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__________________________________________________________________________________________________________ 
Abstract 

 

 The visual processing of faces is a fast and efficient feat that our visual system 

usually accomplishes many times a day. The N170 (an Event-Related Potential) and the 

M170 (an Event-Related Magnetic Field) are thought to be prominent markers of the face 

perception process in the ventral stream of visual processing that occur ~ 170 ms after 

stimulus onset. The question of whether face processing at the time window of the N170 

and M170 is automatically driven by bottom-up visual processing only, or whether it is 

also modulated by top-down control, is still debated in the literature. However, it is 

known from research on general visual processing, that top-down control can be exerted 

much earlier along the visual processing stream than the N170 and M170 take place. I 

conducted two studies, each consisting of two face categorization tasks. In order to 

examine the influence of top-down control on the processing of faces, I changed the task 

demands from one task to the next, while presenting the same set of face stimuli. In the 

first study, I recorded participants’ EEG signal in response to faces while they performed 

both a Gender task and an Expression task on a set of expressive face stimuli. Analyses 

using Bubbles (Gosselin & Schyns, 2001) and Classification Image techniques revealed 

significant task modulations of the N170 ERPs (peaks and amplitudes) and the peak 

latency of maximum information sensitivity to key facial features. However, task 

demands did not change the information processing during the N170 with respect to 

behaviourally diagnostic information. Rather, the N170 seemed to integrate gender and 

expression diagnostic information equally in both tasks. In the second study, participants 

completed the same behavioural tasks as in the first study (Gender and Expression), but 

this time their MEG signal was recorded in order to allow for precise source localisation. 

After determining the active sources during the M170 time window, a Mutual 

Information analysis in connection with Bubbles was used to examine voxel sensitivity to 
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both the task-relevant and the task-irrelevant face category. When a face category was 

relevant for the task, sensitivity to it was usually higher and peaked in different voxels 

than sensitivity to the task-irrelevant face category. In addition, voxels predictive of 

categorization accuracy were shown to be sensitive to task-relevant, behaviourally 

diagnostic facial features only. I conclude that facial feature integration during both 

N170 and M170 is subject to top-down control. The results are discussed against the 

background of known face processing models and current research findings on visual 

processing. 
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__________________________________________________________________________________________________________ 

I. Introduction 
 

 The perception of our visual environment is a complex, yet efficient feat, which a 

healthy brain performs almost continually during our waking hours. At first glance, a 

natural visual scene is simply a collage of colours, patterns and shapes, which might 

change, move or stay static over time. Extracting meaningful and relevant information 

from this abundance of stimulation in the fastest possible way is the key target of our 

visual system. Which information is meaningful and relevant, or – in other words – 

diagnostic in any given situation, depends on a large variety of factors. When looking for 

a friend in a room full of people, we will probably look for his face, hair colour, height or 

type of clothing, whereas when we are asked to judge a dance performance, we will pay 

attention to the movements rather than person specific attributes. When perception 

becomes purposeful in this way, our brain exerts top-down control on our bottom-up 

visual information processinging by making certain information more salient. 

 For an average person, faces will be among the most frequent and most consistent 

visual stimuli they encounter during their lifetime. In addition, faces are highly relevant 

for social interaction as they communicate important and potentially life-saving signals, 

such as looming danger (e.g. angry or fearful faces), the mood of our partner in a 

conversation or sometimes even whether the other person is lying to us (e.g. during 

professional poker, players tend to shield their eyes in an effort to hide any potential 

clues as to whether they are bluffing or not). It is therefore hardly surprising that our 

visual system has adapted to processing these signals quickly and efficiently. Like any 

visual perception, face perception can be facilitated or directed by top-down control. In a 

counselling session, for example, the therapist can gauge his reactions to the patient’s 

facial emotional expression. Therefore, the main aim of this thesis is to examine how 

top-down control impacts on and changes the way meaningful, diagnostic information is 
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extracted from a face during early face processing. The following subchapters will give a 

brief introduction on the visual system, top-down control and face perception in 

particular. 

 

 

1. Anatomy of the Visual System 

 In order to understand face perception, it is essential to understand the basics of 

visual anatomy. From the retina, visual information is projected through the optic nerve, 

via the optic chiasm, the pulvinar and the lateral geniculate nucleus (LGN) of the 

thalamus to the primary visual cortex (V1) in the occipital lobe (Figure 1.1). Another 

visual pathway, often referred to as a secondary and subcortical visual pathway, goes 

through the superior colliculus and reaches visual areas in the parietal and temporal 

lobes. The main pathway from the LGN to V1 consists of two main anatomically 

separate streams, the magnocellular (M) and parvocellular (P) pathway, each of which 

are associated with another aspect of visual processing. Whereas the faster M pathway is 

thought to process the movement and location of objects, the P pathway is often 

associated with the processing of object-based features (Brown & Narayanan, 2009).  

 After V1, cortical processing is again divided into two streams, the dorsal 

“where” stream and the ventral “what” stream (Figure 1.2). Originally, the subcortical P 

pathway was thought to mainly input directly into the cortical ventral visual processing 

stream to the temporal lobe, which plays an important role in object processing. 

Similarly, the M pathway was thought to mainly input into the dorsal stream to the 

parietal lobe, where objects are processed spatially (see Figure 1.2; Brown & Narayanan, 

2009; Haxby et al., 1991). However, this notion has been questioned (Merigan & 

Maunsell, 1993). Specifically, it seems the input to the ventral stream is derived from 

both M and P pathways. Unlike the M and P pathways, the dorsal and ventral streams are 

not entirely segregated. There are a large number of connections between temporal and 
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parietal areas, which allow cross-talk and the integration of the visual percept (Merigan 

& Maunsell, 1993). 

 

 

 
Figure 1.1: The low-level visual pathways from the retina to the primary visual cortex, via optic 

chiasm, pulvinar and LGN (from: Gray’s Anatomy of the Human Body, 20th Edition, 1918) 

 

 

2. The ventral stream: object and scene processing 

 Even though faces are of great importance for social interaction, they are simply 

put nothing but a highly similar category of objects. So a first step towards understanding 

face perception may be to understand object perception. Hence, in the following 
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subchapters, the ventral (‘what’) stream and how it achieves its feat of object processing 

will be examined in more detail.  

 

 

 
 

Figure 1.2: The two main cortical visual pathways. The ventral stream is involved in object 

processing while the dorsal stream is mainly involved in the processing of spatial location. 

(from: http://www.mindcorner.org/2009/12/16/visual-system-how-do-we-see/, correct on 

23.9.10) 

 

2.1 Hierarchical coarse-to-fine organization 

 The canonical picture from the literature on object recognition is that ventral 

bottom-up processing might be organized in a coarse-to-fine or global-to-local manner 

(Menz & Freeman, 2004). Early psychophysical studies were able to show that longer 

stimulus exposure times enabled a more detailed stimulus perception and that global 

features take temporal precedence over local features (Navon, 1977; Reynolds, 1981). 

However, even though visual processing is more complex with longer exposure times, 

even with exposure times as short as 20 ms the visual system is able to perceive the 

general gist of a scene (Thorpe, Fize, & Marlot, 1996). In addition, Thorpe and 

colleagues (1996) posit that complex natural scenes can be classified in less than 150 ms. 
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This rapid visual processing of an abundance of input information, may suggest that 

there is a bottleneck in visual perception (and in information processing in general, see 

for example Marois & Ivanoff, 2005). Before the bottleneck, processing is parallel and 

allows for a great intake of information without loss when more information is taken in. 

The bottleneck is generally thought to be the attentional focus that is eventually 

employed by the visual system to enable more detailed processing of part of the visual 

field, and this attentional processing stage is capacity-limited (Broadbent & Broadbent, 

1987). Any process after the bottleneck is considered high-level processing, and this 

includes recognition and categorization (Li, VanRullen, Koch, & Perona, 2002). 

  

2.2 Coarse-to-fine processing has been challenged 

 Even though the coarse-to-fine principle is widely accepted and seems to be 

correct for early stages of the visual processing pipeline, there have also been numerous 

studies, which challenge this simple processing strategy. For example, Smallman (1995) 

suggested, that coarse-to-fine processing is complemented by a separate fine-to-coarse 

process, starting with sensitivity to edges, simple shapes and orientations and progressing 

to more complex and specific shapes and finally objects. The primary visual cortex V1 

has been shown to contain cells with surrounding receptive fields that are selective to 

different stimulus orientations, movement and movement direction, (simple) shapes and 

edges (light-dark boundaries), and locations (Hubel & Wiesel, 1959). Furthermore they 

show that neighbouring cells, organized in columns, are sensitive to the same or similar 

stimulus orientations. 

Going up the hierarchy of the ventral stream, this information is subsequently 

used to create more complex stimulus representations, which are then either compared 

with stored information from memory and recognized or stored as new memories. In the 

inferotemporal and parietal cortices, many neurons are selective to certain shapes or sizes 

(Murata, Gallese, Luppino, Kaseda, & Sakata, 2000), colours or more complex patterns, 
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like faces, other body parts or common objects (Desimone, 1991). The use of 

microstimulation has established a causal relationship between these neurons and the 

perception of their associated object (Afraz, Kiani, & Esteky, 2006). Which features the 

neurons in these higher areas are sensitive to is largely if not entirely dependent on 

experience and visual learning (Freedman, Riesenhuber, Poggio, & Miller, 2006). It is 

therefore unsurprising that a large number of interconnections exist between bottom-up 

and top-down streams in the brain (Gilbert & Sigman, 2007). 

In addition, there are several studies by Schyns and colleagues, who demonstrate 

that the order of this process can be changed depending on top-down influences rather 

than following a fixed protocol (Oliva & Schyns, 1997; Schyns & Oliva, 1994; Schyns & 

Oliva, 1997). To summarize these studies, they contend that spatial frequency (SF) 

channels, i.e. spatial filters in the visual system, which are tuned to different levels of 

detail in a scene, are flexibly used depending on task demands. In particular, the authors 

conclude that the nature of a categorization task will prompt an observer to process a 

specific set of information within a stimulus, the diagnostic information, which leads to a 

correct categorization (Schyns, Goldstone, & Thibaut, 1998; Schyns & Rodet, 1997). 

The concept of spatial frequencies is widely known to be an important factor in visual 

perception, and the visual system seems to apply filters of several different SF bands to 

visual input (Campbell & Robson, 1968). SFs, like temporal frequencies, measure two-

dimensional periodic signals that can be obtained by a Fourier transformation of any two-

dimensional visual scene. High SFs encode fine-grained information, like sharp edges, 

fine contours, and little details, whereas low SFs encode coarse information, like general 

lighting, shadows, and rough contours. 

 Based on the conclusion that categorization tasks lead to differential processing 

of diagnostic information, Gosselin and Schyns developed their reverse correlation 

technique Bubbles (Gosselin & Schyns, 2001). Bubbles works by randomly sampling the 

stimulus input space with Gaussian apertures. After the experiment, the location of each 
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bubble can be reverse-correlated to behavioural response accuracy, yielding the 

information, which was required and crucial for the task, i.e. that enabled correct 

categorizations. However, response accuracy is only one of the possible response 

functions that the bubble-masked stimulus information can be regressed against. Bubbles 

in conjunction with classification image techniques (Schyns, Petro, & Smith, 2007) or a 

mutual information approach (Schyns, Thut, & Gross, 2011) can reveal sensitivity of 

brain activity to features of a visual scene or face. Bubbles is a central method used to 

study face perception in this thesis and will be explained in detail in the Methods section 

(Chapter II). 

 

2.3 Summary 

 Faces are a category of visual objects. The ventral stream is concerned with 

object, scene and face processing. Numerous studies suggest that feature encoding 

progresses from very basic shapes, orientations and edges in V1 to very specialized 

neurons in the inferior temporal cortex, which are sensitive to specific objects like faces 

and other common objects. However, this simple hierarchical structure has been 

disputed, with other studies suggesting that the visual system applies spatial frequency 

filters flexibly and in response to top-down control. Faces are broadband stimuli; it is 

therefore possible that top-down control influences the processing of diagnostic features. 

This leads to the question of how top-down control is exerted on the visual system and 

what mechanisms it applies. 
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3. How Cognition and Perception Interact: Top-down Influences 

on the Visual System 

 Visual information processing takes place as soon as our eyes are open. 

Sometimes, certain objects are more salient for our visual system than others, depending 

on their stimulus properties, such as size, colour, motion or shape (Koch & Ullman, 

1985). For example, one red flower in the middle of an otherwise green meadow will pop 

out visually (Nothdurft, 1993; Posner, 1980). Automatic visual processing that proceeds 

in one direction from the sensory input to higher level processing is called bottom-up 

processing. Whenever this bottom-up processing is altered or influenced by experience, 

expectation or attention from higher-level brain areas, our brain exerts what is called top-

down control (Corbetta & Shulman, 2002). To use the same example, if someone asks us 

to find a red flower, then we will specifically look for the colour red and the shape and 

size of a flower and these features will become more salient, allowing a faster detection 

(Treisman & Gelade, 1980). Typically, bottom-up and top-down processing strategies 

interact to optimise our perception. We may be consciously looking for a red flower, but 

at the same time, the bright colour red amidst a green background will facilitate our 

search (Dehaene, 1989; Saenz, Buracas, & Boynton, 2003). 

 There are several kinds of top-down influences, such as priming or task (Wiese, 

Schweinberger, & Neumann, 2008), context (Bar, 2003), attention, expectation, or 

hypothesis testing (Gilbert & Sigman, 2007), but it is difficult to sort them into distinct 

categories, as they are overlapping to various degrees. For example, it is almost 

impossible to say whether the expectation for an object to be present in a visual scene is 

different from object-based attention. Hence the following subchapters will focus on two 

well-studied kinds of top-down control: attention and context.  
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3.1 Attention modulates early visual processing 

3.1.1 ‘Units’ of attention and their interactions 

 Visual attention can be divided into different ‘units’: location-based or spatial 

attention, object-based attention and feature-based attention (Kanwisher & Wojciulik, 

2000). Evidence for all three kinds of attention has been provided by numerous studies. 

For example, in a spatial cueing paradigm, Downing (1988) discovered, that perceptual 

sensitivity (as measured by signal to noise ratio d’) to luminance or differences in either 

orientation, form or brightness of a target was enhanced at the target location, but 

dropped quickly with increasing distance from the target location. These results indicate 

that spatial attention lead to an increase of perceptual sensitivity at the attended location. 

Corbetta et al. (1990) found, that, with the same display of stimulus features, selective 

feature-based attention to either one of the features of the same visual display (shape, 

colour, velocity) improved discriminative sensitivity. Furthermore, using PET (positron 

emission tomography), they found that different regions in the extrastriate cortex were 

activated depending on the attended attribute of the visual display. Feature-based 

attention therefore seems to influence both behavioural and physiological measures. 

Another study by O’Craven, Downing and Kanwisher (1999) investigated the interaction 

of feature-based and object-based attention. Their stimuli consisted of an overlay of faces 

and houses, one of them was stationary and the other one moved, while maintaining a 

certain degree of overlap to keep the location constant. Subjects attended to either the 

face, the house or the motion while their fMRI BOLD activity was recorded. When 

subjects attended to faces or houses, the specific object-sensitive areas became activated 

(the fusiform face area, FFA, or the parahippocampal place area, respectively). However, 

when they attended to the motion, both the motion sensitive MT/MST area and the 

object-sensitive areas were activated, suggesting that object-based attention is imperative 

for feature-based attention mechanisms to take place.  
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3.1.2 A neural network for spatial attention 

 Given the different units of attention and their influence on bottom-up processing, 

it stands to reason to look for evidence of their existence and interaction in the structure 

and functional activity of the brain. Most of the research on attention and top-down and 

bottom-up networks in the brain has been done using spatial manipulations of attention. 

Corbetta and Shulman (2002) conducted a meta-analysis on fMRI studies of attention 

networks and were able to differentiate two partially segregated networks that seem to be 

related to bottom-up and top-down attention processing. One network involving the 

dorsal posterior parietal and frontal cortex seems to be related to top-down mechanisms 

like the attentional selection of spatial stimuli and responses. The other network is 

lateralized mainly to the right hemisphere and includes the temporal parietal and ventral 

frontal cortex. This system was mostly active in response to behaviourally relevant, but 

unattended and unexpected stimuli, therefore indicating bottom-up processing. These 

results have since been backed up by more recent studies (Berman & Colby, 2009; 

Bisley, 2011). It is worth mentioning another recent line of research, which proposes that 

top-down facilitation in inferotemporal cortex originates from a fast connection through 

the magnocellular pathway and dorsal stream, which activate parietal and frontal regions 

of the attention network (Laycock, Crewther, & Crewther, 2008; Laycock & Crewther, 

2008; Laycock, Crewther, & Crewther, 2007). This would imply that the magnocellular 

pathway and subsequent dorsal stream could be the primary driver of visual attention and 

processing facilitation. 

 

3.1.3 Feature-based attention as a separate functional unit in the brain 

 In terms of relevance for this thesis, feature-based attention (especially facial 

features) is the primary focus of interest; hence the following paragraph will discuss 

recent evidence for feature-based attention mechanisms in the brain. As mentioned 

before, O’Craven et al. (1999) detected different brain responses involved in either 
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feature- or object-based attention (also see Polk, Drake, Jonides, Smith, & Smith, 2008). 

However, in their study they did not differentiate attention related areas from feature or 

object related areas. Most studies on feature-based attention are relatively recent and 

quite often it has been studied in contrast to spatial attention. The reason for this is that 

the location of a stimulus could be considered to be just another feature, rather than a 

completely different mechanism (Treue & Martinez-Trujillo, 2007), implying that these 

two kinds of attention might rely on very similar mechanisms. Yet, there is evidence that 

they are two functionally independent systems. For example, several studies found that 

attention to different stimulus features (motion and colour) at an attended location 

enhanced the activity of cortical visual areas to the same feature at another unattended 

location (Bichot, Rossi, & Desimone, 2005; Saenz, Buracas, & Boynton, 2002; Saenz et 

al., 2003), whereas Stoppel et al. (2007) found the same effect for motion only, 

suggesting that motion might be biologically more relevant in contrast to colour. In 

addition, Serences and Boynton (2007) were able to show that attention to different 

directions of motion spread across the entire visual field, even to locations that did not 

contain any stimulus. Similarly, feature-based attention enhances the response of 

neuronal subpopulations in V1 to a certain feature, even when the unattended feature 

occupies the same location in the visual field as the attended feature (using orientation as 

feature, T. Liu, Larsson, & Carrasco, 2007). 

 If spatial attention and feature-based attention are functionally independent, we 

could expect them to be anatomically independent as well. As discussed above, the 

spatial attention system seems to be localized in parietal and pre-frontal areas 

(Hopfinger, Buonocore, & Mangun, 2000; Vandenberghe, Gitelman, Parrish, & 

Mesulam, 2001). Several studies suggest that feature-based attention is located in the 

same anatomical structures as spatial attention (Shulman et al., 1999; Weissman, 

Mangun, & Woldorff, 2002; Wojciulik & Kanwisher, 1999). However, despite the fact 

that they seem to be located in the same brain regions, these regions respond 
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differentially depending on which function is exerted. For example, Giesbrecht et al. 

(2003) found, that feature-based attention is controlled by the same fronto-parietal 

network as spatial attention, but with different subregions being more active for spatial 

than non-spatial attention (when comparing location to colour cues). Egner et al. (2008) 

found different peaks of activation for either spatial or feature-based attention, but these 

effects were not significant. Instead, examining additive integration of search 

information, they found independent representations of spatial and feature-based search 

information in the intraparietal sulcus (IPS), the frontal eye fields (FEF), the inferior 

frontal cortex/anterior insula (IFC/AI), and the presupplementary motor area/anterior 

cingulate cortex (preSMA/ACC), all part of the frontoparietal network of attention. 

Finally, they discovered lateralized and localized effects for spatial cue information and 

spatially global effects for feature-based cue information in the IPS. These results 

provide evidence that even though spatial and feature-based attention are represented in 

the same anatomical regions, these representations are functionally independent 

mechanisms. A more recent study emphasizes the importance of the posterior parietal 

cortex as common hub for attention shifts, with different subpopulations of neurons 

being responsible for attention shifts to either features or location (Greenberg, Esterman, 

Wilson, Serences, & Yantis, 2010). 

