles in one

DSP48E slice in a fully-pipelined MACC operation. This assumes that the summa-

tion of X(k + 1) + X(k − 1) has been calculated previously and the results can be

reused. Similarly, to calculate the divisor, again assuming X(k + 1) + X(k − 1) had

been calculated elsewhere, two multiplications and one summation are needed. This

would also involve seven sample clock cycles if implemented in one DSP48E slice as
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a fully-pipelined MACC operation. In addition to this, if the calculation of dividend

and divisor is designed to take place within a pipelined architecture using one DSP48E

slice for the dividend and one for the divisor, then the total latency to calculate the

dividends and divisors for each frequency bin α parameter would be increased by a

factor of NFFT.

Before the actual division operation takes place, it is possible to do a series of tests on

the dividend to judge whether further calculations are necessary. In effect it is possible

to optimise the SVA block. Details on these optimisations can be found in appendix E.

Although not used here these optimisations unfortunately do not lend themselves well

to a buffered, synchronous pipelined implementation of SVA because they rely on the

latency of the constituent components having a fixed delay. The SVA optimisations

explained in appendix E result in components having a variable delay and therefore

would work only in an architecture involving “acknowledge” and “request” signals

between the components. In a hardware implementation the potential optimisations

could not speed-up the design but they could achieve some power savings by avoiding

unnecessary computations.

D.5.5 Cartesian to Polar Co-ordinates Conversion

Conversion 
to Polar 
Coords

The vector output from the FFT block consisted of complex-valued num-

bers, composed of real and imaginary parts in a Cartesian format. How-

ever this is unhelpful because generally ESM DRxs base detection deci-

sions on the received power or envelope of an input waveform. This point was covered

in section 1.6. In the floating-point detectors in chapter 3 the received power and enve-

lope were easily calculated using the MATLABr commands abs(...)2 and abs(...)

respectively on the FFT output. Using these commands the magnitude-squared and

magnitude of the complex numbers was calculated. In detector C2/C3, the magnitude

of the FFT output was required for an accurate interpolation of the spectral peak fre-

quencies, whereas, strictly-speaking for detectors A2/A3, B2/B3 and E2/E3 only the

magnitude-squared was required. However for code-reuse and comparison reasons all

the detectors calculated the magnitude of the FFT output first and then went on to

calculate the magnitude-squared for detection purposes.

To undertake the fixed-point equivalent of calculating the magnitude and magnitude-

squared of a complex number, a brute force technique would be to multiply each real

and imaginary part by itself, sum them, then take the square root. However this is an

inefficient method to calculate a magnitude in fixed-point. This is because squaring

fixed-point values doubles the number of required bits. Adding the numbers would then

increase the number of bits required again by one bit. The square-root operation would

allow some of the bits to be dropped, but a square-root operation in itself is non-trivial

in fixed-point arithmetic. Therefore the brute-force technique is inefficient because

some of the calculated bits are destined to be ignored and it involves a non-trivial
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square-root operation. With this information it seemed sensible to use a different

route to obtain the magnitude (and subsequently, magnitude-squared) of a complex

number and this was achieved by through utilisation of the CORDIC algorithm.

The beauty of CORDIC algorithms is all functions and transformations are based on

rotation of a vector in the first or fourth quadrant in an Argand diagram. This is done

by known angles stored in a LUT through the use of only simple shift and summation

operations in an iterative fashion (and usually one multiplication at the start or end

of the CORDIC algorithm to counteract any gain of the algorithm).

The simplest explanation of the CORDIC algorithm is to consider an attempt to ap-

proximate the cosine or sine function of an input angle. In this case, a suitable starting

point to understand CORDIC is to envisage an iterative vector rotation process for a

general vector (a0, b0). A useful mental picture for rotation of a general vector is an

unforced pendulum gradually swinging towards its resting position, which corresponds

to the vector at the desired angle. The nth iteration of rotation with the use of a

rotation matrix is described mathematically as

(

an+1

bn+1

)

=

(

cos θn − sin θn

sin θn cos θn

)(

an

bn

)

, n = 0, 1, 2, . . . ,M − 1

=
1

√

1 + tan2 θn

(

1 − tan θn

tan θn 1

)(

an

bn

)

(D.5.3)

where M is the total number of iterations and θ is the angle the vector makes against

the real axis. A value for M is selected prior to the calculations. If the rotation angles

(tan θn) are limited to powers of two (±2−n), then Eq (D.5.3) can be simplified into

two equations. These two equations require only shifts (multiplications by a power of

two) and summations to implement in fixed-point arithmetic. This is highly favourable

because these operations are highly computationally efficient. These equations in vector

format are

(

an+1

bn+1

)

= Kn

(

an − δnbn2
−n

bn + δnan2
−n

)

, whereKn =
1√

1 + 2−2n
(D.5.4)

and δn = ±1

Kn is the CORDIC algorithm gain after the nth rotation and therefore after M itera-

tions the total gain K is

K =
M−1
∏

n=0

Kn

The result after M iterations needs to be adjusted to account for this gain through

multiplication by 1/K. Fortunately 1/K can be easily stored in a LUT as a pre-

computed constant. The value of δn in Eq (D.5.4) is equivalent to the choice of direction
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of rotation for the pendulum and is chosen depending on the function or transformation

that is desired to be approximated by the CORDIC algorithm. In the above example

of the approximation of the cosine or sine of a given angle, δn is chosen to attempt to

match the rotated vector to a vector at the desired angle (the resting position of the

pendulum) and this introduces the third CORDIC equation: the angle accumulator

zn+1 = zn − δnθn (D.5.5)

For example, to calculate the cosine and sine of an angle, δn is declared to be positive

for positive zn and negative for negative zn.

All CORDIC algorithms use three fundamental equations as the basis for their com-

putation, this can be seen in [141]. The various CORDIC algorithms differ only in

their choice of the value of the parameter δn at each iterative step and another pa-

rameter m. These change according to which function or transformation CORDIC is

used to approximate. If m = 1 the CORDIC algorithm will calculate the trigonometric

group of functions; if m = −1 then CORDIC can be used to calculate the hyperbolic

functions and if m = 0 CORDIC can be used for “linear” transformations. The linear

transformations allow multiplication and division to be calculated using only shifts and

summations. To summarise the general form of the three CORDIC equations is

an+1 = an −mδnbn2
−n (D.5.6a)

bn+1 = bn + δnan2
−n (D.5.6b)

zn+1 = zn − δnθn (D.5.6c)

The CORDIC algorithms store pre-computed values for the scaling factor (1/K) and

the iterative rotation angles used in the angle accumulator equation (these are θn =

arctan(2−n) in the example of the cosine and sine of an input angle).

The class of CORDIC algorithm for calculation of the magnitude of a complex SVA-

filtered frequency bin is the trigonometric class. The calculation was achieved by

iterative rotation of the vector (XI , XQ) in an attempt to force it to sit on the x-axis in

an Argand diagram. The initial conditions for Eqs (D.5.6a)–(D.5.6c) were: a0 = XI ,

b0 = XQ, z0 = 0, m = 1 and δn = 1 if bn is negative, otherwise δn = 0. The SVA-filtered

frequency bin in real and imaginary part form was converted to magnitude and phase

form. After M iterations the approximation to the magnitude of X was located in the

memory register holding the current value for Eq (D.5.6a) and was given by

aM ≈ K
√

XI
2 +XQ

2 (D.5.7)

The result in Eq (D.5.7) was then scaled by multiplication with the stored constant

value for 1/K.
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The accuracy of the unscaled magnitude result improves by two bits for every iteration

of the CORDIC algorithm, this meant that for a complex number input consisting of

18 bit real and imaginary parts, the CORDIC process was halted after 9 iterations and

the scaling multiplication was applied. Finally to calculate the magnitude-squared of

the complex number, the magnitude result was multiplied by itself.

D.5.6 Quadratic Peak Interpolation

Note: this fixed-point module description is only applicable for detectors C2/C3

Quadratic Peak
Interpolation on 

Strong Tone

The use of detectors which employ conventional fixed weight win-

dow functions necessitates mitigation against sidelobe spectral leak-

age and mainlobe width caused by the particular window function

used. It has already been shown in section 3.4 that for detectors using SVA the spectral

leakage from one signal into another is negligible and can be safely ignored. This is not

true for the conventional window function detectors. It is necessary to estimate the

sidelobe spectral leakage from any strong signal peaks into the surrounding frequency

bins to prevent spurious detections due to leakage.

This meant it was important to get a good estimate of the true magnitude and frequency

of interference signal peaks. There are many methodologies for the estimation of the

true peak from available FFT data, a selection of these are described in [142]. The most

accurate method to obtain an improved estimate of a spectral peak is to zeropad the

DCW before the FFT operation. However as zeropadding is relatively computationally

complex and there are diminishing returns from zeropadding to more than double the

original DCW length. It was desirable to keep computational complexity to a minimum,

hence a simple interpolation technique of plotting a quadratic through the data points

was used in all of the fixed window function detector simulations, both zeropadded and

non-zeropadded. As was described in section 3.4, a QIFFT is a better quick estimation

technique than zeropadding alone. Therefore the quadratic peak interpolation block in

the floating-point detector C1 was translated to fixed-point in detectors C2 and C3.

In fixed-point, Eq (3.4.4) could be implemented in hardware using two FIR filters (one

for the dividend and one for the divisor) and one division operator. FIR filters lend

themselves well to implementation on FPGA. However the alternative approach which

was used in the fixed-point coding of detectors C2 and C3 was to calculate the dividend

and divisor through a combination of arithmetic shifts and accumulation. Specifically

these operations were:

• The dividend was calculated by shifting the fixed-point numbers p and r one bit

to the left and then r was subtracted from p.

• The divisor was calculated by shifting the fixed-point number q one bit to the

right; the result was subtracted from p and stored in an accumulator and r was

summed into the accumulator.
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Once the calculation of ∆f had been accomplished, the calculation of Q in Eq (3.4.5)

was evaluated in fixed-point. This too involved arithmetic shifts and MACCs.

As an additional note, in an actual DRx there would need to be a search for the largest

magnitude peaks in the spectral estimate as the sources of most of the spectral leakage.

Since the magnitude of the FFT output is not sorted in any way, searching for the

maximum value would be an O(NFFT) computation. This would require approximately

2 clock cycles for each comparison, so that the search in total would take 2NFFT clock

cycles.

The usefulness of quadratic peak interpolation is demonstrated in chapter 3 in the

floating-point simulations where it combined well with zeropadded FFT output data.

This was expected to continue to be the case in the fixed-point domain.

D.5.7 Spectral Leakage & Variable Threshold Component

Note: this fixed-point module description is only applicable for detectors C2/C3

Find Spectral Leakage 
of Strong Tone

(…)2

Variable Component
of Threshold

Window 
IPR LUT

With a good estimate of a spectral peak fre-

quency and magnitude and knowledge of which

window function was applied prior to the

FFT, it was possible to estimate the level of

sidelobe spectral leakage and mainlobe width

from the peak into other frequency bins by

masking the envelope of the magnitude of

the frequency-domain response of the window

function around the peak, exactly as described

in Fig 3.4.3.

The most accurate method of calculation would be to use the theoretical equations of

the magnitude of the frequency-domain responses such as Eqs (3.4.1)–(3.4.3). However,

such calculations would be extremely complicated in fixed-point as they invariably in-

volve trigonometric functions and much use would be required of fixed-point techniques

such as those in [143]. The simpler method that was used was to store 218 pre-calculated

values of the magnitude of the frequency-domain response for each window function

tested. The stored values were scaled to fit the estimated magnitude of the spectral

peak. The sidelobe spectral leakage and mainlobe width from the estimated spectral

peak were, in turn, estimated at other frequency bins from the frequency difference

between the scaled response peak and the bin of interest. To form the variable compo-

nent of threshold the scaled, recalled magnitude value was squared by multiplication

with itself.

Finding the spectral leakage in fixed-point was undertaken using the following proce-

dure which was chosen because it would be easily implemented in hardware using the

operations in the brackets:
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• find the frequency difference between the estimated spectral peak and bin of

interest (subtraction);

• use the frequency difference as an address for the LUT;

• scale the stored frequency-domain response magnitude value (multiplication);

• square the magnitude value (multiplication).

The fixed-point SVA detectors (E2 and E3 in the interference-present scenarios) did

not use or require a variable component of threshold due to the conclusion in section 3.4

that the effect of sidelobe spectral leakage is negligible with the use of SVA. Therefore

although the complexity of SVA is more complicated than conventional windowing,

detectors such as E2 and E3 can recover some efficiency over detectors such as C2 and

C3 by foregoing the variable-component-of-threshold calculations.

D.5.8 Fixed Threshold Component

Fixed Component
of Threshold

This value of the fixed component of threshold was found from

previous Pfa against Pd simulations. The detectors were simulated

over many trials under the H0 condition (1 × 105). This entailed

AWGN as the input for detectors A2/A3 and B2/B3 and AWGN plus interference for

detectors C2/C3 and E2/E3. The fixed component of threshold was set to a value such

that the probability of false alarm was empirically Pfa = 0.01. This value for Pfa was

selected so that it matched the value in the floating-point simulations and therefore

the end results could be compared.

