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Abstract

Intermittent Control (IC), as a control scheme that switches between open and closed-

loop configurations, has been suggested as an alternative model to describe human

control and to explain the intermittency observed during sustained control tasks. Ad-

ditionally, IC might be beneficial in the following scenarios: 1) in the field of robotics,

where open-loop evolution could be used for computationally intensive tasks such as

constrained optimisation routines, 2) in an adaptation context, helping to detect system

and environmental variations. Based on these ideas, this thesis explored the applica-

tion of real-time multivariable intermittent controllers in humanoid robotics as well as

adaptive versions of IC implemented on inverted pendulum structures.

IC was evaluated on a humanoid robot during a balancing task, regulating the joint

angles in order to maintain a standing position and to recover from perturbations ex-

erted by a linear actuator. The experiment showed that IC is a viable alternative to

traditional continuous control methods employed by roboticists, generating joint an-

gles that are comparable in magnitude and rejecting the applied perturbations, while

providing extra time resources in the form of open-loop intervals that could be allo-

cated for other important goals. These results motivated the development of adaptive

intermittent controllers (AIC) based on a self-tuning architecture and Kalman filter-

ing, and were implemented for the first time on a real-time rotational pendulum using

Extended and Unscented Kalman filters in combination with two versions of IC: the

system-matched hold IC and the tapping hold IC. Simulations were performed assuming

that some of the physical parameters of the pendulum were time-varying, and an exper-

iment was carried out on the physical system considering a model that had parameters

that were different in magnitude compared the nominal values. The results suggest

that the IC inputs provide balance in terms of output and parameter estimation errors

by constantly exciting the system, with the added benefit that controller redesign only

happens at event times, reducing the computational burden. In conclusion, real-time

controllers based on the IC framework were derived and potential benefits for generic

engineering systems, that could help explain adaptive features of human motor control,

were investigated.
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viding the financial support to complete this project.



iii

Author’s declaration

I declare that, except where explicit reference is made to the contribution of others,

this thesis is the result of my own work and has not been submitted for any other

degree at the University of Glasgow or any other institution.

The experiment presented in chapter 4 was the result of a team effort between the

University of Glasgow and Delft University of Technology. In particular, Dr. Cornelis

van de Kamp allowed me work in the BioRobotics laboratory and lead the project as

a visiting researcher, helping with the experimental design as well as being involved in

the execution of the experiment. Erik Vlasblom helped me with the integration of the

intermittent control routines to the exisiting code base implemented in the robot, and

provided a solid robotics point of view and support to the overall project.
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Chapter 1

Introduction

Our ancestors adopted a bipedal stance and left four-legged locomotion behind after a

long process of adaptation and evolution. This gave them the possibility of using the

upper limbs for complicated tasks like grasping with precision, allowing them to pro-

duce and manipulate tools for many other purposes. This behavioural advantage came

with an associated cost, which is the problem of maintaining balance by keeping the

centre of mass (CoM) within a small support area in order to avoid a fall. The way our

biological controllers achieve this is by generating ankle torque based on the contraction

of the soleus and gastrocnemius muscles (Basmajian and De Luca, 1985; Loram et al.,

2005). Human balance is indeed a difficult problem due to the ratio between feet size

and body height, and because of the constraints imposed by our joints, restricting

our degrees of freedom (DoF), as well as the redundancy introduced by our muscles.

Additionally, muscle fatigue comes into play rather quickly, affecting our movements

and joint kinematics in general (Duarte and Zatsiorsky, 2001; Madigan et al., 2006).

During standing, movement is normally dictated by a sagital sway pattern around the

ankle joints (Gatev et al., 1999), which is commonly known as an ankle strategy. In the

presence of external perturbations, the body can be pushed away from a stable sway

motion, forcing the switch to recovery strategies which involve movement at the hip to

maintain balance, hence a hip strategy (Nashner and McCollum, 1985), or even taking

a step in the case of large perturbations. A standing posture also brings other common

problems like lower back pain (Plomp et al., 2015) and blood circulation issues (Smith,

1990).

Nevertheless, balancing in human standing is natural to most of us, so much that we

almost never pay attention to the actions that are required to stay on foot, even when

an unexpected event throws us away from our equilibrium. In such cases, some of the

reflex-like movements we use to compensate occur even against our will or without

consciously deciding to execute them. The truth is that the underlying mechanisms
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of quiet standing are still not fully understood by researchers; however, the study of

this problem has allowed engineers to use ideas and concepts from the field of hu-

man physiology to get inspiration for new control methods (Bottaro et al., 2005, 2008;

Gawthrop et al., 2011), it has allowed doctors and clinicians to better understand bal-

ance disorders (Bronstein et al., 1996; Mergner, 2010) and it provided insight from an

evolutionary point of view to many biologists (Schmitt, 2003; Skoyles, 2006).

The study of standing in humans often implies the simplification of the problem, just

as in many other areas of engineering. This involves resorting to models that sum-

marise behavioural data, which helps to rationalise and understand human motion in

order to visualise its fundamental properties. For instance, the body sway oscillations

that are present in quiet standing fit the dynamics described by the equations of an

inverted pendulum (Winter et al., 1998), which is convenient in the sense that the num-

ber of variables and parameters is greatly reduced, while still capturing the dynamic

behaviour of the system. Many studies in movement science involve inverted pendu-

lum studies as an analogue of the human body, ranging from single link pendulums

(Loram and Lakie, 2002; Lakie et al., 2003; Loram et al., 2011), to multi-segmental

structures (Gawthrop et al., 2015).

In the human standing context, inverted pendulum models are used to describe the

part of the problem that it is supposed to be controlled, often represented by variables

like the angle with respect to the vertical position or a CoM position with respect to

the support base. In engineering terms, these are known as the system or the plant.

Some systems might have a stable nature while others, like the inverted pendulum,

exhibit unstable dynamics in the absence of a control command. Therefore, another

kind of model is required to explain the way in which a stabilising action should be

conceived, planned and executed, so that the system is regulated or achieves a pre-

defined configuration. This broad idea of a controller is formed by three separate

mechanisms: i) the intrinsic properties of a human joint such as damping and stiffness,

contribute by generating torque responses to unknown perturbations. These are fast

correcting actions with no delays. ii) there is a fast continuous loop of neural reflex-like

responses running through the spinal cord, brain stem, motor cortex and the cerebel-

lum (Deliagina et al., 2007) with delays up to 180 ms, that contributes to the overall

torque commands. iii) A high-level control loop, in charge of planning and selecting

appropriate motor commands (van de Kamp et al., 2013a). This high-level loop is ca-

pable of performing complex tasks such as adjusting its own commands to compensate

for a change in the conditions or predicting the consequences of the applied commands

to overcome considerable feedback and system delays.



3

Two important points of view about the functions and overall structure of these high-

level processes have been around for some time now. Starting with a continuous control

approach stating that the selection and planning stages are based on the continuous

use of feedback to compute subsequent actions. Conversely, an intermittent approach

suggests that the use of feedback is dictated by refractoriness, that task execution

happens sequentially, and that feedback is used only when a previous action has been

processed. This can be seen as a hybrid approach where the use of available information

in the form of feedback is combined with open-loop evolution. This intermittency was

observed initially in the early work of Craik (1947), leading to many experiments pro-

viding supporting evidence (Vince, 1948; Navas and Stark, 1968; Neilson et al., 1988;

Loram et al., 2011). It also inspired control engineers to combine these findings with

existing control theory to propose new controllers. As a result, intermittent control was

presented initially by Ronco et al. (1999) as an attempt to extend the theory and ap-

plications of generalised predictive control; this initial version allowed Gawthrop et al.

(2011) to formulate it in the context of human motor control.

A great effort has been made over the years to substantiate intermittent control as an

explanation for human motor control, from both theoretical and experimental perspec-

tives. Recent studies show that intermittent control is a robust alternative when trying

to manually control a virtual inverted pendulum that changes its properties through

time (van de Kamp et al., 2013b), suggesting that the switching between opening and

closing the loop might contribute to identify the effects of our commands and to sep-

arate them from the natural dynamics of the system. In other words, the subjects

were better at adapting to a new environment, where adaptation means the ability to

change in order to improve according to some measure of performance. In that sense,

an adaptive controller changes its performance in the presence of a new environment,

while learning is associated with a controller that adjusts the performance when facing

the same environment after several encounters.

The work of Gawthrop et al. (2015) on intermittent adaptive control is the first effort to

extend the explanatory power of this framework to systems described by time-varying

parameters or to situations where a plant/model mismatch requires some form of adap-

tation. In general, the field of adaptive control from an engineering perspective is well-

established (Gawthrop, 1982; Åström and Wittenmark, 1995; Goodwin et al., 2001),

and the body of work in this field is impressive, with applications in many different

areas of engineering. This is motivated by the fact that in real life, no model is cor-

rect, there is always a certain amount of deviation from the truth. That characteristic

makes the use of adaptive controllers necessary to reduce the effect of such differences.

Gawthrop’s contributions are based on continuous-time, non-minimal state-space for-
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mulations and on state-variable filters, combined in a way that real-time system identi-

fication performed to update controller parameters. In his work, examples of adaptive

intermittent control applied to human balance and manual control are presented in

a simulation environment, showing the potential advantages of applying this in real-

time scenarios. It is also stated that other alternatives should be considered to extend

the adaptive intermittent controller to different formulations based on Extended and

Unscented Kalman filters (Kalman, 1960; Julier et al., 1995).

Although continuous adaptive controllers can be effective in many situations, some-

times they generate control signals that do not excite the system enough to ensure

that the parameter estimation process converges to the correct values. Many special

techniques have been developed to counteract this problem, with most of them relying

on the addition of auxiliary exciting signals (Landau et al., 2011), specially during the

adaptation transients; however, adding these signals is not always feasible in practice.

The stability-plasticity dilemma (Carpenter and Grossberg, 1988) helps to understand

the trade-off that adaptive control in general should deal with, in the sense that ex-

citing the system constantly means that the controller remains plastic (able to detect

changes) while providing a response that ensures stability. The impulsive nature of the

signal generated by an intermittent controller provides a balanced solution in terms of

this trade-off.

While the idea of an intermittent controller being involved in high-level human control

processes such as sensory analysis, task planning, and response selection, is still de-

batable and remains as an open question, the use of it as a control strategy for other

purposes is quite appealing. Some possible applications in a biomedical context might

lie in robotic-assisted rehabilitation (Loram et al., 2011) or in the modelling of cellular

network systems (Gawthrop et al., 2015). Moreover, with the growing overlap between

engineering and physiological research, and recent results from human balance, it is

hypothesised that the field of humanoid autonomous robotics might benefit from the

use of multi-input, multi-output intermittent controllers.

1.1 Aims and objectives

The overall aim of this research was to formulate multivariable adaptive intermittent

controllers for real-time scenarios. The specific aims were (i) to investigate whether in-

termittent control could be applied to multi-segmental, autonomous, humanoid robots

and to evaluate potential benefits of the IC approach for this field of engineering; with

the expectation to achieve similar control performance levels when compared to tradi-
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tional continuous control schemes. To do this, a balancing experiment was performed

on TUlip, a robotic platform at the Technical University of Technology in Delft, the

Netherlands (de Boer, 2012). (ii) to evaluate both in simulation and experimentally,

the use of adaptive intermittent controllers based on state-space formulations, relying

on nonlinear Kalman filters to perform real-time state and parameter estimation. In

this case, the expectation was to obtain controllers that would perform similarly, in

terms of output response, to continuous adaptive versions; with the added benefit of

not having to redesign the controller continuously but only at the event times dictated

by the IC triggering mechanism.

The first objective was to design multi-input, multi-output (MIMO) intermittent con-

trollers to be used in real-time environments, tailor-made for a three-link inverted

pendulum model of a humanoid robot.

The second objective was to implement the controllers on an advanced robotic plat-

form (in terms of its design and hardware) such as TUlip, which is a 1.095 meters tall

humanoid robot. The implementation involved the experimental evaluation of inter-

mittent control in comparison with an analogous continuous predictive controller, by

running a balancing task with perturbations during quiet standing.

The third objective was to design an adaptive intermittent controller capable of esti-

mating the dynamic states of the system while tracking time-varying parameters. This

real-time estimation routine would provide the necessary information to update the

control law every intermittent interval in order to adjust the overall performance of the

controller. The estimation was based on nonlinear versions of the Kalman filter, such

as the Extended and Unscented formulations.

The final objective involved the validation of these adaptive intermittent controllers

in simulation, to then evaluate their performance experimentally on a rotational in-

verted pendulum, which is an unstable, under-actuated system. The performance was

compared to that of a continuous adaptive controller.

1.1.1 Contributions

The overall contributions of this thesis are as follows:

1. The experiment performed on TUlip is the first successful implementation of

MIMO real-time intermittent controllers in an advanced engineering structure.
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Moreover, the results suggest that intermittent control might be a robust alter-

native against un-modelled dynamics, as well as providing extra computational

resources in the form of open-loop intervals.

2. The application of adaptive intermittent controllers on the rotational pendulum

constitutes the first implementation of such architectures in real-time, showing

that updating the control law using estimated parameters every intermittent in-

terval produces similar results compared to a continuous update. The results also

show that the control signals generated by the intermittent controllers provide a

balanced solution in terms of output error and parameter estimation.

3. The implementation of the aforementioned controllers include the first use of

‘tapping’ (Gawthrop and Gollee, 2012) in an adaptation context, as an alterna-

tive to the classic intersample behaviour described by a system-matched hold

(Gawthrop and Wang, 2011), showing that the use of a tapping hold results in

a control signal that contributes positively to the parameter estimation process,

while keeping similar output properties compared to the system-matched hold.

1.1.2 Publications

Conference proceedings

J.A. Álvarez-Mart́ın, H. Gollee, I.D. Loram, P. Gawthrop. “A dual Kalman filter

approach to adaptation in intermittent control”, In proceedings of the 21st ISEK

Congress. Congress of the International Society of Electrophysiology and Kinesiology.

Chicago, USA. 2016. Selected for a student award.

In preparation

• J.A. Álvarez-Mart́ın, E. Vlasblom, C. Van de Kamp, H. Gollee. “Event-driven

intermittent control of a humanoid robot”.

• J.A. Álvarez-Mart́ın, H. Gollee, P. Gawthrop. “Adaptive intermittent control of

a rotational pendulum, a system-matched hold approach.”. Journal of Systems

and Control Engineering. Institution of Mechanical Engineers.
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1.2 Overview and structure of the thesis

This thesis is organised in six chapters as follows:

In chapter one, a brief introduction to the contents of this thesis is given, explaining

the fundamental motivations behind using intermittent control to model human motion

from the point of view of balance and quiet standing.

Chapter two presents a literature review of the physiological origins of intermittent

control as well as its roots in control theory. The serial ballistic hypothesis is introduced

and the most important contributions that led to the intermittent control paradigm

are discussed. The connections between the fields of autonomous robotics and human

balance are presented, as well as the links of intermittent control with classical adaptive

control theory.

