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ABSTRACT 

 

This thesis has explored the nature of cellular behaviour in response to the mobility of ligands 

presented on supported lipid bilayers of varying viscosity (diffusive characteristics). This was 

inspired by the various characteristics of the in vivo microenvironment, controlling the cell 

response. For example, the viscoelastic, topographical, or chemical nature of the extracellular 

matrix can control cellular behaviours, such as adhesion, proliferation, migration and 

differentiation. Numerous biomaterials have alternately sought to understand the nature of the 

cell response and also to take advantage of it; the current work predominantly falls into the 

former of these categories. Whereas elastic stiffness is one side of the coin of viscoelasticity, 

viscosity is the other. Further, while much work has sought to understand the nature of both 

the elastic and viscoelastic nature of the cell response, as of yet few have sought to understand 

the role of viscosity in isolation. This is despite some work seeking to take advantage of this 

viscosity, by observing cellular behaviour on surfaces with known viscous components. This 

work has noted that cellular adhesion and spreading, focal adhesions, and differentiation are 

all affected by the viscous component of the surface without addressing why. Supported lipid 

bilayers (SLBs) present an excellent opportunity to understand these mechanisms. Commonly 

used as biosensing platforms, non-fouling coatings and model systems, they have also found 

use in both cell culture systems and in understanding mechanobiology. Individual lipids may 

exhibit a phase transition, Tm, at a temperature defined by the chemistry of the SLB component 

lipids; as such, they can exhibit significantly different, viscosity-defining, diffusive 

characteristics. This work describes the use of SLBs of differing Tm that exhibit fluid-like or 

gel-like properties in cell culture conditions. These non-fouling SLBs were functionalised with 

the cell adhesive ligand RGD, derived from the matrix protein fibronectin, with the response 

of the cell on both the cell-wide and molecular scale determined. The cell response was then 

understood via pathways related to the mechanical sensing of the environment. Further, initial 

forays into the nature of the response of human mesenchymal stem cells (hMSCs) was 

determined, to test the applicability of the system to the overall field of biomedical engineering. 

 

The first area of study was the production and characterisation of supported lipid bilayers of 

differing diffusive characteristics; at cell culture temperature one SLB is in the fluid phase 

(DOPC) and the other in the gel phase (DPPC). Initial steps included the confirmation of the 
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effectiveness of the vesicle fusion method in this instance, via zeta-sizing and atomic force 

microscopy (AFM). The former determined that mechanical extrusion was sufficient in 

forming small unilamellar vesicles of sufficient diameter so as to maximise the chances of 

rupture on glass surfaces, upon incubation. Further, AFM imaging was used to determine the 

contiguous nature of the bilayer, confirming that minimal defects were present in either of the 

DOPC or DPPC-based SLBs. Force spectroscopy, using the same system, also confirmed the 

presence of a single bilayer of thickness in the single nanometre range. Fluorescence 

correlation spectroscopy (FCS) determined the diffusive characteristics of both SLBs, with 

diffusion coefficients shown to differ by an order of magnitude. Applied to the 

Saffman-Delbruck equation, this was able to estimate the values for viscosity of the SLBs, 

which allowed for the understanding of ligand mobility in the context of SLB viscosity. The 

degree of functionalisation of the SLBs was quantified via quantitative fluorescence 

microscopy (QFM) and it was established that the amount of neutravidin present on the surface 

was within the range estimated from the cross-sectional lipid area. Further, the stability of the 

SLBs was determined to be adequate for the purposes of this study, with degradation occurring 

after 8 days. This chapter has confirmed that the methods employed in this study are appropriate 

to form continuous and defect-free SLBs, of varying diffusive characteristics, on glass surfaces. 

Furthermore, the SLBs were shown to have distinct diffusion coefficients and viscosities, each 

varying by at least an order of magnitude.  

 

The second area of study was to ascertain how the cells responded to the differing ligand 

mobility, brought on by the differences in viscosity through the lipid bilayers. Despite being 

naturally non-fouling, SLBs, functionalised with various molecules related to cell-adhesion, 

have been shown to promote cell binding. Furthermore, the mobility of other surfaces has been 

shown to have a significant effect on cellular behaviour, with changes in the degree of adhesion 

and cell spreading noted as the ligand mobility changes. Relating this to the diffusive 

characteristics of the surfaces, it has also been seen that the size and number of the focal 

adhesions (FAs), the key binding points of the cell to the surface, decrease inversely with 

diffusion rate. It was shown that both the SLBs were non-fouling, in initial cellular adhesion 

studies, and that the inclusion of the RGD cell adhesion peptide rescued cell binding. The 

overall response was determined to be significantly different between the fluid DOPC and the 

gel DPPC, with the cell area decreased and circularity increased on DOPC relative to DPPC. 
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Further, FAs were noted to decrease in size and activity with an increased diffusion rate, in 

agreement with previously reported findings on related systems. The role of integrins in the 

cell response was also confirmed with inhibition of RGD-binding integrins. Overall, these 

findings were related to the diffusive properties, and thus the viscosity, of the SLBs, through 

the exertion of force on these SLBs; the fluid phase SLB was associated with lower cellular 

forces, relative to the gel phase DPPC, which was hypothesised to permit higher cellular forces 

due to the lower rate of diffusion in the SLB.  

 

The third area of study sought to understand how this cell response to these SLBs could be 

understood on the molecular level, using the SLB viscosity (determinant of the ligand mobility) 

as the defining property. It has been demonstrated in number of recent studies that the 

‘molecular clutch’ model is capable of predicting, with high accuracy, the nature of the cell 

response to surfaces of different stiffness and topography. Here it was extended further, relating 

the response of viscosity of the SLBs to the mechanical response of the cell on a molecular 

level. Initially, the model predicted a response on surfaces that were of significantly higher 

viscosity (lower diffusion rates) than that estimated by the SD equation. The hallmark 

indication of the ‘engagement’ of the clutch, retrograde (rearward) actin flow reduced on the 

higher viscosity DPPC surface, relative to the lower viscosity DOPC, indicating viscosity in 

the former case was high enough to engage the clutch. Further, these differences were 

eradicated upon the inhibition of cytoskeletal contractility, with blebbistatin (inhibition of 

myosin II), or inhibition of FA-actin association, through the vinculin head-only mutant, VD1. 

Furthermore, clutch predictions relating to the change in adhesion size with ligand density was 

also confirmed, with DOPC showing no change and adhesion size increasing on DPPC. The 

discrepancy between the SD predicted values was alleviated with an alternate equation relating 

the diffusion to the viscosity. The hypothesis was that the binding of cells to the SLBs leads a 

significant decrease in the viscosity within the cell area, due to integrin bound RGD-lipids 

acting as ‘roadblocks’ to the diffusion of molecules within the cell area. Beyond the initial 

adhesion the downstream consequences of the changes in the membrane viscosity was also 

observed. The mechanosensitive transcription factor, YAP, was seen to localise to the nucleus 

more in line with viscosity and differentiation was also upregulated on the higher viscosity 

DPPC. 
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The final area of study sought to apply the SLBs to a medically relevant context, in the culturing 

of human mesenchymal stem cells (hMSCs). While SLBs have been used as a model system 

in determining the mechanobiology of cells, as well as cell culture platforms, their applicability 

in stem cell culture has few examples. The only previous example of hMSCs on SLBs of 

varying viscosity found cell behaviour to not fully agree with that expected by the literature 

and by the current study. Initial analysis of hMSC behaviour on SLBs showed that cell area 

significantly reduced between 3 and 24 hrs of adhesion. The greatest difference was noted on 

DPPC, where cells initially spread well, but then lost both cellular and FA area within 24 hrs. 

Furthermore, cell growth was noted to be minimal on both SLBs. Larger molecules, the full 

fibronectin protein and the fibronectin III7-10 cell binding domain, were biotinylated in an effort 

to alleviate this. While biotinylation showed no effect on the cell response to these molecules 

the hMSC behaviour was not changed by their inclusion. The endocytosis of functional 

molecules was hypothesised to be the likely cause of this change, with lower ligand density on 

a non-fouling surface preventing any further deposition of cell binding molecules. However, 

by including a positively charged lipid at varying concentrations in the liposome formulations 

it was shown that cell adhesion could be promoted in DPPC, despite no change in adhesion on 

DOPC. This was attributed to an interplay between the electrostatic attraction of the positively 

charged surface for the negatively charged cell membrane, and the diffusion of the SLBs. It is 

possible that the higher diffusion of the DOPC reduced the binding strength of the cells, 

negating the electrostatic attraction. However, the slower diffusion in DPPC allowed for 

successful electrostatic-based adhesion of cells. This type of adhesion is supported by the 

observation that no significant difference in FAs were seen between any of the surfaces, 

indicating that the association is not integrin mediated. Importantly, the cells also show no loss 

in cell area after 24 hrs, demonstrating a potential of this system adjustment in future work. 
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and form a single bilayer. This latter event depends on variables, such as the vesicle 

concentration, the vesicle-surface interactions, the vesicle-vesicle interactions and the 

vesicle buffer interactions. The proximal and distal leaflets can have different physical 

properties, such as diffusion coefficients, due to the proximity of the proximal leaflet 

to the surface and the interstitial water layer (blue). 
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Figure 1.9. Measuring Diffusion in Supported Lipid Bilayers. (A) FRAP: A high 

intensity laser excites the fluorophores in a given area to the point of bleaching. The 

rate at which the fluorescence returns is dependent on the diffusion of the bilayer and 

the area bleached. (B) FCS: Fluorophores in the bilayer are illuminated as they pass 

through an illumination volume. The photon residence time and thus the decay in the 

autocorrelation function (relating the probability of two events being a single photon), 

thus the decay is dependent on the diffusion. (C) FLIM: The lifetime of the fluorophore 

in the excited state is dependent on the rotation within its environment. This can be 

related to the viscosity using standard of known values. The viscosity can then be 

related to the diffusion, through the Saffman-Delbruck equation. 
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Figure 2.1. Extrusion. The Avanti mini-extruder system, showing the means of 

assembly for the system. (Image taken from the website of Avanti Polar Lipids (178)) 

 

69 

Figure 2.2. Experimental Setup. The dimensions of the PDMS wells used to produce 

SLBs. All measurements are to scale. 
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Figure 2.3. Protein Biotinylation. The process used by the EZ-link biotinylation kit, 

through the NHS ester-based linking of biotin molecules to primary amines on the 

protein of interest (image taken from product datasheet provided by Thermo (183)). 

75 

Figure 2.4. Analysis of Focal Adhesions Flow Chart. A small area of the cell is 

expanded for detail. Steps (1) and (2) were performed with the settings shown in Table 
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2.2. Steps (4) and (5) were set in light of the experimental conditions and maintained 

at a constant setting throughout the analysis of the experimental data set. To this end, 

exposure times during imaging was also kept constant. In step (6) only particles above 

0.75 µm2 were counted as focal adhesions.  

 

Figure 3.1. Lipid Vesicle Extrusion. Measuring the size of vesicles of (A) DOPC and 

(B) DPPC both before and after extrusion through membranes of differing pore sizes, 

using dynamic light scattering (DLS). (C) Shows the resulting average diameter of lipid 

vesicles, including the mean hydrodynamic vesicle diameter above each column for 

clarity. 
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Figure 3.2. Glass and SLB Surfaces. The images show the cleaned glass surfaces both 

before and after incubation with either DOPC or DPPC as measured using AFM contact 

mode imaging. This lack of contrast demonstrates the contiguous nature of the SLBs, 

with a minimal presence of defects (Scale Bar = 2 µm). 
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Figure 3.3. Schematic Representation of Force Spectroscopy of SLBs. (A) The tip 

approaches the surface during the cantilever approach. (B) As the tip approaches and 

interacts with the SLB the vertical deflection increases until (C) the tip eventually 

breaks through the packed lipid and (D) contacts with the glass surface. (E) Shows a 

representative force map and the curves generated; in this 8x8, 10 µm2 map the 

cantilever pushes on the surface in each square generating the force curves shown in 

(A) – (E). As the curves are indicative of interaction with the SLB, the thickness can 

be determined between the points shown. (All forces curves shown here are taken from 

those attained in the measurement SLBs and are representative of that which was 

obtained) 
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Figure 3.4. Supported Lipid Bilayer Thickness. Force mapping, as shown in Figure 

3.3E produced a series of multiple force curves for each SLB, which was categorised 

into bins of 1 nm thickness. The relative percentage frequency of these values for 

DOPC and DPPC is shown here, with a gaussian fit to determine the average thickness. 
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Figure 3.5. Schematic Representation of Fluorescence Correlation Spectroscopy. 

(A) Shows the illumination of the fluorophores within the confocal volume, which is 

then detected by the avalanche photodiode (APD). The photon count signal over time 

(B) is then correlated to one another showing a decay in the correlation over time (C). 
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This can be used to calculate the diffusion coefficient if the beam radius is known from 

previous calibrations. (Adapted from 212) 

Figure 3.6. Diffusion in SLBs. (A) & (B) Show the correlation curves produced by the 

diffusion of fluorophores through the FCS confocal volume in DOPC and DPPC 

respectively. (C) Shows the resulting diffusion coefficients of DOPC and DPPC SLBs, 

calculated using the equations shown in section 2.8, (Inset – FITC bead calibration used 

to determine beam width, required to calculate the diffusion coefficient). 
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Figure 3.7. Functionalisation of Glass with RGDStatic Water Contact Angle 

(WCA). (A) Shows a schematic of the progressive functionalisation of glass leading to 

RGD being presented on the surface. (B) Shows the WCA after RCA cleaning and (C) 

shows the WCA after silanisation with APTMS, demonstrating the change in surface 

hydrophobicity upon incubation with this silane. (D) and (E) show the fluorescence 

histogram before and after functionalisation with neutravidin, respectively (insets show 

representative images; scale bar = 25 µm). 
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Figure 3.8. Quantitative Fluorescence Imaging (QFI) Calibration. Determination 

of the amount of protein per µm2 on a bilayer sample by first determining a scaling 

factor (F) between the linear gradients of bulk solutions of (A) protein (in this case 

neutravidin) and (B) lipid vesicles (DOPC). This scaling is factor is then applied to the 

linear gradient of fluorescent lipids in a bilayer (C), which can then be used to 

determine fluorescence as an amount of protein molecules per µm2 (D).  
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Figure 3.9. QFI of DOPC and DPPC SLBs. (A) and (B) show the DOPC and DPPC 

SLB intensity histograms upon increasing surface density of functionalised lipid (0.4, 

2 and 10 mol% of biotin-lipid); the  corresponding representative images are colour-

coded to the relevant concentration (scale bar = 25 µm2). (C) Shows the calculated 

amount of neutravidin molecules per µm2 and (D) shows the extrapolated surface 

density of the neutravidin molecules. 
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Figure 3.10. Bilayer Stability over Time. An image series of the bilayer over a period 

of 15 days, showing the overall coverage and stability of SLBs in cell culture 

conditions. The red box highlights ROI 1, an indicator of the bleaching of the DPPC 

surface after 15 days, indicating that the SLB is still present, with defects. 
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Figure 4.1. Initial Cellular Adhesion. The interaction of cells with the lipid surfaces 

was seen to be minimal without RGD being present at 3 hours. Upon functionalisation 
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with RGD, at 2 mol% functionalised lipid, cell adhesion was seen to be comparable to 

that of the RGD-Glass control. P values indicating significance, * ≤ 0.05, **** ≤ 

0.0001. 

Figure 4.2. Morphology Dependence on Ligand Mobility. (A) Shows the average 

cell area on DOPC (high ligand mobility, low viscosity) and DPPC (low ligand 

mobility, high viscosity), with (B) showing their characteristic circularity. (C) – (E) are 

representative images of the cells on DOPC, DPPC and RGD-Glass respectively. (Scale 

Bar = 25 µm). P values indicating significance, ** ≤ 0.01, **** ≤ 0.0001. 
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Figure 4.3. Inhibition of α5β1 and αVβ3 Integrins. (A) Shows an array of the 

representative images of cells incubated with one or both inhibitors for α5β1 and αVβ3 

integrins on surfaces of all ligand mobility values. (B) Shows the consequent 

quantification of these images in terms of the change in cell area upon inhibition on 

each of the surfaces P values indicating significance, * ≤ 0.05, ** ≤ 0.01, **** ≤ 0.0001. 
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Figure 4.4. Focal Adhesion Changes in Response to Ligand Mobility. (A) – (C) 

Show representative images of the cells on DOPC, DPPC and RGD-Glass respectively 

with actin stained in green, and vinculin stained in red. (D) Shows the average size of 

the focal adhesions on the each of the surfaces with (E) showing the number of focal 

adhesions per cell. (Scale Bar = 25 µm).P values indicating significance, ** ≤ 0.01, 

**** ≤ 0.0001. 
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Figure 4.5. Focal Adhesion Distribution. The distribution of FAs is shown here on 

the each of the surfaces. In the analysis the minimal size of the FAs was set to 0.75 µm; 

as such, the initial bin was set to 1 µm, with a bin width of 0.5 µm. 
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Figure 4.6. Phosphorylation of FAK in Response to Ligand Mobility. (A) – (C) 

Show representative images of pFAK present in the cells seeded on DOPC, DPPC and 

RGD-Glass respectively. (D) Shows the integrated density of the pFAK within the cell 

area. (Scale Bar = 25 µm). P values indicating significance, * ≤ 0.05, **** ≤ 0.0001. 
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Figure 4.7. Protein Activation in Response to Ligand Mobility. The schematic 

shows a proposed effect of the viscosity-defined ligand mobility on the FA proteins 

present in the complex; as viscosity increases and ligand mobility decreases, the 

assumed amount of force increases. (A) Shows how mechanical force is capable of 

exposing phosphorylation sites present in FAK, leading its conversion to pFAK and its 

consequential activation. (B) Shows that mechanical pulling of adaptor proteins linking 

integrins, and thus the surface, to the actin cytoskeleton leads to the exposure of 
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vinculin binding sites on proteins such as talin. Vinculin can then subsequently bind to 

F-actin as well as other signalling molecules. 

 

Figure 5.1. Cell Response to Viscosity through the Molecular Clutch. The speed of 

actin retrograde flow is controlled by the myosin motors. If the ECM-integrin bond 

lifetime is of sufficient length then the force exerted on the talin by the actin flow allows 

for the unfolding of talin at a specific rate. This unfolding leads to force enhancement 

through stabilisation of the talin-actin linkage through molecules, such as vinculin 

(adapted from Elsogui-Artola et al. (2016) (47)). 
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Figure 5.2 Model Predictions of the Effect of Viscosity. The left y-axis (blue) shows 

the predicted effect of the viscosity on the actin flow with a reduction in flow seen at 

approximately 10-4 N.s/m. The right y-axis (red) shows the adhesion growth upon and 

increase in the viscosity of the surface, being seen to increase from a lower viscosity 

than that of the actin flow. Model data provided by Prof. Pere Roca-Cusachs of IBEC, 

Barcelona. 
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Figure 5.3. Changes in Characteristic Length Affect Viscosity. This graph 

demonstrates how the alternative equation presented by Gambin et al., (13) predicts 

changes in viscosity on the degree to which the membrane is perturbed by the diffusing 

molecule. This was predicted for both DOPC (blue) and DPPC (red). The two data 

points show a characteristic length of the same scale as the average cell radii on each 

of the SLBs, estimated from Figure 4.2. These gives values in the ranges of 10-5 and 

10-4 Pa.s.m for DOPC and DPPC respectively, with the latter in the range of detectable 

viscosity as predicted by the molecular clutch model. 
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Figure 5.4. Viscosity Dependent Actin Flow. Due to the importance of the actin flow 

in the molecular clutch model the viscosity dependent actin flow was determined on 

the surfaces. (A) Shows an example kymograph taken from an image stack (1Hz for 

2 min). By selecting a region of interest, the image in the region can be re-stacked to 

show how the fluorescence changes position with time. By taking the tan θ of the angle 

this displacement the speed of the actin flow can be determined. This is shown in (B) 

where the actin flow on each of the surfaces is shown. This shows that the actin flow 

is lower on surfaces that exhibit lower or no viscosity. (C) Shows representative 

images of the cells on each of the surfaces, with the insets showing the relevant 
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kymograph of each selected region. (Scale Bar = 25 µm). P values indicating 

significance, **** ≤ 0.0001. 

Figure 5.5. Actin Flow upon Myosin II Inhibition (A) Shows the mode of action of 

the myosin II inhibitor, blebbistatin, which blocks the activity of myosin II rather than 

its binding to F-actin. (B) Shows the consequent effect of the blocking of myosin II on 

surfaces of differing viscosity, where the actin flow rate was the not statistically 

significant between any surface. (C) Shows the representative images of cells and their 

corresponding kymographs used to determine the actin flow. (Scale Bar = 25 µm). P 

values indicating significance, **** ≤ 0.0001. 

134 

Figure 5.6. Actin Flow upon Vinculin Inhibition. (A) Shows, schematically, the 

mode of action of VD1, which blocks force enhancement upon substrate binding by 

preventing the binding of native vinculin. Subsequently, it does not have tail domain 

through which to bind to F-actin and thus stabilise the talin-mediated link between 

integrins the cytoskeleton. (B) Shows the consequential effect of transfection of 

C2C12 cells with VD1, whereby there are no observed differences between the actin 

flow on any of the surfaces. (C) Shows representative images of cells and kymographs 

used to determine the difference in actin flow rate in cells on the each of the surfaces. 

(Scale Bar = 25 µm). P values indicating significance, ns > 0.05. 
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Figure 5.7. Focal Adhesion Properties upon VD1 Transfection. (A) Shows the 

quantified average FA area in cells (after 3 hrs, as in Chapter 4) on each of the surfaces 

in native, wild-type cells and those transfected with the VD1 plasmid; statistical 

analysis through two-way ANOVA showed that there was no difference in FA 

properties between native and VD1 cells on each surface. (B) Shows the representative 

images used to determine the FA properties, with native cells (VD1 –ve) being stained 

with anti-vinculin monoclonal antibodies. The vinculin head domain encoded by the 

VD1 plasmid (VD1 +ve) is fluorescent and was not stained for vinculin. (Scale Bar = 

25 µm). P values indicating significance, ns > 0.05. 

137 

Figure 5.8. Schematic of Cell Behaviour in Response to Surface Viscosity. In 

DOPC, on the left, the pulling of actin on the RGD ligand through a talin-integrin 

linkage, displaces the ligand to a large extent, DH, meaning that the force loading rate 

is low on molecules such as talin. Therefore, in the case of talin, this prevents, unfolding 

and so the binding of vinculin and formation of FAs. In DPPC, on the right, the higher 

viscosity means that ligand displacement is smaller, DL, when actin pulls on the 
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surface. This, in turn, means that the force loading rate on the talin is higher, allowing 

unfolding within the integrin-RGD bond lifetime. Vinculin can then bind to exposed 

sites, thus leading to greater forces exerted on the surface and FA formation. 

Figure 5.9. Model Prediction of Adhesion Size as Ligand Number Increases. By 

taking the model at viscosity values were the clutch is and is not ‘engaged’ the change 

in adhesion size can be predicted. At high viscosity (after engagement, 10-2 N.s/m) the 

number of ligands was seen to increase up to a specific ligand density (~50) and then 

decreases above this. At low viscosity (before engagement, 10-5 N.s/m) the adhesion 

size shows no change regardless of the number of ligands. Model data provided by 

Prof. Pere Roca-Cusachs of IBEC, Barcelona. 
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Figure 5.10. The Change in Cell and Focal Adhesion Size with Ligand Density. (A) 

Shows the representative images of the actin and vinculin stains on DOPC at 0.02, 0.2, 

2 and 10 mol% of functionalised lipid. The distribution of FA area on these surfaces is 

shown to the right of these images, demonstrating that this is similar on all surfaces. 

(B) Shows this on the DPPC, with the consequent change in the FA distribution as the 

ligand density changes. (C) Shows the change in average cell area on each SLB as the 

ligand density changes, and (D) shows the change in FA area under the same 

conditions. (Scale Bar = 25µm). 
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Figure 5.11. YAP Localisation in Response to Viscosity. (A) – (C) Show the 

representative images of the YAP staining, demonstrating the extent of its localisation 

to the nucleus on DOPC, DPPC and RGD-Glass respectively. For clarity, on DOPC 

(A) the location of the nuclei in each cell is indicated by the red-dashed circles. (D) 

Shows the attained fluorescent intensity in nucleus compared to the cytoplasm 

immediately surrounding it in all surfaces. (Scale Bar = 50 µm). P values indicating 

significance, **** ≤ 0.0001. 
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Figure 5.12. Viscosity Dependent Differentiation. (A) Shows the early stages of 

differentiation of C2C12s, after 2 days, on each of the surfaces through determining the 

percentage of nuclei staining positive for the transcription factor, myogenin. (B) Shows 

the terminal differentiation of C2C12s, after 4 days, by the percentage of nuclei within 

the sarcomeric positive cells. (C) Shows the representative images of stained cells at 

both of these time points. (Scale Bar = 150 µm). P values indicating significance, *** 

≤ 0.001, **** ≤ 0.0001. 
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Figure 6.1. hMSC Adhesion of 3 and 24 Hours. (A) Shows the representative images 

the area of hMSCs on all surfaces, after 3 hrs and 24 hrs of cell culture (Scale Bar = 

150 µm). (B) Shows the quantification, demonstrating that there is a reduction in cell 

area at 24 hrs compared to 3 hrs on all surfaces to differing degrees. (C) Shows the 

percentage reduction in cell area between 3 and 24 hrs, demonstrating that cells lose a 

large percentage of area on both DOPC and DPPC, with a smaller reduction on the 

RGD-Glass control. P values indicating significance, * ≤ 0.05, **** ≤ 0.0001. 
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Figure 6.2. Focal Adhesion Area at 3 & 24 hrs on hMSCs. (A) Shows the 

representative images of FAs, as stained for by vinculin on hMSCs seeded on DOPC, 

DPPC and RGD-Glass surfaces after 3 and 24 hrs of adhesion, demonstrating both the 

lack of change in the FAs on DOPC and RGD-Glass, and the significant difference on 

DPPC (Scale Bar = 25 µm). (B) Quantifies the area of the FAs over all surfaces and 

time points, showing that only DPPC has a significant difference in FA area between 3 

and 24 hrs. P values indicating significance, ns > 0.05, ** ≤ 0.01. 
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Figure 6.3. Proliferation of hMSCs on SLBs. (A) – (C) Show representative images 

of cells grown for 1 day on DOPC, DPPC and RGD-Glass respectively, with the nuclei 

shown in cyan and the BrdU shown in red. The nuclei where there was BrdU present 

were considered new cells (Scale Bar = 100 µm). (D) Shows the resulting quantification 

of % of nuclei staining positively for BrdU, indicating that they are cells that have 

grown after seeding on the surface rather than in culture. P values indicating 

significance, ns > 0.05, **** ≤ 0.0001. 
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Figure 6.4. Cell Morphology after 5 Days. (A) – (C) Show hMSCs on DOPC, DPPC 

and RGD-Glass respectively after 5 days of culture in growth media. The dashed line 

represents the estimated seeding density. It is noted that the cells on DOPC exhibited a 

more spread morphology than previously seen, whereas cells on DPPC appeared 

rounded as noted after 24 hrs of culture. (Green = actin, cyan = nuclei, scale bar = 50 

µm). (D) Shows the cell number after 5 days, confirming results shown in Figure 6.3 

that shows minimal cell growth on bilayers. 
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Figure 6.6. Biotinylation of Proteins. (A) Shows a schematic representation of the 

full fibronectin protein. The * under each module indicates how many lysine residue 

there are in each, giving an indication as to how many available binding sites there are 

for the NHS-biotin across the entire molecule, as well as the within the FNIII7-10 

fragment (indicated in brackets). The RGD containing III10 module is indicated by a 
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red outline. The number of biotins per molecule was calculated to be approximately 1 

for the FNIII7-10 fragment and ~6 for full fibronectin. (B) & (C) Show the effect of 

biotinylation of protein on C2C12 cells by determining the cell area and focal adhesion 

area respectively. In all cases cells were more spread and had larger focal adhesions 

on the proteins (coated on glass surfaces) compared to plain glass. In the case of FAs 

there was no difference between the areas on all proteins. (D) Shows the representative 

images of cells on each surface. P values indicating significance, ns > 0.05, ** ≤ 0.01, 

**** ≤ 0.0001. 

Figure 6.7. Protein on SLBs. An ELISA showing the relative amount of biotinylated 

protein adsorbed onto the DOPC (blue) and DPPC (red) surfaces. In all cases there was 

no significant differences in adsorption regardless of the SLB or the protein used. 

164 

Figure 6.8. Protein Functionalised SLBs. (A) Shows the quantification of the cell 

area on DOPC, DPPC and glass, with the presentation of RGD peptide, FNIII7-10 

protein fragment, and FN full protein after 24 hrs. (B) Shows the representative images 

of cells on each of the surfaces (green = actin, nuclei = blue, Scale Bar = 150 µm). On 

DOPC functionalised with FNIII7-10 no cells were noted to bind on any sample. P values 

indicating significance, ns > 0.05, * ≤ 0.05. 
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Figure 6.9. Non-specific Binding of C2C12s to SLBs. Using DOPC, this graph shows 

that the cells bind to avidin regardless of functionality. However, removing the 

deglycosylated form, neutravidin, used throughout this thesis shows no binding without 

RGD present. P values indicating significance, ns > 0.05, **** ≤ 0.0001. 
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Figure 6.10. Adhesion to SLBs Containing Positively Charged Lipid. (A) Shows 

the structure of the DOTAP (1,2-dioleoyl-3-trimethylammonium-propane) molecule. 

(B) Shows the number of hMSCs adhered per mm2 as the mol% of the positively 

charged DOTAP is changed in both DOPC and DPPC (mol% of DOTAP is indicated 

by the number after the surface identifier). It also shows the cells adhered when 

fibronectin (FN) is allowed to adsorb on the surface prior to cell seeding (at 20 µg/ml). 

P values indicating significance, ns > 0.05. 
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Figure 6.11. Cell Area on DPPC:DOTAP SLBs. (A) Shows the cell area of hMSCs 

after 3 hours on DPPC, with increasing mol% of DOTAP, with (B) showing the 

representative images of the surfaces. The effect of FN is also determined with 

incubation of 20 µg/ml of FN protein prior to cell seeding. (C) Shows the cell area after 

cells were allowed to adhere and spread for 24 hrs, again with and without prior 
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adsorption of FN. (D) Shows the representative cell images after 24 hours. In both cases 

FBS free media was used, to allow for direct comparison of cell behaviour over time, 

with and without matrix protein. P values indicating significance, ns > 0.05, ** ≤ 0.01, 

**** ≤ 0.0001. 

Figure 6.12. Area Change Between 3 and 24 Hours. This shows the percentage of 

change in the cell area on the DPPC:DOTAP surfaces between 3 and 24 hrs, when the 

hMSCs were seeded the SLBs with and without FN. 
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Figure 6.13. Focal Adhesions on DPPC:DOTAP SLBs. (A) Shows the average area 

of detected focal adhesions present on the DPPC SLBs, when differing mol% of 

DOTAP is used. This shows that the concentration of DOTAP has no significant effect 

on the FA behaviour and any detected FAs are smaller than those seen on glass surfaces, 

incubated with and without FN. (B) and (C) show representative images of these cells 

at 3 and 24 hrs respectively. This demonstrates that the presence of a larger, diffuse 

vinculin background present in the cells on the DPPC:DOTAP SLBs may induce a false 

positive of FA area. This is contrasted with glass, with shows well-defined FAs. (Scale 

Bar = 50 µm). P values indicating significance, ns > 0.05, **** ≤ 0.0001. 
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LIST OF ABBREVIATIONS 

 

hMSC Human Mesenchymal Stem Cells 

ECM Extracellular Matrix 

FN Fibronectin 

FA Focal Adhesion 

MLV Multilamellar Vesicles 

LUV Large Unilamellar Vesicles 

SUV Small Unilamellar Vesicles 

SLB Supported Lipid Bilayer 

SDS Sodium Dodecyl Sulphate 

DOPC 1,2-dioleoyl-sn-glycero-3-phosphocholine 

DPPC 1,2-dipalmitoyl-sn-glycero-3-phosphocholine 

DOTAP 1,2-dioleoyl-3-trimethylammonium-propane 

BODIPY boron-dipyrromethene 

PE Phosphoethanolamine 

DPBS Dulbecco’s Phosphate Buffered Saline 

FCS Fluorescence Correlation Spectroscopy 

FRAP Fluorescence Recovery After Photobleaching 

AFM Atomic Force Microscopy 

RGD Arginine-Glycine-Aspartate 

YAP Yes-Associated Protein 

FLIM Fluorescence Lifetime Imaging 

SD Saffman-Delbruck 

NHS N-Hydroxysuccinimide ester 

PDMS Polydimethylsiloxane 

APTMS (3-Aminopropyl)trimethoxysilane 

DMF Dimethylformamide 

BSA Bovine Serum Albumin 

FAK Focal Adhesion Kinase 

WCA Water Contact Angle 

QFM Quantitative Fluorescence Microscopy 
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1. INTRODUCTION 

 

Cells, in vivo, are surrounded by a vastly complex extracellular environment, with components 

demonstrating various physical and chemical properties over many scales, from the meso- to 

nanoscale (1). Healthy human cells, being anchorage dependent, rely on an encompassing 

protein network, the extracellular matrix (ECM), upon which to proliferate, migrate and 

differentiate (2). The properties of this network, made up of proteins such as collagen, 

fibronectin and laminin, is of paramount importance to the cellular behaviour. Depending on 

the tissue (3), the ECM varies in properties such as relative protein abundance, viscoelasticity 

and topography (4). In turn, even nanoscale changes in these, as well as other, properties can 

lead to massive changes in the cellular behaviour; for example, the induction of differentiation 

(5). Further to these physical properties, the ECM also serves as a reservoir for further 

molecules responsible for controlling cellular characteristics, such as promoting the 

proliferation of specific cell types (6). It is from this dizzying array of components and 

properties that researchers have sought to find inspiration as a means to recapitulate cellular 

behaviours of interest. Commonly applied to regenerative medicine, a thorough and complete 

understanding of the cellular microenvironment may, in the future, allow for the replacement 

of select tissues and even whole organs (7).  

 

Biomaterials, first defined by the National Institute of Health in 1983 (8), are the principal 

means of recapitulating this structure and function of the cellular microenvironment in vitro. 

These materials may be anything that, “treats, augments, or replaces any tissue, organ, or 

function of the body. (8)” While accurate nearly 35 years ago, this has since expanded to include 

almost any material that is used in a biological context. To this end, researchers have used 

naturally derived materials, such as nacre (9), as well as synthetically derived systems (10) 

applied to wide variety of cell-based systems. In the case of the latter the approaches vary 

widely, but they can commonly be partitioned into the manipulation of discrete properties, such 

as viscoelasticity (either as separate components, or as an overall variable), topography and 

chemistry, as well as a combination of these components. By controlling these properties 

researchers have been able to use biomaterials to control behaviours such as migration (11), 

shape (12, 13), forces (14), proliferation (15) and differentiation (16).  

 



29 

 

Further to this, researchers have taken the opportunity presented by these material-driven 

changes in behaviour to understand how and why these properties change the cellular 

behaviour. This stems from the changes induced in cellular processes, by the interfacing of the 

cell with a specific biomaterial. To sense their environment cells employ integral membrane 

proteins, integrins, to bind to various moieties presented on the surface; the type of integrin 

recruited to the site of adhesion is dependent on the nature of the surface (17). This, in turn, 

recruits further adaptor proteins, which connect the integrin to the actin cytoskeleton (18). 

Known as focal adhesions (FAs), these large protein constructs are a key means through which 

cells detect their surrounding environment, the key role being the coupling of the surface to the 

actin cytoskeleton. These focal adhesions can be made of various components, termed the 

‘integrin adhesome’ (19), and it is this that controls downstream properties of the cells, such as 

signalling pathways (e.g. ROCK pathway) (20), as well as regulating transcription factors, 

capable of upregulating or downregulating genes responsible for key cell behaviours (21). It is 

therefore clear that the physical properties of biomaterials can completely alter the cell response 

and is therefore of key importance to understand how and why. 

 

To this field of biomaterial-manipulated cell behaviour, enter lipid-based systems. Lipids are a 

widespread and incredibly varied group of molecules; one of their principal functions in 

biology is to enclose and separate the cellular components from the extracellular environment 

(22). Phospholipids account for the majority of the components of the cell membrane, and 

many of these amphipathic molecules may orient themselves into a single bilayer, enclosing 

their hydrophobic domains from the surrounding aqueous environment; this envelope contains 

an array of proteins and carbohydrates responsible for a huge number of cell number processes; 

for example, adhesion, signalling and exo and endocytosis. Taking advantage of the intrinsic 

properties of lipid molecules, researchers have successfully used them to produce a number of 

constructs (23). Prime examples include unilamellar vesicles, which have been used as 

therapeutic delivery vehicles (24), or bilayers, which are able to serve as non-fouling coatings, 

membrane mimics or as platforms for biological studies (25, 26). It is the latter’s use in cellular 

studies that is of particular importance here; with their well-defined and easily tuneable 

properties lipid bilayers are able to present a hugely varied series of molecules and 

functionalities, which can be used as a means to elucidate hitherto poorly understood cellular 

processes.  
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The current work seeks to characterise and develop a deeper understanding of supported lipid 

bilayers as potential biomaterials. By predominantly using neutral lipid bilayers, this allows for 

the production of surfaces of varying viscosity, which, in turn, directly controls the lateral 

mobility of presented ligands and minimising the effect of non-specific binding. How 

manipulating this core property of lipid bilayers affects the cellular response, can allow for new 

modality through which cellular behaviour can be controlled. Further to this, the work has also 

sought to understand this behaviour at a more molecular level. This system has not yet been 

used to study how viscosity affects the cellular response; beyond this the system can be further 

manipulated (e.g. inclusion of charge) to further control the cell response. Here the state of the 

field, as it pertains to biomaterials, is reviewed, addressing the cellular response to their 

environment, properties of lipids and the previous applications of these systems in this field. 