D.5.9 Detection Decision

Detection Decision

The comparator part of the detector checked the

magnitude-squared of the frequency bin of interest against

the total threshold, which was composed of the fixed com-

ponent only in detectors A2/A3 and B2/B3 and the fixed

and variable components in detectors C2/C3 and E2/E3.

If the value in the frequency bin was larger than the threshold then a signal was de-

clared to be present (case H ′
1) otherwise no signal of interest was declared to be present

(case H ′
0). No special coding was required in the fixed-point coding because in an ac-

tual FPGA implementation, the comparator would simply require some logic circuitry

and a subtraction operation.

D.6 Results

In short the results demonstrated the success of the fixed-point SVA implementa-

tion. This is because when the models were examined using Monte Carlo simulations,
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the ROC curve results that were returned showed no difference, save for a negligible

amount of error, to those obtained with the use of floating-point models from chap-

ter 3. Although fixed-point results were obtained for all the floating-point scenarios

from chapter 3, here results are shown only for an “easy” scenario (full DCW) and

a more challenging scenario (interference in full DCW, SNRout,B = 15 dB, frequency

separation 2fs/N) to demonstrate the negligible difference after translation to the

fixed-point system. Additionally, results obtained with the use of detectors A2, B2, C2

and E2 have been omitted due to their close similarity to the results from detectors

A3, B3, C3 and E3 and because they are of lower interest owing to the hybrid digital

floating-point/fixed-point nature of the detector models.

The criterion by which the results were judged in order to decide whether the imple-

mentable fixed-point detectors A3, B3, C3 and E3 were successful or not was that the

ROC curve results should match those obtained from the corresponding floating-point

detectors A1, B1, C1 and E1. The notion was if they matched the floating-point re-

sults it would show that the translation of SVA to FPGA-implementable fixed-point

code does not have a detrimental effect on the performance of SVA as a windowing

technique and the advantages of SVA could be enjoyed in an realistic DRx design.

D.6.1 Full DCW

Detectors A3 and B3 were relevant for this scenario. In order to compare the ROC curve

results from the fixed-point detectors A3 and B3 with the results from their floating-

point counterparts A1 and B1, the full DCW scenario had to be set-up identically to

that in section 3.2. Briefly this entailed:

• complex exponential signal and AWGN;

• random frequency, fT , of the signal over the frequency bin interval;

• random initial phase, φ0, of the signal;

• probability of false alarm, Pfa = 0.01;

• non-overlapped DCWs;

• detection on each DCW;

• window functions used in detector A3: Chebychev, Hann and rectangular;

• non-zeropadded and zeropadded FFTs used;

• 1× 105 trials in a simulation.

As stated previously and shown in Fig D.2.1 for the SVA module, literal floating-

point translations of the fixed-point code were used to further verify the functionality

of the modules in the fixed-point detectors. Once the functionality was satisfactorily

verified, the main Monte Carlo simulations were undertaken. The ROC curve results
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for the fixed-point detectors are shown in Fig D.6.1. When compared back to the

floating-point results in Fig 3.2.6 of section 3.2, it is clear that the results are virtually

identical, except for some negligible error caused by quantisation. As the focus of the

translation to fixed-point arithmetic was whether SVA would be able to perform as well

in implementable fixed-point as it could in floating-point, in Fig D.6.2 the fixed-point

SVA result are overlaid on the floating-point results from Fig 3.2.6.

The same conclusions could be drawn over the relative detector performances in Fig D.6.1

as were drawn in section 3.2. For example the rectangular-windowed fixed-point de-

tector was the best and the fixed-point SVA detector recovered most of the windowing

loss over the Chebychev-windowed and Hann-windowed detectors. However this was

not the aim of the fixed-point simulations. The important conclusion to draw is that

with the use of implementable fixed-point arithmetic, which could be easily mapped

onto a Xilinxr Virtex-5r FPGA, the detectors have the same relative performance as

the floating-point detectors save for a negligible amount of quantisation error.

If, for example, the Hann-windowed detector performed differently and had been better

in fixed-point than in floating-point, it would have proved that there would be a prob-

lem with the implemention of SVA in a real-life DRx in an ESM system. The MBD

methodology chain of SVA would be terminated at this point. In the actual event, the

full DCW results show there are no adverse effects of the implemention of SVA in a

fixed-point system which can be easily mapped onto a gate-array.



Original in Colour

(a)

SNRout (dB)

P
d

 

 

−5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Chebychev (det. A3)
Hann (det. A3)
Rectangular (det. A3)
SVA (det. B3)

(b)

SNRout (dB)

P
d

−5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Figure D.6.1 ROC curve results from fixed-point detectors A3 and B3 for: (a) the non-
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Figure D.6.2 Full DCW scenario detector B3 ROC data points (×) overlaid on floating-
point detector B1 points (◦) for: (a) the non-zeropadded case; (b) the zeropadded case
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D.6.2 Interference in Full DCW

In this scenario detectors C3 and E3 were relevant. Again the scenario was built using

the same characteristics as the corresponding floating-point scenario in section 3.4. As

a summary these were:

• a desired complex exponential, SA, an interfering complex exponential, SB, and

AWGN;

• signals with random frequencies, fT,A and fT,B, each randomly chosen over a

frequency bin interval at the start of each test run;

• random initial phases of the signals, φ0,A and φ0,B;

• probability of false alarm, Pfa = 0.01;

• non-overlapped DCWs;

• detection on each DCW;

• window functions used in detector C3: Chebychev, Hann and rectangular;

• non-zeropadded and zeropadded FFTs used;

• 1× 105 trials in a simulation;

• average frequency separation between fT,A and fT,B was 2fs/N and 5fs/N .

Once the functionality of the individual modules in the fixed-point detectors had been

verified through a comparison with the outputs obtained from the literal floating-point

translation of the code, the main Monte Carlo simulations were undertaken. Fig D.6.3

shows the ROC curve results for the SNRout,B = 15 dB with an average frequency

separation of 2fs/N .

In addition the specific SVA detector ROC curve results are isolated and shown in

Fig D.6.4.

The situation is much the same as in the full DCW scenario in that the results are iden-

tical to those from the corresponding floating-point simulations, save for a negligible

error caused by quantisation.

The crucial conclusion to draw from the results is that with the use of SVA in a feasible

fixed-point detector, it maintains its sidelobe spectral leakage minimisation property

in a difficult scenario. This furthers the argument that SVA is a viable algorithm to

be implemented on FPGA.
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Figure D.6.4 Interference full DCW scenario detector E3 ROC data points (×) overlaid on
floating-point detector E1 points (◦) at SNRout,B = 15dB and average separation of 2fs/N
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D.7 Conclusions

The study of the use of SVA in a fixed-point arithmetic system, which was designed

with implementation in mind, showed that the advantages of SVA in a simulated DRx

are still present.

The fixed-point system used in this section was tailored to suit the Xilinxr Virtex-5r

DSP capabilities and as such the results provide support for the notion that a real-life

DRx using SVA is attainable. The results paved the way for the next stage in the MBD

flow, that is, to implement on FPGA.



APPENDIX E

SVA Optimisations

A valid argument about a disadvantage of the fixed-point implementation of SVA is:

The division operator in the SVA algorithm is relatively, computationally

intensive compared to conventional FIR filters which have the ability to

employ MACC methods on FPGA boards. The division operator to cal-

culate the α parameter in the SVA algorithm would be required for every

FFT frequency bin if the desire was to apply SVA to the entire FFT.

However, there are certain optimizations which could be implemented and which appear

when the calculations of fixed-point SVA are analysed. These could be used to reduce

the overall computational burden of SVA. The fixed-point coding in detectors B2/B3

and E2/E3 did not utilize these optimizations, since the primary goal was to translate to

fixed-point and then later consider where optimizations could be made. Another reason

against the inclusion of the optimisations in detectors B2/B3 and E2/E3 was that the

optimisations would lead to a variable delay for the α parameter calculation part of

the SVA functional block. This would be acceptable if the eventual implementation on

FPGA consisted of functional blocks which have “acknowledge” and “request” signals

between them. However the optimisations detailed in this appendix are less suitable

for a buffered, synchronous pipeline architecture because this would rely on functional

blocks with a fixed latency.

The optimisations could be utilised in a synchronous pipeline if the target optimisa-

tion criterion was to reduce power consumption. In this situation delays would be

introduced within the functional blocks of the SVA block and they would be forced

to await request signals. In essence, the latency of the SVA functional block would

be fixed. Therefore the optimisations in this appendix would be unlikely to improve

the SVA algorithm latency, however they are included nonetheless because they have

power consumption relevance. Power consumption is an important factor for an ESM

DRx because heat dissipation in a mobile platform can be problematic.

E.1 Optimisations

The basic equation for an SVA-filtered FFT is given in Eq (2.4.2) with the value of the

α coefficient at each FFT frequency bin calculated from Eq (2.4.1). Hence, there are

two main stages in the execution of SVA:
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1. The calculation of the α coefficients for each FFT frequency bin.

2. The application of the α coefficients in an operation which resembles a 3-tap FIR

filter at each bin.

Therefore in order to execute Eq (2.4.2), the α coefficients from Eq (2.4.1) are pre-

requisite. Complex-valued X(k) can be decomposed into real and imaginary parts as

X(k) = XI(k) + ı̇XQ(k). From this representation Eq (2.4.1) can be broken down

into its divisor (D) and dividend (E) inside the ℜ operator from which the real and

imaginary parts can be collected together as thus

D = X(k + 1) +X(k − 1)

= [XI(k + 1) + ı̇XQ(k + 1)] + [XI(k − 1) + ı̇XQ(k − 1)]

= [XI(k + 1) +XI(k − 1)] + ı̇ [XQ(k + 1) +XQ(k − 1)]

E = X(k)

= XI(k) + ı̇XQ(k)

To perform a complex division, the E and D need to be multiplied by the complex

conjugate of D, which is given by

DD∗ = ([XI(k + 1) +XI(k − 1)] + ı̇ [XQ(k + 1) +XQ(k − 1)])

× ([XI(k + 1) +XI(k − 1)]− ı̇ [XQ(k + 1) +XQ(k − 1)])

= [XI(k + 1) +XI(k − 1)]2 + [XQ(k + 1) +XQ(k − 1)]2 (E.1.1)

and the dividend multiplied by the complex conjugate of the divisor is

ED∗ = (XI(k) + ı̇XQ(k)) ([XI(k + 1) +XI(k − 1)]− ı̇ [XQ(k + 1) +XQ(k − 1)])

= XI(k) [XI(k + 1) +XI(k − 1)]− ı̇XI(k) [XQ(k + 1) +XQ(k − 1)]

+ ı̇XQ(k) [XI(k + 1) +XI(k − 1)] +XQ(k) [XQ(k + 1) +XQ(k − 1)]
(E.1.2)

The revised divisor part of the equation for the α coefficient, DD∗, in Eq (E.1.1) is

definitely positive and real because it is the magnitude-squared of a complex number.

However the dividend in Eq (E.1.2) is complex. When the ℜ operator is reintroduced,

it can be deduced that only the real part ED∗ is required, explicitly

ℜ{ED∗} = XI(k) [XI(k + 1) +XI(k − 1)] +XQ(k) [XQ(k + 1) +XQ(k − 1)] (E.1.3)

Overall, considering the real and imaginary parts of X(k), the mathematical equation

to find α at each FFT frequency bin is

α =
XI(k) [XI(k + 1) +XI(k − 1)] +XQ(k) [XQ(k + 1) +XQ(k − 1)]

[XI(k + 1) +XI(k − 1)]2 + [XQ(k + 1) +XQ(k − 1)]2
(E.1.4)
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Since DD∗ is positive and real, the numerator of Eq (E.1.4) determines the sign of

α. From Eq (2.4.2), if α 6 0, then the whole FIR filter part of SVA can be ignored.

Therefore an optimization would be to calculate the real part of the numerator from

Eq (E.1.3) and test if it is negative or zero. This procedure is described in pseudo-code

in Table E.1.1, where it is assumed that the intermediate result in the DSP48E slice

register consists of a signed 48 bit word.

MACC Operation Intermediate Result in Register

Multiply XI(k)XI(k + 1)

Accumulate XI(k)XI(k + 1)

Multiply XI(k)XI(k − 1)

Accumulate XI(k)XI(k + 1) +XI(k)XI(k − 1)

Multiply XQ(k)XQ(k + 1)

Accumulate XI(k)XI(k + 1) +XI(k)XI(k − 1)

+XQ(k)XQ(k + 1)

Multiply XQ(k)XQ(k − 1)

Accumulate XI(k)XI(k + 1) +XI(k)XI(k − 1)

+XQ(k)XQ(k + 1) +XQ(k)XQ(k − 1)

Logic Operation Pseudo-code

Sign Test OR all zeros if bitget(acc reg,48) or
(acc reg==0) then
(. . . )

end if

Table E.1.1 Operations to find the numerator for α and determine if it less than or equal
to zero

In the calculation of ED∗, one quantity is calculated which also features in Eq (2.4.2)

and should be stored for later use. This is the “sum of the neighbour frequency bins”.

Explicitly: X(k+1)+X(k−1) = [XI(k + 1) +XI(k − 1)]+ ı̇ [XQ(k + 1) +XQ(k − 1)].