In chapter three, the theoretical background of intermittent control is introduced and

a description of its different versions is given. A simulation example is presented

to illustrate the most important features. Also, this chapter discusses the concept

of adaptation in the IC framework, and it provides an explanation of the adaptive

intermittent controller used in this thesis, with an emphasis on parameter and state

estimation methods, and the self-tuning regulation architecture. The use of a tapping

hold in an adaptation context is also presented. The chapter ends with an overall

discussion.

Chapter four introduces the application of intermittent control to humanoid robotics,

describing the experimental protocol for a balancing task as well as the considerations

taken to design the implemented controllers. The experimental results are shown along

with a discussion.

In chapter five, simulations of adaptive intermittent control applied to a rotational

inverted pendulum are presented first, followed by the results of implementing these

controllers in a real-time environment. The chapter ends with a general discussion.

The final chapter is devoted to the overall conclusions of the thesis. Additionally, a

short discussion is presented, the limitations of the project are introduced, and some

follow up ideas are mentioned in form of future work.
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Chapter 2

Literature review

2.1 Introduction

Humans are capable of performing incredibly complex movements with dexterity, mak-

ing everything look really simple and smooth in many cases. Playing an instrument,

a dancing performance, or a high level athlete in competition, are all good examples

of sustained motion control which is involved in our everyday life; yet there are still

features of the underlying control processes related to human motion that we do not

fully understand and that are actively discussed by the scientific community.

In particular, the idea of finding mathematical representations of our control mecha-

nisms by means of computational algorithms has been an attractive notion to many

people. For many years, a continuous negative feedback approach has been used to

explain the task of maintaining balance during standing in humans and its intrin-

sic variability (van der Kooij et al., 1999; Peterka, 2002; Maurer and Peterka, 2005;

Kooij and Vlugt, 2007). This implies that throughout the execution of the task, the

sensorimotor information coming in the form of feedback is used all the time to gener-

ate appropriate control actions. Under this paradigm, the ideas behind optimal control

theory and state prediction have been used to create models that describe physiological

systems under the presence of motor and observation noise, with the model proposed

by Kleinman (1969) as the leading paradigm.

However, the seminal work from Craik (1947, 1948) provided evidence of humans be-

having in a ballistic, intermittent fashion for specific manual tasks. Moreover, this

results led others (Vince, 1948; Navas and Stark, 1968) to test Craik’s hypothesis ex-

perimentally, to find that when a subject is presented with a series of discrete stimuli,

they respond at a rate of 2 to 3 actions per second, and that these actions only start
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as soon as the previously executed action had elapsed. We know now that a property

of the Central Nervous System (CNS) is the presence of the Psychological Refractory

Period (PRP) originally discovered by Telford (1931), which is a well defined time in-

terval where the control action acts without the influence of feedback information. In

other words, if a response is already initiated, we can start planning and calculating a

response for a second stimulus only after the PRP has elapsed. This means, in control

engineering terms, that the controller in place operates in an open-loop regime for a

minimum amount of time.

The work from Navas and Stark (1968) showed that humans use intermittent control in

manual pursuit and tracking tasks, providing experimental evidence of human responses

being modified approximately every 500 ms. Recently, in (Lakie et al., 2003), the same

behaviour was observed when a group of subjects tried to manually control an inverted

pendulum, confirming the similar action rates as in (Vince, 1948). In this same line,

subsequent work from Lakie and Loram (2006) showed that even when different sensory

information is provided, the rate of control actions stays the same when performing

manual control tasks. These contributions resonated strongly within the movement

science and physiology communities, leading to the consideration of intermittent control

as a viable way to explain human motor control.

The theory of intermittent control has been advanced greatly since the work of Craik,

building up a computational model that is capable of explaining sustained control

and its intrinsic variability in different situations. This model has been defined from a

linear perspective, in particular, treating the system at hand as a time-invariant model.

This means that the system exhibits a linear behaviour and stays the same, in terms

of the parameters that describe it, throughout its evaluation. It is also known that

most systems in nature are not static, they are nonlinear and in many cases they are

described by time-varying parameters. The work of van de Kamp et al. (2013a,b) and

Gawthrop et al. (2015) suggest that human motor control uses adaptation capabilities

to deal with uncertainties and environmental changes, which raises the question that

adaptive intermittent control could possibly provide an explanation for these situations.

Additionally, in order to substantiate the theory of intermittent control, an important

effort has been made to test these models in real-time systems (Gawthrop and Gollee,

2012) with the purpose of studying them from an engineering perspective, mostly for

single input, single output systems. A natural consequence of these results, was to raise

the question of the effects of a human inspired control algorithm such as intermittent

control in the field of humanoid robotics.
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In this chapter, the intermittent control framework will be described, considering both

its physiology and engineering origins. The applications of intermittent control to

real-time engineering scenarios and its possible benefits to the field of robotics will be

introduced. Also, the connections of intermittent control with adaptation is reviewed

in conjunction with the main adaptive control models in literature.

2.2 Serial ballistic hypothesis and intermittent control

It was the work of Craik (1947) that set the stage for new hypothesis on how humans

control their movement. At the time, research on the interaction between man and

machines was greatly influenced by the political climate and tension during the years

after the second world war, where understanding how operators were capable of tracking

moving targets was a fundamental motivation. When his seminal paper was published,

the notion of a psychological refractory period was known, which states that there is a

small amount of time where the control action is not affected by feedback that comes

from the sensory system, discovered experimentally by Telford (1931). Craik postulated

the fact that humans operate as intermittent servos, meaning that since the refractory

period is present, the control output is generated as a sequence of serial ballistic control

actions, where each individual control action lasted at least one refractory period. This

evidence suggested that humans might modulate their control signals intermittently

rather than continuously.

This intermittency motivated Vince (1948) to test this hypothesis experimentally, con-

firming Craik’s evidence and suggesting that humans in fact operate intermittently

under compensatory and pursuit tracking tasks. In one experiment, subjects were

asked to keep a pointer aligned with a reference line that was drawn on a rotating

smoked drum, the subject controlled the movement of the pointers using a handle.

The pointer was perturbed by a motor causing a steady movement away from the line,

forcing compensatory action by the subject. Similarly, in a second experiment the

subjects were asked to keep the pointer aligned with a reference line that was changing

in direction suddenly, based on a predefined course. One of the main findings was that

the rate at which the subjects used corrective actions does not depend on the frequency

of the disturbance signal and more importantly, it remained constant with a rate of 2

to 3 actions per second. Also, when the subjects were presented with quick series of

changes in reference, it was noticed that the response to the second change in the series

is delayed compared to that of the first one, providing more experimental evidence of

the refractory period. Based on this, Vince suggested that the inability to respond on

time to a second stimulus appears to be related to some central computing delay that
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is used to select the appropriate response. If a second stimulus is presented during this

delay, it will not evoke a response until an interval of half a second after the appearance

of the first stimulus has elapsed.

This inability to react to two different stimuli is still a source of debate. Welford (1952)

proposed the fact that it is not possible for humans to select two responses at the same

time, favouring the idea of processing happening sequentially. First, our sensorimotor

system must provide information of the stimulus, then a feasible response must be

selected, to finally execute the action. There is experimental evidence for this claim,

showing also that this result is not affected by the kind of sensory information that is

used to process the stimuli nor by the type of response (Pashler, 1992, 1994).

In support of this, Lakie et al. (2003) carried out experiments with the purpose of

evaluating how balance control by means of a compliant element is performed. In

this task the subjects were asked to manually balance a real single inverted pendulum

with low intrinsic stiffness. In order to achieve balance, the subject had to pull a

handle that was connected to the pendulum through an elastic element (a spring in

this case). This is similar in many ways to the problem of human standing, where

the calf muscle pulls through the Achilles tendon which is in turn attached to the

ankle joint. In Lakie’s experiment, the inverted pendulum resembles the human body

as a single link structure. One of the important conclusions from this study is that

the subjects applied discrete hand movements to maintain balance, and that these

corrections came at the same rates reported by (Vince, 1948), moreover, human control

in this particular setting seems to be subject to a refractory period and under the

influence of a high level intermittent control process. The apparent limited bandwidth

of these control adjustments (a maximum of 2 Hz) has been studied and demonstrated

by Navas and Stark (1968); Miall et al. (1993a); Nielson (1999); Loram et al. (2009,

2011).

A natural consequence of the previous experiments was to evaluate the effect of the

kind of feedback used to formulate control actions, as stated earlier. In an elegant

experiment, Lakie and Loram (2006) showed that the correction rate was not affected

by different forms of sensory information: visual, vestibular, and proprioceptive. Even

when these forms of feedback were combined, the rate stayed the same. A similar

attempt was made to evaluate if the nature of the load that should be balanced would

have an effect on the aforementioned correction rates (Loram et al., 2006a). In this

case, the time constant of the pendulum was doubled without observing any effect on

the adjustment rates of the control signal. These two results suggest that balancing

tasks might require a single computing neural process. This process might be consid-



2.2. Serial ballistic hypothesis and intermittent control 12

ered a part of a more general delay known as feedback time-delay, which is comprised of

the integration of sensory information, selection of the control action and planning its

execution. However, this does not include the delay associated with the time elapsed

between the control action and the response of the system as a consequence. Therefore,

in this context, the effective time delay is formed by both a feedback time-delay and a

system delay.

To further test the idea of intermittent control being behind human standing control,

Loram et al. (2006b) showed that when evaluating the characteristic sway motion dur-

ing standing, the calf muscle uses discrete corrections every 2 to 3 seconds on average,

confirming results discussed earlier and suggesting that human standing is driven by

intermittent control processes that are similar to those in manual tracking tasks.

Being unable to respond on time to sufficiently fast stimuli seems to be a limiting

characteristic of human motor control, forcing us to disregard available information

until we have processed previous actions. However, this can be seen as a built-in feature

that allows us to predict the consequences of our actions in a better way. In control

terms, opening and closing the loop can be used to clearly distinguish between the effect

of new information (and its subsequent correcting action) from the unforced dynamics

of the system. This idea led to a manual balancing experiment by Loram et al. (2011)

that compared two strategies to control a virtual pendulum on a screen by means of a

joystick. The subjects were asked to control the position of a pointer on a screen, that

moved according to the second order, unstable dynamics of a single inverted pendulum,

by holding the joystick throughout the entire trial or by tapping it. It is clear that the

tapping resembles a pure intermittent approach where the each tap can be seen as a

discrete control action.

One of the tasks in this experiment was to keep the position of the pointer in the

centre of the screen (in terms of the pendulum that means to maintain the pendulum

as close as possible to the upwards equilibrium point). During the trial, small random

input disturbances were applied to ensure that the pointer would actually drift away

from the centre. Additionally, the gain between the joystick signal and the virtual

pendulum changed according to a piece-wise step function of three different amplitudes.

These changes were unknown to the subject, resulting in a sudden adjustment on their

strategy for most cases. For this task, tapping the joystick gave a better response

compared to continuous contact. Also, tapping seems to be better way to deal with

the changes in the joystick gain, showing less position error during gain transitions.

An important conclusion based on this evidence is that intermittent control might

be better at situations where there is not enough knowledge about the system, or
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when this knowledge is not close to reality. Furthermore, the authors hypothesise that

the constant switching between open and closed loop regimes imposed by the tapping

strategy promotes a quicker identification of the system and the conditions affecting it.

Despite the growing interest in intermittent control and the experimental evidence de-

scribed so far, there are continuous-time based theories that provide an opposing view

while explaining some aspects of human motor control (Maurer and Peterka, 2005;

Kooij and Vlugt, 2007). Overall, these theories have been taken by the community as

the dominant paradigm for sustained control problems. However, the long standing

debate between continuous and intermittent control has given great insight on the ex-

planatory power of classical control theory applied to human physiology and movement

science.

From this perspective, the use of engineering models to describe human motor control

should not be considered as a direct analogue to the underlying physiological structures.

Instead, they should be seen as sources of information about the performance of the

human controller, providing solid grounds to asses behavioural data, to understand our

control actions, and more importantly, to formulate predictions based on experimental

data. An example of early work on engineering models for describing the manual

interaction between pilots and machines comes from McRuer and Jex (1967). In his

work, a detailed description of typical aircraft control models is presented, suggesting

different transfer function representations for situations such as: pursuit, compensatory

and periodic tasks. Primarily, the pilot is described as a transfer function formed by a

gain and a delay element that changes according to the order of system to be controlled

with the addition of a remnant signal that models the components of the output data

that can not be described in linear terms.

A common approach that has been used extensively to model human stance is the

proportional-integral-derivative (PID) controller (Johansson et al., 1988; Peterka, 2000;

Maurer and Peterka, 2005). This model is based on the three important gain param-

eters that can be tuned using system identification or by optimisation procedures.

Additionally, a time-delay is incorporated to the model with the purpose of reproduc-

ing the characteristic sway observed in quiet standing. Alexandrov et al. (2005), used

the PID controller and a three segment, multi-joint model of a human to fit experi-

mental data, which was collected from a balance perturbation task. As a conclusion

the authors state that continuous feedback can describe human postural responses to

stance perturbations and that these responses are also independently modulated via

feed-forward corrections, and that the overall feedback loop can be modelled as a visco-

elastic spring with a delay. However, a limitation of the PID model is that it has not
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been able to explain the reduced control bandwidth and the long time delays observed

in balance tasks. Evidence of this is provided by Gawthrop et al. (2009), where data

from a simulated inverted pendulum controlled through a joystick was used to fit pre-

dictive and non predictive models. It is shown that the non-predictive PID controller

is able to fit experimental data reasonably well, but it falls short in terms of identifying

the time delay. On average, the PID model predicted smaller time delay values com-

pared to those coming from a predictive state-feedback model. Also, the time delays

generated by the PID model were less consistent with the ones estimated from the

non-parametric impulse response obtained from the experiment.

The study by Gawthrop et al. (2009) contrasts the aforementioned PID model with an

alternative state-space representation based on optimality and prediction. This is con-

sistent with the ongoing trend of representing the human controller as an entity that

uses prediction to counteract delayed information from the sensory system, while using

internal states to form its own representation of the system dynamics. The informa-

tion generated by this internal model is combined with known motor commands and

measurements in the form of feedback. Some authors suggest that the brain relies on

these internal representations, particularly in the cerebellum (Miall and Wolpert, 1996;

Wolpert et al., 1998; Kawato, 1999; Schwartz, 2016), to achieve accurate motion pat-

terns. With this in mind, Kleinman (1969) proposed a model based on three elements:

an observer, a predictor, and state-based negative feedback. The purpose was to repre-

sent human control as a continuous controller that would find an optimal control action

based on performance constraints, and using predicted states affected by observation

noise. The internal models discussed earlier are implemented in Kleinman’s architec-

ture using state-observers, these operate based on a dynamical model of the system

(thus an internal model) that receives the optimal control signals and the data being

measured to update the overall state. In physiological terms, this observer receives an

efference copy of the motor command and a reafference signal coming from the sensory

system to calculate the new state; then a prediction based on the previously calcu-

lated state is made available to the motor controller, closing the loop. Neilson et al.