 

3.1.4 The timing of attentional top-down control 

 The next question one needs to ask is, at which temporal and spatial point during 

visual processing attentional mechanisms start modulating the bottom-up visual 

processing stream. There are two hypotheses concerning the timing of top-down control: 

the early selection view and the late selection view. As the name suggests, the early 

selection view (Broadbent, 1982) postulates that the bottom-up stream only provides a 

very basic perceptual input and that attention is imperative early along the processing 

timeline to allow for more detailed perceptual processing. In contrast, the late selection 
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view (Deutsch & Deutsch, 1963) assumes that all visual information is processed to a 

very high level and only then a subset of the scene is selectively attended. What both 

views have in common is that visual processing consists of two main stages: a low-level 

pre-attentive stage and a high-level attentive stage. According to Stigchel et al. (2009), 

the pre-attentive stage allows for processing of the entire visual scene, whereas attentive 

processing has limited capacity and therefore can only focus on part of the visual field. 

Treisman and Gelade (1980) proposed in their Feature Integration Theory (FIT), that 

bottom-up processing results in a local salience map of the visual field, which guides 

attentional feature selection. However, later studies proved that this is not entirely true 

and that attention can enhance the salience of certain features in advance (Wolfe, Cave, 

& Franzel, 1989). In addition, Wolfe shows that a visual stimulus, which shares a salient 

feature with a visual search target, will attract more attention than other irrelevant 

stimuli. Reflecting on the earlier example, when someone is looking for a red flower in 

the grass, then the colour red will become salient and this will indeed influence how 

quickly we find the flower. At the same time, any other red object will also capture our 

attention more easily, for example, instead of to the red flower our attention might first 

be drawn to a red mushroom or a red butterfly (Wolfe et al., 1989). So it seems that the 

term ‘pre-attentive’ for this early visual processing stage might be inappropriate after all. 

 The timing of the influence of attention can be investigated using 

electrophysiological techniques, which benefit form a high temporal resolution, or 

single-cell recording. A recent study recording single cell activity in the monkey 

thalamus, was able to show a clear modulation in the LGN and the thalamic reticular 

nucleus (TRN) less than 50 ms after stimulus onset, caused by shifts of spatial attention 

(McAlonan, Cavanaugh, & Wurtz, 2008; Rees, 2009), suggesting that even the low-level 

visual pathway is influenced by attention. ERP components sensitive to spatial attention 

have first been identified by Eason et al. (1969), Groves and Eason (1969) and Van 

Voorhis and Hillyard (1977). Specifically they identified two early ERP components, the 
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P1 (70-130 ms) and the N1 (150-200 ms), which had greater amplitudes when the 

location of a stimulus was attended than when it was not. Even though studies recording 

single-cell responses in monkeys found clear evidence of early top-down modulation of 

firing rates in V1 (Gilbert & Sigman, 2007; Roelfsema, 2005), studies in humans suggest 

that the P1 and N1 components originate from higher visual areas (Heinze et al., 1994; 

Rossion, de Gelder, Pourtois, Guèrit, & Weiskrantz, 2000; Woldorff et al., 2002). This 

view is supported by Hopf and Mangun (2000), who found the same occipito-parietal P1 

and parietal N1 to attended vs. unattended stimuli, suggesting they originate in 

extrastriate regions (also see J.-M. Hopf et al., 2000, and Schoenfeld et al., 2007). At the 

same time, however, while examining the effects of attention-directing cues separately, 

they discovered top-down spatial attention modulations from 200 - 400 ms over occipito-

parietal cortex. A slightly later (300 - 500 ms) frontal attention-related ERP component 

was observed as well. These latter two components correspond closely to the attention 

network identified by fMRI studies (see above, i.e. Egner et al., 2008; Giesbrecht et al., 

2003). In order to investigate the interaction and timing of attention networks further, a 

recent study by Zanto et al. (2010) used both fMRI, EEG source analysis and phase 

coherence to perform a functional connectivity analysis while manipulating feature-based 

attention (colour vs. motion). They discovered that attention to colour was highly 

dependent on prefrontal areas, while attention to motion was connected to both prefrontal 

and parietal areas. The only area sensitive to both colour and motion processes was the 

right inferior frontal junction (IFJ). This was supported by the EEG source analysis. The 

source analysis also suggested that attention-related modulations took place before 200 

ms after stimulus onset. They also proposed that top-down modulation, especially of 

colour processing, between IFJ and visual cortices were induced by long-distance alpha 

phase coherence (also compare Grent-'t-Jong & Woldorff, 2007, for another suggestion 

of the mechanism and timing of top-down modulation). 
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 Despite these findings, the question of when and how attention can modulate the 

bottom-up visual processing stream, how salience is determined and how bottom-up and 

top-down influences interact is still thoroughly debated. Comprehensive reviews about 

theories of attention, early and late selection, the limits of top-down attentional control 

and models of top-down and bottom-up interactions can be found in Stigchel et al. (2009) 

and Walther and Koch (2007). In fact, it has also been suggested, that when reevaluating 

older studies with a single parametric model, their results can be reconciled by an 

interaction and combination of attentional mechanisms (Boynton, 2009). 

 

3.1.5 Summary 

 Attention can be divided into three functional units: spatial, object-based and 

feature-based attention. There is empirical evidence for all three units. Of these three, 

feature-based attention is of the highest relevance for this thesis, as it links directly to the 

processing of facial features. Using fMRI, evidence suggests that feature-based and 

spatial attention, even though localized in the same fronto-parietal network in the brain, 

are functionally separate units, operating independently from each other. The issue of the 

timing of top-down control has been addressed with various experimental manipulations 

and electrophysiological evidence suggests that top-down ERP modulations can start in 

extrastriate visual regions as early as 70 ms after stimulus onset, while single-cell 

recordings revealed top-down modulations in the LGN and V1 in monkeys before 50 ms. 

However, these very early attention modulations were elicited by shifts in spatial 

attention only, so it still stands to debate whether shifts of feature-based attention within 

a face would elicit the same response. 

 

3.2 Context-based top-down modulations on visual bottom-up processing 

  In a natural visual scene, objects rarely occur on their own; they are usually 

surrounded by an environment that creates a certain context. Imagine for example an 
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office scene. You would expect to see – among other things – a computer, a desk, a chair, 

pens, and papers. The knowledge of what to expect in an office scene will enable the 

visual system to detect and process these objects faster and more reliably than when they 

appear out of context and this processing advantage is due to contextual expectations 

(e.g. Bar & Aminoff, 2003). These expectations do not only involve semantic context 

(the probability of an object to be in a certain scene), but also physical relations between 

objects such as relative size, position in the scene, support (e.g. a table supports a 

computer screen) or interposition (e.g. a solid object in front of another one will cover 

the other object and not let it shine through). Biederman et al. (1982) examined these five 

classes of relations in both a target detection task and a relation violation detection task. 

They found that targets undergoing one or more violations had higher miss rates and 

longer reaction times, and this effect was at least as strong for the semantic violations as 

for the physical violations, suggesting that semantic expectations operated as quickly as 

physical ones. Similar results were obtained for the violation detection task. Numerous 

studies have confirmed and corroborated context effects (Auckland, Cave, & Donnelly, 

2007; Brockmole, Castelhano, & Henderson, 2006; Davenport & Potter, 2004; Gordon, 

2004; Palmer, 1975; Torralba, 2003; however see Hollingworth & Henderson (1998) for 

a discussion on response bias). It is interesting to note that missing context can be 

inferred by the visual system in V1 as measured with fMRI (F. W. Smith & Muckli, 

2010). However, due to the low temporal resolution of fMRI, it is unclear how early 

these effects occur. 

 Another form of context-based top-down processing advantage was identified by 

Bar (2003). He postulates that one single object can already initiate top-down facilitation 

of its own recognition, by activating certain context frames. Specifically, this mechanism 

is initiated during bottom-up processing, when a partially processed version of the input 

(‘context frame’) is sent to the prefrontal cortex (PFC), where certain expectations as to 

the object’s identity are activated (‘initial guess’) and immediately sent back to the 
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temporal cortex, where they are integrated with the bottom-up analysis of the ventral 

stream to facilitate object recognition. Bar predicts, that early activity in the prefrontal 

cortex will be determined by the low spatial frequency (LF) content of the image, 

because LF are processed faster via the magnocellular pathway and are therefore a likely 

candidate for the activation of ‘initial guesses’ (Gronau, Neta, & Bar, 2007; Luu et al., 

2010). An even more detailed model, taking into account both local and global features 

of a scene, is provided by Torralba et al. (2006). In fact, their contextual guidance model 

brings context and attention together by showing that context directly influences the 

allocation of attention. Their model postulates two parallel processing pathways, one for 

global and one for local feature processing. The local feature pathway is part of bottom-

up processing (saliency), while the global feature pathway is driven by context, which in 

turn activates top-down processes, that guide where and what the observer fixates and 

attends. According to Oliva and Torralba (2007), the context of a scene can efficiently be 

processed by the statistical summary of its elements, using either texture-based models or 

spatial layout models (Fei-Fei & Perona, 2005; Lazebnik, Schmid, & Ponce, 2006; 

Torralba, 2003; Torralba & Oliva, 2003). 

 

3.2.1 Summary 

 Objects usually occur within a context and it has been found that this context can 

facilitate visual perception. Several models have attempted to explain this mechanism 

and how it interacts with attention. The research on top-down control in the visual system 

generally suggests that the recognition of objects and scenes is dealt with by a highly 

complicated system, that is not only driven by the bottom-up visual input, but also by 

different mechanisms of executive control, that facilitate and speed up the process. The 

following subchapter will close the circle and discuss face perception networks and 

possible bottom-up and top-down interactions. 
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4. Face processing: the Ins and Outs 

 As stated before, faces are a highly homogenous and frequent category of objects, 

and all healthy humans are highly skilled in perceiving subtle differences in a face’s 

appearance. These two attributes of faces make them ideal candidates to study object 

perception, as they keep stimulus variance low, but subject performance high. Due to 

their significance in social interactions, it has been suggested that faces have a special 

processing status in the brain (Ellis, 1975). From infancy onwards, faces are probably 

among the most useful and most preferred pieces of information in our environment 

(Johnson, Dziurawiec, Ellis, & Morton, 1991). Evidence suggests that a cortical 

specialization for faces gradually emerges over childhood and is only fully developed in 

adults (Cohen Kadosh & Johnson, 2007). This specialization leads to a fast-acting 

attention bias of face processing, that can be overcome to a certain extent by top-down 

control, but remnants of it remain nonetheless (Bindemann, Burton, Langton, 

Schweinberger, & Doherty, 2007; Langton, Law, Burton, & Schweinberger, 2008). Due 

to this specialization, face perception has often been thought to be different from normal 

object perception, but this notion is highly debated (Diamond & Carey, 1986; Ellis, 

1975; Farah, Wilson, Drain, & Tanaka, 1998; McKone, Kanwisher, & Duchaine, 2007; 

Parr, Dove, & Hopkins, 1998; Tovee, 1998). The following subchapters will summarize 

the most important theories and findings about face perception and how these findings 

relate to the subject of this thesis: to explore the impact of top-down control on early 

facial feature processing. 

 

4.1 Models of Face Perception 

 Bruce and Young (1986) captured the then existing, but fairly random and 

scattered scientific knowledge about face perception in a theoretical framework. First 

they identified seven kinds of information ‘codes’ that are derived from faces: pictorial, 

structural, visually derived semantic, identity-specific semantic, name, expression and 
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facial speech codes. Then they described how these different codes are generated and 

processed by functional units. All codes are important for face processing, but essential 

for every-day recognition of faces and their identity are the structural code, the visually 

derived semantic code and the identity-specific semantic code. Structural codes make 

sure that we recognise familiar faces from different visual angles and under various 

lighting conditions or partial occlusion. Visually derived semantic codes are attributes of 

a person that can be more or less easily obtained from almost any face, whether familiar 

or unfamiliar, such as gender, ethnic group or approximate age. In contrast, identity-

specific semantic codes encode only information specific to one person and can often not 

be derived easily just by looking at a face, such as occupation, social circle, marital status 

or hobbies. Other codes, which are not essential for person recognition, are expression 

and facial speech codes. These codes are important for social interaction regardless of 

whether we know the person we interact with or not. The first stage in Bruce and 

Young’s functional model is structural encoding (Figure 1.3). Any view-centred 

descriptions are encoded and passed on to expression and facial speech analysis units, as 

well as being input to a directed visual processing unit. View-independent descriptions 

(i.e. structural codes) are passed on to face recognition units (and again the directed 

visual processing unit), which in turn interact with person identity nodes (one for each 

person) and name generation. All functional units input into and interact with the 

cognitive system, which acts as the final hub to integrate the results of the face 

perception and recognition system. This cognitive-perceptual framework (Figure 1.3) has 

become a widely accepted norm and is supported by most studies on face recognition and 

perception (Calder & Young, 2005). 
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Figure 1.3: Bruce and Young’s functional model of face perception (1986). The first stage is the 

structural encoding stage. View-centred descriptions are fed into different pathways than 

expression-independent descriptions. Finally, all processes feed their results into the cognitive 

system (figure from Bruce and Young, 1986). 

 

 A more recent model of face perception was suggested by Haxby, Hoffman and 

Gobbini (2000). Their model incorporates findings from functional neuroimaging and 

postulates a neural network for face processing, which consists of two parts, the core 
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system and the extended system (Figure 1.4). The core system contains three bilateral 

brain structures, the inferior occipital gyrus/occipital face area (OFA), the fusiform 

gyrus/fusiform face are (FFA) and the superior temporal sulcus (STS). The authors 

contend, that each of these structures has a different function: the inferior occipital gyrus 

is responsible for the early processing of facial features, the fusiform gyrus processes 

invariant aspects of faces, such as identity or gender, and the superior temporal sulcus 

processes the changeable aspects of faces, such as facial expressions (Arsalidou, Morris, 

& Taylor, 2011; Haxby et al., 2000; Kanwisher, McDermott, & Chun, 1997; Sergent, 

Ohta, & Macdonald, 1992). All three regions interact with one other and the latter two 

also send and receive input to the extended system. Recent research has partly 

corroborated, but also questioned these claims. Pitcher et al. (2011) and Kadosh et al. 

(2011) gathered evidence for the OFA as an initial feature processor: it is sensitive to the 

mouth, the eyes and the nose and it is essential for accurate face perception (Dricot, 

Sorger, Schiltz, Goebel, & Rossion, 2008). Equally in congruence with the model is the 

finding that the OFA and FFA were sensitive to spatial relations in faces, whereas the 

STS was not (Rhodes, Michie, Hughes, & Byatt, 2009), implying that these stable spatial 

relations contribute to identity recognition. In contrast to Haxby et al.’s predictions, some 

studies found the FFA to be sensitive to expressions as well (Halgren, Raij, Marinkovic, 

Jousmaki, & Hari, 2000; Lewis et al., 2003). The STS has consistently been shown to 

respond to and differentiate between facial expressions (Furl, van Rijsbergen, Treves, 

Friston, & Dolan, 2007; Said, Moore, Engell, Todorov, & Haxby, 2010; Said, Moore, 

Norman, Haxby, & Todorov, 2010; Simon, Craig, Miltner, & Rainville, 2006). However, 

researchers from other areas have claimed the STS to be essential for their studied 

behaviour as well, and ample evidence confirms the notion that the STS is not only facial 

expression specific, but also supports different cognitive functions depending on the 

task-dependent network connections involved (Allison, Puce, & McCarthy, 2000; Hein 

& Knight, 2008). 



 

 

34 

 

Figure 1.4: Haxby et al.’s anatomical and functional model of face perception (2000). The model 

assumes a core system and an extended system. The core system consists of areas in the visual 

ventral stream, whereas the extended system contains brain structures located in several different 

regions of the brain, that also belong to different functional systems (figure from Haxby et al., 

2000). 

 

 The extended system of Haxby et al.’s model (2000) consists of the intraparietal 

sulcus (Cowan, 2011), the auditory cortex (Price, 2010), the amygdala, insula and the 

limbic system (Adolphs, 1999, 2002a, 2002b; Dolan & Vuilleumier, 2003), and the 

anterior temporal cortex (Gainotti, 2007). The amygdala in particular is thought to be 

involved in the emotional evaluation of faces and its numerous connections to both the 

core system of face processing, the primary visual cortex and prefrontal cortex areas 

make it a likely candidate for top-down influence on early visual processing (Palermo & 

Rhodes, 2007; Yamasaki, LaBar, & McCarthy, 2002). 

 Just like Bruce and Young’s model, Haxby et al.’s model assumes a divergent 

processing of changeable (STS, view-centred descriptions) and invariant (FFA, structural 

code) aspects of faces. Specifically, this would suggest that expression and identity of a 

face are processed “by functionally and neurologically independent systems” (Calder & 

Young, 2005). However, Calder and Young (2005) review the evidence for and against 
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independence of expression and identity processing and conclude that there is no study 

giving conclusive evidence for complete separation of these changeable and invariant 

aspects of faces. Instead, the evidence seems to support a relative segregation, with faces 

being processed by the same neural structures, but on different stimulus dimensions. As 

mechanism of encoding they suggest a PCA framework, which can extract both identity 

and expression as factors from a set of faces. Along the same lines, Vuilleumier and 

Pourtois (2007) review the evidence from EEG and fMRI studies and conclude, that 

emotional facial expression processing is too widely distributed in the brain to be only 

processed by the STS. They suggest, that the FFA is sensitive to both emotional 

expression and identity, refuting the notion that these two processes are entirely 

independent. Further details about the dynamics of face processing can be found in 

several comprehensive reviews (Dekowska, Kuniecki, & Jaśkowski, 2008; Gobbini & 

Haxby, 2007; Palermo & Rhodes, 2007; Posamentier & Abdi, 2003; Vuilleumier & 

Pourtois, 2007). 

 This thesis compares gender categorization (an invariant face dimension) with 

expression categorization. Although a solution to the question of differential processing 

streams for invariant and changeable aspects is not the primary aim of this thesis, the 

results will later be discussed in this theoretical context. 

 

4.2 EEG and MEG research reveals face-preferential brain responses 

 In the field of face perception, one of the major research areas has focussed on 

studies with EEG and event-related potentials (ERPs) and MEG and event-related fields 

(ERFs). In contrast to fMRI, these two methods allow an analysis of brain activity on a 

very high temporal resolution and complement findings from fMRI studies about a face 

network in the temporal domain.  

 One particular EEG brain event is a negative ERP component which occurs ~170 

ms after stimulus onset over occipito-parietal areas, the N170. The N170 is one of the 
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earliest and probably the most prominent face preferential potential (Rousselet & Pernet, 

2011) and is therefore of special interest for the study of the visual system (Bötzel, 

Schulze, & Stodieck, 1995). Bentin and colleagues (1996) found that the N170 amplitude 

for face stimuli is significantly larger compared to non-face stimuli like cars or 

butterflies. This finding has been reproduced in numerous studies (Eimer, 2000; Rossion, 

Gauthier, et al., 2000). Research on face processing with MEG has yielded similar results 

to EEG. Analogous to the N170, a face-preferential M170 has been identified (Kloth et 

al., 2006; J. Liu, Harris, & Kanwisher, 2002; J. Liu, Higuchi, Marantz, & Kanwisher, 

2000; Lueschow et al., 2004; Tanskanen, Nasanen, Montez, Paallysaho, & Hari, 2005).  

 It should be noted, that while probably being the most researched ERP and ERF 

components, the N170 and M170 are neither the only nor the earliest face-sensitive 

modulations of surface brain activity. In fact, some studies indicate a face-specific 

activation difference over extrastriate visual areas as early as 100 ms after stimulus onset 

(J. Liu et al., 2002; Pegna, Khateb, Michel, & Landis, 2004). Other studies identified 

early (100 – 150 ms) activity modulations in frontal areas in response to different facial 

expressions, which could be connected to top-down control (Eimer & Holmes, 2002; 

Holmes, Winston, & Eimer, 2005; Streit et al., 2003). Bentin and Deouell (2000) 

identified a later fronto-central negativity, the N400, which was sensitive to familiarity of 

the faces. They suggested that this component was connected to the retrieval of 

semantic/identity information.  

