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Abstract

The use of gravitational wave observations from compact binary inspirals as standard sirens
was first proposed by Schutz in 1986. Following the recent observations of compact binary
coalescences by the Advanced LIGO detectors and the first standard siren measurement of the
Hubble constant with the binary neutron star merger GW170817, and in anticipation of future
detections during upcoming observing runs, it is useful to further investigate standard sirens, the
gravitational wave analogues of standard candles, as an alternative way to measure the Hubble
constant. Compact binary inspirals are well modelled, and their luminosity distance can be
obtained from GW observations. From these distance measurements and using redshifts from
EM galaxy catalogues and Bayesian inference, it is possible to assign a probability to each host
galaxy, and a value for the Hubble constant can be obtained. While a redshift can sometimes be
obtained from multi-messenger observations of binary neutron star coalescences, binary black
hole mergers are not expected to produce electromagnetic signals, making statistical approaches
an important tool in cosmology using gravitational waves. In this project, an investigation of
statistical methods of measuring the Hubble constant with standard sirens is carried out using
simulated data, to find out how well we can constrain the Hubble constant and to characterise
the biases due to selection effects coming from the incompleteness of EM galaxy catalogues.
Results are obtained for a range of aLIGO sensitivities, using both binary black hole and binary
neutron star mergers as standard sirens. This constitutes an independent measurement of the
Hubble constant that is competitive with other methods.
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Chapter 1

Introduction

Gravitational waves are disturbances in spacetime that propagate at the speed of light. Gener-
ated by some of the most violent astrophysical events in the universe, they can teach us more
about our cosmos. Gravitational wave astronomy is a new and rapidly growing field: while
efforts in the development of theory and detectors had been ongoing for many years, the first
direct detection of gravitational waves, in September 2015, marked the true advent of the era of
gravitational wave astronomy. [1] Since this first detection, and subsequent ones, the field and
its scientific returns and applications to astronomy and astrophysics have grown considerably.

Gravitational waves were predicted in 1916, one year after Einstein proposed his theory of
general relativity, which revolutionised physics. A direct consequence of the theory, it took
nearly a century to finally directly detect gravitational radiation for the first time. The search
for these tiny ripples spanned several decades, and was a colossal international effort. For most
of the history of astronomy, observations were limited to the optical realm. This first changed
in 1932, when Karl Jansky, then working at the Bell Telephone Laboratories, made the first
observations of the Milky Way in the radio band. [2] Consequently, throughout the 20th century,
new windows of the electromagnetic spectrum kept opening up, and with each new window
came new revelations about our universe: X-ray, radio, gamma rays... Likewise, the discovery
of gravitational waves marked the dawn of a completely new way of observing our cosmos,
and with it came an abundance of new science. Whereas EM observations were fundamentally
biased towards the observation of hot, glowing matter, with gravitational waves, astronomers can
probe violent astrophysical processes and massive, dense objects like black holes and neutron
stars. While electromagnetic radiation is easy to detect due to its strong coupling to charges, 96%
of the mass-energy of the universe carries no charge. This could make gravitational radiation
a better probe for the astrophysical, and physical phenomena linked to this mostly unexplored
part of the universe. [3]

This chapter presents an overview of gravitational waves as a consequence of general relativ-
ity. We also discuss the astrophysical sources of gravitational waves, and what we can learn from
them. Finally, an overview of past, current and future gravitational wave detectors is presented,

1
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along with a summary of the current state of the search for gravitational waves.

1.1 General Relativity and Gravitational Waves

It seems probable that most of the grand underlying principles have been firmly established and

that further advances are to be sought chiefly in the rigorous application of these principles to

all the phenomena which come under our notice. [...] An eminent physicist remarked that the

future truths of physical science are to be looked for in the sixth place of decimals."

These words, often misattributed to Lord Kelvin, were spoken by physicist Albert A. Michel-
son during an address to the Ryerson Physical Laboratory in July 1894. [4] This seemed to be,
at the time, the general consensus amongst even the most eminent physicists. It was only a few
years after this statement was made that two revolutions were made in the world of physics.

Einstein revolutionised physics when he proposed his theory of special relativity, inspired
by Maxwell’s work on electromagnetics. [5–7] Published in 1905 under the name "On the elec-
tromagnetics of moving bodies", the theory introduced some concepts that would later become
fundamental to our understanding of the universe. In this paper, Einstein postulates that light will
always propagate at velocity c in a vacuum, regardless of the velocity of the emitting body. [7]

Einstein’s work removed the need for a universal reference frame, thus making the lumine-
ferous aether, a theoretical substance through which light propagated and which would provide
a reference frame common to the entirety of the cosmos, unnecessary.

The theory of special relativity relies on two important postulates:

• The principle of relativity: ’the laws by which the states of physical systems undergo
change are not affected, whether these changes of state by refereed to the one of the other
of two systems of co-ordinates in uniform translatory motion.’

• Invariant light speed: light moves at a fixed velocity c in the stationary system of co-
ordinates, regardless of whether the emitting source is stationary or not. [7]

After releasing his work on special relativity, Einstein started extending his theory to grav-
itational fields. From this work came general relativity, with what would become known as
Einstein’s field equations published in 1915. [8] One year later, in 1916, gravitational radiation
was predicted as a direct consequence of the theory.

1.1.1 General Relativity

The main idea behind general relativity can be easily summarised by this memorable quote by
John Archibald Wheeler: "Spacetime tells matter how to move; matter tells spacetime how to

curve." [9]
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Before Einstein developed his theory of general relativity, our understanding of gravity was
Newtonian; gravity was understood as a force which acted on massive objects. While Newtonian
dynamics are a good approximation of everyday phenomena, certain problems remained with
Newton’s approach, especially on astrophysical scales: discrepancies would appear between
Newton’s theory and some observed astrophysical phenomena. The main issue with Newton’s
understanding of gravity was the seemingly instantaneous aspect of the force.

In 1907, two years after he proposed the theory of special relativity, Einstein started extend-
ing his work to gravitational fields. He first proposed that free fall was an inertial motion, an idea
which would later be known as the equivalence principle. [10] This is fundamentally different
from previous theories, including special relativity, in which gravity is treated as a force acting
upon an object. This concept means that free-falling test particles follow geodesics: the shortest
path in a curved spacetime.

Einstein first published the field equations he derived for general relativity in 1915. [8] These
equations describe the interaction of spacetime and matter; that is, they describe how the metric
responds to energy and momentum. [11]

Rµν −
1
2

Rgµν = 8πGTµν , (1.1)

where Rµν is the Ricci curvature tensor, R is the scalar curvature, gµν is the metric tensor, G is
Newton’s gravitational constant and Tµν is the stress-energy tensor.

In 1916, Einstein proposed a number of tests of general relativity. [12]

• The perihelion precession of Mercury; observations of the orbital motion of Mercury pre-
sented some discrepancies with the Newtonian predictions, which could be explained by
Einstein’s theory.

• The bending of light in a strong gravitational field, such as starlight being deflected by the
Sun during a solar eclipse.

• The gravitational redshift of light.

The first observational evidence of general relativity came from British scientist Arthur Ed-
dington, in 1919. [13] According to GR, light bends when passing through the gravitational field
of a massive astrophysical object. This bending is also predicted by Newtonian dynamics; how-
ever, the bending of light predicted by GR is twice that of the Newtonian one. What this means
is that when observed near a very massive object, objects like stars or galaxies are observed to
be in a different location than they truly are.

By observing a star field at night and during a solar eclipse, Eddington showed that the
bending of light by massive objects was consistent with predictions made by Einstein’s theory
of general relativity; the predicted bending was twice that of the bending of light predicted by
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Newton’s theory. This result remained controversial for many years, with suspicions of under-
lying political motivations and erroneous analysis. Some believed that Eddington was biased in
favour of general relativity and that the experiment only served as a pacifist act of reconciliation
between Britain and Germany following World War I. [14] However, since 1919, general rel-
ativity has triumphed and withstood many other experimental tests. So far, no inconsistencies
have been found between Einstein’s theoretical predictions and observations.

The observation of gravitational radiation serves as one of many tests of general relativity.
The search for gravitational waves has been a colossal scientific enterprise going back to the
1960s, and involving thousands of people and institutions across the globe.

1.1.2 Gravitational Radiation

Gravitational radiation arises as a natural consequence of general relativity. In 1916, one year
after he introduced general relativity, Einstein proposed a wave solution to his equations. [15]

In the weak field limit, the metric can be decomposed into the flat Minkowski metric of
special relativity ηµν and a small perturbation hµν .

gµν =ηµν +hµν , |hµν |<< 1 (1.2)

There is a lot of freedom to the choice of gauge for hµν . However, one gauge is of particular
interest to general relativity: that is the transverse traceless (TT) gauge. In this gauge, the coor-
dinates are marked out by the world lines of free-falling test masses. The TT gauge embodies
the idea of gravity as a phenomenon of geodesic motion through curved space time. [16]

When using the transverse traceless gauge in the weak field limit, Einstein’s field equations
become a wave equation.

(∇2− 1
c2

∂ 2

∂ t2 )hµν = 0 (1.3)

hµν represents a perturbation travelling at the speed of light, c.

hµν =


0 0 0 0
0 a b 0
0 b −a 0
0 0 0 0

 (1.4)

h = aĥ++bĥx (1.5)

There are therefore two possible polarisations for hµν , denoted by ĥ+ and ĥx. These are
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called, respectively, plus polarisation and cross polarisation.

ĥ+ =


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 ĥx =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 (1.6)

These act as basis tensors for the two orthogonal polarisations of waves propagating along
the ẑ-axis.

Figure 1.1: Different phases of plus-polarisation and cross-polarisation of gravitational waves

Figure 1.1 shows a representation of these two polarisations, by showing the effect of a
gravitational wave in a plus polarisation and a cross polarisation on a ring of test particles. Most
detected gravitational wave signals will be a combination of these two polarisations.

The existence of a wave solution to Einstein’s equations is a profound statement about our
universe: it demonstrates the existence of oscillations in the spacetime metric that propagate
at the speed of light. This was the first theoretical prediction of the existence of gravitational
waves.

1.1.3 Generation of Gravitational Waves

Similarly to the way electromagnetic waves are produced by accelerating charges, gravita-
tional waves are produced by accelerating mass-energy. [17] While electromagnetic waves are
produced by the dipole moment of electric charges, gravitational waves are produced by the
quadrupole moment of mass.

For gravitational radiation to be generated, the mass quadrupole moment of the system needs
to undergo variations in time. In other words, for gravitational waves to be generated, we need
a non-spherically and non-cylindrically symmetrical accelerating mass. [18]
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1.1.4 Astrophysical Sources of Gravitational Waves

Any massive object with a non-zero quadrupole moment is a source of gravitational waves.
However, due to the small effect of these waves, only massive astrophysical objects accelerating
rapidly produce detectable gravitational radiation. Spacetime is remarkably stiff; this means that
only very massive, dense objects, or cataclysmic events can produce detectable gravitational
wave signals.

We can expect to observe four different types of gravitational wave signals: compact binary
coalescence, burst, stochastic and continuous.

Compact Binary Coalescence

At the time of writing, all detections of gravitational wave signals have been from compact bi-
nary coalescences (CBC). Two types of CBC have been detected: binary black hole coalescences
(BBH), and one binary neutron star coalescence (BNS). We also expect to be able to observe
black hole-neutron star systems in the future.

Compact objects are very dense, heavy astrophysical objects. Black holes (BH) and neutron
stars (NS) are such objects; these objects are compact stellar remnants.

Black holes are compact objects with a gravitational field that is so strong no object or
signal can escape their gravitational pull. They were first mathematically predicted in 1916 by
Schwarzschild, who proposed a solution to Einstein’s field equations for the gravitational fields
of point masses. [19]

Neutron stars are extremely dense stars made primarily of neutrons. Their masses range
from 0.5 to 3 M� with radii of around 10km. [20]

White dwarfs (WD) are another type of compact astrophysical object, and white dwarf merg-
ers, or WD-NS/BH are expected to be common in our galaxy. [21] However, such compact
binary coalescences do not have a strong signature, and their frequencies make them more ap-
propriate targets for space-borne detectors like LISA. [22]

Stellar mass binary black hole mergers are the most commonly detected systems to date.
Stellar binary black holes can form in a number of ways; for example, they could result from
binary systems comprised of two massive stars which collapsed into black holes, or they could
form in dense stellar environments through dynamic processes in which a black hole is captured
into orbit around another black hole. [23] Stellar mass black holes range from 5M� to several
tens of M�, as seen in figure 4.2.

The characteristic signature of compact binary coalescences is a "chirp" signal, named for
the "chirping" sound of the signal when translated into sound. This signal can be seen in Figure
1.8.
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Burst

Gravitational wave bursts are, along with compact binary coalescences, a type of transient grav-
itational wave signal. Bursts are weakly-modelled transients of short duration; burst searches
make fewer assumptions on the shape of the waveform, identifying instead significant excess-
power transient signals. [24, 25] They also require a coherence of the signals between several
detectors. [26]

Gravitational wave bursts are "generic" transient signals. Targeted astrophysical objects for
burst searches include core-collapse supernovae, pulsar glitches, cosmic string cusps and mag-
netar flares. [25,27]. It is also possible that astrophysical systems that are not yet known will be
sources of gravitational wave bursts.

Stochastic

Stochastic gravitational waves are the astrophysical gravitational wave background made up of
a multitude of incoherent signals.

If we consider a gravitational wave detector in the frequency band above 10Hz then two
black holes merge roughly every 200s, while binary neutron star mergers occur roughly every
15s within the range of the entire universe. [28] These estimates are limited by uncertainties in
the rates. These events form a stochastic gravitational wave background.

Another potential source of stochastic signals is primordial gravitational waves from the Big
Bang. These would form a stochastic background similar to the Cosmic Microwave Background
in EM. Processes in the very early universe, such as vacuum fluctuations can generate a weak
gravitational wave background. [29]

Continuous

Continuous gravitational waves are signals of a defined frequency produced over a long period
of time.

Spinning neutron stars with an asymmetry with regards to the rotation axis are a source of
continuous gravitational waves. [30] This asymmetry would manifest as a deformation on the
surface of the neutron star.

At the time of writing, no continuous waves have been detected from pulsars and neutron
stars; however, the lack of detection allows for constraints to be placed on the strain (as defined
in equation 1.7) of the gravitational waves produced by the asymmetries of neutron stars. These
constraints translate to a limit on the height of the largest possible deformation, or mountain, in
these objects.

The lack of continuous gravitational wave detection in all-sky searches puts a limit on the
maximum strain of these signals. At most frequencies, this upper limit is estimated to be 10−24

to 2×10−23. [31]
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1.1.5 Observables of Gravitational Waves

The variable measured by gravitational wave detectors is called the strain. The strain of a grav-
itational wave can be thought of as an oscillating tidal force between two distant masses. [32]
It’s measured transversely to the direction of propagation of the wave, and has an amplitude h.
Another measured variable is the signal-to-noise ratio (SNR), which scales inversely with the
distance. [33]

The strain is a measure of the distortion of space by the gravitational wave: for two ob-
jects separated by a length L, it is defined as twice the change in displacement caused by the
gravitational wave ∆L divided by the length.

h =
2∆L

L
(1.7)

As defined in equation 1.5, gravitational waves can be polarised in a cross or a plus configu-
ration; typically, a measured gravitational wave will be a combination of both polarisations.

For a system radiating an energy E in gravitational waves over a time T , at a frequency f

and distance r, the amplitude of the signal goes as [3]

h∼ 1
π f r

√
E
T

. (1.8)

Therefore, the parameters of the system can be inferred from measuring the strain of gravi-
tational waves.

1.1.6 Parameter Estimation from Gravitational Wave Signals

A number of parameters can be estimated from the observables of gravitational waves, which
are measurements of the time evolution of the strain of the gravitational wave. Localisation
information can also be obtained from the use of a network of detectors.

Parameter estimation from gravitational wave signals coming from binary black hole coales-
cences has been made possible thanks to recent breakthroughs in the field of numerical relativ-
ity. [34–37] Using numerical relativity equations, templates can be made for different parameters
of the astrophysical systems, and real signals are matched to those templates, therefore allowing
for parameter estimation of the system. Parameters that can be inferred from the signal include
the spin of the binary, mass ratios, chirp mass, inclination and polarisation angles, luminosity
distance and localisation. [34] In the case of BNS mergers like GW170817, efforts in analytical
relativity and post-Newtonian approximations made parameter estimation possible. [38, 39]
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1.2 Gravitational Wave Detectors

When Einstein first introduced the wave solution to his equations, predicting the existence of
gravitational radiation, it was thought that the minuscule effect of such perturbations would
mean that gravitational waves would never be detected.

Despite this prognosis, physicists decided to search for these tiny gravitational waves, start-
ing in the 1960s with bar detectors. In 1960, Joseph Weber started developing methods for
detecting gravitational waves and measuring the Riemann tensor using resonant mass detec-
tors. [40]

1.2.1 Resonant Mass Detectors

The first gravitational wave detectors were not interferometers, but resonant mass detectors, also
called bars.

The resonant mass gravitational wave detectors developed by Weber were made to detect the
short pulses of gravitational radiation predicted from the collapse of supernovae. [17]

Gravitational waves can be thought of as a tidal relative force between two masses, or across
an extended object. [16]. The gravitational wave sends the pair of masses vibrating about their
common centre of mass.

In 1969, Joseph Weber announced, during a conference on general relativity, the detection of
gravitational waves. [41,42] After the controversial announcement, several teams built their own
bar detectors. However, Weber’s result was never duplicated. Other teams never saw anything
but random noise in their own detectors, casting even more doubts on the the controversial claim,
and the supposed detection of gravitational waves was put down to a flawed data analysis.