 

1.1. THE ROLE OF BIOMATERIALS  

1.1.1. AN OVERVIEW OF BIOMATERIALS 

Understanding how the cell response is dictated by the cellular environment be used to tune 

cell response more effectively; it is this purpose that the field of biomaterials can fulfil. With 

respect to the previously mentioned definition, these can be considered as materials that, in 

some way, mimic the properties of an extracellular environment, through which to mediate the 

desired cellular response. To that end, any property that reflects this environment may be used 

as a template. Commonly, researchers have isolated one specific property, such as varying 

stiffness, mobility, topography and chemistry, in order to ascertain how any one of these 

properties affect the cell response.  

 

The stiffness of the cellular microenvironment has commonly been considered a source of 

inspiration in deriving biomaterials of varying stiffness. Here the stiffness in considered the 

elastic stiffness; the elastic (i.e. non-permanent) deformation of a material as force is applied 

in the linear regime. This is measured here by the Young’s modulus (E): the ratio between the 

stress and the strain. Tissues present Young’s moduli (E) over a huge range of magnitudes, 

from 102 Pa in neural tissues (27), to 104 Pa in non-mineralised bone (~40 kPa) (10), and 
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extending to 109 Pa in cortical bone (28). To recapitulate this poly(acrylamide) (PAAm) 

hydrogels are commonly used, which are easily manipulated by manipulating the concentration 

of the crosslinker present. However, they do not directly interact with the cell and require 

functionalisation with cell-binding molecules. Additionally, alginate fibres (29) have also been 

used as well as PEG-based hydrogels (30). These latter materials are able to crosslink specific 

biological molecules, such as ECM-based peptides; for example, GFOGER, the cell-binding 

peptide of collagen (31). Varying the stiffness has a marked effect on the cell response; on 

stiffer substrates cells are more spread, have more defined actin fibres (32), larger focal 

adhesions (14), and exhibit greater activation of focal adhesion-associated proteins, such as 

focal adhesion kinase (FAK) (33) and RhoA (32). This has further consequences for cellular 

behaviour, with activation or inhibition of downstream processes depending on the stiffness of 

the material. For example, Engler et al. (2006) (34), show that cells spread more on higher 

stiffness materials (Figure 1.1A), defined by the Young’s Modulus, E. Beyond this, surfaces 

representative of the relevant microenvironment commit cell lineage to that path. More 

specifically, a biomaterial with stiffness similar to that of pre-collagenous bone will direct 

specific differentiation capable cells (mesenchymal stem cells) down the osteoblastic lineage; 

conversely, surfaces with stiffness similar to that of the neuronal environment will promote 

these same cells down the neuronal lineages (Figure 1.1A). Other work has also shown that 

this holds true for other cell lines, such as myoblasts (skeletal muscle) (35) and neural cells 

(27), as well as other types of environment, such as 3D cultures (36). Biomaterials with altered 

stiffness therefore show that they can be used to determine how the cell responds to the elastic 

nature of its environment in various modalities.  

 

Topography of the microenvironment, with its various structures on the meso-, micro- and 

nanoscale, has also served to be of particular interest in producing biomaterials. Initially, 

properties such the roughness of a surface were observed to change the cellular response (37, 

38); however, variability of the surfaces, despite similar roughness values, proved this an 

unreliable system. More recently, biomaterials with defined nanotopographies, have allowed 

for remarkable insight into the cell’s ability to spatially detect their environment. Commonly, 

lithographic and electrospinning, as well as injection moulding techniques, have been used to 

generate, pillars (39) (injection moulding); grooves  (40) and pits (16) (nano-lithography); or 

fibres (41) (electrospinning). Further to this, microcontact printing can also be used to present 
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cell-adhesive molecules of defined spacing (13, 42), or change nature of the topography 

presented, for example different shapes (12, 43, 44) or the degree of order (16, 45). Seminal 

work in this field has shown that various, vital cellular behaviours are controlled by the nature 

of the topography; for example, the differential spatial distribution of the cell-adhesive peptide, 

RGD, derived from the ECM protein fibronectin (and recognition tripeptide for integrins, the 

proteins cell use to adhere to the ECM), demonstrated a marked effect on the nature of the 

cellular adhesion machinery. Specifically, cells are sensitive to the magnitude of ligand spacing 

and are only capable of forming mature focal adhesions provided the ligand spacing is no more 

than ~60 nm (42). On a more cell-wide level the production of nanogrooves, or even larger 

scale grooves, has driven anisotropic cell spreading down the axis of the grooves (40, 46). 

Further, different shapes also can have an effect, with a specific example showing an increase 

in cytoskeletal tension in a ‘holly-leaf’ patterning of fibronectin compared to circularly 

patterned (12). This topographically defined control of cell behaviour has even greater 

implications on cellular processes. Work has shown that differentiation of mesenchymal stem 

cells can be promoted, in vitro, by introduction of a specific degree of disorder in a nanopit 

array; conversely, a highly ordered array allowed for population expansion (16). Other work 

has also used topography to promote differentiation (39). Beyond this, topographical cues have 

also shown a distinct role of geometry in the life and death of cells (Figure 1.1B);, Cells that 

were constricted on small adhesive islands entered apoptotic pathways compared with those on 

larger islands, which were more able to survive and spread (13). These examples serve to 

demonstrate that biomaterials of varying topographical features have been used widely to both 

determine the cell response to the environment and impact on cellular behaviour.  

 

Biomaterials displaying simple chemistries have also been used to determine the nature of the 

cell response. Comparative to the cell response to stiffness and topography the response to 

varying surface chemistries is less understood. Whereas in the case of stiffness and topography 

the biomaterial surface is known to adjust the cell response through adhesion-associated 

mechanisms (47, 48), the response mechanisms to surface chemistries are more elusive (10). 

Due to this much of the work related to this has focused more on the applicability of this 

biomaterial property, rather than the underlying mechanisms. For example, small chemical 

groups, such as phosphate groups and t-butyl methacrylate groups were capable of promoting 

osteogenic (Figure 1.1C) or adipogenic differentiation respectively (49), with yet others 
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promoting stem cell renewal (50). There is some evidence that the interactions with these 

materials is also mediated by focal adhesions and sequestering of growth factors, but again the 

mechanisms remain unclear (51). Thus, while a potentially useful biomaterial, the lack of 

understanding of how these modifications reflect the ECM and change the cell response make 

them less relevant to the current study. 

Figure 1.1. The Effects of Biomaterials. A summary of the effects of biomaterials on the cell 

behaviour, such as spreading, shape, adhesion and differentiation are affected by factors, such 

as: (A) stiffness, which allows for greater cell spreading on surfaces of higher stiffness (34); 

(B) topography, which can change a cell’s ability to spread and survive (13); (C) chemistry, 

which can promote specific differentiation to specific lineages of capable cells (49);  (D) 

mobility, which can control cellular adhesion, spreading and differentiation (52). Together 

these examples, show the multitude of cell responses that can be tuned by controlling the nature 

of the biomaterial that is used. Figure reproduced with permission.  
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1.1.2. THE EFFECT OF SURFACE MOBILITY ON THE CELL RESPONSE 

As mentioned above, a further means by which the cellular response can be controlled is by 

altering the molecular mobility of the surface, i.e. the degree to which the substrate, upon which 

the cells reside, is free to move. While this property remains less well-studied than the 

archetypal stiffness and topography alterations, there is increasing evidence that mobility can 

alter the cellular behaviour (53-55). In instances of changing the surface mobility of laterally 

mobile ligands (and in related systems), mobility may be considered a simulation of the viscous 

component of the ECM, and thus the other side of the coin to stiffness when drawing inspiration 

from its viscoelastic properties; further, it is the viscosity that defines the ligand mobility, a 

crucial link throughout this current study. Viscosity defines the resistance of a fluid to flow and 

to what degree said fluid resists motion of objects through them. A viscoelastic material 

exhibits both viscosity and elasticity in response to applied force. However, it is this viscosity 

component of the ECM that is of particular importance to this study; as the lipid bilayers used 

in this system are 2D fluids, with particular diffusive characteristics, they also have differing 

degrees of viscosity, which can change the lateral mobility of cell adhesive ligands present on 

the bilayer.  

 

In producing materials that present distinct mobility, polymer surfaces (53, 56, 57) and lipid 

bilayer surfaces (58-61) are commonly used, with some examples of hydrogels also being used 

(62). The latter presents an added complexity due to the simultaneous elastic component of 

hydrogels. In the case of polymers various techniques have been used, with spin coating (56), 

polymer brushes (63), and block copolymers (55) all finding applications in studying the cell 

response to mobility. Lipid bilayers, however, present a narrower range of production methods, 

predominantly being either Langmuir-Blodgett deposition, or vesicle deposition (64). It is the 

latter than is more commonly used in this context, due to their ease of use. While the vesicle 

deposition technique itself is very simple, these can be deposited on to either solid supports, 

such as glass (65), mica (66), or gold (67), or on polymer based supports, which can act as 

tethering or cushioning molecules (68). Together these surface preparation techniques produce 

surfaces of differing ligand mobility/surface viscosity, which has varying impacts on the cell 

response, dependent upon the system. 
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Early, direct observations of the effect of molecular mobility on the cell response were reported 

in the 1970s, with the finding that the mobility of cell receptors, in this case lectins, were likely 

a contributing factor in cell-to-cell attachments and thus had a role in controlling cellular 

processes (69). This work, in turn, arose from the deduction that cell receptors clustered in 

response to ligand binding, which must be related to the lateral mobility of the receptors 

themselves (70, 71). While receptor mobility is distinct from the ligands considered in this 

work, parallels can be drawn through a similar freedom of motion; it is from these early studies 

that study of the effect of the mobility of molecules expanded into various fields, such as 

biomaterials. This conclusion that the receptor mobility influenced cellular processes was 

therefore further studied by a number of groups in the following years, predominantly via the 

production of surfaces using polymers (72-74), or on lipids (75, 76). A key characteristic of 

both these surfaces, as it pertains to molecular mobility, is that they have a transition 

temperature at which the nature of the surfaces change from a less mobile to a more mobile 

structure; in polymers this is referred to as the glass transition, Tg, and in lipids it is referred to 

as the phase transition, Tm. The latter of these will be discussed in further detail later, but in 

both cases the surfaces are considered far less mobile until the temperature is raised above this 

defined transition temperature, which is accompanied by significant increases in the overall 

mobility of molecules present on the surface. 

 

Since the early observations of ligand-mobility dependent cell behaviour, work has sought to 

observe what manner of changes this surface can produce. In the first instance, this ligand 

mobility has been seen to have the potential to control both the initial adhesion and/or the 

morphology of the cells. The results are varied, with one study reporting a reduction in cell 

attachment in vivo with surfaces presenting a higher mobility (74) and another reporting this 

leading to a greater degree of cell attachment (57). Other work has determined there is no 

difference in initial adhesion upon alteration of ligand mobility, instead showing that this 

mobility affects the morphology of the adherent cells (54). However, direct comparisons may 

not be drawn due to the distinct differences in the methodologies applied in these systems. 

What is perhaps more illuminating, in regards to the current work, is the fact that on a high 

ligand mobility (low surface viscosity), peptide-presenting lipid bilayer, cells were seen to 

require a larger effective ligand density to achieve the same adhesion characteristics as those 

on a surface presenting immobile ligands (76).  
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In a more general sense, upon adhesion of cells to the surface, spreading has been often noted 

to tie closely with the ligand mobility (53, 55, 58, 59, 77). While again key differences in results 

may be attributed to the difference between systems, there does appear to be some disagreement 

over the role of viscosity-defined ligand mobility. Despite either being based on polymer or 

lipid mobility, these systems all utilise surfaces with freely diffusive surfaces (without ligand 

in (53)). However, there does appear to be some disagreement between these, as to the effect 

of mobility on cellular morphology. Alternatively, this previous work has demonstrated that 

there is less spreading (53, 58, 77), more spreading (59) or a biphasic response (78) as the 

mobility of the surface increases. Furthermore, when considering this viscous component in 

conjunction with stiffness, as part of a viscoelastic system it also appears that there is an 

increase in the cell spreading upon decreasing the mobility (62); however, in this case stress 

relaxation (reduction of stress within the material over time) is considered the viscous 

component, so direct comparison is limited.  

 

The adhesion machinery, i.e. the focal adhesions, regulating the cell-surface interactions are 

highly dependent on the mobility of surface ligands, as demonstrated in Figure 1.1D. Initial 

insights show that block copolymers of varying diffusion coefficients, functionalised with 

RGD, also vary the size of focal adhesions (55); slower diffusion (thus higher viscosity) was 

associated with a lower ligand mobility in the polymer. While the authors noted biphasic 

behaviour in the cell spreading, leading to a proposal of adhesion-dependent and independent 

spreading, the key implication of this work is that cells were able to detect the ligand mobility 

of the surface on the single protein level. More recent work, using fluid lipid bilayers, patterned 

with barriers of varying thickness demonstrated that this lateral ligand mobility is important to 

the spreading of cells and the formation of adhesions (58, 77, 79). Cells were seen to bind to 

the RGD ligands and pull them towards the cell centre. Due to the fluid nature of the lipid 

bilayer used, the cells retracted to the point of maximum force, clustering ligands within the 

cell area. However, if barriers to the diffusion were introduced (~1 µm) they prevented further 

rearward motion of the ligand and caused recruitment of the focal adhesion associated protein 

paxillin (79); further, both ligands and integrins were seen to cluster around the barriers. This  

work demonstrates that cells cannot form traction forces on fluid-phase bilayers; indeed, 

instead of forming defined focal adhesions, the cell line used in this study produced podosome-
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like structures, commonly associated with invasive cell lines such as macrophages (62) or 

cancerous cells (80).  

 

This lack of forces on lower viscosity systems, exhibiting higher ligand mobility, is also 

implied by studies in more complex systems that have sought to understand viscosity in 

conjunction with stiffness, as the effect of viscoelasticity. For example, using a stacked bilayer 

system (adding further bilayers on top of the original), an increase in the amount of stacked 

bilayers was demonstrated to increase the ligand mobility and decrease tractions forces exerted 

through both cell-cell (cadherin) (81) and cell-surface (integrin) adhesions (82). By stacking 

bilayers, this work also added the element of stiffness to the viscosity  thus determining the 

viscoelastic contributions, rather than the viscosity in isolation that, amongst others (62), shows 

how biomaterials exhibiting both elastic stiffness and viscosity-defined ligand surface mobility 

can be used to be determine the cell response to its environment. As alluded to above, a further 

example as to the role of stiffness within viscoelasticity is the work of Chaudhuri et al., (62), 

which changed the stress-relaxation (viscous component) in hydrogels of the same stiffness. 

This is distinct from the stacked bilayer system in that the ligands did not have the 

two-dimensional surface diffusion; however, this work noted that elastically soft hydrogels that 

exhibited stress-relaxation elicited similar responses to that of stiff hydrogels. Together, this 

work on these systems implies that cells detect ligand mobility on varying viscosity surfaces 

in a similar way to that of stiffness, utilising similar mechanisms. As the ligand mobility 

increases, the cell spreading is hindered, as is the formation of well-defined focal adhesion 

complexes. This is linked with lower forces exerted at the cell-material interface, with the faster 

high mobility ligands detected in a similar manner to a ‘softer’ substrate, with the opposite true 

in the case of less mobile ligands. The question remains, however, as to how the cell response 

to these two distinct physical properties can be merged. 

 

With the cell’s mechanical response being affected by surface viscosity, work has also looked 

at how these biomaterials change other cell responses. However, the direct role of diffusive 

surface ligands, whose mobility is defined by the viscosity of the surface, has not been widely 

studied. As such, parallels must be implied from other, related, work that has sought to 

understand the contribution of the viscous component. For example, hydrogels exhibiting stress 

relaxation showed higher localisation of the mechanosensitive YAP (Yes-associated protein) 
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transcription factor to the nucleus (62). Furthermore, adsorbed ligand mobility on spin-coated 

polymers has shown increased differentiation in both model and stem cell lines in response to 

decreased mobility of the polymer surface (52, 56). In the latter case hMSCs, cells capable of 

differentiation into cells such as osteoblasts (related to bone production) showed increased 

levels of osteogenic markers, a lineage commitment consistent with higher forces (10). This 

increased differentiation was seen as a consequence of the mobility of surface-adsorbed 

fibronectin induced by larger side-chains in the spin-coated polymer used (Figure 1.1D). 

Differentiation that is dependent on ligand mobility, and thus by implication viscosity, has also 

been supported by another group who have showed that cells respond to the anchoring density 

of collagen on polyacrylamide gels of similar stiffness (83). They saw that lower degrees of 

crosslinking between the collagen and the gel led to cell behaviour typical of softer gels, with 

a concomitant increase in differentiation. This work implied that the increased mobility of the 

collagen (due to less anchoring points) reduced the amount of force the cell could apply on the 

surface; this, in turn, led to changes in mechanically activated differentiation pathways.  

 

As can be concluded here, the effect of manipulating the mobility of ligands, through the 

viscosity of the surface in which they are presented, in not settled. It can also been seen here 

that the role of ligand mobility is not limited to the manipulation of the diffusive characteristics 

of the surface. However, it also clear that despite inroads into understanding how the diffusive 

characteristics of surface ligands can affect cellular behaviour, there is yet more that than can 

be understood in terms of the molecular behaviour and the effect on downstream pathways. 

Despite this, these applications, attest to the potential effect of manipulating surface viscosity 

and thus the lateral diffusion, therefore making understanding how the cell responds to these 

viscous surfaces of great interest. 

 

1.2. MOLECULES AND PROCESSES DICTATING THE CELLULAR 

RESPONSE 

While the cell response to biomaterials of various physical properties has been detailed above, 

it necessary to understand how the surfaces simulate the extracellular environment. Further, it 

is also necessary to understand how and why cells respond in a defined way to their 

surroundings, be it in vivo, or in vitro. As has been mentioned and alluded to above, this 
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response is highly varied and dictated by a series of complex processes and molecules that lead 

to the eventual change in the gene expression and consequently the protein profile of the cell. 

While there is a great deal of interplay and overlap between these, for simplicity these can be 

grouped into contributions from the ECM proteins, the cellular binding machinery and 

complexes, and the signalling molecules and processes; together these dictate in what manner 

cells respond to their physical environment. 

 

1.2.1. THE EXTRACELLULAR MATRIX 

The initial point of contact between the cell and their environment are the ECM proteins; in the 

case of synthetic materials, cells do not bind directly to the surface, but instead interact 

indirectly through a layer of these proteins. In vivo these mediating molecules form a mesh 

surrounding the cells and include proteins such as collagen, fibronectin (FN), and laminin 

(shown schematically in Figure 1.2A), with key roles being to provide structural support to the 

cells, partition tissues and the providing various cues and stimuli to the cell. Secreted and 

organised by the resident cells, the properties of the ECM, such as the relative protein 

abundance, physical properties, such as mechanical and topographical properties, and 

signalling molecules, is therefore defined by the cell type (4). Taking the physical properties 

as an example, various tissues are well noted to have distinct viscoelastic properties. 

Specifically, the elastic moduli of various ECMs/tissues, that is their stiffness, is shown to have 

a huge variance throughout the body. As mentioned above, in Pascals this can extend over a 

range of at least six orders of magnitude from 102 Pa in neural tissues (27) and extending to 

109 Pa in cortical bone (28). Analysis of the viscous nature of the ECM is more limited; 

however, cells are able to manipulate the ECM viscosity on the order of 10s of Pa.s (84). With 

cells so responsive to external stimuli, this property, as well as the others mentioned, is capable 

of directing the behaviour relevant to their environment (34, 85).  

 

In order to support cells within the matrix all ECM scaffold proteins contain cell binding 

regions. Of key importance to this study is the cell binding region of fibronectin (Figure 1.2B): 

the RGD tripeptide (arginine-glycine-aspartate, Figure 1.2C), found twice in the fibronectin 

dimer, in the III10 repeat domain of each monomer (86). This, as shown in Figure 1.3 is capable 

of binding to various types of integrins; proteins responsible for cell adhesion (detailed in the 
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next section). In addition there are also the IKVAV and GFOGER sequences found in laminin 

(87) and collagen (88) respectively. The latter of these has also been found to be of special 

interest in the biomedical field, with its ability to accelerate bone healing times in mouse 

models (89). The binding of cells to these different binding sites is capable of changing the 

nature of these adhesions and thus the response of the cells. For example, mesenchymal stem 

cells may upregulate myogenic or osteogenic differentiation if they are bound to fibronectin or 

collagen respectively (90). Furthermore, recruitment of specific integrins can be indications of 

specific processes, such as mechanotransduction (91), or cancer and development (92).  
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Figure 1.2. The Extracellular Matrix and Fibronectin. (A) The cells reside in a heterogeneous 

environment of varying physical and chemical properties, with different proteins, at different 

densities, presenting different ligands, as well as other soluble molecules used for cell 

signalling. (B) A schematic representation of FN, the repeats shown in blue (type I), brown, 

(type II) and green (type III). The binding domains for different molecules are indicated above 

the associated areas. Binding sites for the specific integrins are shown below the associated 

areas. Alternatively spliced extra-domains are also shown (B, A, a variable region; V) (93). 

(C) Shows the RGD tripeptide, present in the III10 repeat of the fibronectin and responsible for 

the binding of the cell to the protein (taken from Sigma-Aldrich website). 

 

In addition to forming a mesh-like structure, enclosing and adhering the cells, the ECM proteins 

are capable of acting as a reservoir of further signalling molecules, capable of controlling cell 

behaviour (6). Prime examples of these are growth factors, proteins that can affect various 

cellular functions, including proliferation, migration and differentiation (94). Of this, 

molecules such as BMP (bone morphogenic proteins), VEGF (vascular endothelial growth 

factor) and FGF (fibroblast growth factor) have found particular use in biomaterials. Not only 

are they involved in the processes of tissues regeneration, but they are also known to bind to 

various ECM proteins. For example, BMP-2 can bind to the III12-14 repeat of fibronectin and is 

capable of inducing osteogenic differentiation in mesenchymal stem cells (95). Furthermore, 

fibronectin is also shown to be highly capable of binding both FGF-2 and VEGF on the same 

repeats (96). Through interactions with the ECM and their relevant cellular receptor, these 

growth factors are presented in a defined spatial distribution, thus determining the nature of 

cell response (97). 

 

1.2.2. INTEGRINS AND THE FOCAL ADHESION COMPLEX 

As alluded to above, when discussing the adhesion of cell to the ECM cells dynamically detect 

and interact with their environment through a family transmembrane receptor molecules called 

integrins (17). Heterodimeric proteins with extracellular, membrane-spanning and cytoplasmic 

domains, these proteins are pivotal in the translation of physical cues to intracellular signals. 

There are 24 different integrin types within this family, produced from a combination of one α 

and one β subunit (17). These are shown in Figure 1.3, with emphasis on those integrins capable 
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of binding the RGD peptide. Integrin recruitment to the site cellular adhesion is dependent on 

the ECM protein present, with different integrins having varying affinities for specific peptide 

sequences. For example, the RGD tripeptide is well known to bind integrins, which include 

α5β1, associated with adhesion and mechanotransduction (91), αVβ3, previously related to 

processes such as angiogenesis (98) and αVβ6, which is associated with cancer invasiveness 

(99).  

 

Integrins are first in a series of proteins whose role is to transduce and then translate external 

cues into a distinct cell response. Key to this is linking the actin cytoskeleton to the external 

environment. As the integrins do not have an actin binding domain they require the recruitment 

of adaptor proteins, through which to mediate this interaction. These proteins may responsible 

for actin-linking, signalling or actin polymerisation, as indicated in Figure 1.4. It is these 

protein complexes, resulting from this recruitment of the adaptor proteins to the nascent 

adhesion of the integrins to the ECM, which are termed ‘focal adhesions’ (Figure 1.4). The 

proteins that are recruited are collectively termed the ‘integrin adhesome’, which consists of 

over 230 components (18), with key roles being the structural, linking the integrin to the 

cytoskeleton (100), signalling (19), and the polymerisation of actin (101). 

 

The focal adhesions therefore allow for the cell to detect and respond to chemical and 

mechanical signals; for example, there is synergistic enhancement of extracellular signalling 

in response to cells binding to FN and VEGF simultaneously (102). However, it is the latter, 

the mechanosensitive nature of these adhesions, that is of key relevance to the current work. A 

number of proteins that make up the integrin adhesome serve as important mechanosensitive 

receptors, capable of transducing physical cues, related to the physical properties of the ECM 

to the cell. For example, talin, existing in two redundant isoforms (talin 1 and 2) has been 

observed to be vital for the formation and maintenance of stable focal adhesions (100). Capable 

of linking integrins to the actin cytoskeleton (Figure 1.4, steps 1 & 2), talin is known to have a 

role in mechanotransduction, unfolding under force (103), exposing binding sites for further 

protein binding (104), which stabilises the overall focal adhesions. Specifically, the binding 

sites exposed are for that of the protein vinculin, a 116 kDa cytoplasmic protein (105). Existing 

in an autoinhibited state, due to interactions of the head and tail group (106), the exposure of 

its binding sites by the stretching of talin, through actin pulling, leads to activation of the this 
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protein (107). The head group binds to talin and the tail to actin, with the neck capable of 

binding further signalling molecules, thus stabilising (108) the interaction of talin with the actin 

cytoskeleton. This enhanced lifetime allows for the formation and maturation stable focal 

adhesions. These are by no means the only two mechanosensitive proteins; indeed, vinculin 

recruitment only accounts for 30% of the adhesion strength within a focal adhesion (109), with 

models also suggesting that talin only experiences approximately 7% of total force (47). Other 

proteins, such as focal adhesion kinase (FAK), are also known to exhibit mechanosensitivity, 

with the exposure of phosphorylation sites upon force-induced unfolding (110). The focal 

adhesions, with their ability to sense a wide variety of environmental cues, therefore serve as 

an important link between the cell and its environment.  
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Figure 1.3. Integrins. Summary of the different integrin subunit combinations and their 

specificity for cell adhesive molecules. Highlighted here are the integrins specific for RGD, as 

this is the molecule used to bind cells in this project. (Adapted from Barczyk et al 2010 (17)) 

 

After the binding of integrins to the ECM and the recruitment of adaptor proteins (Figure 1.4), 

the next stage of environmental sensing is the recruitment of the actin cytoskeleton, this idea 

of discrete ‘stages’ is somewhat of a misnomer. While it is helpful to imagine the process in 

this way, the sensing of the environment, through the linking of the cytoskeleton to the ECM 

(or indeed an in vitro environment), is more of a tightly regulated feedback cycle, as shown in 

Figure 1.4. The actin that makes up the cytoskeleton exists in a globular form (G-actin) before 

recruitment, and a filamentous (F-actin) form, upon recruitment at the leading edge of the actin 

filaments (i.e. the region immediately adjacent to the cell membrane) (111). The actin 

cytoskeleton provides structure to the cell, acts a means of intracellular transport, and is its key 

means of propulsion (112). Indeed, cell motility is variably ascribed to the continuing 

polymerisation at the cell to edge and the action of myosin II. This protein works to pull 

rearwards on the actin filaments, in an ATP-dependent process. This rearward motion, provided 

it is linked to the ECM through the focal adhesions, drives a counter force propelling the cell 

in the opposite direction, in a ‘treadmill-like’ effect. The forces actin is capable of exerting on 

the surface therefore lead to larger focal adhesion complexes (14). Conversely, focal adhesions 

are capable of leading to increased actin polymerisation; for example, zyxin, recruited in 

response to mechanical force (113), is responsible for force-dependent actin polymerisation 

(101). Together, this process develops mature FAs from the initial binding of integrin to the 

ECM, recruitment of adaptor molecules and eventually ECM-actin linking FAs. This linking 

of actin to the ECM, and its related feedback cycle, is the basis of the ‘molecular clutch’ model, 

which has sought to explain how the cells converts this rearward actin flow in to forward 
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movement. In conjunction with this, it has modelled how the mechanical nature of the 

environment affects the cell response (114). 

Figure 1.4. Focal Adhesions and the Actin Cytoskeleton. While integrins bind to the cell 

surfaces step 1 is the myosin-II generated forces, which can affect the multitude of adaptor 

proteins. These can include actin-linking modules (such as talin), signalling molecules (such 

as FAK) and actin-polymerising module (such as zyxin). In step 2 the overall response of these 

modules to the mechanical properties of the network, in conjunction with the actin cytoskeleton, 

defines the mechanical response. This leads to step 3, whereby the signalling module, activates 

downstream G-proteins, such as Rho. These have a significant effect actin-polymerisation and 

contractility (step 4), thus modulating the activity of the force-generating apparatus of the cell 

(step 5). (Adapted from Geiger et al (18)). 
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1.2.3. THE MOLECULAR CLUTCH 

As may be assumed from above, the processes defining the cell response to their environment 

is multi-faceted, but can be summarised by one over-arching factor: the linking of cytoskeleton 

to the surface. By doing this the cells can thereby “feel” the surface, exerting forces, with 

responses to these stimuli fed back through the pathways detailed above. In recent years it has 

been proposed that the cell response may be understood in simple terms. To this end, recent 

work has confirmed the role of a ‘molecular clutch’ in the cell sensing of a surface (47). An 

elegantly simple modelling of the cell, on a single molecule level, as a series of Hookean 

springs (115) has unveiled a key means through which the cells can couple their cytoskeleton 

to the surface. 

 

The ‘molecular clutch’, a term originally coined by Mitchison and Kirschner in 1988 (116), 

was first modelled by Chan and Odde (117). Their stochastic model, represented in Figure 1.5, 

was determined to rely on a series of factors, such as the stiffness of the substrate, the rearward 

velocity of the actin, as driven by myosin II, the binding rate and the unfolding rate of the 

‘clutch’ molecules. In essence, the actin is physically linked to the surface through an actin-

clutch-integrin-ECM chain. The role of myosin II in the cells is to pull on the actin, generating 

force; this myosin contractility powers a continuous flow of actin towards the cell centre, 

termed retrograde (rearward) flow (114). When disconnected from the surface the rate of this 

retrograde flow is allowed to continue unabated. However, upon the coupling of the actin flow 

to the ECM, via the focal adhesions and integrins bound to the ECM, this myosin contractility 

is countered by the resistance of the environment. The degree to which the environment resists 

the forces exerted by the cell is key to the response, as this defines the rate at which force builds 

within the adhesion site: the force loading rate. This is linked to the kon/koff and the kfold/kunfold 

(118); that is the integrin-ECM binding rate and the folding/unfolding rate of the clutch 

molecule respectively. In order for the clutch to be ‘engaged’ the force loading rate must be 

high enough to unfold the clutch molecule within the lifetime of the integrin-ECM bond. 

Taking an as example stiffness, a low compliance (elastically stiff) substrate will have less 

‘give’. This will mean that as the cell pulls on the ligand the force loading rate will be higher. 

This will allow for the force sensitive clutch proteins to unfold before the integrin-ECM 

connection breaks, as shown in the inset of Figure 1.5B. At a low elastic stiffness the opposite 

is true; a slower force loading means that the integrin-ECM bond will break before allowing 
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unfolding of the force sensitive clutch molecules. This unfolding is key; for example, as 

mentioned previously talin unfolding, successfully proven to be a force-sensitive clutch 

molecule (47), exposes binding sites for vinculin (104, 107), which can further stabilise the 

adhesion and lead to reinforcement of the forces exerted on the surface. Were this not to unfold 

within the bond lifetime, the vinculin could not bind. 

Figure 1.5. The Molecular Clutch. (A) A schematic representation of the model that ties the 

response of the cell to the nature of the surface. Applied to stiffness the model dictates that the 

actin cytoskeleton must be linked to the surface via an ECM-integrin-talin clutch, which can 

engage upon the exceeding of a force threshold. (B) Shows average lifetime of FN-αVβ3 as a 

function of force (red points) and the average unfolding lifetime of talin (a proposed clutch 

molecule (blue line)). This demonstrates that at lower forces ECM-integrin bonds unbind faster 

than talin can unfold; however, higher than the threshold force (grey dashed line) the talin 

unfolds faster (adapted from Elosegui-Artola et al., 2016 (47)). (C) Shows the resulting change 

in the localisation of the nuclear transcription factor, YAP, to the nucleus to a greater extent 

on surfaces of greater stiffness (21). 
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Originally used to model the cell response to elastic stiffness (117), the model is capable of 

predicting various parameters relating to the adhesion strength and forces exerted by the cell. 

For example, the clutch can predict properties such as traction forces, adhesion size and actin 

flow, which can be supported by quantitative measurements. Furthermore, it has been used in 

conjunction with inhibition of molecules of interest to identify key proteins, such as talin, and 

their role in the regulation of the cell response to the environment. Beyond this the clutch model 

has been expanded to predict how cells respond to the viscoelasticity, rather than just the 

elasticity, of their environment (62). Furthermore, recent work has shown that the clutch model 

can predict the cell’s response to the topography of their environment (48). Importantly, this 

demonstrates that the molecular clutch hypothesis is capable of tying together the disparate 

properties affecting the cell response, from the properties of the ECM to the nature of the focal 

adhesions, to the response of the cytoskeleton.  

 

1.2.4. DOWNSTREAM CELLULAR SIGNALLING AND CELLULAR BEHAVIOUR 

The cellular response to a surface, irrespective of its nature, depends on how these signals are 

transduced through the ECM proteins and detected by the focal adhesion machinery. Figure 

1.4 the focal adhesions lead to a recruitment of signalling molecules, such as FAK, which lead 

to the promotion of pathways downstream from adhesions (119). As shown in Figure 1.4 shows 

the interplay between the actin and the focal adhesions leads to the downstream activation of 

signalling molecules, with several processes being key to this. The phosphorylation or 

dephosphorylation of proteins is an important example, with Src-mediated phosphorylation of 

FAK, upon exposure of target sites, being key to regulating the focal adhesion behaviour (120). 

Beyond this the Rho GTPases, for example Rho and Rac, are vital to the function of the actin 

cytoskeleton (121). For example, RhoA is activated by several molecules associated with focal 

adhesions in response to ECM interaction (122); RhoA then activates ROCK (Rho-associated 

kinase), which upregulates actin stress fibre assembly (123). These behaviours are associated 

with the physical properties of the microenvironment, with higher activity of RhoA being 

associated with more force and greater cell spreading (32). 
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Beyond the molecules and pathways immediately upregulated by the formation of adhesions, 

there is also an impact on the genes within the cell. An important, but by no means solitary, 

example is that of the transcription factor YAP (Yes-associated protein). Biochemically 

controlled by its phosphorylation in the Hippo-pathway (124) and mechanically controlled by 

the cellular environment (47, 125, 126), YAP localises to the nucleus in response to higher 

forces (Figure 1.5C) and plays a major role in development (127), as well as cancer (128). With 

the mechanical response controlled by the integrity of the actin cytoskeleton, the transcription 

of genes key for in vivo properties, such as organ size (129), it is clear that the environmentally 

defined adhesion is key to further, downstream cellular behaviour.  

 

This is of particular importance in differentiation capable cell lines, specifically stem cells. 

Stem cells are progenitor cells, capable of differentiating into a number of lineages, of which 

there are various types, and may include haemopoietic stem cells or mesenchymal stem cells. 

While the applications of both are highly studied, it is the latter that is of particular importance 

to the current work. Human mesenchymal stem cells (hMSCs) are multipotent, commonly 

found in the bone marrow (but also exist in other tissues such as adipose tissue) and are capable 

of differentiating into cell types such as osteoblasts (bone cells), adipocytes (fat cells) and 

chondrocytes (cartilage cells) (130). The differentiation of hMSCs is highly sensitive to the 

physical nature of the local environment. For example, by manipulating the stiffness of the 

local environment to reflect a specific tissue hMSCs demonstrated upregulation of markers for  

neural, muscle or bone cell lineages (34). Furthermore, other cells, such as C2C12 mouse 

myoblastic cells (muscle progenitor cell line) also show this like-begets-like behaviour, with 

optimal differentiation seen when the environment is of the same stiffness as muscle tissue 

(85). 

 

1.3. LIPID SYSTEMS: THEIR PROPERTIES AND APPLICATIONS 

As mentioned previously, the nature of the cell’s response to the viscosity-defined ligand 

mobility is the key property of interest to the current work. This work seeks to understand how 

the changing the viscosity, thus also the ligand mobility of the surface can change the cell 

response. To this end supported lipid bilayers (SLBs) present an ideal avenue to pursue this 

research. Lipid bilayers predominantly enclose and surround the cell, presenting different 
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molecules, such as proteins and carbohydrates, vital for signalling or recognition. Supported 

lipid bilayers (SLBs) present a simplified, model version of this structure, in which the physical 

properties can be manipulated. As the name suggests these bilayers are made up lipid 

molecules, whose intrinsic properties define the overall properties of the bilayer. One important 

characteristic is that of the phase transition, Tm, where the lipid system moves from a gel-like 

state to a fluid state. It is this characteristic property of the bilayer that is important to the 

current work. 