 Measuring brain surface activity with EEG and MEG reveals a multitude of 

modulations in response to faces, however, in order to make inferences about involved 

brain regions and a face perception network, it is necessary to estimate activity sources 

from surface data. Evidence from MEG source localization data suggests that the M170 

picks up activity in and around the FFA and/or the middle occipital gyrus (Herrmann, 

Ehlis, Muehlberger, & Fallgatter, 2005; Japee, Crocker, Carver, Pessoa, & Ungerleider, 

2009; Schweinberger, Kaufmann, Moratti, Keil, & Burton, 2007; Taylor, Bayless, Mills, 



 

 

37 

& Pang, 2011; Taylor, Mills, Smith, & Pang, 2008). This is confirmed by some EEG 

source localization studies (Deffke et al., 2007; Itier, Herdman, George, Cheyne, & 

Taylor, 2006; Jemel, Coutya, Langer, & Roy, 2009; Pizzagalli et al., 2002; Rossion, 

Joyce, Cottrell, & Tarr, 2003) and one fMRI/EEG study (Corrigan et al., 2009). 

However, with EEG data the results are more varied. Some studies also find the STS as 

an activity generator of the N170 (Eryilmaz, Duru, Parlak, Ademoglu, & Demiralp, 

2007; Itier & Taylor, 2004). Due to this variation in results and the different methods and 

tasks applied to obtain them, the question arises whether the elements of the core system 

might be task-dependent. A recent fMRI study confirmed this idea (Cohen Kadosh, 

Henson, Cohen Kadosh, Johnson, & Dick, 2010).  

 

4.3 Top-down influences on the N170 and M170 and the core system 

 Cohen Kadosh et al.’s results (2010) suggest task-dependent activity in the 

different components of the core system. By manipulating explicit task demands, 

attention is directed to different aspects of visual processing, and it therefore constitutes a 

kind of top-down control (Gilbert & Sigman, 2007).  

 N170 and M170 research on task-dependent processing paints an inconsistent 

picture. Several studies found no top-down effects on latencies or amplitudes of the 

N170 or M170 peak (Carmel & Bentin, 2002; Cauquil, Edmonds, & Taylor, 2000; Furey 

et al., 2006; Guillaume & Tiberghien, 2001; Lueschow et al., 2004; Philiastides & Sajda, 

2006; Rousselet, Gaspar, Wieczorek, & Pernet, in press; Rousselet, Husk, Bennett, & 

Sekuler, 2007), suggesting that there is no top-down modulation at this stage of face 

processing. Specifically, they argue and present supporting evidence, that the early face 

selective event-related potential – the N170 – which is said to be a function of structural 

encoding (Bentin et al., 1996), is purely a basic visual encoding process and cognitively 

impenetrable (Pylyshyn, 1999). 
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 In contrast however, several other studies have found attention/task effects on the 

N170 or M170, by using various manipulations like stimulus discriminability 

(Sreenivasan, Goldstein, Lustig, Rivas, & Jha, 2009), perceptual load (Mohamed, 

Neumann, & Schweinberger, 2009), task demands (Okazaki, Abrahamyan, Stevens, & 

Ioannides, 2008; Wronka & Walentowska, 2011) and spatial attention (Crist, Wu, Karp, 

& Woldorff, 2008; Eimer, Holmes, & McGlone, 2003 2003; Holmes, Vuilleumier, & 

Eimer, 2003), casting doubts on the postulated top-down independence of faces. These 

findings are supported by neuroimaging studies with functional MRI, which reported 

activity modulations by attention in the FFA (Wojciulik, Kanwisher, & Driver, 1998), 

OFA and FFA (Chiu, Esterman, Han, Rosen, & Yantis, 2011) and OFA, FFA and STS 

(Cohen Kadosh et al., 2010). As stated earlier, visual bottom-up processing in general is 

under strong influence of top-down control at very early stages (Eason et al., 1969; J. M. 

Hopf & Mangun, 2000; McAlonan et al., 2008), so it would be surprising, if early face 

processing didn’t show any cognitive penetrability. It is possible that these contrasting 

findings are caused by methodological issues. First, ERPs and ERFs are averages of 

brain signals, so the potentially useful single-trial variance of brain activity is likely to be 

neglected. Secondly, while all ERP/ERF and fMRI experiments are cleverly designed to 

link brain activity to a very specific cognitive process or brain region, most of them do 

not directly link the observed activity to the processed visual information. As mentioned 

before, one way to link visual information with behavioural and brain activity is Bubbles 

(Gosselin & Schyns, 2001). 

 

4.4 How Bubbles can elucidate the processing of faces 

 Bubbles (Gosselin & Schyns, 2001) can be used to assess crucial and diagnostic 

visual information, even distinguishing between SF bands, by applying classification 

image techniques. Using Bubbles, Schyns et al. (2003) investigated further into the 

nature of the N170. By reverse-correlating the bubble-masks for each trial to the 
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respective N170 single trial dipole amplitude, they found that more negative amplitudes 

are correlated to the eyes of a face suggesting that the N170 responds selectively to the 

eyes irrespective of task demands. Extending the analysis of the same data, Smith and 

colleagues (2004) found, that the P300, an ERP component thought to be related to 

“what” categorizations (Goodale & Milner, 1992), was highly correlated with features 

that drive categorization and was therefore sensitive to task demands. Looking at the 

EEG signal more closely, per electrode and time point within a trial, they could also 

show that occipitotemporal electrodes processed the respective contralateral eye at the 

time window of the N170, again irrespective of task demands. A feature-driven analysis 

with feature templates confirmed these results, both for first- and second order feature 

relations. 

 Smith et al. (2004) applied Bubbles to a facial expression categorization task for 

the first time. Examining the face as an expression transmitter and the brain as an 

expression decoder, they provided evidence that both the transmitting and the receiving 

ends work together to decorrelate the signal and minimize categorization errors. 

Categorization of facial expressions is therefore optimized by both the face as a 

transmitter as well as the brain as a decoder.  

 The question of how this decoding process works is addressed more closely in an 

EEG study by Schyns, Petro, & Smith (2007). Subjects performed an expression 

categorization task for the six basic expressions plus neutral, while their EEG was 

recorded. The authors showed that diagnostic facial information modulated 

categorization accuracy and EEG voltage, with SF bands being used flexibly depending 

on task demands. In addition, results showed that the N170 integrated these facial 

features over time, starting at the eyes around 50 ms prior to the N170 peak and, moving 

downwards in the face, ending with the diagnostic features for a given expression at the 

peak of the N170. Here, the N170 clearly distinguishes between expressions by 

processing expression-specific information. They reasoned that the N170 reflects a 
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cognitive process, that is both automatic and goal-directed – automatic in that it always 

starts with the eyes and proceeds down the face, goal-directed (and top-down driven) in 

that it stops as soon as the information relevant for the correct categorization has been 

processed. These results have been corroborated with further analysis in Schyns et al. 

(2009). Again, using the same data set, van Rijsbergen and Schyns (2009) analyzed a 

longer time window of facial feature processing showing that after the N170, 

categorization specific information was trimmed down and even more task- and 

expression-specific. Furthermore, two studies have been published using Bubbles in 

conjunction with fMRI (F. W. Smith et al., 2008) and MEG (M. L. Smith, Fries, 

Gosselin, Goebel, & Schyns, 2009). Smith et al. (2008) were able to identify brain 

regions specifically sensitive to either the mouth or the eyes in either fearful or happy 

faces, identifying a widespread network of 18 feature-sensitive brain regions. Smith et al. 

(2009) examined feature-sensitivity in MEG sources for the eyes and the mouth in early 

face processing in two different categorization tasks (gender and expressiveness). 

Starting at 90 ms with sensitivity to isolated features, complexity of feature conjunctions 

increased with time and reached a maximum of information sensitivity with the M170. 

However, task effects in feature sensitivity were only observed at later stages (250 – 400 

ms). This contradicts the results of Schyns et al. (2007) who observed a top-down 

influence on expression processing during the N170. 

 

4.5 Summary 

 Face perception has been explained with different models, the two most 

influential of which both agree that early face processing can be divided into the 

processing of invariant and changeable features. Haxby et al.’s model (2000) identifies a 

neural core system in the brain, with the OFA and FFA being sensitive to invariant and 

the STS to changeable facial characteristics. Evidence for this is contradicting and the 

emergent picture tends to support a task-dependent involvement of these brain structures 
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in face processing. Research on N170, M170 and fMRI data further corroborates the top-

down influence on face processing, however, especially with highly time-resolved EEG 

and MEG data there is still some controversy. The reverse-correlation technique Bubbles 

has proven to be an effective method to study sensitivity to information in several 

different measures of brain activity (EEG, MEG, fMRI). Facial feature sensitivity 

correlations with EEG and MEG data have provided contradicting evidence of top-down 

control on feature processing during the N170 and M170.  

 

 

5. Hypotheses 

 This thesis aims to resolve the issue of top-down influences on the N170 and 

M170 by asking six observers to perform two different face categorization tasks (Gender 

and Expression) on the same set of male and female faces, each displaying six possible 

expressions plus neutral. In both tasks, the stimulus set was the same, but observers were 

required to focus their attention to different task-relevant features of the faces, directly 

manipulating their feature-based attention. In Gender they would focus on features 

required to accurately resolve gender categorizations and in Expression they would focus 

on expressive features. By using the same stimulus set comparability across tasks was 

ensured and it was possible to attribute any information processing differences between 

the two tasks to top-down modulations. 

 I used Bubbles (Gosselin & Schyns, 2001) to model the information subtending 

behavioural decision and dynamical stimulus processing in the brain. On each trial of the 

experiment, Bubbles randomly sampled information from the input face. Across trials, I 

used Classification Image techniques and Mutual Information analyses with behavioural 

and brain measurements to estimate the facial features required for correct 

categorizations and their processing in the brain (using a single electrode approach with 

EEG and a source-based approach with MEG). Additional analyses were carried out on 
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single-trial voxel activity using a mutual information approach (Schyns et al., 2011). If 

the N170 or M170 mark a divergence of feature processing that is sensitive to the 

behavioural task, then the N170 and M170 should integrate the diagnostic facial features 

of Gender, irrespective of those representing the expression of the same stimulus. Vice 

versa, in the Expression task I would expect an expression-specific integration of facial 

features that corresponds to expression-diagnostic features. Given that the original 

stimulus set is identical in both tasks, divergence of feature processing along the N170 

and M170 time courses in either EEG sensors or MEG sources, would conclusively 

demonstrate a top-down, task-dependent influence on the N170 and M170 and thereby 

specify the timing and character of this influence. 
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__________________________________________________________________________________________________________ 

II. Methods: Techniques and Experimental Procedures 

 

 To study face perception, I made use of two non-invasive neuroimaging 

techniques, EEG and MEG. This chapter will describe in detail the principles and 

workings of each technique. Furthermore, methodologies common to both studies 

presented in this thesis will be explained. 

 

 

1. Electroencephalography: What is measured and how? 

 EEG is a non-invasive measure of electrical brain activity, recorded by placing 

electrodes at different locations on the scalp. The first human EEG recordings were 

conducted by Hans Berger between 1924 and 1931, during which time period he 

discovered nearly all main EEG findings regarding major cerebral diseases (including 

epilepsy) and EEG alterations in normal subjects during attention, sleep and narcosis 

(Berger, 1929; R. Jung & Berger, 1979). Since then, the technique has been much 

improved and standardized. The most commonly used electrodes are Ag/AgCl 

electrodes, because of their low resistance for DC and low frequency components. In 

addition, they produce very stable electrode potentials, which are fairly resistant to 

electrode movement artifacts (Kamp, Pfurtschneller, Edlinger, & Lopes da Silva, 2005). 

Whereas Berger only used two electrodes, one in the front and one in the back of the 

head, nowadays there is a positioning system in place that allows a comparable and 

standardised approach to EEG recording and analysis all over the world. The 

International 10-20 system (Jasper, 1958) specifies standard electrode positions in 

relation to fixed markers of the skull (the nasion just above the nose and the inion, a 

marked bony bump above the neck). It provides the basis for most commercial EEG 

systems, which usually contain more than the original 21 electrodes. Advanced technical 
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possibilities provide for anything between 16 to over 300 electrodes, which are usually 

incorporated into electrode caps or nets. These caps/nets allow a fast, easy and 

standardized measurement of EEG activity for most head sizes (Niedermeyer & Lopes da 

Silva, 2005). 

 So, what is measured by the EEG exactly? In a recent review, Kirschstein and 

Koehling (2009) summarized old and new findings: the EEG registers neuronal activity 

within the brain. This activity reflects changes in the resting membrane potential relative 

to the extracellular space. These changes in membrane potentials are generally seen as 

action potentials (APs), which are the largest potential changes that occur in neurons 

intracellularly. However, extracellularly these potentials are much weaker and only last 

about 1 ms and thus are too short to sum up sufficiently to produce an EEG signal, which 

is registered on the scalp. The actual source of the EEG, Kirschstein and Koehling state, 

comes from cortical pyramidal cells, which form synapses at their dendrites. At these 

synapses, neuronal activity is transferred by a release of neurotransmitters. The activity is 

then integrated at the postsynaptic membrane and – if the depolarization reaches a certain 

threshold – elicits a postsynaptic potential that lasts up to several tens of milliseconds 

and can be recorded on the scalp. Depending on the synapse and neurotransmitter 

involved, this potential can be excitatory (Excitatory Postsynaptic Potential – EPSP) or 

inhibitory (IPSP). Due to charge carrier dynamics, a cortical EPSP from superficial gyri 

is usually reflected as negativity in the EEG, whereas an IPSP in superficial gyri is 

reflected as positivity. This is probably why the amplitude scale in graphs displaying 

EEG signals is often reversed, displaying excitatory potential changes upwards 

(Kirschstein & Koehling, 2009). However, for cortical sulci or slightly deeper sources, 

this pattern is usually reversed and potential amplitudes can be attenuated. 

 Finally, it is important to note that EEG always measures the difference between 

two electrodes. This means that one or more reference electrodes have to be placed at a 

strategic location on or close to the scalp. The reference electrodes should be in a 
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location that is unlikely to pick up brain activity, but they should still be somewhat 

affected by the same general noise as the EEG electrodes, e.g. by eye blinks or other 

muscle artifacts or environmental noise. These electrodes can – for example – be placed 

on the earlobes, the tip of the nose or the mastoids (the bony structures right behind the 

ear; however see Van Petten & Kutas, 1988, on the disadvantages of two reference 

electrodes). Another method is to average the activity of all electrodes and use this signal 

as a reference (see Nunez & Srinivasan, 2006, for a discussion of the reference issue). 

The kind of reference used can have quite an effect on the EEG signal, so it is important 

to use the same reference for different experiments to ensure comparability. In addition, a 

ground electrode is placed among the recording electrodes, which is used as a reference 

for the amplifier. All information in this paragraph can be found in Niedermeyer & 

Lopes da Silva, (2005). 

 

 

2. Magnetoencephalography: What is measured and how? 

 MEG is – like EEG – a non-invasive measure of brain activity; however, it 

measures the very weak magnetic field changes, which arise from neuronal activity. In 

analogy to EEG, MEG picks up the magnetic fields of pyramidal neurons when a 

postsynaptic potential is generated and behaves as a “current dipole”. While EEG is 

mostly – but not exclusively – sensitive to currents perpendicular or radial to the scalp, 

MEG is sensitive to tangential currents only, as radial currents do not generate a 

magnetic field outside the head. Hence, MEG and EEG can be seen as complementary 

methods (Lopes da Silva, 2010). 

 Cohen (1968) pioneered in the development of MEG, but only recent advances in 

cooling techniques and the ability to use high-density sensor-grids have made MEG 

recordings useful, practicable, and affordable. MEG sensors are based on 

superconductors – materials that lose electrical resistance when cooled down below a 
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critical temperature. The sensors used – Superconducting Quantum Interference Devices 

(SQUIDs) – are chosen for their very high sensitivity to magnetic fields (Parkkonen, 

2010). The magnetic fields elicited by postsynaptic potentials are extremely weak (about 

a billion times smaller than the earth’s static magnetic field); therefore it is important to 

shield the sensors from as much environmental magnetic noise as possible. The SQUIDs 

are kept below their critical temperature by liquid helium, which in turn means that the 

construction of an MEG dewar (the container which holds the sensors, the helium and 

eletronics) is fairly challenging in order to get the sensors as close as possible to the head 

of a person, but efficiently insulating the liquid helium at the same time. Because the 

SQUIDs are built very small to obtain greater sensitivity, their area of sensitivity is 

increased by flux transformers, which comprise a pick-up coil, an optional compensation 

coil and a signal coil, which are serially connected. The pick-up coil is closest to the 

brain, picks up the magnetic field and sends it to the signal coil, which then generates a 

magnetic field and flux to the SQUID. There are different configurations for flux 

transformers, like magnetometers and axial and planar gradiometers. Which of these are 

used depends on the kind of lead field wanted for the measurement, i.e. the sensitivity 

pattern to underlying sources. This, in turn, influences the way the MEG signal has to be 

interpreted. Similar to EEG, the first MEG measurements were done with only one 

channel. Following rapid improvements of the technical possibilities, nowadays, modern 

MEG systems have a multitude of sensors, usually ranging between 100 to 300 sensors. 

For an in-depth description of these and all other technical issues related to MEG 

measurements, see Parkkonen (2010). 

 As mentioned above, EEG and MEG measure complementary brain activity. They 

both measure synchronous postsynaptic activity of tens of thousands of neurons on a 

high-resolution temporal scale. However, while the quality of the electrical signal (i.e. 

mostly radial sources) is reduced by the conductivity of the skull, scalp, brain and other 

tissues and bodily fluids, the measurement of magnetic fields (tangential sources only) is 



 

 

47 

significantly less distorted by these influences. It is primarily this fact that makes source 

localization using MEG far more accurate than EEG source localization. Hence, MEG 

has traditionally been designed to optimize for source localisation, whereas EEG was 

initially developed to allow for single electrode recordings (Hansen, Kringelbach, & 

Salmelin, 2010). 

 

 

3. Experimental Procedures, Participants and Stimuli 

 In two very similar studies, I tested a total of six participants in the same 

experimental paradigm, three of them while recording their EEG signal and the other 

three while recording their MEG signal. Each participant completed two categorization 

tasks, Gender (2AFC) and Expression (7AFC), on the same set of FACS-coded 

expressive faces (six identities, three female), showing six different facial expressions 

(happy, surprised, fearful, disgusted, angry and sad) plus neutral (images are from the 

California Facial Expression database, CAFÉ, by Dailey, Cottrell, & Reilly, 2001). The 

tasks were always completed in the same order, with Gender preceding Expression, in 

order to avoid expression-specific carry-over effects into gender processing (as I 

expected expression processing to be more detailed and varied (also see Schyns & Oliva, 

1999, for discussions). Each task consisted of 13 sessions (26 for both tasks); each 

session was divided into 10 blocks of 147 trials, amounting to a total of 19,110 trials per 

task. The total testing time for each participant and both tasks amounted to an average of 

three months. 

 Stimuli were presented using the Psychophysical Toolbox (Brainard, 1997) for 

MatLab (The Mathworks, Inc.), on a gray background with a vertical visual angle of 8.3 

deg (this was kept constant in both studies, even though I was forced to adopt different 

viewing distances). On each trial, information from the presented face was decomposed 

into five non-overlapping spatial frequency bands (120–60, 60–30, 30–15, 15–7.5, and 
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7.5–3.8 cycles/face) and randomly sampled with Gaussian apertures using Bubbles 

(Figure 2.1). Each aperture (bubble) revealed six cycles per face. Bubble numbers were 

adapted online to maintain at least 75% correct categorizations for each combination of 

the seven expressions and the two genders. Observers indicated their response on 

labelled keyboard keys (EEG) or optically signalling button-boxes (MEG), however, 

expression/gender to finger mapping stayed constant for both studies. They were 

instructed to respond spontaneously, but in their own time, and to guess if they were 

unable to do the task.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Illustration of the Bubbles sampling process (adapted from Schyns, Thut and Gross, 

2011). First, the original face stimulus was decomposed into five non-overlapping SF bands of 

one octave each (top row; 120–60, 60–30, 30–15, 15–7.5, and 7.5–3.8 cycles/face). Then random 

bubble masks were generated for each band, containing Gaussian apertures spanning 6 

cycles/face. These were combined with their corresponding SF face decomposition and the 

combination of all SF sampling images resulted in the final input stimulus. 
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 In the EEG study I tested three right-handed females (observers E1, E2, E3), aged 

27, 30 and 35, respectively. In the MEG study, I tested one right-handed male (aged 21) 

and two female participants (aged 28 and 26, left- and right -handed, respectively), who 

will be referred to as observers M1, M2 and M3. All participants had normal or 

corrected-to-normal vision and were paid a standard hourly rate of £6 as a compensation 

for their time. They signed a consent form, but were kept naïve with respect to the aim of 

the study until after the very last testing session, when they were offered a detailed 

explanation. 

