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Abstract 

Rho-associated kinase 1 (ROCK1) is a serine/threonine kinase important for the 

regulation of the cellular cytoskeleton through the induction of actin stress fibres 

and acto-myosin contractility. The cleavage and subsequent activation of ROCK1 

by caspase 3 during apoptosis is believed to cause many morphological 

phenomena associated with programmed cell death such as dynamic membrane 

blebbing. I now formally prove the necessity of ROCK1 cleavage for apoptotic 

blebbing by knocking-in a caspase cleavage resistant mutant of ROCK1 in a 

genetically modified model. In addition, animals homozygous for non-cleavable 

ROCK1 demonstrate a phenotype consistent with auto-immune disease 

suggesting that apoptotic blebbing is important to mediate rapid efferocytosis, 

which is a rapid phagocytic clearance of the cellular corpse, and thus maintain 

self-tolerance. Furthermore, apoptotic blebbing is important for the clearance of 

apoptotic cells and I demonstrate a novel mechanism for ROCK to mediate the 

release of factors participating in macrophage migration to dying cells. ROCK 

induced apoptotic blebs and bodies lose membrane integrity prior to secondary 

necrosis and leak intracellular material. Using quantitative mass spectrometry I 

identified numerous proteins that were previously unrecognized to be released 

during apoptosis. The release of protein was found to be impaired following ROCK 

antagonism with Y27632 which underscores the importance of ROCK activity in 

apoptotic protein release. One of these proteins, gelsolin, was released following 

caspase cleavage and encourages macrophage motility towards apoptotic cells. 

Finally, I now demonstrate that the three nonsynonymous somatic mutations in the 

ROCK1 gene identified in the Cancer Genome Project lead to elevated kinase 

activity and drive actin cytoskeleton rearrangements that promote increased 

motility and decreased adhesion, characteristics of cancer progression. Mapping 

of the kinase-interacting regions of the carboxy-terminus combined with structural 

modeling provides insight into how these mutations likely affect the regulation of 

ROCK1. Consistent with the frequency of ROCK1 mutations in human cancer, 

these results support the conclusion that there is selective pressure for the 

ROCK1 gene to acquire ‘driver’ mutations that result in kinase activation. 



3 

Table of Contents 

1. Rho-associated protein kinase (ROCK): regulation and function in apoptosis 
and cancer ...................................................................................13 

1.1 ROCK: structure, and regulation ..............................................13 
1.2 ROCK: expression, substrates, and cellular contractility..................15 
1.3 Cellular consequences of ROCK activation ..................................17 
1.4 ROCK1 and cell motility.........................................................17 
1.5 Programmed cell death and ROCK1...........................................19 

1.5.1 Apoptotic Initiation and effector stages................................19 
1.5.2 ROCK and the execution of apoptosis...................................20 
1.5.3 Apoptotic cell clearance and auto-immune disease ..................22 
1.5.4 ROCK1 blebbing and auto-immune disease ............................25 

1.6 ROCK functions in embryonic development .................................27 
1.7 ROCK inhibitor specificity ......................................................29 
1.8 ROCK and cancer.................................................................30 

1.8.1 Proliferation.................................................................30 
1.8.2 ROCK and cell survival.....................................................33 
1.8.3 ROCK in tumour cell invasion and metastasis..........................34 

2. Consequences of apoptotic blebbing: ROCK1 cleavage and auto-immune 
disease........................................................................................41 

2.1 Introduction.......................................................................41 
2.2 Results .............................................................................41 

2.2.1 Generation of ROCK1 non-cleavable (ROCK1nc) knock-in mouse...41 
2.2.2 Breeding strategy for ROCK1nc ..........................................42 
2.2.3 ROCK1nc mutation does not alter kinase function....................43 
2.2.4 ROCK1nc is resistant to apoptotic cleavage ...........................44 
2.2.5 ROCK1nc expression abolishes apoptotic blebbing ...................45 
2.2.6 ROCK1nc expression does not affect phosphatidyl serine (PS) 
externalization ........................................................................45 
2.2.7 Homozygous ROCK1 mice are viable and thrive .......................45 
2.2.8 Homozygous ROCK1nc mice have apoptotic cell accumulation.....46 
2.2.9 Homozygous ROCK1nc mice display an inflammatory/auto-immune 
phenotype ..............................................................................46 

2.3 Discussion .........................................................................65 
3. ROCK mediates apoptotic cell protein release to modulate innate immune 
responses.....................................................................................67 

3.1 Introduction.......................................................................67 
3.2 Results .............................................................................68 

3.2.1 Apoptotic bodies and blebs lose membrane integrity ................68 
3.2.2 ROCK activity triggers apoptotic body formation but does not affect 
membrane integrity...................................................................69 
3.2.3 ROCK antagonism does not affect time course of apoptotic cell 
membrane disruption .................................................................70 
3.2.4 Apoptotic cells release intracellular proteins in a ROCK dependent 
manner 71 
3.2.5 Proteomic analysis of AC-CM by quantitative mass spectrometry..71 
3.2.6 Validation of SILAC data...................................................72 
3.2.7 ROCK inhibition does not affect caspase cleavage....................73 
3.2.8 Apoptotic protein release alters macrophage migration.............74 

3.3 Discussion .........................................................................93 



4 

4. Activating Somatic ROCK1 Mutations in Cancer ..................................96 
4.1 Introduction.......................................................................96 
4.2 Results .............................................................................97 

4.2.1 Cancer Associated Mutations in ROCK1 .................................97 
4.2.2 Cancer associated somatic mutations of ROCK1 are activating.....97 
4.2.3 ROCK1 Mutations are Constitutively Active in Cells ..................98 
4.2.4 ROCK1 mutants enhanced motility and migration ....................98 
4.2.5 C-terminus of ROCK1 contains multiple kinase interacting Domains
 99 
4.2.6 Specific ROCK1 C-terminal Interacting Domains Mediate Kinase 
inhibition ............................................................................. 100 
4.2.7 ROCK1 C-terminal Interacting Domain Modeling .................... 100 

4.3 Discussion ....................................................................... 115 
5. Materials and Methods.............................................................. 118 

5.1 Chapter 2 methods ............................................................ 118 
5.1.1 ROCK1nc knock-in animal generation ................................. 118 

5.1.1.1 Home office project and personal licensing.................... 118 
5.1.1.2 Targeting vector generation ...................................... 118 
5.1.1.3 Mouse embryonic stem cell (mES) vector transfection ....... 119 
5.1.1.4 mES screening for homologous recombination ................. 121 
5.1.1.5 mES blastocyst injection and embryo implantation........... 121 
5.1.1.6 Animal genotyping .................................................. 122 

5.1.2 In vitro ROCK1 kinase assay............................................. 122 
5.1.3 Mouse embryonic fibroblast (MEF) generation....................... 122 
5.1.4 Microscopy................................................................. 123 

5.1.4.1 Fluorescent .......................................................... 123 
5.1.4.2 Timelapse ............................................................ 123 

5.1.5 In-cell western blot ...................................................... 124 
5.1.6 Western blot .............................................................. 124 
5.1.7 Flow cytometry ........................................................... 124 
5.1.8 Histological tissue collection, fixation, processing, and staining 125 
5.1.9 Haematology .............................................................. 125 

5.2 Chapter 3 methods ............................................................ 126 
5.2.1 Cell culture................................................................ 126 
5.2.2 Western blot .............................................................. 126 
5.2.3 Creation of membrane tagged GFP expressing NIH 3T3............ 126 
5.2.4 Induction of apoptosis, and generation of conditioned medium . 126 
5.2.5 Microscopy................................................................. 127 
5.2.6 Flow cytometry ........................................................... 127 

5.2.6.1 Apoptotic body PI permeability .................................. 127 
5.2.6.2 Apoptotic body proteinase K permeability ..................... 128 
5.2.6.3 Apoptotic body generation ........................................ 128 
5.2.6.4 Apoptotic cell permeability ....................................... 128 

5.2.7 Lactate dehydrogenase activity measurements ..................... 129 
5.2.8 SILAC ....................................................................... 129 
5.2.9 Gelsolin knockdown ...................................................... 129 
5.2.10 RAW 264.7 transwell migration ........................................ 130 

5.3 Chapter 4 methods ............................................................ 130 
5.3.1 Cell culture, transfections and plasmids ............................. 130 
5.3.2 Cell extraction and immunoblotting .................................. 130 
5.3.3 Immunoprecipitations and kinase assays ............................. 130 

5.3.3.1 Fluorescence polarization ROCK1 kinase assay ................ 131 
5.3.4 Peptide arrays ............................................................ 131 



5 

5.3.5 Immunofluorescence..................................................... 131 
5.3.6 FACS expression .......................................................... 132 
5.3.7 Protein fragment production ........................................... 132 
5.3.8 Cell motility ............................................................... 133 
5.3.9 Protein binding assay .................................................... 133 
5.3.10 Transwell dissociation assay............................................ 133 
5.3.11 Protein modeling ......................................................... 133 

References ................................................................................. 135 



6 

List of Tables 

Table 1.1. Anti-proliferative effects of ROCK antagonism.....................................33 
Table 3.1. Apoptotic protein release .....................................................................76 
Table 3.2. ROCK dependent apoptotic protein release.........................................77 



7 

List of Figures 

Figure 1.1. Rho associated kinase structure, homology, and regulation...............36 
Figure 1.2. Diagram of intracellular ROCK signalling............................................37 
Figure 1.3. The generation of apoptotic blebs.......................................................38 
Figure 1.4. Non-canonical activation of ROCK1/2.................................................39 
Figure 1.5. Apoptotic blebbing in efferocytosis and auto-immune disease ...........40 
Figure 2.1. Homologous recombination targeting strategy to generate ROCK1 non-
cleavable allele .....................................................................................................50 
Figure 2.2. 3’ homologous recombination screening strategy and results ............51 
Figure 2.3. 5’ homologous recombination screening strategy and results ............52 
Figure 2.4. Animal genotyping using quantitative PCR.........................................53 
Figure 2.5. ROCK1nc breeding strategy and Mendelian ratios.............................54 
Figure 2.6. ROCK1nc function is identical to wild type kinase ..............................55 
Figure 2.7. Cellular ROCK1 activity is identical in viable homozygous ROCK1wt 
and ROCK1nc fibroblasts .....................................................................................56 
Figure 2.8. ROCK1nc is resistant to apoptotic cleavage.......................................57 
Figure 2.9. Apoptotic ROCK1nc MEFs fail to bleb ................................................58 
Figure 2.10. Externalization of phosphatidyl serine is not dependent on ROCK1 
cleavage ...............................................................................................................59 
Figure 2.11. Apoptotic cell accumulation in ROCK1nc mice .................................60 
Figure 2.12. ROCK1nc mice have auto-immune kidney IgG deposition ...............61 
Figure 2.13. ROCK1nc mice have reduced erythrocyte volume and haematocrit.62 
Figure 2.14. ROCK1nc mice have increased erythrocyte phagocytosis ...............63 
Figure 2.15. ROCK1nc mice accumulate splenic follicular haemosiderin and 
invasive macrophages with age............................................................................64 
Figure 3.1. Apoptotic bodies lose membrane integrity before secondary necrosis78 
Figure 3.2. Apoptotic blebs lose membrane integrity before secondary necrosis. 79 
Figure 3.3. Apoptotic bodies are permeable to nucleases. ...................................80 
Figure 3.4. Apoptotic bodies are permeable to proteinase K. ...............................81 
Figure 3.5. ROCK induced acto-myosin contractility induces apoptotic body 
formation...............................................................................................................82 
Figure 3.6. ROCK does not affect apoptotic body membrane stability..................83 
Figure 3.7. ROCK and acto-myosin contractility do not alter onset of secondary 
necrosis. ...............................................................................................................84 
Figure 3.8. Acto-myosin dependent release of lactate dehydrogenase from 
apoptotic cells .......................................................................................................85 
Figure 3.9. Experimental flow chart for quantitative SILAC mass spectrometry....86 
Figure 3.10. ROCK catalyses release of many proteins during apoptosis ............87 
Figure 3.11. Apoptotic cells release gelsolin following caspase cleavage. ...........88 
Figure 3.12. Apoptotic gelsolin release is dependent on acto-myosin contractility.
..............................................................................................................................89 
Figure 3.13. Rock inhibition does not affect apoptotic gelsolin cleavage. .............90 
Figure 3.14. Apoptotic gelsolin release ensures macrophage migration...............91 
Figure 3.15. Schematic model of apoptotic gelsolin release .................................92 
Figure 4.1. ROCK1 domain structure for wild-type (WT) and cancer associated 
mutations. ...........................................................................................................102 
Figure 4.2. ROCK1 somatic cancer mutants are active. .....................................103 
Figure 4.3. ROCK1 mutants are active in cells. ..................................................104 
Figure 4.4. ROCK1 somatic cancer mutants promote cellular actin 
rearrangements...................................................................................................105 



8 

Figure 4.5. Expression of MYC-tagged ROCK1 constructs in NIH 3T3 mouse 
fibroblasts. ..........................................................................................................106 
Figure 4.6. ROCK1 somatic cancer mutants promote cell migration...................107 
Figure 4.7. ROCK1 somatic cancer mutants promote random cell motility. ........108 
Figure 4.8. ROCK1 somatic cancer mutants encourage cellular dissociation.....109 
Figure 4.9. ROCK1 kinase domain has multiple and distinct c-terminal interacting 
sites. ...................................................................................................................110 
Figure 4.10. Validation of ROCK1 C-terminal interacting regions. ......................111 
Figure 4.11. ROCK1 kinase-binding regions inhibit kinase activity. ....................112 
Figure 4.12. ROCK1 and ROCK2 are highly conserved in the C-terminal regulatory 
domain. ...............................................................................................................113 
Figure 4.13. Structural modelling of the ROCK1 interacting regions...................114 



9 

Abbreviations 

ACAMP Apoptotic cell-associated molecular patterns 
AC-CM Apoptotic cell conditioned medium 
AIHA Auto-immune haemolytic anaemia 
ANA Anti-nuclear antibodies 
ANOVA Analysis of variance 
Arg Arginine 
CHX Cycloheximide 
DAPI 4',6-diamidino-2-phenylindole 
DAPK Death-associated protein kinase 
DC Dendritic cell 
DIC Differential interference contrast 
DNA Deoxyribonucleic acid 
ΔROCK1 Cleaved ROCK1 
dRP S19 Dimer of ribosomal protein S19 
ECM Extracellular matrix 
EOB Eyelids open at birth 
FACS Fluorescence activated cell sorting 
FBS Foetal bovine serum 
GAP GTPase activating protein 
GDP Guanosine diphosphate 
GEF Guanine nucleotide exchange factors 
GFP Green fluorescent  
GlcNAc n-acetylglucosamine 
GSN Gelsolin 
GST Glutathione S-transferase 
GTP Guanosine-5'-triphosphate 
H&E Haematoxylin and eosin 
HMGB-1 High-mobility group box 
LC-MS Liquid chromatography and mass spectrometry 
LDH Lactate dehydrogenase 
LIMK LIM kinase 
LPC Lysophosphatidylcholine 
Lys Lysine 
MCV Mean corpuscular volume 
MEF Mouse embryonic fibroblasts 
mES Mouse embryonic stem cell 
MFG-E8 Milk fat globule epidermal growth factor 8 
MLC Myosin light chain 
MLCK Myosin light chain kinase 
PAF Platelet activating factor 
PARP Poly (ADP-ribose) polymerase 
PCR Polymerase chain reaction 
PH Pleckstrin homology domain 
PI Propidium iodide 
PIP2 Phosphatidylinositol (4,5)-bisphosphate (PIP2), 



10 

PIP3 Phosphatidylinositol (3,4,5)-trisphosphate 
pMLC Phosphorylation of MLC 
PS Phosphatidyl serine 
RBC Red blood cell 
RBD Rho binding domain 
RNA Ribonucleic acid 
RNAi RNA interference 
ROCK Rho-assocaited kinase 
ROCK1nc ROCK1 non-cleavable 
RP Splenic red pulp 
S1P Sphingosine-1-phosphate 
SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel 

electrophoresis 
SEM Standard error of the mean 
SILAC Stable isotope labeling with amino acids in cell 

culture 
SLE Systemic lupus erythematosus 
TGF-b Transforming growth factor 
TNFa Tumor necrosis factor 
TyrRS Tyrosyl tRNA synthetase 
WP Splenic white pulp 
WT Wild type 
ZIPK Zipper-interacting protein kinase 
Z-VAD-FMK N-benzyloxycarbonyl-Val-Ala-Asp-

fluoromethylketone 
 



11 

Acknowledgment 

I owe everything to Mike, all his ideas are always right (at least most of the time). 

Also, he’s a decent sort of guy. Thanks to everyone at The Beatson Institute and 

especially CRUK for funding my laboratory play time. I would like to thank Debs 

and my weans, Finlay and Esme, for supporting me during the last 4 years and 

helping to make this a success.  



12 

Author’s Declaration 

I am the sole author of this thesis. The work presented in this thesis is entirely my 

own unless otherwise stated. 



13 

1. Rho-associated protein kinase (ROCK): regulation 
and function in apoptosis and cancer  

(Text extracted from Wickman, G., Samuel, P., Lochhead, P., Olson M.F. The Rho-Regulated 

ROCK kinases in cancer. In: K. van Golen (ed.) The Rho GTPases in Cancer. Springer Press. 

(2010) pp. 163-192. and Wickman, G. and Olson M.F. A review of ROCK induced blebbing in 

apoptotic cell clearance and auto-immune disease. In review at Cell Death and Differentiation) 

Rho-associated protein kinases (ROCK) are central and prominent downstream 

effectors of the RhoA, RhoB and RhoC GTP-binding proteins. The predominant 

function of ROCK is the regulation and modulation of the cytoskeleton. 

Specifically, ROCK promotes the stabilization and bundling of actin filaments (F-

actin) and the generation of acto-myosin contractility via the phosphorylation of 

downstream substrates. As a result, ROCK proteins are indispensable for many 

cellular processes dependent upon the cytoskeleton including, but not limited to: 

cell motility, adhesion, apoptosis and phagocytosis. Given the critical role of 

ROCK1 and 2 in these diverse physiological processes, it is unsurprising that 

these kinases are involved in the development and progression of multiple 

diseases including cancer 1. While ROCKs are also implicated in diabetic 

nephropathy and a diverse array of cardiovascular diseases, the involvement of 

ROCK in the pathology of these disorders is outside the scope of this thesis 2,3. 

1.1 ROCK: structure, and regulation 

There are two isoforms of the ROCK serine/threonine kinases, ROCK1 (ROKβ) 

and ROCK2 (Rho kinase or ROKα), which share 64% overall homology with 89% 

homology within the kinase domain 4 (Figure 1.1a). ROCK is most closely related 

to the myotonic dystrophy kinase (DMPK, 48% identity in kinase domain with 

ROCK1) and the DMPK-related Cdc42-binding kinases MRCKα and MRCKβ 

(each with 53% kinase domain identity with ROCK1), which appear to share some 

overlapping functions in the regulation of the cytoskeleton 5. The ROCK kinases 

contain an amino-terminal kinase domain, a central coiled-coil domain (55% 

identity), followed by a split pleckstrin homology domain containing a C1 

conserved region (80% identity) (Figure 1.1a). A Rho-binding domain (RBD) lies 

within the coiled-coil region of ROCK, structural studies have revealed that the 

RBD forms a coiled-coil that interacts with the switch I and II regions of GTP-

bound RhoA 6,7. Several lines of investigation have revealed that ROCK1 and 
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ROCK2 form homo- and heterodimers that influence kinase activity, inhibitor 

sensitivity and normal function in vivo 8-10. Experiments using either wild-type 

RhoA loaded with non-hydrolyzable GTP-γS or GTPase-deficient RhoAG14V, 

revealed that Rho-GTP can increase ROCK specific activity in kinase assays and 

the formation of ROCK-dependent actin stress fibres and focal adhesions in 

cultured cells 11. Studies examining the mechanism of ROCK activation by Rho-

GTP revealed that expression of ROCK RBD and PH fragments attenuate 

activation which suggests that the carboxyl terminal domain of ROCK negatively 

regulates kinase activity 11,12. While it is clear from these data that Rho-GTP 

binding to the RBD within the carboxyl terminus of ROCK relieves this negative 

regulation leading to increased kinase activity, the precise mechanistic details of 

this auto-inhibition remained elusive (Figure 1.1b). 

The association of additional proteins to ROCK, including other small GTP-binding 

proteins, appears to regulate kinase activity. RhoE, Gem, and Rad have each 

been shown to bind ROCK at sites distinct from the RBD13,14. The binding of Gem 

to ROCK1 was found to attenuate phosphorylation of the MYPT1 regulatory 

subunit of the PP1M phosphatase complex but not LIM kinase, suggesting that 

Gem induces a shift in ROCK substrate specificity 14. In addition, the 

overexpression of Gem and Rad in endothelial cells result in reduced stress fibres 

and focal adhesions, consistent with inhibition of ROCK activity 14. Similar effects 

on stress fibres are reported for RhoE overexpression 15, which was found to bind 

within the amino terminal kinase domain and may sterically interfere with kinase-

substrate interactions 13. Alternatively, RhoE and RhoA appear to be competitive 

for ROCK binding, despite their binding at distinct sites, thus RhoE may 

antagonize ROCK function by inhibiting RhoA-mediated activation 13.  In further 

support of a role for RhoE in ROCK regulation, the protein kinase PDK 1 has been 

shown to enhance ROCK1 activity, not through phosphorylation, but by blocking 

the association of RhoE 16. RhoE, Rad/Gem display discrete subcellular 

distributions, being located at the Golgi apparatus and the cytoskeleton 

respectively, and it has been suggested that the distribution of these negative 

regulators is important for the modulation of ROCK activity at specific intracellular 

sites 17. 

The lipid second messengers arachadonic acid (AA) and sphingophosphocholine 

(SPC) appear to be highly efficacious ROCK activators. ROCK purified from 
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chicken gizzard was activated 5-6 fold following exposure to AA, independent of 

RhoA 18. In addition, SPC enhanced contractility of vascular smooth muscle in a 

ROCK inhibitor sensitive, but GTP-independent, manner 19. Together these 

observations suggest that lipid activation is sufficient to stimulate ROCK and 

catalyze acto-myosin contractility. However, the relevance of these two lipid 

signaling pathways in the regulation of ROCK in non-smooth muscle cell types 

remains to be demonstrated. A role for phosphatidyl inositides in ROCK activation 

has also been observed. Purified ROCK2, but not ROCK1, binds 

phosphatidylinositol (3,4,5)-trisphosphate (PIP3) and phosphatidylinositol (4,5)-

bisphosphate (PIP2), which activate kinase activity independent of Rho-GTP 20. It 

has been suggested that the differential binding properties of ROCK1 and ROCK2 

towards PIP3 and PIP2 may be important for subcellular regulation allowing ROCK 

to initiate discrete spatial functions. 

Phosphorylation of ROCK2 at several sites by polo like kinase 1 appears to 

promote RhoA dependent activation 21. Although additional serine/threonine and 

tyrosine phosphorylation sites have been identified (http://www.phosphosite.org), 

which may be involved in ROCK regulation, the prevalence and function of these 

phosphorylations remain to be determined. Interestingly, structural studies 

revealed that phosphorylation within the kinase domain was not necessary for the 

formation of a catalytically competent conformation 9. 

1.2 ROCK: expression, substrates, and cellular 
contractility 

Both ROCK isoforms are ubiquitously expressed in normal tissue and appear to 

have enhanced expression in brain, liver, and skeletal muscle 22. Examination of 

intracellular localization revealed a predominantly cytosolic distribution pattern 
23,24. However, more detailed analysis has revealed ROCK localized to: plasma 

membranes 23,25, acto-myosin filaments 23,26, nucleus 27, mitotic cleavage furrow 
28,29 and centrosomes 30. These observations are consistent with a role for ROCK 

as a mediator of the actin cytoskeleton, and suggest that proper subcellular 

localization likely plays a key regulatory role. 

More than 20 ROCK substrates have been identified, and while many have only 

been tested with one isoform, it seems likely that most substrates would be 
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phosphorylated in vitro by either kinase given the 89% identity between ROCK1 

and ROCK2. If there were differences in substrate phosphorylation by each 

isoform, this would probably result from more subtle differences in subcellular 

localization and/or protein-protein interactions. ROCK regulates the cytoskeleton 

via phosphorylation of numerous downstream target proteins (Figure 1.2). ROCK 

phosphorylates LIM kinases-1 and –2 (LIMK1 and LIMK2) at Threonine-508 and-

505 in their respective activation loops, which result in increased LIMK catalytic 

activity and the subsequent phosphorylation and inactivation of the actin-severing 

protein cofilin, thereby stabilizing filamentous actin 31-34. Cofilin induced actin 

severing and the generation of barbed ends appear to be an important component 

of intracellular actin cycling which in-turn dictates cytoskeletal structure. The LIM 

kinases can also be phosphorylated and regulated by p21 activated protein 

kinases (PAK) 1 and 4 suggesting that multiple signaling networks converge on 

LIMK to modify the cellular cytoskeleton and subsequent cellular function 35,36. In 

addition, ROCK participates in the phosphorylation of the myosin II light chains 

(MLC), a key mechanism for regulation of acto-myosin contractility 37. MLC 

phosphorylation promotes the release of the myosin heavy chain tail allowing for 

assembly into filaments, and facilitates the association of the myosin head with F-

actin. The myosin head uses ATP to ‘walk’ towards the barbed end, when 

multimeric myosin is associated with more than one actin filament to provide 

traction, this process then allows for sliding of actin filaments in the opposite 

direction, thereby generating contractile force. While ROCK has been shown to 

phosphorylate recombinant MLC at the same site (Ser 19) as the Ca2+ dependent 

myosin light chain kinase (MLCK) 38, experiments with GTPγS in airway smooth 

muscle failed to demonstrate significant MLC phosphorylation or cell contraction in 

Ca2+ depleted and therefore MLCK inactive conditions 39. These observations 

suggest that ROCK-mediated phosphorylation of MLC at Ser19 may not be a 

physiologically significant pathway to regulate cell contractility, at least in some cell 

types. Instead, the regulation of MLC phosphorylation, and thus cellular 

contraction, by ROCK may be mediated by inhibition of the myosin light chain 

phosphatase PP1M. This protein complex is made up of a PP1Cδ catalytic 

subunit, a myosin light chain binding subunit (MBS) and a smaller M20 subunit of 

unknown function 40. ROCK has been found to phosphorylate the ubiquitously 

expressed MYPT1 myosin binding subunit at two sites (Thr 696 and Thr 853 in the 

human form), which inhibits MLC dephosphorylation 41-43. As a result, a net gain in 
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MLC phosphorylation would actually require less activity by kinases such as MLCK 

directed towards MLC than under conditions in which PP1M was not inhibited, 

leading to an increase in MLC phosphorylation and greater cellular contractility 
39,44. In addition, many ROCK effects may be amplified by direct phosphorylation 

and activation of the Zipper-interacting protein kinase (ZIPK), which 

phosphorylates many of the same substrates as ROCK 45. Taken together, ROCK 

activation leads to a concerted series of events that promote acto-myosin 

mediated force generation and subsequent morphological changes (Figure 1.2). 

