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General Abstract  

Corticosterone (CORT), the main glucocorticoid in birds, plays a fundamental role in 

maintaining homeostasis and energy-balance, and is therefore tightly linked to an 

individual’s energetic state and the prevalent environmental conditions. CORT also has 

pleiotropic effects, ranging from reproductive function, the regulation of behaviour, 

morphology and immune function. Thus, inter-individual variation in CORT can 

potentially underpin a range of life-history traits, and through its pleiotropic effects act 

as a physiological mediator of reproductive decisions, causing birds to direct resources 

towards reproduction or self-maintenance dependent upon energetic condition and/or 

environmental quality. In turn, the role of CORT as a mediator of life-history traits has 

lead to the suggestion that inter-individual variation in CORT may be associated with 

individual differences in fitness. Despite this, the causes and consequences of large 

inter-individual variation in baseline CORT, specifically during reproduction, remain 

relatively unknown. The main aim of this thesis was to address these knowledge gaps by 

monitoring a nest-box population of blue tits, Cyanistes caeruleus, breeding on the east 

banks of Loch Lomond, UK over three years (2008-2010), and measuring baseline CORT 

concentrations in both adult and nestling birds at a standard stage of breeding in each 

year. Although environmental quality is often linked to variation in baseline CORT in 

breeding birds, this has rarely been investigated at the individual level. Chapter 2 

focuses on the relationship between foraging conditions measured at the territory-scale 

and baseline CORT in adult and nestlings in 2008-2010. Synchrony with the peak in 

caterpillar abundance was the only factor to influence nestling CORT, and only in 2008. 

However, I found that synchrony between breeding and the peak in caterpillar 

abundance, weather variables and the density of oak trees influenced baseline CORT in 

adult birds. Importantly, the relationships between adult baseline CORT and these 

foraging conditions were only evident in some years; when conditions were most 

demanding. In addition, the effects of the foraging conditions measured upon adult 

baseline CORT appear to be synergetic and/or additive in nature. As inclement 

environmental conditions are often associated with elevated baseline CORT and reduced 

fitness in birds, it has been suggested that elevated baseline CORT should also be 

associated with reduced fitness (the ‘CORT-Fitness’ Hypothesis). However, this may not 

be the case, as modulation of CORT in the face of environmental challenges can 

adaptively influence physiology and behaviour to improve breeding performance and/or 

survival. In Chapter 3, I tested these assumptions and my results indicate that the 

foraging conditions linked to maternal baseline CORT differ to those associated with a 

proxy of fitness i.e. reproductive success. Specifically, maternal baseline CORT appears 

to be linked with factors that affect energetic demand, i.e. movement between trees, 
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rather than reproductive success, i.e. total number of prey provided to offspring. In 

addition, in 2009 only, maternal baseline CORT was positively correlated with fledging 

number. In Chapter 4, I investigate whether there is a link between maternal baseline 

CORT and brood sex ratio adjustment over three years. I discovered that maternal 

baseline CORT was not correlated with brood sex ratio in any year. Maternal body 

condition, however, was linked to brood sex ratio adjustment in one year. Furthermore, 

experimental manipulation of maternal CORT during egg laying did not result in brood 

sex ratio adjustment or affect maternal condition, hatching success or chick 

development. Chapter 5 investigates the role of maternal baseline CORT in 

reproductive trade-offs. I reduced the costs of egg laying through supplemental feeding 

and compared maternal baseline CORT, brood care and maternal return rates between 

manipulated and control mothers. Reducing costs negated the physiological stress 

associated with provisioning effort in manipulated mothers and improved their return 

rates the following year compared with controls. Therefore, maternal CORT may 

mediate reproductive trade-offs in this species. As baseline CORT is often linked with 

energetic status and environmental conditions, and there is some evidence that CORT 

affects feather growth, I hypothesised that it may be linked to the expression of UV 

colouration in the crown feathers of female birds (Chapter 6). The results show that 

baseline CORT was indeed negatively correlated with UV colouration, and that UV 

colouration was positively correlated with reproductive success consistently over the 

three years, thus suggesting this trait signals maternal quality. Finally, Chapter 7 

summarizes the main findings and considers how my results add to our knowledge base 

and discusses pertinent avenues of future research. This thesis presents compelling 

evidence that inter-individual variation in baseline CORT is significant, as the results 

show that it is associated with foraging conditions, reproductive success and may also 

influence reproductive trade-offs and UV plumage colouration. However, the results do 

not support a role for baseline CORT in brood sex ratio adjustments in blue tits. The 

results also reveal the complexity of the relationships between inter-individual variation 

in baseline CORT, environmental conditions and reproductive success. Specifically, both 

foraging conditions and proxies of fitness, i.e. reproductive success were linked to 

baseline CORT differently between years, most likely due to the contrasting conditions 

experienced in those years. Therefore, although inter-individual variation in CORT is 

linked to life-history traits in breeding birds, relating this variation to individual fitness 

is challenging. Furthermore, there remains a lack of knowledge concerning the 

repeatability of baseline CORT concentrations in blue tits. Ultimately, my thesis 

suggests that in order to achieve a full understanding of how inter-individual variation in 

baseline CORT is linked to fitness, single year or short-term studies are inadequate; 

instead, researchers must relate individual differences to long-term measures of fitness. 
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Chapter 1: General Introduction 

1.1 Primer 

Maintaining physiological function in the face of a fluctuating, and at times 

harsh environment is integral to survival (Sapolsky 2002). While navigating 

environmental challenges endotherms must maintain their internal environment 

within precise parameters for the body to properly function (Randall, Burggren & 

French 2001), and this physiological equilibrium is defined as homeostasis 

(Wingfield & Romero 2001; Sapolsky 2002; McEwen & Wingfield 2003). When an 

animal encounters a challenge (often defined as a stressor) that disrupts this 

balance, this initiates a cascade of physiological processes that influence bodily 

function and behaviour to help maintain homeostasis. Claude Bernard (1813–

1878), a French physiologist, was the first to define the term milieu intérieur, 

now known as homeostasis. Later stress physiology, the study of how animals 

cope with and are affected by stress, emerged as a discipline through the work 

of Walter Cannon (1871-1945) and Hans Selye (1907-1982) who respectively 

coined the term homeostasis, and identified the role of a specific set of 

hormones integral to the body’s response to stress, the glucocorticoids (GCs). 

When animals encounter a stressor the body responds by releasing GCs into the 

blood stream through the activation of the Hypothalamic-Pituitary-Adrenal (HPA) 

axis. A stressor can range from minor fluctuations in temperature and blood 

glucose level (McEwen & Wingfield 2003), to the more severe circumstances 

animals face, such as storms (Breuner & Hahn 2003) or conspecific aggressive 

encounters (Landys et al. 2007; Landys et al. 2010). Therefore, GCs play a 

fundamental role in physiological functions and are indispensible for an 

individual’s survival (Randall, Burggren & French 2001).  

As GCs are constantly fluctuating in response to both external and internal 

stressors they are variable in nature (McEwen & Wingfield 2003). However, under 

standard conditions, there is evidence of marked between individual variation, 

which in turn, has been linked to behaviour (Silverin 1998; Cockrem 2007; 

Landys et al. 2007; Angelier 2008), reproductive success (Müller et al. 2007; 

Bonier et al. 2009b; Bonier, Moore & Robertson 2011; Breuner 2011), morphology 

(Douglas et al. 2008; Roulin et al. 2008) and other physiological factors such as 
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immune function (Harvey et al. 1984; Saino et al. 2002). Furthermore, in both 

wild animals and those kept under controlled conditions there is evidence that 

GCs are repeatible within individuals (Jones, Satterlee & Ryder 1994; Cockrem & 

Silverin 2002a; Romero & Reed 2008) and the extent to which an animal can 

change in response to environmental cues, i.e. phenotypic plasticity, can also be 

regulated by GCs (Moore & Hopkins 2009). Therefore, evolutionary changes in 

GCs may be an important mechanism by which a variety of traits can evolve, or 

be maintained within populations via selection on heritable individual variation 

or through adaptive phenotypic plasticity (Dufty et al. 2002; Williams 2008; Zera 

et al. 2007). Although GCs have been studied in free-ranging animals for over 30 

years (Wingfield & Farner 1976a), it is still common to compare mean 

concentrations between groups of individuals and populations, rather than 

attempt to explain the significant inter-individual variation evident within 

populations (Williams 2008). However, as variation between individuals is 

fundamental for the evolution and maintinace of traits through natural selection 

(Darwin 1959), it is important to understand the causes and consequences of 

inter-individual variation in GCs.  

In this thesis I will investigate the causes and consequences of inter-individual 

variation in corticosterone (CORT) the main GC in birds, in the blue tit, 

Cyanistes caeruleus. The blue tit is a common model species for avian breeding 

ecology, therefore, I will explicitly consider inter-individual variation in baseline 

CORT in relation to the quality of the breeding habitat, reproductive success, 

offspring phenotype, reproductive trade-offs and UV plumage colouration that is 

involved in mate choice. I will begin this introduction by first outlining the 

biology and function of CORT in birds, specifically in relation to energy-balance 

and coping with environmental perturbations. Then I will go on to describe how 

CORT is measured and the magnitude and significance of inter-individual 

variation in baseline CORT. Finally, I will describe the role of CORT in avian 

reproduction, particularly how CORT can influence reproductive success, 

offspring phenotype and condition-dependent traits, such as plumage 

colouration. 
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1.2 Glucocorticoids: biology, function and inter-individual 

variation  

1.2.1 Biology & function 

The steroid hormone corticosterone (CORT) is the main glucocorticoid in birds. 

Although often characterized as a ‘stress’ hormone, its primary role is the 

maintenance of homeostasis through the regulation of the body’s essential 

processes, including water/salt balance (Landys, Ramenofsky & Wingfield 2006), 

energy usage (Harvey et al. 1984; Sapolsky, Romero & Munck 2000; McEwen & 

Wingfield 2003) and immune function (Munck, Guyre & Holbrook 1984b; Butler, 

Leppert & Dufty 2010). As CORT plays a central role in a range of physiological 

processes, CORT is constantly present at baseline concentrations within the 

blood, although these concentrations can vary throughout the day and seasonally 

(see figure 1.1, Wingfield & Romero 2001). CORT concentrations can also 

increase rapidly after an acute stressor, such as severe weather or exposure to a 

predator, and in this case CORT is realised in association with catecholamines, 

which include the fight or flight hormone adrenaline (Sapolsky 2002). In 

passerine birds, concentrations can increase between 4- and 10-fold within 

minutes (Breuner, Patterson & Hahn 2008), usually significantly exceeding 

baseline levels after three minutes and reaching their peak within 10-30 minutes 

(see figure 1.1, Romero 2004). This rapid increase in circulating CORT is often 

termed the ‘stress-response’, and the CORT concentrations experienced are 

regarded as stress-induced rather than baseline concentrations. The stress-

response allows animals to mount an adaptive behavioural and physiological 

response to an acute stressor (Breuner, Patterson & Hahn 2008). 

The release of CORT into the blood stream is the end product of the stimulation 

of the Hypothalamic-Pituitary-Adrenal (HPA) axis (see figure 1.2). The HPA is 

stimulated by neural input regarding external stimuli such as, weather 

conditions and internal stimuli, such as low blood glucose (Sapolsky 2002). The 

higher brain centres perceive these stimuli and convey this information to the 

hypothalamus, which initiates the release of corticotropin-releasing hormone 

(CRH) from the paraventricular nucleus (PVN) (Sapolsky 2002). In turn this 

stimulates the pituitary gland to release adrenocorticotropic hormone (ACTH), 
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which signals the adrenal cortex to release CORT into the blood stream (Sapolsky 

2002). Once in the circulation glucocorticoids exert their effects through intra-

cellular receptors, which are ubiquitously present in the cells of the body 

(Romero 2004). The process is influenced by feedback loops, which ease 

activation of, or further stimulate the HPA axis dependent upon whether the 

stressor has been rectified (see figure 1.2, Sapolsky 2002). Glucocorticoids can 

also influence gene expression via the hormone receptor complex, as they 

enhance transcription by acting on glucocorticoid response elements (GREs), 

which are upstream from specific genes (Jantzen et al. 1987). The ubiquity of 

cellular receptors throughout the cells of the body and the influence of CORT 

upon gene expression, causes the hormone to have pleiotropic effects ranging 

from immune function, morphology, reproductive function and behaviour 

(Romero 2004). Therefore inter-Individual variation in baseline CORT could 

ultimately have important repercussions for a wide range of life-history traits 

(Romero 2004; Williams 2008) and also be involved in trade-offs between them 

(Moore & Hopkins 2009). Overall, inter-Individual variation in baseline CORT 

could mediate fundamental life-history traits and deserves further attention 

(Williams 2008). 
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Figure 1.1. Schematic of the range of baseline CORT concentrations required for basic 
function, (black shaded zone). Baseline concentrations are also modulated in response 
to daily, seasonal and life-history demands within a range specific to the individual and 
species (solid line in non-shaded zone). In response to a severe acute stressor, CORT 
concentrations can rapidly increase to concentrations considerably higher than baseline 
for a temporary period (gray shaded zone and dotted line), which is also specific to the 
individual or species. Diagram taken from Busch & Hayward (2009).
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Figure 1.2. The Hypothalamic-Pituitary-Adrenal (HPA) axis, and its activation 
associated with energetic state and an immediate stressor. Lines connecting the 
endpoint of the flow chart with earlier stages illustrate both negative (-) and positive 
(+) feedback loops, which reduce activation of, or further stimulate the HPA axis 
dependent upon whether the stressor has been rectified. CRH signifies corticotrophin-
releasing hormone that is released from the hypothalamus and causes the anterior 
pituitary to release ACTH - adrenocorticotropic hormone, which, in turn causes the 
adrenal cortex to release corticosterone. Diagram was modified from Randall, Burggren 
& French (2001). 
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1.2.2 Biology & function: Energy-balance 

The main metabolic role of CORT is the regulation of circulating glucose levels 

(Sapolsky, Romero & Munck 2000), with both acute and chronic elevation of 

CORT concentrations causing the mobilization and storage of glucose in a 

context-dependent manner (Sapolsky 2002). Firstly, minor fluctuations in food 

availability or other environmental conditions can lead to a slight elevation in 

baseline CORT concentrations, which in turn can increase blood glucose via 

stimulation of foraging behaviour and appetite (Sapolsky 2002). Secondly, if 

CORT elevation occurs for several hours due to food deprivation, individuals can 

accrue a negative energy balance and under these circumstances elevated 

baseline CORT can stimulate multiple energetic pathways that both generate 

and store glucose for future use (Wingfield & Romero 2001; Sapolsky 2002). 

These include the stimulation of glycogenolysis and gluconeogenesis by 

glucagons and catecholamines, the storage of glycogen in the liver and the 

inhibition of peripheral glucose transport and utilization (Sapolsky 2002). 

Thirdly, when baseline CORT is chronically elevated due a longer-term lack of 

resources, elevated CORT can mobilize lipids through lipolysis and amino acids 

through the catabolism of protein stores, both of which are converted into 

glucose for use by the tissues (Sapolsky 2002).  

Baseline CORT shows both diurnal and seasonal fluctuations, allowing animals to 

manage their energy requirements and maintain homeostasis in fluctuating 

environments (Wingfield & Romero 2001). For example, in birds baseline CORT is 

usually elevated at the end of the inactive period, typically first thing in the 

morning (Breuner, Wingfield & Romero 1999; Romero & Remage-Healey 2000), 

which is thought to influence behaviour and resource acquisition, ultimately 

inducing glucose mobilization at the beginning of the day when blood glucose 

may be low. Seasonal increases in baseline CORT during energetically expensive 

life-history stages, such as migration and reproduction are also thought to aid 

energy mobilization (Romero, Ramenofsky & Wingfield 1997a), for example, they 

have been shown to increase feeding rate and the storage of fat during the pre-

migration phase (Holberton 1999) and have been associated with high nestling 

provisioning rates in birds (Doody et al. 2008). 
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Stress-induced rather than baseline CORT concentrations can also manage 

energy requirements, for example, during a short-term reduction in the quality 

of the environment due to severe weather conditions, the acute elevations of 

stress-induced CORT can lead to an escalation of foraging behaviours (Wingfield 

& Silverin 1986; Astheimer, Buttemer & Wingfield 1992; Breuner & Hahn 2003; 

Pravosudov 2003) or short-distance migration allowing individuals to reach areas 

where food may still be available (Breuner & Hahn 2003).  

Therefore, although stress-induced CORT plays an important role in maintaining 

energy balance during discrete stressors, the daily management of baseline 

CORT in relation to energetic state is vital to maintain sufficient plasma glucose 

for the tissues (Sapolsky 2002). The role of baseline CORT in daily management 

of energy-balance, and its constant presence in the blood stream is the main 

rationale for choosing baseline as opposed to stress-induced CORT 

concentrations as the focus of this thesis. 

1.2.3 Biology & function: Environmental perturbations 

In birds, CORT concentrations are modulated in response to a number of factors 

within the environment, which in turn allows them to cope with these 

perturbations (Sapolsky 2002). These include the social environment (Kotrschal, 

Hirschenhauser & Moestl 1998; Hirschenhauser et al. 2000), the presence of 

predators (Cockrem & Silverin 2002b; Clinchy et al. 2004), food availability 

(Kitaysky, Piatt & Wingfield 2007) and habitat quality (Marra & Holberton 1998; 

Müller et al. 2007). For example, both the defense of territories (Landys et al. 

2007; Landys et al. 2010; Lundberg & Alatalo, 1992; Silverin, 1998), and mates 

(Hirschenhauser et al. 2000; Kotrschal et al. 1998) against conspecifics has been 

associated with elevated CORT concentrations, in addition to testosterone. 

Furthermore, great tits, Parus major exhibit elevated plasma CORT 

concentrations in the presence of a stuffed predator, a Tengham’s owl, Aegolius 

funereus (Cockrem & Silverin, 2002a) and song sparrows, Melospiza melodica 

also elevate plasma CORT concentrations when there are predators present 

(Clinchy et al., 2004). The elevation of CORT in response to conspecific 

aggression or the presence of predators stimulates aggressive and/or avoidance 

behaviours (Wingfield & Romero 2001), as well as making glucose available for 
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these energetically demanding activities (Sapolsky 2002). There is also evidence 

that reduced food availability is associated with elevated CORT concentrations 

in a wide range of bird species; e.g. Adelie penguins, Pygoscelis adeliae (Vleck 

et al., 2000), black-legged kittiwakes, Rissa tridactyla (Kitaysky et al. 1999; 

Buck et al. 2007), white storks, Ciconia ciconia (Corbel & Groscolas, 2008) and 

white-crowned sparrows, Zonotrichia leucophrys (Breuner & Hahn, 2003). In this 

case, the elevation of baseline CORT may be linked to the increased foraging 

effort associated with reduced food abundance, as elevated baseline CORT 

concentrations have also been associated with increased locomotor activity 

(Astheimer, Buttemer & Wingfield 1992; Breuner 2000), foraging duration 

(Angelier 2008), and food intake rate (Astheimer, Buttemer & Wingfield 1992; 

Lõhmus, Sundström & Moore 2006). 

As the focus of this thesis is inter-individual variation in baseline CORT during 

breeding in a woodland passerine, I will concentrate on describing some of the 

factors within the breeding habitat that could, and have been linked to baseline 

CORT in birds. Ultimately, during reproduction the quality and abundance of 

food is extremely important, as parents must vastly increase foraging effort to 

provide themselves and their developing offspring with sufficient nutrition. A 

number of species time their reproduction to coincide with maximal abundance 

of their prey (Perrins 1991; Kitaysky, Wingfield & Piatt 1999), however 

individuals often differ in the level of synchrony between breeding and prey 

abundance (Perrins 1991; Naef-Daenzer & Keller 1999; Naef-Daenzer, Naef-

Daenzer & Nager 2000; Visser, Holleman & Gienapp 2005). In the common 

murre, Uria aalge, for example, in years where breeding does not coincide with 

the peak abundance of their fish prey, population level baseline CORT was 

higher than in matched years, furthermore, elevated baseline CORT was 

associated with higher foraging effort only in mismatch years (Doody et al. 

2008). In woodland birds, like the blue tit, timing reproduction to coincide with 

the peak in caterpillar abundance, their predominate prey, has important 

consequences for reproductive success (Van Noordwijk, McCleery & Perrins 1995; 

Naef-Daenzer & Keller 1999; Visser, Holleman & Gienapp 2005). However, the 

influence of asynchrony between breeding woodland birds and the peak in 

caterpillar abundance upon baseline CORT has not previously been investigated. 
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In the woodland habitat, the density of trees caterpillars feed upon can also 

influence the number of invertebrates available to provisioning birds, and the 

work required to obtain them (Hinsley et al. 2008; Wilkin, King & Sheldon 2009). 

In the closely related great tit, Parus major provisioning effort is strongly 

influenced by the distribution and density of oak foliage surrounding the nest 

(Hinsley et al. 2008). In turn there is evidence that broad scale habitat 

differences are related to variation in baseline CORT between populations of 

blue tits (Müller et al. 2007), but the specific influence of tree density at the 

territory scale upon CORT has not been examined. Furthermore, weather 

variables including temperature and rainfall have been linked to baseline CORT 

in birds (Romero, Reed & Wingfield 2000), and may also influence baseline CORT 

in breeding birds as they can impede provisioning behaviours (Bolger, Patten & 

Bostock 2005; Geiser, Arlettaz & Schaub 2008). Although, multiple factors within 

the breeding habitat may be linked to both reproduction and baseline CORT 

concentrations, they have not been previously addressed within a single study. 

Additionally, as the above examples illustrate there is a lack of information 

regarding the influence of the breeding habitat upon baseline CORT 

concentrations at the individual level (Bonier et al. 2006; Kitaysky, Piatt & 

Wingfield 2007; Müller et al. 2007), which is necessary to explain inter-individual 

variation. 

1.2.4 Biology & function: Measurement 

CORT is most commonly measured from blood plasma using Radioimmunoassay or 

Enzyme Immunoassay, but CORT exists in the blood stream in two states: 1) the 

free molecule which has the potential to bind to intra-cellular receptors and 2) 

bound to corticosterone-binding proteins (CBPs) and therefore not active. When 

CORT is measured from blood plasma, however, it is both the free and bound 

CORT that is quantified (Silverin 1986; Breuner & Orchinik 2002). Therefore, 

measuring CORT from blood plasma is a crude method of estimating the amount 

of CORT available to the tissues. Furthermore, both hormone receptor density or 

affinity can influence an animal’s response to circulating CORT, but these 

factors are rarely measured (Ball & Balthazart 2008). In spite of this, selection 

studies that choose individuals based upon their circulating hormone 

concentrations provide evidence for the functional significant of these crude 
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hormonal measures. For example, in Japanese quail, Coturnix coturnix japonica, 

selection for low or high stress-induced CORT, also leads to a change in 

behavioural phenotype, specifically the display of fear-related behaviour in the 

high-selection lines (Jones, Satterlee & Ryder 1994). In addition, both natural 

variation and manipulation of hormone titres have been shown to be correlated 

with behaviour (Breuner 2000; Carlson et al. 2006; Angelier 2008) and other 

physiological measures such as immune response (Martin et al. 2005; Bourgeon & 

Raclot 2006). Taken together these results suggest that this crude method of 

estimating or manipulting CORT concentrations is valid. Moreover, quantifying 

factors, such as receptor density, would require destructive methods, thus 

reducing the type of questions that could be addressed. For example, in my 

thesis in order to relate baseline CORT to reproductive success and behaviours it 

would not have been appropriate to sacrifice individuals after blood sampling. 

Therefore, I have measured baseline CORT from plasma, the most common 

method for quantifying concentrations in birds (Breuner & Orchinik 2002). 

 

1.2.5  Inter-individual variation 

CORT concentrations are fundamentally flexible, fluctuating to maintain 

homeostasis. In addition, individuals show significant plasticity across seasons 

(Romero 2004; Romero, Cyr & Romero 2006), life-history stages (Wingfield & 

Sapolsky 2003) and throughout their lifetime (Heidinger, Nisbet & Ketterson 

2006b; Heidinger, Nisbet & Ketterson 2008). However, under standard conditions 

studies have found significant variation between individuals in CORT 

concentrations that can range from 5- to 25-fold (reviewed in Williams 2008). In 

fact, in most species where it has been investigated large inter-individual 

variation in CORT concentrations exist (Williams 2008). This inter-individual 

variation has often been overlooked because it has been considered to be 

susceptible to measurement error or unrepeatable within individuals (Ball & 

Balthazart 2008). However, there is growing evidence from bird species that 

hormone titres are repeatable within individuals (Cockrem & Silverin 2002a; 

Love, Bird & Shutt 2003; Romero & Reed 2008). Romero & Reed (2008) found 

baseline CORT levels to be relatively consistent between repeated bleeds in 

captive house sparrows, Passer domesticus, over a six week period and further 

studies on individual variation in CORT titres from wild birds provide evidence of 
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consistent individual responses (Cockrem & Silverin 2002a; Love, Bird & Shutt 

2003; but see Cockrem et al. 2009). There is also evidence that inter-individual 

variation is genetically determined, as individuals can be selectively bred to 

show either high or low circulating levels of CORT (Satterlee & Johnson 1988; 

Evans et al. 2006). Furthermore, variation between individuals in baseline CORT 

is related to other physiological indices (Berger et al. 2005; Cyr et al. 2007; 

Butler, Leppert & Dufty 2010), behaviour (Breuner 2000; Kitaysky, Wingfield & 

Piatt 2001; Angelier 2008) and morphology (Douglas et al. 2008; Roulin et al. 

2008). 

In avian species, inter-individual variation in CORT concentrations have been the 

subject of research since the 1970s (Wingfield & Farner 1976a), and since then a 

great deal of information has been gained in relation to their function (Sapolsky, 

Romero & Munck 2000; Sapolsky 2002) and mediation of life-history traits 

(Douglas et al. 2008; Angelier, Holberton & Marra 2009; Bokony et al. 2009; 

Angelier et al. 2010). Yet, comparing the mean difference in baseline CORT 

concentrations between groups of individuals is still commonplace (Williams 

2008). This approach, however, does not capitalize on the significant inter-

individual variation within populations, and prevents the analysis of this 

variation for evolutionary questions, as selection acts at the level of the 

individual (Darwin 1959). For example, is inter-individual variation in baseline 

CORT concentrations linked to fitness and what maintains the high level of inter-

individual variation within populations? 

Ultimately, there is evidence that significant inter-individual variation in 

baseline CORT concentrations exists within populations and may be consistent 

within individuals. In this thesis I measured baseline CORT at a standardised 

point in blue tits during breeding (day 5-6 after hatching) over three years, and 

related them to environmental conditions at the individual level and key life-

history traits. Unfortunately, due to the duration of the research and 

methodological constraints it was not possible to address the consistency of 

baseline CORT concentrations within individuals. 
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1.3 The role of glucocorticoids in avian reproduction: an 

evolutionary perspective 

CORT plays a significant role in avian reproduction, both directly by affected 

reproductive function (McEwen & Wingfield 2003) and indirectly by modifying 

behaviour (Silverin & Wingfield 1982; Silverin 1998; Kitaysky, Wingfield & Piatt 

2001; Angelier 2008), reproductive investment (Bonier et al. 2009b; Bonier, 

Moore & Robertson 2011) and condition-dependent traits involved in mate choice 

(Husak & Moore 2008). The relationship between baseline CORT and 

reproductive success is complex, as there is evidence that elevated CORT 

concentrations are associated with both reduced investment in reproduction (Cyr 

& Romero 2007; Ellenberg et al. 2007; Angelier et al. 2010) and high 

reproductive success (for review see Bonier et al. 2009a). Additionally, there is 

evidence that maternal baseline CORT can influence offspring phenotype, 

including sex (Love et al. 2005; Pike & Petrie 2005a; Bonier, Martin & Wingfield 

2007), mass (Hayward & Wingfield 2004; Love et al. 2005) and even the stress-

response itself (Love & Williams 2008a). It is also becoming evident that CORT 

has the potential to influence mate choice (Husak and Moore 2008), as it 

mediates condition-dependent traits that serve as honest signals of mate 

quality, such as song (Spencer et al. 2003) and feather colouration (Roulin et al. 

2008). This complexity and the range of factors within avian reproduction that 

CORT can influence are explored in this thesis, and in the following sections I 

will outline how CORT is thought to influence and/or be associated with 

reproductive success, offspring phenotype and condition-dependent traits. 

1.3.1 CORT and reproductive success  

There is evidence from biomedical research that chronic elevation of 

glucocorticoids can inhibit reproductive function, for example in females 

glucocorticoids suppress reproductive function by reducing the production of 

gonadotropin-releasing hormone (GnRH) (Harvey et al. 1984; McEwen & 

Wingfield 2003; Charmandari, Tsigos & Chrousos 2005) which, in turn reduces 

the release of luteinizing hormone (LH) from the pituitary (Sapolsky, Romero & 

Munck 2000). In addition, elevated glucocorticoids can affect the gonads 

directly, inhibiting the secretion of reproductive androgens (Charmandari, Tsigos 
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& Chrousos 2005). In birds, there is evidence that elevated CORT concentrations 

are associated with nest abandonment, reduction in reproductive behaviours and 

reduced reproductive success (Cyr & Romero 2007; Ellenberg et al. 2007; 

Angelier et al. 2010). However, there is also evidence that elevated baseline 

CORT is associated with high reproductive success and investment (for review 

see Bonier et al. 2009a). These findings suggest that as with energy-balance, the 

relationship between baseline CORT and reproductive success may be context-

dependent, with elevated CORT associated with reduced or increased 

investment in reproduction dependent upon individual condition and/or the 

prevalent environment (Wingfield & Sapolsky 2003). This may be because during 

mild fluctuations in weather conditions or food availability, elevated baseline 

CORT can enhance foraging and thus energy mobilisation to maintain 

reproductive effort (Wingfield & Sapolsky 2003). Whereas, when conditions 

become very poor, CORT elevation may more appropriately direct investment 

from reproduction to survival (Wingfield & Sapolsky 2003). Under these 

contrasting conditions both of these functions would be adaptive and enhance 

lifetime reproductive success (LRS) (Bonier et al. 2009a). Yet this causes the 

relationship between reproductive success and baseline CORT to be difficult to 

predict, as it may vary between breeding stages, individuals or years (Bonier et 

al. 2009a). 

There is a common assumption within the ecology and conservation biology 

literature that elevated baseline CORT concentrations are linked to poor 

conditions and low fitness (Bonier et al. 2009a; Breuner 2011). In response to 

this and the growing use of CORT as a measure of the relative condition or 

health of individuals and populations, the validity of this hypothesis was 

questioned in a recent literature review by Bonier et al. 2009 (see figure 1.3). 

The concept was termed the “CORT-fitness” hypothesis (see figure 1.3), and the 

review provided evidence that variation in baseline CORT was in fact positively 

(Love et al. 2004; Müller et al. 2007; Bonier et al. 2009b), negatively (Buck, 

Oreilly & Kildaw 2007; Williams et al. 2008; Angelier et al. 2010), and non-

significantly (Eeva et al. 2005; Ellenberg et al. 2007; Müller et al. 2007) related 

to estimates of fitness, including reproductive success and survival. In addition, 

these relationships varied within populations (Müller et al. 2007; Bonier et al. 

2009b), between years (Lanctot 2003; Chastel et al. 2005) and even within 
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individuals at different life history-stages (Bonier et al. 2009b; Ouyang et al. 

2011). This is consistent with the idea the the realtionship between baseline 

CORT and reproductive success is context-dependent.  

The threshold over which it is adaptive for baseline CORT elevation to be 

associated with nest abandonment rather than an increase in reproductive 

investment can vary between individuals, breeding stages or between species 

(Bonier et al. 2009a; Wingfield & Sapolsky 2003). For example, individuals that 

begin reproduction with lower energy reserves may abandon a reproductive 

event earlier in the face of inclement conditions and elevated CORT, than those 

with greater energy reserves (see figure 1.4b, Wingfield & Sapolsky 2003). In 

contrast, older individuals with limited potential breeding opportunities may 

continue breeding despite elevated CORT and poor environmental conditions 

(Heidinger, Nisbet & Ketterson 2006a; Heidinger, Nisbet & Ketterson 2008). 

Similarly, in species with strictly seasonal breeding, individuals may continue 

their breeding attempt in spite of harsh conditions and elevated CORT (Wingfield 

& Sapolsky 2003). Inter-species variation in life-history may also be important, 

with longer-lived species directing resources towards survival in years where 

conditions are not suitable for reproduction, to improve LRS (Bokony et al. 2009; 

Heidinger, Nisbet & Ketterson 2008). In addition, the breeding stage at which 

hormone concentrations are measured can influence the relationship between 

CORT and reproductive success (see figure 1.4a), with a positive relationship 

between CORT and breeding success in later stages of reproduction when 

investment and the value of the offspring are higher (Bonier et al. 2009b). This 

may be because at the start of a reproductive event when investment has been 

minimal, elevated CORT may signal that circumstances are not conducive to 

breeding, therefore individuals may invest in self-maintenance over 

reproduction. However, at the later stages of reproduction when individuals 

have already invested heavily in reproduction, elevated baseline CORT may 

facilitate reproduction by increasing brood care.  
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Figure 1.3. The theoretical foundation of the “Cort–fitness” Hypothesis. (a) Baseline 
CORT concentrations are predicted to increase with environmental challenges. (b) 
Increasing environmental challenges are associated with decreasing fitness because 
resources must be reallocated toward survival at the expense of reproduction and/or 
self-maintenance. (c) In combination, these two tenets lead to the prediction that 
baseline CORT is negatively correlated with fitness. Taken form Bonier et al. (2009a). 
 

 

Figure 1.4. a) The relationship between baseline CORT and reproductive success 
between different breeding stages, dashed line indicates early reproduction i.e. egg 
laying and solid line indicates late reproduction, i.e. brood rearing. b) The alternate 
associations between elevation in baseline CORT and reproductive investment 
dependent upon individual condition, dashed line indicates the relationship for an 
individual in poor condition and the solid line shows the relationship for an individual in 
superior condition. Modified from concepts in Bonier et al. (2009b).
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ives are not mutually exclusive, and all predict a positive
relationship between cort and environmental challenges,
and a negative relationship between cort and fitness.

Many authors suggest that cort mediates a trade-off in
self-maintenance versus reproduction (for review, see [22]),
with increasing cort levels favoring the reallocation of
resources to self-maintenance at the expense of reproduc-
tion. We focus instead on what we view as the two central
tenets of the Cort–Fitness Hypothesis: (1) baseline cort
increases with environmental challenges, and (2) fitness
declines with increasing environmental challenges. When
combined, these tenets predict a negative relationship
between baseline cort and fitness (Figure 1).

In response to environmental challenges, increased
levels of cort and subsequent reallocation of resources
might increase the survival of an individual. In this sense,
the cort response could increase fitness of an individual
relative to others with a less effective cort response who are
experiencing exactly the same challenges. However, when
comparing across individuals or populations with varying
environmental challenges (within the same life history
stage, sex, age class), cort will be negatively related to
fitness simply because variation in levels of baseline cort
provides a proxy for variation in environmental challenges
that directly influences fitness. Thus the potentially adap-
tive nature of the cort response to environmental chal-
lenges does not necessarily predict a positive relationship
between cort and survival (or fitness) when comparing
among individuals and populations.

To quantify the pervasiveness of the Cort–Fitness Hy-
pothesis in the literature, we conducted a keyword search
of two of the top endocrine journals, Hormones and Beha-
vior and General and Comparative Endocrinology. We
identified 72 articles published between January 2004
and December 2008 reporting the results of studies invol-
ving measurement and/or manipulation of cort levels in
free-ranging animals. Of these, 39 (54%) based hypotheses
or interpretations of findings at least in part on the Cort–
Fitness Hypothesis. This estimate of the pervasiveness of
the Cort–Fitness Hypothesis is probably conservative.
Beyond endocrinology journals, cort measures are widely
used by ecologists and conservation biologists because cort
is assumed to provide an index of population and individ-
ual health and condition [2,3], an assumption that is based
on the Cort–Fitness Hypothesis. Thus, across all of the

literature, the Cort–Fitness Hypothesis appears to broadly
influence the direction and interpretation of research.

Empirical support for the Cort–Fitness Hypothesis
In a subsequent, thorough review of all of the literature,
we found 53 studies that examined the relationship be-
tween components of fitness and baseline cort (46 studies)
or fecal cort (7 studies) (Table 1). We identified these
studies using exhaustive searches of combinations of sev-
eral relevant keywords (adrenocortical, corticosteroid,
cortisol, corticosterone, or glucocorticoid, and fitness,
fecundity, reproductive success, or survival) in the Web
of Science and Google Scholar databases. We excluded
studies that did not report either baseline or fecal levels
of cort. Fecal cort measures incorporate variation in hor-
mone levels over a broad period of hormone secretion,
metabolism, and excretion, and thus might be quite dis-
tinct from baseline levels [23]; therefore, we include these
studies primarily for comparison with the results of stu-
dies involving baseline levels. We excluded studies invol-
ving species with social systems leading to reproductive
suppressionwhich directly limits fitness of somemembers
of the group (e.g. social subordinates; see [24,25] for
review). We included studies involving direct manipula-
tion of hormone levels. We are cautious in interpreting
these studies, because of potential problemswith hormone
manipulations that include initial spikes in circulating
hormone levels beyond the range of baseline, and the
potential stimulation of negative feedback mechanisms
in response to high levels of supplementary hormone [26].
We excluded studies that used indirect measures of repro-
ductive success or survival, such as offspring provisioning
rate, mass of eggs or offspring, and measures of body
condition or immune response. We focused instead on
studies with direct estimates of reproductive success
(e.g. number of viable eggs or offspring) or survival.

Our review encompasses a broad sample of studies
representative of the available data on cort–fitness
relationships. However, we might have missed some stu-
dies where the authors did not highlight fitness measures.
An encouraging trend in the literature is the increasing
number of field endocrine studies that include fitness
metrics in their analyses, from just five papers published
between 1987 and 2000 to 48 studies between 2000 and
2009. Overall, 37 of the 53 studies were conducted in birds,

Figure 1. The theoretical foundation of the Cort–Fitness Hypothesis. (a) Baseline cort levels are predicted to increase with environmental challenges (tenet 1). (b) Increasing
environmental challenges are associated with decreasing fitness because resources must be reallocated towards coping with these challenges at the expense of
reproduction or self-maintenance (tenet 2). (c) In combination, these two tenets lead to the central prediction of the Cort–Fitness Hypothesis: a negative relationship
between baseline cort and fitness.
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As yet the majority of studies that have investigated the link between baseline 

CORT and reproductive success in breeding birds have done so within a single 

year (see review of studies in Bonier et al. 2009a). As there is evidence that the 

relationship between baseline CORT and reproduction is context-dependent, this 

relationship could differ between years (Bonier et al. 2009a). However, this has 

rarely been investigated at the individual level (Buck, O'Reilly & Kildaw 2007; 

Williams et al. 2008). Furthermore, the cost of reproduction is a central concept 

in evolutionary biology, where increased investment in current reproduction is 

predicted to decrease future fecundity and survival (Lack 1947; Williams 1966). 

There is evidence that experimental enlargement of brood size in tree swallows, 

Tachycineta bicolor, caused mothers to have higher baseline CORT, than 

mothers with reduced broods (Bonier, Moore & Robertson 2011). But, elevated 

baseline CORT associated with high investment in current reproduction could 

negatively influence future survival and reproduction (Love et al. 2004; Love et 

al. 2005; Bonier, Moore & Robertson 2011). For example, elevated CORT during 

reproduction could reduce survival through negative effects upon immune 

function (MacDougall-Shackleton et al. 2009; Goutte et al. 2010). Alternatively, 

elevating CORT during reproduction can re-direct behaviours from reproduction 

to survival when conditions are poor (Bonier et al. 2009a). In this case, elevating 

baseline CORT may reduce the costs of the current reproductive event, having 

positive implications for future reproduction. To address these questions studies 

that employ multiple years are required to investigate how the modulation of 

baseline CORT within individuals in response to current reproductive investment 

influences future reproduction and survival. 

Overall, further research is required to understand how inter-individual variation 

in baseline CORT is linked to reproductive success. Specifically, how consistent is 

the relationship between baseline CORT and reproductive success during the 

same breeding stage across multiple years that vary in harshness. Furthermore, 

the role of CORT in reproductive trade-offs required investigation, for example 

how is baseline CORT associated with differential investment within a 

reproductive event, and does this influence future reproductive success and 

survival? 
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1.3.2 Offspring phenotype 

Reproductive success is not only influenced by the number of offspring reared, 

but also offspring phenotype (Love & Williams 2008b; Monaghan 2008). Maternal 

CORT has the potential to influence offspring phenotype, not only during 

development (Love et al. 2005; Love & Williams 2008a) but also into adulthood 

(Seckl 2004). Experiments have shown that maternal CORT concentrations during 

laying correlate with CORT concentrations within the yolk (Hayward & Wingfield 

2004). In turn, elevation of maternal CORT during egg production has been 

associated with reduced growth, immune function and body size of offspring 

(Hayward & Wingfield 2004; Saino et al. 2005; Eriksen et al. 2006). In addition, 

evidence from the biomedical literature suggests that prenatal “stress” is linked 

to long-term health disorders (for review see Viltart & Vanbesien-Mailliot, 2007). 

However, these seemingly negative consequences of elevated maternal CORT 

may be adaptive, enhancing offspring phenotype under certain conditions. For 

example, Gluckman & Hanson (2004) proposed that maternal stress is a 

developmental cue to offspring, programming their future phenotype to suit the 

harsh environmental conditions they are brought into. In addition, maternal 

stress could match offspring need to maternal ability to provide, with increased 

exposure to maternal CORT causing reduced growth rate in chicks associated 

with reduced parental workloads (Breuner 2008; Love & Williams 2008b). In turn 

this would provide benefits for mothers by reducing the costs of current 

reproduction, thus improving future survival and reproductive success (Breuner 

2008; Love & Williams 2008b). Reduced growth rates may also be advantageous 

for chicks when food availability is low, reducing the probability that parents 

will not be able to rear nestlings to fledging (Hayward and Wingfield 2004).  

 

The facultative adjustment of offspring sex can also have fitness benefits for 

parents if sexes differ in their survival and reproductive potential. In many 

systems the sexes can differ in their survivorship and breeding potential 

dependent upon the prevalent conditions. For example, daughters are often 

more likely to reproduce than sons, regardless of their quality (Kruuk et al. 

1999b; Widdig et al. 2004). Whereas high-quality sons can leave many more 

offspring than daughters and low-quality sons may fail to reproduce at all 

(Hewison & Gaillard 1999). Therefore, in circumstances that enable a female to 
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produce high-quality offspring she should produce more sons, conversely a 

female constrained to produce low-quality offspring should produce more 

daughters (Trivers & Willard 1973). However, the opposite pattern may be 

observed in species where the sex roles are reversed (West 2009).  

Although this hypothesis was originally applied to polygamous species, it can 

equally apply to any species where maternal condition or environmental 

conditions differently influence the quality of offspring and their reproductive 

success dependent upon their sex (West 2002). In agreement with theory, there 

have been a number of studies documenting the ability of birds to manipulate 

the sex ratio of their offspring in response to maternal condition and/or 

environmental factors (reviewed in West 2009). In birds, the female is the 

heterogametic sex (producing Z- and W-bearing ova) and this has led to the 

suggestion that mechanisms of sex-ratio adjustment could potentially be under 

maternal control (Oddie 1998). Experimental and empirical studies have 

demonstrated that brood sex-ratio is associated with numerous factors, including 

food abundance (Austad & Sunquist 1986), mate quality (Svensson & Nilsson 

1996; Sheldon et al. 1999a; Pike & Petrie 2005c), habitat quality (Komdeur et al. 

1997; Komdeur, Magrath & Krackow 2002b; Desfor, Boomsma & Sunde 2007), and 

maternal condition (Nager  et al. 1999; Parker 2002; Pike & Petrie 2005a). 