1.2.2 Laser Interferometry for Gravitational Wave Detection

After the unsuccessful resonant mass detectors, physicists started exploring other possibilities
in gravitational wave detection.

Another way of measuring the separation of two distant objects is to determine the time
of travel of light between the two objects. [16] This can be done with the use of Michelson
interferometers.

Michelson interferometers were famously used in the Michelson-Morley experiment in 1887,
designed to detect the luminiferous ether, the substance through which physicists believed elec-
tromagnetic waves travelled. [43] At the time, it was believed that EM waves needed a medium to
travel through; the aim of the experiment was to detect the Earth’s motion through that medium.

The use of interferometry in gravitational wave detection was first proposed by Forward and
Weiss. [44, 45] Laser interferometers are more sensitive than resonant mass detectors, and over
a wider detection bandwidth.
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Figure 1.2: Joseph Weber with a resonant mass (bar) detector

In order to detect a gravitational wave strain of 10−21 to 10−22, the optical path length Lopt

needs to be of the order of 1000km. [16]
However, there is no need for building interferometers of such large scale. The dominant

noise source in such interferometers is shot noise, which only depends on the light power and
total optical length. This means the light can be reflected on mirrors as many times as necessary
without increasing the shot noise. This is called optical path folding, and leads to the following
equation for the length of the interferometer arms

L =
Lopt

2N
, (1.9)

where L is the new length of our interferometer arms, and N is the number of round trips the
laser makes.

Laser interferometers for gravitational wave detection are long-baseline interferometers,
working as a world-wide network of antennae. A network of separated interferometers is essen-
tial in order to locate the sources of gravitational wave signals in the sky using time delays. [46]
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1.2.3 First Generation Gravitational Wave Detectors

The first generation of gravitational wave detectors includes the first interferometric GW detec-
tors built.

LIGO, the Laser Interferometer Gravitational-Wave Observatory, was built in the 1990s, and
was operating at design sensitivity in its data acquisition mode from November 2005 to Septem-
ber 2007. [32] Consisting of two identical interferometers in Louisiana and Washington, each
with 4km arms, LIGO was built to detect and study gravitational wave signals from astrophys-
ical sources. [47] Astronomical research was not the only scientific goal of the detectors. The
observation of gravitational waves could also be a way to tackle some fundamental questions
about the physics or our universe, such as characterising the graviton, testing nonlinear gravity,
or investigating dark matter. [47]

Another detector, the GEO 600 laser interferometer with 600m arms, is located in Germany.
[48]

Like resonant mass detectors, the first generation of interferometric gravitational wave de-
tectors did not succeed in its search for gravitational radiation; detecting the tiny ripples would
require the updated technology of second generation gravitational wave detectors.

1.2.4 Second Generation Gravitational Wave Detectors

Following Initial LIGO, the interferometers underwent an update, Advanced LIGO, bringing
them into the second generation of gravitational wave detectors. Another second generation
detector, VIRGO, is located in Italy. [49]

The design of Advanced LIGO is based around a Michelson interferometer with each arm
containing a Fabry-Perot cavity to build up the phase shift produced by the change in length of
the arms. [50]

Currently, the aLIGO detectors comprise of two identical instruments based in Hanford
(Washington) and Louisiana. The Advanced LIGO detectors started their data acquisition in
2015. The first direct detection of gravitational waves was in both instruments made during the
engineering run of O1. [1] After the success of aLIGO’s first observing run, a third identical
detector was approved for construction in India, IndiGO, and will join the network of LIGO
detectors. [51]

The sensitivity of aLIGO detectors is limited by noise. Sources of noise include seismic
noise, thermal noise, quantum noise (made up of radiation noise and shot noise) and others, see
figure 1.4. The noise floor of the interferometers is determined by quantum noise and thermal
noise. [50]

Currently, three second-generation gravitational wave detectors are operating: the two aLIGO
detectors, and VIRGO, in Italy. KAGRA is a second-generation cryogenic gravitational wave
detector currently under construction in Japan. [52]
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Figure 1.3: Advanced LIGO optical configuration. [50]

Figure 1.4: Sources of noise for aLIGO, expressed in terms of each source’s limiting effect on
strain sensitivity as a function of frequency. [53]
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Figure 1.5: Global network of gravitational wave observatories (second generation). [51] This
map shows currently operational detectors and future detectors that will soon join the global
network of gravitational wave observatories.

1.2.5 Space-Based Detectors

The Earth is a considerably noisy place for gravitational wave detectors. Seismic activity, tidal
waves, and many other everyday terrestrial occurrences are a significant source of noise in
ground-based interferometers, making it impossible to detect gravitational waves at certain fre-
quencies, as seen in figure 1.4. These sources include, for example, the mergers of supermassive
black holes. [54]

This means that in order to open new windows of the gravitational wave spectrum, detectors
need to be taken away from these noise sources. This is what space-based detectors will be
attempting to accomplish.

The LISA mission seeks to explore the gravitational wave spectrum in a frequency window
of 0.1 to 100mHz. It is designed as an interferometer with a 3-arm configuration, with each arm
separated by 2.5 million km. Its orbit will be an Earth-trailing heliocentric orbit. [54] The LISA
Pathfinder mission launched in December 2015, and successfully demonstrated the technology
that will be used for the LISA spacecraft. [55]

1.2.6 Third Generation Detectors

Following the success of Advanced LIGO and Advanced Virgo, the third generation of detectors
is under way. The next generation of gravitational wave detectors will be able to detect compact
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binary sources with high SNR ( > 20) at redshifts > 10. [56]

The Einstein Telescope

The Einstein Telescope is a planned third generation gravitational wave detector. Funded by
the, European Commission, it is currently under study. The target for ET is an improvement in
sensitivity of 10 over a wide range of frequencies; this would improve the detection rate by a
factor of 1000. [57]

LIGO: Next Generation

Advanced LIGO should reach design sensitivity in 2020. Some further updates have been pro-
posed for the detectors, taking aLIGO into the next generation of interferometric gravitational
wave detectors.

Figure 1.6: LIGO upgrade timeline. [53] Projected schedules are presented for three major
potential detector epochs: A+, LIGO Voyager and LIGO Cosmic Explorer.

The two designs proposed for LIGO updates are LIGO Voyager and Cosmic Explorer. [53]
These will follow another less extensive update, A+.

In the ideal scenario, A+ would bring the reach of the detectors to 340Mpc for binary neutron
stars. The increased sensitivity would be reached through the implementation of two stages of
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upgrades:

• Frequency dependent squeezing.

• Bigger masses, bigger laser beam sizes and better mirror coatings.

Using squeezed light, heavier test masses and reducing coating thermal noise could potentially
double the reach of Advanced LIGO. [58]

LIGO Voyager is planned for 2025, and will follow the A+ update. LIGO Voyager will be
a major upgrade of the current LIGO instruments, bringing its reach to 1100Mpc for binary
neutron stars. After such an extensive upgrade, gravitational wave astronomy will be a well-
established field, prompting more investment into new facilities. LIGO Cosmic Explorer is a
planned design for such a facility. Cosmic Explorer will be a gravitational wave observatory
with a binary neutron star reach beyond a redshift of 1. [53].

1.3 Detections

Gravitational waves can be detected directly, through directly measuring the distortion of space-
time caused by their passing through a detector, or indirectly, through measuring the effects of
gravitational waves on the orbits of compact binary systems. Gravitational Waves have been
detected both indirectly and directly.

1.3.1 Indirect Detection

Gravitational radiation was first observed indirectly, in a binary pulsar system. The system had
been previously discovered by Hulse and Taylor in 1975, a discovery that would later earn them
the 1993 Nobel Prize in Physics. [59] This system consists of two neutron stars orbiting each
other with a period of 7.75 hours, with one of them emitting radio pulses. [32] The indirect
detection of gravitational radiation was made through the precise measurement of pulse arrival
times of this binary pulsar, PSR 1913+16. The system was monitored from 1975 to 1981, and
the delays in pulse arrival time were found to be consistent with orbital decay that matched
predictions made by a loss of energy through gravitational radiation. [60]

The binary system was subsequently monitored for decades, through measurements of the
timing of its radio pulses. Thirty years of observations still showed the decay of its orbit to be
consistent with the predictions made by general relativity. The change in the orbital period of the
binary pulsar agreed with the values predicted by energy loss through emission of gravitational
radiation within 0.2%. [61]
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Figure 1.7: Shift in periastron time for PSR 1913+16, showing the decaying orbit due to grav-
itational radiation. The red dots are observations, while the black line is the prediction from
GR. [60]

1.3.2 Direct Detection

At the time of writing there have been six confirmed direct detections of gravitational waves.
All but one of these came from the merger of two black holes; the other detection being a binary
neutron star coalescence.

The first direct detection of gravitational waves was made by the two detectors of the Ad-
vanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) on the morning of 14th
September 2015. The detection was a transient signal coming from two black holes of masses
30+5
−4M� and 29+4

−4M� at a distance of 440+160
−180Mpc coalescing into a final black hole of mass

62+4
−4M� and effectively radiating 3.0+0.5

−0.5M� in gravitational waves. [1] This discovery was
made after years of work by the scientific community, on the 100th anniversary of Albert Ein-
stein’s theory of general relativity.

This historical event was a breakthrough in more than one way; not only was this the first
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direct detection of gravitational waves, it was also the first direct observation of a black hole, and
the first observation of a binary system of two black holes orbiting each other. When observing
only in the electromagnetic spectrum, black holes could only be observed through their effects
on surrounding matter.

Figure 1.8: The measured signal at LIGO Hanford and LIGO Livingston for GW150914. [1]
Top row: strain at LIGO Hanford and LIGO Livingston. Second row: projected strain in the
35-350 Hz band, with numerical relativity waveform. Third row: residuals. Bottom row: time
frequency representation of the data.

Another event, GW151226, called the Boxing Day event, was detected as part of the first
Advanced LIGO observing run. Once again, the signal was produced by the coalescence of two
black holes. This time of masses of the original black holes were 14.2+8.3

−3.7M� and 7.5+2.3
−2.3M�,

coalescing into a final black hole with mass 20.8+6.1
−1.7M�. [62] A further three binary black hole

mergers were detected during the second aLIGO observing run.
The first detection of binary neutron stars coalescing was made during O2. Two neutron
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stars, located at 40+8
−14Mpc, merged, radiating gravitational waves and producing a short GRB

and a kilonova. [39, 63]

1.3.3 Future Observing Runs and Detections

The second observing run for Advanced LIGO was recently completed, on 25th August 2017.
The third observing run, O3, is planned for 2018-19, starting in Fall 2018. aLIGO will then be
entering the late phase of its operation.

At design sensitivity, aLIGO is expected to detect binary black hole mergers (30 M�) at a
distance of up to 1640 Mpc, and binary neutron star mergers up to 190 Mpc. [64] The Virgo
detector is similar to aLIGO, though less sensitive. Its role is however crucial in improving
the localisation of gravitational wave events. Another detector, KAGRA, is currently under
construction. At design sensitivity, it will detect BNS mergers up to 140Mpc and BBH mergers
up to 1270Mpc.

LIGO Virgo KAGRA
PHASE BNS BBH BNS BBH BNS BBH

Range(Mpc) Range(Mpc) Range(Mpc) Range(Mpc) Range(Mpc) Range(Mpc)

Early 40-80 415-775 20-65 220-615 8-25 80-250

Mid 80-120 775-1110 65-85 615-790 25-40 250-405

Late 120-170 1110-1490 65-115 610-1030 40-140 405-1270

Design 190 1640 125 1130 140 1270

Table 1.1: Detector sensitivities. [64] These are given for different phases of each detector,
expressed as a range in Mpc for BNS and 30M� BBH systems.

Table 1.1 presents plausible ranges of sensitivities for different phases of each detector. Val-
ues for binary black hole mergers are quoted for systems of two 30M� black holes. The timelines
for all phases are defined in table 1.2 for each detector.

PHASE Advanced LIGO Advanced Virgo KAGRA

Opening - - 2018-19

Early 2015-16 2017 2019-20

Mid 2016-17 2018-19 2020-21

Late 2018-19 2020-21 2021-22

Design 2020 2021 2022

Table 1.2: Detector phases. [64] Each phase corresponds to a new observing run and improve-
ment in sensitivity of the detector.
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The search for gravitational waves is far from over; only one type of gravitational waves,
compact binary coalescences, has been directly detected so far. The search for continuous, burst
and stochastic sources is still ongoing.

In the future, with the help of space borne gravitational wave detectors like LISA, multi-band
gravitational wave astronomy will be possible. With different sensitivities to certain frequencies,
it’ll be possible to detect objects evolving in time with both LISA and ground-based interfero-
metric detectors. Figure 1.9 shows characteristic strains of compact binary coalescences, with
the sensitivities of different detectors. Ever since the days of Jansky, and the gradual opening of

Figure 1.9: Characteristic strains of compact binary coalescences by frequency. [65] The solid
black lines are detector sensitivities, and the colour boxes represent characteristic strains for
different types of CBC.

new windows to the cosmos in the electromagnetic spectrum, many of the great advancements
in astronomy, astrophysics and cosmology have been serendipitous discoveries. Likewise, we
can expect the unexpected from further observations in the gravitational wave spectrum.
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Bayesian Data Analysis

Bayesian inference has a peculiar history. First developed by a reverend in the eighteenth century
as a way to estimate the probability of a certain event occurring knowing only how many times
that event had occurred in the past, it originally went largely unnoticed. The work was published
posthumously, with amended and added material by Richard Price. [66] The ideas uncovered
by Bayes’ work were also rediscovered independently and given their mathematical form by
Pierre Simon Laplace. [67] Bayesian inference went largely underappreciated for many years;
only during the twentieth century did the theory resurface, after many successes in real life
applications, from war decision making to plane searches.

This chapter is an introduction to Bayesian inference and probability theory, and its applica-
tions to the physical sciences, in particular astrophysics and cosmology.

2.1 Introduction

2.1.1 Probability Theory

Probability Theory can be regarded as an extension of logical reasoning. It is concerned with
the plausibility of propositions. That is, probability is not concerned with strictly deductive
reasoning, but plausible reasoning: how plausible a hypothesis is based on information, rather
than a logical deduction based on the same information. [68]

The scientific method makes extensive use of probability theory. Figure 2.2 is a schematic
representation of the scientific method; statistical inference relies on probability theory. There
are two main approaches to probability theory: Bayesian and frequentist approaches, which are
outlined in this chapter.

2.1.2 History of Bayes’ theorem

When he developed the ideas that would later lead to Bayesian inference, Rev. Thomas Bayes
was looking for a way to infer cause from effects. The question he asked himself was simple:

20
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how could one obtain the probability of an event occurring, knowing only how many times it
had previously occurred or not occurred?

Although it is called Bayesian inference, much of the work on the mathematical formalism
and scientific applications of Bayes’ theorem was done by Laplace. When Thomas Bayes first
introduced his ideas about probability, he used a thought experiment: he was trying to predict
where a ball would land on a table, based on where the ball had landed previously.

The core idea of Bayes’ theory of probability is that we can update our initial belief with
new data to obtain an improved belief.

Bayesian inference was met with much criticism; to some, the theory appeared to be guess
work, with poorly justified priors. It was met with particular virulence in the 19th century,
notably during the trial of Alfred Dreyfus, when mathematician Henri Poincaré used Bayesian
reasoning to refute the accusations made against Dreyfus. [67]

However, Bayesian inference knew its biggest triumphs during the Second World War. Its
resurgence started with the release of Harold Jeffreys’ The Theory of Probability in 1939, during
the last year of peace before the start of the war. His work developed a theory of scientific
inference using Bayes’ theorem. [67, 69]

During the Second World War, the German naval forces used Enigma, an enciphering ma-
chine, to exchange crypted messages, with the encryption system changing daily. Alan Turing
developed a Bayesian inference technique, which he named Banburismus, to crack the Enigma
code. [67]

The superiority of Bayesian methods has since been demonstrated in many areas.

2.1.3 The Bayesian and Frequentist Approaches

Traditionally, probability theory has been approached from a frequentist point of view. The
frequentist approach to probability relies on the outcome of a theoretically infinite number of
identical experiments. [70] In comparison, the Bayesian approach features a more intuitive view
of probability, where prior information on data and hypotheses is taken into account. For events
that are very unlikely and unrepeatable, the Bayesian approach is clearly superior.
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Figure 2.1: The frequentist approach and Bayesian approach illustrated by Randall Munroe. [71]

In Figure 2.1, an extreme comparison of frequentist and Bayesian approaches is humorously
presented in the context of an unlikely astrophysical phenomenon.

2.1.4 The Role of Bayesian Inference in Physical Sciences

The effectiveness of Bayesian inference was historically demonstrated with triumphant success
in the cracking of the Enigma code during the Second World War. However, the theory has many
more applications, especially in the physical sciences. While initially met with some resistance
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from the scientific community, in recent years, Bayesian methods have been increasingly used
in the fields of physics and astronomy.

Bayesian inference has many advantages in astrophysics and cosmology, for the following
reasons: [72]

• The increasing complexity of models means that the scientific returns of future surveys
are limited by the sophistication and efficiency of the inference tools used.

• The "discovery zone" is between 3 and 4 σ : Bayesian inference could make the difference
between claiming or missing a discovery.

• Some effects that are not really present do not need to be explained.

• Resources are limited, so optimal strategies need to be in place to maximise the scientific
returns.

• Sometimes the data available cannot be improved.

Bayesian inference also offers more a more straightforward method of dealing with nuisance
parameters, compared to frequentist methods. These parameters are parameters that are of less
interest, but still need to be handled in the analysis. In Bayesian inference, this is done through
marginalisation, which is detailed in section 2.2.3.

For Cosmology

Cosmology, like most fields relying on astronomical observations, has to deal with limited,
complex and sometimes poor data. This makes Bayesian inference is an ideal statistical tool for
modern cosmology.