(1988) proposed a detailed description of the relationship between internal models and

the intermittent behaviour observed in tracking tasks, presenting a model comprising

sensory analysis, response planning, and response execution stages. There, the hu-

man operator is represented using internal models that process sensory information

continuously, whereas the response planning mechanism updates the remaining stages

intermittently.

Kleinman’s model is known as the observer-predictor-feedback (OPF) controller and

it has been used in a wide variety of experiments, providing deep insight in terms



2.2. Serial ballistic hypothesis and intermittent control 15

of the interaction between man and machine. At the time, research in this area was

influenced greatly by military applications involving manual tracking of moving tar-

gets. This model has been used to represent the variability of the human operator by

means of additive noise in visuo-manual tasks (Kleinman et al., 1970), to fit data from

balance experiments (van der Kooij et al., 1999; Gawthrop et al., 2009) or to explain

compensatory tracking with delays ranging from 150 to 250 ms (Baron et al., 1970).

Despite its widespread adoption, the OPF model is not able to explain the intermit-

tent behaviour mentioned previously, but it has provided a solid theoretical basis for

Gawthrop et al. (2011) to formally introduce a computational-level theory for human

control systems which is built around the intermittent control framework.

The intermittent control model, as presented in Gawthrop et al. (2011), has been used

recently to evaluate why the biological control architecture might process parallel sen-

sory information through a serial process that involves planning, selection, and inhi-

bition of other plausible responses before generating a low dimensional motor output

(van de Kamp et al., 2013a). The multi-segmental models of human standing with

several degrees of freedom are redundant in the sense that the motor system generates

parallel feasible solutions to achieve the same configuration or goal, yet it has to select

instantaneously only one of them. From a continuous point of view, the solution for

this problem is given by a planning stage that sets task goals and optimisation con-

straints, modulating low-level feedback controllers (Todorov, 2004; Lockhart and Ting,

2007; Karniel, 2011). This paradigm does not provide clear insight between the rela-

tionship of sensory input and motor output since the process of selecting an appro-

priate response from the pull of available solutions is often disregarded. Additionally,

van de Kamp et al. (2013a) showed that refractoriness is relevant in whole-body con-

trol tasks. While visual information about the anterior-posterior position of the head

was made available to the subject by showing it as a pointer on a screen, the sub-

jects were asked to sway forward or backwards in order to make this pointer match a

second target pointer that was moving according to a step-wise predefined sequence.

The results showed that the delays were considerably different when the step of the

target pointer was in close temporal proximity to a preceding step, providing evidence

of refractoriness and of an underlying serial ballistic process.

Recently, Gollee et al. (2017) relied on intermittent control to provide an explana-

tion for the nonlinear component of human motor output called the remnant. Tradi-

tionally, the remnant has been attributed to random sensorimotor noise coming from

multiple sources and it has been explained from a computational point of view us-

ing continuous control with suitable added noise (Kleinman, 1969; Kleinman et al.,

1970; Kooij and Vlugt, 2007; Van Der Kooij and Peterka, 2011; Kiemel et al., 2011).
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However, the results shown by Gollee demonstrate that for the first and second order

visuo-manual tracking tasks of the joystick experiments of Loram et al. (2011), the

motor output comprised by a linear component and the nonlinear remnant can be ex-

plained by the triggering mechanism of intermittent control, which uses event-driven

sampling based on prediction and thresholds. Moreover, the intermittent control model

explained the total joystick power more accurately than a continuous model. The au-

thors suggest that since executive decision making is related to aperiodic sampling

processes within frontal, stratial, and parietal networks in the brain, then these struc-

tures are important for visuo-manual tracking tasks. The analysis methods presented

in their work might contribute in the study of the links between executive functions

and sensorimotor control, which is particularly relevant to neurological disorders like

Parkinson’s disease.

Evidence of movement intermittency has been observed also in complex motion tasks

such as grasping and drawing. Doeringer and Hogan (1998) performed arm motion

experiments to find out if a series of preplanned actions could appear in a drawing task

even if visual feedback was not given to the subject. The results show that intermit-

tency is not affected significantly if no visual aid is given and that it is not due to an

additive noise process at the output of the system, suggesting that it is a direct result

of how the movement is planned, being a fundamental feature of motion behaviour.

Experiments in rapid pronation/supination movements in monkeys during a tracking

task also showed that the observed movement irregularities could not be explained as

a continuous control process, suggesting that they are a direct result of an intermittent

control mechanism (Fishbach et al., 2005). Force field compensation has been a com-

mon paradigm to test movement under the influence of external perturbations. The

results of Squeri et al. (2010) show that the overall control patterns in a visuo-manual

tracking task are not affected by the influence of a large deviating force field and that

they are characterised by intermittency.

Overall, the amount of evidence supporting intermittency in human motor control is

significant and well documented. Nevertheless, different structures of the intermittent

controller have been proposed over the years. The following section presents the most

common representations of an intermittent controller from an engineering perspective

and functional descriptions of the most important elements across them.
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2.3 Models of intermittent control

The demanding control goals of most engineering problems have forced engineers to

design algorithms that are flexible, capable of adapting to new conditions and to com-

ply with operation conditions. Many applications are restricted in the sense that the

outputs and inputs are only feasible if they are defined within a specific range, in other

words, they are constrained. The development in computational power allowed engi-

neers to implement optimisation strategies that would guarantee stable solutions while

meeting constraints. A powerful scheme that is greatly influenced from this ideas is

known as model predictive control (MPC). This strategy has been used in many ar-

eas of engineering with interesting results (Morari and Lee, 1999; Wang, 2009) and it

helped Ronco et al. (1999) to propose the first modern version of intermittent control.

In discrete MPC, an optimisation procedure takes place every iteration or time step

based on a time window, commonly known as moving horizon. This prediction calcu-

lates a control action for the entire moving horizon, yet it only applies the first value

of the sequence, disregarding the rest. This requires that the optimisation procedure

must finish within one time step to avoid timing problems. This problem was avoided

by using a time window that remained static for some time, applying an open-loop

control signal that was a result of the optimisation procedure; once the time in the

moving horizon elapsed, a new optimisation is performed an a new control signal is

calculated. This clever reformulation of the problem allows computationally expensive

optimisation procedures to finish over an extended amount of time. This ideas were

tested in a simulated inverted pendulum showing that both MPC and the intermittent

approach give similar results when the optimisation windows are small; however, the

intermittent controller gives better results when the sampling times are increased, also

when un-modelled dynamics are considered in the simulation and in the presence of

observation noise.

The work of Ronco et al. (1999) assumes that the moving horizon, or in other words,

the open-loop interval is fixed, which is similar to the ideas proposed by Neilson et al.

(1988) in their three stage model. Alternatively, the findings of Navas and Stark (1968);

Loram et al. (2012) related to fixed sampling (or clock-driven behaviour) are not able

to explain reaction times to discrete stimuli, leading to the suggestion that intermittent

control adjusts the open-loop windows based on an error signal crossing a threshold,

generating events. This resulted in a more general form known as event-driven inter-

mittent control (Gawthrop and Wang, 2009a; Bottaro et al., 2005, 2008; Åström, 2008;

Asai et al., 2009; Kowalczyk et al., 2012), which is capable of reproducing clock-driven

control as a special case as well as continuous control. This property is powerful since

it gives an explanation to cases where external perturbations or un-modelled dynamics
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affect the system in such a way that events must be generated all the time to reject

their effect. Very interesting results were then derived from a frequency point of view

for clock-driven intermittent control, exploiting the regularity of a fixed open-loop in-

terval to perform a frequency analysis (Gawthrop, 2009). These ideas were used by

(Gollee et al., 2012) to propose a two-stage approach for the frequency domain iden-

tification of a closed-loop system, defined by the manual control of a virtual unstable

load. The first stage involved the calculation of the frequency response of the system

based on the experimental data. The second stage was the fitting of different paramet-

ric models, defined in this case by continuous and intermittent predictive controllers,

as well as a non-predictive continuous version. The results show that both predic-

tive controllers (continuous and intermittent) provide equally valid descriptions of the

data, whereas the non-predictive controller resulted in time-delay estimates that were

significantly smaller than the ones obtained with the predictive versions.

The alternation between closed and open-loop regimes, regardless if it is clock or

event-driven, is what constitutes an intermittent controller and its most distinctive

feature. In biological control systems this alternation might be helpful to understand

the causality of actions and the properties and effects of external disturbances; some

experiments show that during sustained movement, sensory perception is attenuated

(Chapman et al., 1987; Collins et al., 1998), probably triggered by the expectation of

voluntary movement (Voss et al., 2008). But perhaps what goes on during two different

instances of feedback is another fundamental point of distinction between intermittent

controllers.

Based on the concept of a switched system that turns on and off a stabilising controller,

a possible way to describe an intermittent controller is by not applying any control

signal during the open-loop intervals. This can be seen as a zero control approach

that is alternated with a control signal from a feedback controller. This idea has

been used by (Insperger, 2006; Asai et al., 2009; Kowalczyk et al., 2012) to propose

intermittent models. Using a different approach, Gawthrop and Wang (2007) proposed

an intermittent controller that would generate similar output properties compared to

those of a continuous controller. They proposed that the open-loop evolution should be

dictated by a dynamical system that matches the closed-loop response of the system.

For this reason, this feature was called the system-matched hold (SMH), referring to a

hold mechanism that generates this signal, which is updated by feedback every time

there is an event (Gawthrop and Wang, 2011). This resulted in an important property

of intermittent control which is that its behaviour can be indistinguishable compared

to a continuous controller, in the absence of external disturbances, and delayed only

by a minimum intermittent interval (Gawthrop et al., 2011).
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This masquerading property is a central idea in the interpretation of biological systems

driven by intermittent control. The fact that an open-loop control model replicates

the overall closed-loop behaviour of the system provides a solid ground to establish

triggering mechanisms that would generate the events mentioned earlier. In event-

driven control, an event is created if there is a significant discrepancy between the

feedback information coming in the form of system states and the hold states. Normally,

such a difference might be introduced by disturbances or even by noise. If this difference

is greater than a predefined threshold, then the triggering mechanism creates an event.

The events indicate that the controller should rely more heavily on the use of feedback

to reduce the difference. This version of intermittent control was implemented in

real-time engineering structures in (Gawthrop and Wang, 2006; Gawthrop and Gollee,

2012) opening the path to its implementation in other kind of systems.

Influenced by the results in (Loram et al., 2011), an alternative version of intermit-

tent control was generated based on inter-sample behaviour generated by orthogonal

functions and in particular, Laguerre polynomials (Gawthrop and Gollee, 2012), called

intermittent tapping control (ITC). This exploits the simplicity of Laguerre polynomi-

als to generate control signals that approximate the notion of a tap or in other words,

impulse-like control signals with a short time constant (i.e. as in the gentle tap ap-

proach to control a virtual inverted pendulum described in (Loram et al., 2011)). This

version was proposed as a discontinuous approach to control mechanical systems, with

possible applications to systems where nonlinear friction might be a problem, helping

to overcome stiction in order to initiate movement.

Lastly, the SMH and ITC versions of intermittent control are both closely related to

the OPF model by Kleinman (1969) since both implement predictors to compensate

for feedback and processing delays. However, it is known that as time delays grow

in a continuous control system, the stability margins get reduced (Goodwin et al.,

2001; Bottaro et al., 2008) while intermittent control is more robust to this condition

(Gawthrop et al., 2011). Prediction in this context is not only restricted to overcoming

the effects of the different delays present in human control systems, it also considers the

predictions that the brain makes about the consequences of applied motor commands

based on internal-forward models operating optimally. These ideas have been studied

and integrated in a framework relying on the concepts of optimal control and Bayesian

integration of sensory information and predictions, which is considered the dominant

paradigm to understand motor control from a computational point of view (Miall et al.,

1993b; Miall and Wolpert, 1996; Wolpert et al., 1998; Bhushan and Shadmehr, 1999;

Todorov and Jordan, 2002; Todorov, 2004; Shadmehr and Krakauer, 2008). Similarly,

there are theories that introduce prediction as an intricate part of perception; where
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the minimisation of prediction errors is what drives motor commands (Friston, 2008;

Friston et al., 2009; Friston, 2010, 2011; Friston et al., 2011; Clark, 2013). This con-

cept combines a forward model that outputs predictions of sensory inputs and state

estimation into one generative model, which is expressed in terms of a Bayesian fil-

tering problem that takes into account prior information and beliefs. It also makes

a substantial difference in terms of replacing the traditional cost functions associated

with optimal control by recasting them in terms of Bayesian inference.

Although explicit state-prediction might not be necessary to design a simple intermit-

tent controller from an engineering perspective, it definitely needs to be included to

model human control systems using control engineering concepts, where feedback and

processing delays play a major role in the system dynamics.

2.4 Humanoid motion control

The rapidly evolving nature of technology and the widespread use of machines in

everyday life has left us with an important question: Are machines going to be as

intelligent as a human being? and if they do, would they look like like us? Since the

beginning of cybernetics and automation, the race to build reliable and useful robotic

machines started. Probably the field of industrial robotics got most of the attention

because of the financial implications of having faster and more precise manufacturing,

resulting in carefully optimised supply chains and reduced costs. However, the idea of

developing a robot that is indistinguishable from a human is probably attractive and

frightening at the same time, since it poses philosophical questions in many areas of

man-machine interaction.

Building such a robot is certainly one of the main motivations behind many research

teams and companies around the world, where not only the built-in intelligence must

allow flexibility and computational power, but also the movements should be smooth

and precise, being able to adapt to any possible scenario. These ideas resulted in

the development of soft robotics, which aims to build flexible robots from compliant

materials, mimicking the behaviour of living organisms.

Although the progress in terms of movement control for robots has been outstanding,

it is still clear that most humanoid robots move in a mechanical way that could not

be associated to that from a human (except from some notable exceptions), and that

it is not easy to design effective control algorithms for this purpose. In this sense,

appropriate bio-mechanically inspired motion controllers are needed, to leave behind
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the conventional kinematic motion methods that have been inherited from industrial

manipulators which are mainly based on the continuous use of feedback (Tomei, 1991;

Qu and Dorsey, 1991; Kelly, 1997; Hsu and Fu, 2006; Park and Chung, 2000).

Computational power has been an important consideration in terms of determining

the appropriate control method in humanoid robots. The earliest robots had very

limited capabilities to compute motion trajectories online, therefore, roboticists re-

lied on offline trajectory generation which implemented optimisation routines that

took into account energy expenditure and planar models (Cabodevila et al., 1995;

Chevallereau et al., 1998; Roussel et al., 1998). The start of the 21st century brought

the first optimal motion patterns based on complete nonlinear dynamics, including

enough computational power to consider open-loop trajectory stability and mass dis-

tributions (Buschmann et al., 2005; Mombaur, 2009). Still, the computations associ-

ated with these schemes were too complex to be performed online in order to meet

the real-time constraints of the system, this resulted in control approaches that used

banks of offline generated trajectories that were retrieved online depending on the state

of the robot, to then be stabilised by a feedback controller (Denk and Schmidt, 2001;

Wieber and Chevallereau, 2006; Liu and Atkeson, 2009; Tedrake et al., 2010).