However, it should be noted that there are a number of studies that have not 

found the predicted adjustments (reviewed in West 2009). 

As CORT has been linked with the factors associated with brood sex ratio 

adjustment (Food availability: (Schoech, Bowman & Reynolds 2004), Habitat 

quality: (Müller et al. 2007), Mate attractiveness (Pike & Petrie 2005c; Pryke et 

al. 2011) and maternal condition (Love et al. 2005; Pike & Petrie 2005c), the 

hormone as been investigated as a possible mechanism. As circulating CORT 

concentrations can link the external conditions with the internal environment, 

maternal CORT could reliably indicate conditions that might favour brood sex 

ratio adjustment (Pike & Petrie 2003; Love et al. 2005). For example, elevated 

baseline CORT has been associated with poor body condition (Schoech, Mumme 

& Wingfield 1997; Kitaysky, Wingfield & Piatt 1999; Love et al. 2005; Pike & 

Petrie 2005a); therefore it would be expected to be associated with investment 

in the sex whose survival and reproductive success is least effected by poor 

developmental conditions. In agreement with this hypothesis correlative and 
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experimental studies have found a link between CORT and female biased brood 

sex ratios, in species were males are the larger sex and therefore may be more 

sensitive to poor natal conditions (Love et al. 2005; Pike & Petrie 2005a; Bonier, 

Martin & Wingfield 2007).  

 

The mechanism by which CORT could influence the sex of offspring is currently 

unknown (Pike & Petrie 2003). However, CORT has been suggested to influence 

brood sex ratio at both the pre-laying stage, by directly influencing offspring sex 

by causing segregation distortion of the sex chromosomes during meiosis 

(Rutkowska & Badyaev 2008) or selective reabsorption of ova dependent upon 

sex (Pike & Petrie 2003). Alternatively, yolk CORT concentrations can influence 

hatching success (Saino et al. 2005), nestling growth (Hayward & Wingfield 2004) 

and survival (Love et al. 2005; Cyr & Romero 2007), thus could affect brood sex 

ratio post-laying, through early embryo death or sex-specific nestling mortality. 

Indeed, studies provide both correlative and experimental evidence of a 

relationship between maternal baseline CORT and brood sex ratio at laying 

(primary sex ratio: Pike & Petrie 2005a; Bonier, Martin & Wingfield 2007; Gam, 

Mendonça & Navara 2011) and at fledging (secondary sex ratio: Love et al. 

2005). Therefore, although there is growing evidence that maternal CORT is 

linked to brood sex ratio, the mechanism through which this is achieved remains 

unclear. In addition, further work is required to establish whether CORT is 

consistently associated with brood sex ratio adjustment in birds. 

 

1.3.3 Mate choice & condition-dependent traits 

Inter-individual variation in baseline CORT may be associated with, or directly 

influence the expression of condition-dependent traits that act as honest signals 

of quality to potential mates (Spencer et al. 2003; Buchanan et al. 2004; Leary, 

Garcia & Knapp 2006; Roulin et al. 2008). As baseline CORT is intrinsically linked 

to an individual’s energetic state, it is often negatively correlated with measures 

of condition, such as mass, body condition index and fat scores (Holberton et al 

1996; Kitaysky et al. 1999a, 1999b; Romero and Wikelski 2001; Love et al. 2005). 

In turn, individuals in superior condition can often invest more in costly signals, 

such as plumage colouration and song (Husak & Moore 2008), therefore, this 

could lead to a correlation between baseline CORT and these condition-
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dependent traits. However, there is also evidence that CORT can directly 

influence the expression of condition-dependent traits involved in mate choice. 

For example, the quality of male song in the zebra finch, Taeniopygia guttata, 

determines the attractiveness of males to potential mates, and is negatively 

affected by both dietary stress and experimental elevation of CORT 

concentrations during development (Spencer et al. 2003). CORT elevation 

directly affects song quality by reducing the size of the high vocal center in the 

brain, which is responsible for song complexity (Buchanan et al. 2004). Another 

study has demonstrated the link between CORT and plumage colouration (Roulin 

et al. 2008). In barn owls, Tyto alba, the size and colour of melanic plumage 

spots are sexually selected, as both sexes show a preference for this plumage 

colouration (Roulin et al. 2008). Furthermore, an experimental increase in 

circulating CORT in barn owl nestlings was associated with reduced expression of 

the melanic plumage spots (Roulin et al. 2008). The authors suggest this was due 

to the inhibiting effect of CORT upon the secretion of melanocortins and 

tyrosinase, and thus melanogenesis in plumage (Roulin et al. 2008).  

As the name implies, blue tits have bright blue plumage, however, their feathers 

are also highly UV reflectant (Hunt et al. 1998). The sexes are slightly 

dimorphic, with females on average having lower intensity and chroma of the 

UV-blue crown feathers (Hunt et al. 1999; Appendix II), but some females can be 

as bright as males. Mate choice studies have shown that both males and females 

choose mates dependent upon their crown colouration (Hunt et al. 1999) and 

there is evidence of assortative mating based on UV crown reflectance 

(Andersson, Örnborg & Andersson 1998). The expression of structural feather 

colouration, such as the UV reflectance of blue tit feathers, is influenced by 

both food availability (McGraw et al. 2002; Siefferman & Hill 2005b) and feather 

growth rate (Griggio et al. 2009). Elevated CORT can negatively influence the 

microstructure of the feathers during growth, which is responsible for the 

strength of their UV reflectance (DesRochers et al. 2009), perhaps explaining 

why CORT is often down regulated during moult (Romero, Strochlic & Wingfield 

2005). Therefore, CORT could directly or through its link with energetic state be 

associated with UV plumage colouration. However, as yet this has not been 

investigated in female birds. 
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1.4 The study species  

The blue tit, Cyanistes caeruleus is a small (10-13 g) hole-nesting bird belonging 

to the family Paridae. The species is widely distributed across Europe and 

commonly inhabits broadleaf woodland, but is also abundant in urban parks and 

gardens. The blue tit was employed as a model for my PhD as it readily breeds in 

nest boxes, allowing easy access to both adults and offspring during 

reproduction. Also, the UK blue tit population has remained relatively stable 

over the last few decades, unlike other woodland passerine species which have 

experienced significant declines (Hewson et al. 2007).  

 

Blue tits are a socially monogamous species, but previous studies have found a 

relatively high occurrence of extra-pair paternity, with populations ranging from 

29% (Gullberg, Tegelström & Gelter 1992) to 68% (Charmantier et al. 2004) of 

broods containing extra-pair young. In Scotland, the species breeds between 

March and June, with pairs defending nest sites from late March and egg laying 

beginning in April or May. Blue tits often have large broods, and over the three 

years of this study the average clutch was 9.9±2.1, with a clutch of 15 recorded 

in one year. The female alone incubates eggs (see figure 1.5) and her mate will 

bring her food items during this time (Perrins 1979). Both parents, however, 

provision the offspring once they hatch and chicks remain in the nest for 18-20 

days until fledging (Perrins 1979). Like other Parid species, they are entirely 

insectivorous during the breeding season, with moth larvae like the Winter Moth, 

Operophtera brumata constituting the majority of their diet (Perrins 1991). 

However, they also provision their nestlings with other invertebrates such as 

spiders (Arnold et al. 2007). Their large brood size causes nestling provisioning 

to be particularly demanding and parents can provision at a rate of one visit per 

minute throughout the day (Perrins 1991). By mid June all nestlings have usually 

fledged, and as with the UK as a whole (Perrins 1979), I did not find evidence of 

second broods at my study site.  

 

The blue tit is one of the most intensively studied passerines in behavioural 

ecology and evolutionary biology, covering topics ranging from quantitative and 

population genetics (Taberlet, Meyer & Bouvetv 1992; Merilä & Wiggins 1995; 

Johnsen et al. 2003), sexual selection (Andersson, Örnborg & Andersson 1998; 
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Delhey et al. 2003; Charmantier et al. 2004; Limbourg et al. 2004; Dreiss 2005; 

Doutrelant et al. 2008), foraging ecology (Ramsay & Houston 1997; Lambrechts 

et al. 2004; Stauss, Burkhardt & Tomiuk 2005), climate change (Sanz 2002; Visser 

et al. 2003; Visser, Both & Lambrechts 2004), and personality (Arnold et al. 

2007; Herborn et al. 2010). Comparatively few studies have employed the 

species to address questions relating to hormonal titres (but see Müller et al. 

2006; Peters et al. 2006; Müller et al. 2007; Kempenaers, Peters & Foerster 

2008; Kurvers et al. 2008; Robert, Ras & Peters 2009). One reason for this may 

be their small size, which restricts the ease with which blood can be drawn and 

also the absolute amount of blood that can be taken over a short period of time. 

In addition, in the UK, Home Office regulations suggest the restriction of blood 

sampling to 1% of body mass per 30 days (mass ~10 g = 100 µl). Therefore, it is 

difficult to blood sample individual birds on multiple occasions within the 

breeding season or while held in captivity for a short period. This poses a 

problem when wishing to investigate the repeatability of hormone measures 

within individuals. In addition, when validating hormone manipulations it is not 

possible to blood sample the same individual before and after a manipulation.  

Specifically, the causes and consequences of variation in CORT have rarely been 

investigated in the blue tit (Müller et al. 2006; Peters et al. 2006; Landys et al. 

2007; Müller et al. 2007). Previous studies have addressed the influence of broad 

scale habitat quality upon CORT concentrations in breeding adults (Müller et al. 

2007) and the role of human disturbance upon elevating CORT during 

measurement (Müller et al. 2006). In addition, CORT concentrations have also 

been related to the expression of feather colouration in male blue tits (Peters et 

al. 2006) and male social encounters (Landys et al. 2007). Overall we know very 

little about how external factors influence inter-individual variation in baseline 

CORT and in turn how this is related to reproductive success.   
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Figure 1.5. A female blue tit photographed on her nest at the study site while 

incubating in 2009, photograph by Dr T. Lislevand. 
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1.5 The field site 

The nest boxes used in this study were situated within mixed deciduous 

woodland on the east banks of Loch Lomond surrounding the University of 

Glasgow field station, the Scottish Centre for Ecology and the Natural 

Environment, UK (figure 1.6, SCENE, 56.13 o N, 4.13o W). The woodland consists 

of a mixture of deciduous trees, with oak species, sessile, Quercus petraea and 

English, Quercus robur the most dominant, but also birch Betula spp., ash, 

Fraxinus excelsior, hazel, Corylus avellana and sycamore, Acer pseudoplatanus 

interspersed throughout the site. The woodland lies within the Loch Lomond & 

Trossachs National Park and is designated as a Site of Special Scientific 

Interest (SSSI) and a Special Area for Conservation (SAC). The woodland is 

considered ancient, as the site has had continuous woodland cover for at least 

250 years. This is rare within the national park and the UK as a whole, as ancient 

woodland covers only 2.5% of the total park area and 2% of the land cover of the 

UK (The Woodland Trust 2011). 

The nest boxes are situated in two sites within continuous woodland, with one 

site immediately surrounding SCENE, Ross Woods (~120 ha, see figure 1.7a) and 

the second < 3 km to the south Cashel Woods (~60 ha, see figure 1.7b). The 

woodland sites are functionally connected, as birds move between the sites. On 

a few occasions nestlings that were ringed at one of the sites were recorded 

breeding in the other as adults. There were approximately 430 woodcrete nest 

boxes (Schwegler) hung from mature trees approximately 2.5 m from the 

ground. The occupancy differed between years with 40% in 2008, 33% in 2009 

and 27% in 2010. However, the percentage of nests to successfully fledge young 

varied only slightly between years with 72% in 2008, 71% in 2009 and 79% in 

2010. During the course of my PhD a number of the nest boxes were no longer 

used as part of the study, because of pine marten, Martes martes, predation. 

The crosshatched area in figure 1.7b is where nestlings were predated. In 2009 

all broods (35) within nest boxes were depredated, therefore in 2010 the nest 

boxes were no longer in use. This is the first time pine marten predation has 

been recorded at the site and was thought to be due to the placement of the 

nest boxes directly upon trees in this area rather than from perpendicular 

brackets as in the rest of the site (see Appendix III). 
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Figure 1.6. The location of the Scottish Centre for Ecology and the Natural 
Environment (SCENE) on the east banks of Loch Lomond in Scotland, UK. The map has 
been taken from the SCENE website 
(www.gla.ac.uk/researchinstitutes/bahcm/researchcentres/scene/whereisscene).
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a) 

 

b) 

 

Figure 1.7. The location of a) Ross Woods, the woodland immediately surrounding the 
Scottish Centre for Ecology and the Natural Environment (SCENE) and b) Cashel Wood, 
the woodland situated by Cashel farm about 3 km south of SCENE. The woodland areas 
denoted by the diagonal lines contain nest boxes used in this study and the area 
denoted by crosshatched lines contained nest boxes that ceased to be used due to 
predation. Both sites are situated on the east banks of Loch Lomond, UK. Digitised 
Ordinance Survey maps (1:10,000) courtesy of EDINA were used.

SCENE 

Loch Lomond 

Loch Lomond 
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1.6 Thesis content 

This thesis examines both the causes and consequences of inter-individual 

variation in baseline CORT in breeding blue tits. Chapter 2 aims to assess how 

the foraging conditions during provisioning, measured at the territory-scale, 

influence baseline CORT in adults and nestlings over three years. Chapter 3 

considers whether similar foraging conditions are correlated with both maternal 

baseline CORT and reproductive success over three years, and ultimately 

whether maternal baseline CORT is correlated with reproductive success 

consistently over three years. Chapter 4 investigates whether maternal body 

condition, maternal baseline CORT and experimental elevation of CORT is 

associated with brood sex ratio adjustment in blue tits. I also address whether 

CORT is involved in reproductive trade-offs in Chapter 5, and in Chapter 6 I 

examine whether inter-individual variation in maternal baseline CORT is linked 

to UV plumage colouration in female blue tits.  

 

Chapter 2: The influence of foraging conditions upon stress hormones in 

adult and nestling blue tits, Cyanistes caeruleus 

 

The aim of Chapter 2 was to investigate how foraging conditions measured 

during provisioning, such as weather, oak density and synchrony between 

breeding and the peak in their caterpillar prey, influence baseline CORT in 

breeding adults and their dependent offspring across three years (2008-2010). 

My chapter aims were; 

• Quantify the inter-year variation in both foraging conditions and baseline CORT 

in adult and nestling birds. 

• Establish whether synchrony between breeding and the peak in their caterpillar 

prey, oak density, rainfall and temperature explained variation in parental and 

nestling baseline CORT. 
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Chapter 3: Are baseline glucocorticoids associated with fitness? Linking 

environmental conditions, corticosterone and reproductive success in the 

blue tit, Cyanistes caeruleus 

Chapter 3 considers whether the foraging conditions outlined in Chapter 2, that 

are correlated with maternal baseline CORT are also correlated with 

reproductive success, and ultimately whether maternal baseline CORT is 

correlated with reproductive success consistently across three years (2008-

2010). My chapter aims were; 

• Quantify the inter-year variation in both foraging conditions and maternal 

baseline CORT. 

• Test whether similar foraging conditions are associated with reproductive 

success and/or maternal baseline CORT.  

• Examine whether there is evidence that maternal baseline CORT is linked to 

reproductive success. 

 

Chapter 4: Maternal condition but not corticosterone is linked to brood sex 

ratio adjustment in a passerine bird 

This chapter investigates whether maternal body condition, maternal baseline 

CORT and experimentally elevated CORT are linked to brood sex ratio 

adjustment in the blue tit. My chapter aims were; 

• Investigate whether maternal body condition and/or maternal baseline CORT 

are correlated with brood sex ratio and nestling condition over three years 

(2008-2010).  

• Examine whether maternal body condition and maternal baseline CORT are 

correlated. 

• Investigate whether experimental elevation of maternal baseline CORT was 

associated with brood sex ratio adjustment and nestling condition. 

 

Chapter 5: Experimental manipulation of the early costs of reproduction 

influence maternal brood care and return rates 

 

In this chapter I investigated whether maternal baseline CORT is involved in 

reproductive trade-offs. To do so, I reduced the costs of egg laying through 
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supplemental feeding and compared maternal baseline CORT, brood care and 

maternal survival between manipulated mothers and controls. My chapter aims 

were; 

• Investigate whether the treatment influenced reproductive success, nestling 

condition or maternal return rates.  

• Investigate whether maternal brood care differed between treatment groups.  

• Examine whether maternal body condition and maternal baseline CORT differed 

between treatment groups. 

 

Chapter 6: UV crown colouration in female blue tits, Cyanistes caeruleus, 

predicts baseline corticosterone and reproductive success 

 

In Chapter 6 I investigate whether UV crown colouration, is linked to indices of 

condition and reproductive success in female birds over three years (2008-2010). 

My chapter aims were; 

• Investigate whether maternal UV crown colouration differs in relation to year 

and age.  

• Examine whether indices of condition, i.e. baseline CORT, body condition and 

haematocrit are linked to UV crown colouration. 

• Investigate whether UV crown colouration is associated with measures of 

reproductive success.
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Chapter 2: The influence of foraging conditions 

upon stress hormones in adult and nestling blue 
tits, Cyanistes caeruleus 

2.1 Abstract 

For insectivorous woodland birds, the synchrony between breeding and peak caterpillar 

abundance, tree density, rainfall and temperature can all influence the energetic 

demands of foraging parents and their nest-bound offspring. Elevated baseline 

corticosterone (CORT) is associated with increased foraging and food intake, and may 

allow birds to meet the needs of reproduction under harsh conditions. However, 

elevating baseline CORT in response to harsh environments may be costly in the long-

term, as it has also been associated with reduced survival and immune responses in 

birds. This study aimed to measure key aspects of the foraging conditions experienced 

at the level of the individual nest, and to assess their influence upon baseline CORT in 

adult and nestling blue tits, Cyanistes caeruleus over three years (2008-2010). There 

was significant inter-annual variation in baseline CORT, rainfall, temperature and 

synchrony between breeding and the caterpillar peak. At the population level, both 

adults and nestlings had elevated baseline CORT concentrations, in the year 

characterised by most asynchrony (2008). However in 2009, the year in which birds 

experienced the most rainfall, population level baseline CORT was elevated in adults 

but not nestlings, despite birds being most synchronous in this year. In 2008 only, 

baseline CORT was negatively correlated with synchrony with the caterpillar peak in 

adults and nestlings. Oak density was not related to nestling CORT, but in 2008 and 2010 

when birds were more asynchronous than 2008; it was negatively correlated with adult 

baseline CORT. Weather variables were also only associated with adult CORT; rainfall 

was a significant predictor of adult baseline CORT in 2009, the year characterised by 

the most rainfall and temperature was negatively correlated with adult baseline CORT, 

in 2008 and 2009, the years characterised by the most asynchrony and rainfall 

respectively. This study suggests that contrasting aspects of the foraging conditions 

affect baseline CORT concentrations in adult and nestling birds. Importantly, these 

effects are context-dependent and relative to the severity of the conditions within each 

year.  
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2.2 Introduction 

In birds the availability and abundance of prey during brood rearing has 

important consequences for reproductive success and the energy required to 

rear offspring (Tinbergen & Dietz 1994; Naef-Daenzer & Keller 1999; Naef-

Daenzer, Naef-Daenzer & Nager 2000; Tremblay et al. 2005). To minimise the 

costs of foraging, breeding birds often time reproduction to co-inside with 

maximal abundance of prey (Perrins 1991; Naef-Daenzer & Keller 1999), 

however, temporal and spatial availability of food items can cause parents to 

experience differential costs of foraging (Naef-Daenzer, Naef-Daenzer & Nager 

2000). Birds possess physiological mechanisms that allow them to maintain 

homeostasis and reproduction in spite of inclement conditions (Wingfield & 

Sapolsky 2003). Baseline corticosterone (CORT) is the main glucocorticoid in 

birds, and is elevated in response to environmental challenges to adjust 

physiology and behaviour appropriately for the prevalent conditions (Wingfield & 

Romero 2001). The release of CORT in response to environmental perturbations 

can be beneficial for breeding birds, as elevated baseline CORT promotes 

gluconeogenesis, which can mobilise fat reserves for energetically demanding 

breeding behaviours (Wingfield & Romero 2001). Indeed elevated baseline CORT 

has been correlated with the increased energetic demand of raising offspring 

(Bonier et al. 2009b). Furthermore, CORT elevation can adaptively redirect 

behaviour from breeding to survival when conditions become unsuitable 

(Wingfield & Sapolsky 2003). However, if inclement conditions persist stressors 

can become chronic and in this case elevated CORT has been associated with 

reduced survival, immune response, juvenile recruitment and reproductive 

success (see Blas et al. 2007; Cyr & Romero 2007; Goutte et al. 2010; Harvey et 

al. 1984; Martin 2009; Wingfield & Sapolsky 2003).  

Elevated baseline CORT concentrations have been associated with increased 

locomotor activity (Astheimer et al. 1992; Breuner & Wingfield 2000), foraging 

duration (Kitaysky et al. 2001), and food intake rate (Astheimer, Buttemer & 

Wingfield 1992; Lõhmus, Sundström & Moore 2006). Therefore, the hormone has 

been hypothesized to play an integral role in mediating foraging behaviours. For 

example, in the Adélie penguin, Pygoscelis adeliae individuals with elevated pre-

foraging CORT concentrations spent proportionally more time foraging closer to 
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the colony than out at sea compared with those with low concentrations 

(Angelier 2008). In addition, in years when common murres, Uria aalge, mistime 

breeding with the peak abundance of their fish prey, population level baseline 

CORT is higher than in years breeding coincides with peak fish abundance. 

Furthermore, elevated baseline CORT was associated with higher foraging effort 

only in mismatch years (Doody et al. 2008a). This suggests that not only is 

baseline CORT associated with low food abundance and foraging behaviour, but 

that the relationship between foraging and baseline CORT is dependent upon the 

prevalent conditions, with harsher conditions linking foraging effort with 

physiological stress. 

The circulating CORT concentrations experienced by dependent offspring are 

also influenced by parental foraging conditions. Both food quality and 

provisioning effort have been found to influence nestling CORT concentrations 

(Kitaysky et al. 2001; Corbel & Groscolas 2008). Elevation of baseline CORT may 

be adaptive for altricial young, as it can influence begging rate or alternatively 

reduce activity in the nest to conserve energy when food abundance is low 

(Kitaysky 2003). Furthermore, it is important to investigate the conditions that 

may result in elevated baseline CORT in developing offspring, because CORT 

concentrations experienced during development can have long lasting 

repercussions, affecting future survival, behaviour and the stress-response 

(Monaghan 2008; Spencer et al. 2010).  

Despite mounting evidence that foraging conditions are linked to CORT 

concentrations in both adult and nestling birds, few studies have focused on 

woodland birds (but see Pravosudov et al. 2001; Suorsa et al. 2003). In addition, 

few studies have employed multiple variables and years to investigate the 

influence of foraging conditions upon baseline CORT (but see Doody et al. 2008). 

However, this approach may be insightful as in reality individuals are influenced 

by multiple factors, which may affect stress hormones in an additive, synergistic 

or antagonistic manner. In addition, foraging conditions often vary between 

years (Perrins 1991; Visser, Holleman & Gienapp 2005), therefore studying 

multiple years may reveal the relative importance of different environmental 

factors. There is also a lack of information regarding the physiological effects of 

poor foraging conditions at the individual or territory scale (but see Suorsa et al. 

2003). The majority of studies compare stress hormones between birds breeding 
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in contrasting habitats or populations (Bonier et al. 2006; Kitaysky, Piatt & 

Wingfield 2007; Müller et al. 2007), but within habitats there is often both 

spatial and temporal variation in environmental quality (Wilkin, King & Sheldon 

2009). 

I aimed to address these knowledge gaps by investigating the influence of 

foraging conditions upon baseline CORT concentrations in adult and nestling blue 

tits, Cyanistes caeruleus over three years (2008-2010). Blue tits predominately 

feed Lepidopteran larvae to their young, which are found at the highest 

densities on the foliage of oak trees, Quercus spp. (Perrins 1991). Caterpillar 

availability varies across the breeding season, with peak abundance persisting 

for only a short period (Perrins 1991). Thus birds that breed asynchronously with 

the caterpillar peak can suffer negative consequences for reproductive success, 

and may experience greater workloads and provision smaller quantities of food 

to offspring than synchronous birds (Tinbergen & Dietz 1994; Van Noordwijk, 

McCleery & Perrins 1995; Naef-Daenzer & Keller 1999; Naef-Daenzer, Naef-

Daenzer & Nager 2000; Visser & Holleman 2001). The density of oak trees within 

territories can also influence the abundance of caterpillars available to 

provisioning adults. For example, in the closely related great tit, Parus major 

provisioning effort is strongly influenced by the distribution and density of oak 

foliage surrounding the nest (Hinsley et al. 2008). When there is only a short 

window of plentiful food for parents to provision their young, the prevalent 

weather conditions such as persistent rainfall could significantly reduce foraging 

ability (Geiser, Arlettaz & Schaub 2008). In addition, variation in temperature 

can influence both thermo-regulation costs of adults and nestlings, but also 

caterpillar activity (Tinbergen & Dietz 1994) that may influence their 

detectability for foraging birds. 

Evidently both the abundance of prey items and the effort required to obtain 

them is influenced by multiple factors. In this study I quantified the main factors 

that have been previously shown to affect foraging efficiency in breeding 

woodland birds at the individual level; synchrony between breeding and the 

caterpillar peak (Naef-Daenzer & Keller 1999; Naef-Daenzer, Naef-Daenzer & 

Nager 2000; Tremblay et al. 2003; Tremblay et al. 2005), territory-scale oak 

density (Wilkin, King & Sheldon 2009) and weather conditions (Bolger, Patten & 

Bostock 2005; Geiser, Arlettaz & Schaub 2008). The aims of this study were 
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three-fold; firstly, to quantify inter-year variation in both foraging conditions 

and baseline CORT in adult and nestling birds. Secondly, within years I wished to 

establish which of the foraging conditions measured explained variation in 

parental baseline CORT. Thirdly, identify which of the foraging conditions 

measured affected nestling baseline CORT. 

2.3 Methods & Materials 

2.3.1  Field site & nest monitoring 

Blue tits breeding in nest boxes in oak-dominated woodland around Loch 

Lomond, Scotland (56o 13! N, 4o 13! W) were studied for three years from April to 

June 2008-2010. Nest boxes (n = 357, % occupancy 2008 = 40%, 2009 = 33% and 

2010 = 27%) were monitored regularly from the onset of nest building to 

establish laying date and clutch size. When eggs were found to be warm and no 

new eggs had been layed on two consecutive visits, incubating mothers were left 

undisturbed for 10 days. Nests were then visited every day to establish hatching 

date, when >50% eggs had hatched this was considered day 1.  

2.3.2  Adult blood sampling 

In order to measure baseline CORT for breeding adults, birds were captured on 

the nest by blocking the entrance hole during provisioning on day 5-7 after 

chicks hatched. Adults were captured between 8:00-20:00. The majority of birds 

entered the nest box without any sign that they were disturbed by our presence. 

However, when researchers had to wait any length of time for birds to enter the 

nest box, the duration was noted. A small blood sample was obtained (about 80–

100 "l) with the aid of a standard heparinised capillary tube after puncture of 

the brachial vein with a 25 gauge needle. Blood samples were immediately 

stored on ice and separated through centrifugation within 2h of collection. The 

plasma portion of the sample was removed and stored at -20oC until assay. 

All samples were collected within three minutes of the initial blockage of the 

nest box entrance. CORT samples were considered to be baseline because time 

spent at the nest before capture, time between sampling and initial disturbance 
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of the nest and time of day were not related to maternal CORT when controlling 

for year (GLMM: time of day; t109 = 1.55, P = 0.12, sampling time, 2.16±0.05 

mins; t109 = 0.90, P = 0.37 and time at nest box, 2.40±0.40 mins; t109 = 1.21, P = 

0.23). Birds were sexed based on presence or absence of a brood patch and aged 

based on plumage characteristics (Svensson, 1994). 

2.3.3 Nestling blood sampling 

Nestlings were blood sampled (as described above) on day 14 after hatching. The 

nest box was taken down from the tree and all nestlings were removed and 

placed on heat pads in a cloth bag. The time between initial disturbance of the 

nest and blood sampling was recorded for each chick. For this reason a maximum 

of two nestlings per brood were blood sampled within 3 minutes of initial 

disturbance of the nest, but on the majority of occasions only one nestling was 

sampled. CORT samples taken within three minutes were considered to be 

baseline because time between sampling and initial disturbance of the nest and 

time of day were not related to nestling CORT when controlling for year and sex 

(GLMM: time of day; t45 = 1.54, P = 0.13, sampling time; t45 = 1.66, P = 0.20). To 

identify the sex of nestlings a small portion of whole blood was put in 100% 

ethanol for genetic sexing. Nests were not disturbed for longer than 30 minutes. 

2.3.4  Oak density 

To assess habitat quality within territories, the distance to the closest oak tree 

was measured as caterpillars are found at highest densities on oak foliage (Wint 

1983; Keller & van Noordwijk 1994; Foss & Rieske 2003). This is a time efficient 

method of assessing oak density and potentially foraging effort within the 

breeding territory for woodland birds (Wilkin, King & Sheldon 2009). A measuring 

tape was used to record the distance to the nearest oak tree relative to the tree 

the nest box was placed upon. For a sub-sample of nest boxes at the field site, I 

measured the number of oak trees within a 25 m radius and found density to be 

negatively correlated with the distance to the nearest oak tree (Pearson’s 

Correlation; r = -0.94, n = 10, P < 0.01, see also Wilkin, King & Sheldon 2009). 

Therefore, in analyses distance to the nearest oak tree from the focal nest box 
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was employed as a proxy measure of the oak density immediately surrounding 

the nest box.  

2.3.5  Caterpillar abundance 

To assess relative caterpillar abundance throughout the breeding period, frass 

fall (caterpillar droppings) was collected from April to June each year, a method 

that has been widely used in previous studies (Fischbacher, Naef-Daenzer & 

Naef-Daenzer 1998; Tremblay et al. 2003; Visser, Holleman & Gienapp 2005; 

Blondel et al. 2006). Caterpillars are at their highest densities in oak foliage 

therefore frass fall was measured from 20 mature oak trees (circumference: 1.2-

1.7 m). To take account of any variation across the field site, trees selected for 

frass collection were distributed throughout the woodland. Two nets were 

placed underneath each frass tree, 1 m from the trunk on the east and west side 

(figure 2.2). Each frass net was 50x50 cm therefore 1m2 of area beneath an oak 

tree was sampled for frass fall. Frass nets were emptied every 3 days unless rain 

prevented collection, in which case they were emptied once they were dry or on 

the next day frass was collected. Samples were then stored at -20˚C prior to 

analysis.  

In order to establish frass fall all samples were weighed individually. Firstly, 

larger debris such as leaves and bark were separated from frass using a medium 

sieve (mesh size 1.4mm). To obtain dry mass, the remaining samples were 

placed in a convection oven and dried for 48 hours at 60˚C. A trial using 20 frass 

samples dried for 24, 36, 48, and 60 hours showed that there was no significant 

change in the mass of the samples after 48 hours in the oven (Paired t-Test; 48 

hr vs. 60 hr, n = 20, t = 1.45, P = 0.16). Samples were then stored in a desiccator 

to avoid absorption of moisture as samples cooled. Samples were sorted further 

with a smaller sieve (mesh size 0.67mm) to separate frass from other small 

pieces of debris. Frass pellets from each sample were then weighed to the 

nearest mg. When heavy rain had dissolved the frass pellets and reduced them 

to a powder, this material was weighed and included in the total weight of the 

frass. 

To assess the synchrony between blue tit breeding and the peak in caterpillar 

abundance the number of days between date of maximum frass abundance 
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(mean calculated from all trees) and the date when nestlings were 10 days old 

was calculated for each nest. This date was chosen because at 10 days old 

nestlings are growing at their fastest rate (Perrins 1991). In addition, to compare 

between years, dates were converted to Julian with 0 = 1st April. Figure 2.1 

depicts the seasonal abundance of caterpillar frass for each year of the study. 

Synchrony between breeding and the peak in caterpillar abundance was used 

rather than absolute abundance because weather conditions can influence frass 

fall and collection (Fischbacher, Naef-Daenzer & Naef-Daenzer 1998). For 

example, frass fall was lower in 2009 than the other two years, which was the 

year with the most rainfall, however, the seasonal change in frass fall is still 

evident (see figure 2.1).
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Figure 2.1. Caterpillar abundance measured by frass fall collection (g m-2 day-1) in April 
to June 2008-2010 (Julian date, 1st April = 0). Horizontal lines indicate the period when 
blue tit nestlings were 10 days old in each year. Breeding blue tits were significantly 
more synchronous with the peak in caterpillar abundance in 2009 than the other two 
years and birds in 2010 were significantly more synchronous than 2008. 
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Figure 2.2. Example of frass nets used to estimate caterpillar abundance. Two were 
placed under each oak tree 1m from the trunk on the east and west side (20 trees in 
total were sampled). Frass nets were 50x50 cm therefore 1m2 of area beneath each tree 
was sampled. 
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2.3.6  Weather variables 

Weather data were collected at a meteorological station in Gartocharn (56o 2! 

N, 4o 31! W), less than 10 miles from the field site. The total rainfall (mm) and 

maximum temperature (oC) were collected every 24 hrs (between 09:00-09:00) 

throughout the breeding season (onset of laying until all nestlings had fledged 

27th April- 15th June) for all years of the study. To assess the impact of prolonged 

weather conditions upon adult and nestling baseline CORT a mean of the rainfall 

and maximum temperatures experienced 72 hr proceeding blood sampling was 

calculated for each individual and used in the analysis.  

2.3.7  Hormone assays 

Circulating corticosterone concentrations were measured using a double 

antibody radioimmunoassay (Wingfield, Vleck & Moore 1992). Samples were 

extracted from 5-20"l aliquots of plasma in diethyl ether and anti-corticosterone 

antiserum primary antibody (Esoterix B183), secondary antibody (Sigma goat 

anti-rabbit) and [3H]-corticosterone label (GE Healthcare, UK) were used. The 

extraction efficiency was 85–100%. Recoveries were measured for each sample 

independently and adjustments to the final assayed concentrations were made. 

CORT was measured in 6 assays for which the detection limit was 0.03 ng/ml 

(calculated as 2 SD from B0) and the averaged intra-and inter-assay variation 

was 9±6% and 10±6% respectively. 

2.3.8  Molecular sex identification 

DNA was extracted from blood samples using both a salt extraction based upon 

the methods used in Nicholls et al. (2000) or Qiagen DNeasy kits. Primers P2/P8 

were employed to identify sex of nestlings (Griffiths et al. 1998a). PCR 

amplification was carried out in a total volume of 10 µl. The final reaction 

conditions were as follows: 0.8µM of each primer, 200 µM of each dNTP, target 

DNA, 0.35 units GoTaq polymerase (Promega), 2µM (5x) GoTaq Flexi Buffer 

(Promega) and 2µM of 25mM MgCl2. Thermal cycling was carried out in a 

Biometra UnoII: 94°C/2 min, 30 cycles of (49°C/40 s, 72°C/40 s and 94°C/30 s 
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49°C/1 min, 72°/5 min. PCR products were separated by electrophoresis on a 2% 

agarose gel stained with ethidium bromide. 

2.3.9 Statistical Analysis 

To investigate how synchrony with the peak in caterpillar abundance, oak 

density, rainfall and temperature differed between years Kruskal-Wallis tests 

were employed. This non-parametric test was used because data were not 

normally distributed and were resilient to transformation. In addition, a 

Generalized Linear Model with a binomial error structure was employed to assess 

the difference in the number of rain days between years (raining = 1 or not = 0). 

All CORT data were square root transformed because of non-normality. General 

Linear Mixed Models (GLMMs) were employed to assess the effect of year and sex 

upon adult and nestling baseline CORT, with CORT concentrations as the 

dependent variable in all models. This is because some adult birds were sampled 

in more than one year (n = 5) therefore to avoid pseudo-replication ring number 

was used as a random factor within models. Mated pairs were not blood sampled 

for CORT concentrations therefore only one individual from each pair was 

included in analysis. For nestling models, GLMMs were used because more than 

one nestling was sampled from some broods (n = 6) within years therefore brood 

ID was used as a random factor. 

General Linear Models (GLMs) were employed to assess the effect of 

environmental conditions upon adult baseline CORT within years, with CORT 

concentrations as the dependent variable. GLMMs were employed to assess the 

affect of environmental conditions upon nestling baseline CORT, with brood ID 

used as a random factor; CORT concentration was also the dependent variable in 

nestling models. As maximum temperature and rainfall were significantly 

correlated (Spearman’s Rho: r = -0.38, n = 150, P < 0.001), models were run 

twice, once with rainfall and once with temperature. Due to the lack of degrees 

of freedom in nestling models, interactions could not be investigated.   

Models were optimised using backward elimination of non-significant terms when 

this improved the AIC (Akaike Information Criteria; Burnham & Anderson 2002). 

Model validations were applied and the underlying statistical assumptions of 
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normality and homogeneity of variance were verified. All statistical analyses 

were conducted using R version 2.8.0.  

2.4 Results 

2.4.1 Inter-annual variation in foraging conditions 

The environment that breeding birds experienced differed between years in 

respect to the synchrony between breeding and the peak in caterpillar 

abundance and weather conditions. In 2009 breeding birds were more 

synchronous with the peak in caterpillar abundance than the other two years, 

and in 2010 breeding birds were more synchronous than in 2008 (figure 2.3a, H2, 

325 = 155.73, P < 0.001). In 2009, median asynchrony with the caterpillar food 

peak was 2 days, but it was 8 and 5 days in 2008 and 2010, respectively. Oak 

density, measured by distance to the nearest oak tree from each occupied nest 

box, did not differ between years (figure 2.3b, H2, 244 = 2.16, P = 0.34). During 

the breeding season in 2009 there was significantly more rainfall and rain days 

than in the other two years of the study (Rainfall: H2, 148 = 7.10, P = 0.03, Rain 

days: t148= 2.16, P = 0.03, see figure 2.4a). For example, it rained on 62% of days 

in 2009 compared with 40% and 50% of days in 2008 and 2010 respectively. In 

addition, in 2008 maximum temperatures were warmer than the other two years 

by about 2oC (see Figure 2.4b, H2, 148 = 6.29, P = 0.04). 

2.4.2  Inter-annual variation in CORT concentrations 

Adult baseline CORT was found to differ significantly between years. In 2010, 

adult baseline CORT was significantly lower than the other two years of the 

study (see figure 2.5a, t111 = 4.51, P < 0.001). In addition, male baseline CORT 

was significantly lower than female baseline CORT in all years of the study (see 

figure 2.5a, Sex; t111 = 2.43, P = 0.02, Sex x Year; t111 = 0.11, P = 0.91). 

Nestling baseline CORT also differed significantly between years. Similar to adult 

CORT, nestling baseline CORT was significantly lower in 2010, but also in 2009 

when compared with 2008 (see figure 2.5b, 2009; t47 = 2.36, P = 0.02 and 2010; 

t47 = 4.81, P < 0.001). There was also a trend that nestling baseline CORT was 
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lower in male nestlings when compared with female nestlings (see figure 2.5b, 

Sex; t47 = 2.04, P = 0.10, Sex x Year; t45 = 0.05, P = 0.96).  
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a)

 

b)

 

Figure 2.3. Box-and-whisker plots (showing median and interquartile range) of inter-
annual variation in a) asynchrony between 10 day old blue tit nestlings and the peak in 
caterpillar abundance measured by frass fall, 0 days = completely synchronous, n = 327, 
and b) distance to the nearest oak tree from each occupied nest box, n = 346. 
 

a)

 

b)

 

Figure 2.4. An inter-annual comparison of a) the proportion of rain days and b) box-
and-whisker plots (showing median and interquartile range) of maximum daily 
temperature (oC). Weather variables were measured during the blue tit breeding 
season, onset of laying 27th April until all chicks had fledged 15th June (2008-2010).
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2.4.3  Influence of foraging conditions on CORT concentrations 

within years 

2.4.3.1 Adults 

The years were analysed separately as CORT concentrations and the foraging 

conditions measured showed significant inter-annual variation. The 

environmental factors that explained the variance in adult baseline CORT 

differed between years. In 2008, adult baseline CORT was negatively correlated 

with synchrony with the caterpillar food peak. In addition, adult birds that were 

breeding in oak-dense territories and that were more synchronous with the 

caterpillar food peak had lower baseline CORT concentrations (see table 2.1 & 

figure 2.6a). The mean temperature experienced 72hr prior to blood sampling 

was also related to baseline CORT concentrations, with lower temperatures 

associated with higher baseline CORT (see table 2.1). Rainfall was not 

significantly related to baseline CORT concentrations in 2008 (see table 2.1). All 

interactions with sex were non-significant (see table 2.1). 

In 2009, adult baseline CORT was not related to oak density or synchrony with 

the caterpillar food peak (see table 2.1 & figure 2.6b). However, rainfall was 

related to adult baseline CORT in 2009; individuals that experienced more 

rainfall in the proceeding 72 hr had higher baseline CORT than those who 

experienced drier conditions (see table 2.1). There was a trend that 

temperature was negatively related to baseline CORT concentrations in 2009 

(see table 1). All interactions with sex were non-significant (see table 2.1). 

In 2010, the only environmental factor that significantly influenced adult 

baseline CORT was oak density. Similar to 2008, adults breeding in a territory 

with higher oak density had lower baseline CORT (see table 2.1 & figure 2.6c). 

Synchrony with the caterpillar food peak and weather variables were not 

significantly related to baseline CORT in 2010 (see table 2.1). All interactions 

with sex were non-significant (see table 2.1). 
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2.4.3.2 Nestlings 

When the years were analysed separately the environmental factors that 

explained the variance in nestling baseline CORT also differed between years. In 

2008, synchrony with the caterpillar food peak was significantly related to 

nestling baseline CORT (see table 2.2 & figure 2.7a). Nestlings from broods that 

were more synchronous with the caterpillar food peak had lower baseline CORT 

than more asynchronous broods. In 2008, oak density and weather variables were 

not related to nestling baseline CORT (see table 2.2). In 2009 and 2010 none of 

the environmental factors considered were associated with nestling baseline 

CORT (see table 2.2).
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a) 

 

b) 

 

Figure 2.5. a) Baseline CORT in breeding adult blue tits differed between the sexes and 
years (n = 2008: M: 14 F: 34, 2009: M: 11, F: 33 and 2010: M: 6, F: 15). Females 
consistently had significantly higher baseline CORT than males. Baseline CORT was also 
significantly lower in 2010 than the other two years of the study. b) Baseline CORT in 
nestling blue tits differed between years (n =  2008: M: 15, F: 8, 2009: M: 8, F: 5 and 
2010: M: 3, F: 11). Nestling baseline CORT was significantly lower in 2010 and 2009 
when compared to 2008 and there was a trend that male nestlings had lower baseline 
CORT than females. Graph shows mean±SE.  
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Table 2.1. The results of General Linear Models assessing the determinants of adult baseline CORT in blue tits during the breeding season for three 
years (2008; n = 48, 2009; n = 44, 2010; n = 21). Factors in bold were significant, denotes borderline significance at P<0.06, *denotes significance at 
P<0.05 and ** denotes significance at P<0.01. Models were optimized using backward elimination of non-significant terms if this improved the AIC. 
Due to collinearity of the weather variables, rainfall and temperature were analysed in separate models. The model outputs for rainfall and rainfall 
x sex alone were from models that included rainfall; all other values are from models that included temperature. Terms that were removed from 
final models are denoted by rm. 