 

 

Figure 1.6. Lipids and the Phase Transition. (A) The amphipathic structure of a lipid, showing 

the hydrophilic head group and hydrophobic tail. Together these lead to the spontaneous self-

assembly into structures such as unilamellar or multilamellar vesicles, or bilayers, based on 

their intrinsic properties. (B) Shows an example structure of the phospholipid, DOPC, a 

commonly used lipid, and one of particular importance in this study. The hydrophobic and 

hydrophilic regions are noted, with double bond present in each of the tail groups. (C) Shows 

the nature of the phase transition and the change in structure that occurs upon the exceeding 

of the temperature, Tm, characteristic of each specific lipid. This leads to a melting of the 

carbon chains and reduction in the order of the lipid packing, increasing the fluidity. 

 

Lipids are wide ranging groups of molecules encompassing molecules such as phospholipids, 

sphingolipids or cholesterol amongst others. An example of a phospholipid structure is shown 

in Figure 1.6A (for simplicity, unless otherwise stated the term lipid will refer to 

phospholipids). These are amphiphilic molecules, containing a hydrophilic head and a 
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hydrophobic tail (Figure 1.6B) that make up the majority of the plasma membrane, enclosing 

the cell and its organelles and protecting it from the environment.  Due to this amphiphilic 

nature, these molecules orient themselves in an aqueous solution so as to maximise positive 

interactions. The larger scale structures formed are highly dependent on the lipid structure 

(131). For example, while a cylindrical shape is shown in Figure 1.6A is representative of the 

molecular structure of DOPC (Figure 1.6B), this can be more conical, with either the head or 

tail having a wider hydrodynamic radius than the other. This in turn can change larger-order 

structures formed. In the case of the cell membrane they form a planar bilayer, composed of an 

inner and outer leaflet. First imagined as a ‘fluid mosaic’ by Singer and Nicholson (132), it is 

a highly dynamic and varied system, capable of adapting to the environment, as well as 

containing a multitude of proteins vital to function of cells. For example, lipid rafts are domains 

of the plasma membrane containing high concentrations of cholesterol and sphingolipids, 

which sequester important membrane proteins and are involved in signalling (133). Expanding 

this role further, the composition of the membrane of the cell can illuminate its behaviour, with 

higher composition of certain lipids (e.g. phosphatidylserine) present in the outer leaflet of the 

membrane signalling apoptosis (134). More importantly, in this context, the lipid capability of 

spontaneous production of a bilayer upon exposure to a hydrophilic environment has led to a 

wide array of applications; these lipid based constructs can be used as model systems, through 

which to study phenomena such as membrane dynamics (25, 60, 135), or, importantly in this 

case, cell behaviour (78).  

 

1.3.1. THE PHASE TRANSITION 

One key property of  individual lipid molecules that is of specific importance to the current 

work, as mentioned above, is the phase transition: Tm. This is highly dependent on the intrinsic 

properties of the lipid, and is affected by intrinsic properties, such as head group (136), tail 

group length (137) and degree of bond saturation (138). The lipid phase transition, shown 

schematically in Figure 1.6C, may be considered similar to the glass transition found in 

polymers, in that at a specific temperature a lipid structure will transform from an ordered, 

highly packed state, known commonly as either the gel phase to a more disordered, loosely 

packed state, known as the fluid phase (139). Table 1.1 shows the structures and phase 

transition temperatures of lipids commonly used to form bilayers. 
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Lipid Tm (oC) Structure 

DOPC 

(1,2-dioleoyl-sn-glycero-3-

phosphocholine) 

-17 

 

POPC 

(1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphocholine) 

-2 

 

DMPC 

(1,2-dimyristoyl-sn-glycero-3-

phosphocholine) 

24 

 

DPPC 

(1,2-dipalmitoyl-sn-glycero-3-

phosphocholine) 

41 

 

Table 1.1. Lipids commonly used to produce lipid bilayers, with their phase transition 

temperature, Tm, demonstrating the importance of the structure to the point at when the lipids 

change from fluid to gel phase. (All images taken from Avanti Polar Lipids website). 

 

This table serves to demonstrate how the phase transition is affected by the structure. The 

factors that affect this transition are related to the nature of the Van der Waals (VdW) 

interactions between the lipid molecules. In the gel phase the hydrocarbon tail is in a fully 

extended conformation, which leads to tighter packing on the component lipids. In this state 

the system has a high viscosity and thus the membrane components have a low mobility. As 

the Tm is reached the chains ‘melt’ and the hydrocarbon chains are oriented randomly, 

disrupting the packing of the lipid structure and leading to the fluid phase, with a concomitant 

decrease in the viscosity. As it may be assumed, an increased length of this chain would 

increase the VdW interactions, thus requiring greater energy to disrupt this packing. Further, 

the unsaturated bonds induce an inflexible ‘kink’ in the chain, which increases the effective 
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area of the lipid, reducing the VdW interactions between each molecule. DOPC shown here 

has two such bonds and thus has the lowest Tm, with the saturated DMPC and DPPC having 

much Tm due to their saturated chains. DPPC has a longer chain than DMPC and therefore has 

a higher Tm. This shows that the nature of the phase transition, as well as the accompanying 

changes in the system’s viscosity, is highly dependent on a series of easily controllable factors. 

It is this property that makes lipid-based systems attractive as a means of cellular study. By 

using different lipid compositions or combinations thereof it is possible to define, in a specific 

manner, the diffusion coefficient. Were all other factors kept constant it is therefore possible 

to associate the cellular behaviour, in a quantifiable way, with the viscosity of the lipid surface. 

 

1.3.2. PRODUCTION OF SURFACE SUPPORTED LIPID SYSTEMS 

Surface supported lipid systems have long been seen as a useful model through which to 

observe biological interactions. They have applications in microfluidics and lab-on-a-chip 

fields, as well as biosensing (140). There is also an emerging focus on the use of these as 

surfaces within the field of cell biology, studying their response (78). These systems have 

advantages, such as biological similarity and ease of functionalisation, with the current research 

falling within this latter area. However, the types of lipid-based systems that can be used are 

as varied as the fields in which they are applied, with a summary of possible constructs shown 

in Figure 1.7. Free-standing bilayers (Figure 1.7A) have had applications in the production of 

pores or membranes, to study membrane proteins (141, 142). Supported lipid bilayers, as well 

as those that are cushion or tethered via polymer coatings (Figures 1.7B, C and D), also have 

wide biophysical applications. Supported vesicular layers (Figures 1.7E and F), are often an 

intermediate step in the formation of a complete bilayer on the surface; however, they have 

found applications in the monitoring of molecular interactions (143, 144). As supported lipid 

bilayers (SLBs) are used in this study it necessary to understand the factors behind how these 

surfaces are formed. 
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Figure 1.7. Supported Lipid Systems. A schematic summary of the different types of lipid 

systems that can be deposited on a solid support for various applications. (A) Shows a free-

standing bilayer; (B) a supported lipid bilayer, as used in this study; (C) shows a polymer 

cushioned lipid bilayer, with (D) showing a similar construct of a polymer tethered bilayer; 

(E) shows a vesicle presenting bilayer, which has applications in drug delivery systems and 

(F) shows a supported vesicular layer. While not all of these are widely used, they exemplify 

the types of systems at a researcher’s disposal. (Adapted from (64)). 

 

There are two key methods in the production of SLBs: vesicle deposition and Langmuir-

Blodgett troughs. Both have advantages and disadvantages; however, the former will be 

discussed here as, due to the ease of production, this system was used throughout this project. 

Terminology of the field uses the terms ‘vesicles’ and ‘liposomes’ sometimes interchangeably 

and sometimes using the term ‘vesicle’ as a more general term for all vesicular lipid structures, 

with liposome specifically referring to unilamellar vesicles. However, throughout this work, 
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the term ‘vesicle’ has been used with specific regards to unilamellar vesicles, with different 

structures noted. This is to prevent any confusion between terminology used here and the 

commonly used naming conventions e.g. vesicle-vesicle interactions or vesicle deposition.  

 

The process whereby vesicle deposition produces SLBs is shown schematically in Figure 1.8. 

Key to forming a SLB on a surface is a variety of factors, one such being the role of electrostatic 

interactions. These govern both the interaction of the vesicles with one another and with the 

surface. For example, in Figure 1.8A were the ionic strength of surrounding buffer changed, or 

indeed its pH (145), then SLB-formation would be significantly affected. Further divalent 

cations, such as Ca2+ or Mg2+ can promote the formation of SLBs, likely due to electrostatic 

screening, even in mM concentrations (146). The ionic strength in general can not only change 

the electrostatics, but also the stability of the vesicles themselves, by changing the osmotic 

pressure. It has previously been noted that SLB formation progresses more quickly with a 

higher osmolarity in the surrounding buffer, compared to within the vesicle (147). Further, the 

same work showed that the size of the vesicles themselves governs SLB formation, with larger 

vesicles less capable of forming bilayers. 

 

Beyond simply addressing the nature of the vesicles, the contribution of the solid support 

cannot be underestimated. Figure 1.8B shows the intact vesicles adsorbed to a solid support. 

This concentration of vesicles is important, with a critical coverage required for the formation 

of bilayers. Indeed, single vesicles were seen to be stable over a significant time if adsorbed 

individually. However, if adsorbed in larger concentrations the vesicle rupture was seen, 

leading to continuous bilayer formation (148). This bilayer formation was only observed on 

specific substrates, such as glass and mica, whereas on surface such as TiO2, there was minimal 

SLB formation (without additional strategies), regardless of the vesicle coverage (147). The 

charge of the surface can also have an effect on the formation of SLBs as shown previously 

(149). Interestingly, if the surface charge, provided by NH3
+ groups, was screened using 

a -COOH containing buffer, then vesicles, rather than an SLB were seen on the surface. This 

contribution of charge is also related to the vital role of the hydrophilicity of a surface. It has 

been noted that in order to maximise favourable interactions between the vesicles and the 

surface the surface must be highly hydrophilic, with a water contact angle <10o required to 

induce vesicle rupture (150). However, vesicles may still only partially fuse or adsorb on top 
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of the bilayer even after maximising the vesicle-vesicle and vesicle-surface interactions. Thus, 

with the vesicle deposition technique it is often the case that thorough optimisation of these 

factors to the experimental setup is required.  

 

The nature of surface continues to have a significant effect on the nature of the bilayer beyond 

its initial formation. As shown in Figure 1.8C, there is a 1-2 nm thick water layer formed 

between the solid support and the bilayer. This water layer and the interaction with the solid 

support significantly effects the mobility of the lipids in the bilayer, with the diffusion 

coefficient reduced by ~ 2-fold on SLBs compared to that in vesicles (151). This induces a 

separation in the properties of the two leaflets making up the SLB. For example, due to 

interactions the water layer, the diffusion of the proximal leaflet is slower than that of the distal 

leaflet (152, 153). Similarly, the phase transitions of the leaflets are dissimilar, with the melting 

of the lipid chains occurring at a higher than normal temperatures in the proximal leaflet, 

attributed to a stabilising effect of the solid support itself. The roughness can also have a 

significant effect, inducing large changes in the lateral mobility of the SLB components, with 

rougher surfaces leading to higher diffusion coefficients (61). This proximity of the SLB to the 

surface has a knock-on effect on their applicability. For example, membrane-spanning proteins 

cannot be successfully incorporated into these constructs due to the limited space between the 

SLB and the surface (140). This has been alleviated by the production of the polymer cushioned 

and tethered SLBs (Figure 1.7C and D respectively), which allow for the inclusion of these 

proteins (154).  
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Figure 1.8. Formation of Supported Lipid Bilayers. The process of vesicle deposition, leading 

to the formation of SLBs. Initially, vesicles adsorb to the surface e.g. glass, mica, gold etc. In 

(A) the vesicle solution is added to the surface. The buffer is important, due to the electrostatic 

interactions, as well as the osmotic pressure caused. These vesicles may contain a number of 

modifications, including fluorescence or functional groups; however, these may change the 

vesicle-vesicle and surface-vesicle interactions. In the (B) the vesicles adsorb to the surface 

and, depending on the nature of the interaction, either remain as intact vesicles or, as in (C), 
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spontaneously rupture and form a single bilayer. This latter event depends on variables, such 

as the vesicle concentration, the vesicle-surface interactions, the vesicle-vesicle interactions 

and the vesicle buffer interactions. The proximal and distal leaflets can have different physical 

properties, such as diffusion coefficients, due to the proximity of the proximal leaflet to the 

surface and the interstitial water layer (blue). 

 

1.3.3. UNDERSTANDING THE DIFFUSIVE CHARACTERISTICS OF 

SUPPORTED LIPID BILAYERS 

Together, the previous two sections demonstrate how the phase transition can change the 

physical properties of the bilayer and how these can be formed on solid surfaces. However, it 

has also alluded to how the diffusive characteristics may also be affected. Therefore, it is also 

important to understand how these factors combine to produce supported lipid bilayers of 

defined diffusive characteristics.  

 

The diffusion of bilayers can be measured by several fluorescence based techniques, including 

FRAP (fluorescence recovery after photobleaching), FCS (fluorescence correlation 

spectroscopy) and FLIM (fluorescence lifetime imaging). Each of these provide distinct 

advantages and disadvantages, but, either directly or indirectly, allow for the calculation of the 

diffusion coefficient, D, of a lipid bilayer. The nature of these techniques is summarised in 

Figure 1.9. In Figure 1.9A, FRAP bleaches a spot of defined area, and the return of the 

fluorescence is then measured over time. FCS (Figure 1.9B), relates photon counts over time 

to a decay in the probability of the two counts being the same event. The decay in this 

probability is related to the diffusion time (details on this in section 2.8). FLIM (Figure 1.9C), 

is a more indirect measure of the diffusion, and measures the rotation of a fluorophore in the 

membrane. Fluorophores that are sensitive to the viscosity of their environment will have 

different fluorescence lifetimes, which is related to the diffusion. Together, or separately, these 

approaches can give key insights into the environment of a molecule in a bilayer. 
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Figure 1.9. Measuring Diffusion in Supported Lipid Bilayers. (A) FRAP: A high intensity 

laser excites the fluorophores in a given area to the point of bleaching. The rate at which the 

fluorescence returns is dependent on the diffusion of the bilayer and the area bleached. (B) 

FCS: Fluorophores in the bilayer are illuminated as they pass through an illumination volume. 

The photon residence time and thus the decay in the autocorrelation function (relating the 

probability of two events being a single photon), thus the decay is dependent on the diffusion. 

(C) FLIM: The lifetime of the fluorophore in the excited state is dependent on the rotation 

within its environment. This can be related to the viscosity using standard of known values. 

The viscosity can then be related to the diffusion, through the Saffman-Delbruck equation. 

 

The diffusion coefficient, as measured in (µ)m2/s, is a good indicator of the mobility of the 

ligand, but is also connected to and controlled by further properties, such as, importantly, the 

viscosity, as well as the radius of the diffusing molecule and the thickness of the bilayer. These 

connections were first determined by Saffman and Delbruck in 1978 (155). Inventively named 

the Saffman-Delbruck (SD) equation (shown in equation 1.1), it demonstrates a relationship 

between these contributing factors: 

 



60 

 

𝐷 =  
𝑘𝐵𝑇

4𝜋𝜂𝑚ℎ
 [ln (

2𝐿𝑆𝐷

𝑅
) −  𝛾]                (1.1) 

 

Where D is the diffusion coefficient, kB is the Boltzmann constant, T the absolute temperature, 

ηm the membrane viscosity, LSD, the Saffman-Delbruck length, R the radius of the diffusing 

molecule and γ the Eular-Mascheroni constant (0.577). The SD length is: 

 

𝐿𝑆𝐷 =  
ℎ 𝜂𝑚

2 𝜂𝑓
                  (1.2) 

 

Where h is the thickness of the bilayer and ηf is the viscosity of the surrounding fluid. 

 

Over the years, this has been further developed by other groups (156, 157), with different 

degrees of applicability. For example, the HPW model, can only be solved computationally, 

but its relevant development allows for a more accessible solution (157). Together these have 

sought to expand the validity of the SD equation, as, in its original form it remains valid only 

as the long as the inclusion radius is significantly smaller than the SD length. In larger 

diffusions, such as micron-scale lipid domains, the original equation fails, which is not the case 

in these developments. The modified predictions were, however, valid at all length scales. 

However, beyond these developments, another group has also produced an alternative means 

of calculating the diffusive characteristics of molecules within the bilayer as shown in equation 

1.3 (135): 

 

𝐷 =
(𝑘𝐵𝑇) 𝜆

4𝜋𝜂𝑚ℎ𝑅
                           (1.3) 

 

Where λ is the characteristic length. 

 

This equation has sought to compensate for the valid range of the original SD equation, with 

the key differences between these equations being the relationship of the radius of the diffusing 
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molecule to its diffusion coefficient. While the SD equation stipulates that there is a weak 

logarithmic dependence of the diffusion on the diffusing radius, this alternative equation 

demonstrates a 1/R relationship. Further, they have proven that this equation holds true for 

protein diffusions determined elsewhere. They also define a characteristic length (λ), 

introduced for dimensional reasons and a measure of the membrane perturbation caused by the 

diffusing object. As the radii of these membrane inclusions radii can range from 0.5 nm, in a 

single lipid, to hundreds of nm in protein complexes, this length can give huge ranges of 

diffusion values, depending on how the inclusion is predicted to interact with the bilayer. 

Gambin et al. (2006), which proposed this equation, validated this proposal by producing 

bilayers of tuneable thickness (h) to determine if the equation would predict the diffusion 

values when adjusting this variable. Furthermore, by incorporating proteins of variable size 

into the bilayer of giant unilamellar vesicles the also tested if the equation was valid at different 

inclusion radii (R). In both cases the 1/R relationship predictions agreed well with attained 

values for the diffusion. In addition to this, diffusion values obtained from the literature also 

showed good agreement with these predictions. Therefore, according to results previously 

observed in the literature, both of these equations appear valid, but it is not clear to what extent, 

nor which is more accurate.  

 

Beyond these issues, a key point to note is that the determination of the diffusion coefficient is 

related to the viscosity of the bilayer. This therefore means that bilayers of known diffusion 

can define the viscous properties of the bilayer. This has applications in the study of 

mechanobiology as the cells response to the surface can be linked to the bilayer’s viscous 

properties. It is this relationship that is of interest, when seeking to understand the molecular 

basis of the cell response to supported lipid bilayers of differing diffusive characteristics. 

 

1.3.4. SUPPORTED LIPID BILAYERS IN CELL STUDIES 

Due to their biomimetic nature, lipid bilayers have a great deal of potential is cell-based studies; 

further, the ease with which they can be altered with different moieties also serves to enhance 

their appeal. To this end they have been used in a wide array of different cellular based studies. 

Examples include bilayers used as a means to adhere and culture cells, using different adhesion 

promoting moieties (158-160), as well as using these systems to study the nature of the cell-
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cell (81, 161) or the cell-interface (77, 79, 82) interactions. As a subset of these cellular studies, 

the fluid nature of the bilayer has led to these systems being of particular interest in studying 

the field of mechanobiology (78). The diffusive characteristics, detailed above demonstrate 

how they can allow for relatively simple means of understanding how the cell responds to the 

mechanical properties of the environment. 

 

Naturally non-fouling as a consequence of either the mobility of the lipids (162) or their neutral 

charge at physiological pH (163), SLBs must first be functionalised to be used a cellular 

platform. However, this in itself presents a myriad of opportunities, as this can be used to 

present a wide variety of molecules on the surface. Crosslinking strategies such as avidin-based 

proteins with biotinylated lipids, as done in this work, present simple and effective means of 

stable conjugation of biological molecules to the SLBs (164). Functionalisation can also be 

performed through the use of carbodiimide links (165), amongst other covalent methods. To 

introduce functionality these moieties can be bound to a variety of functional molecules, such 

as cadherin (81), collagen (165), EGF (166), RGD (159)  and DNA (167). The wide variety of 

simple strategies, as wells as a bank of biological molecules upon which to draw from, means 

that SLBs have a wide potential for their use as platforms to study a wide array of biological 

processes. 

 

Upon functionalisation, SLBs can be used to probe a wide number of biophysical and biological 

processes. For example, they have been used to produce an idealised model synapse system, 

understanding the role of the component lipids and strength of interaction (167). Further they 

have been used to probe the interaction of T-cells with antigen presenting cells (168). In more 

cell-based studies they can be functionalised with cadherin molecules in order to probe cell-

cell adhesion (169). Cadherins play a major role in cell-cell adhesion, akin to the role of 

integrins in cell-surface interactions (170); thus, using lipid bilayers to study how their physical 

environment changes how cells respond is vitally important. Further, cadherin-functionalised 

SLBs were used in conjunction with PDMS microwells to produce a 3D single-cell 

environment in order study the effect of dimensionality and ligand mobility on the cell (161).  
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This is not the only example looking at how the nature of a SLB controls the cell adhesion, 

with other using it as a general adhesion platform for cell culture (171), as well as others 

looking at the nature of the cell-surface interactions using QCM-D (quartz crystal 

microbalance-dissipation) (172). Yet others have used SLBs, tethered to doxorubicin-loaded 

(anti-cancer) liposomes, as a model cancer therapy (173). In addition to these applications, 

SLBs also present an opportunity to change the nature of the cell i.e. control lineage 

commitment in relevant cell lines. As already noted, the response to the lateral mobility (as 

controlled by viscosity) is akin to that of stiffness, with it being possible therefore to control 

cell behaviour in this manner. The viscosity of lipid bilayers defines their lateral mobility, 

which can control cell spreading and cytoskeleton organisation (161); thus it is possible, and 

indeed implied, in recent work that differentiation is also controlled through the ligand mobility 

(59). However, unlike the biomaterials detailed in section 1, SLBs have not found widespread 

use in longer-term cell cultures, relevant to differentiation studies.  

 

In addition to the usage of SLBs as a simple biological platform it has also found applications 

in the field of mechanobiology (78). This is despite the lack of applicability of 

well-characterised force-sensing techniques, such as traction force microscopy, in determining 

the force exerted with regards to the fluid component of SLBs. Typically, in traction force 

microscopy the displacement of fluorescent beads, embedded within a surface (e.g. hydrogel), 

gives values pertaining to the forces exerted on surface by the cell. However, as SLBs are 

laterally mobile, displacement of any molecule present on or within the surface will also be 

acted upon by forces related to this. Despite this limitation, inroads have been made in 

determining biological forces exerted on SLBs. For example, tension sensors have been used 

in conjunction with SLBs to measure the forces present within the cell-surface interactions 

(174). By using a DNA ‘spring’ pN forces can pull apart the fluorophore and its intramolecular 

quencher, which can be related to the mechanical force present on the surface. Known as 

MTFM (molecular tension fluorescence microscopy), it has been successfully applied in to 

determine the forces in T-cell receptors, but currently not for the cell adhesive integrins. Other 

work has used stacked SLBs, as means to attempt to apply traction force microscopy to these 

fluid surfaces. By embedding fluorescent beads within a hydrogel and stacking SLBs (up to 

four) on top (crosslinked together) this work was able to ascertain an idea as to the traction 

forces present. However, the presence of crosslinked laminin networks on the surface meant 
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that the elastic contribution of the laminin on the surface was observed rather than the 

contribution of the underlying fluid SLB. These example, despite demonstrating possible 

difficulties, also allude to the potential of using these surfaces in understanding the role of 

viscosity in the production of force at the surface. 

 

Addressing mechanobiology in cell adhesion specifically, this has been covered superficially 

in section 1.1.2. While not a SLB based study Garcia et al. nonetheless used supported lipid 

monolayers of DOPC and DPPC to show that increasing the lateral mobility of the surface 

increases cell spreading. In contrast, Kocer et al. saw the opposite was true in SLBs of the same 

components, citing increased clustering in the DOPC as the principal cause. Stacked lipid 

bilayers have also contributed to this field (81, 82); as noted previously the interaction of the 

SLB with the solid support leads to a decrease in the diffusion coefficient. Using a number of 

separate bilayer stacked on one another and attached via PEG-based linkers, this work showed 

that as the number of bilayer stacks increased so too did the diffusion, with a concomitant 

decrease in cell spreading. It must be noted, however, that this does not account strictly for 

bilayer mobility, with the increasing number of stacks also decreasing the detected stiffness; 

nonetheless is an interesting approach to adjusting the diffusion of a bilayer.  

 

On a more molecular level SLBs have also been used to determine the nature of the adhesion 

machinery at the cell-surface. Interestingly, this has led to the discovery that initial adhesion is 

independent of force, with integrin clustering similar on both fluid SLBs and the glass control 

(175). Further, proteins such as paxillin, FAK and talin, all implicated in force generation, are 

recruited independently of lateral forces (79). This is not true of vinculin, however, which 

required contractile forces for recruitment. This change in the nature of the forces has wider 

implications on the adhesion structures themselves. For example, the removal of traction 

forces, by culturing cells on DOPC SLBs led to the formation of podosome-like adhesions 

rather than focal adhesions (58). This has implications in cancer metastasis as these ring-like 

podosomes are related to more invasive cell lines, such as cancer cells (80). Further, endocytic 

machinery is also upregulated in upon the removal of traction forces, as cells were noted to 

have increased levels of internalised ligand on fluid DOPC SLBs (77). Due to talin and the 

endocytic adaptor protein, Dab2, being mutually exclusive at integrin clusters, it is interesting 

to note that force generation may act as a switch between mechanical and biochemical means 
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of signal transduction in the cell. These studies therefore illuminate the potential of SLBs for 

the studying of various processes and consequences relating to the mechanical sensing of the 

surface. 

 

1.4. THE CURRENT WORK 

1.4.1. THESIS AIMS 

The core objective of this thesis was to understand, in greater depth, how the cell response is 

controlled by the viscosity-defined ligand mobility, with a mind as to how this can be applied 

to a cell system relevant to regenerative medicine. To this end the aims of this thesis were: 

 

1. The production and characterisation of supported lipid bilayer of varying viscosity. 

2. Determining how the changes in the viscosity-defined ligand mobility affect the cellular 

response, specifically in terms of the nature of the adhesion and morphology.  

3. Elucidation of the underlying molecular principles related to how the cells detect the 

viscosity-defined ligand mobility, and the consequential downstream effects on the cell. 

4. Application of supported lipid bilayers as a platform, upon which to grow and 

manipulate human mesenchymal stem cells. 

 

1.4.2. THESIS OUTLINE 

Chapter 2 outlines the methodology of how the supported lipid bilayers were produced and 

characterised, as well as the relevant control. It also details the nature of the cell assays and the 

different methods to determine the nature of the cell response.  

 

Chapter 3 shows the production and characterisation of the supported lipid bilayers through 

atomic force microscopy and fluorescence correlation spectroscopy, as well as using 

fluorescence to ascertain the stability of the system. The functionalisation of the SLBs was then 

quantified using quantitative fluorescence microscopy.  
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Chapter 4 details the cell response in terms of the initial adhesion and morphology behaviour 

of the cell. To this end the chapter quantifies the response of the cells in terms of the nature of 

their morphology and their focal adhesion properties. 

 

Chapter 5 has sought to develop from chapter 4, by attributing the cell response to the ligand 

mobility to the viscosity of the lipid bilayer. To this end the molecular clutch developed by 

Prof. Pere Roca-Cusachs et. al., previously applied to stiffness, was used to attempt to 

understand the cells response to surface. The actin flow was determined with and without the 

presence of inhibitors. Further to this, the consequential downstream effects of the cell 

response, i.e. transcription factors localisation and differentiation, was also determined. 

 

Chapter 6 has applied the SLBs as a cell culture platform for mesenchymal stem cells (MSCs). 

This chapter details the initial adhesion and morphology of MSCs over 24 and applies further 

strategies to optimise and promote more effective long-term adhesion. 
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2. METHODS & MATERIALS 

 

2.1. LIPID PREPARATION AND VESICLE PRODUCTION 

2.1.1. PREPARATION OF LIPID SOLUTIONS 

The two bilayer forming lipids were used in this project were DOPC (1,2-dioleoyl-sn-glycero-

3-phosphocholine, Avanti Polar Lipids, AL, USA), and DPPC (1,2-dipalmitoyl-sn-glycero-3-

phosphocholine, Avanti Polar Lipids, AL, USA). The former has a transition temperature of  

-17oC, and is in the fluid-phase at the cell culture temperature of 37oC. The latter has a transition 

temperature of 41oC, and is in the gel-phase at cell culture temperature. Both of these were 

provided already suspended in chloroform and were used at the delivered stock concentrations.  

 

In order to functionalise the SLBs b-cap-PE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-

N-(cap biotinyl), Avanti Polar Lipids, AL, USA) was added in various amounts. Initially, the 

number of moles of DOPC or DPPC used was calculated and necessary percentage of moles 

(mol%) of the functionalised lipid was added in a range from 0.02 – 10 mol%. This lipid was 

provided in powder and dissolved in a solution of 65:35:8 v/v chloroform:methanol:water to a 

stock concentration of 5.5 mg/ml. For regular usage a more dilute solution was used at a 

concentration of 0.5 mg/ml, in 1.9 ml of chloroform and lipid solution, adding 100 µl of 

methanol (to ensure solubility), to a final volume of 2 ml. Functionalisation was also achieved 

through the addition of positively charged lipid to the lipid mixture. This was only included in 

mesenchymal stem cell (MSC) cultures, as detailed later. To produce positively charge bilayers 

DOTAP (1,2-dioleoyl-3-trimethylammonium-propane (chloride salt), Avanti Polar Lipids, 

USA) was included at 0 – 30 mol%. 

 

When needed, fluorescent lipids were also added to the lipid mixture; for example, when 

determining diffusion. For the study of diffusive characteristics and initial visualisation 

BODIPY-conjugated lipid molecule TopFluor-PE (23-(dipyrrometheneboron difluoride)-24-

norcholesterol and 1-palmitoyl-2-(dipyrrometheneboron difluoride)undecanoyl-sn-glycero-3-

phosphoethanolamine, Avanti Polar Lipids, AL, USA), with an excitation/emission 

wavelength of 495/503 nm, was used in a concentration of 0.01 – 0.5 mol%. For fluorescence 
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correlation spectroscopy measurements a lower concentration was used, for reasons described 

in the relevant section. For imaging, higher concentrations were used so as to compensate for 

any bleaching caused by excitation. Texas Red DHPE (Texas Red™ 1,2-Dihexadecanoyl-sn-

Glycero-3-Phosphoethanolamine, Triethylammonium Salt, Molecular Probes, USA) was also 

added to the bilayer when performing quantitative fluorescence imaging, as detailed in the 

relevant section. 

 

Lipid mixtures were produced by adding 2 mg of DOPC or DPPC to a glass vial. Other lipids, 

detailed above were added as required, as a mol% of DOPC or DPPC. These mixtures were 

then dried thorough under a steady stream of N2 gas, which evaporated the chloroform, leaving 

a dry lipid film in the vial. Any excess chloroform was subsequently removed by further drying 

under vacuum for ≥1 hr.  

 

2.1.2. REHYDRATION AND PRODUCTION OF SMALL UNILAMELLAR LIPID 

VESICLES 

For the suspension of the lipids in aqueous solution, samples were rehydrated in R (rehydration) 

buffer. This buffer was made with 150 mM NaCl and 10 mM Tris and to a pH of 7.4. For 

DOPC room temperature (RT) buffer was added to a final concentration of 3 mg/ml of lipid 

and allowed to swell for 1 hour, with occasional vortex mixing to remove any remaining lipid 

film from the vial. In the case of DPPC, the preparation was the same, but the R buffer was 

pre-warmed to above the transition temperature and maintained throughout the rehydration 

process.  

 

The rehydration of the lipid film in aqueous solution produced a large multilamellar vesicle 

(LMV) solution; that is, a solution of vesicles that are of various different structures and sizes. 

However, to produce contiguous, supported lipid bilayers (SLBs), vesicles ideally should be 

below 90 nm in diameter, so as to maximise the membrane tension and promote fusion to the 

surface (176). To this end LMV solutions were extruded through polycarbonate membranes 

(Whatman® Nucleopore Track-etched membrane, Avanti Polar Lipids, AL, USA) of 50 nm 

and 100 nm pore size, using the mini-extruder system (Avanti Polar Lipids, AL, USA). The 

system is set up as shown in Figure 2.1. The filter supports and the polycarbonate membranes 
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were wet with R buffer prior to assembly and the system was constructed as directed. Prior to 

extrusion of the lipids the whole assembly, including the syringes, was washed through with R 

buffer several times. Concerning the polycarbonate membrane, the DOPC LMV solution was 

extruded through a membrane with a pore size of 50 nm at RT, producing small unilamellar 

vesicles (SUVs) of DOPC. However, DPPC required an adjusted method; prior to extrusion, 

the whole apparatus, and the DPPC, was heated to 70oC. This is under the recommendation of 

previous work that has noted typical temperatures of bilayer formation was much higher than 

the 41oC transition temperature (177). To produce DPPC SUVs, the heated solution was first 

extruded through a 100 nm membrane. This membrane was then replaced and the solution 

extruded again through a 50 nm membrane. In each extrusion, in both the case of DPPC and 

DOPC, solutions were extruded a minimum of 11 times to produce the final SUV solution. In 

the case of all vesicles the effect of the extrusion was determined through dynamic light 

scattering (DLS) measurements, confirming the size and polydispersity of the solutions 

(Zetasizer Nano Z, Malvern, UK). 

Figure 2.1. Extrusion. The Avanti mini-extruder system, showing the means of assembly for 

the system. (Image taken the website of Avanti Polar Lipids (178)) 

 

 2.2. PREPARATION OF GLASS SURFACES 

In order for SLBs to form on the glass surfaces were required to be both very clean and 

hydrophilic; ideally, the contact angle must be below 10o on glass surfaces, in order to 

maximise vesicle-substrate interactions (150). In order to prepare the surfaces for SLB 

formation two preparation methods were used; one method was used to prepare glass for fixed 
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cell experiments (for antibody staining), and the other for live cell experiments (dynamic 

process observations) in glass bottomed multi-well plates. 

 

2.2.1. GLASS PREPARATION FOR FIXED CELL EXPERIMENTS 

For fixed cell experiments glass coverslips of thickness 0.08 – 0.13 mm (thickness no. 0) with 

a diameter of 32 mm were used. Coverslips were sonicated first by ultrapure water and then 

with ethanol for 15 mins each, and washed in between each step with ultrapure water. The 

cleaning solution used was an RCA solution and was produced by mixing ultrapure water, 

ammonium hydroxide and hydrogen peroxide in a ratio of 5:1:1. This solution was then heated 

to 60 – 70oC; upon the reaching the desired temperature, the coverslips were immersed in the 

solution for 20 mins. Subsequently, samples were washed extensively in ultrapure water and 

dried using a stream of N2 gas. After drying samples were stored in a sealed container until use. 

 

2.2.2. GLASS PREPARATION FOR LIVE CELL EXPERIMENTS 

For live cell experiments, glass-bottom multi-well plates (Mattek, USA) were used and so a 

highly aggressive clean of organic contaminants could not be performed in this case. As such 

the plates, with no. 0 thickness, as before, and a 20 mm glass well diameter, were cleaned by 

sonicating the surface with ethanol for 1 hr and washed with ultrapure water. Surfaces were 

then dried with a stream of N2 gas. Plates were then cleaned with an oxygen plasma for 20 min 

at the highest power setting (Expanded Plasma Cleaner, PDC-002, Harrick Scientific, USA), 

and sealed until use. 

 

2.3. PRODUCTION OF PDMS WELLS 

Due to the necessity of keeping the SLBs hydrated at all times, wells were produced on the 

glass coverslips for fixed cell experiments, so as to make washing and culturing of cells easier. 

Polydimethylsiloxane (PDMS) was used due to its biocompatibility and simple means of 

production. Initially, the PDMS elastomer (Sylgard 184, Farnell, UK) was mixed in a 9:1 ratio 

with its crosslinker and mixed thoroughly. The mixture was then poured into a flat, plastic dish, 

taking care to ensure the mixture was as evenly distributed as possible. The mixture was then 
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degassed, under vacuum for 30 mins and cured for 2 hrs at 65oC. After curing, the wells were 

made, from the now solid PDMS, first by cutting a larger samples of 26 mm using a metal 

stamp. Smaller wells, to hold the SLBs, were cut from these, using a stamp with a diameter of 

9 mm. The well dimensions are shown to scale in Figure 2.2. These cut surfaces were then 

cleaned by sonicating in methanol for 10 mins and rinsing with further methanol; they were 

then covered and dried at 65oC. The cleaned and cut PDMS was then bonded to the glass 

coverslips using a handheld plasma corona (BD-20V, Electro-Technic Products). Both the 

glass and the PDMS was activated by exposing to plasma for 20 s each and bonded by applying 

the activated surfaces to each other under pressure immediately. For use in cell culture the 

resulting glass-bottomed wells were then sterilised with UV light for 30 mins and stored in a 

sealed, sterile container until use.  

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Experimental Setup. The dimensions of the PDMS wells used to produce SLBs. 

All measurements are to scale.  

 

2.4. PRODUCTION OF SUPPORTED LIPID BILAYERS AND GLASS 

CONTROL 

2.4.1. PRODUCTION OF SUPPORTED LIPID BILAYERS 
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To produce and wash both DOPC and DPPC based SLBs F (fusion) buffer was used. This is 

of a higher NaCl concentration to increase the osmotic pressure on the vesicles, made with 300 

mM NaCl, 10 mM Tris and 10 mM MgCl2. The higher osmotic pressure on the outside the 

vesicles compared to the inside and the presence of a divalent cation improves the efficiency 

of bilayer formation (179). The SUV solutions were diluted in F buffer immediately before 

use; the final concentrations of DOPC and DPPC were 0.1 mg/ml and 0.2 mg/ml respectively 

and either kept at RT (DOPC) or at 70oC (DPPC). To ensure sterility these solutions were then 

filtered through a 200 nm membrane (Sartorius) prior to incubation on the glass surfaces. 

