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Abstract 

 
The αVβ5 integrin is a member of integrin family that binds to different ligands such as 

vitronectin, fibronectin and soluble CD23 in order to mediate different biological 

responses such as cell growth, adhesion and metastasis. It is expressed  by B cell 

precursors and by different acute lymphocytic leukaemia cell lines such as SMS-SB 

cells. This thesis is an attempt to explain how the sCD23- αVβ5 integrin interaction 

stimulates SMS-SB cell growth and to study the role of  the αVβ5 integrin and other 

receptors such as PDGF receptor and CXCR4 in B cell development in the bone 

marrow. The maturation and differentiation of B-cells occur due to several factors that 

impact on gene expression in its development program. This program is divided into 

two main phases, the antigen-independent B-cell development phase and antigen-

dependent B-cell development phase, respectively. The antigen - independent phase of 

B cell development starts from the pluripotent haemopoietic stem cell (PHSC) and 

progresses through several successive stages which are identified by somatic 

recombination and rearrangement of both heavy and light chain genes. 

Soluble CD23 and LP (a synthetic peptide derived from soluble CD23) significantly 

stimulate SMS-SB growth while a smaller growth stimulation is caused by either SDF1-

α or PDGFAB. There are different signalling targets involved in the αVβ5 integrin-

mediated proliferation due to its binding to either sCD23 or LP. These ligands enhance 

the association between the αVβ5 integrin and the PDGF receptor which promote the 

phosphorylation of both Jak2 and STAT5. Moreover, cell growth was reduced and the 

phosphorylation of Jak2 and STAT5 was also knocked down with using either PDGF 

receptor inhibitor (AG1295) or Jak2 inhibitor (AG490). 
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Both soluble CD23 and LP activate the STAT5-DNA binding and strongly increase its 

transcriptional activity. In addition, both ligands induce the phosphorylation of other 

different substrates such as STAT2, c-Src, c-yes and AMPKα2 which might be related 

to cell growth stimulation. 

 The αVβ5 integrin ligands also promote the phosphorylation of ERK1/2, p90RSK and 

activate a SRF transfected reporter gene. However, ERK1/2 and p90RSK 

phosphorylation was completely blocked by the specific MEK inhibitor (U0126). In 

similar context, SDF1-α stimulates the transcriptional activity of SRF but not STAT5 

while PDGFAB does the opposite. Finally, soluble CD23 induces the proliferation of 697 

and BAF03 which are other pre-B cell line models. 

These data suggest that the αVβ5 integrin-ligated ligands stimulate SMS-SB cell growth 

by promoting different signalling pathways, mainly Jak2/STAT5 and MEK/ERK1/2 

pathway.  

Further work is required to determine the role of STAT5, p90RSK, c-Src and SRF in 

stimulating either the proliferation or apoptosis that promoted by  the αVβ5 integrin-

sCD23 interaction and to investigate the relationship between the activation of these 

targets. 
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1  Introduction 

 

1.1 B Lymphocytes 

1.1.1  Introduction 
 

The immune system is divided into two major systems, the humoral and cell- mediated 

immune system. Both of these classes are  linked together such that each one works 

optimally with the other 1.  Cellular compartments of the immune system can be classified 

into two main groups based on their lineages; the myeloid lineage which includes 

monocytes, macrophages, erythrocytes, megakaryocytes, and the lymphocyte lineage 

which produces B or T lymphocytes 2. The B lymphocyte is one of the major members of 

the immune system which plays a key role in the humoral immune system due to its ability 

to produce and release a vast number of immunoglobulins after its activation and 

differentiation into a plasma cell. B refers to Bone marrow where the generation and 

maturation of B cells takes place in humans. B cells, like other cellular compartments of 

the immune system, are generated from hematopoietic  stem cells. The lineage of B-

lymphocytes begins in foetal liver and B-cell  lymphopoiesis takes place in bone marrow in 

all mature mammals 3. It is derived from the pluripotent haematopoietic stem cell (PHSC) 

similar to any other blood cellular compartments 3. The maturation and differentiation of 

B-cells occur due to several factors that impact on gene expression in its development 

program 3. This program is divided into two main phases, the antigen-independent B-cell 

development phase and antigen-dependent B-cell development phase, respectively 3. 
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1.1.2 Antigen-independent B-cell development phase 

 
The antigen - independent phase of B cell development occurs in the bone marrow,  

starting from the pluripotent haemopoietic stem cell (PHSC) and progresses through 

several successive stages 4. B-cell developmental stages in this phase are characterized by 

somatic recombination and rearrangement of both heavy and light chain genes 5. The 

earliest step of B-cell development in this phase starts with differentiation of the PHSC 

into lymphoid stem cells (LSC), which are also called CD34+ bipotential lymphoid stem 

cells 5. Under the effect of certain transcriptional factors such as PU.1, Ikaros and E2A, 

LSCs become either a T-cell precursor which is identified by expressing CD2 and CD7, or 

a B-cell precursor which is identified by expression of CD19 6,7,8,9. The first B lineage – 

committed progenitors are called pro-B cells and are characterized by the presence of both 

CD45R and CD43 on their plasma membrane outer surface (figure 1.1) 6. In addition, late 

pro – B cells are characterized by the presence of cytoplasmic heavy chain protein of the µ 

class as well as CD19 (figure 1.1) 6,7. Almost  all of these markers are Ig heavy chain  

rearrangement related  6,7. The process of Ig heavy chain rearrangement is completed by 

joining VH to DJH at the end of pro-B cell maturation stage which leads to expression of µ 

chain on the cell surface as a part of pre-B cell receptor (pre-BcR) which appears as a 

marker of the transition from pro-B cell to pre-B cell (figure 1.1) 10,11. During the early 

stages of pre-B cell maturation, cells are large and identified by CD43 down-regulation as 

well as Vpre-B /λ5 surrogate light chain expression (figure 1.1) 6,10. 

At this stage, cells undergo a rapid proliferation process which leads to increased µ chain 

expression on the outer plasma membrane surface 5. Consequently, the dramatic increase 
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of  proliferation increases the opportunity of µ chain attachment to IgL chains, which is 

essential for further maturation, signalling and processing 5.  

 

  
Figure 1.1 Antigen dependent B-cell development. B-cells are derived from a Pluripotent haematopoietic 
stem cell which is converted to a lymphoid stem cell (LSC). Due to the DH,JH locus rearrangement, the LSC 
is converted to early  pro B-cell stage which is characterized by CD19,CD45R and CD43 expression. At the 
late pro B-cell stage the cytosolic µ heavy chain starts to appear as a phenotypic reflection of VH-DH-JH 
rearrangement process. Consequently, these alterations lead to conversion of pro B-cell into Pre B-cell which 
seems  morophogically large and characterized by CD19, CD45R and µ heavy chain – light chains (as the 
Vpre-B /λ5 surrogate). These cells proliferate and convert to small pre B-cells which in turn convert to 
Immature B- cells which express IgM on their surface. The last stage of this process is called the mature B-
cell and expresses IgM and IgD and migrates to the secondary lymphoid organs such as spleen and germinal 
centres.            
 

In general, the Pre-B cell stage is characterized by the presence of several markers such as 

CD45R+ , CD43̄   and IgL locus re-arrangement during the small late pre-B cell stage 

(figure 1.1)  6. Light chain gene rearrangement and complete IgM expression on the cell 

surface are important markers that define the immature B cell stage 6,11. After that, 

immature B cells undergo further differentiation and other gene rearrangement processes 

which lead to expression of both IgM, IgD and CD23 as well as CD45R on the cell surface 

6,11. The B cell is now ready to leave the bone marrow and migrate into peripheral 

lymphoid tissue such as spleen and lymph nodes 6,11.  
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1.1.3 Antigen-dependent B-cell development 
 

The lifespan of mature B-cells in the secondary lymphoid tissues and circulation system is 

between several weeks to several months and to maintain the quantity of B-cells in both 

systems the newly-developed B-cells are eventually replaced 12. 

In this phase, B-cell activation occurs by two different processes,  T - cell -  dependent and 

T-cell - independent development. In fact, the immune responses require both processes 12. 

B-cell activation starts by the binding of B-cell receptor (BcR) to the specific antigen either 

via cognate recognition and  T-cell help or through cross - linking of the BcR by antigens 

1,12. T-cell independent development occurs without MHC class II- restricted  T-cell help 

and leads to a response to a small number of antigens 1.These thymus-independent antigens 

are resistant to degradation processes and can be classified into two categories depending 

on their mode of activation. The first category is  bacterial cell wall components which 

belong to Gram-negative bacteria and all of them are lipopolysaccharides, while the second 

category is large polysaccharide molecules. The activation of B cells by the first group 

requires high antigen concentrations. However, the second group can activate B cells by 

using non-cognate T-cell help  such as cytokines  1,12.   

In general, T-independent antigen stimulation occurs through several signal transduction 

molecules such as TNFα, CD19, HS1 protein, Lyn, IL-5Rα as well as lymphotoxin α. On 

the other hand, in the T- dependent antigen development process, B cells undergo 

proliferation, differentiation and activation by the interactions between T-cells and B-cells. 

These interactions require the help of T helper cells (TH) and sets of complementary 

cytokines 12.  
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1.1.4 The importance of non-lymphoid stromal cells of the 
bone marrow for B cell development 

 
Isolated stem cells cannot differentiate into B cells in culture unless grown in the presence 

of bone marrow stromal cells which  provide several important factors 11. One of these 

factors is the ability of stromal cells to provide specific adhesive contacts with the B cell 

during all developmental stages, using particular cell-adhesion molecules and ligands 11. 

Moreover, several essential soluble growth and differentiation factors are provided by 

stromal cells. Stem cell factor (SCF) is one of these factors which is mandatory for B cell 

development 11. SCF is a member of c – kit ligand family which interacts with a tyrosine 

kinase receptor on the outer membrane surface of B cell precursors 11. Another important 

factor is the chemokine CXCL12,  also called Stromal cell-derived factor 1 (SDF1), which 

stimulates the proliferation of both pro-B cells and pre-B cells, and is required for the 

maturation of B-cell precursors 11. In mice, both pro-B cells and pre-B cells require 

interleukin 7 (IL-7) produced by bone marrow stromal cells 12. In vitro, interleukin 7 shows 

an effective role in cellular proliferation, survival and development. However, in humans 

there is no clear evidence about the roles of  IL-7 in any of these processes 12. 

1.1.5 Disorders caused by defects during antigen –
independent B-cell development 

 

1.1.5.1 Primary immunodeficiency 

1.1.5.1.1  X- linked agammaglobulinaemia (XLA) : 
 

XLA is one of the primary immunodeficiency disorders and is caused by a Bruton’s 

tyrosine kinase (BTK) gene mutation 4. This mutation occurs in X-linked agammaglobulin 
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(XLA) and all XLA patients have a deficiency in the percentage of normal peripheral 

blood B cells as a result of blocking the transition of  pro- B cells to the large pre- B cells 

due to the mutation. BTK is a major player in signalling downstream of pre-BcR, as well 

as having a role in BcR activation, primarily by stimulating calcium flux 4. In fact, BTK 

gene mutations lead to changes either in BTK protein folding or stability 4. 

 

1.1.5.1.2 Common Variable Immunodeficiency (CVID) :  

 
Individuals with this disease exhibit a low level of plasma Ig and they are susceptible to 

infections as well as having a variable reduction in memory B cells, class switch 

recombination (CSR) and B cell activation 4. This disease is characterized by several 

mutations such as in the activated T cell stimulatory molecule ICOS, CD19 and  TNFα 

receptor 4. 

 

1.1.5.1.3 Hyper- IgM syndrome : 
 

Hyper-IgM syndromes are  humoral immunodeficiencies.  Patients who are suffering from 

this disease have elevated serum IgM and decreased IgD and IgA serum levels together 

with recurrent infections 13. This disease is characterized by several mutations and there are 

five types of it  defined so far. HIM-1 is the most common, being an X-linked mutation  in 

CD154 4. Furthermore, the defect of CD40 signalling is considered as the major reason for 

the disease development, because due to this defect B-cells do not recognise T-cells which 

blocks Ig class switch recombination (CSR) in B-cells 14. The second type is HIM-2, a very 

rare type, which is an autosomal recessive inherited syndrome 15. This type is characterized 

by  deficiency of Activation-Induced Cytidine Deaminase (AID) which in turn leads to a 
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CSR defect 16. HIM-3 is caused by mutation of the  CD40 gene as well as one of the 

Activation-Induced Cytidine Deaminase genes (AICDA) 16,17. The last two HIM-4 and 

HIM-5, are both CSR defects  but have different mutations to the others 17. 

1.1.5.2 Autoimmunity 

 
Within the B-cell lineage there are several checkpoints which control B- cell selection, 

both in the bone marrow and the peripheral lymphoid tissues 4. The activation or the 

inhibition of B-cells, which depends upon both T-cell stimulation and the B-cell itself, 

requires balance between the activating signals to protect our bodies from the invasive 

pathogens 18. On the other hand, the imbalance between those signals could lead to either 

massive infections or autoantibody production and autoimmunity as a result  18. 

Autoantibody production is believed to be a natural process of the adaptive immune 

response that arises as a consequence of the imbalance between the activating and the 

inhibiting signals, for example, in rheumatoid arthritis, an autoimmune disease 19. 

Recently, the contribution of B-cells to several autoimmune diseases in the human being 

has become clear 4,19. In this regards, the B-cell contributes to autoimmune diseases in 

different ways, for example by producing autoantibodies such as in systemic lupus 

erythematosus (SLE), by presenting autoantigen to T-cells or by producing  

proinflammatory cytokines 19,20.    
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1.1.5.3 Leukaemia and lymphomas  

 
Several haematological and immunological studies have shown both cytogenic and 

molecular genetic abnormalities in malignant B-lineage cells 4. In follicular lymphoma, the 

anti-apoptotic Bcl-2 gene is translocated to chromosome 14 and falls under the influence of 

the enhancer element (Eµ) of the Igh locus 21. In addition, clonal Ig gene rearrangements 

are implicated in Hodgkin’s lymphoma 22. The second part of this review will give more 

details about the acute lymphocytic leukaemias.  
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1.2 Leukaemia 

 

1.2.1 Introduction 
 
Leukaemia is a Greek term; Leukos means white or clear and heima means blood. In 

general, Leukaemia is a definition of  blood cancer which means an abnormal and 

uncontrolled  growth of blood cells in bone marrow 23. It occurs in either mature or 

immature cells 23. Generally, there are three major classes of blood cancer; leukaemia, 

lymphoma and multiple myeloma. Both leukaemia and lymphoma affect lymphoid cells 

but there are several essential pathological differences between them. Leukaemia usually 

occurs in bone marrow during the lymphoid cell maturation process, while lymphoma 

originates in lymphatic system causing enlargement the affected tissues  and is generally a 

solid tumour 24.  

There are four major types of leukaemia which are classified according to the cell type and 

mode of  progression : 

1. Acute lymphocytic leukaemia (ALL) occurs in either T or B lymphocytes. In this 

type of leukaemia,  the cells, mainly immature lymphocytes, grow rapidly 25. Most 

recorded cases are children but it is also affects adults 25. The cell line model used 

in this study is called SMS-SB cells which was established from the bone marrow 

of nine year-old girl suffering from acute lymphocytic leukaemia. These cells are 

B-cell precursors roughly between Pro-B cells and large pre-B cells. 

2. Chronic Lymphocytic leukaemia (CLL) occurs in either T or B lymphocytes 26. 

It is called chronic because cells grow slowly; the progression is different from 

patient to patient but generally takes months to years and the majority of affected 
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cells are mature B lymphocytes 26. Chronic leukaemia is common in older people 

but it is found in  different age groups 25. 

3. Acute myelogenous leukaemia (AML)  occurs in myeloid cells and it is common 

in adult males but can also occur in children and females 27. In this type of 

leukaemia, cells grow rapidly and the bone marrow becomes very congested. There 

are different subtypes of AML such as acute megakaryoblastic leukaemia, acute 

promyelocytic leukaemia and acute myeloblastic leukaemia 27. 

4. Chronic  myelogenous leukaemia (CML) occurs in myeloid cells, mainly  in 

adults and can occur in children though that is very rare. It is characterized by slow 

progression and there is one subtype of this leukaemia called chronic monocytic 

leukaemia 28. Clinically, 95% of diagnosed cases were associated with BCR/ABL 

chromosomal translocation (Philadelphia chromosome) 29. 

5. Other types of leukaemia; there are some other types of leukaemia such as Hairy 

cell leukaemia (HCL) which occurs mainly in adult males and is easy to treat, T-

cell prolymphocytic leukaemia (T-PLL) which affects mature T-cells and mainly 

in adults. This type of leukaemia is very rare, occurs in men more than woman and 

is very aggressive 25. Large granular lymphocytic leukaemia which  affects 

either Natural killer cells or T-cells, is very rare and not aggressive 25. Adult T-cell 

leukaemia is a viral infectious disease caused by HTLV. This virus infects CD4+T-

cells and makes them proliferate abnormally 25.       
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      1.2.2 Acute lymphocytic leukaemia (ALL) 
 

Acute lymphocytic leukaemia is a malignant disease occurring in lymphoid cell precursors  

and can affect either adults or children 30. Clinical statistics show that the most common 

cases arise between the ages of 2 to 5 years. In addition, there is a promising development 

of treatment where more than 80% of cases have been cured using different kinds of 

regimens containing vincristine, cyclophosphamide, doxorubicin or methotrexate which 

also depends on genotype, phenotype and risk assessment 31, 30.  

 

1.2.2.1 Acute lymphocytic leukaemia classification 

 
There are different systems to classify ALL according to different biological and clinical 

features. Clinically, the most common classification used is called French American 

British (FAB) system which classifies ALL according to a number of biological features 32 

,33. The main purpose of this system is to simplify the selection of treatment procedures 

including the regimen components, dose and the treatment period. In this system, ALL is 

classified into three primary sub-types according to size and shape of the leukaemic cells 32 

,33. 

L1 is the most common in children. Morphologically, lymphoblasts  are small with normal 

nuclear shape and are either T-cells or B-cells 34. 

L2 occurs in adults more than children. In this sub-type, the affected lymphoblasts are T-

cells or B-cells and they are immature and pleomorphic. Cells look large with cytogenetic 

and nuclear shape alterations 34.   
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L3 also called Burkitt’s leukaemia/lymphoma which represents the least percentage of 

recorded cases. The affected lymphoblasts in this subtype are large with regular nuclear 

shape 34.  

Recently, the World Health Organization (WHO) has classified the ALL subtypes into 

three different subgroups according to cytogenetic and immunophenotypic characterization 

as the following 35: 

1. Acute lymphoblastic leukaemia/lymphoma [mixture of FAB L1/L2]. This type 

includes:                                                                                                                          

a). Precursor B acute lymphoblastic leukaemia/lymphoma which are also in  turn 

classified into four cytogenetic subtypes: 

I. t(12;21)(p12,q22) TEL/AML-1  

II.  t(1;19)(q23;p13) PBX/E2A  

III.  t(9;22)(q34;q11) ABL/BCR  

IV.  T(V,11)(V;q23) V/MLL  

        b). Precursor T acute lymphoblastic leukaemia/lymphoma. 

 2. Burkitt’s leukaemia/lymphoma  [FAB L3]. 

 3. Biphenotypic acute leukaemia 35.  

The FAB classification system is broadly used for clinical diagnostic and treatment, 

whereas the WHO system could be used for either scientific research or clinical purposes.   
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1.2.2.2 Chromosomal abnormalities  

 

In many developing leukaemic cells, there are detectable chromosomal alterations such as 

translocation, inversion, deletion or addition 30. Nowadays, chromosomal translocations are 

useful for identifying and diagnosing the subtype of acute lymphocytic leukaemia 30. 

Biologically, these translocations lead to activation of  certain transcription factors which 

in turn  control genes that control, either directly or indirectly,  cellular differentiation, 

proliferation or survival 30. About one fourth of recorded cases of acute lymphocytic 

leukaemia which occur during childhood are related to the TEL/AML-1 fusion protein, a 

consequence of translocation between chromosome 12 and 21, t(12;21)(p12,q22) 36,37. In 

mice, both Tel and AML-1 genes have a central role in haemopoietic-cell maturation 38. 

However, the TEL/AML-1 fusion protein is believed to be a pre-leukaemic cell inducer as 

it is responsible for the alterations of self-renewal processes as well as changes in survival 

and proliferation modes 39. In adults, more than 30% of ALL recorded cases are related to 

chromosomal translocation between chromosome 9 and 22  which is called the 

Philadelphia chromosome (figure1.2) 30,40. This translocation leads to fusion of the BCR 

protein to ABL, a non-receptor kinase, which in turn leads to downstream signaling events; 

the best known target pathway is the Ras-Mek-Erk signaling pathway which is considered 

to be involved in the regulation of genes that control cell survival, differentiation and 

proliferation 40.   
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Figure 1.2 Philadelphia chromosome. One of the common chromosomal translocations found in 95% of 
CML cases, 30% in adult and 5% in pediatric ALL patients. The translocation occurs between chromosome 9 
and chromosome 22, t(9;22) (q34;q11) ABL/BCR. This translocation produces ABL/BCR fusion protein  
which underlies the cell survival 29. 
 