 

Dependent/ 
Independent factor 

      2008 2009 2010 

Adult  
Baseline CORT SE t d.f. P  SE t d.f. P  SE t d.f. P  
Constant 1.086 3.512   44 0.001  1.667 3.285 41 0.002  0.176 3.415    18 0.003  
Sex 0.141 -2.977 44 0.005**  0.174 -2.124 41 0.040*  0.132 -2.023 18 0.059   
Oak Density 0.027  2.922   44 0.006**  0.025 1.422 41 0.162  0.035   2.596 18 0.019*  
Synchrony 0.035    2.241   44 0.030*  0.049 0.491 40 0.626  rm 0.032    -0.357 16 0.726 rm 

Temperature 0.072 -2.461 44 0.018*  0.108 -2.367 40 0.023*  0.025   -1.293 16 0.215 rm 

Rainfall 0.085    1.115    44 0.271 rm 0.040 2.172 40 0.036*  0.107   0.671  16 0.512 rm 

Oak Density x Sex 0.062  -0.532 41 0.598 rm 0.069 1.043 37 0.304   rm 0.445   -1.127  13 0.282 rm 

Synchrony x Sex 0.088   0.295 41 0.399 rm 0.128 -0.082 37 0.935   rm 0.160   -1.318  13 0.212 rm 

Temperature x Sex 0.295    0.666   41 0.509 rm 0.407    -0.165 37 0.869   rm 0.208    1.063    13 0.349 rm 

Rainfall x Sex 0.185   -0.305 41 0.762     rm 0.255   0.371 37 0.713 rm 0.349 -0.974  13 0.775 rm 
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Table 2.2. The results of General Linear Mixed Models (2008 & 2010) and General Linear Models (2009) assessing the determinants of nestling 
baseline CORT in blue tits from a three year study (2008; n = 23, 2009; n = 13, 2010; n = 14). General Linear Mixed Models were used in 2008 and 
2010 because there were multiple nestlings sampled form the same brood (random factor = brood ID). General Linear Models were used in 2009 
because only one nestling from each brood was included in the analysis. Factors in bold are significant, *denotes significance at P<0.05. Due to 
collinearity of the weather variables, rainfall and temperature were analysed in separate models. The model outputs for rainfall and rainfall x sex 
alone were from models that included rainfall; all other values are from models that included temperature. Terms that were removed from final 
models are denoted by rm. 
 

Dependent/ 
Independent factor 

2008 2009 2010 

Nestling Baseline 
CORT SE t d.f. P  SE t d.f. P  SE t d.f. P  
Constant 1.060 2.466 21 0.024  1.482 3.677   11 0.010  1.773 2.070     10 0.072  
Sex -0.554 -2.281  21 0.150  -0.907 -2.085  11 0.082  0.017 0.076 10 0.951  
Oak Density 0.002    0.039   19 0.970 rm 0.033 1.387    11 0.215  -0.007 -0.811  10 0.441  
Synchrony 0.124   2.670    21 0.015*  0.201 0.907    9 0.416 rm 0.005 0.099  10 0.923  
Temperature 0.057   0.452 19 0.678 rm 0.087 0.656     9 0.548 rm -0.047 -1.093 10 0.306  

Rain -0.100  -1.081  19 0.295 rm -3.635 -1.053 9 0.352 rm 0.074    1.152    10 0.283   
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Figure 2.6. Relationship between adult a) 2008, (n = 48), b) 2009, (n = 44) and 
c) 2010, (n = 21) and nestling c) 2008 (n = 23), d) 2009, (n = 13) and e) 2010, (n = 
14) baseline CORT (ng/ml) and density of oak trees immediately surrounding the 
nest box in blue tits over three years. Solid lines indicate significant correlations 
and dashed lines indicate non-significant correlations. Note the different scales 
for baseline CORT between years. 
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Figure 2.7. Relationship between adult a) 2008, (n = 48), b) 2009, (n = 44) and 
c) 2010, (n = 21) and nestling c) 2008 (n = 23), d) 2009, (n = 13) and e) 2010, (n = 
14) baseline CORT (ng/ml) and synchrony with the caterpillar food peak over 
three years in blue tits. Solid lines indicate significant correlations and dashed 
lines indicate non-significant correlations. Asynchrony was measured by the 
number of days between the date nestlings were 10 days old and the peak date 
of caterpillar abundance, 0 = complete synchrony. Note the different scales for 
baseline CORT between years.
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2.5 Discussion 

My results suggest that variation in adult and nestling baseline CORT is 

associated with the prevailing foraging conditions experienced by breeding birds. 

At the population level baseline CORT in adult and nestling birds did not show 

the same pattern across years. In 2008, when breeding birds were most 

asynchronous with the caterpillar peak, baseline CORT concentrations were 

elevated in both adults and nestlings (figure 2.5a & b). However, in 2009 when 

birds experienced the wettest conditions, adults but not nestlings showed 

elevated baseline CORT (figure 2.5a & b). Synchrony between breeding and the 

peak in caterpillar abundance was not an important determinant of baseline 

CORT for either nestling or adult birds, except in 2008 the most asynchronous 

year of the study. Oak density was negatively correlated with adult baseline 

CORT in 2008 and 2010, the two years birds were most asynchronous, but was 

not related to nestling CORT in any year. Weather variables were also related to 

baseline CORT in adults only, with rainfall positively correlated with baseline 

CORT in 2009, the year characterised by the most rainfall. Also in 2008 and 

2009, when birds were most asynchronous and experienced the most rainfall 

respectively, temperature was negatively correlated with adult baseline CORT. 

These results suggest that some aspects of the foraging conditions measured 

have an influence upon adult rather than nestling baseline CORT. Furthermore, 

foraging conditions are associated with baseline CORT concentrations only when 

conditions are more demanding, suggesting that there is a threshold level over 

which asynchrony, oak density, temperature and rainfall or a combination of 

these factors elicit a physiological response in breeding blue tits. 

Asynchrony between breeding birds and the peak abundance of their caterpillar 

prey can increase the energetic demands of provisioning parents and their 

growing nestlings, through reduced foraging efficiency and provisioning 

(Tremblay et al. 2003; Tremblay et al. 2005; Visser, Holleman & Gienapp 2005). 

Therefore it is likely to increase physiological stress in adult birds through 

increased work rate and possibly through increased food deprivation in nestling 

birds. The results from 2008 would indeed support this hypothesis because a 

significant negative relationship was found between synchrony between breeding 

and peak caterpillar abundance and baseline CORT in both adult and nestling 
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birds. The absence of this relationship in the other two years indicates that birds 

respond physiologically to asynchrony dependent upon its severity. A similar 

effect has been found in seabirds, where foraging effort in the common murre 

was positively correlated with baseline CORT only in a year of low prey 

abundance (Doody et al. 2008).  

Recent studies have documented the consequences of physiological stress during 

development in birds, presenting evidence that dietary restrictions are 

associated with elevated CORT and begging rate in nestlings (Kitaysky et al. 

2001; Spencer et al. 2003; Williams, Kitaysky & Buck 2008). Elevated baseline 

CORT could be beneficial for nestlings receiving fewer food items, by increasing 

begging activity to stimulate parental provisioning, or alternatively through 

reducing activity to conserve energy (Kitaysky 2003). However, physiological 

stress during the nestling phase can also have negative long-term consequences 

for behaviour and cognition after fledging (Kitaysky et al. 2001; Spencer et al. 

2003). Therefore, high levels of CORT during the nestling phase associated with 

asynchrony with the caterpillar peak could have long lasting effects upon 

cognition and survival for nestling blue tits. 

There is evidence that climate change has the potential to disrupt synchrony 

between insectivorous woodland birds and their prey, as they respond at 

divergent rates to increasing temperatures (Visser, Holleman & Gienapp 2005; 

Both et al. 2009). As my results indicate that asynchrony between breeding and 

the caterpillar peak is associated with elevated baseline CORT, climate change 

could increase physiological stress in breeding birds over the coming years. 

Although modulation of CORT concentrations can allow animals to alter their 

physiology and behaviour in an adaptive manner, chronic stress can be 

associated with reduced survival (Goutte et al. 2010), juvenile recruitment 

(Kitaysky et al. 2006) and reproductive success (Bonier et al. 2009b). Indeed, 

elevated physiological stress in seabird chicks due to mismatched breeding with 

their fish prey has been suggested as a mechanism of recent seabird declines 

(Kitaysky et al. 2006). Therefore even if asynchrony between breeding and the 

caterpillar peak does not influence reproductive success, it may increase 

circulating baseline CORT concentrations in adult and nestling birds, causing 

them to pay higher physiological costs. Overall, measuring baseline CORT in 
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woodland birds may be a valid line of research when trying to understand the 

full effects of asynchrony with the caterpillar peak. 

Importantly my results also suggest that both temperature and rainfall are 

associated with baseline CORT in adult blue tits. As the climate may change in 

respect to these variables over the coming years (Houghton et al. 2001), this 

could influence baseline CORT in breeding birds in conjunction with asynchrony 

between breeding and the caterpillar peak, in an additive, synergetic or 

antagonistic manner. For example, if breeding birds grow more asynchronous 

with the peak abundance of their caterpillar prey, and springs also become 

wetter (Osborn & Hulme 2002; Leech & Crick 2007), this may have more severe 

consequences for the physiological stress and reproductive success of breeding 

birds than asynchrony alone. However, if growing asynchrony is associated with 

warmer temperatures, the costs may be attenuated, as birds may require less 

energy for thermoregulation (Stevenson & Bryant 2000), caterpillars may 

increase the feeding rates (Tinbergen & Dietz 1994), grow larger at a faster rate, 

thus becoming easier to detect, and leaf growth may be enhanced (Myneni et al. 

1997) extending the period caterpillars are available (Leech & Crick 2007). 

Overall the consequences of climate change for woodland birds, and thus the 

effects on baseline CORT are difficult to predict (Leech & Crick 2007). 

 

Blue tits forage predominately within the vicinity of their nest, usually no 

further than 50 m from their nest (Stauss, Burkhardt & Tomiuk 2005). Therefore 

the density of oak trees surrounding the nest can have a significant affect upon 

foraging distances and hence adult workload (Tremblay et al. 2005; Hinsley et 

al. 2008). Specifically, oak density could impose greater physiological stress 

upon parents when caterpillar abundance is low, by increasing the foraging time 

required to collect sufficient prey items. My results support this hypothesis as 

oak density was negatively correlated with adult baseline CORT, only in the two 

most asynchronous years of the study, 2008 and 2010, suggesting these effects 

are additive. The absence of an effect upon nestling baseline CORT indicates 

that adult birds were able to alleviate the influence of oak density upon 

nestlings, possibly by increasing their work rate to provide a similar amount of 

food items to nestlings in oak-poor territories.  
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In 2009 birds bred most synchronously with the caterpillar peak, but in this year 

adult birds had significantly higher baseline CORT than 2010, a less synchronous 

year. Analysis of the other environmental variables indicated that rainfall was 

significantly higher in this year and was positively related to adult baseline CORT 

in 2009 alone. This may have been the cause of elevated adult baseline CORT in 

this year as previous studies have reported that rainfall can significantly affect 

foraging and reproductive success in breeding birds, through increased energetic 

costs of foraging and reduced ease of detecting prey (Bolger, Patten & Bostock 

2005; Geiser, Arlettaz & Schaub 2008). In the present study rainfall did not 

influence nestling CORT in any year of the study, which again suggests that 

parents suffered the energetic costs associated with these inclement conditions 

and buffered the nestlings from these impacts. In addition, lower temperatures 

were also associated with higher baseline CORT in adult but not nestling birds. 

Blue tits are cavity-nesting birds and therefore nestlings are considerably 

shielded from inclement conditions. Furthermore, there is evidence from other 

species that parents can buffer the effects of inclement conditions upon their 

offspring through changes in provisioning behaviour (Kitaysky, Wingfield & Piatt 

2001; Tremblay et al. 2005). Therefore, the differential exposure in 2009 

between nestlings and adult birds to rainfall, and the potential for parental 

compensation regarding food intake may explain why at the population level, 

nestling and adult baseline CORT did not follow a similar pattern in this year. 

This study presents evidence for sex differences in baseline CORT in adult but 

not nestling birds. In all years of the study, adult males had significantly lower 

baseline CORT than females. Previous studies present mixed evidence for affect 

of sex upon baseline CORT concentrations during breeding (Romero, Ramenofsky 

& Wingfield 1997b; Marra & Holberton 1998; Lormée et al. 2003; Bokony et al. 

2009; Angelier et al. 2010). On the whole, the sex that invests more into 

offspring care, is expected to have an attenuated stress-response to prevent 

nest desertion (Bokony et al. 2009), but this refers to an acute stress-response 

as opposed to fluctuations in baseline levels. The opposite trend may be evident 

in baseline concentrations due to the differential workload experienced by the 

sexes. In blue tits, females build the nest, lay large clutches and incubate them 

alone, the male will provide food for his mate during incubation and then the 

pair will provision their brood together (Perrins 1979). Therefore, female birds 
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would have been expected to have greater energetic demands during breeding 

and may have required elevated baseline CORT concentrations to maintain 

reproductive behaviours (Wingfiled & Sapolsky 2003). In addition, baseline CORT 

was measured between day 5-7 after hatching, during which time female birds 

continue to show brooding behaviour (Pers. Obs.) and may not be able to feed as 

frequently as males. 

A limitation of this study was that it was not possible to sample pairs for 

baseline CORT analysis. Therefore I cannot state that the affect of sex upon 

baseline CORT is evident within breeding pairs. Male nestlings also had 

marginally lower baseline CORT than female nestlings, particularly in 2009 (P = 

0.082), but as the sample size for nestlings was small, I therefore cannot 

interpret the data further. However previous studies have also failed to find 

evidence for sex differences in hormone concentrations at the nestling stage 

(Schwabl 1999; Love, Bird & Shutt 2003). 

This study presents evidence for synergistic impacts of foraging conditions upon 

baseline CORT, e.g. lower temperatures were only associated with elevated 

baseline CORT in the years characterized by the greatest asynchrony or rainfall. 

This finding is not unprecedented; there is evidence that similar patterns exist 

for other physiological measures of stress. For example in humans, lipid 

peroxidation, the oxidative degradation of lipids by free radicals, and plasma 

antioxidant levels that inhibit this oxidation, are often uncorrelated in healthy 

individuals. Whereas, correlations are found in individuals suffering from disease 

or undergoing demanding exercise (for review see Dotan, Lichtenberg & Pinchuk 

2004).  

 
2.5.1  Conclusions 

This study presents evidence that foraging conditions are associated with basal 

CORT concentrations in breeding woodland birds. Importantly this study 

highlights the complexity of the role of foraging conditions upon baseline CORT 

concentrations. Intuitively, harsher conditions may place higher energetic 

demands upon breeding birds, but understanding the threshold levels over which 

individuals experience physiological stress in response to these factors provides 

greater insight into how birds respond to their environment. The results also 
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indicate that baseline CORT concentrations in nestlings are unaffected by some 

aspects of the foraging environment that influence adult birds, suggesting that 

the nest environment or parental behaviours act to buffer their influence upon 

offspring. This study cannot, however, assign causation to the patterns observed 

and experimental manipulation of foraging conditions, baseline CORT and 

foraging effort would greatly advance our understanding.  



72 

Chapter 3: Are glucocorticoids associated with 

fitness? Linking foraging conditions, 

corticosterone and reproductive success in the 

blue tit, Cyanistes caeruleus 

3.1 Abstract 

Poor environmental conditions are often associated with reduced reproductive success 

and elevated baseline CORT in birds. This has lead to the assumption that elevated 

baseline CORT should be associated with reduced fitness, which was recently coined the 

“CORT-fitness” Hypothesis. However, this may not follow, as modulation of CORT in the 

face of environmental challenges can adaptively influence physiology and behaviour to 

improve breeding performance and/or survival. In this study I tested the “CORT-fitness” 

Hypothesis using free-living blue tits, Cyanistes caeruleus over three years (2008-2010). 

To gauge environmental quality I quantified key aspects of the foraging conditions, 

namely, synchrony between breeding and the peak in caterpillar abundance, territory-

scale oak density and weather variables. I investigated whether similar harsh foraging 

conditions during brood rearing were associated with elevated maternal baseline CORT 

and reduced reproductive success. In turn, I considered whether maternal baseline 

CORT was related to indices of reproductive success consistently across years. In 2008 

and 2010, the years characterised by the greatest asynchrony between breeding and the 

peak in caterpillar abundance, broods that were more synchronous fledged more 

offspring, a higher proportion of the clutch (2010: P = 0.087) and had heavier chicks 

than less synchronous broods. Whereas, there was only a trend in 2008 that synchrony 

with the caterpillar peak was negatively correlated with maternal baseline CORT. Oak 

density was not linked to indices of reproductive success, but was positively correlated 

with maternal baseline CORT in 2008 and 2010. In 2009, however, when birds 

experienced the wettest conditions, heavy rainfall and low temperatures were 

associated with low nestling mass and elevated maternal baseline CORT. Maternal 

baseline CORT was positively correlated with the number of chicks fledged, and 

negatively correlated with nestling mass in 2009 only. These results indicate that the 

foraging conditions associated with reproductive success are not consistently those 

linked to maternal baseline CORT. Furthermore, correlations between maternal CORT 

and proxies of fitness may be dependent upon the prevalent conditions. Ultimately, 

single year studies may not be sufficient to provide evidence that inter-individual 

variation in baseline CORT is linked to fitness. 
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3.2 Introduction 

Poor environmental conditions are often associated with reduced reproductive 

success (Keller & Van Noordwijk 1994; Naef-Daenzer & Keller 1999; Garant et al. 

2007; DeGabriel et al. 2009; Grimardias et al. 2010) and elevated 

glucocorticoids (GCs) (Marra & Holberton 1998; Kitaysky et al. 2001; Homan, 

Reed & Romero 2003; Cash & Holberton 2005; Kitaysky, Piatt & Wingfield 2007) 

in a variety of vertebrates. This has lead to the assumption that elevated GCs 

may be evident in individuals with reduced fitness (Bonier et al. 2009a), 

however, this has rarely been validated (but see Angelier et al. 2010; Bonier et 

al. 2009b; Cook et al. 2011) and is currently the subject of debate (Bonier et al. 

2009a; Bonier et al. 2010; Dingemanse, Edelaar & Kempenaers 2010). Baseline 

concentrations of corticosterone (CORT), the main GC in birds, are primarily 

involved in maintaining daily homeostatic energetic balance (Harvey et al. 1984; 

Remage-Healey & Romero 2001a; Charmandari, Tsigos & Chrousos 2005). 

Therefore, CORT is intrinsically linked with an individual’s energetic state, 

which in turn is often dependent upon the prevalent environmental conditions 

(Holberton, Parrish & Wingfield 1996; Kitaysky et al. 2001; Love et al. 2005; 

Kitaysky et al. 2006). Although CORT is commonly referred to as a “stress” 

hormone, the modulation of CORT concentrations enable animals to cope with 

and maximize fitness in the face of fluctuating and unpredictable environmental 

conditions (Sapolsky & Wingfield 2003; Wingfield 2005). Yet, the link between 

environmental conditions and circulating CORT, has lead to the hormone being 

increasingly used as a tool in ecology and conservation science for monitoring 

the health of species and populations of concern (reviewed in Busch & Hayward 

2009). The assumption that harsh environmental conditions are linked to 

elevated baseline CORT and therefore elevated CORT is associated with reduced 

fitness has recently been coined as the “CORT–Fitness Hypothesis” in a review 

article by Bonier et al. (2009a). However, a review of the empirical evidence 

within this article and subsequent studies (Bonier et al. 2009b; Angelier et al. 

2010; Dingemanse, Edelaar & Kempenaers 2010; Ouyang et al. 2011) suggest that 

there is mixed support for the hypothesis. 

Due to the role of CORT in maintaining daily energy balance and its pleiotropic 

affects upon physiology and behaviour the hormone has been suggested to have 
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an integral role in life-history trade-offs, and play an adaptive role in maximising 

reproductive output under a range of conditions (Sapolsky & Wingfield 2003). 

Indeed a positive relationship between baseline CORT and indices of fitness 

might be predicted when environmental conditions are poor (Bonier et al. 

2009a: Sapolsky & Wingfield 2003), as baseline CORT mobilises energy stores 

enabling individuals to maintain reproduction in the face of inclement conditions 

(Sapolsky & Wingfield 2003). Furthermore, individuals with large broods might be 

expected to elevate baseline CORT to meet the energetic demands associated 

with a greater number of offspring (Bonier et al. 2009b; Bonier, Moore & 

Robertson 2011). For example, experimentally enlarging brood size in the tree 

swallow, Tachycineta bicolor, caused an increase in maternal baseline CORT 

relative to mothers with reduced broods (Bonier, Moore & Robertson 2011). It 

could also be hypothesised that such a relationship would be more apparent in 

short-lived species with high fecundity, because it may be prudent to invest 

heavily in reproduction when the likelihood of future reproduction is minimal 

(Wingfield & Sapolsky 2003: Bokony et al. 2009), and this was supported in a 

recent meta-analysis that showed baseline CORT is positively correlated with the 

value of current reproduction relative to lifetime reproductive output in birds 

(Bokony et al. 2009). 

Breeding stage can also affect the relationship between baseline CORT and 

proxies of fitness (Bonier et al. 2009b; Ouyang et al. 2011). Studies report a 

negative relationship between CORT during egg-laying and reproductive success, 

but a positive relationship between CORT during brood rearing and reproductive 

success in both populations and individuals (Bonier et al. 2009b; Ouyang et al. 

2011). The contrasting relationship between CORT and fitness under these 

circumstances may be adaptive (Bonier et al. 2009b), as elevated CORT at an 

early stage may indicate poor individual condition and therefore a high 

probability of reproductive failure, whereas at later stages may facilitate 

nestling provisioning (Bonier et al. 2009b). Overall, the growing knowledge of 

the role of CORT in avian reproduction, indicates that an assumption of a 

negative relationship between parental CORT and reproductive success is 

simplistic (Love et al. 2005; Breuner 2008; Love & Williams 2008b; Williams 

2008; Bonier et al. 2009a). 
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Importantly, when interpreting a CORT-fitness relationship, the links between 

CORT, environmental conditions and fitness must first be validated. This is 

because under certain circumstances the variation in or severity of the 

environmental conditions experienced during reproduction may not have 

consequences for baseline CORT or indeed fitness, therefore undermining the 

main assumptions of the “CORT-Fitness Hypothesis”. In this case, contrasting 

conditions between years or habitats, may cause the relationship between CORT 

and fitness to differ. For example, in an island population of blue tits, Cyanistes 

caerulus, where provisioning was more challenging than the mainland, baseline 

CORT was positively correlated with brood size, whereas this relationship was 

not evident in a mainland population (Müller et al. 2007). 

The aim of this study was to investigate whether inclement foraging conditions, 

specifically those experienced during brood rearing were associated with 

reduced fitness and/or elevated baseline CORT consistently over three years 

(2008-2010). In turn, I considered whether maternal baseline CORT is 

consistently linked to indices of fitness, specifically reproductive success over 

multiple years. A free-living population of blue tits was studied as there is 

evidence that both foraging conditions (Chapter 2) and reproductive success 

(Müller et al. 2007) are associated with baseline CORT concentrations in this 

species. To quantify foraging conditions during brood rearing, synchrony 

between breeding and the peak in caterpillar abundance and territory-scale oak 

density, which influence both reproductive success and foraging efficiency 

(Naef-Daenzer & Keller 1999; Tremblay et al. 2005) was measured. To assess 

fitness, fledging success, proportion of the clutch to fledge and mean nestling 

mass on day 14 after hatching was recorded. To control for effects of breeding 

stage, maternal baseline CORT was measured at the same point during brood 

rearing across all years.  

3.3 Methods & Materials  

3.3.1  Field site & reproductive success 

Blue tits breeding in nest boxes in oak-dominated woodland around Loch 

Lomond, Scotland (56o 13! N, 4o 13! W) were studied for three years from April to 
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June 2008-2010. Nest boxes (n = 357, % occupancy 2008 = 40%, 2009 = 33% and 

2010 = 27%) were monitored regularly from the onset of nest building to 

establish laying date, clutch size, hatching date and number fledged. In 

addition, nest boxes were visited after fledging to check for unfledged offspring 

and establish fledging success. Proportion fledged was calculated as the 

proportion of the clutch that fledged. To measure nestling condition, nestlings 

were weighed to the nearest 0.01g with a digital balance on day 14 after 

hatching. In addition, on day 14 chicks were fitted with a uniquely numbered 

aluminium ring (British Trust for Ornithology).  

3.3.2  Maternal baseline CORT  

In order to measure maternal baseline CORT, birds were captured on the nest 

during brood provisioning on day 5-7 after hatching. All adults were captured 

between 08:00-20:00. The majority of birds entered the nest box without any 

sign that they were disturbed by human presence. However, when researchers 

had to wait any length of time for birds to enter the nest box, the duration was 

noted. A small blood sample was obtained (about 80–100 "l) with the aid of a 

standard heparinised capillary tube after puncture of the brachial vein with a 25 

gauge needle. Blood samples were immediately stored on ice and separated 

through centrifugation within 2h of collection. The plasma portion of the sample 

was removed and stored at -20oC until assay. 

All blood samples were collected within three minutes of the initial blockage of 

the nest box entrance. CORT samples were considered to be baseline because 

time spent by researchers at the nest before capture, time between sampling 

and initial disturbance of the nest and time of day were not related to plasma 

CORT (GLM: time at nest; t84 = 1.56, P = 0.12, sampling time; t84 = 0.67, P = 0.51 

and time of day; t84 = 1.52, P = 0.13). Birds were sexed based on presence or 

absence of a brood patch (Svensson 1992). 

3.3.3  Foraging conditions 

The foraging conditions experienced by breeding birds were assessed by 1) the 

synchrony between breeding and the peak in caterpillar abundance, 2) the 
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density of oak trees immediately surrounding the nest and 3) the weather 

conditions.  

1) Caterpillar abundance was calculated by the collection of frass (caterpillar 

droppings) from April to June each year. This method has been widely used in 

previous studies (Fischbacher, Naef-Daenzer & Naef-Daenzer 1998; Tremblay et 

al. 2003; Visser, Holleman & Gienapp 2005; Blondel et al. 2006). Caterpillars are 

at their highest densities in oak foliage therefore frass fall was collected from 20 

mature oak trees and assessed by measuring the dry weight (see Chapter 2 for 

full methods). To calculate the synchrony between breeding blue tits and the 

peak in caterpillar abundance the number of days between date of maximum 

frass abundance (mean calculated from all trees) and the date when nestlings 

were 10 days old was calculated for each nest. At 10 days of age, nestlings are 

growing at their fastest rate (Perrins 1991), so their nutritional requirements are 

at their highest. To allow comparisons between years, dates were converted to 

Julian with 0 = 1st April.  

2) The density of oak trees immediately surrounding the nest can influence the 

availability of caterpillars for provisioning adults and therefore the energy 

required to gather them (Hinsley et al. 2008). Within territories, a measuring 

tape was used to record the distance to the nearest oak tree relative to the tree 

the nest box was placed upon. Distance to the closest oak tree from the focal 

nest is correlated with oak density immediately surrounding the nest (see 

Chapter 2; Wilkin, King & Sheldon 2009), and was therefore used in the analysis 

as a proxy for oak density. 

3) As both rainfall and temperature have been linked to maternal baseline CORT 

in blue tits (see Chapter 2), both variables were measured across years. Weather 

data were collected at a meteorological station in Gartocharn (56o 2! N, 4o 31! 

W), less than 10 miles from the field site. The total rainfall (mm) and maximum 

temperature (oC) were collected every 24 hrs (between 09:00-09:00) throughout 

the breeding season (onset of laying until all nestlings had fledged 27th April- 15th 

June) for all years. To assess the impact of prolonged weather conditions upon 

maternal baseline CORT a mean of the rainfall and maximum temperatures 

experienced 72 hr proceeding blood sampling was calculated for each individual 

and used in the analysis. Also, to investigate the impact of prolonged weather 
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conditions upon reproductive success, a mean of the rainfall and maximum 

temperatures experienced between day 9-11 after hatching (72 hr) was 

calculated for each nest and used in the analysis. The period was chosen as 

nestlings are growing at their fastest rate during this time (Perrins 1991), and 

may be most sensitive to inclement weather conditions. 

3.3.4  Hormone assays 

Circulating CORT concentrations were measured using a double antibody 

radioimmunoassay (Wingfield, Vleck & Moore 1992). Samples were extracted 

from 5-20"l aliquots of plasma in diethyl ether and anti-corticosterone antiserum 

primary antibody (Esoterix B183), secondary antibody (Sigma goat anti-rabbit) 

and [3H]-corticosterone label (GE Healthcare, UK) were used. The extraction 

efficiency was 85–100%. Recoveries were measured for each sample 

independently and adjustments to the final assayed concentrations were made. 

CORT was measured in 3 assays for which the detection limit was 0.03 ng/ml 

(calculated as 2 SD from B0) and the averaged intra-and inter-assay variation 

was 9±2% and 10±5% respectively. 

3.3.5 Statistical analysis 

To investigate how synchrony with the peak in caterpillar abundance, oak 

density, rainfall and temperature differed between years Kruskal-Wallis tests 

were employed. This non-parametric test was used because data were not 

normally distributed and were resilient to transformation. In addition, a 

Generalized Linear Model with a binomial error structure was employed to 

compare the number of rain days between years (raining = 1 or not = 0). 

To assess how measures of reproductive success differed between years and how 

they were related to foraging conditions and maternal baseline CORT 

Generalized Linear Models were employed. All CORT data were square root 

transformed because of non-normality. Reproductive success data did not 

conform to the underlying assumptions of normality therefore a range of error 

structures were used. For the number of chicks fledged and the proportion of 

chicks that fledged, quasipoisson and binomial error structures were employed 

respectively. General Linear Models (GLMs) were employed to assess the 
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influence of foraging conditions and maternal baseline CORT upon mean nestling 

mass on day 14. In all models, measures of reproductive success were dependent 

variables and maternal baseline CORT or the foraging conditions were 

explanatory variables. To assess the influence of the foraging conditions upon 

maternal baseline CORT GLMs were also employed with maternal CORT as the 

dependent variable. As maximum temperature and rainfall were significantly 

correlated (Spearman’s Rho: r = -0.376, n = 150, P < 0.001), all models including 

these terms were run twice, once with rainfall and once with temperature. 

Sample sizes differ, as the number of nests where measures of reproductive 

success were recorded was larger than the number of nests where mothers were 

measured for baseline CORT. 

Models were optimised using backward elimination of non-significant terms. For 

most models, terms were eliminated when this improved the AIC (Akaike 

Information Criteria; Burnham & Anderson 2002). Models assessing the 

determinants of number fledged, however, were compared using ANOVA, as AIC 

cannot be calculated when quasipoisson error structures are used. In the ANOVA 

comparisons, terms were dropped from the model if P-values were found to be 

non-significant (>0.05). Models were validated where appropriate to verify that 

underlying statistical assumptions were not violated; normality was assessed by 

plotting theoretical quantiles versus standardised residuals (quantile-quantile 

plots), homogeneity of variance was evaluated by plotting residuals versus fitted 

values, non-linearity was evaluated by plotting residuals versus explanatory 

variables, and influential data points were identified using Cook’s distance 

(Quinn & Keough 2002). There were three data points in baseline CORT models 

identified as outliers and removed. All statistical analyses were conducted using 

R version 2.8.0.  

3.4 Results 

3.4.1 Inter-annual variation in foraging conditions 

The foraging conditions that breeding birds experienced differed between years 

with respect to both the synchrony between breeding and the peak in caterpillar 

abundance and weather conditions. In 2009 breeding birds were more 
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synchronous with the peak in caterpillar abundance than the other two years, 

and in 2010 breeding birds were more synchronous than in 2008 (table 3.1, H2, 325 

= 155.73, P < 0.001). During the breeding season in 2009 there were significantly 

more rain days than in the other two years of the study (table 3.1, t148= 2.16, P = 

0.03). In addition, in 2008 maximum temperatures were warmer than the other 

two years (table 3.1, H2, 148 = 6.29 P = 0.04). However, oak density did not differ 

between years (table 3.1, H2, 244 = 2.161, P = 0.34). 
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Table 3.1. Inter-annual variation in synchrony between breeding birds and the 
caterpillar peak, territiory-scale oak density, rainfall, maximum temperature, maternal 
baseline CORT (n = 2008: 36, 2009: 36 and 2010: 18), number of chicks fledged (n = 
2008: 129, 2009: 71 and 2010: 46) and mean nestling mass on day 14 (n = 2008: 85, 
2009: 38 and 2010: 40) for free-living blue tits (2008-2010). Kruskal-Wallis tests were 
employed to assess Inter-annual variation in synchrony between breeding birds and the 
caterpillar peak, territiory-scale oak density, rainfall and maximum temperature. GLMs 
were employed to assess Inter-annual variation in maternal baseline CORT, number of 
chicks fledged and mean nestling mass on day 14. Mean±SE are shown, values in bold 
differ significantly from the other years, * denotes significance at P<0.05 ** denotes 
significance at P<0.001.   

 
2008 2009 2010 

Synchrony         
with caterpillar 
peak (days) 

8.28±0.25 2.68±0.24** 5.28±0.40** 
Compared with 2008 

only 

Territory-scale oak 
density (m) 5.41±0.26 6.15±0.88 5.74±1.36 

Rainfall  
(% rain days) 
                  
 
 

40 62* 50 

Temperature     
(oC) 
 
 

17.39±0.39* 16.16±0.42 16.42±0.47 

Maternal baseline 
CORT (ng/ml) 
 
 

3.57±0.42 3.63±0.38 1.73±0.22** 

Number fledged 
 
 
 

7.06±0.35 6.78±0.51** 8.02±0.54 

Mean nestling mass 
on day 14 

11.0±0.10 11.3±0.09 11.4±0.12 
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3.4.2 Foraging conditions and reproductive success  

Reproductive success varied significantly between years, with 2009 

characterised by lower reproductive success than the other two years (table 3.1, 

Number fledged; z = 5.05, P < 0.001, Proportion fledged; z = 4.52, P < 0.001). 

However, mean nestling mass on day 14 after hatching did not differ between 

years (table 3.1, t163 = 0.36, P = 0.72).  

Synchrony with the caterpillar peak explained significant variation in the number 

of offspring fledged, proportion of the clutch to fledge and mean nestling mass 

on day 14 in a year-specific manner (table 3.2). In 2008 and to a slightly lesser 

extent 2010, broods that were more synchronous with the caterpillar peak 

fledged a greater number of offspring (figure 3.1a, 2008: z = 4.28, P < 0.001, 

2009, z = 0.05, P = 0.962, 2010: z = 2.81, P = 0.007), proportion of the clutch 

(2008: z = 3.89, P < 0.001, 2009: z = 0.04, P = 0.965, 2010: z = 1.71, P = 0.087), 

and had heavier nestlings on day 14 (figure 3.1b, 2008: t84 = 2.57, P = 0.012, 

2009: t37 = 0.35, P = 0.732, 2010: t39 = 3.38, P = 0.002), however, these 

relationships were not evident in 2009.  

Oak density was not correlated with number fledged, proportion fledged or 

mean nestling mass in any year (Number fledged: 2008: z = 0.29, P = 0.775, 

2009: z = 0.52, P = 0.601, 2010: z = 0.16, P = 0.875, Proportion fledged:  2008: z 

= 0.27, P = 0.787, 2009: z = 0.76, P = 0.445, 2010: z = 0.28, P = 0.782 and 

Nestling mass: 2008: t84 = 0.43, P = 0.671, 2009: t37 = 0.33, P = 0.743, 2010: t39 = 

0.64, P = 0.523). 

In all years temperature and rainfall were unrelated to number fledged 

(Temperature: 2008: z = 0.73, P = 0.47, 2009: z = 1.53, P = 0.13, 2010: z = 0.64, 

P = 0.52, Rainfall: 2008: z = 1.46, P = 0.15, 2009: z = 1.29, P = 0.20, 2010: z = 

1.05, P = 0.301) and proportion of the clutch fledged (Temperature: 2008: z = 

0.98, P = 0.34, 2009: z = 1.51 P = 0.13, 2010: z = 0.80, P = 0.42, Rainfall: 2008: z 

= 0.51, P = 0.61, 2009: z = 0.64, P = 0.52, 2010: z = 1.20, P = 0.23). In 2009 only, 

mean nestling mass was significantly negatively correlated with rainfall (2008: 

t84 = 0.50, P = 0.62, 2009: t37 = 2.35, P = 0.02, 2010: t39 = 0.28, P = 0.78), and in 

the same year there was a trend that nestling mass was positively correlated 
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with temperature (2008: t84 = 0.22, P = 0.82, 2009: t37 = 1.92, P = 0.06, 2010: t39 

= 0.09, P = 0.93). 

 

Table 3.2. The table presents the significant correlates of maternal baseline CORT, 
number fledged, proportion of the clutch fledged and mean nestling mass on day 14 (P < 
0.05 unless otherwise stated in brackets). -ve = negative correlation and +ve = positive 
correlation. General Linear Models was used to analyse the factors which explian 
variation in baseline CORT and mean nestling mass on day 14. Generalized Linear Models 
with quasipoisson and binomal error structures were used to analyse which factors 
explained variation in number fledged and proportion of the clutch fledged 
respectively.   

 
Explanatory variables 

 
2008 2009 2010 

Maternal 
baseline 
CORT 
 
 

Synchrony –ve(0.052) 
Temperature –ve 
Oak density –ve 

Temperature –ve 
Rainfall +ve 

Oak density –ve 

Number of 
chicks 
fledged 
 
 
 

 
Synchrony +ve 
 

 
Maternal CORT +ve 

 
Synchrony +ve 
 

Proportion of 
clutch 
fledged 
 
 

 
Synchrony +ve 
 

 
 

 
Synchrony +ve (0.087) 
 

Mean nestling 
mass on day 
14 

 
Synchrony +ve 
 

 
Temperature +ve (0.063) 
Rainfall -ve  
Maternal CORT –ve 
 

 
Synchrony +ve 
Maternal CORT –ve 
(0.080) 
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a) 

 

b) 

 

Figure 3.1. The year-specific relationships between synchrony with the caterpillar peak 
and a) number of blue tit chicks fledged (2008: n = 129, 2009: n = 71, 2010: n = 46) and 
b) mean nestling mass on day 14 after hatching (2008: n = 85, 2009: n = 38, 2010: n = 
40). For both number fledged and nestling mass there was a significant negative 
correlation with synchrony in 2008 and 2010, but this was not evident in 2009.
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3.4.3 Foraging conditions and maternal baseline CORT 

Maternal baseline CORT differed significantly between years, being lower in 

2010 than the other two years (table 3.1, t90 = 4.08, P < 0.001). Synchrony with 

the caterpillar peak explained variation in maternal baseline CORT in a year-

specific manner. In 2008 only, there was a trend that mothers that were more 

synchronous with the caterpillar peak had lower baseline CORT than mothers 

that bred asynchronously (table 3.2, 2008: t30 = 2.03, P = 0.05, 2009: t29 = 0.35, P 

= 0.73 and 2010: t10 = 0.21, P = 0.84).  

Mothers breeding in oak dense territories had significantly lower baseline CORT 

in 2008 and 2010 (table 3.2, 2008: t30 = 2.33, P = 0.03 and 2010: t12 = 2.71, P = 

0.02) than mothers in oak sparse territories, but this was not evident in 2009 (t29 

= 0.16, P = 0.87).  

Both temperature and rainfall were related to maternal baseline CORT in a year-

specific manner (table 3.2). Temperature was negatively correlated with 

maternal CORT in 2008 and 2009 (2008: t30 = 2.35, P = 0.03 and 2009: t31 = 2.65, 

P = 0.013) but not 2010 (t10 = 0.28, P = 0.781). Rainfall was positively correlated 

with maternal baseline CORT in 2009 only (2008: t30 = 1.01, P = 0.32, 2009: t31 = 

2.43, P = 0.02 and 2010: t10 = 0.42, P = 0.68). 

3.4.4 Maternal baseline CORT and reproductive success 

Maternal baseline CORT explained significant variation in the number of chicks 

fledged in 2009 only (table 3.2 & figure 3.2a, 2008: z = 0.80, P = 0.43, 2009: z = 

2.94, P = 0.003 and 2010: z = 0.11, P = 0.91). There was no relationship evident 

between proportion of the clutch fledged and maternal baseline CORT in any 

year (2008: z = 0.72, P = 0.47, 2009: z = 1.22, P = 0.22 and 2010: z = 0.51, P = 

0.61). Maternal baseline CORT was negatively correlated with mean nestling 

mass on day 14 in 2009 and there was a similar trend in 2010 (table 3.2 & figure 

3.2b, 2009: t22 = 2.68, P = 0.01 and 2010: t15 = 1.88, P = 0.08), but this was not 

evident in 2008 (figure 3.2b, t29 = 1.42, P = 0.17).  
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a) 
 

 
 
b) 

 

 
 
Figure 3.2. The relationship between maternal baseline CORT and a) the number of 
chicks fledged (2008: n = 36, 2009: n = 36, 2010: n = 18) and b) mean nestling mass on 
day 14 after hatching (2008: n = 30, 2009: n = 23, 2010: n = 16) in blue tits over three 
years (2008-2010). Maternal baseline CORT was significantly correlated with number 
fledged and nestling mass in 2009 only.
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3.5 Discussion 

The results of this study indicate that in female blue tits, the foraging conditions 

associated with reduced reproductive success are not consistently those linked 

to elevated maternal baseline CORT. For example, in 2008 and 2010, the years 

characterised by the greatest asynchrony between breeding and the caterpillar 

peak, broods that were more synchronous with the caterpillar peak fledged more 

offspring, a greater proportion of the clutch (marginally non-significant in 2010) 

and had heavier nestlings than less synchronous broods. Whereas, there was a 

marginally non-significant trend that synchrony with the caterpillar peak was 

negatively correlated with maternal baseline CORT in 2008 only. In addition, the 

density of oak trees within territories was not linked to indices of reproductive 

success, however, in 2008 and 2010 mothers breeding in oak dense territories 

had significantly lower baseline CORT than mothers in oak sparse territories. 

However, in 2009, the year characterised by the wettest conditions, nestling 

mass was negatively correlated with rainfall and there was a trend it was also 

positively correlated with temperature. In the same year, heavy rainfall and low 

temperatures were also associated with elevated maternal baseline CORT. The 

results also indicate that contrary to the CORT-Fitness hypothesis, maternal 

baseline CORT was positively correlated with the number of chicks fledged in 

2009.  

Parents may be able to buffer the effects of asynchrony with the caterpillar 

peak to their offspring by increasing foraging effort (Kitaysky, Wingfield & Piatt 

2001; Tremblay et al. 2005). Therefore, up to a point, the amount of food 

nestlings receive may not be affected by asynchrony with the caterpillar peak, 

whereas, parental workload and thus baseline CORT may be elevated. This may 

explain why territory-scale oak density was associated with maternal baseline 

CORT, rather than measures of reproductive success. The number of oak trees in 

a territory can influence parental foraging, with fewer trees causing parents to 

forage further to provide a similar number of food items (Hinsley et al. 2008). 

Overall, these results suggest that maternal baseline CORT may be linked with 

factors that affect energetic demand rather than reproductive success. In which 

case, one might not expect a negative correlation between baseline CORT and 

indices of fitness. However, in 2009 heavy rainfall and low temperatures were 
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associated with both low nestling mass and elevated maternal baseline CORT. An 

inter-year comparison indicates that rainfall was significantly highest in this 

year, and may have been responsible for the reduced population level 

reproductive success in this year (see table 3.1). Rainfall can significantly affect 

reproductive success and physiological stress in breeding birds by significantly 

reducing the ability of parents to forage and increasing the costs associated with 

thermo-regulation (Bolger, Patten & Bostock 2005; Geiser, Arlettaz & Schaub 

2008). Importantly this result suggests there are factors that concurrently cause 

an elevation of maternal CORT, a reduction in nestling quality and potentially 

reproductive success.  

