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Abstract 

The discovery of stem cells has led to rapid advances in the field of regenerative 

medicine. Their unique properties, including the ability to self-renew and 

differentiate make them ideal for the repair/replacement of tissues that have 

been damaged as a result of disease or injury. Mesenchymal stem cells in 

particular represent a highly valuable pool of adult stem cells for such 

regenerative applications due to their accessibility, and potential as an 

autologous patient derived autologous nature  

However current methods for the in vitro expansion of high quality autologous 

mesenchymal stem cells results in spontaneous differentiation of the stem cell 

population and a loss of differentiation capacity over time. In vivo, it is the stem 

cell niche that provides stem cells with the appropriate cues required to 

maintain stem cell self-renewal. It is proposed that by mimicking these cues 

using biomaterials, that the self-renewal of mesenchymal stem cells can be 

controlled in vitro. In this study, a novel nanopit topography was investigated 

for its effects on the maintenance and growth of mesenchymal stem cells in 

vitro. 

To investigate this, three main aspects of mesenchymal stem cell state were 

examined in response to this novel nanotopography: maintenance of the stem 

cell phenotype over time including expression of stem cell markers and 

differentiation potential over time, changes in signalling pathways associated 

with differentiation and lastly, the metabolic profile of stem cells.  

As a result of this study we have identified a novel nanopit topography, which in 

the absence of chemical supplements, provides a substrate that is conducive to 

the maintenance of mesenchymal stem cells. Small RNAs have also been 

implicated in the regulation of signalling pathways and the metabolic state of 

stem cells. Furthermore, the ability to produce nanotopographically-patterned 

substrates using current standard techniques provides an inexpensive, high 

throughput method for the production of novel tissue culture plastics suitable 

for the maintenance of mesenchymal stem cells. 
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1 Introduction 

Injury to tissues can often result in a reduced, or loss of, function associated 

with that tissue. This is mainly due to the formation of scar tissue at the site of 

injury that is both structurally and mechanically different. Additionally, 

degenerative diseases such as Alzheimer’s or Parkinson’s disease, whereby a loss 

or abnormal function of tissues results in the gradual decline of a patients health 

eventually leading to death can often have far reaching effects, not only for the 

patient but can also place pressure on a patient’s family both emotionally and 

financially. However, the advent of tissue engineering and regenerative 

medicine, a rapidly developing field which combines the unique properties of 

stem cells and biomaterials to repair or regenerate tissues that have undergone 

damage due to disease or injury, has the potential to provide a revolutionary 

method for helping to treat such injuries and the many currently incurable 

degenerative diseases (Langer and Vacanti 1993; Vacanti, Langer et al. 1998; 

Vacanti and Langer 1999). 

Adult stem cells, isolated from tissues such as bone marrow, represent a 

valuable source of autologous stem cells for such regenerative applications 

(Friedenstein 1976). However it is the underpinning ability to deliver large 

quantities of high quality stem cells, which remains a significant problem.  

In vitro, adult stem cells have a tendency to undergo spontaneous 

differentiation when cultured on standard tissue culture plastic, loosing their 

multi-lineage potential (Siddappa, Licht et al. 2007). It is understood that 

standard tissue culture plastic fails to provide stem cells with appropriate 

biological cues conducive to maintenance of stem cell self-renewal and as a 

consequence, a heterogeneous cell population develops and ultimately results in 

a loss of the stem cell population. This is the result of current plastics being 

designed around fastidious, stable, cell types rather than phenotypically 

unstable stem cells. One potential mechanism to overcome this problem is the 

use of stem cell specific biomaterial substrates. 
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1.1 Biomaterials 

Biomaterials, unlike conventional ‘bioinert’ materials have the ability to interact 

with cells to invoke an appropriate biological response. In tissue engineering, 

biomaterials were first shown to influence terminally differentiated cells by 

affecting a variety of biological processes such as cell growth, adhesion, 

morphology, and apoptosis (Clark, Connolly et al. 1990; Burridge and 

Chrzanowska-Wodnicka 1996; Aspenstrom 1999; Bonfield 2002). In regenerative 

medicine, however, it is desirable to use stem cells to regenerate complex 

tissues instead of terminally differentiated cells with the ability to form only 

single tissue types. Excitingly, research from the last decade has shown that 

biomaterials also have the ability to drive stem cell fate decisions and to target 

desirable differentiation (Engler, Sen et al. 2006; Dalby, Gadegaard et al. 2007; 

Kilian, Bugarija et al. 2010).  

In vivo, complex tissues can be identified as having unique physical, chemical 

and topographical features. Bone for example, has a high elastic modulus when 

compared to tissue such as brain, it also has a complex architectural structure 

with macro, micro and nano-meter levels of topography in the form of fibrillar 

structures such as collagen and protein:protein interactions at the nanoscale via 

cell:ECM interactions (Stevens and George 2005). Lastly, chemical cues such as 

ECM proteins play a role in bone formation promoting matrix mineralization, 

whilst glycoproteins, which contain active domains such as the RGD motif, are 

important for intracellular signalling (Reddi, Gay et al. 1977; Meyer, Alenghat et 

al. 2000; Stevens and George 2005).  

It is the potential for biomaterials to mimic these features in vitro and elicit 

specific cues to control the self-renewal and differentiation of stem cells, which 

could have profound implications for regenerative medicine. Current biomaterial 

strategies which have been employed to promote the controlled differentiation 

of adult stem cells such as mesenchymal stem cells (MSCs), include the use of 

chemistry, such as RGD motifs (McBeath, Pirone et al. 2004; Curran, Chen et al. 

2006; Engler, Sen et al. 2006; Benoit, Schwartz et al. 2008; Kilian, Bugarija et 

al. 2010), material modulus, e.g. hard/soft substrates (Engler, Sen et al. 2006), 

and also topography (Dalby, Gadegaard et al. 2007; Yim, Pang et al. 2007), both 
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at the micro- and nanoscale, for instance the incorporation of grooves or pits 

into the material surface.  

Whilst the ability to demonstrate differentiation in vitro using different 

biomaterial strategies is now well established, the capacity to maintain adult 

stem cell self-renewal in vitro using biomaterials remains limited and is now a 

major research focus. In the current literature, a study by Gilbert et al 

identified skeletal muscle stem cell self-renewal to be affected by material 

modulus and further identified that a material modulus similar to that found in 

native muscle tissue was able to promote the maintenance of the skeletal 

muscle stem cells in vitro (Gilbert, Havenstrite et al. 2010). Additionally, Curran 

et al have identified chemically modified surfaces as having the potential to 

control stem cell behaviour (Curran, Stokes et al. 2010). Here, however, we test 

nanotopography as a potential candidate for the long-term maintenance of MSC 

self-renewal in vitro. This would not only increase the functionally useful life 

span of the stem cell population for clinical applications but also, critically, 

allow for growth of the stem cell population to useful numbers in vitro over 

time.  

1.2 Stem cells 

Two properties of stem cells make them a unique and valuable source for 

applications in regenerative medicine: 

1. Self-renewal – the ability to divide whilst maintaining an undifferentiated 

cell state ultimately maintaining the stem cell population, and 

2. Potency – the potential to differentiate into multiple functionally 

specialized cell type. Stem cells can either be pluripotent; able to 

differentiate into all three germ layers, mesoderm, ectoderm and 

endoderm or they can be multipotent; able to differentiate into multiple 

cell types but are lineage restricted (Williams, Hilton et al. 1988; Keller 

1995; Pittenger, Mackay et al. 1999; Clarke, Johansson et al. 2000). 

Currently three broad categories of stem cells have been identified (fig. 1-1): 

 Adult stem cells 
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 Embryonic stem cells 

 Induced pluripotent stem cells 

Figure 1-1 Stem cells and regenerative medicine. Autologous stem cells can be acquired 
either from adult tissues (adult stem cells) or by the reprogramming of somatic cells 
(induced pluripotent stem cells (iPS cells). Non-patient-derived stem cells can be found in 
the blastocyst of an embryo (embryonic stem cells (ESCs)). These stem cells can undergo 
directed differentiation after which they could be transplanted back into the patient to 
replace or repair damaged tissue. (Adapted from (O'Connor and Crystal 2006; Cohen and 
Melton 2011)). 

Adult stem cells were first discovered in the bone marrow during the 1960’s, 

primarily with the identification of HSCs and then MSCs (Becker, McCulloch et al. 

1963). It is these first discoveries that have lead to the current era of 

regenerative medicine. Table 1-1 identifies the three main types of adult stem 

cells, their tissues of origin and differentiation potential. 

Name Tissue of Origin Differentiation 

Hematopoietic  Bone marrow All blood cells 
Osteoclasts 

Mesenchymal Bone marrow 
Umbilical Cord 
Adipose tissue 

Bone 
Cartilage 
Fat 
Muscle 
Connective tissue 
Nerve 

Neural stem cells 
  

Brain Neurons 
Astrocytes 
Oligodendrocytes 

Epithelial stem cells Digestive tract Absorptive cells 
Goblet cells 
Paneth cells 
Enteroendocrine cells 

Endothelial stem cells Bone marrow 
Blood 

Blood vessels 
Cardiomyocytes 

Table 1-1 The main types of stem cells found in adult tissues, their tissue of origin and 
differentiation potential. 

 



Chapter 1 - Introduction 

 19 

In 1981, embryonic stem cells were first discovered through research using 

mouse embryos, a discovery which ultimately led to the isolation of human 

embryonic stem cells in 1998 (Evans and Kaufman 1981; Martin 1981; Thomson, 

Itskovitz-Eldor et al. 1998). Then in 2007, a significant breakthrough occurred 

when Yamanaka et al identified four key transcription factors (oct-3/4, sox2, 

klf-4 and c-myc) that are required for the reprogramming of human somatic cells 

into stem cells known as induced pluripotent stem cells (iPS) (Takahashi, Tanabe 

et al. 2007; Yu, Vodyanik et al. 2007). Initially the reprogramming of somatic 

cells was achievable using viral vectors that incorporate these reprogramming 

factors into the host-cell genome, a high-risk strategy with the potential to 

cause mutations and the activation of oncogenes following implantation. Recent 

studies, however, using direct protein delivery methods have eliminated the use 

of viral vectors, although these have been found to work with lower efficiency 

(Kaji, Norrby et al. 2009; Kim, Kim et al. 2009; Woltjen, Michael et al. 2009; 

Zhou, Wu et al. 2009).  

While stem cells are unique, differences exist in their origin, capacity to 

differentiate and ability to undergo self-renewal, and these ultimately reflect 

their potential for use in regenerative therapies. The advantages and 

disadvantages for each stem cell type are discussed in table 1-2.  

Overall the ability of ES and iPS cells to generate cell types of all three germ 

layers, known as pluripotency, makes these stem cells an extremely valuable 

and potent research tool. However, the risks associated with their use following 

implantation (e.g. teratoma formation, problems arising from use of viral 

vectors etc) and also associated ethical problems for ES do not currently make 

them a viable tool for therapeutic use. 

Stem cells Origin Potential Advantages Disadvantages 
Adult stem 
cells 
 

Bone marrow  
Adipose tissue 
Umbilical cord 
Brain 

Multipotent Accessible 
Autologous 
Easy to culture 
Less ethical issues 
Immunodulation 

Multipotent 
Spontaneous 
differentiation 

Embryonic 
Stem Cells 

Inner cell mass 
of a blastocyst 

Pluripotent Pluripotent Ethical issues 
Complicated cell 
culture 
Tumorigenic 
Immune rejection 

Induced 
pluripotent 

Reprogramming 
of somatic cells 

Pluripotent Autologous 
Pluripotent 

Reprogrammed 
using viral vector 
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stem cells protein delivery – 
low efficiency 
Tumorigenic 

Table 1-2 The advantages and disadvantages associated with different types of stem cells.  

  
As can be seen from table 1-2 the advantages for the use of adult stem cells, 

particularly MSCs, over the use of ES or iPS cells include their accessibility, the 

potential to use patient derived stem cells, eliminating the risk of immune 

rejection, no feeder layer requirements reducing the need for animal derived 

products, adult MSCs are also thought to provide an immunomodulatory effect 

(Uccelli, Moretta et al. 2008), and lastly adult stem cells hold less ethical 

implications than ES cells in particular. However, in contrast to ES and iPS cells, 

which readily undergo self-renewal during in vitro culture, adult stem cells tend 

to undergo spontaneous differentiation forming fibroblast-like cells (Sherley 

2002; Sarugaser, Hanoun et al. 2009). 

1.3 Mesenchymal Stem Cells 

Adult MSCs were first identified in the bone marrow along with hematopoietic 

stem cells (HSCs) by Becker et al, and their clonogenic nature was later revealed 

by Friedenstein and colleagues during the 1970’s (Becker, McCulloch et al. 1963; 

Friedenstein 1976; Owen 1988; Owen and Friedenstein 1988). Further discoveries 

identified MSCs that reside in adipose tissue, umbilical cord blood and Wharton’s 

jelly of the umbilical cord tissue, however MSC’s from the bone marrow are the 

best characterised (Zuk, Zhu et al. 2001; Lee, Kuo et al. 2004; Wang, Hung et al. 

2004).  

Characteristically MSC’s are large cells with a fibroblastic morphology (fig. 1-2), 

and they were first separated from HSCs in the bone marrow due by their 

adherence onto tissue culture plastic, and propensity to form clonogenic colony 

forming unit-fibroblasts known as CFU-F’s. 
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Figure 1-2 Immunofluorescence image of a mesenchymal stem cell. Blue = nucleus, red = 

actin, green = vinculin. Adapted from (Biggs 2008). 

 
Since the discovery of MSCs there has been considerable effort to identify a 

definitive marker that can be used to isolate this multipotent population from 

the bone marrow, however this has so far gone unrewarded and currently there 

are a range of markers which collectively or individually by their presence 

and/or absence have been used to identify MSCs. Positive markers include a 

range of cell surface markers, cell adhesion molecules, and the hematopoietic 

marker CD44. Other negative markers that have been found to be absent in MSCs 

include a range of hematopoietic markers and co-stimulatory molecules. Each 

marker is individually identified in table 1-3 as well as its presence or absence 

associated with MSCs. 

Marker Type Positive/Negative Details 

Cell surface antigen 

STRO-1 antigen + Cell surface trypsin-resistant antigen 
expressed by CFU-F 
Antibody: STRO-1 

Tissue nonspecific 
alkaline 
phosphatase  

+ Cell surface glycoprotein associated with 
osteoblast lineage cells 
Antibody: STRO-3 

CD63 + Synonyms: Melanoma associated antigen 
ME491; Tetraspanin 30; Lysosomal-associated 
membrane protein 3;  
Antibody: HOP26 

CD105 + Synonym: Endoglin/SH2 

CD73 + Synonym: SH3/4 

CD71 + Synonym: Transferrin receptor protein 1 
(TfR1) 

CD90 + Synonym: Thymocyte antigen-1 (Thy-1) 
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CD49a + Synonym: Laminin and collagen receptor VLA-

1 
Cell adhesion molecules 

CD106 + Synonym: Vascular cell-adhesion molecule-1 
(VCAM) 

CD166 + Synonym: Activated leukocyte cell-adhesion 
molecule (ALCAM) 
Antibody: SB-10 

ICAM-1 + Intracellular cell-adhesion molecule-1 

CD29 + Synonym: 1 subunit of the integrin family 
CD31 - Synonym: Platelet/endothelial cell-adhesion 

molecule-1 (PECAM-1) 
CD56 - Synonym: Neural cell-adhesion molecule-1 

(NCAM-1) 
CD18 - Synonym: Leukocyte cell-adhesion molecule, 

integrin 2 (LCAMB), Lymphocyte function 
associated antigen-1 (LAD, LFA-1) 

Hematopoietic markers 

CD45 - Synonym: Leukocyte common antigen Located 
on hematopoietic cells except erythrocytes 
and platelets 

CD34 - Identified on hematopoietic progenitors and 
endothelial progenitors  

CD14 - Preferentially expressed on 
monocytes/macrophages 

CD11 - Component of various integrins, especially 
those in which the component is CD18 

CD44 + Expressed by hematopoietic as well as bone 
marrow mesenchymal stem cells 

Co-stimulatory molecules 

CD80 - Synonym: B7.1, provides co-stimulatory signal 
necessary for T cell activation and survival 

CD86 - Synonym: B7.2, provides co-stimulatory signal 
necessary for T cell activation and survival 

CD40 - Expressed by all mature B lymphocytes, 
monocytes, dendritic, endothelial and 
epithelial cells 

Table 1-3 Cell surface antigen expression profile of human bone marrow-derived 
mesenchymal stem cells. Adapted from (Tare, Babister et al. 2008). 

 
The most widely used marker of those in table 1-3 is STRO-1 of which positive 

cells isolated from the bone marrow make up approximately 10% of the total cell 

population (Simmons and Torok-Storb 1991). In addition, the differentiation 

potential of a proposed stem cell population has also been used as a method for 

identification.  
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1.3.1 Differentiation Potential 

MSCs originate from the mesoderm during development, and using chemically 

defined media, in vitro studies have shown MSCs have the capacity to undergo 

differentiation into a variety of cell types mainly derived from the mesodermal 

lineages (fig. 1-3) including osteoblasts, adipocytes, chondrocytes, fibroblasts 

and myoblasts (Pittenger, Mackay et al. 1999; Majumdar, Banks et al. 2000; 

Gang, Jeong et al. 2004). More recently, and somewhat controversially, MSCs 

have also been shown to have the ability to transdifferentiate across germ layers 

to differentiate into cells types of ecto- and endoderm lineages (Woodbury, 

Schwarz et al. 2000; Jiang, Jahagirdar et al. 2002; Wang, Bunnell et al. 2005; 

Tropel, Platet et al. 2006) indicating they may have a much broader 

differentiation potential. 

                       

Figure 1-3 Differentiation of MSCs. MSCs from the bone marrow have been shown to 
differentiate into cell types of the mesoderm such as bone, fat and cartilage. MSCs have 
also been shown to transdifferentiate across other germ layers in vitro to develop into cells 
of the endoderm and ectoderm, however this occurring in vivo is controversial and hence is 
represented by the dashed line. Image from (Uccelli, Moretta et al. 2008) 

 
1.3.1.1 Osteogenic Differentiation 

During osteogenic differentiation MSCs become increasingly committed to the 

osteogenic lineage, differentiating from a multipotent MSC to a pre-osteoblast 

and lastly, to an osteoblast. According to early reviews by Stein et al, 

differentiation is coupled with a decrease in cell proliferation and an increase in 
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extracellular matrix proteins such as fibronectin (FN) and type I collagen (COL), 

with osteoblast cell markers upregulated over time such as alkaline phosphatase 

(ALP), and lastly osteopontin (OPN) and osteocalcin (OCN), proteins associated 

with mineralization of the extracellular matrix (figure 1-4).  

                  

Figure 1-4 Osteogenic differentiation. Differentiation occurs in three stages, the first stage 
being proliferation. A decrease in proliferation coincides with an increase in markers 
associated the extracellular matrix. The last stage, mineralization of the extracellular matrix 
sees an increase in osteogenic markers osteopontin and osteocalcin. (Image adapted from 
(Stein and Lian 1993)) 

 
Further studies have identified key signalling pathways involved in osteogenic 

differentiation. These include canonical and non-canonical Wnt signalling, 

although this has been shown to be subject to levels of Wnt expression and in 

particular Wnt3a is thought to actually repress osteogenic differentiation and 

promote proliferation (Boland, Perkins et al. 2004; de Boer, Siddappa et al. 

2004). Other signalling pathways include ERK/MAPK, TGF-/BMP, Notch, 

Hedgehog and FGF signalling pathways (Linkhart, Mohan et al. 1996; Ge, Xiao et 

al. 2007; Ugarte, Ryser et al. 2009)(Hu, Hilton et al. 2005; Engin, Yao et al. 

2008); (Khatiwala, Kim et al. 2009) (Yu, Xu et al. 2003). 

1.3.1.2 Adipogenic Differentiation 

Adipogenic differentiation is characterised by an increase in PPAR- expression, 

and is found to be regulated by the protein TAZ, a transcriptional regulator 

known to regulate the interplay between the differentiation of MSCs down an 

osteogenic or adipogenic lineage (Hong, Hwang et al. 2005). An up-regulation of 

TAZ is seen to up-regulate expression of runx2-dependent gene expression whilst 

conversely down-regulating expression of PPAR--dependent gene expression.  
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Interestingly, adipogenesis is also thought to be negatively regulated by the 

mitogen-activated ERK pathway, and a study by Jaiswal et al showed that 

suppression of ERK signalling using a dominant negative map kinase kinase, MEK-

1, lead to increased adipogenic differentiation and decreased osteogenic 

differentiation (Jaiswal, Jaiswal et al. 2000).  

Further studies identified the role of shape-induced tension in regulating lineage 

specification during differentiation. McBeath et al. found that the cell shape 

regulates the Rho/ROCK pathway and the generation of myosin induced 

cytoskeletal tension (McBeath, Pirone et al. 2004). In the study MSCs were shown 

to undergo either osteogenic or adipogenic differentiation according to the 

degree of cell spreading. Cells that were allowed to spread, were found to 

express more active RhoA and underwent osteogenic differentiation, whereas 

cells that remained rounded expressed lower levels of RhoA and underwent 

adipogenic differentiation. More recently, Mrksich and co-workers demonstrated 

further the role geometric cues play in the generation of cell contractility and 

its importance in directing stem cell fate. Furthermore, the authors implicate 

myosin contractility in activating key signalling pathways, MAPK and Wnt 

signalling to promote cellular differentiation (Kilian, Bugarija et al. 2010). This 

is interesting, as nanotopographic regulation of cellular tension has also been 

shown to modulate Wnt signalling (Biggs, Richards et al. 2009). 

1.4 The Stem Cell Niche 

In vivo, adult stem cells are thought to reside in what has been termed ‘stem 

cell niches’, and it is the niche which plays a critical role in maintaining the 

balance between self-renewal and differentiation. The concept of a stem cell 

niche was first proposed by R. Schofield in 1978, who reported that a stem cell 

may associate with other cells in vivo which help to regulate their behaviour and 

maintenance (Schofield 1978). Early research first identified a germ-line stem 

cell niche that exists in Drosphila melanogaster (Xie and Spradling 2000). 

Further research in mammals has lead to the discovery of stem cell niches 

associated with HSCs (Calvi, Adams et al. 2003; Zhang, Niu et al. 2003), neural 

stem cells (Doetsch 2003), skin stem cell (Tumbar, Guasch et al. 2004; Tavazoie, 

Van der Veken et al. 2008), and intestinal stem cells (Bjerknes and Cheng 2001) 
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amongst others. Whilst identification of a definitive MSC niche in the bone 

marrow so far remains elusive, research into other stem cell niches has 

identified key factors which make up the niche and together can act to regulate 

stem cell self-renewal or differentiation (figure 1-5) (Li and Xie 2005; Scadden 

2006). These include both structural and functional components such as: 

 A physical interaction with the basement membrane, extracellular matrix 

and other cell types of the niche. 

 Signalling between adjacent or daughter cells within the niche. 

 Extrinsic signalling from out with the niche. 

 Neural signalling. 

 Metabolic changes due to cellular processes.  

                            
Figure 1-5 Overview of the stem cell niche. The stem cell niche is made up of various factors 
including chemistry, topography and tissue stiffness, which together regulate stem cell self-
renewal or differentiation in vivo. (Adapted from (Scadden 2006)) 

 
The importance of the stem cell niche in the maintenance of stem cells has been 

highlighted in several experiments using model organisms Caenorhabditis 

elegans (C. Elegans) and Drosophila melanogastor (Drosophila). In C. Elegans, 

during development repositioning of the stem cell niche results in maintenance 

of germ stem cells close to the new niche position, whilst in Drosophila, it was 

shown that induced differentiation, followed by subsequent removal of 

differentiation stimuli, committed stem cells in the niche could revert back to a 

stem cell-state (Kimble and White 1981; Brawley and Matunis 2004; Kai and 

Spradling 2004) 
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1.4.1 Stem Cell Self-renewal  

The molecular control of MSC self-renewal is currently not well understood, 

however using knowledge of both stem cell niche structure and function, and 

properties which have been identified as important regulators of self renewal in 

other types of stem cells, it is possible to infer potential mechanisms which may 

be regulating MSC self-renewal. To date in vitro studies have identified a 

functional link between self-renewal, the cell cycle and cell division. 

1.4.1.1 The Cell cycle  

The cell cycle consists of four main phases, G1 phase (growth), S phase 

(synthesis), G2 phase (growth) and M phase (mitosis) (fig 1-6). Cells which are 

not dividing, and are either quiescent or senescent are leave the cell cycle at 

early G1 phase and entered into G0  phase. Control over progression of the cell 

cycle is highly regulated by intrinsic checkpoints which exist between the G1 and 

S phases and G2 and M phases of the cell cycle ensuring integrity of the genome 

(Elledge 1996). Progression through G1 phase however is also regulated by 

extrinsic signals and creates a restriction point dividing G1 into early and late 

phases, with G1 early phase characterised as mitogen-dependant and G1 late 

characterised as mitogen-independent (Foster, Yellen et al. 2010).  