The recent data explosion in cosmology meant that more refined and efficient statistical tools
were required. For instance, maps of the CMB (see section 3.5.1) went from 103 pixels with
COBE to 107 pixels with Planck. [72]

For Gravitational Wave Data Analysis

Bayesian inference plays a key role in the analysis of data coming from aLIGO. As discussed
in chapter 1 the aLIGO interferometers are limited by noise. While improvements to the instru-
ments can help reduce noise, Bayesian inference provides tools for maximising our ability to
discriminate between noise and signals from astrophysical sources.

Discriminating between noise and astrophysical signals is not the only area of gravitational
wave astronomy that benefits from the application of Bayesian methods. It is also useful in
parameter estimation of the systems that produced the signals. Gravitational waves from a binary
system have large parameter spaces, containing 9 to 17 dimensions. [73] Dealing with such
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Figure 2.2: A schematic representation of the scientific method.

large parameter spaces requires sophisticated and efficient statistical tools, which are provided
by Bayesian inference.

2.2 Basics of Bayesian Inference

Bayesian inference fundamentally differs from the more traditional frequentist approach in that
it defines probability as a measure of our degree of belief. The frequentist approach, on the
other hand, defines probability as the number of times a certain outcome happens in a number
of trials, in the limit of an infinite number of trials. A good example of a frequentist probability
is the probability of rolling a certain number on a 6-sided die: this comes up as 1

6 .

2.2.1 Notations

Bayesian inference makes use of a number of notations specific to probability theory. Some of
this notation is defined in E.T. Jaynes. [68, 70]

• p(A) is the probability of a proposition A being true. Going back to the dice example,
given A ≡ "The value of the die is 6", then p(A) = 1

6 .

• A represents proposition A being false.

• AB, also written A,B, is the logical product of propositions A and B. It denotes A and
B being both true (logical AND). Since the order of these statements does not matter,
AB = BA.
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• p(A,B) represents the joint probability of A and B, with A,B the logical product of A and
B.

• A+B is the logical sum or disjunction of A and B. [68]. It denotes at least one of propo-
sitions A and B being true (logical OR).

2.2.2 Deriving Bayes’ Theorem

Bayesian inference relies on the application of an equation called Bayes’ Theorem, or Bayes’
rule. This theorem can be derived from the basic rules of sum and product of probabilities.
These are outlined below.

The Sum Rule

p(A|B)+ p(A|B) = 1, (2.1)

in which p(A|B) is the probability that A is true given B, and p(A|B) is the probability that A is
not true given B. Given that there are only two possible outcomes (either A is true or isn’t), and
that the product AA is always false (the two propositions cannot be true at the same time) the
sum of these probabilities must add up to 1. The two propositions governing the sum rule are of
the Aristotelian logical type. [68]

AA = 0, (2.2)

A+A = 1, (2.3)

where 0 represents the proposition always being false, and 1 represents the proposition always
being true (as used in Boolean algebra).

The Product Rule

p(A,B|C) = p(A|C)p(B|A,C) = p(B|C)p(A|B,C) (2.4)

p(A,B|C) is the probability of A and B being true given C. This is known as the joint proba-
bility of A and B. The product rule can be derived through extended logic. [74]
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Bayes’ Theorem

When combining these rules, we arrive at the expression of Bayes’s theorem seen in equation
2.5.

p(H|D, I) =
p(H|I)p(D|H, I)

p(D|I)
, (2.5)

where:

• p(H|D, I) is the posterior,

• p(H|I) is the prior,

• p(D|H, I) is the likelihood,

• p(D|I) is the marginal likelihood, or evidence.

2.2.3 Marginalisation

Marginalisation offers a way of dealing with nuisance parameters. If a distribution depends on
parameters that are of little or no interest to us, these are called nuisance parameters.

In Bayesian inference, nuisance parameters are dealt with through marginalisation: that is,
integrating through the entire parameter space for the nuisance parameters.

For example, for a probability p(X) depending on a continuous parameter H:

p(X) =
∫

H
p(X ,H)dH, (2.6)

p(X) =
∫

H
p(X |H)p(H)dH. (2.7)

Marginalisation can also be applied to the discrete case, with p(X) depending on a parameter
H that can take n values Hi:

p(X) =
n

∑
i=1

p(X |Hi)p(Hi) (2.8)

This is especially useful for the denominator, or marginal likelihood, of Bayes’ theorem.
Applying marginalisation to the marginal likelihood as defined in equation 2.5, in the discrete
case with a hypothesis Hi:

p(D|I) =
n

∑
i=1

p(D|Hi, I)p(Hi), (2.9)
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p(Hi|D, I) =
p(Hi|I)p(D|Hi, I)
n
∑

i=1
p(D|Hi, I)p(Hi)

. (2.10)

2.3 Model Selection

There are two main problems addressed by Bayesian Data Analysis: model selection and pa-
rameter estimation. In a model selection problem, we are trying to find the best model that fits a
set of observations.

While each model can contain parameters that accept a range of values, which are to be
estimated through parameter estimation, competing models might contain a different number
of parameters. Model selection problems help discriminate between two competing models
and decide on which model is most probable given our current knowledge. Model selec-
tion tests competing models independent of the values of their parameters (all parameters are
marginalised). [74]

Bayesian inference is a great tool for model selection in cosmology. [72] For example, testing
the ΛCDM model is a model selection problem.

2.4 Parameter Estimation

Model selection is not the only problem that can be addressed using Bayesian inference. Within
an accepted model, there will be a number of free parameters; we can use parameter estimation
to constrain their values.

Within Bayesian statistics, the application of Bayes’ theorem to a continuous hypothesis
space is a parameter estimation problem. [74]

In parameter estimation, we are interested in the values of model parameters for a given
model that is assumed to be true. While in model selection, we marginalised all parameters, in
parameter estimations, we test different values of a parameter within a single model.

The previous section discussed the successes of Bayesian inference in the selection of cos-
mological models. Parameter estimation is also a problem in cosmology, and it benefits from a
Bayesian approach. [72]



Chapter 3

Overview of Modern Cosmology

The word Cosmos is used to describe the entire universe that surrounds us. As such, cosmology,
the study of the cosmos, is the study of the whole universe as a system, from its history to its
evolution and the models and parameters that govern it.

Where astrophysics is concerned with the physical phenomena that govern objects and in-
teractions within the universe, cosmology is concerned with the dynamical evolution of the
universe as whole. Many fields of physics and astronomy tie into cosmology.

3.1 The Road to Precision Cosmology

For many thousands of years, it was assumed that our planet occupied a very special place in the
universe.

The Ancient Greeks, in a cosmological model developed by Ptolemy, believed the Earth to
be the centre of the universe, orbited by the Sun, Moon and planets, with static stars in the
background; this assumption went unchallenged until the 1500s when Copernicus introduced
the heliocentric model. Even then, Copernicus put our solar system at a very special place, with
the Sun at the centre of the universe. [75]

Newton took us closer to our current view of the universe; he believed that other stars like
our Sun, with orbiting planets around it, existed, in a static configuration.

The picture of the solar system as part of a galaxy came from the Herschels; however, once
again, the theme of putting our solar system at a special place underlies this model, and our solar
system was believed to be at the centre of the Milky Way. [75, 76]

Galaxies were first understood as "spiral nebulae". Shapley believed that our galaxy was one
galaxy amongst others; however, he also believed us to be at the centre of the universe.

In 1952, at a meeting of the International Astronomical Union, Baade postulated that our
galaxy was just one galaxy, and that the universe was much larger than previously believed,
doubling the estimate previously made by Edwin Hubble, an astronomer who made significant
contributions to cosmology, notably the constant that bears his name, as detailed in the following

28
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sections. [75]
It was therefore a long road to modern cosmology; in the twentieth century, cosmology

entered a new era of precision.

3.2 Cosmological Principle and Standard Cosmological Model

In order to study the universe as a single system, assumptions need to be made. The standard
assumptions that underlie every aspect of modern cosmology are known under the name of
cosmological principle, and underlie every aspect of cosmology. This principle can be easily
summarised by the idea that the place we occupy in the universe is not, in any way, special. [75]
This means that on large scales (typically larger than 300Mpc), the universe looks smooth. The
particular properties assumed for the universe on large scales are homogeneity and isotropy.
Homogeneity means that the universe looks the same at any point, while isotropy means that it
looks the same in every direction.

The cosmological principle holds on large scales. Large scales can be defined observation-
ally: galaxy redshift surveys such as the Sloan Digital Sky Survey can be used to probe the
redshift distribution of galaxies in the universe. While structure is observed on smaller scales,
such as filaments, voids and clusters, on large scales ( > 300 Mpc) there is no distinguishable
structure. Figure 3.1 shows a slice of a galaxy redshift map taken by the SDSS.

3.3 The Expanding Universe

Chapter 1 introduced the main concepts of Einstein’s general relativity. The theory has some
profound consequences for the universe as a whole. If we assume homogeneity and isotropy
on large scales, Einstein’s equations can be applied to the universe as a fluid with pressure p

and mass density ρ . Assuming a static universe with a radius of curvature R gives these final
equations; a full derivation is available in Peebles. [78]

4
3

πG(ρ +3p) = 0
8
3

πGρ− 1
R2 = 0 (3.1)

These equations give p = −ρ/3, meaning that for a positive density, the pressure of the
universe is negative, which is not possible for ordinary matter. With that in mind, Einstein
modified his equations.

In general relativity, the energy-momentum tensor is the source for the gravitational field.
This means there is a possibility for vacuum energy: the energy density of empty space. [11]
Starting from Einstein’s field equation:
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Figure 3.1: The Sloan Digital Sky Survey’s map of the universe. Each dot is a galaxy, and the
colour its g-r colour. [77] From this map, some structure in the form of filaments and voids
appears on smaller scales. However, on large scales, the distribution of galaxies is roughly
uniform.

Rµν −
1
2

Rgµν = 8πGTµν , (3.2)

where Rµν is the Ricci curvature tensor, R is the scalar curvature, gµν is the metric tensor, G is
Newton’s gravitational constant and Tµν is the stress-energy tensor.

We can decompose the energy-momentum tensor Tµν into two parts, one corresponding
to ordinary matter, and one corresponding to the vacuum. This allows us to rewrite equation
3.2. Decomposing the energy-momentum tensor into matter and vacuum T (M)

µν and T (vac)
µν =

−ρvacgµν respectively

Rµν −
1
2

Rgµν = 8πG(T M
µν −ρvacgµν). (3.3)
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A new term Λ, is then introduced to characterise the vacuum part associated with the energy-
momentum tensor, with Λ = 8πGρvac.

Rµν −
1
2

Rgµν +Λgµν = 8πGTµν (3.4)

This gives a vacuum energy density

ρvac =
Λ

8πG
. (3.5)

Einstein first introduced the cosmological constant Λ to his field equations in an effort to
produce an equation that would describe a static universe. A static, finite universe was the
accepted cosmological model for a very long time. However, any solution to Einstein’s equations
leading to a static universe would be highly unstable, meaning any small perturbation in the
density of the universe would cause rapid collapse or expansion; the static mass distribution
is gravitationally unstable, and large scale approximation of homogeneity could not last longer
than the lifetime of a Sun-like star. [78]

Einstein’s model of the universe therefore seemed to have little theoretical support. The idea
of a static, finite universe was, in any case, soon to be completely overturned by observations.

A peculiar phenomenon arises if we look into the depths of our universe: everything seems
to be moving away from us. Not only do astrophysical objects appear to be moving away
from us, but the rate at which they are moving away accelerates with increasing distance. This
phenomenon was first observed by Edwin Hubble in 1929. [79] The Hubble constant, H0, is
named after him and is the constant of proportionality between the recession velocity of galaxies
v and their distance to us r.

H0 =
v
r

(3.6)

At first glance, one could think that this observed recession of surrounding galaxies places us
at a special place in the universe, as was theorised by the Ancient Greeks and many civilisations
and scientists after them. However, this phenomenon would happen no matter where an observer
is standing. This is because it isn’t the galaxies themselves that are moving. If we imagine an
expanding grid of coordinates, with each galaxy at a certain point, then their coordinates do not
change; rather, the grid expands, and the space between each point expands with it. [75, 78]

While Edwin Hubble’s observations of the recession speed of galaxies were the first ob-
servational evidence of the expansion of the universe, an expanding universe had been previ-
ously predicted by theory. Indeed, the discovery of the expansion of the universe was made
through a mixture of theory and observations, with many contributors. [78] In 1922, Russian
physicist Alexander Friedmann derived a set of equations that described the expansion of an
isotropic and homogeneous universe, starting from Einstein’s field equations. [80, 81] Fried-
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Figure 3.2: Expansion of coordinate grid, with a(t) the scale factor of the universe.

mann’s work, which pre-dates the first measurements of the rate of expansion of the universe,
describes the time evolution of the universe for different values of a parameter k, the curvature
of space. [80–82]

In Friedmann’s equations, the evolution of the relative expansion is described by a newly
introduced variable: the scale factor of the universe a. The scale factor a is a dimensionless
number representing the relative expansion of the universe. It is a function of time, and defines
the relationship between the proper separation of two objects at an arbitrary time t, x(t), and the
proper separation at present day x0.

a(t) =
x(t)
x0

(3.7)

The expansion of the universe means that the proper distance between galaxies with a large
separation increases with time. [78] The large separation is required to observe the expansion,
as gravitationally bound systems such as galaxy clusters do not expand. The Hubble parameter
is defined in terms of the scale factor.

H ≡ ȧ(t)
a(t)

(3.8)

The Hubble parameter therefore evolves with time. The Hubble constant H0 is the Hubble
parameter measured at present time.

The relationship between the redshift and scale factor of the universe can be derived from
the Friedmann-Lemaître-Robertson-Walker (FLRW) metric. In the metric, spatial coordinates
are comoving; this means objects remain at fixed coordinates, with the expansion characterised
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only by the scale factor a(t). [75]

ds2 =−c2dt2 +a2(t)
[

dr
1− kr2 + r2(dθ

2 + sin2
θdφ

2)

]
(3.9)

where k is the curvature of the universe. For light propagation:

ds = 0. (3.10)

For a radially propagating ray, travelling from r = 0 to r = r0, that means dθ = dφ = 0.
Setting this and ds = 0 in equation 3.9:

cdt
a(t)

=
dr√

1− kr2
. (3.11)

To derive the time taken for the light to travel from r = 0 to r = r0, we integrate equation
3.11. ∫ tr

te

cdt
a(t)

=
∫ r0

0

dr√
1− kr2

, (3.12)

where te is the time at emission and tr the time at reception.
Now imagining a light ray being emitted from r = 0 and received at r = r0 shortly after

the first light ray. Since the galaxies are comoving and therefore in the same coordinates, the
emission and reception times would, respectively, be te +dte and tr +dtr.∫ tr+dtr

te+dte

cdt
a(t)

=
∫ r0

0

dr√
1− kr2

(3.13)

The left-hand sides of equation 3.12 and equation 3.13 are equal, allowing us to write:

∫ tr

te

cdt
a(t)

=
∫ tr+dtr

te+dte

cdt
a(t)

. (3.14)

Now, since the areas under the curved determined by c
a(t) are the same from te to tr and

te +dte and tr +dtr, and the area from te +dte to tr is common to both, we can conclude that the
area from te to te +dte is equal to the area from tr to tr +dtr. This allows us to write:

∫ te+dte

te

cdt
a(t)

=
∫ tr+dtr

tr

cdt
a(t)

. (3.15)

The slices are narrow, which means we can approximate the area under the curve to a rect-
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angle, making it simply width times height. We obtain

dtr
a(tr)

=
dte

a(te)
. (3.16)

Now, assuming an expanding universe, a(tr)> a(te) for any te. Therefore dtr > dte; the time
interval increases with the expansion of the universe.

Now imagining each light ray is actually a crest of a wavelength, then λ ∝ dt ∝ a(t), giving

λr

λe
=

a(tr)
a(te)

. (3.17)

For an observer on earth, tr = t0. The redshift is defined in equation 3.18.

a(t0)
a(te)

≡ 1+ z (3.18)

3.3.1 The Accelerating Universe

While the universe had been known to be expanding for a longer time, the discovery by Riess
et al. and Perlmutter et al. that this rate of expansion was accelerating was a surprise to the
scientific community. [83,84] Up until 1998, cosmologists believed the expansion of the universe
to be decelerating due to gravity. They tried to measure this deceleration, quantifying it as the
deceleration parameter q0. [85]

The 1998 paper presents evidence for a non-zero cosmological constant; Einstein’s cosmo-
logical constant was considered a "blunder" after Edwin Hubble observed that the universe was
in fact expanding. However, Λ is now necessary to explain the acceleration of this expansion.
Observations of high-redshift Type Ia supernovae have shown luminosity distances 10% to 15%
larger than expected in a Λ = 0 universe. [84]

The discovery has some profound implications for the fate and nature of the universe. This
means the universe will keep expanding, rather than the expansion slowing down as was previ-
ously thought. It also heralded the start of theoretical work on dark energy, which is responsible
for the accelerating expansion of the universe.