Interestingly, although elevated maternal CORT was linked to harsh 

environmental conditions, maternal CORT was positively associated with number 

fledged in 2009. Functionally, elevated baseline CORT may be beneficial for 

breeding birds during brood rearing as baseline CORT has been associated with 

increased foraging duration (Kitaysky, Wingfield & Piatt 2001), foraging 

efficiency (Pravosudov 2003), and can promote gluconeogenesis which mobilises 

fat reserves for breeding behaviours (Wingfield & Romero 2001). Indeed, 

maternal baseline CORT has been positively correlated with brood size in a 

number of bird species (Kotrschal, Hirschenhauser & Moestl 1998; Silverin 1998; 

Love et al. 2004; Müller et al. 2007; Love & Williams 2008b), including the house 

sparrow, Passer domesticus, (Ouyang et al. 2011) and the tree swallow, 

Tachycineta bicolor, (Bonier et al. 2009b). Furthermore, experimentally 

increasing brood size in tree swallows (Bonier, Moore & Robertson 2011) has 

been associated with an elevation in baseline CORT. Importantly, in my study 

the relationship between maternal baseline CORT and reproductive success was 

only evident in one year, and this year may have been most challenging for 

breeding birds as population reproductive success was significantly lower in this 

year (see table 3.1). Overall this result indicates that the relationship between 

reproductive success and baseline CORT may be dependent upon the prevalent 

conditions, specifically, baseline CORT may only be associated with brood size 

when the environment is particularly challenging. 

This study adds to the growing evidence that the link between baseline CORT 

and proxies of fitness are context-dependent. For example, the relationship 

between baseline CORT and fledging number differed between blue tits breeding 
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within island and mainland populations; with a positive relationship between 

brood size and baseline CORT in the mainland but not the island population 

(Müller et al. 2007). Furthermore, the sex of parental birds can influence the 

relationship between CORT and fitness in black-browed albatrosses, 

Thalassarche melanophrys (Angelier et al. 2010). Accumulative reproductive 

success over five years was negatively related to baseline CORT in males but not 

in females in this species, which the authors suggest could be explained by 

differential breeding investment, with males investing more in chick provisioning 

than females (Angelier et al. 2010). In addition, experimental elevation of 

baseline CORT in female side-blotched lizards Uta stansburiana, differentially 

affected individuals dependent upon their life-history strategy, with K-

strategists investing in survival rather than reproduction and r-strategists 

investing in reproduction at the cost of higher mortality (Lancaster et al. 2008). 

The context-dependence of these relationships highlights the importance of 

validating the relationship between baseline CORT and fitness before employing 

CORT as a proxy of population health. 

Greater investment in current reproduction associated with elevated baseline 

CORT could reduce future survival and reproductive success of mothers (Love & 

Williams 2008b). For example, elevated CORT during reproduction could 

influence survival through effects on immune function (MacDougall-Shackleton et 

al. 2009; Goutte et al. 2010) and thus future reproductive success. Furthermore, 

when elevated baseline CORT was associated with increased fledging number, it 

was also linked to reduced nestling condition (see table 3.2). As nestling mass is 

often positively correlated with survival (Magrath 1991; Ringsby, Sæther & 

Solberg 1998; Smith & Bruun 1998), this suggests that although mothers fledged 

a greater number of offspring they may have been of reduced quality, ultimately 

making it difficult to establish whether mothers with elevated baseline CORT 

had greater reproductive success in 2009 than with mothers with lower baseline 

CORT. However, reduced offspring condition in response to maternal baseline 

CORT may not indicate a decline in fitness for offspring, as this phenotype may 

be adaptive under poor environmental conditions (Monaghan 2008). However, 

there is limited empirical evidence for this hypothesis, coined the thrifty 

phenotype (Bateson et al. 2004).  
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This study, therefore, highlights the importance of measuring multiple measures 

of fitness, and provides evidence that relating inter-individual variation in 

baseline CORT to reproductive success in a single year may not be indicative of 

individual fitness. Ideally studies should address whether CORT is linked to 

lifetime reproductive success or other longer-term estimates of fitness. 

Furthermore, CORT may also influence offspring phenotype rather than number, 

undermining the predicted association between elevated CORT and reduced 

fitness, particularly when number fledged is employed as a proxy of fitness. 

Maternal CORT can influence both the sex of offspring (Love et al. 2005; Bonier, 

Martin & Wingfield 2007) and/or their condition (Love et al. 2005; Love & 

Williams 2008b), which in turn can maximise reproductive output and maternal 

survival (Breuner 2008; Love & Williams 2008b). Therefore, offspring phenotype 

and individual fitness may differ between breeding adults dependent upon 

baseline CORT concentrations, but absolute number of offspring may not.  

To date, the relationship between food abundance and stress hormones during 

breeding has been best described in seabirds (Kitaysky, Wingfield & Piatt 2001; 

Kitaysky et al. 2006; Benowitz-Fredericks, Shultz & Kitaysky 2008). A number of 

studies provide evidence that population level CORT concentrations are 

associated with years of low food abundance and reduced reproductive success 

in seabirds species, specifically the black-legged kittiwake, Rissa tridactyla 

(Kitaysky et al. 2001; Kitaysky, Wingfield & Piatt 2001; Kitaysky et al. 2006; 

Kitaysky, Piatt & Wingfield 2007; Benowitz-Fredericks, Shultz & Kitaysky 2008; 

Goutte et al. 2010). If the data in my study were analysed at the population 

level, the conclusions would have been different. 2008 and 2009 had 

significantly higher mean maternal baseline CORT than 2010, and these two 

years also had lower mean reproductive success compared to 2010 (see table 

3.1, number fledged significantly lower in 2009 only). This result would support 

the association between elevated baseline CORT and low reproductive success. 

Therefore, my results highlight not only the complexity of linking baseline CORT 

to measures of fitness, but also the importance of using inter-individual variation 

in addition to population means to fully understand the links between baseline 

CORT, environmental conditions and reproductive success.  

Unfortunately in this study it was not possible to get repeated measures from 

individuals within or across multiple years. There is evidence that individual 
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baseline CORT concentrations are highly repeatable between years (Angelier et 

al. 2010). However for animals in variable environments the influence of the 

prevalent conditions upon CORT may make it difficult to assess the repeatability 

of baseline CORT concentrations. Indeed, there is evidence that baseline CORT is 

not always repeatable in vertebrates (Cockrem et al. 2009), which suggests that 

it may not be straight forward to relate baseline CORT with fitness, particularly 

from one sample (Bonier et al. 2009a). For future studies, it would be insightful 

to establish whether individuals differ in their baseline CORT concentrations 

relative to the environmental conditions and reproductive success at different 

stages of reproduction and years in future studies. 

3.5.1 Conclusions 

This study is consistent with previous findings that suggest harsh environmental 

conditions are associated with reduced reproductive success and elevated 

maternal baseline CORT (Kitaysky, Piatt & Wingfield 2007; Bonier et al. 2009a). 

However, the foraging conditions that explained variation in baseline CORT and 

reproductive success differed. Therefore, although harsh conditions may be 

linked to low reproductive success and elevated maternal baseline CORT, indices 

of fitness and baseline CORT may not be correlated in a predictable manner. In 

fact, maternal baseline CORT was positively correlated with number fledged in 

one year of the study. This relationship was only evident in one year, which 

suggests that the relationship between maternal CORT and proxies of fitness 

may be dependent upon the prevalent conditions. Importantly, future studies 

should employ inter-individual variation in baseline CORT in addition to 

population means to fully appreciate the links between baseline CORT, 

environmental conditions and reproductive success. Ultimately, single year 

studies are unlikely to elucidate whether inter-individual variation in baseline 

CORT is linked to fitness. 



92 

Chapter 4: Maternal condition but not 

corticosterone is linked to brood sex ratio 

adjustment in a passerine bird 

4.1 Abstract 

Sex allocation theory predicts that mothers should adjust brood sex ratio in 

relation to their condition to maximise fitness. In birds, evidence suggests that 

mothers can adjust the sex of offspring in relation to their condition. Moreover, 

maternal concentrations of the steroid hormone corticosterone (CORT) may play 

a role in this adjustment, possibly through their relationship with energy-

balance. However, further research is needed to validate the link between 

maternal condition, maternal CORT and sex ratio adjustment in wild birds. In 

this study I measured maternal baseline CORT and body condition in free-living 

blue tits, Cyanistes caeruleus over three years and related these factors to 

brood sex ratio, nestling mass and growth. In addition, a non-invasive technique 

was employed to experimentally elevate maternal CORT during egg laying, and 

its effects upon brood sex ratio and indices of nestling condition were measured. 

Unlike previous studies maternal condition was not linked to maternal CORT in 

any year. Furthermore, maternal CORT was not correlated with brood sex ratio 

or nestling growth, but was negatively correlated with nestling mass in all years. 

In one year of the study, mothers in good body condition produced male biased 

broods and there was a trend that maternal condition was positively correlated 

with both indices of nestling condition in all years. Experimental elevation of 

maternal CORT did not influence brood sex ratio or indices of nestling condition. 

This study provides some evidence that maternal condition is linked to brood sex 

ratio manipulation in blue tits, but baseline CORT may not be involved in this 

adjustment. This may be because maternal baseline CORT was not linked to 

maternal condition, and thus may not be indicative of circumstances that might 

favour sex ratio adjustment. Fundamentally, it is unclear whether sex ratio 

manipulation would be beneficial for blue tits, and long-term studies that 

measure lifetime reproductive success are required to establish this.  
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4.2 Introduction 

Natal conditions can affect the survival and reproductive potential of offspring 

in a sex-specific manner (Trivers & Willard 1973; Jones, Nakagawa & Sheldon 

2009). Therefore mothers breeding in favourable conditions may gain fitness 

benefits from investing in the sex that will benefit most from those conditions, 

whereas mothers breeding in poor conditions should invest in the sex least 

affected (Trivers & Willard 1973; Charnov 1982). Maternal quality has been 

proposed to influence the direction of this investment, specifically for 

polygynous ungulate mammals that show high variance in male as opposed to 

female reproductive success (Trivers & Willard 1974; Sheldon & West 2004). In 

these species, producing sons when conditions would ensure that they are of 

superior quality could result in greater fitness benefits for mothers than the 

production of daughters. However, the theory can also be extended to other 

systems. The best-known example comes from a cooperatively breeding bird, the 

Seychelles warbler, Acrocephalus sechellensis in which one sex is highly 

philopatric and assists parents to raise offspring (Komdeur et al. 2002; Ewen et 

al. 2003). In this species mothers improve their fitness by investing in the 

philopatric sex when conditions are good, and alternatively producing the 

dispersing sex when conditions are poor. Furthermore, in size-dimorphic species 

where the energetic demands during postnatal growth differ between the sexes 

(Lessells, Mateman & Visser 1996; Korpimäki et al. 2000; Radford & Blakey 

2000), maternal condition and/or the quality of the natal environment could also 

influence the fitness benefits of differential investment in the sex of offspring 

(Hardy 2002). 

In agreement with sex allocation theory there are both experimental and 

correlative studies that demonstrate that brood sex ratio adjustment is 

associated with maternal condition in avian species (Ketterson et al. 1996; Nager 

et al. 1999b; Pike & Petrie 2005a; Stauss et al. 2005). However, the replication 

of results has proved difficult, with outcomes differing between years and 

studies (Radford & Blakey 2000; Ewen, Cassey & Moller 2004). Moreover, 

predicting the direction of a sex ratio bias has been problematic, with evidence 

of no bias or the opposing bias from that expected in empirical studies (see West 
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2009 for review). Overall, the variety of avian life histories, extended parental 

care and the array of factors that could influence the benefits of sex ratio 

manipulation cause the prediction of sex ratio adjustment in birds to be complex 

(Komdeur & Pen 2002). In this case, identifying a mechanism of sex ratio 

adjustment, would offer insight into the potential costs of manipulation and may 

improve predictions of when sex ratio adjustment is expected to occur (Pike & 

Petrie 2003).  

In birds females are the heterogametic sex (producing Z- and W-bearing ova), 

therefore it has been suggested that primary sex ratio adjustment (occurring 

prior to laying) could be under maternal control (Oddie 1998). Baseline 

corticosterone (CORT) has been proposed to play a role in brood sex ratio 

adjustment, as the hormone is often associated with factors implicated in sex 

ratio adjustment, such as, food availability: (Schoech, Bowman & Reynolds 

2004), mate attractiveness (Pike & Petrie 2005c; Pryke et al. 2011) and maternal 

body condition (Love et al. 2005; Pike & Petrie 2005c). CORT concentrations are 

elevated in response to internal and external challenges, to maintain 

homeostasis and energy-balance by modulating behaviour and physiological 

processes (Wingfield 2005). Due to this, elevated baseline CORT has been 

associated with poor body condition (Schoech, Mumme & Wingfield 1997; 

Kitaysky, Wingfield & Piatt 1999; Love et al. 2005; Pike & Petrie 2005a) and 

inclement environmental conditions in birds (Marra & Holberton 1998; Kitaysky 

et al. 2001; Buck, O'Reilly & Kildaw 2007; Kitaysky, Piatt & Wingfield 2007), 

therefore it would be expected to be associated with investment in the sex 

whose survival and reproductive success is least effected by poor developmental 

conditions (Pike & Petrie 2003; Love et al. 2005). In agreement with this 

hypothesis correlative and experimental studies have found a link between CORT 

and female biased brood sex ratios, in species where males are the larger sex 

and therefore may be more sensitive to poor natal conditions than females (Love 

et al. 2005; Pike & Petrie 2005a; Bonier, Martin & Wingfield 2007).  

The mechanism by which CORT could influence the sex of offspring is currently 

unknown, but could potentially act at the pre- and/or post-laying stage. There is 

evidence that the concentration of CORT deposited in the yolk of developing 

oocytes, reflects the circulating CORT concentrations of laying mothers 

(Hayward & Wingfield 2004). The germinal disc, where sex determination occurs, 
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is located in the layer of yolk deposited in the oocyte during the last day of 

vitellogenesis, with one side against the yolk layer and the other against the 

vitelline membrane. Therefore, this could create a hormonal gradient, and it has 

been suggested that this could influence segregation of the sex chromosomes 

during meiosis and therefore offspring sex (Rutkowska & Badyaev 2008). In 

addition, after sex determination yolk CORT concentrations could induce 

selective reabsorption of ova dependent upon sex (Pike & Petrie 2003). 

Alternatively, yolk CORT concentrations can influence hatching success (Saino et 

al. 2005) and nestling growth (Hayward & Wingfield 2004) and survival (Love et 

al. 2005; Cyr & Romero 2007), thus could affect brood sex ratio through early 

embryo death or sex-specific nestling mortality. Studies provide evidence for a 

correlative and causal relationship between maternal baseline CORT and brood 

sex ratio both at laying (primary sex ratio, Bonier, Martin & Wingfield 2007; Pike 

& Petrie 2005a; Gam, Mendonça & Navara 2011) and at fledging (secondary sex 

ratio, Love et al. 2005). Importantly, CORT may not act directly but rather 

influence other aspects of physiology. For example, high levels of glucose have 

been associated with differential development of male blastocysts in mammals 

(Cameron 2004), and circulating CORT concentrations are involved in the 

regulation and availability of glucose in the bloodstream (Remage-Healey & 

Romero 2001b). When examining the role of CORT in brood sex ratio adjustment, 

one must consider whether it is associated with the sex ratio at laying and/or 

fledging. By doing so, researchers can investigate how CORT may influence the 

sex of offspring and also the potential costs of this adjustment.  

 

There have been a number of studies that present evidence of brood sex ratio 

adjustment in blue tits, Cyanistes caeruleus (Sheldon et al. 1999b; Griffith et al. 

2003; Dreiss 2005; Korsten 2006; Delhey et al. 2007). Specifically, studies have 

examined whether females mated to attractive males, may increase their fitness 

by investing in sons rather than daughters, as sons may inherit their fathers 

attractiveness (Sheldon et al. 1999b). Although there is correlative and causal 

evidence of a link between paternal attractiveness and male-biased brood sex 

ratio in blue tits, the results have proved difficult to replicate and have varied 

between years (Griffith et al. 2003; Korsten 2006). Maternal baseline CORT could 

be the mechanism through which females could adjust brood sex ratio in 

response to male attractiveness. As maternal baseline CORT in bird species has 
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been shown to be higher in females with unattractive mates (Pike & Petrie 

2005b; Griffith, Pryke & Buttemer 2011), which in turn has been associated with 

brood sex ratio adjustment (Pryke et al. 2011). There is also evidence for 

assortative mating in blue tits (Hunt et al. 1999), thus females paired with high 

quality attractive partners may also be of superior quality. However, to date the 

relationship between maternal condition, maternal baseline CORT and brood sex 

ratio has not been considered in blue tits.  

In this study, a free-living population of blue tits were monitored for three years 

to assess the relationship between maternal baseline CORT, maternal body 

condition and brood sex ratio. To identify the potential mechanisms of sex ratio 

adjustment, both primary and secondary sex ratio was established. In addition, 

laying gaps were recorded to identify evidence of potential reabsorption of ova, 

and un-hatched eggs where development was not evident were recorded. 

Nestling mass and growth were also measured to investigate whether maternal 

baseline CORT and condition had sex-specific effects on nestlings, therefore 

indicating the potential benefits of brood sex ratio adjustment. In the final year 

of the study a field-based experiment was conducted to investigate whether 

transient elevation of maternal CORT during egg laying influenced brood sex 

ratio. Sex determining meiotic division occurs 2-4 hrs before ovulation (Olsen & 

Fraps 1950, data from chicken), with oviposition occurring approximately 24 hrs 

later (Romanoff 1960; Sturkie 2000). As blue tits lay in the early hours of the 

morning (Perrins 1996), sex determination is expected to occur during the night, 

approximately 28 hrs before oviposition. Therefore, mothers were fed exogenous 

CORT in the evening to coincide with sex determination to establish whether 

maternal CORT influenced the sex ratio at laying.  

The main aims of this study were; 1) to ascertain whether endogenous maternal 

baseline CORT and maternal body condition were correlated with primary or 

secondary brood sex ratio, 2) establish if maternal condition and/or baseline 

CORT concentrations were related to nestling mass and growth, 3) investigate 

whether maternal baseline CORT and body condition are linked in this species 

and 4) employ a non-invasive technique to elevate maternal CORT during egg 

laying and investigate its influence upon brood sex ratio and offspring quality.  
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4.3 Methods & Materials  

4.3.1  Empirical study 

Blue tits breeding in nest boxes in oak-dominated woodland around Loch 

Lomond, Scotland (56o 13! N, 4o 13! W) were studied for three years from April to 

June 2008-2010. Nest boxes were monitored regularly from the onset of nest 

building to establish laying date. Nests were then checked every second day and 

eggs were counted to establish clutch size; as blue tits lay one egg per day 

(Perrins 1979), this allowed laying gaps to be identified. When eggs were found 

to be warm and no new eggs had been laid on 2 consecutive visits, incubation 

was deemed to have started and mothers were left undisturbed for 10 days. 

Nests were then visited every day to establish hatching date, when >50% of eggs 

had hatched this was considered day 1. All un-hatched eggs and dead nestlings 

were collected for molecular sexing (see below). 

To measure maternal baseline CORT, birds were caught throughout the day 

during provisioning (between 08:00-20:00), on day 5-7 after hatching. Mothers 

were captured on the nest by blocking the entrance hole, and a small blood 

sample was obtained (about 80–100 ul) after puncture of the brachial vein with a 

25-gauge needle and with the aid of a standard heparinised capillary tube. All 

samples were collected within 3 minutes of initial blockage of the nest box 

entrance. Blood samples were immediately stored on ice and separated through 

centrifugation within 2h of collection. The plasma portion of the sample was 

removed and stored at -20ºC until assay. Occasionally researchers had to wait 

for a short period near the nest for birds to enter the nest box, when this 

occurred the duration of the time at the nest was noted. CORT samples were 

considered to be baseline because time spent at the nest before capture, time 

between sampling and blockage of the nest box entrance and time of day were 

not related to maternal CORT (GLM: time at nest; t84 = 1.56, P = 0.12, sampling 

time; t84 = 0.67, P = 0.51 and time of day; t84 = 1.52, P = 0.13). Circulating 

corticosterone concentrations were measured using a double antibody 

radioimmunoassay (Wingfield, Vleck, Moore 1992, for full details see Chapter 2). 

CORT was measured in three assays for which the detection limit was 0.03 ng/ml 
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(calculated as 2 SD from B0) and the intra-and inter-assay variation was 9±2% 

and 10±5%, respectively. 

To establish body condition, mothers were weighed to the nearest 0.05g with a 

Pesola spring balance and wing length was measured. Maternal condition was 

established by mass (g)/ wing length (mm). This metric was chosen rather than 

using residuals from a linear regression because mass and wing length were not 

significantly correlated in any year (All three years; t82 = 1.06, P = 0.29; Green 

2001). Wing length as opposed to tarsus length was employed because wing 

length has been shown to be a significantly more repeatable measure and 

therefore a better predictor of body size in passerines (Gosler et al. 1998). 

Parental birds were sexed based on presence/absence of a brood patch, aged 

based on feather characteristics (Svensson 1992) and all birds captured were 

fitted with a uniquely numbered aluminium ring (British Trust for Ornithology). 

Baseline CORT was measured during provisioning rather than egg-laying for three 

reasons, i) in previous studies that have found a link between maternal baseline 

CORT and brood sex ratio, mothers have been blood sampled post egg-laying 

(see Pike & Petrie, 2005a; Bonier, Martin & Wingfield, 2007), ii) baseline CORT 

concentrations did not differ significantly between the breeding stages in this 

population (figure 4.1, sub-sample 2009, Paired t-Test: t = 1.80, n = 14, P = 

0.10). It should be noted that birds were blood sampled during egg-laying or 

provisioning due to UK Home Office regulations that restrict blood sampling to 

1% of body mass per 30 days (mass ~10 g = 100 µl). iii) It was extremely difficult 

to obtain blood from mothers during egg-laying; blood samples were only 

obtained from <30% of mothers caught on their nest. In addition, in 2009 when a 

sub-sample of birds were blood sampled during egg-laying all broods were 

depredated and consequently it was not possible to establish brood sex ratio 

(see Appendix III). 
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Figure 4.1. Maternal baseline plasma CORT concentrations did not differ between 
breeding stages in blue tits. ‘Laying’, includes mothers sampled on day 7 after initiation 
of egg laying (n = 7), and ‘Provisioning’, includes mothers sampled on day 5-7 after 
hatching (n = 7). Mothers were paired based on lay date and clutch size. Graph shows 
means±SE. 
 
 
 

 

Figure 4.2. Picture shows an example of a plastic eyebath that was secured onto the 
inside of nest boxes to provide a tray for mealworms during the experimental study.  
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4.3.2  Experimental study 

To deliver CORT non-invasively to breeding blue tits in 2010, CORT solution was 

injected into mealworms that were placed in nest boxes during egg-laying. 

Crystalline CORT (Sigma) was dissolved directly into peanut oil (Sigma, St. Louis, 

MO) through sonification. To ensure the CORT was dissolved evenly in the peanut 

oil, the solution was sonicated before each use. Mealworms (approx. 20 mm 

length and 0.1g) were injected with 20µl of peanut oil containing one of the 

following concentrations of CORT: (1) control, no CORT or (2) CORT, 0.3 mg/ml. 

Hence, mothers received 0 or 6µg CORT per mealworm. I injected solution into 

mealworms with a 25-µl Hamilton syringe using a 26-gauge !-inch needle. Prior 

to injection, mealworms were kept at -20°C to reduce movement during 

injection. The needle was inserted ventrally, into the anterior abdomen, 

between two segments. If fluid leaked from the mealworm after injection, it 

was not used. I validated this methodology under lab conditions and found that 

blue tits fed 6µg CORT injected mealworms had significantly higher baseline 

CORT 10 minutes after ingestion than blue tits fed Control mealworms (see 

Appendix I, CORT: n = 4, 39.9±4.0 ng/ml, Control: n = 4, 3.1±0.95 ng/ml). 

However, CORT concentrations did not differ significantly between groups after 

30 minutes (see Appendix I). The circulating CORT concentrations achieved after 

spiked mealworm consumption were within 1 SE of the mean concentrations (n = 

5, 28.2±11.2 ng/ml) found in blue tits 25 minutes after subjection to a standard 

stressor (see Appendix I). Therefore, these results suggest CORT concentrations 

were elevated within the natural range for this species. 

In 2010 prior to the onset of nest building, green plastic eyebaths, (figure 4.2, 3 

x 1.5 x 2 cm) were secured on the inside of all nest boxes to later provide a tray 

for mealworms. Nest boxes were monitored weekly to establish the onset of nest 

building. When nests were found to be half to fully built, they were checked 

daily for eggs. When the first egg was laid, the nest was randomly assigned by 

the toss of a coin to the CORT or Control group. Beginning that day, a CORT 

spiked (6 µg) or Control mealworm was placed into the plastic tray every evening 

between 17:30 and 19:30, until no more eggs had been laid on 2 consecutive 

visits. This time was chosen because female blue tits have been found to roost 

as early as 19:00 during egg laying in Scotland (Pendlebury & Bryant 2005). 



101 

Mothers received their first mealworm to coincide with the sex determination of 

their third egg. The mean clutch size was 10.9±1.5, consequently on average 

>80% of eggs laid were manipulated.  

To check that the treatment targeted female rather than male blue tits, a hide 

was erected close to a sub-sample of nest boxes during egg-laying (n = CORT: 4, 

Control: 3). The nests were then monitored after the mealworm was placed in 

the nest until sunset and then checked the following morning before 06:00. This 

was to record activity at the nest during this time and to establish if the 

mealworm had been consumed during the night. The mealworm was consumed 

by 06:00 for each nest box checked. On only one occasion a bird was recorded to 

enter the nest on more than one occasion before roosting. For all other nests 

only one bird was recorded to enter the nest and not leave. As female rather 

than male breeding blue tits roost in the nest box during laying (Pendlebury & 

Bryant 2005), when only one bird was seen entering and not leaving the nest 

before sunset, it was assumed to be the female. Therefore our observations 

suggest that mealworms were consumed between 19:00-06:00, and that female 

breeders and not their mates consumed mealworms. The progress of all 

manipulated nests were followed as stated in the empirical study section, and 

the chicks weighed and sexed as below. 

4.3.3  Nestling condition 

All nestlings were weighed to the nearest 0.01g with a digital balance on day 4, 

6, 8, 10 and 14 after hatching. On day 4, nestlings were individually marked by 

colouring patches of down using non-toxic pens. On day 10, chicks were re-

marked because feather growth can obscure the coloured down, this was 

achieved by individually blunting chicks’ toenails in unique combinations. 

Nestling growth rate was calculated individually as mass gain day-1 from day 4-14 

after hatching. For mothers that had been captured to measure baseline CORT 

and body condition, 66 broods and 608 nestlings (Broods: 2008; 26, 2009; 23 and 

2010; 17) were measured for mass on day 14, however there were 59 broods and 

540 nestlings measured for nestling growth over all years (Broods: 2008; 24, 

2009; 20 and 2010; 15). As some mothers were measured for body condition but 

not baseline CORT sample sizes differ in the analysis. For mothers that were 
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included in the experimental study (both control and treatment groups), 59 

broods and 505 nestlings were measured for mass and growth rate. On day 14 

chicks were fitted with a uniquely numbered aluminium ring (British Trust for 

Ornithology).  

4.3.4  Molecular sex identification 

At the age of 14 days, nestlings were blood sampled to provide DNA for 

molecular sex identification. All nestlings that were collected dead before this 

time and un-hatched eggs where development was evident were also sexed. 

Therefore, where possible both the primary sex ratio, i.e. the sex ratio of all 

eggs laid, and the secondary sex ratio, i.e. the sex ratio of all nestlings that 

fledged was calculated for each nest. However, for some of the un-hatched eggs 

collected there was no evidence of development, therefore they could not be 

sexed and are hereon referred to as ‘unsexed eggs’. In this case, the nests were 

still included in primary sex ratio analysis if all the remaining offspring were 

sexed.  

For some nests it was not possible to calculate primary sex ratio as dead 

nestlings or unviable eggs were lost prior to sexing, usually because the mother 

removed them from the nest. In this case only secondary sex ratio was 

calculated. Nests were not included in the analysis if any eggs were accidentally 

broken or molecular sexing was not successful for an individual egg or chick.  

A salt extraction based upon the methods used in Nicholls et al. (2000) or Qiagen 

DNeasy kits were employed for DNA extraction. Primers were P2/P8 (Griffiths et 

al. 1998b). PCR amplification was carried out in a total volume of 10 µl. The 

final reaction conditions were as follows: 0.8µM of each primer, 200 µM of each 

dNTP, target DNA, 0.35 units GoTaq polymerase (Promega), 2µM (5x) GoTaq 

Flexi Buffer (Promega) and 2µM of 25mM MgCl2. Thermal cycling was carried out 

in a Biometra UnoII: 94°C/2 min, 30 cycles of (49°C/40 s, 72°C/40 s and 94°C/30 

s) 49°C/1 min, 72°/5 min. PCR products were separated by electrophoresis on a 

2% agarose gel stained with ethidium bromide.  
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4.3.5  Ethical note 

In order to minimise disruption to parents and nestlings a number of precautions 

were followed. All adult birds were captured and blood sampled within 15 

minutes of initial disturbance at the nest, on the majority of occasions birds 

were disturbed for less than 10 minutes. Furthermore, nestlings were held on 

heat pads to prevent them from getting chilled and never disturbed for longer 

than 30 minutes. During the experimental study, nest visits were carried out as 

quickly as possible to minimise disturbance, and because maternal CORT was 

elevated within the natural range recorded for this species, the physiological 

stress mothers were subjected to was comparable to concentrations commonly 

experienced by the birds.  

4.3.6  Statistical analysis 

Brood sex ratios were calculated by: Males / (Males + Females). Generalized 

Linear Models with binomial errors and no explanatory terms were used to test if 

brood sex ratios differed from a binomial distribution (Wilson & Hardy 2002; 

Korsten et al. 2006). In addition, to investigate whether year, maternal 

condition, maternal baseline CORT, lay date, and maternal age (explanatory 

factors) explained variation in brood sex ratio (dependent factor), Generalized 

Linear Models with a binomial error structure and a logit link function, weighted 

by brood size were used (Wilson & Hardy 2002). Overdispersion was not deemed 

a problem as the residual mean deviance (residual deviance / residual d.f.) was 

always less than 1.5 (Wilson & Hardy 2002). All CORT data were square root 

transformed because of non-normality.  

Some nests contained unsexed eggs (where development was not detected) and 

these were included in the primary sex ratio analysis. To investigate whether 

this influenced the outcome of analysis, a sub-set of nests where all offspring 

produced had been sexed were analysed separately, hereon referred to as 

PrimaryC (for complete primary sex ratio). In addition, to investigate whether a 

sex-bias of unsexed eggs obscured evidence of a relationship between maternal 

CORT and/or body condition and primary sex ratio, all unsexed eggs were 

considered male and primary sex ratio was re-analysed. This is because in blue 
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tits, males tend to be larger than females and may be more sensitive to poor 

laying conditions that result in early embryo death. 

GLMs with a Poisson error structure were employed to establish whether laying 

gaps and the number of unsexed eggs were related to year, experimental 

treatment, maternal baseline CORT or maternal condition. GLMs were also used 

to establish whether maternal condition, lay date and age (explanatory factors) 

explained variance in maternal baseline CORT (dependent factor).  

General Linear Mixed Models (GLMMs) were employed to assess the determinants 

of nestling mass on day 14 after hatching and nestling growth rate. Two models 

were run, and nestling mass on day 14 after hatching or nestling growth rate 

were the dependent factors, and year, sex, maternal baseline CORT and 

maternal condition were the explanatory factors. As multiple nestlings from 

each brood were included in the analysis, brood identity was always fitted as a 

random effect to avoid pseudo-replication.  

For the experimental study in 2010, GLMs were used to establish whether 

maternal condition and lay date differed between control, CORT and un-

manipulated broods. GLMs with a Poisson error structure were used to compare 

clutch size and number fledged between treatment groups. Similar to the 

empirical study, Generalized Linear Models with a binomial error structure and a 

logit link function, weighted by brood size were used to investigate whether the 

treatment group affected brood sex ratio (Wilson & Hardy 2002). Also GLMMs 

were used to establish whether nestling mass on day 14 after hatching and 

nestling growth rate were affected by the treatment. 

Models were optimised using backward elimination of non-significant terms when 

this improved the AIC (Akaike Information Criteria; Burnham & Anderson 2002). 

Model validations were applied where appropriate and the underlying statistical 

assumptions of normality and homogeneity of variance were verified. All 

statistical analyses were conducted using R version 2.8.0, and the nlme library 

was used for GLMMs. 



105 

4.4 Results 

4.4.1  Population brood sex ratio 

Overall 93.1% of eggs laid were sexed (n = 1360) from 145 un-manipulated 

broods. Neither the population primary nor the secondary brood sex ratio 

departed from a binomial distribution (see figure 4.3, Primary: z = 1.33, n = 145, 

P = 0.18, PrimaryC: z = 0.73, n = 83, P = 0.46, Secondary: z = 0.73, n = 142, P = 

0.46). Furthermore, population brood sex ratios did not differ between years 

(Primary: z = 0.49, P = 0.63, PrimaryC: z = 1.14, P = 0.25, Secondary: z = 1.01, P 

= 0.31).  

When both un-hatched eggs and nestlings that died before fledging were 

included, there was no indication of sex-biased offspring mortality (Yates’ 

corrected: !2 = 0.82, P = 0.37). Un-hatched eggs and dead nestlings were 

combined, as samples sizes were very small when analysed independently. Also 

the number of laying gaps exhibited by mothers did not differ between years (z = 

0.69, P = 0.49). However, the number of unsexed eggs (where development was 

not detected) was significantly lower in 2010 compared with the other two 

years, with 50%, 32% and 15% of broods containing unsexed eggs in 2008-2010 

respectively (z = 2.86, P = 0.004).  
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Figure 4.3. The primary (at laying) and secondary (at fledging) brood sex ratio in blue 
tits in three years (Primary: n = 2008: 89, 2009: 31, and 2010: 25, Secondary: n = 2008: 
87, 2009: 27, and 2010: 28). Graph shows box-and-whisker plots with median and 
interquartile range. M indicates a male biased brood sex ratio and F indicates a female 
biased brood sex ratio. The dashed line denotes a 50:50 brood sex ratio. 
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4.4.2  Maternal baseline CORT, body condition and brood sex 

ratio 

Maternal baseline CORT did not predict variance in primary or secondary brood 

sex ratio in any year of the study (Primary: CORT; z = 0.44, P = 0.66, CORT x 

Year; z = 0.63, P = 0.53, PrimaryC: CORT: z = 0.46, P = 0.65, CORT x Year: z = 

0.18, P = 0.85, Secondary: CORT; z = 0.85, P = 0.39, CORT x Year; z = 1.14, P = 

0.25). In addition, when all unsexed eggs were included in the analysis and 

considered male, maternal baseline CORT was unrelated to the primary brood 

sex ratio (CORT; z = 0.68, P = 0.49, CORT x Year; z = 0.48, P = 0.63). 

Maternal body condition was significantly correlated with both primary and 

secondary brood sex ratio in a year-specific manner (see figure 4.4, Primary: 

Body Condition x Year; z = 2.85, P = 0.004, PrimaryC: Body Condition x Year; z = 

1.90, P = 0.06, Secondary: Body Condition x Year; z = 2.66, P = 0.007). In 2010 

only, mothers that were in good condition had more male biased broods (see 

figure 4.4). Furthermore, this result was evident when unsexed eggs were 

included in the analysis and considered male (Body Condition x Year; z = 2.60, P 

= 0.009). 

Maternal age and lay date were not related to brood sex ratio in any year 

(Primary: Age; z = 0.09, P = 0.93, Age x Year; z = 0.71, P = 0.47, Lay Date; z = 

0.04, P = 0.97, Lay Date x Year; z = 1.31, P = 0.19, PrimaryC: Age; z = 0.28, P = 

0.78, Age x Year; z = 0.17, P = 0.86, Lay Date; z = 0.28, P = 0.77, Lay Date x 

Year; z = 0.85, P = 0.40, Secondary: Age; z = 0.61, P = 0.54, Age x Year; z = 0.53, 

P = 0.59, Lay Date; z = 0.23, P = 0.81, Lay Date x Year; z = 1.52, P = 0.13). 

In addition, maternal body condition and baseline CORT were unrelated to the 

number of laying gaps mothers exhibited (Body Condition; z = 1.08, P = 0.28, 

Body Condition x Year; z = -0.30, P = 0.77 and CORT; z = -0.62, P = 0.53, CORT x 

Year; z = 0.04, P = 0.97). Also, maternal body condition and baseline CORT were 

not associated with the number of unsexed eggs (Body Condition; z = 1.38, P = 

0.17, Body Condition x Year; z = -0.04, P = 0.97 and CORT; z = 0.49, P = 0.63, 

CORT x Year; z = -0.22, P = 0.82).  
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Figure 4.4. The relationship between maternal body condition (mass (g)/wing length 
(cm)) and the primary brood sex ratio (sex ratio at laying) in blue tits over three years 
(2008-2010). In 2010 only, maternal body condition was positively correlated with 
primary sex ratio (n = 2008: 39, 2009: 22, and 2010: 15). Mothers in superior body 
condition had more male biased broods in 2010 only. M indicates a male biased brood 
sex ratio and F indicates a female biased brood sex ratio. 
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4.4.3  Are maternal baseline CORT and maternal body condition 

correlated? 

Maternal baseline CORT differed significantly between years. In 2010 values for 

maternal CORT were significantly lower than the other two years (see figure 

4.5a, t86 = 4.41, P < 0.001). However, maternal body condition was significantly 

lower in 2009 compared with the other years (see figure 4.5b, t110 = 2.18, P = 

0.03). Maternal body condition did not explain variation in maternal baseline 

CORT in any year of the study (see figure 4.5c, Maternal Condition; t86 = 1.35, P 

= 0.18, Maternal Condition x Year; t82 = 0.29, P = 0.77). In addition, maternal 

age and lay date did not explain variation in maternal baseline CORT in any year 

(Age; t85 = 0.49, P = 0.62, Age x Year; t80 = 0.29, P = 0.77, Lay Date; t84 = 0.05, P 

= 0.96 and Lay Date x Year; t78 = 0.83, P = 0.41). 
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a) 

 
b) 

 
c) 

 
Figure 4.5. The variation in maternal baseline CORT (ng/ml) and maternal body 
condition (mass (g) / wing length (mm)) over three years in blue tits (2008-2010). a) 
Maternal baseline CORT, (n = 2008: 34, 2009: 34, and 2010: 15), was significantly lower 
in 2010 compared with the other years studied; b) Maternal body condition, (n = 2008: 
40, 2009: 22, and 2010: 17), was significantly lower in 2009 compared with the other 
years studied. Bars show mean±SE. c) Maternal baseline CORT was not correlated with 
maternal body condition in any year. 
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4.4.4  Are maternal baseline CORT and body condition linked to 

nestling condition? 

Nestling mass on day 14 and growth rate did not significantly differ between 

years (Mass: t63 = 0.33, P = 0.74 and Growth: t56 = 0.08, P = 0.93). Male nestlings 

were consistently heavier on day 14 and grew at a faster rate than their female 

siblings in all years (Mass: Sex; t541 = 11.55, P < 0.001, Sex x Year; t539= 0.04, P = 

0.97 and Growth: Sex; t480 = 5.40, P < 0.001, Sex x Year; t478= 0.41, P = 0.68).  

Maternal baseline CORT was negatively correlated with nestling mass on day 14 

in all years, but not nestling growth (Mass: figure 4.6a, CORT; t64 = 2.05, P = 

0.04, CORT x Year; t57 = 0.27, P = 0.78 and Growth: CORT; t57 = 0.64, P = 0.52, 

CORT x Year; t53 = 0.55, P = 0.58). However, maternal baseline CORT did not 

explain variation in nestling mass or growth in a sex-specific manner (Mass: Sex x 

CORT; t498 = 1.47, P = 0.14, Growth: Sex x CORT; t479 = 0.68, P = 0.49).  

In all years there was a trend that mothers in superior body condition had 

heavier and faster growing offspring than mothers in poor condition (Mass: figure 

4.6b, Maternal Condition; t64 = 2.50, P = 0.06, Body Condition x Year; t60 = 0.87, 

P = 0.39 and Growth: Body Condition; t57 = 1.96, P = 0.05, Body Condition x Year; 

t53 = 0.84, P = 0.40). Maternal body condition did not influence nestling mass or 

growth in a sex-specific manner (Mass: Body Condition x Sex; t540 = 1.20, P = 0.23 

and Growth: Body Condition x Sex: t479 = 0.85, P = 0.40). 
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a) 

 

b) 

 

Figure 4.6. The relationship between a) maternal baseline CORT (ng/ml) (n = nestlings: 
503, broods: 66) and b) maternal body condition (mass (g) / wing length (cm)) (n = 
nestlings: 545, broods: 66) and nestling mass on day 14 after hatching over three years 
(2008-2010) in blue tits.  
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4.4.5  Experimental study 

In 2010 there were 57 nests manipulated and monitored (n = Control 29, CORT 

28). In addition, 31 un-manipulated control nests were monitored. Treatment 

did not affect nest failure, with 5 nests in the control group failing prior to 

clutch completion, 4 in the CORT group and 6 in the un-manipulated controls. 

Therefore, there were 25 Control, 24 CORT and 25 un-manipulated nests 

successfully monitored until fledging. 

Lay date (t70 = 0.34, P = 0.74), clutch size (see figure 4.7, z = 0.22, P = 0.83), 

number fledged (z = 0.32, P = 0.74, Control; 9.8±1.8, CORT; 9.5±2.1, Un-

manipulated; 9.0±3.0) and maternal body condition (see figure 4.7, t50 = 0.30, P 

= 0.78) did not differ significantly between treatment groups. The number of 

laying gaps and unsexed eggs also did not differ between the treatment groups 

(Laying Gaps: z = 0.41, P = 0.24, Unsexed Eggs: z = 1.62, P = 0.11). 

Primary and secondary brood sex ratios did not differ between treatment groups 

(see figure 4.8, Primary: z = 0.47, P = 0.64, PrimaryC: z = 0.60, P = 0.55, 

Secondary: z = 0.05, P = 0.96). In addition, nestling mass on day 14 and growth 

rate did not differ between groups (Mass: t57 = 0.89, P = 0.38 and Growth: t57 = 

0.59, P = 0.62, Broods: 59, Nestlings: 505). Furthermore, nestling mass and 

growth were not affected by treatment in a sex-specific manner (Mass: Sex x 

Treatment; t500 = 0.002, P < 0.99 and Growth: Sex x Treatment; t500 = 0.68, P = 

0.50). Similar to un-manipulated nests, male nestlings from manipulated broods 

grew at a significantly faster rate than their female siblings (t503 = 5.12, P < 

0.001) and were heavier on day 14 after hatching (t503 = 8.47, P < 0.001). 
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Figure 4.7. Maternal body condition (mass (g)/ Wing Length (g)) and clutch size did not 
differ between mothers fed CORT spiked mealworms during egg laying (n = 24), Control 
mealworms (n = 24) or un-manipulated mothers (n = 25). Bars show mean±SE.  

 

 

Figure 4.8. Primary (sex ratio at laying) and secondary (sex ratio at fledging) brood sex 
ratio did not differ between mothers fed CORT spiked mealworms during egg laying (n = 
24), Control mealworms (n = 24) or un-manipulated mothers (n = 25). Graph shows box-
and-whisker plots with median and interquartile range. M indicates a male biased brood 
sex ratio and F indicates a female biased brood sex ratio. Dashed line denotes a 50:50 
brood sex ratio.
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4.5 Discussion 

This study suggests that maternal baseline CORT measured during brood rearing 

is not related to the sex ratio of offspring at laying or fledging in blue tits. 

Furthermore, exogenous elevation of maternal CORT during egg laying did not 

influence offspring sex, nestling mass or nestling growth. Interestingly, maternal 

baseline CORT was not correlated with maternal body condition in any year. 

However, mothers in good condition produced male biased primary and 

secondary brood sex ratios in one year of the study. Both maternal body 

condition and baseline CORT were associated with indices of nestling quality. In 

all years, maternal baseline CORT was negatively correlated with nestling mass 

on day 14, but not with nestling growth rate. In addition, there was a trend that 

maternal body condition was positively correlated with nestling mass and growth 

in all years. Although male nestlings were heavier and grew at a faster rate than 

female nestlings, maternal body condition and baseline CORT did not affect sons 

and daughters differently.  