 

During early phase G1 a class of regulatory molecules known as cyclins and cyclin 

dependent kinases, combine to form active complexes. During early phase G1 

cyclin D expression is up-regulated following mitogenic signalling, and together 

with cyclin-dependent kinase 4 (CDK4) and cyclin-dependent kinase 6 (CDK6) 

leads to partial inactivation of the retinoblastoma (Rb) protein (Hatakeyama, 

Brill et al. 1994; Nath, Wang et al. 2003). In its active form Rb forms a complex 

with the transcription factor E2F and its co-factor DP1 forming the E2F/DP1/Rb 

complex. When bound together this complex binds to E2F responsive gene, 

blocking transcription of cyclin E, which is required for the transition from G1 to 

S-phase. However, inactivation of Rb causes it to dissociate from this complex 

leaving E2F able to bind and initiate transcription of cyclin E (Ohtani, DeGregori 

et al. 1995). Cyclin E then form a complex with cyclin-dependent kinase 2 

(CDK2) which leads to hyperphosphorylation of Rb, alongside inactivation of the 

Rb tumour suppressor protein. Once a threshold level of cyclin E-CDK2 has been 



Chapter 1 - Introduction 

 28 

reached, progression through late phase G1 into S phase occurs independent of 

mitogenic factors (Yanishevsky and Stein 1981; Hatakeyama, Brill et al. 1994).  

 
 
Figure 1-6 The cell cycle is thought to play an important part in self-renewal and 
differentiation. In particular, in self-renewing stem cells the G1 phase of the cell cycle is 
particularly critical. This is thought to be due to mitogenic factors, often associated with the 
initiation of differentiation also being required for progression through early G1 to late G1 
phase. Adapted from (Orford and Scadden 2008). 

The cell cycle was first thought to play a key role in stem cell self-renewal, with 

the observation that ES cells have a G1 phase shorter than somatic cells (this is 

similar in iPS (Savatier, Huang et al. 1994; White, Stead et al. 2005; Becker, 

Ghule et al. 2006; Ghule, Medina et al. 2011). Some adult stem cells, such as 

haematopoietic stem cells, maintain their multipotent state via quiescence, and 

therefore do not undergo cell division (Cheshier, Morrison et al. 1999; Wilson, 

Laurenti et al. 2008). Lastly, as seen in figure 1-6, MSCs in vitro are seen to 

undergo proliferation, albeit at a reduced rate, and loss of proliferation is 

coupled with the onset of differentiation (Stein, Lian et al. 1990; Stein, Stein et 

al. 1995). Further evidence that the cell cycle and self-renewal are functionally 

linked then came when iPS cells were shown to also have a shortened G1 phase 

of the cell cycle similar to that of ES cells when compared to somatic cells 

(Ghule, Medina et al. 2011). It is thought that the transition from early phase G1 

to late phase G1 plays a critical part in the determining of cell fate decisions of 

stem cells. In particular, the dependence on mitogenic factors for the 

progression from early G1 to late G1 is thought to be central.   

It is the dual actions of mitogen activated protein kinases (MAPKs) in both their 

requirement for progression through the G1 phase of the cell cycle and in 
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promotion of differentiation which makes self-renewing stem cells particularly 

susceptible to differentiation (Jaiswal, Jaiswal et al. 2000; Zhang and Liu 2002). 

To overcome this as mentioned above, ES cells have a developed a 

characteristically shorter G1 cell cycle phase due to constitutive expression of 

cyclin E-CDK2, while the quiescent nature of haematopoietic stem cells means 

these stem cells evade the G1 phase all together. In a review by Orford et al it is 

proposed that ESCs and HSCs are either actively or passively preventing 

differentiation (Orford and Scadden 2008); constitutive expression of the late G1 

phase cyclin E-CDK2 means that the cell cycle can progress independently of 

mitogenic factors bypassing early phase G1 enabling these cells to undergo 

proliferation without differentiation, or passively preventing entry into the cell 

cycle and thereby evading early G1, a critical point in determining cell fate 

decisions (Siminovitch, Till et al. 1964; Cheng, Rodrigues et al. 2000; Stead, 

White et al. 2002; Filipczyk, Laslett et al. 2007; Wilson, Laurenti et al. 2008). 

Other factors which affect the cell cycle include mechanical tension-dependent 

changes caused by changes in cell shape and cytoskeletal arrangement. This will 

be discussed later in the chapter. 

1.4.1.2 Stem Cell Division 

Stem cell participation in the cell cycle ultimately results in cell division. In 

vivo, a stem cell within its niche may undergo either symmetrical division, 

where by a stem cell divides to produce two stem cells or asymmetrical cell 

division, producing one stem cell that is retained within the niche and one 

progenitor cell which leaves the niche to undergo differentiation (figure 1-6) 

(Morrison and Kimble 2006). In vivo adult stem cells are thought to mainly 

undergo asymmetrical cell division stabilizing the stem cell population whilst 

also maintaining tissue homeostasis. However, following injury or during 

development when expansion of the stem cell population is critical, symmetrical 

cell division predominantly occurs (Wilson, Laurenti et al. 2008). 

During symmetrical or asymmetrical division it is thought that both intrinsic and 

extrinsic factors play key roles in regulation. Intrinsic factors include cell 

polarity, mitotic spindle orientation relative to the niche and the localisation of 

differentiation factors (Wodarz 2005; Giebel 2008; Kanamori, Inoue et al. 2008; 

Yamashita 2009; Yamashita, Yuan et al. 2010). Extrinsic factors outwith the 
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niche may function to establish asymmetry via the exposure of only one 

daughter cell due to differentiation factors via the relative positioning of both 

daughter cells to the niche. It is therefore also possible that a stem cell may 

divide symmetrically but due to extrinsic factors acting on only one daughter 

cell, the fate of both daughter cells is ultimately different resulting in an overall 

asymmetric outcome. In particular, integrin binding within the niche is thought 

to be involved in regulating the plane of cell division and this will be discussed 

later in the chapter (Kanamori, Inoue et al. 2008; Yamashita 2010). 

 

1.4.1.3 In vitro Self-renewal 

In vitro, adult MSCs are conventionally cultured on flat polystyrene tissue 

culture plastic. This results in in vitro cultured MSCs predominantly undergoing 

asymmetric division, commonly termed spontaneous differentiation, becoming 

mainly fibroblastic cells and resulting in a loss of the stem cell population over 

time (fig. 1-7) (Banfi, Muraglia et al. 2000; Muraglia, Cancedda et al. 2000; 

Siddappa, Licht et al. 2007). As a result the clinical potential of mesenchymal 

stem cells is commonly considered to have declined following successive 

passaging (Sherley 2002; Siddappa, Licht et al. 2007; Sarugaser, Hanoun et al. 

2009). 

                  
Figure 1-7 Stem cell division. Division can be either symmetrical, expanding the stem cell 
population or asymmetric generating a stem cells and a progenitor cell.  While asymmetric 
division in vivo maintains a stable stem cell population in the niche whilst allowing for 
differentiation, in vitro however, asymmetric cell division leads to loss of the stem cell 
population. 

 
Symmetrical division, which is the focus of this thesis, results in expansion of the 

stem cells population. Evidence for the ability of mammalian adult stem cells to 

undergo symmetrical cell division in vivo has mainly been identified in 
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haematopoietic stem cells following treatment with chemotherapy (Richman, 

Weiner et al. 1976). However, it is the role of the stem cell niche, particularly 

the role of the physical environment of the extracellular matrix and adhesion 

molecules, in regulating symmetrical cell division, which are of particular 

interest in reference to nanotopography. 

1.5 Cell : Extracellular Matrix Adhesions 

Adhesion between the extracellular matrix and cells are mediated by the binding 

of transmembrane integrins to extracellular proteins such as fibronectin and 

vitronectin (Humphries 1990). The integrin family consist of a heterodimer of  

and  subunits. Currently 18 different  and 8  subunits exist, and due to 

alternative splicing, variants of each subunit also exist. In general it is thought 

that approximately 24 different integrins can be generated using unique 

combinations of the subunits. The makeup of each integrin dictates which 

extracellular protein it can bind to. The most common are 51 which binds to 

fibronectin and v3 found to bind vitronectin (Springer and Wang 2004).  

As mentioned previously the integrin family are transmembrane proteins with an 

extracellular domain capable of binding proteins of the ECM. However, they also 

contain a short cytoplasmic domain coupled to microfilaments (actin) of the 

cytoskeleton via integrin-actin linkers such as -actinin and filamin. Other 

intracellular proteins present in focal contacts include vinculin (seen in fig 1-8), 

talin and paxillin (Samuelsson, Luther et al. 1993; Goldmann, Ezzell et al. 1996; 

Ezzell, Goldmann et al. 1997). These latter proteins, however, do not directly 

bind integrins but instead bind actin. Many of the proteins involved in focal 

contacts, however, not only act as linkers to integrins or the cytoskeleton, but 

also function as enzymes with the potential to initiate signal transduction 

pathways. Examples include focal adhesion kinase (FAK), integrin linked kinase 

(ILK) and p21-activated kinase (PAK)(Hannigan, Leung-Hagesteijn et al. 1996; 

Slack-Davis, Eblen et al. 2003; Schaller 2010).  

Due to their role in coupling of the ECM to the intracellular environment, 

integrins are considered to be the main mediators of interaction between a 

biomaterial substrate and cells. Adhesions between the extracellular matrix and 

cells usually fall into one of three categories usually dependent on their size and 
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location. The most common type of adhesions are focal adhesions, found around 

the periphery of a cell and commonly between 2-5 µm long. Focal complexes are 

smaller, approximately 1 µm in length and are found at the leading edge of 

lamellipodia (Zimerman, Volberg et al. 2004). Fibrillar adhesions make up the 

largest adhesions, ranging in size from 1 – 10 µm and are usually found in the 

central area of cells (Zamir and Geiger 2001). Fibrillar adhesions in particular 

are thought to play an important role in directing ECM remodelling and 

architecture producing a favourable environment for MSC osteogenic 

differentiation and matrix mineralization (Biggs and Dalby 2010).  

These results are in accordance with those found by Engler et al who identified 

matrix stiffness as a direct regulator of MSC differentiation. Interestingly, the 

authors found increasing cellular tension was associated with an increased size 

of focal adhesion length, and osteogenic differentiation associated with 

increasing the matrix stiffness to mimic that of collagenous bone (Engler, Sen et 

al. 2006). 

The adhesion of cells to the ECM via integrins is highly complex and serves two 

main functions; adhesion to the ECM and secondly, in transmitting signals from 

the ECM to the cell. Whilst integrin molecules themselves do not have intrinsic 

kinase activity, the binding of intracellular kinases such as FAK, as shown in 

figure 1-8 A, leads to the activation of intracellular signalling cascades such as 

the ERK/MAPK pathway, a pathway known to affect various cellular processes 

such as proliferation and differentiation (Miyamoto, Teramoto et al. 1995; Zhu 

and Assoian 1995).  

Upon adhesion, initial integrin binding results in changes in conformation and 

affinity of the integrin molecules leading to integrin clustering (Kawakami, 

Tatsumi et al. 2001). During these initial cell:ECM contacts only transient focal 

complexes are formed. The evolution of focal complexes into more mature focal 

adhesions is thought to be mediated via changes in cellular tension either 

intracellularly or as a result of the extracellular environment (Chen, Alonso et 

al. 2003). The linking of cytoskeletal actin filaments provides mechanical 

support for cells and during adhesion the cell must apply traction forces to the 

surface to counterbalance the internal forces produced as a result of increased 

cytoskeletal tension (fig. 1-8 B). As discussed in section 1.3.1.2., cellular tension 
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has been implicated in directing stem cell differentiation with a high tension 

state inducing osteogenic differentiation, while a low tension state is conducive 

to adipogenic differentiation (Thomas, Collier et al. 2002; McBeath, Pirone et al. 

2004; Kilian, Bugarija et al. 2010). Current evidence is also indicating that stem 

cell self-renewal may require an intermediate level of cellular tension (Gilbert, 

Havenstrite et al. 2010). 

A 

 
B 

 
Figure 1-8 Nanoscale architecture of focal adhesions. (A) Schematic diagram of a focal 
adhesion linking the extra cellular matrix to the intracellular environment. Extracellular 
proteins of the ECM bind to integrin molecules, whilst adaptor proteins such as talin and 
paxillin link integrins to the cytoskeletal protein actin. (B) Immunofluorescence of the focal 
adhesions protein vinculin. Green = actin, red = vinculin. Adapted from (Kanchanawong, 
Shtengel et al. 2010) and courtesy of Cristoph Moehl respectively. 

 

1.6 Mechanotransduction 

Interactions between stem cells and the ECM, such as those mentioned above 

can have what is known as a direct or indirect effect on cells, otherwise known 

as mechanotransduction, to elicit changes in gene expression. Direct 



Chapter 1 - Introduction 

 34 

mechanotransduction occurs as a consequence of conformational changes in the 

cell cytoskeleton, which forms a direct link between the extracellular matrix 

and the nucleus of the cell via proteins called lamins (Wang, Butler et al. 1993; 

Ingber 1997). Indirect mechanotransduction encompasses the intracellular 

signalling cascades which result from integrin binding and focal adhesion 

formation (Wang, Du et al. 2011). 

The cytoskeleton is a dynamic structure and as discussed in a review by Fletcher 

et al it fulfils three main roles (Fletcher and Mullins 2010): 

1. It provides the spatial organization for the cellular organelles 

2. Provides a physical and biochemical link to the extracellular 

environment 

3. Generates forces which enable cell migration and maintain cell shape. 

 

The cytoskeleton consists of three main components:  

 Microfilaments  

Microfilaments are composed of globular actin subunits, which bind 

unidirectionally to form filamentous actin (fig. 1-9 c). A microfilament is formed 

when two actin filaments lie parallel to each other forming a double helix. The 

microfilaments are responsible for contraction of the cell and play a key role in 

cell migration, with actin subunits being added and remove from the filament in 

what is known as treadmilling and leads to movement of the filament. 

Microfilaments can also interact with myosin molecules, also known as molecular 

motors, and together function in muscle, and other, cells to cause contraction 

(Allison, Davies et al. 1971). 

 Microtubules  

Microtubules are polymers made up of  and  subunits which bind to form 

heterodimers (fig 1-9 a). These heterodimers polymerise to form a 

protofilament. Polarity within the filament generated by the binding of the  

and  subunits leads to the generation of (-) and (+) ends respectively, with the 

(-) end subject to capping leaving the (+) end available for elongation. Bundling 

of 13 protofilaments produces a hollow microtubule, with polymerization and 

capping occurring within the microtubule organising centre of the cell. 

Microtubules can interact with motor proteins such as dynein to act as mediators 

of cell transport. 
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 Intermediate filaments. 

Intermediate filaments consist of a family of mainly cytoplasmic proteins which 

can be divided into six categories based on their amino acid sequence and 

protein structure (fig. 1-9 b). Type I and II include keratins, type III includes the 

most abundant intermediate filament found in MSCs; vimentin, type IV and VI 

include filaments expressed in neurons and neural stem cells respectively, and 

type V, the lamins, a group of nuclear proteins. Intermediate filaments form a 

rope-like structure composed of parallel dimmers. 

 
Figure 1-9 The three main cytoskeletal components. (a) microtubule (b) intermediate 
filament (neurofilament) (c) microfilament (actin). Adapted from (Fletcher and Mullins 2010)  

 
It is postulated that together these cytoskeletal components work to maintain 

cellular tensegrity (tensional integrity) (Ingber 1997; Ingber 2008). Cellular 

tensegrity was first proposed by R. Buckminster Fuller, an architect who defined 

tensegrity structures as systems which maintain their shape due to continuous 

tension rather than compression. In this context microfilaments and 

intermediate filaments together bare tensional forces, while microtubules act to 

balance these forces, resisting compression (fig. 1-10). The ability to propagate 

signals from the extracellular environment into the cell nucleus, via cytoskeletal 

filaments is known as percolation. As reviewed by Forgacs, the mechanism is 

described as being like an insect becoming trapped on a spiders web, where 

detailed information can be relayed across the web to the spider (Forgacs 1995). 

Evidence for the ability to transmit these mechanical signals into changes in 

gene expression were identified in a paper by Bloom et al which showed that 

when myocytes undergo mechanical stress, the arrangement of lamin-bound 

intermediate filaments becomes changed. In turn, this leads to changes in the 

spatial arrangement of lamin-bound chromatin altering chromosome packing or 

positioning leading to changes in the activation or deactivation of gene 
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expression (Bloom, Lockard et al. 1996). Furthermore, a seminal study 

investigating the effect of matrix elasticity’s designed to mimic the physiological 

stiffness associated with bone, muscle, and brain tissue. As a result it was found 

that MSCs differentiate accordingly into osteogenic, myogenic and neurogenic 

cells as a result of culture on the corresponding matrices. The role of actin-

myosin generated intracellular tension was again implicated in directing 

differentiation with myosin inhibition studies found to result in a loss of 

elasticity-directed lineage specification (Engler, Sen et al. 2006).  

 
Figure 1-10 Direct Mechanotransduction. Schematic identifying a direct link between the 
extracellular matrix and the nucleus of the cell.  A force applied to integrins via the ECM can 
be channelled to the nucleus through focal adhesion interaction with the cytoskeletal 
proteins microfilaments (actin), intermediate filaments (e.g. vimentin) and microtubules. 
Cytoskeletal interactions with the nucleus can lead to changes in gene expression via 
chromatin remodelling. Adapted from (Wang, Tytell et al. 2009) 

 

1.7 Integrin Binding within the Stem Cell Niche 

Interestingly, one main identifying features of stem cell niches is their high 

integrin expression (Jones and Wagers 2008). Integrin binding of stem cells 

within the niche is thought to play a vital role in several aspects of stem cell 

function including stem cell homing, tethering stem cells to the niche, in 

development of the niche architecture, regulating proliferation and self-

renewal, and finally controlling the orientation of dividing cells (Quesenberry 

and Becker 1998; Qian, Tryggvason et al. 2006; Tanentzapf, Devenport et al. 

2007; Lee, Lee et al. 2011).  
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The importance of integrin binding in the regulation of key stem cell functions 

therefore makes them a particularly interesting target for manipulation using 

biomaterials. In particular the use of topography as a mechanism for controlling 

the spatial formation and size of focal adhesions holds great potential. The 

investigation of topography on the function of stem cells has been investigated 

at both the micro- (10-6) and nano-scale (10-9) (Dalby, Gadegaard et al. 2007; 

Yim, Pang et al. 2007; Biggs 2008; Tsuruma, Tanaka et al. 2008). However, while 

topographic features on the micro-scale affect the whole cell, the comparative 

size of nano-scale features relative to integrins (approximately 10 nm) makes 

nanotopography a particularly exciting tool for manipulating focal adhesion 

formation. It is thought that nanotopography can alter integrin clustering and 

ultimately the formation of focal adhesions leading to changes in cellular 

tension. As discussed in section 1.5, changes in cellular tension can lead to 

changes in intracellular signalling and ultimately stem cell function. Using 

nanopit topographies of different geometries (ordered/disordered), it has 

previously been identified that nanotopographies which promote the formation 

of larger focal adhesions (disordered) promote the osteogenic differentiation of 

MSCs, compared to those which do not (ordered) (Dalby, Gadegaard et al. 2007; 

Biggs, Richards et al. 2009; Biggs, Richards et al. 2010). These results are 

exciting as they identify the potential for the regulation of stem cells not only 

through nano-scale interactions but also via spatial distribution of such features.  

Interestingly, an investigation into the spatial distribution (order/disorder) of 

RGD nanopattern surfaces was also found to also effect integrin-mediated cell 

adhesion (Arnold, Cavalcanti-Adam et al. 2004; Huang, Grater et al. 2009). 

Results from the study were in agreement with those of the topographical study, 

indicating that disordered distribution of the RGD ligand promotes the formation 

of stable focal adhesions in contrast to an ordered distribution which disrupts 

adhesion formation. In this study the authors also propose that these cellular 

responses are due to a critical lateral distance imposed by the molecular size of 

particular integrin cross-linking proteins (Huang, Grater et al. 2009). 

 

In the context of maintaining the self-renewal properties of MSCs, in particular 

evidence for the role of integrin interactions within the niche and in driving 

intracellular tension, coupled with increasing evidence for the role of 
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nanotopography in manipulating focal adhesion formation presents great scope 

for the use of nanotopography as a tool for maintaining MSC self-renewal.  

1.8 Integrins and the Cell Cycle 

As mentioned previously in section 1.4.1., participation in the cell cycle plays a 

crucial role in stem cell self-renewal and in the determination of cell fate 

decisions (Wozniak and Chen 2009). Evidence that cellular spreading and 

intracellular tension play a role in proliferation was first demonstrated during 

the 1970’s through cell spreading studies (Curtis and Seehar 1978; Folkman and 

Moscona 1978).  

The role of cellular spreading and intracellular tension in the control of the cell 

cycle occurs via adhesion-mediated activation of Rho GTPases and downstream 

signalling molecules such as ROCK, which work to control actin polymerisation 

and cytoskeletal tension (Mammoto and Ingber 2009; Parsons, Horwitz et al. 

2010). In MSCs, Rho has also been linked to determining cell fate via changes in 

cell shape, again coupling cellular spreading and tension to determining cell fate 

decisions (McBeath, Pirone et al. 2004). During adhesion, initial integrin binding 

has been shown to induce focal adhesion kinase (FAK) signalling, the effect of 

the effect of which is also dependant on the degree of cellular spreading 

(Kornberg, Earp et al. 1992). Under conditions of increased cellular spreading 

FAK becomes phosphorylated, stimulating downstream signalling, while in 

rounded cells, FAK does not become phosphorylated having a two fold effect; 

downstream signalling events are not activated, while the unphosphorylated FAK 

also inhibits Rho activity via the activation of p190RhoGAP, a Rho inhibitor 

(McBeath, Pirone et al. 2004). Rac, another small GTPase of the same family, 

involved in modulating cytoskeletal remodelling has also been shown to 

influence the cell cycle via interactions with cyclin D1, a key mediator of cell 

cycle progression (Welsh, Roovers et al. 2001). Adhesion-mediated induction of 

Rac leads to increased cyclin D1 transcription, promoting progression through 

the cell cycle (Baldin, Lukas et al. 1993).  

 

Further evidence supporting a role for nanotopography in mediating changes in 

stem cell function via alterations in integrin clustering and focal adhesion 
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formation, were identified following a study examining cellular spreading and 

focal adhesion formation in response to biofunctionalised RGD nanopatterned 

surfaces. In the study, the spacing of the RGD ligands were varied leading to 

alterations of integrin clustering. These changes in integrin clustering were 

shown to affect both the ability of cells to form stable focal adhesions and the 

induction of cell spreading (Cavalcanti-Adam, Volberg et al. 2007). 

1.9 Integrins and Stem Cell Division 

One of the key processes in the regulation of symmetrical versus asymmetrical 

stem cell division is the establishment of the plane of cell division and the 

orientation of the mitotic spindle (Toledano and Jones 2008). Key studies have 

identified integrins and other cell adhesion molecules as modulators of this 

process (Marthiens, Kazanis et al. 2010). 

The mitotic spindle operates during mitosis to dictate the plane of cell division, 

and according to the Sachs and Hertwig rules the mitotic spindle usually 

orientates along the long axis of the cell indicating that cell shape plays an 

important part in its regulation (Inoue 1981; Toyoshima and Nishida 2007). 

Integrin-mediated cell adhesion, a key regulator of cell shape was shown to play 

a role in regulating mitotic spindle orientation following a study using 

fibronectin micro-patterned substrates. The authors showed that when HeLa 

cells were cultured on this substrate the mitotic spindle formed parallel to the 

adhesion plane. However, with loss of 1 integrin following blocking, cells lost 

the ability to orientate their spindle (Toyoshima and Nishida 2007). It has been 

proposed that integrin-mediated regulation of spindle orientation may occur via 

myosin. This protein is found to bind microtubules at the spindle pole, linking it 

with the cytoplasmic domain of integrins (Toyoshima and Nishida 2007). 

Spindle orientation in stem cells however not only dictates the plane of cell 

division but is important for the regulation of symmetrical and asymmetrical 

stem cell division (Morin and Bellaiche 2011). Spindle orientation during 

embryonic development has been shown to be important for directing 

asymmetrical stem cell division during tissue formation (Siller and Doe 2009; 

Yamashita 2009). 



Chapter 1 - Introduction 

 40 

Integrin binding has been shown to play an important role in switching between 

asymmetrical and symmetrical cell division. In a study using mouse embryo-

derived neural stem cells, Kosodo et al showed that inhibition of integrins was 

sufficient to generate a small shift in the plane of cell division switching division 

from asymmetrical to symmetrical (Kosodo, Roper et al. 2004). Recent evidence 

has also shown that cells have the ability to regulate their mitotic spindle 

positioning in response to mechanical stimuli (Fink, Carpi et al. 2011). 

1.10 Nanotopographical Control of Stem Cells 

The role of topographic surface features on the contact guidance of cells was 

first observed by R. Harrison in 1911 (Harrison 1911). It is his pioneering work 

which demonstrated the guidance of cells by the fibers of a spider’s web, that 

has fuelled the field of biomaterials as a means to manipulate and direct the 

development of cells in culture. Further developments however, during the 

1980’s in techniques traditionally applied in the area of microelectronics made 

the availability and production of topographically patterned surfaces for the 

study of cellular response to topography more much more accessable.  