In recent years, numerical optimisation routines developed considerably and process-

ing power stopped being a such a strong limitation, this led to more online based

control algorithms and planning strategies in humanoid control. Most of the work has

been based on simplified inverted pendulum models (Kajita et al., 2001; Loffler et al.,

2004; de Boer, 2012; Englsberger et al., 2011), with solutions that applied finite differ-

ence approximations (Kagami et al., 2002), optimal control theory (Urata et al., 2011;

Hu and Mombaur, 2017; Hawley and Suleiman, 2017), and MPC (Mayne et al., 2000;

Erez et al., 2013; Koenemann et al., 2015; Castano et al., 2016). In this context, MPC

has gained popularity due to relatively simple implementation and the flexibility to

deal with hard constraints (Richalet, 1993; Naveau et al., 2017).

The inverted pendulum model has been used significantly to derive controllers for hu-

manoid robots, allowing descriptions that capture the essential features of the whole-

body dynamics. The control approach taken most of the time implies the careful track-

ing of the CoM with respect to the contact points and the reaction forces they produce.

The Zero Moment Point (ZMP) is normally defined as the distribution of forces around

the robot’s foot and the ground (Vukobratović and Stepanenko, 1972). The relation-

ship between the CoM and the ZMP has been captured in models that have been

used to provide motion trajectories and stable waking patterns in humanoids. Wieber

(2006) used the ZMP in combination with linear MPC to generate stable walking mo-
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tion in the presence of strong lateral perturbations, including a stability analysis of

the control scheme and the inclusion of constraints on the ZMP. Another example is

the balance and walking patters achieved in Honda’s Asimo robot, which used ZMP

as a measure of dynamic balance and as a reference, to implement MPC based on a

three mass model. After the introduction of the concept of the Capture Point (CP)

by Pratt et al. (2006), as the point on the ground where the control mechanism should

place the ZMP in order to stop the motion of the CoM, Krause et al. (2012) provided

a solution in terms of MPC to stabilise the unstable dynamics related to the CP by

relying on feedback instead of an online pattern generator. They achieved this by sep-

arating the problem into a an outer CP control loop which generated an input to an

inner loop ZMP controller.

The work by Koenemann et al. (2015) also uses MPC in combination with an optimal

control strategy for the problem of whole-body motion on the HRP-2 robot. This

was the first implementation of its kind on a humanoid robot directed to balance

control including constraints such as collisions and joint limits. Similarly, the work

by Castano et al. (2016) involves the use of Robust MPC, on the COMAN humanoid

robot, to compensate for the deviations of the CoM using a primary ZMP controller.

By incorporating a second stabilising controller in charge of body orientation, they

were able to reject external disturbances.

MPC is based on an receding horizon optimisation procedure that calculates a con-

trol signal within a defined time-step. The fact that MPC can be applied to a wide

variety of systems including actuator limitations and allowing safe operation closer

to actual system constraints, imposes a trade-off between generality and efficiency,

that leads in some cases to computationally demanding routines. A way of deal-

ing with this timing requirement is to design efficient and fast optimisation routines

(Slotine and Yang, 1989; Diehl et al., 2006; Todorov, 2004; Todorov and Li, 2005).

The work of Alamir and Boyer (2003); Alamir and Marchand (2003); Alamir (2004);

Alamir and Boyer (2006) shows that MPC implementations might be obtained for

problems where constrained stabilisation is required; in fact, they are based on the

efficient calculation of open-loop steering trajectories. These trajectories are system

dependent, therefore in order to improve the efficiency of the overall algorithm, a low

dimensional parameterisation of them can be obtained resulting in a low dimensional

MPC problem. Similarly, Bobrow et al. (2006) developed efficient optimal solvers for

inverse and forward dynamics through the use of Riccati differential equations, apply-

ing them to under-actuated robots and one-dimensional hopping structures. Along the

same line, the work of Featherstone (2010a,b) uses spatial vectors to reduce the num-

ber of equations and algebraic operations involved in solving dynamic equations and
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kinematic chains using recursive Newton-Euler algorithms. This has been exploited

by roboticists to simplify optimisation routines in robotic structures. Featherstone’s

methods are particularly suitable for robots having branched connectivity, which in-

clude robot arms, multifingered grippers and humanoid robots.

Neunert et al. (2014) proposed a control scheme that used full-state feedback MPC

on a real robot called Rezero. To solve the optimisation an iterative linear quadratic

Gaussian method was implemented in real-time and in an efficient way since it only

requires first order derivatives of the system dynamics. This scheme uses an outer

control loop that modulates the MPC algorithm influencing specific features like the

time horizon and the cost function used in the optimisation procedure or even change

the assumed system dynamics. This outer loop effectively introduces changes in the

behaviour of the robot in a similar way to the proposed architecture of (Loram et al.,

2009; van de Kamp et al., 2013a), the similarity relies on having a high-level controller

that provides goals and references to low-level fast continuous controllers. These ideas

allow us to hypothesise that intermittent control might be able to not only perform as

high-level controller in humanoid robotics but also as a mechanism that reduces the

computational load on the system by introducing open-loop intervals.

2.5 Adaptation and intermittent control

Adaptation can be defined broadly as the processing of sensory information, in a chang-

ing environment, with the purpose of adjusting the control law in order to improve the

overall performance for a particular task. This is a very simple definition, yet it illus-

trates a powerful capability of biological control. Human motor control not only has

to be adaptive, but it also needs to learn new skills, implement new functions, and

find optimal performance (Karniel, 2011). This point of view by Karniel is helpful to

understand what adaptation means in this context, and with the use of concepts from

control engineering it is possible to establish a more specific definition. A visual rep-

resentation about the elements that constitute adaptation is given in Fig. 2.1, where a

distinction is made in terms of the amount of knowledge about the system to be con-

trolled (or the task to be performed), and in terms of what elements of the controller

are being adjusted.

From a control engineering perspective, the overall structure of the system must be

known in order to formulate an appropriate controller, this includes the parameters

(coefficients) that are affecting the main variables of the system. If this is the case,

then a fixed control law is suitable, meaning that the gains or constants describing
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Feedback Adaptation Learning

Known system

Known parameters

Known system

Unknown parameters

Unknown system

Unknown parameters

Fixed control Adjusts control gains

Adjusts control gains

and control structure

Figure 2.1: Feedback - Adaptation - Learning diagram. These mechanisms are shown
in terms of the available amount of knowledge about the system structure and its
parameters, with a distinction based on what control features are adjusted.

the control law do not change throughout the task or during the time the controller

is operating. This scheme implies that the control signal is modulated only by the

changes in the feedback signals and that there are no variations in both the structure

and parameters of the system; the control signals are generated in real-time delayed

only by the inherent transmission delays. This situation is represented in Fig. 2.1 by

the box labelled as Feedback.

There are also situations where the system parameters are not known precisely or they

even have a time-varying nature, while the system structure remains the same. This

is what we would consider throughout this thesis as Adaptation (represented by the

middle box in Fig. 2.1), since in order to reduce the effects of the uncertainties, the

parameters must be estimated and used to adjust the control law accordingly. An

important distinction is that adaptation forgets about a particular configuration as

new information comes in, meaning that if the system parameters return to a set that

the controller has seen before (due to variations), it would still try to obtain a new set

of gains for the control law based on estimates, instead of recalling it from a memory

mechanism. In contrast with a feedback only approach, an adaptive controller not only

modulates the control signal by using the sensory signals provided as feedback, but it

also does it by adjusting the gains of the control law based on the available information.

Learning is a process that would use both feedback and adaptation against parametric

uncertainties, but it would also be capable of adjusting the structure of the control

law in order to produce a new behaviour or function. This can be seen as using

a different control strategy depending on the task or the structure of the controlled

system. While it is possible to argue that adaptation might also modify the structure

of the control law specially when a specific parameter takes a value of zero, we shall

consider this situations as special cases of parametric adaptation. A learning system
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then, uses these changes to gradually improve the performance for a known task, while

being flexible to adjust itself if there is a new task to learn. This means that learning

also identifies structural changes in the system that is being controlled, in contrast

with adaptation, which is used for the case when parametric changes are present.

Some forms of adaptation might be able to also modify the structure of the control

law, as in learning. For instance, a switching control system might achieve this by

using an array of control laws, which might be structurally different between them,

and switch according to a specific criterion. The difference between this adaptation

approach and a learning system relies in the fact that learning finds out the correct

control law (including its structure) on the go, without or with a little amount previous

knowledge, whereas a switching system uses previously tested controllers to deal with

different operating conditions and changes in the environment.

In human motor control, adaptation and learning are processes that are tightly related,

and in some cases it is not easy to establish a clear line as to when adaptation ends and

when learning starts taking place. Nevertheless, Fig. 2.1 provides a simple classification

that relies heavily on the concept of a System, viewed as a process that can be described

by a set of differential equations that are weighted by parameters. If the parameters

change or if there is uncertainty about their values, then adaptation is the process

that tracks the varying parameters or obtains the unknown values using an estimation

procedure, to then adjust the control parameters or gains.

Based on the previous ideas, it can be said that the main features of the biological

controller are flexibility and generality. With the emergence of computational models

of the human controller, ideas coming from adaptive control and learning theory have

been used to give a functional explanation of these features. Normally these models

are based on mathematical descriptions of the system to be controlled, which are

improved by fitting the parameters of the model to experimental data. This is not

a simple procedure since the model would have to explain reliably a highly nonlinear

system, that is redundant in many levels. Still, there are many examples of adaptation

models that have been able to replicate some properties in motor control.

Donchin et al. (2003) studied adaptation occurring trial to trial of a task that involved

reaching movements in a velocity-dependent force field. The results showed that under

the assumption of a fixed desired trajectory, error in a specific movement direction

could be generalised in a bimodal pattern to directions that are in close proximity,

suggesting that adaptation can be described as a multidimensional hidden state that

changes according to the errors experienced in previous trials and depending on the

basis functions used to represent the task. In similar experiments, Izawa et al. (2008)
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evaluated reaching movements in velocity dependent force fields from a stochastic point

of view, where the variance of the force field changed every trial and the force was

perpendicular to the direction of motion. In these experiments the results showed

that overcompensation in the force produced by the subjects disappeared and the peak

movement speed increased. In a deterministic environment, overcompensation does

not occur. These results imply that motor adaptation is a process of adjusting our

internal models through time when facing a new environment rather that cancelling

the effects of it to return to a baseline state.

Motor adaptation has been tested in bimanual tasks involving rhythmic movements of

the index finger (Klaiman and Karniel, 2006), showing evidence of the existence of in-

ternal representations of coordinative motor tasks. In these experiments, the subjects

were trained using altered visual feedback of the required tapping frequency, never-

theless a gradual decrease in the task performance error was observed throughout the

experiment which was visible from the beginning of the training trials; this suggests

a learning process that starts a soon as the subject goes into training. Also, they

observed aftereffects and washout when the altered visual feedback returned back to

normal suggesting an underlying adaptive process. Levy et al. (2010) performed in-

teresting experiments linking motor adaptation and delayed force perturbations. Two

groups performed reaching movements under the influence of force fields, one did it

without any delay, the other had a delay of 50 ms acting on the applied force. They

observed deviations from the reference trajectory that were shifted in time between test

and control groups during catch trials (trials where the forced field was turned off),

which indicates that the subjects were expecting a force field. This shows that subjects

successfully adapted to the 50 ms delay. An important conclusion supported by this

study is that the internal representation that the brain uses to perform this task is

capable of employing time representations, suggesting that the adaptation mechanisms

might actively compensate for the varying delays in the sensorimotor system.

Adaptation in control engineering has been studied extensively with applications in

different areas (Åström and Wittenmark, 1995; Feng and Lozano, 1999; Landau et al.,

2011); however, many opinions and feelings about what constitutes an adaptive con-

troller have been exposed, without getting to an actual agreement for a long time.

Eventually, the field converged to the idea that if a controller is capable of changing its

parameters to obtain a better performance, then this would be some kind of adaptive

controller. Often, an adaptive controller is seen as controller that learns how to oper-

ate in a new environment to produce acceptable performance, this point of view puts

adaptive control as some sort of very basic learning machine.
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Adaptive controllers have been proposed mostly for cases where the plant can be rep-

resented as a linear time-varying system, where the parameters associated to the dy-

namical equations change through time. In that sense, and adaptive controller has

two main purposes: i) to detect this variations in the parameters or in the output

values, ii) and adjust a predefined control law according to this changes. This can

be done in different ways, for instance, a model of the desired output behaviour can

be built in order to compare it against the output of the real system. The difference

between the two outputs is then used to drive an adjustment mechanism that attempts

to make the outputs match. This strategy is known as model reference adaptive con-

trol (MRAC) (Chalam, 1987). Also, the concept of gain scheduling as explained by

Narendra and Annaswamy (1989), has been used as a basic form of adaptive control

to deal with systems over a wide range of operating conditions. The basic idea is that

for some systems the amplitude of the control input might change substantially as the

system enters a different operating condition and in order to keep the output at the

desired average value, a gain is adjusted. The key concept is that before the execution,

an array of gains can be computed for each of the operating conditions that the system

might be working on, and assuming that measurements are available, the controller

selects between them online.

Perhaps the most common form of an adaptive controller is to use a self-tuning ar-

chitecture (Åström et al., 1977; Clarke and Gawthrop, 1981; Gawthrop, 1982), with

direct and indirect representations. The indirect self-tuning architecture uses an on-

line parameter estimator to identify the varying parameters of the plant, it also uses

a control design algorithm that takes the newly estimated parameters to adjust the

control law accordingly. It can be seen as a two stage sequential approach. On the

contrary, a direct approach is parameterised in such a way that parameter estimation

routine would yield the controller parameters directly, without the need of a control

design stage. An advantage of indirect self-tuning controllers is that the parameter es-

timation algorithm is completely independent from the design stage, allowing for easy

testing and clear differentiation of the two stages.

Most of the aforementioned adaptive controllers are based on continuous monitoring

of inputs and outputs in order to estimate parameters, and a subsequent continuous

redesign of the controller gains. If the parameter estimation procedure is operating,

then the control law is adjusted every sampling interval. Some authors suggest that

once the parameters have been estimated accurately, the parameter estimation proce-

dure can be disabled in order to avoid parameter drift (Giri et al., 1991), which is a

consequence of the low excitation levels of the control input, specially once the system

reaches the desired steady-state. Ensuring that the controller will produce a persis-
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tently exciting signal is one of the main concerns of adaptive control in general, since

the estimation procedure must remain aware of any possible changes in the parameters

at all times while maintaining its stability properties, this trade-off has been formulated

in other contexts as the stability-plasticity dilemma (Carpenter and Grossberg, 1988).

The introduction of auxiliary signals that provide extra levels excitation, allowing the

parameter estimation procedure to converge to the correct values even when not much

is happening in the system, has been proposed as a counteract measure (Landau et al.,

2011); however, this is not always possible, specially in some restricted real-time en-

vironments, with the potential drawback of increasing the steady-state error of the

system outputs.