The majority of studies that have found a link between maternal CORT and 

brood sex ratio have also found maternal CORT to be associated with factors 

that could influence the adaptive significance of manipulating offspring sex, i.e. 

maternal condition: (Love et al. 2005; Pike & Petrie 2005a) and mate 

attractiveness (Pike & Petrie 2005c; Pryke et al. 2011). Therefore, maternal 

baseline CORT may be linked with brood sex ratio only when it is also associated 

with factors that would favour brood sex ratio adjustment. In the present study 

however, maternal condition was linked to brood sex ratio in one year, but was 

not correlated with maternal CORT in any year. Furthermore, a previous study 

that linked maternal CORT to sex ratio adjustment, also found sex-specific 

effects of elevated maternal CORT upon nestling mass (Love et al. 2005). 

Whereas, in my study maternal baseline CORT was negatively correlated with 

nestling mass in all years, but the effect was not sex-specific. Therefore in blue 

tits maternal baseline CORT may not be indicative of circumstances that might 

favour sex ratio adjustment, and thus may not be expected to affect brood sex 

ratio.  
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These results provide evidence that CORT may not be linked to sex ratio 

adjustment consistently across bird species. Previous studies that present 

evidence of a link between maternal CORT and brood sex ratio differ in the 

timing of sex ratio adjustment, and therefore the potential mechanisms 

employed. For example, there is evidence of a pre-laying mechanism in peafowl, 

Pavo cristatus, Japanese quail, Coturnix coturnix japonica and white-crowned 

sparrows, Zonotrichia leucophrys (Pike & Petrie 2005a; Pike & Petrie 2006; 

Bonier, Martin & Wingfield 2007), as maternal baseline CORT was found to be 

correlated and causally linked to the primary sex ratio in these species. 

However, Love et al. (2005) provided evidence from the European starling, 

Sturnus vulgaris, that exogenous elevation of maternal CORT during egg laying 

was associated with secondary brood sex ratio adjustment through male nestling 

mortality. The lack of a relationship between maternal CORT and brood sex ratio 

in my study and the contrasting findings of previous studies highlight the need 

for additional studies to establish the generality of hormonal mechanisms in sex 

ratio manipulation and the timing of these adjustments. Specifically, studies 

that explicitly investigate whether maternal CORT can directly influence the sex 

of eggs laid through ova reabsorption dependent upon sex or segregation 

distortion would be insightful.  

Importantly the limitations of the methods employed in this study may have 

obscured the link between maternal CORT and brood sex ratio. Firstly, similar to 

previous studies (Pike & Petrie 2005a; Bonier, Martin & Wingfield 2007), baseline 

CORT was measured post laying. However, it would have been preferable to 

measure CORT during or prior to egg laying, as this is when primary sex ratio 

adjustment would occur. Furthermore, although CORT concentrations did not 

differ between breeding stages in this population, and there is evidence to 

suggest maternal baseline CORT concentrations are consistent between breeding 

stages within individuals (Wingfield & Farner 1976b; Wingfield & Farner 1978), 

this could not be ascertained in this study. Therefore, the CORT concentrations 

measured during brood rearing may not have reflected those experienced by 

mothers during egg laying. However, it is important to note the caveats 

associated with measuring CORT during the egg laying stage. For example, blood 

sampling itself is stressful for breeding birds, and could differentially affect 

mothers in poorer condition, who may be more sensitive to the disturbance. In 
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turn the disturbance could differentially cause poor quality mothers to 

manipulate the sex of offspring, or alter brood care that could result in sex-

specific embryo/nestling mortality. 

There were also shortcomings associated with the method employed to 

manipulate maternal CORT during egg laying. The CORT elevation elicited by 

consuming mealworms was transitory; therefore if mothers did not consume 

mealworms close to the time of sex determination it may have been unlikely to 

affect offspring sex. In addition, as mothers began the treatment once they had 

laid their first egg, only ~80% of each clutch was manipulated. As the study was 

field based I could not monitor hatching, therefore it was not possible to 

establish hatching order or identify which nestlings hatched from un-

manipulated eggs. Thus it would be insightful to repeat the manipulation under 

lab conditions, which would enable mealworm consumption and hatching to be 

monitored more closely to assure confidence in the results. The CORT 

manipulation also did not influence nestling mass or growth, although 

endogenous baseline CORT was linked with nestling mass in all years. This may 

have been because of the duration maternal CORT was elevated. In birds yolk is 

deposited over a period of ~10 days before oviposition (Sturkie 2000), therefore 

the treatment was unlikely to have influenced the concentration of CORT in the 

yolk. In this case unlike previous studies that have employed implants to elevate 

maternal CORT for longer periods (Love et al. 2005; Pike & Petrie 2006; Bonier, 

Martin & Wingfield 2007), it was unlikely to have influenced nestling condition 

through yolk mediated maternal effects. Therefore, it is important to note that 

the manipulation used in this study probably only investigated whether CORT 

affected offspring sex at the pre- rather than the post-laying stage. 

Maternal condition was related to the primary brood sex ratio in one year of the 

study. The literature provides evidence of a both a correlative and causal link 

between maternal condition and brood sex ratio from a wide range of avian 

species (Kilner 1998; Nager et al. 1999b; Clout, Elliott & Robertson 2002; Pike & 

Petrie 2005a), however, there are also studies that have found no such 

relationship (Koenig & Dickinson 1996; Radford & Blakey 2000; Leech et al. 2001; 

Whittingham, Dunn & Nooker 2005). In addition, studies that have measured 

maternal condition and offspring sex ratio over multiple years in birds are rare, 

and where contrasting patterns between years have been found convincing 



118 

biological explanations are lacking (Korpimäki et al. 2000; Radford & Blakey 

2000). There is evidence to suggest that the link between maternal condition 

and offspring sex ratio is influenced by the prevalent conditions. In red deer, 

Cervus elaphus the tendency of dominant females to produce more male 

offspring disappeared as population density increased (Kruuk et al. 1999a), 

which has been suggested to have been caused by increased mortality of male 

foetuses as conditions became less favourable (Hardy 2002). In the year 

maternal condition was linked to brood sex ratio in the present study, there 

were significantly fewer unsexed eggs (where no development was found) laid 

compared with the two other years, thus if the unsexed eggs in the previous two 

years were male this may have obscured the effect of maternal condition upon 

sex ratio in these years. However, the number of unsexed eggs was not linked to 

maternal condition in any year and when unsexed eggs were considered male 

and re-analysed, maternal condition remained non-significantly correlated with 

brood sex ratio in two out of the three years. Therefore it is unlikely that early 

embryo death or sex-biased fertilization of ova obscured sex ratio adjustment in 

these years.  

Variation in the breeding conditions between years could influence the fitness 

benefits of sex ratio adjustment in relation to maternal condition. In the great 

tit, Parus major, a closely related species, natal conditions influence lifetime 

reproductive success (LRS) more strongly in male compared with female birds 

(Wilkin & Sheldon 2009). Therefore, mothers in superior condition may derive 

fitness benefits from investing in sons only when breeding conditions are also 

good. This is because their male offspring will not only be competing for mates 

against males hatched the same year as them, but also males hatched in 

superior quality years. This may have been the reason for a year-specific 

relationship in the present study, as the year that brood sex ratio was linked to 

maternal condition was characterised by high food availability and favourable 

weather conditions compared with the other years (see Chapter 2). However, it 

is important to note that as maternal condition was correlated with sex ratio in 

only one year it is possible the relationship evident in this study was caused by 

random variation or chance (Ewen, Cassey & Moller 2004). Therefore, 

manipulative studies are required to provide convincing evidence of a link 

between maternal condition and brood sex ratio adjustment in this species. 



119 

This study provides evidence of a weak positive correlation between maternal 

condition and indices of nestling condition, but these effects were not sex 

specific. Therefore, although male nestlings grew at a faster rate and were 

heavier than females, maternal condition did not influence growth or mass more 

strongly in sons compared with daughters. In spite of this, mothers may have 

improved their fitness by investing in sons when they were in good condition, as 

improved nestling mass and growth during the nestling phase may have 

beneficial long-term effects for male but not female birds. For example in the 

great tit, improved nestling mass close to fledging was linked to greater 

reproductive success in male but not female birds (Tilgar et al. 2010). 

Unfortunately, in my study it was not possible to investigate the effects of 

maternal condition upon the future reproductive success of offspring, as very 

few nestlings were re-captured in subsequent years.  

Fundamentally, there is a lack of knowledge concerning the benefits of sex ratio 

adjustment in blue tits. Although the sexes are size dimorphic the difference is 

relatively small (~5%), and the level of extra-pair paternity often differs 

between years and populations (Gullberg, Tegelström & Gelter 1992; 

Charmantier et al. 2004), thus variance in reproductive success between the 

sexes is not as extreme as in polygynous species. Therefore, for the blue tit the 

potential benefits of investing in males when conditions are favourable may 

never be as extreme as for species with contrasting mating systems, but long-

term studies that address the fitness benefits of brood sex ratio adjustment for 

parents and offspring are required to establish this. 

4.5.1  Conclusions 

This study does not provide evidence for a link between maternal baseline CORT 

and brood sex ratio adjustment in blue tits. However, limitations of the methods 

employed, specifically the measurement and manipulation of maternal CORT 

may have obscured this relationship. The results do provide evidence that 

maternal condition was linked to brood sex ratio adjustment, but this was only 

evident in one year of the study. In addition, it was not possible to establish 

whether there were fitness benefits associated with sex ratio adjustment 

relative to maternal condition in this year. Fundamentally, it is not clear 
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whether there would be fitness benefits to blue tit mothers of investing 

differentially in sons or daughters. Further studies that manipulate maternal 

condition and investigate effects upon the LRS of offspring would be valuable. In 

addition, improved methods for the manipulation of hormone concentrations are 

required for future research. Overall, this study serves to highlight the 

complexity of sex ratio adjustment in birds and the difficulties associated with 

identifying sex biasing mechanisms.
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Chapter 5: Experimental manipulation of the early 

costs of reproduction influence maternal brood 

care and return rates 

5.1 Abstract 

The evolution of life-history traits is influenced by trade-offs in the division of 

finite resources among stages within and between breeding attempts. In birds, 

reducing the costs associated with egg laying may lead to increased investment 

in the later stages of reproduction and/or influence future survival. To 

investigate this in the blue tit, Cyanistes caeruleus, I supplemented mothers 

with a modest amount of food during egg laying. I subsequently measured 

indices of reproductive success, maternal care and condition. Supplemented 

mothers laid on average one more egg than controls, therefore, I removed an 

egg from food supplemented nests to standardize clutch size between treatment 

groups. The treatment did not influence either baseline corticosterone (CORT), a 

measure of physiological stress or maternal body condition. The results also 

indicate that food supplementation of mothers during laying did not influence 

hatching or fledging success. However, experimental mothers had heavier 

nestlings on day 4 and 10 after hatching compared with controls. In addition, 

supplemented mothers incubated their clutch for a longer period and there was 

a trend that they spent longer brooding nestlings than controls. While maternal 

provisioning rates were not influenced by the treatment, the positive correlation 

between maternal baseline CORT and provisioning rate in the control group was 

not evident in manipulated mothers. Finally, food supplemented mothers were 

more likely to return to breed the following year than controls. Thus, reducing 

costs during laying improved offspring quality, and negated the physiological 

stress associated with provisioning effort. Furthermore, reducing the costs of 

current reproduction lead to improved maternal survival. Overall, this study 

provides evidence that reducing the costs of early reproduction influences the 

trade-offs in the allocation of resources within and between reproductive 

events.  
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5.2 Introduction 

 

Lack (1947) hypothesised that clutch size should reflect the number of offspring 

that can be successfully reared to independence. Empirical evidence, however, 

suggests birds tend to lay and incubate fewer eggs than they can rear (Vander 

Werf 1992; Monaghan & Nager 1997; Nager 2006). This has been explained, for 

iteroparus species, by the concept of reproductive trade-offs which exist 

between investment in current reproduction versus future survival and 

reproduction (Lindén & Møller 1989). Specifically, as animals have finite 

resources, increasing investment in current reproduction may negatively 

influence their future survival and breeding success (Williams 1966). In birds, a 

number of studies have explored trade-offs between current and future 

reproductive investment through brood size manipulations, as this stage was 

considered the most energetically demanding (reviewed in Sterns 1992; 

Monaghan & Nager 1997). These studies experimentally increased brood size, 

and illustrated that the increased costs of chick rearing had negative 

consequences for offspring quality, parental survival and future breeding success 

(Daan, Deerenberg & Dijkstra 1996; Ilmonen et al. 2003). However, similar 

experiments also presented non-significant results (Lessells 1986; Orell et al. 

1996). These mixed results caused the earlier stages of reproduction, i.e. egg 

production and incubation, to also be included in studies examining reproductive 

trade-offs, and they have now been shown to be as energetically demanding as 

the brood rearing stage (Nager 2006). 

 

Studies that have experimentally increased investment in egg production and/or 

incubation effort have shown that increasing the costs of early reproduction can 

have negative consequences for nestling quality and the survival and 

reproductive success of parents (for review see Nager 2006). In the lesser black-

backed gull, Larus fuscus, experimentally causing females to lay four rather than 

their usual clutch of three eggs, caused them to fledge significantly fewer 

fledglings than controls (Monaghan, Nager & Houston 1998). Furthermore, 

increasing egg production reduced the local return rates for mothers in this 

species (Nager, Monaghan & Houston 2001). These results suggest that increased 

investment during egg production caused a decline in investment during the 
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brood rearing stage, providing evidence that trade-offs exist within, in addition 

to between breeding attempts. 

 

In the most part, previous studies that have investigated reproductive trade-

offs, have experimentally increased the costs of reproduction at one or more 

stages during breeding (Daan, Deerenberg & Dijkstra 1996; Orell et al. 1996; 

Monaghan & Nager 1997; Monaghan, Nager & Houston 1998; Nager, Monaghan & 

Houston 2001; Ilmonen et al. 2003; Dobbs, Styrsky & Thompson 2006). However, 

manipulative studies that reduce the costs of reproduction may also influence 

trade-offs within or between reproductive events (Verhulst & Hut 1996; Verhulst 

& Tinbergen 1997; Wernham & Bryant 1998; Reid, Monaghan & Ruxton 2000). 

Reducing the costs associated with egg production through supplemental feeding 

for example, may allow birds to lay larger clutches without suffering negative 

consequences associated with the increased incubation and provisioning effort 

required (Robb et al. 2008). Indeed, there is evidence to suggest that 

supplementary feeding prior to and during egg laying can result in increased 

clutch size, nestling condition and/or adult survival (Hörnfeldt & Eklund 1990; 

Ramsay & Houston 1997; Robb et al. 2008; but see Harrison et al. 2010). 

However, supplementary feeding during the early stages of reproduction alone, 

may mismatch nestling demand with parental ability to provide food, as mothers 

may not longer be able to provide for a larger brood (Nager, Rueegger & Van 

Noordwijk 1997). In this case the benefits of the treatment to the mother and 

her offspring may be negated. 

 

To isolate the influence of supplementary feeding during egg laying, from the 

confounding effects of clutch and brood size, egg number can be controlled 

through egg removal. This approach would allow researchers to isolate the 

effects of supplemental feeding upon the later stages of reproduction and future 

reproductive success and survival. Under these circumstances, birds that 

experience reduced costs of egg production may invest more in the later stages 

of reproduction. Specifically, reduced costs of egg production could allow 

mothers to invest in incubation and brood rearing. There is evidence that 

supplemental feeding during egg laying reduces incubation duration, potentially 

reducing the costs of this stage upon mothers (Nilsson & Smith 1988; Sanz 1996; 

Harrison et al. 2010). However, few studies have investigated the effects of 
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supplemental feeding during egg production upon brood care (but see 

Helfenstein et al. 2008; Hinde, Buchanan & Kilner 2009), with the majority of 

studies manipulating food supply during the nestling phase (Cook & Hamer 1997; 

Wernham & Bryant 1998; Hoodless et al. 1999; González et al. 2006). However, 

in the great tit (Parus major) mothers that were supplemented with dietary 

carotenoids prior to and during egg laying provisioned at a higher level than 

control birds (Helfenstein et al. 2008). This suggests supplementing birds during 

egg laying can influence their investment in the later stages of reproduction. 

The steroid hormone corticosterone (CORT) is involved in the maintenance of 

daily homeostatic energetic balance (Wingfield 2005), and is often elevated in 

response to poor body condition (Love et al. 2005; Romero 2004) and inclement 

environmental conditions (Chapter 2; Marra et al. 1998; Kitaysky, Piatt & 

Wingfield 2007). Inter-individual variation in baseline CORT is also associated 

with reproductive investment, such as provisioning behaviours (Carlson et al. 

2006; Doody et al. 2008; Nguyen et al. 2008). Thus, CORT may mediate 

reproductive trade-offs, for example high concentrations may indicate 

conditions where individuals should re-direct behaviour from reproduction to 

survival (Bonier et al. 2009a). Alternatively, experimentally improving conditions 

through food supplementation may lessen the physiological stress associated 

with a reproductive event, and be associated with a reduction in circulating 

CORT. In addition, measuring baseline CORT in addition to body condition may 

provide a more holistic approach to quantifying how demanding mothers 

perceive their environment to be. Particularly because there is mixed evidence 

that reducing the costs of egg production through supplemental feeding is linked 

to improved body condition for mothers (Wernham & Bryant 1998; Hoodless et 

al. 1999; Karell et al. 2008).  

In my study the costs of egg production in free-living blue tits were reduced by 

supplementing mothers with food (one mealworm day-1) during egg laying to 

investigate the effects upon measures of reproductive success, maternal care 

and maternal return rates. As clutch size can increase in response to increased 

food intake during laying (Hörnfeldt & Eklund 1990; Nilsson 1991; Soler & Soler 

1996; Robb et al. 2008), and can therefore confound effects of the treatment, 

an egg was removed from manipulated clutches prior to incubation. The main 

aims of the study were to investigate whether supplementing mothers with food 
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during laying 1) influenced hatching success, fledging success and nestling mass, 

2) altered maternal baseline CORT and/or body condition, 3) increased 

investment in maternal care, and lastly 4) affected maternal return rates in the 

following breeding season.  

5.3 Methods & Materials  

5.3.1  Breeding parameters 

Blue tits breeding in nest-boxes in oak-dominated woodland around Loch 

Lomond, Scotland (56.13 o N, 4.13o W) were studied from April to June 2009-

2010. Nest-boxes were monitored regularly to establish laying date and clutch 

size. Incubation period was defined as the number of days between clutch 

completion date and hatching date. A mean incubation period of 12–13 days has 

been recorded in blue tits (Perrins 1979) therefore, daily checks began 10 days 

after clutch completion to establish hatching date. When >50% of eggs had 

hatched this was considered day 1. Nestlings were weighed to the nearest 0.01g 

with a digital balance, on day 4 and day 10 after hatching to establish mean 

nestling mass. Nests were checked for nestlings that did not fledge, which 

allowed fledging number to be calculated.  

5.3.2  Food supplementation and egg removal  

In order to alleviate the costs of egg production, mothers were food 

supplemented during egg laying. When the first egg was laid, the nest was 

randomly assigned to the manipulated or control treatment. Manipulated nests 

received a mealworm, Tenebrio molitor (2.5 kcal/g, for nutritional information 

see Finke 2002) every evening between 17:30 and 19:30 throughout the laying 

period, until no more eggs had been laid on two consecutive visits. The time 

mealworms were placed in the nest was chosen because female blue tits roost as 

early as 19:00 during egg laying in Scotland (Pendlebury & Bryant 2005), and 

therefore only mothers were expected to consume the mealworm. Thus the 

supplement was relatively modest and targeted towards the mother. 

Furthermore, only mothers that consumed each mealworm provided were 

included in the experiment. Control nests were also visited but a food 
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supplement was not provided. To isolate the effects of the food supplementation 

upon the later stages of reproduction and maternal return rates from the 

potentially confounding effects of clutch size, egg removal was used to 

standardise clutch size, this was achieved by removing an egg before incubation 

had begun. 

To validate that the treatment targeted female rather than male blue tits, a 

sub-sample of nests (n = 7) were monitored from a distance after the mealworm 

was placed in the nest until sunset and then checked the following morning 

before 06:00 to establish if the mealworm had been consumed during the night. 

The mealworm was consumed by 06:00 for each nest and on only one occasion 

an individual was seen entering the nest more than once after mealworm 

placement, for the remaining nests only one bird was recorded entering and not 

leaving the nest thereafter. Therefore, our observations suggest that female 

breeders and not their mates consumed the mealworms. 

5.3.3  Maternal condition 

To measure baseline CORT and body condition, mothers were captured in the 

nest-box during brood provisioning when chicks were 5 days old, by blocking the 

entrance hole. A small blood sample was obtained (about 80–100 ul) after 

puncture of the brachial vein with a 25 gauge needle and with the aid of a 

standard heparinised capillary tube.  Blood samples were immediately stored on 

ice and separated through centrifugation within 2h of collection. The plasma 

portion of the sample was removed and stored at -20°C until assay. All blood 

samples were collected within 3 minutes of initial blockage of the nest box 

entrance. Breeding females were blood sampled throughout the day, from 8:00 

to 18:00. Both the time taken to blood sample birds and time of day samples 

were collected was not found to influence maternal CORT (Time of Day: t25 = 

1.99, P = 0.17 and Sampling Time: t25 = 1.02, P = 0.26). Therefore, the values for 

maternal CORT are considered to be baseline.  

Parental birds were sexed using presence or absence of the brood patch and 

weighted to the nearest 0.05g with a Pesola spring balance and skeletal 

measures recorded. Maternal condition was established by dividing mass (g) by 

wing length (cm). A small blob of Tip-pex was applied to one parent per nest on 
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the crown and rump to identify sex from video recordings of provisioning 

behaviour (see below). To investigate the effects of the treatment on maternal 

return rate, all birds caught were fitted with a uniquely numbered aluminium 

ring (British Trust for Ornithology). 

5.3.4  Brood care 

To assess the provisioning behaviour of parental birds, a small infrared video 

camera was placed in the nest-box opposite the entrance hole so the adults 

could be observed entering. The camera was placed in the nest-box between 

16:00 and 19:00 on day 6 after hatching and the provisioning adults were 

recorded between 06:00 and 10:00 the following morning, when the chicks were 

aged 7 days. The identity of the provisioning adult was determined by the 

presence or absence of a small blob of Tip-Pex on the crown and rump. The 

recordings allowed the measurement of provisioning rate of both parents and for 

the analysis the provisioning rate brood-1 hour-1 was used. In addition, the total 

time spent in the nest by the mother was used in analysis, hereafter called 

brooding duration. Only visits in which the parent had food in its beak were 

classed as provisioning visits. 

5.3.5  Hormone analysis 

CORT concentrations were measured after extraction of 5-20 "l aliquots of 

plasma in diethyl ether, using a double antibody radioimmunoassay (Wingfield, 

Vleck & Moore 1992). Primary antibody Esoterix B183, secondary antibody Sigma 

goat anti-rabbit and [3H]-corticosterone label (GE Healthcare, UK). The 

extraction efficiency was 85–100%. Recoveries were measured for each sample 

independently and adjustments to the final assayed concentration were made. 

Samples were run within one assay with a detection limit (calculated as 2 SD 

from B0) of 0.01 ng/ml and an intra-assay coefficient of variation of 10.1%. 

5.3.6  Statistical analysis 

General Linear Models (GLMs) with a Poisson error structure were used to 

establish whether clutch size differed between treatment groups prior to and 

after egg removal. In addition, due to evidence of over-dispersion, GLMs with a 
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quasipoisson error structure were used to investigate whether lay date differed 

between treatment groups.  

I also used GLMs to investigate which factors explained variance in nestling mass 

on day 4 and day 10, maternal body condition, maternal baseline CORT, 

incubation length, brooding duration, provisioning rate and maternal return 

rate. Mean nestling mass on day 4 or day 10 were the dependent variables and 

treatment, brood size and lay date were the explanatory variables. Maternal 

body condition or baseline CORT, were the dependent variables and treatment, 

brood size and lay date were the explanatory variables. All CORT data were 

square root transformed because of non-normality. Incubation length, brooding 

duration or provisioning rate, were the dependent variables and treatment, 

brood size and lay date were the explanatory variables. GLMs with a binomial 

error structure were used to investigate whether treatment, lay date or brood 

size explained maternal returns rates the following breeding season (0 or 1).  

Models were optimised using backward elimination of non-significant terms when 

this improved the AIC (Akaike Information Criteria; Burnham & Anderson 2002). 

However the model assessing the determinants of lay date were compared after 

backward stepwise elimination of non-significant terms, using ANOVA. If P-values 

were found to be non-significant (>0.05) terms remained dropped from the 

model. This was because AIC cannot be calculated when quasipoisson error 

structures are used. Where appropriate, model validations were applied and the 

underlying statistical assumptions of normality and homogeneity of variance 

were verified. All statistical analyses were conducted using R version 2.8.0. 

5.4 Results 

5.4.1  Reproductive success 

Nests assigned to the control (n = 19) or manipulated group (n = 8) did not differ 

significantly in their lay date (t25 = 0.18, P = 0.86), original clutch size or clutch 

size after egg removal (Clutch Size before: z = 1.00, P = 0.32 and Clutch Size 

after: z = 0.28, P = 0.78). However, the clutch size of manipulated mothers prior 

to egg removal was larger, on average, by one egg (Control: 10.4±2.2, 
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Manipulated before: 11.7±1.0 and Manipulated after: 10.7±1.0). Brood size on 

day 7 after hatching, when provisioning was recorded, did not differ between 

treatment groups (z = 0.73, P = 0.47). Also hatching and fledging success did not 

differ between groups (Hatching Success: z = 0.32, P = 0.74, see figure 5.1a, and 

Fledging Success: z = 0.29, P = 0.77). 

Mean nestling mass on day 4 was significantly higher for broods of manipulated 

mothers (see figure 5.1b, t23  = 2.64, P = 0.01).  In addition, brood size was 

negatively correlated with mean nestling mass on day 4 (Brood Size: t23 = 3.34, P 

= 0.003, Brood Size x Treatment: t21 = 1.12, P = 0.27) and there was a trend that 

lay date was negatively correlated with mean nestling mass on day 4 (Lay Date: 

t23 = 1.76, P = 0.09, Lay Date x Treatment: t22 = 1.64, P = 0.11). Mean nestling 

mass on day 10 was also significantly higher for broods of manipulated mothers 

(see figure 5.1c, t23  = 2.70, P = 0.01) and brood size was negatively correlated 

with mean nestling mass on day 10 (Brood Size: t23 = 3.15, P = 0.004, Brood Size 

x Treatment: t21 = 0.11, P = 0.91). However, lay date was not related to mean 

nestling mass on day 10 (Lay Date: t23 = 0.15, P = 0.88, Lay Date x Treatment: t22 

= 1.65, P = 0.12). 
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a) 

 

b) 

 

c) 

 

Figure 5.1. Comparison of a) hatching success (proportion of clutch that hatched), b) 
mean nestling mass (g) on day 4 after hatching and c) mean nestling mass (g) on day 10 
after hatching between nests that received food supplementation during egg laying and 
controls. n = Control: 19, Manipulated: 8. Graphs show mean±SE. * denotes P < 0.05
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5.4.2  Maternal baseline CORT  

Maternal baseline CORT, measured when chicks were 5 days old, was not 

affected by the treatment (Manipulated: 2.87±1.40 ng/ml and Control: 

3.23±1.87 ng/ml, t23 = 0.52, P = 0.61), nor was it correlated with lay date (Lay 

Date: t24 = 0.76, P = 0.45, Lay Date x Treatment: t21 = 1.39, P = 0.18). However, 

irrespective of treatment maternal baseline CORT was positively correlated with 

brood size (Brood Size: t25 = 2.75, P = 0.01, Brood Size x Treatment: t21 = 0.01, P 

= 0.99).  

Maternal body condition was also not affected by the treatment (Manipulated: 

1.18±0.01 and Control: 1.18±0.01, t24 = 1.63, P = 0.12). However, maternal body 

condition was positively correlated with lay date (Lay Date: t24 = 3.64, P = 0.001, 

Lay Date x Treatment: t21 = 1.09, P = 0.29), but was not correlated with brood 

size (Brood Size: t24 = 0.21, P = 0.84, Brood Size x Treatment: t21 = 0.51, P = 

0.62).  

5.4.3  Maternal care 

The eggs of supplemented mothers had a longer incubation period relative to 

controls (see figure 5.2a, z = 2.18, P = 0.03). Neither clutch size nor lay date 

influenced incubation duration (Clutch Size: z = 0.18, P = 0.86 and Lay Date: z = 

0.66, P = 0.51). 

In the model investigating variation in maternal provisioning rate, the 

interaction term Maternal Baseline CORT x Treatment was significant (t20 = 2.42, 

P = 0.02), indicating that the relationship linking baseline CORT and provisioning 

rate differed between treatment groups (see figure 5.3a). Post hoc analysis 

revealed that there was a significant positive correlation between maternal 

baseline CORT and provisioning rate in the control group only (see figure 5.3a, 

Manipulated: r = -0.46, n = 8, P = 0.25, Control: r = 0.54, n = 19, P = 0.02). In 

addition, the interaction term Brood Size x Treatment was borderline significant 

(t20 = 2.03, P = 0.06). Post hoc analysis revealed that there was a significant 

positive correlation between brood size and provisioning rate in both groups, but 

there was a steeper correlation between brood size and provisioning rate in the 

manipulated group (see figure 5.3b, Manipulated: r = 0.62, n = 8, P < 0.001, 
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Control: r = 0.64, n = 19, P = 0.003). Lay date was not related to provisioning 

rate (Lay Date: t20 = 0.58, P = 0.56, Lay Date x Treatment: t19 = 0.76, P = 0.46.  

On the morning of the day 7, there was a trend that supplemented mothers 

spent longer brooding, and less time off the nest during the 4 hour recording 

period than control mothers (figure 5.2b, t24 = 1.96, P = 0.06). In addition, brood 

size was negatively correlated with maternal brooding duration (Brood Size: t24 = 

2.21, P = 0.04, Brood Size x Treatment: t21 = 0.14, P = 0.89). Lay date was not 

related to maternal brooding duration (Lay Date: t23 = 0.77, P = 0.45, Lay Date x 

Treatment: t22 = 0.52, P = 0.61). 

5.4.4  Maternal local return rate 

Mothers that received the supplementary food treatment were more likely to 

return to breed the following year than controls (see figure 5.2c, z = 2.54, P = 

0.01). Neither brood size (z = 1.06, P = 0.29) nor lay date (z = 1.21, P = 0.23) 

influenced return rates the following year.
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a) 

 

b) 

 

c) 

 

Figure 5.2. Comparison of a) the duration of incubation in days, b) the duration of 
maternal brooding (minutes within 4 hours of recording) and b) the % of control and 
manipulated blue tit mothers that returned to breed the following year. n = Control: 19, 
Manipulated: 8. ° denotes P = 0.06 and * denotes P < 0.05. Graphs show mean±SE.
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a) 

 

b) 

 

Figure 5.3. The relationship between a) maternal baseline CORT and maternal 
provisioning rate hour-1 and b) brood size and maternal provisioning rate hour-1 for 
control and manipulated blue tits. Manipulated broods received a food supplementation 
and egg removal treatment prior to incubation. n = Control: 19, Manipulated: 8.
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5.5 Discussion 

This study presents evidence that supplementary feeding during egg laying 

influenced nestling mass, maternal behaviour and maternal return rates. 

Primarily, mean nestling mass on day 4 and day 10 after hatching was 

significantly higher for the broods of supplemented mothers. Furthermore 

mothers that received the manipulation incubated their clutch for a longer 

period, and there was a trend that they spent longer brooding nestlings 

compared with controls. While provisioning rate did not differ between groups, 

the rate of increase in provisioning rate with brood size was higher for 

manipulated mothers. There was also a positive correlation between provisioning 

rate and baseline CORT for controls only, indicating the treatment negated the 

relationship between maternal baseline CORT and provisioning rate. Maternal 

body condition and baseline CORT concentrations, however, were unaffected by 

the treatment. Finally, mothers that received supplemental feeding during egg 

laying were more likely to return to breed the following year. 

The study indicates that supplementing mothers with food during laying did not 

significantly influence the size of the clutch laid. However, clutch size was on 

average larger by one egg in the manipulated group (Control: 10.4±2.2, 

Manipulated before egg removal: 11.7±1.0 and Manipulated after egg removal: 

10.7±1.0) and power analysis indicated that the sample size was not adequate to 

identify this minor increase in size. The removal of one egg from manipulated 

nests, therefore, resulted in a more similar mean clutch size for both groups. 

Therefore this modest egg removal should, while not statistically affecting 

clutch size, have ensured that the effects of the treatment were not confounded 

by an increase in clutch size between groups.  

 

This study suggests that although hatching and fledging success were unaffected 

by the treatment, nestlings from manipulated mothers were heavier compared 

with controls. The results imply that maternal provisioning rates were not 

responsible for the difference in nestling mass between the treatments; 

furthermore the provisioning rate of male partners did not differ between groups 

(t23 = 1.46, P = 0.156). Importantly this does not mean provisioning behaviour 

was not the cause, as the size and quality of prey may have differed between 
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treatments, which in turn could have influenced nestling quality (Arnold et al. 

2007). Additional aspects of brood care may have been responsible for the 

difference in nestling mass between the treatment groups. There was a trend 

that manipulated mothers spent longer brooding nestlings, which can reduce the 

thermal costs to nestlings allowing them to invest more energy into growth 

(Visser 1998). However, the maternal care data were collected over 4 hours on 

one day so may not have fully represented the variation between the groups. 

 

In addition, food supplementation during egg-laying can stimulate mothers to 

differentially invest nutrients (Ramsay & Houston 1997) or differing hormone 

concentrations into their eggs (Verboven et al. 2003), both of which can 

influence nestling mass (Mousseau & Fox 1998). As the difference in mass was 

evident as early as day 4 after hatching, this indicates that egg quality may have 

influenced nestling mass. Unfortunately egg mass was not measured, which 

could have provided at least crude information regarding egg quality. Also a 

cross-fostering approach was not employed thus it was not possible to 

disentangle the effects of laying conditions and egg quality from post laying 

maternal care (Nager 2006). 

 

Incubation is an energetically demanding reproductive stage (Reid, Monaghan & 

Ruxton 2000; Deeming 2002) and previous studies have found that supplemental 

feeding prior to and during incubation reduces incubation length (Nilsson & 

Smith 1988; Sanz 1996; Harrison et al. 2010). This is thought to be caused by a 

reduction in time mothers spend foraging during incubation, so eggs are warmed 

for longer, speeding up development. This may be advantageous as it reduces 

the risks of predation and time-dependent egg mortality (Lack 1968; Bosque & 

Bosque 1995). In contrast mothers that received the manipulation in the present 

study incubated their clutch for approximately 4 days longer than controls. 

Previous studies have found that food supplementing mothers during egg laying 

increases egg size (for review see Christians 2002), and as there is evidence that 

larger eggs require longer incubation periods (Deeming 2002), this may explain 

this result. Food availability has also been shown to influence incubation length, 

with low food availability associated with a longer incubation period through a 

decrease in nest attentiveness as mothers spend longer foraging (Rauter & Reyer 

1997; Deeming 2002). In the present study, mothers could have perceived the 
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discontinuation of food at the onset of incubation as a reduction in food 

availability. Therefore this may have been responsible for the increase in 

incubation length. However, as total incubation length rather than the time 

spent on the eggs was recorded, it is not possible to establish whether the 

extended incubation shown by manipulated mothers was due to more time spent 

incubating or more foraging breaks. 

 

The influence of supplementary feeding of female birds prior to and during egg 

laying has had mixed effects upon measures of maternal condition (Draycott et 

al. 1998; Verboven et al. 2003; Schoech et al. 2007; Robertson 2009). There is 

evidence that food quality and availability prior to chick hatching influences 

maternal baseline CORT (Schoech et al. 2007; Robertson 2009). Whereby 

increased food availability or quantity was associated with reduced baseline 

CORT. Maternal body condition and baseline CORT concentrations, however, 

were not affected by the treatment in this study, but the food supplementation 

was modest compared with previous studies (Schoech et al. 2007; Karell et al. 

2008; Robertson 2009). Rather this study suggests that supplementary feeding 

during laying negated the relationship between provisioning rate and baseline 

CORT concentrations. Among controls, mothers with higher baseline CORT on 

day 5, provisioned at a higher rate on day 7. This indicates that the relationship 

is state-dependent as mothers that experienced reduced costs during early 

reproduction did not show an increase in baseline CORT with higher provisioning 

rates. D’Alba et al. (2011) found a similar result in the common eider (Somateria 

mollissima), where the influence of nest shelter upon maternal CORT was 

investigated. CORT concentrations did not differ between groups dependent 

upon the level of nest shelter, instead, baseline CORT was negatively correlated 

with hatching success in birds that nested at exposed sites only. This relationship 

was not evident in birds that nested in naturally sheltered sites. In addition, 

females nesting in naturally sheltered sites had greater reproductive success 

than those at exposed sites. This indicates that in eiders, female quality may 

influence the relationship between CORT and measures of reproductive success. 

In my study control mothers did not benefit from lowered costs of early 

reproduction, therefore higher provisioning rates may have required elevated 

CORT to mobilise extra energy reserves (Sapolsky, Romero & Munck 2000). 
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Importantly although mean brood size did not differ between treatment groups, 

there is evidence that there was greater range of brood sizes for control mothers 

compared with supplemented mothers (see figure 5.3b). This may have been due 

to the manipulation itself, or due to the smaller sample size of manipulated 

broods. Ultimately the difference between the groups could be responsible for 

the lack of relationship between maternal baseline CORT and provisioning rate in 

supplemented mothers. However, the range of provisioning rates did not differ 

considerably between groups (see figure 5.3a). Overall, although logistically 

difficult particularly when supplementing birds and measuring hormone titers, it 

would have been preferable to have equal sample sizes between groups. 

Surprisingly the treatment employed in this study also influenced maternal local 

return rate the following breeding season, with food supplemented mothers 

more likely to return to breed than controls. There is evidence that increasing 

the costs of reproduction within one year reduces maternal return rates and 

future breeding performance (Wernham & Bryant 1998; Reid, Monaghan & 

Ruxton 2000; Nager, Monaghan & Houston 2001; Brommer, Karell & Pietiäinen 

2004). However, studies have also failed to find these effects (Verhulst & 

Tinbergen 1997; Dobbs, Styrsky & Thompson 2006). In the year the experiment 

was conducted, breeding success was significantly poorer compared with the 

preceding and following year (see Chapter 3). Therefore the modest reduction in 

the costs of early reproduction through supplemental feeding may have had a 

stronger influence upon maternal survival and therefore return rates in this 

year, compared with more benign years. 

5.5.1 Conclusions 

This study indicates that reducing the costs of egg production through maternal 

feeding affects maternal investment in the later stages of reproduction and 

maternal return rates the following year. This study also presents evidence that 

it is not physiological stress per se that was affected by reducing early costs, but 

rather the relationship between baseline CORT and provisioning rates. 

Fundamentally, this study suggests reducing the costs of early reproduction 

influences trade-offs in the allocation of resources within and between 

reproductive events. 
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Chapter 6: UV crown colouration in female blue 
tits, Cyanistes caeruleus, predicts baseline 
corticosterone and reproductive success 

6.1 Abstract 

A growing number of avian studies provide evidence that female colouration is 

condition-dependent and can influence male mate choice. In blue tits, both 

sexes exhibit bright UV-blue crown feathers, which have previously been shown 

to be attractive to the opposite sex. In males there is evidence that the UV 

reflectance from the crown feathers is an honest signal of quality in this species, 

but it is unclear whether this is the case for females. In this study, I measured 

maternal UV crown colouration from sampled feathers during brood rearing over 

three years (2008-2010). In addition, I measured indices of maternal condition 

i.e. body condition, baseline corticosterone (CORT) and haematocrit, and indices 

of reproductive success, i.e. lay date, clutch size and number of chicks fledged. 

Female UV crown colouration varied significantly between years, but was not 

linked to maternal age. In all years maternal baseline CORT was negatively 

correlated with UV crown colouration. However, maternal UV signal was also 

negatively related to body condition in one out of three years (2010) and was 

unrelated to haematocrit. In addition, maternal UV crown colouration was 

related to indices of reproductive success. UV crown colouration was negatively 

correlated with lay date in 2008 and marginally in 2010 but not in 2009. 

Furthermore, in all years maternal UV crown colouration was positively 

correlated with number of chicks fledged, but was not correlated with clutch 

size in any year. This study adds to evidence that female plumage colouration is 

related to measures of individual quality. Interestingly, this study presents the 

first evidence that maternal baseline CORT is associated with UV plumage 

colouration in free-living birds. Indeed it is intriguing that maternal CORT 

measured during chick rearing would be linked to the colouration of plumage 

produced months before. However, these findings are correlative and further 

research is required to elucidate a mechanistic link between stress hormones, 

breeding success and UV colouration in female blue tits.  
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6.2 Introduction 

Birds are the most colourful of the terrestrial vertebrates, (Amundsen & Pärn 

2006) with plumage colouration ranging from the cryptically coloured Nightjar,  

Caprimulgus europaeus, to the extravagant greater bird-of-paradise, Paradisaea 

apoda. This vast array of colouration is broadly caused by two mechanisms; the 

pigment molecules laid down within the feather, such as melanins, 

psittacofulvins or carotenoids, and the microstructure of the feather itself (Hill 

& McGraw 2006). Additionally, in some cases both the structure and the pigment 

content influence feather colour (Shawkey & Hill 2005). Unsurprisingly, birds 

possess colour vision and can perceive a larger portion of the light spectrum than 

humans, specifically wavelengths within the ultraviolet (UV) range, as they 

possess four rather than three retinal cones. The inability of humans to perceive 

the same range of wavelengths as birds has necessitated the use of objective 

methodologies, such as spectrophotometers to quantify feather colouration. The 

most common components of feather colour measured are firstly, intensity (or 

brightness) an achromatic component of colour, secondly, hue (spectral 

location) and finally, chroma (or saturation), both of which describe the 

chromatic component (Endler 1990). The sensitivity of retinal cones from a 

number of avian species has become available (Hart & Voroboyev, 2005), and has 

allowed researchers to estimate the neural excitation of each cone type induced 

by a specific wavelength for a given species (Heindl & Winkler, 2003; Uy & 

Endler, 2004; Hadfield & Owens, 2006; Stoddard & Prum, 2008). This provides 

researchers with an ability to assess the perception of feather colouration by the 

species of interest. 

  

The function of extravagant plumage colouration has been the subject of much 

investigation over the last hundred years (reviewed in Hill & McGraw 2006). 

Darwin’s (1871) theory of sexual selection was the first hypothesis to explain the 

occurrence of these elaborate but seemingly functionless traits. However, the 

theory predominately addressed the colourful plumage of male birds, which on 

the whole tend to be showier than females (Hill & McGraw 2006). As feather 

colouration shares a common genetic basis in both sexes, female colouration was 

thought to be a by-product of selection acting on male ornaments (Darwin 1871; 

Lande 1980). Therefore, historically male birds have been the focus of studies, 
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although in many species females exhibit brightly coloured feathers equal to or 

more elaborate than males (Amundsen & Pärn 2006). In addition, as in male 

birds, there is evidence that female plumage colouration is condition-dependent 

(Velando, Lessells & Márquez 2001; Massaro, Davis & Darby 2003; Amundsen & 

Pärn 2006) and linked to competitive ability (Midamegbe et al. 2011). In this 

case plumage colouration may signal female quality and be used by males during 

mate choice, potentially providing them with fitness benefits if females honestly 

signal reproductive potential or genetic quality (Burley 1977; Pizzari et al. 2003; 

Simmons & Kvarnemo 2006). Indeed, mate choice studies provide evidence that 

male birds often prefer more ornamented females (Amundsen, Forsgren & 

Hansen 1997; Amundsen & Forsgren 2001; Pizzari et al. 2003; Griggio et al. 2005; 

Baldauf et al. 2010). Overall, female colouration may act as an honest indicator 

of quality, and therefore may be linked to measures of condition and 

reproductive success.  