If the sign test in Table E.1.1 is true then the FIR filter stage of SVA would be skipped

for that bin. If the sign test is false then it would be necessary to carry out the full

calculation of α by execution of the E/D division, which from the previously calculated

result in Table E.1.1, would be:

α =
acc reg

[XI(k + 1) +XI(k − 1)]2 + [XQ(k + 1) +XQ(k − 1)]2
(E.1.5)

The next step in the optimisations would be to test whether the quotient from E/D

is greater than or equal to 1/2. Such a test could be performed by appending the

first fractional bit of the quotient to the integer bits of the quotient and applying a
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short-circuit OR operation to these bits. If this test is returned as true, then rather

than multiply the “sum of the neighbour frequency bins” by 1/2 as in Eq (2.4.2), a

barrel shift one place to the right should be performed on the “sum of the neighbour

frequency bins” (this is depicted in Table E.1.2). A barrel shift is computationally

much simpler than a multiplication and therefore would allow a saving to be made

on either computational time or power consumption depending on whether SVA is

implemented as a procedure or as a pipeline.

If the test whether the quotient is greater than or equal to 1/2 is returned as false then

the fractional bits (except the MSB) from the quotient would be used to multiply with

the real and imaginary parts of the “sum of the neighbour frequency bins”. The result

from this multiplication would be subtracted from the real and imaginary parts of the

frequency bin under test.
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Real Part

Operation α > 0.5
Intermediate

Result

Operation 0 < α < 0.5
Intermediate

Result

Shift1 XI(k + 1) Multiply α (XI(k + 1)

+XI(k − 1) >> 1 +XI(k − 1))

Subtract XI(k) Subtract XI(k)

− (XI(k + 1) − α (XI(k + 1)

+XI(k − 1) >> 1) +XI(k − 1))

Imaginary Part

Operation α > 0.5
Intermediate

Result

Operation 0 < α < 0.5
Intermediate

Result

Shift XQ(k + 1) Multiply α (XQ(k + 1)

+XQ(k − 1) >> 1 +XQ(k − 1))

Subtract XQ(k) Subtract XQ(k)

− (XQ(k + 1) − α (XQ(k + 1)

+XQ(k − 1) >> 1) +XQ(k − 1))

Table E.1.2 Calculations to filter FFT output bins with SVA 3-tap FIR filter when α > 0

A summary of the optimisations is given in the following pseudo-code, where the

E/D quotient is assumed to have a 48 bit wordlength with frac = 18 fractional bits:

if (bitget(48)) or (acc reg== 0) then

// alpha numerator<= 0

Xa(k) = X(k); // No FIR stage applied

else

Sr = XI(k + 1) +XI(k − 1); // Sum of real parts of neighbours

Si = XQ(k + 1) +XQ(k − 1); // Sum of imaginary parts of neighbours

α = acc reg/(Sr
2 + Si

2);

if or (bitget(α,48:18)) then

// checking if α 6 0.5

accre= Sr >> 1;

accim= Si >> 1;

XIa(k) = XI(k)−accre;

XQa(k) = XQ(k)−accim;

else

// 0 < α < 0.5

1In Table E.1.2 >> is used to symbolise a barrel shift of a binary number one place to the right
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accre= Sr × α;

accim= Si × α;

XIa(k) = XI(k)−accre;

XQa(k) = XQ(k)−accim;

end if

end if

An alternative description of the optimisations is given by the flowchart in Fig E.1.1:
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End

End

End
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)1()1( −++ kXkX

[ ]( )α)1()1()( −++− kXkXkX
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Figure E.1.1 Flowchart of the α parameter optimisations



APPENDIX F

SVA-on-FPGA

The evaluation of the SVA algorithm in a variety of scenarios in floating-point arith-

metic revealed that SVA has advantages over conventional windowing techniques.

Further investigation of SVA in the fixed-point domain confirmed that these advantages

were still present in a realisable fixed-point arithmetic system. The results obtained

indicated that the fixed-point arithmetic, at the fixed-point precision studied, con-

verged to the floating-point results. Additionally, it showed that the relative detector

performance of the different window techniques did not alter after the conversion to

fixed-point arithmetic. The fixed-point SVA simulations were designed with Xilinxr

Virtex-5r FPGA implementation in mind.

The logical progression from the fixed-point simulations was the next step in the MBD

methodology, that is, to translate the fixed-point code to an FPGA implementation.

One of the important concerns in the SELEX Galileo MBD methodology is to ensure

that fixed-point simulations are well designed to allow an easier transition down to the

next lower level of abstraction. This instruction was followed thoroughly to aid the

translation of SVA to FPGA implementation.

The main aim of coding SVA-on-FPGA was not to uncover its mathematical properties

because the fixed-point simulations had already proved that an SVA detector can retain

its floating-point performance in FPGA-like arithmetic. Rather, the primary aim was

to discover physical information about SVA-on-FPGA such as the fabric resources

required, the speed at which it can run, its latency and throughput.

F.1 Implementation Decisions

F.1.1 Target Hardware

There were various reasons why a Xilinxr Virtex-5r board was chosen as the FPGA

board:

• the fixed-point simulations had already been designed with Virtex-5r implemen-

tation in mind;

• the hardware resources available at SELEX Galileo;
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• one of the MBD tools used, System Generatorr, enables generation of the HDL

code shaped for Xilinxr boards.

Incidentally it is possible to generate generic HDL for other FPGA manufacturer

boards using System Generatorr. However since System Generatorr is a Xilinxr tool,

it therefore produces optimised HDL code for Xilinxr boards. The specific Xilinxr

board used was an evaluation card with model designation Virtex-5r LXT ML505 (de-

vice XC5VLX50T). For SVA-on-FPGA, the important features of this general purpose

board were:

Block RAM According to the Virtex-5r datasheet[144], a ML505 board has a total

of 2160 kB available in block random access memory (RAM).

DSP48E Slices These resources are tailored for high-speed DSP. They feature a 25×
18 two’s complement multiplier and a 48 bit adder. An ML505 board contains 48

of these DSP resources.

F.1.2 Simulation Language

A recommendation from the SELEX Galileo MBD methodology is to build models

for FPGA implementation with the use of Simulinkr and System Generatorr which

includes a Xilinxrblockset library in Simulink. This set of tools permits hardware-in-

the-loop test and verification via a Joint Test Action Group (JTAG) header. Therefore

the tools chosen for creating the eventual FPGA bit file download were Simulinkr and

System Generatorr.

F.2 Coding Methodology

In a similar fashion to the procedure followed for the fixed-point SVA model, the process

of SVA-on-FPGA creation was broken down into distinct phases.

F.2.1 Phase 1

The first phase of SVA-on-FPGA was to translate the fixed-point SVA code into a

graphical representation in Simulink with the use of the Xilinxr blockset. The decision

was made to leave support functions like the FFT out of the code and represent them

with Simulink blocks. This was because the objective was to uncover the characteristics

of SVA-on-FPGA and this was achieved with the SVA algorithm isolated on the FPGA.

Fig F.2.2 is a screenshot of the model produced during phase 1. At this level the

diagram shows the model was composed mostly of native Simulink blocks. The obvious

exceptions are the System Generatorr tool icons. Fig F.2.3 was obtained by drilling

down into “Block containing Xilinx blocks” in Fig F.2.2. This diagram shows the actual

Xilinxr blocks used to implement SVA-on-FPGA. The boundaries of the FPGA are
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defined by the “Gateway in” and “Gateway out” blocks.

As mentioned in section D.4 SVA naturally lends itself to a two stage process for

implementation:

1. calculation and limitation of the α parameters (which involves a division opera-

tion);

2. use of the α parameters in a type of FIR filter.

The two stages of the algorithm are apparent in Fig F.2.3. The labeled boxes: 1. cal-

culate the dividend and divisor for the first stage and 2. execute the division and limit

α values for the second stage.

The phase 1 design was simple. Factors and parameters such as NFFT were kept to a

mere fixed length of 32. The phase 1 model also opted to use a buffered, synchronous

pipeline architecture. That is, registers were placed between stages in the pipeline

and they were clocked synchronously. This system worked well as it was built around

an FFT processor where the output was essentially downsampled by a factor of N .

A diagram of the pseudo-algorithm showing the pipeline-flow is shown in Fig F.2.1.

The pipelined implementation of SVA ran at the same speed as the input to the FFT

processor and operated on one FFT frequency bin at a time before the arrival of the

next output FFT frame.

The pipeline architecture produced savings on FPGA hardware resource usage because

not all FFT frequency bins had to be operated on in parallel. Once the pipeline

was filled with data, all the hardware resources allocated to the pipeline were fully

employed. Naturally pipeline usage resulted in a better throughput of the SVA system

than if no pipeline had been implemented. However, the drawback of the pipeline was

the increased latency over an implementation which would operate on all frequency

bins in parallel.
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Figure F.2.1 A flow chart of the SVA-on-FPGA pseudo algorithm
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The pipeline architecture was chosen as a trade-off between FPGA resource usage and

latency. An example of the problems which arise if the pipeline is removed is: if

NFFT = 32 and all the frequency bins are operated on in parallel, 640 DSP48E slices

would be required1. This is far in excess of the 48 DSP48E slices available on the ML505

Virtex-5r Evaluation Platform. The Xilinxr blocks which were used to generate HDL

code for the pipeline and later re-order the data within it are highlighted in Fig F.2.3.

The pipeline was not a simple flow from beginning to end. It required extra effort to

accommodate the division function. The IP chosen for the division function derived

from the Xilinxr blockset library as this was the most likely to be an efficient imple-

mentation. The difficulty with this division IP block was that it could not be placed

as a piece of logic between registers in a simple pipeline. This was because the IP

is implemented internally as a loop to minimise FPGA resource requirements. It is

however an efficient implementation of a loop because it can receive and output data

at bursty intervals through a carousel-like operation. In order to place this piece of IP

within the pipeline architecture it was necessary to achieve a constant number of clock

cycles between data going in to the divider IP and calculated data coming out. The

condition for this, according to [145], was “the number of cycles between new inputs

must be mutually prime with the number of pipe stages in the iterative engine”. In

the phase 1 model the data received from the pipeline in front of the divider was held

with the use of a first-in-first-out (FIFO) until the divider was ready for it. The divider

was clocked at three times the FFT input data rate which was mutually prime with

the number of pipe stages in the implemented divider. The clock rate of the divider

ensured data was output (after being downsampled) at the original pipelined data rate.

An alternative to the increase in the clock rate of the divider would be to use three times

as many divider blocks or to slow the entire system down to the “natural” throughput

of the divider block. Therefore either three times as many resources would be required

to perform the division (along with extra handling of the data to ensure the inputs

would be evenly distributed across all the dividers) or a slower data throughput would

need to be accepted (but with greater control over the data flow via a state machine).

More discussion on this trade-off is given in section F.5 where it is suggested that it

would be necessary to choose from one of these alternatives to eliminate the multiple

clock rates from the system. In brief this is because it is undesirable for the detection

component of a DRx in an ESM system to run with the use of multiple clock rates.

A further point to note from Fig F.2.3 is a box which highlights data stored for the

second part of the algorithm. The reason for the inclusion of this in the model was to

recall data from the start of the data flow to be used again in the second stage of the

algorithm to prevent repeat calculation. FIFOs were used as the elements of memory

in this design, however it is noted in section F.5 this is a potential weakness. Briefly

1This number was obtained with the use of Xilinxr Resource Estimator on the model multiplied
by the number of frequency bins
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this is because if a FIFO within a pipeline architecture becomes corrupt, the system

would thereafter fail. An improved design would be to use two banks of RAM in place

of each FIFO. Instead of data removed from the bottom of the pile in a FIFO, data

would be written to one bank whilst read from the other bank. At the end of each

bank read/write operation the functionality of the banks would switch so that the one

previously read from would be written to and vice-versa. The trade-off in this case

would be an increase in system stability for an increase in FPGA resource usage and

increase in latency (as the first RAM bank would require to be filled before it could be

read). A two-RAM-bank implementation would probably be included in a real-life DRx

but since the aim in this SVA-on-FPGA investigation was mainly to characterise the

SVA algorithm on FPGA, the RAM-banks task has been left as a future improvement.
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F.2.2 Phase 2

In the second phase of production of SVA-on-FPGA, the Xilinxr ISE design tools were

used extensively to give an indication of the FPGA resources required by the algorithm.

This information was used to refine the phase 1 model to fit in the target hardware.

An extract of the synthesis report obtained from the Xilinxr ISE design suite for the

phase 1 model is listed below in Table F.2.1. Table F.2.1 clearly shows that the phase 1

Device utilization summary:

Selected Device : 5vlx50tff1136-1

Slice Logic Utilization:
Number of Slice Registers: 4123 out of 28800 14%
Number of Slice LUTs: 2768 out of 28800 9%
Number used as Logic: 1157 out of 28800 4%
Number used as Memory: 1611 out of 7680 20%
Number used as SRL: 1611

Slice Logic Distribution:
Number of LUT Flip Flop pairs used: 4782
Number with an unused Flip Flop: 659 out of 4782 13%
Number with an unused LUT: 2014 out of 4782 42%
Number of fully used LUT-FF pairs: 2109 out of 4782 44%
Number of unique control sets: 8

IO Utilization:
Number of IOs: 2307
Number of bonded IOBs: 2306 out of 480 480% (*)

Specific Feature Utilization:
Number of BUFG/BUFGCTRLs: 1 out of 32 3%
Number of DSP48Es: 10 out of 48 20%

WARNING:Xst:1336 - (*) More than 100% of Device resources are used

Table F.2.1 Extract from phase 1 model synthesis report

design used too many “bonded IOBs” or in other words too many IO pins. The effect of

this was to compel the mapping stage to fail in the design flow. Upon closer inspection

the reason for the design device over-utilisation in the phase 1 model became clear.