In the previous sections, the virtual inverted pendulum experiments performed by

Loram et al. (2011) were discussed. One of the important conclusions from this work

is that opening the loop for a small amount of time using a tapping strategy had

interesting benefits, arguing that between taps it is easier to establish the causality

of the signals in the system. Also, they suggest that the impulse-like control signal

that is generated by the tapping strategy provides a natural mechanism to probe the

system constantly. It is possible to relate this idea to the persistent excitation problem

of continuous adaptive control exposed in the previous paragraph, suggesting that a

hybrid strategy such as intermittent control might provide a control signal that excites

the system in a way that parameter estimation can be performed while having output

errors that are comparable to those from a continuous approach. These ideas led to

the first formulation of adaptive intermittent control.

Gawthrop et al. (2015) explored the application of adaptive intermittent control in

simulation examples covering human standing and reaching movements under a force-

field. In both cases, the system was expressed in a non-minimal state-space (NMSS)

form that is linear in the parameters (Young et al., 1987, 1991; Taylor et al., 2000)

under an indirect self-tuning configuration. The NMSS approach allows to measure

the states directly, therefore an observer is not needed. In this case, continuous-time

parameter estimation was implemented using recursive least squares methods with a

forgetting factor (Åström and Wittenmark, 1995; Åström et al., 1977) in combination

with state-variable filters (Young, 1981). Gawthrop’s results showed that it is pos-

sible to evaluate adaptation in a human motor context with parameter estimation;

additionally, a suggestion is made in terms of exploiting the structure of self-tuners in

order to test other state-space estimation methods such as Kalman filters, which can

be extended easily to a multivariable scenario.

Kalman filters have been used in many areas of engineering since their introduction
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(Kalman, 1960), specially after many improvements that have allowed the original

structure of the filter to deal with nonlinear problems Julier et al. (1995); Simon (2006).

These filters are unbiased, minimum error variance recursive algorithms that can be

used to optimally estimate the unknown states of a dynamical system as well as its

parameters, from noisy data measured in real-time. Because of its properties, the

Kalman filter is the best possible linear estimator (Haykin, 2001). It has a successful

history of applications where both parameters and states of the controlled plant had to

be estimated (Van Der Merwe and Wan, 2001; Simon, 2006; Manganiello et al., 2015;

Morrison and Cebon, 2016).

Many interesting versions of the filter have been proposed recently, however, the ones

that are probably more common in literature are known as Extended and Unscented

Kalman filters. The Extended Kalman filter (EKF) is a powerful approach in the

sense that it uses a linearisation procedure to obtain linear representations of a non-

linear plant every time step, reducing the complexity of the problem considerably

(Mcgee et al., 1985), whereas the Unscented Kalman filter (UKF) is based on a sta-

tistical unscented transformation that projects mean and covariance estimates of the

original nonlinear system. These two filters are interesting from the perspective of

adaptive control since they provide a way of solving the state and parameter estima-

tion problem in one single algorithm.

Wolpert (1997) proposed an elegant formulation of the Kalman filter as a fundamental

entity in a model of sensorimotor integration. In this paper, the Kalman filter is seen

as an internal model that combines predicted and sensory feedback, to generate an

optimal state estimate which is used by a forward model that describes the dynamics

of a human arm. From this perspective, the notion of the intermittent controller being

an intermittent action, continuous observation scheme (Gawthrop et al., 2011), allows

us to hypothesise that the Kalman filter is an algorithm that fits in the adaptation

context accordingly, capable of solving the continuous monitoring of the system states,

while tracking time-varying parameters.

The following chapter explains the theoretical aspects of the existing framework of in-

termittent control, introducing it from a control engineering perspective and providing

mathematical details of each of its components. This is followed by the introduction of

adaptive intermittent control based on Kalman filters and a self-tuning achitecture to

estimate both parameters and states of a given system; this control scheme constitutes

an important contribution of this thesis.
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Chapter 3

Intermittent control theory and

adaptation

3.1 Introduction

The theory of continuous control has been used in the past to describe human motor

control (Kleinman, 1969; Baron et al., 1970), where the available sensory information is

used as feedback; this fundamental concept of a feedback mechanism commonly implies

that the information that the sensors in place are gathering, is used every single instant

in time to compute a suitable control action. This is in fact how the vast majority of

the control problems in engineering have been solved, backed up by a great amount of

research devoted to fully understand the use of different control architectures, where

all of them share the central feature of continuous feedback.

Alternatively, the characteristics of some control problems forced the engineers to look

for other solutions. For instance, the sensors used to convey the information back to the

controller might have a finite rate at which the information can actually be transmitted

(Nair and Evans, 2003), leaving the controller with less information available, which in

some cases, can result in unstable responses.

Similarly, the system to be controlled might have to comply with input and output re-

strictions, also known as constraints in the control literature; for example, the output

of a system might have to stay bounded to ensure safe operation, or the input should

be restricted as well in order to avoid wear or even failure of the devices generating

the control signal. These conditions are commonly solved by optimisation approaches

(Gawthrop and Wang, 2009b), where an online routine based on the available informa-

tion should be executed to ensure that the constraints are met. A limitation of such
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controllers is that since they have to be implemented digitally, the sampling frequency

of the system might not allow the optimisation procedure to finish before the next

sample is taken, making the implementation difficult in some cases (Morari and Lee,

1999). Some authors have developed efficient methods to perform faster optimisations

in order to circumvent this limitation (Diehl et al., 2006) as well as simplifying the com-

putational effort by converting a nonlinear problem into a linear one (Lee and Ricker,

1993).

The previous ideas gave rise to hybrid approaches that alternated feedback control with

open-loop trajectories in a variety of ways, generating a range of controllers that were

able to deal systems over low-bandwidth channels and using the open-loop interval

to finish complex optimisation procedures (Ronco et al., 1999; Gawthrop et al., 2012,

2013).

In the human motor control context, there is evidence showing that some human con-

trol systems are driven by intermittent ballistic actions or events (Craik, 1947; Vince,

1948; Navas and Stark, 1968) and several authors have used the concept of Intermit-

tent Control (IC) as a computational model to support these ideas (Miall et al., 1993a;

Bhushan and Shadmehr, 1999; Loram and Lakie, 2002; Loram et al., 2011). These

schemes are based on the psychological refractory period (PRP) observed by Telford

(1931) in the context of double-response time experiments. This result suggests that

humans, when asked to respond to a series of rapid stimuli in a manual tracking task,

have to wait until the PRP has elapsed in order to initiate a response to the new stim-

uli in the sequence, becoming unable to respond to newly available information. This

concept matches the alternate nature of the hybrid controllers described in previous

paragraphs, with the caveat of having a minimum open-loop interval condition before

a new set of feedback values could be used.

For these reasons IC has been proposed as computational paradigm to explain hu-

man motor control under different experimental conditions (Gawthrop et al., 2011;

van de Kamp et al., 2013a,b) and as a suitable alternative to control engineering sys-

tems with low computational power, low bandwidth channels and/or with system un-

certainty.

As stated by (Gawthrop et al., 2014), there are different architectures of IC. The main

difference between most of them is in terms of the inter-sample behaviour, where

some approaches reset the control signal to zero according to a predefined criterion

(Insperger, 2006; Estrada and Antsaklis, 2008; bin Mohd Taib et al., 2013), and oth-

ers use a generalised hold (Montestruque and Antsaklis, 2003; Gawthrop and Wang,
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2007). Another distinction of IC is that it can be set use feedback in fixed intervals,

giving a clock-driven (periodic) behaviour, or based on events generated by a threshold

mechanism. For the purpose of this thesis, special emphasis is made on event-based

IC based on a generalised hold.

This chapter is organised into two main parts, first an overall explanation of existing

theory about intermittent control is given, including a simulation example that illus-

trates its use by means of a simulation case study that involves the inverted pendulum

model for human standing. The second part discusses the concept of adaptation and

its integration into the IC framework, it introduces a state-space formulation of an

adaptive intermittent controller that relies on Kalman filters to perform state and pa-

rameter estimation. The formulation of this controller, as well as its validation both in

simulation and experimentally, constitutes one of the main contributions of this thesis.

3.2 Intermittent control

The intermittent controller discussed in (Gawthrop et al., 2011), is based on the observer-

predictor-feedback (OPF) model of Kleinman (1969), which is continuous in nature.

This controller was used to model human motor control tasks in the presence of time

delays. Fig. 3.1 shows a block-diagram representation of this scheme.

NMS System Observer

State FB Delay Predictor

d(t)

ue(t)

y(t)

xssw(t)

xo(t) xw(t)

xw(t)xp(t)xp(t − td)

u(t)

+ − + −

Figure 3.1: The quantities d, y, u, w represent disturbances, outputs, inputs, and
setpoints respectively. The product xssw is the vector version of the setpoint w. The
observed states are defined by xo. The time delay is denoted by td which is compen-
sated in the predicted states represented by xp. ue is the control signal after being
affected by the dynamics of the neuro-muscular system. The thick lines/arrows of the
diagram represent vector signals, whereas the thin ones represent scalar versions, for
the single-input single-output case. This figure is based on the representation given in
(Gawthrop et al., 2011).



3.2. Intermittent control 33

It can be seen from Fig. 3.1 that the model uses an Observer, which provides estimates

of the relevant states in the system, resembling the integration of sensory information.

Similarly, there is a Predictor in series with a Delay. Their purpose is to model various

delays that are present in the human controller, such as the central nervous system

delay. They can be seen as a mechanism that predicts the consequences of our motor

commands to overcome these delays.

The State FB block stands for state-feedback, it has the purpose of computing the

appropriate control action based on the predicted states. Finally, the NMS block

represents the neuro-muscular system (a model that captures the dynamics of our

muscles/actuators) that would eventually transmit the requested commands to the

System that is being controlled.

Designing a stable continuous controller as the one shown in Fig. 3.1 is fundamen-

tal to implement an intermittent controller. This procedure is called the underlying

continuous control design and it is based on linear control theory. It is comprised of

the following steps: steady-state design, feedback gain design, observer design, and

state-prediction implementation. The most important concepts of this procedure are

discussed in section 3.2.1.

The IC framework discussed in Gawthrop et al. (2011), extends the underlying con-

tinuous controller by adding three key features: a generalised hold, an intermittent

predictor, and a triggering mechanism. These features are explained in detail later

in this chapter, specifically in 3.2.3, 3.2.4, 3.2.5 respectively. Fig. 3.2 shows a block

diagram of the intermittent controller.

3.2.1 Underlying (continuous) control design

In order to ensure acceptable performance levels, this underlying continuous controller

must be designed carefully. This implies using modern control techniques to define

appropriate steady-state inputs and to calculate feedback gains that would comply

with specific system requirements. The following sections provide an explanation of

each step involved in the aforementioned continuous control design.
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NMS System Observer

Trigger

State FB Hold Delay Predictor

d(t)

ue(t)

y(t)

xssw(t)

xo(t) xw(t)

xw(t)

ti

xw(ti)

xp(ti)xp(ti − td)

xh(t)

u(t)

+ − + −

Figure 3.2: Diagram of the intermittent controller (Gawthrop et al., 2011). The hold
states xh are compared with the state-estimates xw in the Trigger block. If the differ-
ence exceeds a predefined threshold, then the block create events at times denoted by ti.
The hold states xh are used to generate the control signal u during the open-loop period,
and it is reset only at times ti by the predictor block. The dashed lines represent signals
that are defined only at ti. The thick lines/arrows of the diagram represent vector sig-
nals, whereas the thin ones represent scalar versions, for the single-input single-output
case. This figure is based on the representation given in (Gawthrop et al., 2011).

Closed-loop system

The plant to be controlled can be described by the following linear dynamical system

of order n

ẋ(t) = Ax(t) + Bu(t) + Bdd(t)

y(t) = Cx(t)

x(0) = x0 ,

(3.1)

where x ∈ R
n, y ∈ R

ny , u ∈ R
nu and d ∈ R

nu correspond to the system state, output,

input and disturbance respectively, and t represents continuous time. A is an n × n

matrix, B and Bd are n × nu, and C is ny × n.

A state-feedback controller with gain k, of the form

u(t) = −kx(t) , (3.2)

would stabilise the system given that it is controllable (Goodwin et al., 2001). The

resulting closed-loop system, defined by the state vector xc, after substituting (3.2) in
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(3.1) is

ẋc(t) = Acxc(t)

y(t) = Cxc(t)

xc(0) = x0 ,

(3.3)

where Ac is defined as follows

Ac = A − Bk . (3.4)

The selection of the control gain k determines the stability of the closed-loop matrix

Ac. In particular, if k is chosen in such a way that the real part of all the eigen-

values of Ac is negative, then the response of the system to finite initial conditions

will converge exponentially to zero as t → ∞, and is said to be asymptotically stable

(Kwakernaak and Sivan, 1972).

Steady-state design

Generally, a control-law would serve two main purposes, one is known as a regulation

problem, where the controller aims at steering an initial state x0 to the origin in a

finite amount of time by means of an input u while showing good disturbance rejection

properties. On the other hand, if the controller must also force the output y to follow

a reference signal, then this is known as a tracking problem.

To solve both problems successfully, the reference signal must be properly introduced to

the system equations. There are different ways to achieve this, as stated by Franklin et al.

(1994), although for the purpose of this thesis only one method is used, which is de-

scribed in the following paragraphs.

The control-law in (3.2) is commonly used to solve the regulation problem discussed

earlier. If this equation is to be used to control a system that must follow some sort

of reference, it will almost surely exhibit an error once the system reaches the steady-

state. To reduce this error to zero, the steady-state values of all states and of the

control input must be obtained.

Consider the system in (3.1) where d = 0. The system can be written as follows for a

constant steady-state regime

0n×1 = Axss(t) + Buss(t)

yss(t) = Cxss(t) ,
(3.5)
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where xss, uss, and yss correspond respectively to the steady-state versions of the

states, inputs, and outputs. Equation (3.5) can be solved for the case when the steady-

state output is equal to the reference trajectory or setpoint yss = w, for any value of

w. For the case where the output is yss = 1, it is possible to rewrite the steady-state

system (3.5) as follows





A B

C 0









xss

uss



 =





0n×1

1



 , (3.6)

and then solve for xss and uss. Thus, the control input in (3.2) can be redefined as

u(t) = −k (x(t) − xssw(t)) + ussw(t)

= −kx(t) + (uss + kxss) w(t) .
(3.7)

By defining r = uss + kxss, a simplified expression is obtained.

u(t) = −kx(t) + rw(t) . (3.8)

Expression (3.8) can be used for both regulation and tracking problems, allowing the

designer to compute matrices r and k offline. It is clear now that the only quantity

left to define in (3.8) is the feedback gain k, which multiplies the system states.

One common procedure to obtain k is to use a method known as pole-placement,

where the main advantage is that the poles of the closed-loop system can be arbitrarily

fixed at desired locations. Another possibility is to use an optimisation approach,

commonly referred to as the linear quadratic regulator (LQR) (Kwakernaak and Sivan,

1972; Franklin et al., 1994; Goodwin et al., 2001), which is a part of optimal control

theory. This method is briefly explained in the following section.