1.3 Cellular consequences of ROCK activation 

The increase in cellular contractility stimulated by ROCK leads to the prominent 

formation of actin stress fibres. These are bundles of contractile actin and myosin 

II filaments found along the length of the cell body of cultured cells and terminate 

at discreet points at the membrane known as focal adhesions. In fact, stress fibre 

formation was one of the first cellular activities identified for the Rho-associated 

kinases and either ROCK antagonists or dominant negative expression can impair 

their formation 11,22,46. In addition, the formation of focal adhesion complexes and 

the subsequent aggregation of integrins also appears to be dependent upon Rho-

ROCK contractility 46,47. The formation of these structures can be induced by 

multiple factors including, but not limited to: platelet-derived growth factor, and 

lysophosphatidic acid 48-50. While ROCK is clearly involved in the generation of 

stress fibres, it should be noted that expression of ROCK alone generates 

“stellate” fibres with an architecture distinctively different from those stimulated by 

Rho 22. Expression of ROCK with another Rho binding protein, the Diaphanous-

related formin mDia1, gave rise to stress fibres similar to those seen induced by 

Rho 51, indicating that although ROCK plays a central and critical role, Rho 

induction of stress fibre formation requires the input of additional signaling 

pathways. Nonetheless, ROCKs are clearly vital enzymes for cytoskeletal 

modification which in turn is responsible for many important biological processes 

such as cell migration, apoptosis, and embryonic development. 

1.4 ROCK1 and cell motility 

The dynamic reorganization of the cytoskeleton has long been understood as the 

underlying mechanism allowing cell migration and invasion 52. Given the 
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importance of ROCK in cytoskeletal remodeling and acto-myosin contractility, it is 

not surprising that the enzyme has been implicated in cell migration. Expression of 

constitutively active ROCK in MM1 hepatoma cells significantly enhanced invasion 

and dissemination of tumour cells in an in vivo model 53. This enhanced migration 

was also observed with MM1 cells expressing RhoAG14V and was reversed with 

the ROCK antagonist Y27632 53. These observations are supported by a 

significant body of evidence implicating a role for ROCK in two dimensional in vitro 

migration experiments 17. However, significant morphological differences are 

observed in cells grown in monolayer culture versus a more physiological 3D 

matrix 54. These differences call into question the relevance of 2D models of 

cellular migration for studying in vivo cell movement. Instead, three dimensional 

migration studies are required to recapitulate a more realistic environment as a 

model for physiological migration and invasion. 

Single cell migration within a 3D matrix can be categorized into two distinct modes, 

mesenchymal and amoeboid 55. Mesenchymal migration is characterized by: a 

fibroblast/spindle like morphology; dependence upon focal adhesions; integrin 

binding; and matrix proteolysis. The amoeboid form is marked by: a rounded cell 

body; limited dependence upon matrix adhesions; and limited requirement for 

proteolytic matrix remodeling. Mesenchymal migration appears to have limited 

dependence upon ROCK; in contrast, amoeboid migration is heavily dependent 

upon ROCK. In evidence, Y27632 was found to significantly inhibit the matrigel 

invasion of several amoeboid cell lines, while it failed to inhibit mesenchymal-like 

invasion 56. Consistent with these observations, the amoeboid migration of DMS79 

cells in collagen gels was associated with membrane blebbing, a cellular feature of 

ROCK activation 57,58. Membrane blebbing appears to be a general characteristic 

of cells undergoing amoeboid migration, and is likely important for cell movement 

within three dimensional matrices without necessitating proteolytic remodeling 
56,59. Furthermore, several cell lines have demonstrated plasticity in migration 

strategies and, in the presence of protease inhibitors, can be shifted from Y27632 

insensitive mesenchymal migration to amoeboid, whereupon cell movement is 

sensitive to Y27632 treatment 56. These observations clearly suggest a significant 

role for ROCK in cellular migration; however, a precise mechanism of control 

remains to be demonstrated. Nonetheless, ROCK has been proposed to regulate 

contraction of cortical actin rings which initiate membrane blebbing and 

deformation of the extracellular matrix 55,56,60. 
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1.5 Programmed cell death and ROCK1 

Programmed cell death, or apoptosis, is a vital process mediating the removal of 

aged, damaged, or developmentally unnecessary cells in multicellular organisms 
61,62. ROCK appears to play a vital role in several processes of programmed cell 

death. First defined in 1972, apoptosis is an active process involving 4 well defined 

stages; initiation, effector, execution, and clearance 63.  

1.5.1 Apoptotic Initiation and effector stages 

Apoptosis is now recognized to be initiated by multiple stimulatory cues that can 

be divided into extracellular (extrinsic) or intracellular (intrinsic) signals which are 

not mutually exclusive. Viable cells can be induced to execute programmed cell 

death following the activation of death receptors by various extracellular (extrinsic) 

ligands such as Fas ligand, and tumour necrosis factor alpha (TNFα) 64. The 

activation of death receptors initiates a caspase cleavage cascade culminating in 

caspase-3 activation. Caspases are cysteine-dependent aspartate-directed 

proteases that are expressed as inactive proforms and their function is vital to the 

execution of apoptosis. Caspases are activated in complex proteolytic cascades 

involving initiator caspases, such as caspase 8/9, which cleave and activate 

executioner caspases, such as caspase 3, that are necessary and sufficient to 

execute the apoptotic programme. Alternatively, cell death can be initiated in the 

absence of extrinsic factors. This intrinsic pathway can be activated by cellular 

stress or DNA damage and is dependent upon the pro-apoptotic activity of 

proteins, such as the Bcl family, that permeabilize the outer mitochondrial 

membrane causing the release of proteins normally contained only within the 

mitochondria. These proteins, such as cytochrome c, Smac, and Omi, upon 

release trigger the activation of caspase 9 which in turn cleaves and activates 

caspase 3 65. Regardless of the induction mechanism the activation of caspase 3 

is a critical effector protease leading to the execution of programmed cell death. 

Once activated caspase 3 proteolytically cleaves over 100 intracellular proteins at 

a specific Asp-x-x-Asp motif 66. Caspase cleavage of target proteins can cause 

either a gain- or loss-of-function which dramatically alters their regulation and 

function 66. The altered activity of these proteins is collectively responsible for the 

execution of the apoptotic programme. The importance of caspase cleavage in 

apoptosis is underscored in experiments using caspase inhibitors, such as N-
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benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD-fmk). These 

compounds, which bind to the catalytic site and inhibit the further cleavage of 

cellular substrates, consistently allow cells to escape programmed cell death 

induced by both intrinsic and extrinsic signals 67. Thus the activation of executioner 

caspases is a key switch triggering a multitude of independent cellular cascades 

resulting in the characteristic rapid compartmentalization and fragmentation of the 

cell associated with apoptotic cell death. 

1.5.2 ROCK and the execution of apoptosis 

Apoptotic cells can be easily discriminated from viable counterparts based on 

several morphological hallmarks. Not only do apoptotic cells have a very 

conspicuous nuclear condensation and fragmentation, but they also have very 

characteristic plasma membrane blebs. These are balloon-like protrusive blisters 

of the cellular plasma membrane that can be retracted and reformed in a dynamic 

cycling process which can cover the entire cellular surface of apoptotic cells 

(Figure 1.3a). The formation of apoptotic blebs is more of a physical, rather than a 

biochemical, process and they are believed to form as a result of increased 

hydrostatic pressure following acto-myosin dependent cellular contraction 68,69. 

During their formation, the plasma membrane tears away from the underlying 

cytoskeletal cortex and rapidly forms an enveloped area filled with cytoplasm 

(Figure 1.3b). When newly formed, the bleb is devoid of polymerized actin and 

other cytoskeletal proteins into which an actin cortex will rapidly polymerize 

followed by the recruitment of cytoskeletal bundling proteins and myosin, which 

then power bleb retraction 70. In apoptotic cells this cyclic process of bleb 

formation and retraction can occur over several hours and as programmed cell 

death progresses blebs become packed with cellular organelles and condensed 

chromatin and form the basis of sub-cellular membrane clad apoptotic bodies 71. 

However, it must be noted that apoptotic blebbing is not a universal feature of 

programmed cell death; some cell types do not appear to generate membrane 

blebs nor undergo fragmentation 72. Nonetheless, blebbing remains a very 

common feature of apoptotic cells and is considered a major morphological 

hallmark of programmed cell death.  

In 2001 it was discovered that apoptotic blebbing is dependent upon ROCK 

activity 73,74. Moreover it was apparent that apoptotic ROCK activation, which is 



  21 

vital to drive blebbing, is independent of its canonical activator Rho. This non-

classical activation of ROCK was associated with cleavage of ROCK1, but not 

ROCK2, by caspase 3 at a conserved site near the C-terminus 

(1110DETD1113)(Figure 1.4). Further investigation revealed that caspase cleaved 

ROCK1 yields a highly active kinase fragment that is sufficient to induce 

membrane blebbing identical to that seen in apoptotic cells. In addition, the 

cleaved ROCK1 fragment appears to be important for disruption of nuclear 

integrity and the packaging of fragmented DNA into membrane blebs and 

apoptotic bodies 73,75. Thus the generation of constitutively active ROCK kinase 

fragments appears to be a bona fide regulatory mechanism for the complete 

execution of cellular apoptosis. When cell death has been triggered by extrinsic 

factors such as TNFα, ceramide or Fas-receptor ligation, ROCK1 activation is a 

relatively late event 57,76 and ROCK inhibition does not halt the apoptotic process 
57. However, in some contexts chronic or high intensity ROCK activity may 

contribute to the initiation of apoptosis. Data from ROCK1 knockout mice revealed 

that cardiac pressure overload was less effective at inducing cardiomyocyte 

apoptosis in relative to controls, suggesting a potential role for ROCK1 in 

myocardial failure 77. While ROCK cleavage is tightly associated with the formation 

of apoptotic blebs, formal proof for the necessity of cleavage remains to be 

provided. Although ROCK2 is not cleaved by caspase 3 and is therefore unlikely to 

be involved in apoptotic blebbing induced by conventional intrinsic and extrinsic 

stimulus, it is cleaved by granzyme B 78. Granzyme B is a serine protease injected 

into target cells by cytotoxic T-cells and natural killer cells to induce cell death by 

mitochondrial disruption and direct caspase 3 cleavage. Interestingly granzyme B 

cleaves ROCK2 at a homologous site to caspase 3 cleavage of ROCK1; cleavage 

of ROCK2 at D1131 liberates the C-terminal regulatory domain causing 

constitutive activation capable of inducing membrane blebs (Figure 1.4). Due to 

the activation of caspase 3 granzyme B induced apoptosis also leads to the 

cleavage of ROCK1 and thus the importance of ROCK2 cleavage towards the 

formation of apoptotic blebs remains unclear. Furthermore, as ROCK2 is not 

cleaved during apoptosis induced with conventional signals, the post-translational 

modification to produce a constitutively active ROCK2 appears to be unnecessary 

for apoptotic blebbing.  

While the cleavage of ROCK1 is clearly vital to blebbing, it seems dispensable for 

many other apoptotic phenomena including caspase activation and 
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phosphatidylserine externalization. This leaves open the question of precisely 

what the biological significance of ROCK1 cleavage, and by extension apoptotic 

membrane blebbing, might be. One tantalizing possibility for the importance of 

ROCK1 activation during apoptosis is to aid phagocytosis of cellular remains.  

1.5.3 Apoptotic cell clearance and auto-immune disease 

The apoptotic programme is ultimately responsible for the final act of cellular 

disposal, or efferocytosis. As a testament to the efficiency and rapidity of 

efferocytosis it is surprisingly difficult to histologically detect apoptosis despite >109 

cells executing apoptotic programmes per day in adult tissues 79-81. There are 

several broadly defined phases of phagocytic clearance of apoptotic cells which 

include 1) Find-me, characterized by the release of soluble signals which attract 

macrophages to the dying cell; 2) Eat-me, in which a phagocyte becomes 

stimulated by engaging with signals expressed on the apoptotic cell membrane; 3) 

Engulfment, a series of cytoskeletal modifications in the phagocyte to take up the 

dead cell; and finally 4) Processing, digestion of the cellular remains through 

lysosomal degradation 82-84.  

Importantly, the apoptotic cells are active participants in these processes and 

display significant modifications to their membranes that aid recognition and 

uptake. This material can include lipid, protein, and modified carbohydrates. The 

best characterised of these externalized factors is phosphatidyl serine (PS), which 

is normally restrained to the inner leaflet of the plasma membrane 85. During early 

apoptosis membrane asymmetry is lost; PS becomes externalized and serves as a 

major factor for apoptotic cell recognition. Externalized PS can be recognized by 

the protein milk fat globule epidermal growth factor 8 (MFG-E8), which tethers the 

phospholipid to integrin αvβ3 expressed on macrophages and monocytes 86 (Figure 

1.5). Alternatively PS can be recognized directly by one or more receptors 

expressed on macrophages, including; Bai1, Tim5, and Stabilin2 62. Curiously, PS 

externalization has also been demonstrated in viable cells suggesting that PS 

serine exposure alone may be insufficient to mediate phagocytosis and that other 

signals are necessary 87,88. Thus, it has been proposed that the ‘eat-me’ signal 

received by phagocytes must be sufficiently strong to initiate efferocytosis 89. The 

strength of such a signal could be augmented by the binding of additional ‘eat-me’ 

molecules, such as MFG-E8. Alternatively, the spatial concentration of PS on 
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apoptotic cell membranes may also serve as a phagocytosis signal which will be 

discussed in greater detail below 89. In addition to PS externalization, apoptotic 

cells have numerous modifications of their membrane contents. The generation of 

apoptotic bodies causes the cell to lose membrane which is replaced from 

intracellular organelles such as the Golgi and endoplasmic reticulum 90. This 

scavenging of intracellular membranes results in the externalization of protein and 

glycan groups, including n-acetylglucosamine (GlcNAc), which are normally 

expressed only on intracellular membranes 91. Externalization of GlcNAc is 

recognized as a determinant of apoptotic thymocyte phagocytosis 92. Moreover, 

many of the newly externalized proteins are modified by cleavage, likely by 

activated caspases, which might easily affect their function and/or recognition 66,93. 

The abnormal externalization of intracellular material is believed to collectively 

serve as apoptotic cell-associated molecular patterns (ACAMPs), which either 

alone or in conjunction with plasma proteins such as MFG-E8, complement C1q, 

mannose-binding lectin, and surfactant protein A are then recognized by 

macrophages to mediate clearance (Figure 1.5)89,94-96. The binding of a 

macrophage to a target apoptotic cell creates an engulfment synapse and the 

diverse molecular interactions between ACAMP and macrophage mediate 

important components of efferocytosis such as, binding, and engulfment 97-99. 

The proper execution of apoptosis and subsequent corpse clearance provides 

powerful anti-inflammatory signals to the engulfing cells and, importantly, remains 

immunologically silent 100-102. Furthermore, the engulfment of early apoptotic cells 

is regarded to induce a tolerogenic response and proteins will be appropriately 

recognized as ‘self’, thus avoiding the activation of adaptive immunity towards 

apoptotic material 103. Collectively, it is the combination of rapid apoptotic cell 

clearance linked to suppression of immune activation that allow apoptosis to 

proceed rapidly and efficiently with a minimum of tissue disturbance consequently 

maintaining tissue homeostasis. One of the key features of apoptotic cells that 

assist in the rapid silent removal of the cellular fragments is a stable intact 

membrane, generally detected by the exclusion of impermeable dyes (such as 

propidium iodide) that prevents the release of intracellular proteins and 

subsequent immunological activation 104. This is in contrast to necrotic cell death, 

wherein cells inappropriately lyse and spill their intracellular contents leading to a 

rapid pro-inflammatory response (Figure 1.5) 101,105. For this reason defects in 

efferocytosis are believed to cause inappropriate pathological inflammation leading 
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to the generation of auto-immune disease. Indeed, numerous genetically modified 

mouse models removing vital elements of cell recognition and clearance 

machinery including, but not limited to: complement C1q, and MFG-E8 display an 

auto-immune phenotype characteristic of systemic lupus erythematosus (SLE). 

SLE is a chronic systemic auto-immune disease which affects nearly 5 million 

people globally, 90% of which are female 106. The disease is characterized by: the 

generation of auto reactive antibodies, particularly against nuclear antigens; the 

formation of antibody-immune complexes; and pro-inflammatory cytokine 

production 107,108. Animal models with defective efferocytosis develop a similar age 

and female dominant pathology associated with increased anti-nuclear antibodies 

(ANA), splenomegaly (enlarged spleen), and glomerulonephritis (kidney immune-

complex deposition) 109,110. Given the systemic nature of the disease it is not 

surprising that SLE affects multiple organ systems including joints, skin, lymph and 

kidneys. While the pathophysiology of SLE is multifactorial, the best defined 

abnormality associated with the disease is a failure in apoptotic cell clearance. Not 

only are macrophages from SLE patients deficient in autologous efferocytosis in 

vitro, but the number of tingible body macrophages, which are responsible for the 

ingestion of apoptotic corpses in lymphoid tissue germinal centres, are frequently 

reduced in SLE sufferers 111,112. Consistent with these observations, SLE is 

associated with greater numbers of circulating apoptotic bodies and an 

accumulation of apoptotic cells in the germinal centres of lymph nodes 113,114. 

Furthermore, complement C1q deficiency, which is associated with increased 

undigested apoptotic debris, is a potent trigger for SLE 115. The increase in free 

un-phagocytised apoptotic debris in SLE is a likely cause of SLE’s classic 

diagnostic feature, ANA. As mentioned previously, the failure to timely clear 

apoptotic cells can result in immune activation towards intracellular material, 

including nuclear proteins and DNA. Supporting this possibility, SLE associated 

ANA can be specific for novel antigens revealed only after apoptotic enzymatic 

modification, such as cleavage 93. Furthermore, these autoreactive antibodies are 

somatically mutated IgG isotypes suggesting that they are the products of B-cell 

affinity maturation and thus the result of an antigen driven immune response 
116,117. Collectively these observations underscore the importance of apoptotic cell 

clearance in the maintenance of self-tolerance. 

However, it is important to note that apoptotic clearance failure in itself may be 

insufficient to promote auto-immune disease; in fact, mannose-binding lectin-
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deficient mice have demonstrated apoptotic clearance defects without 

autoimmunity 118. This suggests that additional determinants, apart from 

clearance, participate in the immunological processing of apoptotic cell debris. It 

has been proposed that immunosuppressive TGF-β release stimulated by binding 

of apoptotic cells to macrophages may be sufficient to avoid potentially 

problematic auto-antibody generation, even in the absence of clearance 119. 

Nonetheless, defective cell clearance, as evidenced by mutation or elimination of 

the myriad components of efferocytosis, are undoubtedly linked to autoimmune 

disease as well as several other disorders in human and mice, including; 

atherosclerosis, neuropathy, arthritis, and anaemia 62,120. 

1.5.4 ROCK1 blebbing and auto-immune disease 

Numerous studies have attempted to define the importance of blebbing towards 

apoptotic clearance and found several, potentially contradictory, roles for blebs 

and apoptotic bodies. There have been several key in vitro studies demonstrating 

that inhibition of apoptotic blebbing can significantly impair corpse clearance by 

monocytes and macrophages 91,121,122. Further investigation revealed that impaired 

corpse clearance following defective blebbing could be rescued by the PS bridging 

protein, MFG-E8. The implication of these studies is twofold: firstly, apoptotic 

blebbing directly mediates efferocytosis; and secondly, PS externalization may be 

a mechanism linking blebbing and phagocytosis. While the apoptotic 

externalisation of PS appears to be independent of ROCK activity, the sub-cellular 

localization of the phospholipid might be 57,122. In fact, microscopic analysis reveals 

that apoptotic blebs become highly enriched for the externalized phospholipid 123. 

Thus it appears that apoptotic blebs are serving as focal points for externalized PS 

to accumulate, which is then recognized by macrophages to trigger engulfment. 

The possibility that apoptotic blebs provide context for macrophage recognition are 

consistent with data demonstrating PS exposure on viable cells is insufficient to 

trigger phagocytosis. Surprisingly, MFG-E8 failed to further enhance the in vitro 

phagocytic uptake of normal blebbing apoptotic cells, as might be expected. This 

suggests that apoptotic blebbing itself is sufficient to mediate corpse clearance, 

alternatively, in the instance of defective blebbing, efferocytosis can be achieved 

with the aid of bridging molecules like MFG-E8; thus there appears to be a 

significant redundancy in clearance mechanisms. These redundant compensating 

mechanisms may explain why many genetically modified mice with defective 
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clearance mechanisms are neither developmentally lethal nor display severe auto-

immune phenotypes (if displayed at all), as measured by survival and overall 

health.  

One of the most striking examples highlighting the potential importance of 

apoptotic blebs is the demonstration of their robust opsonization with C1q in 

human endothelial cells 123-125. Complement fixation in these cells was restricted 

entirely to the surface of blebs while the remainder of the cell surface remained 

clear of C1q binding 124. This high density opsonization on the surface of apoptotic 

blebs likely binds multiple macrophage receptors which efficiently trigger 

efferocytosis. The importance of this mechanism is underscored by the 

autoimmune disorders observed in C1q deficient mice 110. Collectively, ROCK 

dependent blebbing and the subsequent release of ‘come-find-me’ and/or the sub-

cellular accumulation of ‘eat-me’ factors would be expected to facilitate rapid 

efferocytosis and thus maintain self-tolerance. 

Apoptotic blebs are also intimately associated with the generation of auto-reactive 

antibodies. In fact, many of the newly externalised bleb-associated proteins are 

frequent auto-antigens in SLE including: nucleosomes, Ro, and La (Figure 1.5 
126,127 89,125. This outcome is in opposition to the typical physiological response and 

cannot be explained by macrophage phagocytosis. Other than macrophages, 

apoptotic blebs may also be cleared by professional antigen presenting dendritic 

cells (DC)(Figure 1.5)128,129. The uptake of apoptotic cells by dendritic cells or 

macrophages appears to have opposing consequences. As previously mentioned, 

macrophage phagocytosis is anti-inflammatory while DC uptake leads to secretion 

of pro-inflammatory cytokines and the presentation of self-antigens for auto-

antibody generation 128-131.  

Collectively, all of these studies demonstrate that apoptotic blebbing, as a 

mechanism to mediate cell clearance, is a double edged sword. While blebs 

appear to be important for rapid uptake and clearance they also are 

simultaneously sources of auto-antigens. It appears that the same material that is 

recognized by macrophages to mediate clearance is also recognized by other cell 

types, such as dendritic cells, to generate auto-immune antibodies. The 

mechanisms leading to these opposing outcomes is currently unclear, however, 

defects in macrophage uptake or increases in apoptosis appear to be important 
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determinants. Hypothetically, the accumulation of apoptotic debris would likely 

lead to an increased probability of DC activation and, over time, this inappropriate 

activation overcomes self-tolerance and generates auto-reactive antibodies 

characteristic of SLE. While the linkage between apoptotic blebbing and 

autoimmune disease is broadly recognized, definitive proof of the importance of 

apoptotic blebbing has not been forthcoming. The studies investigating apoptotic 

blebbing in the context of clearance and auto-immune disease are largely limited 

to in vitro experimentation that cannot recapitulate the complexity of interactions 

between apoptotic cells and their environment. Furthermore, they also typically 

suffer from their dependence on chemical inhibitors to interfere with apoptotic 

blebbing. The removal of these agents prior to analysis of macrophage 

phagocytosis is vital and, unfortunately, can never be guaranteed. In addition, the 

apoptotic cells have to be subjected to extensive additional washing steps which 

may alter the stability and structure of the apoptotic cells and thus affect outcome 

in subsequent assays. As a result, many of the observations regarding the 

importance of blebbing towards autoimmune disease are severely limited. Thus 

the current investigational methods are incapable of providing physiologically 

relevant insight into the role of ROCK induced apoptotic blebbing in the clearance 

of corpses and generation of autoimmune disease. Ultimately proof that apoptotic 

blebs are important for cell clearance and/or the generation of autoimmune 

disease requires a biological model of defective blebbing. Of note, a ROCK1 

knockout mouse has been generated, however no evidence of either defective 

apoptotic blebbing in vitro or auto-immune disease in vivo has been reported.  