Immediately prior to incubation with the final SUV solutions the glass surfaces were activated 

by oxygen plasma for 10 mins in fixed cell experiments (Diener Electronics, 150W) and 20 

mins for live cell experiments (Harrick Scientific, high power). Samples were then sterilised 

using UV light for 5 mins and the SUV solutions were incubated for 20 mins. In DPPC, this 

was performed at 70oC. After incubation samples were then washed extensively with F buffer 

and, subsequently, ultrapure water at RT (DOPC) or 70oC (DPPC). At all times care was taken 

to ensure the lipid coated area was kept hydrated to prevent bilayer destruction. 

 

 2.4.2. PRODUCTION OF RGD-GLASS CONTROL 

To contrast the effect of a mobile and immobile ligand a representative glass control was 

produced. Initial steps in the preparation of these surfaces was the same as with bilayers in both 

fixed and live cell experiments. However, once cleaned the methodologies diverge. To produce 

the immobile control, the cleaned glass surfaces, either the PDMS wells, or the glass-bottomed 

dishes, were incubated for 1 hr with 1% v/v APTMS (3-amino(propyl)trimethoxysilane, 

Sigma-Aldrich, USA) solution in propanol-2-ol (Sigma-Aldrich, USA). Surfaces were then 

washed with propan-2-ol and dried with N2 gas. Samples were then allowed to cure at 65oC 

overnight, and were subsequently sterilised with UV light for 20 minutes. Samples were stored 

in a sealed container before use. The presence of silanes on the surface was confirmed with 

static water contact angle measurements (Attension Theta, Biolin Scientific, USA).  

 

To biotinylate the surface a heterobifunctional crosslinker was used: biotinamidocaproate N-

hydroxysuccinimide ester (Sigma-Aldrich, MO, USA), with the NHS-ester group binding to 

the amino group on the silane. A stock solution was made up in dimethylformamide (DMF) 
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and used within 1 month. Immediately before use, this was diluted to 1 mg/ml in ultrapure 

water and incubated on the silanised glass surfaces for 1 hr. Surfaces were then washed 

extensively with ultrapure water. It is here that the methodologies once again converge, so as 

to functionalise all surfaces with the RGD tripeptide.  

 

2.5. FUNCTIONALISATION OF SURFACES 

Functionalisation of all samples was done using the biotin-avidin interaction. A biotinylated 

cyclic-RGD peptide was used to adhere cells to the SLB surface (Peptides International, KY, 

USA). This was mediated by either neutravidin (Fisher Scientific, USA) or Texas Red 

neutravidin (TR-neutravidin, Fisher Scientific, USA). All were provided in powder form; 

neutravidin was dissolved to a stock concentration of 5 mg/ml in water and stored at 4oC. Both 

biotinylated cyclic-RGD and TR-neutravidin were dissolved to a stock concentration of 1 

mg/ml, with the former in water and the latter in DPBS (Gibco), and were stored at -20oC in 

aliquots. All steps were done in sterile conditions. 

 

2.5.1. FUNCTIONALISATION CALCULATIONS AND PROTOCOLS 

The desired concentration of both neutravidin and RGD was determined from an estimation of 

the moles of functionalised lipid present on the surface. For this the radius of all lipids were 

taken as the previously determined area of a single DOPC molecule of 0.73 nm2 (180, 181). 

Taking as an example the 9 mm diameter PDMS wells, described above, the area here would 

be 63.6 mm2. Therefore, the assumed number of lipids within this area would be 8.8 x 1013, 

with 2% of this being 1.8 x 1012. From Avogadro’s number (6.02 x 1023 /mol), the number of 

moles of biotinylated lipid was calculated to be 2.9 x 10-12 moles. For a 10x mole excess 10-11 

moles of neutravidin and cyclic-RGD were added in this case. The required number of moles 

was calculated for different surface areas and concentrations were adjusted accordingly. 

Samples were incubated for 30 mins in both the case of neutravidin and RGD incubation. 

Between each incubation samples were washed extensively with ultrapure water. In all cases 

care was taken to ensure samples remained sterile and hydrated. 
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2.5.2. BIOTINYLATION OF EXTRACELLLUAR MATRIX PROTEINS 

Further to the SLB functionalisation detailed above, other functionalisation strategies were 

used to determine any effect on the cell response. To this end both fibronectin and a fragment 

of the full protein was biotinylated for use in conjunction with this system (reaction shown 

schematically in Figure 2.3). The full fibronectin protein was acquired from R&D Systems. 

The fragment used was the Type III domain, repeats 7-10 (FNIII7-10). This is a  44.1 kDa 

fragment, containing both the cell binding, RGD, peptide and the synergy site (PHSRN), which 

is cited as also playing a role in cell binding (182). This fragment was kindly produced and 

gifted by Alex Rodrigo-Navarro, of the Microenvironments for Medicine lab, University of 

Glasgow, UK. Both were biotinylated with the EZ-Link Micro-Sulfo-NHS-LC-Biotinylation 

Kit (Thermo), using the protocol provided. 200 µg of either fibronectin or FNIII7-10 was diluted 

to a total volume of 500 µl. Immediately prior to use 1 mg of sulfo-NHS-LC-biotin (NHS-

biotin) was dissolved in 200 µl water to concentration of 9 mM. As NHS-esters are readily 

hydrolysed in aqueous solutions, the NHS-biotin was not stored. The amount required was 

calculated, first by calculating the required mmol of NHS-biotin (Equation 2.1), assuming a 

50-fold excess and then by using this to determine the required reaction volume to add to the 

protein sample using Equation 2.2. 

 

𝑚𝑚𝑜𝑙 𝐵𝑖𝑜𝑡𝑖𝑛 =  𝑚𝑙 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑥 
𝑚𝑔 𝑝𝑟𝑜𝑡𝑒𝑖𝑛

𝑚𝑙 𝑝𝑟𝑜𝑡𝑒𝑖𝑛
 𝑥 

𝑚𝑚𝑜𝑙 𝑝𝑟𝑜𝑡𝑒𝑖𝑛

𝑚𝑔 𝑝𝑟𝑜𝑡𝑒𝑖𝑛
 𝑥 

50 𝑚𝑚𝑜𝑙 𝐵𝑖𝑜𝑡𝑖𝑛

𝑚𝑚𝑜𝑙 𝑝𝑟𝑜𝑡𝑒𝑖𝑛
 (2.1) 

 

µ𝑙 𝑏𝑖𝑜𝑡𝑖𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝑚𝑚𝑜𝑙 𝐵𝑖𝑜𝑡𝑖𝑛 𝑥 
557 𝑚𝑔

𝑚𝑚𝑜𝑙 𝑏𝑖𝑜𝑡𝑖𝑛
 𝑥 

200 µ𝑙

1 𝑚𝑔
                              (2.2)                              

 

Where 50 mmol (1) accounts the 50-fold molar excess, 557 g/mol is the molecular weight of 

NHS-biotin and 200 is the µl of water used to dissolve the 1 mg of NHS-biotin, making the 9 

mM solution. Upon adding the NHS-biotin solution to the protein solution the samples were 

incubated for 60 mins at RT. 
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Figure 2.3. Protein Biotinylation. The process used by the EZ-link biotinylation kit, through 

the NHS ester-based linking of biotin molecules to primary amines on the protein of interest 

(image taken from product datasheet provided by Thermo (183)). 

 

After the necessary incubation time the samples were then de-salted to remove any un-reacted 

NHS-biotin reagent. The provided spin desalting columns were first separated from the storage 

buffer by centrifugation at 1000 g for 2 mins. Liquid from the columns was collected in each 

step by placing the column in a 15 ml centrifuge tube. To equilibrate 1 ml of PBS was added 

to column and spun at 1000 g for 2 mins; this was repeated a further 2 times. The spin column 

was placed in a fresh 15 ml and the 500 µl reaction solution was added and allowed to absorb 

into the column resin. The sample was collected by centrifuging at 1000 g for 2 mins. The 

purified solutions were then aliquoted and stored at -20oC until use.  

 

2.5.3. QUANTIFICATION OF BIOTINYLATION 

The degree of biotinylation of each of the proteins was determined using the HABA/Avidin (4-

Hydroxyazobenzene-2-carboxylic acid, Sigma) reagent. The powdered reagent was 

reconstituted in 10 ml of ultrapure water and stored at 4oC. This protocol is based on the 

displacement of HABA from the avidin upon the inclusion of biotin and results in a change of 

absorbance at 500 nm (A500). In a cuvette the A500 of 900 µl of HABA/Avidin solution was 

first recorded using a spectrophotometer (6715 UV/Vis Spectrophotometer, Jenway). 

Subsequently 100 µl of the biotinylated protein solution was added and incubated for 2 mins 

to allow the signal to stabilise. The A500 of the samples was then determined. This change in 
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absorbance was then calculated by subtracting the A500 of the HABA/Avidin/Protein(biotin) 

from 0.9x the A500 of the HABA/Avidin solution. This 0.9 is a correction value for the 

difference in total volumes. The concentration (in mg/ml) of the protein was then determined 

by measuring the absorbance at 280 nm (A280) using a Nanodrop spectrophotometer (Nanodrop 

1000, Thermo). Knowing the molecular weight (Mw) of both fibronectin and FNIII7-10, this was 

used to calculate the moles of protein. Rearranging the Beer Lambert Law (shown in Equation 

2.3) allows for the determination of the moles of biotin. 

 

𝑚𝑚𝑜𝑙 𝑏𝑖𝑜𝑡𝑖𝑛 = (
(0.9 𝑥 𝐴500𝐻𝐴𝐵𝐴/𝐴𝑣𝑖𝑑𝑖𝑛)− 𝐴500HABA/Avidin/Protein

34,000 𝑥 1
)  𝑥 10                    (2.3) 

 

Where 34,000 is the extinction coefficient of HABA and 1 is the path length in cm, and the x10 

multiplication compensates for the dilution in the reaction volumes. Dividing this by the mmol 

of the protein determined via the Nanodrop, gives an estimation of the number of biotin 

molecules per fibronectin or FNIII7-10 molecule. 

 

2.5.4. DETERMINING PROPERTIES OF BIOTINYLATED PROTEINS 

The function of the biotinylated proteins was determined via cellular experiments, comparing 

the biotinylated proteins to the native proteins. Firstly, glass coverslips were washed by 

sonicating in ethanol and dried at 70oC and then sterilised using UV light. All proteins were 

adsorbed to glass coverslips by incubating 100 µl of a 20 µg/ml solution of each protein for 1 

hr and washed with PBS. Cells were prepared and used as described later (in section 2.9.1 and 

2.9.3. respectively), and their properties analysed to ensure the biotinylation process had no 

detrimental effects on the protein function. 

 

The presence of the biotinylated proteins on the SLB surface was performed using a qualitative 

enzyme-linked immunosorbent assay (ELISA). Firstly, the SLBs were created as described in 

section 2.4.1 and functionalised with neutravidin as described in section 2.5.1. The necessary 

calculations for the required concentrations were also made (section 2.5.1). Incubation with 

fibronectin and FNIII7-10 was done by diluting the samples to the necessary concentrations in 
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ultrapure water and incubating on the SLBs for 30 mins. After incubation the samples were 

also washed with ultrapure water as previously described. Control samples, with no 

functionalisation were used as a blank control.  

 

After washing the surfaces were blocked for 30 mins with 1% BSA in PBS. Samples were then 

incubated with HFN7.1 (DSHB, USA) primary antibody for the RGD tripeptide at a 0.1 µg/ml 

(in 1% BSA solution) for 1 hr. Samples were washed extensively, by several cycles of agitation 

in PBS and blocked a second time with 1% BSA for 30 min. The anti-mouse HRP (horseradish 

peroxidase) secondary antibody (ThermoFisher) was incubated for 1 hr in 1% BSA, at a 1:1000 

dilution, and washed as with the primary antibody. Solutions A and B and the Stop solution 

(R&D Systems) were allowed to equilibrate to RT and solutions A and B were mixed in a 1:1 

ratio to the required volume. These were then added to each well and incubated for 20 mins, 

protected from light. The reaction could be followed by the presence of a blue colour, with the 

intensity proportional to the amount of protein in the sample. The reaction was stopped with 

the Stop solution, which turned the protein positive samples from blue to yellow. These 

solutions, including the relevant controls, were then aliquoted into a 96-well plate and read 

using a microplate reader at 450 nm and 540 nm (Synergy 2, BioTek), with the latter acting as 

a correction wavelength, to ensure no erroneous readings from the system. The background 

from the controls was subtracted from the samples and compared between SLB surfaces to 

compare the relative amount of protein on the surface. 

 

2.6. ATOMIC FORCE MICROSCOPY 

2.6.1. SETUP AND CALIBRATION 

Atomic Force Microscopy was performed using a Nanowizard® 3 Bioscience AFM (JPK, CA, 

USA), set up on a Zeiss Observer Z1 microscope. This was used with the software provided 

by the manufacturer. Cantilevers, with an estimated spring constant and resonant frequency of 

0.32 N/m and 67 kHz respectively (PNP-TR-Au, Nanoworld, Switzerland), were used to 

determine the properties of the lipid bilayers. All measurements were performed under 

ultrapure water. Before use the true spring constant and resonant frequency of each cantilever 

was confirmed by calibration through force spectroscopy. To calibrate a glass surface, prepared 

in the same way as the substrates for the lipid samples (except for plasma cleaning to prevent 
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attractive interactions between the sample and the tip), was used. The calibration procedure 

was performed as detailed in the user manual; briefly, the tip was landed on the surface and 

was then used to produce a force-distance curve. Using the linear, repulsive area of the curve 

(when the cantilever is in contact with the surface) the cantilever sensitivity was determined. 

This is defined as nm/V, as the deflection of the cantilever is given in volts, depending on 

where reflected laser impacts the photodiode. From this, the spring constant was determined 

by measuring the oscillation of the cantilever freely in solution, selecting one of the peaks at 

one of the cantilever harmonic frequencies and fitting it to a Lorentz curve. Depending on the 

peak selected a correction value, provided by the software was used to calculate the spring 

constant.  

 

2.6.2. IMAGING MODE 

Both contact and AC imaging modes were used to image the surfaces of the SLBs. In AC mode 

the cantilever was tuned to ensure the frequency and phase of oscillations matched using the 

AC Feedback Mode Wizard, provided in the software. In the case of both AC and contact mode 

imaging areas were selected from 2 – 10 µm2 and a line rate of ≤ 0.5 Hz was used to reduce the 

potential of imaging artefacts caused by the SLBs. The set-point i.e. the force exerted on the 

sample, was adjusted as required to maintain contact and kept as low as possible to prevent 

damage to both the tip and the SLB surface. After use tips were cleaned of possible lipid 

contaminants using 2% SDS and rinsed thoroughly with ultrapure water. 

 

2.6.3. FORCE MAPPING MODE 

To measure the physical properties of the bilayers force mapping was used. The relative set 

point was set at 20 nN and the approach velocity of 1 µm/s, with 64 measurements taken on 

each surface within a 5 µm2, 8x8 square grid. After use tips were cleaned of possible lipid 

contaminants using 2% SDS and rinsed thoroughly with ultrapure water. All images and data 

were analysed using the offline processing software (version 5.0.84) provided, as detailed in 

section 2.10.1.  
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2.7. QUANTITATIVE FLUORESCENCE MICROSCOPY 

2.7.1. STANDARD SOLUTIONS  

Quantitative fluorescence imaging was used to quantify the number of fluorescent neutravidin 

molecules present on the surfaces and was carried out as described in Nair et al. 2011 (184). 

Vesicles were produced in the same manner as described in section 2.1. Three vesicle solutions 

were prepared; the first was used to produce a calibration curve of bulk lipid concertation 

(referred to from herein as solution 1) and contained 99.9 mol% DOPC and 0.1 mol% Texas 

Red DHPE (TR-DHPE), rehydrated and used in R buffer only. The second and third were used 

to produce a bilayer standard used for fluorescence calibration and contained 99.5 mol% DOPC 

and 0.5 mol% TR-DHPE (solution 2) or 100 mol% DOPC only (solution 3). To determine the 

fluorescence as it pertained to bulk protein fluorescence TR-neutravidin was prepared in R 

buffer at a concentration of 0.304 µM. 

 

2.7.2. BULK CALIBRATIONS 

To determine the calibration curve of the bulk lipid fluorescence serial dilutions of solution 1 

were made, producing 5 solutions in a concentration range of 0 – 0.74 µM. Using a 20x 

objective and focusing the beam within the solution, images were taken of the fluorescence 

intensity. To calibrate the bulk fluorescence signal of the protein solution, serial dilutions of 

the TR-neutravidin was made in a concentration range from 0 – 0.304 µM. In all cases the 

exposure time and exposure time was kept constant to prevent any erroneous changes in 

fluorescence signal. The change in fluorescence as a consequence of the concentration was 

plotted and a linear fit, through the origin, provided the intensity/µM of the bulk solutions. 

These were designated Iprotein and Ilipid for the protein and lipid respectively. As the same 

fluorophore was used in the same buffer, this allowed for determination of a scaling factor (F) 

between the fluorescence in the bulk lipid and protein solutions, as shown in equation (2.4): 

 

F = Iprotein / Ilipid                   (2.4) 
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2.7.3. BILAYER CALIBRATION AND DETERMINATION OF MOLECULAR 

DENSITY 

Solutions 2 and 3 were used to produce a series of bilayer calibration standards. The bilayers 

were prepared as previously described in section 2.4.1. The ratios in which they were mixed 

produced bilayers containing concentrations of TR-DHPE ranging from 0 – 0.5 mol%. Using 

a high magnification objective (63x), the fluorescent intensity was determined at a consistent 

exposure time and plotted against the estimated number of TR-DHPE molecules. By using the 

size of a DOPC molecule, 0.73 nm2, as a determinate of lipid area the number of fluorescence 

lipid molecules could be estimated in the same way as detailed in section 2.5. Once again, a 

linear fit, through the origin, was used to determine the value of the gradient, giving the 

fluorescence of the bilayer as a consequence of the number of fluorescent molecules; this was 

designated Ibilayer(lipid). This was multiplied by the scaling factor to determine the amount of 

protein (Equation 2.5): 

 

Ibilayer(protien) = F x Ibilayer(lipid)                                                                                                 (2.5) 

 

Here Ibilayer(protein) denotes the fluorescent intensity of the protein on a lipid bilayer. This is 

described as the fluorescence as a consequence of the number of protein molecules per µm2 

and produces a calibration curve, which was used to determine the number of molecules per 

µm2 of an unknown sample. In this case, SLBs of either DOPC or DPPC were incubated with 

the TR-neutravidin and the fluorescence value applied to the equation of the gradient of 

fluorescence vs. protein per µm2 to determine the number of neutravidin molecules on the 

surface. Comparing this to the theoretically expected value, based on the 4 available binding 

sites of neutravidin for biotin, the amount of RGD on the surface was also calculated. 

 

 2.8. FLUORESCENCE CORRELATION SPECTROSCOPY 

Fluorescence correlation spectroscopy (FCS) was performed using a DCS-120 confocal 

scanning system, provided by Becker and Hickl. The laser was set to pulsed mode at a 

frequency of 50 MHz and an excitation filter of 448 nm, and an emission filter of 535 nm was 

used to select for the required fluorescence. The detection of emitted fluorescence was done 
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through a hybrid photo-multiplier tube, HPM-100-40 detection unit. An 40x water immersion 

objective, C-Aprochromat, was used, with an numerical aperture of 1.2.  

 

The system was calibrated to determine the width of the laser beam using a standard solution 

of 100 µm FITC-tagged fluorescent microspheres (0.1% v/v in water, Sigma). The diffusion of 

the microspheres can be determined mathematically by the Stokes-Einstein equation, as shown 

below in Equation 2.6: 

 

𝐷 =  
𝑘𝐵 𝑇

6 𝜋 𝜂 𝑅
                    (2.6) 

 

Where D is the diffusion coefficient, kB is the Boltzmann constant (1.38064852 × 10-23 m2 kg 

s-2 K-1), T the absolute temperature (310 K), η the solution viscosity (0.692 kg (m.s)-1 at 37 oC), 

and R the beam radius.  

 

To measure the diffusion coefficient of lipid bilayers BODIPY-based fluorophores TopFluor-

PE (phosphoethanolamine) (Avanti Polar Lipids, AL, USA) were used in concentrations 

varying from 0.01% - 0.5% of total lipid. Initially, the decay of the correlation factor with (log) 

time was plotted and fitted with Equation 2.8 in order to determine the decay time.  

 

𝐺𝜏 =
1

𝑁
 

1

(1+ 𝜏 𝜏𝐷⁄ )
+ 1                         (2.7) 

 

Where G(τ) is the correlation factor, N the average number of diffusing molecules, τ the 

correlation time, τD the diffusion time. The equation was added to the database in OriginPro 

V8 and the curves were fitted using this software, providing the diffusion time values.  

 

In the case of beam calibration Equation 2.6 provides the diffusion coefficient of the 

microspheres in water at RT; Equation 2.7 provides the diffusion time, which when combined 

with (1) gives the beam width. From this the diffusion time attained from the bilayer samples 
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can then be applied to Equation 2.8 to determine the diffusion coefficient of the bilayer of 

interest.  

 

𝜏𝐷 =  
𝜔2

4𝐷
                         (2.8) 

 

Where ω is the beam radius and D is the diffusion coefficient. 

 

 2.9. CELL CULTURE & STAINING 

2.9.1. CELL CULTURE 

C2C12 mouse myoblasts were cultured in a growth media of DMEM (1x) Dulbecco’s Modified 

Eagle Medium (+ 4.5 g/L D-Glucose, + L-Glutamine) (Gibco), containing 1% antibiotic mix 

of penicillin and streptomycin, 1% Fungizone (Gibco) and 20% FBS. Cells were seeded in T75 

flasks and used after reaching near confluence (≤70% surface coverage).  

 

Human mesenchymal stem cells (hMSCs) were derived from adipose tissue and were used as 

a further study to understand the effect of SLB viscosity on the cell behaviour. Prior to 

experiments the cell population was expanded using T75 flasks, growth medium 2 (Promocell, 

Germany) and supplemented with a growth supplement. 24 hours before usage the media was 

replaced with DMEM (1x) Dulbecco’s Modified Eagle Medium (+ 4.5 g/L D-Glucose, + L-

Glutamine), supplemented with 100 µM pyruvate (Gibco), 1% NEAA (non-essential amino 

acids), 10 % FBS, 1 % P/S (Gibco), and 1% Fungizone (Gibco). 

 

When cells of either cell line reached the required density they were prepared first by gently 

washing the cells with DPBS. Cells were then removed from the flask surface by adding 2 ml 

of trypsin and incubating at 37oC for 5 min, or until all cells were removed from the surface. 

The reaction was then quenched using the relevant growth media and centrifuged for 5 min at 

1,000 rpm, with the resulting cell pellet being re-suspended in the appropriate media, as 

detailed in each relevant section. The number of cells was counted using a Countessa II 
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automated cell counter (Thermo), by mixing cells and Trypan Blue (Invitrogen), in a 1:1 ratio, 

pipetting onto the counter insert. 

 

2.9.2. ANTIBODIES 

In order to stain the necessary proteins, using the methods detailed below a variety of separate 

antibodies were used, and are summarised in Table 2.1. 

 

Protein 

Specificity 

Species Company Dilution Fluorescence  

Vinculin Mouse Sigma 1:400 N/A 

FAK Rabbit Millipore 1:200 N/A 

pFAK Mouse Millipore 1:200 N/A 

YAP Mouse Santa-Cruz 1:100 N/A 

Myogenin Mouse Santa-Cruz 1:100 N/A 

Sarcomeric 

myosin 

Mouse DSHB 1:125 N/A 

Fibronectin 

(RGD) 

Mouse DSHB 1:330 N/A 

Mouse Rabbit Jackson 

Immunoresearch 

1:200 Cy3 

Rabbit Chicken Molecular 

Probes 

1:200 AlexaFluor 488 

Table 2.1. A list of antibodies used to stain for proteins of interest. 

2.9.3. ADHESION OF C2C12 MOUSE MYOBLASTS 

To analyse the cellular adhesion of either C2C12 or MSCs re-suspended cells were diluted to 

a seeding density of 5,000 cells/cm2, for C2C12s, or 2,000 cell/cm2 for MSCs in depleted 

DMEM (no FBS). The differences in cell density are due to the relative sizes of the cells. A 
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sparse cell distribution was needed in this scenario, so as to understand the individual adhesion 

characteristics; therefore, minimal cell-to-cell contact is required. The final cell sample volume 

added to each well was 50 µl. Therefore, prior to adding cells the samples, all samples were 

washed first with sterile PBS and then with the corresponding media. This was equilibrate the 

samples to that of cell culture conditions, preventing any dilution of the media or osmotic 

differences caused by the ultrapure water that was used to wash the samples.  

 

Cells were then added to the sample wells, containing either lipid bilayers or the immobile 

control, and allowed to adhere for 3 hrs for C2C12s, and for either 3 hrs or 24 hrs with MSCs. 

Samples were then washed with PBS and fixed with 4% formaldehyde for 15 min at RT. After 

washing, cells were permeabilised with 0.1% Triton X-100 (Sigma) for 5 min. The 

concentration was not higher so as to prevent damage to the SLBs caused by the Triton X-100 

detergent. Samples were then washed with PBS again, before blocking for 30 minutes with 1% 

BSA solution. The primary antibody was diluted to the concentration shown in Table 2.1. in a 

blocking buffer of 1% BSA solution and incubated on the samples for 1 hr. Samples were 

washed extensively with PBS, with agitation and blocked for a further 30 min with 1% BSA 

solution. The secondary antibody was diluted to the concentration shown in Table 2.1 in 

blocking buffer (1% BSA). Phallacidin, specific for actin was also added at a 1:100 dilution; 

the fluorescence of phallacidin was dependent on the combination of antibodies used and was 

either BODIPY, rhodamine or Cy5 labelled. The antibody/phallacidin solution was incubated 

on the sample for 1 hr. Samples were again extensively washed with PBS, mounted with DAPI 

containing medium and imaged. Samples were imaged using a Zeiss Observer.Z1 fluorescence 

microscope at 10x, 20x and 63x, using MicroManager software (185). Images were then 

processed using Fiji software (186). Morphological characteristics such as area and circularity 

were measured (the latter was defined as 4π x (area/perimter2)). Further information on image 

processing, specifically in the quantification of focal adhesions, is detailed in section 2.10.2. 

 

To observe YAP localisation to the nucleus, the pixel intensity of the YAP stain within the 

nucleus was divided by the pixel intensity in the cytoplasm, producing a nucleus:cytoplasm 

ratio. The nucleus was the area defined through staining of the nucleus by DAPI and the 

cytoplasm was defined by the phalloidin actin stain (where the nucleus had not also stained 

positively). 
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2.9.4. DIFFERENTIATION OF C2C12 MOUSE MYOBLASTS 

After culture, re-suspended cells were diluted to a concentration associated with a seeding 

density of 40,000 cells/cm2 in media containing 1% FBS and 1% ITS (insulin transferrin 

selenium, GIBCO, USA) for either 2 or 4 days. Samples were then washed with PBS and fixed 

with 4% formaldehyde for 15 min at RT. After washing, cells were permeabilised with 0.1% 

Triton X-100 for 5 min and washed with PBS again before blocking for 30 minutes with 1% 

BSA solution. Samples at 2 days were then incubated with an anti-myogenin primary antibody 

and those at 4 days were incubated MF-20 primary antibody against sarcomeric myosin. Both 

were diluted in blocking buffer and incubated on the samples for 1 hr. Samples were then 

washed extensively with PBS, with agitation and blocked for a further 30 min with 1% BSA 

solution and incubated with the secondary antibody (rabbit anti-mouse) diluted to 1:200 in 1% 

BSA for 1 hr. Samples were again extensively washed in PBS, with agitation. Mounting 

medium with DAPI was added to stain the nuclei. This allowed for the counting of the nuclei 

staining positively for the transcription factor myogenin at 2 days and for sarcomeric myosin 

at 4 days. Images were taken with a 20x objective using a Zeiss Observer Z1 and 

MicroManager software. Myogenin images were processed using Fiji software. Sarcomeric 

myosin images were processed and analysed using the CellC counter standalone extension for 

Matlab (187). 

 

2.9.5. C2C12 CELL TRANSFECTION 

Cells were transfected using the Neon transfection system (Thermo Fisher Scientific, USA), 

and the procedure was adapted from the described protocol. Cells were cultured using T150 

flasks, to maximise the number of cells available for transfection. Upon reaching 

approximately 70% confluency cells were washed, trypsinised and centrifuged at 500 rpm for 

5 min. Excess media was carefully removed from the pellet and the pellet washed by 

centrifuging in PBS for 5 min at 500 rpm. The pellet was then suspended in 120 µl of the 

resuspension buffer (pre-warmed to 37oC prior to use, Thermo) provided. This yielded a final 

cell density of ~ 107 cells/ml. This is to compensate for the differences between the 100 µl tip 

used and the 10µl detailed in the protocol. This solution was then mixed with required plasmid, 

with a final, total mass of plasmid of 5 µg added to the cell suspension in each instance. 

Plasmids used to transfect the C2C12 cells were LifeAct-RFP and LifeAct-GFP for actin, and 
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VD1 (Addgene plasmid no. 46271, described as pEGFPC1/GgVcl 1-258 A50I) (106), which 

were provided by the Cellular and Molecular Mechanobiology group (Pere Roca-Cusachs, 

IBEC, Barcelona, Spain). These were used both individually and combination to ascertain 

viscosity based changes in cell behaviour. 

 

The cell/plasmid solution was then then taken into the Neon tip, taking care to prevent the 

production of air bubbles within the tip, as this would allow for arcing of the electric charge, 

killing the cells. The cell/plasmid containing tip was then placed in a reaction cuvette, 

containing 3 ml of pre-warmed (37oC) E2, electrolytic buffer (Thermo). The transfection 

parameters, shown in Table 2.2, were taken from the data sheet for C2C12 transfection with 

the Neon transfection system, with cells/ml changed to account for the larger tip volume. 

Immediately after transfection the cells were added to a T75 flask containing pre-warmed 

(37oC) DMEM media, with 20% FBS. They were then allowed to adhere and spread for 24 hrs 

prior to use in live cell experiments.  

 

 

Pulse 

Voltage (v) 

Pulse width 

(ms) 

Pulse 

number 

Cell Density 

(cells/ml) 

Transfection 

Efficiency 

Viability Tip 

type 

1,650 10 3 *~107 95% 96% *100 µl 

Table 2.2. The conditions required to transfect C2C12 cells with plasmids of interest. The stars 

indicated deviation from the provided protocol, which required 5 x 106 cells/ml in a 10 µl tip. 

However, the cell density was increased by approximately 10x to account for the larger, 100 

µl tips used. 

 

2.9.6. LIVE CELL IMAGING OF ACTIN FLOW 

Imaging of live cells on supported lipid bilayers was performed on transfected cells. Samples 

were imaged using purchased glass bottom dishes, with a no. 0 thickness and a sample diameter 

of 20 mm (Mattek, USA). Before use the dishes were first cleaned as described in section 2.2.2 

with surfaces being produced as described in section 2.4. The cell solutions were also produced 

as detailed in section 2.9.3. However, in this case cells were seeded at a density of 10,000 



87 

 

cells/cm2; this was to compensate for any issues in the transfection efficiency of the protocol 

in section 2.9.5. Cells were seeded in depleted DMEM media and allowed to adhere for 1 hr. 

In order to perturb the actin flow, blebbistatin was included in the media at a concentration of 

50 µM where required. This ensured almost complete inhibition of the myosin II action on the 

actin cytoskeleton, as shown previously by the lack of traction forces (47). 

 

Time lapse imaging was performed using a Nikon Eclipse Ti spinning disk confocal 

microscope. Samples were kept at 37oC and supplemented with 5% CO2 using a heated, sealed 

chamber, surrounding the microscope stage. Samples were imaged using a 60x oil objective, 

with a numerical aperture of 1.4. The LifeAct plasmid was used to fluorescently label actin and 

the actin flow was determined by imaging the samples at 1 Hz for 2 mins, using Andor Q3 

Software. Image stacks were then analysed using Fiji software; areas of interest were resliced, 

producing kymographs that plotted displacement of fluorescence over time (representative 

images shown in Chapter 5).  

 

2.9.7. MODELLING THE CELL RESPONSE 

The nature of the cell response to viscosity was modelled computationally by Prof. Pere Roca-

Cusachs of the Institute for Bioengineering of Catalonia. This provided information of the 

predicted actin flow and adhesion size based on the viscosity of the surface. The details of this 

model, including the variables used, can be found in Appendix A. 

 

2.10. DATA ANALYSIS 

2.10.1. AFM ANALYSIS 

All attained AFM data and images were processed using the analysis software provided by JPK 

(JPKSPM Data Processing Software, JPK, USA). Height images were processed by subtracting 

a polynomial fit from each scan line. From this a cross-section of a region of interest could be 

attained. For force mapping measurements, the software was used to process the resulting 

individual force curves in the map. Firstly, a baseline was set, using the non-contact region of 

the extend curve, correcting for both offset and tilt. Secondly, the change in the detected height 

of the cantilever was corrected for using the sensitivity and spring constant determine through 
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the calibration performed in section 2.6.1. After processing the data was analysed using 

OriginPro v8 software to determine the thickness of the bilayers. 

 

2.10.2. FOCAL ADHESION QUANTIFICATION 

The quantification of the focal adhesions (FAs) is adapted from methods previously described 

in the literature (188). This was performed using the Fiji software and using a number of 

plugins provided. The analytical process is shown as a flow chart, with an example image in 

Figure 2.4. Steps 1 – 3 were performed using the macro in Table 2.3. However, due to the 

variable nature of the images attained steps were 4 and 5 were adjusted between experiments. 

As such no comparisons were made between samples of different experimental data sets. 

Briefly, the image was cropped so that only the FAs of one cell were analysed. The background 

of the image was then subtracted, and the contrast enhanced through the CLAHE plugin 

(settings shown in Table 2.3). An exponential fit was then run on the surface to further minimise 

the background. By adjusting the brightness and the contrast of the image the FAs could be 

sharply separated from the minimised background. From this a threshold was applied and the 

particle analysis function of Fiji was used to analyse the FAs. By selecting different 

measurements, information on properties such as the area, length and number of FAs could be 

attained.  

 

Figure 2.4. Analysis of Focal Adhesions Flow Chart. A small area of the cell is expanded for 

detail. Steps (1) and (2) were performed with the settings shown in Table 2.2. Steps (4) and (5) 
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were set in light of the experimental conditions and maintained at a constant setting throughout 

the analysis of the experimental data set. To this end, exposure times during imaging was also 

kept constant. In step (6) only particles above 0.75 µm2 were counted as focal adhesions.  

 

Table 2.3. The macro code used to process images of cells before analysing the focal adhesion 

properties. 

 

2.10.3. STATISTICAL ANALYSIS 

Analysis of statistical differences between conditions in all experiments was performed using 

GraphPad Prism 6 software, with one-way or two-way ANOVA (analysis of variance) as 

appropriate. One-way ANOVA was used where there was one independent variable and two-

way ANOVA was used where there were two independent variables. Prior to this, the data 

distribution was determined to be either normal or non-normal using a D’Agostino-Pearson 

normality test. Statistical significance was determined by multiple comparison tests within the 

ANOVA; were the data distribution normal, a Tukey test was performed to determine the 

significance and if non-normal a Bonferroni test carried out to determine significance. 

Statistical differences were defined by P values and confidence intervals were indicated with a 

*. As a guide: ns > 0.05, * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001, **** ≤ 0.0001. Other statistical 

analyses were performed as required, using the methods provided by the software; if required, 

outliers were removed using the ROUT test. To ensure robust statistical analysis all 

experiments were performed using at least 3 separate samples per condition and at least 10 

images were taken of each sample. In all cases the error bars shown represent standard 

deviation (SD). 

  

run("Subtract Background...", "rolling=30"); 

run("Enhance Local Contrast (CLAHE)", "blocksize=15 histogram=256 maximum=6 

mask=*None*"); 

run("Exp"); 
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3. PRODUCTION AND CHARACTERISATION OF 

DIFFERENTIALLY MOBILE SURFACES 

 

3.1. INTRODUCTION  

The literature available on supported lipid bilayers is widespread and varied, with the 

implication that, through the years, they have been well characterised both in terms of 

methodology and properties. However, when any project is undertaken there is a need to 

characterise the system to ensure that what is observed is due to the system of interest. As such, 

the main aim of this chapter is to detail the production and subsequent characterisation of both 

lipid bilayers, of varying diffusive characteristics, and the immobile control, through which to 

compare them. Fortunately, the nature of SLBs, in that they can be produced on solid supports, 

means that their properties can be measured and quantified through a wide array of techniques. 

 

Atomic force microscopy (AFM), since its inception in 1986 (189), has been utilised in a vast 

array of high resolution applications from writing on the nanoscale (190) to imaging at the 

molecular scale (191). Of more relevant interest here is the ability of the AFM to measure the 

surface properties of a system. By using a cantilever that has a micron-scale tip on the sample 

facing side and a reflective coating on the other, the deflection of the tip as it moves across the 

surface is determined by measuring the deflection of a laser reflecting from the top of the 

cantilever. This can not only produce a three-dimensional projection of the probed surface, but 

also, by knowing the physical properties of the tip, give an insight into the material properties 

of the surface. The AFM can, therefore, be used in various modes; such as contact mode, where 

the tip is “dragged” across the surface; tapping mode, where the tip is oscillated at its resonant 

frequency; or force spectroscopy, where the tip is pressed against the surface, as well as 

variations of these also. These are of particular interest to the study of SLBs as they can, and 

have, elucidated the characteristics of the bilayer at the nanoscale, such as the thickness (192), 

phase partitions (152, 193), rupture forces (194) and elastic moduli (195). 