Feather colouration has been linked to an individual’s diet (Hill, Inouye & 

Montgomerie 2002; McGraw et al. 2002; Siefferman & Hill 2005b; Sorensen et al. 

2010), nutritional status (Hill & Montgomerie 1994) and environmental conditions 

(Vergara et al. 2009). Both the content of and the amount of food consumed can 

influence plumage colouration, for example, the amount of carotenoids 

consumed within the diet can influence the expression of carotenoid based 

plumage (Hill, Inouye & Montgomerie 2002). Furthermore, in Eastern bluebirds, 

Sialia sialis, females given ad libitum access to food exhibited more ornamented 

structural coloration than females on food-restricted diets (Siefferman & Hill 

2005b) and in male brown-headed cowbirds, Molothrus ater nutritional stress 

has been shown to reduce the expression of structural based plumage colour 

(McGraw et al. 2002; but see Peters et al. 2011). As such parameters that are 

associated with diet, nutrition and environmental conditions, such as body 

condition (Naef-Daenzer & Keller 1999; Lovvorn et al. 2003; Brown & Sherry 

2006) and baseline corticosterone (CORT) (Kitaysky et al. 2001; Kitaysky et al. 

2006; Müller et al. 2007) may be linked to plumage colouration. A number of 

studies have explicitly investigated whether female colouration is linked to body 

condition, but evidence is mixed. Some studies that have related body condition 

to feather colour have found positive correlations (Piersma & Jukema 1993; 

Velando, Lessells & Márquez 2001; Massaro, Davis & Darby 2003; Siefferman & 
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Hill 2005b), whereas others have found no such correlations (Hill 1993; Tella, 

Forfero & Donázar 1997; Peters et al. 2011).  

Studies that focus on avian colouration have rarely employed hormone titres as 

indicators of condition, or related hormone concentrations to the expression of 

feather colouration (Husak & Moore 2008, but see Peters et al. 2006; Roberts, 

Ras & Peters 2009). Yet, CORT the primary glucocorticoid in birds, is intrinsically 

linked to energetic status through its role in the glucose regulation (Sapolsky, 

Romero & Munck 2000) and has been linked to environmental conditions 

(Wingfield, Moore & Farner 1983; Romero, Reed & Wingfield 2000; Kitaysky, 

Piatt & Wingfield 2007; Müller et al. 2007), diet (Kitaysky et al. 2001; Kitaysky 

et al. 2006) and body condition in birds (Love et al. 2005; Pike & Petrie 2005a). 

In this case, CORT may provide a holistic reflection of individual condition, as it 

reveals an individual’s response to various factors that constitute their 

environment (Sapolsky, Romero & Munck 2000). Additionally, baseline CORT 

concentrations have been shown to be repeatable within individuals (Breuner & 

Orchinik 2002; Cockrem & Silverin 2002a; Doody et al. 2008a; Romero & Reed 

2008; Cockrem et al. 2009; Bonier, Moore & Robertson 2011), thus may provide a 

long-term measure of individual quality. There is also growing evidence that 

circulating CORT concentrations influence both the colour (Roulin et al. 2008) 

and growth (Romero, Strochlic & Wingfield 2005) of feathers. As feather growth 

has been shown to influence the expression of UV plumage colouration (Griggio 

et al. 2009), circulating CORT concentrations could have a direct influence upon 

the expression of this trait.  

If plumage colouration signals individual quality, more colourful individuals may 

have greater reproductive success than less colourful individuals (Siefferman & 

Hill 2003; Jawor et al. 2004). However, studies that have investigated the link 

between maternal colouration and reproductive success have provided mixed 

results. For example, while the intensity of carotenoid-based colouration is 

positively correlated with clutch size in blue tits, Cyanistes caeruleus, this 

effect was only seen in females that were forced to lay a second clutch 

(Doutrelant et al. 2008). Also, in eastern bluebirds, structural colouration 

predicted maternal provisioning rates and nestling condition, but not fledging 

number (Siefferman & Hill 2005). Whereas, in bluethroats, Luscinia s. svecica, a 

mate removal experiment did not provide evidence that parental care or 
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reproductive success was linked to female colouration (Smiseth & Amundsen 

2000). Evidently further studies are required to establish the generality of the 

link between female colouration and measures of reproductive success.  

Blue tits are a slightly sexually dimorphic species, with females on average 

having lower intensity and chroma of the UV-blue crown feathers (Hunt et al. 

1999; Appendix II), but some females can be as bright as males. Several studies 

suggest that male colouration has an important signalling function in the context 

of sexual selection in this species (Sheldon et al. 1999b; Griffith et al. 2003; 

Johnsen et al. 2003; Alonso-Alvarez, Doutrelant & Sorci 2004; Delhey et al. 

2006). In addition, mate choice studies have shown that males also choose 

females dependent upon their crown colouration (Hunt et al. 1999) and there is 

evidence of assortative mating based on UV crown reflectance in free-living 

birds (Andersson, Örnborg & Andersson 1998). As such, blue tits provide an ideal 

system for investigating the occurrence of extravagant female plumage 

colouration, as the UV-blue crown colouration may act as an honest signal of 

female quality and be used in mate choice.  

In this study I examined whether female UV-blue crown colouration measured 

during chick rearing was linked to individual quality in free-living blue tits over 

three years. Firstly, I investigated the variability of female UV colouration in 

relation to year and age. Secondly, variation in maternal UV signal was related 

to measures of condition, i.e. body condition, baseline CORT and haematocrit. 

Finally, I considered whether maternal UV signal predicted measures of 

reproductive success, specifically; lay date, clutch size and number of chicks 

fledged. 

6.3 Methods & Materials 

6.3.1 Field site & reproductive success 

Blue tits breeding in nest boxes in oak-dominated woodland around Loch 

Lomond, Scotland (56.13o N, 4.13o W) were studied for three years from April to 

June 2008-2010. Nest boxes were monitored regularly from the onset of nest 

building to establish laying date and clutch size. Nests were then visited every 
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second day to establish hatching date and brood size; when >50% eggs had 

hatched this was considered day 1. Two weeks after nestlings were 14 days old, 

nests were checked for unfledged young to establish the number that 

successfully fledged. To compare between years, lay dates were converted to 

Julian with 0 = 1st April. 

6.3.2 Feather colouration  

During provisioning on day 5 after hatching, parental birds were captured on the 

nest. Birds were captured at this stage to reduce the chance of nest desertion. 

On average 6±2 feathers were plucked from a standard point on the crown for 

each bird (see figure 6.1a) and stored in paper envelopes. At a later date in the 

lab, UV crown reflectance was assessed from feathers, which has been shown to 

be repeatable and comparable with measurements of UV reflectance taken 

directly from the bird (see Appendix II; Quesada & Sena 2006). Feather samples 

were placed upon black velvet (100% cotton) to minimise background 

reflectance. Feathers were then stacked on top of one another to resemble how 

they would lay on the bird’s crown (see figure 6.1b) and three colour 

measurements were recorded sequentially, with the probe being lifted and 

replaced on the feather sample between each scan.  

Spectral data were recorded in the lab with an Ocean Optics S2000 spectrometer 

(range 250–880 nm; Dunedin, Florida) using a micron fibre-optic probe at a 45º 

angle to the feather surface. Ambient light was excluded with a cylindrical 

plastic sheath affixed to the probe tip, and the sheath was placed against a 

feather specimen with the probe held a fixed distance of 6 mm from the feather 

surface. The reading area was a ~11 mm2 diameter of light, illuminated with 

both a deuterium bulb (UV light source) and a tungsten halogen bulb (visible 

light source). We generated reflectance data relative to a white standard 

(Labsphere, Inc.). The spectra acquisition software package OOIBase was 

employed to record spectra. 

Using the SPEC package (Hadfield et al. 2006) for R (http://www.R-Project.org), 

spectral data was reduced into four quantal cone catches that quantify the 

amount of light captured by each of the avian single cones, specific to the 

spectral sensitivity of the blue tit visual system (Hart 2001). Irradiance spectra 
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and ocular media transmittances were not specified. The four cone types are 

UVS (very short – UV), SWS (short – blue), MWS (medium – green) and LWS (long – 

red) and refer to the range of wavelengths to which they are most sensitive 

(Hart, 2001). As our analysis focused on the UV-blue crown feathers we utilised 

the results from the UVS and SWS cone types only. To calculate the chromatic 

signal, hereafter ‘UV signal’, for each individual the UVS and SWS cone catches 

were standardised by dividing them by their sum to eliminate variation in 

intensity (achromatic component), which is highly sensitive to the method of 

measurement. We calculated the UV signal so that higher values indicate a signal 

with a stronger UV component (formula from Osorio, Miklosi & Gonda 1999; 

Larcombe et al. 2010); 

 

UV signal = (UVS – SWS) / (UVS + SWS)  

This method was employed rather than other commonly used descriptors of 

reflectance spectra, such as UV chroma and intensity, because they were found 

to differ significantly when generated directly from birds as opposed to feather 

samples thereof (see Appendix II). Feather number was not found to influence 

UV signal (see Appendix II) and was therefore not included in the analysis. Within 

individuals, values for UV signal were highly repeatable (ANOVAS; 2008: r = 0.81, 

n = 31, P < 0.001, 2009: r = 0.86, n = 49, P < 0.001, 2010: r = 0.80, n = 23, P < 

0.001, Lessells & Boag 1987). 



146 

 146 

 

 

 

 

 

Figure 6.1. Schematic showing a) the area of the blue tit crown where feathers were 
plucked for colour assessment, modified from Delhey (2005) and b) how collected 
feathers were arranged for measurement by a spectrometer, from Quesada & Sena 
(2006). Respectively, the circles illustrate the area where feathers (a) and 
measurements (b) were taken.  

 

 

 

 

 

 

 

 

(Rmin) and its maximum (Rmax) (Pryke et al. 2001,
Bleiweiss 2004).
However, these methods to calculate hue and chroma

are useful to give a single value of chroma and hue only
if the spectrum has one peak, but calculation of these
parameters is more complicated when the spectrum
considered is bimodal (Doucet and Montgomerie
2003b). Hence, in the case of the yellow breast spectrum
of the great tit, which has two peaks, we need to analyse
them separately (Doucet and Montgomerie 2003b).
Thus, we considered two separated peaks, one for the
UV range and the other for the visible one. This is
similar to the approach used in other studies, which have
either truncated the spectrum in order to study the
visible (Grill and Rush 2000, Perrier et al. 2002), UV
(Andersson et al. 1998, Doucet 2002, Siitari and Huhta
2002) or both ranges (Doucet and Montgomerie 2003b,
Bleiweiss 2004). Nevertheless we have to point out that
in the case of the great tit, UV and visible peaks are
highly correlated (r2!/0.69; PB/0.001) which means
that any change in the visible area affects practically in
the same way to the UV-peak and that UV could be
a ‘‘by product’’ of carotenoid content in feathers (Mays
et al. 2004).
Additionally, we used a spectrophotometer Minolta

CM-2600d which provides direct values of lightness,
chroma, and hue from the visible range. Minolta
spectrophotometer collects reflectance spectra by hemi-
spherical directional reflectance, compared to Ocean
USB2000 spectrometer which collects reflectance by
directional reflectance. Hence, although reflectance
of both spectrometers were considerably correlated
(r2!/0.64; PB/0.01 N!/12), the comparison of the two
devices allowed to test for possible differences between
the two most common approaches to collect colour
variables.
Since the yellow breast of the great tit is a lutein-based

coloration, the maximum of absorbency at 440"450 nm
(range of maximum absorption of lutein; Saino et al.
1999) has also been used to describe plumage coloration
(Ninni 2003). For this reason we also measured the
repeatability of this value (‘‘lutein peak’’) and compared
values obtained from collected feathers and on the bird.
For each bird (N!/12), we first measured plumage

coloration in the field at a standard point in the breast
directly on the plumage (Figuerola et al. 1999). The
probe of Ocean USB-2000 spectrometer was first placed
on this point and subsequently we repeated the measure-
ment at the same point using the Minolta spectro-
photometer. Colour samples with Ocean optic were
obtained with a fibre optic probe orientated perpendi-
cularly to plumage surface and leaving a distance of 6
mm between the surface of feather and the probe
(Keyser and Hill 1999). The size of the measuring spot
considered was 54 mm2. We then collected about 15"20
feathers from each bird from the same area where direct

colour measurement had been obtained. Once in the
laboratory, we disposed 10"12 feathers from each
individual by superimposing four layers of three feathers
each one (see Fig. 2) on a dark velvet surface (reflectance
0%), trying to imitate the plumage surface of the bird
(Bennett et al. 1997). Afterwards we measured the
samples with the same fibre optic probe and the same
setting as in the field with both the Ocean optics and the
Minolta spectrometers.

In order to verify the reliability of field and laboratory
procedures, first we calculated the repeatability for
colour variables for the different methods according
to Lessells and Boag (1987), and Harper (1994), from
two independent measurements obtained in the field.
The second measurement was done without previous
knowledge of the first one, two hours after the first
measurement was obtained. In the second measurement
birds were chosen randomly. The observer was blinded
to know which animal was measuring and the spectrum
resultant in all measurements. Birds were kept in bags
during the period between measurements to avoid that
birds were soiled. Repeatability of laboratory measure-
ments was similarly obtained by carrying out two
independent measurements of the previously collected
feathers, obtained by removing and disposing feathers
again before the second measurement was done. The
same observer (JQ) did all measurements.

In order to establish the comparability of the labora-
tory method in relation to the plumage obtained by
directly measuring from the live bird, we calculated both
the repeatability and the correlation between plumage
coloration measurements obtained in field and labora-
tory (averaging the two measurements obtained from
each method).

To determine the possible effect of the number of
feathers on the values obtained from the different
plumage colour variables, we measured plumage colour
using 2, and systematically adding 3, 4, 5, 7, 10 and 15
feathers from the same individual always measuring in
the same point. The procedure was repeated twice and

Fig. 2. Schematic figure of disposition of the collected feather
to be measured by spectrometer. The circle represent the area
where the measurement was taken.

JOURNAL OF AVIAN BIOLOGY 37:6 (2006) 611
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6.3.3 Maternal baseline CORT and body condition 

To measure baseline CORT in breeding blue tits, mothers were blood sampled 

during provisioning when they were captured for feather collection. A small 

blood sample (about 80–100 µl) was obtained after puncture of the brachial vein 

with a 25-gauge needle and collected with a standard heparinised capillary tube. 

All samples were collected within 3 minutes of initial blockage of the nest box 

entrance. Blood samples were immediately stored on ice and the red blood cells 

and plasma were separated through centrifugation within 2h of collection. For a 

sub-set of birds, haematocrit, another measure of condition, was calculated by 

assessing the proportion of the total blood that was constituted by red blood 

cells. Then the plasma portion of the sample was removed and stored at -20ºC 

until assay.  

The majority of birds entered the nest box without any sign that they were 

disturbed by our presence. However, when individuals made alarm calls or 

hesitated before entering the nest box, the duration of disturbance was noted. 

CORT concentrations were not influenced by time of day, time taken to sample 

or disturbance duration at the nest (t80 = 0.78, P = 0.44, t80 = 0.73, P = 0.47, t80 = 

0.28, P = 0.78 respectively). Therefore they were considered to be baseline 

samples.  

Mothers were also weighed to the nearest 0.05g with a Pesola spring balance and 

wing length was measured. Maternal body condition was established by mass (g)/ 

wing length (mm). This metric was chosen rather than using residuals from a 

linear regression because mass and wing length were not significantly correlated 

(t102 = 1.62, P = 0.11). Wing length as opposed to tarsus length was employed 

because wing length has been shown to be a significantly more repeatable 

measure and therefore a better predictor of body size in passerines (Gosler et 

al. 1998). Females were aged as juveniles (<1 year) or >2 years based on 

plumage (Svensson 1992). Unfortunately, some birds in each year were not 

measured for baseline CORT and/or body condition therefore sample sizes vary 

between analyses. 
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6.3.4 Hormones assays 

CORT concentrations were measured after extraction of 5-20"l aliquots of 

plasma in diethyl ether, by radioimmunoassay (Wingfield et al. 1992) using anti-

corticosterone antiserum primary (Esoterix B183), secondary antibody (Sigma 

goat anti-rabbit) and [3H]-corticosterone label (GE Healthcare, UK). The 

extraction efficiency was 85–100%. Recoveries were measured for each sample 

independently and adjustments to the final assayed concentration were made. 

The assay detection limit (calculated as 2 SD from B0) was 0.03 ng/ml. Samples 

were run in three assays, intra-assay variation was 9±2% and inter-assay variation 

was 10±5%. 

6.3.5 Statistical analysis 

There were some birds captured in more than one year (n = 3), but individual 

birds were only included once in the analysis when they were first captured to 

avoid pseudo-replication.  

Firstly, I analysed variation of female colouration in relation to year and age 

using general linear models (GLMs). Secondly, I used GLMs to investigate which 

factors explained variance in maternal body condition, baseline CORT and 

haematocrit. Body condition was the dependent variable and year, UV signal, 

baseline CORT, lay date, age and brood size were independent variables. When 

baseline CORT was the dependent variable, year, UV signal, body condition, lay 

date and age were independent variables. All baseline CORT data were square 

root transformed because of non-normality. With haematocrit as the dependent 

variable, year, UV signal, body condition, baseline CORT and lay date were 

independent variables. Age was not included in this analysis as only 2 age class 6 

birds had a measure for haematocrit. Haematocrit was not an independent 

variable in the other two models as this metric was recorded for only a sub-

sample of females (n = 66). 

I also used GLMs to investigate whether maternal UV signal predicted measures 

of reproductive success. Lay date was the dependent variable and year, UV 

signal, body condition and age were the explanatory variables. Due to over-

dispersion in the model a quasipoisson error structure was employed. GLMs with 
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clutch size and number fledged as the dependent variables were used to 

investigate whether year, UV signal, body condition, lay date and age explained 

variation in these measures of reproductive success. As these reproductive 

measures were counts, a Poisson error structure was employed. Two-way 

interactions between the explanatory variables and year were fitted in all 

models. 

Models were optimised using backward elimination of non-significant terms. For 

most models, I eliminated terms when this improved the AIC (Akaike Information 

Criteria; Burnham & Anderson 2002). Models assessing the determinants of lay 

date, however, were compared using ANOVA, as AIC cannot be calculated when 

quasipoisson error structures are used. In the ANOVA comparisons, terms 

remained in the model if P-values were found to be non-significant (>0.05). 

Models were validated where appropriate to verify that underlying statistical 

assumptions were not violated; normality was assessed by plotting theoretical 

quantiles versus standardised residuals (quantile-quantile plots), homogeneity of 

variance was evaluated by plotting residuals versus fitted values, non-linearity 

was evaluated by plotting residuals versus explanatory variables, and influential 

data points were identified using Cook’s distance (Quinn & Keough 2002). There 

were three data points in baseline CORT models identified as outliers and 

removed. All statistical analyses were conducted using R version 2.8.0.  

6.4 Results 

6.4.1 Year & age 

There were 31, 49 and 23 females measured for UV signal in 2008, 2009 and 

2010, respectively. Inter-individual variation in UV signal was evident from 

spectrograms, specifically in the UV portion of the spectrum (figure 6.2). In 

addition, female UV signal differed significantly between years, with values for 

UV signal higher in 2009 compared with the other two years of the study (table 

6.1, t100 = 2.57, P = 0.01). Maternal age did not explain variation in UV signal in 

any year (Age: t99 = 1.31, P = 0.19, Year x Age: t97 = 0.68, P = 0.50).
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Table 6.1. Inter-annual variation in maternal UV signal, maternal baseline CORT and 
number of chicks fledged for free-living blue tits (2008-2010). Values in bold indicate 
years where vaules significantly differed (P < 0.01) from the other years shown. Values 
are expressed as mean±SE.  

 
2008 2009 2010 

 
Maternal UV signal 
(UVS – SWS) / (UVS + SWS) 
   
 

 
0.07±0.01 

 
0.09±0.004 

 
0.07±0.01 

Maternal baseline 
CORT ng/ml 
 
 

3.37±0.38 3.48±0.29 1.37±0.21 

Number of chicks 
fledged 
 

8.43±0.60 7.53±0.59 9.00±0.56 

 

 

 

Figure 6.2. The mean crown reflectance curve of female blue tits from 2008-2010 (n 
=103). Standard errors around the means are depicted at 25-nm intervals. The shaded 
area indicates the UV range of the light spectrum.  
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6.4.2 Female condition 

6.4.2.1 Body condition 

In the model investigating the determinants of body condition, the term ‘Year x 

UV signal’ was significant indicating that the relationship between UV signal and 

body condition was year specific (t96 = 2.43, P = 0.02). Analysis of the years 

individually revealed that UV signal was negatively correlated with body 

condition in 2010 only (2008: t26 = 0.59, P = 0.56, 2009: t44 = 0.57, P = 0.57 and 

2010: t19 = 2.43, P = 0.02). Therefore females in good body condition had lower 

UV signal than females in poor condition in 2010. Body condition was not related 

to lay date, age, baseline CORT or brood size in any year (see table 6.2). 

6.4.2.2 Baseline CORT 

Baseline CORT was negatively correlated with UV signal in all years (see table 

6.2 & figure 6.3a). However, lay date, body condition and age were not related 

to baseline CORT in any year (see table 6.2). In addition, baseline CORT was 

significantly lower in 2010 compared with the other two years (see table 6.1 & 

6.2). 

6.4.2.3 Haematocrit 

Haematocrit was not related to UV signal in any year (see table 6.2). 

Haematocrit was negatively correlated with baseline CORT in all years (see table 

6.2). Lay date and body condition were not related to haematocrit (see table 

6.2).  
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Table 6.2. The results of General Linear Models assessing the determinants of maternal 
body condition, baseline CORT and haematocrit in blue tits over three years (2008-
2010). Factors in bold were significant, *denotes significance at P < 0.05 and ** denotes 
significance at P < 0.01. Models were optimised using backward elimination of non-
significant terms when this improved the AIC. Terms that were removed from final 
models are denoted by rm. If terms were dropped the full model results are shown, if 
not, the final model results are shown. 
 

Dependent/ 
  Independent factor 

 
 

   

 
Body condition/ 

 
SE t d.f. P  

Year 0.005 -1.805 96 0.074  
UV signal 0.028 0.630 96 0.530  
Baseline CORT 0.004 -1.375 59 0.174 rm 
Lay date 0.001 0.218 59 0.828 rm 
Age 0.003 -1.009 59 0.317 rm 
Brood size 0.001 0.405 59 0.687 rm 
UV signal x Year 0.048 -2.431 96 0.017*  
Baseline CORT x Year 0.005   0.429 59 0.669 rm 
Lay date x Year 0.001 0.506 59 0.614 rm 
Age x Year 0.005 0.664 59 0.509 rm 
Brood size x Year 0.001 -1.156  59 0.252 rm 

 
Baseline CORT/ 

 
SE t d.f. P 

 

Year 0.146 -4.236 80 0.001**  
UV signal 1.224 -2.869 80 0.005**  
Body condition 11.586 -1.268 68 0.209 rm 
Lay date 0.028 0.380 68 0.705 rm 
Age 0.194 -1.093 68 0.278 rm 
UV signal x Year 3.402 1.741  68 0.086 rm 
Body condition x Year 15.351 0.075 68 0.941 rm 
Lay date x Year 0.039 -0.690 68 0.493 rm 
Age x Year 
 

0.259 
 

0.450 68 0.654 rm 

 
Haematocrit/ 

 
SE t d.f. P 

 

Year 25.476 -0.813 43 0.421 rm 
UV signal 16.030 -0.767 43 0.447 rm 
Body condition 97.624 -0.753 43 0.466 rm 
Baseline CORT 0.669 -2.411 57 0.019*  
Lay date 0.249 -0.474 43 0.638 rm 
UV signal x Year 23.944 -0.561 43 0.578 rm 
Body condition x Year 129.22 0.333 43 0.741 rm 
Baseline CORT x Year 7.111 -0.884 43 0.697 rm 
Lay date x Year 
 

0.340 
 

1.736 43 0.089 rm 
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Figure 6.3. Maternal UV signal measured from crown feathers was a) negatively 
correlated with maternal baseline CORT measured during chick rearing in three years (n 
= 2008: 27, 2009: 40 and 2010: 17) and b) negatively correlated with Julian lay date in 
2008, marginally in 2010 but not 2009 (April 1st = 0, n = 2008: 31, 2009: 49 and 2010: 
23).  
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6.4.3 Reproductive success 

6.4.3.1 Lay date 

In the model investigating the determinants of lay date, the term ‘Year x UV 

signal’ was borderline significant indicating that the relationship between UV 

signal and lay date was year specific (see table 6.3). Analysis of the years 

individually revealed that UV signal was negatively correlated with lay date in 

2008 and marginally in 2010 but not 2009 (see figure 6.3b, 2008: t27 = 2.06, P = 

0.05, 2009: t44 = 0.78, P = 0.44 and 2010: t19 = 2.04, P = 0.06). In addition, the 

term ‘Year x Age’ was borderline significant indicating that the relationship 

between age and lay date was also year specific (see table 6.3). Further analysis 

revealed that older mothers laid earlier than younger birds in 2009 only (2008: 

t27 = 0.13, P = 0.90, 2009: t44 = 2.74, P = 0.009 and 2010: t19 = 0.16, P = 0.87). 

Body condition was not related to lay date in any year of the study (see table 

6.3). 

6.4.3.2 Clutch size 

UV signal did not explain variation in clutch size in any year (see table 6.3). In 

addition, body condition and age were not related to clutch size (see table 6.3). 

Clutch size was, however, negatively correlated with lay date, with earlier 

laying mothers producing larger clutches in all years (see table 6.3). Also clutch 

sizes were significantly smaller in 2009 compared with the other years of the 

study (see table 6.3). 

6.4.3.3 Number of chicks fledged 

UV signal was positively correlated with number of chicks fledged in all three 

years of the study (see table 6.3 & figure 6.4a). In addition, lay date was 

negatively correlated with number fledged in all years (see table 6.3 & figure 

4b). However, body condition and age did not explain variation in the number of 

chicks fledged (see table 6.3). Similar to clutch size the number of chicks 

fledged was significantly lower in 2009 than the other years of the study (see 

table 6.1 & 6.3). 
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Table 6.3. The results of Generalized Linear Models assessing the determinants of lay 
date, clutch size and number of chicks fledged in blue tits over three years (2008-2010). 
Factors in bold were significant, !denotes borderline significance at P<0.06, *denotes 
significance at P<0.05 and ** denotes significance at P<0.01. Models were optimised 
using backward elimination of non-significant terms when this improved the AIC. Models 
assessing the determinants of lay date, however, were compared using ANOVA. Terms 
that were removed from final models are denoted by rm. If terms were dropped the full 
model results are shown, if not, the final model results are shown. 
 

Dependent/ 
  Independent factor 

 
 

   

 
Lay date/ 

 
SE t d.f. P  

Year 0.083 4.650 92 <0.001  
UV signal 0.430 1.990 92 0.049  
Body condition 1.649 0.704 90 0.483 rm 
Age 0.045 0.095 92 0.924  
UV signal x Year 0.867 1.924     92 0.057 !  
Body condition x Year 3.699 1.504  90 0.136     rm 
Age x Year 0.063 1.918 92 0.058 !  

 
Clutch Size/ 

 
SE z d.f. P 

 

Year 0.105 2.734 98 0.006**  
UV signal 1.163 0.201 86 0.841 rm 
Body condition 7.212 0.063  86 0.950 rm 
Lay date 0.009 2.461 44 <0.001**  
Age 0.117 0.412 86 0.680 rm 
UV signal x Year 2.014 0.895 86 0.371 rm 
Body condition x Year 9.347 0.483 86 0.629 rm 
Lay date x Year 0.025 0.018 86 0.986 rm 
Age x Year 
 

0.158 
 

0.691 86 0.489 rm 

 
Number of chicks 
fledged/ 

 
 

SE z d.f. P 

 

Year 0.118 3.254 89 0.001**  
UV signal 0.884 2.405 89 0.016*  
Body condition 8.016 0.139   79 0.890 rm 
Lay date 0.016 4.485  89 <0.001**  
Age 0.131 1.200 79 0.230 rm 
UV signal x Year 2.379 0.051 79 0.959 rm 
Body condition x Year 10.610 0.515 79 0.606 rm 
Lay date x Year 0.029 0.452 79 0.651 rm 
Age x Year 
 

0.179 
 

0.991 79 0.322 rm 
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Figure 6.4. Variation in the number of chicks fledged per nest was related to a) 
maternal UV signal measured from crown feathers (n = 2008: 31, 2009: 40 and 2010: 23) 
and b) Julian lay date (April 1st = 0, n = 2008: 31, 2009: 40 and 2010: 23). 
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6.5 Discussion 

This study shows that UV crown colouration in female blue tits varies 

significantly between years, but is not linked to an individual’s age. In addition, 

in all years mothers with higher values of UV signal had lower baseline CORT 

than mothers with lower UV signal. However, maternal UV signal was negatively 

related to body condition in 2010 and unrelated to haematocrit. Maternal UV 

signal was also correlated with indices of reproductive success across years. 

Specifically, maternal UV signal was correlated with lay date in a year specific 

manner. Mothers with a higher UV signal laid significantly earlier compared with 

females with lower UV signal in 2008, but this effect was marginal in 2010 (P = 

0.056), and non-significant in 2009. Lay date was also a significant predictor of 

clutch size and fledging number in this population. Finally, maternal UV signal 

was positively correlated with number of chicks fledged in all years, but not 

clutch size.  

To my knowledge this study presents the first evidence that maternal baseline 

CORT is negatively correlated with UV crown colouration in free-living birds. 

Birds respond to environmental challenges, such as food shortage, by elevating 

baseline CORT concentrations, which in turn modulates both physiology and 

behaviour (Wingfield & Romero 2001). Therefore, elevated baseline CORT has 

been associated with reduced resources (Astheimer, Buttemer & Wingfield 1992; 

Kitaysky, Piatt & Wingfield 2007) and/or body condition in birds (Love et al., 

2003; Pike & Petrie, 2005a), and in this study was associated with low 

haematocrit values. This suggests females that exhibit higher UV signal on their 

crown feathers experienced lower physiological stress during the chick rearing 

stage. Importantly, although baseline CORT was measured during chick rearing, 

it was associated with plumage colouration that was produced months before, 

therefore, UV signal in female blue tits may be indicative of an individual’s 

baseline CORT over the long-term and vice versa. 

Mechanistically, the link between maternal UV signal and baseline CORT could 

be causal. Females that exhibit low baseline CORT during breeding may also 

maintain low physiological stress in the face of other demanding life-history 

stages, such as moult. During moult when feathers are being replaced, CORT 
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concentrations are down regulated (Romero 2002), which has been shown to aid 

feather growth and quality (Romero, Strochlic & Wingfield, 2005). DesRochers et 

al. (2009) provide evidence that both endogenous and exogenous CORT can 

influence the microstructure of feathers. As the UV reflectance of feathers is 

caused by their microstructure, specifically the size and arrangement of 

nanostructural elements within the medullary layer of feather barbs (Prum et al. 

1999; Prum, Andersson & Torres 2003), circulating CORT concentrations could 

directly influence UV plumage colouration. Therefore, if females with elevated 

CORT during breeding also exhibit elevated concentrations during moult, UV 

signal and baseline CORT could be causally linked. Indeed, a recent study 

suggests that in blue tits nutritional deprivation during moult does not influence 

UV colouration, and the authors suggest physiological stress as an alternative 

(Peters et al. 2011). However, as yet researchers have not measured baseline 

CORT and feather colouration over multiple life-history stages or manipulated 

baseline CORT during moult, which would be necessary to establish causality.  

Female UV signal at the population level was significantly higher in 2009 than 

the other two years of the study. As feathers are grown each year in the 

autumn, this suggests that the trait was affected by contrasting conditions 

between the years, and therefore may be condition-dependent. Previous studies 

also provide evidence for inter-annual variation in feather colouration within 

populations (Masello, Lubjuhn & Quillfeldt 2008; Vergara et al. 2009). For 

example, in female Eurasian kestrels, Falco tinnunculus, the expression of 

melanin based colouration co-varied positively with the environmental 

conditions in the previous year (Vergara et al. 2009). In my study, crown 

feathers measured for UV signal in 2009 were produced during moult in the 

autumn of 2008. The breeding season in 2008 was characterised by relatively 

high reproductive success and good weather conditions (see Chapter 3), which 

suggests that the favourable conditions experienced in that year may have lead 

to the stronger UV crown colouration within the population in 2009. However, to 

provide convincing evidence of the link between environmental conditions and 

inter-annual variation in plumage, it would be essential to monitor the 

population for a greater number of years and manipulate conditions within 

years. 
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Interestingly, maternal age was not linked to UV signal in any year. Age has 

often explained inter-individual variation in plumage colouration (for review see 

Amundsen & Pärn 2006). This has been suggested to occur because older 

individuals tend to be more dominant, and therefore may have additional access 

to resources, alternatively only high quality individuals may survive to older age 

(Brown 1975). However, in short-lived species such as the blue tit, where the 

average life span is three years (British Trust for Ornithology, 2011) these effects 

may not be apparent. In addition, in this study the relationship between age and 

UV signal may have been obscured because only two age classes were used. This 

is because plumage characteristics, do not enable the observer to exactly age 

birds older than one year (Svensson 1992). In order to address the relationship 

between UV signal and age, a population of known age individuals would be 

required. 

Surprisingly in one year of the study, mothers with higher values of UV signal had 

poorer body condition during chick rearing than mothers with lower UV signal. In 

all years maternal UV signal was correlated with number fledged, therefore 

females with higher values of UV signal may have invested more energy in 

reproduction than those with lower UV signal, thus accounting for the negative 

relationship with body condition. However, this relationship was unexpected as 

females with high UV signal had low baseline CORT concentrations, which would 

suggest they had superior energetic status. Yet, body condition and baseline 

CORT were not correlated in this population (see Chapter 4; General Discussion) 

suggesting they may be indicative of differing aspects of condition during chick 

rearing. For example, body mass, a component of body condition, is often lowest 

and least variable during chick rearing (Macleod et al. 2005), hence may not be 

the best measure of condition during this stage.  

Lay date is often a strong predictor of reproductive success in blue tits (Perrins 

1979), and in this study lay date was positively correlated with clutch size and 

number fledged in all years. As individual condition and food quality can 

influence structural feather colouration (Siefferman & Hill 2005b; Masello, 

Lubjuhn & Quillfeldt 2008), females that can defend resources, forage 

effectively and maintain good body condition during moult could produce 

feathers with a relatively strong UV signal (Keyser & Hill 1999). Furthermore, 

these females may be more able to maintain their condition over winter, and 
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thus begin breeding earlier (Nager, Rueegger & Van Noordwijk 1997; Ramsay & 

Houston 1997). This result suggests that UV signal may reflect maternal quality 

in blue tits, however, the relationship between maternal UV signal and lay date 

was weak and requires further investigation to establish the strength of this 

association. 

Maternal UV signal was positively correlated with the number of chicks fledged 

rather than clutch size in all years. This result suggests that mothers with a 

stronger UV signal did not differ in the number of eggs laid, but rather they were 

able to rear a greater number of chicks to fledging. This may have been because 

maternal UV signal reflects the quality of the eggs laid or the level of investment 

in incubation. Egg quality and incubation behaviour have important 

consequences for the fledging success of nestlings (Reid, Monaghan & Nager 

2002; Nager 2006), yet little is known about the relationship between maternal 

plumage colouration and these early stages of reproduction. In a recent study 

the intensity of UV crown colouration in female blue tits was found to be 

positively correlated with egg size (Szigeti et al. 2007). Therefore, differential 

egg quality dependent upon maternal colouration could lead to a relationship 

between this UV signal and fledging success. Also, the relationship between 

maternal UV signal and fledging number could have been caused by maternal 

provisioning behaviour. Previous studies provide correlative evidence that 

provisioning behaviour is linked to maternal colouration (Linville, Breitwisch & 

Schilling 1998; Siefferman & Hill 2005b), but a similar number of studies do not 

support this relationship (Rhode, Johnsen & Lifjeld 1999; Smiseth & Amundsen 

2000; Hill 2002). Of course these factors are not mutually exclusive and further 

investigation into the relationship between maternal UV signal and egg quality, 

incubation and provisioning behaviour is required to explain the link between 

maternal UV signal and fledging number in this population. 

Maternal UV signal may not simply reflect female reproductive capacity but also 

the quality of care provided by her partner. There is evidence that assortative 

mating occurs in blue tits with regard to UV crown colouration (Andersson, 

Örnborg & Andersson 1998; Hunt et al. 1999), thus maternal UV signal may have 

reflected the UV signal of her partner. There is evidence that males that exhibit 

brighter UV colouration provision nestlings more frequently (Keyser & Hill 2000; 

Siefferman & Hill 2003) and provide a higher number of food items to incubating 



161 

 161 

mothers (Siefferman & Hill 2005a) than less colourful males. In blue tits, male 

UV colouration has also been positively associated with female provisioning rate 

(Limbourg et al. 2004) and the deposition of androgens within the eggs (Kingma 

et al. 2009). Therefore, male UV signal could influence both nestling quality 

directly through paternal behaviour or indirectly through its effects upon 

maternal behaviour and egg deposits. Unfortunately, in this study very few male 

birds were captured, consequently, I cannot exclude the possibility that the 

relationship between maternal colouration and fledging success is not an 

indirect effect of paternal quality. However, for a sub-sample of breeding pairs, 

both male and female UV signal was measured and these data do not present 

strong evidence for assortative mating in this population (GLM: r = -0.55, n = 14, 

P = 0.98). Importantly, even if information regarding male partners were 

available, it would be difficult to separate the effects of male and female 

investment upon reproductive success in species where both sexes provide care, 

particularly as brood care is often correlated between parents (Hinde 2006).  

6.5.1 Conclusions 

This study presents intriguing results, that female plumage colouration is 

associated with baseline CORT and signals reproductive potential. However, the 

presence of confounding factors, such as male quality, causes the link between 

maternal UV signal and fledging number to require further investigation before 

definite conclusions can be drawn. The fact a single measure of baseline CORT 

measured during chick rearing can be indicative of plumage colouration 

produced months before, suggests baseline CORT may provide long-term 

information regarding individual condition.
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Chapter 7: General Discussion 

“The more you know, the more you realise you know nothing”.  
- Socrates  

 

The measurement of glucocorticoids, specifically CORT in free-living birds has 

been conducted for over 30 years (Wingfield & Farner 1976a), and a great deal 

of information has been gained in relation to their function and mediation of 

life-history traits (Williams 2008; Wingfield, Williams & Visser 2008). However, 

the majority of studies continue to compare mean baseline CORT concentrations 

between groups and populations, and the causes and consequences of inter-

individual variation in baseline CORT remain relatively unknown (Williams 2008). 

The physiology/life-history nexus suggests that in order to understand variation 

in life-history traits and the constraints imposed upon them, an understanding of 

their underlying physiological mechanisms is essential (Ricklefs & Wikelski 2002; 

Hau 2007; Hau et al. 2010). Furthermore, to do so it is necessary to relate 

baseline CORT to key-life history traits at the individual level (Ricklefs & 

Wikelski 2002; Hau 2007; Hau et al. 2010). In this thesis I have employed this 

approach and investigated how variation in environmental conditions measured 

at the territory-scale explains variation in baseline CORT concentrations 

between individuals. Furthermore, I investigated whether inter-individual 

variation in baseline CORT was linked to measures of reproductive success, 

reproductive trade-offs, offspring phenotype and UV plumage colouration. 

Importantly, I related baseline CORT to these key life-history traits across 

multiple years that differed in the quality of the prevailing conditions. The 

results suggest that the relationships between baseline CORT, environmental 

conditions and reproductive success are context-dependent, as they varied 

between years dependent upon the conditions experienced. Within the 

endocrinology literature the context-dependence of relationships between CORT 

and other physiological measures are considered fundamental for the 

understanding of the actions of CORT (Sapolsky 2002). For example, a short term 

challenge and a transitory increase in circulating CORT concentrations enhances 

the immune system, whereas prolonged elevation of CORT in response to a 

chronic challenge suppresses it (Munck, Guyre & Holbrook 1984a). Furthermore, 

as CORT elevation can negatively influence the immune system, birds living 
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where parasite threats are high may maintain low concentrations of CORT to 

conserve their immune defenses. Indeed exogenous elevation of CORT in a 

population of house sparrows, Passer domesticus, in the tropics (Panama) where 

parasite threats are high did not affect immune function, whereas in a 

population in North-America (New Jersey) where parasite threats are lower, 

immune function was suppressed. These issues are rarely investigated or 

accounted for in studies that address the link between CORT and reproductive 

success. However, as my results show the relationship between baseline CORT 

and key life-history traits may also differ dependent upon the prevalent 

conditions. Overall, this thesis provides evidence that inter-individual variation 

in baseline CORT between breeding birds is significant, and it is important to 

consider the prevalent conditions when trying to explain this variation.  

 

7.1 Review of findings 

7.1.1 Environmental conditions and baseline CORT at the 

individual level 

There is a large body of evidence that suggests inclement environmental 

conditions are associated with elevated baseline CORT in birds (Wingfield, Smith 

& Farner 1982; Romero, Reed & Wingfield 2000; Suorsa et al. 2003; Cash & 

Holberton 2005; Kitaysky et al. 2006; Buck, Oreilly & Kildaw 2007; Kitaysky, 

Piatt & Wingfield 2007; Benowitz-Fredericks, Shultz & Kitaysky 2008; Busch & 

Hayward 2009). This is thought to be due to the role of baseline CORT in 

metabolism and energy-balance, with elevated baseline CORT stimulating 

behaviour and/or gluconeogenesis to resolve a deficit in energy resources 

(Wingfield & Romero 2001; Sapolsky 2002). However, there is a striking lack of 

knowledge concerning the influence of environmental factors upon baseline 

CORT at the individual level (but see Suorsa et al. 2003). This is of fundamental 

importance, not only when attempting to identify factors within the 

environment that influence stress hormones, but also when trying to ascertain 

whether baseline CORT mechanistically links poor environmental conditions with 

the costs of reproduction and reproductive success. In Chapter 2 I addressed 

these knowledge gaps by investigating whether foraging conditions at the 

territory-scale were correlated with adult and nestling baseline CORT over three 
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years (2008-2010). I measured synchrony between breeding and the peak in 

caterpillar abundance, the main prey of provisioning blue tits (Perrins 1991), oak 

density, which affects the availability of caterpillars (Hinsley et al. 2008; Wilkin, 

King & Sheldon 2009) and weather variables that can influence foraging 

efficiency (Romero, Reed & Wingfield 2000; Geiser, Arlettaz & Schaub 2008).  

The results showed that synchrony between breeding and the peak in caterpillar 

abundance negatively correlated with baseline CORT for both nestling and adult 

birds, but only in 2008, when birds were most asynchronous with the caterpillar 

peak. Whereas, oak density was negatively correlated with adult baseline CORT 

in the two years birds were most asynchronous (2008 & 2010), but was not 

related to nestling CORT in any year. Weather variables were also related to 

baseline CORT in adults only, with rainfall positively correlated with baseline 

CORT only in the year characterised by the most rainfall (2009), and low 

temperatures were negatively correlated with elevated baseline CORT in the 

two years of the study characterised by either the most severe asynchrony or 

rainfall. These results suggest that foraging conditions are associated with 

baseline CORT concentrations when they are more demanding. For example, 

synchrony between breeding and the peak in caterpillar abundance was only 

linked to baseline CORT in the years birds were most asynchronous, suggesting 

that there is a threshold level over which asynchrony elicits a physiological 

response in breeding birds. Furthermore, the effects of the foraging conditions 

measured appear to be additive and/or synergistic, e.g. low temperatures were 

only linked to adult baseline CORT in two years characterised by either the 

greatest asynchrony or the heaviest rainfall. A study on nestling treecreepers, 

Certhia familiaris, provides a similar result, as low density and quality of prey 

was linked to elevated CORT in young, in small forest patches only, but not in 

older, larger forest patches (Suorsa et al. 2003). These results advocate 

measuring multiple surrogates of environmental conditions over multiple years, 

as this allows researchers to establish whether there are potentially additive or 

synergistic effects of environmental factors, threshold levels over which stress 

hormones are elevated, or consistent effects of specific environmental factors 

associated with CORT concentrations. In addition, by first establishing the 

correlative links between foraging conditions and baseline CORT, experimental 



165 

 165 

approaches required to elucidate the causal effects will be better informed, 

providing information on how best to manipulate the environment.  