1.6 ROCK functions in embryonic development 

Targeted deletion in mice has revealed distinct roles for ROCK1 and ROCK2 in 

embryonic development. Knock-out mice generated by targeted deletion of exons 

3-4 of the ROCK1 gene (in the C57Bl/6 strain background) were born at the 

expected Mendelian ratio, but were not viable and consequently were cannibalized 

by the mother 132. Developmental abnormalities of ROCK1-/- mice included failure 

in the closure of eyelids (eyelids open at birth phenotype – EOB) and of the ventral 

body wall. The latter phenomenon results in the protrusion of the abdominal 

contents into an omphalocele. Closer scrutiny revealed that polymerization of 

filamentous actin at the umbilical ring was reduced, resulting in incomplete closure 

of the abdominal wall and herniation of abdominal organs, particularly the liver and 
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intestine. Furthermore, actin cable structures within the leading edge of cells 

composing the eyelid epithelial sheets were disorganized, accounting for EOB. In 

both cases, phosphorylation of MLC was not observed. Two further versions of 

ROCK1 knockout mice have been generated either by targeted deletion of exon 5 

(and studied in the FVB strain of mice)133 or exon 1 (and studied in the C57Bl/6 

strain)134. In neither case were EOB or omphalocele phenotypes observed, which 

might be explained by strain-specific genetic differences. However, in each case 

under-representation of homozygous ROCK1 knock-out mice in litters was 

observed. In addition, ROCK1-deficient animals were resistant to reactive cardiac 

fibrosis resulting from physical stress on the cardiac muscle, which may be 

mediated by reduced ROCK1-mediated expression of fibrogenic cytokines and 

extracellular matrix protein production by cardiac fibroblasts 133,134. 

Genetic deletion of ROCK2 on the C57Bl/6 background also exhibited EOB and 

omphaloceles 135, suggesting that either there is a requirement for each individual 

ROCK protein, or for a minimum level of total ROCK activity, in the actin driven 

movement of epithelial sheets required for these developmental processes. This 

second possibility is supported by the observation that ROCK1/ROCK2 double 

heterozygous mice also exhibited EOB and omphaloceles 135, although at a lower 

frequency than ROCK1-/- or ROCK2-/- mice. The lack of effect in phenotype in other 

tissues suggests that ROCK1 and ROCK2 are able to functionally compensate for 

each other, or that the requirement for total ROCK activity is lower. Interestingly, 

approximately 90% of ROCK2 knock-out mice on the mixed C57Bl/6-129/Sv strain 

background died in utero at around 13.5 days postcoitum from coagulation of 

blood within the placental labyrinth layer 136.Surviving   ROCK2-/- mice were runted, 

suggesting nutritional deficiency resulting from placental impairment, with 

hemorrhages observed in hind limbs supporting the conclusion that there were 

defects in blood coagulation. Actin structures within the placental labyrinth layer of 

ROCK2-/- mice were apparently normal, suggesting an actin-independent role for 

ROCK2 in the placenta. Interestingly, there may be a role for ROCK1 within the 

placenta where it robustly associates with caveolin1 within lipid rafts of syncitial 

trophoblasts 137. The strain-specific differences in the effects of ROCK deletion 

strongly suggest the influence of modifier genes or strain-specific differences in 

ROCK activity. 
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1.7 ROCK inhibitor specificity 

Many studies that have aimed to identify the biological activities of ROCK have 

made use of the potent small molecule inhibitors that are commercially available. 

The most commonly used inhibitor is Y27632 138; others include Y-32885 138, H-89 
139, HA-1077 (fasudil)140, HA-1100 (hydroxyfasudil)141, H-7 and H-8 142, H-1152 143, 

Rockout 144 and [N-(4-Pyridyl)-N’-(2,4,6-trichlorophenyl)urea]145. There are always 

questions about the specificity and selectivity of small molecule inhibitors, given 

that the majority act as ATP-competitors and the 3-dimensional structure of protein 

kinases, including the ATP-binding regions, are highly related 146. Recently, a 

panel of ROCK inhibitors (Y27632, H-7, H-8, HA-1077, H-89, H-1152) was tested 

against a panel of 70 protein kinases 147. These experiments revealed that none of 

the ROCK inhibitors is absolutely specific, with the Rho-regulated PRK2 being 

inhibited to the same extent by all tested ROCK inhibitors and both MSK1 and 

RSK1 being at least 50% inhibited by all the tested compounds at concentrations 

that inhibited ROCK2 by at least 90%. These studies indicate that although ROCK 

inhibitors are useful tools, they should not be relied upon to be conclusive. 

Therefore, a greater confidence would be engendered in studies that make use of 

ROCK inhibitors if a number of additional conditions were satisfied including: 

1. Structurally unrelated inhibitors should produce the same biological 

endpoints at concentrations that produce equivalent kinase inhibition. The 

lowest effective doses should be used to reduce off-target effects. 

2. Dose-response experiments to establish rank order of potency for a set of 

inhibitors, i.e. the most potent ROCK inhibitors should be the most effective 

if a biological response is mediated by ROCK. 

3. Examination of the relationship between ROCK inhibitor dose, substrate 

phosphorylation and biological endpoint.  

4. Where possible additional methods should be used to inhibit ROCK 

function, such as RNAi-mediated knockdown. 

Although care should be taken in interpreting the results of inhibitor studies, they 

are undoubtedly useful and convenient tools. Our understanding of the biological 
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functions of ROCK has been vastly aided by the ready availability of these 

inhibitors. However, their utility is most robust in excluding the possible 

involvement of a particular signaling pathway in specific biological responses when 

adequate positive controls are in place. 

1.8 ROCK and cancer 

Given the diverse array of cellular functions of ROCK it is unsurprising that the 

kinases have been significantly implicated in the pathogenesis of cancer. 

Increased expression of Rho GTP-binding proteins has been reported for a wide 

variety of cancers 148,149. Although the mechanisms leading to elevated Rho 

expression have not been widely investigated, it was recently reported that 

metastatic breast cancer cells overexpress a microRNA that increases the 

expression of RhoC 150. In addition to increased levels of Rho proteins, specific 

examples of elevated expression or mutation of Rho activating guanine nucleotide 

exchange factors and downregulation or deletion of Rho inactivating GTPase 

accelerating proteins have been detected 149. These findings suggest that there 

may be increased ROCK activity associated with cancer. Consistent with this 

possibility, elevated expression of ROCK1 and ROCK2 was observed in bladder 
151 testicular cancer 152,153, and squamous-cell carcinoma 154. In the case of 

bladder cancer, elevated expression was significantly correlated with poor survival 
151. Finally, recent efforts to identify somatic mutations in human cancers have 

identified mutations in both ROCK1 and 2 155. Statistical analysis of the mutation 

rate of ROCK1 suggests that the mutations are perhaps drivers of the oncogenic 

process. These mutations will be discussed in greater detail in Chapter 4. The 

increased expression and activity of ROCK could contribute to cancer initiation 

and progression in several ways. In the sections below, I summarize the evidence 

that supports a role for ROCK in promoting proliferation, survival and metastasis.  

1.8.1 Proliferation 

The ready availability of potent ROCK inhibitors, especially Y27632 138, has made 

it possible to examine the role of ROCK in mitogen-induced proliferation in a wide 

variety of cell types, both in tissue culture and in vivo (Table 1.1), albeit with the 

caveats noted above. In some instances, RNAi-mediated knockdown of ROCK 

expression has been found to impair proliferation 156. ROCK inhibitors antagonise 
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a wide range of mitogenic stimuli including agonists for G-protein-coupled 

serpentine receptors and tyrosine kinase growth factor receptors to mechanical 

stretching. The single most common cell type in which ROCK inhibition has an 

apparent anti-proliferative effect is in vascular smooth muscle, with a number of 

reports indicating a similar effect in airway and prostatic smooth muscle cells. The 

prevalence of reports on vascular smooth muscle cells may reflect two factors; the 

critical role of ROCK in regulating both the contraction and proliferation of smooth 

muscle cells, and the high level of interest in ROCK inhibitors as agents to treat 

cardiovascular diseases. The lower occurrence of publications reporting an effect 

of ROCK inhibitors on proliferation in other tissues may reflect a role for ROCK in 

a limited number of cell types, or may be a function of lower interest in 

investigating the contribution of ROCK to proliferation in non-muscle cells 

Consistent with the anti-proliferative effect of ROCK inhibitors, expression of active 

forms of ROCK1 and ROCK2 have been shown to induce proliferation of bovine 

endothelial cells and mouse fibroblasts respectively 157,158. In addition, active 

ROCK1 was found to co-operate with a weakly activated form of Raf1 to promote 

oncogenic transformation of immortalized mouse fibroblasts. In a recent paper it 

was discovered that conditional activation of ROCK2 in skin leads to contractility 

dependent epithelial hyperproliferation and skin thickening 154. The proliferative 

effect of ROCK2 in epithelial cells is a result of mechanical paracrine stimulation of 

β-catenin due to increased extracellular collagen deposition. The activation of 

ROCK2 in this model was further associated with increased tumour formation 

following chemical carcinogenesis. This work suggests that ROCK activation and 

subsequent acto-myosin contractility help create an extracellular environment or 

‘niche’ that is permissive for hyperproliferation and the generation of cancerous 

lesions.  

There are a limited number of studies reporting stimulation of proliferation by 

Y27632, indicating that replication of some cell types may be restrained by ROCK 

activity. Treatment of rat embryonic kidney cells 159 human primary keratinocytes 
160 and human embryonic stem cells 161 induced proliferation, while expression of a 

conditionally activated ROCK2 in primary keratinocytes led to cell cycle arrest and 

terminal differentiation upon induction of catalytic activity 160. Similarly, expression 

of a constitutively active ROCK2 inhibited the proliferation of endothelial cells while 

Y27632 partially rescued cells from an inhibition of proliferation induced by TNF-α 
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162. Taken together, the literature supports the conclusion of a general role for 

ROCK as a promoter of cell replication, with anti-proliferative functions in selected 

cell types. What is missing from consideration are studies in which activation or 

inhibition of ROCK had no effect on proliferation, with a few exceptions (e.g. 

references 163-165), lack-of-effect results are generally left unpublished. 
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Table 1.1. Anti-proliferative effects of ROCK antagonism 
Cell type ROCK 

Inhibitor
Mitogen References 

Glioma cell lines Y-27632 Lysophosphatidic 
acid 

166 

Astrocytes Y-27632 PAR-1 agonists 167 

Mouse Embryo 
Fibroblasts Y-27632 Macrophage 

migration inhibitory 
168 

Tenon's Capsule 
Fibroblasts H-1152P Wound healing 169 

Oral squamous 

carcinoma cells Y-27632 Sonic hedgehog 170 

Gastric epithelial cells Y-27632 Glycine-extended 
gastrin 

171 

Umbilical vein 
endothelial cells Y-27632 Oxidized LDL 172 

Vascular smooth 
muscle cells Y-27632 PDGF-BB 173 

Airway smooth muscle 
cells Y-27632 Serum 174 

Prostatic smooth 
muscle cells Y-27632  175 

Cardiac myocytes Y-27632 Serum 176 

Atrial myofibroblast cells Y-27632 Serum 177 

Myoblasts Y-27632 Serum 178 

T cells Y-27632 Concanavalin A 179 

CD34+ hematopoietic 
progenitor stem cells Y-27632 CXCL12 180 

Chondrocytes Y-27632 Serum 181 

Hepatic stellate cells Y-27632 Serum 182 

Pancreatic stellate cells Y-27632 
Fasudil 

Serum, 
PDGF-BB 

183 

Adrenal Zona 
glomerulosa cells Y-27632 Serum 184 

 

1.8.2 ROCK and cell survival 

There also appears to be a role for ROCK in cell survival. Inhibition of ROCK 

activity induces cell death in corneal epithelial cells 185, airway epithelial cells 186, 
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neointimal smooth muscle cells 187-189, vascular smooth muscle cells 190,191, 

endothelial cells 192 hepatic stellate cells 193, spinal cord motor neurons 194, 

rheumatoid synovial cells 195 and in H202 treated intestinal epithelial cells 196. 

These effects were not limited to non-transformed cells as ROCK inhibition also 

induced cell death in anaplastic thyroid cancer cells 197 glioma cells 198 CD34+ 

chronic myeloid leukemia progenitor cells 199 and H202 or camptothecin treated 

neuroblastoma cells 200. 

Whether ROCK activation is pro-apoptotic or pro-survival is likely context specific 

and dependent upon cell type and death stimulus. Although there are some 

examples of ROCK inhibitors resulting in tumour regression in vivo (e.g.198,201), it 

remains to be determined whether this resulted from the inhibition of ROCK-

mediated protection in the tumour cells. It is also remains to be determined 

whether a pro-survival activity of ROCK plays a significant role in human cancers. 

The precise molecular mechanisms through which ROCK might mediate its effects 

on cell survival remain to be elucidated. 

1.8.3 ROCK in tumour cell invasion and metastasis 

Tumour cells are recognized to utilize the complete array of migration strategies, 

from the migration of multicellular sheets to individual cell motility 55. As previously 

discussed ROCK activity is particularly vital for the amoeboid migration of cancer 

cells 56,60. Treatment of morphologically round cancer cell types (A375, WM266.4, 

LS174T) with the ROCK inhibitor Y27632 was found to significantly impair cell 

motility, while in contrast migration of cancer cells with an elongated morphology 

(BE and SW962) was highly resistant to Y27632 56. Furthermore, amoeboid 

tumour cell migration and invasion are dependent upon matrix deformation rather 

than proteolytic remodeling 60. Interestingly, cancer cells display a remarkable 

plasticity in migration strategy and can switch between mesenchymal and blebbing 

strategies to maintain motility. This strategy switching involves a complex signaling 

interplay between competitive Rho and Rac signals 56,202. Although cancer cells 

can use several different migration strategies, the amoeboid ROCK-dependent 

motility appears to favor metastatic disease. In fact, overexpression of RhoC, an 

effector of ROCK, is not only correlated but is essential for metastatic disease in 

several in vivo models 203-205. This increased metastatic phenotype is associated 

with increased membrane blebs suggesting an important role for ROCK induced 
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amoeboid motility 203. These observations are further supported by numerous 

studies that directly implicate ROCK in tumour cell invasion by examining in vivo 

metastasis in the presence of ROCK inhibitors. In one study, HA-1077 (fasudil) 

reduced tumour burden and ascites resulting from peritoneally disseminated MM1 

(rat hepatocellular carcinoma) cells in rats by half, decreased lung nodule 

formation in mice by HT1080 (human fibrosarcoma) cells by 40% and limited 

breast cancer formation in mice by MDA-MB-231 (human breast carcinoma) cells 

three-fold 206. ROCK inhibitors also were found to reduce the in vivo invasiveness 

of human hepatocellular carcinoma 207,208, human prostate cancer 209 and mouse 

lung cancer cells 210. A positive role for ROCK in cancer cell invasiveness in vivo 

was further demonstrated with human colorectal cancer cell lines expressing a 

conditionally active version of ROCK2 211. These cells formed highly vascularized 

tumours in mouse xenografts that aggressively and individually invaded into the 

surrounding stroma upon ROCK activation. These results suggest that ROCK2 

activity is not only sufficient for tumour invasion, but is also sufficient for the 

induction of angiogenesis possibly by increasing the plasticity of tumour tissue 

thereby facilitating invasion by endothelial cells, potentially aiding tumour growth 

and dissemination. This possibility is supported in a recent paper demonstrating 

that ROCK driven actomyosin contractility encourages the loss of tumour cell 

cohesion and the switch from collective to individual migration 212. Collectively, 

these studies are consistent with ROCK as a central mediator of tumour cell 

invasiveness and metastasis through blebbing motility. 
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Figure 1.1. Rho associated kinase structure, homology, and regulation 
(a) Line diagram of ROCK1 and 2 protein domains and homology. Domain location from N-
terminus indicated above and below diagram for ROCK1/2 respectively. Kinase domain is in grey; 
Coiled-coil in dark green; Rho-binding domain (RBD) in light green; Split pleckstrin homology (PH) 
in orange; and cysteine-rich (C1) domain in blue. Percent sequence homology for ROCK1 and 2 
shown below line diagram. (b) Line diagram illustrating activation of ROCK following Rho GDP-
GTP exchange by Rho. Rho-GDP (guanosine diphosphate) is exchanged for GTP (guanosine 
triphosphate) with the aid of a Rho-guanine nucleotide exchange factor (GEF). Rho-GTP then 
binds to the Rho binding domain (light green) and induced a conformational change which relives 
kinase auto-inhibition. The kinase is then returned to an inactive state by hydrolysis of GTP to 
GDP after binding of a Rho- GTPase activating protein (GAP) to the Rho protein.  
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Figure 1.2. Diagram of intracellular ROCK signalling 
Stimulatory inputs are indicated by green arrows and inhibitory in red. LIMK, LIM kinase; MYPT, 
myosin phosphatase target subunit; MLC, myosin light chain. The net activity of ROCK activation 
is to stabilize actin filaments and increase acto-myosin contractility, the outcome is profound 
changes to cell size and shape.  
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Figure 1.3. The generation of apoptotic blebs 
(a) Representative immunofluorescence micrograph of an apoptotic mouse embryonic fibroblast. 
Apoptosis was induced with TNFα (50 ng/ml) and cycloheximide (10 μg/ml). After 2 hours the 
cells were fixed with paraformaldehyde and plasma membrane stained with fluorescent lipid dye 
DiO (green) and nucleus is stained with DAPI (blue). The cell has many apoptotic blebs some of 
which contain nuclear fragments (white arrows). Image acquired at 63X oil immersion objective 
with a laser scanning confocal microscope. (b) Diagram illustrating the mechanism of bleb 
generation and retraction in apoptotic cells. Black lines indicate cellular membrane and dotted 
red line underneath is the cytoskeletal cortex. As a result of cortical contraction intracellular 
pressure builds and blebs spontaneously form and expand. Actin rapidly polymerizes into the 
newly formed blebs and then acto-myosin contractility retracts the protrusion. Cellular 
components become packaged in the bleb which can eventually fragment into apoptotic bodies. 



  39 

 

Figure 1.4. Non-canonical activation of ROCK1/2 
Schematic illustration of cleavage of ROCK1 and ROCK2 induced by caspase 3 and granzyme B 
respectively. Cleavage generates constitutively active kinases that induce contractility and 
blebbing. 
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Figure 1.5. Apoptotic blebbing in efferocytosis and auto-immune disease 
Schematic illustration of apoptotic cell blebs in concentrating eat-me factors and aiding 
clearance. Alternatively blebs concentrate nuclear antigens and participate in auto-immune 
disease. MØ, macrophage; DC, dendritic cell, PS, phosphatidyl serine.  
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2. Consequences of apoptotic blebbing: ROCK1 
cleavage and auto-immune disease 

2.1 Introduction 

During apoptosis ROCK cleavage and activation appears to be not only vital for 

the formation of blebs but may be involved in the clearance of the cellular corpse 
72-74,122. As previously discussed, many of the studies investigating the importance 

of apoptotic ROCK cleavage and its numerous biological consequences have 

been limited to in vitro studies often using pharmacological inhibitors. While 

undoubtedly valuable, these reports do not provide proof that ROCK cleavage is 

necessary for apoptotic bleb formation or yield understanding of the biological 

function of blebbing. Therefore, the conclusions derived from these studies are at 

best speculative.  

In order to answer these fundamental questions about the role of ROCK1 

cleavage and activation in apoptosis, I made a genetically modified (GM) knock-in 

mouse expressing non-cleavable ROCK1 (ROCK1nc) that renders the protein 

insensitive to caspase-cleavage. The generation of this model will provide 

definitive evidence whether the cleavage of ROCK1 is essential for apoptotic 

blebbing, which could then prove to be an ideal model to assess the in vivo 

biological impact of blebbing in homeostasis. These studies could be 

fundamentally important in our understanding of auto-immune disease and either 

provide validation for the current understanding of the role of apoptotic blebbing or 

necessitate a re-analysis of current thinking.  

2.2 Results 

2.2.1 Generation of ROCK1 non-cleavable (ROCK1nc) knock-in 
mouse 

A targeting vector bearing two mutations in exon 27 (3338A>C and 3339T>A) of 

the mouse ROCK1 gene was generated with a floxed neomycin selection cassette 

in the preceding intron (Figure 2.1). The targeting vector was generated with 3.1 

kb 5’ and 5.1 kb 3’ homology arms respectively. When translated, the mutant 

ROCK1 bears a single missense substitution (D1113A), thus modifying the 

caspase cleavage site from DETD to DETA. This modification renders the kinase 
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insensitive to caspase cleavage 57. Following transfection of the targeting vector in 

129 mouse embryonic stem cells (mES) the cells were selected for stable insertion 

by neomycin resistance and then surviving clones were screened for properly 

targeted homologous recombination. I performed the primary screen by 

polymerase chain reaction (PCR) of genomic DNA purified from neomycin 

resistant clones with the 5’ primer within the neomycin cassette and 3’ outside the 

homology arm (Figure 2.2a). This reaction was predicted to generate a 3.5 kb 

product from homogonously recombined mES cells and no product from the wt 

ROCK1 locus (Figure 2.2a). A positive product of the expected size was detected 

in 3 out of 200 clones (6b, 7h, and 4g) indicating homologous recombination at the 

3’ arm of the mutant ROCK1 allele (Figure 2.2b). The preliminary hits were re-

confirmed and found to be positive; however, the 4g had far less reaction product 

compared to 6b and 7h (Figure 2.2c). Clones 6b, 7h, and 4g were further 

examined for 5’ homology using PCR with 5’ primer outside the homology arm and 

the 3’ primer within the neomycin cassette. This reaction was predicted to 

generate a 5.5 kb product from homologously recombined mES cells and no 

product from the wt ROCK1 locus (Figure 2.3a). Only 6b and 7h generated 

products of the expected size, indicating that these clones had a correct 

homologous knock-in of the mutant ROCK1 gene (Figure 2.3b). Clone 6b was 

used to generate animals and 7h was held in reserve. The mES 6b clones were 

injected into fertilized mouse blastocysts and then implanted into pseudopregnant 

mice. The resulting male mosaic offspring were then bred onto a wildtype female 

C57 black 6 (C57BL/6). Offspring were routinely genotyped using Transnetyx 

genotyping service to detect the mutant ROCK1nc allele for germline transmission. 

This genotyping uses a quantitative PCR reaction coupled with a specific 

fluorescent probe to determine hetero- and homozygosity (Figure 2.4). The 

construct generation, transfection and embryo manipulation was performed by The 

Beatson Institute Transgenic Technology core facility.  

2.2.2 Breeding strategy for ROCK1nc  

Mice heterozygous for the mutant ROCK1nc gene retained the neomycin selection 

cassette within the intron sequence which needed to be removed to avoid any 

interference in ROCK1 expression. As previously mentioned, the neomycin 

cassette was flanked by LoxP sequences and the cassette was removed by 

crossing female ROCK1nc+/-, neomycin+/- to male C57BL/6 expressing ubiquitous 
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Cre recombinase leaving a residual LoxP site (Figure 2.5a). The resulting animals 

verified as ROCK1nc+/-, neomycin-/-, Cre+/- were bred onto wild type C57BL/6 to 

remove Cre (Figure 2.5a). Deletion of neomycin and removal of Cre was 

confirmed by genotyping from Transnetyx. The resulting heterozygous ROCK1nc 

(neo and Cre null) animals were interbred to generate animals for experimentation. 

ROCK1nc mice generated from heterozygous breeding were born in the expected 

Mendelian ratios (Figure 2.5b) without gross abnormalities. ROCK1nc 

homozygous mice were also bred to generate experimental animals and found to 

be viable and thrive (data not shown).  

2.2.3 ROCK1nc mutation does not alter kinase function 

The substitution mutation that was introduced in the ROCK1 caspase cleavage 

site is not anticipated to affect kinase activity or activation. The location of the 

caspase cleavage site is outside of both the N-terminal kinase and C-terminal 

regulatory domains. Given the nature of the ROCK1nc mutation, a change in 

kinase function should only be observed following induction of apoptosis and 

caspase cleavage, under non-apoptotic conditions the kinase is expected to 

behave identically to wt ROCK1. Nonetheless, verification that ROCK activity is 

unaffected by the introduction of the D1113A mutation was necessary. To address 

this, I immunoprecipitated myc tagged ROCK1wt and ROCK1nc constructs 

expressed in HEK293 cells and analysed activity of approximately 200 ng of 

kinase in a fluorescence polarization assay (Figure 2.6a). Both ROCK1 and 

ROCK1nc induced an identical level of substrate phosphorylation (Figure 2.6b), 

thus the introduction of the D1113A mutation does not affect ROCK1 activity. 

Moreover, kinase activity in untransfected cells was similar to background, 

suggesting that no contaminating kinases were co-immunoprecipited. This work 

was performed in collaboration with Dr. Nicola Rath. I next sought to confirm that 

ROCK1nc cellular expression does not alter cellular phenotype compared to wt. In 

order to validate the in vitro biology of ROCK1nc expression I generated mouse 

embryonic fibroblasts (MEFs) from E13.5 pups in homozygous wild-type (wt) and 

ROCK1nc mice. The MEFs generated in either strain were morphologically 

identical and had similar proliferation rates (Figure 2.7a and data not shown). I 

determined the cell based activity of ROCK1nc or wt MEFs by examining the 

formation of actin stress fibres and phosphorylation of MLC (pMLC), two hallmarks 

of cellular ROCK activity, following a 5 min stimulation with 10% FBS. As can be 
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seen in Figure 2.7a, the formation of stress fibres and pMLC is identical in either 

cell line. Furthermore, introduction of the ROCK antagonist, Y27632, similarly 

suppressed both responses in each cell line (Figure 2.7a). The effect of FBS on 

pMLC in wt and ROCK1nc MEFs was quantified using a 96 well plate in-cell 

western blot approach. Following treatment MEFs were fixed, permeabilized and 

stained for pMLC with a fluorescent secondary antibody. The fluorescence of 

pMLC in each well was quantified using a LiCOR Odyssey scanner. Cell numbers 

were normalized to total nuclear fluorescence detected by DRAQ5 (Figure 2.7b). 