 One of genetic lesions which induce many cases of B-cell progenitor acute lymphoblastic 

leukaemia is epigenetic silencing of cyclin-dependent kinase inhibitor 2A gene (CDKN2A) 

which encodes either the tumour suppressor p16 or p14 37. In the same context, several 

published analyses reveal a link between the alteration of the PAX5 gene and the onset of 

B-cell precursor lymphoblastic leukaemia 41. Furthermore, some genetic studies identified 

some kinds of chromosomal deletions in different cases of B-cell precursor acute 

lymphoblastic leukaemia such as IKZF3, IKZF1, LEF1,TCF3 (E2A) AND EBF1 (EBF) 42.  
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1.3 Integrins 

 

1.3.1 General Overview 
   
Integrins are membrane glycoproteins which play several vital roles in communication 

processes between intracellular and extracellular environments by mediating various 

intracellular signals. In addition, integrins play a major role in the regulation of cellular 

shape, mobility and the cell cycle 43. Moreover, integrins attach the cell to the tissue and 

are capable of revealing the status of the cell to the surrounding environment 44. This may 

reflect on the main function of whole organ or tissue, such as the role of GPIIb/IIIa in 

platelets and the coagulation process 44. 

In fact, integrins have been found in all mammals. There are many kinds of integrins and 

many cells have multiple types of integrin on their plasma membranes 44. So far, 18 α 

subunit genes have been identified and 8 β subunit genes 45. These subunits can form 24 

different kinds of integrin receptors that mediate a large spectrum of cellular functions and 

behaviours 45. 

1.3.2 General structure of integrins 
 

 In general, integrins are heterodimers composed of two distinct types of polypeptide 

chains, the α and β subunits 43. These subunits have numerous forms which cause the 

variety of integrins; for example, the αV subunit forms a heterodimer with β1, β3, β5, β6  

and β8 43. The α and β subunits have a short intracellular domain of about 40 – 70 amino 

acid residues, with the exception of the β4 subunit which has an intracellular domain of 

1088 amino acid residues 45. On the surface of cell, the extracellular domain of both the 
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α and β subunits lie close together and the N – terminal regions of each chain form a 

binding region for the extracellular matrix 46. The extracellular portion of α subunits 

contains about 1104 amino acid residues while the extracellular portion of β subunit is 

composed of about 778 amino acid residues 47. So far, we could say that the molecular 

weights of integrin subunits are different from one to the other but generally they are 

between 90 kDa – 160 kDa 48. The N-terminal regions of αVβ3 come together to form a 

globular head domain that generates the ligand binding site 47. This binding site head is 

linked to the membrane by a stalk which as a length of about 170Ǻ 47. Some mammalian 

α subunits have an extra 190 amino acid domain which is called the I domain (also 

known as vWFA domain) 49. Moreover, most β subunits can associate with more than 

one α subunit; for instance, β1 is found in association with 11 different α subunits 50. 

Therefore, there are several systems for classification and characterization of integrins, 

but the most of common one is αnβn where n  is the subunit number 51. The integrin 

subunits dimerization underlies the integrin binding  characteristics which in turn control 

the function of the integrin 50. For instance, α1β1 and α1β2 both bind to collagens or act 

as cell – cell adhesion molecules 50, 51; indeed, almost all of the β2 family are involved in 

cellular adhesion processes 50.   

Both α and β subunits contain several cations and the number of these cations depends 

on the presence of acidic amino acids in their structures 48. The role of the cations in the 

α subunits still unknown, but they may play a role in the stabilization of the folds of 

protein 46. However, the cations in the β subunits are involved in integrin – extracellular 

matrix interactions 47. In addition, β subunits have four cysteine – rich repeated 

sequences that may play a major role in that interaction 45.  
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1.3.3 General functions of integrins 

There are two major functions of integrins; attachment of the cell to the extracellular 

matrix and transduction of the signals between extracellular matrix and cytosol 52. 

Moreover, integrins are involved in many biological activities, including binding of 

viruses, cell migration, immune activation, etc 51,52. 

 

1.3.3.1 The role of the integrin family in cellular attachment   

 

The extracellular head domain of the heterodimer or in some cases the extracellular 

portion of the individual subunit, and particularly the α subunit, contains the ligand 

binding sites 53. The most well characterized target motif is an Arg-Gly-Asp (RGD) 

sequence which is present in many different adhesive ligands such as vitronectin and 

fibronectin 53. In general, integrins bind their ligand in the presence of divalent cations 

such as Ca2+,  Mn2+or Mg2+ 54. However, this cationic binding dependence varies 

between the integrin family members. For example, magnesium enhances the binding  of  

αVβ1 and α2β1 to their ligands but calcium does not, while the binding of αVβ3 to 

vitronectin can use either cation 55. Several functional  proteins which regulate cellular 

adhesion, migration or interaction bind to their target integrin either through the RGD 

motif or other motif such as the RKC motif in sCD23 55. This binding stimulates the 

intracellular domain of the integrin by causing conformational changes which may lead 

to cytoskeletal protein clustering or initiation of a certain signaling pathway in order to 

control cellular activity such as proliferation, survival or apoptosis 56. Many published 

studies reveal that several integrin family members contribute to many tumour 

malignancy behaviours such as proliferation, survival, metastasis, and invasion 57.       
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1.3.3.2  Integrin -  mediated signalling pathways 

 
The ability of integrins to perform their role as transmembrane bridges between the actin 

filaments of the cytoskeleton and the extracellular matrix is controlled by the Ras– 

related GTPase family 58. These communicating bridges are important not only for cell 

adhesion, but also for cell motility, migration and integrin–related signalling functions 

58. 

Integrin – mediated signalling events can be divided into two groups; the first one is 

driven by ligands that bind directly to integrins causing them to cluster and directly 

activate signalling pathways  59. This pathway involves or activates cytoplasmic tyrosine 

kinases such as focal adhesion kinase (FAK) and serine/threonine kinases ( e.g., mitogen 

– activated protein kinase MAPK) 59.  

The second group of integrin – mediated pathways is called the "collaborative signalling 

pathway" which is initiated by other groups of receptors such as receptor tyrosine 

kinases (RTKs) which are activated by certain growth factors and which then  enhance  

integrin activation which leads to efficient transduction of signals 59. The affinity of 

integrin toward its ligands is controlled by intracellular inducers such as the active form 

of R-Ras which increases the binding affinity of ανβ3, α4β1 and α5β1 integrins for 

ligands 59.  

Integrins can also modulate MAPK phosphorylation through the classical MAPK 

signalling pathway of Ras/Raf/MEK/MAPK (ERK). This action depends upon either 

FAK, Src-family kinases (SFKs) or both together 60,61. Moreover, integrins activate 

several transcription factors as a downstream consequence of different signalling 

pathways. One of these transcription factors, NFκB, controls expression of a spectrum of 
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genes such as pro-inflammatory genes and some cytokines 62. Figure 1.4 summarizes 

some signalling pathways modulated by different integrin family members. 
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Figure 1.3 Signalling pathways modulated by different integrin family members. Integrins activate 

several transcription factors, in order to control different cellular activities or events such as proliferation, 

migration or differentiation. 

 

 

1.3.3.3 Growth factor signalling mediated by integrins  

 
 Integrins are able to modulate signalling pathways which are activated by soluble 

growth factors and other differentiation stimuli 58. This phenomenon has been observed 

in several cell lines and seems to be general. One of these pathways is the activation of 

RTKs which leads to the activation of mitogen signalling 58. According to Sundberg and 

Rubin, the integrin – mediated activation of platelet derived growth factor - β receptor 

(PDGFR-β) is independent of ligand ( i.e. PDGF )  63. In contrast, a highly tyrosine – 
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phosphorylated portion of PDGFR associates with ανβ3 integrin in the presence of 

vitronectin 64. So far, it is not clear whether the RTKs and integrins associate together 

directly or whether other cellular components are involved in their association 58. Some 

studies suggested that the efficiency of the MAPK cascade, which is enhanced by 

integrin – mediated adhesion, may involve Raf recruitment and activation 65. Other 

studies suggested that the activation of MAPK is enhanced by MEK rather than Raf 66. 

Recently it has been clear that integrin – dependent adhesion molecules play a major role 

in modulating growth signalling pathways via both RTKs and the MAPK cascade, 

meaning that integrin – dependent adhesion molecules have an importance in the 

regulation of the cell cycle and apoptosis 58. In addition, there are some reports showing 

that soluble growth factors, motility factors and differentiation factors require the 

activation of certain types of integrin 58. 

 

1.3.3.4 Integrin – mediated  apoptosis 

 
Apoptosis is an important biological process which regulates the growth of cells, 

whether normal or tumour cells, and the role of integrins in the apoptotic process has 

been recognised since 1996 67. Although the caspase family proteases have a major role 

in modulating apoptosis in both down and up stream events and in cooperation with the 

Bcl-2 family,  the activation of the Jun-kinase (JNK) cascade also has been shown to be 

an apoptotic mediator in some cell types 68. On the other hand, the activation of the PI3K 

– Akt cascade has been shown to be an apoptotic antagonist 69. Furthermore, some 

published work shows that FAK can be cleaved by caspase family proteases to initiate 

the apoptotic mechanism which, in turn, blocks the FAK – PI3K – Akt pathway 70. The 

role of integrin – mediated apoptosis is to maintain the expression of Bcl-2 which blocks 
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caspase activation 71. In addition, integrin – mediated signals can  activate the MEKK-1 

– JNK cascade which also leads to suppression of apoptosis 71. In conclusion, integrin – 

mediated signalling pathways play a regulatory role in a network of cellular events such 

as adhesion, apoptosis, growth, proliferation, differentiation and mobility.  

 

1.3.4  αν integrin structure and its importance 

According to Nemeth (2007), the structure of αν integrin is different from the other types 

of integrins, because the α subunit can bind one of five different β subunits, β1, β3, β5, 

β6 and β8 subunit 72. αv integrins play a major role in wound healing due to their ability 

to bind to vitronectin and fibronectin as well as their role as collagen receptors 73. αvβ3 

is a member of αν integrin subfamily and has an important role in tumour growth, 

tumour – linked angiogenesis and metastatic processes 74. There is some evidence that 

has shown high levels of  ανβ3  integrin on many sold tumours, such as cancers of 

kidney, breast, lung, prostate, ovary and skin 75,76. Moreover, ανβ3  integrin plays a key 

role as a mediator in spreading and migratory properties of human melanocytes 77. Both 

ανβ3 and ανβ5 are highly expressed on osteosarcoma cells and both of them can mediate 

adenovirus infection 78 . 

Unfortunately, any functional or structural alteration in integrins may promote many 

health problems such as cancer, tumour growth, metastasis, coagulation, bleeding, etc 74, 

79. Hence, the recent research interest in anti-cancer therapies directed toward αν integrin 

72. In a different context, αν integrins regulate the blood vessels formation during the 

embryonic progression 80. Bader and his group have investigated the role of αν integrins 

in vascularisation by using αν integrin knockout mice. They found about  80% of these 

mice die in utero while 20% die a few hours after  birth and this was a accompanied by 
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extensive abnormalities in brain vessels, intestinal vessels and bleeding 80. These 

findings suggested that αν integrins are important in either blood vessel formation or 

maturation. A supportive study was conducted by Yang and his group where they found  

hemorrhagic disorders in β3 knockout mice 81. 

 

1.3.5  Integrins and leukaemia 
 
Integrins play an essential role in cellular adhesion which in turn plays an  important 

anti-apoptotic role in both normal and leukaemic B-cells 82. Apoptosis was induced  

using monoclonal antibodies against either VCAM-1 or α4β1 integrin 83. These findings 

explained the role of integrin in the cellular adhesion between leukaemic and stromal 

cells which is believed to be essential for precursor B  leukaemic cell survival 83. In pre-

B acute lymphoblastic leukaemia, integrins modulate different signaling pathways which 

may underlie cell survival 84. In the same context, integrins upregulate both Bcl-2 and 

Bcl-xL genes 84. Bcl-2 and Bcl-xL are proteins that contribute to the anti apoptotic 

process. In addition, Matsunaga and his group have found that the interaction between 

fibronectin and VLA-4 leads to Bcl-2 upregulation as an outcome of the activation of the 

PI3K/Akt cascade in acute myelogenous leukaemia (AML) cell lines 85. Furthermore, 

the stimulation of  β1 integrin in pre-B acute lymphocytic leukaemia (ALL) inhibits both 

caspase-3 and caspase-7 as well as inducing the expression of two apoptosis inhibitor 

proteins which are called Survivin and X-linked inhibitor of apoptosis protein (XIAP) 86.  
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1.4  CD23 

 

1.4.1 CD23 structure 

 
CD23, also known as (FcεRII), is a glycoprotein with a molecular weight of 45 KDa and 

is usually present on many immune cell membranes, especially B – lymphocytes and 

monocytes 87. In fact, it is expressed in many different cell types such as Langerhans 

cells, endothelial cells, platelets, follicular dendritic cells and some epithelial cells 88 In 

addition, this protein is sometimes present free in blood and called soluble CD23 

(sCD23) 87. 

Although CD23 is considered an Fc receptor, its structure is different from other Fc 

receptors 89. Membrane bound, trimeric CD23 is composed of three portions; head, stalk 

and tail. The head portion is the C - terminal extracellular portion and is composed of 

three C – type lectin domains 90, 91. The stalk also is an extracellular portion which is 

composed of a trimeric α helical coiled – coil containing N – linked glycosylation sites; 

the cytoplasmic tail is the N- terminal intracellular portion 89, 91. The extracellular 

portions are composed of 277 residues while the transmembraneous domain and the 

cytoplasmic terminal are composed of  20 and 23 residues, respectively 92.   

CD23 can bind to both CD21 and IgE simultaneously through specific binding sites in 

the extracellular lectin domain 93. Two lectin domains can bind to Cε3 domains in IgE. 

However, the third lectin domain of CD23 expresses one to three binding sites for CD21 

94.The interaction between CD23 and IgE is Ca2+ dependent. However, the interaction 

between CD23 and CD21 is carbohydrate-dependent 88. Figure 1.4 shows the binding 

sites on CD23 lectin domains, the binding site shown in yellow colour is specific for 

binding the αVβ5 integrin which was identified by our laboratory 95. 
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Figure 1.4 Binding surfaces on human CD23.  The lectin domains of human CD23 have three 
distinct binding sites IgE binding sites (blue), CD21 binding site (red) and αV integrin binding  
site (yellow). This figure is adapted from Borland et al 95  
 
 

There are two different forms of CD23. These forms are different in their structure     

and location. The first form, called CD23a, is different in the N – terminal six amino 

acids from the other form, CD23b 88. CD23a is usually present on B- cells while CD23b 

is present on a variety of cell types 88. Furthermore interleukin – 4 is required for  

CD23b expression on B cells  88. 
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Figure 1.5 CD23 structure. It is composed of three parts, C-terminal portion which contains the 
binding sites, the coiled-coil stalk containing the glycosylation site and the N- terminal portion 
which is the cytosolic portion. This figure is adapted from  ( Sutton and Gould, 1993 ) 91. 
 
CD23 normally undergoes proteolytic processing via metalloprotease enzymes that 

release soluble CD23 into serum 96. There are many products of proteolytic cleavage of 

CD23 and these products differ in sizes and functions 96. This cleavage process occurs in 

the coiled-coil stalk as it is susceptible to proteolysis 97. CD23 cleavage produces 37, 33, 

29, 25 and 16 KDa fragments all of which contain the C-terminal domain 96. Some 

papers reported that the fragments which have molecular weight more than 25000 MW 

promote IgE synthesis 96,98. On the other hand, the fragments of cleaved CD23 which 

have molecular weight equal or less than 25000 MW suppresses IgE synthesis 98.       
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1.4.2 CD23 function 

 
 CD23 binds different ligands such as immunoglobulins (IgE), glycoproteins (CD21) and 

viruses such as Epstein Barr Virus (EBV) 99. CD23 plays many important roles in 

regulation of IgE production, control of histamine production and T – cell / B – cell 

interactions 100. CD23 is capable of linking IgE with another glycoprotein CD21 and this 

binding is a trigger for IgE production and, according to that model, CD23 plays a major 

role in IgE production as a positive regulator 101. The CD23/CD21 – IgE complex also 

requires other stimulation effectors such as interleukin – 4 and interleukin – 13 99, 102. 

The inducing role of these effectors is sometimes blocked by interferon γ, interferon α 

and prostaglandin E2. 102,103.   

Moreover, the production of IgE requires T – cell / B – cell interaction, a process 

enhanced by CD23; this has been proved in vitro by using anti-CD23 monoclonal 

antibodies, where the results clarified that there was no interaction between T and B – 

cells in the presence of the CD23 antibody 104. The other possible role of CD23 is 

regulating histamine production due to its binding to CD21 on the surface membrane of 

basophils 105. Furthermore, a high concentration of free CD23 fragments in plasma is 

usually associated with inflammation and some diseases such as asthma, chronic 

lymphoblastic leukaemia and rheumatoid arthritis 106. Clinically, an increased serum 

CD23 level was found in systemic lupus erythematosus, primary Sjogren's syndrome, 

glomerulonpharitis and  rheumatoid synovitis  107,108,109. 

In addition, soluble CD23 stimulates monocytes to produce both tumour necrosis factor 

– α (TNF-α) and interleukin – 1α 110. Consequently, sCD23 interacts with interleukin – 

1α to stimulate the differentiation of monocytes 110. In this context, soluble CD23 
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interacts with CD11b (αMβ2) and CD11c (αXβ2) on monocytes,  which drives 

monocytes to produce proinflammatory mediators such as interleukin-1α, interleukin-1β, 

interferon- γ and interleukin-6 94. The CD23-CD11b/CD11c interaction also increases 

levels of nitrate, hydrogen peroxide and other oxidative products 94. 

In human B lymphocytes, soluble CD23 interacts with IgE which leads to increased Ca2+ 

and cyclic-AMP levels 111. Moreover, membranous CD23 acts as signal transducer when 

cross-linked with several B cell membrane proteins such as MHC class II , CD9,CD81 

and CD82 112,113. Recently, some researchers reported that CD23 plays an important role 

in supporting the survival of pre B – cells via its binding to ανβ5 integrin 95. 

 
 

1.4.3 CD23 – ανβ5 integrin interaction 

 
The ανβ5 integrin, like other integrins, is a heterodimeric transmembraneous receptor 

composed of two protein subunits, αV and β5 43. The ανβ5 integrin is one of the 

vitronectin receptors which means that the ανβ5 integrin plays several roles in cell 

attachment, survival and growth 114,115,116. In addition, in tumours, the ανβ5 integrin is 

implicated to be one of the important mediators of tumour growth, metastasis and 

angiogenesis 95,117. 

The ανβ5 integrin interacts with its ligands such as vitronectin and fibronectin via a 

distinct binding motif, known as the RGD motif, which is arg-gly-asp 53,118,119. In a 

different context, soluble CD23 also interacts with different integrin family members 

and this interaction underlies the production of different cytokines such as IL-1α, IL-1β, 

IL-6 and IFN-γ  as well as proinflammatory mediators such as interleukin-1β, 

interleukin-6 and tumour necrosis factor-α 106,120,121,122. 
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 Recently, our laboratory has found that the ανβ5 integrin recognizes an arg-lys-cys 

(RKC) motif on sCD23 in an adhesion – independent interaction 95. In addition, this 

interaction plays an important role in the growth of pre – B cells, and also activates ERK 

123. Furthermore, ERK activation was increased in the presence of SDF1 123. These 

findings suggest that the activation of ERK might underlie B-cell survival and growth, 

and that any enhancement or synergistic effect from the bone marrow microenvironment 

such as stromal cell – derived factor 1 (SDF1) and/or platelet derived growth factor 

(PDGF) might be delivered via ERK.   