In 1964 Curtis and Varde identified the ability of fibroblast cells to orientate 

themselves in the direction of silica fibers (Curtis and Varde 1964). Since this 

initial discoveries great focus has been placed on the investigation of micron 

sized topographic features, however during the last 10 years with further 

advances in the electronics field focus has been driven towards the study of 

even smaller topographical features, those on the nanoscale range. The 

importance of such nanoscale features has been driven by the abundance of 

nanoscale features within the extra-cellular matrix and the nanoscale 

interaction of proteins at the cell-material interface, and to which a cells 

readily comes into contact with within their native environment. To date 

research has identified nanotopography to have an effect on several cellular 

aspects including proliferation (Milner and Siedlecki 2007), morphology 

(Bettinger, Zhang et al. 2008; Lamers, van Horssen et al. 2010), adhesion (Dalby, 

Gadegaard et al. 2008; Le Guehennec, Lopez-Heredia et al. 2008; Le 

Guehennec, Martin et al. 2008), and gene expression (Biggs, Richards et al. 

2009; Gasiorowski, Liliensiek et al. 2010; Yim, Darling et al. 2010). Importantly 
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however, current research has also shown that nanotopography has the ability to 

elicit specific cues and promote the controlled differentiation of stem cells in 

vitro.  

1.10.1 MSC Response to Nanotopography 

With regard to stem cells, biomaterials have the potential to serve two 

purposes. Firstly, and the main focus of this thesis, is the need to maintain a 

population of undifferentiated proliferating stem cells, and secondly, the ability 

to non-invasively promote the differentiation of stem cells down a specific 

lineage without the need for chemical supplements. Research into the 

nanotopographical control of mesenchymal stem cells has mainly focused on a 

requirement for differentiation, as discussed below, however, in recent years 

focus has shifted as the need to develop material strategies which promote 

maintenance of the stem cell population for regenerative applications grows. 

As mentioned in section MSCs have been found to undergo differentiation into 

various cell lineages including bone, fat, cartilage (Owen and Friedenstein 1988; 

Pittenger, Mackay et al. 1999) and neurons (Song and Tuan 2004; Fu, Zhu et al. 

2008) using chemically defined media. Results from several key studies have 

generated compelling evidence on the effect that substrate topography, 

especially at the nanoscale, can have on MSCs, and as discussed in section 3 

disordered nanopit topography was shown to initiate the osteogenic 

differentiation of MSCs without the need for osteogenic differentiation 

supplements. (Dalby, McCloy et al. 2006; Dalby, Gadegaard et al. 2007).  

In a similar study MSCs were also shown to differentiate down an osteoblast 

lineage, this time in response to carbon nanotubes (Oh, Brammer et al. 2009). In 

this case, carbon nanotube diameter was identified as a crucial factor in 

promoting differentiation, with MSCs cultured on nanotubes of less than 50 nm in 

diameter producing negligible amounts of osteogenic markers.  

In addition, the trans-differentiation of MSCs into neuronal-like cells has been 

shown to occur in response to nanogratings (Yim, Pang et al. 2007). Yim et al 

identified the up-regulation of mature neuronal markers when MSCs were 

cultured on nanogratings in the absence of differentiation media. Interestingly, 

the authors went on to report higher levels of neuronal marker expression in 
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response to the nano-grating topography without differentiation media than 

chemical induction alone.  

Furthermore, applied research has investigated the effect of 

nanotopographically-patterned metal surfaces on stem cell behaviour, as a pre-

emptive step towards orthopaedic clinical applications (Popat, Chatvanichkul et 

al. 2007; Sjostrom, Dalby et al. 2009; Lavenus, Ricquier et al. 2010; McNamara, 

Sjostrom et al. 2011).  

It is therefore evident that nanotopography can have a huge effect on skeletal 

stem cell regulation, however the mechanisms which underlie this topographical 

regulation are only recently beginning to be deciphered. It is hypothesized that a 

topographic surface primarily affects the ability of a cell to form focal adhesions 

via altered protein adsorption to the surface, or the disruption of a cells ability 

to form stable focal adhesions as discussed in section 3 (Yamamoto, Tanaka et 

al. 2006; Huang, Grater et al. 2009; Oh, Brammer et al. 2009; Scopelliti, 

Borgonovo et al. 2010). In 2007, it was also demonstrated that stem cell growth 

on a nanotopographic surface could lead to changes in gene expression between 

topographically and chemically differentiated MSCs, an indication that 

topography may work via a distinct mechanism (Dalby, Gadegaard et al. 2007; 

Dalby, Andar et al. 2008). Additionally, it was later identified that these changes 

in gene expression correlate with differences in focal adhesion formation on 

various nanotopographical substrates (Biggs, Richards et al. 2009; Biggs, Richards 

et al. 2009). In a later study Yim et al identified that the disruption of focal 

adhesion formation results in changes in the mechanical properties of cells, and 

also identified changes in gene expression (Yim, Darling et al. 2010).  

1.11 Aims and Objectives 

The ability to deliver high quality autologous MSCs to the clinic for therapeutic 

applications is of utmost importance. Current materials for in vitro culture do 

not provide stem cells with the appropriate cues necessary for maintenance of 

self-renewal ultimately leading to a critical loss of the multipotent population. 

Nanotopographically patterned polymer substrates which have the ability to 
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elicit an appropriate cellular response without the need for chemical 

intervention presents an attractive solution.  

The aim of this thesis therefore is to examine the effects of 

nanotopographically patterned substrates on the retained multipotency of 

MSCs, in the absence of supplements. A flat control was used throughout, in 

conjunction with two osteogenic controls, a disordered osteogenesis 

promoting nanotopography and a flat control with osteogenic supplemented 

media. This will be achieved by the following: 

 The identification of MSC maintenance over time in response to 

ordered nanotopography. 

o An investigation of key stem cell and osteogenic marker 

expression over a period of four weeks. 

o Long-term maintenance of stem cell markers for up to eight 

weeks. 

o A quantitative assessment of key stem cell and osteogenic 

markers using real time quantitative PCR. 

o Assessment of stem cell proliferation. 

o Assessment for continued multipotency following culture over 

four weeks. 

 Assessment of global gene changes in MSCs in response to ordered 

nanotopography. 

o Microarray and ingenuity pathway analysis of canonical and 

functional signalling in MSCs in response to nanotopography. 

o Assessment of smallRNA expression in response to 

nanotopography.  

 Examination of the metabolic profile of MSCs in response to 

nanotopography. 
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 Examination of MSC maintenance in response to different polymers 

(polycarbonate/polystyrene) using the same nanotopographical 

pattern. 
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2 Materials and Methods 

2.1 General Introduction 

In recent decades, multiple experimental systems have shown the capability of 

MSCs to differentiate down a wide number of cellular lineages, cementing their 

potential as ideal candidates for use in tissue engineering and regenerative 

medicine purposes. Clinically, however, a major limitation in the use of MSCs is 

their relatively low frequency (MSCs make up only 10% of the adherent cells 

isolated from the bone marrow) in vivo. Additionally, subsequent in vitro culture 

is commonly known to result in a loss of their multipotent phenotype. As a 

consequence of this, throughout this study MSCs were used at low passage 

number to ensure their multipotency. 

Whilst definitive identification of a single surface antigen that recognizes self-

renewing MSCs remains elusive, throughout the literature, the STRO-1 antigen 

has been identified as a key marker for the identification of this multipotent 

population within the bone marrow. To isolate the stem cells from the general 

population, magnetic activated cell sorting (MACS) in combination with a STRO-1 

monoclonal antibody has proved a valuable technique. Whilst the role of this 

trypsin-resistant cell surface antigen in the function of MSCs has not yet been 

identified, it is widely accepted that use of the STRO-1 antigen as a selection 

marker for isolating cells from the main stromal cell population results in an 

adherent, multipotent population, with reduced heterogeneity within the 

isolated stem cell population (Bianco, Riminucci et al. 2001; Gronthos and 

Zannettino 2008).  

In vitro, MSCs have previously been shown to respond to multiple material 

strategies, including nanotopography, undergoing differentiation down various 

cell lineages in response to specific cues (Thomas, Collier et al. 2002; McBeath, 

Pirone et al. 2004; Dalby, McCloy et al. 2006; Dalby, McCloy et al. 2006; Engler, 

Sen et al. 2006; Dalby, Gadegaard et al. 2007; Oh, Brammer et al. 2009; Kilian, 

Bugarija et al. 2010). A study by Gilbert et al, using biomimetic stiffness 

matching and muscle stem cells, also provides evidence to support the 
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hypothesis for MSC self-renewal in response to material properties (Gilbert, 

Havenstrite et al. 2010).  

Previously within the lab a study was undertaken to examine the effects of 

nanopits with varying degrees of order on the differentiation of MSCs down an 

osteogenic lineage (Dalby, Gadegaard et al. 2007). As a result of this study, not 

only was osteogenic differentiation on disordered nanopits (120nm pits in a 

square arrangement with centre–centre spacing of 300nm, but with ±50 nm 

offset in pit placement in x and y axes, referred to as near square NSQ) shown to 

be comparable to that using chemical supplements such as dexamethasone, but 

a lack of differentiation was also observed on nanopits of the same dimensions 

but with an offset reduced to zero, forming a near absolute square (SQ) lattice. 

These empirical observations formed the first basis of our hypothesis (Dalby, 

Gadegaard et al. 2007). 

2.2 STRO-1
+
 MSCs 

STRO-1+ MSCs were provided by Prof Richard Oreffo, University of Southampton. 

STRO-1+ cells were isolated from bone marrow samples obtained from 

haematologically normal patients undergoing routine total hip replacement 

surgery and with the approval of the Southampton General Hospital Ethics 

Committee. Only tissue that would have been discarded was used.  

Marrow cells were aspirated from trabecular bone marrow samples and collected 

in minimal essential medium - modification (-MEM). Cells underwent 

centrifugation at 250 g for 4 minutes at 4°C to form a pellet. Following pellet 

resuspension in -MEM the solution was passed through a nylon mesh (70 μm 

pore size; Becton–Dickinson, Franklin Lakes, NJ). 

Using a lymphoprep solution (Robins scientific, Solihull, UK), red blood cells 

were removed by centrifugation. Cells from the buffy layer were resuspended at 

1 x 108
 cells in 10 ml blocking solution (4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES) buffered saline solution (HBSS) with 5% 

volume per volume (v/v) FCS, 5% (v/v) human normal serum, and 1% weight per 

volume (w/v) bovine serum albumin (BSA) fraction volume) and subsequently 
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incubated with a STRO-1 antibody in a hybridoma supernatant (hybridoma was 

provided by Dr. J. Beresford, University of Bath). Cells were washed with MACS 

buffer (HBSS containing 1% fraction volume BSA) to remove any excess STRO-1 

antibody before incubatation with MACS anti-immunoglobulin M beads (Miltenyi 

Biotech, Bisley, UK). As a control, labelled cells were added to an un-

magnetised column and collected as control unsorted cells. Separated cells were 

collected as follows; the antibody incubated cell suspension was added to a 

column within the magnet and the elutant was collected making up the STRO-1 

negative fraction. The column was then washed, and in the absence of the 

magnet, 1 ml MACS buffer was added. The resultant cell population was eluted 

as the STRO-1 positive fraction. For each fraction, five cell counts were 

performed using a fast read disposable counting chamber (ISL, Paignton, UK). 

2.2.1 Cell culture 

MSCs were maintained in basal media (10% FBS/MEM) (PAA, UK) at 37oC with 5% 

CO2 in humid conditions. Cells are seeded onto the nanopatterned and flat 

materials of 1cm2 in size at 5,000 cells/cm2 and the media changed twice a 

week. Osteogenic media (OGM) was used as a control for induced differentiation 

containing dexamethasone (10nm) and L-ascorbic acid (150 µg ml-1).  Cells were 

used at passages P0 – P2 throughout - this allows for not only expansion, but also 

preservation of multipotency. Cells from a large number of patients were used 

over the course of the study which shows the robustness of the data.  

2.3 Experimental and Control Substrate Preparation 

Electron beam lithography (EBL), a technique routinely used within the 

electronics industry (e.g. in the production of nano-scale electronics (e.g. 

transistors, gates etc) and optics), has made it possible to produce precise, 

reproducible nano-scale topographies (Gadegaard, Thoms et al. 2003). 

Continuing advances within the field, particularly regarding EBL, have now made 

it possible to generate topographical features down to 3-5nm (Vieu, Carcenac et 

al. 2000). Whilst the fabrication process involving EBL is generally regarded to be 

slow, replication techniques such as hot embossing (low throughput) and 

injection moulding (high throughput) into polymers provide an inexpensive 
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method for the replication of such topographies. Replication of topographies 

into a polymer substrate also provides consistency, and ensures that only 

changes in topographical features, not changes in chemistry are observed. Such 

approaches where a nano-scale master is used to produce many polymeric 

replicas (i.e. amenable to mass production) are often used in e.g. DVD and 

BluRay manufacture. 

Throughout this study three types of polymers were used as both as control and 

experimental substrates: polycaprolactone (PCL), polycarbonate (PC), and 

polystyrene (PS), the gold standard polymer used in tissue culture plastic, to 

observe any changes in stem cell phenotype which may be contributed to 

polymer chemistry and to test how facile the nanotopographies are in terms of 

translation of cell response on different base substrates. Table 2-1 identifies key 

characteristics of the polymers used throughout the study.  

 Melting 

temperature 

(Tm) 

Young’s 

Modulus (E) 

Transparent FDA approved 

Polycaprolactone 60 oC  No Yes 

Polycarbonate 267oC 2.0 – 2.4 GPa Yes Some types 

Polystyrene 240 oC 3.0 – 3.6 GPa Yes Yes  

Table 2-1 Properties of the three polymers used throughout the study. 

 
Materials were made in a three-step process of electron beam lithography, 

nickel die fabrication and replication. 

2.3.1 Electron Beam Lithography 

Electron beam lithography is based on the same principles that underlie a 

scanning electron microscope (SEM). As with SEM, electrons from an electron 

source undergo acceleration, with the electron beam focused using electrostatic 

lenses. According to the de Broglie reactions, the wavelength of a particle is 

inversely proportional to the momentum of the particle (De Broglie 1924). 
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Therefore using this technique, the high-speed acceleration of electrons 

produces an extremely short wavelength relative to light, whereby narrow spots 

of only 3 - 5 nm can be achieved (Vieu, Carcenac et al. 2000; Gadegaard, Thoms 

et al. 2003).  

EBL uses a pre-programmed, computer controlled electron gun to steer the 

beam of electrons and an electron sensitive resist (fig. 2-1). Whilst other 

techniques such as photolithography use a mask to define and therefore a resist 

can be exposed uniformly, EBL requires consecutive, or serial exposure of the 

resist from the electron source increasing production time (Ng and et al. 2002). 

 

Figure 2-1 Electron beam lithography. Electrons are produced form an electron source, 
which undergo focusing onto a narrow spot. Image courtesy of (McMurray, Dalby et al. 
2011)  

 
The process of EBL begins with the choice of substrate, which must be 

conducting (typically silicon) to prevent the build-up of electrical charge as a 

result of electron bombardment (fig. 2-2). A resist is then applied to the 

substrate, which must be electron sensitive as mention previously. A resist can 

take one of two forms, positive or negative tone, depending on whether the 

exposed area breaks down or becomes cross-linked. Positive tone resists make 

up the former with exposed areas breaking down following exposure and 

subsequent development, while negative tone resists make up the latter with 

exposed areas becoming insoluble. Following development of the resist to reveal 

the final pattern, etching is required to transfer that pattern into the underlying 

substrate. During the etching process the resist acts as mask protecting the 

substrate while the exposed substrate undergoes etching (Gadegaard, Thoms et 

al. 2003; Norman and Desai 2006). 
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Initial substrate fabrication was carried out by Dr. Nikolaj Gadegaard at the 

James Watt Nanofabrication Centre, University of Glasgow. Firstly, silicon 

wafers were cleaned for 5 minutes using acetone in an ultrasonic bath. The 

wafers were subsequently rinsed in reverse osmosis water (ROH2O) and blown 

dry with a filter- fitted air gun. Next, they were spun with primer for 30 seconds 

at 4000 revolutions per minute (rpm), then spun with a positive tone resist, ZEP 

520 (Nippon Zeon, Tokyo, Japan) for 30 seconds at 4000 rpm, and baked for 30 

minutes at 90C. The resulting layer was measured to be 1.8 m thick. A Leica 

EBPG5-HR using an 80 nm spot size beam was used to write the pattern at 50 kV. 

The exposed samples were developed in o-xylene at 23°C for 60 seconds and 

rinsed in iso-2-propanol. Write fields were stitched together by mechanical 

movement of the stage.  

 

Figure 2-2 The process of electron beam lithography. An electron sensitive resist is applied 
to the substrate (b), which is then exposed to an electron beam (c). Development of the 
resist (in this case a positive tone resist) reveals the final pattern (d), which is then 
transferred into a conducting substrate such as silicon (a) via an etching process (e). 
Adapted from (Dalby, Riehle et al. 2004). 

 

2.3.2 Nickel Die Fabrication 

As silicon is a brittle material, fabrication of a nickel shim is ideal. The nickel 

shim was kindly produced by John Pederson (SDC Dandisc A/S, Denmark). This 

can be achieved using a process of nickel die fabrication from the original ZEP 

520 EBL produced master. Initially a thin layer of Ni-V (approximately 50 nm 

with 7% vanadium) is sputter coated onto the sample, and this subsequently acts 

as an electrode during electroplating of nickel onto the Ni-V to thickness of 300 

µm. Cleaning of the nickel shims occurs by stripping the protective polyurethane 

layer using chloroform in an ultrasound bath for 10-15 mins. Silicon residues 
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were also removed by wet etching in 25% potassium hydroxide for 1 hr at 80oC. 

Removal of resist and silicon residues reveals the nano-pattern in a negative 

(inverse) format. Lastly, the shim was rinsed in ROH2O, air-gun dried and 

checked using AFM (Gadegaard, Mosler et al. 2003). 

2.3.3 Master Substrate 

Master substrates were fabricated to form an array of 120 nm diameter pits of 

100 nm depth and 300 nm pitch in a square (SQ) arrangement (fig. 2-3 A). Arrays 

of dots were also fabricated with near square (NSQ) order, having a random 

displacement of ±50 nm, and maintaining an average 300 nm pitch (fig. 2-3 B).   

A 

 

B 

 

Figure 2-3 SEM images of the master substrates produced by EBL (A) Nanopits with 120 nm 
diameter, 100 nm depth and 300 nm pitch in a square arrangement (SQ) (B) Nanopits with 
120 nm diameter, 100 nm depth, with a random displacement of ±50 nm, however 
maintaining an average 300 nm pitch (NSQ). 

 
A previous study investigating the effect of nanopit geometry on the 

differentiation of MSCs, identified that MSCs were induced to undergo osteogenic 

differentiation, in the absence of induction media, as a result of culture on 

nanopits with a random displacement of 50 nm (NSQ), as shown in fig. 2-3 B 

(Dalby, Gadegaard et al. 2007). As a result of this study, the NSQ 

nanotopography was used as a topographical osteogenic control throughout this 

thesis. 

2.3.4 Replication 

As the nickel shim is a hard, negative, of the master pattern, it can be used to 

imprint with into polymer materials very easily. This allows samples to be 

produced with high fidelity in sufficient numbers for e.g. cell culture 
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experiments. Replication also makes substrate fabrication cost efficient and 

rapid. 

2.3.4.1 Hot Embossing 

Hot embossing although a relatively low throughput technique, is one of the 

most common methods for imprinting samples required for research purposes as 

it does not require specialist equipment or knowledge (fig. 2-3 A). The technique 

of hot embossing is straightforward and utilises the low melting temperature of 

polymers such as PCL (60oC). A hot plate is used to reach the melting 

temperature of the polymer, pressure can then be applied to imprint the pattern 

of the master shim into the polymer (fig. 2-3 B). The polymer and master shim 

are then left to cool, after which the imprinted polymer can be released from 

the master shim (Gadegaard, Thoms et al. 2003; Mills, Martinez et al. 2005). 

                                                        

A 

 

B 

 

Figure 2-4 (a) Hot embossing is used to imprint into polymer substrates, (b) a typical setup 
using a hot plate for embossing. Images adapted from (McMurray, Dalby et al. 2011). 

 
2.3.4.2 Injection moulding 

In an industrial setting injection moulding is the method of choice for substrate 

replication, and is at present already employed in the manufacture of standard 

tissue culture plastics as well as the mass production of a number of products 
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associated with the electronics industry, such as DVD and Blu-Ray discs. In 

contrast to hot embossing, an injection moulder has the ability to produce 

thousands of replicates, however, this type of production requires specialist 

machinery and knowledge (fig 2-5 A). 

A 

 

B 

 

Figure 2-5 (A) injection moulder, (B) Basic principle behind injection moulding. Images 
adapted from (McMurray, Dalby et al. 2011). 

 
The basic principle of injection moulding involves injecting a molten polymer 

into a mould which is kept at a lower temperature than the glass transition 

temperature of the particular polymer. This ensures that the polymer cools 

rapidly during the process cycle, allowing for quick removal from the cavity and 

the retention of shape after removal (fig 2-5 B) (Gadegaard, Mosler et al. 2003).  

2.3.5 Polymer replication 

Imprints of the nickel shims into PCL were achieved by hot-embossing (fig 2-6 A 

& B). The resulting imprints, SQ and NSQ, were trimmed for use in tissue culture 

well plates and planar PCL (Ra of 1.17 nm over 10 µm measured using AFM) was 

used as a control substrate. In alternative experiments the nanotopographies 

were imprinted into PC or PS using an injection moulder (Engel Victory Tech 28) 

(fig. 2-6 C & D). Planar PC/PS was also used as a control. PC and PS samples 

were given a 2 and 10 second air plasma treatment respectively, to allow for cell 

attachment (Harrick Plasma, USA). Plasma treatment was carried out on the 

lowest setting (7.16W, with a total pressure of 0.27 mbar)  
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A 

 

B 

 
 

C 

 

 
D 

 
 

Figure 2-6 SEM images of nanotopographically patterned PCL, PC and PS substrates 
produced by hot embossing (A) SQ (B) NSQ and injection moulding (C) PC and (D) PS. 

 

2.3.6 Water Contact Angle Measurements 

Throughout the study the NSQ nanotopography will be used as a positive 

nanotopographical control for osteogenic differentiation. In order to determine 

that changes in stem cell phenotype and function can be attributed to actual 

changes in nanotopographic geometry and not changes in surface chemistry 

imparted as a result of the nanotopography, the water contact angle of 

embossed PCL was examined to study the influence on the wettability of the 

substrates when nano-patterns were imprinted onto the surface.  
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C 

 

  D 

 
 

Figure 2-7 Water contact angle analysis for flat and nano-patterned (A) the water contact 
angle measured for the flat control and both nanotopographies embossed into PCL. (B) In 
the Cassie-Baxter state, a drop of water will not penetrate the structure. (C) Contact angle 
measurement for flat and nanopatterned polycarbonate (D) contact angle measurement for 
flat and nanopatterned polystyrene. 

 
It is well known that surface roughening or surface topography influences 

surface energy and thus changes the contact angle with which a drop of water 

forms with the surface. This change in contact angle was formulated by Cassie- 

Baxter as, where θCB is the predicted contact 

angle on a roughened or structured surface, r is the roughness, θY is the contact 

angle on an (ideal) flat surface and f is the area fraction of the projected wet 

area (fig. 2-7 B) (Cassie and Baxter 1944). The nanopits, in both cases (SQ and 

NSQ), cover 10% of the surface area (f=0.9) assumed on an ideally uniform 

surface (r=1). The water contact angle was measured on a flat PCL surface 
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(θY=75.5±2.5º). According to the Cassie-Baxter formulation, the disorder in the 

pattern will not change the apparent contact angle as the surface coverage for 

both patterns is ca. 10%. In both cases we measured the water contact angle to 

be 81-82º (fig. 2-7 A). The Cassie-Baxter predicted contact angle is 83º which is 

in good agreement with the measurements. Furthermore, there is no significant 

difference between SQ and NSQ but there is the expected difference to the flat 

control. Thus, we can be sure that changes in cell response to SQ and NSQ are 

due to nano-scale topography alone. 

2.4 Discussion 

Throughout the study, three polymers were used to assess the effect of 

nanotopography on self-renewal of MSCs. Initially in the study PCL was used due 

to its low melting temperature, making it a viable polymer for hot embossing. 

For later experiments, after the acquisition of an injection moulder, cell testing 

of PC and PS imprinted substrates could be used to test the strength of the 

topographical effects in different base polymers. 

PC and PS have the advantage that they are both transparent enabling better 

visualization of in vitro culture, but PS is also the current gold standard polymer 

in the production of tissue culture plasticware, allowing a direct comparison 

between the industrial standard flat PS and topographically patterned PS. 

Oxygen plasma treatment of both PC and PS substrates was used to overcome 

the slightly hydrophobic nature of both polymers, and is common practice for 

industrial produced tissue culture plastics. 

As the main aim of the study is to investigate the self-renewal of MSCs in vitro 

when cultured on nanotopographies in comparison to both a flat control and 

osteogenic controls, it is therefore critical to identify the multipotent stem cell 

population within the bone marrow stroma. To ensure multipotency throughout 

the study a well-established selection technique, MACs was used in combination 

with the STRO-1 marker, to provide robust, reliable isolation of the multipotent 

population. During in vitro culture on standard tissue culture flasks MSCs were 

used at passages 1-2 to ensure there is still a largely homogenous multipotent 

stem cell population. 
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3 Multipotency and Differentiation 

3.1 General Introduction 

When culturing stem cells for clinical applications it is vital that during 

expansion of the stem cell population in vitro, MSCs retain their stem cell 

phenotype and multi-lineage potential. As stated previously, MSCs undergo 

spontaneous differentiation into fibroblast-like cells during in vitro culture on 

standard tissue culture plastic, progressively losing their multi-lineage potential 

(Banfi, Muraglia et al. 2000; Sherley 2002; Siddappa, Licht et al. 2007). It is 

therefore crucial to investigate any phenotypic changes that occur in MSCs over 

time in response to the test nanotopography and controls. Throughout this 

chapter various phenotypic markers have been used to identify both the stem 

cell population and the up-regulation of markers associated with osteogenic or 

adipogenic differentiation in response to all treatments. 