Consistent with microscopic observations, MEFs expressing either wt or non-

cleavable ROCK1 behaved identically to one another following treatment with FBS 

+/- Y27632 (Figure 2.7c). These observations suggest that under growth 

conditions ROCK1nc mutation affects neither in vitro kinase activation nor its 

sensitivity to chemical inhibitors.  

2.2.4 ROCK1nc is resistant to apoptotic cleavage 

I next sought to ascertain if the ROCK1-D1113A mutant was indeed resistant to 

caspase cleavage during apoptosis. Lysates of wt and ROCK1nc MEFs treated +/- 

TNFα and cycloheximide (CHX) for 4 hours were western blotted for ROCK1. In 

non-apoptotic cells ROCK1 expression in wt or ROCK1nc MEFs was identical, 

which I expected from a ‘knock-in’ at the endogenous locus (Figure 2.8). Following 

TNFα treatment ROCK1 cleavage is apparent in ROCK1wt MEFs while in 

ROCK1nc cells no ROCK1 cleavage product was observed, indicating that the 

mutant ROCK protein is indeed caspase cleavage resistant (Figure 2.8). 

Verification that MEFs were apoptotic was confirmed by appearance of cleaved 

poly (ADP-ribose) polymerase (PARP), a classic marker of apoptosis (Figure 2.8). 

In addition, I observed that apoptosis in wt MEFs was associated with increased 

MLC phosphorylation, a hallmark of ROCK activation; however, no such increase 

was observed in the mutant cells (Figure 2.8). This work was performed in 

collaboration with Dr. Nicola Rath. As ROCK1nc MEFs express a fully functional 

kinase, the lack of apoptotic MLC phosphorylation is best explained by defective 

cleavage associated with decreasing levels of ROCK activating RhoA-GTP which 

are insufficient to activate the kinase. A clear implication of these observations is 

that, due to decreasing ROCK1 activation signals, apoptotic cells must 

constitutively activate ROCK1 (by caspase cleavage) to induce and maintain MLC 

phosphorylation. The phosphorylation of MLC would be expected to induce acto-
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myosin contractility which, in turn, likely causes blebbing. These observations are 

consistent with the suspected role of cleaved ROCK1 as a potent inducer of 

apoptotic blebbing.  

2.2.5 ROCK1nc expression abolishes apoptotic blebbing 

Having established that ROCK1nc is resistant to caspase cleavage, I then asked if 

its expression disturbs apoptotic blebbing. Microscopic time-lapse images 

captured on 30 second intervals clearly demonstrate a profoundly defective 

apoptotic morphology in ROCK1nc MEFs compared to wt (Figure 2.9). This defect 

is characterized by a failure to retract, condense, and bleb. In addition, the cellular 

processes which fail to retract appear to fragment and remain adhered (Figure 2.9, 

lower panel, red arrows). This fragmentation seen in ROCK1nc MEFs is in 

contrast to the highly ordered formation of free floating subcellular apoptotic 

bodies (Figure 2.9, upper panel, white arrows).  

2.2.6 ROCK1nc expression does not affect phosphatidyl serine (PS) 
externalization 

As the externalization of PS during apoptosis is reported to be independent of 

ROCK activity 57,122 I wanted to verify if this observation is consistent in non-

blebbing ROCK1nc MEFs. Both wt and ROCK1nc MEFs were either left in starve 

medium (control) or treated with TNFα for 24 hours prior to staining with 

fluorescently labeled annexin V for FACS analysis. As can be seen in Figure 2.10 

over 80% of MEFs bind annexin V, and thus externalize PS, following 24 hour 

treatment with TNFα, indicating that the cells are highly apoptotic. Consistent with 

the previous reports no difference in annexin V binding was observed between 

MEFs expressing wt and non-cleavable ROCK1 (Figure 2.10)73. Therefore the 

failure to cleave ROCK1 appears to affect only the morphological features of 

apoptosis and other components of the apoptotic programme progress 

independently. 

2.2.7 Homozygous ROCK1 mice are viable and thrive 

As previously mentioned homozygous ROCK1nc mice were born in expected 

ratios and had no gross phenotype. In addition, homozygous animals were 

interbred to generate experimental animals which produced viable thriving 
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offspring (data not shown). Furthermore, homozygous females could give birth to 

multiple litters with no apparent difficulties (data not shown). 

2.2.8 Homozygous ROCK1nc mice have apoptotic cell accumulation 

Having established that expression of non-cleavable ROCK1 abolishes apoptotic 

blebbing, I sought to identify if there was a subsequent defect in efferocytosis. 

Consequently I analysed the appearance of cleaved caspase 3, a hallmark of 

programmed cell death, in the splenic lymphoid follicles of 35 week old male 

animals. Maturing lymphocytes have an extraordinarily high level of apoptosis, 

95% of which are eliminated by apoptosis. In fact, Bak and Bax knockout mice, 

whose cells cannot execute the apoptotic programme, develop massive 

splenomegaly and the organ size increases more than 30-fold due to the 

progressive accumulation of lymphocytes that fail to apoptose 213. Thus the 

physiologically high level of apoptosis in the spleen makes it an ideal organ to 

assess the clearance of apoptotic cells in ROCK1nc mice. In wild type animals 

numerous apoptotic corpse fragments (black arrows), staining for cleaved caspase 

3, were scattered throughout the lymphoid follicle (surrounded by black dashed 

line) and very few large intact apoptotic cells were seen (red arrow) (Figure 2.11a). 

This fragmented staining pattern is consistent with the phagocytic uptake of 

apoptotic debris by surveilling macrophages. In contrast, active caspase 3 stain in 

ROCK1nc splenic follicles is associated with numerous large intact cells (red 

arrows) in addition to some fragmented staining (black arrows)(Figure 2.11a). 

Further analysis shows that ROCK1nc mice have far more unfragmented apoptotic 

cells than wild-type (Figure 2.11b). While preliminary, the accumulation of 

apoptotic cells in ROCK1nc mice is very interesting and could be caused by either 

a failure of efferocytosis and/or increased follicular apoptosis. However, further 

studies are required to conclusively determine if lack of apoptotic blebbing impairs 

corpse clearance. 

2.2.9 Homozygous ROCK1nc mice display an inflammatory/auto-
immune phenotype 

As previously discussed, mice with defective apoptotic clearance can develop an 

auto-immune phenotype characterized by: splenic enlargement (splenomegaly), 

generation of ANAs, and deposition of immune complex in the kidney. I initially 

examined formalin fixed kidney sections of 15 week old male ROCK1nc 
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homozygous mice for IgG and found that some animals have a significant 

deposition of immunoglobulins within the glomerulus (Figure 2.12). Many of the 

glomeruli in the kidney of this animal were positive for mouse IgG. Physiologically, 

the kidney glomerulus, which is the basic filtration apparatus of the organ, is not 

associated with the deposition of immune complex and the detection of IgG on the 

glomuluar membrane is a characteristic of glomerulonephritis, a chronic kidney 

condition frequently seen in auto-immune diseases including SLE 214,215. While the 

incident rate of auto-reactive antibodies in the kidneys of ROCK1nc mice is 

unclear, these data are the first indication that failure to cleave ROCK1 during 

apoptosis, and thus impair blebbing and potentially efferocytosis, leads to auto-

immune disease. Currently a large cohort of animals is ageing for further 

investigation. 

In collaboration with a clinical veterinary pathology lab, the haematology of wt and 

ROCK1nc animals was analysed. On pathological review the mutant ROCK1nc 

mouse erythrocytes displayed aniscytosis, which is a high variability in erythrocyte 

size. Individual red blood cells (RBC) from mutant animals can be abnormally 

small compared to the uniform erythrocyte size seen in wild-type animals (Figure 

2.13a). This observation is further supported by additional clinical haematology 

data indicating that 6 week old ROCK1nc mice have significantly reduced RBC 

numbers (haematocrit) and mean corpuscular volume (MCV), an indication of 

erythrocyte size (Figure 2.13 and c). In addition, female mutant mice have a 

further significant reduction in MCV compared to their male littermates (Figure 

2.13c). While the reduction in haematocrit was significant the magnitude of the 

reduction would not be considered clinically anaemic. Nonetheless, homozygous 

ROCK1nc mice have a significant defect in either erythrocyte generation or 

destruction. While a reduced erythrocyte production cannot be ruled out the 

observed reduction in circulating RBC and MCV is consistent with macrophage 

phagocytosis, suggesting that ROCK1nc may be increasing erythrocyte 

destruction.  

The approximate lifespan of a mouse erythrocyte is 50 days and they are usually 

removed from circulation by resident macrophages in the spleen 216. Despite a 

high level of continuous erythrocyte phagocytosis in the spleen, the removal is 

hard to detect due to efficiency of disposal. However, increases in the rate of 

erythrocyte removal lead to an accumulation of iron within the splenic 
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macrophages, this iron is then stored in the phagocytes’ cytoplasm in an iron-

strorage complex called haemosiderin. The deposition of haemosiderin is 

associated with numerous pathologies including haemorrage and haemolytic 

anaemieas, and is detected with the histochemical stain Perls Prussian Blue 217. 

To this end I examined splenic haemosiderin deposits in 10 week old wt and 

ROCK1nc male and female mice to determine if the mutant mice had an increased 

rate of RBC destruction. As expected, no haemosiderin could be detected in the 

spleens of wild-type animals, while homozygous ROCK1nc mice had significant 

accumulation of haemosiderin in the splenic red pulp (RP), the physiological 

compartment for erythrocyte removal (Figure 2.14a). Quantitation of the splenic 

haemosiderin deposition revealed significantly more staining in female animals 

than in male littermates (Figure 2.14b). I next analysed whether the appearance of 

haemosiderin in the ROCK1nc spleen is associated with age. As can be seen in 

Figure 2.15 (top panels) 4 week old female ROCK1nc mice display no 

accumulation of iron in the spleen while at 25 weeks haemosiderin is not only 

visible in the red pulp but positive cells are also visible within the white pulp (WP) 

(Figure 2.15, black arrows). The appearance of haemosiderin in the WP indicates 

the presence of highly invasive phagocyte that is engulfing large numbers of 

erythrocytes in the splenic red pulp before migrating into the white pulp. This is 

possibly the result of an on-going inflammatory response in which erythrocytes are 

inappropriately phagocytosed by inflammatory macrophages activated by 

secondarily necrotic cells. To ascertain the identity of these cells I stained fixed 

splenic sections with antibodies against F4/80, a transmembrane protein 

expressed on mouse macrophages. Given the importance of macrophages in 

erythrocyte phagocytosis they are known to be abundant in the splenic red pulp, 

this was confirmed in both wt and ROCK1nc animals (data not shown and Figure 

2.15, middle panels). However, by 25 weeks ROCK1nc spleens show an 

accumulation of invasive macrophages in the white pulp that is not seen in 

younger or wild-type animals (Figure 2.15, middle panel, black arrows). This 

invasive population of macrophages appears to co-localize with WP haemosiderin. 

Preliminary observations also suggest that these invasive macrophages 

phagocytize nuclear material and thus are engulfing not just erythrocytes, but 

other nucleated cells as well (data not shown). Finally, heamatoxilyn and eosin 

staining demonstrates that the WP in 25 week ROCK1nc animals has a reduced 

cellularity compared to 4 week old animals (Figure 2.15, bottom panels). 

Collectively these observations are consistent with the haematology data and 
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suggest that ROCK1nc mice have an increased rate of erythrocyte phagocytosis. 

Furthermore, this increased phagocytic signature in the spleen is characterized by 

the presence of an invasive macrophage population that is likely engulfing more 

than RBCs. Moreover, the enhancement of this phenotype in female animals is 

highly suggestive of an auto-immune disease. The causes of increased splenic 

phagocytosis are unclear and may be due to autoimmune disease such as auto-

immune haemolytic anaemia (AIHA) or other pro-inflammatory triggers. A large 

cohort of animals is ageing to investigate these possibilities. 
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Figure 2.1. Homologous recombination targeting strategy to generate ROCK1 non-cleavable 
allele  
Line diagram of mouse genomic ROCK1 wild type (ROCK1wt) locus with numbered ROCK1 exons 
indicated by blue boxes (top). Targeting vector homology arms to ROCK1 wildtype locus is 
indicated by black crosses. Targeting vector contains mutations 3338A>C and 3339T>A in ROCK1 
exon 27 (yellow box, indicated by asterisk) and a neomycin (neo) selection cassette in red 
flanked by LoxP sequences (blue triangles). Targeting vector is transfected into mouse embryonic 
stem cells that are then selected for stable vector insertion with neomycin. After homologous 
recombination the expected mutant ROCK1 non-cleavable (ROCK1nc) genomic locus is shown on 
bottom.  
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Figure 2.2. 3’ homologous recombination screening strategy and results 
(a) Line diagram of PCR screening strategy of genomic DNA from neomycin resistant mouse 
embryonic stem cells (mES). 5’ PCR primer is indicated with black arrow and is within the Neo 
cassette, 3’ primer is outwith the targeting vector homology arm. These primers should generate 
a 3.5 kb PCR reaction product from mES cells with correct 3’ recombination, while no product 
should be evident from wildtype ROCK1 or incorrect targeting vector insertion (in table). (b) 
Representative agarose gel electrophoresis of PCR products from the genomic screening 
reactions. Each lane represents a separate reaction from individual neomycin resistant clone. 
PCR reaction from sample 6b (highlighted in red) yielded an expected reaction product of 3.5 kb 
suggesting correct 3’ homologous recombination while the remainder of samples were negative. 
(c) Agarose gel electrophoresis of confirmatory PCR reactions from positive samples identified in 
initial screening reactions. Clones 6b, 7h, and 4g all confirmed positive for 3’ ROCK1nc 
homologous recombination.  
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Figure 2.3. 5’ homologous recombination screening strategy and results 
(a) Line diagram of PCR screening strategy of genomic DNA from neomycin resistant mouse 
embryonic stem cells (mES). 5’ PCR primer (indicated with black arrow) is outwith the targeting 
vector homology arm, 3’ primer is within the neo selection cassette. These primers should 
generate a 5.5 kb PCR reaction product from mES cells with correct 5’ recombination, while no 
product should be evident from wildtype ROCK1 or incorrect targeting vector insertion (in table). 
(b) Representative agarose gel electrophoresis of PCR products from samples with correct 3’ 
homologous recombination (6b, 7h, and 4g). Samples 6b and 7h both produced a PCR product of 
expected size while clone 4g had no reaction product. mEs clones 6b and 7h demonstrate correct 
homologous recombination of the mutant ROCK1nc targeting vector. 
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Figure 2.4. Animal genotyping using quantitative PCR 
Representative traces of quantitative PCR (qPCR) reactions used to routinely genotype animals 
potentially bearing the mutant ROCK1 allele. ROCK1 locus spanning the 3338A>C and 3339T>A 
mutations was amplified in the presence of complimentary fluorescent tracers against wild type 
and mutant ROCK1. The resulting fluorescent signal over 40 reaction cycles determines individual 
animal genotype.  
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Figure 2.5. ROCK1nc breeding strategy and Mendelian ratios 
(a) Genetic line diagrams indicating genetic status and animal breeding. Matings are indicted 
with an X, and resultant desired offspring with an arrow. (b) Summary of offspring genotypes 
from ROCK1nc heterozygous matings n=129 animals from 4 mating pairs. (c) Pie chart of offspring 
genotypes from matings in (b) with indicated percentages.  
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Figure 2.6. ROCK1nc function is identical to wild type kinase 
(a) Representative polyacrylamide gel of immunoprecipitated (IP) myc-tagged ROCK1wt and 
ROCK1nc expressed in HEK-293 cells. 200 ng bovine serum albumin (BSA) ran in indicated lane 
and is used to estimate kinase mass used in subsequent assay. (b) Fluorescence polarization 
assay of 200 ng IP myc-tagged constructs. Bars represent mean +/- SEM of ROCK1 activity relative 
to untransfected. n=4. Figure courtesy of Nicola Rath. 
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Figure 2.7. Cellular ROCK1 activity is identical in viable homozygous ROCK1wt and ROCK1nc 
fibroblasts 
(a) Representative immunofluorescent confocal micrographs showing thr18/ser19 myosin light 
chain phosphorylation (pMLC) and f-actin in homozygous ROCK1wt and ROCK1nc mouse 
embryonic fibroblasts (MEFs). MEFs were starved overnight before treatment with 10% FBS for 5 
min +/- 10 μM Y27632 then fixed and stained. Cells were incubated with Y27632 for 30 min prior 
to serum stimulation were appropriate. Images acquired on 40x oil objective using an Olympus 
FV1000 laser scanning confocal microscope. (b) Representative images of in-cell-western blot 
detecting pMLC (green) and cell nuclei (DRAQ5, red). MEFs were plated in 96 well plates and 
treated identically as in (a). Total cellular fluorescence of pMLC and DRAQ5 was captured on 
Odyssey scanner using infrared fluorescent secondary antibodies. (c) Quantitation of in-cell-
western pMLC fluorescence normalized to cell number (DRAQ5 fluorescence). Bars represent 
mean + SEM. Statistical comparison performed by ANOVA followed by Dunnetts multiple 
comparison test. (n=3)(*, p<0.05; **, p<0.01). 



  57 

 

Figure 2.8. ROCK1nc is resistant to apoptotic cleavage 
Representative western blot of homozygous wild type and non-cleavable MEF lysates from cells 
treated with and without TNFα+CHX for 4 hours as indicated. Blotting paper was probed for 
ROCK1, poly ADP-ribose polymerase (PARP), phosphorylated myosin light chain (pMLC), and α-
tubulin. Apoptotically cleaved ROCK1 (ΔROCK1) and PARP (ΔPARP) is detected as 
immunoreactive lower molecular weight bands as indicated. Figure courtesy of Nicola Rath. 
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Figure 2.9. Apoptotic ROCK1nc MEFs fail to bleb 
Representative time lapse images of apoptotic ROCK1wt and ROCK1nc MEFs. Following overnight 
starvation MEFs were treated with TNFα+CHX and then differential interference contrast (DIC) 
images were captured every 30-60 seconds for several hours. Discreet sub-cellular apoptotic 
bodies are indicated with white arrows. Cellular fragmentation due to failed contraction is 
indicated with red arrows. Images acquired using a 20x DIC objective lens. During microscopy 
cells were maintained at 37°C in 5% CO2 atmosphere.  
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Figure 2.10. Externalization of phosphatidyl serine is not dependent on ROCK1 cleavage 
(a) Representative FACS dot plots of ROCK1wt and ROCK1nc MEFs treated + TNFα for 24 hours. 
Cells were collected and stained with annexin V, to detect phosphosphatidyl serine (PS) 
externalization, and PI to determine membrane function. (b) Quantitation of annexin V positive 
MEFs as in (a). Bars represent mean + SEM of percentage of cells externalizing PS after treatment 
(n=3). Statistical comparison performed by t-test. 
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Figure 2.11. Apoptotic cell accumulation in ROCK1nc mice 
(a) Representative images of formalin fixed spleens from 35 week old male ROCK1wt and 
ROCK1nc mice. Tissue is stained for cleaved caspase 3 (brown) and haematoxylin (blue nuclei). 
Lymphoid follicles outlined by dashed black line. Red arrows indicated non-fragmented apoptotic 
cells and black arrows indicate fragmented apoptotic cell debris which has been largely 
phagocytised. Bright field images acquired using a 20x objective lens on Olympus BX51 upright 
microscope. (b) Zoom of boxed area in (a) (c) Mean number of unfragmented apoptotic cells 
(cleaved caspase 3 positive) per splenic lymphoid follicle in 35 week old ROCK1wt and ROCK1nc 
male mice (n=1, 12-13 follicles/spleen).  



  61 

 

Figure 2.12. ROCK1nc mice have auto-immune kidney IgG deposition 
Representative confocal micrographs of formalin fixed kidney sections from two 15 week old 
male ROCK1nc mice. Tissue is immunofluorescently stained for mouse IgG (green) and cell nuclei 
(blue). Images captured with 60x oil immersion objective with an Olympus FV1000 laser scanning 
confocal microscope.  
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Figure 2.13. ROCK1nc mice have reduced erythrocyte volume and haematocrit 
(a) Representative bright field images of giemsa stained peripheral blood smear from ROCK1wt 
and ROCK1nc mice. Red blood cells are stained red and reticulocytes (immature erythrocytes) 
blue. Black arrows indicate smaller erythrocytes. Cellular spicules are indicated with green 
arrows and are artefacts of sample preparation. (b) and (c) Box and whisker plots of clinical 
haematology results from ROCK1wt and ROCK1nc mice demonstrating reduced haematocrit and 
mean corpuscular volume (MCV), respectively. Statistical comparison performed by ANOVA 
followed by Tukey Kramer multiple comparison test (n=4-5)(***, p<0.001).  
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Figure 2.14. ROCK1nc mice have increased erythrocyte phagocytosis 
(a) Representative images of formalin fixed spleens from 10 week old male ROCK1wt and 
ROCK1nc mice. Tissue is stained for haemosiderin (blue) and counter stained with eosin (pink 
nuclei). Lymphoid follicles outlined by dashed black line. WP indicates white pulp, RP indicates 
red pulp. Bright field images acquired using a 4x objective lens on Olympus BX51 upright 
microscope. (b) Quantitation of splenic haemosiderin deposits in spleen expressed as a 
percentage of splenic area. Bars represent mean + SEM and statistical comparison performed by 
t-test (n=3)(**, p<0.01). 
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Figure 2.15. ROCK1nc mice accumulate splenic follicular haemosiderin and invasive 
macrophages with age 
Representative images of formalin fixed spleens from 6 and 25 week old female ROCK1wt and 
ROCK1nc mice. Tissue is stained for haemosiderin (top panels, blue stain), macrophages (middle 
panels, F4/80-brown stain), and haematoxylin and eosin (bottom panels). Lymphoid follicles 
outlined by dashed black line. WP indicates white pulp, RP indicates red pulp. Black arrows 
indicate intra-follicular haemosiderin stain (top panels) and invasive macrophages (middle 
panel), respectively. Boxed area in middle panel shown in greater magnification in far right 
images. Bright field images acquired using a 10x objective lens on Olympus BX51 upright 
microscope. 
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2.3 Discussion 

While there is much speculation about the role of apoptotic ROCK1 cleavage 

towards the clearance of dying cells there is very little clarity. These data I present 

conclusively demonstrate that the cleavage of ROCK1 is a necessary prerequisite 

for apoptotic blebbing and further suggests that these morphological changes are 

important for efficient efferocytosis and the maintenance of self tolerance. While a 

complete characterisation of the ROCK1nc phenotype has yet to be elucidated, 

the animals appear to be developing auto-immunity. In particular the female 

dominance of splenic haemosiderin deposition and the appearance of glomerular 

immune complexes strongly indicate the development of autoimmune disease. 

While the cause of erythrocyte destruction in ROCK1nc mice remains undefined, 

the phenotype may be caused by auto-immune haemolytic anaemia (AIHA) which 

is characterized by auto-antibody opsonisation of circulating erythrocytes thus 

targeting them for phagocytosis 218. Interestingly, AIHA is observed in 10% of SLE 

patients and may be the only presenting symptom of SLE 219. However, alternative 

explanations for the reduction in haematocrit and splenic iron deposition in 

ROCK1nc mice cannot be excluded.  

In a recent paper Gabet and colleagues demonstrate that ROCK activity is 

necessary for the differentiation of erythrocytes 220. They show that in vitro 

erythroblast differentiation is impaired with the ROCK antagonist Y27632 which 

prevents cellular condensation into uniform small cells. It was further reported that 

during erythroblast maturation ROCK activation is Rho independent and that the 

kinase is partially cleaved by activated caspase 3. The activation of caspases has 

been previously identified as a vital component of erythrocyte terminal 

differentiation and this reports suggests that ROCK cleavage may be an important 

physiological phenomenon associated with erythropoiesis 221. As the spleen is an 

active site of erythropoiesis in adult mice it is possible that failure to cleave 

ROCK1 triggers a differentiation defect leading to apoptosis and phagocytosis 

which over time causes the haematological phenotype seen in ROCK1nc mice 222. 

While interesting, these observations are limited; they demonstrate an association 

between ROCK1 cleavage and erythroblast maturation but fail to prove causation. 

In fact, a significant pool of full length ROCK1 remains in the maturing 

erythroblasts and the relative contribution of cleavage remains unclear. If ROCK1 

cleavage was truly vital to erythropoiesis this paper would predict that ROCK1nc 
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mice have profound changes in the mature population of circulating erythrocytes, 

characterized by increased size. In fact the exact opposite is seen in homozygous 

ROCK1nc mice: circulating RBC are quantitatively smaller that those in wild type 

littermates. Moreover, the female dominant phenotype and the appearance of 

glomerulonephritis seen in ROCK1nc mice cannot be explained by defective 

erythropoiesis. Thus the collection of pathologies observed in ROCK1nc mice is 

better explained by the development of autoimmune disease rather than faulty 

erythropoiesis. 