 

Fluorescence correlation spectroscopy (FCS) was developed in the 1970s (196), but did not 

receive much interest until a single molecule detection capability was developed (197). Since 

then it has been widely applied in the study of biological systems (198, 199), with an ability to 
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measure biologically important changes such as diffusion of molecules (200) or receptor-ligand 

interactions (201). It has also found a place in the measurement of SLB lipid bilayers as a 

manner of competing technique to that of FRAP (fluorescence return after photobleaching). By 

using a confocal microscope, molecules within a very small volume (≤ fL) can be illuminated 

and detected, allowing for the use of very small amounts of fluorophore. The fluorescence is 

detected as a stream of photons with an avalanche photodiode (APD), rather than a camera (as 

in FRAP) and the raw data is processed to correlate the probability of one event being the same 

as the previously detected event. The decay in this probability, related to an appropriate 

calibration standard, allows for the calculation of the diffusion coefficient of a sample, in this 

case a SLB.  

 

In contrast to AFM and FCS, quantitative fluorescence imaging requires no special equipment 

to perform, with only a fluorescent microscope being required. As a methodology it was first 

demonstrated in 2008 by Galush and colleagues (180); it fortuitously used fluorescent lipid 

bilayers as standards to determine the amount of protein present on a surface. Since this it has 

been widely used to determine protein functionalisation of surfaces in a number of systems 

from cancer studies to mechanotransduction (58, 77, 202-204). 

 

The techniques detailed here are not an exhaustive list of the means through which to measure 

various SLB properties. Indeed, many surface characterisation techniques lend themselves well 

to the study of these systems. These can include, but are not limited to: the aforementioned 

FRAP to measure diffusion (205); quartz crystal microbalance with dissipation monitoring 

(QCM-D), to measure the dynamics of bilayer formation (148, 150), or functionalisation; 

surface plasmon resonance (SPR), for ligand-receptor binding (206); or ellipsometry, for 

formation kinetics (207). However, the techniques used in this study are both well-

characterised and widely used, allowing for the characterisation of all the necessary steps, from 

bilayer production to functionalisation. 
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3.2. PRODUCTION OF DIFFERENTIALLY MOBILE SUPPORTED LIPID 

BILAYERS 

The first step in the production of a SLB via the vesicle deposition method is to produce 

vesicles of an ideal, defined size. While this can be done either through extrusion or sonication, 

as stated previously extrusion was chosen as it produced a monodisperse solutions of vesicles 

in a cost-effective way, without the need for further, post-production processing (e.g. 

centrifugal removal of sonicator tip particles) of the vesicle solution.  

 

Figure 3.1. Lipid Vesicle Extrusion. Measuring the size of vesicles of (A) DOPC and (B) 

DPPC both before and after extrusion through membranes of differing pore sizes, using 

dynamic light scattering (DLS). (C) Shows the resulting average diameter of lipid vesicles, 

including the mean hydrodynamic vesicle diameter above each column for clarity. 

 

Detailed in the introduction the predominant factors controlling successful formation of vesicle 

bilayers are i) membrane tension, ii) vesicle-substrate interaction and iii) vesicle-vesicle 

interaction. When optimising the first of these factors the ideal size of vesicles for SLB 
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formation is below 90 nm in diameter (150). To that end, Figures 3.1A & B show the DOPC 

and DPPC vesicles before and after extrusion through both a 100 nm and 50 nm polycarbonate 

membrane. The extrusion of both samples produced significantly reduced average sizes, with 

little variance from the average as shown by the standard deviation in Figure 3.1C. In the case 

of the 50 nm membrane the average size of the small unilamellar vesicles (SUVs) was seen to 

be below the maximum size to allow SLB formation. However, in both membranes the vesicles 

were seen to be, on average, larger than the membrane pore size. It has been observed 

previously (208) that in membranes with larger pores the vesicles are predominantly smaller 

than the pore size (≥ 200 nm), whereas in smaller membranes pores the vesicles are larger (< 

200 nm). This may be attributed to the overall pressure of the extrusion system used. Indeed, 

extrusion has been shown to work by inducing a pressure over the tension necessary to lyse a 

lipid vesicle (209). This causes the multilamellar vesicles to rupture and subsequently reform 

as a unilamellar, monodisperse populations of pore-size defined vesicles.  

 

The size of the DOPC and DPPC liposomes produced is of the right scale in which to produce 

SLBs (~90 nm) (150). Indeed, the measurement technique, dynamic light scattering (DLS), 

used here is likely to overestimate the size of the liposomes. DLS relies on the scattering of 

light not only from the lipid bilayer of the liposomes, but also of the aqueous ions surrounding 

it. The charge of the lipid head groups will attract a layer of ions to the surface, which will then 

scatter the light photons. As such, the size measured here is likely larger than the actual size of 

the liposomes; thus they will be smaller than the limit required and capable of forming SLBs 

when incubated on an appropriate surface.  

 

In terms of the aforementioned factors controlling the formation of SLBs the production of 

vesicles of this size. Firstly, it has been previously noted that the reduction in the size of the 

lipid vesicles increases the tension of membrane (150). This, in conjunction with buffer induced 

osmotic pressure on the membrane, makes the SUVs more unstable and more likely to rupture 

when present of the surface. Further to this, the size of the SUVs will control the interaction 

between vesicles by allowing a greater number of vesicles to adsorb to the surface. As SLB 

formation is partially dependent on a critical coverage of vesicles (147), this size would allow 

for more lipid to be present on the surface; this would more effectively allow for the critical 

vesicle coverage to be exceeded and a SLB to form. What this process does not allow for is the 



94 

 

optimisation of the vesicle-substrate interaction. This was instead achieved by plasma treating 

the glass surface; this surface treatment makes the glass surface highly charged and strengthens 

the electrostatic interaction between vesicle and the surface, likely causing deformation and 

consequent rupture (64), forming a SLB.  

Figure 3.2. Glass and SLB Surfaces. The images show the cleaned glass surfaces both before 

and after incubation with either DOPC or DPPC as measured using AFM contact mode 

imaging. This lack of contrast demonstrates the contiguous nature of the SLBs, with a minimal 

presence of defects (Scale Bar = 2 µm). 

 

As AFM is widely used in the characterising of lipid bilayers (152, 192-195) it was used here 

to determine both the presence of the SLBs and their physical properties. Figure 3.2 shows the 

surface of glass slides before and after incubation with DOPC and DPPC. The glass surface 

can be seen to be flat with an RMS value of 514 pm, indicating a highly cleaned surface, with 

few defects, comparable to the 356 pm and 549 pm RMS values seen on the DOPC and DPPC 

surfaces respectively. This cleanliness was confirmed with static water contact angles (WCA) 

of <10o (data not shown); the previously noted required hydrophilicity for successful and 

continuous SLB formation (64, 150). It can be clearly seen here that the lack of contrast on the 

surface prevents the accurate assessment of the presence of a bilayer; however, small peaks on 

the surface of the DPPC SLB can be attributed to the partial fusing of vesicles that were not 

removed in the washing steps.  
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Figure 3.3. Schematic Representation of Force Spectroscopy of SLBs. (A) The tip 

approaches the surface during the cantilever approach. (B) As the tip approaches and 

interacts with the SLB the vertical deflection increases until (C) the tip eventually 

breaks through the packed lipid and (D) contacts with the glass surface. (E) Shows a 

representative force map and the curves generated; in this 8x8, 10 µm2 map the 

cantilever pushes on the surface in each square generating the force curves shown in 

(A) – (E). As the curves are indicative of interaction with the SLB, the thickness can 
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be determined between the points shown. (All forces curves shown here are taken from 

those attained in the measurement SLBs and are representative of that which was 

obtained) 

 

Using force spectroscopy it is possible not only to confirm the presence of a SLB, but also to 

probe the physical properties of the SLBs. The schematic shown in Figure 3.3 demonstrates the 

proposed interaction between the tip and the lipids in a SLB, with different parts of the curve 

indicating different properties, as noted by previous work (177, 195, 210). The tip moves 

towards the surface (Figure 3.3A) until, upon initial interaction with the surface (3.3B), there is 

a large increase in detected force, when compared to the small reduction in tip sample 

separation. This is related to the interaction of the tip with lipid headgroups, which, as they are 

identical in DOPC and DPPC, can be assumed to be similar. This interaction is also likely 

affected by the ions present in the solution also interacting with the bilayer, as previously noted 

(177). The tip then presses on the bilayer until, at a specific magnitude of force, the “rupture 

force”, the tip then breaks through the surface of the SLB (3.3C). This shows a characteristic 

“jump” in both the force and the tip-sample separation when compared to the plain glass 

surface. In short order, due to the minimal interaction of the tip with hydrophobic core of the 

SLB contacts the underlying glass surface (3.3D). This is demonstrated by no change in tip-

sample separation despite an increase in cantilever deflection indicating increased force.  

 

This force curve, indicative of single bilayer present on the surface, can be used to determine 

various physical properties of the lipid bilayer. For example, the change in tip-sample 

separation (Figure 3.3E) gives an indicator of the thickness of the bilayer from the proximal 

head group to the glass surface. One drawback can be that electrostatic interactions and the 

basal water layer between the bilayer and the surface can lead to an overestimation in the 

thickness (177). Further data of interest is the force required to break through the bilayer 

(rupture force), the force at which the tip breaks through the SLB (maximal y-axis, 3.3B), and 

the inferred Young’s modulus of the bilayer (Hertz model), from the slope shown in Figure 

3.3B. Though the latter has been mentioned in previous work (195), the estimated stiffness is 

indicated as being in the MPa range. On the surface this appears to be counter-intuitive; SLBs 

are fluids, confined into two-dimensions through energetic interactions and thus it could be 

argued that they would not exhibit an elastic stiffness. It is therefore possible that the underlying 
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glass stiffness partially contributes to this detected value. However, were SLBs to indeed 

exhibit an elastic stiffness, this MPa value would preclude detection by the cells. As cells, on 

average, exhibit 1–-5 nN/µm2 (2) it is unlikely the cells would be able to deform the SLBs 

elastically. As this is vital to cells sensing their environment (52), it can therefore be assumed 

that in this work cells do not sense the SLBs through their elastic properties. 

 

Of the physical characteristics that can be determined, the most useful in this context is that of 

bilayer thickness. This was calculated for each curve in the force map and the thickness 

distribution for each curve was fitted to a Gaussian distribution as shown in Figure 3.4. This 

shows that average thicknesses of the DOPC and DPPC SLBs are 5.88 ± 0.42 nm and 6.32 nm 

± 0.64 nm respectively. Both of these values are indicative of a single lipid bilayer structure 

present on the glass surfaces (177). However, it was not expected that the SLBs would be, 

statistically, of similar thickness. It would be expected that DPPC would be thicker due to the 

measurements being performed below the Tm for DPPC (and above that of DOPC); in light of 

this, and as detailed in Section 1.3.1, the tail group of DPPC would be more extended, providing 

a greater effective length (211). It may be that electrostatic interactions and the basal water has 

led to added interaction between the tip and the SLB in both cases (177), thus leading to a 

change in the measured thickness. While this theory cannot be confirmed, it is apparent that in 

both cases a single bilayer has been formed. Results from Figures 3.2 and 3.4 work in tandem 

to confirm that not only is the bilayer present on the glass surfaces, but that there is continuous 

lipid coverage over the sample.  

 

In this series of experiments AFM has served as an ideal means through which to qualitatively 

and quantitatively probe the physical characteristics of differently mobile SLBs. From this, the 

presence of continuous SLBs has been confirmed via contact mode imaging and force 

spectroscopy measurements in both the DOPC and DPPC surfaces. Furthermore, force 

mapping of defined areas of the bilayer has served to successfully produce thickness 

measurements indicating single bilayers present on the surface. From this initial 

characterisation, it is then possible to move on to quantifying the viscosity of these two systems 

through fluorescent correlation spectroscopy (FCS). 
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Figure 3.4. Supported Lipid Bilayer Thickness. Force mapping, as shown in Figure 3.3E 

produced a series of multiple force curves for each SLB, which was categorised into bins of 

1 nm thickness. The relative percentage frequency of these values for DOPC and DPPC is 

shown here, with a gaussian fit to determine the average thickness.  

 

3.3. DIFFUSION OF SUPPORTED LIPID BILAYERS 

As the main focus of this work is determining how the viscosity of a surface, specifically the 

SLB viscosity, can manipulate cellular behaviour, an important step was to quantify the 

diffusion characteristics of the surfaces; as mentioned previously this can be linked through the 

Saffman-Delbruck (SD) equation to the viscosity. Further, in the case of SLB viscosity, the 

lateral ligand mobility can also be understood through the diffusion coefficients of lipid-

fluorophore conjugates present in the bilayer. Measurements were performed on both SLBs at 

37oC. This is summarised schematically in Figure 3.5. Using the confocal volume, defined by 

the objective numerical aperture (Figure 3.5A), time-dependent changes in detected fluorescent 

intensity over time (Figure 3B) can be detected using very small numbers of fluorophores; the 

decay in the autocorrelation G(τ) (Figure 3.5C) is proportional to the diffusion of the 

fluorophore and related in the equations detailed in the methods section.  
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Figure 3.5. Schematic Representation of Fluorescence Correlation Spectroscopy. (A) Shows 

the illumination of the fluorophores within the confocal volume, which is then detected by the 

avalanche photodiode (APD). The photon count signal over time (B) is then correlated to one 

another showing a decay in the correlation over time (C). This can be used to calculate the 

diffusion coefficient if the beam radius is known from previous calibrations. (Adapted from 

(212)) 

 

Figure 3.6 shows the initial measurements taken from the SLBs, plotting the correlation factor, 

G, against time. Before measurements were taken the device was calibrated using 100 nm 

fluorescent beads and the beam radius was determined to be 0.26 µm, via Equation 2.6 (Chapter 

2.8) (3.6C Inset). By fitting the data to Equations 2.7 and 2.8 a measurement of the diffusion 

coefficient of the SLBs was determined (Figure 3.6C, summarised in Table 3.1) was 3.63 ± 

0.99 µm2/s for DOPC and 0.13 ± 0.06 µm2/s for DPPC, giving an order of magnitude difference 

in the diffusion of fluorescent molecules within the SLBs. This can be attributed to the 

difference in the packing of the lipids in SLBs, which is, in turn, controlled by the phase, with 

DOPC being in the gel phase and DPPC being in the gel phase. 
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Figure 3.6. Diffusion in SLBs. (A) & (B) Show the correlation curves produced by the 

diffusion of fluorophores through the FCS confocal volume in DOPC and DPPC respectively. 

(C) Shows the resulting diffusion coefficients of DOPC and DPPC SLBs, calculated using the 

equations shown in section 2.8, (Inset – FITC bead calibration used to determine beam width, 

required to calculate the diffusion coefficient). 

 

The acquired diffusion coefficients are within the right order of magnitude for supported lipid 

bilayers, with previous work proposing that DOPC SLBs have a diffusion range between 1 – 

10 µm2/s. Interestingly, this is lower than that measured in free standing bilayers or in those 

bilayers that form vesicles. This may be ascribed to the influence of the solid support and a 

coupling between it and the proximal leaflet of the SLB (153, 213). In contrast, due to the gel-

like nature of the DPPC at 37oC it is not apparent what the diffusion coefficient should be. 

Indeed, the difficulty in these experiments was the optimisation of the fluorophore (0.5 mol%) 

concentration and laser strength to produce a decay curve. It must be stated here that despite 

this and the averaging of large data sets, the data itself still has a large degree of noise present. 

From this, it must therefore be concluded that the average value of D = 0.13 ± 0.06 µm2/s may 

well be an indication as to the order of magnitude of the overall diffusion of the bilayer, rather 

than a definitive determination. Importantly, the diffusion coefficient of the fluorescence dyes 

within the molecules are a good indicator of the viscosity of the surrounding membranes, as 

the diffusion coefficient (D) and the viscosity (η) are related by the SD eqaution (155, 214). 

This is restated here for clarity:  
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𝐷 =  
𝑘𝐵𝑇

4𝜋𝜂𝑚ℎ
 [ln (

2𝐿𝑆𝐷

𝑅
) −  𝛾]                (1.1) 

 

Where D is the diffusion coefficient, kB is the Boltzmann constant, T the absolute temperature, 

ηm the membrane diffusion, ηf the viscosity of the fluid (given as water at 37oC – 0.691 x 10-3 

Pa.s), r the radius of the inclusion in this case a lipid molecule) and γ the Euler-Mascheroni 

constant (0.577). 

SLB Diffusion coefficient 

(µm2/s) 

Calculated viscosity 

(Pa.s.m) 

DOPC 3.6 ± 0.99 7.98 x 10-10 

DPPC 0.13 ± 0.06 3.95 x 10-8 

Table 3.1. A summary of the attained values of the DOPC and DPPC diffusion coefficients as 

determined by FCS, and the resulting, viscosity values, calculated by the SD equation. 

 

By applying this here viscosity values of 7.18 x 10-10 Pa.s.m and 3.95 x 10-8 Pa.s.m were 

estimated for DOPC and DPPC respectively (Table 3.1). The latter of these values shows 

agreement with lipids measured in a vesicle system, which may provide a template for these 

values (215); however, extrapolations of DPPC viscosity from diffusion was not found. The 

closest value stated is using a three component system of DPPC:cholesterol:DiPhyPC, which 

reported a value in order of 10-9 Pa.s.m. However, as cholesterol can disrupt the ordering of 

DPPC molecules in a gel-phase bilayer (216), it is not clear whether this may be a good 

indicator of viscosity in a purely DPPC SLB. This associated of the diffusion with the viscosity 

is of key importance when considering cellular behaviour in the later chapters; however, here 

it confirms the validity of the diffusion measurements for both DOPC and DPPC.  

 

3.4. FUNCTIONALISATION OF SURFACES 

3.4.1. FUNCTIONALISATION OF A GLASS CONTROL 
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An RGD-functionalised glass control used to represent an immobile surface, represented 

schematically in Figure 3.7A, was also produced and characterised so as to make a more 

effective comparison between mobile and immobile surfaces.  

Figure 3.7. Functionalisation of Glass with RGDStatic Water Contact Angle (WCA). (A) 

Shows a schematic of the progressive functionalisation of glass leading to RGD being 

presented on the surface. (B) Shows the WCA after RCA cleaning and (C) shows the WCA after 

silanisation with APTMS, demonstrating the change in surface hydrophobicity upon incubation 

with this silane. (D) and (E) show the fluorescence histogram before and after functionalisation 

with neutravidin, respectively (insets show representative images; scale bar = 25 µm). 

 

The control was designed to mimic the SLB as closely as possible and thus RGD was 

conjugated to a glass surface a similarly as possible to that of the SLBs. Initially, the control 

was silanised via (3-aminopropyl)trimethoxysilane (ATPMS) and the binding was confirmed 

with contact angle measurements, as shown in Figure 3.7B and C, with a  large increase in the 
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static contact angle from 26.7 ± 2.9o before silane addition (and after RCA cleaning) to 65.4 ± 

2.2o after silane addition. This is more hydrophobic than a previously determined value on a 

similar system (~40-50o on APTES) (217), which may be related to the differences between 

using a purely silicon surface, rather than glass or the methoxy and ethoxy groups in the silane. 

Upon incubation with the crosslinker and fluorescent neutravidin it was seen that there was a 

difference in fluorescence between a plain glass surface (Figure 3.7D) and a silane-treated 

surface (Figure 3.7E), indicating the presence of protein on the sample. 

 

3.4.2. QUANTIFICATION OF SURFACE LIGAND DENSITY 

The functionalisation of DOPC and DPPC SLBs was quantified, to ensure a consistent ligand 

presentation, regardless of viscosity-defined ligand mobility. Quantitative fluorescence 

microscopy (QFM) (184), as described previously in the literature allowed for the approximate 

number of protein molecules on each surface to be calculated. Initially, the system was 

calibrated using standards of neutravidin and lipid vesicle solutions (Figure 3.8A & B 

respectively); as detailed in the methods the scaling factor (F) was given by Iprotein / Ilipid, were 

I is the gradient, giving a value of 0.51. Using a SLB, with a known quantity of TR-DHPE per 

µm2, the fluorescent intensity based on the number molecules present on a bilayer was also 

determined, from the gradient (Ibilayer) (Figure 3.8C). By combining the scaling factor and 

Ibilayer, fluorescence related to the fluorescent protein per µm2 was calculated (Figure 3.8D). 

These values were applied to the fluorescence images shown in Figure 3.10A, which allowed 

for the amount of neutravidin per µm2 to be calculated (Figure 3.9C) and thus the surface 

density (Figure 3.9D).  In all cases the protein density was seen to be in a similar range for both 

DOPC and DPPC SLBs, indicating that the main difference between the two surfaces was 

mobility of the ligands, as defined by the viscosity.  

 

From the values attained in Figure 3.9, combined with the assumed cross-sectional area of a 

lipid as 0.725 nm2 (218), it can be concluded that the attained values are within the maximum 

expected values of the neutravidin density for each of the lipid surfaces. This degree of 

fluorescence indicates that on each surface the number of biotinylated lipid per neutravidin is 

approximately 2:1, thus allowing two binding sites for biotinylated RGD groups. Further to 

this, previous work has shown a comparable surface density of neutravidin on these lipid 
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surfaces within the ranges expected for the surface concentration. For example, at 0.4 mol% 

biotinylated lipid 1,750 molecules per µm2 were seen (79), indicating between 1 – 2 

biotinylated lipid to neutravidin each molecule.  

 

Figure 3.8. Quantitative Fluorescence Imaging (QFI) Calibration. Determination of the 

amount of protein per µm2 on a bilayer sample by first determining a scaling factor (F) between 

the linear gradients of bulk solutions of (A) protein (in this case neutravidin) and (B) lipid 

vesicles (DOPC). This scaling is factor is then applied to the linear gradient of fluorescent 

lipids in a bilayer (C), which can then be used to determine fluorescence as an amount of 

protein molecules per µm2 (D).  
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Table 3.2. Predicted density of neutravidin per µm2 adsorbed to the surface, based upon the 

amount of binding events on one neutravidin molecule. 

 

Table 3.2 shows the expected neutravidin density on the SLBs, which is also dependent on the 

stoichiometry of binding, with neutravidin having 4 possible binding sites for biotin. From this 

the stoichiometry for each surface shows that there is at least one binding site available for a 

biotinylated RGD. While it is possible, and indeed likely, that more RGD is present than 

protein, it is likely that a cell would be incapable of detecting them. Approximate values of the 

spacing between biotin binding sites, taken from the crystal structure neutravidin indicate that 

the spacing between the biotin binding sites on the neutravidin being approximately < 3 nm 

(219). However, the size of the extracellular domain of an integrin molecule is on the order of 

10s of nm (220). Therefore, at this separation between RGD molecules, integrin molecules 

would not able to cluster to a sufficient degree through which to take advantage of any 

additional RGD molecules present on a single neutravidin protein, effectively presenting a 

single RGD molecule. As a further point to note on the cell response, it has previously been 

noted that ligand spacing controls the size and dynamics of focal adhesions (18, 42). In SLBs, 

either in the fluid or gel phase, the absolute intermolecular distance cannot be determined due 

to a degree of viscous flow in the membrane; however, an average spacing based on the 

ascertained number of molecules determines and approximate distance of 12.9 nm in both cases 

(2 mol% functionalisation). This therefore, disregards this as a defining factor between the lipid 

surfaces, ensuring that any changes in observed cell adhesion would be more likely related to 

the nature of the surface, rather than the distribution of the ligands. 

 Lipid:Neutravidin Ratio 

%mol of 

Biotin-cap-PE 

1:1 2:1 3:1 4:1 

0.4 2,312 1,156 771 578 

2 11,560 5,780 3,853 2,890 

10 57,803 28,902 19,268 14,451 
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Figure 3.9. QFI of DOPC and DPPC SLBs. (A) and (B) show the DOPC and DPPC SLB 

intensity histograms upon increasing surface density of functionalised lipid (0.4, 2 and 10 

mol% of biotin-lipid); the  corresponding representative images are colour-coded to the 

relevant concentration (scale bar = 25 µm2). (C) Shows the calculated amount of neutravidin 

molecules per µm2 and (D) shows the extrapolated surface density of the neutravidin 

molecules. 

 

3.5 STABILITY OF SUPPORTED LIPID BILAYERS 

Finally, the stability of the SLBs over time was assessed. This assessed the longer-term 

applicability of the lipid systems in a cell culture environment (in media at 37oC). The resulting 

lipid coverage was measured using the FCS system over 15 days (Figure 3.10). The nature of 

the SLBs changed between 8–15 days; in the fluid, DOPC SLB the bilayer was seen to 

breakdown, with large defects present and a reduction in overall coverage seen. In the gel 

DPPC SLB there appeared to be large globular defects present on the surface. However, by 
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bleaching a small area of the surface (ROI 1) it was confirmed that the SLB was still present 

and that there was no overall reduction in the surface coverage.  

 

The difference in the SLBs after 15 days may be due to the difference in their phases. In a more 

general sense, the literature has previously reported SLBs being stable for at least 7 days under 

constant buffer exchange (221), which agrees well with the current results. However, there 

does not appear to be work on the longer-term stability e.g. up to 28 days, for use cell culture. 

While 15 days is short of this time scale, it does allow for the assessment of biomarkers in cell 

lines such as the model C2C12 mouse fibroblasts or even early markers of differentiation in 

mesenchymal stem cells (hMSCs). While this shows good potential for stability this can only 

be used as an indicator of the stability prior to the addition of cells. With the presence of the 

RGD ligands on the bilayer cells will interact with the normally non-fouling SLB. It would 

therefore be reasonable to assume that the nature of the bilayer, for example deterioration of 

surface coverage over time, would change. However, this initial assessment serves as a proof-

of-concept as to the potential applicability of this system in the long term.  
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Figure 3.10. Bilayer Stability over Time. An image series of the 

bilayer over a period of 15 days, showing the overall coverage 

and stability of SLBs in cell culture conditions. The red box 
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highlights ROI 1, an indicator of the bleaching of the DPPC 

surface after 15 days, indicating that the SLB is still present, with 

defects. 

 

3.6. CONCLUSIONS 

This chapter has shown that the techniques employed are capable of successfully producing 

lipid bilayers that can then be functionalised, in order to produce a system capable of being 

applied to cell studies. AFM imaging showed that both fluid and gel phase lipid could be used 

to produce contiguous SLBs on glass substrates. Further to this, probing of the physical 

properties supported the argument that a single bilayer was formed upon deposition of the 

relevant vesicles upon the glass surfaces. Upon this production, confocal based FCS 

measurements of the relevant SLBs showed that they displayed diffusion speeds that varied by 

an order of magnitude, in agreement with the literature. Further, these values were able to be 

applied to the SD equation in order to calculate the viscosity of each SLB. This, in turn, can be 

assumed to have a significant effect on the mobility of any ligands attached to the membrane. 

Finally, functionalisation of the bilayers, as well as a glass control, were quantified using 

fluorescence-based determination of the amount protein adsorbed on the surface via fluorescent 

intensity. By determining the amount of protein present the amount of RGD-ligand presented 

to the cells and the average intermolecular distance has been calculated. In light of this 

successful production and characterisation of these SLBs, the work detailed in the next chapter 

has used these systems to understand how and why the mobility of the ligand, defined by the 

viscosity, can change the cellular response. 
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4. DETERMING CELLULAR BEHAVIOUR IN RESPONSE TO 

CHANGES IN LIGAND MOBILITY 

 

4.1. INTRODUCTION  

With the system characterised in the previous chapter, the next step was to determine the cell 

behaviour. Bilayer systems have been used previously (58, 77, 79) to understand the nature of 

the interaction of the cells with an interface. However, the effect of bilayer viscosity, and the 

mechanisms by which it acts, have not been well characterised in the literature. This chapter 

has therefore studied the nature of the cell response to different surfaces, as well as seeking to 

understand the basis for this behaviour.   

 

Cellular adhesion in vivo is vital for survival, proliferation and differentiation in various cell 

types, with the nature of this adhesion controlled by the interaction of the cell with the 

extracellular matrix (ECM). The physical and chemical properties of this network are of vital 

importance when considering how a specific cell population will be behave. For example, the 

ECM may be composed of specific proteins, with notable examples including, but not limited 

to, collagen, fibronectin and laminin (222). These proteins have varying cellular adhesion 

peptide sequences, which can bind and activate ECM-binding integrins present on the cell 

surface (223). There may also be further proteins present within the ECM, such as growth 

factors, which can bind to further cell surface receptors (1, 224). Further to the molecular 

properties, physical properties, such as topography or viscoelasticity also have significant 

effects (10). In vivo all these factors act in unison to direct the behaviour of specific cellular 

populations within specific environments, be it adhesion, spreading, migration or 

differentiation.  

 

Understanding the influence of these stimuli in isolation allows researchers to elucidate the 

nature of the processes dictating the cell response to specific stimuli. This knowledge can 

therefore be utilised in an effort to dictate a desired cellular response, both in vitro and in vivo. 

Concerning the molecular makeup of the ECM: the types of integrin recruited vary depending 

on matrix protein present (17). Topography has also been shown to have a significant effect on 

the cellular response. For example, ligand spacing (10) and disorder (16) can change cellular 
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behaviour, as well as other topographical characteristics affecting spreading, adhesion 

dynamics (42) and differentiation (16). The viscoelasticity of the ECM is, in itself, two separate 

factors: the viscosity and the elasticity. The latter of these has been well studied, with various 

work reporting that the elasticity, otherwise termed stiffness, has a major effect on cellular 

properties such as migration (225), spreading (226) and differentiation (34). Interestingly, in 

the case of stiffness like begets like; in vitro stem cells can be directed down specific lineages, 

such as neural, muscle, or bone lineage, by producing a matrix that simulates the stiffness of 

the in vivo environments of the differentiated cells (34, 85). The impact of overall 

viscoelasticity on cells has also been determined (62, 227). However, topography and stiffness 

remain the most widely studies properties in terms of understanding the cellular response.  

 

Despite less studies being undertaken on the nature of the cell response to viscosity, there is 

still work that considers this effect. Much of this work uses polymers, with viscosity defined 

as the mobility of the polymer, and has found varying degrees of cell response in different 

studies. Similarly to the properties detailed above, this property of mobility has been seen to 

have an effect on cell adhesion (54) and spreading (53), as well as having a significant impact 

on the nature of the cellular adhesive machinery (55). At a molecular level, this mobility can 

also change the conformation of ECM proteins such as fibronectin (228, 229) as well as the 

presentation of associated growth factors (230, 231). Further to this, and in line with other ECM 

properties studied, surfaces with lateral mobility have been shown to control the adhesion, 

spreading and differentiation of different cell lines (52, 56, 229). This collection of work 

indicates the mobility of the ligand may well be a source of further means through which 

modulate cell behaviour. 

 

While there is a large degree of evidence to say that the surface viscosity or mobility of a ligand 

control the cellular response, there is currently minimal literature that has sought to understand 

the mechanism in an isolated environment. This chapter utilises the entirely viscous nature of 

the supported lipid bilayer (SLB) as a means through which to understand how the viscosity-

defined ligand mobility of the RGD-lipid ligand affects the cellular response.  
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4.2. CELLULAR BEHAVIOUR ON SUPPORTED LIPID BILAYERS 

4.2.1. EARLY CELL ADHESION  

The previous chapter established that SLBs of different viscosity can be formed using the 

current methods. It also showed that these bilayers have characteristics that are similar to those 

of systems previously reported. From this starting point, initial cell studies focused on the 

nature of the cell binding, including the adhesion of the cells, spreading and the properties of 

the focal adhesions. These properties begin to elucidate the nature of the response to the 

viscosity-defined ligand mobility in the SLBs.  

 

The first stage of cellular interaction with any interface is that of adhesion. As such Figure 4.1 

shows the attachment of cells to the SLBs with and without RGD present. Without RGD the 

adhesion of cells to the SLBs was almost negligible. However, upon functionalisation the cell 

density was seen to be comparable to that of the RGD-Glass control. Furthermore, there does 

appear to be a small, but significant difference in the number of cells adhered on the less mobile 

DPPC surfaces than on the DOPC upon functionalisation (DPPC vs. RGD-Glass = ns).  
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Figure 4.1. Initial Cellular Adhesion. The interaction of cells 

with the lipid surfaces was seen to be minimal without RGD 

being present at 3 hours. Upon functionalisation with RGD, at 

2 mol% functionalised lipid, cell adhesion was seen to be 

comparable to that of the RGD-Glass control. P values 

indicating significance, * ≤ 0.05, **** ≤ 0.0001. 

 

A lack of cell binding to both the DOPC and DPPC can be attributed to the non-fouling nature 

of zwitterionic lipid bilayers. The dominant theories as to why bilayers prevent cell binding are 

i) they are charge neutral and/or ii) the mobility of the component lipids prevents cell adhesion 

(232, 233). The former of these has been more studied with the inclusion of charge in a SLB 

promoting cellular adhesion (158). It is possible, however, based on these and previous 

findings, that both of these are contributing factors. Without functionalisation the difference in 

cell binding was not significant, implying that the viscosity of the bilayer, and thus the ligand 

may not affect binding; however, upon functionalisation the small, but statistically significant 

difference in cell binding may imply a role of this ligand mobility in adhesion in lipid systems. 

While no parallels can be drawn to previous SLBs, the mobility of polymer surfaces has been 

shown to affect cellular adhesion (54), with changes to the hydrated mobility of the polymers 

showing different cellular adhesion characteristics. In spite of these small differences the main 

contribution to cellular adhesion must be considered to be the presence of RGD. Present in the 

repeat III10 domain of fibronectin (86) RGD can bind several types of integrin receptor present 

on the cell surface (17), leading to the initial stages of cell adhesion.  

 

While not studied in-depth in this work, the role of surface charge can also be considered. Both 

DOPC and DPPC are neutrally charged, which may contribute to the non-fouling nature; 

previously, it has been shown that introducing positive charge into a lipid bilayer can promote 

cell binding (158), likely due to interaction with the negative charge present on the membrane 

of cells. Electrostatic charge is an important consideration in various studies. Taking a relevant 

example avidin, has been noted to cause significant background binding due to the positive 

charge is possesses at neutral pH; however, neutravidin does not, thus significantly reducing 

the extent of background binding.  
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4.2.2. CELL SPREADING AND MORPHOLOGY  

After the initial adhesion cells then further interact with the surface causing changes in cellular 

morphology, which, as stated above, are dependent on the characteristics of the environment 

in which the cell resides. After functionalisation (2 mol% unless otherwise stated), the change 

in viscosity dependent change in cellular morphology upon surfaces of different ligand 

mobility is shown in Figure 4.2. Between DOPC and DPPC it was observed that the cell area 

was larger on the latter, gel-phase SLB, with a further increase in area seen on the immobile 

control (Figure 4.2A). Furthermore, Figure 4.2B demonstrates that the shape of the cell is also 

affected, with cells showing more circular characteristics on DOPC, the most mobile of the 

surfaces; DPPC and the glass control, however, demonstrate a lower circularity, which is 

statistically comparable between these two surfaces. Qualitatively, on each of the surfaces, it 

can also be seen that the cell cytoskeleton is well-defined on both the DPPC and RGD-glass, 

with defined stress fibres being apparent throughout the cell. However, on DOPC the actin 

cytoskeleton cannot be clearly seen, with a far more diffuse fluorescence seen throughout the 

cell.  

Figure 4.2. Morphology Dependence on Ligand Mobility. (A) Shows the average cell area on 

DOPC (high ligand mobility, low viscosity) and DPPC (low ligand mobility, high viscosity), 
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with (B) showing their characteristic circularity. (C) – (E) are representative images of the 

cells on DOPC, DPPC and RGD-Glass respectively. (Scale Bar = 25 µm). P values indicating 

significance, ** ≤ 0.01, **** ≤ 0.0001. 

 

In order to confirm that this observed cell spreading was indeed due to the influence of the 

RGD present on the surface, integrins were selectively blocked. Figure 4.3A shows the 

resulting representative images of cells incubated with inhibitors for α5β1 and αVβ3. The former 

was blocked with an anti- α5β1 antibody and the latter with a soluble cyclic-RGD (the 

concentration of which blocked αVβ3, but not α5β1 (91, 234)). As both of these integrins are key 

for cell binding to RGD it would be assumed that one or both would have an effect on cell 

morphology. Indeed, this is what is seen in Figure 4.3A and quantified in Figure 4.3B. Upon 

incubation with one or both of these inhibitors a reduction in cell area is seen on all surfaces, 

with the exception of cells on DOPC incubated with only the α5β1 inhibitor.  

 

Cell morphology is highly dependent on the nature of the environment in which the cell resides, 

with higher stiffness, ideal ligand spacing, and the presentation of specific chemical groups all 

enhancing this spreading. Specifically to ligand mobility, cells are seen to change their 

morphology in response to even small changes. In the literature, mobility of the ligand has a 

varying effect on the morphology of cells, with some observing a greater cell spreading (235) 

upon increased ligand mobility, while others observe less spreading (53); still others noticed 

other behaviours such as biphasic (55) or no changes (56). As many of these use different 

polymer surfaces it may be that there are other factors at play between these surfaces, such as 

different chemistries. However, when using lipid bilayers cells have predominantly been noted 

to adopt a more rounded and, less spread morphology on fluid-phase bilayers (58, 77, 79), with 

gel phase bilayers not previously being studied in-depth. These previous studies have noted the 

lateral, unrestricted mobility of the ligand to be an important factor in the cell shape; indeed, 

upon introducing barriers through which to restrict bilayer movement an increase in overall 

cell size was seen (79). Interestingly, the size was also dependent on the barrier spacing, 

implying the degree of motion is a factor in the cell size. This concurs with current findings, 

were it is noted that there is a decreasing degree of lateral motion of RGD in DOPC > DPPC > 

Glass; this reduced spreading is reminiscent of the cell response to changes in the stiffness, 

where cells are smaller and more rounded on softer surfaces (226). This is also supported by 
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the properties of the actin cytoskeleton of the cells. The formation of a well-defined actin 

cytoskeleton is tightly controlled by the cell-surface interactions (18), with exertion of force on 

the surface playing a key role in the polymerisation of actin. Indeed, FAs, the means by which 

cells exert force on the surface are key nucleation sites of actin polymerisation (236). This is 

also noted on fluid phase bilayers (79), with less defined actin formation in response to lower 

forces being exerted by the cell. 