STRO-1 is a widely accepted marker for the positive selection of a subset of bone 

marrow cells, identified to isolate a largely homogenous multipotent MSC 

population by Gronthos and co-workers (Simmons and Torok-Storb 1991; 

Gronthos and Zannettino 2008). Throughout this study STRO-1 was used to 

isolate the initial population of cells, therefore STRO-1 has been used as a 

marker to detect continued phenotypic maintenance of the multipotent 

population. In addition, another marker, ALCAM, was used in combination with 

STRO-1. ALCAM is known to be less selective and has been shown to identify a 

less primitive progenitor population than STRO-1 (Stewart, Monk et al. 2003). 

Importantly, loss of both STRO-1 and ALCAM expression has been shown to 

correlate with differentiation (Simmons and Torok-Storb 1991; Bruder, Jaiswal et 

al. 1997; Arai, Ohneda et al. 2002).  

The osteogenic differentiation of MSCs is marked by the expression of key genes 

and transcription factors at distinct time points. These can be classed as either 

early or late depending on when they become expressed during differentiation 

(Stein, Lian et al. 1990). To induce osteogenic differentiation a combination of 

ascorbic acid and dexamethasone can be added to supplement the media 

(Pittenger, Mackay et al. 1999). Ascorbic acid, more commonly known as vitamin 
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C, increases collagen type I and III ECM production, and leads to the up-

regulation of genes associated with maturation and mineralization of the matrix 

(Schwarz 1985; Schwarz, Kleinman et al. 1987; Aronow, Gerstenfeld et al. 1990). 

Additionally, dexamethasone, a synthetic glucocorticoid, up-regulates the 

expression of alkaline phosphatase to promote osteogenic differentiation 

(McCulloch and Tenenbaum 1986; Rickard, Sullivan et al. 1994; Bruder and 

Jaiswal 1995; Mikami, Asano et al. 2010). A key marker of early osteogenic 

differentiation is the transcription factor RUNX2. RUNX2 regulates key 

osteoblast-specific gene expressions such as OPN and OCN, late stage osteogenic 

markers (Ducy, Zhang et al. 1997; Harada, Tagashira et al. 1999; Komori 2002; 

Hong, Hwang et al. 2005).  

To demonstrate their multipotent nature, MSCs can also be induced to undergo 

adipogenesis using a combination of insulin, indomethacin and 

isobutylmethylxanthine, known to induce expression of a key early time point 

adipogenic marker, PPAR- (Hung, Chang et al. 2004). PPAR- is a transcription 

factor which acts to regulate the expression of genes involved in lipid uptake 

into the cells (Lowell 1999). Lipid uptake into the cells leads to the 

accumulation of lipid vacuoles, another marker for adipogenic differentiation 

(Lowell 1999; Rosen, Sarraf et al. 1999). Therefore, using a combination both 

stem cell/progenitor and differentiation markers it is possible to visualise the 

maintenance or differentiation of the MSCs on different substrates.  

 

In addition to maintenance of the stem cell phenotype, the ability to maintain 

expansion of the stem cell population is critical. Not only has proliferation been 

coupled to self-renewal as discussed in section 1.4.1., but a loss of proliferation 

has been shown to indicate the onset of differentiation (Stein, Lian et al. 1990; 

Stein and Lian 1993). Using a thymidine analogue, bromodeoxyuridine (BrdU), 

incorporation of the synthetic nucleoside during S-phase into the DNA can be 

used in conjunction with immunohistochemistry to detect proliferating cells. 

This enables us to make sure that we can expand the multipotent cell population 

rather than just producing quiescence cells that retain certain markers. 

Using topographical substrates as a means to provide large quantities of stem 

cells requires the application of conventional cell culture techniques such as 
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passaging, a technique routinely used to maintain optimum cell density whilst 

expanding the cell population. Passaging of adherent cells such as MSCs requires 

the cells to be detached from the substrate using trypsin, a serine protease. 

Passaging is often used as an estimate of the number of cell divisions a cell has 

undergone in vitro. Within the field it is generally accepted that successive 

passaging of MSCs leads to a loss of multilineage potential, therefore it is 

important to establish that maintenance of the stem cell phenotype occurs 

following serial passaging (Banfi, Muraglia et al. 2000; Sherley 2002; Siddappa, 

Licht et al. 2007).  

The aims of this chapter therefore are three fold, firstly, to identify phenotypic 

markers which demonstrate continued maintenance of the MSC phenotype on 

the SQ nanotopography. Secondly, to demonstrate the multipotency potential of 

MSCs cultured on the SQ nanotopography over time by carrying out 

differentiation studies, and lastly, to demonstrate continued proliferation of 

MSCs cultured on the SQ nanotopography. 

3.2 Materials and Methods 

3.2.1 Polymer replication 

Imprints of the nickel substrate into PCL (Mw 65,000 Sigma Aldrich, UK) was 

achieved by hot-embossing as described in section 2.3.4.1.. The resulting 

imprints, SQ and NSQ, were trimmed to fit in tissue culture well plates and flat 

PCL (Ra of 1.17 nm over 10 µm measured using AFM) was used as a control 

substrate. 

3.2.2 Cell culture 

STRO-1 MSCs were provided by Prof. Richard Oreffo at the University of 

Southampton. STRO-1 cells were isolated as described in section 2.2 from bone 

marrow samples obtained from haematologically normal patients undergoing 

routine total hip replacement surgery and with the approval of the Southampton 

General Hospital Ethics Committee. Only tissue that would have been discarded 

was used.  In addition, commercially available MSCs (skeletal and adipose-
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derived) were purchased from Promocell (Promocell, Germany) and used at 

passage 2; these were also cultured in basal media (10% FBS/MEM) or for 

osteogenic differentiation basal media was supplemented with dexamethasone 

(10nm) (Sigma, UK) and L-ascorbic acid (150 µg ml-1) (Sigma, UK). 

3.2.3 Immunofluorescence  

MSCs were cultured for 7, 14, 21 and 28 days in basal media (10% FBS/MEM) 

(PAA, UK) at 37oC with 5% CO2 in humid conditions. Cells are seeded onto the 

materials at 1 x 104 cells / ml and the media changed twice a week. Osteogenic 

media was used as a control for induced differentiation containing 

dexamethasone (10nm) and L-ascorbic acid (150 µg ml-1). At the relevant time 

points MSCs were fixed in 4% formaldehyde for 15 mins, followed by 5 minutes 

permeabilisation in permeabilising buffer. Then samples were blocked in 1% 

PBS/BSA for 5 mins, and subsequently stained for osteogenic markers using 

mouse-monoclonal OCN/OPN antibodies (1:50) (Santa Cruz Biotechnology) and 

stem cell markers using mouse-monoclonal STRO-1/ALCAM antibodies (1:50) 

(Santa Cruz Biotechnology) in conjunction with rhodamine-phalloidin (1:50) 

(Sigma) for 1 hr at 37oC. Samples were then washed three times in PBS/Tween 

20 to remove the primary antibody. An anti-mouse secondary biotinylated (1:50) 

(Sigma) was then added and incubated at 37oC for 1 hr. Following this samples 

were again washed three times in PBS/Tween 20 to remove the secondary 

antibody. A tertiary FITC-labelled streptavidin antibody (1:50) (Sigma) was 

added and samples incubated at 4oC for 30 mins. Samples were then washed 

again three times in PBS/Tween 20 and mounted using mounting medium 

containing DAPI to stain the cell nucleus. Similarly, after 8 weeks culture cells 

were fixed and stained for STRO-1 and ALCAM.  

For quantification, images (x 10 magnification) were taken with similar 

background and exported to Image J (free download from NIH). In image J, the 

images were thresholded to select positively stained areas and mean greyscale 

and area calculated. DAPI staining was used to allow counting of cell numbers. 

Integrated intensity (arbitrary units) was calculated by multiplying mean 

greyscale intensity by feature area. These values were totalled for each 
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substrate and normalized to cell number to give intensity per cell. ANOVA was 

used to compare samples (approx 900 cells were considered for each treatment). 

3.2.4 RNA isolation 

STRO-1+ cells were seeded onto nanotopographical and control substrates at a 

density of 1 x 104
 cells per ml. Cells were maintained at 37C with a 5% CO2 

atmosphere in -MEM (Invitrogen, UK) containing 10% FBS, which was replaced 

twice weekly. Cells were then lysed and total RNA extracted using a Qiagen 

RNeasy Micro Kit according to manufacturer’s protocols (Qiagen, West Sussex, 

UK). 

Briefly, STRO-1+ MSC lysate was homogenised by vortexing and subsequent 

passing the lysate through a 20-gauge syringe needle. Equal volumes of 70% 

ethanol were added to the homogenized lysate, mixed thoroughly and added to 

the spin column and centrifuged at 8,000 g for 15 seconds. 350 µl of buffer RW1 

containing guanidine thiocyanate was added to the spin column to denature 

proteins, such as RNases. The spin column was again centrifuged at 8,000 g for 

15 seconds. DNA was then denatured for 15 minutes using a solution of DNase I 

and buffer RDD. Buffer RW1 was added again to remove the DNase I and the spin 

column centrifuged for 15 seconds at 8,000 g. Following washing all filtrate was 

discarded. A further wash was carried out using buffer RPE followed by 80% 

ethanol to precipitate the RNA. The filter was then centrifuged at full speed for 

2 minutes to remove any remaining ethanol. The dried filter was then 

transferred to a 1 ml Eppendorf tube and 14 µl RNase-free water added. The 

tube and filter were subsequently centrifuged at full speed for 1 minute. 

Measurement of extracted RNA yields was performed with a NanoDrop® ND-1000 

UV- Vis Spectrophotometer at ratios of 230/260 nm and 260/280 nm. 

3.2.5 cDNA synthesis 

Total RNA was reverse transcribed using the Applied Biosystems High Capacity 

RNA-to-cDNA kit (Applied Biosystems, UK). Firstly a reverse transcription master 

mix was prepared to a total volume of 10 µl: 
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10x RT buffer   2.0 ul 
25x dNTP Mix (100mM)  0.8 ul  
10x RT Random primers  2.0 ul 
Reverse Transcriptase  1.0 ul 
RNase Inhibitor   1.0 ul 
Nuclease-free H2O   3.2 ul 
 
Following this, prepare a 10 µl solution of RNA containing equal concentrations 

of RNA (make up with H2O). 

 

Finally, mix the master Mix and RNA sample gently and put on ice until ready to 

load the thermal cycler. The following programme was used to run the thermal 

cycler:  

25oC   10 min 
37oC  120 min 
85oC  5 min 
4oC  forever 

3.2.6 Quantitative real time PCR.    

MSCs were cultured on materials for 28 days (4 replicas for each materials). 

Following this cells were lysed and total RNA extracted using a Qiagen RNeasy 

micro kit (Qiagen, UK) as described in section 3.1.3.. Following this, RNA 

samples were reverse transcribed using the Applied Biosystems High Capacity 

RNA to cDNA kit (Applied Biosystems, UK). 

Real-time qPCR was carried out using the 7500 Real Time PCR system from 

Applied Biosystems. -actin served as the housekeeping gene, and expression for 

the genes of interest was normalized to -actin expression. As the SYBR green 

method was used, primer sequences for the genes was validated by dissociation 

curve/meltcurve analysis. QPCR was carried out by Dr Emma-Jayne Kingham at 

the University of Southampton. The comparative cycle-threshold method was 

used for quantification of gene expression. The relative transcript levels were 

expressed as mean ±s.d. for plotting as graphs. Statistical analysis was carried 

out used the Tukey-Kramer multiple comparisons post-test analysis of variance 

(ANOVA). 
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Gene Forward Primer Reverse Primer 

-actin GGCATCCTCACCCTGAAGTA GGTGTGGTGCCAGATTTTC 

ALCAM ACGATGAGGCAGACGAGATAAGT CAGCAAGGAGGAACCAACAAC 
CD63 GCCCTTGGAATTGCTTTTGTCG CATCACCTCGTAGCCACTTCTG 

Table 3-1 QPCR primers. 

 

3.2.7 BrdU labelling 

Cells were cultured for 3 and 7 days in basal media (10%FBS/MEM) (PAA, UK) at 

37oC with 5% CO2 in humid conditions. Cells are seeded onto the materials at 1 x 

104 cells / ml and the media changed twice a week. Osteogenic media was used 

as a control for induced differentiation containing dexamethasone (10nm) and L-

ascorbic acid (150 µg ml-1). At the relevant time points cells were washed in 

HEPES saline twice to remove any residual MEM medium before the addition of 

100 m BrdU/DMEM medium for 1.5 hours at 37oC. Following this MSCs were 

washed again in HEPES saline and fixed in 4% formaldehyde/PBS for 15 mins at 

37oC. Cells were permeabilised and blocked as described in section 3.1.1.. 

Following this cells were incubated with mouse monoclonal anti-BrdU/DNase 

(1:100) (GE Healthcare) in conjunction with rhodamine-phalloidin (Sigma). Cells 

were then washed and incubated with an anti-mouse secondary biotin-labelled 

antibody (Sigma) and streptavidin-labelled tertiary antibody (Sigma) respectively 

as also described in section 3.1.1.. Mounting medium containing DAPI was also 

used to mount the samples and for visualization of the cell nucleus. 

 

3.2.8 Cell Passaging 

MSCs were primarily seeded onto 4 replicas of the SQ topography at 1x 104 

cells/ml and cultured using basal media (10% FBS/MEM) (PAA, UK) at 37oC. 

Cells were passaged once a week, with half of the replicas being reseeded again 

onto 4 SQ replicas at a ratio of 1:2. The remaining replicas were fixed at the 

current passage and stained for STRO-1 using a mouse-monoclonal antibody as in 

section 3.1.1. (Santa Cruz Biotechnology). Cells were cultured up to passage 6. 
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3.2.9 Osteogenic/Adipogenic Differentiation 

MSCs were cultured on both the SQ and NSQ nanotopographies with flat PCL used 

as a control. Cells were cultured in basal media (10%FBS/MEM) (PAA, UK) for a 

period of 28 days. Following which, 2 strategies were undertaken: 

1. MSCs were maintained on all substrates, however basal media was 

replaced with either adipogenic (1 µM dexamethasone, 10 µg/ml human 

insulin, 100 µM indomethacin and 500µM isobutylmethylxanthine) or 

osteogenic induction media, as previously described in section 2.2.1. for 

14 days. After 14 days culture in differentiation media cells were fixed 

and stained for OPN and PPAR- (mouse-monoclonal and goat-polyclonal 

respectively (Insight Biotechnology)) as described in section 3.1.1.. 

2. MSCs were trypsinised off all substrates and reseeded onto glass 

coverslips. Basal media was replaced with either adipogenic (1 µM DEX, 10 

µg/ml human insulin, 100 µM indomethacin and 500µM 

isobutylmethylxanthine) or osteogenic induction media (dexamethasone 

(10nm) and L-ascorbic acid (150 µg ml-1)). Cells were cultured in 

differentiation media for either 1, 3 or 14 days. Samples were 

subsequently fixed and stained as described in section 3.1.1. with an 

osteogenic or adipogenic marker; RUNX2 or PPAR- at day 1 and 3 (mouse 

monoclonal and goat polyclonal respectively (Insight Biotechnology, UK) 

and OPN or PPAR- at day 14 (mouse monoclonal and goat polyclonal 

respectively (Insight Biotechnology, UK)). 

3.3 Results 

3.3.1 Multipotency/Differentiation  

Initial immunofluorescent staining of MSCs cultured for 7 days on the SQ and NSQ 

nanotopographies as well as the planar and OGM controls identified both stem 

cell markers, STRO-1 and ALCAM, to be present on all substrates, while OPN and 

OCN bone cell markers showed negligible expression at this time point (fig. 3-1). 

Expression of only ALCAM and STRO-1 at this time point demonstrates the 

homogenous nature of the STRO-1 selected cell population.  
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At day 14, expression of STRO-1 and ALCAM were seen to decrease at this time 

point on the NSQ osteogenic topography as well as both the planar and OGM 

control, whilst expression remained high on the SQ nanotopography. Low levels 

of OPN expression were evident on the NSQ nanotopography (fig 3-2). 

 

Figure 3-1. Phenotypic staining at day 7 in MSCs cultured on the SQ and NSQ topographies 
and on planar control and planar control with OGM. High levels of STRO-1 and ALCAM in all 
samples at this early time point demonstrate the enriched homogeneous STRO-1 nature of 
the MSC population at the start. Red=actin, blue = nucleus, green= STRO-1, ALCAM, OCN or 
OPN. Scale bar = 100 µm. 

 
By day 21, OPN expression was visible on the NSQ topography, and planar and 

OGM control, whilst expression of ALCAM and STRO-1 had diminished. Low levels 

of ALCAM and STRO-1 expression, in addition to slight OPN expression on the 

planar control indicates the formation of a heterogeneous population. In 

contrast however, MSCs cultured on the SQ topography continued to express high 

levels of ALCAM and STRO-1 with negligible levels of OPN and OCN expression at 

this time point (fig. 3-3). 
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Figure 3-2. Phenotypic staining at day 14 in MSCs cultured on the SQ and NSQ 
topographies and on planar control and planar control with OGM. At this time point levels of 
STRO-1 and ALCAM are seen to decrease on the NSQ topography as well as the planar and 
osteogenic controls, whilst high levels of STRO-1 and ALCAM are still expressed on the SQ 
topography. Low levels of OPN expression can be seen on the NSQ topography. Red = 
actin, blue = nucleus, green = STRO-1, ALCAM, OCN or OPN. Scale bar = 100 µm. 
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Figure 3-3 Phenotypic staining at day 21 in MSCs cultured on the SQ and NSQ topographies 
and on planar control and planar control with OGM. At this time point expression levels of 
STRO-1 and ALCAM have visually decreased on the NSQ topography and osteogenic 
controls, whilst increases in OPN are visible. On the flat control, low levels of STRO-1, 
ALCAM and OPN indicate a heterogeneous cell population. In contrast, STRO-1 and ALCAM 
are still expressed on the SQ topography with no expression of OPN or OCN. Red = actin, 
blue = nucleus, green = STRO-1, ALCAM, OCN or OPN. Scale bar = 100 µm. 

 
Finally, by day 28, OPN expression had visually increased on the NSQ sample and 

OGM control. In addition, low levels of OCN expression could be noted on these 

samples. Similar results to day 21 were seen on the planar control with low 

levels of OPN, ALCAM and STRO-1 still visible. On the SQ nanotopography 

however, expression of ALCAM and STRO-1 remained high with no notable 

expression of OPN or OCN (fig. 3-4). 

 

Figure 3-4 Phenotypic staining at day 28 in MSCs cultured on the SQ and NSQ topographies 
and on planar control and planar control with OGM. At this time point expression levels of 
STRO-1 and ALCAM have visually decreased on the NSQ topography and osteogenic 
controls, whilst increases in OPN are visible. On the flat control, low levels of STRO-1, 
ALCAM and OPN again indicate a heterogeneous cell population. In contrast, STRO-1 and 
ALCAM are still expressed on the SQ topography with no expression of OPN or OCN. Red = 
actin, blue = nucleus, green = STRO-1, ALCAM, OCN or OPN. Scale bar = 100 µm. 
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3.3.2 Quantitative Analysis of Marker Expression 

Quantitative analysis of immunofluorescent data at day 7 identified STRO-1 

expression on all substrates, and these results were comparable to the flat 

control. In contrast, there was no evidence of OPN expression on any of the 

substrates (fig. 3-5 A). At day 21, STRO-1 expression on the SQ nanotopography 

is approximately 10 times higher than expression on the other substrates, with 

STRO-1 expression the NSQ and OGM control comparable to the flat control. This 

suggests that expression had been significantly lost from cells in the other 

treatments. For OPN expression, however, the converse was apparent with MSCs 

expressing high levels of OPN when cultured on the NSQ and OGM control. In 

contrast no OPN expression was detectable on the SQ nanotopography (fig. 3-5 

B). Analysis at day 28 identified STRO-1 expression on the SQ nanotopography to 

be approximately 100 fold higher with significantly decreased expression in cells 

on the other treatments. Expression of OPN was found to be negligible on the SQ 

topography at this time point and levels of expression on the NSQ and OGM 

control where higher but more comparable to the flat control (fig. 3-5 C). It is 

noted that the standard deviations are large. This is because the cells were 

predominantly confluent and the proteins could be expressed in groups of cells 

(a large expression area) or in individual cells (a small expression area, thus the 

results are bimodal); this is especially the case with osteogenesis as the cells 

naturally clump to form osteoid nodules. Results are mean  SD, *=p<0.05, 

**=p<0.01, ***=p<0.001 by ANOVA. 
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Figure 3-5 Time course study for expression of STRO-1 and OPN in MSCs on flat control, 
test nanotopographies and with OGM. (A) At day 7 all surfaces express STRO-1 similarly 
and thus are comparable to control. For OPN, no expression was detected on any surface. 
(B) At day 21 MSCs cultured on NSQ and with OGM displayed similar STRO-1 expression to 
control, however, MSCs on the SQ topography expressed approximately 10 times more 
STRO-1. For OPN expression the results were the opposite, cells on NSQ and with OGM 
expressed high levels of OPN but none was yet detectable in MSCs on SQ or control. (C) By 
28 days MSCs on SQ expressed approximately 100 fold higher expression. For OPN, MSCs 
on NSQ and with OGM still expressed more OPN than on control, however, cells on control 
expressed a degree of OPN. Negligible expression was noted by MSCs on SQ surfaces.  

 

3.3.3 MSC Maintenance Following Long-term Culture 

MSCs were cultured on both the SQ nanotopography and flat control substrate 

for 8 weeks. Immunofluorescent staining identified that both stem cells markers, 

STRO-1 and ALCAM were expressed at 8 weeks following culture on the SQ 

nanotopography. MSCs cultured on the flat control however were identified to 

only express ALCAM, a less stringent marker for multipotent MSCS at this time 

point (fig. 3-6). 
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Figure 3-6.  Stem cell/progenitor expression following 8 weeks in culture. High levels of 
ALCAM and STRO-1 were seen in MSCs cultured on SQ compared with cells cultured on the 
osteogenic NSQ. It is noted that STRO-1 is a more stringent marker for MSCs than ALCAM, 
which is expressed by both stem cells and progenitor cells. In all images, green = 
phenotypic marker as indicated by the images, red = actin, blue = nucleus. 

 

3.3.4 Quantitative Real Time PCR 

QPCR was used to examine the expression of two progenitor markers, ALCAM and 

CD63 after four weeks culture. The results identified highly significant up-

regulation of ALCAM on the SQ nanotopography compared to the flat control. 

Significant expression of ALCAM was identified on the NSQ topography compared 

to flat, however, there was also a significantly higher level of expression in MSCs 

cultured on the SQ when compared to the NSQ. Levels of ALCAM expression in 

MSCs cultured with osteogenic media where shown to be similar to the flat 

control (fig. 3-7 A). 

Similarly, CD63 expression was shown to be significantly up-regulated in MSCs 

cultured on the SQ topography in comparison to those cultured on the flat 

control and NSQ topography. In contrast, MSCs cultured on the NSQ and 

osteogenic controls were identified to have expression levels similar to the flat 

control (fig. 3-7 B). 
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Figure 3-7 Quantitative, real time (q) PCR at four weeks for progenitor markers ALCAM (A) 
and CD63 (B) showed a statistically significant increase in expression between SQ and 
planar control, SQ and NSQ, and SQ and OGM. Graphs show mean ± s.d., comparison by 
ANOVA— * p < 0.05, ** p < 0.01, *** p < 0.001, n = 3. Note: markings above the error bars 
denote comparison to flat control; comparison between SQ and NSQ is denoted by a line. 

 

3.3.5 Multipotency/Differentiation of Commercial MSCs 

Bone marrow MSCs (Promocell, UK) where shown to maintain high levels of 

STRO-1 and ALCAM expression when cultured on the SQ topography, with 

negligible expression of OPN or OCN bone markers visible. ALCAM expression was 

visible on the NSQ topography and both controls, however STRO-1 expression 

was visibly diminished following 28 days of culture. On both the NSQ topography 

and osteogenic control high levels of both bone markers, OPN and OCN were 

visible. On the flat control OPN expression was only visible without expression of 

OCN, again indicating the presence of a heterogeneous population (fig. 3-8). 
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Figure 3-8 Commercial skeletal MSCs cultured for 28 days undergo similar differentiation / 
phenotype maintenance to STRO-1 selected skeletal MSCs in response to nanotopography. 
Only MSCs cultured on the SQ surface expressed STRO-1 at 28 days of culture. The 
commercial skeletal MSCs cultured on NSQ and with osteogenic media displayed loss of 
ALCAM expression with expression of the bone markers OCN and OPN. Red = actin, blue = 
nucleus, green= STRO-1, ALCAM, OCN or OPN. This result demonstrates that skeletal MSCs 
isolated by different protocols respond in a similar fashion. Scale bar = 100 µm. 