3.4 Measuring the Hubble Constant

In 1929, Edwin Hubble discovered a relationship between the radial velocity and distance to
nearby galaxies (which he called extra-galactic nebulae). [79] This relation introduced the con-
stant of proportionality that bears his name, the Hubble constant.
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H0 =
v
r

, (3.19)

where v is the radial velocity and r the distance.
For small redshifts, v = cz, and we can approximate the proper distance between galaxies r

to the luminosity distance DL. This gives:

DL =
cz
H0

. (3.20)

Its value was originally measured to be H0 = 500kms−1Mpc−1, as measured by Edwin Hub-
ble, after whom the constant is named. In 1958, cosmologist Allan Sandage highlighted some
issues in the calibrations used for previous estimates of the Hubble constant. He gave the first
reasonable value of the Hubble constant, at H0 = 75kms−1Mpc−1, which is close to the accepted
values of today. [86]

Figure 3.3: Edwin Hubble’s original plot of the redshift-luminosity distance relationship. [79]

The recession speed of a galaxy cannot be directly measured, but it can be measured through
its redshift. When galaxies are moving away from us, or when the space between the galaxies
and us is expanding, their characteristic absorption and emission lines are shifted towards the
red end of the electromagnetic spectrum. Conversely, if a galaxy is moving towards us, these
lines are shifted towards the blue end of the spectrum, and we talk about blueshift. [75]

This technique for measuring the velocity of a galaxy was first used by 1912 by Silpher,
when he used measurements of the redshift of Andromeda to determine the velocity at which
our neighbour galaxy was moving towards us. [87]

More specifically, the redshift z of an object is defined as the fractional Doppler shift of
its emitted light due to radial motion. [88] The cosmological redshift is the part of an object’s
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redshift that is due to the expansion of the universe. In cosmology, it is used as a distance
marker. However, it should be noted that this is not quite true; since the rate of expansion of
the universe evolves with time, so does the redshift. However, this is a very small change, and
is small compared to the changes in redshift due to the change in peculiar velocity of either the
source or the observer. [89]

There are several methods for measuring the Hubble constant, which are detailed in sub-
sequent sections. Methods for measuring the Hubble constant can be either indirect (largely
model-dependent) or direct (model-independent). For direct methods, we need to be able to
measure distances to > 100 Mpc. [90] For indirect methods, such as the ones employed by the
Planck Collaboration, the ΛCDM model is usually assumed.

3.4.1 The Hubble Flow

To measure the Hubble constant, we need to measure the velocity of the Hubble flow. The
equation that describes the Hubble flow relates an object’s recession speed to its distance.

vH = H0d, (3.21)

where the recession velocity vH is the velocity of the Hubble flow, which characterises the rate
of expansion of the universe.

The redshift of galaxies helps us measure the velocity of the Hubble flow. However, in order
to have:

vH = cz, (3.22)

we need to only measure the cosmological redshift. However, the Hubble flow is not the only
contributor to an object’s redshift.

3.4.2 Peculiar Velocities

The redshift of a galaxy offers a measure of the velocity of the object. There is a difference
between the observed redshift of a galaxy and its cosmological redshift, which is the part of the
redshift associated with the expansion of the universe. This difference comes from the peculiar
velocities of galaxies. [88]

While on large scales, galaxies are receding away from us due to the Hubble flow, locally,
objects still interact if they’re gravitationally bound. Due to gravitational interactions, local
galaxies move with seemingly random velocities, adding an extra component to their measured
radial speed that is not due to the expansion of the universe.

The effect is most noticeable in very nearby objects, since the recession velocity is pro-
portional to the galaxy’s distance, and at sufficiently small luminosity distances we can have
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vpec >> vH . [91, 92]

3.4.3 Cosmography

At low redshift, and assuming that peculiar velocities are either negligible or have been corrected
for, the assumption made in equation 3.20 holds. We assume that v = cz, with v the velocity of
the Hubble flow. This is a non-relativistic approximation, and only holds true for small redshifts.
At higher redshifts, more complex equations need to be used to measure the velocity of the
Hubble flow. These equations depend on the geometry and matter content of the universe. [88]

Cosmography equations can be derived starting from Friedmann’s equations. Starting from
Poisson’s equation for gravitational acceleration:

∇ ·g =−4πG(ρ +3p), (3.23)

and considering the gravitational acceleration at the surface of a sphere, it can be shown that
[78, 81]

ä
a
=−4

3
πG(ρ +3p). (3.24)

If we add the cosmological constant

ä
a
=−4

3
πG(ρ +3p)+

Λ

3
. (3.25)

For redshifts less than 1000, the universe is matter-dominated. This means that the pressure
p is small compared to the matter density ρ . From energy conservation, it can be shown that the
density varies as ρ ∝ a(t)−3. We can now rewrite the Hubble parameter in terms of the density
parameters of the universe. [78]

H2 =
( ȧ

a

)2
=

8
3

πGρ +
kc2

a2 +
Λ

3
, (3.26)

where kc2 is a constant of integration, related to the curvature k of the universe.

H2 =
( ȧ

a

)2
=
( ż

1+ z

)2
= H2

0 [ΩM(1+ z)3 +Ωk(1+ z)2 +ΩΛ] (3.27)

ΩM is the matter density parameter, Ωk the spatial curvature density parameter and ΩΛ the
vacuum density parameter. They are defined as follows:

ΩM =
8πGρ0

3H2
0

, (3.28)
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where ρ0 is the matter density of the universe at present time,

Ωk =−
kc2

a2H2
0

, (3.29)

ΩΛ =
Λ

3H2
0

, (3.30)

and since at H = H0 we have a = 1:

Ω+Ωk +ΩΛ = 1. (3.31)

We can define the function [88]

E(z)≡
√

ΩM(1+ z)3 +Ωk(1+ z)2 +ΩΛ. (3.32)

The Hubble constant evolves with time, with the subscript 0 indicating present time. For an
observer measuring the Hubble constant at a redshift z, its value is

H(z) = H0E(z). (3.33)

The line of sight comoving distance is the distance between two nearby objects which re-
mains constant if they are both moving with the Hubble flow.

DC = DH

∫ z

0

dz
E(z)

, (3.34)

with DH the Hubble distance as defined in equation 3.35.

DH =
c

H0
(3.35)

The luminosity distance is determined in terms of the transverse comoving distance DM.

DL = (1+ z)DM (3.36)

DM is the transverse comoving distance. It is equivalent to the proper motion distance, and
is related to the line of sight comoving distance in the following way:

DM =


DH

1√
Ωk

sinh[
√

Ωk
DC
DH

] for Ωk > 0,

DC for Ωk = 0,

DH
1√
|Ωk|

sin[
√
|Ωk|DC

DH
] for Ωk < 0.

(3.37)
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These equations are defined for any curvature k (open, flat or closed universe). However, we
now know that observations are consistent with models with Ωk = 0, meaning that we are living
in a flat universe. [93]

3.5 Methods for Measuring the Hubble Constant

3.5.1 The Cosmic Microwave Background

In 1964, a faint radiation filling the sky in all directions was observed using the Holmdel Horn
Antenna at the Crawford Hill Laboratory. The discovery, reported in 1965, was of what we call
the cosmic microwave background radiation (CMBR). [94] This radiation is of a black-body
form with a present day temperature:

T0 = 2.725±0.001K. (3.38)

The CMB is radiation which has travelled and cooled down since the epoch of recombina-
tion. [75] On large angular scales, it contains the imprints or primordial gravitational potential
fluctuations [95, 96]

The Planck mission is the successor to the WMAP and COBE satellites, a third-generation
space mission designed to probe the anisotropies in the cosmic microwave background. [93]

Planck measurements of the CMB can be used to obtain a measurement for H0. The mea-
surement is made from the temperature fluctuations in the CMB. To make this measurement,
the ΛCDM model needs to be assumed. Irregularities in the cosmic microwave background are
called anisotropies.

The cosmological principle, which states that the universe is homogeneous and isotropic, is
not exact; small irregularities are expected. The small irregularities that are present in the cosmic
microwave background radiation are called anisotropies. Those differences in temperature in the
cosmic microwave background are extremely small, of the order of ∆T

T 10−5. [75] This makes
CMB anisotropies hard to detect, and it took until 1992 for the COBE mission to measure
them. [95]

The expansion history of the universe is encoded into the CMB, meaning that we can use it to
measure the Hubble constant; baryon acoustic oscillations can be used to measure the expansion
of the universe. [97] The acoustic peaks in the CMB power spectrum are determined by the
physics of recombination. The expansion history of the universe determines the relationship
between that intrinsic physical scale and its angular size as a function of redshift.

The angular power spectrum of the universe, seen in figure 3.5 as measured by WMAP, was
found to be consistent with an inflationary, spatially flat ΛCDM model specified by 6 parameters.
[98–100]
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Figure 3.4: Map of the CMB from 2013 Planck results. [100] This map estimates the CMB over
97% of the sky. The angular resolution is 5’. The associated colour is the temperature of each
pixel, which shows temperature anisotropies in the CMB.

Figure 3.5: Angular power spectrum from 9 year WMAP results with best fit from ΛCDM. [99]

3.5.2 Standard Candles

In order to make a local measurement of the Hubble constant, it is necessary to be able to
determine the distance to astrophysical objects. This is not a straightforward calculation for
very distant objects; while there is a relationship between luminosity and distance, we need a
reference for how bright an object should be.

Measuring distances in astronomy is not a straightforward problem. In the electromagnetic
spectrum, astronomers have to rely on the cosmic distance ladder: a succession of different
methods of measuring distances to far-out objects, each rung of the ladder defined by how close
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the objects are. For objects that are closer by, the parallax method can be used. [101] The par-
allax method is a direct measurement of distance to nearby (on astronomical scales!) celestial
objects. The GAIA mission, which is the successor to ESA’s HIPPARCOS mission, is catalogu-
ing a billion stars. [102]

However, for more distant objects, as are needed in the determination of the Hubble constant,
indirect methods of measuring and calibrating distances are needed.

In general, for objects that are further out, we measure the luminosity distance DL, a quantity
that relates an object’s observed flux F to its intrinsic luminosity L. [103]

DL =

√
L

4πF
(3.39)

Therefore, if we know the absolute luminosity of an observed object, we can infer its dis-
tance.

Standard candles are astrophysical objects with a characteristic light curve, meaning they
can be used to determine relative distances between two standard candles. As seen in equation
3.39, if we know an object’s intrinsic luminosity and observe its flux, a distance can be obtained.

However, measuring precise distances in astronomy is still not an easy task, and even stan-
dard candles are subject to many systematics and other sources of error.

Cepheid Variable Stars

Cepheids are variable stars that have a high luminosity and pulsate radially. This variability
means that they are easy to identify and classify. [104]

In 1908, astronomer Henrietta Swann Leavitt made observations of over a thousand variable
stars in the Magellanic Clouds. [105] From these observations, it was found that the luminosity
of these stars was related to their pulsation period: their luminosity increased with the period or
their pulsation. [106, 107] This relationship, called the Cepheid period-luminosity relationship,
or Leavitt Law, is both a powerful and reliable tool for measuring distances to nearby galaxies.
[103]

Type Ia Supernovae

While they are powerful distance calibrators, Cepheids do not allow us to probe far enough into
the smooth Hubble flow to get a measurement of the Hubble constant. Type Ia supernovae are
brighter objects than Cepheids, meaning greater distances can be probed, well into the smooth
Hubble flow. [108] They are extremely luminous point sources, making them ideal standard
candles for measuring extragalactic distances. [109]

Type Ia supernovae result from the thermonuclear explosions of white dwarfs composed
of carbon and oxygen. [110] Since all Type Ia Supernovae are the result of the same physical
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mechanism, meaning they have very characteristic light curves and can be used as a distance
indicator.

3.6 Discrepancies in Measurements of the Hubble Constant

The need for an independent measurement of the Hubble constant comes from discrepancies in
measurements using different methods. Since its first estimation at H0 = 500kms−1Mpc−1, the
value of the Hubble constant has been refined.

The first precision measurement was made by the Hubble telescope, named after the con-
stant it sought to measure. Since that first measurement, the value fo the Hubble constant has
been refined and measured with different instruments and using the different methods described
previously.

The Hubble Space Telescope (HST) Key Project was a mission designed to measure the
Hubble constant. It used Cepheid and Type Ia supernovae to measure distances to galaxies. This
first result gave a combined value of H0 = 72±8kms−1Mpc−1. [111]

Figure 3.6: Discrepancies in current measurements of the Hubble constant. The data points in
blue are from model-independent measurements in the local universe, while red data points are
results from model-dependent measurements that assume the ΛCDM model. [108]
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Even today, with refined measurements and in the era of precision cosmology, there is still
much uncertainty about the value of the Hubble constant. Local measurements and CMB mea-
surements provide information about the two ends of the visible expansion history of the uni-
verse, and can therefore be used as a test of the standard cosmological model. [112] There is
currently a tension of 3.4σ between measurements of the Hubble constant using different meth-
ods; namely, there is a discrepancy between local measurements of the Hubble constant and
model-dependent measurements inferred from the CMB. [90]

Results from the Planck collaboration give a value of H0 = 67.8± 0.9kms−1Mpc−1 as of
2015. [93] Recent results from Type Ia supernovae give a value of H0 = 73.24±1.74kms−1Mpc−1.
[112] Results from measurements using strong lensing give a value of H0 = 71.9+2.4

−3.0kms−1Mpc−1.
[113]

Should these discrepancies persist, it could indicate that new physics are at play. [108] This
is a still unresolved problem in cosmology; the discrepancy could indicate unknown systematic
errors in the Planck analysis, or it could indicate the presence of physics beyond the standard
model. [112]



Chapter 4

Methods for measuring the Hubble
Constant using Standard Sirens

A discussion of current tensions in the results from different methods of measuring of the Hubble
constant was presented in the previous chapter. These discrepancies highlight a need for a new,
independent way to obtain a value for the rate of expansion of the universe. This chapter will
discuss another method, independent of traditional electromagnetic methods, of measuring the
Hubble constant. This method makes use of gravitational wave signals from compact binary
coalescences, which are also known as standard sirens. [3]

This chapter presents an overview of standard sirens, and methods for obtaining the redshift
corresponding to the binary merger’s host galaxy. Statistical methods are discussed in-depth and
a Bayesian formalism is derived for measuring the Hubble constant using gravitational wave
signals from compact binary coalescences and a magnitude-limited electromagnetic galaxy cat-
alogue.

4.1 Standard Sirens

4.1.1 Theory

As previously mentioned in section 3.5.2, obtaining distances to celestial objects well into the
smooth Hubble flow is not a straightforward problem in astronomy, and we need to rely on indi-
rect measurements that are subject to many astrophysical systematics. This problem is specific
to electromagnetic observations; in the gravitational wave spectrum, absolute distances can be
obtained from observations. While distance estimates from gravitational wave signals are not
perfect, and have large errors (up to 40%), they nonetheless present an advantage in that they
are not subject to the same systematic errors as the electromagnetic distance scale.

When gravitational waves are observed due to energy loss and shrinking of orbits in a com-
pact binary system, a luminosity distance to the source can be directly determined. [114] This

44
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is what makes compact binary coalescences standard sirens: during their inspiral phase, as they
orbit closer and closer to each other until eventually merging, their orbits decay through the
emission of gravitational radiation. These standard sirens are similar to standard candles in the
electromagnetic spectrum, in that they yield a luminosity distance to an astrophysical object.
However, gravitational wave standard sirens, unlike standard candles like Cepheid variables and
Type Ia Supernovae, do not depend on the knowledge of other rungs on the cosmic distance
ladder; they are self-calibrating, making them a powerful tool for cosmography. [115] Standard
sirens are not subject to the same astrophysical systematics (extinction, etc.) as standard candles.
Furthermore, they do not rely on a cosmological distance ladder, being absolutely calibrated by
general relativity; the only calibration present is the assumption that general relativity describes
the waveform. [115] They are also tools for cosmology, as the amplitude of gravitational waves
is proportional to the inverse of the distance (see equation 1.8), while the amplitude of electro-
magnetic waves follows an inverse square law.

The inspiral phase of compact binary coalescences is well modelled, making parameter esti-
mation possible from the waveform, which is how a luminosity distance can be obtained. Thanks
to recent breakthroughs in the field of numerical relativity (NR), distance estimation from the
whole CBC waveform is now possible. [34–37]

As discussed in section 1.1.4, there are three types of compact binary coalescences that we
know of: black hole - black hole (BBH), black hole - neutron star (BH-NS) and neutron star -
neutron star (BNS). While we might expect, or have indeed observed in the case of the binary
neutron star merger GW170817, an electromagnetic counterpart from a BNS or BH-NS system
merging, no such counterpart is expected from BBH coalescences.

In his 1986 paper, Schutz proposed that the coalescences of neutron stars in binary systems
could be useful standard sirens for measuring the Hubble constant. [114] In the original paper,
the measurement of the Hubble constant is proposed without an electromagnetic counterpart.

For a binary neutron star system located at a distance DL = 100r100 Mpc, emitting gravita-
tional waves at a frequency of 100 f100 Hz:

r100 = 7.8 f−2
100(〈h23〉τ)−1, (4.1)

where 〈h23〉= 〈h〉∗1023, and 〈h〉 is the root mean square amplitude, or strain, of the gravitational
waves, averaged over all detector and source orientations. [114]

From this equation, we can see that the luminosity distance of the system is dependent on
the strain h, the parameter measured by gravitational wave detectors.

This result is less straightforward than it would seem, as the equation yields a value for
the strain averaged over all orientations, while inferring h from observations by a network of
gravitational wave detector will depend on the position, orientation and distance of the binary
system. [114]

There are two parameters needed to measure the Hubble constant: redshift and luminosity
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Figure 4.1: Juxtaposition of the reconstructed signal for GW150914 and the signal obtained
from numerical relativity. [1] This shows how well observations agree with NR predictions.

distance. While the analysis of gravitational wave signals from CBCs yields a luminosity dis-
tance, a redshift cannot be obtained directly from the data, as it is degenerate with the mass of
the system. [114] The chirp mass M and redshift z of the system are combined into the red-
shifted chirp mass Mz, and a system with, for example, a chirp mass M and a redshift z = 2
will look identical to a system with a chirp mass 3M and no redshift. [3, 116].