 

 

4. EEG procedures and pre-processing 

 In the first of the following two studies, I recorded the EEG of participants, while 

they performed two face categorization tasks, with 62 sintered Ag/AgCl electrodes, 

which were incorporated into an electrode cap (ANT, Waveguard) using linked mastoids 

as initial common reference and AFz as ground. The data was sampled at 1024 Hz. Data 

were recorded in five continuous blocks per testing session, hence pre-processing was 

performed separately for each recording block and saved as text files, which were 

subsequently read into and combined with MatLab for further analyses.  

 During pre-processing (using EEProbe, ANT), the data were re-referenced to an 

average reference, filtered with a band-pass filter from .1-30 Hz, and segmented into trial 

epochs of -200 to 500 ms around stimulus onset. A baseline correction was performed 

using the 200 ms pre-stimulus period as baseline. Because of the large number of single 

datasets (130 per participant), I used an automatic algorithm for the rejection of muscle 

and eye movement artifacts (implemented in EEProbe, ANT).  
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5. MEG procedures and pre-processing 

 In the second of the following two studies, I recorded participants’ MEG signal 

while they performed the same two categorization tasks as in the EEG study. I used the 

Magnes®3600 WH system (4-D Neuroimaging, San Diego, CA, USA) with 248 

magnetometers. Data was sampled at 1017 Hz and recorded in ten sepaprate blocks per 

testing session. Pre-processing was performed with the MatLab toolbox Fieldtrip 

(Oostenveld, Fries, Maris, & Schoffelen, 2011).  

 The first pre-processing steps were performed on the recording block level. First, 

the data were segmented into epochs from -500 to 1000 ms around stimulus onset. Eye 

movement, muscle and jump artifacts (from SQUID jumps) were rejected using an 

automatic algorithm for each of the 260 single datasets for every participant. Even 

though manual artifact rejection is generally preferable to an automatic algorithm, 

manual rejection was not feasible for the large amount of data and was therefore only 

done for a sub-sample of data to ensure appropriate cut-off thresholds. In the next step, I 

denoised the data with Principal Component Analysis, using a Fieldtrip script written 

especially for MEG users at the CCNi (University of Glasgow). Lastly, the data were 

detrended to prepare for an Independent Component Analysis (ICA) to remove heartbeat 

artifacts. After detrending, the data were concatenated within each testing session and 

consequent analysis steps were carried out on the session level. 

 MEG is a highly sensitive technique and picks up much more than just the brain 

signal. Apart from artifacts like eye blinks and muscle tension, MEG (and to a lesser 

extent EEG) is also sensitive to blood flow in the brain, particularly its change in 

response to the heartbeat. Since the heartbeat is a very regular occurrence, it can be 

detected by performing an ICA on the electrophysiological or electromagnetic brain 

signal (Escudero, Hornero, Abasolo, Fernandez, & Lopez-Coronado, 2007; T.-P. Jung et 

al., 2001; T.-P. Jung et al., 2000; Makeig, Bell, Jung, & Sejnowski, 1996; J. E. Moran, 

Drake, & Tepley, 2004; Onton, Westerfield, Townsend, & Makeig, 2006). The ICA 
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algorithm is based on the assumption that different brain signal generators are temporally 

independent and added in a linear fashion at each recording sensor. Hence, ICA works by 

disentangling or “unmixing” the brain signals of a number of sensors, each of which is 

only the linear combination of activity of different signal generators below the skull, into 

single independent signal components (Onton et al., 2006). This technique does not 

identify the signal generators, thus separating the problem of source identification from 

source localization (Makeig et al., 1996). ICA was applied to the preprocessed data per 

session and components relating to the heartbeat were removed from the data.  

 After the ICA, the analysis pipeline was split into two legs: For analysis on sensor-

level (T.-P. Jung et al., 2001), the data were filtered with a lowpass filter of 35 Hz and 

downsampled to 256 Hz to reduce computation time. For the source analysis, the 

unfiltered 1017 Hz data were used. 

 In addition, for each MEG participant, I recorded an anatomical MRI scan and a 

functional face localizer. The face localizer required participants to look at grayscale 

faces, houses and noise in a block design and to respond with a button press to either a 

green or red tint of the stimulus. Both anatomical and functional data were analyzed 

using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). The anatomical scan was 

used to project sources and source information sensitivity onto the brain. The functional 

data were analyzed, but are not reported due to the differences in stimuli and different 

attention and response demands between MEG and fMRI tasks.  
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III. How Bubbles can be used to extract information 

diagnosticity and sensitivity in the brain: basic analyses 

 

1. Bubbles and Classification Images: Reverse Correlation 

 Bubbles was developed by Gosselin & Schyns (2001) with the aim to isolate visual 

features within the stimulus, which enable an observer to make a correct categorization 

(diagnostic information). It is a general technique that can be applied to any kind of 

visual stimuli (e.g. scenes, objects or faces). In addition, Bubbles’ usage has since 

expanded from its original use of detecting diagnostic information to detecting 

information sensitivity of different kinds of brain measurements – like the BOLD signal 

(fMRI) and EEG or MEG data – and reaction time (Schyns et al., 2007; Schyns et al., 

2009; F. W. Smith et al., 2008; M. L. Smith, Cottrell, Gosselin, & Schyns, 2005; M. L. 

Smith et al., 2004; van Rijsbergen & Schyns, 2009). 

 Bubbles works by randomly sampling the visual input space with Gaussian 

apertures. In this study, I added a spatial frequency dimension to the image dimensions to 

increase our control of the visual input space. The randomly visible information in the 

bubble mask of each trial was then reversely correlated with a measure of interest (e.g. 

performance accuracy, EEG single trial activity), resulting in a Classification Image (CI) 

(Murray, 2011). The CI shows the information, which modulated this measure in a 

specific way. For example, Gosselin and Schyns (2001) related the locations of the 

bubbles within the masks to performance accuracy during a categorization task, so that 

the resulting CI would show information that was diagnostic for making a correct 

categorization decision. In the following paragraphs I will describe in detail how these 

CIs are obtained and how they are interpreted in connection with accuracy, EEG and 

MEG signals. 
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2. Behavioural CIs as Indicators of Diagnostic Information 

 Behavioural CIs, as originally described by Gosselin and Schyns (2001), are 

computed using categorization accuracy by adding all bubble masks from correct trials 

(CorrectPlane) and dividing them by the sum of all bubble masks (TotalPlane) to obtain a 

ProportionPlane (Figure 3.1). In both studies reported in this thesis and for each 

observer, I computed such behavioural accuracy CIs for both categorization tasks, one CI 

for Gender (as it is a binary task) and seven CIs for each expression in the Expression 

task. The information revealed in any CI is diagnostic for the performed categorization, 

i.e. it is the information needed to perform a correct categorization (for example, the 

smiling mouth in “happy” or the wide open eyes in “fearful”). Behaviourally significant 

diagnostic facial features for both EEG and MEG experiments can be seen in Figure 3.2 

(p < .05), multiplied with a spatial filter for each SF band and with an original stimulus 

face (compare Figure 3.4). It is obvious that the diagnostic features in both experiments 

corresponded closely to their counterparts in the other experiment (i.e. the smiling mouth 

was diagnostic for “happy” and the corners of the nose were diagnostic for “disgusted” in 

both EEG and MEG experiments), indicating – as assumed – that categorization 

behaviour was independent from brain imaging technique. Furthermore, diagnostic 

gender information always encompassed one or two eyes and the mouth, whereas the 

different expressions showed very specific and detailed diagnostic information: the 

smiling mouth in “happy”, the round mouth, open eyes and lifted eyebrows in 

“surprised”, the wide-open eyes and lightly opened mouth in “fearful”, the corners of the 

nose and lifted upper lip in “disgusted”, the frowning forehead and eyebrows and blown-

up corners of the nose in “angry”, and the drawn eyebrows and corners of the mouth in 

“sad”. 

 In addition, behavioural CIs for each expression could also be computed for the 

Gender task. If expression diagnostic information also enabled correct gender 
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categorizations, then I would see a similar pattern of diagnostic information as in the 

Expression task. Figure 3.3 shows the expression CIs for the Gender task for the three 

EEG participants. Even though I could occasionally detect parallels between diagnostic 

expression information (Figure 3.2, top) and expression information used to judge gender 

(Figure 3.3), this pattern is highly irregular and not consistent across participants. Note in 

Figure 3.3 for example, that the eyes in “fearful” were diagnostic for Gender for 

participants E1 and E2, but not for E3, whereas the reversed pattern can be seen in 

“happy” and “surprised” with the mouth (there was considerably less gender diagnostic 

mouth information in these expressions for E1 and E2, as compared to the expression 

diagnostic information). This noisy pattern of information use might well be caused by 

the different amount of information use in Gender, where participants generally require 

less bubbles (i.e. visible facial information) to correctly perform the gender 

categorizations, as compared to the number of bubbles they need for correct expression 

categorizations. Note that the differential use of bubbles and the number of bubbles used 

across tasks is a task-effect in itself (however see Appendix A). Another explanation for 

this effect could be that different participants found different expression information 

useful in order to perform the gender categorizations. Whatever the reason, this analysis 

demonstrates that the two categorization tasks evoked categorization-specific use of 

information on a behavioural level. These behavioural task effects suggest that the brain 

might apply task-dependent processing strategies during the face-selective N170 

potential, which can be extracted using the same reverse-correlation technique with the 

amplitude of brain signals. 



 

 

55 

 

Figure 3.1: Computation of Classification Images. Top left panel: On each trial, the original 

stimulus face is overlaid with a randomly generated bubble mask. At the same time, the EEG or 

MEG is recorded, as well as the observer’s response (correct/incorrect). For each 

expression/gender, all bubble masks of correct trials are added and divided by the sum of all 

bubble masks. This ratio yields the behavioural CI (bottom left panel). Right panel: For each 

condition and time point along the EEG, the signal amplitude is z-scored and divided into 13 

amplitude bins. The bubble masks for the corresponding trials are sorted into these bins. The sum 

of the bottom six bins is subtracted from the sum of the top six bins. This difference makes up a 

sensor-based CI. 
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Figure 3.2: Behavioural CIs (effective images) for all six observers showing diagnostic 

information for each correct categorization decision. EEG observers are in the top panel, MEG 

observers at the bottom. Both eyes and the mouth are usually diagnostic for gender 

categorizations (green), whereas expression categorizations (red) require specific diagnostic sets 

of information, such as the smiling mouth in “happy” and the corners of the nose in “disgusted”. 
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Figure 3.3: Behavioural CIs (effective images) for the EEG observers in the Gender task for each 

expression. In contrast to the same CIs for the Expression task, diagnostic information is much 

more varied across participants and doesn’t necessarily correspond to the same information as in 

the Expression task (see text for possible explanations). 

 

 

3. Sensor-based Classification Images: EEG 

 In order to correlate the single-trial EEG signal amplitudes to the observed visual 

information of each trial, I followed a well-established procedure (Schyns et al., 2003; 

Schyns et al., 2007; Schyns et al., 2009; M. L. Smith et al., 2004; M. L. Smith, Gosselin, 

& Schyns, 2006). First, for every time point along the N170 time window (starting 50 ms 

before and ending 25 ms after the average peak), I determined the mean and standard 

deviation of the amplitude distribution in the EEG signal. I then used this information to 

z-score and sort each trial into 13 amplitude bins, each comprising .5 SD and covering -

2.75 to 2.75 SD around the amplitude mean. Next, I added all six bins below and above 

the middle bin and subtracted the bottom from the top bins, hence excluding the middle 

bin from further analysis (Figure 3.1, right panel). This procedure was repeated for every 
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time point and every expression condition, so that I was able to obtain a time course of 

CIs, representing information the EEG signal was sensitive to, for each expression over 

the N170. I then z-scored and applied a threshold to each image (p < .05), extracting only 

information that was significantly correlated with the modulation of the EEG signal. 

These binary masks of significant information (for each SF band) were multiplied with a 

spatial filter (per SF band) and the original stimulus, resulting in so-called effective 

images. Effective images were only used for display purposes, whereas the raw, z-scored 

CIs were used for all further analyses. An example of this process and sensor-based CIs 

computed in this way can be found in Figure 3.4. Sensor-based CIs for the MEG data 

were computed in a very similar fashion, but are not reported here, as the final MEG 

analyses were done almost exclusively on the source level. 

 The CIs in Figure 3.4 are representative of all other EEG subjects and expressions 

and in this chapter their main purpose is to demonstrate different computation stages of 

CIs. However, they are also more or less representative of some general observations I 

made in relation to my hypotheses. The information integrated along the N170 for both 

tasks was very similar, yet there are some fine distinctions between tasks. When looking 

at the effective images, it becomes obvious that for “happy” in this example the mouth 

was the first feature integrated in the Expression task, whereas the eyes were integrated 

first in the Gender task (marked with a dotted circle for Gender and a dashed circle for 

Expression). Next followed a period of very similar information processing spanning the 

whole face. Yet, in the raw CIs (top panel), it can be seen that the focus of information 

processing was in the mouth in Expression, and in the eyes and the mouth in Gender. 

These observations led me to assume that there might be a difference in information 

processing along the N170 time window caused by the difference in categorization 

demands. However, these observations were merely descriptive and highlighted the need 

for further analyses.  
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Figure 3.4: Illustration of different analysis stages of sensor-based CIs for “happy” (observer 

E3). All images are aligned to the average N170 peak and have a time resolution of 4 ms. The 

raw CIs (top) are z-scored across the entire time interval and can thus be thresholded to obtain 

significant pixels per SF (middle). The thresholded CIs are then multiplied with a spatial filter 

per SF and with the original stimulus face. These last CIs (bottom) are called effective images, as 



 

 

60 

they allow a better assessment of which features were integrated at a particular time point. 

However, their disadvantage is that the strength of sensitivity to each pixel is not represented. 

What can be seen in the effective images is that the mouth was integrated first in Expression 

(dashed circle), whereas the eyes were integrated first in Gender (dotted circle). However, they 

do not reveal that the subsequent focus of sensitivity stayed in the mouth in Expression and in the 

eyes and the mouth in Gender. This can be seen in the raw CIs (top) instead. 

 

 

4. Summary and Conclusions 

 The diagnostic information in the behavioural CIs for both EEG and MEG 

experiments revealed a clear task-dependent information usage strategy. This was 

expected and replicates findings from previous studies (Schyns et al., 2007; M. L. Smith 

et al., 2005). For the sensor-based CIs, a similar pattern might have been present, but it 

was not immediately obvious. Visual inspection suggested a possible task-dependent 

visual processing strategy for each categorization task, but further analysis was required 

to corroborate this hypothesis. 
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__________________________________________________________________________________________________________ 

IV. Evidence from EEG sensor-based classification 

images: How task demands influence information 

integration during the N170 

 

 The analyses detailed below were carried out separately for each observer (E1, E2, 

E3), task and expression. For each expression, I computed average ERPs to understand 

how the categorization task influenced the typical markers of the N170:  its amplitude 

and latency. As is typical of ERP research, I computed ERPs bilaterally for all 

occipitotemporal electrodes, and then picked the electrode with the highest N170 

amplitude for subsequent analyses (Picton et al., 2000; Sreenivasan et al., 2009). Also, 

see Appendix B for further EEG analyses. 

 

 

1. ERP analyses reveal wider dispersion of N170 peaks and 

amplitudes in Expression 

 For all three observers and categorizations, electrode P8 had the highest N170 

amplitude (see Figure 4.1). Visual inspection of the ERPs suggested wider dispersion of 

both peak amplitudes and latencies in Expression than in Gender. I used the robust MAD 

(median absolute deviation) to compare the dispersion between tasks for each observer. I 

obtained 95% confidence intervals for the MAD difference between tasks using the 

following single-trial percentile bootstrap technique: (1) First, I randomly sampled with 

replacement from the complete set of original trials across tasks, creating artificial 

expression conditions and tasks. (2) Then I averaged the EEG traces of each artificial 

expression condition and computed the MAD for each artificial task as a measure of 

dispersion between expressions for both the N170 peak latencies and amplitudes. (3) 
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Next I saved the MAD difference (Expression-Gender) and repeated the previous steps 

999 times, resulting in a distribution of 1000 MAD differences based on chance. (4) 

Finally, I computed the 95% confidence interval for the bootstrap MAD differences. If 

the observed MAD difference of the original data was above the upper boundary of this 

CI, this difference was significantly larger than chance, indicating that the dispersion in 

Expression was larger than in Gender. 

 Both amplitudes and latencies for each observer varied significantly more in the 

Expression task (Table 4.1). P is the probability to obtain by chance an effect larger than 

the one observed. Wider dispersion of N170 peak latencies and amplitudes indicates that 

the categorization task influenced this early brain event, given that input stimuli were the 

same face set in both tasks. See Appendix A for evidence which rules out task difficulty 

as a confounding variable on these effects. 

 Peak amplitudes and latencies are brain correlates. As such, they do not provide 

direct evidence of a differential processing of facial information from the same faces. To 

directly address this, I turned to Bubbles. Specially, I sought to understand how the two 

categorization tasks differed in terms of (a) the information required from the face to 

produce correct categorization behavior and (b) how the EEG differentially processed 

this diagnostic information along the N170 time course.  
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Figure 4.1: ERPs on P8 for all three observers (rows, E1, E2, E3) and both categorization tasks 

(columns). There was a clear N170 potential for all tasks and observers, however there were big 

modulations on both amplitudes and latencies for the different expressions. Specifically, N170 

peak amplitudes and latencies appeared to have wider dispersion in the Expression task than in 

the Gender task. This effect was significant (see Table 4.1). 
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 ERP peak MAD Δ Expression-Gender 95% Confid. Interval p - value 

Observer E1 amplitude .491 [-.110 .219] .000 

 latency 2.000 [-1.000 1.000] .000 

Observer E2 amplitude .858 [-.131 .156] .000 

 latency 1.000 [-1.000 1.000] .014 

Observer E3 amplitude .395 [-.125 .128] .000 

 latency 1.000 [-1.000 1.000] .000 

 
Table 4.1: MAD differences between Expression and Gender tasks per observer, including 95% 

bootstrap confidence intervals and p values. P values revealed, that all MAD differences were 

significant, indicating wider dispersion of peak amplitudes and latencies in the Expression task. 

 

 

2. Classification Images as measure of diagnostic and 

integrated information 

 The computation of behavioural and sensor-based EEG CIs has already been 

described in Chapter III. As a quick reminder, behaviourally, observers tended to use 

both the mouth and one or both eyes to classify gender, whereas they used expression-

specific diagnostic information to categorize expressions, indicating a clear task effect 

for behavioural, diagnostic information usage (see Figure 3.2, Chapter III). 

 To understand the dynamic integration of facial information over the N170 time 

course I computed sensor-based EEG classification images for each expression, starting 

50 ms prior to the N170 peak and ending 25 ms after the peak. Figure 4.2 illustrates EEG 

CIs (effective images) for the expressions “happy” and “fearful” for observer E3 in both 

Gender and Expression categorization tasks (aligned to the ERP peak of “happy”; peak 

images are surrounded by a black box). In both tasks, I found that feature sensitivity 

generally started in the eyes about 50 ms prior to the ERP peak (see black curves) and 

then moved down on the face to focus onto specific features around the N170 peaks (as 
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in Schyns et al., 2007; also see the scan path analysis in Appendix B, 2.). Hence, the time 

window of interest to examine influences on feature processing started approximately 50 

ms preceding the N170 peak.  The greater dispersion of N170 latencies in Expression 

over Gender could have been driven by differential processing of features. To further 

examine this differentiated processing, I focused on the spatial frequency bands where 

such differences could be observed (i.e. SF bands 1 to 4, rejecting the lowest SF band 5, 

7.5–3.8 cycles/face).1 

 

                                                           

1 The information content of the individual SF bands was determined by computing the CIs separately for 

each band and inspecting them visually. The lowest SF band consisted of “blobs” as big as the faces 

themselves, and thus was not feature specific and diagnostic at all. The “blobs” of the 4th SF band covered 

approximately half the face and were indicative for diagnostic information being either in the upper, 

middle or lower region of the face, and hence it was included in the analyses. 
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Figure 4.2: Information Integration Dynamics over the N170 for observer E3 in Gender and 

Expression for happy and fearful faces on occipito-temporal electrode P8. The gray-scale 

Classification Images depict - every 4 ms - the information within a stimulus face that elicited 

significantly more negative amplitudes in the EEG signal than other information at a given time 

point over the N170 (the CIs were thresholded and multiplied with the stimulus face after 

applying a spatial filter for each SF band). The black boxes depict the CIs at the time of the N170 

peak. In order to relate the integrated information directly to the ERP (black curves), I derived a 

measure of information sensitivity directly from the CIs (coloured curves). To this effect, I 

intersected the CIs at each time point with two feature templates (see centre of figure) for the 

contralateral eye (blue) and the mouth area (green). By adding all significant pixels within the 

intersected area, I obtained the blue and green information curves. I then regressed the peaks of 

information with the peaks of the ERP, including all expressions, separately for each 
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categorization task and observer. I found significant correlations between the time the two 

features were integrated and the time the N170 peaked for the Expression categorization task 

only (see Table 4.2). 