 

3.3.6 Adipose-derived MSCs 

Following 28 days culture adipose derived MSCs (Promocell, UK) cultured on the 

NSQ and with OGM are both seen to express osteogenic markers, OPN and OCN 

with no STRO-1 expression observed. MSCs cultured on the flat control are seen 

to express ALCAM without expression of OPN, OCN or STRO-1. In contrast, 

expression of ALCAM and STRO-1 was only visible in MSCs cultured on the SQ 

topography, with no expression of OPN or OCN (fig. 3-9).  
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Figure 3-9 Adipose derived MSCs cultured for 28 days undergo similar differentiation / 
phenotype maintenance to skeletal MSCs (STRO-1 selected or Promocell) in response to 
nanotopography. Only adipose-derived MSCs cultured on the SQ surface still expressed 
STRO-1 at 28 days of culture. Adipose-derived MSCs grown on NSQ and cultured with 
osteogenic medium displayed signs of OCN and OPN expression at this time point. 
Red=actin, green= STRO-1, ALCAM, OCN or OPN.  

 

3.3.7 Induced Differentiation Study 

MSCs were cultured on the SQ and flat control PCL substrates for 28 days, after 

which the cells were trypsinised, disaggregated and re-cultured on glass 

coverslips (fig. 3-10 A) or cell remained on substrates and differentiation media 

was added in situ (fig. 3-10 B). Following trypsinisation from the SQ topography 

and re-culturing on glass coverslips, MSCs were shown to undergo osteogenic and 

adipogenic differentiation in response to differentiation media. MSCs cultured in 

osteogenic differentiation media were shown to express RUNX2 following 24 and 

72 hours of culture. PPAR- was also shown to be expressed at 24 and 72 hours of 

culture in response to adipogenic differentiation media.  

In fig. 3-10 B, MSCs maintained on the original SQ topography showed localised 

PPAR- expression in aggregated cell groups, whilst OPN expression is visible in 

clusters of cells. In this case therefore, when MSCs are left on the SQ 



Chapter 3 – Multipotency and Differentiation 

 74 

nanotopography and induced to undergo differentiation, neither osteogenesis 

nor adipogenesis is complete in contrast to when MSCs undergo disaggregation 

and re-culturing on glass coverslips. This suggests a competitive effect between 

the retention properties of the nanotopography and chemistry. 

 

Figure 3-10. MSC multipotency after prolonged culture on the SQ topography. (A) After 28 
days of culture on SQ, cells were trypsinised, disaggregated and re-cultured on glass 
coverslips. The cells were then cultured with adipogenic or osteogenic media for 24 and 72 
hours before immunostaining for RUNX2 or PPARG. After 24 hours cells could be seen to 
express the adipogenic and osteogenic transcription factors and this was intensified after 
72 hours. (B) After 28 days of culture on SQ, adipogenic or osteogenic media was added in 
situ with the MSCs still on the SQ pattern and the cells cultured for a further 14 days before 
staining for PPARG or OPN. In response to adipogenic media, the MSCs clustered and did 
express some localised PPARG, however not to the same extent as when disaggregated. In 
response to osteogenic media, the MSCs formed a limited number of bone-nodule-like 
clusters positive for OPN. Blue = nucleus, Red=actin, green = PPARG, RUNX2 or OPN.  

 

B 
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3.3.8 Passaging 

MSCs cultured on the SQ topography were subject to passaging, a typical cell 

culture technique when cultured on PCL. Fig. 3-11 shows that during weekly 

passaging, MSCs cultured on the SQ topography maintained expression of STRO-1 

over a 6-week period.  

 

Figure 3-11 Study of STRO-1 selected MSCs after passaging. MSCs cultured for 6 passages 
(trypsin detachment). MSCs were passaged once per week for 6 weeks and stained for 
STRO-1. The MSCs demonstrated STRO-1 expression at each time sub-culture. 

 

3.3.9 Proliferation 

MSCs were observed to undergo proliferation rates comparable to the flat 

control at both day 7 and day 14. No significant difference was observed at 

either time point (fig. 3-12 A&B). 
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A      B 

 

Figure 3-12 Proliferation of MSCs on the SQ topography and flat control at day 7 (A) and day 
14 (B). Cells in S-phase were identified using BrdU. At both days 7 and 14 the percentage of 
cells in S-phase on the SQ was comparable to the flat and no significant difference was 
observed. 

 

3.4 Discussion 

This chapter demonstrates the effect of the SQ nanotopography on the 

maintenance of MSC phenotype and multipotency. Analysis of key osteogenic and 

stem/progenitor markers in MSCs over a period of four weeks, across all 

substrates allows for the profiling of MSCs phenotype in response to both test 

topographies and controls. Evidence of only stem/progenitor markers at day 7 

indicates the presence of a STRO-1 enriched homogeneous population at the 

start of the study, whilst an up-regulation of osteogenic markers concomitant 

with the down-regulation of both stem/progenitor markers, demonstrates the 

osteoinductive properties of both the NSQ nanotopography, and OGM control as 

previously reported (Dalby, Gadegaard et al. 2007). Evidence for the generation 

of a heterogeneous cell population with continued expression of low levels of 

STRO-1 and ALCAM expression in response to the flat control are again 

conclusive with previous research indicating that MSCs undergo spontaneous 

differentiation in response to culture on a flat substrate.  

In contrast, however, MSCs were shown to retain their stem cell phenotype in 

response to culture on the SQ topography with continued expression of both 

stem cell markers, STRO-1 and ALCAM (note that ALCAM is a less specific skeletal 

stem cell marker than STRO-1 and will also label more mature, progenitor cells) 

and, critically, no expression of osteogenic markers were identified. 

Furthermore, expression of STRO-1 and ALCAM in MSCs cultured on the SQ 
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topography was observed up to eight weeks post seeding, again indicating 

continued maintenance of the MSC phenotype over a prolonged period of time. 

Quantitative assessment of marker expression over the time course study further 

identified a diminishing population of STRO-1+ MSCs cultured on the NSQ 

topography and with OGM. An increase in OPN and OCN expression were also 

similarly observed over time, demonstrating osteogenic differentiation. 

Meanwhile, STRO-1 expression in MSCs on the SQ topography remained high 

throughout the study, with fold change relative to the flat control increasing 

over time. 

An additional study using qPCR to examine CD63 (another more stringent marker 

for MSCs) and ALCAM was used to back up the data generated using 

immunofluorescence. Comparative analysis with the flat control identified highly 

significant and very highly significant differences in ALCAM and CD63 expression 

respectively, providing further evidence for maintenance of the MSC phenotype 

in response to the SQ topography. Interestingly, commercially available skeletal 

and adipose derived MSCs were observed to undergo similar differentiation or 

phenotype maintenance in response to both nanotopographical and control 

substrates.  

MSCs cultured on the SQ topography were also shown to undergo passaging, a 

common cell culture technique critical for stem cell expansion. Continuous 

expression of STRO-1 in MSCs cultured on the SQ topography up until passage 6 

demonstrates that not only can the functionally useful lifespan of MSCs be 

increased, but that typical cell culture protocols can be applied to the surfaces 

whilst phenotypic retention is maintained. 

In order to ensure that the retained cells are functional, as well as considering 

marker proteins, MSC multipotency must be considered as the ultimate display 

of stem cell phenotype (Pittenger, Mackay et al. 1999). In further studies 

following prolonged culture, MSCs were successfully induced to undergo 

differentiation using osteogenic or adipogenic differentiation media following 

dissociation from the SQ topography and re-culturing onto glass coverslips. Thus, 

MSCs cultured on the SQ topography not only expressed MSC phenotype markers, 

but are multipotent. Interestingly, MSCs were also treated with supplemented 
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media whilst still growing on the SQ nanotopography, however in this instance 

only modest levels of osteogenic or adipogenic differentiation were observed, 

indicating competitive effects between the topographical cues experienced by 

the cells and the soluble factors in the media.  
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4 Genomics 

4.1 General Introduction 

In this chapter, the effect of the SQ nanotopography on the activation or 

repression of key signalling pathways is studied using oligo- and Affymetrix 

microarray technology, with subsequent analysis using Ingenuity Pathway 

Analysis (IPA). IPA groups genes into canonical and functional pathways which 

have been clearly defined in literature. Canonical and functional pathways are 

directly linked, with changes in canonical pathway signalling feeding into, and 

altering the functional output or phenotype of the cell. Therefore, up- or down-

regulation of gene expression in MSCs in response to the SQ nanotopography can 

have a direct effect on the cell phenotype. 

In addition, microarrays can detect the expression of short, non-coding RNAs. 

These include microRNA (miRNA) and small nucleolar RNAs (snoRNA) which 

function as regulatory RNAs (Kiss 2001; He and Hannon 2004; Matera, Terns et al. 

2007). miRNAs act as post-transcriptional regulators, binding mRNA transcripts at 

a complementary sequences (Ambros 2004; He and Hannon 2004). This can result 

in gene silencing via degradation of the mRNA or preventing subsequent 

translation of the mRNA (Ambros 2004; Bartel 2004). miRNAs are increasingly 

being implicated in regulating gene expression involved in both self-renewal and 

differentiation of stem cells by negatively regulating the expression of key genes 

involved in self-renewal or differentiation (Chen, Li et al. 2004; Viswanathan, 

Daley et al. 2008; Yi, Poy et al. 2008; Sartipy, Olsson et al. 2009; Melton, Judson 

et al. 2010).  

SnoRNA’s localized to the nucleolus and Cajal Bodies of eukaryotic cells, on the 

other hand, are known to guide the modification of ribosomal RNAs (rRNA), 

transfer RNAs (tRNA) and small nuclear RNAs (snRNA) by either methylation or 

pseudouridylation (Matera, Terns et al. 2007). SnoRNAs which modify by 

methylation are classed as C/D box snoRNAs, while those that are associated 

with pseudouridylation are classed as H/ACA box snoRNAs, however some types 

of snoRNAs contain both a C/D and H/ACA box and can therefore function in 

both types of modification (Narayanan, Lukowiak et al. 1999; Kiss 2001; Kiss, 
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Jady et al. 2004). The most common type of methylation is a 2’-O ribose 

methylation and is thought to play several roles, such as stabilizing the RNA 

structure, enhancing hydrophobicity and protecting the RNA from degradation 

(Kowalak, Dalluge et al. 1994; Bachellerie and Cavaille 1998; Clouet-d'Orval, 

Gaspin et al. 2005). Pseudouridylation occurs when the nucleoside uridine 

becomes converted to the isomer pseudouridine, and is thought to increase the 

number of hydrogen bonds available altering the tertiary structure of the RNA. 

Interestingly other types of snoRNAs have also been found to regulate alternative 

splicing and function as miRNAs, highlighting their functional diversity (Ender, 

Krek et al. 2008; Brameier, Herwig et al. 2011). Importantly, whilst the effect of 

these modifications on stem cell function are not fully understood, RNA editing 

has previously been shown to regulate embryonic and hematopoietic self-

renewal and differentiation (Hartner, Walkley et al. 2009; Osenberg, Paz Yaacov 

et al. 2010).  

4.2 Materials and Methods 

4.2.1 RNA isolation 

STRO-1+ cells were seeded onto nanotopographical and control substrates at a 

density of 1 x 104
 cells per ml. Cells were maintained at 37C with a 5% CO2 

atmosphere in -MEM (Invitrogen, UK) containing 10% FBS, which was replaced 

twice weekly. Cells were cultured for 7, 14 (for microarray), or 28 days (for 

macroarrays) at which point the cells were trypsinised to maximize recovery of 

cells from substrates. Cells were then lysed and total RNA extracted using a 

Qiagen RNeasy Micro Kit as described in section 1.3.1. (Qiagen, UK). 

4.2.2 Microarray Analysis 

MSCs were cultured on PCL materials (4 material replicates) for 7 and 14 days. 

At these points, the cells were lysed and total RNA was extracted using a Qiagen 

RNeasy kit (Qiagen, UK) as described in section 4.2.2.. Gene expression changes 

were detected by hybridization of cDNA to Affymetrix HuGene 1.0 ST human 

arrays as per manufacturer’s instructions. Initial bioinformatic analysis was 

based on rank product (Breitling, Armengaud et al. 2004) and a false discovery 
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rate of 20% was used to upload selected genes changes to the Ingenuity Pathway 

Analysis (IPA) server (Ingenuity® Systems, www.ingenuity.com). The functional 

and canonical analyses were then generated through the use of IPA.  

1. Network Generation 

A data set containing gene (or chemical) identifiers and corresponding 

expression values was uploaded into in the application. Each identifier was 

mapped to its corresponding object in the Ingenuity® Knowledge Base. A p-value 

cutoff of less than 0.05 was set to identify molecules whose expression was 

significantly differentially regulated. These molecules, called Network Eligible 

molecules, were overlaid onto a global molecular network developed from 

information contained in the Ingenuity Knowledge Base. Networks of Network 

Eligible Molecules were then algorithmically generated based on their 

connectivity. 

2. Functional Analysis of an Entire Data Set 

The Functional Analysis identified the biological functions and/or diseases that 

were most significant to the data set. Molecules from the dataset that met the 

p-value cutoff of less than 0.05 and were associated with biological functions 

and/or diseases in the Ingenuity Knowledge Base were considered for the 

analysis. Right‐tailed Fisher’s exact test was used to calculate a p‐value 

determining the probability that each biological function and/or disease 

assigned to that data set is due to chance alone. 

3. Functional Analysis of a Network 

The Functional Analysis of a network identified the biological functions and/or 

diseases that were most significant to the molecules in the network. The 

network molecules associated with biological functions and/or diseases in the 

Ingenuity Knowledge Base were considered for the analysis. Right‐tailed Fisher’s 

exact test was used to calculate a p‐value determining the probability that each 

biological function and/or disease assigned to that network is due to chance 

alone. 

4. Canonical Pathway Analysis: Entire Data Set 

Canonical pathways analysis identified the pathways from the IPA library of 

canonical pathways that were most significant to the data set. Molecules from 

the data set that met the p-value cutoff of less than 0.05 and were associated 

with a canonical pathway in the Ingenuity Knowledge Base were considered for 
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the analysis. The significance of the association between the data set and the 

canonical pathway was measured in 2 ways: 1) A ratio of the number of 

molecules from the data set that map to the pathway divided by the total 

number of molecules that map to the canonical pathway is displayed. 2) Fisher’s 

exact test was used to calculate a p‐value determining the probability that the 

association between the genes in the dataset and the canonical pathway is 

explained by chance alone. 

4.2.3 Macroarray Analysis 

Gene expression analysis was carried out using the human stem cell oligoarrays 

examining the expression of 96 key genes (SABiosciences, USA). MSCs were 

seeded onto PCL substrates (3 material replicas) at 1x 104 cells per ml for 28 

days. The cells were then lysed and total RNA extracted using a Qiagen RNeasy 

micro kit (Qiagen, West Sussex, UK) as described in section 3.1.3.. Total RNA 

was then used to synthesize the target cDNA as described in section 3.1.4.. 

Subsequently this cDNA was used to produce biotin – 14 CTP labeled cRNA 

(Invitrogen, UK). The cRNA was then purified and hybridized to the Oligo 

GEArrays overnight at 60oC. Following this the arrays were washed with a 

solution of 2X standard saline citrate (SSC) containing 1% SDS followed by a wash 

with 0.1X SSC containing 0.5% SDS. Finally, chemilluminescent detection was 

carried out exposing the membranes to X-ray film in accordance with 

manufacturer’s instructions. GEarray Expression Analysis Suite on-line software 

was used to extract data. Detailed protocols for the isolation of total RNA, 

amplification and labeling of the cRNA and finally hybridization to the 

microarrays followed by chemilluminescent detection can be found at 

www.SuperArray.com. 

4.3 Results 

4.3.1 Canonical and Functional Analysis of MSCs in Response to 

Nanotopography 

Analysis of microarray data at day 7, comparing MSCs cultured on the SQ, NSQ 

and with OGM relative to the flat control, identified mainly alterations in 

http://www.superarray.com/
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canonical signalling (fig. 4-1A) on the SQ nanotopography with significant 

modulations in endothelial growth factor signalling (EGF), platelet-derived 

growth factor (PDGF) signalling, sonic hedgehog signalling, peroxisome 

proliferator-activated receptor (PPAR) signalling. In contrast, little change was 

observed in canonical signalling for cells cultured on the NSQ nanotopography 

and with OGM. At day 14 however, pathways associated with cellular functions 

were shown to undergo significant modulation in MSCs on both the NSQ and 

osteogenic control (mainly up-regulations) while MSCs on the SQ nanotopography 

showed little change in functional signalling, and with mainly down-regulations 

(fig. 4-1B). In particular MSCs cultured on the NSQ and with OGM were shown to 

undergo significant changes in functional signalling associated with tissue 

development, embryonic development, and cell morphology. In MSCs cultured on 

the SQ nanotopography significant changes were observed in cellular function 

and maintenance, and cell-to-cell signalling and interaction. 

Further analysis of canonical signalling was then undertaken to compare MSCs 

cultured on the SQ, NSQ and with OGM individually, and identify whether key 

signalling pathways were up- or down-regulated relative to the flat control 

identified. Canonical signalling pathways in MSCs cultured on the SQ relative to 

the flat control (fig. 4-2 A) were shown to have undergone mainly down-

regulations (green) at day 7. Interestingly at this time point, canonical signalling 

for human embryonic pluripotency was shown to be up-regulated (red), 

however, this was not statistically significant. At day 14, canonical signalling in 

MSCs on the SQ was shown to be mainly up-regulated, however only a small 

number of metabolic pathways were observed to be changed at this time point 

(fig. 4-2 B).  

A 
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Figure 4-1 Pathway analysis of MSCs cultured on SQ, NSQ and with OGM compared with 
planar control. (A) At day seven, MSCs on SQ showed large-scale changes (mainly down-
regulations) of major canonical pathways. Oct 4, Nanog and pluripotency pathways were 
not significantly affected. MSCs on the NSQ showed little change in canonical signalling 
compared to control; OGM showed a number of changes (mainly up-regulations) in 
canonical signalling. (B) At day 14 of culture, MSCs on the NSQ and with OGM showed a 
broad number of large functional changes (mainly up-regulations). MSCs on SQ, however, 
showed very few changes (mainly down-regulations). Note that the threshold is significant 
at p < 0.05 by Fischer’s exact test and that the graph shows significance only as –log (p 
value) to show the significance as positive values over a sensible scale. n=3. 

 
Examination of canonical signalling in MSCs cultured on the NSQ relative to the 

flat control showed that at day 7, canonical signalling was broadly down-

regulated at this time point. However by day 14, MSCs on the NSQ were 

identified to have mainly up-regulations in canonical signalling relative to the 

flat control, with significant up-regulations in multiple signalling pathways (fig. 

4-3 A & B), including sonic hedgehog and cell cycle related pathways. Similarly, 

MSCs cultured with OGM were identified to have mainly up-regulations in 

canonical signalling at day 7, however at this time point some down-regulations 

were also observed relative to the flat control (fig 4-4 A). At day 14, similar to 

MSCs cultured on the NSQ nanotopography, canonical signalling was shown to be 

broadly up-regulated. In addition, similar to MSCs cultured on the NSQ 

nanotopography, significant expression of genes associated with the canonical 

pathway sonic hedgehog, as well as several pathways associated with the cell 

cycle were observed. 
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Figure 4-2 Canonical signalling in MSCs cultured on the SQ nanotopography at days 7 and 
14 relative to the flat control. (A) At day 7 canonical signalling was shown to be down-
regulated. (B) At day 14 metabolic signalling was shown to be mainly up-regulated, however 
only a small number of metabolic pathways were observed to be changed at this time point. 
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Figure 4-3 Canonical signalling in MSCs cultured on the NSQ nanotopography at days 7 (B) 
and 14 (B) relative to the flat control. At day 7 canonical signalling was shown to be non-
significantly down-regulated, however by day 14 significant up-regulation of gene 
expression associated with various canonical pathways was observed. 
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Figure 4-4 Canonical signalling in MSCs cultured with OGM at days 7 (B) and 14 (B) relative 
to the flat control. At day 7 canonical signalling was shown to be broadly down-regulated 
with up-regulation of some pathways, however by day 14 significant gene expression 
associated with various canonical pathways were observed similar to the NSQ. 
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Gene networks associated with cellular processes are classed in IPA according to 

the number of gene changes associated with a particular network. Networks of 

gene clusters were examined at days 7 and 14 in response to the SQ and NSQ 

nanotopographies as well as with OGM and relative to the flat control, with gene 

up-regulations in red and down-regulations in green. MSCs cultured on the SQ 

nanotopography at day 7 were found to have the most gene changes associated 

with gene expression, cell assembly and organisation. Additionally, most of the 

changes in gene expression were down-regulations at this time point (fig 4-5 A). 

At day 14 changes in gene networks associated with cell growth and proliferation 

were up-regulated. However, at this time point there were fewer changes in 

genes associated with the network (fig 4-5 B).  

A 

 

B 

 

Figure 4-5 SQ vs. Flat gene networks at days 7 and 14 gene networks. (A) At day 7 mainly 
down-regulations were observed in genes associated with gene expression, cell assembly 
and organisation (B) At day 14 however up-regulations were observed in genes associated 
with cell growth and proliferation, however the number of gene changes observed. Red=up, 
green=down. 

 
MSCs cultured on the NSQ where shown to have general down-regulations in cell 

morphology gene expression at day 7 however, at day 14 broad up-regulations in 

genes associated with the cell cycle, cell assembly and organisation, DNA 

reproduction and repair were observed (fig. 4-6). 
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Figure 4-6 NSQ vs. Flat gene networks at days 7 and 14. (A) At day 7 general down-
regulation in genes associated with the cell morphology gene network were observed (B) At 
day 14 up-regulation in gene expression associated with the cell cycle, cell assembly and 
organisation, DNA reproduction and repair gene network. Red=up, green=down. 

 
MSCs cultured with OGM were observed to have up-regulated gene expression 

overall at day 7 associated with cell growth, development and tissue 

development, with additional overall up-regulated expression associated with 

signalling, movement and tissue development network at day 14 (fig. 4-7). 

A 

 

B 

 

Figure 4-7 F+OGM vs. Flat gene networks at day 7 and 14. (A) At day 7 mainly up-regulations 
were observed in genes associated with cell growth, development and tissue development 
(B) At day 14 again mainly up-regulations were observed in genes associated with 
signalling, movement and tissue development gene network. Red=up, green=down. 
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4.3.2 Small RNA Expression in Response to Nanotopography 

4.3.2.1 Analysis of miRNA Expression 

MSCs were examined for the expression of miRNAs in response to the SQ and NSQ 

nanotopographies, as well as with OGM at day 7 relative to the flat control. 

Analysis of total miRNA expression (fig. 4-8) identified that miRNAs were mainly 

up-regulated in MSCs on the SQ nanotopography with only a small proportion up-

regulated. In contrast MSCs on the NSQ had the most miRNAs down-regulated, 

with less than half of the total miRNAs being up-regulated. MSCs cultured with 

OGM had similar levels of miRNAs being up- and –down regulated. 

 

Figure 4-8 Analysis of miRNA expression at day 7. MiRNAs in MSCs cultured on the SQ 
nanotopography where shown to be mainly up-regulated. While data indicate that MSCs on 
the NSQ and with OGM, miRNAs where mainly down-regulated. 

 
Further analysis into miRNA expression examined whether miRNAs with 

significant changes in gene expression relative to the flat where up-regulated or 

down-regulated (fig. 4-9). In MSCs cultured on the SQ nanotopography, there 

were approximately twice as many significantly up-regulated miRNAs than those 

down-regulated. Interestingly, mir-302, a miRNA normally associated with 

embryonic stem cell pluripotency, is significantly up-regulated only in MSCs 

cultured on the SQ nanotopography, while miRNAs mir-125 and mir-135, thought 

to suppress differentiation are also up-regulated. Additionally, miRNAs which are 

thought to promote differentiation are shown to be down-regulated in MSCs 

cultured on the SQ nanotopography. These include mir-154, mir-21, and let-7. In 

contrast, MSCs cultured on the NSQ were found to have significant changes in 

miRNAs mainly as down-regulations with only one significant up-regulation. 
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While MSCs cultured on the NSQ nanotopography also had significant down-

regulations in miRNAs associated with differentiation, miRNAs thought to be 

under expressed in osteo-differentiated MSCs were also significantly down-

regulated compared to the flat control. MSCs cultured with OGM where 

identified to have only two miRNAs significantly changed, interestingly one of 

these miRNA, mir-24 was shown to be down-regulated in MSCs with OGM, and is 

again thought to be under expressed in osteo-differentiated MSCs. 

 

Figure 4-9 Analysis of miRNAs in MSCs cultured on the SQ, NSQ and with OGM relative to 
the flat control. Note that only miRNA with significant changes in expression are shown. 
Analysis at day 7 identified that expression of miRNAs found to be significantly altered in 
MSCs cultured on the SQ (blue) topography where mainly up-regulations. In contrast, 
significant changes in miRNA expression in MSCs cultured on the NSQ (red) where mainly 
down-regulations. MSCs cultured with OGM showed little significant change in miRNA 
expression compared to the flat at this time point. miRNAs which have been associated 
with increased pluripotency miRNAs which promote differentiation  miRNAs which 
suppress differentiation  miRNAs which are found to be under expressed in osteo-
differentiated cells. 

 
When miRNA expression was examined in MSCs at day 7 cultured on the SQ 

relative to the NSQ nanotopography, it was found that significant up-regulations 

in miRNA expression on the SQ occurred in all instances except for one. 

Furthermore, again miR-135, a miRNA associated with repressing differentiation 

was found to be significantly up-regulated in MSCs cultured on the SQ 

nanotopography relative to the NSQ (fig. 4-10). 
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  
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Figure 4-10 MiRNA expression analysis in MSCs cultured on the SQ relative to the NSQ, and 
osteogenic control, at day 7. Note that all changes are significant. Analysis shows that 
miRNAs in MSCs cultured on the SQ nanotopography where largely up-regulated compared 
to those cultured on the NSQ.  miRNA identified to suppress osteogenic differentiation. 