The design attempted to transfer the full FFT output onto the FPGA board from an

off-board FFT processor. In actual fact this transfer would be an artificial situation

because in a real-life DRx the SVA module would be accommodated in the same FPGA

as the FFT processor and the route from one to the other would not require IO pins.

Therefore the solution in the phase 2 model was to move the pipeline creation out of

the SVA module.
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The refined phase 2 model is shown in Figs F.2.5 and F.2.6. Fig F.2.5 is a top-

level system description and Fig F.2.6 shows the SVA algorithm. The diagrams show

the pipeline creation and reorganisation were moved out of the FPGA in the phase 2

model. The phase 2 model was also used in the subsequent test phase, where it allowed

a comparison to be made between the different implementations of the SVA algorithm

to ensure the functionality remained the same. These implementations were:

• high-level floating-point SVA

• fixed-point SVA

• low-level floating-point translation of fixed-point SVA

• System Generatorr SVA.

Within the phase 2 model there was also the provision to allow a direct comparison to

be made against Hann-windowed and rectangular-windowed FFTs which operated on

the same data.

The phase 2 model, had a much more favourable synthesis report. This design success-

fully mapped onto the target device and successfully completed the place and route

process. The device utilisation report, shown in Table F.2.2, for the phase 2 model

was extracted from the place and route report rather than the synthesis report. Af-

Device Utilization Summary:

Number of BUFGs 1 out of 32 3%
Number of DSP48Es 24 out of 48 50%
Number of External IOBs 147 out of 480 30%
Number of LOCed IOBs 0 out of 147 0%

Number of RAMB18X2s 1 out of 60 1%
Number of RAMB18X2SDPs 4 out of 60 6%
Number of RAMB36SDP EXPs 2 out of 60 3%
Number of Slice Registers 1918 out of 28800 6%
Number used as Flip Flops 1918
Number used as Latches 0
Number used as LatchThrus 0

Number of Slice LUTS 1498 out of 28800 5%
Number of Slice LUT-Flip Flop pairs 1896 out of 28800 6%

Table F.2.2 Extract from phase 2 model place and route report

ter the phase 2 model successfully transitioned through the place and route stage,

hardware co-simulation became possible. This meant it became a hardware-in-the-

loop process during which the model and its hardware co-simulation were tested with

specially-designed test vectors. This process is depicted in Fig F.2.4, where the hard-

ware co-simulation is a parallel branch to the phase 2 model.
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The next phase discusses in more detail tests of the phase 2 model and its hardware

co-simulation.

Hardware
co-simulation

Figure F.2.4 SVA hardware co-simulation
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F.2.3 Phase 3

Test and verification are the most important and time consuming stages of implemen-

tion of any algorithm in FPGA. The use of a MBD methodology facilitated a reduction

in the verification time because in the transition from one level of abstraction to the

next the models were verified against the previous layer. In addition the graphical syn-

thesisable models were generally bit-true and cycle-true representations of the actual

algorithm in FPGA and if there were any discrepancies between the model and the

actual implementation in FPGA, the use of hardware co-simulation brought attention

to them. Nevertheless the test and verification stages are still extremely important in

MBD and this section describes the methods used to test and verify the phase 2 model

and its hardware co-simulation.

Tests occurred in two different types of test:

1. Particular test vectors were used to explore the differences between the magnitude-

squared of the output from the SVA implementations and the rectangular-windowed

and the Hann-windowed FFTs.

2. The key Monte Carlo simulations from section 3.2 and 3.4 were repeated on

FPGA.

F.2.4 First Type of Test

SVA-on-FPGA, which hereafter in this section is taken to collectively refer to the

phase 2 model and its hardware co-simulation counterpart, was tested against previous

SVA models and the extreme values the α parameter can assume (α = 0 and α =

0.5). Essentially, the extreme α values created a comparison between: (1) SVA-on-

FPGA; (2) rectangular-windowed results and (3) Hann-windowed results. According

to the multi-apodization interpretation and after appropriate normalisation, the SVA-

on-FPGA spectral values should always be less than or equal to the envelope of the

spectral values produced by the rectangular-windowed FFT or Hann-windowed FFT

for the same input data.

The test vectors used for the comparison were sinusoidal waveforms. They were chosen

because they represent the extreme case to test the dynamic range of SVA-on-FPGA

and additionally they represent the signal type which the SVA algorithm is best suited

to detect. The sinusoidal test vectors acted as corner cases and therefore it was not

necessary to repeatedly test SVA-on-FPGA with an exhaustive set of signal types.

In total SVA-on-FPGA was tested against the:

• high-level floating-point SVA from chapter 3;

• fixed-point SVA from section D;
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• low-level floating-point SVA translation of the fixed-point code from section D;

• floating-point rectangular-windowed FFT;

• floating-point Hann-windowed FFT.

All of the first types of test were conducted with the use of N = 128. The first type of

test is also referred to as the difference tests in this chapter.

F.2.5 Sinusoidal Input (Complex Exponential)

The Fourier transform is the matched filter for sine/cosine waves. Therefore waveforms

with a similar structure will produce the strongest response at the output of a Fourier

transform processor. In any envisaged detector which uses SVA, the SVA operates

on the output of an FFT, which is a type of discrete Fourier transform. Therefore in

the first type of test when sinusoids were processed by the FFT, they produced the

strongest response at the output of the FFT and hence tested the SVA algorithm in

an extreme case.

One of the purposes of testing SVA-on-FPGA with sinusoids was to check that there

were no flaws in the design after it had been converted from the fixed-point implemen-

tation. In particular, the fixed-point design and SVA-on-FPGA were created to ensure

there were no overflow errors whilst underflows were minimised. In effect a full scale

(FS) sinusoid was used with no provision for headroom.

Specifically, the sinusoidal tests involved frequency increments of a complex exponential

through the interval fs/N
2. The results for all bins would be identical. In the simplest

case of no offset and no window function (i.e. a rectangular window) the projection

of the frequency response of the complex exponential occurred at an FFT bin centre

and had a magnitude equal to N times the time-domain amplitude of the complex

exponential. However when there was a frequency offset between the FFT bin and the

complex exponential the cusping loss caused the apparent magnitude to reduce from

this maximum (see section 1.4).

As SVA-on-FPGA was a translation of the fixed-point SVA, the previous fixed-point

decisions from section D.4 were valid. For example the number of fractional bits (18 bit)

was chosen to be the same as the wordlength.

The time-domain amplitude of the complex exponential was pegged to the ADC FS

value of 1 − 2−17 and the gain post-FFT was set to 1

2
∑N−1

n=0
|w(n)|2

, where w(n) are the

window coefficients. In real-life the FS value would represent the maximum voltage

level of the ADC.

The post-FFT gain was set to ensure that the real and imaginary parts of the output of

2The frequency was changed such that the offset from a bin centre was incremented by 0.1× fs/N
through [−0.5, 0.5]× fs/N
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the FFT were not be able to exceed the value |0.5−2−18|, thus 18 bit words with 18 bit

fractional bits. The post-FFT gain is similar to the situation where each individual

butterfly within the FFT is divided by two in order to ensure the algorithmic gain is 1

(i.e. 0 dB). The phase of the complex exponential test vector was selected at random

at the start of each test run.

In the course of these difference tests spectral estimates were recorded for the:

• Hann-windowed FFT;

• rectangular-windowed FFT;

• high-level floating-point SVA;

• fixed-point SVA-filtered FFT;

• low-level floating-point translation of the fixed-point SVA;

• SVA-on-FPGA.

The Hann-windowed and rectangular-windowed FFTs were twice-zeropadded to achieve

a better picture of their overall spectral response. This was done simply to give an ac-

curate visual comparison to the SVA spectral estimates. In the results which follow in

Fig F.2.7 the frequency-domain response envelope of the rectangular and Hann window

functions are also drawn over the top as the upper bound for the rectangular-windowed

or Hann-windowed FFTs.

The predicted outcome was that the SVA results should be less than or equal to

the rectangular-windowed spectral response envelope and the Hann-windowed spectral

response envelope centred on the frequency of the complex exponential. The envelopes

are important theoretical constructs to consider because although some spectral values

that result from the use of a rectangular-windowed or Hann-windowed FFT can appear

below the envelopes, this occurs because the FFT samples only a finite number of

points from the DTFT. In a real-life DRx, the frequency of a target sinusoid signal

would initially be unknown and it would not be possible to state with any certainty

that there had been no cusping loss and no measured spectral leakage, therefore the

safe option must be assumed which is the spectral response envelope of the rectangular-

windowed or Hann-windowed FFT.

One set of plots is shown in Fig F.2.7 for a particular frequency offset value. The results

show that the target signal frequency does not line up perfectly with the nearest FFT

bin. Panel (a) compares the various SVA models from the MBD methodology against

the spectral estimation results from the application of a rectangular-windowed FFT to

the same data. The first positive conclusion from the test results was that the phase

2 SVA model and its hardware co-simulation were always in perfect agreement. The

implication was that the phase 2 model of SVA translated in a bit-true and cycle-true

manner on FPGA with the use of the Xilinxr tools. Therefore it was correct to group
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Figure F.2.7 Spectral estimates of sinusoidal wave input to SVA models compared against:
(a) the rectangular-windowed spectral estimate; (b) Hann-windowed FFT spectral estimate

the phase 2 model and its hardware co-simulation as SVA-on-FPGA since there was

no distinction between the results.

The twice-zeropadded rectangular-windowed spectral estimate and the overlaid frequency-

domain response envelope of the rectangular window centred on the actual target fre-

quency are drawn in panel (a). Any data point obtained from SVA-on-FPGA which

did not meet the less than or equal to criterion is marked with a red box. The

only instances where this occurred in all tests against the rectangular-windowed FFT

was near to the spectral peak of the sinusoidal signal. However the difference between

the envelope and SVA-on-FPGA was extremely small and less than one LSB and can

safely be ignored.

Panel (b) of Fig F.2.7 shows the same selected SVA model results in comparison to

the Hann-windowed spectral estimate and its envelope. One of the advantages of SVA

over the Hann window function is clear, that is, the mainlobe of the spectral peak

is narrower. However there are many red boxes at the ∼ −100 dB level where the

floating-point Hann-windowed spectral estimate appears better than SVA-on-FPGA.

This lower bound effect of SVA-on-FPGA is also present in panel (a) however the

test did not draw a red box around these points because they are still much lower

than the sidelobes of the rectangular window envelope. This effect is explained by the
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approximate dynamic range for SVA-on-FPGA:

DR = 20 log10

(

2−1

2−18

)

≈ 102 dB (F.2.1)

The spectral peak of the sinusoid has a maximum possible frequency-domain magni-

tude of ∼ 0 dB, minus any cusping loss. Therefore the value from equation (F.2.1)

is an approximate theoretical dynamic range limit expected for SVA-on-FPGA. It is

approximate because full precision was not used in the full datapath of SVA-on-FPGA

and thus some accuracy was lost in places and this appears in Fig F.2.7 as data points

slightly above the ∼ 102 dB line.

The fixed-point SVA data points do not exactly match the SVA-on-FPGA data points

because the division operation was implemented differently in each case. These small

discrepancies were only noticeable at the very low dynamic range.

F.2.6 Sinusoid (Complex Exponential) Plus AWGN Input

In this difference test the input was changed to consist of a sinusoid with a frequency

which occurred at a bin centre and AWGN. The addition of bandlimited AWGN to

the input waveform caused a rise in the power at each frequency bin of the spectral

estimates over the previous difference test. If this was unaccounted for, it could force

the value of the real or imaginary part of the FFT frequency bins after the post-FFT

gain to be greater than the |0.5| limit and thereby cause an overflow. Therefore in this

difference test a cautious approach was taken so that the time-domain amplitude of

the sinusoid plus AWGN input was restricted such that it could not exceed 1 − 2−17.

This was more cautious than necessary as AWGN power is theoretically spread evenly

across all frequencies in the band.

In a real-life system the approach is usually taken to leave some headroom between the

ADC FS and the largest sinusoidal signal which is expected. The headroom accommo-

date a large proportion of the tail of the AWGN distribution such that the likelihood

of overflow becomes very small.

The parameters of the sinusoid were kept constant as the AWGN power level was

varied. The noise power level was varied such that the SNRin of the waveform before

the FFT varied from 30 dB to −15 dB, with −1 dB increments between AWGN power

levels.

The increase in the AWGN power level caused a reduction in the SNRin but also a

reduction in the dynamic range of values which SVA-on-FPGA needed to process.

This was because whilst the maximum values were recognised with the post-FFT gain,

the minimum values were determined by the approximate noise floor power level. As

this floor was raised, the minimum value required to be represented by the fixed-point
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precision became closer to the maximum value required to be represented and therefore

the dynamic range required was reduced.