In addition, my results suggest that the foraging conditions that influence adult 

and nestling baseline CORT differ. This is an interesting finding and perhaps not 

unexpected, as blue tits are cavity nesting and therefore chicks are somewhat 

shielded from the prevalent conditions (Perrins 1979). Importantly this suggests 

that in cavity nesting birds it is not necessarily possible to draw conclusions 

about the effect of the breeding habitat upon nestling baseline CORT from the 

effects upon adult CORT and vice versa. Also, this result suggests that parental 

behaviour as well as environmental conditions may influence baseline CORT 

concentrations in nestlings. For example, although oak density was linked to 

adult baseline CORT in the two years in which birds were most asynchronous, it 

was not linked to nestling CORT. This suggests that parents in more oak sparse 

territories worked harder in these years to provide nestling with similar amounts 

of food. Therefore, in addition to the nest environment, parental behaviour may 

buffer chicks from inclement conditions (Kitaysky, Wingfield & Piatt 2001; 

Tremblay et al. 2005). Of course there may also be a threshold over which 

parental behaviour can no longer buffer the nestling from the prevalent 

conditions, for example, in 2008 when synchrony between breeding and the 

caterpillar peak was linked to nestling CORT. In addition, in the Florida scrub-

jay, Aphelocoma coerulescens, the longer parents spent away from the nest was 

associated with a significant increase in nestling CORT concentrations. It would 

be interesting to investigate whether provisioning behaviour is linked to nestling 

baseline CORT in blue tits, and whether this relationship differs between years 

dependent upon the environmental conditions. 

7.1.2 Inter-individual variation in baseline CORT and reproductive 

success 

In agreement with the literature (Marra & Holberton 1998; Kitaysky et al. 2001; 

Homan, Reed & Romero 2003; Cash & Holberton 2005; Kitaysky, Piatt & 

Wingfield 2007), the results of Chapter 2 indicate that inclement conditions 

experienced during breeding are associated with elevated baseline CORT in 

breeding birds. As poor environmental conditions are also associated with low 
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reproductive success (Keller & Van Noordwijk 1994; Naef-Daenzer & Keller 1999; 

Garant et al. 2007; DeGabriel et al. 2009; Grimardias et al. 2010), it has been 

suggested that elevated CORT in breeding adults may be linked to reduced 

reproductive success (Bonier et al. 2009a; Busch & Hayward 2009). This may be 

adaptive, as birds experiencing poor conditions and elevated CORT may invest in 

self-maintenance over reproduction and through doing so improve their lifetime 

reproductive success (LRS). In Chapter 3 I investigated whether there was 

evidence of a link between low reproductive success and elevated baseline CORT 

over multiple years. I also examined whether this was because the foraging 

conditions (as measured in Chapter 2) that were associated with elevated 

maternal baseline CORT were similarly linked with low reproductive success.  

The results showed that in the most part the foraging conditions that were 

associated with elevated baseline CORT differ to those associated with low 

reproductive success. In 2008 and 2010, the years characterised by the greatest 

asynchrony between breeding and the caterpillar peak, broods that were more 

synchronous fledged more offspring, a higher proportion of the clutch 

(marginally non-significant in 2010) and had heavier chicks than less synchronous 

broods. However, oak density was not linked to reproductive success. Synchrony 

with the caterpillar peak was also associated with low maternal baseline CORT, 

but in 2008 only, the most asynchronous year. Whereas, in 2008 and 2010, 

mothers breeding in oak dense territories had significantly lower baseline CORT 

than mothers in oak sparse territories. In 2009 the wettest year of the study, 

inclement weather conditions (high rainfall and low temperatures) were 

associated with elevated maternal baseline CORT and reduced mean nestling 

mass. These results indicate, that in female blue tits, the foraging conditions 

associated with reduced reproductive success are not consistently those linked 

to elevated maternal baseline CORT. Specifically, maternal baseline CORT 

appears to be linked with factors that affect energetic demand, i.e. movement 

between trees, rather than reproductive success, i.e. total number of prey 

provided to offspring. However, inclement weather conditions appear to link 

maternal baseline CORT and nestling mass, as nesting mass was negatively 

correlated with maternal baseline CORT in 2009. 

Interestingly, in 2009 when reproductive success was lower than the other years, 

suggesting it was the harshest year for breeding birds, maternal baseline CORT 
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was positively correlated with the number of chicks fledged. Brood rearing is a 

demanding breeding stage (Perrins 1991; Tremblay et al. 2005), and the positive 

correlation between fledging number and maternal baseline CORT may be due to 

the increased energetic demand associated with the need to provide for a larger 

brood, particularly when conditions are challenging (Saino et al. 2002; Bonier, 

Moore & Robertson 2011). Indeed, in 2009 provisioning rate per brood was 

positively correlated with maternal baseline CORT (Chapter 5). The result is not 

unprecedented, as previous studies report a negative relationship between CORT 

during egg-laying and reproductive success, but a positive relationship between 

CORT during brood rearing and reproductive success in both populations and 

individuals (Bonier et al. 2009b; Ouyang et al. 2011). This has been suggested to 

be adaptive as individuals that begin breeding in good condition with lower 

CORT, may be able to invest more in egg laying than birds in poorer condition 

with higher baseline CORT concentrations. In this case, this may lead to the 

negative relationship between CORT and reproductive success during egg-laying. 

However, during brood rearing when individuals have already invested heavily in 

the reproductive event, good quality individuals that have reared larger broods 

may be able to increase CORT concentrations to meet the needs of brood 

rearing, causing baseline CORT to positively correlate with reproductive success 

during this stage. As maternal baseline CORT was positively correlated with 

number fledged but not the proportion of the clutch to fledge, this suggests that 

elevated baseline CORT in mothers fledging more offspring was not through 

increased work to fledge a higher proportion of the clutch, but rather mothers 

that laid larger clutches may have been able to elevate baseline CORT to meet 

the needs of their offspring. Indeed, maternal condition can modify the effects 

of experimental CORT elevation. In Black-legged kittiwakes, Rissa tridactyla, 

experimental CORT elevation causes breeding adults in superior condition to 

invest in brood care, whereas adults in poor condition invested in self-

maintenance over brood care.  

The results of Chapter 3 also suggest that the relationship between CORT and 

reproductive success may vary between years dependent upon the prevalent 

conditions. For example, elevated baseline CORT may only be associated with 

brood size in years where conditions are most challenging, and the energetic 

demands of the parents are higher. In an island population of blue tits, maternal 
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baseline CORT was positively correlated with the number of nestlings, but this 

relationship was not evident in a population on the mainland (Müller et al. 

2007). The authors suggest this was because the energetic demands of 

provisioning were greater in the island population compared with mainland 

(Müller et al. 2007). This result may explain why studies based on a single year, 

whether experimental or correlative have not consistently found correlations 

between maternal baseline CORT and reproductive success (Saino et al. 2002; 

Eeva et al. 2005; Ellenberg et al. 2007). 

Importantly if these data were only analysed at the population level, the 

conclusions would have been different. 2008 and 2009 had significantly higher 

mean maternal baseline CORT than 2010, and these two years also had lower 

mean reproductive success compared to 2010 (see figure 3.1, number fledged 

significantly lower in 2009 only). This result would support the association 

between elevated baseline CORT and low reproductive success. Therefore, my 

results highlight not only the complexity of linking baseline CORT to measures of 

fitness, but also the importance of using inter-individual variation in addition to 

population means. In conservation led studies, CORT concentrations are 

increasingly used as a proxy of population or individual health, with elevated 

CORT assumed to be associated with reduced survival or reproductive success 

(Busch & Hayward 2009). However, my results emphasize the importance of 

validating the relationship between baseline CORT and measures of fitness 

before employing measures of CORT in this way. 

7.1.3 Inter-individual variation in baseline CORT and brood sex 

ratio 

Chapter 3 indicates that maternal baseline CORT is not consistently linked to 

number of chicks fledged over years. However, maternal CORT could adaptively 

influence other aspects of offspring phenotype, to the benefit of offspring and 

mothers (Love et al. 2005; Breuner 2008). Sex allocation theory predicts that 

mothers should adjust brood sex ratio in relation to their condition and/or the 

prevalent conditions to maximise fitness (West, Reece & Sheldon 2002). As 

maternal CORT links the quality of the environment with internal physiology 

(Wingfield & Romero 2001), circulating concentrations may signal conditions that 
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influence the quality of offspring. Indeed in birds there is evidence that mothers 

adjust the sex of offspring in relation to their condition and/or environment 

(Sheldon et al. 1999b; Komdeur, Magrath & Krackow 2002a; Pike & Petrie 2005a; 

Stauss et al. 2005; Pryke et al. 2011) and that maternal concentrations of CORT 

play a role in this adjustment (Love et al. 2005; Pike & Petrie 2005a; Bonier, 

Martin & Wingfield 2007). Therefore, in Chapter 4 I investigated whether 

maternal baseline CORT was linked to brood sex ratio at laying (primary) and/or 

fledging (secondary), and if experimental elevation of maternal CORT during 

laying influenced brood sex ratio.  

The results suggest that maternal baseline CORT measured during brood rearing 

was not related to the sex ratio of offspring at laying or fledging, but was 

negatively correlated with nestling mass on day 14. Exogenous elevation of 

maternal CORT during egg laying did not influence offspring sex, nestling mass or 

nestling growth. However, maternal condition was correlated with primary sex 

ratio, with mothers in good condition producing male biased broods in one year 

of the study, and in all years, there was a trend that maternal condition was 

positively correlated with nestling mass and growth. Although male nestlings 

were consistently heavier and grew at a faster rate than female nestlings, 

maternal condition and baseline CORT were not related to indices of nestling 

quality in a sex-specific manner.  

My results are in contrast to previous findings, as all reported studies that have 

investigated the link between maternal baseline CORT and brood sex ratio have 

found significant correlations (Love et al. 2005; Pike & Petrie 2005a; Pike & 

Petrie 2006; Bonier, Martin & Wingfield 2007; Pryke et al. 2011). Unlike previous 

studies (Love et al. 2005; Pike & Petrie 2005a) maternal baseline CORT was not 

linked to maternal condition in any year, therefore may not be indicative of 

circumstances that favour sex ratio adjustment, and thus may not be expected 

to affect brood sex ratio. Furthermore, in the blue tit, mothers may not benefit 

from sex ratio adjustment. Although the sexes are size dimorphic the difference 

was relatively small (~5%), and it is unclear whether males, as the larger sex 

would be more sensitive to poor developmental conditions and thus have lower 

LRS when conditions are poor. Also the level of extra-pair paternity often differs 

between years and populations in blue tits (Gullberg, Tegelström & Gelter 1992; 
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Charmantier et al. 2004), thus variance in reproductive success between the sexes 

may not be as extreme as in other species, perhaps reducing the benefits of 

investing in sons when the conditions ensure they are of good quality. As with the 

majority of studies that have addressed sex ratio adjustment in birds, the studies 

which have related maternal CORT to sex ratio manipulation have yet to find 

evidence for the selective advantage of this adjustment (Pike & Petrie 2003), 

and perhaps this should be a focus of future research. Specifically, for my 

research it would have been interesting to know whether sexes differed in their 

survival and reproductive success dependent upon maternal condition and/or the 

environmental conditions. However, there is no reason to believe brood sex ratio 

should be evident across all bird species (West & Sheldon 2002). 

I employed mealworms injected with CORT to experimentally elevate maternal 

CORT during egg-laying and test the effect on brood sex ratio and nestling 

condition. Unfortunately, there were a few drawbacks associated with this 

method. For example, I was not able to guarantee when and if females 

consumed the mealworms. As the cameras I used for nest recording could only 

be placed at the back of the nest box, it would have been difficult to see 

females eating mealworms from feeder trays placed on the side. If they had 

been placed on the lid looking down, I may have been able to document females 

eating the mealworms on the nest. The technique did successfully cause a 

temporary elevation of CORT in captive blue tits (Appendix I). Therefore, under 

lab conditions where females can be closely monitored it would be interesting to 

employ this method, perhaps in a species where CORT has already been shown 

to be linked to brood sex ratio. This would provide insight into whether 

transitory elevation of CORT during sex determination, as well as the continuous 

elevation used in previous studies could influence brood sex ratio. As continuous 

elevation of CORT may also influence maternal condition (Love et al. 2005; Pike 

& Petrie 2005a), this approach could separate the effects of maternal condition 

and CORT upon brood sex ratio adjustment.  
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7.1.4 Inter-individual variation in baseline CORT and reproductive 

trade-offs 

The cost of reproduction is a central concept in evolutionary biology, where 

increased investment in current reproduction is predicted to decrease future 

fecundity and survival (Lack 1947; Williams 1966). The physiological mechanisms 

that mediate these life-history trade offs are less well known (Zera & Harshman 

2001), but CORT may play a significant role in life-history trade-offs and 

reproductive decisions based around energetic state and/or the prevalent 

environmental conditions. As discussed above, in a context-dependent manner, 

elevated baseline CORT can be linked to increased investment in reproduction or 

a diversion of investment from reproduction to self-maintenance (Wingfield & 

Sapolsky 2003). In addition, mechanistically, elevated baseline CORT during 

breeding due to increased investment, could negatively influence reproduction 

in future years as elevated CORT has been associated with a reduced survival 

(MacDougall-Shackleton et al. 2009; Goutte et al. 2010) and decreased disease 

resistance (Harvey et al. 1984; Saino et al. 2002).  

To investigate the role of CORT in reproductive trade-offs I reduced the costs of 

egg laying through supplemental feeding and compared maternal baseline CORT, 

brood care and maternal return rates between manipulated and control 

mothers. The results showed that supplementary feeding during egg laying 

improved nestling mass, influenced incubation and brooding behaviour and 

increased maternal return rates relative to controls. Therefore this suggests 

reducing the costs of early reproduction influenced investment in the later 

stages of the reproduction and increased maternal survival. Maternal baseline 

CORT concentrations, however, were unaffected by the treatment. While 

provisioning rate did not differ between groups, there was a positive correlation 

between provisioning rate and baseline CORT for controls only, suggesting that 

the treatment negated the relationship between maternal baseline CORT and 

provisioning rate. In this case, supplemented mothers with higher provisioning 

effort would not have suffered any costs associated with increased CORT, which 

in turn, may have been beneficial for their survival. 

A recent study suggests elevating investment in current reproduction through 
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increasing brood size is associated with elevated baseline CORT (Bonier, Moore & 

Robertson 2011). However, the authors did not investigate whether this had 

consequences for survival or future reproductive success. Alternatively, elevated 

CORT during reproduction may be beneficial for survival and thus reproductive 

success, by matching offspring need to maternal ability to provide (Breuner 

2008). Mothers with high baseline CORT during egg laying may be of lower 

quality, and less able to invest in reproduction than mothers with lower baseline 

CORT. In turn, elevated maternal CORT during egg laying has been shown to 

reduce hatching success and nestling growth (Hayward & Wingfield 2004; Love & 

Williams 2008b). In which case, mothers with high baseline CORT during egg 

laying may produce less demanding broods than mothers with low baseline 

CORT, and potentially not suffer costs for their future reproduction. To test this, 

Love & Williams (2008b) elevated maternal CORT during laying to produce 

offspring that may be less demanding. In addition, they clipped the wings of half 

the CORT elevated and control mothers to reduce their provisioning ability. This 

created four treatment groups; CORT-Clipped, Control-Clipped, CORT-

NonClipped and Control-NonClipped. The results showed that in the un-matched 

group (Control-Clipped), mothers had lower return rates in the following year 

than all the other groups. The authors suggest this was because in the CORT-

Clipped group broods were smaller due to nestling mortality and nestlings grew 

at a slower rate, therefore, raising these broods was less demanding. This 

suggests that CORT may match nestling demand with maternal ability to provide, 

stabilizing the costs of reproduction between mothers regardless of their 

condition. My results and these previous findings suggest the role of CORT in 

reproductive trade-offs requires further investigation and should be an exciting 

line of research over the coming years.  

 
 
7.1.5 Baseline CORT and feather colouration 

Stress hormones can be key mediators of condition-dependent traits that serve 

as honest signals of quality (Husak & Moore 2008; Moore & Hopkins 2009). These 

include song quality (Spencer et al. 2003; Buchanan et al. 2004), ornament size 

(Douglas et al. 2008) and feather colouration (Roulin et al. 2008). However, this 

line of research is in its infancy and especially lacking are examples of the role 

of CORT in mediating feather colouration (Roulin et al. 2008). Roulin et al. 
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(2008) provide evidence that manipulating CORT concentrations can influence 

the expression of melanin based feather colouration, in barn owls, Tyto alba, a 

species showing heritable variation in the degree of phaeomelanism. The authors 

show that experimental elevation of CORT in nestlings during feather growth 

caused them to produce feathers with less phaeomelanic colouration than 

controls. Mechanistically, there is reason to believe CORT concentrations could 

directly influence melanin based colouration as elevated glucocorticoids have 

inhibiting effects upon melanogenesis (Slominski et al. 2004). In structural 

feather colouration such as the UV colouration in blue tits, the rate and 

consistency of feather growth has been shown to influence the expression of UV 

colouration (Shawkey et al. 2003) and CORT has been shown to influence feather 

growth (Romero, Strochlic & Wingfield 2005; DesRochers et al. 2009). Therefore, 

variation in baseline CORT between individuals has the potential to influence UV 

colouration, and in chapter 6 I investigated whether UV crown colouration in 

female blue tits was correlated with baseline CORT. The results showed that UV 

crown colouration in female blue tits varied significantly between years. In 

addition, in all years mothers with higher values of UV signal had lower baseline 

CORT than mothers with lower UV signal. As far as I know this is the first 

evidence of a link between inter-individual variation baseline CORT and UV 

feather colouration in birds. Importantly, CORT was measured during breeding, 

months after the autumn moult when feathers were produced, raising 

interesting questions about how and why this correlation might exist. If baseline 

CORT concentrations are consistent within individuals, females that exhibit high 

baseline CORT during reproduction may also do so during moult. In this case 

inter-individual variation in CORT may be mechanistically linked to UV feather 

colouration. However, through the link between CORT and energy-balance, the 

correlation between the hormone and UV colouration may simply be because it 

is linked to other aspects of individual quality, such as ability to forage for and 

defend food resources, as diet and nutritional status have also been linked to 

structural colouration in birds (McGraw et al. 2002; Siefferman & Hill 2005; but 

see Peters et al. 2011). Either way this result suggests that a single measure of 

baseline CORT can reflect feather colouration laid down months before, 

providing new insight into how inter-individual variation in CORT concentrations 

can be associated with longer-term indicators of quality. However, experimental 
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studies are required to establish a causal link between UV plumage colouration 

and circulating CORT concentrations. 

7.2 Baseline CORT: a measure of condition? 

There is evidence that baseline CORT is often correlated with measures of body 

condition in birds (Marra & Holberton 1998; Lormée et al. 2003; Chastel et al. 

2005; Love et al. 2005; Pike & Petrie 2005a; Williams et al. 2008). As CORT 

regulates metabolism and energy-balance, it is understandable that a measure 

of condition based upon mass or fat score may be linked to CORT. However, my 

findings do not support a link between maternal body condition (Wing (mm)/ 

Mass (g)) and baseline CORT measured over three years. Importantly, my study 

was conducted in brood rearing blue tits, and a literature review would support 

my finding that the correlation between maternal body condition and baseline 

CORT may not be evident in brood rearing birds (see table 7.1, review includes 

the first papers presenting data regarding the relationship between baseline 

CORT and body condition from a Google Scholar search (Search terms = 

corticosterone AND body condition AND bird – date searched September 2011). 

For example, in the black-legged kittiwake, a negative correlation between body 

condition and baseline CORT that was evident during the earlier stages of 

reproduction in one study (Kitaysky, Wingfield & Piatt 1999), was not evident 

during the later stages of reproduction in another study (Chastel et al. 2005). In 

addition, there is evidence that body condition modulates the influence of CORT 

upon activity budgets in brood rearing birds (Angelier et al. 2007). To examine 

how experimental elevation of CORT affected the activity budget of male black-

legged kittiwakes, researchers used miniaturized activity loggers to record 

behaviour (Angelier et al. 2007). The results showed that the effect of the CORT 

treatment upon time-spent flying/foraging was dependent upon body condition, 

as CORT-implanted males in good condition spent more time flying/foraging than 

controls, whereas poor condition males did not (Angelier et al. 2007). Therefore, 

elevated CORT for birds in superior body condition may cause an increase in the 

time spent foraging and investment in brood provisioning, whereas poor body 

condition birds may invest in self-maintenance rather than provisioning. Overall 

birds that begin provisioning in superior condition may lose more mass than 

those in poorer condition, due to a difference in their activity budgets (Angelier 
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et al. 2007). Indeed in the black-legged kittiwake, birds that were in better 

condition at the start of recording lost more mass than birds in poorer condition 

(Angelier et al. 2007). This may explain why in the later stages of reproduction 

body condition is not consistently correlated with baseline CORT.  

 

Although my results do not provide evidence for a correlation between maternal 

body condition and baseline CORT during brood rearing, this does not mean it 

may not be evident at alternative breeding stages or seasons in this species. 

Importantly, baseline CORT can still be regarded as a measure of condition, 

without necessarily being correlated with body condition. In fact, baseline CORT 

may be a more holistic measure of condition, as it reveals an individual’s 

response to various factors that simultaneously constitute their “condition”, i.e. 

external factors such as, habitat quality (Marra & Holberton 1998; Müller et al. 

2007) and food abundance (Kitaysky et al. 2006; Kitaysky, Piatt & Wingfield 

2007) and internal factors such as immune function (Saino et al. 2002) and 

energy-balance (Romero 2004).
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Table 7.1. A summary of studies relating body condition to baseline CORT in adult 
birds. Direction of correlation denoted by; +ve indicates a positive correlation, -ve a 
negative correlation and ns a non-significant correlation. Measurement employed 
column shows the method used to establish body condition, PCs = principal component 
score.  
 
Breeding 
stage / 
Season 

Species 
(Sample size) 

Direction of 
Correlation 
 

Measurement 
employed 

Source 

Egg-laying 
 

European 
starling, Sturnus 
vulgaris  
(n = 35) 

- ve  Residuals from a 
regression of body 
mass against first 
PCs calculated from 
exposed culmen, 
tarsus and wing 
length 
 

Love et al. 
(2005) 

Incubation 
and early 
brood 
rearing 

Black-legged 
kittiwakes, 
Rissa tridactyla 
(n = 46) 
 

-ve  Ratio of body mass 
and (bill length + 
tarsus length) 
 

Kitaysky, 
Wingfield & 
Piatt (1999) 

Incubation 
and early 
brood 
rearing  

Peafowl, Pavo 
cristatus 
(n = 11) 

-ve  Residuals from a 
regression of body 
mass against tarsus 
length 
 

Pike & Petrie 
(2005a) 

Brood 
rearing 
 

Tufted puffin, 
Fratercula 
cirrhata 
(n = 94) 

ns  Residuals from a 
regression of body 
mass against first 
PCs calculated from 
bill, tarsus and wing 
length 
 

Williams et al. 
(2008) 

Brood 
rearing 
 

Black-legged 
kittiwakes, 
Rissa tridactyla 
(n = 24) 

ns  Residuals from a 
regression of body 
mass against skull 
length 
 

Chastel et 
al.(2005) 

Brood 
rearing 
 

Blue tit, 
Cyanistes 
caeruleus 
(n = 79) 
 

ns  Ratio of body mass 
to wing length 

Chapter 4 

All 
breeding 
stages 

Red-footed 
boobie, Sula 
sula  
(n = 103) 

ns  Residuals from a 
regression of body 
mass against body 
size (Females: 
tarsus length, Males: 
wing length) 
 

Lormée et 
al.(2003) 

Non-
breeding 
season 
(winter) 

American 
redstart, 
Setophaga 
ruticilla  
(n = 84) 

-ve  Residuals from a 
regression of body 
mass against first 
PCs calculated from 
tarsus and wing 
length 

Marra & 
Holberton 
(1998) 



177 

 177 

7.3 Inter-individual variation in baseline CORT 

I measured baseline CORT at a standardised point during brood rearing (day 5-7 

after hatching) in blue tits over three years, and there was significant evidence 

of inter-individual variation in this hormone titer. Furthermore, although mean 

concentrations differed significantly between the years (see figure 4.5a, GLM: t 

86 = 4.41, P < 0.001), the variation between individuals was similar across the 

three years (mean over three years in table 7.2, 2008: 0.5-14.0 ng/ml, 28-fold, 

2009: 0.4-12.3 ng/ml, 30-fold, 2010: 0.3-9.6 ng/ml, 30-fold). Baseline CORT 

concentrations are inherently variable, showing marked diurnal, age-dependent 

and seasonal variation (Wingfield & Romero 2001). Therefore, standardization is 

difficult, especially in field studies, but by attempting to do so, it is clear large 

inter-individual variation exists and can explain variation in environmental 

conditions (Chapter 2), reproductive success (Chapter 3 & 4), behaviour (Chapter 

5) and expression of UV feather colouration (Chapter 6).  

 

A recent review of the data regarding inter-individual variation in baseline CORT 

confirms that there is large variation in baseline CORT, varying 6- to 25-fold 

among individuals for a given physiological state in both free-living and captive 

birds (see table 7.2). For example, in the European starling there is evidence of 

a 25-fold difference between individuals measured during breeding (see table 

7.2, Love et al. 2004). In fact, inter-individual variation in hormone titres may 

be greater than for other physiological traits, such as heat shock proteins, basal 

metabolic rate and carotenoids (Williams 2008). There is also evidence that the 

duration and magnitude of elevated CORT concentrations (stress-induced) in 

response to a standardised stressor is also variable between individuals 

(Appendix I; Cockrem & Silverin 2002), and has lead to the suggestion that in 

addition to variation in baseline CORT, variation in the stress-response between 

individuals may be linked to fitness (Breuner, Patterson & Hahn 2008). For 

example, a rapid increase in CORT and a fast induction of negative feedback, 

causing CORT to return to baseline concentrations quickly after the stressor, is 

generally considered a ‘good’ response (Breuner, Patterson & Hahn 2008). This is 

because an immediate increase can facilitate a quick behavioural and 

physiological response, while fast clearance of elevated CORT concentrations 

would alleviate any negative effects of sustained CORT (Breuner, Patterson & 
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Hahn 2008). However, whether inter-individual variation in the stress-response is 

linked to indices of fitness is still unclear (Breuner, Patterson & Hahn 2008). 

 

 

 

Table 7.2. Examples of the magnitude of inter-individual variation for plasma baseline 
CORT, modified from Williams (2008). NB some values are taken from scatter plots. 
 
Range Difference Standardised 

conditions or 
state and 
species  

Captivity 
(C)/ free-
living (F) 

Reference 

0.6–10.4 ng/ml 
 

15-fold Non-breeding 
great tit 
 

C Cockrem & Silverin 
(2002a) 

0.9-17.5 ng/ml 19.4-fold Pre-breeding, 
house sparrows 
 

F Ouyang et al. 
(2011) 

1.8-46.5 pg/ml 25-fold Breeding, 
European 
starling 
 

F Love et al. (2004) 

10-60 ng/ml 6-fold Incubation,  
eider 
 

F Bourgeon et al. 
(2006) 

0.9-7.7 ng/ml 8.5-fold Brood rearing, 
black- browed 
albatrosses 
 

F Angelier et al. 
(2010) 

1.9-9.7 ng/ml 5.1-fold Brood rearing, 
blue tit - Island 
population 
(Corsica) 
 

F Müller et al. 
(2007) 

1.9-14.9 ng/ml 7.8-fold Brood rearing, 
blue tit – 
Mainland 
population 
(France) 
 

F Müller et al. 
(2007) 

0.3-14.0 ng/ml 29-fold Brood rearing, 
blue tit 

F See section 7.3 
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The large inter-individual variation in baseline CORT for brood rearing blue tits 

does pose the question; have I successfully measured baseline CORT 

concentrations? When designing the blood sampling procedure I was aware that 

one must obtain blood samples as quickly as possible after the initial disturbance 

of the focal bird. Specifically, evidence suggests that blood samples must be 

obtained within 3 mins of initial disturbance, and ideally after 2 mins. Romero & 

Reed (2005) explicitly investigated whether collecting blood samples within 3 

mins reflects baseline concentrations for six species in 14 data sets. Their study 

showed that for five species and seven of the data sets, there was no significant 

increase in CORT within 3 min of capture. In six of the 14 data sets, CORT 

increased significantly after 2 min, and in one data set, the increase started at 

1.5 min. Therefore, samples collected within 2–3 min are likely to represent 

baseline concentrations. As I was only able to capture birds within 3 mins, I 

wanted to test that time between initial disturbance and blood sampling was not 

correlated with baseline CORT. Indeed my results showed that baseline CORT 

concentrations were not correlated with the time between initial disturbance at 

the nest box and blood sampling in any year. This held true even if only birds 

blood sampled between 2-3 mins were included in analysis (GLM: t56 = 1.35, P = 

0.18). However, to ensure CORT concentrations are baseline it may also be 

important to assess any disturbance researchers cause birds before they have 

actually been caught and handled. In another study where plasma CORT was 

measured in blue tits, the authors investigated how the duration of time spent 

at the nest prior to capture influenced CORT concentrations in parental birds 

(Müller et al. 2006). The study showed that the presence of humans near the 

nest did not elicit an CORT response, whether birds showed a behavioural 

reaction to their presence or not (Müller et al. 2006). When I captured birds for 

blood sampling I often had to wait for provisioning adults to return to their nest 

after foraging, close by the nest usually hidden by undergrowth. As it is not 

always possible to establish whether the parents were aware that I was waiting 

near the nest, as they may not necessarily make alarm calls, I recorded the 

duration of time I waited at the nest in addition to the time it took to blood 

sample birds after disturbance at the nest box. My results showed that CORT 

concentrations were not correlated with time spent at nest before capture. This 

further suggests that I measured baseline CORT concentrations in this thesis.  
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There is also evidence that baseline CORT concentrations can be affected by the 

time of day blood samples are taken (Wingfield & Romero 2001; Romero 2004; 

Romero & Reed 2008). I was unable to blood sample birds at a standard time 

during the day, in fact, I sampled birds between 08:00-20:00. However, I tested 

the influence of time of day upon baseline CORT concentrations and did not find 

any evidence that it affected the concentrations recorded in any year (GLM: t109 

= 1.55, P = 0.12). This may be because during May in Scotland sunrise is at about 

05:00 and sunset at 23:00. In this case I was not blood sampling birds close to 

the start or end of the light period (Breuner, Wingfield & Romero 1999; Romero 

& Remage-Healey 2000). In addition, I tested for a linear relationship between 

baseline CORT and time of day, however, CORT could potentially vary with time 

of day non-linearly. Yet, visual inspection of the data suggests that no such 

relationship exists between baseline CORT and time of day across years (see 

figure 7.1). 

 

 
Figure 7.1. The relationship between baseline CORT concentrations and time of day 
blood samples were taken for provisioning blue tits measured over three years (2008-
2010). 
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7.4 Inter-individual variation and fitness 

Unfortunately, it continues to be rare for authors to present inter-individual 

variation (but see Williams 2008). Williams (2008) presents a review of the 

proportion of articles that present the range of inter-individual variation, with 

only 8% of 57 research articles in General and Comparative Endocrinology (2006), 

and 14% of 40 research articles in Physiological Biochemistry and Zoology (2005) 

presented inter-individual data. Therefore, my study may be one of the first 

studies to document the consistency of inter-individual variation in baseline 

CORT concentrations during a standardised breeding stage over multiple years. 

Overall, more studies are required to establish the ubiquity of the large inter-

individual variation in baseline CORT. Furthermore, if individuals consistently 

show high or low absolute values of baseline CORT and/or similar values relative 

to conspecifics, this may influence how individuals behave and/or cope within a 

range of circumstances or life-history stages, which could ultimately influence 

their fitness (Bonier et al. 2009a; Dingemanse, Edelaar & Kempenaers 2010).   

 

The persistence of large inter-individual variation in baseline CORT is intriguing; 

specifically how and why would this level of variation be maintained within 

populations? If baseline CORT concentrations are consistent within individuals, 

inter-individual variation may be maintained through differential selection 

across environments (Dingemanse et al. 2004). For example, inter-individual 

variation in baseline CORT has been proposed to underpin consistent differences 

in personality between individuals (Carere et al. 2003; Cockrem 2007). 

Personality, is defined as behavioural responses that are consistent within 

individuals over time and/or contexts (Sih, Bell & Johnson 2004). Both 

personality (Dingemanse et al. 2004) and baseline CORT concentrations (Angelier 

et al. 2009; Angelier, Holberton & Marra 2009) can cause individuals to respond 

differently to challenges in their environment. Dingemanse et al. (2004) present 

evidence that selection on a personality trait with high heritability fluctuates 

across years within a free-living bird population. Annual adult survival and the 

number of offspring surviving to breeding were related to personality, but the 

effects were reversed between years. The difference between years in selection 

pressures coincided with changes in environmental conditions that affected 

competition between birds. Therefore, fluctuations within the environment may 
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lead to fluctuations in the competitive ability between birds, and this may 

maintain inter-individual variation in personalities within populations. If inter-

individual variation in baseline CORT is linked to personality traits this 

mechanism could also maintain this variation within populations. Thus individual 

variation in CORT might represent fundamental differences in how individuals 

cope with environmental challenges (Bonier et al. 2009a; Dingemanse, Edelaar & 

Kempenaers 2010), and there might not be a single optimal response 

(Dingemanse, Edelaar & Kempenaers 2010).  

 

Plasticity in baseline CORT concentrations between individuals may also be 

under selection, as the ability to respond flexibly to environmental challenges 

may be advantageous (Dingemanse et al. 2010). When investigating whether 

inter-individual variation in baseline CORT is related to fitness it is important to 

establish whether individuals vary in their CORT response to a challenge, i.e. 

environmental or physiological challenges. For example, individuals may respond 

to environmental challenges similarly, with individuals increasing CORT in 

response to a challenge, and if these individuals differ in the average CORT 

concentrations they may consistently showing high or low concentrations under a 

range of conditions (see figure 7.2a). Alternatively, the slope of the relationship 

between CORT and a challenge can also differ between individuals, i.e. their 

plasticity (see figure 7.2b). In this case, under contrasting circumstances 

individuals may or may not show differences in CORT concentrations (see figure 

7.2b). These relationships are termed reaction norms, and, future work would 

benefit from attempting to measure individual reaction norms when relating 

variation in baseline CORT to measures of fitness (Dingemanse, Edelaar & 

Kempenaers 2010). 

 
Throughout this thesis I have investigated how variation between individuals in 

baseline CORT can be explained by environmental conditions, and how the 

hormone is linked to key life-history traits such as reproductive investment, 

offspring phenotype and plumage colouration. I have made the assumption that 

as baseline CORT is linked to metabolism and energy-balance (Wingfield & 

Romero 2001), it is a holistic measure of current condition, and therefore is 

linked to these traits. To address whether inter-individual variation in baseline 

CORT is linked to fitness, it is essential to assess repeatability within individuals 

and individual reaction norms. Unfortunately it was not possible to assess 
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repeatability within individuals during this research or establish individual 

reaction norms, as few birds were captured on multiple occasions across years 

(recaptures 2009: 4, 2010: 5). Furthermore UK Home Office restrictions 

prevented the repeated blood sampling of individuals within a breeding season. 

Indeed the number of studies which have been able to achieve this goal in 

regard to other traits is limited (Clutton-Brock & Sheldon 2010), and therefore 

this information may be a long time coming. In addition, there may be both 

ethical and methodological drawbacks of blood sampling individuals multiple 

times over a breeding stage or their lifetime. For example, collecting blood in 

itself is a stressor, and some individuals, particularly those of poor quality, may 

be differentially affected by the procedure. If this is the case blood sampling 

may differentially influence the CORT concentrations, behaviour or life-history 

of individuals dependent upon their quality. Furthermore, multiple blood 

sampling may influence CORT concentrations, as long-term, repeated stressors 

can attenuate or increase CORT concentrations (Cyr & Romero 2007), although 

this may be particularly relevant for stress-induced rather than baseline 

concentrations. 
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Figure 7.2. This diagram shows hypothetical relationships between baseline CORT 
concentrations and environmental conditions (Good/ Poor) in two individuals (solid and 
dashed line). a) Represents two individuals that differ in baseline CORT concentrations 
and respond similarly to contrasting conditions, whereas b) represents two individuals 
that differ in their response to contrasting conditions and therefore differ in baseline 
CORT only under certain circumstances. Modified from Dingemanse, Edelaar & 
Kempenaers (2010). 
 
 

7.5 Method of measurement 

In the majority of studies that have investigated variation in baseline CORT 

concentrations (Breuner & Orchinik 2002) and throughout this thesis, I have 

measured circulating CORT concentration from blood plasma. However, the 

cellular and organismal responses to baseline CORT can be influenced and 

modified by a number of other physiological factors (Breuner & Orchinik 2002; 

Ball & Balthazart 2008). For example, plasma corticosteroid binding globulins 

(CBGs) and hormone receptor density and/or affinity can regulate the 

availability of CORT to the tissues, and the delivery of hormones to specific sites 

within the body (Ball & Balthazart 2008). When CORT is measured from blood 

plasma it is total CORT that is quantified, this includes both free CORT, which is 

able to bind to hormone receptors, and bound CORT, which is attached to CBGs 

and thus cannot bind to receptors. In the house sparrow, total CORT 

concentrations vary seasonally, but CBG concentrations change with them, so 

that free CORT concentrations do not in fact differ across the seasons (Breuner 

& Orchinik 2002). Whereas, in white-crowned sparrows, CBG concentrations vary 

when total CORT does not, this results in significant changes in circulating free 

CORT (Breuner & Orchinik 2002), which would be overlooked if CBG 
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concentrations were not measured. Therefore, if individuals differ in their CBG 

concentrations relative to their total CORT, concentrations of free CORT may 

differ to those of total CORT. In this case, the range of inter-individual variation 

and the rank order of individual’s CORT concentrations within populations may 

change when CBGs are accounted for. Unfortunately time constraints and also 

limitations on how much plasma could be taken form individual birds prevented 

CBG analysis in this thesis. However, considering CBG concentrations may be 

essential when trying to understand inter-individual variation in baseline CORT 

and how it mediates reproduction and behaviour.  

 

7.6 Final thoughts 

Addressing both ultimate and proximate explanations for differences between 

individuals is by no means novel (Tinbergen 1963), but combining these 

approaches remains challenging (Williams 2008; Wingfield, Williams & Visser 

2008; Moore & Hopkins 2009). In this study I have used an interdisciplinary 

approach to further understand the large variation between individuals in 

baseline CORT. A number of the findings I have reported are in agreement with 

previous results; the link between elevated baseline CORT and inclement 

environmental conditions (Kitaysky, Wingfield & Piatt 1999; Suorsa et al. 2003; 

Kitaysky, Piatt & Wingfield 2007; Müller et al. 2007; Busch & Hayward 2009), the 

complexity of linking CORT to reproductive success (Bonier et al. 2009a; 

Angelier et al. 2010; Dingemanse, Edelaar & Kempenaers 2010). I also present 

evidence that variation in maternal baseline CORT may be involved in 

reproductive trade-offs (Moore & Hopkins 2009; Bonier, Moore & Robertson 2011) 

and mediate UV plumage colouration (Roberts et al. 2007a; Roulin et al. 2008; 

Wada et al. 2008). My results for the blue tit, however, differ from the majority 

of literature for other birds that maternal baseline CORT is linked to brood sex 

ratio adjustment in birds (Love et al. 2005; Pike & Petrie 2005a; Pike & Petrie 

2006; Bonier, Martin & Wingfield 2007; Pryke et al. 2011). Overall, the results 

provide evidence that inter-individual variation in baseline CORT explains 

variation in key life-history traits and may be involved in reproductive trade-offs 

through their pleiotropic effects. Together these results highlight the 

importance of employing inter-individual variation in baseline CORT when 

investigated the influence of baseline CORT upon key life-history traits as 
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opposed to population means. Furthermore, studying populations over multiple 

years may be particularly insightful, as the relationship between CORT and life-

history traits may differ between years and contexts. Further work is required to 

fully understand the role of baseline CORT in avian reproduction and there 

remain major gaps in knowledge regarding the repeatability of CORT measures 

within individuals, the importance of other physiological factors such as CBGs 

and how variation is maintained within populations.   

 

 

 

 

Figure 7.3. Sunset on the east banks of Loch Lomond, UK. 
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Appendix I: Biologically relevant elevation of 

corticosterone using a non-invasive method in 

the blue tit, Cyanistes caeruleus  

I.1 Abstract 

The temporary elevation of corticosterone (CORT) in response to a stressor is 

commonly observed and considered to be adaptive in birds, but experimental 

manipulations are required to test this. However, designing a method of 

experimental CORT elevation that is comparative to a naturally occurring stress-

response is challenging. Conventional methods of CORT elevation such as silastic 

implants, involve handling animals directly, which in itself causes a stress-

response. These methods also tend to elevate CORT for prolonged periods, thus 

are not suitable for investigating the effects of transient CORT elevation. 

Alternatively, non-invasive methods have been employed to elevate CORT for 

short periods. Feeding mealworms (Tenebrio molitor) injected with exogenous 

CORT to birds has been found to successfully elevate CORT for a biologically 

relevant period and within naturally occurring concentrations. In this study I 

tested the effects of this technique upon circulating CORT concentrations and 

activity levels in a common model species for behavioural ecology studies, the 

blue tit (Cyanistes caeruleus). In addition, I used a standard restraint procedure 

to establish the natural range of CORT concentrations elicited in response to a 

stressor. Consumption of CORT spiked mealworms resulted in significant plasma 

CORT elevation after 10 minutes relative to birds fed control mealworms, but 

had declined to control levels 30 minutes after consumption. Furthermore, the 

CORT concentrations achieved were within the natural stress-induced 

concentrations found after a standard restraint procedure for this species. 

Although the method elevated plasma CORT there were no effects upon activity 

levels after mealworm consumption between control and CORT fed birds. To 

conclude, this technique may be an effective means of mimicking the stress-

response in the blue tit, as it causes short-term CORT elevation within the 

natural range. 
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I.2 Introduction 

There are an increasing number of experiments that aim to understand the 

causal role of glucocorticoids in regulating avian behaviour (Silverin 1986; 

Astheimer, Buttemer & Wingfield 1992; Breuner, Greenberg & Wingfield 1998; 

Lõhmus, Sundström & Moore 2006). Corticosterone (CORT), the main 

glucocorticoid in birds is the principal mediator of allostasis (Sterling & Eyer 

1988), with the hormone being released by the Hypothalamic-Pituitary-Adrenal 

(HPA) axis under stressful conditions to maintain homeostasis (McEwen & 

Wingfield 2003). CORT is always present in the bloodstream at baseline 

concentrations that show both diurnal and seasonal fluctuations to maintain 

energy-balance (Sapolsky, Romero & Munck 2000). However, in response to a 

“life-threatening” stressor, such as a storm or exposure to a predator, 

circulating CORT concentrations can increase from 4- to 10-fold higher than 

baseline levels within minutes, usually significantly exceeding baseline levels 

after three minutes and reaching their peak within 10-30 minutes (Breuner, 

Patterson & Hahn 2008). This rapid and transient increase in circulating CORT 

concentrations in response to a stressor is defined as a stress-response, and the 

concentrations reached under these circumstances are known as “stress-

induced” levels. Baseline and stress-induced concentrations of CORT interact 

with different intra-cellular receptors, and therefore can have contrasting 

effects upon physiology and behaviour (Romero 2004). In this case, when 

addressing the causal role of CORT upon behaviour, it is important to address 

elevation in baseline and stress-induced levels independently, as this approach 

will provide further insight into the mechanisms that maintain behavioural 

variation in avian species.  