 
MiRNA expression was examined in MSCs cultured with OGM relative to those 

expressed on the NSQ nanotopography. In this case there were notably less 

significant changes in the number of RNA between the two osteogenic inducing 

controls. Furthermore, miRNAs associated with osteo-differentiated MSCs, miR-

34 and miR-154 were up-regulated in MSCs cultured with OGM relative to the 

NSQ nanotopography (fig. 4-11). 

 

Figure 4-11 Analysis of miRNAs expressed in MSCs cultured with OGM relative to the NSQ 
nanotopography at day 7.  In this case there were less miRNAs significantly up- or down-
regulated when MSCs were cultured with OGM compared to the NSQ nanotopography. 
Additionally, at this time point miRNAs associated with increased osteo-differentiated were 
up-regulated in MSCs cultured with OGM compared to the NSQ nanotopography at this time 
point. 

 

 

 
  



Chapter 4 - Genomics 

 93 

4.3.2.2 Analysis of Small Nucleolar RNA Expression 

SnoRNA analysis across both topographical substrates and with OGM relative to 

the flat control identified broad down-regulations across all treatments, 

however analysis also identified significant up-regulations in MSCs cultured on 

the SQ and also, to a lesser extent, with OGM (fig 4-12). 

 

 

 

Figure 4-12 SnoRNA analysis for MSCs cultured on the SQ, NSQ and with OGM relative to 
the flat control at day 7. Broad down-regulations were observed for all treatments, however 
up-regulations were also observed in MSCs on the SQ and with OGM. All changes are 
significant p<0.05. 
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SnoRNAs found to be significantly up-regulated in MSCs on the SQ 

nanotopography were analysed for expression on the both NSQ and with OGM. 

MSCs cultured on the NSQ shown no correlation in snoRNA expression compared 

to the SQ. Additionally, less than half of the snoRNAs up-regulated on the SQ 

where up-regulated in MSCs cultured with OGM (fig. 4-13). 

 

Figure 4-13. Profile of snoRNAs significantly up-regulated on the SQ nanotopography 
compared to the NSQ nanotopography and with OGM at day 7. Of the snoRNAs found to be 
significantly up-regulated on the SQ nanotopography, less than half were also found to be 
up-regulated in MSCs with OGM, while snoRNAs in MSCs cultured on the NSQ 
nanotopography were found to be down-regulated. All changes are significant with p < 0.05. 

 
SnoRNA’s where further examined relative to the osteogenic nanotopography, 

NSQ at days 7 and 14 (fig. 4-14 A & B). At this time point snoRNAs are both up- 

and down- regulated, however the majority of the snoRNAs are up-regulated. By 

day 14 however, although the number of significant changes in snoRNA 

expression in MSCs cultured on the SQ relative to the NSQ has decreased overall, 

there are over three times as many significantly up-regulated snoRNAs than 

those that have been down-regulated. 
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A 

 

 

B 

 

Figure 4-14 SnoRNA expression was examined in MSCs on the SQ nanotopography relative 
to the osteogenic nanotopography, NSQ. At day 7 significant snoRNA expression was 
identified, with most of the snoRNAs up-regulated relative to the NSQ nanotopography. All 
changes are significant p<0.05. 

 

4.3.3 Macroarray data analysis 

The expression of SOX2, an embryonic stem cell marker was analysed in both 

Affymetrix microarray and GE Oligoarray data. The data showed that in MSCs 

cultured for 14 days and which underwent microarray analysis there was a slight 

increase in expression of SOX2 expression. Additionally, MSCs underwent 28 days 

of culture on the SQ nanotopography and subsequent macroarray. Similar to the 

microarray data analysis showed SOX2 expression was increased, although again 

not statistically significant relative to the flat control and also in MSCs cultured 

with OGM (fig. 4-15). 



Chapter 4 - Genomics 

 96 

 

Figure 4-15 Selected microarray (Affymetrix HuGene 1.0ST array and GE stem cell 
oligoarray) data for SOX2 (embryonic self-renewal marker) after 28 days of culture. The 
graph shows non-significant fold change increase compared to (1) flat control by Affymetrix 
after 14 days culture (2) flat control by GE array and (3) osteogenic media (OGM) by GE 
array after 28 days culture.  

 

4.4 Discussion 

Microarray analysis of the MSC gene expression changes and Ingenuity® Pathway 

analysis of canonical and functional signalling identified widespread changes in 

canonical signalling in MSCs cultured on the SQ compared to the NSQ and with 

OGM at day 7 however, critically changes in the functional output of the cell 

remained unchanged at day 14 compared to widespread changes in functional 

pathways in MSCs cultured on the NSQ and with OGM.  

Interestingly, when these changes in canonical signalling were analysed with 

regard to up- or down-regulations, data showed that in response to the SQ 

nanotopography at day 7, MSCs showed mainly down-regulations in canonical 

signalling. Similarly, MSCs cultured on the NSQ showed mainly down-regulation in 

canonical signalling at this time point, however MSCs cultured with OGM were 

identified to have mainly up-regulated canonical signalling at this time point 

indicating that the osteogenic effect of the NSQ nanotopography may have a 

latent effect on differentiation compared to the OGM. This is further backed up 

by evidence at day 14 that MSCs cultured on both the NSQ and with OGM have 

broad up-regulations in key canonical signalling pathways. These broad up-

regulations in canonical signalling further explain the widespread changes in 

functional signalling at day 14 seen with both the NSQ and OGM in comparison to 

the little change seen in functional signalling on the SQ nanotopography at this 

time point.  
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Furthermore, additional analysis of gene networks associated with key cellular 

processes followed similar trends in gene expression across all topographies. 

These results indicate that MSCs cultured on the SQ nanotopography undergo a 

general down-regulation of genes associated with key canonical signalling 

pathways leading to little functional change, while MSCs undergoing osteogenic 

differentiation in response to the NSQ nanotopography and OGM undergo 

widespread up-regulation of key canonical signalling pathways, which ultimately 

results in changes in the functional signalling of the cell. 

Small RNAs have been implicated in modulating canonical signalling pathways 

important for regulating differentiation. Here it has been demonstrated that 

miRNAs in MSCs cultured on the SQ nanotopography were up-regulated overall 

while miRNAs in MSCs cultured on the NSQ and with OGM were generally down-

regulated. Furthermore, the identification of miRNA-302, a miRNA found to 

promote embryonic stem cell pluripotency and induced pluripotency of somatic 

cells via cyclin D1, an important regulator of the cell cycle (Houbaviy, Murray et 

al. 2003; Lin, Chang et al. 2011), may provide an additional mechanism for 

continued multipotency of MSCs in response to the SQ nanotopography. 

Interestingly, miR-302 has also been found to be regulated by the embryonic 

stem cell marker SOX2 (Card, Hebbar et al. 2008). Non-significant up-regulation 

of SOX2, an embryonic stem cell marker, as identified by micro- and oligoarray 

data makes it tempting to speculate that MSCs on the SQ nanotopography may 

be modulating expression of embryonic-related pathways to promote 

maintenance of pluripotency via the cell cycle. Furthermore, down-regulation of 

miRNAs in MSCs on the SQ, thought to promote differentiation, again implicates 

a role for miRNAs in the continued maintenance of stem cells. 

Additionally, widespread up-regulation of miRNA expression in MSCs cultured on 

the SQ relative to the osteogenic NSQ, in contrast to the limited up-regulation of 

only a handful of miRNAs comparing MSCs cultured with OGM relative to the NSQ 

nanotopography provides further evidence for the importance of miRNA 

expression in maintaining the MSC phenotype.  

Other small, un-translated RNAs such as SNORDs, although found to be mainly 

down-regulated across all treatments, those which were significantly up-

regulated on the SQ approximately half were found to only be uniquely up-

regulated on the SQ. Whilst the exact function of such snoRNAs remains unclear, 
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their role in RNA editing and micro-RNA like properties may provide an 

additional level of post-transcriptional RNA control. Furthermore, predominantly 

up-regulated expression of snoRNAs in MSCs cultured on the SQ nanotopography 

relative to the NSQ following both 7 and 14 days culture indicates their potential 

importance in regulating stem cell multipotency. 
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5 Metabolomics 

5.1 General Introduction 

In this chapter the metabolic profile of MSCs will be examined in response to the 

SQ, stem cell retaining, nanotopography. Evidence suggests that stem cells exist 

as relatively quiescent, metabolically inactive populations, which increase in 

metabolic activity as they undergo differentiation (Suda, Arai et al. 2005; Reyes, 

Fermanian et al. 2006; Yanes, Clark et al. 2010). In vivo, it is though that 

embryonic cells are maintained in a metabolically inactive state by the presence 

of a hypoxic environment, prior to implantation and subsequent vascularisation 

of the embryo (Fischer and Bavister 1993). Further evidence for hypoxia as a 

regulator of stem cell maintenance was presented as a result of various studies 

which reported the presence of hypoxic conditions within various stem cell 

niches (Lin, Lee et al. 2006; Eliasson and Jonsson 2010; Seidel, Garvalov et al. 

2010). Similarly in vitro culture of stem cells under hypoxic conditions was 

shown to promote prolonged maintenance of stem cells in their undifferentiated 

state (Ezashi, Das et al. 2005; Potier, Ferreira et al. 2007; Dos Santos, Andrade 

et al. 2010; Basciano, Nemos et al. 2011).  

Hypoxia is thought to play a key role in stem cell function via an ability to 

maintain stem cells in a characteristically reduced redox state (Reyes, 

Fermanian et al. 2006). Studies have shown that hypoxia promotes maintenance 

of a reduced redox state via the up-regulated expression of hypoxia-induced 

factor-1 (HIF-1), a transcription factor known to down-regulate mitochondrial 

biogenesis and oxidative metabolism, mechanisms increasingly being implicated 

in differentiation (Cordeau-Lossouarn, Vayssiere et al. 1991; Cho, Kwon et al. 

2006; Kim, Tchernyshyov et al. 2006; Papandreou, Cairns et al. 2006; Buggisch, 

Ateghang et al. 2007; Zhang and Gutterman 2007; Finkel 2011). Interestingly, it 

has been reported that induced pluripotent stem cells not only replicate the 

mitochondrial regulation observed in embryonic stem cells, but that hypoxic 

conditions can also promote the induced pluripotency of mouse embryonic 

fibroblasts (Yoshida, Takahashi et al. 2009; Armstrong, Tilgner et al. 2010; 

Prigione, Fauler et al. 2010). Overall these findings provide increasing evidence 

to support a role for the redox state of stem cells in the balance between self-
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renewal and differentiation (Smith, Ladi et al. 2000; Reyes, Fermanian et al. 

2006; Bracha, Ramanathan et al. 2010; Yanes, Clark et al. 2010). Furthermore, it 

has been proposed that the maintenance of a highly unsaturated or reduced 

metabolome in vivo allows stem cells to respond to oxidative processes, such as 

inflammation, which occur as the result of injury or disease (Yanes, Clark et al. 

2010). The up-regulation of oxidative processes have been shown to increase 

levels of reactive oxygen species (ROS) within the cell, which have been shown 

to act as intracellular signalling molecules promoting stem cell differentiation 

(Sauer, Wartenberg et al. 2001; Su, Mitra et al. 2001; Sauer and Wartenberg 

2005). In addition, increasing mechanical tension has also been shown to elevate 

levels of ROS (De Keulenaer, Chappell et al. 1998; Aikawa, Nagai et al. 2001; 

Schmelter, Ateghang et al. 2006; Sauer, Ruhe et al. 2008; Ruddy, Jones et al. 

2009). 

The study of metabolomics using liquid chromatography - mass spectrometry is a 

relatively novel technique, and as a result of more in-depth study over the last 

decade, it is thought that the metabolic profile of a cell can provide a 

particularly unique insight into the exact cellular phenotype. Metabolites are 

small molecules which form the intermediates and end products produced during 

various processes within the cell and as a result can act as chemical signatures 

indicative of particular cellular process. This is particularly interesting as unlike 

other ‘omics’ such as genomics or transcriptomics, which are subject to 

different levels of regulation and therefore can only give an indication of what 

may be occurring within the cell, metabolites are not. It is for this reason that 

the metabolic profile is thought to correlate more closely to the true phenotype 

of the cell (Faijes, Mars et al. 2007; Scheltema, Decuypere et al. 2010). 

5.2 Materials and Methods 

5.2.1 Liquid Chromatography Mass Spectrometry 

Cells were seeded onto substrates (3 material replicates) at 1 x 104 cell per ml 

and cultured for 7 days. Following this the cells were washed in PBS before 

metabolites were extracted using an extraction solvent (1:3:1 

chloroform:methanol:water), and placed on a rotary shaker for 1 hour at 4oC. 
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The solution was then centrifuged for 3 minutes at 13000g at 4oC after which 

samples were analysed using hydrophilic interaction liquid chromatography-mass 

spectrometry (Dionex UltiMate 1 with a 150 x 4.6mm ZicHilic column running at 

300µl/min and Orbitrap Exactive respectively). Raw mass spectrometry data was 

aligned and peaks were picked using MzMine 2.0. A custom metabolite database 

incorporating HMDB was used to identify compounds, within a mass window of 

0.5 mMU and a retention time window of 2 minutes. Means and standard errors 

of the mean were generated for all groups of picked peaks and the resulting data 

was uploaded to in-house software for pathway analysis. Data analysis was 

carried out using open source software on-line, Pathos: Metabolomics Web 

Facility (motif.gla.ac.uk/Pathos/index.html). For analysis of metabolite 

saturation, ratios were calculated for each metabolite at days 7 and 14, and 

using the Kyoto Encyclopedia of Genes and Genomes (KEGG) identification for 

each metabolite and Nature Lipidomics Gateway the number of carbon-carbon 

double bonds for each metabolite was assessed. 

5.2.2 RNA isolation 

STRO-1+ cells were seeded onto nanotopographical and control substrates (4 

material replicates) at a density of 1 x 104
 cells per ml. Cells were maintained at 

37C with a 5% CO2 atmosphere in -MEM (Invitrogen, UK) containing 10% FBS, 

which was replaced twice weekly. Cells were cultured for 7, 14, or 28 days at 

which point the cells were trypsinised to maximize recovery of cells from 

substrates. Cells were then lysed and total RNA extracted using a Qiagen RNeasy 

Micro Kit according to manufacturer’s protocols (Qiagen, West Sussex, UK). 

Briefly, STRO-1+ MSC lysate was homogenised by vortexing and subsequent 

passing the lysate through a 20-gauge syringe needle. Equal volumes of 70% 

ethanol were added to the homogenized lysate, mixed thoroughly and added to 

the spin column and centrifuged at 8,000 g for 15 seconds. 350 µl of buffer RW1 

containing guanidine thiocyanate was added to the spin column to denature 

proteins, such as RNases. The spin column was again centrifuged at 8,000 g for 

15 seconds. DNA was then denatured for 15 minutes using a solution of DNase I 

and buffer RDD. Buffer RW1 was added again to remove the DNase I and the spin 

column centrifuged for 15 seconds at 8,000 g. Following washing all filtrate was 

motif.gla.ac.uk/Pathos/index.html
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discarded. A further wash was carried out using buffer RPE followed by 80% 

ethanol to precipitate the RNA. The filter was then centrifuged at full speed for 

2 minutes to remove any remaining ethanol. The dried filter was then 

transferred to a 1 ml Eppendorf tube and 14 µl RNase-free water added. The 

tube and filter were subsequently centrifuged at full speed for 1 minute. 

Measurement of extracted RNA yields was performed with a NanoDrop® ND-1000 

UV- Vis Spectrophotometer at ratios of 230/260 nm and 260/280 nm. 

5.2.3 Microarray Analysis 

MSCs were cultured on PCL materials (4 material replicates) for 7 and 14 days. 

At these points, the cells were lysed and total RNA was extracted using a Qiagen 

RNeasy kit (Qiagen, UK) as described in section 4.2.2.. Gene expression changes 

were detected by hybridization of cDNA to Affymetrix HuGene 1.0 ST human 

arrays as per manufacturer’s instructions. Initial bioinformatic analysis was 

based on rank product (Breitling, Armengaud et al. 2004) and a false discovery 

rate of 20% was used to upload selected genes changes to the Ingenuity Pathway 

Analysis (IPA) server (Ingenuity® Systems, www.ingenuity.com). The functional 

and canonical analyses were then generated through the use of IPA.  

1. Network Generation 

A data set containing gene (or chemical) identifiers and corresponding 

expression values was uploaded into in the application. Each identifier was 

mapped to its corresponding object in the Ingenuity® Knowledge Base. A p-value 

cutoff of less than 0.05 was set to identify molecules whose expression was 

significantly differentially regulated. These molecules, called Network Eligible 

molecules, were overlaid onto a global molecular network developed from 

information contained in the Ingenuity Knowledge Base. Networks of Network 

Eligible Molecules were then algorithmically generated based on their 

connectivity. 

2. Functional Analysis of an Entire Data Set 

The Functional Analysis identified the biological functions and/or diseases that 

were most significant to the data set. Molecules from the dataset that met the 

p-value cutoff of less than 0.05 and were associated with biological functions 

and/or diseases in the Ingenuity Knowledge Base were considered for the 
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analysis. Right‐tailed Fisher’s exact test was used to calculate a p‐value 

determining the probability that each biological function and/or disease 

assigned to that data set is due to chance alone. 

3. Functional Analysis of a Network 

The Functional Analysis of a network identified the biological functions and/or 

diseases that were most significant to the molecules in the network. The 

network molecules associated with biological functions and/or diseases in the 

Ingenuity Knowledge Base were considered for the analysis. Right‐tailed Fisher’s 

exact test was used to calculate a p‐value determining the probability that each 

biological function and/or disease assigned to that network is due to chance 

alone. 

4. Canonical Pathway Analysis: Entire Data Set 

Canonical pathways analysis identified the pathways from the IPA library of 

canonical pathways that were most significant to the data set. Molecules from 

the data set that met the p-value cutoff of less than 0.05 and were associated 

with a canonical pathway in the Ingenuity Knowledge Base were considered for 

the analysis. The significance of the association between the data set and the 

canonical pathway was measured in 2 ways: 1) A ratio of the number of 

molecules from the data set that map to the pathway divided by the total 

number of molecules that map to the canonical pathway is displayed. 2) Fisher’s 

exact test was used to calculate a p‐value determining the probability that the 

association between the genes in the dataset and the canonical pathway is 

explained by chance alone. 

5.3 Results 

5.3.1 Microarray Analysis of Metabolism 

A comparative study of microarray data was undertaken to examine the 

metabolic profile of MSCs cultured on the SQ and NSQ nanotopographies as well 

as with OGM relative to the flat control. At day 7, comparative analysis of 

metabolic pathways showed MSCs cultured on the NSQ were identified to be 

undergoing widespread changes in metabolic signalling pathways, in contrast to 

MSCs cultured on the SQ and with OGM, with only a handful of metabolic 

pathways undergoing changes relative to the flat control (fig 5-1 A). At day 14 
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however, MSCs cultured with OGM were observed to undergo widespread 

changes at this time point, with MSCs cultured on the NSQ undergoing changes in 

only a handful of pathways. In the case of the SQ nanotopography, no changes in 

metabolic signalling were observed at day 14 (fig 5-1 B). 

A 

 

B 

 

Figure 5-1 Comparative metabolic signalling in MSCs cultured on the SQ and NSQ 
nanotopographies as well as with OGM relative to the flat control at day 7 (A) and 14 (B). 
Widespread changes in metabolic signalling were observed in MSCs cultured on the NSQ at 
day 7. In contrast at day 14 widespread changes in metabolic signalling were observed in 
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MSCs cultured with OGM. MSCs cultured on the SQ nanotopography however, showed little 
change in metabolic signalling at either day 7 or 14. 

 
Further analysis of microarray data was carried out to identify whether changes 

observed in metabolic signalling were either up- or down-regulations. MSC 

cultured on the SQ nanotopography where identified to have mainly down-

regulations in metabolic pathways at day 7 (fig. 5-2). At day 14, however, no 

changes in metabolic pathways were identified, therefore no data is presented.  

 

Figure 5-2 Metabolic pathway analysis for MSCs cultured on the SQ nanotopography at day 
7 relative to the flat control. Metabolic pathways are shown to undergo mainly down-
regulation in response to the SQ nanotopography at this time point. At day 14, no changes 
in metabolic signalling were observed therefore no data is shown. 

 
In contrast, MSCs cultured on the NSQ nanotopography were identified to have 

mainly up-regulations in metabolic pathway signalling at day 7 (fig. 5-3 A). By 

day 14, MSCs on the NSQ were identified to have changes in only a handful of 

metabolic pathways, however these were all up-regulations (fig. 5-3 B). 

At day 7 MSCs cultured with OGM were identified to have up-regulations in only a 

handful of metabolic pathways. However by day 14, widespread changes in 

metabolic signalling were observed, with these identified as mainly up-

regulations (fig. 5-4 A&B).  
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Figure 5-3 Metabolic pathway analysis for MSCs cultured on the NSQ nanotopography at 
day 7 (A) and day 14 (B) relative to the flat control. MSCs cultured on the NSQ 
nanotopography were shown to regulate several metabolic pathways at day 7, with mainly 
up-regulations observed.  

 

5.3.2 Metabolite Analysis using LC-MS 

Metabolites were analysed relative to the NSQ osteogenic nanotopography and 

with OGM at days 7 and 14. Metabolites were shown to be down-regulated in 

MSCs cultured on the SQ relative to both the NSQ nanotopography and with OGM. 

Pathways with the most metabolite changes were associated with aminoacyl-

tRNA metabolism, purine metabolism and other amino acids. At day 7 a small 

number of metabolites associated with aminoacyl-tRNA biosynthesis were shown 

to be down-regulated in MSCs cultured on the SQ relative to the NSQ 

nanotopography (fig. 5-5 A). In addition, metabolites associated with aminoacyl-

tRNA biosynthesis were shown to be broadly down-regulated in MSCs cultured on 

the SQ relative to with OGM at this early time point (fig. 5-5 B). 
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Figure 5-4 Metabolic pathway analysis for MSCs cultured with OGM at day 7 (A) and day 14 
(B) relative to the flat control. MSCs cultured on the with OGM were shown to regulate 
several metabolic pathways at day 7, with mainly up-regulations observed. 
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Similarly, analysis at day 14 found metabolites associated with aminoacyl-tRNA 

biosynthesis were further down-regulated in MSCs cultured on the SQ 

nanotopography relative the NSQ (fig 5-6 A). Again at this time point, 

metabolites were found to be broadly down-regulated, with 18 out of 24 

metabolites showing down-regulated expression in MSCs cultured on the SQ 

nanotopography relative to those cultured with OGM (fig. 5-6 B).  

Analysis of metabolite saturation at day 7 was carried out for MSCs cultured on 

the SQ nanotopography relative to those undergoing osteogenic differentiation. 

Ratios were calculated for each metabolite, comparing metabolite abundance in 

MSCs cultured on the SQ nanotopography relative to MSCs cultured in osteogenic 

differentiation media. Using the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) identification for each metabolite and the Nature Lipidomics Gateway, 

the number of carbon-carbon double bonds was identified. At day 7, less 

metabolites where found to be up-regulated in MSCs on the SQ nanotopography 

compared to with OGM. In addition, more metabolites with higher numbers of 

carbon-carbon double bonds were observed to cluster towards MSCs cultured on 

the SQ or those which exhibit only a small increase in expression in MSCs 

cultured with OGM (fig. 5-7 A). At day 14, whilst more metabolites are up-

regulated on the SQ compared to day 7, again metabolites with higher number of 

carbon-carbon double bonds are associated with MSCs cultured on the SQ 

nanotopography than those cultured with OGM (fig. 5-7 B).  
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Figure 5-5 Metabolites associated with aminoacyl-tRNA biosynthesis at day 7 in MSCs 
cultured on the SQ relative to the NSQ nanotopography (A) and with OGM (B). A handful of 
metabolites were observed to be down-regulated on the SQ relative to NSQ nanotopography 
at day 7 whilst broad down-regulations were observed when MSCs cultured on the SQ 
where compared to those with OGM. 
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Figure 5-6 Metabolites associated with aminoacyl-tRNA biosynthesis at day 14 in MSCs 
cultured on the SQ relative to the NSQ nanotopography (A) and with OGM (B). At this time 
point a large number of metabolites were observed to be down-regulated on the SQ relative 
to NSQ nanotopography, whilst further broad down-regulations were observed when MSCs 
cultured on the SQ where compared to those with OGM. 

 B 
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A 

 
 

Figure 5-7 Metabolic saturation in undifferentiated (SQ) and differentiating (OGM) MSCs at 
days 7 and 14. At day 7 (A) the number of C=C bonds observed in undifferentiated cells was 
higher than in the differentiating cells. At day 14 (B) again, more metabolites with higher 
C=C bonds were identified on the SQ relative to OGM. Note that red and green bars indicate 
increasing fold change. 
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Further analysis was carried out to examine the average number of carbon-

carbon double bonds per metabolite at days 7 and 14 (fig. 5-8). Analysis 

identified that for the number of metabolites up-regulated at day 7, those in 

MSCs on the SQ nanotopography had on average double the number of carbon-

carbon double bonds per metabolite than MSCs cultured with OGM. Similarly at 

day 14, the average number of carbon-carbon double bonds was also higher 

(approximately 1.7 times higher) on the SQ nanotopography than in MSCs with 

OGM (fig. 5-8).  