Similar to the previous difference test, the spectral estimates from the rectangular-

windowed FFT and Hann-windowed FFT were twice-zeropadded to get a better picture

of their frequency response. With AWGN present, there were no theoretical spectral

response envelopes for the Hann-windowed and rectangular-windowed FFTs, hence

they are omitted from Fig F.2.8. In Fig F.2.8 the large sidelobes of the rectangular-
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Figure F.2.8 Spectral estimates of a sinusoid plus AWGN input to SVA models compared
against rectangular-windowed spectral estimate and Hann-windowed FFT spectral estimate

windowed spectral estimate and the wide mainlobe of the Hann-windowed spectral

estimate are both evident. The SVA models overcome these two problems.

Another important point from the results was the phase 2 SVA model and its hardware

co-simulation were again identical, which provided further evidence that the FPGA

implementation was bit-true and cycle-accurate. Corresponding data points for all

SVA models were very similar. This was because all the SVA models, whether floating-

point, fixed-point or in FPGA, operated within a representable dynamic range. Most

significantly SVA-on-FPGA was found to be nowhere greater than the spectral estimate

values obtained from the rectangular-windowed or Hann-windowed FFT. In the results

the lower limit of the fixed-point precision dynamic range ∼ −100 dB was no longer

visible as the noise floor component generally raised the spectral estimate points above

this value.

From the results across the tested SNRin range it was concluded that SVA-on-FPGA

performed as well as the equivalent floating-point implementations when presented

with a sinusoidal signal and AWGN input.
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F.2.7 Two Sinusoids (Complex Exponentials) Plus AWGN In-

put

The last difference test examined the situation where multiple sinusoidal signals were

present. This was an important situation to test because in the floating-point results

in section 3.4 the SVA detector clearly outperformed the conventional windowing de-

tectors. The only alteration to the previous “difference tests” for this set of test vectors

was that the test vector input was composed of two complex exponential inputs and

an AWGN component.

The parameters of one of the sine waves was kept constant as a control whilst the

parameters of the other sine wave was changed to test two schemes of interest where

the SVA algorithm would be expected to outperform the rectangular-windowed spectral

estimate and/or the Hann-windowed spectral estimate. These two schemes were:

1. Two sine waves of similar amplitude (and also power) which were close in fre-

quency. The idea was to see the advantages of the use of SVA in a sidelobe

spectral leakage-dominated regime, much like that which produced the results

from Fig 3.5.6.

2. Two sine waves of disparate amplitude (and also power) which were spaced apart

in frequency. The idea behind this was to confirm the appearance of SVA spectral

estimates in a noise-dominated scenario.

In these test vectors the noise floor was set so that the SNRin (with respect to the

control complex exponential) was high at 30 dB. This was to ensure scenario 1 from

the above list was spectral-leakage-dominated.

The actual frequencies which were used for the two sine waves in units of frequency bins

were: (1) 10.3 × fs/N for the control sinusoidal wave; (2) 11.8 × fs/N for the second

sinusoidal wave in the first scheme and (3) 14.3× fs/N for the second sinusoidal wave

in the second scheme. The reason for the seemingly arbitrary coefficients was to ensure

the frequencies were not harmonics of each other. The power ratio of the sinusoidal

waves was SIRin 0 dB and −34 dB, where the second sinusoid was considered as the

signal.

The actual amplitudes were not of great importance however for the same reasons given

in the previous difference tests, the maximum value that the superposition of the two

sinusoidal waves plus AWGN was permitted to take was 1− 2−17. Again, in a real-life

DRx a headroom would be specified to mitigate against large power inputs.

As with the previous difference tests, the rectangular-windowed and Hann-windowed

spectral estimates were twice-zeropadded to show clearly the outline of their frequency

response.

An example of the results from these test vectors is shown in Fig F.2.9. Panel (a)
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Figure F.2.9 Spectral estimates of two sinusoids plus AWGN input to SVA models com-
pared against rectangular-windowed spectral estimate and Hann-windowed FFT spectral es-
timate for: (a) first scheme; (b) second scheme

shows the results of the first scheme from the above list and panel (b) shows the results

of the second scheme. In panel (a) the two spectral peaks are distinguishable from the

spectral estimates obtained with the use of the SVA model or the rectangular window.

In panel (b) two spectral peaks are discernable from the spectral estimates obtained

with the use of the SVA models or the Hann window. This further demonstrates the

advantages of the use of SVA in general, but more importantly it shows that SVA-on-

FPGA continued to be an improvement over conventional windows in an FPGA.

F.3 Second Type of Test

The first type of verification test was concerned with the functionality of SVA-on-FPGA

through the examination of differences between the SVA models and windowed FFTs.

The second type of verification test was concerned with the use of the SVA module on

the actual FPGA in Monte Carlo simulations.

The Monte Carlo simulations repeated key scenarios from the floating-point SVA chap-

ter 3. This was achieved solely with the use of the SVA module in FPGA whilst support

functions remained in Simulinkr. The results from the first type of verification test

had shown that the phase 2 model and its hardware co-simulation produced identical
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results and therefore affirmed that the hardware co-simulation was bit-true and cycle-

accurate. Therefore there was no need to involve the phase 2 model in the Monte Carlo

simulations.

The simulations were conducted through the execution of the hardware co-simulation

over a large number of iterations. It was provided with data from Simulinkr and the

results were collected with the use of Simulinkr.

The two key Monte Carlo simulations evaluated using SVA-on-FPGA were:

1. full DCW

2. high SNRout-regime interference full DCW.

F.3.1 Monte-Carlo Simulation 1

The results from Fig 3.2.6 implied some conclusions about the SVA algorithm in gen-

eral. Fig 3.2.6 indicates that SVA recovers the window loss suffered by bell-shaped

windows. The first Monte Carlo simulation attempted to prove SVA-on-FPGA would

demonstrate this beneficial feature by repeating the scenario under which the results

in Fig 3.2.6 were obtained.

The ROC curve produced from SVA-on-FPGA was compared against ROC curves

produced from: (1) a rectangular-windowed detector (2) a Hann-windowed detector

and (3) a Chebychev-windowed detector.

Fig F.3.1 shows the results for this scenario. The graph shows the rectangular-windowed

detector gave the best detector performance in this particular scenario and that the

SVA-on-FPGA mostly recovered the window loss. Therefore SVA-on-FPGA success-

fully retained its window-loss-recovery characteristic seen in floating-point and fixed-

point arithmetic. The next Monte Carlo simulation demonstrated SVA-on-FPGA was

able to accomplish this whilst sidelobes were minimised.

F.3.2 Monte-Carlo Simulation 2

The second Monte Carlo simulation was designed to demonstrate the sidelobe spec-

tral leakage minimisation properties of SVA were still present in SVA-on-FPGA. The

scenario under which the ROC curve results from Fig 3.4.9 were obtained was partic-

ularly good as a demonstration of this property of SVA. Therefore this simulation was

repeated with SVA-on-FPGA.

The simulation design and parameters mirrored those which produced the results in

Fig 3.4.9. The results are shown in Fig F.3.2. The success of SVA-on-FPGA was

apparent as the results were virtually the same as those obtained from floating-point

SVA aside from negligible differences caused by quantisation.
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The results for this scenario supported the idea that SVA-on-FPGA minimised sidelobe

spectral leakage. Coupled with the recovery of the window loss, it was concluded that

this implementation of SVA on FPGA afforded the same advantages seen in floating-

point arithmetic simulations. Hence SVA-on-FPGA was verified.
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F.4 Reports

The completion of the MBD methodology down to FPGA implementation for the SVA

algorithm permitted estimates of the characteristics of the SVA algorithm on a Xilinxr

FPGA. This allowed assessments to be made over the viability of the algorithm for

incorporation into real-life DRxs. The creation of the phase 2 model provided approx-

imate numbers for these characteristics. The numbers were approximate because the

design would be optimised before actual inclusion in a real-life DRx. The information

of interest was contained in the reports which are generated after the implementation

stage. The two reports of main interest were the “Place and Route” report and the

“Post-PAR Static Timing” report. The next two sections describe the information of

interest which was extracted from these reports.

F.4.1 Place and Route Report

The place and route report provided answers about the footprint of the SVA algorithm.

Previously in section F.2 some important information was extracted from the place and

route report and shown in Table F.2.2. This was extracted after the use of the phase

2 design.

The numbers in Table F.2.2 refer to the resource requirements of the SVA algorithm

only because this was the only process running on the device. The two important fac-

tors from Table F.2.2 are: (1) the number of DSP48E embedded multipliers being used

(24) and (2) the number of external IOBs being used (147). The number of embedded

multipliers being used was relatively high (50% for the ML505 evaluation board). In

fact seventeen of these multipliers were used just to perform the division. This could

be significant but is dependent on the actual number of embedded multipliers on the

target hardware and how many embedded multipliers would be required for the other

processes and algorithms required to run alongside the SVA algorithm in a real-life

DRx as part of an ESM system.

The significant 30% of external IOBs utilised was expected because 18 bit words (both

real and imaginary parts of the data) were sent to and received from the FPGA board.

This number is somewhat less of a concern because in a real-life DRx the SVA algorithm

would be unlikely to be used in isolation on an FPGA board and therefore there would

not be a requirement to get 18 bit words (with both real and imaginary parts) on and

off the FPGA via the IO pins.

F.4.2 Post-PAR Static Timing Report

At the bottom of the post place and route static timing report there was a key table

of information which contained the maximum clock frequency at which the phase 2

model design could run. This information is displayed in Table F.4.1. This maximum
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Timing summary:

Timing errors: 0 Score: 0 (Setup/Max: 0, Hold: 0)

Constraints cover 11802 paths, 0 nets, and 7898 connections

Design statistics:
Minimum period: 4.924 ns3 (Maximum frequency: 203.087MHz)
Maximum path delay from/to any node: 4.924 ns

Table F.4.1 SVA-on-FPGA post place and route static timing report extract

possible clock rate of ∼ 200MHz appeared to be ideal, especially as it was obtained

with the use of a design for which there had been no attempt at critical path analysis.

Therefore there remains scope for improvement on this rate.

One undesirable feature of the phase 2 model design was that to ensure the divider

block could keep pace with the rest of the synchronous pipelined architecture, it was

clocked at a rate five times faster than the rate at which new time-domain samples

appeared. Therefore although the SVA algorithm clock rate was ∼ 200MHz, actual

SVA-processed spectral estimates would be produced at a rate of 203.087/5NFFT. This

highlighted the nature of the use of a multi-clock system and suggested that in order

to produce a single clock tree it might be necessary to move away from the pipelined

architecture and towards an explicit state-machine controlled system. Such a system

would require handshakes between data-processing elements if the resource utilisation

were to be kept roughly constant (i.e. maintain the use of only one divider block).

F.5 Suggested Design Improvements

There are many points upon which the phase 2 model could be improved in the future

if optimisation of the model is to take place. The following is a list of known issues

which it would be desirable to address or at least consider further:

Use of FIFOs The use of FIFOs in a pipelined architecture is a risky strategy be-

cause if corruption occurs in the queue the whole system would produce incorrect

results from that moment onwards (the so-called garbage-in-garbage-out (GIGO)

phenomenon). An improved memory layout would be to use two banks of mem-

ory for each FIFO buffer. Data would be written to one bank and read from

the other bank in one period and then once the write-to bank was full (and si-

multaneously the read-from bank was fully read) the roles of the banks would

switch. This process would ensure that if a bank of memory became corrupted,

then only one spectral estimate at the end of the algorithm would be erroneous.

The penalty to pay for a more complicated memory structure would be greater

3The minimum period statistic assumes all single cycle delays. Analysis completed Mon Jan 18
13:16:06 2010
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latency as the initial bank of memory is written to before any read operations

occur and the greater memory resource requirements.

Dropping of LSBs after word growth In the phase 2 design LSBs were dropped

after the summation of the neighbour bins operation so that single 18 bit wordleng-

th multipliers could easily be used. However the use of full precision would lead

to answers with better accuracy. The downside to such an approach would be

greater resource usage in the FPGA, more complicated data handling and greater

latency in the system as carry-out bits would need to be dealt with correctly. Ad-

ditionally, from section F.2.5, the current dynamic range with which the phase 2

model could cope was found to be ∼ 100 dB which in most circumstances would

be sufficient and negate the need for full precision.

Use of the faster clock rate for divider block The divider block could not be pi-

pelined to take in fresh data each clock cycle. This is because the division algo-

rithm is inherently a loop-based operation. The Xilinxr divider block is, however,

optimised to accept data like a carousel and can achieve a constant rate of ac-

cepting new data if it is clocked fast enough compared to the rate of new data.

This was the approach used in the SVA-on-FPGA model where the divider block

was clocked at a rate five times faster than the rest of the data flow. However,

a multi-rate system with a complicated clock tree similar to this description is

less desirable than a simpler, single clock tree. To achieve a single clock design

either:

• The number of divider blocks would need to be increased fivefold to deal

with the pipelined workload. This would not be possible in the Xilinx

ML505 FPGA evaluation board because such a design would require at

least 7 + 17 × 5 = 92 embedded multipliers (the evaluation board contains

48 embedded multipliers). Even in a larger FPGA board this solution may

not be preferable because it leaves few embedded multiplier resources avail-

able for other processes and algorithms which would be required in a real-life

DRx.