Figure 4.3. Inhibition of α5β1 and αVβ3 Integrins. (A) Shows an array of the representative 

images of cells incubated with one or both inhibitors for α5β1 and αVβ3 integrins on surfaces of 
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all ligand mobility values. (B) Shows the consequent quantification of these images in terms of 

the change in cell area upon inhibition on each of the surfaces P values indicating significance, 

* ≤ 0.05, ** ≤ 0.01, **** ≤ 0.0001. 

 

It has also been confirmed here that integrins binding to RGD mediate the response of the cells 

to the surface. The interaction of the integrins with molecules on the lipid surface is an 

important first step to the linking of the surface to the cellular processes. Indeed, integrins not 

only serve an as initial link for the cell to the surface, but also as key signalling molecules in 

both directions across the plasma membrane (237). Specifically, α5β1 and αVβ3 integrins have 

a significant role in the determination of adhesion strength and mechanotransduction (91). 

Previously, it has been noted that the former determines the adhesion strength, with a greater 

ability to sustain higher forces; however, the latter, through a less stable bond, enables 

mechanotransduction, the process through which cells convert mechanical stimuli into 

biochemical signals. Together, the effects of the ligand mobility and integrin inhibition on the 

morphological characteristics of the cell may imply a mechanosensitive-based response to the 

surface. Other factors, such as chemistry and ligand distribution, can be disregarded due to both 

being of a comparable nature on both of the lipid surfaces. 

 

4.3. LIGAND MOBILITY DEPENDENT CHANGES IN FOCAL ADHESIONS 

To gain further insight into the nature of the cell response to the surfaces, key mediators of this 

response, focal adhesions (FAs), were analysed. As micron-scale complexes, filled with 

hundreds of different proteins, FAs serve a vital link between the actin cytoskeleton and the 

surface. As such, the physical properties of these protein complexes is highly dependent upon 

the nature of the surface, and thus is capable of elucidating, in greater detail, the nature of the 

cell response to the viscosity-defined ligand mobility.  
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Figure 4.4. Focal Adhesion Changes in Response to Ligand Mobility. (A) – (C) Show 

representative images of the cells on DOPC, DPPC and RGD-Glass respectively with actin 

stained in green, and vinculin stained in red. (D) Shows the average size of the focal adhesions 

on the each of the surfaces with (E) showing the number of focal adhesions per cell. (Scale Bar 

= 25 µm).P values indicating significance, ** ≤ 0.01, **** ≤ 0.0001. 

 

To this end the FA protein vinculin was used to stain for FAs present in the cell on each surface. 

Figure 4.4A – C shows the representative images of vinculin (red) and the cytoskeleton (green) 

on DOPC, DPPC and RGD-Glass respectively. Here the FAs were seen to be more well-

defined on DPPC and RGD-Glass than on DOPC. Furthermore, vinculin stained positively at 

the ends of the actin stress fibres (Figure 4.4A – C), as would be expected (238), on these 

surfaces. However, on DOPC a more diffuse vinculin stain, with aggregates present and not 

associated with any stress fibres, was seen. Figure 4.4D and 4.4E seek to quantify these FA 

properties, by determining the average size (area) of the FAs and their number respectively. In 

line with the qualitative observations seen in Figures 4.4A – C, FA size was noted to increase 

as ligand mobility decreased (i.e. as the viscosity increase), with the largest seen on the RGD-

glass surface. Furthermore, 4.4E shows that there is also an increase in the average number of 
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FAs per cell as the viscosity increased. Analysing this further, the distribution of the FA area 

is shown Figure 4.5; with a bin width of 0.5 µm, the DOPC surfaces showed a large prevalence 

of much small adhesions, with nearly 80% being smaller than 1.25 µm and all being smaller 

than 2.25 µm (as represented by the largest FA size allowed in these bin groupings). In contrast, 

a greater proportion of adhesions were seen to be larger on both DPPC and RGD-Glass, with 

maximum adhesion size bin centred at being 2. 5 µm and 3.0 µm respectively, and more 

adhesions at these higher distributions.    

Figure 4.5. Focal Adhesion Distribution. The distribution of FAs is shown here 

on the each of the surfaces. In the analysis the minimal size of the FAs was set to 

0.75 µm2; as such, the initial bin was set to 1 µm, with a bin width of 0.5 µm. 

 

Focal adhesions (FAs) are well understood to be the one of the main mediators between the 

surface properties and the nature of the cell response (18). The formation of FAs has also been 

noted to be highly responsive to physical cues, with size (14, 239) and number (240, 241) being 

key initial indicators. Specifically, both a greater number of FAs and an increased area have 

been observed when cells are able to exert more force on the surface (240). For example, stiffer 

surfaces are more able to promote the formation of traction forces, producing more numerous 

and larger FAs (14). As noted above, it is implied, from cell spreading and cytoskeleton 

organisation, that cells may be exerting a greater force on DPPC, where a less mobile ligand is 
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presented. As other factors have been disregarded this result is provides further support for this 

hypothesis. However, one weakness in the focal adhesions analysis may be that due to their 

larger area, larger cells are more likely to have more focal adhesions. While this cannot be 

discounted as a factor here, qualitatively the focal adhesions are observed to be more well-

defined on the higher viscosity DPPC and the glass control. The shape and localisation of the 

FAs at the ends of actin stress fibres are also more in line with what has previously been noted 

in other studies (18). Further, FA size is less linked to the size of the cells, thus better 

representing the force on the surface (14). 

 

As integrins cannot bind directly to the actin cytoskeleton, FAs are made up of potentially 

hundreds of adaptor proteins (18); therefore not only the size and number can change, but so 

too can the type of proteins as well as their properties. For example, FA proteins such as talin 

or α-actinin are present as linkers between integrin and actin and vital for FA maturation and 

stabilisation (242). The properties of these proteins change with the extent of force generated 

at the adhesion site; for example, force on talin exposes binding sites for vinculin and yet other 

proteins have their phosphorylation sites exposed under force, inducing further signalling 

pathways. Conversely, proteins such as vinexin (243) or Arp2/3 (244) are recruited specifically 

in response to force. The protein stained for in Figure 4.4 is vinculin, whose properties within 

FAs are highly dependent on the mechanical properties of the surface. It has previously been 

noted that vinculin is recruited to site of adhesion in response to force (245-247), where the N-

terminal head group can bind to actin-integrin linker proteins talin and α-actinin and the C-

terminal tail group binds to F-actin (248). Further to this, vinculin in its unbound conformation 

is auto-inhibited by the head-tail interactions and is activated upon binding, likely to a number 

of ligands (249). Vinculin therefore acts as a means to regulate the amount of force exerted on 

a surface, with not only the head and tail sites contributing, but also the neck region binding 

further signalling proteins, such as VASP (250). This, in turn, leads to cell FA stabilisation, 

thus regulating cell mechanics and spreading (251). In the representative images in Figure 4.3A 

– C vinculin can be qualitatively been seen to localise to focal adhesions more in cells on DPPC 

and the RGD-Glass control that it does on DOPC, where a more diffuse background is seen. 

This would imply that the focal adhesions formed in the presence of less mobile ligands are 

capable of exerting more force on the surface.  
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This assertion was further tested by assessing the presence of pFAK in the cells (Figure 4.6). 

The phosphorylated form of focal adhesion kinase (FAK), pFAK is also an indicator of the 

amount of force exerted by the cell on a surface; this is due to the exertion of force exposing 

tyrosine sites capable of phosphorylation (33). Figure 4.6A – C shows that pFAK is more 

prevalent as the ligand mobility decreases, with high fluorescence and similar morphology to 

that seen on vinculin stains in Figure 4.4. Furthermore, the integrated density of the pFAK 

present within the cell increases as the ligand mobility decreases (Figure 4.4D). With FAK 

previously shown to phosphorylate under force, it can therefore be assumed here that the 

increased pFAK present is likely an indicator of increased phosphorylation due to forces 

exerted on the surface. This, in turn, can be linked to the mobility of the ligand, with higher 

phosphorylation noted on more viscous surfaces, with lower ligand mobility. One possible 

consequence of this is that there may be increased downstream signalling through the Ras 

signalling pathway (33) and through proteins such as RhoA and Rac (252).  
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Figure 4.6. Phosphorylation of FAK in Response to Ligand Mobility. (A) – (C) Show 

representative images of pFAK present in the cells seeded on DOPC, DPPC and RGD-

Glass respectively. (D) Shows the integrated density of the pFAK within the cell area. 

(Scale Bar = 25 µm). P values indicating significance, * ≤ 0.05, **** ≤ 0.0001. 

 

In light of the findings above, Figure 4.7 summarises the proposed mechanism of the sensing 

of viscosity-defined ligand mobility that was implied by the findings above, combined with the 

previous literature. Here, it was hypothesised that a decrease in ligand mobility, through 

increased viscosity, leads to an increased force exerted on the surface; it was hypothesised that 

this was due to the greater resistance to ligand motion in the less mobile (more viscous) DPPC. 

In response to this increased force, mechanosensitive proteins are activated through the 

physical process of exposing sites of activation, in the case of FAK or binding, in the case of 

adaptor proteins such as talin (indicated from the presence of vinculin). In the former case this 

leads to phosphorylation and activation of downstream pathways. In the latter this leads to 

vinculin binding to exposed sites on adaptor proteins, providing a further link to F-actin and 

increasing further signalling pathways.  

Figure 4.7. Protein Activation in Response to Ligand Mobility. The schematic shows a 

proposed effect of the viscosity-defined ligand mobility on the FA proteins present in the 

complex; as viscosity increases and ligand mobility decreases, the assumed amount of force 
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increases. (A) Shows how mechanical force is capable of exposing phosphorylation sites 

present in FAK, leading its conversion to pFAK and its consequential activation. (B) Shows 

that mechanical pulling of adaptor proteins linking integrins, and thus the surface, to the actin 

cytoskeleton leads to the exposure of vinculin binding sites on proteins such as talin. Vinculin 

can then subsequently bind to F-actin as well as other signalling molecules. 

 

4.4. CONCLUSIONS 

This chapter has begun to understand the nature of the cell response to ligand mobility. After 

successfully producing and characterising SLBs of varying viscosity in the previous chapter, it 

was shown here that this viscosity-defined ligand mobility can control cellular behaviour, with 

cells spreading to a greater extent on the more viscous DPPC, which present lower mobility 

ligands. This is supported by the above noted observations with cell spreading, cytoskeletal 

organisation, focal adhesion size, number and activity all seen to be inversely proportional to 

the ligand mobility. With other factors (chemistry and ligand distribution) previously 

accounted for, these observations lead to the hypothesis that the mechanisms that control the 

cell response to the viscosity and the accompanying ligand mobility are mechanosensitive in 

nature. Indeed, the nature of the cell response to this viscosity is reminiscent of that of the 

response to stiffness, with cells on less viscous surfaces being smaller, more rounded and 

having less well-defined FAs than those on more viscous surfaces. However, while these results 

imply that this is the case, they do not prove this outright. With respect to this, the next chapter 

will focus on understanding the mechanisms that dictate this, in an effort to more deeply 

understand the molecular nature of cellular response.  

  



124 

 

5. UNDERSTANDING THE NATURE OF THE RESPONSE TO 

VISCOSITY AND LIGAND MOBILITY  

 

5.1. INTRODUCTION 

The previous chapter has noted that the ligand mobility, directly controlled by the viscosity of 

the SLB, has a significant effect on cellular behaviour and morphology. As this behaviour was 

reminiscent of the response of cells to stiffness it was hypothesised that the pathways used by 

the cell to detect the surface viscosity would be similar. This chapter has therefore sought to 

test this hypothesis in order to better understand of the mechanisms and pathways involved. 

 

The cell response to stiffness is a multifaceted process relying on the linking of the cytoskeleton 

to the surface via the FAs and associated proteins. The consequent signalling of this process 

can lead to further downstream processes, such as transcription factor localisation, regulation 

of gene expression, or changes in cellular motility. However, the initial detection of the cell 

surface is through the transmembrane integrin proteins, of which there are 24 heterodimers 

present in humans (17). Containing one α and one β subunit, specific integrins can have 

different affinities for different peptide sequences (17), as well as different binding profiles and 

strengths (118). This provides a degree of versatility to the system, with some integrins capable 

of binding strongly to the surface and others, with weaker binding affinities, acting as 

mechanosensors, capable of triggering downstream events. 

 

Upon binding to the integrin the extracellular matrix (ECM) becomes coupled to the 

cytoskeleton and it is this coupling that defines the cellular response to the surface. The 

predominant model of the process whereby cells respond to stiffness is that of an actin-talin-

integrin-matrix clutch; this has widely become known as “the molecular clutch” and is 

described in detail in Section 1.2.3. This model was first proposed by Mitchison and Kirschner 

in 1988 (116), who aimed to describe the molecular nature of actin dynamics in axonal nerve 

growth cones. This was proposed, initially, because actin retrograde flow (i.e. the flow of actin 

inwards from the cell edge) was known to be continuous, whereas forward motion was variable. 

This implied that the coupling between the actin and the adaptor proteins allowed for “variable 

slippage,” which they defined as a molecular clutch; as with a mechanical clutch, this molecule 
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would prevent or allow for force to be transmitted dependent on whether it was “engaged” or 

not. The next key development of this model came 20 years later, when Chan & Odde 

developed a stochastic model to predict the nature of this clutch (115), whereby the system was 

considered as a series of springs, attached to the F-actin filament moving at a constant velocity. 

It was eventually shown that the adaptor protein, talin, acts as the clutch in this system, with 

the mechanical linking of the ECM and the substrate occurring only if talin unfolded within 

the integrin-ligand bond lifetime (47).  

 

In order to have an effect on the cell response, the nature of the surface must be transmitted 

further downstream than the cytoskeleton, with numerous studies indeed finding this to be the 

case. External, mechanical cues are translated into biochemical signals (e.g. transcription 

factors), that are capable of affecting gene expression. Key examples of downstream proteins 

include RhoA and Yes-associated protein (YAP). The former, a GTPase, has been associated 

with higher spreading and subsequent commitment of capable cells into more contractile 

lineages, such as osteoblasts (32). The latter has also been noted to be a key mechanosensitive 

protein, which localises to the nucleus to a greater extent upon stiffer substrates, as well as 

requiring cytoskeleton tension for its activity (21). Furthermore, YAP has also been shown to 

be necessary for stiffness-induced differentiation of mesenchymal stem cells (21).  

 

To probe the mechanisms that the cells use to define their response to the surface viscosity, 

actin dynamics and the consequent effect on downstream effector molecules are vital to 

understand. Furthermore, as these can have effects on differentiation capable cells, overall 

impact of the viscosity can be studied further by determining the consequences of this change 

in actin dynamics and downstream signalling.  
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5.2. APPLYING THE MOLECULAR CLUTCH TO LIGAND MOBILITY/ 

SURFACE VISCOSITY 

The molecular clutch model, at its heart, seeks to explain how the cell converts the retrograde 

(rearward) actin flow (herein referred to as “actin flow”), resulting from F-actin polymerisation 

at the leading edge of the cell and the action of myosin, into forward movement. In previous, 

seminal, work it has been applied successfully to predict the response of the cell to substrates 

of varying rigidity (47, 118). It showed that modelling cytoskeletal machinery as an elegant 

series of discrete variables was accurately able to predict the nature of the cell response, such 

as the integrin density (118), magnitude of traction forces and actin flow (47). However, this 

work has modelled the system solely with regards to elastic stiffness, with substrates 

considered to have minimal contribution from the viscous element. With the ECM being a 

viscoelastic system, it is vital moving forwards that the contribution of the viscous element be 

considered. Some research has sought to determine this, with Chaudhri et. al., (2015) (62) 

demonstrating that stress relaxation (considered the viscous element), that is the reduction in 

stress over time when a material is under constant strain, can also define the cell response; cell 

spreading on soft substrates, exhibiting stress relaxation, was similar to that of cells on stiff 

substrates. However, there is currently no work determining whether or not this model can be 

applied to wholly viscous materials. SLBs provide a unique opportunity for this, as they are 

two-dimensional confined fluids with a minimal elastic element. Therefore, they are the ideal 

tool through which to study the applicability of the molecular clutch to viscosity, i.e. the 

mobility of the ligand. 

 

5.2.1. MODELLING THE MOLECULAR CLUTCH FOR LIGAND 

MOBILITY/SURFACE VISCOSITY 

As the nature of the clutch has been thoroughly modelled in relation to stiffness, the model was 

adjusted to apply to the lipid surfaces. This was done through considering the lipid surfaces as 

an entirely viscous system. This is shown schematically in Figure 5.1, where the substrate is 

modelled with a viscous dashpot, rather than an elastic spring (as in Figure 1.5). It was therefore 

possible to determine the role of the molecular clutch in the cell sensing of viscosity.  
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Initially the diffusion coefficient, originally measured in Figure 3.6, was used to estimate the 

viscosity of the surface by applying the Saffman-Delbruck (SD) equation, first noted in section 

1.3.3. and recounted for convenience here (155, 214):  

 

𝐷 =  
𝑘𝐵𝑇

4𝜋𝜂𝑚ℎ
 [ln (

2𝐿𝑆𝐷

𝑅
) −  𝛾]              (1.1) 

 

Where D is the diffusion coefficient, kB is the Boltzmann constant, and T the absolute 

temperature. The LSD is the SD length and comprised of, ηm the membrane diffusion, ηf the 

viscosity of the fluid (given as water at 37oC – 0.691 x 10-3 Pa.s). Further, R is the radius of the 

inclusion (in this case a lipid molecule) and γ the Euler-Mascheroni constant (0.577). 

Figure 5.1. Cell Response to Viscosity through the Molecular Clutch. The speed of actin 

retrograde flow is controlled by the myosin motors. If the ECM-integrin bond lifetime is of 

sufficient length then the force exerted on the talin by the actin flow allows for the unfolding of 

talin at a specific rate. This unfolding leads to force enhancement through stabilisation of the 

talin-actin linkage through molecules, such as vinculin (adapted from Elsogui-Artola et al. 

(2016) (47)).  
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Figure 5.2 Model Predictions of the Effect of Viscosity. The left y-axis (blue) shows the 

predicted effect of the viscosity on the actin flow with a reduction in flow seen at approximately 

10-4 N.s/m. The right y-axis (red) shows the adhesion growth upon and increase in the viscosity 

of the surface, being seen to increase from a lower viscosity than that of the actin flow. Model 

data provided by Prof. Pere Roca-Cusachs of IBEC, Barcelona. 

 

As previously noted, applying this equation to the diffusion values previous attained in Chapter 

3 gives viscosity values of 7.18 x 10-10 Pa.s.m and 3.95 x 10-8 Pa.s.m for DOPC and DPPC 

respectively; in the case of DOPC this was similar to values from previous observations in 

giant unilamellar vesicles (215) and DPPC was believed to be a reasonable estimate, based on 

comparable values (216). Subsequent to the calculation of viscosity, the molecular clutch 

model was adjusted to account for viscosity rather than stiffness. As the units of viscosity here, 

Pa.s.m, are a comparable unit to that of N.s/m – the units used in the original clutch – the 

application of viscosity to the molecular clutch model was directly applicable with small 

alterations; the resulting computational predictions are shown in Figure 5.2. This 

computational prediction demonstrates that as the viscosity increases the actin flow will reduce 

and the adhesion size will increase. However, the key point of note here is that these changes 

in both flow rate and adhesion size only begin to show significant changes at viscosity values 

of approximately 10-4 N.s/m. This is in contrast to previously measured values on the order of 

10-8 and 10-10 N.s/m for DPPC and DOPC respectively. Taking this model in isolation it would 

therefore be assumed that the change in actin flow and adhesion size would be the same 



129 

 

between DOPC and DPPC. However, in the case of the latter, this has been shown in the 

previous chapter (Figure 4.4) to not be the case. This, therefore, raises the question as to how 

there is any response from the cells.  

 

A likely scenario is that the SD equation is no longer valid. A key variable of this equation is 

the SD length: LSD, which only holds true a certain length scales. Specifically, LSD is valid only 

when the radius of the diffusing particle is considerably smaller than this length (R << LSD) 

(157). However, when the diffusing particle becomes larger the SD equation fails completed. 

While further developments of the equation compensate for this (156, 157), other work has 

sought to rethink the SD equation entirely. This equation, from Gambin et al., (2006) (135) 

states that the diffusion has a 1/R relationship to the size of the diffusing molecule; this 

contrasts with the SD equation, which predicts a logarithmic relationship. This equation was 

first noted as an alternative in Section 1.3.3. and is restated here for convenience:  

 

 𝐷 =
(𝑘𝐵𝑇) 𝜆

4𝜋𝜂𝑚ℎ𝑅
                           (1.3) 

 

Where D is the diffusion coefficient, kB is the Boltzmann constant, T the absolute temperature, 

ηm the membrane viscosity, R the radius, h is the bilayer thickness and λ is the characteristic 

length. 

 

Applying the originally measured diffusion values to this equation slightly lower estimates for 

the viscosity values are attained: 8.4 x 10-11 Pa.s.m for DOPC and 2.33 x 10-9 for DPPC. In 

DOPC, previous estimates were attained from giant unilamellar vesicles, which may account 

for this discrepancy. As viscosity of DPPC SLBs was not found it is unclear whether this or 

the previous ascertained value from the SD equation are more accurate. However, a key 

difference between this and the SD equation is the presence of the characteristic length (λ). 

This was included for dimensional reasons and is noted by the authors to be a measure of the 

perturbation of the membrane by the diffusion molecule. In the case of a single lipid this may 

be small, with values of 1 – 10 angstroms appropriate, reflecting the size of the lipid molecule. 

When determining the diffusion of proteins this may significantly increase into the 10s of nm 
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range. In this work the equation was also shown to be valid across not only the measurements 

they made, but also of others they had analysed, where the SD equation was not valid.  

 

Changes in λ may account for the discrepancy seen between the originally estimated viscosity 

values and those predicted to induce a change in actin flow and adhesion size in the model. As 

already stated λ is a measure of the degree of membrane perturbation caused by the diffusing 

object; in the case of cells binding to an SLB this may be incredibly large. Specifically, Chapter 

3 noted that there was approximately 6,000 neutravidin molecules per µm2. It has been shown 

previously that even the inclusion of small fractions of immobile molecules within a bilayer 

can reduce the diffusion coefficient (253). With the reduction in the diffusion coefficient comes 

a concomitant increase in the viscosity. Further, it would also be reasonable to assume that this 

number of binding interactions between the SLB and the cell, would significantly perturb the 

SLB. 

 

Figure 5.3. Changes in Characteristic Length Affect Viscosity. This graph 

demonstrates how the alternative equation presented by Gambin et al., (135) 

predicts changes in viscosity on the degree to which the membrane is perturbed by 

the diffusing molecule. This was predicted for both DOPC (blue) and DPPC (red). 

The two data points show a characteristic length of the same scale as the average 
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cell radii on each of the SLBs, estimated from Figure 4.2. These gives values in the 

ranges of 10-5 and 10-4 Pa.s.m for DOPC and DPPC respectively, with the latter in 

the range of detectable viscosity as predicted by the molecular clutch model. 

 

As this equation provides a possible solution to the mismatch between the measured viscosity 

and the predicted magnitude at which the cells respond Figure 5.3 shows the predicted changes 

in viscosity based on the changes in the characteristic length. Despite the diffusion coefficient 

being kept constant it is clear from this graph that the viscosity will change based on the extent 

of the interaction between the SLB and the cell. At this point a key assumption was made: the 

cell was considered a single entity, with many binding sites; as such, the characteristic length 

should reflect the extent to which the whole cell perturbs the membrane, not just each individual 

integrin-RGD-lipid interaction. As such a characteristic length scale was estimated from the 

average radii (assuming a perfect circle) from Figure 4.2. These values were 10 µm and 20 µm 

for DOPC and DPPC respectively and give viscosity estimates of 1.6 x 10-6 Pa.s.m and 

1.2 x 10-4 Pa.s.m respectively; the data points are shown on Figure 5.3. This led to good 

agreement of the viscosity values with those predicted to induce a cell response. Specifically, 

the viscosity of DPPC was high enough to activate the clutch, whereas DOPC was not. This 

also aligns with the hypothesis of the previous chapter that cells can therefore exert forces on 

the DPPC SLB and not on DOPC. From this, it may therefore be concluded that there is a 

significant increase in viscosity within the area of the cell, induced by the extensive binding of 

cellular integrins to the RGD presented by each of the SLBs. In the case of DPPC reduction is 

enough to activate the molecular clutch. The further sections sought to confirm the predictions 

through the measurement of the actin flow. 

 

5.2.2. VISCOSITY DEPENDENT CHANGES IN ACTIN FLOW 

Actin retrograde flow is a vital component of the molecular clutch model, as well as a key 

indicator of its role in the cell response. The actin flow on the varying viscosity surfaces was 

measured to determine what the differences were in the cellular response. As stated previously 

the clutch model has been applied to, and successfully proven, on elastic substrates. However, 

its role has not been determined in how cells respond the viscosity of the substrate, here defined 

by the mobility of the ligands. As the adhesion size was not quantitatively seen to directly 



132 

 

match the model it was also therefore hypothesised that there would also be a difference in the 

actin flow in cells on each of the surfaces. Transfected cells were imaged at a frequency of 1 

Hz over the course of 2 mins. By splitting the image stack to display time vs. position, giving 

a kymograph, the overall flow of actin could be observed by taking tan θ (Figure 5.4A), which 

gives pixels/sec, then converted into nm/sec. These kymographs were then used to determine 

the resulting action flow values for the cells on each surface, as shown in Figure 5.4B. The 

array in Figure 5.4C shows the representative sample of cells, with the red line showing the 

part of the image that was measured and the inset showing the resulting kymograph of 

displacement over time. It was seen that retrograde flow is highest on the surface presenting 

the most mobile ligands; DOPC. In turn, this flow was seen to decrease in line with increasing 

viscosity (decreasing ligand mobility), with cells on the glass seen to have the slowest actin 

flow. 

Figure 5.4. Viscosity Dependent Actin Flow. Due to the importance of the actin flow in the 

molecular clutch model the viscosity dependent actin flow was determined on the surfaces. 

(A) Shows an example kymograph taken from an image stack (1Hz for 2 min). By selecting a 

region of interest, the image in the region can be re-stacked to show how the fluorescence 
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changes position with time. By taking the tan θ of the angle this displacement the speed of the 

actin flow can be determined. This is shown in (B) where the actin flow on each of the surfaces 

is shown. This shows that the actin flow is lower on surfaces that exhibit lower or no viscosity. 

(C) Shows representative images of the cells on each of the surfaces, with the insets showing 

the relevant kymograph of each selected region. (Scale Bar = 25 µm). P values indicating 

significance, **** ≤ 0.0001. 

 

In order to further understand these changes in actin flow key components were inhibited in 

order to provide insights into whether the force sensing machinery is responsible for detecting 

this difference in the mobility of the ligand, as defined by the membrane viscosity. Initially, 

cells were incubated with blebbistatin; this well-known inhibitor of myosin II binds to the 

myosin-ADP-Pi intermediate complex (254), blocking myosin activity when in the actin 

detached state. This is shown schematically in Figure 5.5A. High concentrations of blebbistatin 

(50 µM) have previously been shown to lead to almost non-existent traction forces on elastic 

substrates (47), and by completely removing the cell’s ability to exert force, by pulling via F-

actin on the surface, it was believed that actin flow would be significantly affected. Indeed, as 

shown in Figure 5.5B, this is what was seen; upon incubation of the cells with blebbistatin the 

actin flow on both DPPC and RGD-Glass was seen to increase. In contrast, actin flow on DOPC 

showed no significant change. Furthermore, all surfaces were noted to have an actin flow that 

was comparable to that of DOPC in native cells.  

 

Moving beyond the direct inhibition of actin flow with blebbistatin, vinculin binding was also 

inhibited. As discussed in the previous chapter, vinculin’s activity is auto-inhibited by the head-

tail interaction (249), which is proposed to be overcome by the binding of vinculin to a number 

of ligands simultaneously; for example, actin and talin (107). Furthermore, talin has been 

shown to have a number of cryptic vinculin binding sites that are exposed upon the unfolding 

due to mechanical force (104). It is possible that this is the initial step in the activation of 

vinculin, with it being required for the stabilisation of FAs under force (255). However, a 

plasmid encoding for VD1, a head-group only form of vinculin, was transfected into the cells 

to inhibit native vinculin binding to talin. This form of the protein has previously been shown 

to lead the assembly of VD1-talin complexes within FAs (106). However, without the tail 

domain this mutated protein is unable to stabilise the talin-mediated link between integrins and 
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actin (256), thus inhibiting any change in actin flow (Figure 5.6A). The results, shown in Figure 

5.6B, quantified from Figure 5.6C, confirm this by demonstrating that cells transfected VD1 

plasmid do not show any difference in actin flow regardless of the viscosity of the surface. 

 

Figure 5.5. Actin Flow upon Myosin II Inhibition (A) Shows the mode of action of the myosin 

II inhibitor, blebbistatin, which blocks the activity of myosin II rather than its binding to F-

actin. (B) Shows the consequent effect of the blocking of myosin II on surfaces of differing 

viscosity, where the actin flow rate was the not statistically significant between any surface. (C) 

Shows the representative images of cells and their corresponding kymographs used to 

determine the actin flow. (Scale Bar = 25 µm). P values indicating significance, **** ≤ 0.0001. 

 

In order to specifically confirm that the VD1 specifically led to a change in actin flow by 

preventing this force enhancement step the presence and properties of the FAs was determined. 

As shown in Figure 5.2, the adhesion size increases with viscosity, concomitantly with a 

reduction in actin flow. Figure 5.7 confirms that this similarity in actin flow between surfaces, 

regardless of viscosity-defined ligand mobility, is due the forces detected on the surfaced not 
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being transmitted to the actin cytoskeleton. This is shown by the lack of difference in size of 

the FAs, which, as discussed in the previous chapter, is indicative of the force exerted on the 

surface (14, 239). 

Figure 5.6. Actin Flow upon Vinculin Inhibition. (A) Shows, schematically, the mode of 

action of VD1, which blocks force enhancement upon substrate binding by preventing the 

binding of native vinculin. Subsequently, it does not have tail domain through which to bind 

to F-actin and thus stabilise the talin-mediated link between integrins the cytoskeleton. (B) 

Shows the consequential effect of transfection of C2C12 cells with VD1, whereby there are no 

observed differences between the actin flow on any of the surfaces. (C) Shows representative 

images of cells and kymographs used to determine the difference in actin flow rate in cells on 

the each of the surfaces. (Scale Bar = 25 µm). P values indicating significance, ns > 0.05. 

 

Together these changes in the actin flow, determined by the viscosity-defined ligand mobility 

are mechanosensitive in nature, with these trends being predicted, qualitatively, by the 

molecular clutch model. Initially, when addressing actin flow, it is noted that there is a change 
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when the viscosity is increased i.e. reducing the ligand mobility. Actin flow has been closely 

linked to force on the surfaces, with previous work noting that the actin flow rate is an important 

parameter in cell rigidity sensing. This is in conjunction with the associated forces and elasticity 

of related components (104). Specifically, upon the exertion of force actin flow slows in 

response to increased force (118, 257). This slowing can be attributed to the linking of the actin 

cytoskeleton to the ECM (258); relating this to the molecular clutch, the ‘engagement’ of the 

clutch converts the forces that are generated by the rearward actin flow into force on the 

surface. According to the model, this coupling of the cytoskeleton to the surface, in turn, leads 

to force loading on the surface. When considering the mobility of ligands, as dictated by the 

viscosity, this coupling of the cytoskeleton to the surface would therefore lead to similar effects 

as those seen in stiffness. The proposed molecular behaviour of cells and the response of the 

surface are shown schematically in Figure 5.8. First, considering the actin flow on DOPC (left 

panel, Figure 5.8), where the actin flow is higher the low viscosity of the surface provides a 

greater mobility to the RGD ligands. Upon binding this leads to a lower force loading rate as 

the SLB will allow for greater lateral movement of the ligand (denoted as DH), akin to 

compliance in a soft elastic substrate. This would prevent the unfolding of force sensitive 

proteins (Figure 5.1, kfold/kunfold) within the lifetime of the integrin-RGD bond (Figure 5.1, 

kon/koff). Therefore, force sensitive molecules, such as FAK or talin (the latter indicated in 

Figure 5.8), would be unable to bind to further stabilising molecules such as vinculin, thus 

preventing force enhancement, the maturation of FAs (258) and the exertion of forces (47). 

The opposite is true in the case of DPPC (right panel, Figure 5.8); here the viscosity is high 

enough to impede the movement of the RGD ligand, reducing the magnitude of ligand 

displacement, as indicated by DL. This increases the force loading rate to a timeframe that 

allows for force-dependent protein unfolding, within the lifetime of the integrin-RGD bond. In 

turn, as seen in both Figure 4.4 and 5.7, this leads to formation of mature FAs, thus implying 

the greater exertion of forces (i.e. traction forces) on the surface (240). 

 

By inhibiting any step in the process of transferring the force generated by actin flow into force 

on the surface it is possible to gain a deeper insight into the system as a whole. In the case of 

blebbistatin the blocking of myosin-II action, provides an explanation as to why the actin flow 

increases on DPPC and RGD-Glass and why this is similar to that of DOPC. In contrast to 

these findings, certain work has noted that this decreases the actin flow rate (259). However, 
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here the increase in the actin flow rate can be inferred by noting that forces are significantly 

reduced upon incubation of the cells with blebbistatin (47). This implies a decoupling of the 

actin flow forces from the ECM, which, as detailed above, would lead to an increase in actin 

flow rate. Further to this, and indeed more directly providing evidence of the applicability of 

the clutch model to this system, is the effect of VD1. Upon its inclusion the viscosity-dependent 

differences in the actin flow were again seen to be removed. However, in contrast to the action 

of blebbistatin, which directly affects actin flow, the VD1 protein inhibits the coupling of 

cytoskeletal forces to the ECM. In this way it may be argued that this is more direct evidence 

of the clutch model. Indeed, despite the localisation of the vinculin to the focal adhesions 

(Figure 5.7) this does not translate into slower actin flow (Figure 5.6). Previously, it has been 

determined that vinculin is vital for the coupling of the FAs to the actin flow (258), thus 

‘engaging’ the clutch and linking the physical properties of the surface to the cytoskeleton. The 

observed FA properties are similar with and without VD1 on the surface, indicating that the 

availability of binding sites for vinculin is the same. As the tail domain is specific for F-actin 

(248), it is therefore apparent that the stabilisation of FAs that the vinculin provides (255, 256) 

is thus key in coupling the cytoskeleton to the surface. Thus the higher force loading rates 

induced by higher viscosity cannot be effectively linked without this stabilising force.  

Figure 5.7. Focal Adhesion Properties upon VD1 Transfection. (A) Shows the 

quantified average FA area in cells (after 3 hrs, as in Chapter 4) on each of the surfaces 

in native, wild-type cells and those transfected with the VD1 plasmid; statistical 

analysis through two-way ANOVA showed that there was no difference in FA properties 

between native and VD1 cells on each surface. (B) Shows the representative images 
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used to determine the FA properties, with native cells (VD1 –ve) being stained with 

anti-vinculin monoclonal antibodies. The vinculin head domain encoded by the VD1 

plasmid (VD1 +ve) is fluorescent and was not stained for vinculin. (Scale Bar = 25 

µm). P values indicating significance, ns > 0.05. 

 

Figure 5.8. Schematic of Cell Behaviour in Response to Surface Viscosity. In DOPC, on the 

left, the pulling of actin on the RGD ligand through a talin-integrin linkage, displaces the 

ligand to a large extent, DH, meaning that the force loading rate is low on molecules such as 

talin. Therefore, in the case of talin, this prevents, unfolding and so the binding of vinculin and 

formation of FAs. In DPPC, on the right, the higher viscosity means that ligand displacement 

is smaller, DL, when actin pulls on the surface. This, in turn, means that the force loading rate 

on the talin is higher, allowing unfolding within the integrin-RGD bond lifetime. Vinculin can 

then bind to exposed sites, thus leading to greater forces exerted on the surface and FA 

formation. 

 

5.2.3. CONFIRMING MODEL PREDICTIONS IN REPSONSE TO LIGAND 

DENSITY 
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As shown in Figure 5.2 the molecular clutch not only makes predictions about the response of 

the actin flow to viscosity, but also that of the nature of adhesion. Section 5.2.2 has shown that 

the actin flow behaviour fits with what is expected, through observation of the changes in actin 

flow upon by inhibition of key molecular components. Predictions regarding adhesion size can 

also be related to viscosity in a high and low viscosity regime i.e. DPPC (clutch is engaged) 

and DOPC (clutch is not engaged) respectively. Figure 5.9 shows the predicted behaviour of 

the adhesion size as the number of ligands are increased at a viscosity where effective coupling 

of the cytoskeleton to the ECM takes place, e.g. DPPC, (red) and where it is absent, e.g. DOPC 

(blue). 