Mz = (1+ z)
(m1m2)

3/5

(m1 +m2)1/5 (4.2)

In the case of binary neutron stars, even when no electromagnetic counterpart is present, a
redshift can be assigned to the system by assuming a sufficiently narrow mass distribution for
neutron stars. This gives an estimate of the intrinsic mass of the components of the system. This
information, combined with the redshifted mass parameter encoded in the waveform, leads to
a narrow distribution of possible redshifts for the system. [117] However, the redshift obtained
from assigning a narrow mass distribution to neutron stars would be due to the total velocity of
the system, which would include any peculiar velocity of the binary neutron star within its host
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galaxy; in order to measure the Hubble constant, we need the redshift of the host galaxy in the
smooth Hubble flow.

While binary neutron stars and BH-NS systems can have associated electromagnetic coun-
terparts, this is not the case for binary black hole coalescences. And, unlike neutron stars, black
holes do not have a narrow mass distribution from which a redshift could be obtained. [118] The
range of masses of binary black holes measured by LIGO can be seen in Figure 4.2.

Figure 4.2: Masses in the stellar graveyard. [119] This is a representation of the range of masses
of neutron stars and stellar mass black holes, measured in the EM spectrum or by LIGO-Virgo.

4.1.2 Previous Work

Since Schutz proposed the use of standard sirens in 1986, different prospects for constraining
the value of the Hubble parameter using compact binary coalescences have been investigated.

As mentioned in the previous section, there are two main approaches to measuring the Hub-
ble constant using standard sirens:

• A multi-messenger astronomy (MMA) approach, relying on the observation of an electro-
magnetic counterpart to the gravitational wave signal to get a host galaxy and associated
redshift.

• A statistical approach, in which there is no electromagnetic counterpart, and the most
probable host galaxy, and associated redshift, must be identified from the gravitational
wave data only, based on its localisation and distance measurement.
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Del Pozzo presented work on the statistical method in 2012. In this work, a network of sec-
ond generation gravitational wave detectors is considered, and GW sources are only considered
up to z = 0.1, or DL = 460Mpc in a ΛCDM model. [120] Using this method, a measurement
for the Hubble constant is obtained at 4− 5% accuracy at 95% confidence, with a few tens of
observations. The work presented in this project differs in that it considers all GW sources and
an incomplete EM catalogue.

Taylor and Gair investigated prospects for cosmology using binary neutron stars in the Ein-
stein Telescope era. With estimated detection rates of up to thousands a year, ET is ideal for
cosmology using standard sirens. [121]

Taylor, Gair and Mandel also released work on the prospects for constraining the Hubble
constant with advanced gravitational wave detectors, using only GW observations. [117] This
work relied on the narrowness of the mass distribution of neutron stars to get around the mass-
redshift degeneracy. However, BBH have a much wider mass distribution.

Some extensive work has been done on the multi-messenger method of measuring the Hub-
ble constant with standard sirens, along with other aspects of cosmology such as probing dark
energy. [116, 122, 123] Previous work by Holz and Hughes in 2005 has investigated supermas-
sive BBH coalescences as standard sirens, but relying on an independent localisation of the
binary in the electromagnetic spectrum, making such standard sirens rare. [116]

We now know that short gamma ray bursts are associated with BNS. [39] From previous
work by Nissanke et al., an estimated 30 GW-GRB events are needed to reach a 1% precision in
a standard siren measurement of the Hubble constant. [115]

Work on MMA standard siren measurements of the Hubble constant was also applied to the
first standard siren measurement of the Hubble constant. [124]

4.2 Electromagnetic Galaxy Catalogues

We want to constrain the Hubble constant using the statistical method described previously.
To this end, we use gravitational wave signals from compact binary coalescences and an EM
catalogue of galaxies that provides us with values for the redshift and apparent magnitude of
each galaxy in the catalogue. The measured apparent magnitude, m, and redshift, z, are taken to
be delta functions, and the measured SNR ρ̂ is drawn from a non-central chi-squared distribution
with two degrees of freedom, centred around the true value of the SNR.

4.2.1 Current Galaxy Catalogues for the EM follow-up of Gravitational
Waves

Since we are measuring the Hubble constant with a statistical approach, and do not rely on
coincident electromagnetic observations, it is necessary to have access to a galaxy catalogue in
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order to identify a redshift for the source.
The most promising galaxy catalogue for the electromagnetic follow-up for gravitational

wave events is the GLADE catalogue, a galaxy catalogue constructed from several surveys
specifically for this purpose. The catalogue used prior to GLADE was GWGC (Gravitational
Wave Galaxy Catalogue), a catalogue which is complete to 40Mpc. With advanced detector
sensitivities, a catalogue that is more complete at larger distances is needed.

The GLADE (Galaxy List for the Advanced Detector Era) catalogue is constructed from
four different galaxy catalogues, and contains close to 2 million galaxies, each of which have a
B-band magnitude and a distance estimated from the redshift and an assumed H0. The catalogue
is complete to 73Mpc and reaches half completeness around 300Mpc, with slowly decreasing
completeness. [125]

4.2.2 Comparison of Simulated Galaxy Catalogue to Real Galaxy Cata-
logues

We use a simulated galaxy catalogue for the electromagnetic counterparts to the gravitational
wave signals. The catalogue is assumed to be a full-sky catalogue, which is similar to the type
of catalogue that would currently be used for the electromagnetic follow-up of gravitational
wave signals, such as the GLADE catalogue. [125]

Each gravitational wave event is assumed to be coming from a different area of the sky; as
such, a new list of galaxies is generated for each event.

The catalogue contains two parameters: the apparent magnitude and the redshift of each
galaxy. This somewhat replicates the parameters measured by GLADE, where the most impor-
tant parameters are the B-band magnitude and the redshift. Since the catalogue is a compilation
of several galaxy catalogues, not all galaxies have the same measured parameters. However, we
assume access to a catalogue where an apparent magnitude and a redshift would be available for
each galaxy in the field. In the simulated catalogue, the redshift z is assumed to be the cosmo-
logical redshift (we therefore assume negligible peculiar velocities), and no particular band is
assumed for the apparent magnitude m.

The apparent magnitude and redshift are taken to be delta functions, with no measurement
error. This is again an approximation; however, in a real galaxy catalogue, these errors would be
small. [126] This is especially true of spectroscopic redshift measurements, which would have
negligible errors. Conversely, for photometric redshifts, which are measured using multi-band
photometry and are more common in galaxy catalogues, errors on z would be larger. [127]

The galaxy number density is taken as simply a constant number of galaxies per unit Mpc−3.
The distribution is taken to be uniform in volume, which is an approximation. This is an ap-
proximation, as the distribution should be uniform in co-moving volume. At high redshifts, the
number density of galaxies would also drop. [128] However, at redshift z< 1, this is a reasonable
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approximation. At these redshifts, the number density is close to 0.01Mpc−3. [128, 129]
The uniformity of the distribution itself is also an approximation, as in a real galaxy sur-

vey, features like clustering would appear. This can for example be seen in figure 3.1, where
filaments, clusters and voids are visible features of the galaxy redshift distribution.

The catalogue is set up to be magnitude-limited, with a limiting magnitude of mth = 20.
GLADE is characterised by completeness: the completeness of a galaxy catalogue is defined by
how many of the existing galaxies in the field are included within the catalogue at a certain dis-
tance. Half-completeness is the distance at which 50% of the galaxies are in the catalogue. The
completeness is estimated in comparison to other galaxy catalogues, meaning it can be greater
than 100%. [130] In the case of real catalogues like GLADE, half-completeness is reached at
300Mpc. [125] While the simulated catalogue is defined in terms of limiting magnitude, from
figure 5.7 it can be seen that half-completeness is reached at the same order of magnitude for
distances in Mpc.

Localisation information is not modelled in the catalogue. Instead, what is simulated is the
same localisation area for every gravitational wave event, as the focus is more on the impact of
the apparent magnitude selection effects than on the localisation of the host galaxy itself. In real
standard siren measurements of the Hubble constant, localisation is a very important parameter,
as it defines how many potential host galaxies would be in the field. [39, 122]

4.3 Identifying the Host Galaxy

The most straightforward way to obtain a redshift for a GW event is if there is an electromagnetic
counterpart to the signal. In the case of two neutron stars coalescing, we expect to get an optical
and radio electromagnetic counterpart with a characteristic light curve. This counterpart is called
a kilonova, an afterglow with a characteristic timescale of one week. [131] Their emission is
believed to be fairly isotropic. [132]

The coalescence of two neutron stars is also associated with the emission of short gamma
ray bursts, with short GRBs also associated with kilonovae. [63, 133, 134] However, these are
beamed and short-lived, making kilonovae a potentially better prospect for identifying an EM
counterpart. The gravitational wave observation of GW170817 was associated with a short
GRB, GRB 170817 A, but future BNS events might not have a GRB counterpart. [63] In the
case of binary black holes, we do not expect an EM counterpart, so the redshift needs to be
determined through statistical methods. There is therefore a lot of interest to finding the host
galaxy of a GW event using statistical methods

We want to match the gravitational wave signal to its potential host galaxy; this means testing
out a calculated distance measurement (using the Hubble law and galaxy’s redshift) for each
galaxy in the field for each gravitational wave event and for a wide range of values of the Hubble
constants.
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4.4 Events Outside the Galaxy Catalogue

Standard siren measurements of the Hubble constant rely on finding a way to obtain an associ-
ated redshift. In this project, this is done through using statistical methods to identify the host
galaxy from a catalogue. Theoretically, one could choose to only consider events that are within
the reach of the electromagnetic galaxy catalogue. However, galaxy catalogues measure the
redshift and the apparent magnitude of galaxies; associated distance measurements are usually
made through the use of the Hubble law. In the absence of constraints on the Hubble constant,
it is therefore impossible to know the reach of the galaxy catalogue in terms of luminosity dis-
tance, as the catalogue is limited by the apparent magnitude m , which is a function of luminosity
distance DL and absolute magnitude M.

M−m = 5log10 DL−5 (4.3)

Since we’re assuming a broad, uniform prior on the Hubble constant, we do not know a
priori if the host galaxy from which the gravitational wave signal originates is within the galaxy
catalogue; all we can do is assign a probability of the host galaxy being within the galaxy
catalogue given a Hubble constant.

4.5 Bayesian Inference

Measuring the Hubble constant is a parameter estimation problem: we are trying to determine
the value of a variable given a certain model. In this case, the model we are assuming that
the universe is expanding, and that the luminosity distance and redshift of objects are related
through the Hubble law.

DL =
cz
H0

(4.4)

This is a local approximation. At higher redshifts, more complex cosmography equations
would be required. [88] These are outlined in section 3.4.3. However, the above equation is used
for simplicity, as the main aim of the experiment is to characterise selection effects; the focus
here is not to measure the geometry of the universe, but to demonstrate the impact of selection
effects due to an incomplete galaxy catalogue on a standard siren measurement of the Hubble
constant.

In measuring the Hubble constant, we are trying to find, based on an accepted model, the
most plausible value, or range of values, that would match observational evidence.

We consider the case where we have two sets of data: one is a set of luminosity distances ob-
tained from gravitational wave signals. The other set is an electromagnetic catalogue of galaxies,
containing the apparent magnitude and redshift of each galaxy.
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The focus of this method is on correcting the biases introduced by the inferior reach of
electromagnetic catalogues compared to the reach of aLIGO, especially in the case of BBH
standard sirens. There are therefore four main components that we require to evaluate for the
Bayesian formalism we apply to this problem:

• The probability that the data given the host galaxy is within the galaxy catalogue

• The probability that the data given the host galaxy is outwith the galaxy catalogue

• The probability of the host galaxy being in the catalogue given a Hubble constant

• The probability of the host galaxy being outside the catalogue given a Hubble constant

All of the Bayesian formalism for this problem is derived from these four elements and equa-
tion 4.5. This equation is a direct application of Bayes’s theorem, and represents the probability
of a certain value of the Hubble constant given our data ρ̂ .

p(H0|ρ̂, I) =
p(ρ̂|H0, I)p(H0|I)

p(ρ̂|I)
(4.5)

4.6 Choice of Priors

There are two parts to the problem: one is the derivation of the Bayesian formalism, which is
expressing the presented problem in a mathematical form by applying Bayes’ theorem to it. The
other part is choosing priors on the variables we are considering in the equations.

There are several variables used in this problem, each of which is attributed a prior.

• The Hubble constant H0. A prior is applied to characterise our prior knowledge of the
value of the parameter.

• The measured signal-to-noise ratios from the gravitational wave signals, ρ̂

• The measured apparent magnitude of each galaxy in the electromagnetic catalogue, m.

• The measured redshift of each galaxy in the electromagnetic catalogue, z.

• The distribution of absolute magnitudes M.

• The distribution of redshifts z.
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4.6.1 Prior on H0

In order to avoid biases and make a truly independent measurement of the Hubble constant, a
broad, uniform prior (a "top hat") is used for p(H0).

While past measurements of the Hubble constant have reached values of up to 500 kms−1Mpc−1,
in recent years, measurements have broadly been between values of 60 kms−1Mpc−1 and
80 kms−1Mpc−1. [79, 108] Therefore, a flat prior from 40 kms−1Mpc−1 to 120 kms−1Mpc−1

is very conservative.
Since the Hubble constant is a scale factor, a Jeffreys prior might be preferred. However, a

uniform prior is used for simplicity, and to match the choice of prior in the 2017 standard siren
measurement of the Hubble constant. [124]

The prior that we adopt on the Hubble constant is a top hat function in the range 40 kms−1Mpc−1

to 120 kms−1Mpc−1. Instead of testing a continuous variable space, we test a discrete values of
H0, with a bin width of 0.1 kms−1Mpc−1. This is to maximise the efficiency of the code.

4.6.2 Priors for the Electromagnetic Data

Prior on the Measured Redshift and Apparent Magnitude

The measured redshift and apparent magnitude are assumed to have no errors, therefore are
being treated as delta functions.

Prior on the Redshift Distribution of Galaxies

The distribution of galaxies is assumed to be uniform in volume. All galaxies are assumed to be
the same, and the number density, in counts per Mpc3, is fixed at 0.006Mpc−3.

More details on the generation of galaxies for the electromagnetic catalogue are presented
in section 4.2.2.

Prior on the Absolute Magnitude Distribution of Galaxies

The luminosity distribution of galaxies is normally described by the Schechter luminosity func-
tion. [126] However, the Schechter function is poorly constrained for very faint galaxies, and
the luminosity distribution can be approximated to a Gaussian. The absolute magnitude is a
function of the luminosity.

M =−2.5log10
L

L�
+4.72 (4.6)

For simplicity, the distribution of absolute magnitudes of the galaxies is therefore approxi-
mated to a Gaussian distribution centred around a value M∗(H0), as defined in equation 4.7 and
with σ = 1.4. [135] Assuming that all galaxies are the same, this is a reasonable approximation;
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for example, it was observed in 1997 that bright galaxies, such as type E, type S0, and spiral
galaxies, have Gaussian-like luminosity functions. [136]

The value of M∗ is defined in equation 4.7, using typical values for spiral galaxies. [135] It is
important to note that this value, and therefore the distribution of galactic absolute magnitudes,
depends on H0.

M∗ =−16.8+5log10(h), (4.7)

where h is defined in the following way

H0 = 100h kms−1Mpc−1, (4.8)

and the absolute magnitude distribution function Φ(M) is defined by:

Φ(M) =
1√

2πσ2
e−

M−M∗
2σ2 . (4.9)

To obtain an apparent magnitude, one of the two parameters present in the galaxy catalogue
(along with redshift), we use the luminosity distance relationship (see equation 3.20) and the
distance modulus, in equation 4.10.

M−m = 5log10 DL−5, (4.10)

where M is the absolute magnitude, m the apparent magnitude and DL the luminosity distance.
These two equations give the absolute magnitude of the galaxy M as a function of the Hubble
constant H0, the redshift z and the apparent magnitude m:

M(m,z,H0) = m+5−5log10(
cz
H0

). (4.11)

4.6.3 Priors for the Gravitational Wave Data

The SNR distribution is simplified as all systems are assumed to have the same parameters (and
therefore the same emission strength) and the distribution of galaxies is uniform in volume.

Since gravitational waves are not subject to astrophysical processes such as absorption by the
interstellar medium (ISM), we consider the distribution of SNRs for gravitational wave signals
to depend solely on the emission strength and distance to the source. [33] In the case we are
considering, all emission strengths are equal, making the distribution of SNRs depend only on
the distribution of luminosity distances, which is uniform in volume. This simplified model
ignores parameters such as the inclination angle of the binaries and the choice of network of
gravitational wave detectors. In a real standard siren measurement of the Hubble constant, the
degeneracy between the luminosity distance and the inclination of the binary is a major source
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of uncertainty. [124]
The mass distribution of the binaries is also ignored. There are therefore two emission

strengths we are considering in this model: one for binary neutron star mergers, and one for
binary black hole mergers, assuming each black hole to have a mass of 30M�.

For each event, the measured SNR is drawn from a non-central chi-squared distribution
where the non-centrality parameter is the real SNR.

ρ(DL) =
ρthDL

DLth

(4.12)

Here ρ(DL) is the true SNR of a source at luminosity distance DL, ρth is the threshold SNR for
detection of GW, and DLth is the luminosity distance at which ρ(DLth) = ρth. This is defined
by the range of the detectors. The threshold SNR for detection of gravitational waves is always
taken to be ρth = 8.

Several scenarios are considered for a network of second generation gravitational wave de-
tectors, ranging from mid-aLIGO sensitivities (O2) to design sensitivity.

Period BBH range (Mpc) BNS range (Mpc)

Early 415 - 775 40 - 80

Mid 775 - 1110 80 - 120

Late 1110 - 1490 120 - 170

Design 1640 190

Table 4.2: Sensitivity range for aLIGO. [64] These are given for different detector phases, for
binary neutron star coalescences and 30M� binary black hole coalescences.

Every event is assumed to have the same localisation area, which is again a simplification,
as we do not consider any angular co-ordinate information in this project. Normally, the locali-
sation would be better for closer events.