 

 

3. The Backus-Gilbert-Spread as measure of feature integration 

similarity 

 My hypothesis is that processing of features is more differentiated in Expression 

than Gender due to the requirement of integrating expression-specific features (e.g. the 

wide-opened eyes in “fear,” the corners of the nose in “disgust” or the wide-open mouth 

in “happy”). Computationally, a simple test of differentiation between expressions is to 

Pearson correlate, for each expression considered (e.g. “happy”), the classification 

images reflecting the EEG sensitivity with the corresponding classification images of all 

other expressions within one categorization task (e.g. “happy” with “sad”, “happy” with 

“angry”, “happy” with “disgusted etc.). To derive a single measure per subject for all 

expressions, I used an adapted version of the Backus-Gilbert Spread (BGS; Backus & 

Gilbert, 1967; adapted in Schyns et al., 2009). Specifically, every 4 ms of the N170, I 

cross-correlated the unthresholded (z-scored) classification images across expressions to 

produce a symmetric cross-correlation matrix. The BGS measures the distance of this 

cross-correlation matrix X to an identity matrix I (which represents a perfect 

decorrelation between expressions) (1). 

 (1) 

 BGS values will therefore range from 0 (perfect correlation) to 1 (perfect 

decorrelation) and I would expect higher decorrelation of the BGS when observers 

categorize expressions compared to when they categorize gender, due to the integration 

of specific expressive features in the former. Figure 4.3 plots the BGS along the N170 
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time course for the two categorization tasks and each observer (colour-coded for 

subjects).  It is important to note that I aligned all time courses relative to the N170 peak 

of each expression prior to computing the BGS, to compare the critical feature 

integration preceding each peak. At first glance, the resulting curves seem to confirm the 

predicted higher decorrelations of the EEG classification images in the Expression task 

(red curves), compared with the Gender task (green curves). To test for significance, like 

in the ERP analysis, I computed data-driven 95% confidence intervals for each observer. 

(1) First I created a pool from all trials of both tasks and all expressions. (2) Then, in 

each bootstrap iteration, I randomly picked a sample of trials with replacement from the 

whole pool of trials for each expression and task using the sample size of the original 

sample of trials. (3) In the next step, I computed the EEG CIs for the random samples 

and calculated the BGS difference. This procedure was repeated 599 times, resulting in a 

BGS difference distribution for each time point along the N170 time window, which was 

used to determine the 95% confidence interval of the observed BGS difference (using the 

correction validated by Wilcox, 2005). The confidence interval (black dashed curves) 

and the observed difference (solid black) are plotted in Figure 4.3 below the BGS curves. 

Surprisingly, the confidence intervals for the null-hypothesis do not always contain 0. 

This indicates that there is a bias in the data, which might drive a BGS difference 

between the two tasks. The BGS is a very noise sensitive measure and because raw (and 

z-scored) CIs are noisier with decreasing trial numbers, it is possible that differences in 

trial numbers caused this bias in the observed and bootstrap data. When equating trial 

numbers on both the observed data and the random bootstrap samples, it is obvious that 

there is no effect of task on the similarity of feature integration at the critical time period 

before the N170 peak (Figure 4.3, b.). This came somewhat as a surprise, especially since 

visual inspection of the CIs suggested a difference in feature processing. A reason for 

this null-effect could be that features for gender and expressions are quite often 
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overlapping, especially in expressions, which have eyes and mouth as diagnostic 

information (such as neutral, fearful, sad, and sometimes surprised and happy). 

 

Figure 4.3: The Backus-Gilbert-Spread for all three observers (from left to right: E1, E2, E3), 

aligned to the N170 peak (at 0 ms). The green lines represent the Gender task, the red ones the 

Expression task, the blue ones the difference between the two tasks. The dashed lines denote the 

95% confidence interval. a. The BGS of the real data. The confidence interval for the H0 does 

not contain 0, this suggests a bias in the data. b. When the same trial numbers are used for both 

tasks the confidence interval for the H0 is correct. The BGS and its difference in b. are an 

average bootstrap of the effect with equal trial numbers. See text for further discussion. 
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4. Intersection of CIs with diagnostic features reveals the 

integration of both expression and gender features during the 

N170 irrespective of categorization task 

 The BGS analysis revealed a rather similar processing of features between Gender 

and Expression during the N170. In the next step I therefore attempted to extract 

evidence for the integration of both expression and gender diagnostic features in both 

tasks. To this end, I examined the overlap of integrated facial information of both tasks. 

In order to determine significant facial features from the EEG CIs I first thresholded each 

EEG CI by using a z-score cut-off corresponding to p < .05. This was first done 

separately for each SF band, but then the images were flattened, setting all pixels that 

were significant in any band to 1 and all other pixels to 0, creating binary EEG 

information masks (see Figure 3.4, middle panel). The same procedure was applied to the 

behavioural CIs of each task, resulting in binary behavioural information masks. In the 

next step, I determined the overlap of integrated facial information in the EEG CIs by 

simply intersecting, time point by time point, the binary EEG information masks of both 

tasks. Next, I again intersected these images with the behavioural information masks for 

each expression and gender categorization. Adding all remaining significant pixels 

within the ensuing information images, resulted in two curves for each observer and 

expression, one revealing the amount of facial information that was jointly integrated in 

both tasks and diagnostic for the underlying expression and the other one revealing the 

joint information, which was diagnostic for gender categorizations in both tasks. Figure 

4.4 displays the integrated facial information at the maxima of these information curves, 

showing that both gender and expression information were integrated in both tasks. As a 

result of the intersections, gender information was usually represented by the mouth and 

the left eye, whereas expression information was expression specific, just like the 

behavioural diagnostic information. This is especially obvious in “disgusted”, where the 
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behaviourally diagnostic features (Figure 3.2) had only little overlap for either gender or 

expression categorizations. If feature processing was different and not overlapping for 

each task, there would be no or only little residual information left when intersecting the 

EEG information masks of both tasks. However, since Figure 4.4 clearly displays that 

both gender and expression diagnostic information were integrated in both tasks, it is 

likely that feature processing itself was not top-down modulated by the demands of each 

categorization task. 

 In this analysis step, I only regarded the overlap of features in both tasks, I did not 

take into account whether the integrated information in each task influenced the 

variability of the N170 peak. If both sets of information were processed in both tasks, 

then the question arises, why I found a task-dependent modulation of the ERP peaks.  
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Figure 4.4: Diagnostic information for gender (green) and expressions (red) integrated in both 

categorization tasks for all three observers over the N170. The information images depict the 

integrated features at the maxima of diagnostic information sensitivity for each facial expression 

(in the order: ‘neutral’, ’happy’, ’surprised’, ’fearful’, ’disgusted’, ’angry’, ’sad’). Both tasks 

seem to integrate both gender and expression diagnostic features at the same time in the same 

EEG signal. 
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5. Peak feature sensitivity determines ERP peak in Expression, 

but not in Gender 

 The results so far suggest that both Expression and Gender tasks showed 

integration of both sets of diagnostic features for two different categorization tasks 

despite differing task demands. Here, I bring a closure to the question of task dependency 

of feature integration by relating the dispersion of the ERP latencies with the features 

integrated in each categorization task. Remember that the dispersion of N170 peak 

latencies and amplitudes was wider in Expression than in Gender. Next, I will 

demonstrate that greater dispersion of ERP peak latencies in judgments of expressions 

arose from a differentiated processing latency of features. In contrast, the more aligned 

processing of features across expressive faces in gender judgments resulted in more 

homogeneous ERP latencies.  

 We know from the behavioural classification images and the intersection analysis, 

that all observers used the left eye (contra-lateral to the right hemisphere electrode P8) 

and the mouth in Gender and in Expression for most expressions. I therefore declared 

these two features as regions of interest in the EEG CIs. I computed sensitivity to these 

features along the N170 time course by integrating the significant pixels, p < .05, that 

intersected with each feature of interest. I repeated this computation in Expression and 

Gender, independently for each expression. For each observer, I then regressed the time 

point of peak sensitivity to either the Left Eye or the Mouth (a measure of information 

latency) with the time point of the N170 peak (a measure of voltage latency), using the 

robustfit function in MatLab (compare Figure 4.2). Again, I used a bootstrap technique to 

obtain a 95% confidence interval for the slope of the regression for each observer and 

each feature of interest. This confidence interval constitutes a robust, data-driven 

statistical limit for a significant effect of each regression slope. (1) First, I sampled with 

replacement from each individual expression condition and task, keeping trials in the 
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same original conditions. (2) Then I constructed, thresholded and binarised the 

classification images as described before, obtained the peak latencies of information 

sensitivity for each feature of interest and determined the N170 peak latencies. (3) I 

saved these latencies and repeated the previous steps 599 times. Eventually, I was able to 

compute a linear regression between information sensitivity peaks and ERP peaks for 

each sampling iteration, which left us with a distribution of six hundred regression slopes 

from which I was able to obtain a 95% confidence interval (again adjusting the interval 

boundaries as validated by Wilcox, 2005). 

 Table 4.2 reports the β coefficient estimates for the slope of the robust linear 

regressions, whereas Figure 4.5 illustrates both the robust regressions (right hand side) 

and the bootstrap distributions of slopes (left hand side). In Expression, there was a clear 

positive relationship between peak sensitivity to both features and N170 peak latency, 

whereas there was no such significant relationship in Gender. The only exception is the 

Left Eye in Expression for observer E2, which has a p-value of .097 and is therefore not 

significant. 
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Figure 4.5: Robust regressions (left) and corresponding slope distributions* (right) obtained by a 

single-trial bootstrap procedure (Gender = green, Expression = red). The slope distribution of E3, 

Expression, left eye, has no values below 0, which causes the p-value to be 0 exactly. 

*Note: The same number of bins was used to plot the histograms, however, due to uniform axis 

scaling, some bins appear to be larger than others. 
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Gender  Expression  

Left Eye Mouth Left Eye Mouth 

β  .146 [-.38 .51] .108 [-.20 .54] .545 [-.20 1.10]* .488 [.00 .77]* Observer E1 

p .513 .357 .043 .023 

β  -.224 [-.94 1.16] .137 [-.22 .95] .387 [-.20 .75] .555 [-.14 

.90]* 

Observer E2 

p .893 .17 .097 .047 

β  .068 [-.33 .46] .060 [-.36 .46] .622 [.10 .86]* .687 [.20 .70]* Observer E3 

p .643 .733 0 .003 

 

Table 4.2: Results of the linear regressions, correlating peak feature sensitivity of the mouth and 

the left eye with the N170 peak latencies across expressions. Reported are the beta coefficient 

estimates of the slope of the regression [confidence intervals] and their bootstrap p values. A p 

value of zero means there is no overlap at all between the bootstrap distribution of beta-

coefficients and zero (* significant at p < .05). 

 

 Finally, in order to confirm that the difference of regression slopes between 

categorization tasks is significant, I applied a shift function analysis to compare the 

distributions of bootstrapped beta-coefficients between tasks. Instead of relying only on 

one measure of central tendency to compare distributions, the shift function compares 

two distributions quantile by quantile using the Harrell-Davis estimator (hd) of quantiles 

one to nine. Specifically, the shift function is a measure of how much each quantile needs 

to be shifted to be comparable to the data of the same quantile in the other group. A 

bootstrap procedure is then used to obtain a 95% confidence interval for the difference 

between the hd estimators of the groups. If this confidence interval excludes zero, the 

difference is significant. I found that all quantiles of the distribution of bootstrapped 

differences of all observers for both the Mouth and the Left Eye were significantly 

different from zero, with the exception of the ninth quantile of the Left Eye for observer 

E2 (Figure 4.6). This confirms my hypothesis, that task-specific top-down control 

significantly modulates the N170, by shifting the N170 peak in relation to the time point 

of features integrated. Since all expressions have the same processing time line in 
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relation to the N170 peak in Gender, but not in Expression, only Expression shows a 

clear relationship between maximum feature sensitivity and ERP peak. 

 On this basis, I can conclude that despite the great overlap of integrated 

information between categorization tasks, the timing of this information processing 

varies in Expression, but not in Gender, and thus only modulates the latencies of the 

N170 peaks in Expression, while the integration of features and the N170 peaks are 

aligned to the same point in time in Gender. 

 

 

Figure 4.6: Results of the shift function analysis, which compares the Gender slope bootstrap 

distribution with the Expression slope bootstrap distribution for each observer – quantile by 

quantile – using the Harrell-Davis estimator (hd). The difference (Delta) between the quantiles of 

the distributions is significant, if the confidence intervals (marked by red plus-signs) exclude 0. 

This task effect is significant for all cases, except the 9th quantile for E2, Left Eye. 
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6. Summary 

 The results of the EEG study allow several conclusions:  

• Categorization task demands had a modulating top-down effect on peak amplitudes 

and latencies of the N170 ERP per expression. In Gender, ERPs for the expressions 

were more aligned in time and amplitude than in Expression, resulting in 

significantly wider latency and amplitude dispersion of the N170 peak in Expression.  

• However, the integrated facial information per expression in both tasks was no more 

similar in Gender than Expression.  

• In fact, the EEG signal carried the diagnostic information for both categorization 

tasks at the same time in relation to the N170 peak, independent of categorization 

task.  

• Despite this overlap of integrated features with respect to the ERP peak, the N170 

latency was modulated by peak feature sensitivity latency to either the Left Eye or the 

Mouth in all three observers in Expression, suggesting that task demands impacted on 

the timing of feature sensitivity. This effect is significant for Expression only, 

because top-down task demands modulate the timing of feature sensitivity differently 

for each expression, whereas the timing is the same for all expressions in Gender. 

 Finally, it can be concluded that top-down task demands had an impact on feature 

processing during the N170 in this experimental paradigm. However, I did not find this 

differential processing in the features themselves, only in their timing. Since I examined 

surface activity of the EEG signal, the question arises, whether the partial lack of 

differential feature processing between tasks was due to a lack of sensitivity of the EEG 

signal to such differences. A source-based analysis could potentially provide a more 

differentiated understanding of feature processing during the N170. Different features 

could be processed in different brain areas depending on task (Haxby et al., 2000). On 

the scalp surface, this signal would be mixed and lead to the results observed in this 

study, but on the source level, categorization tasks might indeed influence feature 
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processing differently. The aim of my next study was precisely this: to examine facial 

feature processing in the same experimental paradigm on the source level using MEG 

data. 
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__________________________________________________________________________________________________________

V. Evidence from MEG sensor and source activity: How 

task demands influence facial feature processing during 

the M170 in occipitotemporal sensors and voxels 

 

 As with the EEG data, all MEG analyses were carried out separately for each 

observer (M1-3), task and expression. Instead of just a single-sensor analysis as for the 

EEG data, I adopted an MEG specific approach: To extend the analyses from EEG 

sensors to MEG, in a first stage, I applied the previous EEG peak dispersion analysis to 

sensor MEG data. In a second stage, I proceeded to the source level, searching for voxels 

with sensitivity to face categories and diagnostic features to examine the differential 

processing of feature information between categorization tasks. 

 

 

1. M170 peak analyses reveal a task effect of amplitude and 

latency dispersion 

 In analogy to the EEG analysis, I examined the sensors with the highest amplitude 

peaks for their dispersion in M170 peak latency and amplitude and compared the 

dispersions across tasks. In order to find sensors with the highest activation, I computed 

the (artificial) Planar Gradient (PG) of the Event-Related Fields (ERF). MEG 

magnetometers measure only radial/axial magnetic field changes (whereas EEG 

measures both radial and tangential sources). Due to the leadfield of the magentometers, 

activity on topographies is displayed on two sides of the source. To see the exact location 

of the underlying source it is practical to compute the PG as a measure of 

tangential/planar sources, as it has the highest signal directly above a source, by 

measuring the rate of change at each magnetometer ERF surface location. Figure 5.1 
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demonstrates this transformation for the time window of 170-180 ms for the averaged 

data of all trials of the Gender task for observer M3.  

 

Figure 5.1: Topographies illustrating the transformation from (a.) Event-related fields as 

measured with magnetometers to their (b.) Planar Gradients (observer M3, Gender, 170-180 ms). 

It can be seen that the PG is high when there is a great change from positive to negative values in 

the ERF topography, depicting the area right above a source of activity. 

 

 As with the ERP peaks I expected a wider dispersion in the Expression task for 

both latencies and amplitudes due to more differential processing of expressions in the 

Expression task. I used the same single trial bootstrap procedure as described for the 

EEG data to obtain the data driven 95% confidence intervals for the task difference of the 

MAD on each sensor (a positive MAD difference denotes wider dispersion in 

Expression). I determined the relevant sensors by inspecting the PG topographies at the 

peak of the M170 and their average time courses and picking the five sensors with the 

highest M170 peak. For M1 I only picked four sensors, because no other sensors showed 

a clear M170. The sensor locations on the scalp are depicted in Figure 5.2. Results are 

reported in Table 5.1. For all observers I found sensors with significantly wider 

dispersion in either amplitude or latency of the M170 peaks in the Expression task 

(marked with *). For M1, one sensor was significant for both latency and amplitude 

dispersions (A187) and another one for latency dispersion only (A167). Observer M2 

only had one significant MAD task difference for the peak amplitudes of sensor A183. 
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Observer M3 had two significant sensors for both amplitudes and latencies (A189, A190 

and A206, A222, respectively). All sensors were significant at p < .05, corrected with 

Bonferroni for the number of comparisons (.0125 for M1 and .01 for M2 and M3). 

Hence, the effect observed for the N170 amplitude and latency dispersion appeared to be 

present for the M170 as well, however, this effect was spread over several sensors. This 

suggests again, that categorization task had a differential effect on averaged brain activity 

in occipitotemporal areas, with generally greater amplitude and latency dispersion in the 

Expression task during the face-preferential M170. 

 

 Sensor PG peak MAD Δ  
Expression-Gender 

95% Confidence 
Interval 

p - 
value 

Observer M1 1. A166 
2. A167 
3. A168 
4. A187* 

amplitude 

1e-12 x     .130 
-.120 
.001 
.302 

1e-12 x   [-.311 .240] 
[-.289 .238] 
[-.244 .191] 
[-.235 .165] 

.284 

.476 

.830 

.006 
 1. A166 

2. A167* 
3. A168 
4. A187* 

latency 

0 
2 
0 
1 

[-1.000 1.000] 
[-1.000 1.000] 
[-2.000 1.000] 
[-1.000 1.000] 

.448 
0 

.302 

.002 
Observer M2 1. A207 

2. A190 
3. A201 
4. A200 
5. A183* 

amplitude 

1e-12 x     .094 
.015 
.038 

-.016 
.498 

1e-12 x   [-.230 .343] 
[-.257 .306] 
[-.269 .333] 
[-.251 .319] 
[-.272 .366] 

.652 

.922 

.902 

.776 

.008 
 1. A207 

2. A190 
3. A201 
4. A200 
5. A183 

latency 

1 
0 

-1 
-2 
-2 

[-1.000 2.000] 
[-1.000 2.000] 
[-3.000 3.000] 
[-7.000 7.000] 
[-4.000 5.000] 

.058 

.562 

.622 

.630 

.332 
Observer M3 

  

1. A189* 
2. A206 
3. A207 
4. A190* 
5. A222 

amplitude 

1e-12 x     1.158 
.065 
.256 
.358 

-.014 

1e-12 x   [-.270 .277] 
[-.276 .235] 
[-.257 .228] 
[-.259 .240] 
[-.196 .201] 

0 
.554 
.034 

0 
.904 

 

1. A189 
2. A206* 
3. A207 
4. A190 
5. A222* 

latency 

0 
1 
0 
1 
1 

[-1.000 1.000] 
[-1.000 1.000] 
[-1.000 1.000] 
[-1.000 1.000] 
[-1.000 1.000] 

.488 

.004 

.380 

.050 

.002 
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Table 5.1 (previous page): Selected high amplitude MEG sensors for the M170 and their peak 

latency and amplitude MAD task differences (Expression minus Gender). Significance levels and 

confidence intervals were determined using a data-driven single-trial bootstrap technique. A p 

value of zero means there is no overlap at all between the bootstrap distribution of MAD 

differences and zero (* sensors significant at p < .05, corrected with Bonferroni). In Fig. 5.2, the 

sensors for each observer are shown on a topographic surface, numbered as in the table. 