• The pipelined architecture would be removed and replaced by combinatorial

elements whilst the data flow between them would be controlled by a finite

state machine (FSM). Such a system would be more robust to corruption

than the synchronous pipeline architecture. The cost of such a system would

be a slower data throughput as data would effectively be reduced to the rate

of the divider block (actually the data rate would be less than the divider

block rate because of the extra handshake required between data-processing

elements). A pseudo-algorithm of how this type of architecture might be

implemented is shown in Fig F.5.1.

Testing over ethernet The tests of SVA-on-FPGA were achieved with the use of a
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JTAG connection on the ML505 board. The switch to testing over ethernet would

allow larger blocks of data to be processed at once at a much faster rate. The util-

isation of larger data blocks would also allow the system to run for longer periods

of time. Therefore it would not be reset as often and any errors that might be

wiped during reinitialisation would be easier to discover. Obviously testing over

ethernet is a slightly more involved procedure than testing over JTAG, however

the Edinburgh FPGA group of SELEX Galileo already use this method of test

and have re-usable IP which could be incorporated into future SVA-on-FPGA

testbenches.
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APPENDIX G

Navajo Trials

G.1 General Information

The results from the floating-point MTM and periodogram smoothing simulations in-

dicated that the detection of broader-band LPI radar signals could be improved beyond

that attainable with the use of conventional algorithms. The periodogram smoothing

techniques and MTMs were tested and shown to result generally in an increase in the

number of detections in comparison to the conventional techniques.

In a similar case to the SVA algorithm it was desirable to examine whether the increased

number of detections for at least some of the algorithms of interest persisted when tested

on real-life signal data.

The “Navajo trials” on 27th May 2010 presented an opportunity to operate the algo-

rithms of interest on real-life sample data captured with a superhet and DRx combi-

nation and to demonstrate some of the possibilities open to SELEX Galileo through

the use of ELB antennas.

The general idea behind this experiment was to capture sample data which contained

broader-band television (TV) signals transmitted from known locations and determine

which of the nonparametric spectral estimation techniques resulted in a greater number

of detections.

G.2 Constraints

Some of the constraints from the helicopter trials in appendix A no longer applied or

were removed for the Navajo trials. Specifically, the hardware was able to alternate

between EW dwells in-flight and the GPS unit, to time-stamp capture events, was

operational.

G.3 Aims

As demonstrated in chapter 5, the MTMs and periodogram smoothing techniques

can be more useful in the search for signals which are broader-band than traditional

narrowband pulsed sinusoids. This is because for larger FFT lengths conventional

detection methods may over-resolve the spectral estimate. Therefore in a real-life DRx
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implementation, the MTMs and periodogram smoothing techniques are predicted to be

useful in the detection of LPI radar signals which occupy a relatively large bandwidth.

However in the absence of a known emitter of LPI radar signals other known broader-

band signals were used to test some of the algorithms of interest. The signals used

for this purpose were PAL-I and DVB-T encoded TV signals which in the UK are

broadcast in the ultra high frequency (UHF) band [470, 862] MHz. These TV signals

are significant because they occupy a relatively large bandwidth of 8MHz and are

continuous and therefore arguably resemble a CW LPI radar signal. The aim was to

show an increase in the number of detections with the use of some of the algorithms

of interest over the basic conventional ESM DRx procedure of: DCW → FFT →
|FFT|2 → detect on ordinates.

G.4 Experiment

Important parameters about the main transmitter and repeater stations in the vicinity

of the flight plan were known from Ofcom[146].

The UHF band allocated for TV signals in the UK ([470, 862] MHz) is subdivided

into 8MHz “channels”. Under the analogue PAL-I system (panel (a) of Fig G.4.1)

each of these channels carries only one TV station, however under the digital DVB-T

system (panel (b) of Fig G.4.1) each of these channels carries multiple TV stations and

“televised-radio” stations multiplexed together. The digital signals are broadcast at

lower effective radiated power (ERP) levels partly because the digital encoding carries

error correction to compensate for weaker reception.

The EW dwells 67 and 681 were the most appropriate frequency ranges which the

superhet and DRx system monitored. As in the Helicopter trials, the EW dwells were

achieved through a combination of frequency mixing and analogue filtering to obtain a

constant bandwidth centred on a particular IF. The IF was digitised by means of the

ADC in the DRx.

The digital samples were sent to a laptop connected to the DRx for analysis. The

laptop performed the frequency channelisation by means of an STFT from which a

spectrogram was produced. Before the actual flight, predictions were made for the

maximum range at which the TV signals could be detected by the laptop connected to

the DRx. Therefore data was captured where digital TV signals were on the boundary

of detection (minimum operational sensitivity (MOS)). The key behind these predic-

tions was the one-way receiver equation

Powr =
PowtGTGESMλ

2

(4πRESM)2
(G.4.1)

where:

1These numbers are indices for frequency ranges which are not shown here
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Figure G.4.1 Stylised diagrams of UK broadcast TV signal encoding schemes: (a) PAL-I;
(b) DVB-T

• Powr is the power received by a receiver;

• Powt is the transmitted power;

• GT is the gain of the transmit antenna;

• GESM is the gain of the ESM antenna and receiver system;

• λ is the received signal wavelength;

• RESM is the distance between the transmitter and ESM system.

Equation (G.4.1) is essentially a one-way version of the radar range equation. It was

manipulated to derive an approximation for an expression of the SNR in the laptop

connected to the DRx. In decibels this was2

SNR = ERP + 30 +GT + 20 log10 λ− 20 log10(4πRESM)− (Np −GESM) (G.4.2)

where antenna gain GT was in the units dBi. An explanation of the terms in Eq (G.4.2)

is:

SNR

This was the ratio of signal power to noise power in decibels. This term replaced

Powr in Eq (G.4.1).

2The SNR in Eq (G.4.2) is not SNRout which would compensate for the FFT processing gain
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ERP + 30

Converted the ERP of the transmitter from units of dBW to dBm. This term

replaced Powt in Eq (G.4.1).

GT

Large TV transmitters radiate almost uniformly in all directions towards the

horizon. However for elevation angles greater than this the gain is reduced. As

the Navajo aircraft flew above the height of the transmitters an approximate

reduction of 5 dB was used for this term.

−Np

The total thermal noise floor power which was passed to the ADC. It is included

in Eq (G.4.2) to balance the SNR on the left-hand side.

GESM

The gain of the ESM antenna and receiver system. The term receiver gain covers

both the gain of the RF chain and the gain of the DRx. The antenna gain

component of this was fairly uniform across a broad mainlobe.

The noise floor power in the laptop connected to the DRx was estimated from

Np = kBT0BNNfLsc (G.4.3)

where:

• kB is Boltzmann’s constant;

• T0 was the absolute standard temperature 290 Kelvin;

• BN was the bandwidth of the FFT frequency bin filter;

• Nf was the cascaded noise factor of the total receiver chain;

• Lsc was a worst-case loss factor to account for the scalloping loss of the window

function used.

This was then converted to logarithms to become a noise floor power (Np) in units of

dBm. The bandwidth of the frequency bin filter was approximated from: BN = fs/N .

Similarly the sensitivity of the laptop connected to the DRx was estimated from

Sensitivity = kBT0BNNfLscspfSNR (G.4.4)

where SNR was set at a ratio value that would typically be required for an opera-

tor to spot a detection in a spectrogram and spf was a spreading factor associated

with broader-band signals whose power is approximately evenly spread across their

frequency.

In the course of the experiment the operator was the user of the laptop which was
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used to process the captured sample data from the DRx. The SNR level at which

the operator was able to distinguish a signal from the noise floor in a spectrogram is

typically [8, 12] dB. A range is specified here because the ability to distinguish weak

signals from the noise floor is somewhat subjective.

The effect of the spreading factor was to increase the power required in a spectrogram

before the broader-band signals became noticeable. Its effect is illustrated in Fig G.4.2.

If the areas under the signal peaks in (a) and (b) are considered to be the same, the

peak power density is reduced in (b) by the spreading effect of broader-band signals.

The size of the effect in the experiment was spf = 8N/fs.

Power
Density

Power
Density

f f

Sinusoidal signal

Broader-band signal

(b)(a)

Figure G.4.2 Stylised effect of spreading factor

The overall receiver noise factor Nf and receiver gain GESMr (not GESM as this would

include the antenna gain) were calculated by a cascade of partitions in the RF/IF chain

and DRx. The partitions chosen were those shown in Fig G.4.33. Each element was

characterised by a gain and a noise figure. The overall receiver gain in Fig G.4.3 was

calculated from the summation of the individual elemental gains in decibels

GESMr =
6
∑

n=1

GESMr,n (G.4.5)

This formed part of the GESM term from Eq (G.4.2). The overall receiver noise figure

was calculated from Friis formula[147] for cascaded noise factors

Nf = Nf,1 +
Nf,2 − 1

GESMr,1

+
Nf,3 − 1

GESMr,1GESMr,2

+ . . .+
Nf,6 − 1

∏6
n=1 GESMr,n

(G.4.6)

where Nf,n has a lowercase f to signify noise factor and the gains are power ratios not

in decibels. To convert to a noise figure, logarithms were taken NF= 10 log10 Nf . The

noise figures for the passive elements were simply the negative of the gains in decibels.

3The actual characteristics of gain and noise figure of the receiver system are not shown here
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The partitions in Fig G.4.3 are arbitrary constructs which were chosen at logical phys-

ical boundaries. The elements could be further decomposed into sub-elements with

corresponding gains and noise figures if desired for traceability purposes.

In the event, the predictions for the range at which the laptop operator would be

able to distinguish the digital TV signals from the noise background in a spectrogram

created from the sample capture files proved accurate provided the ELB antennas were

directed towards the transmitter of interest (i.e. when the estimate used for GESM in

Eq (G.4.2) was valid)4.

The analysis accumulated the number of detections when different MTMs, periodogram

smoothing techniques and conventional techniques were used to examine if the algo-

rithms of interest provided a detection improvement from field data.

G.5 Results

The sample capture files were rapidly checked in-flight with the use of MATLABr on

a laptop. Spectrograms such as that shown in Fig G.5.1 were formed to verify the file

contained digital TV signals. Fig G.5.1 was created from the first 219 data points from

the “X” channel (one of the antennas) of file s 270510 0036.txt. As per the examples

from appendix A, the z-axis of the spectrogram was in units of dB/Hz but a conversion

to units of dBm/Hz can be made through Eq (A.5.1). The analogue TV signals are

clearly visible as CW signals with two closely-spaced carriers (as in Fig G.4.1). For

informative purposes, the analogue channels from the Sandy Heath transmitter have

been labeled in the figure. Digital TV signals appear as power smeared out over 8MHz

bandwidth. Also for illustrative purposes, one digital signal multiplex from the Oxford

transmitter has been marked on Fig G.5.1.

4the actual ranges are not shown here
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Figure G.5.1 Example Hann-windowed spectrogram from Navajo trials
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In the offline process, sample capture files which were known to contain digital TV

signals were isolated and spectrograms were created from these files. Areas in these

spectrograms which contained noise-only data were used to estimate the noise floor

power density. This noise floor power density was crucial for the establishment of a

threshold of Pfa = 1 × 10−6. From the sample capture file a weak digital TV signal

was isolated from the rest of the data via a digital filter applied to the file. The filter

used was a bandpass filter whose bandwidth was larger than the largest hypothesis

bandwidth to be tested. This concept is illustrated in Fig G.5.2.

Figure G.5.2 Isolation of a digital TV signal on which to perform
detection experiment

The MTMs and periodogram smoothing techniques which could be accurately modelled

with the use of the scaled chi-squared distribution for an AWGN input (Eq (4.2.2))

were the subject of this experiment. Those chosen for the experiment were the:

• unity-weighted DPSS MTM (detector G1);

• unity-weighted sine taper MTM (detector H1);

• SMP (detector J1 variant);

• TSMP (detector L1 variant).

The number of detections which occurred when these techniques were used to process an

isolated digital TV signal from a sample capture file of interest was counted. The plot

formed was very similar to that of Fig 4.3.3 of hypothesis bandwidth against frequency,

although in this case the plot was formed from real (non-complex) sample data. The

basis for the techniques was an FFT of length NFFT = 2048. The number of detections

obtained with the use of the above techniques at various hypothesis bandwidths could

be compared against the number obtained with the conventional modified periodogram

technique. This was because the limiting case of a hypothesis bandwidth test for the

SMP or TSMP (dtectors J1 or L1 variants) is one frequency bin wide which is equivalent

to the results from a modified periodogram.
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Example results for the number of detections are shown in Figs G.5.3 to G.5.6. The

results were produced from 69 DCWs.

In all figures labels have been set to show the number of detections if only the modified

periodogram (detector A1 variant) was considered. The extreme hypothesis of one

frequency bin width for the DPSS MTM (detector G1) and sine taper MTM (detector

H1) is also a modified periodogram because it is formed from the application of the

first DPSS taper and first sine taper to a DCW before the FFT and magnitude-squared

process.

The frequency span in Figs G.5.4–G.5.6 shortens with increasing bandwidth hypothesis.