One of the outstanding issues remaining to be investigated is the effect non-

blebbing apoptotic cells have on phagocytic clearance. As outlined previously 

apoptotic blebbing may affect multiple aspects of efferocytosis including; the 

externalization/localization of eat-me molecules, and cellular fragmentation that 

have traditionally proven very difficult to investigate. As a result the literature has 

an unexplained conflict; apoptotic blebbing is simultaneously important for rapid 

efferocytosis and the generation of auto-antibodies, two outcomes which appear 

opposed to one another. The generation of non-cleavable ROCK1 knock-in mice 

can now provide the conclusive experimental evidence to address the in vitro and 

in vivo importance of apoptotic blebbing. Preliminary data suggest that ROCK1 

cleavage driven apoptotic blebbing is important to avoid auto-immune disease and 

I expect this model will provide many more valuable insights, such as the potential 

role of apoptosis and inflammation during tumour growth and progression. 
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3. ROCK mediates apoptotic cell protein release to 
modulate innate immune responses  

3.1 Introduction 

The clearance of apoptotic corpses is clearly a vital process that is largely dictated 

by the dying cell. As previously discussed, apoptotic cells are active participants in 

efferocytosis and undergo dramatic membrane changes to help facilitate 

recognition and phagocytosis. In addition to these modifications, apoptotic cells 

release chemoattractant molecules that encourage macrophages to locate the 

suicidal cell prior to clearance. Thus, the release of ‘find-me’ factors can be seen 

as the first critical step for efferocytosis. While research has provided a great deal 

of insight into the mechanisms of phagocyte engagement and engulfment of 

apoptotic cells, there are only a handful of apoptotic chemo-attractant signals that 

have been identified 223. These come-find-me factors are composed of a wide 

range of molecules including: proteins (e.g. tyrosyl tRNA synthetase (TyrRS) and 

dimer of ribosomal protein S19 (dRP S19)), lipids (e.g. lysophosphatidylcholine 

(LPC) and sphingosine-1-phosphate (S1P)), or nucleotides (e.g. ATP)62,223,224. In 

addition, apoptotic micro-blebs, which are small membranous sub-cellular particles 

released from B-cells (the micro-bleb nomenclature is from the referenced paper, 

for consistency, these structures will now be referred to as micro-apoptotic 

bodies), have also been described as potent monocyte chemoattractants 225. 

Regardless of their composition, all these factors are soluble and diffuse from 

apoptotic cells to encourage monocytes and macrophages to find the suicidal cell 

and phagocytose it. Curiously, some of these factors (e.g. TyrRS and dRP S19) 

are intracellular proteins and the release of such factors from apoptotic cells, with 

presumably intact membranes, has not been adequately characterised. These 

apparently conflicting observations make the search for new proteinacious 

apoptotic chemoattractant factors problematic as a mechanism for their release 

also needs to be provided. 

While ROCK induced apoptotic blebbing appears to be important for macrophage 

recognition and engulfment the importance of blebbing and apoptotic body 

formation in the release of ‘find-me’ factors remains to be investigated. The ability 

of micro-apoptotic bodies, whose generation is likely ROCK dependent, to attract 
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monocytes suggests that ROCK may be an active participant in the release of 

chemoattractant factors from apoptotic cells.  

3.2 Results 

3.2.1 Apoptotic bodies and blebs lose membrane integrity 

As discussed, apoptotic cells are presumed to have intact plasma membranes that 

are important in limiting the release of pro-inflammatory intracellular molecules. 

However, there have been several reports suggesting that apoptotic blebs can 

lose membrane integrity independently of the cell body 126,226. Importantly, these 

cells have functional plasma membranes and thus would be regarded as early 

apoptotic and not secondarily necrotic despite the loss of membrane integrity in a 

sub-set of extruded blebs. These observations suggest a potential role for ROCK, 

via loss of bleb integrity, in the release of factors from apoptotic cells that may in 

turn impact efferocytosis. 

To confirm whether apoptotic blebs lose membrane integrity, time-lapse images of 

apoptotic NIH 3T3 cells were acquired in the presence of propidium iodide (PI), a 

fluorescent membrane impermeable stain for RNA and DNA. Treatment of NIH 

3T3 with TNFα and cycloheximide rapidly and uniformly induced programmed cell 

death with pronounced blebbing and apoptotic body formation within 3 hours 

(Figure 3.1). Initially, both the parental cell and newly formed blebs and apoptotic 

bodies have stable intact membranes as indicated by their exclusion of PI. 

However, within an hour of the onset of blebbing (4 hours after induction), the 

newly formed apoptotic bodies and blebs have the potential to rapidly lose 

membrane integrity and take up PI, this process can occur while still tethered to 

the parental cell or at distance following release of free floating membrane clad 

bodies (Figure 3.1 arrows and Figure 3.2). The loss of membrane stability of these 

newly formed structures precedes the loss of integrity, and thus secondary 

necrosis, of the remaining cellular corpse by several hours (Figure 3.1). This 

observation is consistent with several previous reports which indicate that 

apoptotic blebs lose membrane function well in advance of the cell body 126,226,227.  

In order to further quantify the loss of membrane integrity of apoptotic bodies we 

assessed PI staining of NIH 3T3 apoptotic bodies at 4 hours after treatment with 
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TNFα and cycloheximide by fluorescence activated cell sorting (FACS). At this 

time point, and consistent with the time-lapse microscopy data, a significant 

number of cells were visually executing programmed cell death (actively blebbing 

and generating apoptotic bodies), but were not yet secondarily necrotic (Figure 

3.6a and b). FACS gating on the small (low forward scatter) (Figure 3.3a) sub-

cellular debris revealed that 20% of the apoptotic bodies were positive for PI, 

indicating that a significant number of these sub-cellular particles had lost 

membrane integrity (Figure 3.3b). Treatment of the apoptotic bodies with RNaseA 

alone or a combination of RNaseA+DNase1 reduced PI staining to 9% and 5.5%, 

respectively (Figure 3.3c). The reduction in PI staining of apoptotic bodies 

following treatment with RNase and DNase suggests that membrane permeability 

is sufficient to permit nuclease diffusion. RNaseA and DNase1 were found to be 

10 and 34 kDa, respectively, suggesting that apoptotic body membranes are 

permissive to molecules with at least these masses. (Figure 3.3d). The loss of 

membrane integrity in apoptotic bodies was further validated using NIH 3T3 cells 

expressing membrane tagged GFP (mGFP). Following induction of apoptosis in 

mGFP-NIH 3T3 cells, 30% of the resulting apoptotic bodies had detectable levels 

of GFP (Figure 3.4a). Treatment of this sample with proteinase K, a broad 

spectrum serine protease with a mass of 28 kDa, significantly reduced the GFP 

positive apoptotic bodies by 69%, indicating that the majority of detectable 

particles have compromised membranes (Figure 3.4b). Taken together these 

observations suggest that many sub-cellular particles released from apoptotic cells 

have significantly compromised membranes that fail to exclude molecules as large 

as 34 kDa.  

3.2.2  ROCK activity triggers apoptotic body formation but does not 
affect membrane integrity 

While ROCK1 is important for triggering the formation of apoptotic blebs, its role 

modulating membrane stability during apoptosis is less clear. Within four hours of 

NIH 3T3 cell exposure to TNFα, there was a significant increase in the number of 

apoptotic bodies (Figure 3.5). When apoptosis was initiated in the presence of the 

ROCK inhibitor Y27632 or the myosin ATPase antagonist blebbistatin, the 

formation of apoptotic bodies was significantly impaired suggesting that the 

formation of these sub-cellular particles is dependent upon ROCK activation of 

acto-myosin contractility (Figure 3.5). Further analysis of apoptotic body 
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permeability to PI suggests that inhibition of ROCK does not affect the percentage 

of particles that take up the vital dye (Figure 3.6). However, it is interesting to note 

that PI staining in apoptotic bodies generated in the presence of blebbistatin is 

48% of the staining observed in TNFα alone (Figure 3.6). This reduction in 

apoptotic body PI staining might be attributed to either increased membrane 

stability or impaired loading of RNA/DNA in apoptotic bodies. Nonetheless, it 

appears that during apoptosis, ROCK activity induces blebbing and apoptotic 

bodies, which then lose membrane integrity via ROCK independent mechanisms.  

3.2.3 ROCK antagonism does not affect time course of apoptotic 
cell membrane disruption 

Having established that up to 20% of apoptotic bodies have permeable 

membranes within 4 hours of TNFα treatment, we sought to determine if the much 

larger apoptotic cells shared a similar level of membrane disruption and were 

therefore secondarily necrotic. Traditionally the analysis of apoptotic stage is 

determined by co-staining with annexin V and PI. Cells that are double negative 

are non-apoptotic, annexin positive are early apoptotic, and double positive are 

secondarily necrotic. This approach, while widely accepted, may overestimate the 

necrotic population size. FACS analysis of cells with PI positive apoptotic bodies 

would be scored as necrotic, while timelapse microscopic analysis would indicate 

otherwise (Figure 3.7a). Thus we assume necrosis only in the population of highly 

PI positive cells, as indicated by the gating in Figure 3.7a. We found that PI uptake 

in large apoptotic cells was limited to 3.7% at 4 hours and was not significantly 

altered by either ROCK or myosin inhibition (Figure 3.7b). This suggests that, 

while a high degree of apoptotic bodies lose membrane integrity, their associated 

parental cell bodies remain largely intact. This is consistent with time-lapse images 

demonstrating apoptotic body PI uptake in advance of secondary necrosis. In 

addition, we examined the release of HMGB1, an established pro-inflammatory 

cytokine released only during primary and secondary necrosis 228. Accumulation of 

HMGB1 in the extracellular compartment was only detectable 24 hours after TNFα 

induced programmed cell death, while at 12 hours all the protein appears to be 

retained within the cellular corpse (Figure 3.7c). This is consistent with published 

reports showing delayed HMGB1 release following apoptosis and a role for the 

protein as a proinflammatory molecule 228. Treatment with either Y27632 or 

blebbistatin did not affect HMGB1 release. Taken together the failure of Y27632 
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and blebbistatin to alter the rate of secondary necrosis further confirms that their 

activity is limited to the suppression of apoptotic body generation.  

3.2.4 Apoptotic cells release intracellular proteins in a ROCK 
dependent manner 

The loss of apoptotic body membrane integrity raises several interesting 

possibilities: first, the intracellular contents of these particles may be passively 

released and accumulate in the extracellular space; second, the suppression of 

apoptotic body generation by ROCK may have a significant, albeit indirect, impact 

on protein release. To test these possibilities, we generated apoptotic cell 

conditioned medium (AC-CM) at 2, 4, 12, and 24 hours following treatment with 

TNFα and cycloheximide with and without the addition of Y27632 or blebbistatin 

and assessed the samples for lactate dehydrogenase (LDH) activity. Although 

LDH release is commonly regarded as an indicator of cytotoxicity and cell lysis, we 

hypothesized that its release may also be associated with programmed cell death 

via passive liberation from decaying apoptotic bodies. As suspected, apoptosis led 

to a significant release of LDH within 2 hours that continued to accumulate through 

24 hours (Figure 3.8). Interestingly, antagonism of ROCK or myosin ATPase 

significantly decreased apoptotic LDH release at 2 and 4 hours. However, the 

effectiveness of these compounds diminished over time; at 12 hours only 

blebbistatin is effective, and by 24 hours neither treatment altered AC-CM LDH 

activity (Figure 3.8). The ability of Y27632 and blebbistatin to suppress acute, but 

not prolonged, LDH release is best attributed to the reduction in apoptotic body 

numbers available for protein release and is consistent with the passive release of 

protein due to apoptotic body degradation during programmed cell death.  

3.2.5 Proteomic analysis of AC-CM by quantitative mass 
spectrometry 

Having established a mechanism through which intracellular protein can be 

released from apoptotic cells, we next sought to identify proteins that are released 

and whether ROCK activity, and thus blebbing, is an important factor in that 

release. To accomplish this, we performed a quantitative proteomic analysis using 

a stable isotope labeling with amino acids in cell culture (SILAC) approach. This 

technique relies upon labeling proteins with arginine (Arg) and lysine (Lys) 

residues with stable, yet heavier, carbon and nitrogen isotopes. When cells are 
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cultured in media supplemented with these specific amino acids, they eventually 

become incorporated into newly translated proteins. Importantly, this heavy amino 

acid incorporation does not affect the physical or biochemical properties of the 

proteins. After multiple cell divisions the entirety of the cell proteome will be 

bearing heavy Arg and Lys residues. Individual proteins, due to their increased 

mass, can then be easily differentiated from unlabelled or alternately labeled 

proteins using liquid chromatography and mass spectrometry (LC-MS). The ability 

to discriminate individual protein species based on SILAC label then allows 

multiple samples, each with a different experimental condition and label, to be 

simultaneously analysed and the relative abundance of individual protein species 

to be quantitated.  

Individual populations of NIH 3T3 fibrobasts were grown in defined SILAC medium 

containing, light (no isotope label), medium (Lys-4, Arg-6), or heavy (Lys-8, Arg-

10) amino acids (Figure 3.9). Within 5 passages more than 95% of the cellular 

proteins incorporated the isotope labeled amino acids (data not shown). Each 

population of labeled NIH 3T3 cells was assigned a specific experimental 

treatment: light-control (no apoptosis); medium-TNFα (apoptosis); heavy-

TNFα+Y27632 (apoptosis without blebbing). After 4 hours the AC-CM was 

prepared as indicated in Figure 3.9 and protein fragments subjected to LC-MS. I 

was able to reliably identify 60 proteins in the AC-CM as listed in Table 3.1, 

including LDH, a protein previously found to be released from apoptotic cells. 

Using LDH as a cutoff for SILAC ratio ranked proteins, 77% were enriched in AC-

CM (in blue) compared to medium from non-apoptotic cells (SILAC ratio: 

medium/light) (Table 3.1, Figure 3.10a). Furthermore, the release of proteins 

during apoptosis appears to be highly dependent upon ROCK. In fact, up to 70% 

of the proteins released during apoptosis were suppressed with the ROCK 

antagonist, Y27632, to varying degrees (in orange) (Table 3.2, Figure 3.10b). 

Taken together, these data suggest that, not only do a wide range of intracellular 

proteins escape from apoptotic cells, but that release was dependent upon ROCK 

activity. 

3.2.6 Validation of SILAC data 

In order to validate the SILAC results, I western blotted NIH 3T3 lysate and 4 hour 

AC-CM for gelsolin and actin, two of the most highly enriched proteins identified in 
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the SILAC screen. While NIH 3T3 AC-CM contained large amounts of actin, no full 

length gelsolin was seen despite a robust cellular expression (Figure 3.11a). 

Nonetheless, a low molecular weight protein was detected with anti-gelsolin 

antibodies, suggesting that gelsolin may be released from apoptotic cells in a low 

mass form (Figure 3.11a). This is consistent with the SILAC data as the highly 

enriched gelsolin signal was detected in much lower molecular weight bands than 

expected (Table 3.1). We confirmed that the low molecular weight band seen in 

AC-CM was gelsolin by siRNA knockdown (Figure 3.11a). Interestingly, gelsolin is 

a substrate for caspase 3 which cleaves the protein into two fragments of 48 and 

40 kDa, consistent with the gelsolin fragments detected in AC-CM 229. To verify if 

gelsolin was released following caspase cleavage, I induced apoptosis in the 

presence of the caspase inhibitor z-VAD-fmk and found no protein release (Figure 

3.11a). Importantly, the knockdown of gelsolin did not affect actin release and thus 

was unlikely to have affected either blebbing, apoptotic body formation, or the 

timecourse of programmed cell death (Figure 3.11a).  

Although the AC-CM was visually verified to be clear of cells and apoptotic bodies 

there remained a possibility of sample contamination with intact apoptotic bodies 

that were subsequently lysed and the intracellular protein detected, yielding a false 

positive artifact of protein release. To address these concerns, purified AC-CM 

was given an additional high speed spin and was found to still contain both 

cleaved gelsolin and actin, suggesting that this protein is legitimately released 

from apoptotic cells (Figure 3.11b).  

In order to determine whether gelsolin release was dependent upon membrane 

blebbing, we used the selective ROCK inhibitor Y27632 or the myosin ATPase 

inhibitor blebbistatin to reduce actomyosin contractility and hence blebbing. Both 

Y27632 and blebbistatin significantly reduced cleaved gelsolin release at all time 

points from 4 to 24 hours, although at 12 and 24 hours the magnitude of 

suppression was reduced (Figure 3.12). In addition, the pattern of actin release 

from apoptotic cells was identical to that of gelsolin (Figure 3.12a).  

3.2.7 ROCK inhibition does not affect caspase cleavage 

To confirm that ROCK antagonism does not affect gelsolin cleavage, and thus its 

release, we examined cellular lysates of NIH 3T3 at multiple time points following 
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treatment with TNFα +/- Y27632. As seen in Figure 3.13 both gelsolin and ROCK1 

were readily cleaved by caspase 3 in apoptotic cells within 2 hours and cleavage 

was nearly complete by 4 hours, this cleavage remained unaffected in the 

presence of Y27632.  

3.2.8 Apoptotic protein release alters macrophage migration 

The release of protein from apoptotic bodies and blebs raises an interesting 

possibility that this material may participate in directing macrophages towards a 

dying cell to mediate corpse clearance. To provide proof of principle that apoptotic 

protein release is participating in extracellular signaling events, we chose gelsolin 

as a particularly promising candidate protein. Not only was gelsolin the most 

enriched protein discovered in NIH 3T3 AC-CM but has a clear extracellular role. 

While generally regarded as an intracellular F-actin binding and severing protein, 

gelsolin is also an abundantly secreted plasma protein with the capacity to bind, 

and modulate lysophospholipid signaling molecules 230. Plasma gelsolin and 

gelsolin fragments have high affinity binding domains for several lysophospholipids 

including: lysophosphatidic acid (LPA), sphingosine-1-phosphate (S1P), and 

platelet activating factor (PAF) 231,232. In fact, gelsolin binding directly to PAF can 

dose dependently attenuate neutrophil oxidative bursts 232. Interestingly, plasma 

gelsolin may be particularly important in the regulation of inflammation, as plasma 

gelsolin levels invariably decline prior to the development of complications in a 

wide array of insults including; sepsis, trauma, and rheumatoid arthritis. In 

addition, there is a strong correlation between declining plasma gelsolin levels and 

poor prognosis for survival 233-237. Furthermore, exogenous gelsolin reduces injury 

and lowers mortality in animal models of sepsis, inflammation, and injury 238,239. 

Although plasma gelsolin is clearly implicated as a natural suppressor of many 

pro-inflammatory events there has been no known mechanism for the acute 

regulation of extracellular gelsolin levels. These observations may provide such a 

mechanism. Taken together, the release of gelsolin from apoptotic cells may be an 

important molecule mediating extracellular macrophage migration signals. To test 

this possibility, we assessed murine Raw264.7 macrophage transwell migration 

towards 4 hour NIH 3T3 AC-CM with or without gelsolin knockdown (Figure 

3.14a). Raw264.7 macrophages had a robust migratory response towards AC-CM 

from NIH 3T3 transfected with non-targeting siRNA (Figure 3.14b and c). The 

macrophage migration towards AC-CM was significantly impaired by 
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approximately 70% following knockdown of gelsolin suggesting that gelsolin 

release from the apoptotic cells is an important factor aiding macrophage homing 

towards dying cells (Figure 3.14b and c).  
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Table 3.1. Apoptotic protein release 

Protein Accession MASCOT 
Score 

SILAC Ratio 
(M:L)

Gelsolin (light) P13020 147 3.29 
Vimentin P20152 364 2.81 
Lamin-A/C (isoform C) P48678 411 2.56 
Actin, cytoplasmic 1 or/and 2 P60710 2474 1.89 
Calmodulin P62161 181 1.57 
Macrophage-capping protein Q6AYC4 273 1.55 
Heterogeneous nuclear ribonucleoproteins A2/B1 A7VJC2 184 1.47 
Protein disulfide-isomerase A3 P27773 399 1.44 
Vinculin Q64727 448 1.41 
Ubiquitin-like modifier-activating enzyme 1 Q02053 257 1.41 
Glyceraldehyde-3-phosphate dehydrogenase P04797 191 1.39 
Phosphoglycerate kinase 1 P09411 558 1.39 
Elongation factor 1-alpha 1 P10126 337 1.36 
Peroxiredoxin-1 P35700 744 1.36 
Filamin-C Q8VHX6 389 1.34 
14-3-3 protein theta P68254 193 1.29 
Latexin P70202 183 1.28 
14-3-3 protein zeta/delta P63101 602 1.27 
Rho GDP-dissociation inhibitor 1 Q5XI73 173 1.25 
Transketolase P40142 246 1.25 
Phosphatidylethanolamine-binding protein 1 P70296 342 1.25 
14-3-3 protein epsilon P62259 758 1.25 
Triosephosphate isomerise P48500 173 1.24 
Rab GDP dissociation inhibitor beta P50399 587 1.24 
Peroxiredoxin-2 Q61171 325 1.24 
Phosphoglycerate mutase 1 Q9DBJ1 361 1.23 
6-phosphogluconate dehydrogenase, decarboxylating Q9DCD0 311 1.23 
Aldose reductase P45376 209 1.21 
Malate dehydrogenase, cytoplasmic O88989 147 1.20 
Filamin-A Q8BTM8 735 1.19 
Importin subunit beta-1 P52296 128 1.18 
14-3-3 protein gamma P61982 478 1.18 
Peptidyl-prolyl cis-trans isomerase A P17742 1577 1.17 
Nucleoside diphosphate kinase B Q01768 230 1.17 
Glutathione S-transferase A4 P24472 392 1.17 
Macrophage migration inhibitory factor P30904 127 1.17 
Heat shock cognate 71 kDa protein P63017 1464 1.14 
Alpha-actinin-4 Q9QXQ0 1335 1.14 
Cofilin-1 P18760 1025 1.14 
Pyruvate kinase isozymes R/L P53657 148 1.14 
Aspartate aminotransferase, cytoplasmic P05201 171 1.14 
Alcohol dehydrogenase [NADP+] Q9JII6 650 1.14 
Destrin Q7M0E3 137 1.13 
Prostaglandin reductase 1 Q91YR9 265 1.13 
Pyruvate kinase isozymes M1/M2 P52480 925 1.12 
L-lactate dehydrogenase A chain P06151 656 1.12 
Alpha-actinin-1 Q7TPR4 808 1.11 
Glutathione S-transferase Mu 1 P10649 199 1.08 
Transaldolase Q93092 196 1.08 
Ubiquitin P62976 194 1.05 
Tropomyosin alpha-3 chain Q63610 108 1.05 
Malate dehydrogenase, mitochondrial P04636 138 1.05 
GTP-binding nuclear protein Ran P62827 416 1.04 
Eukaryotic initiation factor 4A-II Q5RKI1 190 1.01 
Heat shock 70 kDa protein 4 Q61316 145 0.96 
Tubulin alpha-1C chain Q6AYZ1 221 0.95 
Clathrin heavy chain 1 Q68FD5 110 0.95 
Glutathione S-transferase omega-1 O09131 75 0.95 
Gelsolin (heavy - Cytoplasmic) P13020 73 0.57 
Collagen alpha-1(I) chain P11087 439 0.57 
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Table 3.2. ROCK dependent apoptotic protein release 
Protein SILAC Ratio 

(M:L) 
SILAC Ratio 

(H:L) 
% TNFα 

(H:L)/(M:L) 
Malate dehydrogenase, cytoplasmic 1.20 0.59 49 
Calmodulin 1.57 0.81 51 
Rho GDP-dissociation inhibitor 1 1.25 0.65 52 
Latexin 1.28 0.73 57 
Glutathione S-transferase A4 1.17 0.70 59 
Phosphoglycerate mutase 1 1.23 0.76 62 
Heterogeneous nuclear ribonucleoproteins A2/B1 1.47 0.91 62 
Phosphoglycerate kinase 1 1.39 0.87 62 
Gelsolin (light) 3.29 2.07 63 
Aldose reductase 1.21 0.78 65 
Phosphatidylethanolamine-binding protein 1 1.25 0.81 65 
Peptidyl-prolyl cis-trans isomerase A 1.17 0.76 65 
Macrophage migration inhibitory factor 1.17 0.76 65 
Alpha-actinin-4 1.14 0.76 67 
Protein disulfide-isomerase A3 1.44 0.96 67 
Vinculin 1.41 0.95 67 
Peroxiredoxin-1 1.36 0.91 67 
Rab GDP dissociation inhibitor beta 1.24 0.86 69 
14-3-3 protein zeta/delta 1.27 0.88 69 
Heat shock cognate 71 kDa protein 1.14 0.80 70 
Ubiquitin-like modifier-activating enzyme 1 1.41 0.99 70 
Prostaglandin reductase 1 1.13 0.80 71 
Cofilin-1 1.14 0.83 73 
Filamin-C 1.34 0.98 73 
14-3-3 protein epsilon 1.25 0.91 73 
Vimentin 2.81 2.09 74 
Pyruvate kinase isozymes R/L 1.14 0.85 75 
14-3-3 protein gamma 1.18 0.88 75 
Actin, cytoplasmic 1 or/and 2 1.89 1.43 76 
Triosephosphate isomerase 1.24 0.95 76 
Nucleoside diphosphate kinase B 1.17 0.91 78 
L-lactate dehydrogenase A chain 1.12 0.87 78 
Lamin-A/C (isoform C) 2.56 2.04 80 
Peroxiredoxin-2 1.24 1.01 81 
6-phosphogluconate dehydrogenase, decarboxylating 1.23 1.02 83 
Alcohol dehydrogenase [NADP+] 1.14 0.95 83 
Transketolase 1.25 1.06 84 
Pyruvate kinase isozymes M1/M2 1.12 0.95 84 
Filamin-A 1.19 1.08 91 
Importin subunit beta-1 1.18 1.09 92 
14-3-3 protein theta 1.29 1.24 96 
Macrophage-capping protein 1.55 1.53 99 
Destrin 1.13 1.15 102 
Aspartate aminotransferase, cytoplasmic 1.14 1.45 128 
Glyceraldehyde-3-phosphate dehydrogenase 1.39 2.16 155 
Elongation factor 1-alpha 1 1.36 3.53 260 
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Figure 3.1. Apoptotic bodies lose membrane integrity before secondary necrosis 
Confocal timelapse images of apoptotic NIH 3T3 cells demonstrating the generation of propidium 
iodide (red) positive apoptotic bodies. Arrows track discreet apoptotic bodies. Time index is 
indicated in hr:min:sec following application of TNFα.  
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Figure 3.2. Apoptotic blebs lose membrane integrity before secondary necrosis. 
Confocal images of live apoptotic NIH 3T3 cells in the presence of the fluorescent lipid stain DiO 
(green) and propidium iodide (PI)(red) and merge. Images acquired with a 60x oil immersion lens 
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Figure 3.3. Apoptotic bodies are permeable to nucleases. 
(a) Representative FACS dot plot of forward (FSC) and side (SSC) scatter of apoptotic NIH 3T3 
cells at 4 hours. Gate indicates area of cellular debris containing apoptotic bodies. (b) 
Representative FACS plots of apoptotic bodes exposed to propidium iodide (PI) plotted versus 
FSC. Reduction of PI staining in apoptotic bodies treated with TNFα + RNase or RNase+DNase as 
indicated. Gate indicates population and percentage of cells positive for PI stain. (c) Mean + SEM 
percentage of PI positive apoptotic bodies treated with TNFα + RNase or RNase+DNase as 
indicated. Statistical comparison performed by ANOVA followed by Tukey-Kramer multiple 
comparison test (n=3)(*, p<0.05; ***, p<0.001). (d) Coomasie stained SDS-PAGE demonstrating 
approximate molecular mass of commercial recombinant RNase and DNase as indicated. 
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Figure 3.4. Apoptotic bodies are permeable to proteinase K. 
(a) Representative FACS histogram plots of GFP fluorescence in NIH 3T3 cells transduced with 
CaaX box tagged GFP (left panel) and 4 hr apoptotic bodes from those cells (right panel). Cutoff 
indicates detectable GFP labelled apoptotic bodes. (b) Mean + SEM of GFP positive apoptotic 
bodies + 50 ug/ml proteinase K for 2 hours. Statistical comparison performed by t-test (n=3)(**, 
P<0.01). 
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Figure 3.5. ROCK induced acto-myosin contractility induces apoptotic body formation. 
(a) Representative forward (FSC) and side (SSC) scatter FACS dot plots of 4 hour apoptotic NIH 
3T3 cells following indicated treatments. Gates indicate apoptotic body population and 
exogenous FITC labelled beads used to aid quantitation. 10 000 beads counted in each 
treatment. (b) Representative FACS histogram demonstrating the number of apoptotic bodies 
generated following treatment with TNFα + Y27632 or blebbistatin as indicated. (inset) Mean + 
SEM of apoptotic body numbers generated with indicated treatments. Statistical comparison 
performed by ANOVA followed by Dunnetts multiple comparison test (n=3)(***, p<0.001). 