Linear quadratic regulator

The LQR method is based on the optimisation of a cost function (also known as

Performance Index) that depends on both the states and the inputs. Consider the

following cost function:

JLQR =
∫

∞

0

[

x(t)T Qcx(t) + u(t)T Rcu(t)
]

dt . (3.9)

Equation (3.9) can be interpreted as function that describes the energy of the closed-

loop system described by (3.3). If JLQR is kept small, then the energy of the closed-loop

system would be small as well. Both x and u in (3.9) are weighted by design matrices
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Qc (an n × n matrix) and Rc (an nu × nu matrix). A large Qc means that in order to

keep JLQR small, the state x should be smaller. Similarly, selecting a large Rc means

that the control input u must be smaller to keep JLQR small. In terms of the closed-

loop system, a large Qc would place the poles of (3.4) further to the left of the s-plane

resulting in a faster decay to zero. A large Rc would result in in less control effort used

to drive the system and poles that are slower (closer to the s-plane origin) and as a

consequence, larger values of state x.

The selection of the design matrices should ensure that Qc is selected to be positive

semi-definite and Rc to be positive definite. This guarantees that the cost function

JLQR is well defined by forcing the scalar x(t)T Qcx(t) to be always greater or equal to

zero for all t and the term u(t)T Rcu(t) to be positive for all values of u and t.

To obtain the closed-loop gain k, the following equation must be considered

AT P + PA + Qc − PBR−1
c BT P = 0 , (3.10)

where (3.10) is known as the algebraic Riccati equation (ARE), which can be solved

for the positive-definite matrix P. Once the solution is known, the control gain k can

be obtained as follows

k = R−1
c BT P . (3.11)

Solving equation (3.10) is not a simple task and a great amount of work has been done to

obtain reliable, numerically stable solutions. Most modern solvers use a combination of

matrix factorisation/manipulation routines and iterative methods to solve the problem

as described by Arnold and Laub (1984). A good introduction to some of these methods

and how to implement them in real-time can be found in Bini et al. (2011).

State observers

In the previous sections, it has been assumed that all the states that describe the system

behaviour are accessible for measurement. The reality is that in many situations it is

not possible to physically measure all variables, this poses a problem to all state-

feedback approaches since the control input relies heavily on past information of all

states. To solve this, a virtual sensor or observer can be implemented, that would

have the main goal of estimating the states that can not be measured based on the

available measurements. In other words, by recording the output of the system to a

known input signal, for a finite amount of time, it is possible to reconstruct the full

state vector, given that the dynamical equations of the system are known and if the

system is observable (Goodwin et al., 2001).
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In order derive a traditional observer, also known as a Luenberger observer (Luenberger,

1971), the error between our state estimates xo and the true state x must be defined

as follows

x̃(t) = x(t) − xo(t) , (3.12)

and the dynamics of the error are given by

˙̃x(t) = ẋ(t) − ẋo(t) = Ax̃ . (3.13)

The purpose is to force the error described by (3.12) to be as small as possible, this can

be achieved by feeding back a weighted difference of the measured outputs and their

estimates to the system described in (3.1)

ẋo(t) = Axo(t) + Bu(t) + L(y(t) − Cxo(t)) . (3.14)

The matrix L ∈ R
ny×n is known as the observer gain and the term L(y(t) − Cxo(t))

is called the innovation or correction term. It is important to see that if L = 0, then

expression (3.14) becomes the open-loop model described in (3.1).

Substituting both (3.14) and (3.1) in (3.13) yields

˙̃x(t) = Aox̃(t) , (3.15)

where Ao = A−LC. It can be seen that if L is designed in such a way that Ao is stable,

then the error between the estimates and the true states would eventually converge to

zero. It is normally a good idea to design L with the purpose of generating faster error

dynamics in comparison to the open-loop evolution of the system, ensuring that the

error would decay to zero in a short period of time. The observer gain L can be designed

using a pole-placement approach or by using the LQR method (Kwakernaak and Sivan,

1972; Goodwin et al., 2001), discussed in the previous section.

There is a trade-off between the speed of convergence and the transient response of

the observer since both depend on the eigenvalues of Ao. Depending on the design

considerations, the resulting observer might not be able to suppress high frequencies

entirely in the noise. In addition, model uncertainties can lead to biased estimates if

the operation range is beyond the linearity assumptions.

The Kalman filter

The use of state observers has proven to be an effective way to estimate variables in

many areas of engineering and research, this led to the development of different versions
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and extensions to nonlinear systems. One particular formulation of these extensions is

the Kalman filter (Kalman, 1960), which is a linear, unbiased, and minimum error vari-

ance recursive algorithm that optimally estimate the states of a stochastic dynamical

system.

The very first use of these filters was by engineers at NASA’s space program in the

1960s (Mcgee et al., 1985), and soon after that it became one of the most popular

and widely accepted estimation algorithms available, with applications in satellite nav-

igation, ballistic missile control, laser systems, radars, mapping and localisation in

robotics, etc.

The Kalman filter can be interpreted as a least squares approach where the error is

minimised and most of its derivations are made based on this idea (Gelb, 1974; Haykin,

2001; Simon, 2006). Although there are derivations of these filters for continuous sys-

tems (Bucy and Joseph, 1968; Lewis et al., 2007), the most common way of presenting

the algorithm is using a discrete framework, since it was conceived to be implemented

recursively in a digital computer. The next paragraphs give an introduction to the

basic formulation of the linear Kalman filter used as a state observer.

Consider the following linear system with Gaussian noise

xk = Axk−1 + Buk−1 + wk−1

yk = Cxk + vk ,
(3.16)

where x ∈ R
n, y ∈ R

ny , and u ∈ R
nu correspond to the system state, output and input

respectively, and k represents the discrete time index. Also, w ∈ R
n is the process

noise vector, v ∈ R
ny is the measurement noise vector, A is an n × n matrix, B is

n × nu, and C is ny × n.

Both process and measurement noise covariance terms are assumed to be uncorrelated,

additive, white, and Gaussian with zero mean and known covariance matrices Q and

R respectively, as in

wk ∼ N(0, Q)

vk ∼ N(0, R) ,
(3.17)

and the initial state of the system x̂0 is known with a corresponding uncertainty ex-

pressed by the initial error covariance matrix P0.

The Kalman filter works in a predictor-corrector sequence, this implies that the first

step of the filter is to predict the states x̂k and the error covariance Pk in order to obtain
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a-priori estimates (denoted by superscript −) for the next iteration. In this context,

the term prediction refers to the use of the available information and the system model

to evaluate the state vector one iteration ahead. The second step is to combine the

measurements yk coming in the form of feedback with a-priori estimates to improve

the result, obtaining a-posteriori estimates (denoted by superscript +).

The algorithm is defined by the following set of equations

• Prediction step

x̂−

k = Ax̂+
k−1 + Buk−1 (3.18)

P−

k = AP+
k−1A

T + Q (3.19)

Kk = P−

k CT
[

CP−

k CT + R
]

−1
(3.20)

• Correction step

x̂+
k = x̂−

k + Kk

[

yk − Cx̂−

k

]

(3.21)

P+
k = [I − KkC] P−

k , (3.22)

where I is an identity matrix of appropriate dimensions and Kk is known as the Kalman

gain. The algorithm can be initialised at k = 0 as follows

x̂0 = E [x0]

P0 = E
[

(x0 − E [x0]) (x0 − E [x0])T
]

,
(3.23)

and in this case, P0 represents the uncertainty in our initial state estimate x̂0 and

E [·] stands for the expectation operator. For implementation purposes, it is generally

possible to measure the noise covariance R by taking offline measurements to determine

the variance of the measurement noise. However, the situation is not the same for the

process noise covariance Q since normally it is not possible to directly observe the

process. Most of the time, Q and R are considered design parameters of the filter,

tuning both of them until the desired performance is obtained.

An important feature to notice is the similarity between (3.14) and (3.21), essentially

both equations share the same structure with the difference that in the Kalman filter

case, the gain K is adjusted every iteration, whereas in the observer formulation, the

gain L is constant throughout the operation.
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State prediction

A common situation that arises in many control problems is that a system might evolve

under the influence of time delays, which might introduce negative effects in terms of

performance and stability, specially if a strategy to deal with them is not in place

(Niculescu, 2001). In human control systems for instance, time delays are present

within the feedback loop as stated by Kleinman (1969). This characteristic led him

to use the OPF model to accurately account for a time delay td and to eliminate the

effect of it by using a state predictor.

Different versions of state predictors have been used successfully in a wide range of ap-

plications (Fuller, 1968; Gawthrop, 1976; Witrant et al., 2007; Kharitonov, 2017), and

many of them took the work of Smith (1959) as a starting point to develop predictors

that would perform well for both open and closed-loop systems.

The main idea behind these methods is to solve the system in (3.1) from time t to time

t + td using the estimated states xw as the initial condition. With this in mind, the

state predictor can be described by the following expression

xp(t) = eAtdxw(t) +
∫ td

0
eAt′

Bu(t − t′)dt′ , (3.24)

where xp are the predicted states of the system, at time t+td, computed using available

information at time t. Notice that knowledge about the size of the time-delay td is

needed to implement the predictor.

The second term in (3.24) is known as a convolution integral and it is normally imple-

mented by approximating its solution using numerical methods, which is a procedure

that can impose a computational burden in real-time. Therefore, there is always a

trade-off between solution accuracy and execution speed when a continuous predictor

is to be implemented.

3.2.2 Time frames of intermittent control

An important distinction in IC is the fact that it uses three different time frames during

its execution. Understanding these time frames is fundamental if a reliable and stable

controller is to be designed. Fig. 3.3 displays a graphic representation of the evolution

of IC, that showcases the role of each time frame.

The time frames can be defined formally as follows:
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Event Sample Control Event

∆s ∆

ti ti+1

∆i

t

Figure 3.3: Timing diagram of IC, where ∆ is the time delay of the system, ∆s is the
sampling delay, and ∆i is the ith intermittent interval. This diagram is based on the
one presented in (Gawthrop et al., 2015).

1. Continuous-time (t), represents the time in which the system evolves.

2. Discrete-time (ti), time instants at which an event is detected, indexed by i.

The time between event instants is known as the intermittent interval ∆i and it

is described by the following expression

∆i = ti+1 − ti . (3.25)

Once an event occurs, the observer states are sampled in order to be used as

feedback. This sampling procedure can happen at a fixed time ∆s after an event

time ti

ts
i = ti − ∆s , (3.26)

where ∆s is known as the sampling delay.

3. Intermittent-time (τ), a continuous variable that is restarted every intermit-

tent interval according to

τ = t − ti . (3.27)

It is also possible to define the intermittent time τ s between an event and the

end of the sampling delay as follows

τ s = t − ts
i . (3.28)

Alternatively, a lower limit ∆min can be specified within a given intermittent

interval

∆i > ∆min > 0 . (3.29)

The lower limit ∆min, also known as minimum open-loop interval, can be in-

terpreted following Ronco’s ideas (Ronco et al., 1999) as the time it takes to

compute and select the ensuing control action and it is particularly helpful when
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a state predictor is used since the equations are simple and easy to implement

for the case where ∆ ≤ ∆min.

Another interpretation of ∆min is the one given in Gawthrop et al. (2011), where

it is used to model the psychological refractory period of human motor control,

that was observed originally by Telford (1931).

3.2.3 The generalised hold

In addition to these time frames, the IC framework uses a generalised hold to generate

the open-loop behaviour of the system. The control signal of the intermittent controller

is defined in terms of the states produced by the hold

u(t) = u(ti + τ) = −kxh(τ) for ti ≤ t < ti+1 , (3.30)

where the hold states xh evolve in the intermittent time τ according to the following

autonomous system
d

dτ
xh(τ) = Ahxh(τ) . (3.31)

The dynamics of (3.31) are defined by the hold matrix Ah, this expression is known as

a generalised hold and it is one of most important features of the IC framework.

System-matched hold

One possible approach to design Ah is to set it equal to the closed-loop system matrix

Ac, producing a system-matched hold (SMH) (Gawthrop and Wang, 2011).

Ah = Ac . (3.32)

An interesting consequence from this choice is that hold states would differ from the

estimated system states xw only in the presence of a disturbance d. At each feedback

instant t = ti, the intermittent control signal is defined by the vector Ui as follows

Ui = Khxp(ti − td) , (3.33)

where the square matrix Kh = In×n is the intermittent control gain. Expression (3.33)

is used to reset the hold state xh at the start of each intermittent interval

xh(ti) = Ui . (3.34)
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The system-matched hold is then a natural way to implement an intermittent controller,

giving rise to a system behaviour that can easily be mistaken for that of the underlying

continuous-time controller (Gawthrop et al., 2011). On the other hand, this is not the

only possibility for the selection of Ah as stated by Gawthrop et al. (2014). In the next

section, the concept of using orthogonal functions to design the hold is explained.

Tapping hold

The system-matched hold is not the only possibility when it comes to select the open-

loop behaviour of the system. One interesting option discussed by Wang (2009), is to

implement a generalised hold based on Laguerre functions.

Definition 3.2.1. Laguerre functions are a set of orthonormal functions defined by

l1(t) =
√

2pe−pt

l2(t) =
√

2p(−2pt + 1)e−pt

...

lj(t) =
√

2p
ept

(j − 1)!
dj−1

dtj−1

[

tj−1e−2pt
]

.

(3.35)

For any positive value of p, which is a design parameter that determines the shape of

the function (i.e., how fast the exponentials of each function decay to zero).

The use of a state-space description to represent Laguerre functions simplifies their

implementation. This can be done by defining the following state vector

L(t) = [ l1(t) l2(t) . . . lN(t) ]T . (3.36)

Using (3.36), the state-space equations are

















l̇1(t)

l̇2(t)
...

l̇N(t)

















=

















−p 0 . . . 0

−2p −p . . . 0
... . . . . . . ...

−2p . . . −2p −p

































l1(t)

l2(t)
...

lN(t)

















. (3.37)

Solving (3.37) yields Laguerre functions for i = 1, 2, ..., N . The compact form of the

solution is

L(t) = eAptL(0)

L(0) =
√

2p[ 1 1 . . . 1 ]T ,
(3.38)
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where the matrix Ap is

Ap =

















−p 0 . . . 0

−2p −p . . . 0
... . . . . . .

...

−2p . . . −2p −p

















. (3.39)

Laguerre functions have been used in the past to approximate impulse responses (Lee,

1962; Wahlberg and Mäkilä, 1996). This feature is important to the notion of Intermit-

tent Tapping Control (ITC) (Gawthrop and Gollee, 2012), where the concept of a tap

can be described as the portions of the control signal where peaks of large amplitude

are present for a brief period of time, thus resembling Dirac’s delta function.

In ITC, the taps in the control signal can be approximated if the generalised hold takes

the following form

Ah = Ap . (3.40)

This particular choice of the hold is known as the tapping hold. In contrast with the

SMH, the dimensions of Ah are N × n, and by adjusting p and N , the shape of the

tap can be controlled. Commonly, Ah is designed in such a way that the time constant

of the tap is short, resulting in an impulse-like control input. The N × n gain Kh, in

combination with the state-feedback gain k, define the size of each of the taps.