1.4.4  Other ligands related to haematopoiesis and ανβ5 
integrin 

 

1.4.4.1 Stromal cell – derived factor 1 (SDF1) 

      
Stromal cell – derived factor 1 (SDF1 or CXCL12) is a chemokine which plays several 

roles during B – cell development in bone marrow 124. SDF1 is produced by immature 

osteoblasts in bone marrow and by epithelial cells in different organs 125,126,127. SDF1 is 

composed of 67 residues, is about 8KDa, and presents in all vertebrates in different 

isoforms SDF1α, SDF1β, SDF1γ, SDF1ε and SDF1φ 128,129,130. Both SDF1α and SDF1β 

encoding genes are located on chromosome 10 131. Recently, several studies have 

demonstrated the ability of SDF1 to activate some types of integrins such as LFA-1, 

VLA-4 and VLA5 and to play a synergistic role with cytokines which might be required 

for cell survival and proliferation 132,133,134. SDF1 certainly plays an essential  role in 

haematopoietic cell maturation, survival and proliferation 135. In addition, in various cell 

types including B cell precursors, SDF1 increases the intracellular calcium levels via 

ligation of CXCR4 136,137. This ligation also leads to the activation of 
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phosphatidylinositol 3 – kinases (PI3K) and phosphorylation of MEK and ERK as a 

consequence of phosphorylation of focal adhesion complexes 138. Moreover, SDF1 

stimulates the Jak/STAT pathway 139. On the other hand, SDF1 is thought to play 

different pathological roles such as HIV infection enhancement, tumour growth, 

inflammation and angiogenesis 140,141,142. In terms of leukaemias, CXCR4 is highly 

expressed in B- chronic lymphocytic leukaemia cells which enhances their response to 

SDF1 143. Meanwhile, the migration, cellular adhesion and survival of  different acute 

lymphocytic leukaemia cell lines are enhanced in the presence of  SDF1144,145.       

 
 

1.4.4.2  Platelet – derived  growth factor (PDGF) 

 
Platelet – derived  growth factor (PDGF) was recognized and detected in whole blood 

cells but was absent in the plasma 146. The major source of Platelet derived growth factor 

(PDGF) is the α – granules of platelets and it is synthesized by other cell types such as 

macrophages, epithelial and endothelial cells 147,148,149. Several studies show that PDGF 

plays a significant role in several physiological systems such as cellular development 

and growth. On the other hand, PDGF is implicated in several pathological mechanisms 

including atherosclerosis, fibrosis and neoplasia 150,151,152. 

PDGF is composed of two polypeptide chains linked together by a disulphide bond 153. 

There are four distinct polypeptide chains A, B, C and D, which are assembled to form 

the dimer of PDGF, whether homodimers such as PDGF – AA, PDGF – BB, PDGF – 

CC and PDGF – DD or heterodimers such as PDGF – AB 154,155,156. 

PDGF binds to its target cells via two types of receptors PDGFR – α and PDGFR – β, 

and both are similar to each other in their structures 157. The PDGFR – α has a high 
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affinity toward A, B and C chains, while the PDGFR – β recognizes and binds to the B 

and D chains 158. However, PDGF requires proteolytic cleavage before being able to 

bind to the PDGFR 159. The PDGF exerts its biological role by inducing the dimerization 

of receptors which leads to autophosphorylation of the PDGF receptor tyrosine kinase 

(RTK) 160. In turn, the RTK phosphorylates many downstream signalling proteins 160. 

 According to Soliven and his colleagues, PDGF stimulates both  Src family kinases and 

sphingosine kinase in oligodendroglial progenitors 161. Recently, some studies have 

shown that the PDGF induces cellular proliferation, migration and differentiation via the 

RAS/MAPK pathway and promotes cell survival through PI3K/Akt pathway 162,163,164. 

Furthermore, PDGFR directly mediates STAT1 activation and phosphorylates STAT3 

via the phosphorylation of  JAK protein in fibroblasts 165,166. In addition, Paukku and his 

colleagues have published that PDGF induces the activation of both STAT5 and c-Src in 

mammalian cells 167. PDGF induces cell growth via STAT5 phosphorylation   in 

different types of leukaemia such as AML and CML  168,169,170. Figure 1.6 summarizes 

some of signalling pathways mediated by the PDGF; Ras/Raf/MEK/ERK pathway, 

JAK/STAT pathway and PI3K/Akt pathway. 



 48 

PI3K

JAKs

Akt

Src

RAS

RAF

MEK

ERK

Nucleus

STATs

PDGF receptor

PDGF

STATs

 

Figure 1.6 PDGF signalling. PDGF induces several signalling pathways depending on the cell 
type and condition. 
 

1.4.4.3  Vitronectin  

 
Vitronectin is a 75 kDa glycoprotein present in the extracellular matrix and plasma 171, 

172. Vitronectin has different binding sites so that it is a multifunctional protein 171. One 

of these binding sites is the Arg-Gly-Asp (RGD) motif  which is located in the N-

terminal domain and is involved in the cellular attachment via the vitronectin-integrin 

crosslink 173. In humans, the vitronectin gene is located in the long arm of chromosome 

17 174.  

Vitronectin plays several biological roles such as cellular adhesion, spreading and 

migration 173,175. In addition, vitronectin is involved in physiological processes such as  

haemostasis via its binding to heparin, the immune response by its binding to the 
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terminal complex in the complement protein cascade and in cell proliferation as a co-

stimulant growth factor 171,173,175. 

Pathologically, vitronectin is implicated in several disease processes such as 

arteriosclerosis, degenerative central nervous system disorders, fibrosis and membranous 

nephropathy 176. Vitronectin is involved in angiogenesis and tumour growth due to its 

interaction with ανβ3 integrin 177. Moreover, vitronectin plays an important function in 

wound healing via its binding to some of integrin family members 178.    
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1.5 Signalling pathways related to cell growth, survival 
and proliferation 
 

1.5.1 JAK/STAT signalling pathway 
 
Janus Kinases are intracellular proteins identified as tyrosine kinases involved in cell 

survival and growth stimulated by different growth factors, cytokines and interferons 179, 

180. At present, there are four members of the JAK family in mammals,  JAK1, JAK2, 

JAK3 and Tyk2 181. The molecular weights of these kinases are between 120 and 140 

KDa  and they have similar structure 181. Each JAK family member is composed of 

seven highly conserved domains called JAK homology domains (JH) 182,183. The kinase 

activity domain is in the C-terminal domain, which is called the JH1 domain, and this 

domain is followed by JH2, a kinase-related domain 184. The structural differences 

between JAKs are located in the remaining five domains in which the degree of 

conservation varies from one to the other 182. JAKs are activated by transmembraneous 

cytokine and growth factor receptors. Normally, these receptors are associated with one 

member of the JAK family via the intracellular domain 185,186,187. These receptors 

undergo ligand-driven conformational changes leading to either multimerization, such as 

with cytokine and interferon receptors, or dimerization, as noted in PDGF and growth 

factor receptors 188,189. This action leads to JAK phosphorylation and phosphorylated 

JAKs in turn either phosphorylate the receptor itself or other downstream substrates 187. 

 The major JAKs substrates are called signal transducers and activators of transcription 

(STATs) 190. The STAT family is composed of seven members STAT1, STAT2, 

STAT3, STAT4, STAT5a, STAT5b and STAT6 190. In humans, STAT1 and STAT4 

genes are located on chromosome 2 whereas STAT2 and STAT6 genes are located on 
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chromosome 12 191,192. The other STAT family members STAT3, STAT5a and STAT5b 

genes are located on chromosome 17 191,192. Structurally, STATs are different from other 

transcription factors because they have Src-homology 2 (SH2) domains 191,193. These 

domains are responsible for STAT dimerization and activation  191. Once STAT becomes 

phosphorylated at the SH2 domain the dimerization will start between SH2 domain of 

one monomer and the C-terminal of phosphotyrosine-binding domain of the other 194,195. 

The activation of STATs produces either heterodimers such as STAT1-STAT2 and 

STAT1-STAT3 or homodimers such as STAT1 and STAT3  193,194. 

In general, the JAK/STAT pathway plays several different roles in mammals and other 

vertebrates corresponding to the stimuli, cell type and biological context. Many 

published studies have revealed that the JAK/STAT pathway mediates several cellular 

and  biological functions such as proliferation, apoptosis and growth in response to 

either cytokines, interferons or growth factors. 

 In haematopoietic cells, the JAK/STAT pathway was identified in different cases either 

in normal or malignant cell lines. In 1997 Lacronique and his colleagues identified TEL-

Jak2 fusions  in  early B-precursor acute lymphoblastic leukaemia as a product of  

t(9;12)(p24;p13) translocations 196. Similar data were shown in chronic myeloid 

leukaemia but with additional translocations t(9;15;12)(p24;p15;p13) 197. In both cases, 

the transcription factor Tel is fused to the JH1 domain of Jak2 and consequently 

activates STAT1 and STAT5 198,199, 200. In addition, both STAT3 and STAT5 were found 

activated in response to different cytokines and growth factors in several leukaemic cell 

line models 200,201,202, 203. Moreover, the anti-apoptotic role of STAT3 has been shown in 

multiple myeloma in which the activated STAT3 in turn promotes Bcl-2 and Bcl-xL 

expression 204. Several published papers have reported that gamma interferon-activated 
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site (GAS) is the main site that activated STATs bind in order to regulate their target 

genes in response to different stimuli such as cytokines, hormones and growth factors 

205,206, 207. Figure 1.7 describes the general activation steps of JAK/STAT pathway that 

occur in different cell types in mammals. 
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Figure 1.7 JAK/STAT pathway. Dimerization and auto-phosphorylation of Tyrosine kinase 
receptors can be caused by different ligands such as interleukins and growth factors. (1) 
Receptor tyrosine kinase and Jak phosphorylation by ligand-driven conformational changes. (2)     
Phosphorylated receptor kinase recruits and phosphorylates STATs. (3) Phosphorylated STAT 
forms active dimers. (4) Activated STAT translocates into the nucleus. (5 The activated STAT in 
turn binds DNA at specific binding sequence mainly (GAS) and activates the transcription of 
target genes.    
 

  

1.5.1.1 STAT5 structure and function 
 
STAT5 is a name of two highly conserved STAT family monomers STAT5a and 

STAT5b. STAT5 was identified in 1994 by Groner and his group in mammary 

epithelium and was called at that time Mammary Gland Factor (MGF) 208. STAT5a is 

composed of 793 amino acids whereas STAT5b contains 786 amino acids. The 
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similarity between the proteins reaches up to 96% and the variability between them is 

located in the C-terminal transactivation domain 209, 210,211.  

The structure of either STAT5a or STAT5b is similar to other STAT protein; composed  

of  N-terminal domain followed in order by coiled coil, DNA binding domain, linker 

region, SH2 and transactivation domains which is in the C-terminus 211,212. The linker 

region is responsible for dimerisation which is essential for the transcriptional activity of 

STAT5. The dimerisation produces either homodimer (STATa/a) or heterodimer 

(STAT5a/b), however, it requires the phosphorylation of either of them at a specific 

target residue, at Tyrosine 694 for STAT5a and Tyrosine 699 for STAT5b 208, 213. The 

phosphorylation event in either isoform typically occurs by the receptor associated 

tyrosine kinase proteins Jaks, Jak1, Jak2 or Jak3 214. The phosphorylation of Jak occurs 

via receptor tyrosine kinase and then the activated Jak in turn cross-phosphorylates the 

receptor tyrosine kinase which recruits either STAT5a or STAT5b and binds to any of 

them via SH2 domains and phosphorylates a specific tyrosine residue which induces 

STAT5 dimerisation 215, 214, 216. STAT5 dimers translocate into the nucleus in order to 

regulate the target genes 214. 

STAT5 regulates a wide range of genes depending on the cell type, the stimuli and the 

cell condition. The most well known gene is Bcl-XL the gene that encodes Bcl-XL 

protein that acts as an anti-apoptotic protein 217, 218, 219,220. Many published reports have 

revealed that STAT5 regulates various genes in different species and cell types. Some 

studies show that  STAT5 regulates cytokine genes and cyclin D 221, 222,223. 

In general, STAT5 plays different biological and pathological roles such as preventing 

cell death, cell cycle stimulation, cytokine secretion and tumour growth 223, 224, 221, 225.  
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In normal conditions, IL-7 plays an essential role in early B-cell development via 

activating STAT5, and STAT5a/b is also required for survival of CD8+ T cells 226, 227. In 

addition, STAT5 controls Bcl-6 expression in germinal centre B cells which leads to 

self-renewal and differentiation of  human memory B cells 228. Furthermore, STAT5 

activation was found associated with different leukaemias due to its role in apoptotic 

prevention or cell cycle regulation  219, 229, 230.   

 

1.5.2 The ERK1/2 mitogen-activated protein kinase p athway 
 
ERK1 and ERK2 are intracellular proteins expressed in almost all cell types with 

molecular weights 43 and 41 KDa, respectively 231. Both ERK1 and ERK2 proteins have 

85% an identical core where the substrate binding sites are located 231, 232. Furthermore, 

the activation site which contains the phosphate acceptor residues tyrosine and threonine  

is located in a TEY motif in the activation loop in both ERK1 and ERK2 232, 233. The two 

proteins are activated by different stimuli such as serum, cytokines, growth factors and 

several G protein-coupled receptor ligands 232, 233. 

The activation of ERK1/2 was found linked with several biological actions such as cell 

growth, survival and proliferation in different cell types. Moreover, there is some 

evidence that the activation of ERK is required for  cell cycle progression, precisely for 

cell transition from G1 phase into S phase which means that the activated ERK is also 

required for DNA synthesis 234, 235, 236. 

The Ras/Raf/MEK/ERK signaling pathway is the main upstream signaling cascade for 

ERK and ERK seems to be the key target of this pathway. However, ERK is involved in 

different downstream signaling pathways illustrated in figure 1.6. ERK is identified as a 

kinase of either c-Fos or c-Myc in order to induce cyclin D1 gene expression which in 
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turn controls the cell cycle 237,238. Phosphorylated ERK is also responsible for Elk-1 

phosphorylation at multiple Ser/Thr-pro sites 239. The activated Elk-1 interacts with the 

serum response factor (SRF) to form the ternary complex factor (TCF) which in turn 

regulates serum response element (SRE) transcriptional activity 240, 241, 242. According to 

Marais and his group, the activation of  the SRF-DNA interaction is ERK2 dependent 

242. In other contexts, ERK is identified as a kinase of p90RSK, MSK and c-Jun 243, 244, 

245. 

F
igure 1.8 The Ras/Raf/MEK/ERK cascade. ERK1/2 plays a key role in several cellular 
activities. The activation of ERK1/2 via the Ras/Raf/MEK regulates expression of many genes  
via  activating different transcription.   
 
The MAP Kinase pathway is implicated in several physiological disorders such as 

tumour growth, metastasis and angiogenesis  246, 247, 248. In addition, the superoxide 

activated-Ras/Raf/MEK/ERK pathway is implicated in renal dysfunction, dementia and 

Parkinson’s disease 249, 250, 251.  
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In haematopoiesis, the Ras/Raf/MEK/ERK cascade plays different roles depending on 

the cell type and the maturation step it is involved in. The activation of MEK/ERK 

signaling by stem cell factor (SCF) stimulates the haematopoietic stem cell proliferation 

252. Furthermore, the activation of MEK/ERK pathway as a downstream effecter of 

cytokine receptors is involved in different  maturation steps in either lymphoid or 

myeloid lineages 253, 254. On the other hand,  activated ERK was found in about 75% of 

AML cases in a study conducted by  Ricciardi and his colleagues 255. In addition, 

ERK1/2 seems to be a significant indicator for both B-ALL  and T-ALL patients 256, 257. 

In the same context, the MEK inhibitor U0126 reduces growth of either AML or CML 

cell lines 258, 259. 

 

1.5.3 Calpain 
 
 

Calpain is a biochemical system composed of three components; two calcium-

dependent proteases, called µ-calpain and m-calpain, and the third component is a 

peptide called calpastatin which serves as an inhibitor for both µ and m Calpains 260. 

These three proteins are present in almost all cell types in all vertebrates but in 

variable  ratios depending on the cell type, tissue and species 260. Both Calpains µ and 

m are cytoplasmic cysteine proteases playing several biological roles in cell mobility 

and embryonic development due to cleaving the cytoskeletal proteins 261 , 262. In 

addition, both µ and m Calpains play different roles in cell signaling and apoptosis via 

cleaving caspase-7, -8, -9 and caspase-3 or via activating caspase activators such as 

APAF-1 and cytochrome C 263, 264. 
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1.6 Research aims 
 

The major aim of this study is to  investigate the role of the sCD23- αVβ5 integrin  

interaction in survival of acute lymphocytic leukaemia cells and to answer the question 

how the interaction leads to regulation of growth.   

The specific aims of this project are to: 

 

(a) Study the role of both  sCD23 and vitronectin in B-cell progenitor growth. 

(b) Study the synergy of PDGF(AB) and SDF1-α with sCD23 in B-cell precursors 

growth. 

(c) Study the activation of kinases in signaling pathways due to the effects of CD23 

and vitronectin. 

(d) Investigate the role PDGF receptor in the signaling events caused by sCD23- 

αVβ5 integrin interaction. 
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2. Materials and methods 

2.1 Chemicals and reagents 
All routine chemicals and reagents unless otherwise listed in Table 2.1 and Table 2.2 

were purchased from Sigma -Aldrich Company Ltd, Poole, UK and Fisher Scientific UK 

Ltd, Leicestershire, UK. 

          Table 2.1 Chemicals and reagents used in this study 
Chemical / reagent Supplier 

MES SDS Running Buffer 
(NuPAGE®) 
MOPS SDS Running Buffer 
(NuPAGE®) 
NuPAGE 10% Bis-Tris Gel 1.0mm 
NuPAGE 4-12% Bis-Tris Gel 1.0mm 

Invitrogen, Paisley, UK  

3MM chromatography paper 
3MM blotting paper  
PROTRAN nitrocellulose transfer 
membrane 

Whatman, Springfield Mill, 
Maidstone, UK 

Nucleic acid transfer membrane 
Hybond-N+ 

Amersham Life Science Ltd. 
Buckinghamshire, UK. 

Prestained Protein Marker, Broad 
Range (7-175 kDa) 

New England BioLabs, Hitchin, 
Hertfordshire, UK 

[Methyl-3H] Thymidine   GE Healthcare. Pollards Wood 
Nightingales Lane, UK 

X-tremeGENE 9 DNA Transfection 
reagent 
X-tremeGENE HP DNA Transfection 
reagent 

Roche Diagnostics  Limited, Charles 
Avenue, Burgess Hill, West Sussex 
UK 

Mirus TransIT-TKO Transfection 
reagent 

Cambridge Bioscience Ltd, Munro 
House, Cambridge, UK  

 
FuGENE HD Transfection reagent Promega UK Ltd, Southampton, 

United Kingdom. 
           
           
          Table 2.2 Kits were used in this study 

KIT SUPPLIER 
Nuclear Extract  KIT 

ACTIVE MOTIF Rixensart, Belgium 
Catalog No: 40010 

Proteome Profiler Antibody Arrays R&D   SYSTEMS,  Abingdon, UK 
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KIT SUPPLIER 

STAT5b EMSA KIT 

Panomics Catalog No; AY1405 via 
Caltag-Medsystems Limited, Whiteleaf 

Business Centre, 11 Little Balmer, 
Buckingham, MK18 1TF 

Catch and Release 
Immunoprecipitation KIT 

Millipore (U.K.) Limited, Building 6 
Croxley Green Business Park, Watford 

 

Calpain Activity Assay KIT 
Abcam, Cambridge Science Park, 

Cambridge, UK 
Luciferase Assay System 

ONE-Glo™ Luciferase Assay 
System 

Promega UK Ltd, Southampton, United 
Kingdom. 

 

 

2.2 Ligands, inhibitors and Antibodies 
 
All ligands and inhibitors used in this study were purchased from different suppliers are 

listed in Table 2.3. Table 2.4 summarized the information about the antibodies which are 

used in this study and the supplier of each. 

Table 2.3  Peptides and inhibitors were used in this study 

Peptides/inhibitors supplier 

Recombinant Human CD23/Fc 
epsilon  RII. 

Recombinant Mouse CD23/Fc 
epsilon  RII. 