4.7 Derivation of Bayesian formalism

Having now assigned a prior to each variable, some Bayesian formalism can now be derived to
address the problem.

The problem of measuring the Hubble constant using standard sirens and a limited, incom-
plete electromagnetic galaxy catalogue is, as are most problems involving incomplete data, best
handled with a Bayesian approach. We want to derive some Bayesian formalism for this prob-
lem. As a parameter estimation problem, what we want to obtain is the posterior distribution on
values of H0 given some data ρ̂ .
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The main equation is the following:

p(H0|ρ̂, I) =
p(ρ̂|H0, I)p(H0|I)

p(ρ̂|I)
, (4.13)

with H0 the Hubble constant, ρ̂ the data (measured SNR of each event) and I the background
information.

The prior on the Hubble constant, p(H0|I), is taken to be broad and uniform.
The EM catalogue available would be smaller than the span of potential GW detections.

To account for this, the first equation is broken down into four terms which will be calculated
independently.

G and G represent the following propositions:

• G = the host galaxy is within the galaxy catalogue.

• G = the host galaxy is outside the galaxy catalogue.

Note that G+G = 1. Marginalising over G and G

p(ρ̂|H0, I) = ∑
X=G,G

p(ρ̂,X |H0, I), (4.14)

where X = G or G.

p(ρ̂|H0, I) = p(ρ̂|G,H0, I)p(G|H0, I)+ p(ρ̂|G,H0, I)p(G|H0, I) (4.15)

Finally, the probability of the data given detection and a Hubble constant:

p(ρ̂|H0,D, I) = p(ρ̂|G,H0,D, I)p(G|H0,D, I)+ p(ρ̂|G,H0,D, I)p(G|H0,D, I), (4.16)

where D is the detection of GW (in this case we always assume there is a detection).

4.7.1 Probability of the Data Given the Host Galaxy is Within the Galaxy
Catalogue: p(ρ̂|G,H0,D, I)

This is the probability of the data given that the GW signal came from a galaxy within the EM
catalogue, H0 and the background information. This is marginalised over all z, m and M.

p(ρ̂|G,H0,D, I) =
∫

∞

−∞

∫
∞

−∞

∫
∞

0
p(ρ̂,z,m,M|G,H0,D, I)dzdMdm (4.17)

p(ρ̂|G,H0,D, I) =
∫

∞

−∞

∫
∞

−∞

∫
∞

0
p(ρ̂|z,m,M,G,H0,D, I)p(z,m,M|G,H0,D, I)dzdMdm (4.18)



CHAPTER 4. MEASURING THE HUBBLE CONSTANT USING STANDARD SIRENS 57

Now ρ depends on DL, and therefore only on H0 and z, according to equation 3.20.

p(ρ̂|z,m,M,G,H0,D, I) = p(ρ̂|z,G,H0,D, I) = p(ρ̂|ρ(z,H0),D, I) (4.19)

This is the probability of the observed SNR, ρ̂ given a "true" SNR for a luminosity distance,
ρ(DL) = ρ(z,H0), as defined in equation 4.12. The probability of ρ̂2 is a non-central chi-squared
distribution with non-centrality parameter ρ2(z,H0).

p(ρ̂|ρ(z,H0),D, I) = p
χ2

2

[
ρ̂

2,ρ2(z,H0)
]

(4.20)

Using Bayes’s theorem for the second part of the equation:

p(z,m,M|G,H0,D, I) =
p(D|z,m,M,G,H0, I)p(z,m,M|G,H0, I)

p(D|G,H0, I)
. (4.21)

The probability of a signal being detected depends only on the SNR. The SNR is a function
of the luminosity distance, which itself is a function of the redshift and Hubble constant. We
can therefore rewrite:

p(D|z,m,M,G,H0, I) = p(D|z,H0,G, I). (4.22)

Now marginalising p(D|G,H0, I) over all z, M and m:

p(D|G,H0, I) =
∫

∞

−∞

∫
∞

−∞

∫
∞

0
p(D,z,m,M|H0,G, I)dzdMdm, (4.23)

p(D|G,H0, I) =
∫

∞

−∞

∫
∞

−∞

∫
∞

0
p(D|z,H0,G, I)p(z,m,M|G,H0, I)dzdMdm. (4.24)

Rewriting equation 4.21:

p(z,m,M|G,H0,D, I) =
p(D|z,H0,G, I)p(z,m,M|G,H0)

∞∫
−∞

∞∫
−∞

∞∫
0

p(D|z,H0,G, I)p(z,m,M|G,H0, I)dzdMdm
. (4.25)

Since the host galaxy is in the catalogue in this case, z and m are defined as delta functions, as
they are measurements with no error on them. The probability of z is therefore a delta function
at each z j corresponding to galaxy j. The same is the case for apparent magnitude m j. There is
a unique value of M for given m, z, and H0, so p(M|G,H0, I) also becomes a delta function, and
we define M j = M(z j,m j,H0).

p(z,m,M|G,H0, I) = p(z,m|G,H0,M, I)p(M|G,H0, I) = δ (z− z j;m−m j;M−M j) (4.26)
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p(D|z,m,M,G,H0, I) is only a function of DL, and therefore ρ(z,H0). Given that we have
G, it is only evaluated at discrete values z j, so:

p(D|z,m,M,G,H0, I) = p(D|z,H0,G, I) = p(D|z j,H0, I) = S
χ2

2

[
ρ

2
th,ρ

2(z j,H0)
]
. (4.27)

The probability of each galaxy j producing a detectable signal is the survival function of the
chi-squared distribution with non-centrality parameter ρ2(z j,H0) evaluated at ρth. Here S is the
survival function, defined as the probability of a continuous random variable X with cumulative
distribution function (CDF) F(t).

S (x) = P(X > x) =
∫

∞

x
f (u)du = 1−F(x) (4.28)

In this case the survival function S
χ2

2
(ρ2

th|ρ2(z j,H0)) represents the probability of ρ̂ given a
non-central chi-squared distribution with non-centrality parameter ρ(z j,H0).

Given discrete values of z j, we can also rewrite equation 4.20.

p(ρ̂|z,H0,G,D, I) = p(ρ̂|z j,H0,D, I) = p
χ2

2

[
ρ̂

2,ρ2(z j,H0)
]

(4.29)

Finally, this gives us the final expression for p(ρ̂|G,H0, I).

p(ρ̂|G,H0,D, I) =
N

∑
j=1

p
χ2

2

[
ρ̂

2,ρ2(z j,H0)
] S

χ2
2
[ρ2

th,ρ
2(z j,H0)]

N
∑
j=1

S
χ2

2
[ρ2

th,ρ
2(z j,H0)]

(4.30)

4.7.2 Probability of the Host Galaxy Being in the EM Catalogue Given a
Hubble Constant : p(G|H0,D, I)

The next term in the equation is the probability of the host galaxy being in the catalogue, given
detection of gravitational waves and a Hubble constant.

First, we marginalise over m, M and z.

(4.31)
p(G|H0,D, I) =

∫
∞

−∞

∫
∞

−∞

∫
∞

0
p(G,z,m,M|H0,D, I)dzdMdm

=
∫

∞

−∞

∫
∞

−∞

∫
∞

0
p(G|H0,z,m,M,D, I)p(z,m,M|H0,D, I)dzdMdm

Since the galaxy catalogue is magnitude-limited, the probability of the host galaxy being in
the catalogue depends only on the galaxy’s measured apparent magnitude. We can therefore
rewrite p(G|H0,z,m,M,D, I):

p(G|H0,z,m,M,D, I) = p(G|m, I). (4.32)
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The catalogue is magnitude-limited with a hard cut on the threshold magnitude mth, so this
is a Heaviside step function H (x). The term becomes:

(4.33)
p(G|H0,D, I) =

∫
∞

−∞

∫
∞

−∞

∫
∞

0
H (mth − m)p(z,m,M|H0,D, I)dzdMdm

=
∫ mth

−∞

∫
∞

−∞

∫
∞

0
p(z,m,M|H0,D, I)dzdMdm.

Now the probability of z, m and M given a Hubble constant and GW detection must equal 1
when marginalised over all possible values, since the host galaxy must have some m, M and z

for a given H0. We therefore have:∫
∞

−∞

∫
∞

−∞

∫
∞

0
p(z,m,M|H0,D, I)dzdMdm = 1. (4.34)

Therefore, a normalisation constant, C(H0), is needed to get p(z,m,M|H0,D, I). This nor-
malisation constant only depends on H0. The term becomes:

p(z,m,M|H0,D, I) =C(H0)p(D|H0,z,m,M, I)p(z,m,M|H0, I), (4.35)

p(z,m,M|H0, I) = p(z,M|H0, I)p(m|z,M,H0, I). (4.36)

p(m|H0, I) is not known, but both p(z|H0) and p(M|H0, I) are known and independent of
each other. Given a value for redshift, absolute magnitude, and the Hubble constant, there is
only one value for the apparent magnitude, so p(m|z,M,H0, I) becomes a delta function.

Since the distribution of redshifts is uniform in volume, the probability of a redshift z is
simply proportional to its squared value.

p(z|H0, I) ∝ z2 (4.37)

The probability of an absolute magnitude p(M|H0, I) is proportional to the distribution of
absolute magnitudes.

p(M|H0, I) ∝ Φ(M), (4.38)

where Φ(M) is the Gaussian distribution on galaxy absolute magnitudes, as defined previously
in equations 4.9 and 4.7 . Unlike with the redshift, this is dependent on the Hubble constant H0.

Now the probability of detection depends only on the measured SNR, which depends on DL.
p(D|H0,z,m,M, I) is therefore only dependent on z and H0, and is defined by the non-central
chi-square distribution with non-centrality parameter ρ(z,H0).

p(D|H0,z,m,M, I) = p(D|H0,z, I) =
∫

∞

ρth

p( ˆ̂ρ|ρ(z,H0), I)d ˆ̂ρ = S
χ2

2
(ρ2

th,ρ
2(H0,z)), (4.39)
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where ˆ̂ρ is the x-coordinate of χ2
2 with non-centrality parameter ρ(z,H0). With each term de-

fined, we have an expression for the normalisation constant C(H0).

1
C(H0)

=
∫

∞

−∞

∫
∞

−∞

∫
∞

0

∫
∞

ρth

p( ˆ̂ρ|ρ(z,H0), I)p(M|H0,m,z, I)p(z,m|H0, I)d ˆ̂ρdzdMdm (4.40)

And finally, the term for the probability of the host galaxy being within the galaxy catalogue
for a given value of the Hubble constant becomes:

(4.41)p(G|H0,D, I) =∫ mth

−∞

∫
∞

−∞

∫
∞

0

∫
∞

ρth

p( ˆ̂ρ|ρ(z,H0), I)p(M|H0,m,z, I)p(z,m|H0, I)
∞∫
−∞

∞∫
−∞

∞∫
0

∞∫
ρth

p( ˆ̂ρ|ρ(z,H0), I)p(M|H0,m,z, I)p(z,m|H0, I)d ˆ̂ρdzdMdm
d ˆ̂ρdzdMdm.

The final expression for p(G|H0,D, I) is:

(4.42)p(G|H0,D, I) =

mth∫
−∞

∞∫
0

S
χ2

2
[ρ2

th,ρ
2(z,H0)]z2Φ[M(H0,m,z)]

∞∫
−∞

∞∫
0

S
χ2

2
[ρ2

th,ρ
2(z,H0)]z2Φ[M(H0,m,z)]dzdm

dzdm.

4.7.3 Probability of the Data Given the Host galaxy is Outwith the Galaxy
Catalogue : p(ρ̂|G,H0,D, I)

This is the probability of the data given that the gravitational wave signal came from a galaxy
outwith the electromagnetic galaxy catalogue. First, this probability is marginalised over all m,
z and M.

p(ρ̂|G,H0,D, I) =
∫

∞

−∞

∫
∞

−∞

∫
∞

0
p(ρ̂|G,z,m,M,H0,D, I)p(z,m,M|G,H0,D, I)dzdMdm (4.43)

Now, the joint probability of z, m and M given a Hubble constant, detection and the host
galaxy not being in the galaxy catalogue has to be 1 when marginalised over all values of z, m

and M. ∫
∞

−∞

∫
∞

−∞

∫
∞

0
p(z,m,M|G,H0,D, I)dzdMdm = 1 (4.44)

We therefore need a normalisation constant, K(H0). This term therefore becomes

p(z,m,M|G,H0,D, I) = K(H0)p(G|z,m,M,H0,D, I)p(z,m,M|H0,D, I). (4.45)

Whether the host galaxy is within the galaxy catalogue or not depends only on the galaxy’s
apparent magnitude. Therefore

p(G|z,m,M,H0,D, I) = p(G|m, I), (4.46)
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which is a Heaviside step function. We now have:

p(z,m,M|G,H0,D, I) = K(H0)H (m−mth)p(z,m,M|H0,D, I), (4.47)

(4.48)

1
K(H0)

=
∫

∞

−∞

∫
∞

−∞

∫
∞

0
H (m− mth)p(z,m,M|H0,D, I)dmdMdz

=
∫

∞

mth

∫
∞

−∞

∫
∞

0
p(z,m,M|H0,D, I)dzdMdm.

Now p(z,m,M|H0,D, I) is already known.

(4.49)
1

K(H0)
=

∞∫
mth

∞∫
0

S
χ2

2
[ρ2

th,ρ
2(z,H0)]z2

Φ[M(H0,m,z)]dzdm

Now deriving an expression for the second half of the equation, p(ρ̂|G,z,m,M,H0,D, I):

p(ρ̂|G,z,m,M,H0,D, I) = p
χ2

2
(ρ̂2,ρ2(z,H0)). (4.50)

The final expression for p(ρ̂|G,H0,D, I) is:

(4.51)p(ρ̂|G,H0,D, I) =
∞∫

mth

∞∫
0

p
χ2

2
[ρ̂2,ρ2(z,H0)]Sχ2

2
[ρ2

th,ρ
2(z,H0)]z2Φ[M(H0,m,z)]

∞∫
mth

∞∫
0

S
χ2

2
[ρ2

th,ρ
2(z,H0)]z2Φ[M(H0,m,z)]dzdm

dzdm.

4.7.4 Probability of the Host Galaxy Being Outwith the EM Catalogue
Given a Hubble Constant :: p(G|H0,D, I)

The final term is the probability of the host galaxy being in the catalogue given detection and a
Hubble constant. Since:

p(G|H0,D, I)+ p(G|H0,D, I) = 1, (4.52)

and we have already determined p(G|H0,D, I) in section 4.7.2, this term simply becomes:

p(G|H0,D, I) = 1− p(G|H0,D, I). (4.53)



Chapter 5

Results

Using the method described in the previous chapter, results are obtained for several observing
scenarios. These scenarios correspond to two types of compact binary coalescences: binary
black hole mergers and binary neutron star mergers. Typical aLIGO sensitivities are considered,
for different phases of the detector.

5.1 Parameters

The toy model developed for this project depends on several parameters, some of which vary
and some of which are fixed. These parameters are the following:

• The galaxy density, in number per Mpc−3. A fixed number was taken for this, assuming
all galaxies to be the same (Milky Way type galaxies). It is fixed at 0.006Mpc−3.

• The localisation of the GW event, in square degrees. This affects the number of potential
host galaxies in the field for each event. Since the catalogue does not contain any localisa-
tion information, effectively, all this does is reduce the number density of galaxies. This
was taken to be 10 square degrees for all events.

• The threshold on the apparent magnitude of the galaxy that is detectable by the EM tele-
scope (related to the completeness of the catalogue). This was fixed at m= 20. Future tele-
scopes, such as the LSST, could however perform deeper searches, up for an r-magnitude
mr = 27.5. [137]

• The reach of the gravitational wave detector. Keeping the threshold SNR for detection
at ρth = 8, this depends on the detector sensitivity and the systems considered (BBH or
BNS).

• The number of detected gravitational wave events.

62
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Each gravitational wave event is modelled as coming from a different area of the sky; in
order to model this, a new "universe" of host galaxies is generated for each new event. The
gravitational wave event is generated by selecting a random galaxy, obtaining an SNR from the
non-central chi-squared distribution, and accepting the first event with ρ > ρth.

The code was first tested on a coarse array of H0 values, with a bin width of 1 kms−1Mpc−1,
for testing purposes. It was then run again with finer sampling; each value of H0 was tested
discretely with a bin width of 0.1 kms−1Mpc−1, rather than as a continuous variable; this makes
the problem more straightforward to deal with and the code faster to run. The code was run on
the Raven Supercomputing Cluster, which is part of ARCCA (Advanced Research Computing
at Cardiff). It is available in Appendix A.

5.2 Binary Black Hole Merger Scenario

We run the code with signal-to-noise ratios and associated luminosity distances typical to binary
black hole mergers. This particular scenario would normally require that we use a statistical
approach in order to find the host galaxy, as we do not expect an EM counterpart for vacuum
binary black holes. [23] In this scenario, it is important to take into account biases due to the in-
completeness of galaxy catalogues; as the detectors can probe greater distances for these events,
and the galaxy density is taken to be uniform in volume, it is more likely that the host galaxy
will not be within the electromagnetic galaxy catalogue.

The binary black hole mergers are assumed to all be identical, varying only in luminosity
distance. The typical aLIGO sensitivities are for 30Modot black holes.

We use values that are typical for two coalescing black holes of 30M� detected by Advanced
LIGO for the luminosity distance at the threshold SNR for detection of gravitational waves.

Results are presented for different detector sensitivities and number of events, with the 90%
and 68% intervals of confidence for each posterior on H0.