This was a consequence of their computation method and the source of the data. The

sine taper MTM (detector H1) used was the more computationally-efficient frequency-

domain formulation and the smoothing methods involved the summation and average

of ordinates. The sample data was essentially obtained from a bandpass filter where the

data at the edges was less reliable and therefore a linear rather than circular convolution

was used for the sine taper MTM calculation which thus shortened the frequency axis

at greater bandwidth hypotheses. The frequency axis also shortened in the smoothing

method results because the ordinates could not be summed past the band edges.

If the modified periodogram (detector A1 variant) was used in the experiments, only

the number of detections marked at the left-hand edge of the plots would be achieved.

However through the summation of additional ordinates or through the average of more

eigenspectra a greater number of detections was obtained. The number of detections

peaked near the actual centre frequency and bandwidth of the digital TV signal under

test. In comparison to the MTM techniques which produced Figs G.5.3 and G.5.4, SMP

technique (detector J1 variant) generated slightly fewer detections but a peak is present

at the approximate frequency and bandwidth. This trend, which was repeated for other

sample capture files, suggested that the processing gain attainable from the MTM over

the smoothing techniques is slight and eclipsed by the additional computational effort

required.

The TSMP (detector L1 variant) could not test every bandwidth hypothesis which the

other techniques could because it summed ordinates in powers of two. However the

experiment showed that this does not greatly degrade the performance of the technique

because broader-band signals which the DRx is likely to process are spread over only a

few frequency bins even at high NFFT values. The CW digital TV signals demonstrate

this and it would be unlikely to find a spread-spectrum LPI radar signal with a broader

bandwidth than this. The peak in Fig G.5.6 does not exactly match the approximate

bandwidth and this is a consequence of the coarser bandwidth hypothesis test of the

tree smoothing technique.

The small degradation in performance of the SMP and TSMP (detectors J1 and L1

variants) over the MTMs matched the pattern of results for the full DCW in section 5.2.



Original in Colour

Figure G.5.3 Accumulated detections with the DPSS MTM (detector G1)

Figure G.5.4 Accumulated detections with the sine taper MTM (detector H1)



Original in Colour

Figure G.5.5 Accumulated detections with the SMP (detector J1 variant)

Figure G.5.6 Accumulated detections with the TSMP (detector L1 variant)
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G.6 Summary of Results

This experiment was important as it was performed on real-life data from actual hard-

ware. The experiment was used to compare different MTMs and smoothing techniques

against each other and against the conventional modified periodogram technique in

terms of the number of detections from a range at which the signals of interest were on

the verge of detection. The results showed that the differences between the MTMs and

smoothing techniques tested were small, but they were all considerably better than the

modified periodogram technique.

The results reinforced the floating-point simulation findings from chapter 5. There-

fore the notion of the tree-like smoothing technique as the most promising candidate

was reemphasised because it was able to obtain an only slightly degraded number of

detections for less computational complexity.



APPENDIX H

Fixed-Point

Periodogram Smoothing

The floating-point software models of the MTMs and periodogram smoothing tech-

niques established that their detector performance against broader-band LPI radar

signals was superior to detectors which relied on the periodogram, the modified pe-

riodogram and even the SVA periodogram single ordinate detection. The detector

performance of these conventional techniques could be improved somewhat by the util-

isation of OR operations between neighbour ordinates but on the whole they resulted in

poorer detectors than those which employed the algorithms of interest, i.e. the MTMs

and the smoothing techniques.

The DPSS MTM (detector G1) or the unity-weighted sine taper MTM (detector H1)

would be the ideal choice for hardware implementation and hence further investigation

if hardware resource requirements were of no concern. However the performance dif-

ference between the TSSP (detector M1) and the aforementioned detectors G1 and H1

was small in all the scenarios tested and for typical LPI signal parameters. The TSSP

is computationally far simpler and furthermore the first hypothesis bandwidth links in

neatly to the detection of narrowband sinusoidal signals. Therefore it was appropriate

as an engineering decision to further detector M1 along the MBD methodology. The

next step of the methodology was to operate detector M1 in a realistic, fixed-point

mode and investigate its performance as a fixed-point detector.

H.1 Implementation Decisions

The same factors which had affected the SVA implementation at this point in the MBD

methodology also applied here. New code was required only for the tree-like smoothing

component of detector M1, however, this did not require complicated operations which

would otherwise benefit from Xilinxr-specific applications. The operations involved in

tree-like smoothing are simply additions and barrel shifts.

H.2 Coding Methodology

A similar modular approach was used for the conversion of detector M1 as was taken

in the fixed-point SVA section. However many of the modules and most importantly
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the SVA module, had previously been converted to fixed-point. Therefore the objective

was to convert the modules which represented the tree-like smoothing. These modules

are shown in Fig H.2.1 and can be observed to involve only additions and barrel shift

mathematical operations.

Σ

(SVA) periodogram
spectral estimate

…

accumulator

barrel shift

addition

…

tree smoothed
spectral estimate

at hypothesis
bandwidth hyp

non-zeropadded
hyp = 1, 2, 3, 4, …

zeropadded
hyp = 1, 2, 3, 4, 5, …

)2( 1
1

−
− ++ hyp

hyp kS
)

)(0 kS
)

)(kShyp

)

)1( −>> hyp

Figure H.2.1 Tree-like smoothing modules to be con-
verted

Since the effort in conversion was concentrated on the tree-like smoothing component

of detector M1, the eventual converted code could also be applied to the TSP and

TSMP (detectors L1 and R1 variants) simply by an alteration to the front end of the

detector from the SVA module to the appropriate window function if this was desired.

The same fixed-point arithmetic properties used in the SVA fixed-point appendix D

were reused for reasons of consistency. Overall the code methodology did not involve

two distinct phases as it did in appendix D. This was due in part to the ability to reuse

the fixed-point code from appendix D. However, literal floating-point translations of

any new fixed-point code were still generated for verification purposes.

An example of the verification used is shown in Fig H.2.2. The plots from left to

right show the error at each ordinate when the fixed-point implementation results were

compared with the floating-point translation. For clarity purposes an FFT length of

NFFT = 128 and a periodogram was used in this example and therefore there was a

maximum total of hyp = 7 layers. The left-hand and right-hand plots display the

error results from the two extremes of smoothing: the non-smoothed periodogram and

the total power respectively. In this example a time-domain, sampled test vector was

applied which contained complex noise with real and imaginary parts generated from

a zero-mean, truncated normal distribution with PDF given by

f(x, σ, a, b) =
1
σ
φPDF

(

x
σ

)

ΦCDF

(

b
σ

)

− ΦCDF

(

a
σ

)

where φPDF (. . .) and ΦCDF (. . .) are the PDF and cumulative distribution function
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(CDF) of the standardised normal distribution respectively. The real and imaginary

parts of the complex noise were drawn from a normal distribution which had been

truncated such that the amplitude of either the real or imaginary samples could not

cause an overflow error in the system. This was because the overflow errors would

have masked the true module and system characteristics. In essence the real and

imaginary noise from the truncated normal was FS noise. Other types of test vectors

were available such as a FS sinusoid or a FS complex exponential.
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Figure H.2.2 Ordinate value error of the spectral estimates at different layers of the TSP
due to fixed-point precision

A schematic of the result after conversion to fixed-point is shown in Fig H.2.3 as detector

M2. The SVA module in the diagram is special because it could be switched in or out

as desired to produce results for the TSP (detector L2 variant, which does not take

into account any spectral leakage from strong interferers) or the TSSP (detector M2).

However this was mainly for academic interest because the objective was to produce the

TSSP (detector M2). As before in the fixed-point SVA appendix D the modules which

remained in the floating-point domain represented continuous, real-world processes.

For scenarios where interference was present the trivial change was made in detector

M2 to replace the signal and noise generation with that of Fig 5.4.2.

The Simulinkr diagram for the TSSP detector is shown in Fig H.2.4. It shows the

system at its highest abstraction level. In the diagram: (1) the FSM which controlled

the process; (2) the registers and memory; (3) the smoothing filter; (4) the periodogram

(and SVA) calculation and (5) the quantised inputs.
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Figure H.2.3 Architecture of the TSSP detector M2 which shows the partition between
floating-point and fixed-point
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To demonstrate that the same smoothing filter was used multiple times, its instantia-

tion is shown in Fig H.2.5. In the diagram the code to counteract the tendency of the

spectral estimate to shift to the right has been highlighted.

The two diagrams suggest that a much greater proportion of the code for this system

was written in native Simulinkr than in the fixed-point SVA code and this indication

is true. The reason for the change from a system coded mainly in MATLABr m-code

to a system coded mainly in Simulinkr was purely to facilitate the learning curve of

the two facets of the overall MATLAB/Simulinkr tool.
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H.3 Coding Explanation

This section describes the considerations for the conversion of the modules which per-

formed the tree-like smoothing from Fig H.2.1. One interpretation of the tree smooth-

ing architecture is as a moving average filter which processes the initial spectral esti-

mate to produce spectral estimates at different layers in accordance with the span of

the filter which is constrained to a power of two. However this interpretation does not

reveal the tree smoothing computational efficiency or potential for hardware reuse and

if the technique were implemented in this way, it would result in a system with a large

degree of redundancy.

The fixed-point code was designed such that there was only one filter which accepted

two values, summed them and divided by two. This was done for each ordinate in

the frequency-domain. Therefore with the correct addresses for the values to sum at

each layer, spectral estimates were produced for successive layers through reuse of the

spectral estimate from the previous layer. This was done through the use of the same

filter and hence would be produced from the same hardware implementation. Such a

scheme in real hardware would suffer from a latency which would be l times greater

than a scheme which implemented all the moving average filters in parallel but would

be highly efficient (where l refers to the total number of layers). Due to the increased

latency and the repeated use of the same hardware to perform the smoothing, the

decision was made to employ handshakes between blocks to control the flow of data.

The options were either to clock the filter at a rate l times faster than the rate of serial

input to the FFT block or disable the serial input and FFT block until the filter block

was ready to accept new data. The latter option was chosen for this implementation.

This is in contrast to the fixed-point SVA implementation where a synchronous pipeline

was used and the division block in the SVA algorithm was required to be clocked at a

faster rate. The consequence of the choice to implement handshakes between modules

required an FSM to control the flow of data.

The best interpretation of how the single filter scheme for one ordinate is achieved is

as a combination of a few simple elements: a register, an adder and a barrel shifter.

Furthermore the register and adder can be interpreted together as an accumulator.
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H.3.1 Register

Σ

)(0 kS
)The nature of the tree smoothed detectors means that the results

from the previous spectral estimate were incorporated into the cal-

culation of the next spectral estimate. The initial spectral estimate

passed to the accumulator register from the SVA periodogram was

based on 18 bit wordlengths. The Virtex-5r board includes a 48 bit

accumulator register in each DSP48E slice so there was no risk of overflow due to

wordlength growth for realistic FFT sizes.

For example, with a relatively long FFT of length NFFT = 2048, the final spectral

estimate would be possible at hyp = 12 (which would also be a total power estimate)

and the full-precision wordlength would be 36 bit.

H.3.2 Adder

)2( 1
1

−
− ++ hyp

hyp kS
)The addition block relied on the formation of the summation of

the correct two input ordinates from the spectral estimate of the

previous layer. In other words the correct counterpart for each ordinate was required to

have the overall desired effect of a summation tree which averages the initial spectral

estimate in increasing powers of two. This was achieved through the summation of

each ordinate with a neighbour 2hyp−1 places to the right. The addresses were circular

so that ordiantes at the right-hand edge were added to those at the left-hand edge.

To compensate for the drift of the centre frequency of the two ordinates to the right,

the addition block was required to specify the correct output address for the result.

One peculiarity of the tree smoothed technique as a whole was that the initial spectral

estimate was sampled at integer frequency points but all subsequent spectral estimates

at greater hyp values were sampled at half-integer frequency points as a result of the

formation of summations in powers of two.

H.3.3 Shifter

)1( −>> hypEach successive layer summed two frequency ordinates. Therefore a

common divisor of two was required to form an average for each spec-

tral estimate. This differs from the moving average smoothed techniques formulated in

section 4.3 where the divisor could be any odd integer. The common divisor of two was

highly beneficial because it could be simply implemented as a right arithmetic barrel

shift in fixed-point arithmetic.
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H.4 Results

The results obtained from the fixed-point model of the TSSP (detector M2) were a good

match to the floating-point model ROC curve results aside from a negligible amount

of error due to quantisation effects. All the scenarios from chapter 5 were examined

and repeated but only two interesting scenarios for the Barker-13 pulse are shown here:

(1) full DCW and (2) full interference DCW.

H.4.1 Full DCW

The parameters used for the fixed-point full DCW scenario were a carbon copy of those

which had been used in the floating-point version. Specifically these were:

• Barker-13 pulse with characteristics from Table 5.2.1 and AWGN inputs;

• random initial phase of the signal, φ0;

• random frequency, fT , of the signal over the interval fs/NFFT;

• finite duration phase jumps;

• random portion of the LPI signal pulse captured;

• rectangular window function before FFT then SVA applied;

• detector M2 Pfa = 0.01;

• non-overlapped DCWs;

• detection on each DCW;

• non-zeropadded and zeropadded FFTs used;

• 1× 105 trials to produce a data point in the graphs.