Recombinant Mouse IL-3 

R&D SYSTEMS, Abingdon, UK 

Vitronectin 
PDGF-AB 

Sigma -Aldrich Company Ltd, Poole, UK 

SDF-1α 
Millipore (U.K.) Limited, Building 6 Croxley 

Green Business Park, Watford 
 

Long peptide (derived fromCD23) Mimitopes, Victoria, Australia 
Tryphostin AG490 (Jak2 

inhibitor) 
Tryphostin AG 1295 (PDGFRβ 

inhibitor) 

ENZO Life Sciences Ltd, Matford Court, UL 

MEK inhibitor (U0126) Promega Ltd, Southampton, Hampshire, UK 

PI3kinase inhibitor (LY 294002) 
New England BioLabs, Hitchin, Hertfordshire, 

UK 
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Table 2.4  Antibodies were used in this study 
Antigen Source Clone/Cat. No. Isotype Supplier Conjugate 

Human β3 
integrin 

Mouse 
monoclonal 

MHF4 IgG1 

Santa Cruz 
Biotechnology, 
Inc. Heidelberg, 

Germany 

FITC 

Human CD45 
Mouse 

monoclonal BRA- 55 IgG1 
Sigma -Aldrich 
Company Ltd, 

Poole, UK 
FITC 

Human CD5 
Mouse 

monoclonal UCTH2 IgG1 FITC 

Human CD10 
Mouse 

monoclonal HI10a IgG1 PE 

Human CD19 
Mouse 

monoclonal TB28-2 IgG1 FITC 

Human IgM 
Mouse 

monoclonal G20-127 IgG1 FITC 

Human CD34 
Mouse 

monoclonal 563 IgG1 

BD Bioscience, 
Oxford, UK 

PE 

Human αVβ5 
integrin 

Mouse 
monoclonal 

P5H9 IgG1 PE 

Human CXCR4 
Mouse 

monoclonal 
12G5 IgG1 FITC 

Human CD23 
Mouse 

monoclonal 
138628 IgG1 PE 

Human PDGFRβ Mouse 
monoclonal 

PR7212 IgG1 FITC 

Human Phospho-
ERK1/2 

(T202/Y204) 

Rabbit 
polyclonal 

FTE12 IgG _ 

Phospho-STAT5 
(Y699) 

Rabbit 
polyclonal 

ZBS02 IgG _ 

Rabbit IgG 
Goat 

polyclonal 
FIN03 IgG 

R&D 
SYSTEMS, 

Abingdon, UK 

HRP 

Human IgG 
Goat 

polyclonal 
A0170 IgG HRP 

Rabbit IgG 
Goat 

polyclonal 
A6667 IgG HRP 

Mouse IgG 
Goat 

polyclonal 
A4416 IgG 

Sigma -Aldrich 
Company Ltd, 

Poole, UK 
HRP 

Rabbit IgG 
Goat 

polyclonal 
7074 IgG 

New England 
BioLabs, 
Hitchin, 

Hertfordshire, 
UK 

HRP 

Non-human 
antigens 

Mouse 
monoclonal 

GO1 IgG1 FITC 

Non-human 
antigens 

Mouse 
monoclonal 

GO1 IgG1 

DAKO, 
Cambridgeshire, 

UK PE 
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Table 2.4  Antibodies were used in this study 

 

Antigen Source Clone/Cat. No Isotype Supplier Conjugate 

Human STAT5 
Rabbit 

polyclonal 
9363 IgG _ 

Human PDGFRβ Rabbit 
monoclonal 

28E1 IgG _ 
Human Phospho-
p90RSK(S308) 

Rabbit 
monoclonal 9D9 IgG _ 

Human Phospho-
p90RSK 

(T359/S363) 
Rabbit 

polyclonal 9344 IgG _ 
Human Phospho-
p90RSK(T573) Rabbit 

polyclonal 9346 IgG _ 
Human 

RSK1/RSK2/RSK3 Rabbit 
monoclonal 32D7 IgG _ 

Human Phospo-
p44/42 MAP 

Kinase 
Rabbit  

monoclonal 197G2 IgG _ 
Human Akt Rabbit 

polyclonal 9272 IgG _ 
Human Phospho-

Akt (S473) Rabbit 
monoclonal 193H12 IgG _ 

Human p44/42 
ERK1/2 Rabbit 

monoclonal 137F512 IgG _ 

Human NF-kappa 
B2 p100/p52 Rabbit 

polyclonal 4882 IgG _ 
Human Phospho-

JAK2 
(Y1007/1008) 

Rabbit 
monoclonal 

C80C3 IgG _ 

Human CREB 
Rabbit 

monoclonal 
48H2 IgG _ 

Human Phospho-
CREB (S133) 

Rabbit 
monoclonal 

87G3 IgG 

New England 
BioLabs, 
Hitchin, 

Hertfordshire, 
UK 

_ 

Human JAK2 Rabbit 
polyclonal NG1548937 IgG _ 

Human Phspho-
JAK2 

(Y1007/1008) 
Rabbit 

polyclonal 30220 IgG _ 
Human β5 integrin 

Rabbit 
polyclonal AB1926 Whole 

serum 
_ 

Human Phospho-
STAT5a/b 
(Y694/699) 

Mouse 
monoclonal 8-5-2 IgG 

Millipore 
(U.K.) 

Limited, 
Building 6 
Croxley 
Green 

Business 
Park, 

Watford 

 
_ 
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2.3 Buffers 
 
The following table is listed the buffers which were routinely used: 
 
          Table 2.5  Buffers were used in this study 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.4 Plasmids and Oligonucleotides  
 
Plasmids were used as a reporter vectors in this study and oligonucleotides are listed 

in the following table. 

      Table 2.6  Plasmids and oligonucleotides were used in this study 
Plasmid/Oligonucleotide Supplier 

pGL4.34[luc2P/SRF-RE/Hygro] 
Vector 

Promega UK Ltd, Southampton, United 
Kingdom. 

TransLucent GAL4-STAT5B TAD 
fusion protein expression vector, 

pTL-STAT5B. 

Panomics Inc. And  Caltag MedSystems 
Ltd, Cambridge, UK  

Buffer Composition 
PBS 130mM NaCl, 27mM KCl, 4.3mM 

Na2HPO4, 1.4mM KH 2 PO 4  (pH 7.2) 
TBS 50mM Tris HCl (pH 7.4), 150mM NaCl 
TBS/T 50mM Tris HCl (pH 7.4), 150mM NaCl 

+ 0.1% (v/v) Tween20 
Stripping buffer 200mM Glycine, 0.1% (w/v) SDS, 1% 

(v/v) Tween20. (pH 2.2) 
Blocking buffer TBS/T, 5% (w/v) either non-fat dried 

milk or BSA 
Tris HEPES-SDS running buffer  100mM Tris HCl (pH 8.0), 1% (w/v) 

SDS, 100mM HEPES. 
Transfer Buffer 25mM Tris HCl, 192mM Glycine, 20% 

(v/v) ethanol. 
4X SDS sample buffer 200mM Tris HCl (pH 6.8), 40% (v/v) 

glycerol, 0.4% (w/v) Bromophenol, 8% 
(w/v) SDS. 

RIPA buffer 50mM Tris HCl (pH 7.4), 150mM 
NaCl,1mM EGTA. 

Lysis buffer RIPA buffer, 1mM PMSF, 1mM Na-
deoxycholic acid, 1% (v/v) NP40, 1mM 
Na3VO4, 2ug/ml Leupeptin  

1X TBE buffer 100mM Tris HCl, 0.9mM Boric acid, 
0.01mM EDTA. 



 63 

TransLucent luciferase reporter 
vector, pTL-Luc 

TransLucent GAL4-BD controll 
vector, pTL-BD 

Panomics Inc. And  Caltag MedSystems 
Ltd, Cambridge, UK 

SignalSilence Control siRNA 
(Fluorescein Conjugate) 

New England BioLabs, Hitchin, 
Hertfordshire, UK 

 

2.5 Cell lines and culture 

 
The main cell line model used in this study, SMS-SB cells, was derived from a female 

patient  at the leukemic phase of acute lymphocytic leukaemia 265. These cells were 

cultured in RPMI-1640 medium supplemented with 10% (v/v) heat-inactivated foetal 

calf serum, 2mM fresh glutamine, (100U/ml) penicillin and (100µg/ml) streptomycin 

at 37º C and 5% CO2 in a humidified incubator. For experimental purposes, these 

cells were adapted and grown in protein-free hybridoma medium (PFHM) 

supplemented with (100U/ml) penicillin and (100µg/ml) streptomycin at 37º C and 

5% CO2 in a humidified incubator. The other two cell line models used in this study 

are called BAF03 and 697. BAF03 is a  murine pro-B cell line and was cultured in 

RPMI- 1640 medium with 50µM 2-ME (mercapto-ethanol) and 1ng/ml murine IL-3 

as well as 10% (v/v) heat-inactivated foetal calf serum, 2mM fresh glutamine, 

(100U/ml) penicillin and (100µg/ml) streptomycin 266. The 697 is a pre-B cell line 

extracted from a 12-year boy diagnosed with Acute Lymphocytic Leukaemia (ALL) 

267. This cell line was cultured in RPMI-1640 medium supplemented with 10% (v/v) 

heat-inactivated foetal calf serum, 2mM fresh glutamine, (100U/ml) penicillin and 

(100µg/ml) streptomycin at 37º C and 5% CO2 in a humidified incubator. 
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2.6 Proliferation assay 
 

2.6.1 Using tritiated thymidine  
 
Cells were harvested and washed twice in PFHM then plated at a density of 5000 

cells/100µl in each well of a 96-well flat bottom plate in PFHM. The plate was 

incubated for 72 hours at 37º C and 5% CO2 in a humidified incubator in the presence 

or absence of stimulants, soluble CD23, long peptide (LP); a peptide was derived 

from soluble CD23 and contains the RKC motif, vitronectin, SDF1-α and PDGF-AB. 

Then cells were pulsed with 0.3µCi/well (5.5 x 10-6  µmol) tritiated thymidine ([3 H ]- 

TdR) and re-incubated   at 37º C and 5% CO2 in a humidified incubator for 6 hours 

before harvesting and determination of incorporation by liquid scintillation 

spectrometry.  

 

2.6.2 Using Alamar blue 
 
Cells were harvested and washed twice in PFHM then plated at a density of 5000 

cells/100µl in each well in 96-well white flat bottom  plates in PFHM. In the case of 

697 and BAF03, cells were plated in PHFM medium supplemented with 1% (v/v) 

FCS. The plate was incubated for 48 hours at 37ºC and 5% CO2 in humidified 

incubator in the presence or absence of stimulants as noted above. In the case of using 

inhibitors, cells were incubated with either Tyrphostin AG490 or Tyrphostin AG1295 

for 3 hours at 37º C and 5% CO2 before plating. The plate then was incubated at the 

same conditions for a further 24 hours  after adding 10µl of Alamar blue dye (44 µM 

resazurin salt ) to each well 268. Plates were read in a fluorimeter at 544nm excitation 

filter and 590nm emission filter. 
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2.7 Flow Cytometry 
 
SMS-SB cells were harvested and washed three times in PBS buffer supplemented 

with 0.5% (w/v) BSA. Cells then were resuspended in the same buffer to a final 

density 5 x 106 cells/ml and 25ul of cells (1 x 105 ) was transferred to a 5ml tube for 

staining. Cells were Fc-blocked by treatment with 1ug of human IgG/105 cells for 15 

minutes at room temperature prior to staining. Cells then were incubated for 45 

minutes at 4ºC with 1µg of either FITC-conjugated or R-Phycoerythrin-conjugated 

mouse monoclonal antibodies raised against the human receptor or marker of interest. 

Following the incubation cells were washed twice in 4ml PBS buffer supplemented 

with 0.5% (w/v) BSA. Finally, cells were resuspended in 300µl of PBS buffer for 

flow-cytometric analysis.  

 

2.8 Protein Estimation assay (Bradford’s method) 
 
A protein concentration standard curve was plotted by using gradient concentrations 

(0, 5, 10, 15, 20,25,30,35 and 40 µg/ml) of BSA. Either standards or samples were 

diluted in dH2O before adding 1ml of Bradford’s reagent ( 0.01% (w/v) Coomassie 

Blue G250, 5.1% (v/v) H3PO4 and 5% (v/v) Ethanol). Samples and standards were 

incubated at room temperature for 10 minutes and the light absorption was detected 

by spectrophotometry at A595 nm. The unknown protein concentrations were each 

determined in accordance with the linear range of the resulting standard curve.  
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2.9 Antibody arrays 

    

2.9.1 Principle of the assay 
 
This assay is intended to analyze the phosphorylation profiles of kinases and their 

protein substrates. It is a simultaneous detection of the levels of phosphorylation of 46 

kinase phosphorylation sites, using capture and control antibodies spotted in duplicate 

on nitrocellulose membranes. These antibodies catch their targets in the  lysates 

during overnight incubation. The captured targets then will be visualized by 

biotinylated detection antibodies. Some signals will produced when the membrane 

developed by streptavidin-HRP followed by chemiluminescent detection reagents. 

Each capture spot corresponds to the amount of phosphorylated protein bound.   

 

2.9.2 Procedures   
 
SMS-SB cells were harvested and washed twice in PFHM and adjusted to a density of 

107 cells/ml in PFHM. Four universal tubes each contained 107 cells/ml;  one of them 

was a control without treatment and at 0  time,  the rest of them were treated by either 

5µg/ml of long peptide or 250ng/ml of sCD23 and incubated at 37º C and 5% CO2 in 

a humidified incubator for 5, 10 and 20 minutes time course. The cells were washed 

twice in ice-cold phosphate-buffered saline to quench the reaction. After the second 

wash the supernatants were discarded and the pellets were resuspended in 1ml of lysis 

buffer supplied with the antibody array kit. Samples then were incubated on ice for 30 

minutes on rocking platform at 20xg, then centrifuged at 14000 xg for 5 minutes at 

4ºC. Supernatants were then transferred into a clean 1.5 ml microcentrifuge tube. The 
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Bradford protein estimation was carried out for the soluble fractions before using 

them for the array protocol. Each membrane to be used was blocked by incubating in 

1ml of array buffer which is supplied with the array membranes for 1 hour on a 

rocking platform. The lysates were then diluted to 120µg/ml using the array buffer 

and applied onto the blocked membranes. Membranes then were incubated overnight 

at 4ºC. On the following day membranes were washed three times by 1x wash buffer 

for 10 minutes each. After the third wash each membrane was incubated with 1ml of 

array buffer containing 20µl of detection antibody cocktail for 2 hours at room 

temperature on a rocking platform. Membranes were washed again three times by 1x 

wash buffer for 10 minutes each followed by incubating with streptavidin-HRP for 30 

minutes at room temperature on a rocking platform. Three washes were applied to the 

membranes with 1x wash buffer for 10 minutes each. Finally, membranes were 

developed by the chemiluminescence substrate for three minutes and exposed several 

times for different periods on the X ray film.  

 

2.10 Western blotting 

 
SMS-SB cells were harvested and washed twice with protein-free media (PFHM) and 

adjusted to a density of 5 × 106 cells/ml. Two ml of cells  either treated or untreated 

were washed in ice-cold  radioimmunoprecipitation assay (RIPA) buffer (50mM Tris-

HCl pH 7.4, 150mM NaCl, 1mM EGTA) and lysed in RIPA buffer containing (1mM 

Na3VO4, 1% (v/v) NP40, 1mM Na deoxycholate, 1mM PMSF and 2µg/ml 

Leupeptin). Protein concentrations were estimated by Bradford’s method. The same 

protein concentration of lysates was loaded per lane on a 4-12% NuPAGE Novex Bis-
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Tris gradient gels using the MES buffer; both were supplied from Invitrogen. Proteins 

were separated on the gels at 180V and 70mA for 1 hour. Separated proteins were 

transferred onto nitrocellulose membrane in the presence of transfer buffer at 30V and 

220mA for 90 minutes using (XCell SureLock) blotting system supplied from 

Invitrogen. The membrane then was blocked by TBS/T buffer containing either 5% 

non fat milk or BSA according to the antibody supplier protocol and then rinsed once 

with TBS/T buffer. The membrane was incubated with primary antibody for either 

four hours at room temperature or overnight at 4 º C according to the supplier protocol 

and washed by TBS/T three times for 5 minutes each before incubating for one hour 

with HRP-linked secondary antibody. After that the membrane was washed three 

times by TBS/T buffer for 5 minutes each. Ultimately, the membrane was developed 

by using the chemiluminescence substrate and exposed several times with different 

periods on the X ray film.  

 

2.11 Immunoprecipitation 
 
SMS-SB cells were harvested and washed twice with PFHM and adjusted to a density 

of 5 × 106 cells/ml. Two ml of cells  either treated or untreated were washed twice in 

ice-cold PBS buffer and lysed in 500µl of HEPES buffer containing (1% (w/v) Octyl-

β-D-glucopyranoside, 0.5% (v/v) Protein inhibitor cocktail). The protein 

concentrations were estimated by Bradford’s method. 400µl containing 400µg of 

protein from each sample and the control was incubated for 30 minutes with  4µg 

antibody against the target protein in a spin column purchased from Millipore which  

contains precipitation slurry, and 1µg antibody capture affinity ligand supplied with 

the kit. The spin columns were washed twice with 1x wash buffer. Target proteins 
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were eluted by applying three cycles of adding 70µl of 2x elution buffer and 

centrifugation at  2400 xg for 30 seconds. The eluates were collected after each 

elution cycle. The eluates were run on a 4-12% NuPAGE Novex Bis-Tris gradient 

gels using the MES buffer supplied from Invitrogen and immunoblotted as described 

in western blotting section. 

 
 

2.12 Electrophoretic-Mobility Shift Assay (EMSA) 
 
SMS-SB cells were harvested and washed twice with PFHM and adjusted to a density 

of 5 × 106 cells/ml. Two ml of cells either treated or untreated during the time course 

were washed once with 5ml of ice-cold PBS buffer containing phosphatase inhibitors 

supplied with the nuclear extraction kit (purchased from Active Motif Company). 

Samples were spun down at 4ºC for 5 minutes at 2400 xg. The pellets were lysed by 

500µl hypotonic buffer supplied with the kit and incubated for 15 minutes on ice on a 

rocking platform at 20 xg. Samples were vortexed at high speed each with 25µl 

detergent supplied with the kit and centrifuged at 14000xg for 30 seconds at 4ºC. 

Pellets were resuspended in 50µl complete lysis buffer and incubated for 30 minutes 

on ice on a rocking platform at 20 xg. The suspensions were centrifuged at  4ºC for 10 

minutes at 14000xg. The supernatants were  collected and the protein concentration 

was measured by Bradford’s method. Three micrograms of each sample was 

incubated for 5 minutes at room temp with (1µl of STAT5b biotinylated probe 

[CAGAATTTCTTGGGAAAGAAAAT], 1µg poly d(I-C), 2µl of 5x binding buffer 

and 3µl of  nuclease-free water ). Mixtures were incubated at 15°C for 30 minutes in a 

thermal cycler. Samples were mixed with 1 µl of loading dye and run on 6.0% non-
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denaturing polyacrylamide gel with pre-chilled  0.5X TBE. Separated protein/DNA 

complexes on the gel were transferred onto N+ nylon membranes purchased from 

Amersham company. Membranes were baked at 80ºC for an hour for protein/DNA 

cross linking and blocked for 15 minutes in a blocking buffer. Membranes were 

incubated for 30 minutes with streptavidin- HRP followed by three washing cycles 

with 1x wash buffer for 8 minutes each. At the last step membranes were incubated in 

detection reagent supplied with the kit for 5 minutes and then for 5 minutes again  

with the chemiluminescence substrate before  exposing several times for different 

periods on the X ray film.  

 

2.13 Calpain activity assay 
 
SMS-SB cells were harvested and washed twice with PFHM and adjusted to a density 

of 2 × 106 cells/ml. For the short term stimulation study, cells were divided into three 

50ml tissue culture tubes each containing 6ml of cellular suspension; one was a 

control without treatment, one was treated with 1.8nM vitronectin and one treated 

with 33uM long peptide. The three tubes were incubated at 37º C and 5% CO2 in a 

humidified incubator.  From the control tube 1ml of cells was immediately incubated 

on ice as  time 0 control. One ml from each tube was removed and immediately  

incubated on ice at each time point (3,15,25 and 40 minutes). However, for the long 

term stimulation study the same procedure was followed but the differences were the 

time points which were 30 minutes, 1, 2 and 4 hours. Samples were then centrifuged 

at 14000xg for 30 seconds at 4ºC. Supernatants were discarded and the pellets were 

resuspended in 100µl of extraction buffer supplied with the kit and incubated on ice 

for 20 minutes with gentle mixing by tapping from time to time. Samples then 
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centrifuged at 10000xg for 1 minute at 4ºC. Supernatants were collected and the total 

protein was estimated by using Bradford’s reagent. In 96-well white flat bottom plate 

samples were plated in 60µg total protein/ 85µl of extraction buffer.10µl of 10x 

reaction buffer was added into each well followed by adding a specific Calpain 

substrate, which is called AC-Leu-Leu-Tyr-7-amino-4-Trifluoromethylcoumarin (AC-

LLY-AFC).The plate was incubated for in the dark at 37º C. Fluorescent activity was 

measured by a fluorimeter at 355nm excitation filter and 505nm emission filter.   

 

2.14 Control for siRNA Transfection efficiency 
 
SMS-SB cells were harvested and washed twice with PFHM and adjusted to a density 

of 3 × 105 cells/ml. In a 24 well tissue culture plate, 250µl of cells were plated in each 

well. The oligo/Transfection reagent complex was formed in three different ratios to 

examine transfection efficiency and toxicity, 3µl of Control siRNA (Fluorescein 

Conjugate) were diluted in 50µl PFHM and mixed with either 1µl,2.5µl or 4µl of 

Transfection reagent. The mixtures then were vortexed and incubated at room 

temperature for 15 minutes before adding each of them to the cells in the appropriate 

well. The plate then was incubated at 37º C and 5% CO2 in a humidified incubator. 