 

Figure 5-8 Average number of C=C bonds per metabolite. At day 7 there are approximately 
twice the number of carbon double bonds per metabolite in MSCs cultured on the SQ 
relative to with OGM. At day 14, whilst the number of metabolites with C=C have decreased 
on both the SQ and with OGM, the number remains higher on the SQ than with OGM. 

 

5.4 Discussion 

Analysis of microarray data for changes in gene expression associated with 

cellular metabolism, identified that whilst MSCs cultured on the SQ and NSQ 

nanotopographies underwent changes in gene expression associated with 

metabolic pathways, gene expression in response to the NSQ osteogenic 

nanotopography was mainly up-regulated. This is in contrast to MSCs cultured on 

the SQ nanotopography which underwent mainly down-regulations in gene 

expression associated with metabolic pathways at day 7. Furthermore MSCs were 

shown to undergo little change in metabolic signalling again at day 14 with no 

changes in metabolic signalling detected at this time point. Interestingly, this is 

in contrast to MSCs undergoing osteogenic differentiation on both the NSQ 

nanotopography and with OGM which were identified to have mainly up-

regulated gene expression associated with several metabolic pathways at both 

days 7 and 14.  
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Further analysis using LC-MS at days 7 and 14 identified broad decreases in 

metabolite abundance associated with many key metabolic pathways in MSCs 

cultured on the SQ nanotopography relative to those cultured on the NSQ and 

with OGM. In-depth analysis was used to identify metabolic pathways with the 

most changes in metabolite abundance. Interestingly, the top pathways with the 

most changes (these were identified to be mainly down-regulations) in 

metabolite abundance comparing MSCs cultured on the SQ nanotopography 

relative to the osteogenic controls, included the biosynthesis of various amino 

acids and purines, as well as aminoacyl-tRNA biosynthesis. The down-regulation 

of such metabolic products in MSCs cultured on the SQ nanotopography relative 

to both osteogenic controls, in particular their importance in gene expression 

and translation correlates with previously reported observations that MSCs form 

a quiescent, metabolically inactive stem cell population, in contrast to actively 

differentiating stem cells which undergo increased metabolic activity and gene 

expression changes. These results further reflect those identified in chapter 4, 

with MSCs cultured on the SQ nanotopography exhibiting down-regulation in 

canonical signaling by day 14, whilst both osteogenic controls were identified to 

have increased gene expression associated with various signaling pathways. 

As a result of previously reported work by Yanes et al., ESCs have been 

identified to have a characteristic unsaturated metabolite profile when 

compared to stem cells actively undergoing differentiation (Yanes, Clark et al. 

2010). In this study, the metabolic profile of MSCs was undertaken to examine 

the degree of saturation for metabolites up-regulated in MSCs cultured on the SQ 

nanotopography and MSCs undergoing osteogenic differentiation with OGM. As a 

result of the study it was identified that MSCS cultured on the SQ 

nanotopography maintain a high degree of unsaturated metabolites compared to 

those cultured with OGM at both time points. Importantly, whilst the data 

presented here is in agreement with those by Yanes et al., the metabolite 

profile is less distinct for MSCs than for ESCs. However, it is proposed that this 

difference in metabolite saturation profile may be due to the more primitive 

nature of ESCs compared to MSCs.  

The importance of unsaturated metabolites in stem cells were proposed to be 

important in maintaining ‘chemical plasticity’, and stem cell sensitivity to 

oxidative signalling processes such as inflammation. In particular, oxidative 
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processes such as inflammation are known increase oxidative stress as a result of 

increased levels of ROS, which as discussed previously are known to act as 

secondary messengers promoting differentiation (Sauer, Wartenberg et al. 2001; 

Su, Mitra et al. 2001; Sauer and Wartenberg 2005; Krutzfeldt and Stoffel 2006). 

MicroRNAs however, are increasingly being implicated in the regulation of 

metabolic homeostasis (Xu, Vernooy et al. 2003; Esau, Davis et al. 2006; Simone, 

Soule et al. 2009). It is tempting to speculate therefore that the increased levels 

of microRNA expression observed in MSCs cultured on the SQ as identified in 

chapter 4 may contribute to the maintenance of a reduced metabolome, 

however further studies would need to be conducted to support this.  

Interestingly, whilst the role of nanotopography in maintaining a reduced redox 

state remains unsubstantiated, evidence is gathering to support the non-hypoxic 

up-regulation of HIF-1 in response to signalling pathways associated with cell 

adhesion such as PI3K/AKT/mTOR and RAF/MEK/MAPK (Hirota and Semenza 

2001; Dery, Michaud et al. 2005; Diebold, Petry et al. 2010). Furthermore, 

research conducted during the 1970’s identified a role for saturated and 

unsaturated lipids at the plasma membrane in the regulation of cell adhesion. 

Interestingly, it was found that cell adhesion increases with an increase in 

saturated lipids within the plasma membrane. In contrast however, cell adhesion 

was observed to decrease in response to an increase in unsaturated lipids at the 

plasma membrane (Curtis, Campbell et al. 1975; Curtis, Chandler et al. 1975; 

Curtis, Shaw et al. 1975). Therefore it is tempting to speculate that 

nanotopography may play a role in the maintenance of a metabolically reduced 

stem cell metabolome via non-hypoxic mechanisms, however at present further 

in depth research is required to support such a role. 
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6 Translation Across Polymers 

6.1 General Introduction 

The focus of this chapter is to study the effect of the SQ, stem cell retention 

nanotopography in different polymers to separate chemical effects from 

topographical effects. The ability to translate the nanotopographical effects 

observed on polycaprolactone (PCL) in response to the SQ nanotopography across 

a range of polymers is particularly important as conventional tissue culture 

plastics are currently produced in polystyrene (noting that polycarbonate is also 

used for tissue culture plastics but to a much lesser extent). In addition, the 

ability to transfer this technology across polymers with different surface 

chemistries provides the opportunity to further investigate that it is indeed the 

nanotopographical properties which promote maintenance of the stem cell 

phenotype. In this chapter therefore, MSCs cultured on nanotopographically-

patterned polymers including polycarbonate (PC) and polystyrene (PS) were 

investigated for maintenance of the stem cell phenotype, and stem cell 

maintenance following standard tissue culture techniques such as passaging. 

In addition, a preliminary study was carried out into the role intracellular 

tension plays in stem cell maintenance. Tension has been demonstrated to play 

a key role in the determination of stem cell fate with seminal studies previously 

demonstrating the importance of matrix stiffness, cell spreading and shape on 

cell fate determination (McBeath, Pirone et al. 2004; Engler, Sen et al. 2006; 

Gilbert, Havenstrite et al. 2010; Kilian, Bugarija et al. 2010). As a result, such 

studies have revealed the significance of the physical environment on dictating 

stem cell fate and self-renewal. However changes in cell fate directed by 

nanotopography are evolved entirely by altering the spatial arrangement of 

topographic cues rather than the physical properties of the substrate (Dalby, 

Gadegaard et al. 2007; Biggs 2008; Biggs, Richards et al. 2009; Biggs, Richards et 

al. 2010).  

To investigate the role of topographically induced changes in cellular tension on 

the maintenance/differentiation of MSCs, blocking of actin/myosin contraction 

was carried out using the inhibitors: blebbistatin, a myosin II inhibitor and 
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Y27632, and an inhibitor of Rho associated protein kinases (ROCK) on all test 

substrates. In addition, the ERK/MAPK signalling pathway was also subject to 

investigation as a biochemical downstream signalling pathway of tension 

effectors such as FAK and Rho, and also as a key regulator of proliferation and 

differentiation (Giancotti and Ruoslahti 1999; Meloche and Pouyssegur 2007; 

Khatiwala, Kim et al. 2009; Hong, Jeon et al. 2010; Kilian, Bugarija et al. 2010).  

The ERK/MAPK pathway is of particular interest due to the differential effects 

both the duration and magnitude of ERK/MAPK signalling ultimately have on the 

biological outcome. It has been shown that sustained ERK signalling, whilst in 

general associated with increased proliferation, can actually lead to a decrease 

in proliferation and induced differentiation (Sewing, Wiseman et al. 1997; 

Woods, Parry et al. 1997; Jaiswal, Jaiswal et al. 2000; Roovers and Assoian 2000; 

Kilian, Bugarija et al. 2010). In the case of sustained ERK signalling, osteogenic 

differentiation of MSCs is thought to be the result (Jaiswal, Jaiswal et al. 2000; 

Fu, Tang et al. 2008; Kilian, Bugarija et al. 2010; Jung, Kim et al. 2011). In 

contrast, under transient or low levels of ERK signalling, MSC proliferation is also 

thought to decrease, however, in this case adipogenic differentiation was 

observed (Jaiswal, Jaiswal et al. 2000; Kilian, Bugarija et al. 2010; Jung, Kim et 

al. 2011). Importantly, intracellular tension has been shown to play a key role in 

the induction of MAPK signalling and has thereby been implicated in playing a 

key role in the determination of stem cell fate (McBeath, Pirone et al. 2004; 

Engler, Sen et al. 2006; Khatiwala, Kim et al. 2009; Kilian, Bugarija et al. 2010). 

An investigation into a potential role for ERK/MAPK signalling in the maintenance 

of MSCs will be studied using a MAPK inhibitor, U0126. 

6.2 Materials and Methods 

6.2.1 Polymer Replication 

An injection moulder (Engel Victory Tech 28) was used to generate 

nanotopographically-patterned and flat control surfaces as indicated in section 

2.3.4.2. PC and PS samples were given a 2 and 10 second oxygen plasma 

treatment respectively, to allow for cell attachment (Harrick Plasma, USA). 



Chapter 6 – Translation Across Polymers 

 117 

6.2.2 Osteogenic/Adipogenic Differentiation 

MSCs were cultured on polycarbonate replicas with SQ nanotopography and flat 

polycarbonate as a control. Cells were seeded at 1 x 104 cells/ml and cultured in 

basal media for 28 days. Following this time, MSCs were trypsinised off materials 

and reseeded onto glass coverslips. Basal media was replaced with either 

adipogenic or osteogenic induction media as previously described in section 

3.1.9. MSCs were fixed following 14 days culture with induction media and 

immunostained for PPAR- and OPN, adipogenic and osteogenic markers 

respectively, as described in section 3.1.9. 

6.2.3 Multipotency/Differentiation 

MSCs were seeded at 1 x 4 cells/ml and cultured in basal (10%FBS/-MEM) or 

osteogenic differentiation media as previously described in section 2.2.1. and 

cultured for 28 days on SQ and NSQ patterned PC. Flat PC and with OGM were 

used as controls. Following 28 days culture MSCs were fixed and stained for OPN, 

OCN, ALCAM and STRO-1 as previously described in section 3.1.3. The work 

carried out for this experiment was conducted by Dr. Monica Tsimbouri at the 

University of Glasgow.  

6.2.4 Cell Passaging 

MSCs were cultured in basal media (10%FBS/-MEM) and underwent serial 

passaging when cultured on PS. MSCs underwent passaging up to passage 4 (as 

far as tested within this study) as described in section 3.1.8.  

6.2.5 Runx2 expression 

MSCs were cultured on PC for 3 days in basal media (10%FBS/-MEM) or with 

OGM. Following 3 days culture MSCs were fixed and stained for monoclonal 

mouse anti-phospho-RUNX2 (Insight Biotechnology, UK) as previously described 

in section 3.1.3. 
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6.2.6 Inhibition Studies 

MSCs were seeded onto PC substrates at 1 x104 cells/ml for 14 days. The MSCs 

were cultured in basal media (10%FBS/-MEM) supplemented with either a MAPK 

inhibitor, U0126 (10µm) (Promega, UK), blebbistatin a non-muscle myosin II 

inhibitor (50µm) (Sigma, UK), or Y27632 a ROCK inhibitor (10µm) (Sigma, UK). 

Supplemented media was changed every other day to ensure the inhibitors were 

active. After 14 days, cells were fixed and stained for OPN, PPAR- and STRO-1 

as previously described in section 3.1.3. 

6.3 Results 

6.3.1 Multipotency/Differentiation 

MSCs were cultured on PC for 28 days and assessed for expression of osteogenic 

markers OCN and OPN as well as ALCAM and STRO-1 using immunofluorescence. 

Results showed that MSCs cultured on the NSQ osteogenic nanotopography and 

with OGM expressed both osteogenic markers with only ALCAM expression. MSCs 

cultured on the flat control, however, showed only expression of ALCAM after 28 

days. In contrast, MSCs cultured on the SQ nanotopography were identified to 

express both ALCAM and STRO-1 stem cell markers at this time point with no 

expression of OPN or OCN (fig. 6-1). 
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Figure 6-1 STRO-1 selected skeletal MSC growth and phenotype after culture on 
polycarbonate (PC). MSCs with 28 day culture on nanopatterned PC undergo similar 
differentiations / phenotype maintenance to MSCs cultured on nanopatterned PCL. Only 
MSCs cultured on the SQ surface still express STRO-1 at 28 days of culture. The MSCs 
cultured on NSQ and with osteogenic media expressed ALCAM to a degree but showed 
strong expression of the bone markers osteocalcin (OCN) and osteopontin (OPN). 
Red=actin, green= STRO-1, ALCAM, OCN or OPN. This work was carried out by Dr. Monica 
Tsimbouri at the University of Glasgow. 

 
To demonstrate multipotency of MSCs cultured on the SQ PC nanotopography 

were trypsinised and reseeded onto glass coverslips. Osteogenic and adipogenic 

differentiation media was used to induce differentiation of MSCs. MSCs cultured 

on the SQ nanotopography were observed to undergo both adipogenic and 

osteogenic differentiation in response to appropriate differentiation media. 

Adipogenic differentiation was identified using PPAR- immunofluorescent 

staining, however fat droplets were also visualized. In addition, osteogenic 

differentiation was identified using OPN immunofluorescent staining. In contrast, 

MSCs originally seeded on the control PC substrates were only found to undergo 

low levels of marker expression in response to both osteogenic and adipogenic 

differentiation media (fig. 6-2) 
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Figure 6-2 After 28 days of culture on planar control or SQ, the MSCs were trypsinised and 
seeded onto glass coverslips at 1 × 104 cells ml−1 with adipogenic or osteogenic media for 14 
days before fixation and staining for the adipocyte marker PPARG or the osteoblast marker 
osteopontin (OPN). After culture on SQ and when treated with adipogenic media, the cells 
could be seen to express PPARG and had developed fat droplets (left image and 
magnification of the highlighted square). When treated with osteogenic media, areas of 
dense, positive OPN expression were noted. However, after reseeding to coverslips post-
culture on flat controls, levels of differentiation induction were much lower, with only small 
areas of PPARG or OPN expression noted (arrows). 

 

6.3.2 Passaging 

MSCs were passaged whilst undergoing culture on SQ patterned PS. In this case, 

MSCs were shown to retain expression of STRO-1, the more stringent marker for 

MSCs for up to 4 passages (as far as tested so far). In addition, MSCs were also 

shown to express high levels of ALCAM (inset) (fig. 6-3). In contrast MSCs 

cultured on flat PS were shown to express low levels of STRO-1 in comparison to 

the SQ nanotopography up until passage 4.  
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Figure 6-3. Study of STRO-1 selected MSCs after passaging. (A) (B)  STRO-1 positive MSCs 
before passaging onto the SQ topography (after culture on tissue culture plastic for 7 days 
– D7) and then after subculture onto SQ for one day (P1D1), four days (P1D4) and then after 
serial subcultures onto SQ for two, three and four passages (images shown at 1 day after 
subculture – included are positive and negative controls showing antibody specificity. (B) 
STRO-1 stained cells cultured for up to four passages on flat and SQ patterned polystyrene. 
Cells on planar control were observed to have much reduced STRO-1 expression compared 
to MSCs on SQ (note: images of retained ALCAM are inset). Red=actin, blue = DNA, green= 
STRO-1 (inset = ALCAM). Scale bar = 50 µm. 

 

6.3.3 RUNX2 expression 

Immunofluorescent analysis of phospho (active)-RUNX2 expression in response to 

both topographies and control substrates showed low levels of expression on 

both the SQ and flat control (fig 6-4 A&C), whilst a higher level of expression 

was noted on both the NSQ topography and osteogenic control (fig. 6-4 B&D). 

Comparing the osteogenic control and NSQ nanotopography to the flat control, 

levels of RUNX2 expression were shown to be higher in both cases. 

 



Chapter 6 – Translation Across Polymers 

 122 

 

Figure 6-4 Early stage RUNX2 activation on control and test surfaces in MSCs. STRO-1 
selected MSCs were cultured on polycarbonate (PC) surfaces imprinted with the SQ and 
NSQ nanopatterns for three days and then stained for phospho-RUNX2 (the active form). 
Images were taken with similar exposure and processed for brightness and contrast to the 
same extent. Very low levels of phospho-RUNX2 were observed on the control and retention 
(SQ) surfaces (A & C). However, high expression was noted in NSQ and in cells stimulated 
with osteogenic medium (OGM) (B & D). (E) QPCR for RUNX2 after 3 days of culture showed 
negligible expression on control and SQ surfaces producing incalculable Ct values (we note 
that only small quantities of mRNA were harvested after such a short culture time). 
However, RUNX2 was detected in MSCs harvested from NSQ and after culture with OGM. 

(n=3 material replicates, results are mean  SD, * = p<0.05 by t-test compared to SQ and 
control). 

 

6.3.4 Intracellular Tension 

Disruption of intracellular tension driven by the interaction of actin and myosin 

was carried out using the inhibitors blebbistatin and a ROCK inhibitor. The 

disruption of the actin/myosin interaction resulted in a loss of STRO-1 expression 

in MSCs cultured on the SQ whilst adipogenic differentiation becomes apparent 

following expression of PPAR- on all substrates concomitant with a loss of 

osteogenic marker expression on both the NSQ and OGM controls following 

inhibition (fig 6-5 A & B). In addition, the inhibition of MAPK-mediated 

intracellular signalling was shown to result in a loss of STRO-1 expression in MSCs 

cultured on the SQ, as well as a loss of both osteogenic and adipogenic markers 

in MSCs cultured on all substrates (fig. 6-5 C). 
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Figure 6-5 MSC phenotype retention is linked to intracellular tension and ERK signalling. 
Inhibition studies for actin/myosin contraction (A, RhoA kinase (ROCK) inhibition and B, 
blebbistatin) and extracellular-signal related kinase (ERK) (C). in MSCs cultured on planar 
control, test topographies (SQ retention surface and NSQ osteogenic surface) and with 
osteogenic media (OGM) for 14 days. When actin/myosin interaction was blocked, 
expression of STRO-1 and (OPN) dropped dramatically. However, PPARG expression was 
noted as the low-tension default (arrows) (A, B). When ERK was inhibited neither STRO-1 
expression nor functional differentiation was noted, suggesting that both multipotency and 
differentiation are biochemically active states (C). 

 

A 

B 

C 
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6.4 Discussion 

In chapter three it was previously identified that MSCs cultured on PCL 

continued to express stem cell markers following long term culture in response 

to the SQ nanotopography. In this chapter MSCs were also identified to maintain 

expression of stem cell markers following 28 days culture of MSCs on PC. 

Furthermore, it was again shown that MSCs undergo osteogenic differentiation in 

response to the NSQ nanotopography. These results further demonstrate that it 

is the nanotopographical pattern which elicits such specific biological responses. 

In addition it was further shown that MSCs not only retain stem cell marker 

expression when cultured on PC but also maintain their multipotency, 

undergoing osteogenic and adipogenic differentiation in response to appropriate 

differentiation media. Continued maintenance following passaging of MSCs 

cultured on the SQ nanotopographically-patterned PS also indicates the ease 

with which common tissue culture techniques can be applied without loss of the 

stem cell phenotype. This is crucial if adult stem cells are to not only be 

maintained but also undergo expansion in vitro.  

The importance of intra-cellular tension has previously been demonstrated for 

the initiation of osteogenesis (McBeath, Pirone et al. 2004; Engler, Sen et al. 

2006; Kilian, Bugarija et al. 2010), but disruption of tension generated by the 

interaction of actin and myosin II, has now been demonstrated to result in a loss 

of STRO-1 expression on the SQ topography. Concomitantly, and as has been 

previously demonstrated in the literature, osteogenic differentiation (a high 

tension differentiation lineage) previously observed on the NSQ topography and 

with OGM becomes lost in favour of adipogenic differentiation (thought to be the 

default lineage in a low tension state) which indicates inhibition of intracellular 

tension promotes adipogenic differentiation over osteogenic differentiation 

(McBeath, Pirone et al. 2004; Engler, Sen et al. 2006; Kilian, Bugarija et al. 

2010).  

It is particularly noteworthy for this study that the loss of the stem cell marker 

STRO-1, following disruption of intracellular tension dictates that a degree of 

tension is a required for maintenance of the MSC phenotype. Additionally, loss of 

both differentiation and stem cell markers on all substrates, following inhibition 
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of ERK-mediated signalling indicates a dual role for ERK signalling as discussed in 

chapter 1, in both the differentiation and maintenance of the MSC phenotype. It 

is further proposed that ERK regulation of self-renewal may occur via control of 

proliferation – the percentage of stem cells undergoing proliferation on the SQ 

topography was observed to be similar to control at both day 7 and 14, as shown 

in fig. 3-12, suggesting that the cells were not becoming post-mitotic as with 

e.g. adipocytes and chondrocytes and that ERK negative feedback was not 

slowing proliferation as with osteogenesis (Stein and Lian 1993; Pumiglia and 

Decker 1997; Lee, Hong et al. 2002; Boland, Perkins et al. 2004; Ebisuya, Kondoh 

et al. 2005).  

Importantly, maintenance of the MSC phenotype over time when cultured on PC, 

as well as the ability to passage MSCs when cultured on PS demonstrates that 

this technology can be translated across a variety of polymers indicating it is 

indeed the nanotopography which promotes retention of the stem cell 

phenotype. 
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7 Discussion 

7.1 General Introduction 

The main aims of this thesis were two fold. Firstly, to investigate the response of 

multipotent MSCs when cultured on an ordered nanopit topography (SQ), and 

secondly, to further investigate the mechanism via which nanotopography 

mediates such cellular responses. Topography has long been known to affect a 

variety of cellular processes such as adhesion, proliferation and differentiation; 

however, the ability to maintain MSCs in their multipotent state in vitro has so 

far remained elusive (Dalby, Gadegaard et al. 2007; Lim, Dreiss et al. 2007; 

Nguyen, Shukla et al. 2007; Simon, Burton et al. 2007; Bettinger, Zhang et al. 

2008). Therefore the main objective of this thesis was to investigate MSC self-

renewal in response to nanotopography. This was undertaken by investigating 

key characteristics of stem cell phenotype and function. 

7.2 Nanotopographical Regulation of Mesenchymal Stem 

Cell Function 

To identify the continued maintenance of the MSCs in response to 

nanotopography, experiments were conducted to evaluate several key 

characteristics of MSCs. In general, it is proposed that stem cell characteristics 

in vivo include a slow rate of proliferation, multipotency and a low metabolic 

rate. As discussed in chapter 1, multipotent MSCs can be selected from the bone 

marrow using various antibodies, however arguably the most stringent is STRO-1 

and was used throughout this study as a marker of the multipotent MSC 

phenotype. This study has shown that MSCs cultured on the SQ nanotopography 

retain expression of this key stem cell marker and ALCAM, another less stringent 

MSC marker, over prolonged periods of culture up to eight weeks. Furthermore it 

was identified that when MSCs are cultured on the SQ nanotopography their 

multipotency is retained over that of MSCs cultured on a flat control. Osteogenic 

and adipogenic induced differentiation using soluble factors was identified to be 

higher in MSCs reseed onto coverslips, after 28 days culture, from the SQ than 

those originally cultured on flat control. These results are critical as they 
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correlate with previous observation in the literature that when MSCs are 

cultured on standard flat tissue culture plastic, they undergo spontaneous 

differentiation losing their multipotent potential (Sherley 2002; Siddappa, Licht 

et al. 2007; Sarugaser, Hanoun et al. 2009).  

In contrast, osteogenic differentiation was identified in MSCs cultured on the 

NSQ nanotopography. The NSQ nanotopography was previously identified to 

induce osteogenic differentiation in MSCs cultured on nanopatterned 

polymethylmethacrylate (PMMA) (Dalby, Gadegaard et al. 2007). Osteogenic 

differentiation was identified in MSCs cultured on the NSQ nanotopography by 

the increased expression of osteogenic markers OPN and OCN over a time course 

that was in agreement with previous studies of osteogenic progression (Stein, 

Stein et al. 1989; Stein and Lian 1993).  

Water contact angle experiments were used to investigate the effect the SQ and 

NSQ nanotopographical patterns may have on the surface energy (Cassie and 

Baxter 1944). However the results indicated that there was no significant 

difference between the surface energy produced as a result of the two different 

nanotopographical patterns. These results together demonstrate that the 

retention or differentiation of MSCs can be tuned using only changes in the 

geometry of nanotopographic patterns.  

The onset of osteogenic differentiation is defined by a decrease in proliferation 

concomitant with the up-regulation of key intracellular signalling pathways, 

metabolism and osteo-specific marker expression (Stein, Lian et al. 1990; Stein 

and Lian 1993; Reyes, Fermanian et al. 2006). The up-regulation of signalling 

pathways and an increase in metabolism are thought to direct the changes in 

cellular function required when stem cells undergo differentiation.  