Number of events BBH range (Mpc) ρ̂ > 150 removed? H0 (90% confidence
interval)

500 900 No 68.9+0.4
−0.4kms−1Mpc−1

1000 900 No 68.8+0.5
−0.3kms−1Mpc−1

2000 900 No 70.0+0.3
−0.4kms−1Mpc−1

3000 900 No 70.0+0.3
−0.3kms−1Mpc−1

2000 900 Yes 70.8+0.8
−1.0kms−1Mpc−1

3000 900 Yes 70.6+0.8
−0.9kms−1Mpc−1

3000 1300 No 69.9+0.4
−0.4kms−1Mpc−1

Table 5.2: Final results for BBH observing scenarios.
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At typical sensitivities for binary black hole mergers, final posteriors tend to be dominated
by very high SNR events; this demonstrates that at least some events coming from a galaxy
within the EM galaxy catalogue are necessary to make a measurement of the Hubble constant.

While lower SNR events do not provide much information on their own, they nonetheless
narrow down the final posterior, which would be helpful in making standard siren measurements
of the Hubble constant competitive with EM methods.

Even at design sensitivity, with a sufficient number of events, a measurement can be obtained
for the Hubble constant. This is demonstrated in results with a coarse sampling of H0. In the
results with finer sampling, there is only one very high SNR event (ρ > 300, all others ρ < 100),
making it insufficient to make the final combined posterior converge towards the true value of
the Hubble constant.

At design sensitivity for aLIGO (DL(ρth) = 1640Mpc), the final posterior obtained from
2000 events is dominated by one very high SNR event. However, the result is noticeably im-
proved by the combined posterior.

In the following plots, each colour curve represents a single posterior from one event, while
the dashed black curve is the combined posterior from all events. The thin dashed red line is the
true value for H0.

Figure 5.1: Results for 2000 events at DL(ρth) = 1640Mpc, with a H0 bin width of
1 kms−1Mpc−1. Results show strong support for the true value of the Hubble constant H0 =

70.0 kms−1Mpc−1 but do not fully constrain that results, since the results also support other
values of H0.
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Figure 5.2: Results for 3000 events, DL(ρth) = 1640Mpc, with a H0 bin width of
0.1 kms−1Mpc−1. The second and third plot are the zoomed-in combined posterior. This is
dominated by one high SNR event.

Figure 5.3: Results for 3000 events, DL(ρth) = 1300Mpc. The results converge towards the true
value of the Hubble constant.
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Figure 5.4: Results for events with ρ̂ < 20 at DL(ρth) = 900Mpc. There is strong support for
the true value of H0, but it is not tightly constrained, especially at high values of H0.

Figure 5.2 presents a zoomed-in combined posterior on H0. This is dominated by one loud
event, and shows that there is some support for three values of the Hubble constant (one of them
being the true value H0 = 70.0 kms−1Mpc−1, but the combined posterior does not have enough
support for it to be within any of the confidence intervals presented). This means there is a host
galaxy that matches this high SNR GW event for three values of the Hubble constant. Figure
5.1 shows results for similar parameters, using a larger bin width for the values of the Hubble
constant. The results are similarly dominated by one loud event, with support for several values
of the Hubble constant.

Figure 5.3 shows result for O3 sensitivity, with DL(ρth) = 1300Mpc. The results clearly
converge towards the true value of the Hubble constant.

In figure 5.4, results are presented when combining only events with ρ̂ < 20. This em-
phasises the importance of loud events. However, even low SNR events already constrain the
Hubble constant for lower values.

5.3 Binary Neutron Star Merger Scenario

We run the code with signal-to-noise ratios and associated luminosity distances that are typical
to binary neutron star mergers. Like with the binary black hole models, three different observ-
ing scenarios were considered, up to aLIGO design sensitivity at DL(ρth) = 190Mpc. While
EM counterparts can be expected from the coalescence of two neutron stars, it is still interest-
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ing to investigate the prospects for measuring the Hubble constant using statistical methods in
those scenarios. While GW170817 benefited from good localisation due to being very nearby,
some events might be further and poorly localised, or there could be no detection of an EM
counterpart.

The results are presented in a similar fashion to the BBH results, with each thin colour line
being the posterior for an individual event and the thick black dashed line being the combined
posterior.

Number of events BNS range (Mpc) H0 (90% confidence interval)

50 190 74.0+3.1
−3.6kms−1Mpc−1

100 190 72.2+2.1
−2.2kms−1Mpc−1

200 190 72.7+1.9
−2.1kms−1Mpc−1

500 190 71.1+1.0
−0.9kms−1Mpc−1

1000 190 70.3+0.5
−0.6kms−1Mpc−1

1500 190 70.1+0.5
−0.4kms−1Mpc−1

2000 190 70.2+0.4
−0.4kms−1Mpc−1

2000 100 70.2+0.2
−0.3kms−1Mpc−1

2000 150 70.3+0.3
−0.3kms−1Mpc−1

Table 5.4: Final results for BNS observing scenarios.

Figure 5.5: Results for 2000 events, DL(ρth) = 100Mpc. A slight bias towards higher values of
H0 is present in the final result, but there is still strong support for the true value of H0, which is
within the 90% confidence interval.
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Figure 5.6: Results for 2000 events, DL(ρth) = 150Mpc, zoomed-in posterior. A slight bias
towards higher values of H0 is present in the final result.

As seen in figures 5.5 and 5.6, a bias is seen towards higher Hubble constants for lower
aLIGO sensitivity (here, BNS sensitivities for O3 and below). This is due to numerical limita-
tions of the code at such low threshold luminosity distances. Those limitations are discussed in
more depth at the end of this chapter. However, the focus of this project is on deeper searches
(at design sensitivity, DLth = 190Mpc for BNS), since O2 did not yield such a large number of
events.

5.4 Probability of the Host Being in the Galaxy Catalogue

The probability of the host galaxy being in the galaxy catalogue depends on the threshold dis-
tance for detection of gravitational wave signals and on the limiting apparent magnitude of the
electromagnetic survey.

Figure 5.7 is one example of the distribution of luminosity distances and apparent magnitude
for our simulated universe. This is for a BBH scenario, meaning galaxies are modelled to a
further distance. From this figure, it is clear that for any observing scenario for BBH, there are
fewer galaxies within the EM galaxy catalogue than outwith.
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Figure 5.7: Typical distribution of apparent magnitude and luminosity distance (for H0 =

70kms−1Mpc−1) of galaxies. For typical BBH aLIGO sensitivity ranges, the majority of galax-
ies in the field are not within the galaxy catalogue.

The probability of the host being within or outwith the galaxy catalogue is derived in chap-
ter 4. There is a hard cut on the limiting magnitude of the EM galaxy catalogue, making the
probability of a galaxy being within the catalogue only dependent on its apparent magnitude
m. Over all galaxies, the probability of the host associated to a GW event being brighter than
the limiting apparent magnitude depends on the distance threshold for GW detection and the
absolute magnitude distribution of galaxies. Translating the limiting apparent magnitude of the
EM catalogue into a limiting distance depends on the value of H0. The higher the value of H0,
the fainter the galaxy for a given distance and absolute magnitude, making it less likely to be
within the catalogue.
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Figure 5.8: p(G|H0,D, I) and p(G|H0,D, I) for DL(ρth) = 1300Mpc. This plot shows that for
typical BBH ranges, the host galaxy is less likely to be inside the galaxy catalogue, for all values
of H0 considered.

Figure 5.9: p(G|H0,D, I) and p(G|H0,D, I) for DL(ρth) = 190Mpc. This plot shows that for
typical BBH ranges, the host galaxy is more likely to be inside the galaxy catalogue, for all
values of H0 considered.

For the BNS observing scenarios, even low SNR events would be relatively close to us. At
design sensitivity, the reach of the Advanced LIGO detectors is DL = 190Mpc for binary neutron
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stars. In this scenario, it is therefore much more likely to find the host galaxy within the EM
catalogue; the GLADE catalogue, for example, is half-complete at DL = 300Mpc. For BBH
observing scenarios, the reach of aLIGO at design sensitivity is DL = 1640Mpc, meaning only
loud events would potentially come from host galaxies within the galaxy catalogue. Results for
p(G|H0,D, I) and p(G|H0,D, I) are presented for two observing scenarios, a BBH one in figure
5.8, and a BNS one in figure 5.9.

5.5 Posterior with no Bias Corrections

The code was run without any corrections to account for the incompleteness of the EM galaxy
catalogue, for both BBH and BNS observing scenarios. The results highlight the importance of
correcting for the bias this introduces.

Figures 5.10 and 5.11 are final results for H0 in a BNS observing scenario and a BBH observ-
ing scenario. Figures 5.12 and 5.14 are results when only taking into the first half of equation
4.16: only potential host galaxies within the EM galaxy catalogue are considered, but a correc-
tion is applied to account for the incompleteness of the catalogue. Figures 5.13 and 5.15 are
results assuming a complete galaxy catalogue.

These results highlight the need to correct for the incompleteness of the EM catalogue;
especially in the case of the BBH scenario, the result is significantly skewed when the bias is
not corrected for.

Figure 5.10: p(H0|ρ̂, I) for DL(ρth) = 190Mpc. Figure 5.11: p(H0|ρ̂, I) for DL(ρth) = 900Mpc.
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Figure 5.12: p(H0|G, ρ̂, I)∗ p(G|H0, I)

for DL(ρth) = 190Mpc.
Figure 5.13: p(H0|G, ρ̂, I) for DL(ρth) = 190Mpc.

Figure 5.14: p(H0|G, ρ̂, I)∗ p(G|H0, I)

for DL(ρth) = 900Mpc.
Figure 5.15: p(H0|G, ρ̂, I) for DL(ρth) = 900Mpc.

5.6 Interpretation of Results

Results were obtained for a wide range of observing scenarios. Six different aLIGO sensitivities
were tested, corresponding to different phases of the Advanced LIGO detectors and different
types of compact binary coalescences.
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Even at design or late phase sensitivity for the binary black hole scenario, a measurement
could potentially be obtained for the Hubble constant. While dominated by one loud event,
the combined posterior from all events is significantly narrower, meaning a more precise mea-
surement is obtained from many events. However, this experiment demonstrates that without
a host galaxy, not a lot of information can be obtained from low SNR events alone; they only
serve to narrow down the posterior dominated by events originating from a galaxy within the
electromagnetic catalogue.

Work by Holz and Chen showed that the distribution of SNRs depend only on the detection
threshold, and characterises the loudest events. After 4 detections, half the time the loudest
event will have ρ = 22, going up to ρ = 47 for 40 detections. [33]. We can therefore reasonably
expect several loud events during a real observing run.

The code is run for a very large number of events. For binary black holes, conservative
estimates place the astrophysical rate of coalescences at 2− 600 Gpc−3yr−1, while the latest
estimates place the rate of binary neutron star coalescences at 1540+3200

−1220 Gpc−3yr−1. [39, 138]
Detection rates for BBH by Advanced LIGO at design sensitivity are of 5.1− 99 yr−1. [139]
It is therefore very unlikely to detect such a large number of events with second generation
gravitational wave detectors.

Figure 5.16: 90% confidence intervals derived
from the posterior on H0, DL(ρth) = 100Mpc.
This shows the evolution of the width of the
90% confidence interval for different numbers
of events making up the combined posterior.

Figure 5.17: 90% confidence intervals derived
from the posterior on H0, DL(ρth) = 1640Mpc.
This shows the evolution of the width of the
90% confidence interval for different numbers
of events making up the combined posterior.
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Figure 5.18: 90% confidence intervals derived from the posterior on H0 for DL(ρth) = 150Mpc.

Figure 5.19: 90% confidence intervals derived from the posterior on H0 for DL(ρth) = 190Mpc.

Figure 5.20: 90% confidence intervals derived from the posterior on H0 for DL(ρth) = 900Mpc.
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Figure 5.21: Confidence intervals derived from the posterior on H0, DL(ρth) = 1300Mpc.

The plots in figures 5.16 to 5.21 show the evolution of the width of the posterior on H0 with
added individual GW events. Note that for low number of events, the 90% region of confidence
is not the whole area; rather, it encompasses several discrete areas in that range, and the widest
range possible is presented.

The results also demonstrate the importance of the golden binaries described by Chen and
Holz. [116] Most of the constraints on H0 are obtained from single events. However, the poste-
rior is narrowed down by added events.

5.7 Limitations of the Model

There are some limitations to the code. Despite efforts in debugging, some numerical noise
remains in the case where the threshold on the maximum detectable luminosity distance for
gravitational wave events, DL(ρth) is low (BNS O2 sensitivities). This bias is still present even
with a large number of GW events (N=2000), making the final posterior on H0 consistently
slightly skewed towards higher values. This bias is more obvious when using a coarse sampling
on H0.

A bias can be observed in the computation of one of the integration constant, K(H0), with

1
K(H0)

=
∫

∞

mcut

∫
∞

−∞

∫
∞

0
p(z,m,M|H0,D, I)dzdMdm. (5.1)

As seen in figure 5.22, some numerical noise can be found in K(H0) for low DL(ρth). This
is most likely an issue with the survival function of the non-central chi-square distribution. This
function was re-written as the scipy built-in function was too noisy; however, this new function
could still contain noise. A specialised integrator could potentially fix this issue.

1
K(H0)

is a term that appears in the computation of p(H0|G). From the two figures 5.22
and 5.23, it can be seen that at lower DL(ρth), the values of 1/K(H0) are lower than would be
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Figure 5.22: 1
K(H0)

for DL(ρth) = 100Mpc. Figure 5.23: 1
K(H0)

for DL(ρth) = 190Mpc.

expected. This would therefore introduce a slight bias towards higher Hubble constants, which
is what is observed.

However, O2 has now been completed, with O3 under preparation, making the analysis for
these sensitivities redundant: such a large number of binary neutron star mergers would not be
expected.

As mentioned previously, the model used only focuses on one of the biases encountered in
standard siren measurements of the Hubble constant.

Some numerical noise can also be observed in the posteriors for individual events with the
finer sampling of H0; this is also an issue that would require a purpose-built integrator. The
noise is more prominent for high DL(ρth), as seen in figure 5.24.

Figure 5.24: Noisy individual posteriors, with comparatively smooth posteriors at low DL(ρth).

However, overall, results tend to converge towards the true value of the Hubble constant,
with achieved precisions that are competitive with traditional EM methods, demonstrating that
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statistical methods are a powerful tool in standard siren cosmology.



Chapter 6

Conclusions and Future Work

This chapter presents some conclusions drawn from this work, and discusses future work and
issues to address in this field.

6.1 Conclusions and Insights from the Toy Model Experiment

This experiment primarily focused on the effects of an incomplete, magnitude-limited electro-
magnetic galaxy catalogue on a standard siren measurement of the Hubble constant. It presented
a simplified version of ways to use Bayesian inference to measure the Hubble constant with stan-
dard sirens using statistical methods.

Previous work has investigated prospects for statistical measurements of the Hubble con-
stant. This work differs both in its treatment of biases, and in its use of a broad, flat prior on
H0. The main focus was to highlight the biases that come from the incompleteness, and inferior
reach, of any electromagnetic galaxy catalogue. As we reach design sensitivity for the Advanced
LIGO detectors, this bias could become an important one.

Previous research has been done by Chen and Holz on "golden events": events with a lo-
calisation volume that is small enough to easily find the host galaxy. [122] A small number of
golden binaries per year is expected to be detected by future network of gravitational waves. In
this experiment, it was found that much of the information about H0 could be obtained from a
single high SNR event, which is in line with this work. Especially in the case of binary black
holes, not much information is obtained solely from binaries that do not have an EM counter-
part within the galaxy catalogue. However, it was also demonstrated that we can obtain tighter
constraints on the measurements by combining these golden binaries with many other low SNR
events.

This work demonstrates the importance of the golden events described by Holz in any Stan-
dard Siren measurement of the Hubble constant. [122] The toy model was tested on very high
number of events; such a large number of detections is unlikely to be reached before the advent
of third generation detectors, which will have improved sensitivity and localisation.

78
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6.2 Towards a Precise Measurement of the Hubble Constant
Using Standard Sirens

This toy model experiment demonstrates that standard sirens are a viable and interesting way of
measuring the Hubble constant. Results were obtained for a range of detector sensitivities; and
while often dominating by a few loud events, low SNR events still allow for tighter constraints
on the Hubble constant.

The recent results from GW170817 confirmed that standard sirens are a promising method
for measuring the Hubble constant, and results have been obtained from only one event with
an EM counterpart, despite the large errors on the luminosity distance. With improved sky
localisation from Virgo, events with no EM counterparts could also be promising standard sirens,
and we can expect a better measurement of the Hubble constant as we detect more compact
binary coalescences.

However, even with rather poor localisation and many galaxies in the field, it is possible to
make a measurement of the Hubble constant using statistical methods. This is an interesting
method to explore for future observing runs, as binary coalescence detections are expected at a
greater rate with increasing sensitivities.

The first gravitational wave standard siren measurement of the Hubble constant benefited
from its excellent localisation and coincident electromagnetic phenomena. However, not all
detections will be one of these so-called "golden binaries", and as sensitivities and ranges of the
detectors increase, so does the need for taking into account selection effects when looking for
the host galaxy of the merger.

With further research in the field, it might become easier to identify the host galaxy of
compact binary coalescences. For example, with a good understanding of black hole populations
in relation to types of galaxies, it would be possible to weigh the probability of each galaxy being
the host. In this project, each galaxy was assumed to be the same, which would not be true in
the context of a true measurement. Extensive efforts are currently being put into research on the
statistical method of measuring the Hubble constant with standard sirens, accounting for many
parameters such as localisation, galaxy luminosity, and spin and orientation of the binaries.
Localisation, especially, would be of crucial importance in the use of gravitational waves as
standard sirens.