After 48 hours cells were harvested and washed twice with PBS and resuspended in 

500ul of PBS. Finally, cells were assayed  by flowcytometry.  

 

2.15 Reporter gene experiments  
 
The plasmid/Transfection reagent complex was formed by diluting 3µg of 

pGL4.34[luc2P/SRF-RE/Hygro] Vector in 180µl PFHM without antibiotics and 
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mixed with 8µl of X-tremeGENE HP Transfection reagent. The mixture was 

incubated for 25 minutes at room temperature. In terms of the STAT5 reporter vector 

assay, the complex was formed by diluting 1.5µg TransLucent GAL4-STAT5B 

(TAD) fusion protein expression vector with 1.5µg of TransLucent luciferase reporter 

vector in 180µl PFHM without antibiotics and then adding 8µl of X-tremeGENE HP 

Transfection reagent. Meanwhile, SMS-SB cells were harvested and washed twice 

with PFHM and adjusted to a density of 3 × 105 cells/ml. 90µl of cells/well were 

plated in  96-well white flat bottom  plate and mixed with 10µl of 

plasmid/Transfection reagent complex. The plate was incubated at 37º C and 5% CO2 

in a humidified incubator for 48 hours before adding stimulants (sCD23, LP and 

vitronectin) and re incubating at the same conditions for 6 hours as described in 

Chapter 4 . Cells then were lysed and treated with luciferen substrate. The luciferase 

activity was estimated in three minutes after adding the substrate by illuminometer .    

 

2.16 Data analysis 
 
Results are shown as mean plus or minus standard error of the mean (SEM) of 

triplicate experiments. Data were normalized by dividing each result by the control. 

Statistical comparison was performed using the Student paired t test. The minimal 

level of significance was P<0.05. Each result represents an accumulated data for at 

least three experiments that were carried out in three different dates unless otherwise 

stated. In terms of western blots, EMSA blots and the antibody membranes the data 

were quantitated by using a software called Image J (National Institutes of Health), to 

estimate the optical density of each experimental sample.   
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3. SMS-SB cells growth in response to 
different ανβ5 integrin ligands and other 
proteins related to B-cell progenitors 
growth.  
 

3.1 Introduction 
 
There are several factors which stimulate growth and maturation of B-cell precursors 

during their development in bone marrow. As mentioned in the introduction chapter, 

stromal-derived factor (SDF1) is one of the important growth and survival  factors for 

B-cell progenitors which integrates with other growth factors such as interleukin-4, 

interleukin-7 and Platelet-derived growth factor (PDGF) 269, 270, 271. In this study, the 

cell line model used is SMS-SB, which is a line derived from a nine-year old girl 

diagnosed as an acute lymphocytic leukaemia patient 265. These cells express the 

cytoplasmic µ heavy chains but do not secrete them 265. In addition, they do not 

express IgM and light chains 265. Phenotypically, SMS-SB cells seem to be located 

between two stages of B-cell progenitors development;  pro-B cell and pre-B cell 265.  

On the other hand, CD23 is highly expressed on chronic lymphocytic leukaemia cells 

but  was not detected in acute lymphocytic leukaemia cells 272, 273. However, soluble 

CD23 was highly increased  in the serum of  42  chronic lymphocytic leukaemia 

patients  comparing with 32 normal individuals 274. In terms of SMS-SB cells, they do 

not express CD23, CD11b-CD18, CD11c-CD18 and CD21 275. Furthermore, CD23 

sustains bcl-2 protein levels in SMS-SB cells in order to prevent apoptosis when they 

are cultured in low cell density 275. This action occurs when soluble CD23 binds the 

ανβ5 integrin 95. Although ανβ5 integrin binds its specific ligands such as vitronectin 
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and fibronectin through an RGD motif, it binds CD23 via a tripeptide motif Arg-Lys-

Cys (RKC) located close to the C-type lectin domain of CD23 95. 

 The main purpose of this chapter is to investigate the ability of different ligands to 

stimulate SMS-SB growth at the minimal density, and in addition, to find out which 

signalling targets are involved in the action of sustaining SMS-SB cell growth.  

3.2 Results 

3.2.1 Phenotypic characterisation of SMS-SB cell li ne 
 
There are several markers used to identify the B-cell development stages. As 

mentioned previously SMS-SB cells are B-cell progenitors extracted from an acute 

lymphocytic leukaemia  patient. The aim of this experiment is to identify the 

development stage that SMS-SB cell represents and to investigate the expression of 

growth-related  receptors which this study will focus on, mainly the αVβ5 integrin as 

well as PDGFR and CXCR4 ( the SDF-1 receptor ).  

Figure 3.1 clearly shows that SMS-SB cell express CD19 a major determinant of B-

cell lineage and, to a lesser extent, CD45. However, SMS-SB cells do not express 

CD34, a marker for the very early stage of haematopoietic cell development. In 

addition, these cells do not express some pre-B cell markers such as µ-chain, or CD10 

and they do not express CD5 which is most likely a marker of T-cell and human foetal 

lymphoid tissues 276 as shown in figure 3.1. In terms of the receptors that this project 

is to focus on, SMS-SB cells do not express CD23 and β3 integrin but, they clearly do 

express CXCR4,  PDGF receptor and αVβ5 integrin as shown in figure 3.1. These 

data suggest that SMS-SB cell is a Pro-B cell and probably at the late  developmental 

stage of  pro-B cell because they also express cytoplasmic µ-chain, ( data not shown ) 

265 . 
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Figure 3.1  Phenotypic characterization of SMS-SB cell. SMS-SB cells were harvested and 
washed twice with PBS buffer supplemented with 0.5% (w/v)BSA and adjusted at 5x106 
cell/ml. 25µl of cells were incubated individually with 10µl of either R-Phycoerythrin or 
FITC conjugated antibodies to CD23, CD19, CD5, CD10, CD45, µ-Chain, β3 integrin, αVβ5 
integrin, PDGF receptor, CXCR4 or CD34. The negative controls were Mouse IgG1-PE 
conjugated and Mouse IgG1-FITC conjugated. Shown expressing was assessed by using 
FACS system. FACS staining for the negative controls is shown as blue shaded area and for 
the each MAb is shown as a green line. These data are representative of at least three 
independent staining experiments.  
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3.2.2 SMS-SB cell growth is cell density dependent.  
 
There are two purposes for this experiment. The first aim is  to investigate the effect 

of cell density on SMS-SB cell growth which has published by our laboratory already 

271. According to Tsai et. Al (1994). SMS-SB cells express and release PDGF as an 

autocrine factor which is also implicated to sustain cell growth at high density. The 

other goal of this experiment is to compare the accuracy of Alamar blue, a fluorescent 

dye and tritiated thymidine incorporation in the context of growth estimation.  

Briefly, Alamar blue is a solution of resazurin salt added in a non-fluorescent 

oxidized/blue form, which undergoes reduction caused by oxygen consumption 

metabolism of living cells 277. The reduced form of the resazurin salt is a 

fluorescent/pink, which is called resorufin, and can be measured by a fluorimeter with 

544nm excitation filter and 590nm emission filter 277. The tritiated thymidine [3H]-

TdR proliferation assay depends upon measuring the amount of [3H]-TdR 

incorporated into DNA by using a scintillation counter 278.  

Panel (a) in figure 3.2 clearly shows that SMS-SB cells proliferate about eight-fold 

when plated at 5X105 cell/ml compared with those plated at 5X104 cell/ml, about five-

fold when plated at 2.5X105 cell/ml, and about three-fold when plated at 1X105 cell/ml 

compared with those plated at 5X104 cell/ml. These data were collected by using the 

thymidine incorporation method. Statistically, the growth increase of cells was 

significant over the three biological replicates in which the P value was less than 0.05. 

 Panel (b) in figure 3.2 shows similar data using Alamar blue. Surprisingly, Alamar 

blue method gives a similar reading to [3H]-TdR method in which P values of three 

biological replicates are less than 0.001. In general, these data suggest that SMS-SB 
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cell growth is cell density-dependent and that either Alamar blue or [3H]-TdR 

corporation can be used to detect proliferation accurately. 
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Figure 3.2 Density dependent SMS-SB cell growth. SMS-SB cells were 
cultured at the indicated cell densities for 48 hours at 37ºC and 5% CO2.(a) Cells 
were pulsed for the final six hours with 0.3µCi/well [3H]-TdR and harvested onto 
filter mats for liquid scintillation spectrometry.(b) Cells were incubated for 24 
hours further with 4.4uM resazurin salt (Alamar blue) and the fluorescence was 
estimated in a fluorometer at 544nm excitation filter and 590nm emission filter. ** 
P < 0.001, * P < 0.05 versus corresponding 5x104 cell/ml. (These data represent three 
independent experiments for each). 
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3.2.3 Soluble CD23 and LP stimulate proliferation o f SMS-
SB cells while vitronectin does not 

 
In this experiment, three different stimuli were used to investigate the role of αVβ5 

integrin in SMS-SB cell growth. LP is a synthetic peptide derived from soluble CD23 

with a length of 15 amino acids and contains the RKC motif, a motif via which 

soluble CD23 binds to the αVβ5 integrin. The third ligand is Vitronectin, one of the 

matrix ligands which binds to the αVβ5 integrin via its RGD motif. 

Figure 3.2 clearly shows that SMS-SB cell growth is dose-dependent when cells are 

stimulated by either sCD23 or LP (the RKC motif-containing ligands). In panel (a) 

SMS-SB cell growth was increased about 10-fold following stimulation with LP at a 

concentration of 66µM (10µg/ml) and about 9-fold with 33µM (5µg/ml). Both of 

these stimulations were statistically significant different from unstimulated controls (P 

values were less than 0.005 for three independent experiments). A similar trend was 

obtained using sCD23 stimulation  ( panel (b) ) which gives about 8 fold stimulation 

when added at 20nM (500ng/ml) and about 6 fold with 10nM (250ng/ml). Data 

analysis for three independent experiments shows that both of these stimulations are 

significant ( P values are less than 0.005 and 0.05, respectively ). On the other hand, 

SMS-SB cells did not respond to increasing concentrations of Vitronectin 0.36-3.6nM 

(50-500ng/ml) as shown in figure 3.2 panels (c). These data suggested that sCD23 

(the RKC containing ligand) could stimulate αVβ5 integrin to modulate B-cell 

precursor growth whereas matrix ligands (the RGD containing ligands) could not. 
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Figure 3.3 αVβ5 integrin mediates growth of SMS-SB cells when ligated by sCD23 
and LP (a peptide derived from sCD23 contains RKC motif), but not vitronectin.  
SMS-SB cells (5×104 cells / ml in protein-free medium) were stimulated  with the 
indicated concentrations of stimulants for 48hr, then processed for Alamar Blue 
fluorescence (sCD23 and Vitronectin treated plates ) or were pulsed with 0.3µCi/ well 
tritiated thymidine (LP treated plates ).** P < 0.005, * P < 0.05 versus corresponding 
untreated cells. (These data represent three independent experiments). 
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 3.2.4  Stromal cell –derived factor 1 α (SDF1α) Stimulates 
SMS-SB cells proliferation. And enhances SMS-SB cel ls 
growth stimulated by LP. 

 
Stromal cell-derived factor-1 plays an important role in B-cell development 124.The 

following experiments were carried out to determine to what extent SDF-1 itself can 

stimulate SMS-SB cell growth, and also to investigate  the effect of SDF-1 on cell 

growth stimulated by LP. Normally, the plasma levels of SDF-1 are between 8-

20ng/ml 279. The SDF-1 levels either in peripheral blood or bone marrow are 

dramatically increased in AML, HIV infections and Non-Hodgkin’s lymphomas  279, 

280, 281.   

Figure 3.4 Panel (a) shows that a modest increase of  SMS-SB cell growth is 

correlated with increasing concentrations of added SDF-1α. This growth increase 

peaked at 250ng/ml (31.25nM) SDF-1α, and was statistically significant ( P  value 

was less than 0.05 for three independent experiments ) compared to the cells were 

grown without treatment.  

In Panel (b), SDF-1α strikingly increases the cell growth stimulated by  5ug/ml 

(33µM) LP. Roughly, about a 20% further growth increase was observed when cells 

were co-stimulated by either 100ng/ml (12.5nM)  or 250ng/ml (31.25nM) SDF-1α,  

the differences were statistically significant ( P values were less than 0.05 for three 

independent experiments ) compared to the cells were stimulated with LP alone.These 

data suggested that SDF-1α enhances cell-growth stimulated by LP. 
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Figure 3.4  SDF1α  stimulates growth of SMS-SB cells and enhances SMS-SB cells 
proliferation stimulated by LP. SMS-SB cells (5×104 cells / ml in protein-free medium). 
Panel (a) cells were stimulated with the indicated concentrations of SDF1α for 48hr, and then 
pulsed with 0.3µCi/ well tritiated thymidine. * P < 0.05 versus corresponding untreated cells. 
Panel (b) cells were cultured with either 31.25nM (250ng/ml) of SDF1α or 33µM (5µg/ml) of 
LP or with 5µg/ml of LP plus increasing concentrations of SDF1α for 48 hours, then 
processed for Alamar Blue fluorescence. ** P < 0.005 versus corresponding untreated cells.   
• P < 0.05 versus corresponding cells stimulated with LP alone. (These data represent three 
independent experiments). 
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3.2.5  Platelet Derived Growth Factor (PDGF AB) Stimulates 
SMS-SB cells proliferation. And enhances SMS-SB cel ls 
growth stimulated by LP. 

 
There are five different isoforms of PDGF ; PDGFAA, PDGFBB, PDGFCC, PDGFDD 

and PDGFAB 146, 155, 156. Many studies  have been published over the last two decades 

demonstrates that PDGF family members are implicated in stimulating the growth of  

various cancers, angiogenesis, atherosclerosis and liver fibrosis  282, 283, 284, 285. In 

leukaemias, PDGFAB is implicated in AML cell growth, and is also expressed in 

CML, pre-B acute lymphocytic leukaemias ( particularly SMS-SB cells ) and chronic 

eosinophilic leukaemia 286, 271, 287.  

The purpose of this experiment was to investigate the role of PDGFAB as a growth 

factor for SMS-SB cells in sustaining cell growth. The other aim was also to examine 

any synergistic effect of   PDGFAB with soluble CD23, which is represented by LP. 

Figure 3.5 panel (a) shows that SMS-SB cell growth gradually increased with 

increasing PDGFAB dose. The statistical analysis for three independent experiments 

shows that there is a significant growth  increase ( P  value was less than 0.005 ) at 

250ng/ml (82.5nM), with an increase of  three-fold compared to the cells were grown 

without treatment.  

In terms of co-stimulation, panel (b) PDGF has enhanced by more than 20% cell-

growth stimulated by 5µg/ml LP. This additional growth increase was significant at 

100ng/ml and 250ng/ml of PDGFAB (P values were less than 0.05 and 0.005, 

respectively, for three independent experiments) compared to the cells stimulated with 

LP alone. 
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Figure 3.5 PDGFAB stimulates growth of SMS-SB cells and enhances cell growth 
stimulated by LP. SMS-SB cells (5×104 cells / ml in protein-free medium), panel (a) 
cells were stimulated with the indicated concentrations of PDGFAB for 48hr, then pulsed 
with 0.3µCi/ well tritiated thymidine. ** P < 0.005 versus corresponding untreated cells. 
Panel (b) cells were cultured with either 8.3nM (250ng/ml) of PDGF-AB or 33µM 
(5µg/ml) of LP or with 5µg/ml of LP plus increasing concentrations of PDGF-AB for 48 
hours, then processed for Alamar Blue fluorescence. ** P < 0.005, * P < 0.05 versus 
corresponding untreated cells. • P < 0.05, •• P < 0.005 versus corresponding cells 
stimulated with LP alone. (These data represent three independent experiments). 
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3.2.6 Soluble CD23 and LP stimulate the phosphoryla tion 
of  different kinase substrates 

 

The previous data raised the question of how LP or soluble CD23 stimulates the cell 

growth and which signalling pathway is recruited by the αVβ5 integrin as a 

consequence of its interaction with specific ligands.  

One of several recent methods for screening cell signalling pathways is an antibody 

array technique. This method depends on a group of antibodies being spotted 

individually on a nitrocellulose membrane in duplicate. These antibodies are raised  

against different human cell signalling proteins in phosphorylated form.  

This experiment revealed that either soluble CD23 or LP activates phosphorylation of  

several kinases and signal transducers. Figure 3.6 shows the antibody array blots and 

their densitometric analysis for lysates of SMS-SB cells either untreated, as a control, 

or treated with either sCD23 or LP for a 20 minutes  time course. Both stimuli 

increase phosphorylation of STAT5a/b at Tyrosine 699 which is clearly observed after 

five minutes of stimulation and sustained over the 20 minutes time course. The other 

signal transducer was  STAT2 which is phosphorylated at Tyrosine 689. Furthermore, 

both ligands stimulated the phosphorylation of Src at Tyrosine 419 but with LP that 

event came five minutes earlier. In addition, a Src family member (Yes) is 

phosphorylated at Tyrosine 426 and AMPKα2 at Threonine 172. These data might 

open a broad story  involving different signaling pathways for different purposes such 

as growth, survival or anti apoptosis. 
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Figure 3.6  sCD23 and LP stimulate different signalling targets. SMS-SB cells were 
stimulated with either the CD23-derived LP, (33µM) or with sCD23 itself (10nM) for the 
indicated times and aliquots of lysates added to individual antibody arrays and binding 
determined by ECL Panels b) and c). Panel a) shows the map of the target substrates printed 
on a nitrocellulose membrane and panel d) shows the densitometry data. 
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3.3 Conclusion 
 
 
The data presented in this chapter clearly indicate that SMS-SB cells express the 

αVβ5 integrin, PDGF receptor and CXCR4, which are related to the cell growth as 

demonstrated in the first chapter of this thesis. In addition, these cells express CD19, 

one of the common B-cell precursor markers; however, they do not express the µ-

heavy chain on the cell surface which suggests that these cells might represent the 

pro-B cell development stage. Consequently, figure 3.3, 3.4 and 3.5 show that these 

receptors are related to the cell growth after stimulating them with PDGFAB, SDF1-α, 

sCD23 and LP. Furthermore, figure 3.2 has also shown that SMS-SB cell growth is 

density dependent. These data are strongly compatible with the data published by 

Borland, G. et al, Tsai, L.H. et al and Acharya, M. et al. 95, 123, 271. 

In order to investigate how the αVβ5 integrin is involved in cell growth stimulation, 

the antibody array data demonstrated in figure 3.6 show that both sCD23 and LP 

stimulate multiple signalling targets such as STAT5, STAT2, c-Src, c-yes and 

AMPKα2 which poses several questions about the link between STAT5 

phosphorylation and cell proliferation, and about how the αVβ5 integrin can induce 

the phosphorylation of STAT5. 

Therefore, the next chapter will concentrate on confirming the antibody array data and 

on investigating STAT5 activity as well as focusing on investigating the relationship 

between the αVβ5 integrin stimulation and the phosphorylation of STAT5. 
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4. Soluble CD23 and LP activate Jak2/ 
STAT5a/b pathway due to a unique 
PDGFRβ-αVβ5 integrin association. 
 

4.1 Introduction   
 

STAT5a/b is a heterodimeric protein composed of STAT5a (94KDa) and STAT5b 

(92KDa). The difference between these two proteins is in the 12 C-terminal amino 

residues 288. STAT5a and STAT5b genes are located on chromosome 17 192. Several 

studies over the last ten years have revealed some critical roles of STAT5a/b in the 

immune system. STAT5a/b is required for T-cell proliferation, activation and 

tolerance mainly in response to IL-2 289, 290, 291. In addition, STAT5a/b is involved in 

haematopoietic cell adhesion and migration 292.  

On the other hand, the Jak2/STAT5 signalling pathway is implicated to play a crucial 

role in cell survival, proliferation and apoptosis of several leukaemias in response to a 

wide range of cytokines and growth factors 293, 294, 295. 

This chapter will concentrate mainly on investigating the role of the Jak2/STAT5a/b 

signalling pathway in SMS-SB cell growth stimulated by either sCD23 or LP to 

validate the data obtained from the antibody array experiments demonstrated in the 

previous chapter. The other important purpose for this chapter is to investigate how 

does the αVβ5 integrin contribute to the Jak2/STAT5ab signalling pathway. 
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4.2 Results 
 

4.2.1 αVβ5 integrin mediates STAT5 phosphorylation due 
to its binding to different ligands 

 

The data later are based on simple western blotting technique. There are two purposes 

for these experiments. The first aim is to validate the data that was obtained from the 

antibody array experiment. The second aim is to investigate the difference between 

different ligands that bind to αVβ5 integrin via different binding motifs in activating 

STAT5 phosphorylation. Three ligands in this experiment have been tested, soluble 

CD23 and LP which both bind by the RKC motif, and vitronectin which binds to the 

αVβ5 integrin via the RGD motif. 