An important feature of ITC is that Ah can be designed to generate a response that is

similar to that of the SMH but with a control signal that is different in shape. If the

state-feedback gain k is held constant, then the design task is simplified to calculate

the IC gain Kh that would generate the desired response.

Kh gain design

In order to obtain the corresponding Kh, a modified version of the optimisation ap-

proach in (3.9) should be used. Consider the following cost function

JIC =
∫ τ1

0

[

x(τ)Qcx(τ) + u(τ)T Rcu(τ)
]

dτ + x(τ1)T Px(τ1) . (3.41)

Equation (3.41) is a receding-horizon optimisation in the time frame of τ with an added

terminal cost, where Qc and Rc are the same design matrices of the LQR in (3.9), and

P is the solution to (3.10). Since the purpose of ITC is to approximate the effect

of the underlying continuous controller in the system using a different control signal,
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the integral term in (3.41) can be eliminated resulting in an updated cost function as

follows

JIT C = x(τ1)T Px(τ1) . (3.42)

Notice that this expression is still influenced by (3.9) since it uses the same solution

matrix P. To find the value of (3.42), a state-space system combining the dynamics of

the state x and the hold state xh is created

Ẋ (τ) = AxuX (τ)

X (0) = Xi ,
(3.43)

where the augmented state vector is X =
[

x xh

]T
, the initial conditions are Xi =

[

x (ti) Ui

]T
, and

Axu =





A Bk

0n×n Ah



 . (3.44)

The solution of (3.43) has an explicit form and can be written as

X (τ) = eAxuτXi . (3.45)

Using the augmented state X, the ITC cost function in (3.42) becomes

JIT C = X(τ1)T PxuX(τ1) (3.46)

where

Pxu =





P 0n×n

0n×n 0n×n



 . (3.47)

This allows the use of X in (3.43) to reformulate the cost function (3.46) as follows

JIT C = XT
i JXXXi , (3.48)

where JXX is a 2n × 2n matrix defined as

JXX = eA
T
xuτ1PxueAxuτ1 , (3.49)

which can be partitioned to have a compact form

JXX =





Jxx JxU

JUx JUU



 . (3.50)
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The IC gain Kh is computed from (3.50) as follows

Kh = J−1
UUJUx . (3.51)

This choice of Kh ensures the intermittent control vector Ui minimises the value of the

cost function JIT C . An advantage of this approach is that Kh can be computed prior

to the execution. As mentioned earlier, an important distinction is that by design Kh

is not a square matrix, whereas in the SMH case it is defined as an identity matrix.

The selection of a tapping hold might be beneficial in systems where the effect of

nonlinear friction is considerable (Gawthrop and Gollee, 2012), due to the nature of the

control signals that it generates. It is hypothesised that this same feature could be used

in adaptive control to excite the system regularly, helping the parameter estimation

procedure to converge to the true values, specially when the outputs have reached the

steady-state.

3.2.4 Intermittent state prediction

One of the main benefits of using IC in terms of state prediction, is the fact that (3.24)

can be replaced by an expression that avoids the approximation of the convolution

integral mentioned in section 3.2.1 (Gawthrop and Wang, 2007). Equation (3.24) is

the solution to the following dynamical system during the intermittent time frame τ

d

dτ
xp(τ) = Axp(τ) + Bu(τ) , (3.52)

with xp(0) = xw(ti) as initial condition and evaluated at τ = td. Combining (3.52)

and (3.31) yields the following extended system

d

dτ
X̄(τ) = AphX̄(τ) (3.53)

X̄(0) = X̄i . (3.54)

The combined state vector X̄ is defined as follows during the open-loop interval

X̄(τ) =





xp(τ)

xh(τ)



 . (3.55)

For the instances where feedback is used (ti), X̄ takes the following form

X̄i =





xw(ti)

xp(ti − td)



 . (3.56)
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The matrix Aph is composed by the hold Ah, the state-feedback gains k, and the

system matrices A and B giving

Aph =





A −Bk

0n×n Ah



 . (3.57)

Solving (3.52) at τ = td yields

X̄(td) = eAphtdX̄i . (3.58)

From (3.58), the predicted states xp can be obtained every intermittent interval and

are given by

xp(ti) = Eppxw(ti) + Ephxh(ti) , (3.59)

where the matrices Epp and Eph of dimension n×n, are partitions of the 2n×2n matrix

E defined as

E =





Epp Eph

Ehp Ehh



 , (3.60)

and E comes from

E = eAphtd . (3.61)

The matrices Epp and Eph can be obtained offline, when the controller is being designed.

This is a convenient feature from the computational point of view, since only matrix

products are involved to obtain the predicted states xp once the controller is operating.

3.2.5 Event detection and thresholds

The intermittent controller uses a triggering mechanism to generate sample times

ti and force the use of feedback. There are two operation modes for this purpose

(Gawthrop and Wang, 2009a):

• Clock-based: in this mode, ∆i on (3.25) is constrained to have a minimum value

of at least ∆min. This generates events at fixed intervals regardless of the state

of the system. A disadvantage of this mode is that the controller would still use

feedback periodically even if there is no need for it; for instance, once the system

reaches a desired steady-state value and there are no disturbances acting on it.

• Event-based: this mode generates an aperiodic sequence of events, determined

by the error between either predicted or hold states and the estimated states.

If the errors are greater than a threshold q, then an event is generated. The

definition of both of these errors is as follows:
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1. Prediction error : the estimated states xw are compared to the predicted

states xp according to the following expression

ex = xp(t) − xw(t) . (3.62)

This error is used when a system-matched hold is driving the open-loop

behaviour.

2. Closed-loop error : introducing the autonomous dynamical system driven by

the closed-loop dynamics as

d

dτ
xc(τ) = Acxc(τ) , (3.63)

where xc(0) = xp(ti − td), this formulation allows the states xc to be used

in the closed-loop error equation as follows

ex = xc(t) − xw(t) . (3.64)

The closed-loop error is normally used in conjunction with the tapping hold.

The reason for this is based on the fact that the tapping hold does not include

information in its states to detect events, therefore equation (3.63) is used

instead. Notice that this formulation is equivalent to that in (3.31), which

is the definition of a system-matched hold.

Regardless of which error equation is used, an event in generated when ex is

greater than q, this can be formally defined by using the following quadratic

criterion

eT
x (t)Qtex(t) − q2 ≥ 0 , (3.65)

where Qt is a positive semi-definite matrix that can be used to define which

states are used to generate events. For example, choosing an identity matrix

would force the controller to trigger on all system states.

For the particular case where q = 0, the event-based mode becomes clock-based

since the condition in (3.65) is always true, thus triggering at every minimum

open-loop interval ∆min. Therefore, clock-based IC can be seen as a special case

of the event-based mode.
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3.3 The inverted pendulum model of human standing

The single inverted pendulum model is a traditional example in control systems and it

is widely used to illustrate the results and the implementation details of many control

strategies. In addition, some authors have used this model to describe the human

balance control problem, contrasting simulation and experimental data (Loram et al.,

2009; Nomura et al., 2013). For the purpose of this simulation, the dynamic bias

model of human standing described in (Lakie et al., 2003; Loram et al., 2005, 2009;

Gawthrop et al., 2011) is used. This model considers that the control signal that is

applied to maintain a human inverted pendulum balanced is generated by a tendon

that is connected in series with a contractile element (in this case the calf muscle)

which is in charge of generating a torque. The equation of motion of the pendulum is

as follows

Jθ̈ = mgh sin (θ) + T , (3.66)

where J is the moment of inertia, θ is the angular position with respect to the vertical,

m is the mass of the pendulum, g is the gravitational acceleration, and h is the distance

from the joint to the centre of mass. The small angle approximation θ = sin (θ) is used

to simplify the equation to a linear model. The ankle torque T is defined as

T = −cmgh (θ − θ0) − V θ̇ , (3.67)

with c being the ratio between the tendon stiffness kp, the load stiffness defined by the

product ke = mgh, and V is the ankle viscosity. The input is provided by θ0 (known as

the bias) which represents the active muscle shortening in angular terms. Considering

the pendulum angle θ (in radians) and the bias θ0 as output and input respectively,

the model can be written as a transfer function, resulting in

θ =
cmgh

J

s2 + V
J

s + (c − 1) mgh

J

θ0 . (3.68)

The constants in (3.68) are: c = 0.85, J = 77 Kg m2, V = 2.9 Nm rad−1, m = 70 Kg,

h = 0.92 m, g = 9.81 m s−2 as reported in (Loram et al., 2009). The fact that c is

smaller than 1 implies that the tendon stiffness is not enough to stabilise the pendulum

on its own, requiring additional control effort provided by the muscle. In (Loram et al.,

2009), this model was implemented in simulation, where the input θ0 was provided by

a subject holding a joystick, thus θ0 was proportional to the motion of the joystick.

Defining the state vector x(t) =
[

θ̇ θ
]T

, and using the constants described above,
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the transfer function in (3.68) can be written as state-space model as follows

ẋ(t) =





−0.037 1.231

1 0



x(t) +





6.98

0



u(t) (3.69)

y =
[

0 1
]

x(t) . (3.70)

In terms of the block diagram in Fig. 3.2, the block labelled as System represents

the inverted pendulum model in 3.68. In Fig. 3.4 a diagram of the inverted pendu-

lum is presented. The following second order, neuro-muscular system (NMS block

in Fig. 3.2), that describes the dynamics of both the hand and joystick is considered

(Navas and Stark, 1968; Gawthrop et al., 2011)

h

θ

m

θ0

kp

Figure 3.4: Inverted pendulum model of human standing. The input θ0 represents the
contraction of the muscle as an angle that influences the pendulum via a spring of
stiffness kp, which represents the ankle joint tendon. The output θ is the angle of the
pendulum with respect of the vertical line, m is the mass, and h is the distance from
the joint to the centre of mass.

Gs(s) =
1

s(0.1s + 1)
, (3.71)

which corresponds to the following state-space realisation

As =





−10 0

1 0



 , Bs =





10

0



 , Cs =





0

1





T

. (3.72)

The combination of these two systems yields a fourth order model. Therefore the input

that is applied to the system defined by (3.69) is the output of the neuro-muscular

model in (3.72), and corresponds to the angle θ0. However, the input u(t) that the

intermittent controller generates serves as an input to (3.72) as shown in the IC diagram

(Fig. 3.2), and is the one presented in the simulation as u. The purpose of this example
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is to illustrate the design of intermittent controllers using system-matched and tapping

holds, while combining them with Luenberger and Kalman observers.

The inverted pendulum model was used to run a simple simulation where the main goal

is to apply a control signal to keep the pendulum as close as possible to the vertical

position, using the two versions of intermittent control presented in this chapter (SMH

and ITC). Also, two types of state estimators were used: a Luenberger observer and a

Kalman filter. Throughout the simulation, a random disturbance signal d(t) with an

amplitude of 0.01 rad was applied to the control input as shown in 3.2.

3.3.1 Controller and estimator design

The design parameters used to implement the controllers and the state estimators is

presented in this section.

Controller gains and system-matched hold: with the LQR approach from sec-

tion 3.2.1 and the system matrices in (3.69), it is possible to define the square de-

sign matrices Rc = I4×4 and Qc, where the diagonal of Qc is defined by the vector
[

1 1 0 0
]

and the rest of the entries being zero, to obtain the following controller

gains

k =
[

1.8845 2.0625 1.2118 15.0545
]

. (3.73)

In this case, matrix Qc only contains elements on the first two elements of its diago-

nal. This two values have a direct effect on both velocity and position states of the

pendulum. With the values of the state-feedback gain k, it is possible to build the

closed-loop matrix Ac which is used to define the system-matched hold as in (3.4)

One possible way to compute these gains is to use packages such as Matlab (Mathworks,

Inc.) and GNU Octave. Both of them have specific routines to solve the ARE in (3.10)

and to obtain expression (3.11).

Luenberger observer and Kalman filter: similarly, to design a Luenberger state

observer using the LQR approach, the matrix Qo is defined as Qo = qoBBT where

qo = 10. This yields the following observer gain

L =
[

17.0218 5.8347 0.0789 1.2570
]T

. (3.74)

The process and measurement noise covariance matrices Qk and Rk of the Kalman

filter were defined as identity matrices of appropriate dimensions.



3.3. The inverted pendulum model of human standing 53

Tapping hold: values of p = 10 and N = 1 were selected to define the Laguerre

functions defined by (3.39), to then build the hold matrix Ah. This leads to the

following IC gain matrix

Kh =
[

2.8099 3.0969 2.0912 25.3240
]

. (3.75)

Timing and triggering: Table 3.1 shows the timing parameters considered for all

controllers

Table 3.1: Intermittent control timing parameters

∆min ∆s td Threshold q

0.25 sec 0 sec 0.01 sec 0.01 rad

Finally, the intermittent controller was designed to trigger only on the position state

θ by setting matrix Qt in (3.65) to have the vector
[

0 1 0 0
]

as its diagonal.

The following initial condition vector x(0) =
[

0 0.05 0 0
]T

was used to start the

simulation.

3.3.2 Simulation results

The simulation shows the output and input for the SMH and ITC controllers, when

using both Luenberger and Kalman filters (Fig. 3.5), a comparison between the esti-

mated angular velocity ˆ̇θ (generated by the state estimators) and the simulated value

of θ (Fig. 3.6), and the corresponding open-loop distributions (Fig. 3.7).

In Fig. 3.5, the output for both controllers is shown in sub-figures (a) and (b), and

the inputs in (c) and (d). The left column corresponds to the data generated with the

Luenberger observer and the one in the right for the Kalman filter.

The outputs from both controllers oscillate around zero. It is clear that for the consid-

ered design parameters, the SMH output error is smaller compared to ITC (for both

state estimators); however, both responses are comparable in terms of amplitude. The

situation is different for the control inputs, ITC generates an impulsive-like control

signal that is considerably higher in amplitude compared to SMH.

Fig. 3.6 shows the behaviour of the estimated angular velocity in comparison with the

real value that is extracted from the simulated system. The role of the state observers

in this case is to generate the estimates only from measurements of the system output θ.
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Figure 3.5: Input and output. (a) and (b) show the output of the inverted pendulum
for both controllers (SMH in blue, ITC in red). (c) and (d) correspond to the control
signals. The data shown in the left column ((a) and (c)) was generated using a Lu-
enberger observer, whereas the right column ((b) and (d)) corresponds to the Kalman
filter.

In (a) and (b), the estimates obtained when the SMH controller is used are presented,

(c) and (d) correspond to ITC. For both controllers, the state estimators generate

angular velocities that match closely the real values of θ̇, being different between them

only in terms of amplitude since the ITC shows higher velocity values on average

compared to SMH.