6.3 Cosmology Using Multi-Messenger Astronomy

On 17th August 2017, a neutron star merger was detected by aLIGO for the first time. [39]
Alongside these observations, multiple observations in the electromagnetic spectrum were made.
While the loudness of the event made for easier localisation of the host galaxy, the multi-
messenger observations confirmed the location of the host, and provided a redshift.
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Figure 6.1: Sky localisations of gravitational wave signals detected by LIGO-VIRGO. [140]

Multi-messenger astronomy will not only help us measure the Hubble constant, it will give
us new insights into cosmology.

6.3.1 Cosmology with Third Generation Gravitational Wave Detectors

This experiment focused on measuring the Hubble constant using second generation gravita-
tional wave detectors. When third generation detectors like the Einstein Telescope come online,
gravitational wave astronomers will be able to probe the universe to a reach similar to that of
electromagnetic searches. Targeting a factor of 10 improvement over advanced detectors, the
improvement on the rate of detection would be 1000. [57] Previous work has demonstrated that
with 105 BNS detected by ET, constraints on cosmological parameters could match the ones
from future forecasted measurements by CMB+BAO+SNIa. [121]

6.4 GW170817 and the First Gravitational Wave Standard
Siren Measurement of the Hubble Constant

On 17th August 2017, the aLIGO detectors and several EM telescopes made observations of a
neutron star merger in the gravitational wave spectrum and in several bands of the electromag-
netic spectrum.

A short gamma ray burst, GRB 170817 A, was observed independently by the Fermi GMB
(Gamma-ray Burst Monitor) and INTEGRAL (INTernational Gamma Ray Astrophysics Labora-
tory) 1.7s after gravitational waves were detected from the merger. The source of this gamma ray
burst was coincident with the location of GW170817, turning out to be originating from galaxy
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NGC 4993. [141–143] With a probability of simultaneous detections occurring by chance being
only 5.0x10−8, these multi-messenger observations confirmed neutron star mergers as progeni-
tors of short gamma ray bursts. [141] An associated redshift was obtained from these observa-
tions, allowing astronomers to use GW170817 as a standard siren. [124] This measurement is
limited by the degeneracy between the inclination angle and luminosity distance of the binary,
leading to large errors on the distance estimate from the gravitational wave data.

The current measurement has large errors, but as demonstrated in this project, several events
could narrow down the posterior on H0. The current standard siren measurement agrees with
both the local and the model-dependent CMB-inferred measurement. This could however change
during upcoming observing runs, as more detections are made. Eventually, the standard siren
measurement of the Hubble constant could discriminate between previously made measure-
ments, giving more insight into whether the discrepancies come from new, unknown early uni-
verse physics, or from systematic errors.

Figure 6.2: A standard siren measurement of H0 using GW170817 and its associated EM coun-
terparts. The 68.3% and 95.4% minimum credible intervals for the standard siren measurement
are indicated by the dashed and dotted blue lines, while the Planck and SHoES credible intervals
are in green and orange, respectively. [124]

Figure 6.3 shows a similar plot to Figure 3.6, presenting some key results from measure-
ments of the Hubble constant since the first precise measurement by the Hubble Key Project
in 2001. This plot is updated with the new result from the standard siren measurement of the
Hubble constant. For now, this measurement is not competitive with EM methods, but with the
success of current gravitational wave detectors and the third generation of detectors under study,
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Figure 6.3: Timeline of measurements of the Hubble constant using different methods, updated
with the new measurement from GW170817.

considerable improvements to this measurement are to be expected. The future of cosmology
using standard sirens seems, with or without the "lights off", very bright!
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Code

# ! / u s r / b i n / env py thon

i m p o r t numpy as np
from s c i p y . i n t e g r a t e i m p o r t quad
from s c i p y . i n t e g r a t e i m p o r t db lquad
from s c i p y . s t a t s i m p o r t ncx2 , norm
from s c i p y . s p e c i a l i m p o r t i v
from s c i p y . i n t e r p o l a t e i m p o r t s p l e v , s p l r e p
i m p o r t a r g p a r s e

d e f p a r s e r ( ) :
" " " P a r s e s command l i n e a rgumen t s " " "
p a r s e r = a r g p a r s e . Argumen tPa r se r ( prog = ’ gaussmpc . py ’ ,

d e s c r i p t i o n = ’ s i m u l a t e s hu bb l e c o n s t a n t measurements
u s i n g gw o b s e r v a t i o n s ’ )

# a rgumen t s f o r r e a d i n g i n a d a t a f i l e
p a r s e r . add_argument ( ’ SNRDL ’ , ’ s n r d l ’ , t y p e = i n t , d e f a u l t

=190 , h e l p = ’ T h r e s h o l d l u m i n o s i t y d i s t a n c e f o r GW
d e t e c t i o n ’ )

p a r s e r . add_argument ( ’ v ’ , ’ l a b e l ’ , t y p e = i n t , d e f a u l t
=100 , h e l p = ’A l a b e l f o r t h i s s i m u l a t i o n ’ )

p a r s e r . add_argument ( ’ Dens ’ , ’ n g a l ’ , t y p e = f l o a t , d e f a u l t
= 0 . 0 0 6 , h e l p = ’ Galaxy d e n s i t y i n number p e r u n i t Mpc 3 ’ )

r e t u r n p a r s e r . p a r s e _ a r g s ( )

a r g s = p a r s e r ( )

83
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d e f sigm (X, lim , s igma ) :
r e t u r n 1 / ( 1 + np . exp ( ( X l im ) / s igma ) )

d e f marcumq1 ( a , b , r e l t o l ) :

# check c o n s i s t e n t l e n g t h v e c t o r s u n l e s s one o r more i s o f
l e n g t h 1

a = np . a r r a y ( a )
b = np . a r r a y ( b )
i f a . s i z e >1 and b . s i z e >1 and a . s i z e != b . s i z e :

p r i n t ’ERROR : i n p u t v e c t o r s t o marcumq1 a r e
i n c o n s i s t e n t s i z e s . E x i t i n g ’

e x i t ( 1 )

a r g = a∗b
x = a / b
f r a c = x
s = i v ( 0 , a r g )
d i f f = 2 . 0∗ s ∗ r e l t o l

k = 1
w h i l e ( np . sum ( d i f f > r e l t o l ∗ s ) ) :

d i f f = f r a c ∗ i v ( k , a r g )
s += d i f f
f r a c ∗= x
k += 1

temp = np . exp ( 0 . 5 ∗ ( a∗a + b∗b ) ) ∗ s
i d x = np . a rgwhere ( np . i s n a n ( temp ) + np . i s i n f ( temp ) )
temp [ i d x ] = 1 . 0
r e t u r n temp

" " "
GENERATING DATA
" " "
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SNRDL = a r g s . s n r d l # D i s t a n c e i n Mpc a t SNR = 8
Dens = a r g s . n g a l ∗ ( 1 0 . 0 / 4 1 2 5 3 . 0 ) # g a l a x y d e n s i t y p e r u n i t Mpc ,

m u l t i p l i e d by f r a c t i o n o f sky
d l s n r = 8

h 0 t r u e = 7 0 . 0 # t r u e v a l u e o f Hubble c o n s t a n t , f o r g e n e r a t i n g
d i s t a n c e s

dh0 = 0 . 1 # wid th o f hub b l e b i n s
h0min = 40
h0max = 120
h0 = np . a r a n g e ( h0min , h0max , dh0 ) # Array o f Hubble c o n s t a n t

v a l u e s we want t o t e s t
c = 300000 .0 # s e t up speed of l i g h t i n km / s
h t r u e = h 0 t r u e / 1 0 0 . 0
h _ a r r a y = h0 / 1 0 0 . 0

r e l t o l = 1e 6 # Marcum q f u n c t i o n t o l e r a n c e

d e f l u m d i s t ( z , h ) :
r e t u r n ( c∗z ) / h

d e f M_star ( h ) :
r e t u r n 1 6 . 8 + 5∗ np . log10 ( h )

d e f r e d ( h , s n r ) :
r e t u r n ( d l s n r ∗ (SNRDL/ s n r ) ) ∗h / c # R e t u r n s r e d s h i f t a s

f u n c t i o n o f SNR, H0

d e f redm (m,M, h ) :
r e t u r n h / ( 1 0∗∗6∗ c ) ∗1 0∗∗ ( 1 . 0 + 0 . 2∗ (m M) ) # R e t u r n s r e d s h i f t

a s f u n c t i o n o f m, M, H0

d e f rho ( h , z ) :
r e t u r n ( d l s n r ∗ (SNRDL/ z ) ) ∗h / c # R e t u r n s SNR as f u n c t i o n o f

r e d s h i f t , H0

d e f app_m ( h ,M, z ) :
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r e t u r n M5 + 5 ∗ np . log10 ( c∗z ∗10∗∗6/ h )
# a p p a r e n t magn i tude

d e f abs_m ( h ,m, z ) :
r e t u r n m+ 5 5∗ np . log10 ( c∗z ∗10∗∗6/ h )

# a b s o l u t e magn i tude

d e f pG_H0 ( h ,M, z ) :
temp = ncx2 . s f ( SNRth ∗∗2 ,2 , rho ( h , z ) ∗∗2) ∗ z ∗∗2 ∗ norm .

pdf (M, l o c = M_star ( h / 1 0 0 . 0 ) , s c a l e =sigma )
r e t u r n temp

d e f pRho_nG ( h ,M, v , z ) :
temp = ncx2 . pdf (SNR[ v ]∗∗2 , 2 , rho ( h , z ) ∗∗2) ∗ K_H0( h ,M, z )
r e t u r n temp

d e f K_H0( h ,M, z ) :
temp = QM_acc ( rho ( h , z ) ) ∗ z ∗∗2 ∗ norm . pdf (M, l o c = M_star (

h / 1 0 0 . 0 ) , s c a l e =sigma )
r e t u r n temp

d e f l u m i n o s i t y (m, d ) :
" " "
r e t u r n s t h e l u m i n o s i t y o f a s o u r c e g i v e n an a p p a r e n t

magn i tude and a d i s t a n c e i n Mpc
" " "
r e t u r n 1 0 ∗ ∗ ( 0 . 4 ∗ (m 5 . 0 ∗ ( np . log10 (1 e6∗d ) 1 . 0 ) ) )

Mstar = M_star ( h t r u e )

m_th = 20 # T h r e s h o l d on t h e a p p a r e n t magni tude
sigma = 1 . 4 # sigma of G a u s s i a n

SNRth = 8 # T h r e s h o l d on t h e SNR

Ztruemax = 0 . 1∗ np . c e i l ( 0 . 5 + 3∗ r e d ( h 0 t r u e , SNRth ) / 0 . 1 ) # " True "
maximum r e d s h i f t
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Zmax = Ztruemax #Maximum r e d s h i f t
DLmax = l u m d i s t ( Zmax , h 0 t r u e )
DLtruemax = l u m d i s t ( Ztruemax , h 0 t r u e )
Hos t s = i n t ( round ( ( 4 / 3 ) ∗np . p i ∗Dens∗DLtruemax ∗∗3) ) # number o f

h o s t g a l a x i e s

seed = 0
i f seed >0:

np . random . seed ( seed )

p r i n t ( " Event %s up t o a r e d s h i f t o f %f , %s h o s t g a l a x i e s " % (
a r g s . l a b e l , r e d ( h 0 t r u e , SNRth ) , Hos t s ) )

p r i n t ( " True max . r e d s h i f t i s %f " % Ztruemax )
p r i n t ( " I n f i n i t y t a k e n a t r e d s h i f t %f " % Zmax )

SNR_ar = np . l i n s p a c e ( 1 , 1 5 0 , 1 5 0 )
marc_q = marcumq1 ( SNR_ar , SNRth , r e l t o l ) ∗ ( 1 sigm ( SNR_ar , 5 , 0 . 0 5 )

) +ncx2 . s f ( SNRth ∗∗2 , 2 . 0 , SNR_ar ∗∗2) ∗ ( sigm ( SNR_ar , 5 , 0 . 0 5 ) )
int_Qm = s p l r e p ( SNR_ar , marc_q )

d e f sigm (X, lim , s igma ) :
r e t u r n 1 / ( 1 + np . exp ( ( X l im ) / s igma ) )

d e f QM_acc (X) :
r e t u r n s p l e v (X, int_Qm )

" " "
STATS
" " "
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d e f KH0( h ) :
kh0 = db lquad ( lambda z ,M: K_H0( h ,M, z ) , 2 8 , 1 0 , lambda M: redm

( m_th ,M, h ) , lambda M: Zmax , e p s a b s = 1 . 4 9 e 9 , e p s r e l =
1 . 4 9 e 9 )

r e t u r n 1 / kh0 [ 0 ]

d e f pgh0 ( h ) :
#p (G | H0 )
ch0 = db lquad ( lambda z ,M: pG_H0 ( h ,M, z ) , 2 6 , 1 2 , lambda M: 0 ,

lambda M: Zmax , e p s a b s = 1 . 4 9 e 9 , e p s r e l = 1 . 4 9 e 9 )
pg = db lquad ( lambda z ,M: pG_H0 ( h ,M, z ) , 2 6 , 1 2 , lambda M: 0 ,

lambda M: redm ( m_th ,M, h ) , e p s a b s = 1 . 4 9 e 9 , e p s r e l = 1 . 4 9
e 9 )

r e t u r n pg [ 0 ] / ch0 [ 0 ]

d e f ps n rn g (SNR, h , j ) :
pSNRnG = db lquad ( lambda z ,M: ncx2 . pdf (SNR∗∗2 ,2 , rho ( h , z ) ∗∗2)

∗ QM_acc ( rho ( h , z ) ) ∗ z ∗∗2 ∗ norm . pdf (M, l o c = M_star
( h / 1 0 0 . 0 ) , s c a l e =sigma ) , 2 6 , 1 2 , lambda M: redm ( m_th ,M, h )
, lambda M: Zmax , e p s a b s = 1 . 4 9 e 9 , e p s r e l = 1 . 4 9 e 9 )

r e t u r n pSNRnG [ 0 ]∗Kh [ j ]

Kh = np . a r r a y ( [ KH0( hu bb l e ) f o r j , hu bb l e i n enumera t e ( h0 ) ] )
# G e n e r a t i n g a l l i n t e g r a t i o n c o n s t a n t s f o r H0 a r r a y
pGh0 = np . a r r a y ( [ pgh0 ( hu bb l e ) f o r j , hu bb l e i n enumera t e ( h0 ) ] ) #

P (G | H0 , D, I )
pnGh0 = 1 . 0 0 pGh0 #P ( nG | H0 , D, I )

d e f Prho ( ) :

#Main f u n c t i o n , r e t u r n s p o s t e r i o r f o r i n d i v i d u a l e v e n t
r e d s h i f t s = Ztruemax ∗ ( np . random . un i fo rm ( 0 , 1 , Hos t s ) )
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∗ ∗ ( 1 . 0 / 3 . 0 ) # G e n e r a t i n g r e d s h i f t s
absmags = np . random . normal ( Mstar , sigma , Hos t s ) # random M

h e r e
m a g n i t u d e s = np . a r r a y ( [ app_m ( h 0 t r u e , abmag , r e d s ) f o r abmag ,

r e d s i n z i p ( absmags , r e d s h i f t s ) ] )
c a t a l o g = r e d s h i f t s [ m a g n i t u d e s < m_th ]
mags = m a g n i t u d e s [ m a g n i t u d e s < m_th ]

d e f p d e t ( h ) :
# p r o b a b i l i t y ncx2 . pdf (SNR[ v ]∗∗2 , 2 , rho ( h , z ) ∗∗2) o f g a l a x y j

p r o d u c i n g a d e t e c t a b l e s i g n a l p (D | G,m,M, H0 , z , I ) (
unchanged )

s n r = rho ( h , c a t a l o g )
temp = ncx2 . s f ( SNRth ∗∗2 , 2 , s n r ∗∗2)
r e t u r n temp / np . sum ( temp )

d e f p s n r g (SNR, h , j ) :
#p ( rho | G, H0 , D, I )
s n r = rho ( h , c a t a l o g )
psnrG = ncx2 . pdf ( SNR∗∗2 , 2 , s n r ∗∗2 )
i f l e n ( s n r ) == 0 :

psnrG = 0
e l s e :

psnrG = psnrG ∗ p d e t ( h )
r e t u r n np . sum ( psnrG )

DL = ( c∗ r e d s h i f t s ) / h 0 t r u e # L u m i n o s i t y d i s t a n c e

SNRtrue = d l s n r ∗ (SNRDL/DL) # True SNR

# R e j e c t i o n s a m p l i n g

N = 1
l = 0
w h i l e l i n x ra ng e (N) :

k = np . random . r a n d i n t ( 0 , l e n ( SNRtrue ) )
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s n r = SNRtrue [ k ]
SNRsq = ncx2 . r v s ( 2 , s n r ∗∗2)
s n r 2 = np . s q r t ( SNRsq )
i f s n r 2 >= SNRth :

SNR = s n r 2
l +=1

pSNRG = np . a r r a y ( [ p s n r g (SNR, hubble , j ) f o r j , h ub b l e i n
enumera t e ( h0 ) ] )

pSNRnG = np . a r r a y ( [ p sn r ng (SNR, hubble , j ) f o r j , h ub b l e i n
enumera t e ( h0 ) ] )

np . s a v e t x t ( " {}_SNRDL_{}_G" . f o r m a t ( a r g s . l a b e l , SNRDL) , pSNRG)
np . s a v e t x t ( " {}_SNRDL_{}_nG" . f o r m a t ( a r g s . l a b e l , SNRDL) ,

pSNRnG)
i n f o = np . a r r a y ( [ SNR, c a t a l o g . s i z e ] )
np . s a v e t x t ( " {}_INFO" . f o r m a t ( a r g s . l a b e l ) , i n f o )
v a l u e = pSNRG∗pGh0+pSNRnG∗pnGh0
np . s a v e t x t ( " {}_SNRDL_{} " . f o r m a t ( a r g s . l a b e l , SNRDL) , v a l u e )

Prho ( )
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