  83 

 

Figure 3.6. ROCK does not affect apoptotic body membrane stability. 
(a) Representative FACS dot plots of 4 hour apoptotic body PI fluorescence following treatment 
with TNFα + Y27632 or blebbistatin as indicated. Gate indicates apoptotic body population 
positive for PI. (b) Mean + SEM of PI positive apoptotic bodies, relative to TNFα alone, following 
indicated treatments. Statistical comparison performed by ANOVA followed by Tukey-Kramer 
multiple comparison test. (n=3)(*, p<0.05; **, p<0.01) 
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Figure 3.7. ROCK and acto-myosin contractility do not alter onset of secondary necrosis. 
(a) Representative FACS dot blots of 4 hour apoptotic cells stained with PI and fluorescent 
annexin V (AnX) following treatment with TNFα. Quadrants, with indicated population 
percentages, indicate classic division used to determine apoptotic stage: PI-/AnX-, non-
apoptotic; PI-/AnX+, early apoptotic; PI+/AnX+, secondacrily necrotic. Quadiant indicates 
population of cells, with percentages, that are highly PI positive and taken as truly necrotic. (b) 
Mean + SEM of percent necrotic NIH 3T3 cells following treatment with TNFα + Y27632 or 
blebbistatin as indicated (n=3). No significance was detected by ANOVA between TNFα treated 
groups. (c) Representative western blot of SDS-PAGE 12 and 24 hour NIH 3T3 whole cell lysate, 
freeze-thaw necrosis lysate, starvation supernatant, and concentrated apoptotic cell conditioned 
medium (AC-CM) + Y27632 or blebbistatin as indicated probed with anti-HMGB1 antibody. 
Cellular samples were prepared using centrifugal concentrators with 10 kDa cutoff and were 
normalized to exogenous GFP addition prior to concentrating sample. Bands corresponding to 
HMGB1 and GFP are indicated  
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Figure 3.8. Acto-myosin dependent release of lactate dehydrogenase from apoptotic cells 
Mean + SEM of lactate dehydrogenase (LDH) activity in NIH 3T3 apoptotic cell conditioned 
medium at indicated times treated with TNFα + Y27632 or blebbistatin. AC-CM was concentrated 
and normalized to exogenous GFP. Sample activity is normalized as a percent of LDH activity 
detected in freeze-thaw necrosis sample at each time point. Statistical comparison performed by 
ANOVA followed by Dunnetts multiple comparison test versus TNFα alone at each time point 
(n=3) (*, p<0.05; **, p<0.01; ***, p<0.001). 
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Figure 3.9. Experimental flow chart for quantitative SILAC mass spectrometry. 
AC-CM, apoptotic cell conditioned medium. LC-MS, liquid chromatography and mass 
spectrometry. 
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Figure 3.10. ROCK catalyses release of many proteins during apoptosis 
(a) Pie chart illustrating percentage of proteins identified by SILAC in 4 hr NIH 3T3 AC-CM that 
were enriched during TNFα induced apoptosis. (b) Pie chart illustrating the percentage of 
apoptotic released proteins that are ROCK dependent as determined by SILAC. 
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Figure 3.11. Apoptotic cells release gelsolin following caspase cleavage. 
(a) Representative western blot of NIH 3T3 lysate and concentrated AC-CM probed with anti-
gelsolin and anti-actin antibodies and visualized with specific fluorescent antibodies using LiCor. 
Cells were transfected as indicated with either non-targeting (NT) or gelsolin (GSN) siRNAs. z-
VAD-fmk (20 μM) supplemented in media with TNFα. (b) Western blot of concentrated AC-CM 
subjected to additional high speed (16,000x g) centrifugation. Blot probed with gelsolin and actin 
antibodies and visualized as indicated above.  
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Figure 3.12. Apoptotic gelsolin release is dependent on acto-myosin contractility. 
(a) Representative western blots of concentrated NIH 3T3 AC-CM collected at 2, 4, 12, and 24 
hours as indicated. Blots probed for gelsolin (left panels) and actin (right panel), the band 
corresponding to caspase cleaved gelsolin (ΔGeslolin) is indicated. Exogenous GFP, added before 
sample concentrating, is used as loading control. Imaging performed using LiCor. (b) 
Quantitation of cleaved gelsolin band intensity mean + SEM at indicated time and treatments. 
Statistical comparison performed by ANOVA followed by Dunnetts multiple comparison test 
versus TNFα alone at each time point (n=3) (*, p<0.05; **, p<0.01; ***, p<0.001). 
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Figure 3.13. Rock inhibition does not affect apoptotic gelsolin cleavage. 
Representative western blot of apoptotic NIH 3T3 lysate at indicated times following treatment 
with TNFα + Y27632. Blots probed for gelsolin (upper) and ROCK1 (lower). Full length and 
caspase cleaved gelsolin (ΔGelsolin) and ROCK1 (ΔROCK1) products are indicated. 
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Figure 3.14. Apoptotic gelsolin release ensures macrophage migration. 
(a) Schematic diagram of transwell migration cell. Mouse Raw264.7 macrophage in starve 
medium are deposited in upper chamber and exposed to conditioned medium in lower chamber 
for 2 hours. Migrated cells are fixed, stained and microscopically scored. (b) Representative 4x 
images of migrated RAW 264.7 macrophages exposed to the indicated NIH 3T3 conditioned 
media. NIH 3T3 cells were transfected with either non targeted (NT) or gelsolin (GSN) siRNA 72 
hours prior to induction of apoptosis with low dose TNFα and UVB. Migrated macrophages are 
stained with PI after fixation and permeabilization. (c) Quantitation of RAW 264.7 transwell 
migration to indicated conditioned medium. Bars indicate the mean sum of the number of 
migrated macrophages from three fields (as in b) normalized to medium only migration. 
Statistical comparison performed by ANOVA followed by Tukey-Kramer multiple comparison test 
(n=3) (*, p<0.05). 
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Figure 3.15. Schematic model of apoptotic gelsolin release 
Apoptotic blebs and bodies indicated in grey and red. Red structures indicate loss of membrane 
integrity and protein leakage. ΔGeslolin-caspase cleaved gelsolin. LPA-lysophosphatidic acid. 
S1P-sphingosine-1-phosphate.  
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3.3 Discussion 

One of the defining features of apoptotic cells is their intact and functional 

membranes which appear to prevent pro-inflammatory activation by limiting the 

release of intracellular protein. As such, apoptotic protein release has not been 

considered to be a component of efferocytosis. In fact, protein release is generally 

regarded to occur only during secondary necrosis. Our data demonstrate that 

acute protein release from apoptotic cells is a bona fide apoptotic process and is 

indirectly influenced by ROCK-induced actomyosin contractility. The mechanism of 

apoptotic bleb and body degradation in early apoptosis provides a simple and 

robust route for intracellular protein to participate in complex extracellular signaling 

events during apoptosis. Furthermore, these observations highlight a novel 

biological role for ROCK induced apoptotic body formation and blebbing. The 

generation of independent sub-cellular apoptotic bodies which diffuse away from 

the apoptotic cell prior to membrane breakdown and release of their intracellular 

contents would dramatically increase the range at which macrophages detect 

apoptotic cells. The behavior of these sub cellular particles as “suicide notes” to 

attract surveilling macrophages may be a common and important mechanism to 

mediate safe and rapid clearance, thus avoiding unwarranted inflammatory 

activation (Figure 3.15). This possibility suggests that the release of protein from 

apoptotic cells does not appear to necessarily lead to immune activation and may 

in fact be an active participant in acute corpse clearance. A further implication is 

that protein released during apoptosis is likely to have limited inflammatory 

potential and that only during primary and secondary necrosis are specific pro-

inflammatory mediators released. Indeed, in post apoptotic cells the release of the 

pro-inflammatory cytokine HMGB-1 is only observed hours after the onset of 

secondary necrosis 228.  

Due to the existing dogmatic preconceptions of apoptotic membrane integrity, the 

focus in the search for come-find-me signals has largely ignored the potential 

contribution of many intracellular proteins. As previously mentioned, the release of 

TyrRS and dRP S19, two intracellular proteinaceous come-find-me factors, from 

apoptotic cells conflicts with the current model of early apoptotic cell membrane 

impermeability. The insight we now provide may resolve this long standing 

dilemma and expand the scope of come-find-me factors to include more 

intracellular proteins. Although we failed to find either TyrRS or dRP S19 as part of 
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our systematic quantitative SILAC survey of AC-CM, we identified the release of 

46 proteins from early apoptotic NIH 3T3, none of which have previously been 

identified as come-find-me factors. Critically, many of these proteins are 

dependent upon ROCK induced blebbing and apoptotic body formation for their 

release, recapitulating the importance of these structures in the proposed 

mechanism of apoptotic protein release. Such an acute and dramatic release of 

protein is likely to have an important biological impact in the surrounding 

microenvironment and several of these molecules may be apoptotic come-find-me 

factors. As proof of principle, we investigated the potential role of gelsolin, the 

most abundantly enriched protein in NIH 3T3 AC-CM, and found that it 

encourages macrophage migration towards apoptotic cells. Gelsolin itself may 

behave as a come-find-me-factor, or may act by modifying additional extracellular 

signals to affect responses 240,241(Figure 3.15). The ability of plasma gelsolin to 

bind and modify the activity of lysophospholipids has been well established and 

release of caspase cleaved gelsolin from apoptotic cells may be a significant 

modifier of such lipid signals. As previously mentioned, apoptotic cells release a 

variety of lipid chemoattractant signals including S1P that, in turn, affect 

macrophage migration and survival 241-244. Alternatively apoptotic release of S1P 

has also been shown to mediate extrusion of apoptotic cells by initiating 

contraction of an epithelial sheet, thus preserving barrier function 245. Whatever the 

mechanism, the release of gelsolin from apoptotic cells would be expected to 

modify the existing lysophospholipid signaling networks and thus mediate 

profound changes in the extracellular environment. While we have demonstrated 

that released gelsolin has the potential to act as an apoptotic come-find-me factor, 

it may not be a universal signal. Nonetheless, it is interesting to note that actin, 

which is abundant and ubiquitously expressed, was also highly enriched in AC-

CM. Extracellular actin has been proposed to act as reservoir to retain circulating 

plasma gelsolin near sites of tissue damage where it can modulate immune 

responses, such a mechanism could be identical following apoptotic actin release 
230. While a gelsolin knockout mouse was first described in 1995 there are no 

reports specifically demonstrating defective apoptotic cell clearance 246. There are 

however several reports which suggest that apoptosis in the knockout mouse is 

altered 247-249. Induction of apoptosis in mice with the Fas stimulatory antibody Jo-2 

has been shown to dramatically increase hepatocyte apoptosis in gelsolin-/- mice 

compared to gelsolin+/+ littermates 247. This observation is curious because gelsolin 

expression in the liver is limited to sinusoidal lining cells while the bulk of the 
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tissue, such as hepatocytes, express little or no protein 247. Thus gelsolin appears 

to be an important factor limiting apoptosis, even in tissues where it is not 

expressed which suggests that the protein has a potentially important extracellular 

function. While it remains unclear precisely how gelsolin mediates this effect, the 

possibility remains that extracellular gelsolin, either plasma and/or caspase 

cleaved, may be mediating important anti-inflammatory signals associated with 

apoptosis and its absence leads to increased programmed cell death and tissue 

damage. It is important to note that the gelsolin knockout eliminates both the 

plasma and cytoplasmic isoforms. Due to the systemic deficiency of gelsolin in this 

model the relative importance of plasma versus apoptotically released gelsolin in 

the attraction of macrophages and the resolution of cell death cannot be 

determined.  

Clearly gelsolin was only one of many molecules identified in NIH 3T3 cells AC-

CM, any of which may modulate macrophage and immune responses towards 

apoptotic cells. The actual protein content of extracellular supernatant following 

apoptotic body and bleb breakdown is likely to be highly dependent upon cell type. 

This work is a first step in systematically identifying the range of proteins released 

from apoptotic cells and extensive further investigation is required to determine; 

how consistent protein release is across cell types; which proteins in AC-CM have 

extracellular roles; and what their mechanism of actions might be.  
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4. Activating Somatic ROCK1 Mutations in Cancer 

(Text extracted from Lochhead, P*., Wickman, G*., Mezna, M., Olson, M.F. Activating Somatic 

mutations in human cancer. Oncogene (2010) 29, 2591-2598. *Co-first authors.) 

4.1 Introduction 

The identification of mutated genes that drive human oncogenesis is an ongoing 

major objective worldwide. The development of high-throughput detection 

methodologies has facilitated the identification of novel somatic mutations 

associated with numerous cancers (http://www.sanger.ac.uk/genetics/CGP/ and 

http://cancergenome.nih.gov/). Statistical analysis of mutation frequency can be 

used to classify them as active “driver” mutations that provide a selective 

advantage during cancer initiation and progression, or silent “passengers” which 

are expanded from progenitor cells, yet provide no overt selective advantage. 

While this approach has tremendous value in identifying important genes in 

cancer, it remains incomplete until the biological consequences of detected 

mutations are determined to differentiate drivers from passengers.  

 
The Cancer Genome Project has thus far identified 3 nonsynonymous mutations in 

the ROCK1 gene, an essential effector kinase downstream of Rho GTPases that 

is an important mediator of cell migration. ROCK1 is an unusual AGC kinase 

family member as its kinase domain assumes an active conformation without 

activation loop phosphorylation 9. Instead, ROCK1 activity is restrained by its 

inhibitory C-terminus; relief from auto-inhibition results from Rho-GTP binding or 

by caspase cleavage at a C-terminal site 46,57. There is a wealth of data implicating 

Rho GTPases in human cancer 148,250 suggesting that ROCK1 and ROCK2, as key 

mediators of Rho signaling, may play important roles in oncogenesis 154,202,251. In 

support of this, pre-clinical studies have demonstrated beneficial effects of ROCK 

inhibition on tumour incidence rates, volume, invasiveness and metastasis 
53,206,209,210,252-254. In addition, elevated ROCK1 and/or ROCK2 expression have 

been detected in several human cancers, which positively correlates with poor 

outcome 151,152,255,256. While alterations in the regulation of ROCK1 signaling as a 

contributory factor to human cancer may be well-accepted, this is the first report of 

ROCK1 activation as a direct consequence of somatic mutations. 
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I found that these somatic ROCK1 mutations lead to elevated kinase activity and 

drive actin cytoskeleton rearrangements that promote increased motility and 

decreased adhesion; both characteristics of cancer progression. Mapping of the 

kinase-interacting regions of the carboxy-terminus combined with structural 

modeling provides insight into how these mutations likely affect the regulation of 

ROCK1. Consistent with the frequency of ROCK1 mutations in human cancer, 

these results support the conclusion that there is selective pressure for the 

ROCK1 gene to acquire “driver” mutations that result in kinase activation.  

4.2 Results 

4.2.1 Cancer Associated Mutations in ROCK1 

As previously mentioned, cancer genome sequencing has revealed three novel 

ROCK1 mutations in human malignant disease (http://www.sanger.ac.uk/cgi-

bin/genetics/CGP/cosmicsearch?_q=rock1). The 3 somatic mutations in ROCK1 

are: AA insertion between base pair (bp) 1214-1215, resulting in frameshift and 

premature termination at Y405*; C to G transition at bp 3377, resulting in 

premature termination at S1126*; and C to T transversion at bp 3577, resulting in 

the amino acid substitution P1193S (Figure 4.1). The Y405* and S1126* mutants 

were both identified in primary human breast cancers, while the third mutation, 

P1193S, was identified from the established human non-small cell lung carcinoma 

line NCI-H1770) 257. 

4.2.2 Cancer associated somatic mutations of ROCK1 are activating 

To determine how ROCK1 mutations affected activity, MYC-tagged wild-type 

(WT), kinase-dead K105G, and Y405*, S1126* and P1193S proteins were 

expressed in NIH 3T3 mouse fibroblast cells. WT, K105G and P1193S migrated at 

158 kDa, while Y405* and S1126* migrated as expected at 47 kDa and 113 kDa, 

respectively, as determined by western blotting (Figure 4.2). In vitro kinase assays 

of the MYC-immunoprecipitated proteins revealed that the activity of all three 

ROCK1 mutants was increased significantly (2.5-3.5 fold) relative to WT (Figure 

4.2). The kinase-dead K105G mutant had no detectable activity, indicating that the 

active forms possessed intrinsic kinase activity that did not result from 

contaminating MYC-tag co-immunoprecipitating kinases (Figure 4.2). This work 

was performed in collaboration with Dr. Pam Lochhead. 
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4.2.3 ROCK1 Mutations are Constitutively Active in Cells 

To further explore the cellular consequences of ROCK1 mutations the enzymes 

were transiently expressed in NIH 3T3 fibroblasts. The activity of ROCK1 was 

assessed by immunofluorescence microscopy of actin stress fibres and 

phosphorylation of the regulatory myosin light chain (pMLC) at serine 18 and 19, 

two hallmarks of ROCK activation. Co-staining for MYC-tag ROCK1 and F-actin 

revealed large increases in both the number and thickness of actin stress fibres, in 

cells transfected with Y405*, S1126*, and P1193S but not with K105G (Figure 

4.3). Expression of WT ROCK1 appeared to increase the appearance of stress 

fibres although to a much lesser extent than the more biochemically active 

mutants. Examination of pMLC in MYC-tag positive cells reveals a staining pattern 

identical to that seen with actin stress fibres. Interestingly, the enhancement of 

pMLC and actin stress fibres appear far more pronounced following transfection 

with Y405* and S1126* versus P1193S. 

Following transfection of NIH 3T3 fibroblasts with the ROCK1 mutants significant 

changes in the cells were observed. Within six hours of transfection the cellular 

area of NIH 3T3 cells that expressed ROCK1 Y405*, S1126*, or P1193S was 

reduced to 52, 39, and 59%, respectively, of cells expressing GFP (Figure 4.4a).  

While the active ROCK1 mutants clearly initiated a contractile phenotype the 

kinase dead K105G construct appeared to increase cell spreading compared to 

GFP, suggesting a dominant negative activity over native wild type ROCK1 (Figure 

4.4a). When the effects of the active ROCK1 mutants on cell morphology were 

examined, Y405*, S1126*, and P1193S expression markedly modified cell shape, 

shifting the distribution of morphologies from predominantly spread to contracted 

and rounded (Figure 4.4b). Furthermore, the magnitude of the distribution shift is 

consistent with cellular activity observed in previous experiments. 

4.2.4 ROCK1 mutants enhanced motility and migration 

Given the prominent role of ROCK1 in tumour cell invasion and metastasis 258, I 

sought to assess the effects of the somatic ROCK1 mutations on motility and 

adhesion. Expression of the MYC-tagged ROCK1 proteins in NIH 3T3 fibroblasts, 

assessed by flow-cytometry, was comparable for WT, S1126* and P1193S, while 

expression of K105G and Y405* was lower (Figure 4.5a and b). Analysis of 

individual cell motility by time-lapse microscopy over 20 hours revealed that 



  99 

S1126* and P1193S expressing NIH 3T3 cells were more motile than GFP-

expressing control cells, with significantly longer cumulative track lengths (Figure 

4.6a and b). Although track lengths of WT ROCK1 expressing cells were 

apparently longer than GFP-control cells, they were not statistically significant 

(Figure 4.6b), while Y405* expression was insufficient to reliably assess its effects. 

Expression of S1126* also increased Euclidean distance travelled and cell velocity 

(Figure 4.7a and b). No effect on cell persistence was observed following 

transfection with any ROCK1 construct (Figure 4.7c). I next examined the effects 

of ROCK1 mutants on adhesion using a transwell dissociation assay 259. This 

assay relies upon the migration of ROCK1 expressing NIH 3T3 cells in an FBS 

gradiant through an 8 μm pore transwell membrane followed by dissociation, and 

adherence to the bottom of the well (Figure 4.8a). Cellular dissociation is then 

quantitated by counting the number of cells adhered to the plate. All three ROCK1 

mutants significantly increased the number of cells that had crossed and 

dissociated from the transwell membrane (Figure 4.8b) indicating reduced cell 

adhesiveness, a property associated with increased metastatic potential. 

Expression of S1126* also was sufficient to further increase dissociation of the 

highly-metastatic MDA MB 231 breast cancer cell line in this assay (Figure 4.8c). 

4.2.5 C-terminus of ROCK1 contains multiple kinase interacting 
Domains 

Next I addressed how the three ROCK1 mutations; Y405*, S1126*, and P1193S 

led to kinase activation. Since these three ROCK1 mutations affect the C-terminus 

it is likely that they trigger activation by disrupting inhibitory interactions between 

N- and C-terminal domains. While the role of the C-terminus in ROCK1 

autoinhibition is thoroughly established, the kinase interacting regions mediating 

inhibition had not previously been mapped. Thus, I probed a 21-mer peptide array 

(Figure 4.9a) comprised of amino acids 1-75 containing the N-terminal 

dimerization region and amino acids 853-1354 of the C-terminus with [35S]-labeled 

ROCK1 kinase domain (amino acids 1-404). As expected, the probe bound to the 

ROCK1 N-terminal residues 27-75 that mediate kinase dimerization (Figure 4.9b 

and c)9. In addition, the kinase domain strongly bound 4 C-terminal regions (Figure 

4.9b; regions 2d, 2f, 2h and 2i), indicating that potentially there are multiple sites 

engaged in kinase regulation. Region 2d overlapped with the latter half of the 

RBD. The first segment of the split Pleckstrin Homology (PH) domain contained 
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regions 2f, while the second segment overlapped with 2i. Binding region 2h was 

contained within the cysteine-rich C1 domain. Kinase binding to the region 

containing P1193 (2g) was weak though detectable (Figure 4.9b). To further 

characterize these kinase binding regions, I expressed FLAG-tagged protein 

fragments in E. coli and tested their abilities to bind recombinant GST-ROCK1 

kinase domain (200 ng) spotted onto nitrocellulose membranes (Figure 4.10a). 

Regions 2g, 2h and 2i significantly bound ROCK1 kinase domain, while 2d binding 

was detectable but did not achieve significance (Figure 4.10b). Region 2f could not 

be tested due to protein insolubility. The P1193S mutation significantly reduced 

kinase binding by over 30% (Figure 4.9b) 

4.2.6 Specific ROCK1 C-terminal Interacting Domains Mediate Kinase 
inhibition 

To test the role of these domains in kinase regulation, representative 21-mer 

peptides from each binding region were synthesized and tested in an IMAP 

fluorescence-polarization ROCK1 kinase assay. Kinase activity was significantly 

inhibited by peptides 2f and 2g (31 and 68% of control respectively) while peptides 

corresponding to regions 2d, 2h, and 2i failed to inhibit ROCK1 activity (Figure 

4.11a). Analysis of ROCK1 inhibition by mutant 2g (P1193S) revealed a significant 

reduction in kinase inhibition compared to wild type 2g (Figure 4.11b). 

4.2.7 ROCK1 C-terminal Interacting Domain Modeling 

While the data presented above make it easy to conceive how the Y405* and 

S1126* mutants, which respectively lack all or most of the kinase-interacting and 

autoinhibitory regions 2f, 2g and 2h, would be constitutively activated, the 

mechanism of kinase activation due to P1193S mutation is unclear. Thus, given 

the high degree of conservation between the ROCK1 and ROCK2 PH-C1-PH 

domains in general, and the 2f, 2g and 2h regions in particular (Figure 4.12), the 

ROCK1 kinase-interacting and inhibitory regions were modeled onto the NMR 

solution structures of the PH-C1-PH domains of ROCK2 in order to gain greater 

insight into potential structural modifications induced by P1193S 260(Figure 4.13). 