 

 

 

Figure 5.2: Scalp locations of high-amplitude sensors for each observer as referred to in Table 

5.1. 

 

 

2. Source analysis revealed higher occipitotemporal activity 

during both face categorization tasks 

 Even though the sensor-based EEG analysis found a task-effect in the timing of the 

N170 and related information sensitivity, it did not determine any definitive task effect 

specifically on information processing during the N170. One explanation for this non-

result could be the fact that the analyses were carried out on surface brain activity only 

and therefore small differences in the sources active during each task would not be 

sufficient to reveal a difference at the sensor level using EEG sensor measurements. 

Hence, the purpose of the MEG analyses was to determine whether task differences 

existed at the more precise source level. In order to compare task differences in facial 

feature processing during the M170, it was crucial to identify sources that responded 

M1 M2 M3 
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selectively to faces and at the same time to reduce activity elicited by general visual, 

attentional or motor processes. Determining source activity inside the brain from sensor 

data recorded at the surface of the brain is an inverse problem. This problem has been 

and still is discussed widely and there are many ways to approach it (Darvas, Pantazis, 

Kucukaltun-Yildirim, & Leahy, 2004; Faugeras et al., 2004; Haufe et al., 2011; 

Ilmoniemi, 1993; Mosher, Leahy, & Lewis, 1999; Niedermeyer, 1996). A classic 

approach of estimating MEG sources is the Linearly Constrained Minimum Variance 

beamformer technique (Van Veen, Drongelen, Yuchtman, & Suzuki, 1997). A 

beamformer is a spatial filtering technique, which separates overlapping signals from 

different spatial locations (Van Veen & Buckley, 1988). The applied spatial filter aims to 

pass the signal from one location, while attenuating activity from all other sources (Van 

Veen et al., 1997). The LCMV beamformer considers all possible locations without any 

prior assumptions as to where an active source might be. Instead of applying the filter to 

the raw signal, the LCMV uses the spatial covariance of the source activity (Van Veen et 

al., 1997). In the same article, Van Veen discusses how to best determine the spatial 

covariance. He states that one condition with the beamformer is, that the time window 

over which the source activity is to be determined, needs to contain at least as many data 

points as sensor locations to guarantee an acceptable amount of localization accuracy and 

to reduce the randomness of the data. In fact, he suggests, as a general rule of thumb, to 

use about 3-4 times as many data points as there are sensors. To obtain a sufficient 

amount of data points and to compare the results, he introduces different methods: a) to 

use one time window with an average of single trials, b) to use one (the same) data point 

from each single trial and c) to use all data points of all single trials. The author then 

generated artificial data with a single dipole, whose signal was made up of a sinusoid and 

added noise (making up either 80% or 20% of the signal). Method a) yielded the best 

localization results for both types of data tested, with localization peaks being very focal 

and accurate, method c) was second best, showing similar results for both types of data, 
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with source peaks being slightly wider, but higher than for method a), whereas method b) 

only worked well for the high variance data. With respect to the hypothesis, I was 

specifically interested in the time window of the M170 to determine task effects on 

feature processing. In order to find face sensitive sources it is therefore crucial to restrict 

the time window used to compute the covariance matrix of the face sensitive period 

around the M170 peak (as determined by the ERF/PG). Obviously, with this rather short 

time window (~ 40 ms), the use of method a) would be inappropriate because there 

wouldn’t be enough time points with respect to the number of sensor locations (> 200). 

Instead, I opted for method c) and used all time points of all single trials to compute the 

covariance matrix.  

 Van Veen et al. (1997) further state that source activity of interest is often masked 

and overlaid by noise activity in the brain yielding a low signal-to-noise ratio for effects 

due to experimental manipulations. A way to counteract this problem is to select a time 

period, such as the pre-stimulus baseline period, which should not elicit any face-

selective activation and therefore only contain noise, and use it to separate the signal of 

interest from the noise component. This so-called Neural Activity Index (NAI) is 

computed by dividing the difference of the time period of interest and the noise period by 

the noise period. For the time window of the M170 (150 – 190 ms after stimulus onset), I 

computed the covariance matrix, the spatial filter, the power of source activity and the 

NAI for each observer, task and session, and then averaged over sessions to obtain a 

grand-average representation of source activity (NAI) for each observer and task. Figure 

5.3 depicts horizontal slices of source activity for the M170 time window. All three 

observers show a higher NAI in occipitotemporal areas, such as STS/FFA (M1), 

FFA/OFA (M3) and OFA and Visual Cortex (M2).  However, it is also obvious, that the 

individual differences between observers can be quite substantial, which justifies my 

single subject rather than an average subject approach. Since my aim is to find task 

differences in facial feature processing, the question arises now whether the observed 
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source activity in both tasks is sensitive to task-relevant and irrelevant face categories for 

each observer. 

 

 

Figure 5.3: Horizontal brain slices showing the Neural Activity Index for the M170 time window 

from 150 – 190 ms after stimulus onset. Maximum NAI values of each image are in the top left 

corner of the image, minimum value is always 0. 

 

 

3. Mutual Information reveals task-dependent differences in 

brain sensitivity to face category 

 If I was following the same analysis protocol as for the EEG study, the next logical 

step towards my aim of examining task differences in feature processing on the source 

level would be to compute CIs for each voxel along the ventral stream. This was indeed 

done for some voxels for one observer (M3). However, in the EEG study I did this for 
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only one electrode, whereas for this study it would take great computational resources 

and a lot of time to compute CIs for more than 1000 voxels. Hence, for reasons of 

practicality, I turned towards Information Theory (IT) instead (Shannon, 1948).  First I 

used IT to identify voxels in each categorization task, which responded selectively to 

either the gender category or the expression category of the stimuli. 

 In Information Theory (Shannon, 1948) the mutual dependence of two random 

variables is measured by Mutual Information (MI)2. According to Magri et al. (2009), MI 

can be used to identify components of brain activity that respond selectively to stimulus-

based differences and cannot be explained by trial-by-trial response variability. The 

following equation defines the MI between two random variables X and Y in bits of 

information (Cover & Thomas, 2006, p. 20):  

 (2) 

 According to Schyns et al. (2011), MI measures the amount of bits of information 

shared by the two variables X and Y. If their joint probability p(x,y) is zero, then their 

MI becomes zero as well. Expressed in terms of entropy H, the uncertainty of a random 

variable, MI can also be computed with  

MI(X;Y) = H(X) – H(X|Y) = H(Y) – H(Y|X) (3) 

where H(X) is the entropy of X and H(X|Y) is the conditional entropy of X given Y 

(Cover & Thomas, 2006, p. 21). If both terms are the same, then knowing Y will not 

reduce the uncertainty of X and the MI will be 0. If, however, Y reduces the uncertainty 

                                                           

2 MI has been used in EEG and vision research before (e.g. Lopes da Silva, Pijn, & Beoijinga, 1989, and 

Harel, 2007) for good examples of MI in EEG research). It has been used for decades for a variety of 

research questions and analyses, e.g. pattern recognition and matching (Uttley, 1976), which was extended 

to co-registration and alignment of brain images (Liao et al., 2007); MI as a neural coding principle in 

vision (Harel, Ullman, Epshtein, & Bentin, 2007; Lopes da Silva et al., 1989); in chemical physics (Sagar 

& Guevara, 2005); and in biophysics and neural networks (Friston, 2000; Manwani & Koch, 1999), to only 

name few.  
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of X, then their MI will be greater than 0 and Y can predict X to a certain extent. Figure 

5.4 gives an overview of all computations of MI conducted in this study and the basic 

parameters. All bins were equi-populated. The number of bins for continuous measures, 

such as pixel values and source amplitude, was set to four, following the example of 

Schyns et al. (2011). Figure 5.5 describes a computation example for MI(source power, 

face category), the analysis step following next. 
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Figure 5.4 (previous page): The three kinds of MI computations used in this analysis. I first 

determined the MI between source power and (top) face category (either Gender or Expression), 

then (middle) with accuracy (correct vs. incorrect trials) and, finally (bottom), with the grey-

values of each pixel of the bubble masks. Each panel describes the parameters of computation 

and the number of equi-populated bins applied for each measure. 
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Figure 5.5: Computation example for MI(Source power, Gender category), adapted from Schyns, 

Thut & Gross, 2011. The table at the top displays the joint probabilities of all four bins (yellow) 

of the source power for one voxel (V) and the two bins for the Gender category G (m and f, in 

red). The MI is computed by subtracting the conditional entropy H(V|G) from the entropy H(V). 

Note, that for the Expression category I used seven bins (one for each expression) instead of the 

two for Gender. See Figure 5.4 for further details. 

 

 In the next step, I used MI to determine the mutual dependence between MEG 

source power of voxels in the ventral stream and either the expression category (e) or the 

gender category (g) of the face stimuli. This was done for both categorization tasks, 

Expression (E) and Gender (G), yielding four conditions of MI: explicit sensitivity to 

task relevant stimulus category, MI(G,g) and MI(E,e), and implicit sensitivity to task 

irrelevant stimulus category, MI(G,e) and MI(E,g). This design allowed me to compare 
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the location and strength of sensitivity of voxels in both tasks to either implicit or explicit 

stimulus category. In order to compute these MI conditions, I applied the following steps:  

(1) First, I selected a total of 1090 voxels (8 mm side length) that fell within the 

occipitotemporal area, ensuring that all areas of the core system of face processing 

and the visual cortex were included. 

(2) For each voxel, I calculated the single trial source power for the time window of the 

M170 (150 – 190 ms after stimulus onset), by matrix-multiplying its spatial filter 

from the beamformer analysis with the single-trial time courses of all channels. 

(3) Again for each voxel, I sorted the single trials by stimulus category: once, I sorted 

them by the seven expressions (e) and once by their gender (g). 

(4) Then I calculated the MI between single trial source power of each voxel in each 

task (G and E) and the category of stimuli (e and g), using the MatLab-based 

Information Breakdown Toolbox by Magri et al. (2009). I used the following toolbox 

parameters for all MI computations: the direct method with quadratic extrapolation 

and equi-populated bins to maximise response entropy (Magri et al., 2009). These 

were the same parameters as used by Schyns et al. (2011). Trials for each bin 

amounted to 1363, 1077 and 1466 for M1, M2 and M3, respectively. This 

computation provided me with four time courses of MI between voxel activity and 

face category, effectively a measure of voxel sensitivity to either expressions or 

gender in each categorization task. 

(5) Visual inspection of these sensitivity time courses indicated that some voxels 

responded more to either stimulus condition than others. In order to find voxels with 

significantly higher MI than others, I created a data-driven, artificial MI baseline by 

repeating the MI analysis, but this time randomizing the single trials for each voxel 

to break the link between source power and expression or gender category. I used 

this random MI time course from all voxels to create, time point by time point, a 
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data-driven 95% confidence interval for the null-hypothesis of MI effects, at the 

same time controlling for multiple comparisons. 

(6) Finally, I interpolated the MI across voxels and plotted the significant MI 

sensitivities onto the anatomical MRI template of each observer, for each MI 

condition and separated into six time bins during the M170 time window. The 

results are shown in Figures 5.6, 5.7 and 5.8. 

  

 The results from this analysis have several implications with respect to my 

hypothesis. (1) First, the inter-individual differences, like in the source analysis, were 

substantial and imply that averaging over observers would result in great loss of 

information. (2) Second, categorization task had an effect on brain sensitivity to explicit 

face categories (see Table 5.2 for an overview of the following descriptions). In the 

explicit conditions, MI(G,g) and MI(E,e), all observers responded to the task-relevant 

face categories with different brain areas. Observer M2 (Figure 5.7) had a peak of 

explicit gender sensitivity in the right VC/OFA, whereas the peak of explicit expression 

sensitivity was located in the left STS/FFA. Observer M3’s peak of explicit gender 

sensitivity was positioned in the right FFA/OFA, and the explicit sensitivity peak of 

expression in the right VC (Figure 5.8). Even though observer M1 (Figure 5.6) was 

sensitive to both explicit and implicit stimulus categories in the same brain areas, the 

peak of explicit gender sensitivity was in the right OFA, whereas explicit expression 

sensitivity peaked in VC. In addition, this observer showed another interesting effect in 

both implicit and explicit conditions: peak sensitivity to expressions happened slightly 

earlier (144 – 160 ms) than sensitivity to gender (168 – 184 ms). (3) Generally speaking, 

the sensitivity to the task-irrelevant, implicit stimulus category was weaker and less 

systematic than to the explicit category. Observer M2 showed hardly any implicit 

sensitivity to gender in the Expression task (a little in bilateral OFA), and implicit 

sensitivity to expressions in the Gender task was in a slightly different brain area (left 
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OFA/VC) than explicit sensitivity to gender (rVC/rOFA). Observer M3 also had only 

very little implicit sensitivity to gender in the Expression task (lVC/rOFA), whereas 

implicit sensitivity to expressions in the Gender task peaked in the right FFA/OFA, 

which – for this observer – was also the peak for explicit gender sensitivity. For an 

overview of these results and additional sensitive brain areas, see Table 5.2. 

 In summary, all three observers displayed a clear and individual task effect in the 

explicit sensitivity to the task-relevant face category. This task effect was manifested in 

differences in location or timing of sensitivity. Brain sensitivity to task-irrelevant face 

categories was much weaker and there was some overlap, but there were also some 

tendencies toward differences in timing and location of sensitivity, especially when 

taking into account not just the peak areas (compare Table 5.2).  

 This task effect can be explained in terms of bottom-up and top-down processing. 

When a particular face category is relevant to perform a categorization task, our bottom-

up processing stream is modulated by top-down control in a particular way: The relevant 

category receives more sensitivity in the face network and this sensitivity is either 

spatially located in a different brain area or temporally located earlier or later along the 

processing stream than sensitivity to the task-irrelevant face category. 
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Explicit Face Category Implicit Face Category  

MI(G,g) MI(E,e) MI(E,g) MI(G,e) 

M1 rOFA 

rSTS 

rFFA 

rVC 

VC 

lSTS 

rOFA 

rOFA 

rFFA 

rSTS 

OFA 

VC 

lSTS 

M2 rVC/rOFA 

lVC 

lSTS/lFFA 

lOFA 

VC 

OFA lOFA/VC 

rFFA 

M3 rFFA/rOFA rVC 

VC 

OFA 

lSTS 

lVC 

rOFA 

rFFA/rOFA 

rSTS 

VC 

 

Table 5.2: Overview of brain areas sensitive to implicit and explicit face categories. Bold print 

indicates the main focus of sensitivity. If an area is sensitive bilaterally, it is not preceded by a 

laterality descriptor (r or l). Observers M2 and M3 revealed sensitivity to explicit face categories 

in entirely different brain areas for each task. While observer M1 showed an overlap in sensitive 

areas, the peak sensitivity was in different areas and the timing of categorical sensitivity to 

expression was earlier than to gender (also note that rFFA is sensitive to both implicit and 

explicit gender category, while not at all for the expression category). For sensitivity to the 

implicit face category, there is a fair amount of overlap in brain areas, however, a similar, but 

much weaker trend emerges, when comparing the images from Figures 5.6 – 5.8. 
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Figure 5.6: Mutual information between voxel power and stimulus category for observer M1. 

The top and bottom rows depict sensitivity of voxels to the explicit, task relevant stimulus 

category (MI(G,g) and MI(E,e)). The two middle rows depict sensitivity to the implicit stimulus 

categories. The sensitivity is displayed in bits; all images are on the same scale (top right). 
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Figures 5.7 (above) and 5.8 (below): Mutual information between voxel power and stimulus 

category for observer M2 (above) and M3 (below). See Figure 5.6 for descriptions.  
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4. Mutual Information reveals task-dependent diagnostic feature 

integration in behaviourally predictive, expression-sensitive 

voxels 

 Having established that the brain processes face categories differentially dependent 

on categorization demands, I was now left with the question, whether this sensitivity 

modulation to face category impacts on categorization accuracy and is represented in the 

integrated facial information. As mentioned in the EEG analysis, if feature processing 

differs in the two categorization tasks, then I would expect differential processing of 

expressions in the Expression task and similar processing of expressions in the Gender 

task. If the integrated information corresponds to the respective diagnostic information 

for each task (obtained with behavioural CIs, see Chapter III), there would be strong 

evidence that the categorization task manipulates differential feature processing in a top-

down manner. 

 Again, I turned to the MI approach, this time to identify voxels, which share 

mutual information with the successful categorization of an expression or gender 

(compare Figure 5.4). This method was used to ensure, that integrated information in 

these voxels was linked to behaviour and could thus be compared to behavioural 

diagnostic information. For each observer, task and expression, and over the time 

window of the M170, I computed MI between the single trial source power of 1090 

voxels (the same voxels as in the previous analysis step) and the behavioural response 

(correct/incorrect). I used exactly the same parameters as for the previous MI 

computation, using equi-populated bins with the same number of trials per condition for 

each observer. Because the response occurred in time after this sensitivity, these voxels 

were predictive of a correct or incorrect categorization decision. In order to visualize the 

significant voxels with their sensitivity strength and location, I plotted them in a 3D 

scatter plot (Figure 5.8). Significance thresholds for voxel sensitivity were again 
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determined using the same data-driven 95% confidence interval (see step (5) in section 3 

of this chapter). I plotted all voxels (the size of the marker represents strength of 

sensitivity) for six time bins of the M170 time window in one plot. A crude observation 

of the scatter plots revealed that there were usually clusters of voxels responding to the 

same expressions. In the Expression task, the clusters predicting correct categorization of 

“happy” were especially big and wide-spread. In the Gender task, it was usually other 

expressions (other than “happy”) that predicted a correct gender categorization.  

 These clusters of voxels could now be used to determine the integrated facial 

features. Again, if voxels predicting a correct categorization of a certain expression in the 

Expression task corresponded to the diagnostic behavioural information, then there 

should be a greater variance of integrated information in Expression. And vice versa, 

voxels sensitive to expressions, but predicting correct gender categorizations should all 

integrate similar facial information that overlaps with the diagnostic information for 

gender. 

 In order to determine the integrated facial features, I computed the MI between 

every single pixel of all bubble masks for each expression and the single trial source 

power of all predictive voxels within one expression cluster of the previous analysis step 

(compare Figure 5.4). Again, I used the same computation parameters as in the first MI 

computation, with the same numbers of trials per observer and bin (see step 4). This 

analysis yielded images of the size of sensor-based CIs, each pixel representing a value 

of MI (see Appendix C for a comparison of voxel-based CIs and corresponding MI 

images). Figures 5.10 – 5.12 depict these MI images. For each expression and task, I 

chose the MI images from the six M170 time bins that had the highest values of MI. In 

some cases, if there was no sensitivity in a time bin to an expression from the previous 

analysis step, there was of course no such image available. Also, if there were images 

with peak values of less than .01 bits of information, they were excluded as well. For 

comparison purposes, each graph also contains the behavioural CIs for all expressions 
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and gender. All images are overlaid onto an original stimulus face to ease interpretation 

of the depicted information. 

 

 

Figure 5.9: 3D scatter plots of voxels sensitive to expressions and predictive of categorization 

accuracy for each task and observer. The 3D space depicts the occipitotemporal brain with 1090 

voxels (occipital is at the side of the y-axis). Each marker represents the strength of the 

sensitivity by its size (same scale for all plots), whereas the symbol of the marker represents the 

time bin of activation (see legend) and the colour the expression. See text for further discussion. 
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 Again, several conclusions can be drawn from this analysis. Observers displayed 

their own pattern of information processing and behavioural sensitivity. For observers 

M1 and M3 there was a clear task effect of information processing, for observer M2, I 

found a weaker task effect. Observer M1 (Figure 5.10) was using the mouth for gender 

categorizations. In all expressions, the sensitive voxels integrated primarily the mouth in 

the Gender task. In contrast, in the Expression task, expression associated voxels 

integrated information that matched behaviourally diagnostic information from the 

respective expression. Even though there was an overlap between gender and expression 

diagnostic information (e.g. the mouth in “happy”), in the Expression task expressions 

included other diagnostic features as well, which were not present in the Gender task 

(eyes, wrinkles, eyebrows etc.). The only expression for M1, which contained expression 

diagnostic information in the Gender task, was “fearful”. 