However, the majority of studies have manipulated circulating CORT using 

subcutaneous implants, which raise circulating levels of CORT for a prolonged 

period, often for days or weeks (Silverin 1986; Wingfield & Silverin 1986; 

Buttemer, Astheimer & Wingfield 1991; Astheimer, Buttemer & Wingfield 1992; 

Kitaysky 2003; Criscuolo et al. 2005; Pike & Petrie 2006). This may be an 

effective method of elevating baseline CORT, but these methods do not 

replicate a stress-response (Breuner, Greenberg & Wingfield 1998). To date 

there are relatively few studies that have investigated the effects of transient 
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CORT elevation upon behaviour, but the results from these studies suggest that 

short-term CORT elevation has immediate effects upon behaviour in birds 

(Breuner, Greenberg & Wingfield 1998; Lõhmus, Sundström & Moore 2006).  

Alternative methods that can be used to elevate CORT concentration for short 

periods include injections (Madison, Jurkevich & Kuenzel 2008) or the 

application of CORT-soaked bandages (Knapp & Moore 1997). However, similar to 

implants both of these techniques can stimulate an immediate and temporary 

increase in circulating CORT concentration through handling. Therefore non-

invasive methods that increase circulating CORT in avian species have been 

devised. Breuner et al. (1998) injected CORT into mealworms (Tenebrio molitor) 

and fed them to captive White-Crowned Sparrows (Zonotrichia leucophrys 

gambelii). This method was shown to elicit a rapid and temporary increase in 

CORT, mimicking the circulating CORT concentrations that occur naturally in 

response to a perturbation without the need for handling or surgery.  

In this study I validate a method of non-invasive CORT delivery for the blue tit, 

(Cyanistes caeruleus), a common model species in behaviour ecology. The main 

aims of this study were; 1) to investigate the effects of CORT spiked mealworm 

consumption upon circulating CORT concentrations 10 and 30 minutes after 

consumption, 2) establish if CORT elevation had an effect upon activity levels, 

and (3) investigate if CORT elevation mimics natural surges of CORT caused by 

subjection to a standard restraint procedure. 

I.3 Methods & Materials  

I.3.1 Mealworm Injection 

To deliver CORT non-invasively, CORT solution was injected into mealworms. 

Crystalline CORT (Sigma) was dissolved directly into peanut oil, 0.3 mg/ml 

(Sigma, St. Louis, MO) through sonification. To ensure the CORT was dissolved 

evenly in the peanut oil, the solution was sonicated before each use. Mealworms 

were injected with 20µl of either, (i) peanut oil, which served as a control, or 

(ii) peanut oil with dissolved CORT. Hence, consumption of a mealworm caused 

birds to receive 0 or 6µg of exogenous CORT. The mealworms used were 
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approximately 20 mm in length and 0.1g in weight; their size was important as 

they had to be small enough for the blue tits to eat completely, but large 

enough to hold 20 µl of injected solution. CORT was administered by injection 

using a 25-µl Hamilton syringe with a 26-gauge 1⁄2-inch needle. Prior to 

injection, mealworms were placed at -20°C to reduce movement during 

injection. The needle was inserted ventrally, into the anterior abdomen, 

between two segments. If fluid leaked from the mealworm after injection, it 

was not used.  

I.3.2 Validation of non-invasive technique 

Blue tits were captured in mist nets in March 2009, in woodland on the east 

banks of Loch Lomond, UK (56o 13! N, 4o 13! W). Birds were then transported and 

realised into cages at the University of Glasgow Field Station, SCENE (n = 24, 12 

birds collected on 2 days). Birds were housed in single cages (1m x 0.5m x 0.5m) 

in 2 rooms (2.4m x 1.7m x 2.2m) with air, temperature and light control. The 

birds were kept under long-day photoperiod (12L:12D) which was comparable to 

the light regime they would have been experiencing in the wild and at 20 °C 

during the experiment. Birds were maintained in captivity for three days and 

given insectivorous mix, mealworms, waxworms and water, which were available 

ad libitum at all times. Birds were held in captivity for 24 hours prior to feeding 

experiments to allow them to acclimatise to their new environment.  

Experiments were conducted between 09:00 and 16:00 on the second day of 

captivity. In order to investigate if CORT can be non-invasively increased, pairs 

of birds were food deprived for half an hour and then individuals were presented 

with either a control or CORT spiked mealworm. Birds were paired to control for 

diurnal effects and disturbance, which may influence baseline CORT (Romero 

2004). The birds were monitored from behind a screen and their consumption of 

the mealworm was noted. To investigate if birds fed CORT-injected mealworms 

had elevated CORT compared with controls, 7 minutes after the mealworm had 

been consumed, birds were caught and blood sampled. Samples were collected 

within 3 minutes of capture to minimise effects of capture on circulating CORT 

concentrations (Wingfield, Smith & Farner 1982; Romero & Reed 2005).  The 

timing of blood sample collection was informed by previous work employing this 
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technique that has shown that concentrations peak at ~7 minutes after 

consumption (Breuner, Greenberg & Wingfield 1998). This procedure was 

repeated on a second group of birds, but on this occasion they were blood 

sampled 30 minutes after consumption to determine the duration of CORT 

elevation.  

I.3.3 Behavioural observations 

To investigate if activity levels were related to CORT elevation, the number of 

movements made by birds during trials was monitored. A movement was counted 

when birds changed position in the cage or on a perch. For example, movements 

of the bird while stationary, such as wing stretches or preening were noted but 

not counted. Prior to placing the mealworm into the cage the number of 

movements made by the focal bird were counted for 7 minutes. When the 

mealworm had been consumed the bird’s movements were again monitored for 7 

minutes until they were captured for blood sampling. For those birds blood 

sampled 30 minutes after mealworm consumption, their movements were 

monitored for 27 minutes after the mealworm was eaten. Observers were blind 

to the status of the mealworms. 

I.3.4 Natural range of baseline and stress-induced CORT  

In order to establish the CORT concentrations experienced by blue tits during a 

stress-response, birds were caught and blood sampled at a range of time points 

after capture and handling. Blue tits were captured in mist nets on two days in 

March 2010, on the same site as birds caught for mealworm validation. Mist nets 

were monitored continuously and birds were extracted within a minute of flying 

into the net. Once extracted from the net, birds were immediately placed in 

bags until blood sampling. Individual birds were blood sampled at only one time 

point due to UK home office regulations that restrict blood sampling to 1% of 

body mass per 30 days (blue tit body mass ~10 g = 100 µl). In addition, to 

measure baseline CORT, birds were caught in the nest-box in May 2010. All birds 

were blood sampled during brood provisioning when chicks were 6 days old and 

within 3 minutes of disturbance at the nest box. 
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I.3.5 Hormone analysis 

All blood samples were obtained after puncture of the brachial vein with a 25-

gauge needle and with the aid of a standard heparinised capillary tube (about 

80–100 ul). Blood samples were immediately stored on ice and separated through 

centrifugation within 2h of collection. The plasma portion of the sample was 

removed and stored at -20ºC until assay.  

Circulating corticosterone concentrations were measured using a double 

antibody radioimmunoassay (Wingfield, Vleck & Moore 1992). Samples were 

extracted from 5-20"l aliquots of plasma in diethyl ether and anti-corticosterone 

antiserum primary antibody (Esoterix B183), secondary antibody (Sigma goat 

anti-rabbit) and [3H]-corticosterone label (GE Healthcare, UK) were used. The 

extraction efficiency was 85–100%. Recoveries were measured for each sample 

independently and the final assayed concentrations were adjusted accordingly. 

CORT was measured in three assays for which the detection limit was 0.03 ng/ml 

(calculated as 2 SD from B0) and the averaged intra-and inter-assay variation 

was 9±2% and 10±5% respectively. 

I.3.6 Statistical analysis 

To compare CORT concentrations and activity levels between birds fed CORT and 

control mealworms paired t-Tests were employed. CORT data were square root 

transformed because of non-normality and analyses were conducted in R 2.8.0. 

I.4 Results 

I.4.1 Mealworm validation 

On average birds consumed the entire mealworm within 2 minutes, and in the 

majority of cases the mealworm was completely consumed; only birds that 

consumed the entire mealworm were considered to have been successfully 

manipulated. 8 pairs of birds (16 individuals) from the 24 taken into captivity 

were successfully manipulated and blood sampled. 4 pairs were sampled 10 

minutes after consumption and 4 pairs were sampled 30 minutes after 
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consumption. 8 birds could not be used; only one bird was rejected, as it did not 

consume the entire mealworm. The other 7 birds were not included as they were 

not successfully blood sampled. 

Circulating CORT concentrations observed 10 minutes after mealworm 

consumption were significantly elevated (x13) in birds that received a CORT 

injected mealworm (see figure I.1, t = 5.54, n = 8, P = 0.001, Control: 3.1±1.9 

ng/ml, CORT: 39.9±7.96 ng/ml). CORT concentrations did not significantly differ 

between birds fed CORT or control mealworms when blood sampled 30 minutes 

after consumption (t = 0.96, n = 8, P = 0.41). However, birds fed a CORT 

injected mealworm, were on average twice as high as those fed the control 

mealworm (see figure I.1, Control: 4.7±0.3 ng/ml, CORT: 8.6±4.3 ng/ml).  

I.4.2 CORT and behaviour 

Prior to mealworm consumption birds in the control or CORT group did not differ 

in their activity levels (t = 0.32, n = 24, P = 0.76). In addition, activity levels did 

not differ between groups when monitored for 7 or 27 minutes after 

consumption (7 mins: t = 0.25, n = 22, P = 0.80, 27 mins: t = 0.27, n = 10, P = 

0.79). 

I.4.3 Natural range of CORT concentrations 

Birds were sampled at 3 (n = 17), 10 (n = 6), 15 (n = 7), 20 (n = 5), 25 (n = 5), 30 

(n = 3) and 35 (n = 2) minutes after extraction from the mist net. The CORT 

concentrations found in blue tits that had been subjected to a standard restraint 

procedure varied considerably within and between time points. Birds sampled 25 

minutes after initial capture in a mist nest were found to have the highest mean 

CORT concentrations, 28.2±11.7ng/ml with a maximum of 74.6ng/ml (see figure 

I.2). Therefore CORT concentrations elicited by feeding birds CORT injected 

mealworms are on average within 1 SE of circulating levels found after a bird 

experienced a standard restrain procedure (see figure I.3). Furthermore 

manipulated CORT levels are within the maximum concentration of CORT found 

in birds after a standard restraint procedure.  
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Figure I.1. Circulating CORT concentrations were significantly higher in captive 
blue tits fed CORT spiked rather than control mealworms 10 minutes after 
consumption (n = 8). However, this effect was no longer evident 30 minutes 
after consumption (n = 8). Graph depicts mean±SE 

 

Figure I.2. Circulating CORT concentrations measured in free-living blue tits at a 
range of time points after subjection to standard stress procedure. CORT 
concentrations were highest 25 minutes after a stressor. Baseline <3 mins: n = 
17, 10 mins: n = 6, 15 mins: n = 7, 20 mins: n = 5, 25 mins: n = 5, 30 mins: n = 3 
and 35 mins: n = 2. Graph depicts mean±SE 
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Figure I.3. Blue tits fed CORT spiked mealworms in captivity had CORT 
concentrations within 1 SE of the concentrations found in free-living birds 25 
minutes after a standard restraint procedure (CORT Treatment: n = 4 and Stress 
induced: n = 5). Graph depicts mean±SE. 

I.5 Discussion 

This study has validated a method for the non-invasive delivery of CORT in the 

blue tit. Only one out of 24 birds taken into captivity did not consume the entire 

mealworm. In addition, the dosage used elicited a CORT response at ~10 minutes 

after consumption that was comparable with the CORT concentrations induced 

by a standard restraint procedure. Consumption of a CORT spiked mealworm, 

however, did not result in elevated CORT concentrations 30 minutes after 

consumption, indicating that the effect upon hormone concentrations was 

transient. CORT elevation was not associated with increased activity levels up to 

blood sampling, 7 or 27 minutes after mealworm consumption. 

These results are similar to those presented by Breuner et al. (1998), where 

CORT-injected mealworms were used to achieve non-invasive CORT elevation in 

the White-Crowned Sparrow. Similar to the current study, peak CORT 

concentrations were reached at ~7 minutes after consumption and declined after 
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30 minutes to an hour. However, in Bruener et al. (1998) two dosages were 

tested, 4µl and 20µl, eliciting a peak response from baseline levels of x2 and 

x30, respectively. The 20µl dosage was effective because it resulted in CORT 

concentrations comparative to maximal concentrations found during a stress 

response. When the average mass of a White-Crowned Sparrow is taken into 

account (25g), this is equivalent to 0.76 µl CORT per g. In my study a dosage of 

6µl was employed, which resulted in an x13 increase in circulating CORT. This is 

equivalent to 0.57 µl CORT per g (blue tit mass 10.5g). Therefore, the difference 

in the dosage required and the response elicited indicates that it is important to 

validate this methodology for each species.  

Importantly CORT concentrations were only measured 10 and 30 mins after 

mealworm consumption. This was because previous work employing this 

technique has shown that concentrations peak at ~7 minutes after consumption 

(Breuner, Greenberg & Wingfield 1998). However, as the dosage and response 

elicited differed between this study and Breuner et al. (1998), I cannot be 

completely confident that the concentrations measured after 10 mins were the 

maximum elicited after mealworm consumption.  

The CORT manipulation did not have an affect upon activity levels, with 

individuals fed CORT or control mealworms showing similar levels of activity. 

This result is in contrast to previous studies that have found non-invasive CORT 

elevation is associated with a rapid increase in activity within minutes of 

hormone administration. Both Breuner et al. (1998) and Lõhmus et al. (2006) 

have shown that non-invasive CORT administration was associated with an 

increase in perch hopping and feeding behaviour, respectively. However, the 

individuals used in this study varied considerably in their activity levels 

(Movements: 306±290, range = 0-978), therefore the small sample size employed 

may not have had the power to show a moderate increase in activity between 

the groups. 

In conclusion, I have demonstrated that CORT-injected mealworms are an 

effective and non-invasive means of rapidly increasing blood CORT 

concentrations in the blue tit. To date there are very few studies that have 

manipulated CORT levels within their natural range and for a biologically 
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meaningful time period, therefore this technique may be beneficial for future 

studies.  
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Appendix II: In-situ versus ex-situ: Are feather 
samples a reliable method of quantifying UV 
crown colouration in the blue tit? 

II.1 Abstract 

Avian plumage colouration has been the focus of numerous studies engaged in 

determining its role in sexual selection, social interactions and status signalling. 

In the past two decades objective methodologies, such as spectrometers have 

become commonplace, allowing plumage colouration to be assessed from the 

perspective of the avian visual system, specifically colour in the UV range. 

Measurement of plumage colouration with a spectrometer may be taken directly 

on the bird or, alternatively by collecting feathers and measuring them in the 

laboratory. However, little is known about the validity of comparing measures 

obtained from feathers rather than the whole bird. In this study I compared 

intensity, UV chroma and UV signal measured directly from the crown of the 

blue tit Cyanistes caeruleus (in-situ) or from a collection of feathers from the 

same individual (ex-situ). In addition, I investigated the influence of the 

methods used to generate colour measures upon demographic analysis. The 

results show that values generated from each method were significantly 

different for intensity, UV chroma and UV signal. Furthermore, for UV chroma 

and intensity there was no correlation between the values obtained via in-situ 

and ex-situ methods. However, values for UV signal generated from the different 

methods was significantly correlated. Methodology also influenced the 

relationship between colouration and demographic data. Values for UV chroma 

and UV signal were significantly higher for males compared with females when 

either method was used. But the same pattern was only evident for intensity 

when values were generated from ex-situ methods. My results indicate some 

colour descriptors may not be comparable when generated from different 

techniques. Importantly this study provides evidence that UV signal was reliable 

regardless of whether the whole bird or just feathers were analysed. 
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II.2 Introduction 

Avian plumage colouration has been a key paradigm for testing theories of sexual 

selection (Darwin 1871; Andersson 1994). Therefore, the reliability of measuring 

colouration, and repeatability between studies in the methodologies employed, 

has profound implications for our understanding of the evolution of avian 

plumage colouration. In recent years the most common method of measuring 

plumage colouration has been spectrometers (reviewed in Hill & McGraw 2006). 

Birds have a fourth retinal cone that allows them to see ultraviolet (UV) 

colouration, whereas humans are ‘blind’ to these wavelengths (Hart 2001). 

Spectrometers provide an objective and reliable tool to determine plumage 

colouration in this range of the spectrum (300-400 nm), although it can also be 

used in the visible range (400-700 nm). Measurements of plumage colouration 

with the spectrometer may be taken directly on the bird, but with wild 

populations this requires the devices to be carried into the field. This is an 

important drawback because of the fragility of equipment and the logistics of 

carrying heavy equipment over rough terrain. An alternative has been to collect 

feathers and to measure them in the laboratory. Although there are a growing 

number of studies using feather samples for colour assessment (Szigeti et al. 

2007; Doutrelant et al. 2008; Remy et al. 2010; Midamegbe et al. 2011) there is 

little known about the repeatability of using one or the other procedure (but see 

Quesada & Sena 2006).  

The blue tit, Cyanistes caeruleus, is a common biological model in plumage 

colouration studies (Andersson, Örnborg & Andersson 1998; Hunt et al. 1999; 

Sheldon et al. 1999; Delhey et al. 2003; Delhey & Kempenaers 2006; Hadfield et 

al. 2006). Blue tits have vivid blue plumage, which also strongly reflects light in 

the UV spectrum (Hunt et al. 1999). Several studies suggest that plumage 

colouration in this species has an important signalling function in the context of 

sexual selection (Sheldon et al. 1999; Griffith et al. 2003; Johnsen et al. 2003; 

Alonso-Alvarez, Doutrelant & Sorci 2004; Delhey et al. 2006). Furthermore, there 

are a growing number of studies that have investigated plumage colouration in 

this species using sampled feathers (see table II.1). However, the reliability of 

these methods to generate values similar to those generated directly from the 
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bird has not been tested. This may be most important for smaller feathers that 

are harder to measure accurately, like the crown feathers of blue tits.  

 

In this study, we obtained colour measurements from the crown feathers of 

breeding blue tits both directly from the animal (in-situ) and from collected 

feathers from the same individual which I later analysed in the laboratory (ex-

situ). Three descriptors of plumage colouration that have been used previously 

in studies of blue tit colouration were employed (Andersson, Örnborg & 

Andersson 1998; Sheldon et al. 1999; Griffith et al. 2003; Delhey 2005; Hadfield 

et al. 2006; Szigeti et al. 2007; Doutrelant et al. 2008; Remy et al. 2010; 

Midamegbe et al. 2011). Firstly, intensity was quantified, which is the average 

light reflectance of the feathers across the light spectrum (R320-700). Secondly, 

UV chroma, which is the strength of UV reflectance relative to reflectance 

within the rest of the light spectrum (R320-400/ R400-700) (Hadfield et al. 2006). 

Thirdly, UV signal was calculated, which is a measure of the reflectance 

captured by the blue tit retinal cones (Hadfield et al. 2006). Specifically, the 

two retinal cones that are most sensitive to the UV and blue portion of the 

spectrum.  

 

The aims of this study were: 1) to determine the repeatability of measuring 

plumage colouration using both in-situ and ex-situ methods, 2) to determine 

whether the three colour descriptors differ when generated from in-situ as 

opposed to ex-situ methods and 3) investigate whether the method employed 

influences the outcome of analyses with demographic variables.  

!
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Table II.1. A summary of previous studies that have employed sampled feathers to 
measure UV colouration to address patterns of colour variation in adult blue tits. 
 

Covariates 
analysed 

Number 
of 

feathers n 
Colour 

parameters Reference 

Lay date, clutch 
size, fledging 
success, 
offspring 
recruitment and 
adult survival 

6 80 Intensity, UV 
chroma, hue 

C. Doutrelant et al. 
(2007) 

Egg quality - yolk 
carotenoid 
concentration 

5-8 14 Intensity, UV 
contrast, UV 
chroma 

B. Szigeti et al. (2007) 

Male 
aggressiveness 
and social 
interactions with 
conspecifics 

6 48 Intensity, UV 
chroma 

A. Rémy et al. (2010) 

Female 
aggressiveness 
and social 
interactions with 
conspecifics 

6 28 UV chroma, hue A. Midamegbe et al. 
(2011)  
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II.3 Methods & Materials 

A population of blue tits breeding in nest boxes situated in oak-dominated 

woodland around Loch Lomond, Scotland (56.13o N, 4.13o W) were studied from 

April to June 2008. On day 5 after chicks had hatched, parental birds were 

captured on the nest. A total of 25 adults were measured for UV crown 

colouration, 7 males and 18 females. No paired birds were captured and 

sampled; therefore no pairs were included in the analysis. Parental birds were 

sexed based on presence/absence of a brood patch and aged based on plumage 

characteristics (Svensson 1992). In addition, all birds captured were fitted with a 

uniquely numbered aluminium ring (British Trust for Ornithology).  

Two colour measurements were taken on a standard patch on the crown of each 

individual. Subsequently, 6±2 feathers were plucked from the same region of the 

crown for all birds (see figure II.1a). Spectral data were recorded in the field 

and the lab with an Ocean Optics S2000 spectrometer (range 250–880 nm; 

Dunedin, Florida) using a micron fibre-optic probe at a 45º angle to the feather 

surface. Ambient light was excluded with a cylindrical plastic sheath affixed to 

the probe tip, and the sheath was placed against an individual bird and a feather 

specimen with the probe held a fixed distance of 6 mm from the feather 

surface. The reading area was a ~ 11 mm2 diameter of light illuminated with 

both a deuterium bulb (UV light source) and a tungsten halogen bulb (visible 

light source). We generated reflectance data relative to a white standard 

(Labsphere, Inc.). The spectra acquisition software package OOIBase was 

employed to record spectra. 

To assess UV crown colouration from sampled feathers, feathers were stacked on 

top of one another to resemble how they would lay on the bird’s crown (see 

figure II.1b).  Feather samples were placed upon black velvet (100% cotton) and 

3 colour measurements were recorded sequentially, with the probe being lifted 

and replaced on the feather sample between each scan. Recorders were blind to 

the sex and age of the birds.
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Figure II.1. Schematic showing a) the area on the blue tit crown where feathers were 
plucked for colour assessment and b) how collected crown feathers were arranged for 
measurement by a spectrometer. The circle illustrates the area where feathers were 
lucked and where measurements were taken. Diagram a) has been modified from 
Delhey (2005) and b) has been taken from Quesada & Sena (2006). 
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(Rmin) and its maximum (Rmax) (Pryke et al. 2001,
Bleiweiss 2004).
However, these methods to calculate hue and chroma

are useful to give a single value of chroma and hue only
if the spectrum has one peak, but calculation of these
parameters is more complicated when the spectrum
considered is bimodal (Doucet and Montgomerie
2003b). Hence, in the case of the yellow breast spectrum
of the great tit, which has two peaks, we need to analyse
them separately (Doucet and Montgomerie 2003b).
Thus, we considered two separated peaks, one for the
UV range and the other for the visible one. This is
similar to the approach used in other studies, which have
either truncated the spectrum in order to study the
visible (Grill and Rush 2000, Perrier et al. 2002), UV
(Andersson et al. 1998, Doucet 2002, Siitari and Huhta
2002) or both ranges (Doucet and Montgomerie 2003b,
Bleiweiss 2004). Nevertheless we have to point out that
in the case of the great tit, UV and visible peaks are
highly correlated (r2!/0.69; PB/0.001) which means
that any change in the visible area affects practically in
the same way to the UV-peak and that UV could be
a ‘‘by product’’ of carotenoid content in feathers (Mays
et al. 2004).
Additionally, we used a spectrophotometer Minolta

CM-2600d which provides direct values of lightness,
chroma, and hue from the visible range. Minolta
spectrophotometer collects reflectance spectra by hemi-
spherical directional reflectance, compared to Ocean
USB2000 spectrometer which collects reflectance by
directional reflectance. Hence, although reflectance
of both spectrometers were considerably correlated
(r2!/0.64; PB/0.01 N!/12), the comparison of the two
devices allowed to test for possible differences between
the two most common approaches to collect colour
variables.
Since the yellow breast of the great tit is a lutein-based

coloration, the maximum of absorbency at 440"450 nm
(range of maximum absorption of lutein; Saino et al.
1999) has also been used to describe plumage coloration
(Ninni 2003). For this reason we also measured the
repeatability of this value (‘‘lutein peak’’) and compared
values obtained from collected feathers and on the bird.
For each bird (N!/12), we first measured plumage

coloration in the field at a standard point in the breast
directly on the plumage (Figuerola et al. 1999). The
probe of Ocean USB-2000 spectrometer was first placed
on this point and subsequently we repeated the measure-
ment at the same point using the Minolta spectro-
photometer. Colour samples with Ocean optic were
obtained with a fibre optic probe orientated perpendi-
cularly to plumage surface and leaving a distance of 6
mm between the surface of feather and the probe
(Keyser and Hill 1999). The size of the measuring spot
considered was 54 mm2. We then collected about 15"20
feathers from each bird from the same area where direct

colour measurement had been obtained. Once in the
laboratory, we disposed 10"12 feathers from each
individual by superimposing four layers of three feathers
each one (see Fig. 2) on a dark velvet surface (reflectance
0%), trying to imitate the plumage surface of the bird
(Bennett et al. 1997). Afterwards we measured the
samples with the same fibre optic probe and the same
setting as in the field with both the Ocean optics and the
Minolta spectrometers.

In order to verify the reliability of field and laboratory
procedures, first we calculated the repeatability for
colour variables for the different methods according
to Lessells and Boag (1987), and Harper (1994), from
two independent measurements obtained in the field.
The second measurement was done without previous
knowledge of the first one, two hours after the first
measurement was obtained. In the second measurement
birds were chosen randomly. The observer was blinded
to know which animal was measuring and the spectrum
resultant in all measurements. Birds were kept in bags
during the period between measurements to avoid that
birds were soiled. Repeatability of laboratory measure-
ments was similarly obtained by carrying out two
independent measurements of the previously collected
feathers, obtained by removing and disposing feathers
again before the second measurement was done. The
same observer (JQ) did all measurements.

In order to establish the comparability of the labora-
tory method in relation to the plumage obtained by
directly measuring from the live bird, we calculated both
the repeatability and the correlation between plumage
coloration measurements obtained in field and labora-
tory (averaging the two measurements obtained from
each method).

To determine the possible effect of the number of
feathers on the values obtained from the different
plumage colour variables, we measured plumage colour
using 2, and systematically adding 3, 4, 5, 7, 10 and 15
feathers from the same individual always measuring in
the same point. The procedure was repeated twice and

Fig. 2. Schematic figure of disposition of the collected feather
to be measured by spectrometer. The circle represent the area
where the measurement was taken.

JOURNAL OF AVIAN BIOLOGY 37:6 (2006) 611
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Feather colour was quantified using two standard descriptors of reflectance 

spectra, UV chroma and intensity, which have been used previously for studies 

on blue tit colouration. UV chroma (Sheldon et al. 1999; Griffith et al. 2003) was 

calculated as the sum of the blue-UV reflectance, 320-400nm divided by the 

intensity of reflected light summed for wavelengths between 400-700nm (R320-

400/ R400-700). Intensity was estimated by the sum of reflectance from 320 nm to 

700 nm divided by the total number of wavelengths measured.  

In addition, using the SPEC package (Hadfield et al. 2006) for R (http://www.R-

Project.org) UV signal was calculated. Spectral data was reduced into four 

quantal cone catches that quantify the amount of light captured by each of the 

avian single cones, specific to the spectral sensitivity of the blue tit visual 

system (Hart 2001). Irradiance spectra and ocular media transmittances were 

not specified. The four cone types are UVS (very short – UV), SWS (short – blue), 

MWS (medium – green) and LWS (long – red) and refer to the range of 

wavelengths to which they are most sensitive (Hart, 2001). As our analysis 

focused on the blue crown feathers we utilised the results from the UVS and SWS 

cone types (see figure II.2). To calculate the UV chromatic signal for each 

individual the UVS and SWS cone catches were standardised by dividing them by 

their sum to eliminate variation in intensity (achromatic component), which is 

highly sensitive to the method of measurement (see Hill & McGraw 2006). We 

calculated the chromatic signal so that higher values indicate a signal with a 

stronger UV component (Osorio, Miklosi & Gonda 1999; Larcombe et al. 2010); 

 

UV signal = (UVS – SWS) / (UVS + SWS)  
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Figure II.2. The spectral sensitivity of the four single-cones (solid lines), with the mean 
reflectance spectrum generated from crown feathers (dashed line) plotted above. 
Passerine cone sensitivities are taken from the data provided in Endler & Mielke (2005). 
Diagram modified from Evans & Sheldon (2008).
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II.3.1 Statistical analysis 

Single-factor ANOVAs were employed to assess repeatability of feather 

colouration within birds and the equation, r = S2A/ (S2 + S2A) was employed to 

generate the r-value (See Lessells and Boag, 1987).  Paired t-Tests were 

employed to compare in-situ and ex-situ generated values for intensity, UV 

chroma and UV signal. In addition, Pearson correlations were employed to assess 

the relationships between the values for each colour descriptor generated from 

the different methods.  

General Linear Models (GLMs) were employed to assess colour variation with 

respect to age and sex. Colour measures generated from either in-situ or ex-situ 

methods were dependent factors, with sex and age as explanatory variables.  

The underlying statistical assumptions of the tests used were not violated; the 

data used and the residuals generated from the GLMs were normally distributed 

and there was no evidence of heterogeneity of the variance. All statistical 

analyses were conducted using R version 2.8.0.  

 

II.4 Results 

II.4.1 Repeatability and feather number 

Within individuals, measurements of UV chroma, intensity, and UV signal were 

highly repeatable with values of P < 0.001 for both in-situ and ex-situ methods 

(ex-situ: UV chroma, r = 0.75, intensity, r = 0.67, UV Signal, r = 0.81; in-situ: UV 

chroma, r = 0.77, intensity, r = 0.56, UV Signal, r = 0.75; see Lessells & Boag, 

1987).  

Feather number was positively correlated with values for intensity (t2, 23 = 2.799, 

P = 0.011), but was not correlated with UV chroma (t2, 23 = -0.233, P = 0.818) or 

UV signal (t2, 23 = 0.155, P = 0.879). Therefore, as the number of feathers used 

increased, the values for intensity also increased, but this was not evident for 

UV chroma or UV signal. 
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II.4.2 In-situ vs. ex-situ 

For each bird, UV chroma and intensity differed significantly depending on 

whether they were generated from in-situ or ex-situ methods (see figure II.3, UV 

chroma, t = 4.95, n = 25, P < 0.001, intensity, t = -10.04, n = 25, P < 0.001). 

Values for UV chroma generated from ex-situ methods were significantly higher 

than those generated from in-situ methods.  However, the opposite trend was 

evident for intensity, with values from in-situ methods being significantly higher 

than ex-situ methods. Furthermore, UV chroma and intensity generated from the 

different methodologies were not correlated (UV chroma, r = 0.25, n = 25, P = 

0.25, Intensity, r = 0.24, n = 25, P = 0.26). 

In addition, when values for UV signal were compared between sampling 

methods, there was a significant difference between in-situ and ex-situ 

methods, with those generated from ex-situ methods being higher (t = 5.33, n = 

25, P < 0.001). However, values for UV signal generated from the different 

methodologies were significantly correlated (see figure II.4, r = 0.51, n = 25, P = 

0.01). 
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Figure II.3. Comparison of intensity and UV chroma from blue tit crown feathers 
generated from in-situ (directly from bird) and ex-situ (sample of feathers from 
same individual) methods. Values for both UV chroma and intensity differed 
significantly (*) dependant upon the method employed. Figure shows mean±SE. 

 

 

Figure II.4. UV signal (UVS–SWS/UVS+SWS) from blue tit crown feathers 
generated from in-situ (directly from bird) and ex-situ (sample of feathers from 
same individual) methods were significantly correlated. 

 

* * 
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II.4.3 Demographic analysis 

To establish whether the methodology used to generate the colour measures 

influenced the outcome of analysis, I assessed colour variation with respect to 

age and sex. UV Chroma and UV signal generated from in-situ methods differed 

significantly with sex but not age (UV Chroma: Sex, t23 = 3.32, P = 0.003, Age, t22 

= 1.01, P = 0.33, UV signal: Sex, t23 = 3.01, P = 0.007, Age, t22 = 0.67, P = 0.51). 

Male birds were found to have significantly higher values for both UV Chroma 

and UV signal. When ex-situ colour measures were used the same result was 

found (UV Chroma: Sex, t23 = 2.10, P = 0.05, Age, t22 = 0.80, P = 0.43, UV signal: 

Sex, t23 = 3.91, P < 0.001, Age, t22 = 0.83, P = 0.42).  

When intensity was analysed, methodology influenced the outcome of analysis. 

Males were found to have significantly higher intensity than females when ex-

situ methods were used (see figure II.5, Sex, t23 = 2.53, P = 0.02) but not when 

in-situ methods were used (see figure II.5, Sex, t23 = 0.37, P = 0.71). Intensity 

did not differ between age classes when either method was used (in-situ: t22 = 

0.12, P = 0.91 and ex-situ: t22 = -0.76, P = 0.46). 
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Figure II.5. Values for intensity (R320-700) from blue tit crown feathers were 
significantly (*) higher for males (M) when compared with females (F) when 
generated from ex-situ methods (sample of feathers). This was not evident when 
in-situ methods (directly from bird) were used. Figure shows mean±SE. 

 

* 
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II.5 Discussion 

This study provides evidence that the methods employed to measure structural 

crown colouration in the blue tit affect the values obtained. UV chroma and 

intensity differed significantly and were not correlated when obtained from in-

situ or ex-situ methods. In addition, feather number was positively correlated 

with intensity, but not UV chroma or UV signal. Although values for UV signal 

also differed between methods, they were significantly correlated. Methodology 

also affected the outcome of demographic analysis with respect to intensity. 

Males had significantly higher UV chroma and UV signal than females irrespective 

of the methods used, and age was not related to any colour metric for both 

methods. Whereas, sex explained significant variation in intensity when ex-situ 

methods were used but not when in-situ methods were used. Yet, for the colour 

descriptors employed, values were highly repeatable within individuals 

irrespective of the method used to generate them. This suggests that it was not 

a lack of repeatability for either of the methods that caused the colour metrics 

to differ. 

This study indicates that values for intensity, UV chroma and UV signal are 

significantly repeatable within individuals when generated from the bird directly 

or from sampled feathers thereof. However, r values for intensity were lower 

than the other colour metrics, which indicates that this metric is more sensitive 

to measurement error (see also Hill & McGraw 2006). Furthermore, feather 

number was found to influence intensity but not UV chroma or UV signal. As 

intensity is a measure of the mean reflectance across wavelengths, it is 

understandable that increasing the number of feathers may increase the total 

light reflectance. Indeed, a previous study that validated the use of feather 

samples for colour measurements in the great tit, Parus major found a similar 

result, but this effect disappeared when more than 10 feathers were used 

(Quesada & Sena 2006). 

The values for intensity, UV chroma and UV signal varied significantly dependent 

upon the method used to generate them, but not consistently. For example, 

when values from the two differing methods were compared for UV chroma and 

UV signal, ex-situ methods were significantly higher than in-situ methods. 
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Whereas, for intensity values generated from in-situ methods were significantly 

higher. Values for intensity between methods may differ because sampled 

feathers cannot resemble the density of feathers on the bird, therefore intensity 

would usually be lower for ex-situ methods. However, it may not be ethical to 

collect a large number of feathers from breeding individuals. Also as birds have 

been shown to differ in their reproductive investment dependant upon a 

partner’s colouration (Limbourg et al. 2004), doing so could bias the outcome of 

the study.  

Importantly, values for intensity and UV chroma were not correlated. In this 

case, values for these metrics differed in their rank order dependent upon which 

methods were used. This is particularly alarming because this indicates that the 

method used could have an affect upon the outcome of analysis and therefore 

any interpretation of intraspecific colour variation. When colour metrics 

generated from the two methodologies were analysed in respect to sex and age, 

the results were consistent for UV chroma but not intensity. For UV chroma male 

blue tits had significantly higher UV colouration when compared to females 

regardless of the method used, which is consistent with previous studies 

(Andersson, Örnborg & Andersson 1998; Hunt et al. 1998; Delhey 2005). But 

when intensity was analysed with respect to age and sex, the method employed 

affected the result. When ex-situ generated values were used, males were found 

to have higher values for intensity compared with females, but this was not the 

case when in-situ generated values were used. This suggests, that intensity may 

not be reliable colour metric when using ex-situ methods, however, it has been 

used in previous studies (see table II.1). 

Values for UV signal were significantly correlated, and when UV signal was 

analysed in respect to sex and age the results were consistent. This suggests that 

values for this metric are more robust to the method used. This is probably 

because UV signal was calculated as a ratio, which would eliminate variation in 

intensity. While these results indicate that this colour descriptor is less sensitive 

to the method used, to date this metric has not been employed in studies that 

have used feather samples to assess plumage colouration (but see chapter 6).  

To summarise, this study highlights the importance of validating the methods 

used to measure structural crown colouration in blue tits, because they can have 
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an influence upon the values of the colour metrics generated and the outcome 

of analysis. Using colour descriptors that employ avian cone sensitivities may be 

a more reliable method of describing UV colouration when using ex-situ 

methods. Overall, by validating the methods used to assess plumage colouration, 

researchers can maximise the insight gained for our understanding of avian 

colouration.  
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Appendix III: Pine martens, Martes martes as 
predators of nestling blue tits, Cyanistes 
caeruleus  

For ~20 years nest boxes around the Scottish Centre for Ecology and the Natural 

Environment (SCENE) and Cashel Farm on the east banks of Loch Lomond have 

been employed to study the breeding behaviour of blue tits, Cyanistes 

caeruleus. The nest boxes have also been used albeit infrequently by Pied 

Flycatchers, Ficedula hypoleuca and Redstarts, Phoenicurus phoenicurus both 

amber listed species. The woodcrete nest boxes (Schwegler) are suspended from 

mature oak trees by a 35cm metal bracket perpendicular to the trunk. In 

previous years birds breeding in the nest boxes have rarely encountered 

predation. On only one occasion a greater spotted woodpecker, Dendrocopos 

major, a common predator of nestling passerines, successfully consumed blue tit 

nestlings (Pers. Obs.).  

For the past two years I have been monitoring the breeding blue tits for my PhD 

thesis, and in order to expand the field site additional boxes were added. 

However, unlike the older boxes they were hung directly on the tree from a nail 

rather than a bracket (see figure III.1). The second breeding season after these 

boxes were put in place, three out of ~100 broods (shortly after hatching) were 

found dead, although there was no apparent injury to the nestlings themselves. 

The nestlings were also covered in blood which was not their own. Therefore, I 

concluded that the breeding adult had been predated while brooding and the 

nestlings had died of starvation. Later in the nestling stage, always after 

nestlings were 10 days old, blue tit broods began disappearing prior to fledging. 

The characteristics of each predation event were the same and as before, 

predation only occurred in nest boxes hung directly upon trees. The nest was 

always removed from the box and found directly beneath on the ground. In some 

cases there were also a few nestling feathers (identified because they were still 

in pin) found on the nest box or below. I was able to infer that the predator was 

mammalian from these remains as feathers had been bitten through rather than 

plucked as seen after avian predation (Hudson, Newborn & Robertson 1997). 
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Figure III.1. a) The recently established nest boxes hung 
from nails placed directly onto trees and b) the older nest 
boxes hung from a metal bracket. 

 

At the Cashel Farm site where the majority of the new boxes had been placed, 

every occupied nest box (35 broods) was predated in the same manner, with not 

one nestling surviving to fledge. On one occasion when going to weigh nestlings 

as part of my research I interrupted a pine marten, Martes martes sitting on top 

of one of the nest boxes pulling out nestlings through the entrance hole. When I 

was about 20m from the nest the individual saw me and ran into the woodland. 

When I arrived the majority of the nest had been pulled out of the box 

presumably bringing the nestlings with it. The pine marten had consumed the 

majority of the brood, one was found partially consumed on the ground below 

and only two of the ten nestlings remained in the nest box with little remaining 

nest material. When returning to the nest box a few days later the last two 

nestlings had disappeared.  

My experience serves to highlight how effective a predator pine martens can be 

for hole nesting passerines. In addition, the fact that the majority of the broods 

were predated 10 days after hatching when nestlings are almost adult sized 

indicates that something about this stage of development attracts pine martens. 

There are a couple of reasons why this may be the case; fledglings are very vocal 

at this time and may draw attention to their presence, or simply that pine 

martens cannot reach nestlings until they are larger and therefore closer to the 



240 

 240 

entrance hole. It is important to note that nests placed on brackets between and 

within 20m of predated boxes did not experience predation. Therefore this 

simple precaution may help to avoid predation events. The predated nests were 

predominately at one site but they also extended over 3km. There is evidence 

that elsewhere in Europe pine martens can move 8.5km per day during the 

summer months (Zalewski, Jedrzejewski & Jedrzejewska 2004), therefore it is 

possible that these predation events were carried out by the same individual or 

more than one individual from a neighbouring territory.  

Pine martens have been documented to prey upon birds in Scotland (Lockie 

1964; Balharry 1993; Gurnell et al. 1994; Halliwell 1997; Putman 2000; Paterson 

& Skipper 2008) with particular reference being made to passerine predation in 

some cases (e.g. Putman, 2000; Halliwell, 1997). There is also evidence that bird 

predation by pine martens is seasonal having a higher occurrence in the diet 

during winter months (e.g. Putman, 2000; Gurnell et al., 1994). However, bird 

predation does occur at other times of the year with at least one study showing 

an increase in bird predation during spring and summer (Balharry 1993). My 

observations indicate that pine martens are potentially a voracious predator of 

breeding passerines. However, as the predation event documented here was 

related to man-made nest structures only, this level of predation rate may not 

be similar for naturally nesting birds. 

III.1 References 

Balharry, D. (1993) Factors affecting the distribution and population density of 
pine martens (Martes martes) in Scotland. PhD, The University of 
Aberdeen. 

Gurnell, J., Venning, T., MacCaskill, B. & MacCaskill, D. (1994) The food of pine 
martens (Martes martes) in West Scotland. Journal of Zoology, 234, 683-
685. 

Halliwell, E.C. (1997) The ecology of red squirrels in Scotland in relation to pine 
marten predation. PhD, The University of Aberdeen. 

Hudson, P.J., Newborn, D. & Robertson, P.A. (1997) Geographical and seasonal 
patterns of mortality in red grouse Lagopus lagopus scoticus populations. 
Wildlife Biology, 3, 79-87. 

Lockie, J.D. (1964) Distribution and Fluctuations of the Pine Marten, Martes 
martes (L.), in Scotland. Journal of Animal Ecology, 33, 349-356. 

Paterson, W.D. & Skipper, G. (2008) The diet of pine martens (Martes martes) 
with reference to squirrel predation in Loch Lomond and The Trossachs 
National Park, Scotland. The Glasgow Naturalist, 25, 75-82. 



241 

 241 

Putman, R.J. (2000) Diet of pine martens Martes martes L. in west Scotland. 
Journal of Natural History, 34, 793-797. 

Zalewski, A., Jedrzejewski, W. & Jedrzejewska, B. (2004) Mobility and home 
range use by pine martens (Martes martes) in a Polish primeval forest. 
Ecoscience, 11, 113-122. 

 

 