Figure 4.1 clearly shows that LP activates the phosphorylation of STAT5 at tyrosine 

699 after five minutes of stimulation and sustains that event over the 20 minutes time 

course. Similar data were observed with stimulating the cells with soluble CD23 

instead of LP as shown in figure 4.2. In contrast, as shown in figure 4.3 vitronectin 

does not show any significant stimulation. These data suggest that the αVβ5 integrin 

activates STAT5 phosphorylation when it binds to the soluble CD23 but not when the 

vitronectin binds.   
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Figure 4.1 LP Stimulates the αVβ5 integrin to promote STAT5b phosphorylation.  
Lysates were extracted from cells either stimulated by 33µM LP or without stimulation for the 
indicated time course and, after western blotting, probed with antibodies to phosphorylated 
STAT5b then stripped and re-probed with antibodies to STAT5b protein Panel a). Panel b) is 
the densitometric analysis for the phospho-STAT5/STAT5 ratio demonstrated. The other 
Panels c)and d)  are the densitometric analysis for the phospho-STAT5/STAT5 ratios for  
another blots of two individual experiments have been carried out in different weeks. Black 
bars represent phospho-STAT5/STAT5 ratios in stimulated cells in all cases, and the white 
bars represent the unstimulated cells. 
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Figure 4.2 Soluble CD23 Stimulates the αVβ5 integrin to promote STAT5b 
phosphorylation.  Lysates were extracted from cells either stimulated by 10nM sCD23 or 
without stimulation for the indicated time course and, after western blotting, probed with 
antibodies to phosphorylated STAT5b then stripped and re-probed with antibodies to STAT5b 
protein Panel a). Panel b) is the densitometric analysis for the phospho-STAT5/STAT5 ratios 
demonstrated. The other Panels c)and d) are the densitometric analysis for the phospho-
STAT5/STAT5 ratios for another blots of two individual experiments have been carried out in 
different weeks. The white bars represent the unstimulated cells while the black bars represent 
the stimulated cells. 
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Figure 4.3 Vitronectin does not clearly stimulate the αVβ5 integrin to promote STAT5b 
phosphorylation. Lysates were extracted from cells stimulated by 1.8nM vitronectin or 
without stimulation for the indicated time course and, after western blotting, probed with 
antibodies to phosphorylated STAT5b then stripped and re-probed with antibodies to STAT5b 
protein Panel a). Panel b) is the densitometric analysis for the phospho-STAT5/STAT5 ratios 
demonstrated. The other Panels c)and d) are the densitometric analysis for the phospho-
STAT5/STAT5 ratios for another blots of two individual experiments have been carried out in 
different weeks. The white bars represent the unstimulated cells while the black bars represent 
the stimulated cells. 
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4.2.2 Both soluble CD23 and LP strongly induce STAT 5 / 
DNA binding but vitronectin causes a smaller induct ion 

 
 
STAT5a/b is a member of  the STAT proteins which are transcription factors playing 

different biological roles in cell survival, growth and apoptosis 227, 191. The active form 

of STAT5b interacts with the DNA at specific binding sequence 

CAGAATTTCTTGGGAAAGAAAAT  296, 297. 

 Therefore to test binding activity, the Electrophoretic-Mobility Shift Assay (EMSA) 

was used to test the transcription factor/DNA binding activity by using the specific 

binding sequence for probing STAT5 binding.   

Figure 4.4 clearly shows that the STAT5/DNA interaction is strongly enhanced after 

15-30 minutes of stimulating cells with either 33µM LP or 10nM soluble CD23 

compared to untreated cells. In contrast, a minimal STAT5/DNA interaction activation 

was observed using vitronectin as stimulant. These data give an additional 

confirmation of the antibody array data and nicely fit the results obtained by the 

western blotting.  
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Figure 4.4 Stimulation of SMS-SB cells by sCD23, LP and vitronectin activate 
STAT5b/DNA binding activity.  (a) Nuclear extracts (3µg) of either stimulated or un 
stimulated  SMS-SB cells were mixed with biotin-labelled STAT5 probe and protein/DNA 
complexes were separated on a non-denaturing gel, transferred to a nylon membrane and 
detected using strepatvidin-HRP. (b) The band intensities were quantitated by densitometry for 
the demonstrated gel. (c) and (d) represent the band intensities for two further experiments. 
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4.2.3 Both soluble CD23 and LP induce STAT5b 
transcriptional activity 

 
 
In this experiment, SMS-SB cells have been transiently co-transfected with two 

plasmids,  an expression vector containing a trans-activation domain (pTL-TAD) of 

STAT5b fused to the Gal4-DNA binding domain (DBD). The other vector is a Gal4-

responsive luciferase plasmid (pTL-Luc). Therefore, when STAT5b becomes activated 

it will activate luciferase expression via inducing Gal4 expression. Ultimately, the 

STAT5b transcriptional activity is measured by estimating luciferase activity in a 

luminometer. Cells were then stimulated with either 33µM LP, 10nM sCD23 or 1.8nM 

vitronectin 48 hours following the transfection. 

The data shown in figure 4.5 clearly indicate a significant luciferase activation caused 

by both LP and sCD23 which abut double of luciferase activation compared with 

untreated co-transfected cells. 

On the other hand, vitronectin does not give a significant response which is compatible 

with the previous data. So far, the data obtained from the previous work suggest that 

the αVβ5 integrin modulates the activation of STAT5b via it binding to the soluble 

CD23 and LP the RKC containing ligands. However, these data raise two important 

questions about the role of STAT5 in the cell-growth stimulated by both ligands and 

how the αvβ5 integrin can mediate the STAT5 phosphorylation.  
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Figure 4.5 LP and sCD23 clearly stimulate STAT5b responsive reporter vector but 
vitronectin (Vn) causes less stimulation. SMS-SB cells were transiently co-transfected by 
(pTL-luc) and  (pTL-TAD) STAT5b responsive vector. Cells were incubated for 48 hours at 
37oC and 5%CO2 followed by adding the stimuli; 1.8nM Vn (blue bar), 33µM LP (black bar) 
and 10nM sCD23 (grey bar). After 6 hours further incubation, the luciferase activity was 
assessed by using luciferase substrate in a plate illuminometer. (These data are representative 
of three independent experiments).   
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4.2.4 LP and Soluble CD23 stimulate the phosphoryla tion 
of  Jak2 while vitronectin shows less  stimulation 

 
There are several Jak/STAT pathways playing different biological roles in response to 

various cellular stimuli. STAT5 usually lies downstream of two Jak isoforms, Jak2 and 

Jak3 depending on the ligand, cell type and the receptor for ligand. However, any Jak 

family member needs to be phosphorylated in order to phosphorylate the downstream 

target. The phosphorylation of Jak2 at tyrosine 1007/1008 is potentially required for 

Jak2 auto- or trans-phosphorylation and for Jak2 kinase reactions 298 

Therefore, the aim of this experiment is to investigate the effect of LP, sCD23 and 

vitronectin on Jak2 phosphorylation for answering the question of how STAT5 is 

eventually phosphorylated by these ligands due to their interaction with the αVβ5 

integrin. 

Figure 4.6 shows a western blot of cellular extracts of either treated or untreated cells 

during a 20 minutes time course which has been probed by anti-phospho                   

Jak2 Y1007/1008 which is also stripped and reprobed by anti-total Jak protein. As clearly 

shown in this figure, LP significantly increases Jak2 phosphorylation levels comparing 

with the control (untreated cells). Similarly, increased levels are observed with soluble 

CD23 stimulation but not with vitronectin. 

The data shown in figure 4.6 suggest that the trend of Jak2 phosphorylation might fit 

the trend of STAT5 phosphorylation in response to the same αVβ5 integrin-ligands. 

However, further investigation needs to be done to disclose whether Jak2 is the STAT5 

kinase or not. 
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Figure 4.6 Stimulation of SMS-SB cells by sCD23, LP and vitronectin increase Jak2 
phosphorylation. Lysates were extracted from cells either stimulated with 33µM LP, 10nM 
sCD23 or 1.8nM vitronectin or without stimulation for the indicated time course and, after 
western blotting, probed with antibodies to phosphorylated Jak2 then stripped and re-probed 
with antibodies to Jak2 protein Panel a). Panel b) is the densitometric analysis for the phospho-
Jak2/Jak2 ratios demonstrated. The other Panels c)and d) are the densitometric analysis for the 
phospho-Jak2/Jak2 ratios for another blots of two individual experiments have been carried out 
in different weeks. Black bars are for LP stimulated cells, grey bars are for sCD23 stimulated 
cells and the blue bars are for vitronectin treated cells. 
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4.2.5 Either Jak2 inhibitor (AG490) or PDGF recepto r 
inhibitor (AG1295) reduces both SMS-SB cell growth and 
STAT5 phosphorylation 

 
AG490 and AG1295 are synthetic compounds belonging to a large family called 

tyrphostins.  Biologically, tyrphostins are protein  tyrosine kinase (PTK) inhibitors 

which  are designed for blocking their selective target 299. In some references they are 

called Tyrphostin-490 and Tryphostin-1295.  

The chemical structure of the AG490 is N-benzyl-3,4-dihydroxybenzylidenecyanoacet-

amide. Wang et al  reported that AG490 inhibits Jak2, STAT1 and STAT3 tyrosine 

phosphorylation 300. In other context, Meydan et al showed that AG490 induces the 

programmed death of human B-precursor leukaemic cells  301. The chemical structure 

of AG1295 is 6,7-Dimethyl-2-phenylquinoxaline and it is a selective PDGF receptor 

kinase acting as a competitive inhibitor for the ATP binding site of the kinase 302.   

In order to verify whether Jak2 is a kinase of STAT5a/b or not 100µM AG490 was 

incubated with SMS-SB cells cultured in protein-free hybridoma medium for three 

hours before adding the stimuli. Panel(a) in figure 4.7 clearly shows that AG490 

reduces the cell growth stimulated by LP by more than 30% and the P value for three 

individual experiments was less than 0.05. Similar growth reduction occurs with cell 

growth stimulated by soluble CD23 with a similar outcome of the statistical analysis 

for three independent experiments. In the case of vitronectin, there is no clear growth 

stimulation and the effect of AG490 is similar to untreated cell growth.  

In the same context, AG490 strongly reduces the phosphorylation of both Jak2 and 

STAT5 in either untreated cells or cells stimulated by LP or vitronectin as shown in 

panel (c) figure 4.7.  
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The purpose for using the PDGF receptor kinase inhibitor (AG1295) is to investigate 

the possible role of PDGF receptor kinase in Jak2/STAT5 phosphorylation and also to 

examine its role in SMS-SB cell growth stimulated by different αVβ5 integrin. 

 In figure 4.7, panel (b) clearly shows that AG1295 also reduces the cell growth 

induced by either LP or soluble CD23 in which SMS-SB cells have been incubated 

with 25µM of AG1295 for three hours before proceeding to either the proliferation 

assay or cell signalling investigation by using western blotting technology. The cell 

growth stimulated by either ligand was significantly reduced by about 30% and the P 

values for three independent experiments was less than 0.05 for both ligands. 

Panel (c) in the same figure shows that AG1295 interrupts both Jak2 and STAT5 

phosphorylation. These data suggest that somehow the αVβ5 integrin might recruit 

both PDGF receptor kinase and Jak2 in order to activate STAT5 due to its binding to 

different ligands, particularly the RKC motif containing ligands.  
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Figure 4.7 AG490 and AG1295 reduce SMS-SB cells  proliferation stimulated by LP , 
sCD23 and both inhibitors interrupt Jak2/STAT5 phosphorylation. Panel (a) and (b) 
SMS-SB cells (5 ×104 cells / ml in protein-free medium) were pre incubated with either 
100µM  AG490 or 25µM  AG1295 for three hours and then stimulated by either 33µM of LP, 
10nM  sCD23 or 1.8nM  vitronectin for 48hr, then processed for Alamar Blue fluorescence. ** 
P < 0.005 versus corresponding untreated control. *  P < 0.05 versus corresponding cells 
stimulated with LP, • P < 0.05 versus corresponding cells stimulated with sCD23 and ** P < 
0.05 versus corresponding untreated cells). Panel (c) lysates were extracted from SMS-SB cells 
were pre incubated with either 100µM AG490 or 25µM AG1295 for three hours at 37ºC and 
5%CO2 in a humid incubator and stimulated by either 33µM LP or 1.8nM vitronectin for 5 
minutes before extraction. After western blotting, membranes were probed with antiphospho 
STAT5bY699 then stripped and re-probed with antibodies to STAT5b protein or probed with 
antiphospho Jak2Y1007/1008 then stripped and re-probed with antibodies to Jak2 protein. These 
data are representative of three independent experiments. 
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4.2.6 SMS-SB cells fail to accept control siRNA tra nsfection 
 
RNA interference is one of the recent useful tools to knockdown any gene of interest 

selectively. Briefly, siRNA is a small double stranded RNA that undergoes a 

cleavage process by a multidomain enzyme called Dicer (DCR) in order to form an 

RNA-protein assembly which in turn down regulates the gene that has a  compatible 

sequence to the single strand  of siRNA 303. This mechanism is called RNA-

silencing 304. Normally, the RNA-silencing mechanism plays an important role in 

immune responses to viruses especially in plants and Drosophila 305, 306. In 

mammalian cells, there is no clear relation between the expression of small siRNA 

and  the interferon machinery 307. However, the RNA-silencing system plays a 

crucial role in regulating gene expression in plants, insects and mammals 308, 309.  

In molecular biology, the small interfering RNA has become one of the useful 

techniques to study either gene or protein functions by  knocking down a certain 

gene selectively 310. The strategy of using siRNA for knocking down a gene is based 

on transfecting the cells with a specific siRNA which needs an optimized 

transfection protocol, reagents and cellular conditions which are different from one 

cell type to the next 310.  

Before going forward with using siRNA for knocking down either Jak2, PDGF 

receptor or STAT5 in SMS-SB cell, a control siRNA ( fluorescein conjugated ) was 

transfected into SMS-SB cells in different concentrations to assess the transfection 

efficiency by flowcytometry. 

Figure 4.8 panel (a) clearly shows that the cell viability is affected by the 

transfection reagent. The cell viability is reduced to about 20% when incubated  24 

hours after the control siRNA transfection with 4µl of transfection reagent 
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comparing to cell viability without transfection. The P values for three independent 

experiments is less than 0.005.  

On the other hand, the transfection efficiency increases with increasing the 

transfection reagent volume figure 4.8 panel (b). However, there is a critical 

reduction in cell viability accompanied with the siRNA transfection efficiency. 

Therefore, using siRNA technology is not suitable for cell signalling study in SMS-

SB cells.  
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Figure 4.8  SMS-SB cell viability is reduced with increasing siRNA transfection 
efficiency. SMS-SB cells were transfected with control siRNA ( Fluorescein conjugated ) by 
the indicated transfection reagent volumes. Panel (a) represents the cell viability 24 hours post-
transfection. Panel (b) represents the percentage of viable transfected cells measured by a 
flowcytometer 24 hours post-transfection. * P < 0.05 , ** P < 0.005 versus corresponding 
untransfected cells. These data represent three independent experiments. 
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4.2.7 Platelet derived growth factor receptor  (PDG FRβ) and 
αVβ5 Integrin interaction study 
 
In general, integrins activate several signalling pathways in order to initiate different 

biological events in response to a wide range of ligands. Several studies over the last 

two decades have revealed that integrins are able to activate cell signalling pathways 

in  different ways such as receptor clustering,  receptor cross-linking or cytoskeleton 

proteins assembly 311, 312, 313, 314. In fibroblasts, Zemkove and colleagues have 

reported that the β subunit of  PDGF receptor forms cell surface bridges with either 

β1 or β3 integrins after stimulating  the cells with transglutaminase 315. 

The previous data suggested that the αVβ5 integrin mediates the activation of 

Jak2/STAT5 pathway via its binding with either sCD23, LP or slightly with 

vitronectin and that activation is interrupted by  either Jak2 or PDGF receptor kinase 

inhibitors. Therefore, the questions raised are how  the  αVβ5 integrin contributes to 

the Jak2/STAT5 pathway and what is the role of PDGF receptor in that event. In 

order to answer these questions an immunoprecipitation strategy was carried out to 

examine the possible link between PDGF receptor and αVβ5 integrin. 

Figure 4.9 clearly shows that the β subunit of PDGF receptor is present in the β5 

integrin immunoprecipitates of either treated or untreated cells. The middle panel of 

figure 4.9 shows that β5 integrin is also present in the  PDGF-β receptor 

immunoprecipitates. In addition, Jak2 protein was found in PDGF-β receptor 

immunoprecipitates but not with  β5 integrin as shown in the bottom panel. 

 These data give a further conformation of Jak2/STAT5 pathway activation via the  

αVβ5 integrin and might suggest that there is an association between the integrin 

and PDGF receptor complex.  
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Figure 4.9 PDGF receptor-β and αVβ5 interact. Control and stimulated lysates from SMS-
SB cells were immunoprecipitated with antibodies to PDGFR-β or αVβ5, and the separated 
precipitates probed with anti-PDGFR-β, anti-β5 or anti-Jak2 antibodies as indicated. The 
negative control is a cell lysate immunoprecipitated with non-immune IgG, while the positive 
control is a  lysate blotted directly. (These data represent one of three independent 
experiments).  
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4.3 Conclusion 
 
 
The data presented in this chapter establish that the αVβ5 integrin stimulates the 

phosphorylation of STAT5 due to its binding to either sCD23 and LP. As shown in 

figure 4.1 and 4.2, sCD23 and LP strongly activate the phosphorylation of STAT5. In 

contrast, figure 4.3 demonstrates that vitronectin does not show clear activation. 

Moreover the data shown in figure 4.4 and 4.5 indicate that both LP and sCD23 

stimulate STAT5/DNA binding and transcriptional activity with minimal activation 

shown with vitronectin. 

In addition, the data presented in figure 4.6 show that the αVβ5 integrin activates   Jak2 

phosphorylation due to its binding with either sCD23, LP or vitronectin. SMS-SB cell 

growth and Jak2 phosphorylation was blocked by using either Jak2 or PDGF receptor 

inhibitors as shown in figure 4.7. 

Interestingly, the data obtained from the immunoprecipitation strategy strongly suggest 

that there is an association between the αVβ5 integrin and the PDGF receptor which 

might influence the stimulation of the Jak2/STAT5 signalling pathway via the αVβ5 

integrin. However, further experiments need to be done to explain the nature of αVβ5 

integrin- PDGF receptor association, for example by using confocal microscopy and 

fluorescence resonance energy transfer . 

In a different context, according to Acharya et al (2009), both sCD23 and LP stimulate 

ERK1/2 phosphorylation which might be one of the key targets that might underlie the 

SMS-SB cell growth mediated by the αVβ5 integrin. Therefore, the next chapter will 

proceed to investigate the role of both sCD23 and LP in the activation of the ERK1/2 

signalling pathway and to study the effect of SDF1-α and PDGFAB on STAT5 and 

Serum response factor (SRF) transcriptional activation. Furthermore, it will contain an 
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examination of the effect of sCD23 in activating the proliferation of 697 and BAF03 

cell line models in order to study the importance of the αVβ5 integrin in promoting the 

survival and proliferation of B-cell progenitors and acute lymphocytic leukaemia cell 

line models. 
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5. αVβ5 integrin mediates the 
phosphorylation of multiple kinase 
substrates due to its binding to soluble 
CD23, LP and Vitronectin 
 
 
 

5.1 Introduction 
 
Many published studies over the last two decades have revealed that several 

signalling pathways contribute to cell proliferation and apoptosis. One of these 

pathways is the Ras/Raf/MEK/ERK cascade. Our laboratory has published that the 

sCD23-αVβ5 integrin interaction activates ERK phosphorylation 123. Therefore, the 

main aim of this chapter is to follow up on the ERK phosphorylation stimulated by 

sCD23 to look for downstream targets of phosphorylated ERK such as p90RSK 

and SRF. The other aim is to investigate the effect of either PDGF-AB or SDF1-α 

on the activation  of STAT5b and SRF  reporter vectors in SMS-SB cells. 