Figure 5.9. Model Prediction of Adhesion Size as Ligand Number 

Increases. By taking the model at viscosity values were the clutch is 

and is not ‘engaged’ the change in adhesion size can be predicted. 

At high viscosity (after engagement, 10-2 N.s/m) the number of 

ligands was seen to increase up to a specific ligand density (~50) 

and then decreases above this. At low viscosity (before engagement, 

10-5 N.s/m) the adhesion size shows no change regardless of the 

number of ligands. Model data provided by Prof. Pere Roca-

Cusachs of IBEC, Barcelona. 
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When considering the number of ligands in the framework of the model, this equates to the 

number of clutches considered in the system. In the case of the higher viscosity, where cells 

are capable of exerting force on the surface, increasing the number of ligands increases 

adhesion size initially. This is due to further recruitment of integrins, induced by force loading 

(260). However, upon reaching a maximum adhesion size, this then reduces as the number of 

ligands increases further. This latter trend can be explained by the excessive loading of the 

integrin-ECM bonds, which, above this point cannot be compensated for by further adhesion 

growth (260). In the case of low viscosity, the number of ligands has no effect on the adhesion 

size. This is because the regardless of the degree of force loading the clutch cannot ‘engage’, 

thus preventing any sort of adhesion formation. 

 

The predictions of these specific regimes are borne out by the results, as shown in Figure 5.10. 

By changing the ligand density on the SLBs by over 3 orders of magnitude there is a consequent 

effect on the cells, predominantly in terms of their FA area, but also in terms of their cell size, 

was analysed. Figures 5.10A and B show the representative image of actin and vinculin in cells 

on DOPC and DPPC respectively, as well as the distribution of FA area on their respective 

surfaces. Qualitatively, no actin fibres were seen in all but the cells seeded on the highest ligand 

density on DOPC. Despite some indications of actin fibre formation there appeared to be no 

significant differences in the distribution of FA area on DOPC. These characteristics were in 

contrast to DPPC, where all surfaces showed some degree of actin fibre formation. 

Furthermore, the FA distribution was significantly affected by the change in ligand density, 

with a greater proportion of FA having a larger area upon increasing the ligand density. Figure 

5.10C shows a positive trend in cell area as ligand density increases on DPPC, but in DOPC 

significant differences were only seen on the highest ligand density. In terms of FA area (Figure 

5.10D), the FA size does not change on DOPC as the ligand density increases; however, on 

DPPC the FA area was seen to increase as ligand density increased. The statistical differences 

shown for Figures 5.10C and D are shown in Table 5.1 and 5.2 respectively. These confirm the 

significance of the trends seen, with cell area seen to have increased significantly with 

increased viscosity at all ligand densities on DPPC vs. DOPC. However, only at 2 and 10 mol% 

was FA area larger on DPPC vs. DOPC. Comparing different ligand densities, on DOPC 

differences were seen between 10 mol% in cell area, but no differences in FA area. However, 



141 

 

on DPPC significant differences were seen in all cases in both cell area and FA area, except 

between 0.02 and 0.2 mol% in the latter. 

 

Figure 5.10. The Change in Cell and Focal Adhesion Size with Ligand Density. (A) Shows 

the representative images of the actin and vinculin stains on DOPC at 0.02, 0.2, 2 and 10 mol% 

of functionalised lipid. The distribution of FA area on these surfaces is shown to the right of 

these images, demonstrating that this is similar on all surfaces. (B) Shows this on the DPPC, 

with the consequent change in the FA distribution as the ligand density changes. (C) Shows the 

change in average cell area on each SLB as the ligand density changes, and (D) shows the 

change in FA area under the same conditions. (Scale Bar = 25µm). 
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 DOPC vs. DPPC 

Ligand Density (mol%) Cell Area FA Area 

0.02 ** ns 

0.2 **** ns 

2 **** **** 

10 **** **** 

Table 5.1. Statistical values comparing the cell and FA area on each ligand density when 

comparing DOPC to DPPC. P values indicating significance, ns > 0.05, ** ≤ 0.01, **** ≤ 

0.0001. 

 

 CELL AREA FA AREA 

Ligand Density (mol%) DOPC DPPC DOPC DPPC 

0.02 vs. 0.2 ns **** ns ns 

0.02 vs. 2 ns **** ns **** 

0.02 vs. 10 **** **** ns **** 

0.2 vs. 2  ns **** ns **** 

0.2 vs. 10 **** **** ns **** 

2 vs. 10 **** ** ns **** 

Table 5.2. Statistical comparison between of the cell and FA area ligand density changes on 

each of the SLBs. P values indicating significance, ns > 0.05, ** ≤ 0.01, **** ≤ 0.0001. 

 

The key message from the results shown in Figure 5.10 is that they support the model 

predictions shown in Figure 5.8. In the case of DOPC no increase in adhesion size is predicted; 

based upon the model the force loading rate is simply not high enough regardless of the number 

of clutches engaged (118, 260). Confirming this demonstrates the further applicability of the 

molecular clutch model to various aspects of the viscosity response. In contrast to DOPC, the 

response of FA area in cells on DPPC shows agreement with initial stages of the high viscosity 
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regime (i.e. 10 – 50 clutches). With no difference between 0.02 and 0.2 mol%, it is therefore 

likely that these may be associated the minimal change induced by lower amount of clutches. 

A ligand density of 0.02 mol% may also prevent significant FA formation due to the large 

inter-ligand spacing, which is estimated to be 129.1 nm, as extrapolated from the 12.9 nm inter-

ligand distance observed for 2 mol% in Figure 3.10. Previous work has noted that formation of 

FAs cannot occur above a ligand spacing of greater than ~60 nm (42, 261). When increasing 

the ligand density from 0.2 to 2, and then 10 mol%, these densities allow for a greater 

magnitude of integrin recruitment in response to force, thus explaining the significant 

differences observed between these three densities. This is also seen to an extent in previous 

work on the clutch in response to ligand density (48); at specific density the adhesion size 

increases with increasing density. However, upon reaching a specific stiffness (as with 

viscosity, shown in Figure 5.9) the adhesions can no longer be reinforced, leading to reduction 

in adhesion size. While this reduction was not seen here, it may be that the viscosity is not of 

the right magnitude to see this behaviour. Further, it may also be that the possible clustering of 

ligands, allowed for in a 2D-fluid environment, may also have an effect. 

 

It is also interesting to note that in the case of DOPC the cell spreading appears, at least 

partially, to be independent of FA area. This shows some agreement with previous work on 

ligand mobility (55). Here it was proposed that cell spreading occurs through both FA-

dependent and FA-independent mechanisms; while showing that FAs consistently decrease in 

area with increasing ligand mobility, the cell area showed a biphasic response, first increasing 

then reducing. While a biphasic response was not seen in this work, the lack of difference in 

FA area would imply a means for FA-independent cell spreading in DOPC. This may be 

attributed to a greater number of ligands clustered within the cell area.  

 

5.3. DOWNSTREAM EFFECTS OF LIGAND MOBILITY/SURFACE 

VISCOSITY 

While it is clear from these results the molecular clutch explains the nature of the cell response, 

the applicability of this system in understanding and manipulating further cell behaviours must 

also be considered. Previously, it has been shown that the physical properties of the surface 

can affect various cell behaviours downstream of the initial cell adhesion processes. For 
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example, pathways associated with proteins, such as the Rac (119), extracellular related kinase 

(ERK1/2) (12) and rho kinase (ROCK) (32) are upregulated in response to greater stiffness. 

Further to this, the YAP/TAZ pathway has also been shown to be necessary to induce human 

mesenchymal stem cell (hMSC) differentiation in response to increasing substrate stiffness 

(21). Taking this a step further, differentiation is conclusively been shown to be highly 

dependent on the microenvironment. Of further specific interest to this work is also the 

observation that mobility of polymers can control differentiation (52). Therefore, this work 

requires an assessment as to how these mechanisms contribute to and define the nature of the 

downstream pathways.  

 

5.3.1. VISCOSITY DEPENDENT YAP LOCALISATION  

As mentioned previously, YAP is a mechanosensitive transcription factor that localises to the 

nucleus beyond a specific threshold stiffness (21, 47). As the nature of the cell’s viscosity 

response has been determined above to be similar in mechanisms that of the stiffness response, 

it therefore would be expected that the localisation of YAP to the nucleus would also change 

based on the viscosity. Indeed, Figure 5.11 supports this hypothesis, with increased localisation 

of YAP seen upon increasing the viscosity of surface. YAP was seen to show almost no 

difference in the amount of the protein in the nucleus when compared to the cytoplasm, with 

that ratio increasing with cells on DPPC and then again on cells seeded on the RGD-glass 

control.   

 

YAP is a key component of the Hippo signalling pathway, which regulates the processes of 

cellular proliferation, differentiation and homeostasis of tissues (262). Beyond this biochemical 

regulation of YAP, its localisation to nucleus, as well as that of other transcription factors, such 

as NKX-2.5 and RARγ (263), has been observed in response to mechanical cues. This pathway 

is regulated by cell morphology and F-actin mediated phosphorylation (264). Separate from 

this, previous work has shown that YAP can also be regulated by the cell morphology and 

cytoskeleton through other pathways, but also by ECM stiffness and Rho activity (21). 

Specifically, YAP localisation to the nucleus is triggered by mechanical force, which stretches 

the nuclear pores, increasing molecular transport (265). Through either biochemical or 

mechanical cues, the consequent nuclear localisation upregulates genes targets relating to cell 
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proliferation, through co-activation of genes with TEAD proteins being the most widely studied 

mode of action (262).  

 

 Figure 5.11. YAP Localisation in Response to Viscosity. (A) – (C) Show the representative 

images of the YAP staining, demonstrating the extent of its localisation to the nucleus on DOPC, 

DPPC and RGD-Glass respectively. For clarity, on DOPC (A) the location of the nuclei in each 

cell is indicated by the red-dashed circles. (D) Shows the attained fluorescent intensity in 

nucleus compared to the cytoplasm immediately surrounding it in all surfaces. (Scale Bar = 50 

µm). P values indicating significance, **** ≤ 0.0001. 
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These properties, in conjunction with the findings shown in Figure 5.11, serve two key 

purposes: firstly, this further demonstrates that the sensing of the viscosity is mechanical in 

nature. This is through analogous responses in YAP localisation to the nucleus with increasing 

substrate stiffness, in previous work (47, 265), and on these viscous surfaces. What does remain 

unclear is whether it is the viscosity directly, or the difference in cell morphology and 

cytoskeletal tension induced by it that controls the YAP localisation. Unlike in previous work 

(21), the system as it stands is unable to separate the contributions of these two factors. 

Secondly, the localisation of YAP to the nucleus provides a link between the initial impact of 

the viscosity on adhesion and spreading, to the further downstream, biochemical changes in 

cell behaviour, such as upregulation of specific genes and differentiation. This is due to the 

identified, fundamental role of YAP in the linage commitment of stem cells. For example, 

MSCs seeded on higher elastic stiffness will differentiate into osteoblasts, progenitors of bone 

cells. However, upon softer substrates they will differentiate down the neurogenic lineage (34). 

YAP was shown to be a key regulator of this process, as inhibition of YAP was capable of 

inducing commitment of MSCs to an adipogenic lineage, even upon a stiff surface (21). 

Furthermore, by inducing YAP localisation to the nucleus on soft surfaces it is also possible to 

inhibit the differentiation of human pluripotent stem cells (hPSCs) into motor neuron cells 

(266); a cell type known to be more strongly associated with softer surfaces (34). Consequently, 

these findings on YAP show that the ligand mobility changes, induced by viscosity changes, 

can not only control adhesion behaviours, but also changes downstream signalling pathways, 

leading to potential changes in cell behaviours.  

 

5.3.2. CONTROLLING DIFFERENTIATION THROUGH VISCOSITY  

In cells that are capable of differentiation, the changing of the local environment has effects, 

not only on the early stage behaviour of cells, but also of their lineage commitment. This 

chapter has equated the viscosity-defined ligand mobility to that of stiffness; due to changes in 

stiffness affecting differentiation, it also stands to reason that changes the viscosity will also 

elicit a change in the terminal differentiation of capable cell lines. To further test the potential 

applicability of the SLBs in manipulating cell behaviour, the differentiation of cells on these 

surfaces was therefore tested. As such the indicators of cellular differentiation of C2C12 

myoblasts, the cell line used throughout this study, were used to determine the effect that 

viscosity has on the differentiation potential of these cells. 
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Figure 5.12 determines the effect of the viscosity-defined ligand mobility on differentiation by 

quantifying the change in markers of C2C12 differentiation. Initially, the percentage of cells 

staining positively for the transcription factor, myogenin, was observed (Figure 5.12A, C – left 

column). It was shown that upon decreasing viscosity the percentage of cells positive for 

myogenin was significantly reduced; indeed, DPPC compared with DOPC shows ~30% 

positive cells, compared with only ~10% positive cells, after 2 days. This trend is continued in 

terminal differentiation of C2C12s, with more cells staining positively for sarcomeric myosin 

upon reduced increased viscosity (Figure 5.12B, C – right column).  

 

C2C12s are a mouse myoblast cell line, capable of differentiation, forming myotubes, 

precursors of skeletal muscle, during the process of myogenesis (267). Previously it has been 

found that C2C12s differentiate optimally on surfaces of tissue-like stiffness, with ~12 kPa 

reported as both the in vivo tissue stiffness and the optimal stiffness for myotube differentiation 

(268). While it has been widely accepted that many cell lines differentiate in response to 

stiffness (10, 34), this work shows specifically that C2C12s are sensitive to mechanical cues. 

Further, this chapter has thus far shown that the viscosity of the SLBs is detected as a 

mechanical cue.  

 

The process of differentiation is associated with several transcription factors, such as MyoD, 

myogenin, Myf5, MRF4 (269) and, interestingly YAP (after 24 hrs) (270), with terminal 

differentiation being associated with a higher presence of sarcomeric myosin (268). The 

upregulation of myogenin after 2 days is in line with previous findings, which indicate an 

increase in myogenin related gene expression (269, 271). Further, sarcomeric myosin was seen 

to be more prevalent after 4 days on DPPC than DOPC, in line with timeframes used in previous 

work (56). Overall, these markers of differentiation indicate that the mechanical cues provided 

by the changes in viscosity-defined ligand mobility significantly affect cellular behaviour at 

numerous key stages. This presents the potential to use these systems in a more medically 

applicable system, such as modulating the fate of stem cell lines.  
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Figure 5.12. Viscosity Dependent Differentiation. (A) Shows the early stages of differentiation 

of C2C12s, after 2 days, on each of the surfaces through determining the percentage of nuclei 
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staining positive for the transcription factor, myogenin. (B) Shows the terminal differentiation 

of C2C12s, after 4 days, by the percentage of nuclei within the sarcomeric positive cells. (C) 

Shows the representative images of stained cells at both of these time points. (Scale Bar = 150 

µm). P values indicating significance, *** ≤ 0.001, **** ≤ 0.0001. 

 

5.4. CONCLUSIONS 

This chapter has focused on the molecular basis for the trends seen in Chapter 4, with the main 

focus on if and how the response to the ligand mobility can be defined by an overarching 

molecular concept. By drawing parallels to stiffness, the molecular clutch that had so 

successfully been used to define the cell response to this physical property, has been used here 

to understand the concept of ligand mobility, by considering the viscosity of the surface. It was 

seen that the trend of the model predictions matched with the observed cell behaviour, with a 

change in actin flow behaviours and adhesion sizes successfully predicted. Furthermore, 

inhibition of these processes showed behaviour in line with effects predicted by the model. 

Despite the initial application of the SD equation estimating the viscosity as being significantly 

lower than required to engage the clutch, a more recent equation relating the diffusion and the 

viscosity provided more applicable values. In this instance it was considered likely that SD 

equation is no longer valid; this was due to the huge perturbation of the membrane, due to the 

binding of the cells. At this much larger length scales the SD equation has been widely noted 

to become invalid. An alternative equation compensated for this; by adjusting the variable of 

the characteristic length to the order of a cell radius the viscosity values reach good agreement 

with that of the model. From this is may be hypothesised that the viscosity of the membrane is 

significantly higher under the cell, which may be due to the binding of RGD ligands, rendering 

much the under-cell area significantly more viscous compared with the area outwith the cell. 

 

Moving beyond understanding the nature of the initial cell response to viscosity, the 

consequential effect of these changes on further biochemical signalling and cell processes was 

also assessed. It has been shown here that increasing the viscosity, increases the localisation of 

YAP to the nucleus. As a protein previously associated with the stiffness response, the 

localisation of YAP further demonstrates the mechanosensitive nature of the response to 

viscosity and its associated ligand mobility; it also illuminates early downstream translation of 
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these physical cues into biochemical signals. Further consequential effects, in a medically 

relevant context, were observed with upregulation of C2C12 differentiation markers upon an 

increase in viscosity. This therefore implies a possible further avenue of driving the 

differentiation of cells through viscosity, which will be explored in greater depth in the next 

chapter. 

  



151 

 

6. SUPPORTED LIPID BILAYERS FOR MESENCHYMAL STEM 

CELL CULTURE 

 

6.1. INTRODUCTION 

The previous chapters have demonstrated that SLBs are viable tool through which to 

understand the cell behaviour in response to viscosity. This can be explained through the 

molecular clutch model, which equates the viscosity of the surface to the force that cells can 

exert upon it. Furthermore, through manipulations of this viscosity, and thus the ligand 

mobility, the cell response can be modulated. This has also shown potential in medically 

applicable scenarios with higher ligand mobility preventing the differentiation, likely due to a 

reduced force on the surface.  

 

Stem cells, specifically human mesenchymal stem cells (hMSCs), are of particular interest for 

investigating the future applicability of the SLB system. While in the cell niche, located in the 

bone marrow (272) hMSCs are capable of maintaining stemness. However, hMSCs are also 

capable of differentiating into a number of potential lineages; these include the osteogenic, 

adipogenic, neurogenic and chondrogenic lineages (273). Driving factors behind the 

maintenance of stemness or differentiation have been shown in vitro to include biochemical 

(274, 275) and physical factors (16, 34, 49). In the latter, physical properties, such as 

topography, stiffness and chemistry (10), have been shown to change hMSC phenotype (276). 

The nature of the cell interaction with the surface is of vital importance to this process (10); in 

the case of stiffness, surfaces with an elastic modulus characteristic of a specific tissue induced 

the production of the relevant markers e.g. neural tissue-like stiffness upregulated neural 

markers (34). It is proposed that the interaction of the cell with the surface, controlled through 

the adhesive machinery, upregulates vital signalling pathways, which, in turn, induce the 

processes relevant to external signals (10). SLBs, and the nature of cell’s interaction with them, 

may therefore present a system that may provide a further means of controlling long-term 

cellular behaviour. 
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There has been a precedent set in previous work as to the influence of the ligand mobility on 

stem cell behaviour. Previously, ligand mobility has been shown to have an effect on various 

cell lines, promoting or preventing adhesion, and changing cellular properties (54, 57). Further, 

this has been shown to control the behaviour (53, 56) and lineage commitment of differentiation 

capable of cells (52, 59, 277). Indeed, lipid based systems have been used previously as a 

platform for these cells (278, 279) and to direct their differentiation (59, 280). In the case of 

Kocer et al., (2016) (59), however, their initial findings are not in agreement with the work 

presented in previous chapters; they show that there more spreading on DOPC compared to 

DPPC and that there is a greater degree of differentiation. This also does not align with other 

work in the field, which notes cells cannot exert forces on DOPC SLBs, thus remaining rounded 

(58, 77). This force is vital in regulating the differentiation of cells, with changes in it key to 

regulating the final lineage of the cell (32). It is therefore reasonable to assume that there is still 

much investigation needed in order to determine the effect of the viscosity-defined ligand 

mobility on the behaviour of hMSCs.   

 

Therefore, hMSCs were used here as a proof-of-concept, ascertaining if the previous findings 

could be directly applied to manipulate the behaviour of differentiation capable cell lines, with 

a mind to produce a surface that has the potential to manipulate their lineage commitment. 

Initially, the behaviour of hMSCs on the RGD-presenting lipid bilayers were determined, in 

terms of adhesion, growth and viability. Further to this, the lack of growth of hMSCs and 

changes in their behaviour over time on these surfaces required further approaches to promote 

cell replication. This lead to the investigation of the effect of protein cross-linking and 

functionalisation of the surface, with a full fibronectin protein as well as a cell-binding 

fragment. A final strategy, the production of positively charged lipid bilayers, was also tested 

to determine if electrostatic attraction would allow for more effective cell adhesion and 

spreading, compared with the peptide/protein functionalised system. 
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6.2. ADHESION AND GROWTH OF MESENCHYMAL STEM CELLS ON 

RGD FUNCTIONALISED SUPPORTED LIPID BILAYERS 

The previous chapters have demonstrated that SLBs are a suitable platform for cell culture, 

with a model cell line, both to assess the nature of the adhesions and their potential for use in 

directing differentiation. Developing this further, this system was applied to the more medically 

applicable hMSC cell line. It is widely accepted that these cells are capable of differentiating 

into various cell types, promoting the production of tissues such as cartilage and bone (281). 

Therefore, the applicability of SLBs to this new cell line was assessed, evaluating its potential 

for future work.   

6.2.1. ADHESION OF MESENCHYMAL STEM CELLS 
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Figure 6.1. hMSC Adhesion of 3 and 24 Hours. (A) Shows the representative images 

the area of hMSCs on all surfaces, after 3 hrs and 24 hrs of cell culture (Scale Bar = 

150 µm). (B) Shows the quantification, demonstrating that there is a reduction in cell 

area at 24 hrs compared to 3 hrs on all surfaces to differing degrees. (C) Shows the 

percentage reduction in cell area between 3 and 24 hrs, demonstrating that cells lose a 

large percentage of area on both DOPC and DPPC, with a smaller reduction on the 

RGD-Glass control. P values indicating significance, * ≤ 0.05, **** ≤ 0.0001. 

 

 

For an initial study hMSCs were first seeded on SLBs used in the previous chapter and the 

glass control for 3 and 24 hrs. Initial analysis of the cell behaviour on surfaces is shown in 

Figure 6.1. This shows that in earlier adhesion time points the cells are less spread as the 

viscosity decreases (Figure 6.1A showing representative images and quantified in Figure 6.1B). 

However, after 24 hours the cells were shown to have a smaller average cell area in all cases. 

When determining the extent of the reduction in cell area the percentage of loss in cell area was 

quantified, showing that the reduction of the cell area on both DOPC and DPPC higher than 

that of the control. Further, cells on DPPC were seen to be particularly sensitive; initially noted 

to be well spread, with visible actin filaments, between 3 and 24 hrs over 60% of their total 

area lost. In addition to this reduction, the focal adhesion (FAs) were quantified at each time 

point, as shown in Figure 6.2. The representative images of the vinculin stains are shown in 

Figure 6.2A and show that the FAs on both DPPC and RGD-Glass are well defined at both 3 

and 24 hr time points; this is in contrast to DOPC. The images shown in Figure 6.2A are 

representative of that seen in hMSCs present on the DOPC SLB, demonstrating a diffuse 

distribution of vinculin present throughout the cell at both time points.  

 

Quantification of the FA area showed that the area of FAs on hMSCs increased at 3 hrs in line 

with increasing viscosity. However, this does not remain consistent at the 24 hr time point; in 

the case of DOPC and RGD-Glass the measured FAs were no different between 3 and 24 hrs. 

However, FAs on DPPC showed a significant decrease in the average FA area after 24 hrs, 

when compared with 3 hrs. However, quantification maybe limited here in the case of DOPC, 

due to the diffuse nature of the vinculin stain. While it would suggest that there is only a small 

difference in FAs between DOPC and DPPC, it is clear from the representative images that 
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FAs are not present in this system at either time point. While showing that there is a significant 

difference in FA characteristics of cells between DOPC and DPPC, it also demonstrates that 

there are some limitations to quantitative analysis in these two extreme cases of surface 

viscosity. 
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Figure 6.2. Focal Adhesion Area at 3 & 24 hrs on hMSCs. (A) Shows the representative 

images of FAs, as stained for by vinculin on hMSCs seeded on DOPC, DPPC and RGD-Glass 

surfaces after 3 and 24 hrs of adhesion, demonstrating both the lack of change in the FAs on 

DOPC and RGD-Glass, and the significant difference on DPPC (Scale Bar = 25 µm). (B) 

Quantifies the area of the FAs over all surfaces and time points, showing that only DPPC has 

a significant difference in FA area between 3 and 24 hrs. P values indicating significance, ns 

> 0.05, ** ≤ 0.01. 

 

Considering the changes in overall cell and FA area between 3 and 24 hrs, a principle reason 

may be that a reduction in ligand density over time leads to the cells becoming rounded. This 

would likely be caused by the endocytic processes of the cells leading to bilayer breakdown. 

Indeed, it has been previously shown that the removal of traction forces on the surface leads to 

an upregulation of endocytic pathways (77). This previous work showed that over a 3 hr culture 

there was a co-localisation of clathrin machinery (associated with  

 

endocytosis) and the RGD-neutravidin used to adhere the cells to the surface. As there is a 

reduction of FA size with decreased viscosity, it can also be surmised that there are less forces 

exerted on the surface (14), thus implying an activation of endocytic pathways. While this 

previous study used only DOPC, showing only two extreme cases (where there are and are not 

forces), it may also be possible that there is an interplay between these two pathways, rather 

than an all or nothing system. Further, it may be the case that with higher forces permitted in 

DPPC, at least in the short-term, it may be that the degree of endocytosis is reduced, therefore 

only causing a reduced cell area over a longer time frame (3-24 hrs). This work has shown in 

the previous chapter, in Figure 5.10, that cells a sensitive to ligand density on lipid bilayers, 

with lower densities leading to smaller cells, with smaller FAs. However, the question remains 

as to why this is not the case on C2C12s. While not directly assessed using an actin stain, 

Figure 5.12 shows, through the myosin stain that C2C12 cells remain spread. This may be due 

to an inherent difference in the cells ability to respond to the surface. Indeed, Figure 5.10 shows 

that the FA properties on DPPC and DOPC are similar at lower ligand densities, implying a 

similar response to the surface. 
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6.2.2. GROWTH OF MESENCHYMAL STEM CELLS  

Observing this unexpected behaviour of MSCs on both the DOPC and DPPC bilayers, it was 

therefore necessary to determine what the implications of this would be. To this end the degree 

of growth of the cells on the lipid surfaces, as compared to the control was determined. 

Furthermore, this was extended to observing the behaviour of MSCs after 5 days, beyond the 

time point previously used with C2C12 differentiation. As the behaviour of the MSCs was so 

vastly different to that of C2C12s is was hypothesised that their behaviour on the SLBs would 

also be different after a number of days in culture.  
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Figure 6.3. Proliferation of hMSCs on SLBs. (A) – (C) Show representative images of cells 

grown for 1 day on DOPC, DPPC and RGD-Glass respectively, with the nuclei shown in cyan 

and the BrdU shown in red. The nuclei where there was BrdU present were considered new 

cells (Scale Bar = 100 µm). (D) Shows the resulting quantification of % of nuclei staining 

positively for BrdU, indicating that they are cells that have grown after seeding on the surface 

rather than in culture. P values indicating significance, ns > 0.05, **** ≤ 0.0001. 

 

In the first instance, analysis was performed as to what affect seeding the cells on the SLBs 

would have on cell growth. To this end, cells were cultured with BrdU (bromodeoxyuridine); 

this gives an indication as to extent of cell growth, by being incorporated into the DNA of 

dividing cells. After a specific time point, in this case 24 hours, the BrdU can then be stained 

for with anti-BrdU antibodies, fluorescently indicating which cells are new, compared to the 

originally cultured cells. To analyse this, the nuclei were also stained with DAPI and the 

number of nuclei staining positive for both DAPI and BrdU were considered to be new. The 

cell growth was considered to be percentage of new cells and is shown in Figure 6.3. In the 

case of both DOPC (Figure 6.3A) and DPPC (Figure 6.3B) there appeared to be minimal 

growth after 24 hrs, while cells on RGD-Glass showed a much higher degree of cell growth. 

This is confirmed upon quantification (Figure 6.3D); while cells on the RGD-Glass control are 

capable of growth, with 25% of new cells present after 24 hrs, there was almost no new cells 

present (~6%) on the both of the lipid bilayers, regardless of the viscosity.  

 

Developing from the initial studies that showed hMSCs lost cell area and did not proliferate on 

the SLBs, the longer term implications for the cell viability and applicability of the current 

system was determined. Figure 6.4 shows the cells after 5 days of culture. Interestingly, cells 

on DOPC (Figure 6.4A) were well spread with defined actin filaments, similar to as previously 

seen with cells seeded on an RGD-Glass surface. In contrast, cells on DPPC (Figure 6.4B) 

maintained a similar morphology to that seen after 24 hrs, with minimal spreading and no 

defined actin stress fibres. Cells on the RGD-Glass were all noted to be highly confluent 

(Figure 6.4C), with well-defined actin fibres; however, due to their confluency it can only be 

assumed that they are well spread, in line with the previously observed cell area after 24 hrs. 

Figure 6.4D quantified the number of cells on each of the surfaces, giving a further indicator 

of cell growth. Confirming the results of Figure 6.3, the growth rate of cells was severely 
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diminished on SLBs in comparison to the RGD-Glass. With the dashed line indicating the 

seeding density of 2,000 cells per cm2 there is an approximately 2-fold increase in the number 

of cells present after 5 days in growth media on the SLBs. However, on the RGD-Glass control 

there is an approximately 7.5-fold increase in the cell density.  

 

Figure 6.4. Cell Morphology after 5 Days. (A) – (C) Show hMSCs on DOPC, DPPC and RGD-

Glass respectively after 5 days of culture in growth media. The dashed line represents the 

estimated seeding density. It is noted that the cells on DOPC exhibited a more spread 

morphology than previously seen, whereas cells on DPPC appeared rounded as noted after 24 

hrs of culture. (Green = actin, cyan = nuclei, scale bar = 50 µm). (D) Shows the cell number 
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after 5 days, confirming results shown in Figure 6.3 that shows minimal cell growth on 

bilayers. 

 

The lack of observed growth on the surface may stem from the previously hypothesised 

reduction in the number of available ligands. While the consequences of this assumed loss in 

the short term are a reduction in the overall area of both the cell and the FAs, it would be 

reasonable to assume that the replication of cells is also affected by this. In a simple sense, it 

may be that the reduction in the number of available ligands prevents the attachment of further 

cells on the surface. Therefore, the cells may indeed be undergoing the replication process, but 

the new cells are not viable due to an inability to bind. This uptake of the SLB components 

would also explain the behaviour of cells on the DOPC SLB after 5 days. It would appear in 

this case that the SLB has been broken down and the cells are able to spread on the glass 

surface. While previous work showed that the cells do not endocytose that to which they cannot 

bind (77), it may be that some of the bilayer is endocytosed with the ligands; eventually this 

would lead to defects in the bilayer, presenting the cells with a less mobile surface upon which 

to spread. As to why this is not seen on DPPC, it may due to two possible reasons a) the DPPC 

SLB is somewhat more stable as it is in the gel-phase; indeed, Figure 3.11 showed that a DPPC 

SLB persists longer than and DOPC SLB; b) the rate of endocytosis is slower in DPPC, due to 

higher force as discussed in section 6.2.1.  

 

The cell spreading behaviour on DOPC and DPPC after 5 days aligns with work by Kocer et., 

al (2015), where they noted that cells spread better on DOPC compared to DPPC. However, 

they noted this from the initial adhesion, which has not been seen here. While their conclusion 

that a more mobile surface allows for more adhesions, through ligand clustering, and thus a 

greater spreading is a sensible one, this does not align with the observations made both in this 

work and in similar work carried out previously; mechanical force is increased on the reduction 

or limitation of ligand mobility on the SLBs (58, 77, 282). The contrast in hMSC behaviour in 

the Kocer system, when compared to the current system, may be attributed to defects in the 

DOPC SLBs allowing the MSCs to spread compared to DPPC. Indeed, they observe cells after 

2 weeks of culture on these surfaces, which, it may be assumed, would no longer present a SLB 

surface upon which to bind. As the current results align well with both various works and the 
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overarching theory it is likely that, both initial response of hMSCs here and their subsequent 

behaviour after 5 days is the more likely representation of the cell behaviour.  

 

6.3. SYSTEM DEVELOPMENT 

From the above results it is apparent that, while C2C12s are capable of maintaining their 

viability long enough to promote differentiation, this is not the case with MSCs. It is clear that 

the viability of the MSCs on both SLBs is not appropriate for more in-depth analysis of the 

long term potential of SLBs in these systems. Furthermore, there some kind of a change in the 

DPPC system, occurring between 3 and 24 hours that leads to a decrease in the cell area. 

Several properties of the SLBs are proposed as causes for this. Firstly, the viscosity; different 

cells respond differently to physical cues (34, 85), therefore it may be that MSCs are responding 

differently here. Secondly, the non-fouling nature of the SLBs may also play a role. It is widely 

accepted that, on surfaces, cells lay down their own matrix (228); however, SLBs would not 

allow non-specific protein binding, thus preventing this from occurring. Taking into account 

the dynamic nature of the cell-surface interaction, the presentation of only RGD on the surface 

would prevent the interaction of any further proteins with the surface. To this end, these SLBs 

and the presented ligands have been manipulated in an effort to determine what kind of effect 

on cells these properties have.   

 

6.3.1. PRESENTING PROTEINS AND PROTEIN FRAGMENTS 

The initial approach here was to maintain the SLBs composition and manipulate the ligands 

presented on the surface. To this end the FNIII7-10 fragment of FN and the full FN protein were 

biotinylated to observe the effect that this would have. It was hypothesised that the presence of 

larger peptide constructs would enhance cell-binding through the presence of further binding 

domains (e.g. PHRSN synergy site), as well as FN-FN interactions (in the full protein only) 

allowing for the deposition of further matrix proteins. The initial steps in this process is shown 

in Figure 6.6; initially, the possible number of binding sites for the biotin molecule, which was 

conjugated to an NHS-ester group for binding to primary amines, was determined. Figure 6.6A 

shows the number of primary amine-presenting lysine amino acids present in both the full FN 

and the fragment, as indicated by the stars. Despite 78 lysine molecules present in the FN and 

7 present in the fragment, only 6 biotins were determined to bind to FN and 1 to the fragment. 
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This was determined by the HABA:avidin interaction, where biotin competes for avidin 

binding with the HABA molecule, displacing it and changing the absorbance in a 

concentration-dependent manner.  

 

Figure 6.6. Biotinylation of Proteins. (A) Shows a schematic representation of the full 

fibronectin protein. The * under each module indicates how many lysine residue there are in 

each, giving an indication as to how many available binding sites there are for the NHS-biotin 

across the entire molecule, as well as the within the FNIII7-10 fragment (indicated in brackets). 

The RGD containing III10 module is indicated by a red outline. The number of biotins per 
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molecule was calculated to be approximately 1 for the FNIII7-10 fragment and ~6 for full 

fibronectin. (B) & (C) Show the effect of biotinylation of protein on C2C12 cells by 

determining the cell area and focal adhesion area respectively. In all cases cells were more 

spread and had larger focal adhesions on the proteins (coated on glass surfaces) compared 

to plain glass. In the case of FAs there was no difference between the areas on all proteins. 

(D) Shows the representative images of cells on each surface. P values indicating significance, 

ns > 0.05, ** ≤ 0.01, **** ≤ 0.0001. 

 

After biotinylation, activity of both the protein and the fragment were determined using the 

model C2C12 cell line. By depositing equal concentrations of the molecules on glass in 

depleted media (no FBS), the cell response indicated that all the proteins exhibited similar 

properties. The cell area on all protein-adsorbed surfaces was increased, relative to glass, with 

biotinylated FNIII7-10 showing the largest area. When considering FAs, the similarities between 

all the protein-adsorbed surfaces was more pronounced, with no differences notes between the 

FAs on the native and biotinylated proteins. Further, the presence of proteins on the surface 

increased the FA area, compared to that seen on glass. Biotinylated proteins were then adsorbed 

on to neutravidin presenting DOPC and DPPC to determine the relative abundance of the 

protein on the surface (Figure 6.7). As expected this was seen to be similar on both surfaces, 

regardless of viscosity. Interestingly, despite the increase number of biotin molecules present 

on fibronectin, compared to the fragment, there was also no difference noted between the 

relative abundance of either of these proteins. Therefore, the ligand density on the SLBs is 

likely to be the key factor in determining the amount of protein bound. 

 

After confirming both that the protein is active and present in similar concentrations, hMSCs 

were bound to the surfaces to determine the cell area after 24 hrs (Figure 6.8). It is clear from 

these results that the inclusion of these protein moieties has had no effect on the response of 

the cells to the surfaces after 24 hrs. In all cases cells on DPPC were once again noted to have 

a small and rounded area, with the average cell area being statistically comparable between all 

the surfaces, regardless of functionalisation. Interestingly, the FN fragment presented on DOPC 

was not capable of binding any cells.  
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Figure 6.7. Protein on SLBs. An ELISA showing the relative amount of biotinylated 

protein adsorbed onto the DOPC (blue) and DPPC (red) surfaces. In all cases there 

was no significant differences in adsorption regardless of the SLB or the protein used.  

 

What is clear from these results is that while the changing the functionality of the SLBs is 

methodologically simple the use of SLBs as a longer term platform for cell culture requires a 

different approach than the presentation of various ligands. Previously, it has been shown that 

the manipulating the viscosity of a SLB can induce the conversion of adsorbed G-actin to 

filamentous F-actin (283). However, whether or not this also occurs with FN here does not 

appear to not affect the longer term cell response. Previous work has noted that the endocytosis 

of proteins on the surface is performed via clathrin-mediated mechanisms (77). This is specific 

to cell-binding areas of the SLB, with non-functionalised moieties not being endocytosed. 