 Observer M3 (Figure 5.12) revealed a very similar pattern to observer M1. Instead 

of the mouth, M3 used primarily the left eye, left and right eyebrows and forehead. 

Again, these features could be found in most expression associated voxels in the Gender 

task. In the Expression task, I found expression diagnostic feature sensitivity in most 

expressions, but not all (none in “angry” and “fearful”). Again, there was one expression 

(“disgusted”), whose expression diagnostic information I also partially found in the 

Gender task. 

 Lastly, observer M2 only showed a weak effect, due to the MI images being very 

noisy. In fact, the images were originally so noisy, that I decided to use only the three 

most sensitive voxels of each cluster to reduce the variance of MI. So, depending on the 

total number of voxels in each cluster, the images in Figure 5.11 are the average of either 

one, two or three voxels. This decision was based on the assumption that it might be 

possible that different voxels integrated different information, which in turn led to the 

loss of individual information by averaging. The top three sensitive voxels are likely to 

lie close to each other and to integrate similar information; hence by restricting the 



 

 

101 

number of voxels, I reduced the variance of information processing. Indeed, this strategy 

improved the images quite a bit, yet they were still not as clear as the other observers’. 

M2 used both eyes, eyebrows and the forehead for gender categorizations. These could 

be found in most of the expressions in the Gender task, though again not in all (no 

information in “disgusted” and “sad”). The same applied to the expression task with 

expression diagnostic information (however, no information overlap in “neutral”). 

Generally for this observer, however, the images are noisier and the MI values lower than 

for the other observers, so the observed task effect is weaker and less clear. 

 Finally, the overall conclusion from these results can be drawn, that categorization 

demands had a top-down modulatory effect on information processing in different 

voxels, which were sensitive to categorization accuracy. The behaviourally diagnostic 

information in Gender was replicated by most expression-associated voxels in the 

Gender task, leading to a more uniform and similar information processing across 

expressions. This contrasts results for the Expression task, where expression diagnostic 

information was processed by the different expression-associated voxels in the 

Expression task, leading to a more varied processing of information by voxels predictive 

of categorization accuracy. Hence, the results provide direct evidence for top-down 

control on facial feature integration during the time window of the M170. 

 

 

5. Summary 

 The results of the MEG study have very clear implications. (1) I replicated the task 

effect on dispersion of peak amplitudes and latencies on the sensor-level, which I found 

in the EEG data, demonstrating the robustness of this effect. (2) I found very individual 

patterns of results for each observer, justifying a single subject approach. (3) Depending 

on task demands, sensitivity of brain areas to explicit, task-relevant face categories varies 

in either timing or location of sensitivity. This effect is present, but weaker for the 
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implicit categories, indicating a preferential task-dependent allocation of category 

sensitivity. (4) The processed facial information in voxels predictive of categorization 

accuracy varies with categorization task and overlaps with the diagnostic information 

obtained from behavioural CIs for the task-relevant face category. 

 In conclusion, these results provide direct evidence for top-down modulation of the 

feature integration during the M170. There is more sensitivity to the face category that is 

relevant to the categorization task and this sensitivity occurs in different locations or time 

points. The integrated information itself overlaps with the information needed to 

successfully perform the categorization task at hand. This supports my hypothesis that 

face processing during the M170 is subject to top-down control. 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 5.10, 5.11 and 5.12 on the following pages: Comparison of images for MI(pixel/power) 

and behavioural CIs for clusters of voxels predictive of categorization accuracy for each 

expression, task and observer. The green box represents the Gender task, the red box the 

Expression task. On the left of the black line are the behavioural CIs, their most prominent 

diagnostic information marked with a circle (dotted for Gender, dashed for Expression). On the 

right of the black line are, for each expression, the MI images with the two highest MI values of 

all six time bins. Which time bin each image belongs to is marked at its top right corner using the 

same marker symbols for each bin as in Figure 5.6. Each MI image is also displayed with its own 

MI scale in bits for comparison (e.g. .04 = 4 bits of MI). Again, the circles correspond to the 

diagnostic information integrated. Note in Expression (red), this is the diagnostic information of 

the respective expression only. 
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Figure 5.10: Observer M1. 
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Figure 5.11: Observer M2. Each MI image represents the top three voxels of each cluster only. 
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Figure 5.12: Observer M3. 
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__________________________________________________________________________________________________________ 

VI. Discussion 

 

 The central aim of this thesis was to determine whether top-down control changes 

the way the brain integrates facial information during the time window of the N170 

potential and M170 field. To this end I conducted two studies using the same 

experimental paradigm, while recording either their EEG or MEG activity. In the first 

study, I recorded participants’ EEG signal while they categorized the same set of 

expressive faces by either gender (first task) or expression (second task). Behavioural 

analyses using Classification Image (CI) techniques and Bubbles exposed a task effect in 

the use of particular facial features to correctly perform gender or expression 

categorizations (diagnostic features). For example, in the Expression task observers used 

the smiling mouth to categorize “happy”, while in the Gender task they used the eyes and 

only a small part of the mouth. A single sensor analysis revealed a significant task effect 

on the dispersion of both N170 peak latencies and N170 peak amplitudes of different 

expressions, with the dispersion of expressions being wider in the Expression task. 

Greater N170 peak differences of expressions in the Expression task suggested a possible 

expression specific processing of facial features. However, while this task effect was 

found in the timing and voltage of the peaks, a task difference in the processing of 

specific facial features using Bubbles and CI techniques with the N170 single-trial 

activity could not be determined. In fact, further analyses indicated that both sets of task-

relevant and task-irrelevant diagnostic features were processed in both tasks at the same 

time. Yet, the wider dispersion found in the timing of N170 peak latencies was replicated 

in the timing of maximum feature sensitivity. From this, it can be concluded that despite 

the overlapping feature processing, the categorization task significantly modulated the 

timing of feature sensitivity of the N170. This modulation, in turn, impacted on the 
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timing of the N170 peaks. This implies that the N170 reflects a function of visual feature 

processing and extraction (compare Schyns et al., 2007). 

 In the second study, participants performed the same two categorization tasks 

while their MEG activity was recorded. I was able to replicate the behavioural effects of 

task-dependent diagnostic feature use and the task effect of wider M170 peak dispersion 

of expressions in the Expression task. Instead of a single sensor analysis, I performed a 

source analysis. Next I determined brain areas sensitive to task-relevant, explicit or task-

irrelevant, implicit face category (for each task) using a Mutual Information analysis. I 

found task differences in the timing and sources of sensitivity to both explicit and 

implicit face category. This indicated a top-down modulation of brain sensitivity to face 

categories depending on categorization demands. Next I determined the MI between the 

source power of voxels predictive of categorization accuracy and the corresponding 

bubble masks. Results revealed that the processed features in the voxel space overlapped 

with the behaviourally diagnostic features to a large extent. This provided strong 

evidence for a task-dependent, top-down modulation of information processing during 

the M170 time window.  

 In summary, top-down influences of task demands during the N170 and M170 

changed: 

• the timing of the processing of single expressions. The timing was more aligned for 

all expressions when they were task-irrelevant, and more differentiated when they 

were task-relevant. 

• the focus and strength of brain sensitivity to the task-relevant face category. 

• the facial information used by the brain to enable successful categorizations. 
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1. Reconciling conflicting results about top-down effects on the 

N170 and M170 

 As described in the introduction, the timing of top-down influences on face 

processing has been highly debated. While studies examining the timing of top-down 

effects on general visual bottom-up processing find differences as early as 70 ms (e.g. 

Eason et al., 1969), the N170 or M170 to faces was thought by some to be solely a 

reflection of basic, bottom-up, structural visual processing without top-down 

penetrability (Guillaume & Tiberghien, 2001; Cauquil et al., 2000; Carmel and Bentin, 

2002; Lueschow et al., 2004; Furey, 2006; Philiastides et al., 2006; Rousselet et al., 

2007; Rousselet et al., in press). In contrast, other studies found a top-down modulation 

of the N170 or M170 potential to faces (Sreenivasan et al., 2009; Mohamed et al., 2009; 

Okazaki et al., 2008; Holmes et al., 2003; Eimer, Holmes, McGlone, 2003; Crist et al., 

2008; Wronka & Walentowska, 2011). All studies that found evidence opposing a top-

down effect on the N170 or M170 have one feature in common (except Philiastides et al., 

2006 and Rousselet et al., 2011, who used the same colour-tint paradigm): they 

compared the ERP to faces when faces were either targets or non-targets, while targets 

and non-targets were presented in different trials, i.e. never at the same time, but always 

at the same location. So, even if faces were task-irrelevant, they could have been 

processed as if they were targets for lack of a competing or distracting task-relevant 

stimulus. This would explain the lack of top-down effects on the N170 or M170 in these 

studies. Interestingly, studies that found top-down effects during the N170 or M170 

either (1) had targets and non-targets superimposed onto each other, directing attention 

away from the faces, when they were non-targets (Sreenivasan et al., 2009; Mohamed et 

al., 2009; Okazaki et al., 2008), or (2) presented targets and non-targets at the same time, 

but not in the same location, again directing attention either to or away from faces (Crist 

et al., 2008; Eimer et al., 2003; Holmes et al., 2003). (3) A third kind of study used the 
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same experimental paradigm as me, manipulating task-related feature-based attention 

(Wronka & Walentowska, 2011). This would suggest, that all three units of attention – 

feature-based, object-based and spatial attention – were able to modulate the N170 or 

M170 to faces when distractor stimuli were presented at the same time as the targets. My 

methods and results fit in nicely with this explanation: by manipulating task demands, I 

induced participants to attend to different diagnostic information within the same stimuli, 

manipulating their feature-based and/or spatial attention within the stimulus display and 

this resulted in a top-down modulation of N170 and M170 and facial feature processing 

latency, as well as a differential category and information sensitivity on the source level. 

 

 

2. My results challenge some assumptions of Haxby et al.’s 

model of face perception 

 Haxby et al.’s (2000) anatomical and functional model of face perception makes 

certain claims as to the function of elements of the core system. Specifically, they posit, 

that the superior temporal sulcus (STS) is sensitive to changeable aspects of features, 

such as expression, whereas the fusiforma face area (FFA) is sensitive to invariant 

aspects, such as gender and identity. The occipital face area (OFA), in contrast, is 

supposed to be responsible for the simple scanning of all facial features. My results are 

not entirely in agreement with these hypotheses. In fact, sensitivity to both explicit and 

implicit face categories was already present in visual cortex (VC) and OFA for all 

participants. This places both gender and expression sensitivity slightly earlier – 

anatomically, not temporally – in the processing chain than assumed by Haxby et al. 

(2000). However, with respect to the OFA, this result is in line with Cohen-Kadosh et al. 

(2011), who found that TMS to the right OFA significantly impaired categorization of 

expression and identity of faces. Identity is – like gender – an invariant aspect of faces. 
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Furthermore, gender and identity are very strongly linked. My participants underwent 

long and intense testing. Hence, I have to take into account the possibility, that they 

learned the identities of the stimulus faces so well, that they performed an identity task to 

determine gender (although explicitly instructed not to). However, since both gender and 

identity are invariant aspects of faces, this possible task shift is of no practical 

consequence to my conclusions. The importance of the OFA for gender and expression 

categorization is further highlighted by a single-case lesion study (Steeves et al., 2006). 

Patient D.F., whose brain lesions overlap the OFA bilaterally, showed an increased 

response to faces in the FFA and performed normally in some face categorization tasks. 

However, she was severely impaired in categorizing identity, gender and expression. 

These results suggest, that the OFA plays a crucial role in the categorization of these 

three face categories in particular, and not only in the structural encoding of faces as 

suggested by Haxby et al. (2000). 

 In the MEG study, the FFA showed sensitivity to both gender and expressions, 

rather than just to invariant features (i.e. only gender). This is in line with results from 

several studies, using MEG and fMRI (Ganel, Valyear, Goshen-Gottstein, & Goodale, 

2005; Halgren et al., 2000; Lewis et al., 2003). Surprisingly, in my results, the STS was 

also sensitive to both gender and expressions, but only for one observer (M2) the peak 

for explicit expression category was in the STS. It could be that my time window was too 

early for expression category sensitivity in the STS to reach a maximum for other 

participants as well. Had I included later time points, for example the P300 or a time 

window just after 200 ms, into my time window of interest, I might have found STS 

sensitivity to expressions in all participants (Furl et al., 2007).  

 The most puzzling result of the sensitivity localization is certainly the fact that I 

found sensitivity to different face categories in core visual areas (VC) during the N170 

and M170 time window. While it is known that the VC, especially V1, V2 and V4, can 

be influenced by spatial attention (Bressler & Silver, 2010; Luck, Chelazzi, Hillyard, & 
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Desimone, 1997; J. Moran & Desimone, 1985), less is known about their categorical face 

sensitivity in response to task demands. There is, however, evidence for differential 

responses when categorizing the same stimuli by either patterns or colours (McClurkin & 

Optican, 1996), indicating a possible top-down influence in response to task demands on 

these core visual areas. In addition, further clues of face sensitivity in core visual areas 

are provided by Wilkinson et al. (2000). Specifically, they found that the human V4 was 

activated by faces to the same extent as the FFA. Both FFA and V4 were also activated 

by concentric sine patterns, however, V4 more so than FFA. Since faces contain a lot of 

concentric sine features, this overlap is not too surprising and could explain the face 

sensitivity I found during the M170 in VC3. However, my study extends the simple face 

sensitivity of core visual areas like V4 to sensitivity to task-relevant face categories, 

which implies that V4 (or other core visual areas) might also process semantic, 

categorical face information once low-level visual information like orientation, shapes 

etc. have been processed. 

 

 

3. Why was there no task-differential feature processing in the 

EEG study? 

 When comparing the results of the two presented studies, the question arises why 

the EEG data did not yield a clear task effect of N170 feature processing. One very likely 

explanation is that the scalp N170, being the summation of the activity of several 

different brain sources, is too insensitive to distinguish between the sources’ differential 

information sensitivity. The summation problem with scalp ERPs becomes even clearer, 

                                                           

3 The spatial resolution of our results is not detailed enough to distinguish well between different core 

visual areas (8 mm voxel size). However, regarding the evidence mentioned, V4 seems to be a likely 

candidate for the effects we observed in this general region, despite the fact, that some of the VC activation 

seems closer to the midline of the brain and therefore closer to V1 or V2. 
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when regarding all the different studies, which determined the source of the N170 – there 

is quite a variation in findings – including all three components of the core system of 

face processing (Haxby et al., 2000; Herrmann et al., 2005; Itier & Taylor, 2004; 

Schweinberger et al., 2007). In addition, my own results from the MEG study further 

corroborate this possibility. I found sensitivity to two different face categories during the 

M170 time window, and the focus of this sensitivity was in different brain areas. Since 

the source analysis was conducted using a very small time window around the M170, it 

is safe to assume that most information sensitivity found in occipitotemporal regions 

contributed to the M170 potential to a certain extent. If I presume that the EEG 

participants have displayed the same changes in brain sensitivity as the MEG 

participants, with sensitivity present to both explicit and implicit face categories during 

the N170 and M170, it is unsurprising that the ERP picked up on both sets of features.  

 It is possible that, had I extended the analyses to other electrodes, I would have 

found a task effect in some electrodes; especially since the brain areas found in the MEG 

study varied greatly in spatial location. Of course, my approach of picking the most 

active electrodes – an “electrode-of-interest” approach – even though widely-used 

(Picton et al., 2000; Rossion, Gauthier, et al., 2000; Sreenivasan et al., 2009), is not 

optimal. A great deal of information and variance in brain activity is lost when singling 

out sensors (Rousselet & Pernet, 2011). However, as explained before, reverse 

correlation and CI techniques take up a fair amount of processing time. A solution to this 

problem could be to apply a Mutual Information approach to all of the EEG sensor data, 

analogous to the approach used in the MEG voxel-based analysis. Using MI, one could 

obtain a topography of sensors, which could be more or less sensitive to either different 

face categories or correct categorizations, allowing then to look at feature processing at 

the sensors most active by pre-defined criteria. 

 Another problem I encountered with my EEG analysis was a fair amount of noise 

in the sensor-based CIs. On the one hand this was connected to lower trial numbers, but 



 

 

113 

on the other hand this was probably also caused by issues of skull and tissue conductance 

impacting on the EEG signal (Hansen et al., 2010). Another option to reduce noise and 

increase focal activity of the EEG is to transform it into Current Source Density (CSD) 

by computing the surface Laplacian estimate of the electrophysiological topography 

(Nicholson & Freeman, 1975; Pernier, Perrin, & Bertrand, 1988). Not only is the CSD 

more focal and less smeared than the EEG potential (Pernier et al., 1988), it is also a 

reference-free measure, meaning that regardless of the EEG reference used, the CSD will 

always look the same (Kayser & Tenke, 2010). While Junghoefer et al. (1997) suggested 

using more than 100 electrodes to improve accuracy of the CSD, solutions have been 

found for low-density (< 64 electrodes) EEG data (Kayser & Tenke, 2006). It could be 

beneficial for the clarification of the results to check whether the use of the CSD in 

conjunction with the MI technique would improve the EEG signal to the extent that I 

would find task effects on the facial feature processing during the N170.  

 Despite and because of the lack of a task effect in the information processing of 

the N170, the EEG findings allow an important conclusion, that is further corroborated 

by the MEG results: both sets of task diagnostic features were integrated during the N170 

and M170. While information processing during the N170 potential does not distinguish 

between the two tasks, indicating parallel, but possibly interacting feature processing, the 

N170 peaks and amplitudes for each task clearly do and the MEG results clarify, that 

sensitivity to both face categories was present, albeit much weaker for the task-irrelevant 

category. A further test (using the MEG data) of the integration of both sets of features 

would be to compare categorization-diagnostic voxels with voxels not predictive of task 

performance. Comparing their MI(power, pixel) could reveal whether the task-irrelevant 

diagnostic information was integrated in voxels not predictive of performance. 

Interestingly, one strand of face research has postulated that face recognition (e.g. 

identity or gender) is separate, but parallel to expression (Caharel, Courtay, Bernard, 

Lalonde, & Rebao, 2005). This assumption stems from Bruce and Young’s model of face 
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perception (1986). While some studies found no interaction between behaviour or ERP 

amplitudes when comparing tasks judging either variant or invariant face characteristics 

(Sergent, Ohta, Macdonald, & Zuck, 1994; Young, Newcombe, Haan, Small, & Hay, 

1993), others, especially more recent studies, showed that the processing systems for 

variant and invariant face characteristics do indeed depend on each other to a certain 

extent (Aguado, García-Gutierrez, & Serrano-Pedraza, 2009; Baudouin, Gilibert, 

Sansone, & Tiberghien, 2010; Lander & Metcalfe, 2007; Martens, Leuthold, & 

Schweinberger, 2010). In light of this research background, it is not surprising, that both 

expression and gender diagnostic features were integrated at the same time during the 

N170/M170 time window and that the N170 and M170 reflected both processes. In fact, 

the reported (significant) greater dispersion of expression ERPs in the Expression task 

reflects a statistically significant interaction between expressions and categorization task. 

This could be interpreted in a sense, that gender either facilitates the processing of certain 

expressions or vice versa – that some expressions facilitate the processing of gender – or 

both. Evidence exists for both ways from research studying the influence of face 

familiarity on expressions (Dobel et al., 2008; Kaufmann & Schweinberger, 2004; 

Schweinberger & Soukup, 1998). 