As can be seen in Figure 4.13a P1193 breaks a short α-helix prior to a β-sheet 

that leads on towards the C1 domain (highlighted in green). I predict that the 

P1193S mutation does not provide the appropriate α-helix break, and as a 

consequence will disorder the split PH domain and likely disrupt the C1 domain as 
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well. In addition, the structural rigidity provided by a proline residue would be 

reduced when substituted with a serine residue, which might result in less ordered 

folding. Such structural alterations are likely responsible for the reduced kinase 

domain binding and attenuation of kinase inhibition observed in domains bearing 

the P1193S mutation.  In addition, modeling of the 2f, 2g and 2h regions reveals 

that they form multiple surfaces located directly opposite to a series of charged 

lysine and arginine residues that cooperate to mediate lipid interaction and to 

orientate the PH-C1-PH domains in membrane bilayers (Figure 4.13b). As a result, 

the critical kinase interaction and inhibitory domains would be exposed to the 

cytosol and thus accessible for interaction and inhibition of the ROCK catalytic 

domain (Figure 4.13b). These results indicate that multiple surfaces in the ROCK1 

C-terminus likely contribute to kinase-domain binding and regulation. These 

interactions range from relatively weak and non-regulatory (2d) to strong and 

inhibitory (2g). In addition to the significant contribution of region 2g that contains 

P1193, region 2h and 2i appear to be an important kinase binding regions, 

possibly contributing to stabilizing N and C-terminal interactions. 
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Figure 4.1. ROCK1 domain structure for wild-type (WT) and cancer associated mutations. 
RBD=Rho binding domain. Split Pleckstrin Homology (PH) domains (yellow) have an inserted C1 
domain (dark blue). Asterisk indicates position of amino acid substitution (red). Drawn to scale. 
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Figure 4.2. ROCK1 somatic cancer mutants are active. 
Upper panel, ROCK1 kinase activity of indicated MYC-tagged constructs immunoprecipitated, as 
described previously (coleman et al., 2001), from transfected NIH 3T3 cells. Results are mean ± 
SEM vs. WT (n=3)(*, p<0.05 vs WT, by t-test). Lower panel, cellular lysates were separated by 
SDS-PAGE and immunoblotted with anti-MYC antibody. Arrows indicate ROCK1 proteins.  , non-
specific bands. Results are mean + SEM activity (n=3)(* p<0.05, relative to WT, by t-test). Figure 
courtesy of Pam Lochhead. 
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Figure 4.3. ROCK1 mutants are active in cells. 
Representative immunofluorescence confocal images of serum starved NIH-3T3 fibroblasts 
stained for actin (left panels) and phosphorylated myosin light chain (pMLC; right panels). 
Cellular nuclei, stained with DAPI, are shown in blue. Arrows indicate cells positive for MYC-tag 
ROCK1. Scale bars represent 50 µm. After transfection, cells were serum starved overnight then 
fixed and stained as described previously (Coleman et al., 2001). Confocal images were obtained 
using an Olympus FV1000 using a 60x oil-immersion objective. 
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Figure 4.4. ROCK1 somatic cancer mutants promote cellular actin rearrangements. 
(a) Mean cell area of ROCK1 transfected NIH 3T3 cells. For cell size determinations, 6 random 
fields of MYC-tag positive cells were captured per treatment. Images were analysed for 
percentage MYC-tag positive area divided by the cell number. Data are mean + SEM (n=3), 
statistical comparisons determined by ANOVA followed by Dunnett’s multiple comparison test. (* 
p<0.01 vs GFP). (b) Representative images of cell morphologies (spread, contracted, and 
rounded) stained for F-actin (red) and ROCK1-expression (MYC; green). For cell morphology, 
images were captured and scored for spread, contracted or rounded. Average distribution of 
morphologies from 3 experiments for each ROCK1 variant in bottom panel. 
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Figure 4.5. Expression of MYC-tagged ROCK1 constructs in NIH 3T3 mouse fibroblasts. 
(a) Representative FACS expression profiles of cells positive for expression of MYC-epitope 
tagged ROCK1 plasmids. After transfection, cells were incubated overnight in 10% FBS medium. 
The following day the cells were collected and fixed in 2% paraformaldehyde for 10 minutes. 
Cells were then washed and permeabilized with 0.1% Triton X-100 for 5 minutes. MYC-tagged 
ROCK1 constructs were detected with an anti-MYC (9B11) antibody conjugated with AlexaFluor 
647. 10,000 events were collected on a BD FACScaliber and MYC-tag positive cells were gated 
against blank transfected cells. Traces represent histograms of MYC-tag positive cell number vs 
MYC-tag intensity.  (b) Representative expression profile of MYC-tag positive cells as determined 
by FACS. Data represent percentage of MYC-tagged positive cells relative to WT ROCK1 
expression. 
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Figure 4.6. ROCK1 somatic cancer mutants promote cell migration. 
(a) Representative cell tracks of 10 cells expressing indicated ROCK1 constructs. Cells were co-
transfected with ratio of 1:2 of GFP and ROCK1 constructs and plated into a glass bottom 6 well 
plate in complete medium. 3h after nucleofection the medium was replaced with reduced serum 
(3.3% FBS) medium. Three bright field and GFP timelapse images were captured for each 
treatment every 2 minutes for 20 h. In those fields the motility of 10 cells in all 3 fields was 
analysed using Metamorph and Image J. (b) Mean cumulative tracklengths + SEM of NIH 3T3 
analysed an in (a). Statistical comparison performed by ANOVA followed by Dunnett’s multiple 
comparison test (n=4)(* p<0.05 vs GFP; ** p<0.01 vs GFP). 
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Figure 4.7. ROCK1 somatic cancer mutants promote random cell motility. 
(a) Data represent mean Euclidean distance travelled + SEM. (b) Data represent mean cell 
velocity + SEM over 20 hours. (c) Data represent mean persistence (Track length/Euclidean 
distance) + SEM. Euclidean distance and persistence were calculated from individual cell tracks 
obtained with the Chemotaxis and Migration Tool plugin for ImageJ from time-lapse image 
stacks. Statistical analysis performed by ANOVA followed by Dunnett’s multiple comparison test 
(*, p<0.05; ** p<0.01 vs GFP). 
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Figure 4.8. ROCK1 somatic cancer mutants encourage cellular dissociation. 
(a) Schematic diagram of transwell dissociation assay. Cells were co-transfected with a ratio of 
1:2 of GFP and ROCK1 constructs and incubated in 10% FBS medium within an 8 μm pore 
Transwell insert for 3h. Following incubation, the insert medium was aspirated and replaced with 
serum free medium, insert was placed in fresh well containing 10% FBS media and incubated 18 
h. The number of GFP positive cells that invaded and dissociated from the membrane were then 
counted from five independent 20x fields. (b) Mean number of dissociated cells following 
chemotaxis of ROCK1 transfected NIH 3T3 cells through Transwell membranes. Results are mean 
+ SEM, statistical analysis performed by ANOVA followed by Dunnett’s multiple comparison test 
(n=4)(** p<0.01 vs GFP). (c) Mean number of dissociated cells following chemotaxis of ROCK1 
transfected MDA MB 231 breast cancer cells. Results are mean + SEM. Statistical analysis 
performed by ANOVA followed by Dunnett’s multiple comparison test (n=3)(*, p<0.05 vs WT). 
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Figure 4.9. ROCK1 kinase domain has multiple and distinct c-terminal interacting sites. 
(a) Schematic representation of ROCK1 domain structure, regions analysed on peptide array, and 
the probe used (upper panel). The probe consisted of MYC-tagged ROCK1 kinase domain (amino 
acids 1-404). 21-mer peptides offset by 2 amino acids covered region 1 (red) amino acids 1 – 75 
and region 2 (black) amino acids 853-1354. (b) Autoradiogram of the peptide array probed with 
35S labelled protein MYC-tagged ROCK1 kinase domain (upper panel). The 5 binding regions are 
outlined with pink, green, brown, orange, blue and red. The locations of these regions in ROCK1 
are indicated in the schematic diagram (lower panel). (c) Ribbon diagram showing the N-terminal 
kinase interacting region 1 (red or brown) modeled onto the ROCK1 kinase domain (blue or 
yellow) dimer structure (PDB ID:2etr) using protein co-ordinates imported from PDB into 
DeepView (v4.0.1) for modeling. Images were generated following export to POV-Ray (v3.6).  



  111 

 

Figure 4.10. Validation of ROCK1 C-terminal interacting regions. 
(a) Representative dot blots of protein fragments binding to immobilized ROCK1 kinase domain. 
Membranes were probed with rabbit anti-GST and mouse anti-FLAG antibodies to detect ROCK1 
and FLAG-labelled binding proteins respectively. Infra-red fluorophore conjugated secondary 
antibodies were detected at 700 and 800 nm using a Li-Cor Odyssey. Surface plot indicates signal 
intensity for each condition in third dimension. (b) Mean dot blot signal intensities over blank. 
Statistical analysis calculated by ANOVA followed by Bonferroni’s multiple comparison test (n=3-
9) (*p<0.05 vs blank; **, p<0.01 vs blank, ***, p<0.001 vs blank). 
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Figure 4.11. ROCK1 kinase-binding regions inhibit kinase activity. 
(a) Mean + SEM of ROCK1 activity in fluorescent polarization assay following incubation with 100 
μM of the indicated synthetic ROCK1 peptides (corresponding to the following spots on the 
peptide array 2d (d17), 2f (f16), 2g (g15), 2h (h12), and 2i (i12)). (b) Mean + SEM of ROCK1 
activity in fluorescent polarization assay following incubation with 100 μM of the synthetic 
peptides 2g, 2g P1193S, and with 10 μM Y-27632. Statistical analysis calculated by ANOVA 
followed by Dunnett’s multiple comparison test (n=2-5)(*, p<0.05; **, p<0.01 ***; p<0.001 vs 
control). 
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Figure 4.12. ROCK1 and ROCK2 are highly conserved in the C-terminal regulatory domain. 
Amino acid sequence alignment of the PH-C1-PH domains of mammalian ROCK1 and ROCK2. Non-
conserved amino acids are highlighted in green. ROCK protein domains, according to ROCK1 NCBI 
reference sequence NP_005397, are indicated above alignment. Kinase interaction regions are 
indicated above alignment with percent homology. Mutated residues, S1126 and P1193, are 
highlighted in red. 



  114 

 

Figure 4.13. Structural modelling of the ROCK1 interacting regions. 
(a) Ribbon diagram demonstrating that P1193 (green) is located between an α-helix and a β-
sheet in the PH domain (yellow). A part of the kinase interacting region 2g is highlighted in 
orange. In full length ROCK the interrupting C1 domain would be expected to continue from the 
orange ribbon (2g) and re-join the PH domain at the indicated residue in blue. Residues and 
domains modeled and rendered onto the ROCK2 PH structure (PDB ID: 2rov) from PDB co-
ordinates using Pymol. (b) Surface modelling of PH and C1 domains with predicted membrane 
orientation. ROCK1 binding and inhibitory domains 2g (orange), 2f (brown), and 2h (light blue) 
modelled onto separately solved PH (yellow) and C1 (dark blue) structures of ROCK2 (PDB ID: 
2rov and 2row, respectively). Location of P1193 is indicated in green. Residues highlighted in red 
mediate lipid binding260. Charged headgroups of the inner leaflet of a phospholipid bilayer are 
drawn in gray. Dashed lines indicate the expected structural attachments between the PH and 
C1 domains. Structures were modelled and rendered in Pymol. 
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4.3 Discussion 

In summary, the three ROCK1 mutations, Y405*, S1126*, P1193S have enhanced 

kinase activity, promote contraction, increase motility and decrease adhesion; 

indicating that these mutations are all constitutively active, consistent with them 

being active cancer drivers. These kinase mutations associated with cancer have 

revealed 2 ROCK1 mutants similar to previously characterized activating 

deletions; caspase-cleavage 57 and an experimentally derived truncation 53. In 

addition, a novel activating single amino acid substitution was identified revealing 

new information about ROCK1 regulation. Mapping of the C-terminal kinase 

interacting regions and structural modeling has revealed that ROCK1 likely keeps 

kinase activity in check via interactions with multiple surfaces. 

In a recent paper the phosphorylation of myosin light chain was also found to be 

altered in cancer cells bearing somatic mutations in death-associated protein 

kinase 3 (DAPK3)261. Expression of the kinase dead mutants of DAPK in several 

cancer cell lines was found to significantly decrease MLC phosphorylation, which 

was then associated with increased proliferation, survival, and adhesion leading 

the authors to conclude that somatic DAPK mutations are drivers of cancer. 

Although the effect on myosin light chain phosphorylation following mutant DAPK 

expression is the opposite of what I see with mutant ROCK1 the results are not in 

direct contradiction. Firstly, both kinases have multiple substrates and the 

importance of pMLC in the cancer promoting effects of either mutant kinase was 

not assessed in either report. Secondly, while I used NIH 3T3 cells almost 

exclusively, the DAPK3 report makes frequent use of many different cancer cell 

lines, any one of which, is likely to have altered signaling pathways. Finally, neither 

study attempts to assess the in vivo relevance of ROCK1 or DAPK mutation in 

tumour growth, survival, or metastasis. Combined these differences make a 

meaningful interpretation of a role for pMLC (either increased or decreased) in 

driving cancer impossible. Nonetheless, somatic mutation of either ROCK1 or 

DAPK3 does seem to promote the generation and/or progression of malignant 

disease. 

Three somatic mutations have also been described in the ROCK2 gene in human 

cancers; a T to C transversion at position 3508 in the LB2518 malignant 

melanoma cell line that results in a S1194P substitution (equivalent to S1162 in 
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ROCK1) in the first PH domain, insertion of A at 3518-3519 in the CP50-MEL-B 

malignant melanoma cell line resulting in a frameshift and termination at Y1174* 

(equivalent to Y1142 in ROCK1) in the first PH domain, and deletion of T at 412 

resulting in a frameshift and termination at W138* in a primary stomach carcinoma 

(http://www.sanger.ac.uk/cgi-bin/genetics/CGP/cosmicsearch?_q=rock2). Given 

the results of this study, the clustering of the Y1174* and S1194P mutations in the 

first PH domain suggests that they would be activating mutations, although the 

W138* mutation retains little of the kinase region. As previously mentioned, the 

activation of ROCK2 in skin epithelial cells leads to contractility dependent 

hyperproliferation and promotion of a cancerous ‘niche’ 154. It is of particular 

interest that one of the ROCK2 mutations was not only found in a malignant 

melanoma but is predicted to lead to constitutive activation. Expression of this 

mutant would be expected to cause collagen deposition and mechanical feedback 

driving tumour proliferation and survival  

There are numerous examples of kinase activation by cellular proteolysis 262, as 

exemplified by caspase cleavage of ROCK1 57 and granzyme B cleavage of 

ROCK2 78. The organization of ROCK1 and ROCK2 domains containing N-

terminal kinase domains and C-terminal autoinhibitory domains lends them to 

activation by proteolysis or by mutations that result in premature termination. 

Therefore, it could be predicted that other kinases organized in a similar manner 

would also be subjected to activating mutations that affected C-terminal regulatory 

regions. Indeed, the Cdc42-regulated MRCKα (aka CDC42BPA), which plays a 

similar role in actin cytoskeleton regulation as ROCK1 and ROCK2, has an 

example of a frameshift and termination at K697* in the HCC1395 breast ductal 

carcinoma cell line that removes autoinhibitory C1 and PH-like domains 263. 

Interestingly, 4 non-synonymous mutations were identified for MRCKβ (aka 

CDC42BPB), all of which occur C-terminal to the kinase domain and therefore are 

potentially activating, with the most likely mutation to be activating consisting of a 

frameshift and termination at R1092* found in an intestinal adenocarcinoma 

tumour.  

The increased activity of the ROCK1 mutations suggests independence from the 

upstream regulator Rho, similar to Ras-independent activating B-Raf mutations. 

Although the rate of ROCK1 mutations was low, these results justify screening a 

larger set of cancers to determine a more representative rate and indentify 
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additional mutations. Furthermore, these observations additionally validate the 

value of high-throughput sequencing for identification of new cancer genes, and 

for providing valuable unbiased insight into protein regulation and function. 
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5. Materials and Methods 

5.1 Chapter 2 methods 

5.1.1 ROCK1nc knock-in animal generation 

5.1.1.1 Home office project and personal licensing  

All animal work reviewed and approved of in project and personal licenses issued 

by the UK Home Office.  

5.1.1.2 Targeting vector generation 

The 5.1 kb 3’ homology arm for targeting ROCK1 was isolated from a BAC clone 

containing the murine ROCK1 gene by gap repair recombineering in DY380 cells 

as described by 264. BAC clones were from the Sanger AB2.2 mouse genomic 

DNA library (representative of the mouse 129 strain) and identified as: 107N12, 

208K1 and 459E7.  

A retrieval vector was generated by PCR-amplifying short (approximately 500bp) 

arms that represent the extreme ends of a larger target sequence (in this instance, 

the 5.1 kb 3’ homology arm) and sub-cloning these into pCR-blunt 2.1 (Invitrogen) 

in such a way that the adjacent sequences were separated by an AscI site to allow 

linearization of the vector between the amplified arms.  

DY380 cells carrying the target BAC were grown at 30C to an OD600 of 0.5-0.6 

then shifted to 42°C for 15 minutes to heat-shock induce lambda phage 

recombination proteins which drive the retrieval. Heat-shocked cells were 

harvested and washed twice in sterile distilled H2O. Pelleted cells (25μl) were 

resuspended in residual H2O then mixed with 50-100 ng (5ul volume max) of the 

gel-purified, AscI-linearised retrieval vector. Following, electroporation, the 

bacterial cells were allowed to recover by shaking at 30°C in 900ul SOC then 

plated on LB-agar plates supplemented with ampicillin (the antibiotic-resistance in 

the backbone of the retrieval vector).  

The 3.1 kb 5’ homology arm of ROCK1 proved refractory to recombineering and 

was generated from BAC DNA by high fidelity PCR amplification. An amino acid 

point mutation aimed at making the resultant ROCK1 caspase-resistant was then 



  119 

introduced into exon 27 of the ROCK1 gene using a mutated oligonucleotide 

primer with Stratagene QuickChange II XL site-directed mutagenesis kit.  

The mutated plasmid was sequenced to confirm the introduction of the desired 

mutation (which generated a novel PstI restriction site) and the conservation of 

other exons within the fragment. In sequencing, a number of polymorphisms were 

identified in the 129 strain-derived genomic DNA (confirmed by sequencing from 

independent PCR products from tail DNA) relative to the C57Bl/6 DNA sequence 

archived by Ensemble. Two changes were identified within exon 27 and were 

conservative with reference to the encoded amino acid sequence. The 5’ and 

mutated 3’ arms were cloned directionally into pDupDel Neo (gift of Prof. Oliver 

Smithies and available commercially from Open Biosystems) using restriction sites 

introduced during PCR cloning and recombineering respectively. This placed the 

mutated exon 27 proximal to the selection cassette to decrease the chance of loss 

of the mutation during homologous recombination (Figure 2.1). Since pDupDel 

Neo contains a high activity form of the neomycin resistance gene, the original 

selection cassette was removed by Cre deletion in EL350 cells 264 and a low 

activity version (expressed from a PGK/EM7 hybrid promoter) from pL452 265 was 

inserted by the reverse process and selection on kanamycin. The resultant 

targeting vector was linearised with NotI restriction enzyme in preparation for 

transfection of mouse embryonic stem cells. This work was performed by the 

Beatson Institute Transgenic Technology core service.  

5.1.1.3 Mouse embryonic stem cell (mES) vector transfection  

G4 murine embryonic stem cells (gift of Dr. Andras Nagy and Marina Gertsenstein 
266) were grown under ES medium (DMEM (high glucose), 15% FBS, 2mM 

Glutamax, 0.1 mM non-essential amino acids, 0.1 mM β-Mercaptoethanol 1000 

U/ml ESGRO (Millipore), 33 μg/ml Gentamycin) on mouse embryonic fibroblast 

(MEF) feeder layers. Cells were harvested from two T175 flasks 24hrs after their 

final split and plated for 20 minutes to remove the majority of MEFs. Cells were 

pelleted, washed once with PBS and counted.  

Following resuspension in room temperature Embryomax transfection buffer 

(Millipore) at 1x107 cells/ml, five volumes of 8x106 cells were mixed with 40μg of 

linearised targeting vector and the mixtures transferred to 4mm electroporation 
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cuvettes (Biorad) before electroporation at 250V, 500μF and infinite resistance. 

After recovery at room temperature for 20 minutes, cells were washed out of the 

cuvettes with regular ES medium and the contents of each cuvette split across 

four 10cm plates of MEFs. After 24 hrs, medium was changed to ES medium 

supplemented with 240 μg/ml G418. The plates were maintained under this 

medium (with daily changes) for 6 days.  

Colonies selected for G418 resistance were picked onto five 96-well plates of 

MEFs and grown under selection for 3 days. Plates were then archived for 

subsequent recovery and cells grown on parallel gelatinized plates. 96-well plates 

containing expanded ESC colonies were washed twice with 200μl PBS per well 

and 50μl of trypsin added. Following 5 minutes at 37oC, cells were pipetted up and 

down then 50μl of ES medium added to terminate trypsinisation. A 50μl volume of 

trypsinised cells was transferred to a parallel round-bottomed 96-well plate 

containing 50μl of 2x freezing medium (40%FBS-40% ES medium-20% DMSO) to 

act as a master-plate. The plate was overlaid with 100μl of embryo-tested mineral 

oil, sealed and frozen in a polystyrene box at -80 oC before transfer to liquid 

nitrogen storage. The remaining trypsinised cells were transferred to gelatinized 

plates prepared thus: 50μl of 0.1% (w/v) porcine gelatin in PBS was applied to 

each well of a 96-well plate and allowed to stand at RT for 20 minutes. After this 

time, the plate was drained and 50μl of ES medium added. Cells from the 

trypsinised 96-well plate were transferred to the parallel gelatinized plate with 

additional ES medium (up to a final volume of 250μl) and allowed to grow for 4 

days whereupon the medium was yellowed. The plates were then drained and 

washed twice with PBS. 50μl of lysis buffer (10mM Tris.HCl, pH 7.5, 10mM EDTA, 

10mM NaCl, 1mg/ml proteinase K, 0.5%(w/v) SDS) was added to each well, the 

plates sealed with adhesive sheets and incubated in a humidified chamber at 55 
oC overnight. The genomic DNA was precipitated by the addition of 100μl of ice-

cold ethanol-salt mix (75 mM NaCl in 100% ethanol) to each well. Plates were 

allowed to stand for a minimum of 1 hour at room temperature before being 

drained by careful inversion onto paper towels. The plate was then washed three 

times with 200μl/well of 70% ethanol and allowed to air-dry for 20-30 minutes. This 

work was performed by the Beatson Institute Transgenic Technology core service. 
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5.1.1.4 mES screening for homologous recombination 

Screening of neomycin resistant mES cells for homologous recombination was 

accomplished with separate PCR reactions against the 3’ and 5’ homology arms of 

the insert vector. Spotted genomic DNA was diluted in 50 ul TE buffer (Tris 10mM 

pH 8.0, and EDTA 1mM) for 24 hours at 37°C and then screened, remaining DNA 

was re-frozen. The primary screen tested recombination in the 3’ targeting vector 

homology arm and used primers within the neomycin selection cassette and 

outside the homology arm (Figure 2.2), this reaction is expected to yield a 3.5 kb 

product in correctly recombined samples. PCR reaction used 200 ng template 

DNA, 1 unit Phire hotstart DNA polymerase (Finnzymes), 0.2 mM dNTP, and 1 μM 

primers. Positive samples were re-analysed. Samples verified positive for 3’ 

recombination were then tested for 5’ homology arm recombination and used 

primers outside the homology arm and within the neomycin selection cassette 

(Figure 2.3). This secondary screening reaction is expected to yield a 5.5 kb 

product in correctly recombined samples. PCR reaction used the Expand high 

fidelity PCR system (Roche) with 400 ng template DNA, 1 unit polymerase, 0.5 

mM dNTP, and 500 nM primers. All PCR reactions were examined for product by 

agarose gel electrophosesis visualized with ethidium bromide. Product size was 

estimated from DNA ladders (Hyperladder I, Bioline). Successfully targeted clones 

were then expanded and stocks generated for subsequent injection into mouse 

blastocysts. 

5.1.1.5 mES blastocyst injection and embryo implantation 

Targeted stem cells were grown on MEF monolayers and harvested for injection 

following plating out of MEFs. Stem cells (8-15) were injected into C57Bl/6 

blastocysts and then implanted into the uteri of pseudo-pregnant female ICR mice. 

Male chimeras of high ESC contribution were identified in the subsequent litters by 

coat colour. These were crossed with C57Bl/6 females and the offspring 

genotyped for ROCK1nc. Genotypically positive mice were then crossed to a Cre-

deleter strain (on a C57Bl/6 background) to remove the neomycin selection 

cassette. Mice homozygous for ROCK1nc were then interbred to generate a 

homozygous strain for use in our proposed studies. This work was performed by 

the Beatson Institute Transgenic Technology core service. 
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5.1.1.6 Animal genotyping 

For routine genotyping the animals were tail clipped at weaning and samples sent 

to Transnetyx genotyping service for analysis.  