Furthermore, clathrin-mediated endocytosis has been observed to occur with particles of up to 

200 nm (284), much larger than the 10s of nm size for the full FN protein. Due to this, it is 

likely that the inclusion of protein does not compensate for this. Originally, it was hoped that 

the viscosity of the SLBs may also encourage the formation of FN fibrils, which could allow 

for the deposition of further proteins. However, if the binding points of these networks, i.e. the 

neutravidin-biotin protein, was endocytosed there would be no further nucleation points for the 
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matrix proteins to bind, preventing this from occurring also. It is therefore clear from this that 

the initial model cell membrane requires further development to be applicable in longer term 

cultures. 

Figure 6.8. Protein Functionalised SLBs. (A) Shows the quantification of the cell area 

on DOPC, DPPC and glass, with the presentation of RGD peptide, FNIII7-10 protein 

fragment, and FN full protein after 24 hrs. (B) Shows the representative images of cells 

on each of the surfaces (green = actin, nuclei = blue, Scale Bar = 150 µm). On DOPC 

functionalised with FNIII7-10 no cells were noted to bind on any sample. P values 

indicating significance, ns > 0.05, * ≤ 0.05. 
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6.3.2. POSITIVELY CHARGED SUPPORTED LIPID BILAYERS 

Electrostatic interactions are a key component of non-specific cell binding and so charged 

SLBs were used here to ascertain if they may compensate for the cell behaviours seen 

previously in this chapter. For example, proteins with a high isoelectric point (pI) will be 

positively charged at neutral pH, which can lead to unwanted interactions in protocols, such as 

immunostaining of cell proteins. This is due to the nature of the cell membrane, which, due to 

glycosylation of surface molecules, is considered to have an overall negative charge (285). A 

specific example is that of avidin, the full protein form of the neutravidin used throughout this 

thesis. Neutravidin (60 kDa) is a de-glycosylated form of avidin (67 kDa) and thus has a pI of 

6.3, rather than the 10 found in avidin. This means that at physiological pH neutravidin is 

neutral, compared to the positive charge present on the avidin (164). Literature has determined 

that this positive charge can lead to increased non-specific binding, which was supported by 

findings here (Figure 6.9). This served as an initial test of the hypothesis that introducing 

positive charge into the bilayer could, firstly, allow for cell binding and, secondly, prevent the 

reduction in cell area that may be associated with the irreplaceable loss of ligand from the 

bilayer. Literature has previously asserted that this approach is applicable to neural cell culture 

(158), as the charge of a cell membrane is negative; however, this has not been applied to 

hMSC cultures.  

 

After demonstrating that the model cells (C2C12s) could bind to a positive charge presented 

on the SLBs (Figure 6.9) a positively charged lipid (DOTAP, Figure 6.10A) was included in 

the liposome formulations at concentrations from 0 – 30 mol% of charged lipid. Figure 6.10B 

shows the difference in the hMSC cell adhesion as the amount of positively charged lipid 

increases between DOPC and DPPC, compared to a glass control. In contrast to the previous 

chapters, the control in this instance was plain glass, prepared in the same as the glass for SLBs. 

This was deemed to be more representative of this system, rather than glass presenting RGD 

ligands. On DOPC, the inclusion of positive charge did not appear to have a significant effect 

on cell adhesion, with minimal binding of cells on any of the DOPC surfaces after 3 hrs of cell 

culture. In contrast, upon inclusion of positively charged lipid with DPPC there was a 

significant increase in cell adhesion, comparable to that of the glass control. DPPC surfaces, 

without any DOTAP included showed the same extent of cell adhesion as that seen on all 

DOPC SLBs. Furthermore, fibronectin (FN) was also seeded on the lipid surfaces at 20 µg/ml 
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prior to cell culture, in order to ascertain if this would have an effect on the cellular properties. 

This concentration was taken from previous work with polymers, which determined this as an 

ideal concentration for cellular studies (286, 287). However, Figure 6.10 shows that the 

inclusion of FN protein has no effect on the cell adsorption, either in the case of DOPC or 

DPPC, with the cell density seen to be statistically similar to that of the surfaces without 

fibronectin. 

Figure 6.9. Non-specific Binding of C2C12s to SLBs. Using 

DOPC, this graph shows that the cells bind to avidin 

regardless of functionality. However, removing the 

deglycosylated form, neutravidin, used throughout this thesis 

shows no binding without RGD present. P values indicating 

significance, ns > 0.05, **** ≤ 0.0001. 

 

The primary reason for the inclusion of positive charge into the SLBs was so to prevent the 

loss of area that was seen in cell cultures presenting RGD ligands on non-fouling SLBs. While 

the lack of binding of cells to DOPC:DOTAP SLBs prevented an accurate assessment of this 

here, the effectiveness of DOTAP inclusion in DPPC was still able to be assessed. To this end 
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Figure 6.11 shows the area of hMSCs on DPPC:DOTAP (10 – 30 mol%) after 3 and 24 hrs, 

with and without the adsorption of FN prior to cell seeding. After being allowed to adhere and 

spread for 3 hrs the response to cells to FN on each of the surfaces is variable. In both the case 

of 10 and 30 mol% DOTAP there is a noted difference in cell area. In the latter the effect is as 

would be expected with FN ((+) FN) inducing an increase in average cell area. However, 

unusually, in 10 mol% this leads to a decrease in average cell area. Addressing the cells after 

24 hrs, any differences initially noted in the cell area, between (-) FN and (+) FN surfaces, were 

removed; all DPPC:DOTAP surfaces in this case were seen to have no significant differences 

between cell areas.  

 

Figure 6.10. Adhesion to SLBs Containing Positively Charged Lipid. (A) Shows the structure 

of the DOTAP (1,2-dioleoyl-3-trimethylammonium-propane) molecule. (B) Shows the number 
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of hMSCs adhered per mm2 as the mol% of the positively charged DOTAP is changed in both 

DOPC and DPPC (mol% of DOTAP is indicated by the number after the surface identifier). It 

also shows the cells adhered when fibronectin (FN) is allowed to adsorb on the surface prior 

to cell seeding (at 20 µg/ml). P values indicating significance, ns > 0.05. 

 

Comparing the cell areas after 3 and 24 hrs directly allowed for the assessment of any changes 

in cell area, as shown in Figure 6.12. While there is not a consistent trend in the data shown, it 

does appear that the inclusion of DOTAP in the DPPC SLB prevents the loss of cell area, seen 

previously on RGD-containing SLBs. Further to this vinculin was used to determine the 

presence of any FAs present at both and 3 and 24 hours. Figure 6.13 shows the resulting 

quantification, demonstrating that there was minimal difference in the FA properties of the 

cells. This was shown to be true after both 3 and 24 hours as well as when comparing surfaces 

with and without FN. This is contrast to the glass controls, which show well-defined FAs 

present on all cells.  

 

While it has previously been shown that positively charged bilayers can allow for the successful 

culture of neuronal cells (158) the results of culturing hMSCs on these SLBs is mixed. The 

results here demonstrate a series of cell responses that have both potential and require further 

study to confirm and optimise the system. Initially, cells were seen to not attach to the fluid 

phase DOPC no matter the charge, but did attach to all gel phase DPPC SLBs that contained 

DOTAP. This may be associated with the non-fouling nature of lipid bilayers, which has been 

variously attributed to both their fluid nature (162), and their overall lack of charge (288). As 

with much of science the answer is often a combinatorial one, rather than an either/or, which 

may explain the nature of the cell attachment seen here. While the inclusion of an overall 

positive charge in the DOPC SLB may attract the negatively charged cell membrane, this may 

be countered by the low viscosity of the DOPC SLB. However, this is not the case in DPPC; 

compared to the DOPC the diffusion of the lipid molecules within the SLB is significantly 

lower, which would not counter the electrostatic attraction between this and the cell membrane, 

thus allowing more cells to bind.  
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Figure 6.11. Cell Area on DPPC:DOTAP SLBs. (A) Shows the cell area of hMSCs 

after 3 hours on DPPC, with increasing mol% of DOTAP, with (B) showing the 

representative images of the surfaces. The effect of FN is also determined with 

incubation of 20 µg/ml of FN protein prior to cell seeding. (C) Shows the cell area after 

cells were allowed to adhere and spread for 24 hrs, again with and without prior 

adsorption of FN. (D) Shows the representative cell images after 24 hours. In both cases 
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FBS free media was used, to allow for direct comparison of cell behaviour over time, 

with and without matrix protein. P values indicating significance, ns > 0.05, ** ≤ 0.01, 

**** ≤ 0.0001. 

 

As only the DPPC SLBs were capable of binding cells to a great enough extent for further 

analysis, it was only on these surfaces upon which the spreading and FAs were analysed. The 

results from Figure 6.11 show that the inclusion of positive charge in the DPPC SLBs allows 

for a greater degree of cell spreading on 10 and 20 mol%, but that the cell area is reduced at 30 

mol%. This provides support for the hypothesis of the interplay between the SLB viscosity and 

the charge of the surface; with DOTAP containing 2 unsaturated bonds, which would increase 

the fluidity, as with DOPC; therefore, the fluid nature of the DOTAP would disrupt the packing 

of DPPC, decreasing the viscosity. Thus, as with DOPC, the decreased viscosity counteracts 

the increased electrostatic interaction; in this case, however, the cell area is reduced, rather than 

no cell adhesion occurring.  Despite these changes in cellular adhesion, Figures 6.11 and 6.12 

demonstrate that the introduction of positive charge successfully prevents the reduction of cell 

area between 3 and 24 hours, as seen with the RGD-functionalised SLBs. This therefore 

demonstrates the potential of the inclusion of charge in the bilayers as a means through which 

to promote longer term cultures of hMSCs. 

Figure 6.12. Area Change Between 3 and 24 Hours. This shows the 

percentage of change in the cell area on the DPPC:DOTAP surfaces 
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between 3 and 24 hrs, when the hMSCs were seeded the SLBs with 

and without FN. 

 

While the role of FN in cellular adhesion to positively charged SLBs is not clear based on the 

cell area, an analysis of the FAs in Figure 6.13 proves to show that the effect is negligible. 

While the spreading of cells may not be consistent is it clear that no clear FAs are present on 

any of the SLBs at either 3 or 24 hours. This demonstrates that the cell interactions with these 

SLBs are not integrin mediated. As the interaction of cells with FN is mediated by integrins, 

and thus FAs, it is also therefore possible that FN does not bind to the SLBs. Therefore, the 

main means of the cellular interaction with these SLBs is possibly a combination of the mobile 

and electrostatic components of the bilayer. This is despite the presence of small amounts of 

positive charge previously shown to permit the binding of actin on SLBs (283). However, this 

also implies an integrin-independent means of cell spreading on these surfaces, in response to 

the inclusion of surface charge. This may be explained by DLVO (Derjaguin-Landau-Verwey-

Overbeek) theory, which has been used in the past to describe bacterial adhesion to surfaces 

(289). This theory takes into account the attractive and repulsive forces dictating the 

interactions of surfaces, with these forces having a role in the initial adhesion of cells on to 

surfaces (290), before the activation of further, molecular recognition pathways. However, 

many questions yet remain; it is widely accepted that cells respond to their surface via these 

very same molecular recognition pathways, but it remains unclear what pathways would be 

activated here. This surface may be detected through other receptors, with further environment-

sensing pathways including growth factor receptors (291), cadherins  (170) and syndecans 

(292). Indeed, it may be that there is very little activation of downstream pathways. Because 

of this it is also unclear as to whether the inclusion of charge is a threshold-based phenomenon 

(i.e. all or nothing binding of cells) or would have an incremental effect on the cell behaviour. 

In any of these cases, further work would be required to elucidate what effect there is on cell 

behaviour 
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Figure 6.13. Focal Adhesions on DPPC:DOTAP SLBs. (A) Shows the average area 

of detected focal adhesions present on the DPPC SLBs, when differing mol% of DOTAP 

is used. This shows that the concentration of DOTAP has no significant effect on the 
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FA behaviour and any detected FAs are smaller than those seen on glass surfaces, 

incubated with and without FN. (B) and (C) show representative images of these cells 

at 3 and 24 hrs respectively. This demonstrates that the presence of a larger, diffuse 

vinculin background present in the cells on the DPPC:DOTAP SLBs may induce a false 

positive of FA area. This is contrasted with glass, with shows well-defined FAs. (Scale 

Bar = 50 µm). P values indicating significance, ns > 0.05, **** ≤ 0.0001. 

 

 

6.4. CONCLUSIONS 

This chapter has shown that while there is great potential for SLBs as a cell culture platform, 

there is further work required to understand the nature of hMSC behaviour. Initially, it was 

shown that adhesion of hMSCs was similar to that of C2C12s, with cells small and rounded on 

DOPC and spread, with FAs on DPPC. However, after 24 hours of adhesion cells on the latter, 

cells area reduced and less FAs were seen. This unusual behaviour has been hypothesised, 

though not conclusively proven, to be due to the potential loss of ligand on the surface. With 

lower ligand density showing reduced cell size in Chapter 5, and previous work showing a 

dependency of endocytosis on forces exerted on the surface (77), it is possible that this may be 

a root cause. Furthermore, it was seen that the system used for C2C12 culture, prevented growth 

of hMSCs on the surface over longer time scales, precluding the possible utility of the initial 

system as a platform for culturing and manipulating hMSCs. While this may also be linked to 

loss of ligand preventing attachment of new cells, a possible future analysis of the supernatant 

for the presence of cells may prove this to be the case. 

 

To this end, the system was adjusted firstly by including larger molecules on the surface, 

including FNIII7-10 fragment and full fibronectin. It was thought that the former would 

introduce the synergy site, capable of enhancing cell binding (182), and the latter would present 

a more interactive surface, promoting further protein binding and manipulation by the cells. 

However, this strategy proved to have no effect on the nature of the cells, implying that the 

dominant factor determining the cell behaviour was an irreplaceable loss of ligand on the 

surface. Furthermore, cross-linking proved ineffective and the strategy due to cytotoxicity that 

could not be removed (data not shown). The inclusion of positively charged DOTAP lipid in 
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the SLBs showed more potential. As previous work has demonstrated that positive charge can 

promote cell binding (158), due to electrostatic interactions, this was used here. This strategy 

was successful at different mol% of DOTAP on the DPPC SLBs. Furthermore, the inclusion 

of positive lipid prevented the loss of cell area after 24 hours. However, the incubation of FN 

on the surface appears to have no effect. Due to the lack of FAs present this is likely due to the 

FN not adsorbing on the surface. It may be that further strategies or other ECM proteins may 

adsorb and promoted stronger interactions. This shows that there is potential for this system 

for future use in manipulating hMSC behaviour; however, there is further work required in 

optimising this system. 
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7. CONCLUSIONS AND FUTURE PERSPECTIVES 

 

7.1. CONCLUSIONS 

7.1.1. PRODUCTION AND CHARACTERISATION OF SUPPORTED LIPID 

BILAYERS WITH DEFINED DIFFUSIVE PROPERTIES 

Supported lipid bilayers of distinct characteristics were produced; at 37oC one existed in the 

fluid-phase, with the contrasting system exiting in the gel-phase. The former, DOPC, is 

associated with a high relative diffusion coefficient, while the latter, DPPC, is associated with 

a low relative diffusion coefficient. In this chapter (Chapter 3) the principle aim was to 

determine the characteristics of these systems, most importantly the diffusion coefficient, 

through fluorescence correlation spectroscopy (FCS). In pursuit of this, the properties affecting 

the system were determined to be sufficient to induce the formation of a contiguous and defect 

free SLB, which was assessed via both atomic force and fluorescence microscopy. AFM 

confirmed the bilayer properties on the sub-micron level, confirming, at a resolution 

unachievable through normal fluorescence methods, that a defect-free SLB had been formed 

in the case of both DOPC and DPPC. Further to this, force spectroscopy was performed to 

ascertain the physical properties of the bilayer. Measuring of the force curves characteristic of 

SLBs provided information on the thickness of the SLBs. In contrast to the literature, both the 

DOPC and DPPC SLBs were determined to be of comparable thickness. This was ascribed to 

electrostatic interactions between the tip and the SLB surface, which have been previously 

noted to cause measurement issues in the bilayer (177).  

 

FCS, was used to determine the diffusion coefficient, D, in both DOPC and DPPC. The system 

was first calibrated using FITC beads of defined size, in conjunction with the Stokes-Einstein 

equation, to determine the width of the illuminating beam. Subsequently, D was determined 

for both DOPC and DPPC, with the former giving values in good agreement with previously 

reported results. However, FCS measurements proved more difficult in DPPC, with a greater 

degree of noise present. This was attributed to the low D of DPPC, with bleaching of the 

fluorophore within the confocal volume requiring a large concentration of fluorophore to 

compensate. Using the Saffman-Delbruck equation the diffusion of both DOPC and DPPC was 
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used to estimate the viscosity values of both, which agreed well with those previously measured 

in the literature. 

 

Moving beyond the determination of the SLB characteristics, biotin-PE was incorporated at 

concentrations spanning two orders of magnitude, in order to produce a system capable of 

supporting cellular adhesion. The biotin-PE was bound to neutravidin, with similar molecules 

such as avidin being associated with high non-specific binding (164) and streptavidin shown 

to crystallise on the bilayer in higher concentrations (293). In conjunction with this, a glass 

control, also presenting neutravidin via silane-crosslinker functionalisation, was also produced. 

The amount of neutravidin present on the surface was determined via quantitative fluorescence 

microscopy, first described by Galush et al. (180), and expanded in by Nair et al (184). Using 

bulk and bilayer standards as calibrations, the amount of neutravidin on the surface was 

determined to be within the values expected for the surface. The expected values were 

estimated from the known radius of a single lipid, using this to determine the amount of 

functionalised, biotin-PE, lipid per µm2. The stability of these bilayers was also determined, 

with both seen to be stable for at least 8 days under cell culture conditions.  

 

While the assessment of the SLBs was determined to be sufficient for the purposes of the rest 

of the study, further experimentation would add greater understanding of the nature of the 

SLBs. A direct assessment of bilayer stability in the presence of cells would be of use to 

determine its applicability in future studies. Further work is also required in understanding the 

complex nature of the diffusion of molecules within the bilayer.  

 

7.1.2. DETERMINING AND UNDERSTANDING THE NATURE OF THE CELL 

RESPONSE 

The principle aims of chapters 4 and 5 were to determine a) how the cell responded to the 

varying bilayer properties and b) why the cells behaved in that particular way. To this end, 

these two chapters were split so as demarcate between the what and the why, with chapter 4 

serving as an initial observation as to the behaviour of the cells on the surface and chapter 5 

elucidating the molecular mechanisms underlying this behaviour. While it may be that these 
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are similar in theme, a distinct separation of these into two chapters served to better aid the 

project narrative.  

 

Initially, it was confirmed that the plain bilayers prevented cellular adhesion, in line with the 

literature (294). This was true in the case of both DOPC and DPPC, with adhesion promoted 

upon the functionalisation of the bilayer with neutravidin and biotin-RGD. This also served the 

purpose of demonstrating that both SLBs were continuous and thus able to prevent significant 

cell adhesion before functionalisation. Subsequently, the morphology of the cells on each of 

the SLBs was determined, showing that cells were more spread on the gel phase bilayer. 

Furthermore, inhibiting two key integrins responsible for cell-binding to the RGD-tripeptide 

led to a marked decrease in the cell area, implying that the binding of cells was integrin 

mediated. It is here that the possible mechanical nature of the sensing of the viscosity-defined 

ligand mobility was first hypothesised. Focal adhesions (FAs) were also assessed for their 

properties, with larger and more active FAs seen on the gel phase, DPPC SLB, compared with 

the fluid phase, DOPC SLB. Turning to the literature, it was noted that larger FAs, more spread 

cells, and a greater extent of actin stress fibres were all markers of mechanotransduction (10). 

The proteins used to assess the nature of the cellular adhesion, vinculin and pFAK, are also 

well-known mechanosensitive proteins. This chapter ends with the proposed hypothesis that as 

the viscosity of the surface decreases (mobility of the ligand thus increases) so too does the 

force on the surface. 

 

Chapter 5 began by attempting to understand the nature of the cellular response through the 

molecular clutch model. By substituting the spring (representative of stiffness) for a dashpot 

(representative of viscosity), the viscosity of the surface was modelled instead of the stiffness. 

It is this viscosity, related to the diffusion constant, D, that is a key factor determining the 

mobility of the ligand. The model predictions, calculated by Prof. Pere Roca-Cusachs, show 

that characteristics such as adhesion size and actin flow increase and reduce respectively, in 

response to increased viscosity. What was clear immediately is that the viscosity values, 

calculated via the Saffman-Delbruck (SD) equation, using the FCS-determined diffusion 

coefficients, did not match the predicted values. It was then noted that other equations related 

the diffusion and viscosity, previously mentioned in the introduction (Section 1.3.3.) can be 

used to determine any change in the viscosity. The large discrepancy in attained and predicted 



179 

 

values is therefore associated with the characteristic length of the alternative SD equation 

(135). It was determined that if this length was determined to be on the order a cell radius then 

this discrepancy could be alleviated; this then led to agreement, within an order of magnitude, 

of both the predicted and estimated viscosity values. Further, it was highlighted in larger 

constructs that the validity of the SD equation breaks down, being unable to predict accurately 

diffusion of objects at larger length scales. 

 

Testing the model further, the actin flow was determined in both WT cells and cells with 

myosin II and vinculin inhibited. This showed that interrupting key parts of the apparatus 

related to the molecular clutch removed any differences in actin flow. Due to the actin flow 

being a key component of the clutch this provides strong evidence that the molecular clutch 

model is applicable to the viscosity-defined cell response. Furthermore, inhibition of the 

vinculin tail showed that while FA size changed in line with the viscosity of the surface, the 

actin flow showed no difference between conditions, again supporting the clutch model. 

Developing this further, model predictions were again borne out by showing that when the 

clutch was active (i.e. in DPPC) there was an increase in adhesion size as ligand density 

increased. In contrast, cells on DOPC showed no increase in adhesion size regardless of ligand 

density, as predicted by the low viscosity regime of the model.  

 

Downstream signalling was also tested, showing that the mechanosensitive transcription factor, 

YAP, localised to the nucleus in response to increased viscosity. In addition to the evidence 

provided by the molecular clutch, this also implies a mechanical-basing sensing of the viscosity 

of the surface. Beyond this, it was shown that the mechanical based sensing of the SLBs also 

led to changes in viscosity, with the differentiation of C2C12 cells inhibited on the low 

viscosity (high ligand mobility) DOPC SLB. This provided initial evidence that changing the 

viscosity of the SLB could direct the lineage commitment of differentiation capable cells.  

 

Strong evidence presented in these two chapters shows that: a) the cells respond to the ligand 

mobility, defined by the viscosity, using mechanosensitive mechanisms, and b) the molecular 

clutch is applicable to this system, predicting in the right order of magnitude when the cells 

respond to the surface. However, further work would be required to understand the nature of 
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the SLBs underneath the cell area. This may further elucidate the nature of the cell response. 

Furthermore, it would be useful to further adjust the model to take into account the truly fluid 

nature of the SLB, taking into account, for example, the possible ligand clustering that an 

unconstrained 2D fluid would allow.  

 

7.1.3. APPLYING SUPPORTED LIPID BILAYERS TO BIOMEDICAL 

APPLICATIONS 

After understanding why cells behaved in a defined way on each of the SLBs the applicability 

of this model system to test further, medically applicable, scenarios was assessed. Without 

changing the nature of the DOPC and DPPC SLBs, human mesenchymal stem cells (hMSCs) 

were adhered on these surfaces for 3 and 24 hours. It was determined that between these two 

time points cells on both DOPC and DPPC reduced in cell area. The glass control demonstrated 

that the lack of FBS in the culture media was not responsible for this loss of area. This effect 

was most pronounced on DPPC, which, in addition to a reduction in cell area, also showed a 

significant reduction in FA area. This was attributed to the SLBs themselves, specifically to a 

loss of ligand on both over the time course. This was in light of previous literature that 

suggested there is a definite loss of functional ligand on the surface, due to cellular endocytosis. 

Further to this, the growth of hMSCs on the SLBs, tested by incorporation of BrdU into the 

DNA, was also noted to be minimal and the SLBs unstable after 5 days of culture. This was 

put into the context of previous, similar work, which determined hMSC differentiation on 

DOPC and DPPC SLBs. The cell behaviour in the previous work was not in good agreement 

with the current findings, as well as with the literature. Therefore, as the current results aligned 

well with the literature, it was surmised that this previous work had not accounted for SLB 

breakdown over the long time course (~2 weeks) that the cell differentiation was studied. 

Further, the spreading of cells on DOPC after 5 days of culture indicated that the SLB had been 

significantly endocytosed on this surface, thus presenting the underlying glass upon which the 

cells bound. This conclusion was based on the literature that indicated that the removal of cell 

forces (i.e. in a fluid phase SLB) upregulated endocytosis. Therefore, this would not only 

account for the DOPC SLB breakdown, but also why a similar cell behaviour was not seen on 

DPPC; because of the larger cellular forces there was downregulation of endocytosis, thus 

impeding DPPC SLB breakdown.  
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In light of these findings two approaches were made to alleviate the loss of cell area. Firstly, 

the system was altered to present both peptide fragments and full proteins. The hypothesis 

behind this was that full protein would provide a nucleation point that the cells could 

manipulate and add to, producing an SLB-supported ECM protein surface. Biotinylation of full 

fibronectin and the cell binding fragment, type III7-10 repeat (a control that contains RGD, but 

no FN-FN binding sites), showed no reduction in the binding of the cells and the size of FAs. 

Furthermore, the concentration of biotin-PE lipid was concluded to be key factor determining 

functionalisation of the SLBs with these molecules; the viscosity and the number of biotins 

present on the molecule had no significant effect. However, it was found that this had no effect 

on the cell behaviour between 3 and 24 hours, with cells being of comparable area across all 

protein functionalisation strategies. Unusually, III7-10 on DOPC showed no cellular adhesion, 

with the cause not known. It was concluded that the non-fouling nature of the surface meant 

that any loss of functional groups on the surface could not be replaced, preventing any 

correction of this issue without changing the intrinsic nature of the bilayer.  

 

As an alternative to the presentation of larger constructs the second approach was to include a 

positively charged lipid in the SLBs. Positive charge has previously been noted to increase 

cellular binding due to the overall negative charge of the membrane. To that end, the positively 

charged DOTAP lipid was included in up to 30 mol% in each bilayer. On DOPC, this did not 

allow for any binding of cells, but all concentrations of DOTAP allowed for cellular adhesion 

on DPPC. This was attributed to an interplay between the diffusion of the SLBs and their 

electrostatic charge. While inclusion of DOTAP did prevent a loss in cell area after 24 hours, 

no FA adhesions were seen to form, raising the question of the impact of electrostatic cellular 

adhesion on cellular pathways. Further work would be required to elucidate what, if any, 

pathways of adhesion the cells utilise to bind to and sense the positive charge of these SLBs. 

 

While progress has been made in applying SLBs to a more medically applicable cell line, 

beyond the model system, further work is required to develop this further. For example, the 

longer-term stability of SLBs, in the presence of adhering cells, must be addressed; while it 

was shown chapter 3 that SLBs are stable in cell culture conditions over this time frame, it is 

unclear how the cells affect the SLB structure Based on the findings in hMSCs it does appear 
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likely, though unconfirmed, that there is some degree of bilayer breakdown through 

endocytosis. Therefore, inhibiting endocytosis would also serve to further explain the 

behaviour of cells on SLBs and their effect on SLB stability and structure. Further, cell 

behaviour on these positively charged SLBs must be further studied; while successfully shown 

that positive charge can promote cell adhesion, on gel phase bilayers, it has not been determined 

how this has an effect cellular behaviour. For example, previous work has established that 

DOTAP SLBs have a lower diffusion coefficient, and thus higher viscosity, than DOPC (158). 

This adds extra complexity, and thus a further avenue of research into the interplay of viscosity 

and charge and how this adapts cellular behaviour.  

 

Moving towards the molecular level, determining the nature, or indeed the presence, of FN on 

the surface is of great interest. It may be that very little FN binds to the charged lipid surface, 

or that it is present in globular or fibrillar conformations. Techniques such as a western blot or 

an ELISA may serve to elucidate this further. In addition, other proteins may also be of interest, 

with laminin previously demonstrating a fibrillar conformation on DOPC SLBs (82). The 

means by which cells bind to ECM proteins is also of interest. In this setting it appears that the 

role of FAs is minimal, but cells may also bind through other pathways; understanding what 

these pathways are and the relevant downstream signalling molecules and processes may 

therefore be of interest. Together these additional insights may also serve to develop this 

positively charged system as a more applicable means of culturing hMSCs and directing their 

behaviour.  

 

7.2. FUTURE PERSPECTIVES 

The nature of SLBs, and the various modalities that they can include, present a wide array of 

possibilities of further work in this field. They have shown their potential for use in cell culture 

conditions, as well as a means to direct cell behaviour, through manipulation of their physical 

properties.  

 

7.2.1. BILAYER MODIFICATIONS 
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Part of the allure of SLBs is that they can be easily functionalised using simple chemistries, 

such as the biotin-avidin system. As such, this may be used in future to functionalise bilayers 

with further molecules of interest. This project has already looked at the potential of both single 

peptides and larger protein molecules, but these were all related to the fibronectin protein. 

Previous work has used SLBs to present peptides such IKVAV (laminin cell-binding sequence) 

(295), cadherin (161), or collagen (165). However, none of these have investigated how 

changing the viscosity may affect cell response to these further functionalities. For example, 

inclusion of the N-cadherin peptide HAVDI has been shown to modulate the cell response to 

RGD peptides in gels (296). Interestingly, the inclusion of HAVDI with RGD changes how the 

cell responds to stiffness; as viscosity of the SLBs is detected via similar pathways, it would 

be reasonable to assume the cell response here would also change. This reveals the possibility 

of understanding the individual and combined contributions of the components of the ligands 

and their mobility, and how these interact to induce specific cell responses, through controlling 

the ligand ratios and the SLB viscosity. 

 

Further to presenting different moieties on the bilayer surface, more intrinsic properties of the 

bilayer may also be modified. As shown in this work the inclusion of positive charge in the 

bilayer can promote cellular adhesion. While some previous work has also used DOTAP to 

alleviate the non-fouling nature of SLBs made up of neutral lipids, other work has also included 

other molecules associated with the promotion of cellular adhesion. For example, there are also 

lipids that are associated with a number of cellular process, such as PIP2 (297). Several proteins 

have receptors for this lipid and inclusion of this in an SLB may also serve to control cellular 

behaviour, through activating cellular pathways.  

 

A key issue in the future of this work was illuminated in chapter 6. After 5 days the stability of 

the DOPC was compromised in the presence of cells, thus leading to an increase in cell area 

more akin to cells found on glass. Furthermore, without cells, DOPC was seen to breakdown 

between 8 – 15 days. However, this presents an opportunity to develop this system further. As 

mentioned in the introduction, as well as SLBs, tethered SLBs also exist (tSLBs) (154). The 

SLBs were fit for the initial purpose of this study; however, in the determination of cell’s 

response to the mobility of a ligand on the surface, in longer term applicability studies, tSLBs 

may be more appropriate. In this context they confer advantages such as longer-term stability 
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(154). When culturing hMSCs this would be of particular importance, with terminal 

differentiation occurring over the course of weeks rather than days (16). Additionally, tSLBs 

also separate the bilayer from the glass support, which would allow for the inclusion of 

membrane proteins in the system. In SLBs, inclusion of membrane-spanning proteins is 

impossible, with the close proximity of the SLB and the glass support causing loss of function 

of included proteins. The use of tSLBs in this context does have some examples (298), but 

could be expanded further to observe how the viscosity of the membrane affects factors such 

as cell-cell adhesion and signalling. Furthermore, tSLBs provide a further avenue for the 

manipulation of the diffusion of the bilayer, thus affecting the viscosity, shown to be vital to 

understanding the nature of the cell response in chapter 5. Specifically, even small 

concentrations of immobile lipid introduced into the bilayer have been observed to have a 

significant effect on the diffusion of surrounding lipid molecules (253). It could be envisaged 

that a fluid SLB, such as DOPC, could be forced to have an effective viscosity, more similar 

to the that of DPPC, by rendering a specific percentage of the SLB immobile.   

 

7.2.2. UNDERSTANDING CELL-SURFACE AND CELL-CELL INTERACTIONS 

Developing from the presentation of different ligands on an SLB surface, these may also be 

used to understand the direct role of viscosity-defined ligand mobility in physical interactions 

between cells and surfaces, or indeed other cells. For example, elegant work by Bharadwaj et 

al. (299) used a cell, deposited on an AFM cantilever, to determine the nature of interaction 

with different integrins. A similar modality may be used in cells and SLBs to understand, in 

greater depth, what is occurring at the cell-SLB interface. With the presentation of different 

molecules, different systems may be simulated, such as cell-cell contacts and the role of the 

membrane fluidity in signalling. Furthermore, in the context of the current work, this may allow 

for the further important contributing factors to be elucidated. For example, the number of 

binding events and the strength of interaction, could be understood in the context of the 

viscosity of the SLBs and the mobility of the ligands therein. Together, these would allow the 

estimation of viscosity-dependent single bond strength. Understanding these forces would 

allow a greater sense of how the molecular clutch, assessed in chapter 5, responds to the 

viscosity of the membrane. Furthermore, the tension sensors and molecular tension 

fluorescence microscopy (MTFM) (174), mentioned previously, in section 1.3.4 may also 

present an opportunity through which to study the cell-SLB interface in more depth. 



185 

 

 

7.2.3. APPLICATIONS IN CELL DIFFERENTIATION 

Work in chapter 6 has shown that there is some further optimisation that is required for SLBs 

to be a viable option in the differentiation of medically relevant cell lines, such as hMSCs. 

Further work, should therefore focus on each of the strategies mentioned in the above sections, 

using these as a framework through which to produce a system more applicable to this 

medically relevant context. For example, the introduction of alternate ligands would promote 

different pathways. Further, the seeding of hMSCs on DOTAP bilayers showed that the 

interaction is dominated by electrostatic interactions, with minimal FA-mediated response. 

This may allow for seeding of cells with a reduction in external stimuli. Alternatively, if other 

pathways are activated by this electrostatic interaction it would be intriguing to ascertain which 

pathways and why. Beyond this, further strategies should also focus on stabilising this system 

further. As mentioned in section 8.2.1, tSLBs present the possibility of bilayers with much 

greater stability, allowing for their use in much longer-term differentiation studies. Successful 

application of this would allow for a more biomedically relevant applicability of the surface-

supported lipid base systems. 

 

Overall, there is a great deal potential of surface-supported lipid systems. This project has 

served to develop a more complete understanding of how cells respond to the viscosity of a 

surface. In more specific sense, they have also shown what factors underpin how a cell responds 

to perturbations in ligand mobility, as a consequence of SLB viscosity. This greater depth of 

understanding of the factors controlling the cell response allows for more focused guidance on 

how to develop similar materials in future work. 

  



186 

 

8. APPENDIX A – DESCRIPTION OF THE MOLECULAR 

CLUTCH MODEL 

To implement the computational clutch model, we took our previously described model as a 

reference (118), and we carried out a simple modification to consider a viscous rather than 

elastic substrate. To this end, we modified the equation calculating the total force exerted on 

the substrate Fsub as follows: 

𝐹𝑠𝑢𝑏 =
𝑣𝑢

1
𝑛𝑒𝑛𝑔𝜇

+
𝑣𝑢

𝑛𝑚𝐹𝑚

 

  

Where vu is the contraction speed of myosin motors in the absence of force, µ is the viscosity 

of each ligand, neng is the number of engaged (bound) ligands, nm is the total number of myosin 

motors, and Fm is the stall force of a single motor. This equation comes from combining our 

previously used equation to model a linear reduction in myosin contraction speed v with force: 

𝑣 = 𝑣𝑢(1 −
𝐹𝑠𝑢𝑏

𝑛𝑚𝐹𝑚
) 

With the equation relating force to speed in a viscous system where each engaged ligand 

contributes with a given viscosity. 

𝐹𝑠𝑢𝑏 = 𝑛𝑒𝑛𝑔𝑣𝜇 

Total force Fsub was considered to be distributed evenly among all engaged clutches. For 

simplicity, we neglected the elasticity of the clutches. This is consistent with our previous 

works (47, 260, 300), where clutch elasticity was successfully modelled with very high values 

and played a negligible role as compared to the mechanical properties of the substrate.  

 

All parameter values are of the same order as those employed in previous simulations 

considering elasticity rather than viscosity (47, 118, 260). 
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Parameter Meaning Value Origin 

nm Number of myosin 

motors 

100 Adjusted 

nl Number of ligands 75 Adjusted 

Fm Myosin motor stall 

force 

2 pN (301) 

vu Unloaded myosin motor 

velocity 

110 nm/s (47, 118) 

dint Initial integrin density 

on the membrane 

300/μm2  (302) 

dintmax Maximum integrin 

density on the 

membrane 

1000/μm2    Adjusted 

Kont True binding rate 1x10-4 um2/s Adjusted, of the order of 

values reported for 

αIIBβ3 (303) 

Koff Unbinding rate, scaling 

factor applied to force 

curve reported in (304) 

0.5 Adjusted, catch bond 

dependency from (304) 

Fthreshold Threshold 

reinforcement force 

90 pN Adjusted, of the order of 

reported values (305) 

dadd Integrins added after 

each reinforcement 

event 

6/μm2 Does not affect model 

output 

a Radius of adhesion 550 nm Adjusted 

Table A1.  Model parameters. 
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