 One result from the MEG analysis, that could provide further insight into this 

interaction, is the spatial and temporal pattern of voxels predictive of categorization 

performance (Figure 5.9). When comparing the diagnostic voxel patterns, there is a great 

difference across tasks per expression. Specifically, there was a greater bias in 

Expression for voxels to be diagnostic for “happy” (green), whereas in Gender, 

diagnostic voxels usually appeared for other and sometimes a greater number of different 

expressions. It is well known, that “happy” – being the only positive expression among 

negative ones – is usually easiest to categorize (Hugenberg, 2005). Hence I was 

wondering whether the greater number of diagnostic voxels for “happy” in Expression 

was related to categorization difficulty. I asked one observer (M3), who was the only one 



 

 

115 

available, which expressions she found easiest to categorize. Without much thinking, she 

replied: “Happy and sad”. Interestingly, “happy” and “sad” (black) are the expressions 

represented by the most diagnostic voxels in the Expression task for this observer. While 

this is only incidental data, it could nevertheless be a hint towards the meaning of greater 

diagnostic voxel numbers for categorization performance. In the Expression task, it could 

indicate, which expressions were easiest to categorize. In contrast, in the Gender task, 

this information could uncover, which expressions contributed most usefully to gender 

categorizations in the Gender task. While observer M1 seemed to have benefited from all 

expressions in the Gender task, M2 and M3 did not show any diagnostic voxels related to 

“happy” and diagnostic for gender categorizations (while they do for expression 

categorizations). This could suggest, that “happy” is not very useful for the judging of 

gender, but more so for the categorization of expressions, revealing the possible nature of 

the interaction between expression shown and task performed. A study manipulating the 

task difficulty systematically would provide further insight into this interaction. 

 

 

4. Methodological issues of these findings 

 A common criticism of experiments involving Bubbles is the small number of 

participants. While a lot of experiments in Psychology use a wide range of numbers of 

participants, it is generally agreed that three participants is too little. However, in 

addition to practical limitations (running one participant took about three months), there 

are other factors, which justify the use of fewer participants. Higher numbers of 

participants are generally recommended because experimenters are interested in group 

effects and averages across participants. Not only was I not aspiring a group comparison, 

the individual variance in these data also suggests, that averaging might result in the loss 

of individual task effects. Just as averaging the MEG or EEG signals results in a loss of 

single-trial variance, averaging across participants results in a loss of single-subject 
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variance (Rousselet & Pernet, 2011). As demonstrated before, these and previous studies 

take into account the single trial variance and clearly show, that this variance does indeed 

carry meaningful information (Delorme, Makeig, Fabre-Thorpe, & Sejnowski, 2002; 

Mouraux & Iannetti, 2008; Rousselet et al., 2007; Schyns et al., 2007, Schyns et al., 

2009). In addition, Rousselet and Pernet (2011) make a strong case for single-trial and 

single-subject analyses. Naturally, a single-subject approach per se cannot be used to 

justify a small number of participants. However, since I did not aspire group analyses, a 

smaller number of participants can be justified given the practical restraints.  

 Bubbles has also been criticised for other reasons; Murray and Gold (2004) 

pointed out two issues in particular. First, they stated that Bubbles does not fully 

characterise the LAM (Linear Amplifier Model) observer. This would make Bubbles 

inferior to other reverse correlation methods. Secondly, they identified a practical 

shortcoming: the Gaussian apertures would force observers to use the information 

available rather than let them apply their own natural pattern of information usage. This 

could result in misleading diagnostic information patterns, in turn reducing their 

ecological validity dramatically. The original authors respond to these claims in a reply 

article (Gosselin and Schyns, 2004). They address the first issue by pointing out that the 

LAM observer is an ideal model, but by no means an accurate model for a human 

observer. They state that the LAM observer represents a case that is an outlier in the real 

world, in all other cases Bubbles and other reverse correlation methods perform the same. 

As to Murray and Gold’s practical issue, Gosselin and Schyns (2004) refute their 

concerns by showing that results from a direct comparison of Bubbles and a Gaussian 

noise reverse correlation method are highly correlated, thus suggesting that Bubbles does 

not change observers’ information usage pattern. In summary, the most criticised issues 

of Bubbles are not problematic after all. 

 Finally, the fact that my findings fit in with the wider research context (e.g. the 

task effect in behavioural diagnostic information, the task difference in N170 peak 
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dispersion, the top-down modulation of the N170 and M170, generally an influence of 

attention on early visual processing), additionally underline the validity of my analyses 

and results. Furthermore, rather than simply reporting task effects found in brain activity, 

I assigned visual information to the activity observed and was able to demonstrate task 

effects on the information level. 

 

 

5. Scope and future directions 

 The presented analyses were restricted to a very narrow time window and only 

one general brain area (occipital and occipito-temporal regions). While this was useful in 

order to test my hypothesis, it would also be very informative to extend my analyses to 

all time points and brain voxels. That way it would be possible to determine, where and 

how the first sensitivity to faces and face categories emerges and when this information 

becomes decision relevant. The involvement of the extended system of face processing 

(Haxby et al. 2000) could possibly be mapped out. Liu, Harris and Kanwisher (2002) 

found, that activity in occipitotemporal areas as early as 100 ms after stimulus onset were 

already correlated with the perception and correct categorization of faces as compared to 

other objects. However, correct categorization of identity was only correlated to later 

activity during the M170. From these results I would predict from my data, that 

sensitivity to different face categories is not present at 100 ms, but develops subsequently 

and reaches a peak shortly before or at the N170 or M170 peak (also see M. L. Smith et 

al., 2009). The presented data could also be reanalyzed to address the question of how 

task impacts on processing after the N170 or M170. A much stronger category and 

diagnostic facial feature sensitivity could be hypothesized to emerge around 300 to 400 

ms, corresponding to the time window of the P300, which is thought to be involved in 

decision making (Nieuwenhuis, Aston-Jones, & Cohen, 2005; Sutton, Braren, Zubin, & 

John, 1965; Sutton, Tueting, Zubin, & John, 1967). In addition, category related voxels 
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that are associated with the fronto-parietal attention network (Sutton et al., 1967) might 

reflect top-down influences that are dependent on task. Using MI, this top-down category 

sensitivity could be mapped out in a temporally and spatially accurate manner, answering 

the question of how, when and through which mediating structures top-down control is 

exerted.  

 An area that has been thought to mediate top-down influences on the face 

processing system and that is also part of the extended system of Haxby et al.’s model is 

the amygdala (Adolphs, 1999; Pessoa, 2010). It is supposed to be especially involved in 

the evaluation of affective significance (Pessoa & Adolphs, 2010). The MI approach 

combined with Bubbles has the potential to elucidate, whether categorization task has an 

influence on the activity of the amygdala, especially in response to certain features, like 

the eyes, or expressions, like fear or anger (Adolphs, 1999). For example, because 

expressions are not task-relevant in the Gender task, the amygdala might not process 

“fear” preferentially in this task, only in the Expression task (Anderson, Christoff, Panitz, 

De Rosa, & Gabrieli, 2003). This would contrast findings from several studies 

demonstrating that the amygdala is independent of attention (Anderson et al., 2003; 

Dolan & Vuilleumier, 2003; Pessoa, Kastner, & Ungerleider, 2002), but also be in line 

with studies from Pessoa et al. (Pessoa, Kastner, et al., 2002; Pessoa, McKenna, 

Gutierrez, & Ungerleider, 2002). Luo et al. (2010) suggest, that attention effects on the 

amygdala can only be observed after 280 ms, but before that the amygdala responds 

completely automatically and without top-down influences. Given these contrasting 

results, analysis of my data using MI and Bubbles might further elucidate this matter by 

extracting specific task-dependent facial information from activity in the amygdala. 
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6. Conclusions 

 The research presented in this thesis provides evidence for differential, task-

dependent facial feature processing during the N170 and M170 time window. My 

findings corroborate findings from previous literature on task-dependence of the N170 

and M170 and fit in nicely with findings from the wider literature about top-down effects 

on visual processing. By using Bubbles in conjunction with Classification Images and 

Mutual Information, I succeeded in extracting feature sensitivity correlated with brain 

activity, both on the scalp surface and on the source level of highly time-resolved 

neuroimaging data, in response to different categorization demands. These techniques 

have proven their usability and generate a wealth of information, which can and should 

be used to assess visual processing in the brain and to complement previous findings on 

an informational level. 
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__________________________________________________________________________________________________________ 
VII. Appendix 

 

A. The task effect of ERP dispersion is not caused by adaptive 

task differences in bubble numbers 

 

 As mentioned in the Chapter II, bubble numbers were adapted online to maintain 

an accuracy threshold of 75% per condition. Due to the nature of the tasks, observers 

performed better in the Gender task, which led to lower bubble numbers in this task. 

Furthermore, bubble numbers were more varied in the Expression task due to the 

different degrees of difficulties in judging expressions. For example, “happy” generally 

had lower bubble numbers than “angry” or “sad”. The amount of bubble numbers in each 

trial is a direct correlate of facial information shown to the observer. Even though low-

level sensory parameters of the image were kept constant, it was imperative to rule out 

the possibility, that the variation in the amount of meaningful information shown – and 

thus the task difficulty – did not cause the greater dispersion in ERP latencies in 

Expression.  

 To this end, I first plotted the ERPs for the bottom 50% of trials of the bubble 

number distribution and the top 50% of trials separately in groups. In either group there 

seemed to be the same kind of latency dispersion, i.e. lesser dispersion in the Gender task 

and higher dispersion in the Expression task (Figure A1). For the amplitudes, the picture 

was not so clear, but since my Regression Analysis (Chapter IV) was based on the 

latency rather than the amplitude dispersion, this finding is not problematic for the 

interpretation of my results.  

 In order to further corroborate the reliability of the ERP and regression analyses, 

which were based on the N170 latencies, I sorted all trials by their bubble numbers and 
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plotted their EEG traces in one single image (Figure A2). If there had been a relationship 

of N170 latencies with bubble numbers, there should have been a clear latency decrease 

with increasing bubble numbers. However, it is obvious from the figure, that there was 

no decreasing ERP latency with increasing bubble numbers for any of the three 

observers. Additionally, there was also no systematic relationship between the N170 

amplitude and the amount of bubble numbers, which would be represented in a decrease 

or increase in colour  (white) with increasing bubble numbers. 

 These results suggest that the amount of bubble numbers (facial information 

shown to the observer) and thus the task difficulty had no direct effect on the N170 

latency or amplitude. This rules out an alternative explanation for the task effect I 

observed in both N170 latency and amplitude dispersion and the regression analyses in 

the EEG study. 

 

 

 

 

 

 

 

 

 

 

Figure A1 (page 120): ERPs for all three observers and tasks plotted separately in groups of trials 

with low bubble numbers (left column), high bubble numbers (middle) and all trials together 

(right). The peak latencies across expressions quite obviously are just as aligned (Gender, green 

panel) or varied (Expression, red panel) in both high and low bubble number trials compared to 

all trials. This provides evidence against an alternative explanation based on information shown 

and task difficulty for the differing ERP latency dispersion observed in each task. 
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Figure A2: All trials per task are plotted in ascending order according to their bubble numbers, 

i.e. information shown. The rows represent observers in the usual order (E1-3). There is no 

systematic time shift of the N170 with increasing bubble numbers towards shorter N170 

latencies. Similarly, N170 amplitudes are not higher or lower with increasing bubble numbers, 

suggesting that amplitude differences are not caused by differing amounts of facial information 

shown.
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B. Additional analysis approaches for the EEG data 

 

 Since Bubbles is not a widely used technique, there are only a few established 

analysis steps, such as the computation of the various kinds of CIs. However, past the 

computation of CIs, there are no standard analyses. Consequently, many different 

analysis approaches were explored and tried before the final conclusions were drawn. 

This part of the appendix introduces two approaches that were adopted along the way, 

but turned out to be inferior to the final analyses (1.) or too inconclusive (2.) and were 

hence excluded from the main chapter. Other adopted approaches are not mentioned 

here, as they never reached a stage of presentability. 

 

 

1. Sensor-based CI computation using EEG amplitudes as weights 

 As described in the Chapter III, CIs were computed by sorting bubble masks into 

amplitude bins and then subtracting the bottom from the top half of bins to gain 

information that preferentially elicited higher negative EEG amplitudes. This approach 

discretised the bubble mask distribution. At the start of the EEG analysis I decided to 

compare this discrete computation technique (method A) with a parametric computation 

technique (method B). For each time point along the N170 time window, I simply 

multiplied the (normalized) bubble masks with their corresponding amplitude value and 

added these weighted masks for all trials per expression. This allowed me to derive 

parametrically weighted CIs on the sensor level. I compared both sets of CIs visually and 

in addition analysed them in the same manner with some of the analysis approaches 

described in this thesis. Results were generally more stable and less noisy using method 

A. This was most likely caused by the greater sensitivity of method B to amplitude 

outliers, giving disproportionate weight to single bubble masks, whereas method A 

treated all outliers as belonging to the same amplitude bin, making CIs more robust. 
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2. A scan path analysis revealed individual and possibly task-dependent 

scanning patterns across observers 

 Schyns et al. (2007, 2009) found that the focus of facial feature sensitivity within 

one sensor-based CI of each observer and expression (the “scan path”) followed a very 

specific pattern along the N170 time window. The integration would usually start in the 

eyes, then expand on and move downwards in the face towards the mouth. However, the 

integration process would end as soon as expression diagnostic information was 

integrated, for example the corners of the nose in “disgusted” or the mouth in “happy”. 

According to the predictions of my hypothesis, I would expect the scan paths in the 

Gender task to be very similar across expressions, and in the Expression task to differ 

between expressions, especially towards the end, when the focus ends on the diagnostic 

information of each expression as opposed to the diagnostic information for gender. 

 I attempted to replicate their findings by plotting the y-coordinate of the 

maximum of information sensitivity within one sensor-based CI per time point against 

the time course of the N170. I cut off the scan path as soon as the maximum of 

information sensitivity was determined by activation outside the face area (as this 

indicates that noise sensitivity is greater than facial feature sensitivity). The results can be 

seen in Figure B1. Each observer represents one row of individual behavioural CIs for 

expression categorization. On each behavioural expression CI, I plotted the scan path of 

each task against the y-axis of the CI and the time scale of the N170 (Gender = green, 

Expression = red). Again, the N170 peaks were aligned and the white line denotes the 

point of the N170 peak (same for all images). My observers did not seem to follow the 

exact same eyes-to-mouth pattern that Schyns et al. (2007) suggested, instead there 

appeared to be a large variation across observers, tasks and expressions. While observer 

E1 showed the classic eye-to-mouth scanning pattern, Observer E3 showed the reverse 

(especially in Expression), generally starting with the mouth and then scanning upwards 
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in the face. Observer E2, on the other hand started the scanning process either in the 

eyes, or the middle of the face.  

 The next question is now, whether the scanning process stopped and the N170 

peaked when the diagnostic information was integrated. It is quite obvious that the 

scanning process didn’t always stop right with the peak, but continued ~ 10 – 20 ms 

afterwards. However, most of the new information was integrated before the peak. For 

reference, Figure B1 plots the scan paths on top of the diagnostic information for 

expression. As a reminder, the diagnostic information for gender (see Figure 3.2) 

comprised the mouth and one or both eyes for all observers. Hence, within observers I 

would expect very similar scan paths across expressions for the Gender task and the scan 

paths would stop after the same information was integrated. The latter appeared to be 

true for all observers in most expressions. The N170 in Gender for observer E1 peaked 

after the eyes were integrated, but scanning often went down to the mouth just after the 

peak. For observer E2 it peaked after the mouth and/or the eyes were integrated and there 

was no new information after the peak. Observer E3 integrated both the mouth and the 

eyes before the peak (except in “sad”, where the mouth was integrated after the peak, and 

“disgusted”, which only included the eyes in the scan path). These results agree with 

Schyns et al.’s (2007) predictions of the N170 integrating diagnostic information. 

However, the great variation of scanning patterns within observers in the Gender task 

(especially E2 and E3) was in contrast to my hypothesis that Gender scan paths would be 

more similar than Expression scan paths. 

 For the Expression task, there was a similar picture. While there was a (predicted) 

large variation across expressions, the (red) scan paths nevertheless included all 

expression diagnostic features for  

- five expressions in E1 – except “disgusted” and “sad”, where only the upper half of 

the face was scanned. 



 

 

127 

- four expressions in E2 – except “neutral”, “surprised” and “angry”, where scanning 

didn’t quite go up to the diagnostic eyes. However, bubbles in lower SF bands would 

have a radius that included the eyes at this point on the y-axis, so at least for “neutral” 

and “angry” the eyes would have been included in the scanned information (whereas 

“surprised” integrated the eyes in a high SF band). 

- all expressions in E3. 

 While the above results indicate a replication of Schyns et al.’s results, the effects 

were difficult to quantify with respect to my hypothesis due to the great overlap of 

integrated information (for example compare the scan paths for “happy” across tasks) 

and the great variance over time within-observer, across-observer and within-task. 

Hence, it was impossible to interpret these descriptive results with respect to my 

hypothesis, which aimed to disambiguate different processing strategies with respect to 

the two categorization tasks. 
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Figure B1 (previous page): Scan paths for all three subjects (rows, E1 at the top, E2 in the middle 

and E3 at the bottom) and seven expressions (columns) for Gender (green lines) and Expression 

(red lines). Scan paths are plotted on the background of behavioural CIs for expression 

categorizations to simplify interpretation of scan paths in relation to diagnostic expression 

information. The scan path denotes the maximum of information sensitivity on the y-axis of the 

sensor-based CI along the time window of the N170 (x-axis of each image). The scan paths are 

aligned to the N170 peak (white line). See text for further discussion. 
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C. Voxel-based CIs and their MI counterparts: a comparison 

 

 Instead of using the CI approach I used in the EEG study, I opted for the MI 

approach in the MEG study. The reasons for this were mainly of a practical nature. 

Instead of computing CIs for more than 1000 voxels, and looking at all of them to find 

voxels showing differential task-dependent feature integration, I instead used MI to find 

voxels sensitive to face categories and predictive of categorization accuracy per 

expression (the MI approach is more flexible in this respect). I then picked voxels of the 

latter group and computed images for sensitive voxels representing MI(source 

power/pixel), henceforth called MI images. In this step I could have computed CIs as 

well, but I chose the MI approach to stay consistent with my methodology within the 

MEG study. However, before making this decision, I compared, for a subset of voxels, 

MI images with voxel-based CIs (see Figure C1). Voxel-based CIs were computed in 

analogy to sensor-based CIs: Single-trial source power was reverse-correlated with 

corresponding bubble masks using the same binning procedure described in Chapter III.  

 From the comparison of voxel-based CIs with analogous MI images I drew three 

main conclusions:  

1. MI images and CIs are sensitive to the same face information at the same time 

points in the same voxels. 

2. MI images capture both positive and negative deflections in the CIs. 

3. MI images might be slightly less noise sensitive than CIs, but they are also 

slightly less sensitive to real information. 

 

 Figure C1 shows two representative examples of the same time points in two 

voxels and two expressions, comparing both CIs and MI images. Both voxels illustrate 

nicely, that the focus of information sensitivity was on the same face areas in both CIs 

and MI images. While voxel A had meaningful positive deflections in the CIs and voxel 
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B negative ones, the MI images of both voxels captured either deflection as an increase 

in MI. Hence, using MI did not result in loss of information sensitivity, however, it did 

treat sensitivity to the presence and absence of features the same. Depending on the 

research question, this could lead to a problem, if one is interested to distinguish between 

these two cases. Yet, this is not the aim in my MEG study. I was interested in sensitivity 

to features depending on task, whether absent or present is irrelevant; either case makes a 

statement about voxel sensitivity in the context of top-down task effects.  

 Voxel A is a good example of the reduced noise sensitivity of the MI approach. 

At the first time point of “fearful” (x) there was a fairly high (slightly red) area in the 

bottom left corner of the CI, which was not present in the MI image at the corresponding 

time point (x*). However, the second time point (y) in “disgusted” showed a lower value 

(yellow) than x at the height of the left eye in the CI, but this information is present in the 

corresponding MI image y*. Also, MI images were generally more focused onto a certain 

feature, whereas CIs seemed to be more widespread in their sensitivity, leading me to the 

conclusion that CIs are generally more sensitive, but with a trade-off of higher noise 

sensitivity. Since one of the major problems in the EEG study was high noise in the CIs, 

the lower noise sensitivity of the MI technique is an advantage. 

 In conclusion, this comparison showed that MI images are a valid substitute for 

voxel-based CIs. They capture both positive and negative deflections of CIs, which can 

be an advantage or disadvantage depending on research question. In general, MI images 

are slightly less sensitive and more focused than CIs. This is a benefit compared to the 

much more noise sensitive CIs. 
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Figure C1: Comparison of voxel-based CIs and MI images displaying MI(source power/pixel). 

Both voxels show that MI images capture the same face information as CIs, be the CI deflection 

positive or negative. Also, MI images are less sensitive to noise: The fairly high values in x 

(circled) are not represented in x*, but the comparatively lower values in the left eye in y 

(circled) are represented in y*. 
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