This chapter will include an attempt to investigate if there is a role of the αVβ5 

integrin in controlling Calpain enzymatic activity in SMS-SB cell due to integrin 

interaction with different ligands. Calpain is a calcium-dependent endopeptidase 

that plays a crucial role in activating caspase pathways in response to either 

intrinsic or extrinsic factors and also cleaves some cytoskeletal proteins that  

involved in signal transduction pathways mediated by integrins particularly β 

integrins 316, 317. Moreover, Pfaff et al have reported that Calpain cleaves β integrin 

cytoplasmic domain 318. 
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The last purpose of this chapter is to investigate the effect of sCD23-αVβ5 integrin 

interaction in activating STAT5 in two different cell lines represent different stages 

in B-cell lineage. 
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5.2 Results 

 

5.2.1 Soluble CD23, LP and vitronectin activate p90 RSK at 
four residues in different trends 

 
The p90RSKs are 90KDa serine/threonine kinases which are also called ribosomal S6 

kinases. In humans, there are four isoforms of RSKs, RSK1, RSK2, RSK3 and RSK4, 

as well as  two structurally-related proteins, mitogen and stress- activated kinase-1 and 

-2 ( MSK1 and MSK2 ) 319, 320, 321. 

Several published articles show that RSKs lie downstream of the MEK/ERK pathway 

in response to different stimulants such as growth factors, cytokines and hormones 322, 

244, 323, 320. According to Jensen et al the phosphorylation of the linker region between 

N- and C- termini is required for the kinase activation of p90RSK 324. Six different 

phosphorylation sites have been clearly identified in p90RSK, and four of them are 

located in the linker region; these are  Ser221, Thr 573, Ser 363 and Ser 380 324, 325, 326. 

In addition, Threonine 573 has been identified as the binding site for ERK1/2 325, 327. 

The p90RSK plays different biological roles as it is a growth factor- and cytokine- 

responsive cell signalling element, for instance in cell proliferation, differentiation and 

motility 328, 329, 330, 331.  

In fact, the purpose for studying p90RSK activation after stimulating the cells by 

sCD23, LP and vitronectin is to extend the earlier ERK phosphorylation studies to seek 

targets downstream of  ERK1/ERK2. 

Figure 5.1 clearly shows that p90RSK phosphorylation at Thr573  increased within 

five minutes of adding LP, and was sustained over the 20 minutes time course; a 

similar effect occurs on p90RSK at Thr359, Ser363 and Ser380. Soluble CD23  and 

vitronectin also give similar impact on these four residues but to different extents and 
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at different times during the 20 minutes experimental time course. On the other hand, 

there is a clear increase in p90RSK phosphorylation at  Thr359, Ser363 and Thr573 in 

unstimulated cells but that always came after 20 minutes of incubation at the same 

conditions.  
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Figure 5.1 Stimulation of SMS-SB cells by sCD23, LP and vitronectin increase p90RSK 
phosphorylation at different residues. Lysates were extracted from cells either stimulated by 
33µM LP, 10nM sCD23 or 1.8nM vitronectin, or without stimulation for the indicated time 
course and, after western blotting, probed with antibodies to phosphorylated p90RSK(Thr573), 
(Thr359,Ser363) or (Ser380) then stripped and re-probed with antibodies to p90RSK protein 
(Panel a). Panel b) is the densitometric analysis for the phospho-p90RSK/RSK ratios. Black 
bars are for LP stimulated cells, grey bars are for sCD23 stimulated cells and the blue bars are 
for Vitronectin treated cells. These data are representative of at least three independent 
experiments.   
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5.2.2 The MEK1/2 inhibitor U0126 inhibits the 
phosphorylation of both ERK1/2 and p90RSK modulated  
via the αVβ5 integrin 

 
 

U0126 is a MEK1/2 inhibitor initially identified as  an inhibitor of AP-1 

transactivation 258. The chemical structure of U0126 is1,4-diamino-2,3-dicyano-1,4-

bis[2-aminophenylthio]    butadiene 332.   In the last ten years U0126 has been 

broadly used in the context of studying the role of MEK/ERK pathway in many cell 

types and under many different conditions. 

According to Acharya et al 123 ERK1/2  is phosphorylated in SMS-SB cells after 30 

minutes of stimulation with sCD23 123. In this experiment, SMS-SB cells have been 

incubated with 5µM of U0126 for 30 minutes and then stimulated with either 

sCD23, LP or vitronectin for 10 minutes. In the other part of the experiment, SMS-

SB cells were either stimulated with sCD23, LP or vitronectin or without 

stimulation for 10 minutes which represents a control.  

Figure 5.2 panel (b) clearly shows that LP, sCD23 and vitronectin stimulate the 

phosphorylation of ERK1/2 at T202/Y204 and T185/Y187 after 10 minutes of the 

stimulation to different levels. This event is strikingly absent in cells pre-incubated 

with U0126. The same figure shows that U0126 strongly inhibits the 

phosphorylation of p90RSK at all four residues (Ser380, Thr 359, Ser 363 and Thr 

573) that are stimulated by the same ligands at the same time point. These data 

suggest that the phosphorylation of both ERK1/2 and p90RSK by these ligands is 

MEK-dependent. However, it is not clear yet whether the phosphorylation of 

p90RSK lies downstream of ERK1/2, which is a good fit the work reviewed in this 
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chapter, or another kinase such as ERK5. In fact, these possibilities require further 

study. 
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Figure 5.2 U0126 inhibits both ERK1/2 and p90RSK phosphorylation mediated by  
αVβ5 integrin. SMS-SB cells were pre-incubated either in presence or absence of  5µM 
U0126 for 30 minutes and  stimulated for 10 minutes by the indicated ligands or without  
stimulation as a control. After western blotting, (a) the separated proteins were probed with 
antibodies to phosphorylated p90RSKT359/S363, p90RSKT573, p90RSKS380 or with antibodies to 
p90RSK protein. Panel (b)  the separated proteins were probed with antibodies to 
phosphorylated  ERK1T202/Y204/ERK2T185/Y187 or with antibodies to ERK1/2 protein. (These 
data represent one of three independent experiments).  
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5.2.3 Neither LP nor vitronectin affects calpain en zymatic 
activity during either chronic or acute time course  
windows   
 
 

The calpain activity assay is based up on the detection of emitted light by a 

fluorimeter due to cleaving a specific calpain cleavable substrate ( Ac-LLY-AFC ). 

There are two purposes for  measuring  calpain activity in the context of the αVβ5 

integrin-mediated signaling pathways. The first aim is to investigate the role of 

calpain in cleaving cytoskeletal proteins due to stimulating SMS-SB cells by either 

LP or vitronectin and for that purpose the calpain activity was measured over a 

0,3,15,25 and 40 minutes time course. The other aim is to investigate the extrinsic 

effect of either LP or vitronectin on apoptosis pathways and for that reason the 

calpain activity was estimated within a 0, 0.5,1,2 and 4 hours time course. 

Figure 5.3 shows that there is no clear effect on calpain activity with either LP or                     

vitronectin stimulation with the exception of 20% increase following vitronectin 

stimulation at the 3 minute time point. These data suggest that the calpain system is 

not involved in cell signaling pathways mediated by αVβ5 integrin due to its 

interaction with sCD23,LP or vitronectin.   
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Figure 5.3 There is no change in Calpain activity  in SMS-SB cells stimulated by either 
LP or vitronectin within either short or long time course. SMS-SB cells were either 
stimulated by LP or Vitronectin or without stimulation for the indicated time points. Cellular 
proteins were extracted in the absence of protease inhibitors. 60µg total protein/ 85µl of 
extraction buffer were mixed with 10µl of 10x reaction buffer and 5µl of  Calpain 
substrate provided from abcam followed by an hour incubation at 37ºC in the dark. The 
reaction was measured by fluorimeter at 355nm excitation filter and 505nm emission filter. 
Panel (a) demonstrates the Calpain activity within short time course and panel (b) 
demonstrates the Calpain activity within long  time course experimented. * P < 0.05 versus 
corresponding untreated cells at the same time point. (These data represent three independent 
experiments).  
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5.2.4  Vitronectin, sCD23 and LP activate SRF-respo nsive 
luciferase vectors  

 
Serum response factor (SRF) is a nuclear protein that binds the Serum Response 

Element (SRE) in order to regulate the transcription of set of genes that control 

normal cell growth, apoptosis, and other cellular activities 333, 334.  Several published 

studies show that SRF forms different ternary complexes with different transcription 

factors such as Elk-1, SAP-1 and Ets-1 in order to regulate a wide range of genes 335,  

336, 337. Moreover, serum stimulation strongly increases SRF transcriptional activity 

338. The phosphorylation of SRF lies downstream of different kinases mainly ERK2, 

p90RSK and JNK  339, 340, 341, 342. 

The investigation of  the effect of sCD23,LP and vitronectin on SRF activation is to 

follow up the data that were obtained at the beginning of this chapter and in order to 

identify downstream signalling  outputs of both ERK1/2 and p90RSK. 

As shown in figure 5.4  the αVβ5 integrin ligands  clearly increase the luciferase 

activity  in SMS-SB cells which have been transiently transfected with pGL4.34 

[luc2P/SRF-RE/Hygro] vector. In this experiment, a 10% (v/v) of serum was used as a 

positive control which shows very clearly that the serum stimulates SRF activation up 

to 3-fold compared to untreated cells. These data suggest that the αVβ5 integrin 

activates the transcriptional activity of SRF via its interaction with different ligands. 
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Figure 5.4  Vitronectin, LP and sCD23 stimulate SRF responsive reporter vector. SMS-
SB cells were transiently transfected by pGL4.34[luc2P/SRF-RE/Hygro] vector. Cells 
were incubated for 48 hours at 37oC and 5% CO2 followed by adding the stimuli 1.8nM Vn 
(blue bar), 33µM LP (black bar), 10nM sCD23 (grey bar) and 10% (v/v) serum, as a positive 
control,. After 6 hours further incubation, the luciferase activity was measured by using 
luciferase substrate in a plate luminometer. (These data are for one representative of three 
independent experiments ).   
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5.2.5 SDF1-α stimulates SRF reporter vector but does not 
stimulate STAT5 reporter vector 

 
 
In the third chapter of this thesis, we have shown that SDF1-α  stimulates SMS-SB 

cell growth at 31.25nM. However, the SDF1-α stimulation was much less than the 

growth stimulated by LP, a soluble CD23 derivative, and also SDF1-α  enhances the 

LP stimulation by about 20%. Therefore, the aim of investigating the effect of SDF1-

α  in both STAT5 and SRF reporter activation is an attempt to study the link between 

growth stimulated by both sCD23 and SDF1-α in order to find out key points of that 

event. 

In figure 5.5 panel (a) SDF1-α does not show a considerable effect on STAT5 

responsive vector, while sCD23 has significantly stimulated that reporter. On the 

other hand, SDF1-α activates the SRF responsive vector but also not as much as 

sCD23 stimulation (figure 5.6 (b)). 

 In addition, SDF1-α fails to cause additional stimulation of either the STAT5 and 

SRF reporter activity when added together with sCD23. These data suggest that 

SDF1-α does not mediate STAT5 activation but it does activate SRF at a limited 

level. 
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Figure 5.5  SDF1-α stimulates SRF responsive reporter vector but not STAT5 reporter 
vector. SMS-SB cells were transiently co-transfected with (pTL-luc) and (pTL-TAD) 
STAT5b responsive vectors panel (a), or transfected with pGL4.34[luc2P/SRF-RE/Hygro] 
vector panel (b). Cells were incubated for 48 hours at 37oC and 5%CO2 followed by adding 
the stimuli; 31.25nM recombinant SDF1-α (blue bar), 10nM sCD23 (grey bar) or both 
together (black bar). After 6 hours further incubation, the luciferase activity was measured by 
using luciferase substrate in a plate illuminometer. (These data are for one representative of 
three independent experiments). 
 



 125 

5.2.6 PDGF stimulates STAT5 transcriptional activit y but 
does not stimulate SRF   

 

The previous data show that PDGF stimulates SMS-SB cell growth and enhances the 

cell growth stimulated by the LP, a sCD23-derived peptide. In addition, there appears 

to be an association between PDGF receptor-β and αVβ5 integrin due to its interaction 

with the specific ligands. The purpose for examining the effect of PDGF in 

stimulating the transcriptional activity of both STAT5 and SRF is to follow up the 

previous data and to find out whether STAT5 and SRF can be activated by the PDGF 

receptor. 

Figure 5.6 panel (a) shows that PDGF stimulates the transcriptional activity of STAT5 

which fits well the literature review of JAK/STAT pathway and the data shown in the 

two previous chapters. In the same panel, sCD23 shows even further stimulation 

compared to the untreated control cells. 

However, PDGF does not show a clear stimulation in activating the SRF responsive 

vector as demonstrated in panel (b), whereas sCD23 shows a highly significant 

stimulation. On the other hand, PDGF does not enhance either STAT5 or SRF 

reporter activated by sCD23. These data suggest that PDGF stimulates STAT5 

transcriptional activity to a certain extent but does not drive the activation of SRF. 
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Figure 5.6 PDGF stimulates STAT5 transcriptional activity but does not stimulate SRF. 
SMS-SB cells were transiently co-transfected with (pTL-luc) and (pTL-TAD) STAT5b 
responsive vector (panel (a)) or transfected with pGL4.34 [luc2P/SRF-RE/Hygro] vector 
(panel (b)). Cells were incubated for 48 hours at 37oC and 5% CO2 followed by adding the 
stimuli; 8.3nM PDGF-AB (blue bar), 10nM sCD23 (grey bar) or both together (black bar). 
After 6 hours further incubation, the luciferase activity was measured by using luciferase 
substrate in a plate illuminometer. (These data are for one representative of three independent 
experiments). 
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5.2.7 Soluble CD23 induces the growth of 697 and BA F03 
cell line models  

 
 
697 is a cell line derived from the bone marrow of a 12 year-old boy diagnosed with 

acute lymphocytic leukaemia (ALL) 267. The 697 cell represents the pre-B stage of 

development of B-cell in which expresses the cytoplasmic and surface µ-chains 267. 

Therefore, the 697 cells seem to represent the next developmental stage of B cell 

development compared to SMS-SB cells. 

 The other cell line to be examined is called either BAF03 or BA/F3. These cells are 

lymphoblasts derived from murine bone marrow and cannot grow without exogenous 

IL-3 supplementation 343, 266. These cells do not express IgM which is a marker for 

both immature and mature B lymphocytes 343. 

 In fact, the aim of this experiment is to ask whether the sCD23 stimulates the growth 

of these cell lines as it does with the SMS-SB cells. Figure 5.7 (panel a) clearly shows 

that 1µg/ml (40nM) of sCD23 significantly stimulates 697 cell growth up to about 

2.5-fold compared to untreated cells ( P value is less than 0.005 ).  

Similarly, 2µg/ml sCD23 stimulates the growth of the BAF03 cells up to 2-fold , 

which is also significant ( P value is less than 0.005 ) as shown in figure 5.7 (panel b). 

These results suggest that the sCD23-αvβ5 interaction stimulates the growth of 

different stages of B cell precursors.  
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Figure 5.7  sCD23  stimulates growth of 697 and BAF03 cells. Panel (a) 697 cells were 
cultured at  (5×104 cells / ml in protein-free medium supplemented by 1% (v/v) FCS) and 
stimulated  with 40nM of sCD23 for 48hr (gray bar). Panel (b) BAF03 cells were cultured at  
(5×104 cells / ml in protein-free medium supplemented by 1% (v/v) FCS) and stimulated  with 
80nM of sCD23 for 48hr (gray bar). Cells then were processed for Alamar Blue fluorescence 
followed by 24hr further incubation at the same conditions. * P < 0.005 versus corresponding 
untreated cells. (These data represent three independent experiments). 
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5.3 Conclusion 
 
 
The data presented in this Chapter show that αVβ5 integrin activates p90RSK 

phosphorylation at four different residues Ser380, Thr 359, Ser 363 and Thr 573 due 

to its binding to the extracellular matrix ligands represented by vitronectin and the 

soluble ligands such as CD23 and LP as shown in figure 5.1. The phosphorylation of 

these residues is required  for the  p90RSK kinase activation  324, 325, 326. Moreover, the 

data shown in figure 5.2 indicate that the phosphorylation of p90RSK by these ligands 

was completely blocked by the specific MEK1/2 inhibitor (U0126) which suggests 

that the activation of MEK is essential for the phosphorylation of both ERK1/2 and 

p90RSK. Although these data are consistent with several published reports it is not 

clear yet whether ERK1/2 is the kinase of the p90RSK or not which needs further 

investigations.  

The data presented in figure 5.5 show that SDF1-α activates the SRF reporter 

construct but not the STAT5 construct. In contrast, PDGFAB stimulates the STAT5 

transcriptional activity but not the SRF. These findings may suggest that PDGFAB 

involves the Jak2/STAT5 pathway while SDF1-α involves the 

MEK/ERK/p90RSK/SRF signalling pathway, in order to stimulate SMS-SB 

proliferation. 

Finally, soluble CD23 activates the growth of both 697 and BAF03 cells at different 

concentrations 40nM and 80nM respectively which indicates that the sCD23-αvβ5 

interaction might be important in inducing the growth and survival in ALL B cells.  
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6 Discussion 
 
 
The data presented in this thesis show that the αVβ5 integrin, PDGF receptor and 

CXCR4 are expressed on SMS-SB cells. These receptors stimulate cell growth to 

characteristic levels in response to different ligands. As shown in the first results 

Chapter, the αVβ5 integrin mediates SMS-SB cell growth when it binds either LP or 

sCD23 which both contain the RKC motif. In addition, both SDF1-α and PDGF-AB 

stimulate SMS-SB proliferation to a limited extent. 

Moreover, sCD23, LP and vitronectin induce the JAK2/STAT5b signalling pathway 

to different levels and at different times over a 20 minutes time course. In addition, 

the third Chapter of this thesis showed that sCD23, LP and vitronectin stimulate the 

phosphorylation of ERK1/2 and p90RSK, and induce SRF transcriptional activity in 

SMS-SB cells. 

 

6.1 SMS-SB cell phenotypic characterization 
 
SMS-SB is a cell line  derived from a female patient  in the leukemic phase of 

lymphocytic leukaemia 265.  Smith and colleagues found that these cells  express 

cytoplasmic µ-chain 265. The data shown in the first results Chapter of this thesis show 

that these cells express CD19 which is the major marker of B-cell progenitors. 

However, these cells do not express CD34  which is a determinant of the  early stage 

of  antigen- independent phase of B-cell development. In addition, the SMS-SB cell 

does not express CD5, a marker of B-cells in both human fetal and postnatal lymphoid 

tissues 276. Furthermore, these cells do not express some pre-B cell determinants such 

as CD10 and µ-chain at the cell surface.  The data shown in this thesis and the data 
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presented by Smith et al suggest that the SMS-SB cell probably represents the stage 

between pro-B and pre-B cells. Figure 6.1 demonstrates the possible stage of SMS-SB 

cells within the B-cell lineage scheme. Figure 3.1 shows that SMS-SB cells express 

αVβ5 integrin, but not αVβ3 integrin, and also express the PDGF receptor and 

CXCR4: expression of these markers is consistent with data from other reports 265, 123 

. 
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Figure 6.1 B-cell development stages in Bone Marrow. SMS-SB cell represents the area 
between pro-B and pre-B cell according to the data shown in the third Chapter and  Smith RG 
et al  265. 
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  6.2  SMS-SB cell growth mediated via different soluble 
ligands 
 

The proliferation data presented in Chapter 3 show that SMS-SB cell growth is 

increased in response to different stimuli. This growth increase is different from one 

ligand to the other and it is dose-dependent. 

In this regard, figure 3.2 showed that SMS-SB cell growth is density-dependent which 

is compatible with Tsai et al who showed that SMS-SB cells express PDGF as an 

autocrine growth factor 271. The fact that these cells fail to sustain their own growth at 

low density which might indicates that the expression of the PDGF in these cells 

requires an extra communication between the cells such as cell-cell adhesion and the 

αVβ5 integrin might play a role in that kind of adhesion. This hypothesis needs 

further work such as knocking the αVβ5 integrin down using Lentiviral small hairpin 

RNA (shRNA) followed by a cell density-dependent growth study. In addition, the 

cell density growth experiments in this study were assessed by two different methods; 

Alamar blue and tritiated thymidine incorporation, and there is a robust signal-to-

noise ratio in both of them which means either of these methods could be used for 

mammalian cell proliferation studies. 

Stimulation of SMS-SB cells using either sCD23 or LP, (the RKC motif-containing 

ligands) which act via the αVβ5 integrin induced significant growth increase. LP 

stimulates SMS-SB cell growth at the concentrations of 33 and 66µM and sCD23 

shows a similar effect. Both LP- and sCD23-driven growth stimulation seems to be 

dose-dependent as shown in figure 3.3. On the other hand, a matrix ligand containing 

the RGD motif, vitronectin, does not stimulate the cell growth, which suggests that 

the αVβ5 integrin stimulates SMS-SB when it binds RKC motif-containing ligands 
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but not RGD motif-containing ligands. These data are consistent with results  

published by both Acharya et al 123 and Borland et al 95. In the same context, figure 

3.4 and figure 3.5 clearly demonstrated that either PDFGAB or SDF1-α induces SMS-

SB cell growth to modest levels, and both ligands significantly enhance the cell 

growth stimulated by LP. These data are also compatible with the data shown by 

Acharya et al 123 and Tsai et al 271. However, more investigations should be done to 

determine whether that significant proliferative response to the different ligands used 

in this study, is specific for SMS-SB cells and other types of leukaemia as shown in 

figure 5.7 or important at a specific stage of B-cell development. One useful approach 

is studying the effect of these ligands and the role of the αVβ5 integrin in normal B-

cell precursors. 