The up-regulation of metabolism observed in stem cells undergoing 

differentiation is essential to drive the increase in energy requirements 

associated with cellular processes and signalling (Lonergan, Brenner et al. 2006; 

Chen, Shih et al. 2008; Armstrong, Tilgner et al. 2010). In this thesis it was 

demonstrated that metabolic signalling is reduced in stem cells on the SQ, 

retention promoting nanotopography. This is in contrast to MSCs undergoing 

osteogenic differentiation on the NSQ and with OGM. Furthermore, as discussed 
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in chapter 5, it has been proposed in current literature that ESCs maintain a 

characteristic reduced metabolic profile (Yanes, Clark et al. 2010). In 

correlation with this study, MSCs cultured with OGM where shown to have a 

more oxidised metabolic profile when compared to the MSCs cultured on the SQ, 

stem cell retention nanotopography. Furthermore, the proposal that metabolites 

act like chemical signatures of cellular processes is interesting in the context of 

stem cells as it is also proposed that reduced metabolites undergo oxidation as a 

result of increase cellular processes (Yanes, Clark et al. 2010). The results 

presented in this thesis therefore indicate that MSCs also maintain a reduced 

metabolic profile which may allow the cells to respond to oxidative processes 

such as inflammation and undergo differentiation when required (Khodr and 

Khalil 2001). Therefore the more reduced metabolic profile observed in MSCs on 

the SQ nanotopography may indeed indicate these metabolites function as 

precursors for oxidative cellular processes associated with differentiation 

leading to increased levels of oxidative metabolites as observed in MSCs cultured 

with OGM.  

Similarly, it was demonstrated that MSCs cultured on the SQ nanotopography 

modulate intracellular signalling with broad down-regulations observed. Whilst, 

in contrast MSCs cultured on the NSQ and with OGM were shown to broadly up-

regulate intracellular signalling, with a key osteogenic signalling pathway, sonic 

hedgehog, shown to be up-regulated in both cases (Spinella-Jaegle, Rawadi et 

al. 2001; James, Leucht et al. 2010).  

As mention in chapter 1, FAK plays an integral role in mechanotransduction, 

relaying signals from the extracellular environment into a biochemical signal 

generating downstream signalling events (Schlaepfer, Hanks et al. 1994; 

Katsumi, Orr et al. 2004; Leucht, Kim et al. 2007; Hong, Jeon et al. 2010; Wang, 

Du et al. 2011). Again, MSCs cultured on the SQ nanotopography where shown to 

down-regulate FAK signalling, whilst MSCs cultured on the NSQ and with OGM 

showed up-regulated expression. One of the downstream signalling pathways 

associated with FAK signalling is the ERK signalling pathway, which is critical for 

cell cycle progression, differentiation and, as demonstrated in this thesis, may 

play an important role in the retention of MSC multipotency (Schlaepfer, Hanks 

et al. 1994; Schlaepfer and Hunter 1996; Renshaw, Price et al. 1999; Barberis, 

Wary et al. 2000; Li, Wang et al. 2007; Meloche and Pouyssegur 2007). The 
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regulation of these different cellular process by ERK signalling is thought to 

occur as a result of distinct expression patterns of ERK signalling (Ebisuya, 

Kondoh et al. 2005). The regulation of ERK signalling by FAK therefore makes it 

unsurprising that ERK signalling is increased in MSCs cultured with OGM, whilst it 

is decreased in MSCs cultured on the SQ.  

Small RNAs including microRNAs and snoRNAs are thought to provide an 

additional level of regulation for gene expression (He and Hannon 2004; 

Brameier, Herwig et al. 2011). Their role in stem cells is only beginning to be 

deciphered. However, it is thought that the function of microRNAs and snoRNAs 

in the degradation and editing of mRNAs is a contributing factoring in regulating 

the balance between self-renewal and differentiation (Ender, Krek et al. 2008; 

Hartner, Walkley et al. 2009; Sartipy, Olsson et al. 2009). Interestingly, as a role 

for metabolism becomes increasingly implemented in the self-

renewal/differentiation balance, studies are beginning to reveal a role for 

microRNAs in metabolic regulation (Krutzfeldt and Stoffel 2006). Recent studies 

have also detected the up-regulation of microRNAs in response to adhesion and 

mechanical stimuli (Guan, Yang et al. 2011; Valastyan and Weinberg 2011). 

These microRNAs may therefore provide an additional level of control over 

changes in intracellular signalling and metabolism during particular stages of the 

cell cycle, which are sensitive to the differentiation effects of growth factors. 

However future studies are needed to fully investigate the role of microRNAs in 

response to nanotopographical control of cell adhesion and 

mechanotransduction, and to support their role in both the regulation of stem 

cell maintenance and metabolism.  

In this study it was further identified that non-significant up-regulations of Sox2, 

an embryonic pluripotency factor, were observed in MSCs cultured on the SQ 

nanotopography. Whilst embryonic pluripotency factors such as Sox2 and Oct-4 

are not thought to play a distinct role in the regulation of MSC self-renewal, 

there is evidence that sub-populations exist, called MUSE cells which have been 

found to express several embryonic pluripotency markers and may explain the 

non-significant up-regulation of Sox2 observed in MSCs cultured on the SQ 

(Kuroda, Kitada et al. 2010). 
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In addition, the function of snoRNAs in stem cell remains largely unknown. Here, 

snoRNAs have been demonstrated to play a role in the maintenance of stem cell 

self-renewal, whilst a recent study also demonstrated the role of snoRNA in 

increased metabolic activity, an indicator of differentiation (Hartner, Walkley et 

al. 2009; Michel, Holley et al. 2011). Again further investigations are required to 

fully elucidate their role in MSC self-renewal. 

7.3 Nanotopographical Control of Intracellular Tension 

Intracellular tension has previously been shown to be a key factor in determining 

lineage commitment during differentiation (McBeath, Pirone et al. 2004; Engler, 

Sen et al. 2006; Kilian, Bugarija et al. 2010) and here it is shown to be a key 

factor in the retention of multipotency. As discussed in chapter 1, it is proposed 

that the degree of nanopatterned disorder facilitates the development of 

intracellular tension via integrin-mediated adhesion. Huang et al have previously 

shown that the degree of order and disorder of RGD patterning can affect 

integrin–mediated binding and the formation of focal adhesions (Huang, Grater 

et al. 2009). Here, however, it is proposed that nanotopography may induce 

similar effects, leading to changes in intracellular tension and downstream 

signalling.  

Initial focal adhesions are dynamic structures which undergo strengthening, 

stabilisation and enlargement as the result of increased tension (Schwartz and 

DeSimone 2008). As discussed in a review by Hoffman et al, a feedback loop is 

established whereby increased tension applied to the focal adhesions results in 

the generation of more mature focal adhesions called fibrillar adhesions via 

protein unfolding (Hoffman, Grashoff et al. 2011). It has been shown that several 

focal adhesion proteins such as fibronectin contain binding sites which under 

tension-mediated mechanical stretching become exposed creating binding sites 

for additional proteins associated with further downstream events (Zhong, 

Chrzanowska-Wodnicka et al. 1998). In this study it is proposed that changes in 

integrin-mediated adhesion mediated by the disruption of integrin clustering and 

the ability to form more mature focal adhesions, caused by the difference in 

nanopit geometry between the SQ and NSQ nanotopography, result in 

differences in intracellular tension in MSCs cultured on both these 
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nanotopographies. In particular it is proposed that it is this difference in 

intracellular tension which mediates ERK signalling to produce the different 

cellular responses observed on the SQ and NSQ nanotopographies.  

As discussed previously, ERK signalling has been shown to induce different 

cellular responses as a result of both the duration and magnitude of signalling 

(Ebisuya, Kondoh et al. 2005). Evidence produced in this thesis has implicated a 

role for ERK signalling in both MSC differentiation and self-renewal. However, 

due to the duration and magnitude-dependent cellular response to ERK 

signalling, it is proposed that the formation of more mature focal adhesions, 

associated with MSCs cultured on the NSQ nanotopography, and subsequent 

higher intracellular tension may induce increased levels of ERK primarily 

associated with cell cycle arrest and differentiation (Lee, Hong et al. 2002; 

Hong, Jeon et al. 2010). In contrast, small focal adhesions and reduced 

intracellular tension induce only moderate levels of ERK signalling which are 

enough to promote cell proliferation but not differentiation (fig. 7-1) (Li, Wang 

et al. 2007; Meloche and Pouyssegur 2007; Wang, Gao et al. 2009).  

In chapter 4, IPA data support this hypothesis with ERK signalling identified to be 

decreased in MSCs cultured on the SQ nanotopography, whilst MSCs cultured with 

OGM, and therefore undergoing osteogenic differentiation, where shown to have 

elevated levels of ERK signalling. However, future studies would need to be 

conducted to fully elucidate the mechanisms of tension mediated ERK signalling 

and the role that different levels of ERK signalling play in the regulation of stem 

cell self-renewal or differentiation.  
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Figure 7-1 The cell cycle. The G1 phase of the cell cycle is thought to be a critical point in 
maintaining the balance between self-renewal and differentiation. In particular, early G1 

phase is dependent on growth factor signalling such as ERK1/2, for cell cycle progression. 
The restriction point however, indicates the point where progression of the cell cycle 
becomes mitogen-independent. Image adapted from (Coller 2007). 

 
Further evidence that the organisation and structure of cell cytoskeleton plays 

an integral role in directing stem cell differentiation was generated via a study 

which indentified that key features of the early cytoskeletal organisation can be 

used to predict the ultimate fate of a stem cell (Treiser, Yang et al. 2010). This 

study indicates that cytoskeletal organisation and the generation of a 

cytoskeletal ‘blue print’ could be used to predict differentiation. In addition, 

the identification of specific cytoskeletal blueprints which are indicative of a 

particular stem cell fate may prove useful in further studies on cytoskeletal 

organisation and intracellular tension, as well as the regulation of differentiation 

or self-renewal.  

7.4 Nanotopographical Biomaterials  

Nanotopographical patterned substrates present a superior strategy over 

chemistry and substrate stiffness for the prolonged culture and expansion of 

MSCs. Nanotopography holds several advantages over other material strategies: 

 Features are on the nanoscale and therefore affect cells at the protein 

level e.g. integrin binding.  
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 Nanotopography is permanent unlike other strategies such as chemical 

patterning which can be washed off or produce only a transient affect. 

 Nanotopography promotes cellular responses in the absence of soluble 

chemistries. This is particularly important, as chemical supplements such 

as those often used for differentiating stem cells are not FDA approved 

and therefore cannot be used to treat cells which are to be reintroduced 

back into a patient. Nanotopography therefore eliminates the need for 

chemical supplements.  

 The surfaces are relatively easy to make. Once a master substrate is 

produced, replicas can be produced with high-throughput using 

techniques such as injection moulding. Injection moulding is also a 

technique readily used in the fabrication of standard tissue culture 

plastics. Other strategies such as surface chemistry and matrices require 

complicated procedures to make their respective substrates. This makes 

them less amenable to high-throughput fabrication, slowing production 

time and may require specialist knowledge.  

 The surfaces are relatively inexpensive to produce. Whilst the equipment 

required to produce injection-moulded surfaces is expensive, the high-

throughput of this technology and relatively cheap cost of the polymer 

substrate make it amenable to providing large quantities of surfaces for 

distribution at relatively low cost. Moreover, they do not require 

specialized packaging or storage. 

 Standard tissue culture techniques can be applied to the substrates. The 

similarity between current tissue plastic plates and nanotopographically-

patterned substrate again makes them amenable to standard tissue 

culture techniques. This has the advantage that no additional skills are 

required to be learnt and the inexpensive cost makes them disposable 

after use. 

Overall, the ability to incorporate such nanotopographical patterns with high 

fidelity into a range of polymers demonstrates the transferability of the 

technology whilst the facile nature of the materials in terms of cost and use 
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highlights huge potential for the generation of novel nanotopographically-

patterned tissue culture plasticware.  

7.5 Conclusion 

Regenerative medicine is a field at the forefront of modern medicine with 

degenerative diseases such as osteoarthritis, Alzheimer’s and Parkinson’s 

disease, coupled with an aging population placing mounting pressure on current 

methods used to treat these diseases and associated illnesses. Stem cells, 

however, have the potential to provide an alternative solution to current 

treatments. By harnessing the unique properties of stem cells, both their self-

renewal and differentiation capabilities, it is possible to envisage a strategy 

whereby a patient’s own stem cells can be extracted and cultured in vitro to 

expand the stem cells as a high-quality stem cell population. These stem cells 

could later be reintroduced into the patient at the site of damage or disease, or 

alternatively differentiated in vitro prior to re-implantation.  

At present, however, the limiting step of this process is caused by an inability to 

retain the fundamental properties of stem cells over time during in vitro 

culturing methods, caused by both the phenotypically unstable nature of stem 

cells and the biologically inert properties of current cell culture materials. In 

this thesis, therefore, it was proposed that an ordered (SQ) nanopit-patterned 

polymer surface might provide stem cells with the appropriate cues to promote 

retention of stem cell population in vitro. 

This investigation was carried out in two ways, firstly by examining the 

phenotypic changes in MSCs cultured on the SQ nanotopography over a prolonged 

period of culture, relative to MSCs cultured on a flat and osteogenic controls, 

with an aim of identifying any changes in the MSC phenotype typically observed 

in MSCs cultured on a flat substrate and the increased expression of key proteins 

associated with osteogenic differentiation. Secondly, an assessment of changes 

in intracellular signalling and metabolic profile was undertaken to provide a 

more in-depth examination of the underlying gene changes associated with such 

changes in gene expression.  
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The findings presented within this thesis indicate that by reducing the overall 

degree of nanopattern disorder (NSQ) to as close to zero as possible (SQ) a 

substrate that was previously osteo-conductive can support continued 

maintenance of the MSC phenotype and multipotency. This is not surprising, as 

disorder has been shown to increase adhesion size leading to an increase in 

intracellular tensions, whereas ordered nanotopography has been shown to 

decrease adhesion size ultimately reducing the level of intracellular tension. 

Therefore the SQ ordered nanotopography promotes a lower intracellular 

tension, however not relaxed, supporting the self-renewing phenotype. 

Interestingly, it has been shown that collagen X, found during endochondral 

ossification exhibits a disordered arrangement similar in scale to the NSQ 

nanotopography, thus indicating a probable biomimetic cue promoting 

osteogenesis.  

Intracellular tension has been demonstrated as a key regulator for not only 

differentiation but that an intermediate tension may also act as a regulator of 

MSC self-renewal. It is proposed that tension-dependent regulation of ERK 

signalling may promote self-renewal via proliferation. In addition, the 

identification of increased levels of small RNAs in MSCs cultured on the SQ 

nanotopography implicates a potential role for these small RNAs in providing an 

additional level of regulation, preventing changes in gene expression and cellular 

metabolism associated with differentiation, thereby allowing proliferation to 

occur without induction of differentiation. It is tempting to speculate that these 

small RNAs may help to down-regulate gene expression changes associated with 

the differentiation-inducing effects of mitogen-activated kinases particularly 

during progression of the cell cycle from G1 early to late phase, a cell cycle 

phase which is thought to be particularly sensitive to the induction of 

differentiation by mitogen-activated protein kinases.  

Lastly, the facile nature of the materials and scalability of the technology make 

the inclusion of nanotopography into polymers for tissue culture purposes an 

extremely potent tool for the long-term culture and maintenance of MSCs, 

providing a valuable resource of MSCs for both regenerative and research 

applications. 
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7.6 Future Work 

The data generated throughout this thesis provides scope for various areas of 

investigation for future work. In particular, the application of the SQ 

nanotopographical surface as a tool for MSC maintenance provides not only a 

valuable platform for the culture of large quantities of high-quality stem cells 

for use in regenerative therapies, but it also provides a platform for further 

investigation into the mechanisms which control stem cell self-renewal. As 

identified throughout this thesis the mechanisms which maintain the balance in 

favour of stem cell self-renewal over differentiation are still not fully 

understood. Therefore the ability to maintain stem cells in vitro for research 

purposes is critical. Several aspects of MSC self-renewal could be investigated 

using the SQ nanotopography as a platform for stem cell maintenance. 

7.6.1 Intracellular Tension as a Mediator of Self-renewal 

The importance of intracellular tension for both stem cell retention and 

differentiation has been highlighted in this thesis and in the current literature. 

However, the exact mechanism for this action is not fully understood. In 

particular the degree of intracellular tension and it effects on ERK-related 

signalling. It is thought that an increase in intracellular tension mediates the 

degree of ERK signalling, resulting in different biological outcomes. The closely 

coupled relationship between ERK signalling, proliferation and stem cell 

maintenance are particularly interesting. Therefore it would be very interesting 

to carry out a more in-depth study on the effect intracellular tension and ERK 

signalling generated by nanotopography has on stem cell retention. The 

mechanism by which nanotopography elicits cellular responses via the 

manipulation of integrin binding and subsequent intracellular tension make it a 

particularly potent tool for researching mechanotransductive effects on stem 

cell self-renewal and differentiation. 

7.6.2 Cell Cycle Regulation of Self-renewal 

For stem cell self-renewal to occur, stem cells must also undergo proliferation. 

ESC and iPSCs have been identified to have shorter G1-S phase, whilst 
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hematopoietic stem cells maintain their multipotent state remaining dormant in 

Go phase until required (Becker, Ghule et al. 2006; Filipczyk, Laslett et al. 2007; 

Wilson, Laurenti et al. 2008; Ghule, Medina et al. 2011). The role of the cell 

cycle in MSCs self-renewal however has not been fully investigated. Therefore, a 

study into the relationship between proliferation and self-renewal of MSCs 

cultured on the SQ nanotopography relative to MSCs undergoing differentiation 

could be particularly important. 

Additionally, a nucleolar protein, nucleostemin has been implemented in the 

proliferation and differentiation of MSCs (Tsai and McKay 2002; Kafienah, Mistry 

et al. 2006; Ma and Pederson 2007). A loss of nucleostemin has been shown to 

result in cell cycle arrest at the G1 cell cycle phase, as previously discussed, a 

critical point in the balance between self-renewal and differentiation, whilst the 

onset of differentiation has also been shown to coincide with a loss of 

nucleostemin expression (Tsai and McKay 2002; Ma and Pederson 2007; Kudron 

and Reinke 2008). Therefore, it could be worthwhile investigating the expression 

of nucleostemin in MSCs cultured on the SQ nanotopography and its potential 

role in regulating MSC self-renewal via control of proliferation. Knockdown and 

recovery studies could also be carried out to investigate a role for nucleostemin 

in self-renewal or induced pluripotency of differentiated MSCs.  

7.6.3 Small RNAs 

The regulation of gene expression by small RNAs creates increasingly complex 

regulatory mechanisms governing many cellular processes including self-renewal 

and differentiation (He and Hannon 2004; Ender, Krek et al. 2008; Sartipy, 

Olsson et al. 2009). Evidence produced as a result of this study has identified 

increased expression of microRNAs, which have been shown to play a role in 

maintaining stem cell self-renewal. Most interestingly, mir-302 was previously 

thought to only be expressed in embryonic stem cells. Furthermore this 

microRNA was not only shown to regulate embryonic stem cell pluripotency via 

cell cycle regulation, but was also found to promote the induced pluripotency of 

somatic cells (Houbaviy, Murray et al. 2003; Card, Hebbar et al. 2008; Sartipy, 

Olsson et al. 2009; Lin, Chang et al. 2011). The expression of this microRNA in 

MSCs cultured on the SQ nanotopography makes it tempting to speculate that it 
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may play a pivotal role in regulating MSC self-renewal, and further implicates 

the cell cycle as an important regulator of MSC self-renewal. In order to gain 

supportive evidence for this hypothesis a more in-depth investigation into the 

role mir-302 and other microRNAs is required to fully understand the role these 

small RNAs may play in regulating self-renewal and differentiation. This could be 

achieved using novel chemically engineering oligonucleotides called antogomirs 

which inhibit endogenous miRNAs, and would be particularly applicable to probe 

the function of miRNAs in MSC self-renewal. 

SnoRNAs, which have been implicated in maintaining self-renewal of stem cells 

and are thought to alter gene expression via RNA editing and other microRNA-

like functions (Ender, Krek et al. 2008; Hartner, Walkley et al. 2009; Brameier, 

Herwig et al. 2011). Various snoRNAs were also found to be up-regulated in MSCs 

on the SQ, however very little is known about their role in stem cells, therefore 

an investigation into the function of snoRNAs in self-renewal and differentiation 

also requires further investigation.  

7.6.4 The Role of Metabolites in Self-Renewal 

The metabolic profile of stem cells can act as an indicator of the stem cell state 

(Yanes, Clark et al. 2010). Evidence points towards increased metabolic 

signalling in stem cells undergoing differentiation, with undifferentiated stem 

cells maintaining a low metabolically active state. As a result of evidence 

generated in this thesis two areas of further research are required: 

1. An investigation in the regulation of metabolism by microRNAs. 

As discussed in section 7.6.3., microRNAs have been identified to regulate gene 

expression via post-transcriptional degradation. Key studies have identified 

microRNAs as playing a role in the regulation of metabolism. This is interesting 

as MSCs cultured on the SQ nanotopography were shown to have reduced 

metabolic activity and further research would be required to identify a 

definitive link between MSCs self-renewal on the SQ nanotopography and the up-

regulation of many microRNAs also identified. 

2. An in-depth investigation into the profile of metabolites found to be 

present in MSCs cultured on the SQ nanotopography.  
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As identified in a study by Yanes et al, the metabolic profile of ESCs was found 

to be made up of mainly reduced metabolites (Yanes, Clark et al. 2010). Whilst 

in this thesis the metabolic profile of MSCs was also identified to contain many 

reduced metabolites, the role these metabolites play in the continued 

maintenance of MSCs is still not fully understood. For instance, the use of 

inhibitors for oxidative pathways, the importance of these pathways in the 

regulation of differentiation can be evaluated when MSCs are cultured in 

differentiation media.  

7.6.5 Other Stem Cell Types 

A broad range of research has shown that MSCs and other types of stem cells are 

influenced by substrate nanotopography, promoting differentiation and as 

demonstrated in this thesis MSC retention (Fan, Cui et al. 2002; Dalby, McCloy et 

al. 2006; Dalby, McCloy et al. 2006; Dalby, Gadegaard et al. 2007; Yim, Pang et 

al. 2007; Christopherson, Song et al. 2009; Oh, Brammer et al. 2009). 

Importantly, the ability to promote self-renewal of MSCs using nanotopography 

increases the need for further research into other types of stem cells such as 

ESCs, neural stem cells (NSCs) and endothelial stem cells (EDSCs) using this 

technology. The ability to develop defined strategies for the differentiation and 

retention of different types of stem cells, as well as a deeper understanding of 

the regulation of these processes is critical if the generation of more complex 

tissue is to be undertaken in the future.  

Recent literature has indicated that MEK/ERK signalling may regulate the 

pluripotency of ESCs in a mechanism similar to MSCs (Nur, Ahmed et al. 2005; Li, 

Wang et al. 2007). In addition, research has shown that ESCs are responsive to 

nanotopography, again suggesting a potential role for tension-mediated 

maintenance of ESCs (Nur, Ahmed et al. 2005; Nur, Ahmed et al. 2006; Gerecht, 

Bettinger et al. 2007). It would therefore be interesting to investigate the 

potential for nanotopographically-patterned substrates in the maintenance of 

ESCs, and the role that mechanical tension plays in this process. This would be 

particularly interesting as human ESCs currently require the use of mouse 

embryonic fibroblast feeder layers (Martin 1981). As research strives to develop 

feeder-free systems for human ESC clonal expansion, nanotopography may 
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therefore have the potential to deliver a potent solution by providing ESCs with 

the necessary cues to promote their self-renewal in the absence of chemical 

supplements. 

NSCs have the capacity to differentiate into neurons, astrocytes and 

oligodendrocytes and their discovery has driven research for the treatment of 

neurological diseases and the treatment of nerve damage as a result of injury 

(Reynolds and Weiss 1992; Gage 2000; Taupin and Gage 2002; Sun, Pollard et al. 

2008). Neural stem cells are normally cultured as neurospheres either in 

suspension or as an adherent cell population (Sun, Wang et al. 2011). The self-

renewal of NSCs is interesting, as it has been noted in several studies that there 

is a requirement for the cell adhesion molecule 1 integrin in maintaining 

proliferation of these neurospheres and maintenance of self-renewal (Campos, 

Leone et al. 2004; Campos 2005; Leone, Relvas et al. 2005). These results are 

particularly interesting as 1 integrin has been shown to regulate expression of 

ERK1/2 and similar to MSCs, expression of ERK1/2 has been shown to regulate 

proliferation (Campos, Leone et al. 2004; Campos 2005; Bettinger, Zhang et al. 

2008; Lee, Jang et al. 2009; Wang, Gao et al. 2009).  

Endothelial progenitor cells circulate in the blood and are multipotent cells that 

differentiate into cells of the blood vessels (Asahara, Murohara et al. 1997; 

Harraz, Jiao et al. 2001). The continuous changes in mechanical tension 

associated with blood vessel functioning indicate that these stem cells may be 

similarly mechano-responsive (Haga, Li et al. 2007; Hahn and Schwartz 2009). 

Indeed research has identified that changes in cytoskeletal organisation and 

tension act as factors that regulate the proliferation of endothelial cells (Davis 

and Camarillo 1995; Huang, Chen et al. 1998; Bettinger, Zhang et al. 2008). 

Therefore, it would be interesting to investigate the role of mechanical tension 

in the differentiation of endothelial progenitor cells. 
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