The results in Fig H.4.1 show that the TSSP (detector M2) can provide a similar level

of performance to the floating-point TSSP detector M1 in a feasible fixed-point scheme.
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points (◦) for Barker-13 pulse and for : (a) the non-zeropadded case; (b) the zeropadded case
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H.4.2 Interference in Full DCW

The same detector M2 was used in the fixed-point interference full DCW scenario. The

scenario was undertaken with identical parameters to the corresponding scenario from

the floating-point section 5.4. These included:

• a desired LPI signal, SA, an interference complex exponential, SB and AWGN

input;

• random frequencies fT,A and fT,B for SA and SB respectively, each was randomly

chosen over the interval fs/NFFT at commencement of a test run;

• finite duration phase jumps;

• random portion of the LPI signal captured;

• rectangular window function before FFT and then SVA applied;

• random initial phases for the signals, φ0,A and φ0,B;

• detector M2 Pfa = 0.01;

• non-overlapped DCWs;

• detection on each DCW;

• 1× 105 trials to produce a data point in the graphs;

• average frequency separation between fT,A and fT,B was 5fs/N .

The fixed-point ROC curve results are shown overlaid on the corresponding floating-

point result in Figs H.4.2. The results indicate that the transition to fixed-point arith-

metic did not affect the performance of the detector too greatly except for a small

amount of error caused by quantisation effects.

It is not necessary to reiterate the conclusions about the TSSP from the floating-

point chapter. The main conclusion from this set of simulations is that detector M2 is

realisable in a feasible fixed-point system.
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H.5 Conclusions

Detector M2 was a fixed-point implementation of the TSSP. The fixed-point arithmetic

was fashioned to match the Xilinxr Virtex-5r capabilities because this facilitated the

transition to implementation in FPGA in the next stage of the MBD methodology.

The ROC curve results obtained from detector M2 supported the notion that the use

of the TSSP in a feasible fixed-point arithmetic system would not be detrimental to an

unacceptable extent to the detector performance.



APPENDIX I

TSP-on-FPGA

The floating-point simulations which involved the algorithms of interest in chapter 5

revealed that the TSSP technique is useful in the detection of broader-band LPI signals

in the scenarios tested in comparison to conventional algorithms. Although the detector

M1, which employed this algorithm, had not enjoyed the best detection performance

in all the scenarios tested, this was offset against its other advantageous features and

hence it was chosen as the best candidate for implementation on FPGA.

The algorithm was converted to a fixed-point implementation in appendix H. The

performance results obtained from a detector which employed the fixed-point algorithm

converged to the floating-point results. Furthermore the fixed-point implementation

had the option to switch in or out the SVA module, which thus created the TSP

(detector L2 variant) or the TSSP (detector M2) respectively.

Due to time constraints and due to the main interest vesting in the tree smoothing

component of the detector rather than the SVA component, the TSP (detector L2

variant) was implemented in FPGA. This section discusses the task in detail. There-

fore although detector M2 performance was not characterised on FPGA, the physical

information about the TSP (detector L2 variant) implementation on FPGA was un-

covered. This included information such as the resources required, its speed, its latency

and throughput. Thus the main aim, to characterise the tree smoothing component

of the detector was satisfied and the main characteristics could be combined with the

SVA-on-FPGA characteristics to form a crude estimate of the overall TSSP (detector

M2) characteristics.

I.1 Implementation Decisions

The same target hardware and simulation languages were used for TSP-on-FPGA as

were used for the SVA-on-FPGA task (Xilinxr Virtex-5r ML505 device XCVLX50T

and simulation languages Simulinkr and System Generatorr).

I.2 Coding Methodology

The phased code procedure onto FPGA was followed. The phases reflected the lessons

from the SVA-on-FPGA task.
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I.2.1 Phase 1

The first phase was the production of a System Generatorr model. This involved the

conversion of the modules from Fig 5.1.7 to fixed-point System Generatorr blocks. The

top-level of the resultant model is shown in Fig I.2.1. For the avoidance of doubt there

was no SVA module implemented in this model. The model included implementations

of all the modules required for a TSP detector such as an FFT, tree smoothing filter and

threshold logic. The analogue, real-world inputs were generated off-board. Although

time-constraints did not allow, there is a possibility to add an SVA module in this

architecture in the future.
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Although the resolution of Fig I.2.1 does not permit the fine details of the model to

be deduced from the picture, the labels provide some assistance. The picture shows

that the multirate clock tree architecture from the SVA-on-FPGA section has been

replaced with an FSM-controlled data flow. Whilst the SVA-on-FPGA architecture

had the advantage of production of a constant stream of processed output data, this

necessitated an undesirable multi-rate clock tree. Therefore, the TSP-on-FPGA detec-

tor was coded in a highly-stable FSM-controlled process such that it produced data at

regular intervals but would drop samples at the input.

The picture in Fig I.2.1 also shows the memory was not organised into FIFOs. This was

done to address the concerns about corrupted FIFOs from section F.5. In the picture,

the left-hand memory blocks were shared memory1in anticipation of the independent

execution of the detector in the laptop or PC co-simulation. The inputs for the FPGA

were read from the shared memory at the start of a hardware co-simulation and the

FPGA results were written to the shared memory at the end.

In terms of the FFT implementation in the phase 1 model, the output words of the

FFT was permitted to use more bits than the input words. In other words the LSBs

were not dropped after the effective division by N2 2. This was in contrast to the

SVA-on-FPGA FFT implementation and was implemented in this manner because a

larger dynamic range was necessary to detect broader-band, smaller signal peaks.

The phase 1 TSP-on-FPGA model was verified against the previous models from the

MBD methodology and found to be equivalent to an acceptable tolerance.

Some of the characteristics of the phase 1 TSP-on-FPGA were extracted from the

place and route report. An important excerpt of the report is shown in Table I.2.1.

The resource demands given in the table are quite modest, especially when it is noted

that the model is the full TSP (detector L2 variant) and not simply the smoothing

component. The one exception to this is the number of utilised bonded IOBs. This is

quite high at 243. This was a consequence of the incorporation of the consideration for

hardware co-simulation in the code. Communication with the laptop or PC over the

shared memory required many IO pins. This was not a concern, however, because a

real-life system would not require these connections. This is because they are, in effect,

only for test purposes.

To achieve an estimation of the resource requirements for a TSSP detector, the values

from Table I.2.1 could be added to those from Table F.2.2. Meanwhile, the post

place and route static timing report declared an estimated maximum clock frequency

of ∼ 100MHz for the phase 1 model. This is shown in Table I.2.2. Clearly, some

further critical path analysis would be required if a derivative of this model were to be

implemented.

1Memory was shared between the laptop or PC and the FPGA
2Implemented through division of the individual butterflies by 2
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Table I.2.1 Extract from phase 1 TSP-on-FPGA model place and route report

Device Utilization Summary:

Number of BUFGs 1 out of 32 3%
Number of DSP48Es 15 out of 48 31%
Number of External IOBs 243 out of 480 50%
Number of LOCed IOBs 0 out of 243 0%

Number of RAMB18X2s 9 out of 60 15%
Number of RAMB18X2SDPs 4 out of 60 6%
Number of RAMB36SDP EXPs 8 out of 60 13%
Number of Slice Registers 1515 out of 28800 5%
Number used as Flip Flops 1515
Number used as Latches 0
Number used as LatchThrus 0

Number of Slice LUTS 1059 out of 28800 3%
Number of Slice LUT-Flip Flop pairs 1582 out of 28800 5%

Table I.2.2 Extract from phase 1 TSP-on-FPGA post place and route static timing report

Timing summary:

Timing errors: 0 Score: 0 (Setup/Max: 0, Hold: 0)

Constraints cover 9081 paths, 0 nets, and 6815 connections

Design statistics:
Minimum period: 10.244 ns3 (Maximum frequency: 97.618MHz)
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I.2.2 Phase 2

The second phase of production of TSP-on-FPGA was undertaken specifically to ad-

dress the “testing over ethernet” concern from section F.5. In short, the phase 1 model

was modified such that custom SELEX Galileo MATLABr application programming

interfaces (APIs) could be used to communicate with the FPGA board from a laptop

or PC over an ethernet connection. This ensured that the test and verification occurred

continuously and the FPGA was not reset to an initial state between test vectors. It

also significantly increased the rate of test because the PC or laptop and FPGA were

not forced into lockstep with each other as were during the test phase of SVA-on-FPGA

over the JTAG connection.

The screenshot in Fig I.2.2 shows the modifications and wrappers which were applied

to the phase 1 model to allow communication with the board over ethernet.

3The minimum period statistic assumes all single cycle delays. Analysis completed Mon May 18
13:16:06 2010
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The extra wrappers around the phase 1 model had an impact on the device resource

utilisation in the FPGA. This is shown from an extract of the place and route report

in Table I.2.3. The resource requirements are still fairly modest, again, except for the

bonded IOBs. For the same reason given in the phase 1 model analysis, the number of

utilised bonded IOBs was not a concern.

Table I.2.3 Extract from phase 2 TSP-on-FPGA model place and route report

Device Utilization Summary:

Number of BUFGs 1 out of 32 3%
Number of DSP48Es 15 out of 48 31%
Number of External IOBs 470 out of 480 97%
Number of LOCed IOBs 0 out of 470 0%

Number of RAMB18X2s 9 out of 60 15%
Number of RAMB18X2SDPs 3 out of 60 5%
Number of Slice Registers 1868 out of 28800 6%
Number used as Flip Flops 1868
Number used as Latches 0
Number used as LatchThrus 0

Number of Slice LUTS 1158 out of 28800 4%
Number of Slice LUT-Flip Flop pairs 1937 out of 28800 6%

The post place and route static timing report revealed that the maximum clock fre-

quency of the phase 2 model was estimated to be ∼ 150MHz. The extract is shown in

Table I.2.4.

Table I.2.4 Extract from phase 2 TSP-on-FPGA post place and route static timing report

Timing summary:

Timing errors: 0 Score: 0 (Setup/Max: 0, Hold: 0)

Constraints cover 9391 paths, 0 nets, and 6882 connections

Design statistics:
Minimum period: 6.859 ns4 (Maximum frequency: 145.794MHz)

I.3 Monte Carlo Simulation Tests

The main aim of TSP-on-FPGA was not to explore the performance of the TSP algo-

rithm. That task was examined in the floating-point simulations in chapter 5. However

some Monte Carlo simulations were undertaken to provide confidence in the implemen-

tation through a comparison of the results with the floating-point simulation results.

4The minimum period statistic assumes all single cycle delays. Analysis completed Mon May 24
17:55:26 2010
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The simulations undertaken were: (1) the full DCW scenario for a Barker-13 signal

input and (2) the interference full DCW scenario for a desired Barker-13 signal. The

TSP-on-FPGA results are shown overlaid on the corresponding floating-point results

in Figs I.3.1 and I.3.2. The floating-point results are simply the same data points

reproduced from Figs 5.2.2 and 5.4.14 respectively for the TSP (detector variant L1).

The results provided sufficient confidence in the FPGA implementation.
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Figure I.3.1 Full DCW scenario ROC curves of floating-point TSP and TSP-on-FPGA
for: (a) the non-zeropadded case; (b) the zeropadded case



G H MacKerron, October 31, 2011 Original in Colour Appendix I. TSP-on-FPGA, 352

(a)

SIRout dB

P
d

 

 

−30 −20 −10 0 10
0

0.2

0.4

0.6

0.8

1

(b)

SIRout (dB)

P
d

−30 −20 −10 0 10
0

0.2

0.4

0.6

0.8

1

flt-pt TSP (det. L1)
detector L1-on-FPGA (det. L2)
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I.4 Suggested Design Improvements

A desirable goal would be to have a detector with improved detection capability over

conventional EW DRxs against narrowband radar signals through the use of SVA

and against broader-band LPI signals through the use of a tree smoothing scheme.

Therefore it would be ideal to combine the SVA IP and the tree smoothing IP. However

the SVA IP was designed for a synchronous pipeline whilst the smoothing IP was

designed to drop samples at the input if necessary and be controlled by an FSM.

Therefore some extra work would be necessary to translate one of the architecture

forms into the other before they could be combined in all-purpose detector M1 on

FPGA.



APPENDIX J

Patent Application &

Paper

The following pages show the patent application exactly as filed and the scientific paper

exactly as submitted.

The patent application covers the use of SVA in a detector. It was filed as patent

application number 1104107.6 with reference 001510GB.

The scientific paper covers the use of SVA as a detector. It was submitted for Defense

Applications of Signal Processing (DASP) 2011.



Glossary

Terminology

chirp class

An internal SELEX Galileo classification system whereby chirps with a slow chirp

rate are class A; chirps with a medium chirp rate are class B and chirps with a

fast chrip rate are class C.

data capture window

A data capture window is a sampled snapshot of the baseband waveform passed

to the digital receiver. The data capture window is typically composed of a

number of samples which is a power of two as it is typically processed by a fast

Fourier transform.

minimum operational sensitivity

The minimum input signal impinging on an antenna at the system level to pro-

duce the minimum detectable signal at a specified output SNR.

Model Based Design

A design methodology to reduce development time and costs and to promote

design re-use. This is achieved through construction of models of systems with

the use of functional, modular building blocks.

modulation-on-pulse

Pulsed radar waveforms that incorporate a phase or frequency coding scheme for

radar coherent integration.

ordinate

The magnitude-squared of a complex sample from the output of one of the DFT

channels.
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