 

6.3 Different kinase substrates stimulated by either 
sCD23 or LP 
 
The antibody array data clearly showed that multiple signalling pathways might 

control how the αVβ5 integrin mediates the growth increase stimulated by sCD23. A 

surprising observation presented in figure 3.6 is that both LP and sCD23 strongly 

induce the phosphorylation of STAT5 at tyrosine 699, and moderately on STAT2 at 

tyrosine 689. This seems to be unusual in that the αVβ5 integrin rarely mediates the 

phosphorylation of any STAT family member according to the work reviewed in the 

first Chapter of this thesis. In addition, this event was consistent over the 20 minute 

time course experimented. The other observation on the array is that both LP and 

sCD23 stimulate the phosphorylation of c-Src at tyrosine 419. This event appeared 

after 5 minutes of LP stimulation and was increased gradually over the 20 minutes of 
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sCD23 stimulation. Similar trends are observed with c-yes which was phosphorylated 

at tyrosine 426. c-yes is a member of Src family kinases and both c-yes and c-Src can 

regulate different signalling pathways involved in cell growth, motility, survival and 

differentiation 344, 345. Therefore, the phosphorylation of c-yes with the same trends of 

phosphorylation of c-Src by both ligands might represent a good technical control. 

Both LP and sCD23 activate the phosphorylation of the AMP-activated protein kinase 

α2 (AMPKα2) at threonine 172, a protein that plays a crucial role in ATP generating 

mechanisms and protein synthesis 346, 347. In fact, the phosphorylation of AMPKα2 in 

response to both ligands might be involved in energy supply for the cell growth 

stimulated by these ligands or might be involved in a protein synthesis regulation; this 

merits further investigations.   

6.4 STAT5b activation  
 
 
In normal conditions, IL-7 plays an essential role in early B-cell development via 

activating STAT5, and STAT5a/b is also required for survival of CD8+ T cells 226, 227.  

In addition, STAT5 controls Bcl-6 expression in germinal centre B cells which leads 

to self-renewal and differentiation of  human memory B cells 228. However, STAT1, 

STAT3 and STAT5 were found to be activated in response to different cytokines and 

growth factors in several leukaemic cell line models, particularly in  early B-precursor 

acute lymphoblastic leukaemia and chronic myeloid leukaemia and this activation 

mainly lies downstream of JAK2 196, 197, 200. Moreover, Catlett-Falcone et al showed 

that constitutive STAT3 signalling activation underlies  the apoptosis resistance of 

multiple myeloma  cells in which the activated STAT3 in turn activates Bcl-2 and 

Bcl-xL expression 204.  
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The data illustrated in this thesis show that the αVβ5 integrin mediates the 

phosphorylation and activation of STAT5b due to binding specific ligands. As shown 

in figures 4.1 and 4.2, both sCD23 and LP stimulate STAT5 phosphorylation at 

tyrosine 699 over the 20 minutes time course while vitronectin does not. The 

phosphorylation of STAT5 at this specific residue is required for STAT5 activation 

208, 213.  These data validate the results obtained by the antibody array and also 

highlight another difference between the RGD- and RKC- containing stimuli. In 

addition, the phosphorylated STAT5 has DNA binding and transcriptional activity as 

shown in figures 4.4 and 4.5. These figures demonstrated that LP and sCD23 activate 

cell growth and STAT5 to similar extents which suggest that STAT5 plays a key role 

in these stimulations. In the case of vitronectin, this ligand shows a minimal activation 

of STAT5 which also fits well with the proliferation data presented in Chapter 3. 

 In fact, several studies have shown that STAT5 regulates a range of genes in different 

cell types. In terms of SMS-SB cell growth stimulation, there are some candidate 

genes that might be regulated by STAT5 such as Bcl-xL in the context of anti-

apoptotic mechanisms, cyclin D or STAT5 might regulate the expression of PDGF, the 

autocrine factor that might underlie the cell density growth dependence. Therefore, it 

would be very interesting to identify the STAT5 target genes in response to soluble 

CD23- αvβ5 integrin interaction. In this regard, a chromatin immunoprecipitation 

strategy (Chip-Sequencing) is one useful technique which uses a genome sequencer to 

provide the sequences of DNA fragments that have been immunoprecipitated with an 

antibody against a target transcription factor such as STAT5 348. In fact, the Chip-

Sequencing technique would identify a primary gene network which will 

subsequently need a further investigation to study the effect of the CD23- αvβ5 
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integrin interaction on the regulation of the candidate genes in the network. 

Nowadays, DNA microarray technology is one of very common method that is used 

to study the gene expression levels. This technique might be useful as a follow-up to 

Chip-Sequencing data together with a further independent gene expression estimation  

such as quantitative real time polymerase chain reaction (qRT-PCR) 349, 350.  

 

6.5 The role of JAK2  
 
 
The JAK protein family members are the main kinases for STATs 189, 190. The 

JAK2/STAT5 signalling pathway was identified in different haematopoietic 

malignant cell line models, particularly in early B-precursor acute lymphoblastic 

leukaemia in which the cells express TEL-Jak2 fusions as a product of  

t(9;12)(p24;p13) translocations, and in chronic myeloid leukaemia with additional 

translocations t(9;15;12)(p24;p15;p13) 196, 197. In both cases the transcription factor 

Tel is fused to the JH1 domain of Jak2 and consequently activates STAT1 and STAT5 

198, 199, 200.  

In this regard, the data shown in the fourth Chapter of this thesis clearly demonstrate 

that both LP and sCD23 stimulate the phosphorylation of JAK2 at tyrosine 1007/1008 

with similar trend of STAT5 activation as shown in figure 4.6. The phosphorylation of 

Jak2 at these sites is potentially required for Jak2 auto- or trans-phosphorylation and 

for Jak2 kinase reactions 298. Moreover, both STAT5 and JAK2 inductions were 

knocked down by using either PDGF receptor inhibitor (AG1295) or JAK2 inhibitor 

(AG490) and both inhibitors reduce the cell growth in the absence or presence of 

stimulation as shown in figure 4.7. Although there is a concern about the selectivity of 
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these inhibitors, these accumulated data suggest that the STAT5 activation mediated 

via the αVβ5 integrin might be JAK2 dependent and that also need more investigation 

on the role of either Jak1, Jak3 or Tyk2 in that event 351,352,353. Unfortunately, one of 

the obstacles that been faced in this project is the difficulty of transfecting SMS-SB 

cell with siRNA which is usual in all lymphocytes, however, it would be good to try 

using the Lentiviral shRNA to study STAT5 phosphorylation in either Jak2 or PDGF 

receptor knocked out SMS-SB cells.  

 
 

  6.6 PDGF receptor-αVβ5 integrin cross linking 
 

 
Several studies over the last two decades have revealed that integrins are able to 

mediate cell signalling pathways in  different ways such as receptor clustering,  

receptor cross-linking or cytoskeleton protein dynamics 311, 312, 313, 314. 

Zemkove and colleagues have reported that the β subunit of  PDGF receptor forms 

cell surface bridges with either β1 or β3 integrins after stimulating fibroblasts with 

transglutaminase 315. Sundberg and Rubin have published that the stimulation of  β1 

integrin activates the phosphorylation of the PDGF receptor 63. 

 The data presented in figure 4.9 show that the β subunit of PDGF receptor is co-

immunoprecipitated with the β5 integrin after stimulating SMS-SB cells with LP, 

sCD23 or vitronectin; the β5 integrin is present in the PDGF receptor 

immunoprecipitates. Therefore, these data are consistent with results published 

about the association of PDGF receptor with other integrins. Furthermore, JAK2 is 

present in the PDGF-receptor  immunoprecipitates but not in the β5 integrin 

precipitates which is also consistent with results of Ihle et al 185, 186 . Although these 
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data do not explain the nature of this interaction, whether it is a physical cross-link 

or due to receptor clustering, there are several useful techniques that can elucidate 

the nature of this association such as confocal microscopy and fluorescence 

resonance energy transfer. Moreover, investigating the interaction between the 

αvβ5 integrin and the PDGF receptor in different B-cell malignant cell lines would 

be valuable to understand and disrupt the proliferation mechanism and anti-

apoptosis.  

In conclusion, there are different scenarios to explain how the αVβ5 integrin 

mediates the activation of the JAK2/STAT5 signalling pathway and figure 6.2 

summarizes one of these possible scenarios. 

 

PDGFR ανβ5

sCD23/LP

Jak2
P

P
P

Jak2 Jak2

STAT5
STAT5

STAT5

STAT5
P

P
STAT5
P
STAT5

Nucleus

DNA
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Figure 6.2 Scenario for αVβ5 -mediated STAT5 activation. The binding of  the αVβ5 
integrin to the stimuli (LP or sCD23) induces PDGF receptor- αVβ5 integrin association 
and that propagates JAK2/STAT5  pathway. The activated STAT5 in turn regulates the 
transcription of certain genes that might be related to either cell growth or apoptosis.  
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6.7 The phosphorylation of ERK and p90RSK 
 
 
As mentioned in the introduction, activation of ERK1/2 was found to be linked with 

several biological actions such as cell growth, survival and proliferation in different 

cell types. Moreover, there is some evidence that the activation of ERK is required for  

cell cycle progression, and more precisely for cell transition from G1 phase into S 

phase, which means that the activated ERK is also required for DNA synthesis 234, 235, 

236. 

In haematopoiesis, the Ras/Raf/MEK/ERK cascade plays different roles depending on 

the cell type and the maturation step it is involved in. The activation of MEK/ERK 

signaling by stem cell factor (SCF) stimulates  haematopoietic stem cell proliferation 

252. Furthermore, the activation of the MEK/ERK pathway as a downstream effecter 

of cytokine receptors is involved in different  maturation steps in both lymphoid and 

myeloid lineages 253, 254. On the other hand,  activated ERK was found in about 75% 

of AML cases in a study conducted by  Ricciardi and his colleagues 255. In addition, 

increased ERK1/2 seems to be a significant indicator for both B-ALL  and T-ALL 

patients 256, 257. In the same context, the MEK inhibitor U0126 reduces growth of 

either AML or CML cell lines 258, 259. 

 In terms of SMS-SB cells, Acharya and her colleagues have shown that sCD23 

activates the phosphorylation of ERK1/2 and that this event was enhanced when cells 

were co-stimulated with SDF1-α. The data illustrated in figure 5.2 confirmed that 

sCD23 and LP stimulate the phosphorylation of ERK1/2 and that is inhibited by the 

MEK inhibitor U0126; this might mean that the phosphorylation of ERK1/2 is MEK 

dependent and that also is compatible with the work reviewed in this study. 
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Several studies have shown that RSKs lie downstream of the MEK/ERK pathway as a 

response to different stimulants such as growth factors, cytokines and hormones 322, 

244, 323, 320. There are six different phosphorylation sites that have been clearly 

identified in p90RSK, and  four of them are located in the linker region between the 

N- and C-terminal domains (Ser 221, Thr 359, Ser 363 and Ser 380); the 

phosphorylation of this region  has been shown to be required for the activity of the 

p90 RSK 324, 325, 326. In addition, Threonine 573 has been identified as the binding site 

for ERK1/2 325, 327. The p90RSK plays different biological roles as it is a growth 

factor- and cytokine-responsive cell signalling element in cell proliferation, 

differentiation and motility 328, 329, 330, 331. In the SMS-SB model, either sCD23, LP or 

vitronectin activates the phosphorylation of p90RSK at four different residues             

( Ser380, Thr 359, Ser 363 and Thr 573 ),  with different trends and levels as clearly 

shown in figure 5.1. In addition, figure 5.2 shows that the MEK inhibitor U0126 

completely inhibits p90RSK phosphorylation with either ligand. However, it is not 

clear yet whether the phosphorylation of p90RSK is via ERK1/2, via MEK directly or 

other MEK dependent kinase such as ERK5, as published by Pearson et al 354.These 

data raised several questions about the role of  p90RSK in the context of SMS-SB cell 

growth stimulated by the αvβ5 integrin. It would be very interesting to investigate the 

role of p90RSK in Bad phosphorylation and anti-apoptotic action, and to examine the 

link between p90RSK and other possible downstream targets such as SRF, c-Fos and 

c-Jun using either Lentiviral shRNA or p90RSK inhibitors.   
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6.8 The activation of SRF  
 
 
Serum response factor (SRF) regulates the transcription of sets of genes that regulate 

normal cell growth, apoptosis, and other cellular activities 333, 334. SRF forms distinct 

ternary complexes with different transcription factors such as Elk-1, SAP-1 and Ets-1 

in order to regulate a wide range of genes 335,  336, 337. Moreover, serum stimulation 

strongly increases SRF transcriptional activity 338. The phosphorylation of SRF lies 

down stream of different kinases, mainly ERK2, p90RSK and JNK  339, 340, 341, 342. 

The SRF transcriptional activity study presented in Chapter 5 shows that the αVβ5 

integrin activates SRF to drive a reporter gene construct in SMS-SB cells transiently 

transfected with that vector. Figure 5.4 shows a significant activation increase after 

stimulating the cells with vitronectin, LP or sCD23, as well as with serum stimulation, 

compared to unstimulated cells. The data for ERK1/2 and p90RSK activation, in the 

presence or absence of U0126, and the SRF reporter results raised several questions 

drawing the complexity of signalling downstream of αVβ5 integrin, and these 

questions are summarized in figure 6.3.  

Therefore, further work needs to be done to determine whether SRF lies downstream 

of MEK/ERK1/2 and possibly p90RSK. In addition, it would be promising to 

investigate which possible proteins form a ternary complex with SRF by using a co-

immunoprecipitation technique. Furthermore, it is not clear yet what kind of link 

exists between the activation of c-Src, ERK1/2, p90RSK, SRF, STAT5 and JAK2.   
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Figure 6.3 The activation of ERK1/2, p90RSK, SRF and STAT5 leaves many question 
marks in order to understand how the sCD23-αVβ5 integrin interaction sustains the 
SMS-SB cell growth. 
  

 



 143 

6.9 Calpain activity study  
 
 
Both Calpains, µ and m are cytoplasmic cysteine proteases that play several 

biological roles in cell mobility and embryonic development due to cleaving 

cytoskeletal proteins 261, 262. In addition, both µ and m Calpains play different roles in 

cell signaling and apoptosis via cleaving caspase-7, -8, -9 and caspase-3 or via 

activating caspase activators such as APAF-1 and cytochrome C  263, 264. 

The data presented in figure 5.3 clearly show that there is no clear effect on  calpain 

activity following stimulation of  the αVβ5 integrin with either LP or vitronectin for a 

short time course (0-40 minutes) or also for along time course (0.5-4 hours). 

However, these data are not enough to say that there is no caspase involvement after 

stimulating the αVβ5 integrin with its specific ligands. Moreover, changing the 

substrate used in this experiment (AC-LLY-AFC) with other substrate such as Suc-

LLVY-aminoluciferin or (EDANS)-Glu-Pro-Leu-Phe-Ala-Glu-Arg-Lys-(DABCYL) 

might give different outcomes and lead to different conclusion. 

 

 

6.10 The activation of STAT5 and SRF by either SDF1-α 
or PDGF-AB  
 
 
SDF1 plays an essential  role in haematopoietic cell maturation, survival and 

proliferation 135. In addition, in various cell types including B cell precursors, SDF1 

increases the intracellular calcium levels via ligation of CXCR4 136, 137. This ligation 

also leads to the activation of phosphatidylinositol 3 – kinases (PI3K) and 
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phosphorylation of MEK and ERK as a consequence of phosphorylation of focal 

adhesion complexes 138. Moreover, SDF1 stimulates the Jak/STAT pathway 139. On 

the other hand, SDF1 is thought to play different pathological roles such as HIV 

infection enhancement, tumour growth, inflammation and angiogenesis 140, 141, 142. In 

terms of leukaemias, CXCR4 is highly expressed in B- chronic lymphocytic 

leukaemia cells which enhances their response to SDF1 143. Meanwhile, the 

migration, cellular adhesion and survival of  different acute lymphocytic leukaemia 

cell lines are enhanced in the presence of  SDF1 144, 145. However, the data presented 

in figure 5.5 clearly show that SDF1-α on its own significantly simulates the 

transcriptional activity of SRF but does not stimulate STAT5. These data are 

consistent with the work reviewed above and the proliferation data shown in the third 

Chapter of this thesis. 

In a wider context,  several studies have shown that the PDGFAB induces cellular 

proliferation, migration and differentiation via the RAS/MAPK pathway and 

promotes cell survival through the PI3K/Akt pathway 164, 163. In addition, PDGF 

induces the activation of both STAT1 and STAT3 via the phosphorylation of  JAK 

proteins in fibroblasts 165, 166. Moreover, PDGFAB activates STAT5 in different types 

of leukaemia such as AML and CML  168, 169, 170. 

The data illustrated in figure 5.6 show that STAT5 transcriptional activity is 

significantly induced by PDGFAB whereas there is no effect on SRF activity. These 

data strongly support the proliferation data presented in Chapter three and are 

consistent with the work reviewed in this thesis. In contrast, both stimuli do not 

provide any further stimulation to the vectors beyond that induced by sCD23.  
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To conclude, SDF1-α activates SRF but does not activate STAT5 while PDGFAB 

activates STAT5 but does not activate SRF and that probably means each stimuli 

plays its role in a different way. Similarly, it would be interesting to identify which 

genes might be regulated by STAT5 in response to PDGFAB and to compare these 

genes with the set of genes regulated by STAT5 in response to either sCD23 or 

vitronectin. In addition, using qRT-PCR might give another comparison study on 

candidate gene expression levels in response to these ligands. In terms of SDF1, 

further experiments need to be done to examine the effect of SDF1 in promoting the 

phosphorylation of p90RSK and other ERK1/2 downstream targets such as c-Fos. 

 
 

6.11 The growth of 697 and BAF03 cells with soluble 
CD23 stimulations 
 
The data illustrated in Chapter 5 (figure 5.7) demonstrates that soluble CD23 

significantly increases the 697 cell growth at the concentration of 40nM, and also 

stimulates the proliferation of murine transformed cells (BAF03) at 80nM. Acharya 

and colleagues 123 have shown that soluble CD23 stimulated the proliferation of Blin-

1 cells, a pre-B cell line model extracted from  the bone marrow of a 11-year old boy 

with ALL. Moreover, they have shown that soluble CD23-derived peptide (LP) 

stimulates the RS4;11 cell growth which is another ALL cell line model. These data, 

together with the results presented previously, might suggest that soluble CD23 

underlies the proliferation of several acute lymphocytic leukaemia cells from different 

origins. However, the data shown previously leave some challenging questions about 

the cell signalling pathways that are involved in each cell line model due to the αVβ5 
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integrin-sCD23 interaction, especially JAK2/STAT5, MEK/ERK1/2, p90RSK and 

SRF, and also about the role of sCD23 in normal pre-B cell growth and maturation.  

 

6.12 Conclusion 
 
This study has attempted to understand how the αVβ5 integrin mediates SMS-SB cell 

growth due to its binding to the model soluble ligands represented by the soluble CD23 

and LP (a synthetic peptide derived from soluble CD23). The data presented in this 

thesis can be summarized as the following: 

• The αVβ5 integrin promotes SMS-SB proliferation after binding to sCD23 

and LP, which both contain an RKC motif, while there is no proliferation after 

vitronectin binds via the RGD motif. 

• Both SDF1 and PDGF stimulate SMS-SB growth weakly, and enhance 

growth promoted by LP. 

• Both sCD23 and LP stimulate the phosphorylation of  different kinase 

substrates including STAT5a/b and STAT2. 

• Stat5B phosphorylation is induced by sCD23 or LP, and slightly by 

vitronectin. 

• sCD23 and LP strongly stimulate Stat5 DNA binding and transcriptional 

activity, but vitronectin causes minimal activation. 

• αVβ5 integrin and PDGF receptor are co-immunoprecipitated from SMS-

SB cells, and Jak2 is co-immunoprecipitated with PDGF receptor but not 

αVβ5. 
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• SMS-SB cell proliferation and Phosphorylation of Stat5b are clearly 

reduced by both Jak2 kinase inhibitor (AG490) and PDGF receptor kinase 

inhibitor (AG1295). 

• Furthermore CD23, LP and vitronectin promote the phosphorylation of 

MAPK, p90RSK and induce SRF transcriptional activity. 

• Soluble CD23 promotes the growth of 697 and BAF03 cell lines. 
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