5.1.2 In vitro ROCK1 kinase assay 

ROCK1 kinase assays were performed with purified full length MYC-tagged wild 

type and D1113A ROCK1 expressed in HEK 293T cells. These MYC-tag ROCK1 

constructs were generated as previously reported 73. Briefly, confluent HEK 293 

cells were transfected with 10 μg of plasmid with lipofectamine2000 (Invitrogen) in 

10 cm plates and incubated at 37°C for 24 hours. Control sample had no plasmid 

transfected. The transfected cells were then washed, collected, and lysed with 

RIPA buffer. Anti-MYC-tag antibody was added to approximately 450μg of cellular 

lysate overnight at 4°C. Protein bound to antibody was precipitated with protein G 

sepharose and washed in kinase wash buffer (50 mM Tris pH 7.5, 10 mM MgCl2, 

0.1 mM PMSF, 1 mM Na Vanadate, 50 mM NaCl, 1 mM DTT, 10% glycerol, 

0.03% Brij-35) divided into 4 20 μl aliquots and frozen at -20°C. Uniformity of 

protein expression was determined by Coomasie staining of PAGE gels. 200 ng of 

purified BSA was loaded on gel to verify protein concentration. Kinase activity was 

then analysed with a fluorescence polarization assay. Briefly, 200 ng of MYC-

tagged ROCK1 in kinase buffer was supplemented with 100 μM ATP and 500 nM 

Fluorescein-tagged ROCK1 peptide substrate derived from S6Kinase (5FAM-

AKRRRLSSLRA). The reaction was incubated for 1 hour at room temperature in a 

plate shaker. Following incubation 1:400 dilution of IMAP binding reagent 

(Molecular Devices) in kinase buffer was added and further incubated for 1 hour at 

room temperature on plate shaker. Kinase activity was then determined by reading 

fluorescence peptide polarisation in a Tecan Safire2 multimode microplate reader 

by exciting the sample at 470 nm and measuring the emission at 525 nm. 

5.1.3 Mouse embryonic fibroblast (MEF) generation 

MEFs were generated from E13.5 embryos resulting from homozygous ROCK1wt 

and ROCK1nc breeding pairs. The appearance of the mating plug indicates 

embryonic day 0.5 (E0.5) and 13 days later the pregnant females are euthanized 

by cervical dislocation and uterine horns containing embryos extracted. Further 

dissection of the embryos takes place in laminar flow hood to minimize bacterial 
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contamination. Briefly, the embryos are dissected from the uterus and washed in 

PBS. Embryonic heads and livers were removed and sent for genotyping. The 

remaining tissue from all embryos was pooled and roughly chopped before 

incubation in 0.05% trypsin (1ml trypsin/embryo) for 10 min at 37°C. Embryos 

were then further dissociated by trituration in serological pipettes of decreasing 

size, then counted and plated at 5x106 cells in a 180 cm flask. Cells were cultured 

in DMEM supplemented with 10% FBS, penicillin/streptomycin (100 units/ml, 100 

μg/ml, respectively) and maintained at 37°C in 5% CO2 atmosphere. Cells were 

split twice before cryopreservation. Typically ROCK1wt and ROCK1nc MEF 

cultures proliferated to passage 8-10 before senescing. No difference in 

proliferation rate or senescing age was seen in either ROCK1 genotype.  

5.1.4 Microscopy 

5.1.4.1 Fluorescent 

After plating on glass coverslips ROCK1wt and ROCK1nc MEFs were serum 

starved overnight then treated with 10% FBS for 5 min + 10 μM Y27632. The cells 

were then fixed and permeabilized with paraformaldyhyde with 0.5% triton X-100 

at room temperature for 5 min before washing and staining. Following fixation the 

samples were blocked with 1.5% BSA and 10% normal goat serum in PBS for 10 

min. Fixed cells were probed with rabbit anti-phosphorylated myosin light chain 

(pMLC) (thr18/ser19) antibody (cell signaling) diluted 1:100 in blocking buffer for 1 

hour at room temperature. Following washing the cells were stained with anti-

rabbit IgG antibody conjugated to Alexa Fluor 488 (1:1000, Invitrogen) and f-actin 

filaments were visualized with Texas Red conjugated phalloidin (1:250, Invitrogen) 

in PBS. Samples were then washed and mounted with Vectashield hard set 

mounting medium with DAPI (Vector labs). Fluorescent microscopic images were 

acquired with a 60x oil immersion lens on an Olympus FV1000 laser scanning 

confocal microscope. 

5.1.4.2 Timelapse 

ROCK1wt and ROCK1nc MEFs were plated on glass bottom dishes (Iwaki) then 

serum starved overnight prior to induction of apoptosis with TNFα and 

cycloheximide (CHX) (50 ng/ml and 10 μg/ml, respectively). Bright field differential 

interference contast (DIC) time-lapse microscopy images were acquired with a 20x 
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objective using a Nikon Eclipse Ti microscope with a heated stage and 5% CO2 

gas line. Immediately after induction of apoptosis the cells were relocated to the 

microscope and time lapse images were taken every 30-60 seconds for several 

hours.  

5.1.5 In-cell western blot 

MEFs (50,000/well) were plated in a 96 well plate and then serum starved 

overnight before stimulation with 10% FBS for 5 min + 10 μM Y27632. Staining for 

pMLC was performed as previously described. Total cell number was determined 

by nuclei staining with the fluorescent marker DRAQ5 (1:700, Biostatus). 

Fluorescence was determined by imaging the plate with an Odyssey LiCOR 

scanner and signal intensity with Odyssey software. pMLC signal was normalized 

to DRAQ5 signal.  

5.1.6 Western blot 

Apoptotic ROCK1wt and ROCK1nc MEFs were generated with TNFα and CHX as 

previously indicated. Four hours after treatment the cells were collected by 

scraping centrifuged and lysed in RIPA buffer (10 mM TRIS pH 7.5, 5 mM EDTA, 

150 mM NaCl, 40 mM NaPPi, 50 mM NaF, 1% (v/v) NP-40, 0.5% (v/v) sodium 

deoxycholate, 0.025% (w/v) SDS, 1mM Na3VO4, 1 mM PMSF). Samples were 

then normalized to total protein concentration determined by Bradford colorimetric 

assay (BCA) and separated on a 10% SDS-PAGE gel. Gel was then transferred to 

nitrocellulose blotting paper and blocked with BSA. Multiple membranes were 

probed for ROCK1 (BD-transduction labs), PARP (BD Pharmingen), pMLC (Cell 

Signaling), and α-tubulin as a housekeeping protein (Santa Cruz). Antibody 

binding was visualized with fluorescent secondary antibodies using an Odyssey 

LiCOR scanner.  

5.1.7 Flow cytometry 

Apoptotic MEFs were generated as indicated. After 24 hours samples were 

collected, centrifuged, and diluted to 1e5 cells/ml in a total volume of 100 μl in 

binding buffer (100 mM HEPES pH 7.4, 140 mM NaCl, 2.5 mM CaCl2) prior to 

staining with with 5 μg/ml PI and 5 μl commercial annexin V-alexafluor 488 

conjugate for 10 min at room temperature. Samples are then diluted to 0.5 ml in 
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binding buffer then 10,000 apoptotic cells were gated using forward (FSC) and 

side scatter (SSC), PI and annexin fluorescence determined in channel FL1 and 

FL3. Quadrant gating was determined from stained non-apoptotic NIH 3T3 

sample. 

5.1.8 Histological tissue collection, fixation, processing, and 
staining 

Animals were euthanized by either cervical dislocation or rising concentrations of 

CO2 and tissues were rapidly dissected and fixed by immersion in 10% buffer 

formaldehyde. Fixed tissue was then processed by histology core service (paraffin 

embedding, sectioning, and stained). Prior to staining the samples are de-waxed 

in xylene and re-hydrated in 97% ethanol then washed in tap water. Samples were 

then stained with haematoxylin and eosin (H&E) and Perls prussian blue. Perls 

Prussian blue stain uses an equal part solution of ferrocyanide and hydrochloric 

acid for 10 min before washing and counterstaining with eosin. In addition, fixed 

tissue sections were also probed for the presence of cleaved caspase 3, mouse 

IgG, and F4/80 antigen (mouse macrophages) with specific antibodies. Cleaved 

caspse 3 is detected in fixed spleen following antigen retrieval with commercial 

proteinse K solution (DAKO) for 5 minutes and incubation with rabbit anti-cleaved 

caspase 3 antibody (1:200, Abcam) for 1 hour at room temperature. Cleaved 

caspase 3 is then visualized with commercial vectastain anti-rabbit IgG (Vector 

Labs) ABC immunoperoxidase kit which produces a brown precipitate on sample. 

Samples are then counter stained, dehydrated and mounted. The presence of 

mouse IgG in fixed kidney sections was detected directly with anti-mouse IgG 

antibodies conjugated to Alexa Fluor 488 (Invitrogen) and then mounted in 

vectashield hard set mounting medium with DAPI (Vector Labs). Mouse 

macrophages were detected in fixed spleen by staining with rat anti-F4/80 (1:100, 

Abcam) in PBS for 30 minutes at 37°C following proteinase K antigen retrieval. 

F4/80 antibody binding was detected with commercial vectastain anti-rat IgG 

(Vector Labs) ABC immunoperoxidase kit. Samples are then counter stained 

(haematoxylin), dehydrated and mounted. 

5.1.9 Haematology 

After CO2 euthanasia 0.5 ml whole blood was withdrawn from descending 

abdominal aorta and dispensed in clinical potassium-EDTA tube. Samples were 
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then immediately sent to clinical veterinary pathology lab at the University of 

Glasgow Veterinary School for a complete clinical haematology analysis.  

5.2 Chapter 3 methods 

5.2.1 Cell culture 

NIH 3T3 cells were maintained in DMEM supplemented with 10% donor bovine 

serum. Murine RAW 264.7 macrophages were maintained in DMEM 

supplemented with 10% fetal bovine serum.  

5.2.2 Western blot 

Cell lysates were generated with RIPA lysis buffer (10 mM TRIS pH 7.5, 5 mM 

EDTA, 150 mM NaCl, 40 mM NaPPi, 50 mM NaF, 1% (v/v) NP-40, 0.5% (v/v) 

sodium deoxycholate, 0.025% (w/v) SDS, 1mM Na3VO4, 1 mM PMSF). Cell 

lysates and concentrated conditioned medium was diluted 1:4 with sample buffer 

and warmed to 70 °C for 10 min. Samples were run on 10% SDS-polyacrylamide 

gels, transferred to polyvinylidene fluoride membranes blocked in 5% (w/v) skim 

milk in TBS prior to probing with anti-GFP (BD Biosciences), anti-gelsolin (Abcam), 

anti-HMGB1 (Cell Signaling), anti-actin (Santa Cruz), anti-ROCK1 (Transduction 

Labs). Primary antibodies were probed with alexafluor 680 (Invitrogen) and IR800 

(Rockland) conjugated secondary antibodies and analysed using LiCOR-odyssey. 

Band intensity analysed using odyssey application software. 

5.2.3 Creation of membrane tagged GFP expressing NIH 3T3 cells 

Generation of ecotropic virus for CaaX-GFP transduction was carried out as 

previously described 267. NIH 3T3 cells were infected with 1 ml of virus and 4 μl 

polybrene (4 mg/ml) overnight. The next day the medium was replaced and cells 

selected with puromycin. GFP fluorescence was verified by FACS.  

5.2.4 Induction of apoptosis, and generation of conditioned medium 

NIH 3T3 apoptosis was induced with a combination of 50 ng/ml tumour necrosis 

factor alpha (TNFα)(R&D Systems)) and 10 μg/ml cycloheximide (CHX)(Sigma), 

unless otherwise indicated, and diluted in unsupplemented DMEM medium 

following an overnight starvation. Cells were then incubated at 37°C for 2-24 
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hours. Medium was further supplemented with: Y27632 (10 μM)(EMD), 

blebbistatin (50 μM)(Tocris), z-VAD-fmk (20 μM)(R&D Systems) where 

appropriate. 

Apoptotic cell conditioned medium (AC-CM) was generated by pelleting apoptotic 

cells in media at 2000x gravity for 10 min. AC-CM was routinely determined to be 

clear of cells and debris by microscopic examination. Necrotic cell supernatant 

was generated from starved cells by 3 freeze thaw cycles in dry ice. AC-CM was 

concentrated by centrifugation with 10 kDa cutoff Millipore centrifugal filter units at 

4500x gravity for 30 min. Samples were concentrated approximately 30 fold. Prior 

to concentrating, 0.260 μg of recombinant GFP was added to each sample as an 

internal standard.  

5.2.5 Microscopy  

Timelapse microscopy images were acquired with a 20x objective using a Nikon 

A1R confocal microscope with a heated stage and 5% CO2 gas line. Grey scale 

image is transmitted light. Cells were grown on optical glass coverslips and 

apoptosis was induced in starve medium supplemented with TNFα, CHX and 5 

μg/ml propidium iodide (PI). Immediately after induction of apoptosis, cells were 

relocated to confocal microscope and time lapse images were taken every 30 

seconds for 8 hours in both transmitted light and red fluorescence.  

High resolution still images of unfixed apoptotic cells were acquired with a 60x oil 

immersion objective using same conditions as above. The medium was further 

supplemented with FAST DiO (3,3'-dilinoleyloxacarbocyanine perchlorate) diluted 

1:500 from 2.5 mg/ml dissolved in 100% DMSO.  

5.2.6 Flow cytometry 

5.2.6.1 Apoptotic body PI permeability 

For the assessment of apoptotic body PI permeability 4 hour apoptotic NIH 3T3 

samples were generated with the further addition of 5 μg/ml PI (Sigma), 100 μg/ml 

RNaseA (Qiagen), and/or 200 units/ml DNase1 (Roche). Non-apoptotic NIH 3T3 

cells were collected following trypsinization, quenched in growth medium and used 

as control. Apoptotic samples were analysed with a BD FACSCalibur flow 
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cytometer. 100,000 apoptotic bodes were gated using forward (FSC) and side 

scatter (SSC), and PI fluorescence determined in channel FL3. PI stained non-

apoptotic control was used to gate samples.  

5.2.6.2 Apoptotic body proteinase K permeability 

Apoptotic body proteinase K permeability was assessed in NIH 3T3 cells 

expressing membrane tagged GFP. 2 hours after addition of TNFα and CHX, 

proteinase K (50 μg/ml) (Melford) was added to the cells and incubated for a 

further 2 hours. The apoptotic samples were analysed with a BD FACSCalibur flow 

cytometer. 100,000 apoptotic bodes were gated using forward (FSC) and side 

scatter (SSC), and GFP fluorescence determined in channel FL1. GFP positive 

apoptotic bodies gated against non-GFP expressing apoptotic bodies. 

5.2.6.3 Apoptotic body generation 

The generation of apoptotic bodies from NIH 3T3 cells at 4 hours was assessed 

following treatment with TNFα, CHX, and Y27632 (10 μM) or blebbistatin (50 μM). 

Apoptotic samples were collected, diluted 2:3 in PBS and an equivalent volume of 

FITC-calibrite beads added to each sample. Apoptotic bodes were gated on 

forward (FSC) and side scatter (SSC). FITC beads were gated based on 

fluorescence. The number of apoptotic bodies is counted alongside 10,000 gated 

FITC beads.  

PI permeability of apoptotic bodies generated in the presence of Y27632 and 

blebbistatin was assessed following the addition of PI to the sample and 

incubating for 10 min at room temperature. PI fluorescence of 25,000 apoptotic 

bodies for each treatment was scored in channel FL3. PI stained non-apoptotic 

control was used to gate samples. 

5.2.6.4 Apoptotic cell permeability 

Apoptotic NIH 3T3 samples were generated as indicated. After 4 hours samples 

were incubated with 5 μg/ml PI and 5 μl annexin V-alexafluor 488 conjugate 

(Invitrogen) for 10 min at room temperature. 10,000 apoptotic cells were gated 

using forward (FSC) and side scatter (SSC), PI and annexin fluorescence 
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determined in channel FL1 and FL3. Quadrant gating was determined from 

stained non-apoptotic NIH 3T3 sample. 

5.2.7 Lactate dehydrogenase activity measurements 

LDH activity measured with Roche cytotoxcity detection kit according to 

manufacturers recommendations. After concentration, the samples were diluted 

1:10 in DMEM prior to LDH activity measurement. After normalization to GFP, as 

determined by western blot, 100 μl of sample mixed with equal concentration of 

dye solution and incubated for 20 min in the dark in 96 well plate. Reaction 

stopped with 50 μl stop solution and solution absorbance measured with TECAN 

safire2 at 490 nm. Sample activity expressed as a percentage of activity detected 

in necrotic sample. 

5.2.8 SILAC 

NIH 3T3 cells were grown in DMEM supplemented with dialysed FBS containing 

specific labeled arginine (Arg) and lysine (Lys) amino acids for 5 passages. Cells 

were labeled with light/unlabeled (Lys-0, Arg-0), medium (Lys4, Arg6), and heavy 

(Lys8, Arg10) medium. Amino acids are labeled with the following isotopes: Lys4, 
2H4; Lys8, 13C6, 15N2; Arg6, 13C6; Arg10, 13C6, 15N4 (Silantes). Label incorporation 

was determined to be >95% by mass spectrometry. Labeled populations of labeled 

NIH 3T3 assigned the following treatments: Light, control; Medium, TNFα+CHX; 

Heavy, TNFα+CHX+Y27632. After 4 hours the supernatant was processed and 

concentrated as mentioned. Samples were normalized to GFP internal standard 

by western blot and 10 ml of each sample was mixed and run on 10% SDS-PAGE. 

The gel was stained with Coomassie and destained in acetic acid. Gel was then 

processed and subjected to mass spectrometry and database search by Beatson 

Institute Mass Spectometry Service staff, Willie Bienvenut, Sergio Lilla, and David 

Sumpton.  

5.2.9 Gelsolin knockdown 

Gelsolin was knocked down by nucleofection of NIH 3T3 cells with Dharmacon on-

target plus smart pool against mouse gelsolin (L-057211-00-0005). 1x106 cells 

were transfected in solution R with 3 μg non-targeted or gelsolin siRNA. After 

nucleofection the cells were incubated in DMEM+10% FBS for 72 hours prior to 
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induction of apoptosis. 60-70% gelsolin knockdown was typically observed by 

western blot. 

5.2.10 RAW 264.7 transwell migration 

AC-CM was generated from NIH 3T3 at 4 hours after induction of apoptosis with or 

without gelsolin knockdown by siRNA nucleofection. AC-CM was used as a 

chemoattractant for 5x105 Raw264.7 macrophages in starve medium were seeded 

in the top chamber of 8 μm transwell insert. Cells were incubated for 2 hours at 

37°C and then fixed with ice cold methanol, cells that failed to migrate were 

removed by swab. Migrated cells were stained with PI (5μg/ml) and then 

quantitated by counting migrated macrophages in 3 random fluorescent 

microscopy fields (10x). 

5.3 Chapter 4 methods 

5.3.1 Cell culture, transfections and plasmids 

 NIH 3T3 cells were maintained and transient transfections were performed as 

described previously (Coleman et al., 2001). For Nucleofection, cells were 

prepared according to the Amaxa™ protocol. 

pCAG MYC ROCK1 was described previously 57 and mutations were introduced 

using QuikChange (Stratagene) site-directed mutagenesis kit according to 

manufacturer’s protocol. 

5.3.2 Cell extraction and immunoblotting 

Whole cell lysates were prepared and western blotted as described previously 57. 

Rabbit anti-MYC 9B11 (Cell Signaling Technology) and Alexa-Fluor680 (Molecular 

Probes) antibodies were used and detected by infra-red imaging (Li-Cor Odyssey). 

5.3.3 Immunoprecipitations and kinase assays 

MYC-ROCK1 was immunoprecipitated from transfected NIH 3T3 cells with rabbit 

anti-MYC antibody and Protein G Sepharose (Sigma) for 2 h at 4 C, beads were 

washed 3x with lysis buffer. Immunoprecipitated ROCK1 was assayed at 30°C for 

10 min in a total volume of 50 μl containing 50 mM Tris/HCl, pH 7.5, 0.1 mM 
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EGTA, 0.1% (v/v) 2-mercaptoethanol, 10 mM MgCl2, 0.1 mM [γ-32P]ATP (2×106 

c.p.m./nmol) and 50 μM LIMKtide (LKKPDRKKRYTVVGNPYWMA). The reaction 

was stopped by spotting onto p81 paper and submerging in 1% (v/v) 

orthophosphoric acid. The papers were washed 3 times, dried and Cerenkov 

counted. 

5.3.3.1 Fluorescence polarization ROCK1 kinase assay 

50 ng recombinant GST-ROCK1 fusion (Invitrogen) was incubated with 100nM 

Fluorescein-tagged ROCK1 peptide substrate derived from S6Kinase (5FAM-

AKRRRLSSLRA), 100 μM ATP and 100 μM of interacting peptides or Y-27632 as 

indicated in a total 50μl kinase buffer (10mM Tris/HCl pH 7.2, 10mM MgCl2, 0.05% 

NaNO3 and 0.1% Phospho-free BSA). The reaction was incubated for 30-45 

minutes at room temperature in a plate shaker. Following incubation 65 μl of 1:400 

IMAP binding reagent in kinase buffer was added to each well. The mixture was 

further incubated for 30min at room temperature with gentle shaking then 

fluorescence polarisation was read in a Tecan Safire2 multimode microplate reader 

by exciting the sample at 470nm and measuring the emission at 525nm. 

5.3.4 Peptide arrays 

In vitro transcribed and translated (IVTT) [35S]-Methionine-labeled ROCK1 was 

generated from pcDNA3 using the TNT kit (Promega) according to the 

manufacturer’s protocol. 21-mer peptides offset by 2 amino acids covering amino 

acids 1-75 and 853-1354 of human ROCK1 were arrayed onto membranes 

(Cancer Research UK, London, UK). Arrays were blocked in 5% (w/v) bovine 

serum albumin/Tris-buffered saline (BSA/TBS) for 1 h prior to incubation with 50 μl 

[35S]-Methionine labeled IVTT ROCK1 in 5% (w/v) BSA/TBS for 1 h. Membranes 

were washed three times in TBS/0.1% (v/v) Tween, dried and exposed to film. 

5.3.5 Immunofluorescence 

Following nucleofection the cells were incubated for 3 hours in growth medium and 

then serum starved overnight. Cells were fixed and stained as described 

previously 57. Confocal images were obtained using an Olympus FV1000 using a 

60x oil-immersion objective. 
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For cell size, 6 random fields of MYC-tag positive fluorescence cells were captured 

per treatment with a 20x objective, subsequently the images were analysed for 

percentage MYC-tag positive area divided by cell number. 

For cell morphology, 6 random fields of MYC-positive and actin were captured per 

treatment with a 10x objective and the number of cells with spread, contracted or 

rounded morphology were determined. 

5.3.6 FACS expression 

After transfection, cells were incubated overnight in growth medium (DMEM 

supplemented with 10% FBS). The following day the cells were collected and fixed 

in 2% paraformaldehyde for 10 minutes. Cells were then washed and 

permeabilized with 0.1% Triton X-100 for 5 minutes. MYC-tagged ROCK1 

constructs were detected with an anti-MYC (9B11) antibody conjugated with 

AlexaFluor 647. 10,000 events were collected on a BD FACScaliber and MYC-tag 

positive cells were gated against blank transfected cells. 

5.3.7 Protein fragment production 

The binding peptide sequences were amplified by PCR from wild type pCAG 

ROCK1 constructs and subcloned into modified p-GEX-6-P1 expression vector 

containing a FLAG sequence. The P1193S mutation was introduced within the 2g 

construct using the quickchange XL site directed mutagenesis kit. The expression 

vectors were then used to transform BL21 e-coli strain. Peptide expression was 

induced with 0.1 mM IPTG from 5-18 h. Following bacterial lysis the samples were 

centrifuged to remove debris at 10000 g for 20 min, the supernatant was then 

mixed with PBS equilibrated glutathione-sepharose beads overnight at 4C. The 

beads were then washed 5x in PBS and finally re-suspended in protease buffer 

(50 mM TRIS-HCL, 150 mM NaCl, 1 mM EDTA, 1 mM DTT pH 7.0), the 

expressed peptides were then liberated from GST by cleavage with an overnight 

incubation at 4°C with PreScission protease (GE Life Sciences). Following 

cleavage the supernatant was collected by centrifugation and the protease 

removed with p-aminobenzamidine beads. The resulting protein was assessed by 

coomasie staining of PAGE gels as well as anti-flag western and dot blot. 
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5.3.8 Cell motility 

NIH 3T3 cells were co-transfected with 1:2 ratio of GFP and pCAG ROCK1 

constructs. Following Nucleofection, cells were incubated for 3 h in a 6 well glass 

bottom dish in complete medium followed by incubation in serum reduced medium 

(3.3% FBS). Three bright and GFP timelapse fields were captured with a 10x 

objective for each treatment every 2 min for 20 hours. Individual cell motility was 

analysed using Metamorph and Image J. 

5.3.9 Protein binding assay 

Approximately 200 ng of recombinant GST fusion ROCK1 (Invitrogen) was spotted 

directly onto nitrocellulose blotting paper and briefly allowed to dry. The membrane 

was then blocked in 5% milk in TBS for 20 min at room temperature. The 

membrane was then cut into individual spots and separately incubated with 

individual binding proteins diluted in 5% milk TBS and incubated at 4C overnight. 

Following washing, ROCK1 and bound protein were detected with Anti-GST and 

Anti-FLAG antibodies respectively. Membranes were imaged and quantitated 

using 2 colour infra-red imaging (Li-Cor Odyssey). 

5.3.10 Transwell dissociation assay 

 NIH 3T3 cells were co-transfected with 1:2 ratio of GFP and pCAG ROCK1 

constructs. Following nucleofection, 2x105 cells were incubated with growth 

medium for 3 h in a 24 well transwell insert (8 μm pore). Following incubation, the 

growth media in each insert was aspirated and replaced with serum free medium 

and insert was placed in new well containing 10% FBS medium and incubated 18 

hours. Inserts were then discarded and the number of GFP positive cells in the 

well bottom was assessed. Three GFP fields were captured with a 20x objective 

for each treatment and the number of positive cells was scored across all fields. 

5.3.11 Protein modeling 

The ROCK1 kinase interacting regions were modeled onto the ROCK1 kinase 

domain (2ETR), followed by alignment and identification of corresponding amino 

acids with the ROCK2 sequence onto the ROCK2 PH (2ROV) and C1 domains 
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(2ROW). The protein co-ordinates as indicated were imported from PDB into 

Pymol for modeling and rendering. 
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