In Fig. 3.7, the open-loop distributions for SMH and ITC (in combination with both

estimators) are shown. In general, the open-loop intervals ∆ol corresponding to ITC

are smaller on average compared to SMH. The minimum open-loop interval was set
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Figure 3.6: Angular velocity. Comparison between the estimated angular velocity ˆ̇θ and
its emphreal value θ̇. The data shown in the left column ((a) and (c)) was generated
using a Luenberger observer, whereas the right column ((b) and (d)) corresponds to
the Kalman filter. (a) and (b) correspond to the SMH, (c) and (d) to ITC.

to 0.25 sec for this simulation, it is possible to see that the controllers generate events

at this minimum rate only during the first seconds of the simulation, to then grow

to values between 0.5 sec and 2.5 sec for ITC, and between 0.5 sec and almost 3.5

sec for SMH. This distributions indicate for how long the intermittent controllers were

evolving in an open-loop configuration.
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Figure 3.7: Open-loop intervals. The time the controllers evolved in an open-loop
configuration is shown in this figure. The data shown in the left column ((a) and (c))
was generated using a Luenberger observer, whereas the right column ((b) and (d))
corresponds to the Kalman filter. (a) and (b) correspond to the SMH, (c) and (d) to
ITC.

3.4 Adaptation in the context of intermittent control

Apparent simple tasks like walking, grasping or even quiet balancing are dominated

by two important processes: i) planning and generating commands to mechanically

achieve a certain goal, ii) and predicting sensory consequences of these commands

(Shadmehr and Mussa-Ivaldi, 2012). Predicting allows us to overcome the delays that

the central nervous system imposes in our sensory information as well as the delays

associated with the generation of a motor command via muscle activation. In fact,

this is critical since it is known that delays can affect the overall stability of a control
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system considerably (Niculescu, 2001). Since the moment we are born, humans start

perfecting their ability to predict by tuning their internal models and by becoming more

accurate at formulating beliefs based on the information that the models provide; this

tuning is greatly related to our motion performance and it is probably one of reason

why high-level athletes are capable of controlling their movements more accurately

than average people. However, these predictions are greatly improved by the delayed

information that our sensory system gathers continuously, even if it is delayed and

noisy. Combining these two streams of information in an optimal way is a task that

our brain performs automatically, giving us more complete description of the state of

our body in the environment.

We constantly make wrong predictions in daily life, and when this happens, we must

rely on available information to update our prediction and obtain an updated belief of

our state. For instance, predicting the mass of an empty box often leads to over estimate

the amount of force that is needed in order to move it, resulting in erroneous initial

motor commands (Gordon et al., 1991). Soon after, these commands get updated

based on an improved estimate of the state of the arm (i.e., positions and velocities),

allowing us to apply the correct amount of force to move the box. Interestingly, the

unknown weight of the box is also estimated and combined with our previous beliefs,

allowing us to apply the correct force the next time we need to move the box. In

this sense, it is possible to say that this mechanism is flexible enough to update itself,

adapting to prediction errors and wrong assumptions about the environment, an it is

capable of identifying the real system that is trying manipulate or control. This two

step process of (1) combining state and parameter information with our predictions

to then (2) correct our control actions can be formulated in terms of adaptive control

theory, where having a reliable real-time procedure to optimally combine information

while estimating parameters determines the performance of the controller.

Computational level theories of human control incorporate adaptation and learning

to fully explain the features of our internal control mechanisms. In particular, state

estimation in the adaptation context has been formulated within the framework of

Bayesian estimation and Kalman filtering, which produces minimum variance esti-

mates of stochastic processes under the influence of Gaussian noise. Moreover, it has

been shown experimentally that in some scenarios, humans use forward models in a

Bayesian framework to estimate their state and its relationship with the environment

(Wolpert et al., 1995; Körding and Wolpert, 2004). The flexible nature of the Kalman

algorithm can estimate not only the state vector that describes the system dynamics

but also some of its parameters. This can be used to track time-varying changes in

these parameters in order to update a previously designed controller. This concept is
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known in adaptive control as a self-tuning algorithm, which provides the advantage of

clearly separating the estimation and control update steps.

Based on recent theoretical and experimental results (Gawthrop and Gollee, 2012;

Loram et al., 2011; van de Kamp et al., 2013b; Gawthrop et al., 2015), it has been ar-

gued that the natural switching between open and closed loop configurations provided

by intermittent control contributes to the clear distinction of the effects of our motor

commands. This hypothesis comes from the results of a group of subjects that tried

to control a simulated inverted pendulum using a joystick. The signal provided by the

joystick was multiplied by a gain that changed throughout the trial. In this experi-

ments, the subjects that applied continuous hand contact with the joystick performed

worse that those who used a tapping strategy. The time between taps can be seen as

an open-loop period, where the natural dynamics of the system are clearly separated

from the inputs provided by the joystick, which helped the participants to realise that

some conditions had changed, leading to quicker adaptation. These ideas motivated

the results presented in this chapter, which include the formulation of an adaptive

intermittent controller that is based on the Kalman estimation framework and a self-

tuning architecture, with the purpose of testing if indeed the hybrid switching strategy

of intermittent control provides an advantage in terms of parameter estimation and

adaptation compared to a continuous adaptation scheme, while evaluating the effects

of using nonlinear Kalman filters for the first time in this context.

3.5 Adaptive control

Adaptive control consists of two feedback loops. The first loop is an inner loop which

is formed by a parameter dependent controller in series with the system/plant that is

being controlled, commonly known as the feedback loop. The outer loop has a supervi-

sory role and is normally referred as the adaptation loop. This adaptation loop updates

its own states, which correspond to the parameters (i.e., coefficients of the dynamical

system describing the plant) to then pass them to the controller that is part of the

inner loop. Fig. 3.8 shows the general scheme of an adaptive controller, including the

adaptation and feedback loops.

In the scheme shown in Fig. 3.8, the System is normally considered as a linear time-

variant system, where the parameters are changing through time. It can be said then

that the adaptation loop must gather the maximum amount of information about

the plant constrained to a defined parameter set and then update a linear controller.

This idea assumes that there is a design procedure that would generate a stabilising

controller that complies with performance requirements if there is enough information
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Controller

Adaptation

System
u(t)

y(t)
w(t)

Parameters

Figure 3.8: General adaptive control. An adaptation loop is in charge of estimating
parameters for an adjustable controller. The control signal u(t) is computed based on
the new controller parameters, the setpoint w(t), and the output y(t), which comes in
the form of feedback.

about the plant and the environment in which operates. The adaptive control problem

then can be understood as a method that adjusts a controller when the parameters

of the system are unknown or changing. These previous ideas can be summarised in

three broad steps that are necessary in adaptive control:

• Definition of the desired performance of the closed-loop system using a fixed

controller and find a suitable control law.

• Implementation of an adjustable version of the control law, with coefficients that

can be modified.

• Implementation of a method that estimates the changing or unknown system

parameters.

Different adaptive control schemes have been proposed to deal with uncertainties,

unknown constant parameters or time-varying parameters, such as gain scheduling,

model reference adaptive control, and multiple model networks, with successful applica-

tions in real-time situations (Åström and Wittenmark, 1995; Feng and Lozano, 1999;

Landau et al., 2011). The controllers implemented in this chapter are based on an idea

originally introduced by Kalman (1958), known as self-tuning adaptive control, which

is described in the following section.

3.5.1 Self-tuning adaptive control

A self-tuning controller can be described as having two very distinctive elements in-

cluded in the adaptation loop, as indicated in Fig. 3.9:

• A recursive estimator that computes a set of parameters based only on infor-

mation of the applied input u, the measured output y of the system, and an
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Controller

Recursive

System
u(t)

y(t)
w(t)

Controller

Adaptation loop

System parameters

Controller parameters

estimatordesign

Figure 3.9: Adaptive self-tuning control diagram. The adaptation loop is comprised of
a recursive estimator in charge of providing system parameters to the controller design
stage, which computes the parameters of an adjustable control law u(t), based on the
setpoint w(t) and the measured output y(t).

assumed model structure. These parameters can be the coefficients of the differ-

ential equations describing the process, denoted by ϕm, from which the controller

parameters ϕc could be obtained, or they can be generated in a form that allows

their direct application to the controller, as in ϕm = ϕc.

• For the case where ϕm 6= ϕc, there is the need of a controller design stage, that

would yield the parameters that the adjustable control law is supposed to use.

When the adaptation loop in self-tuning control is comprised of both a recursive es-

timator and a controller design stage, the overall scheme is referred as indirect (or

explicit) self-tuning adaptive control. If there is no controller design stage it means

that the recursive estimator is directly producing the controller parameters, this is

known as direct (or implicit) self-tuning.

There are advantages for using both schemes, for instance, direct self-tuning control

often leads to simpler controller structures that have been related to reinforcement

learning algorithms previously (Sutton et al., 1992). Indirect self-tuners are flexible

in the sense that the recursive estimation algorithm is independent from the control

design stage, allowing more options when it comes to testing different estimators and

controllers, while giving insight on how they influence each other. These ideas are

based on linear control theory, specifically on the separation principle (Luenberger,

1979).

The stability of a self-tuning controller has been studied extensively in the control com-

munity (Åström et al., 1977; Gawthrop and Lim, 1982; Narendra and Annaswamy, 1989;
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Feng and Lozano, 1999; Landau et al., 2011) and proofs for simple schemes in ideal

conditions have been derived (Egardt, 1980; Goodwin et al., 1980; Morse, 1980). The

stability of the system that is being controlled must be guaranteed by the online pa-

rameter estimation routine in combination with the plant and the controller itself. A

simple notion is that the feedback loop will be stable as long as the estimated pa-

rameters are sufficiently close to the true values. However, the convergence of the

estimation routine depends on control signals that provide persistent excitation to the

system (Sastry and Bodson, 2011). In this sense, the concepts of stability and param-

eter convergence rely on the idea that the state of a parameter error system converges

to zero exponentially if and only if the control signal, which is related to the plant

parameterisation, is persistently exciting (Tao, 2014).

The nature of the model that should be estimated has an important effect on stabil-

ity. In order to obtain an accurate model, the controller should generate input signals

that contain sufficient energy around the cross-over frequency of the system and it

has been suggested that the estimation routine should be active only if the absolute

value of the energy associated with the control input is above a certain limit (Egardt,

1979; Peterson and Narendra, 1982). If the control signals do not excite the system

enough, two common strategies can be used to avoid divergence and improve adap-

tation: the first one involves breaking the adaptation-loop, stopping the controller

redesign, and the second one is about the inclusion of artificial perturbation signals

(Wittenmark and Åström, 1984).

3.6 Adaptive intermittent controller

The adaptive intermittent controller (AIC) that is presented in this section is one of

the main contributions of the thesis; in particular, it is an extension to the existing

theory of intermittent control and its links with adaptation. This controller is based

on nonlinear Kalman filters to perform joint state and parameter estimation, and it

can be designed to use both a system-matched hold or a tapping-hold. Its validation

in simulation and experimentally is discussed in the following chapters.

AIC can be implemented by exploiting the benefits from having separate design and

estimation stages in the self-tuning architecture. The diagram on Fig. 3.9 assumes

that part of the adaptation loop uses a recursive estimator to identify the unknown

system parameters ϕm, based on measurements of the input and the output. On the

other hand, state observers also use the same information to estimate the portion of

the state vector xo(t) that is not available for direct measurement using sensors, which
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is a common situation in most applications. Therefore, algorithms that can solve both

problems concurrently are ideal in this context. Before introducing the AIC in the

form of a diagram, it is convenient to look at the elements of a continuous adaptive

controller in order to visualise the differences between them. In Fig. 3.10, the block

diagram of an adaptive continuous controller is shown.

CC System
Par. est.+ − + −

+

−

Design

xw(t)

ϕm(t)

vu(t) vy(t)

u(t) y(t)

xssw(t)

xo(t)
State est.

ϕc(t)

xw(t)

Figure 3.10: Adaptive continuous control diagram. The block labelled as Par est./State
est. represents a recursive algorithm that continuously estimates the system states
xo(t) and the model parameters ϕm(t). Both the input u(t) and the output y(t) can
be affected by input noise vu(t) and measurement noise vy(t) respectively. The Design
block represents the controller redesign stage and it provides all the parameters needed
by the continuous controller CC. The blue colour represents the components of the
adaptation loop, while green is used to identify the components in the feedback loop.

The scheme presented in Fig. 3.10 uses a state and parameter estimator (Par est./State

est. block) that is continuously receiving the input u(t) provided by a standard CC as

well as the output of the process y(t). Both of them might be corrupted by input and

observation noise vectors vu and vy respectively. With this information, the estimator

generates observed states xo(t) and the model parameters ϕm(t) throughout the entire

time the controller is operational. The design stage (Design block) receives continu-

ously the model parameters ϕm(t) in order to generate the new controller parameters

ϕc(t). The CC controller also uses the estimated states xw(t) in the form of continuous

feedback in order to modulate the control input u(t).

Based on the scheme shown in Fig. 3.10, one possible structure for AIC is presented

in Fig. 3.11. In the AIC case, the model parameters ϕm(t) are also used by the design

stage to update the internal components of the IC block; however, this happens only

when an event is detected at discrete times ti. In other words, the design stage uses

sampled model parameters ϕm(ti) to generate a new set of controller parameters ϕc(ti),

which are passed to the standard IC.
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IC System
Par. est.+ − + −

+

−

Design

xw(t)

ϕm(t)

ti

ti

vu(t) vy(t)

u(t) y(t)

xssw(t)

xo(t)
State est.

ϕc(ti)

xw(ti)

Figure 3.11: Adaptive intermittent control diagram. The block labelled as Par
est./State est. represents a recursive algorithm that continuously estimates the system
states xo(t) and the model parameters ϕm(t). Both the input u(t) and the output y(t)
can be affected by input noise vu(t) and measurement noise vy(t) respectively. The
intermittent controller block IC samples ϕm(t) and the setpoint version of the states
xw(t) at discrete points in time ti determined by the event generated by its triggering
mechanism. The Design block represents the controller redesign stage and it provides
all the parameters needed by the standard intermittent controller IC. The grey dashed
lines represent event times, that determine when the IC the loop is opened or closed.
The blue colour represents the components of the adaptation loop, while green is used
to identify the components in the feedback loop.

The setpoint w(t) is introduced to the system by subtracting it from the state estimates

xo(t), resulting in xw(t), to then be used as feedback by the IC. In contrast with the

continuous version in Fig. 3.10, the vector xw(t) is sampled every time the loop is closed

by the triggering mechanism. The Design block in the AIC case is in charge of three

main tasks, which can be summarised as follows:

1. Compute a new set of closed-loop controller gains based on available estimated

parameters.

2. Update the elements that are part of the hold mechanism, including the inter-

mittent control gains.

3. Update the predictor matrices.

The tasks mentioned above are also part of the design of standard (non-adaptive)

intermittent controllers, with the difference that in the adaptation context, these tasks

are executed when there is an event. For standard non-adaptive IC, the computations

can be performed offline. The details and equations of the design stage are introduced

in section 3.6.3. The following section describes the algorithms that are used to perform

the state and parameter estimation procedure shown in the aforementioned controllers.
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3.6.1 State and parameter estimation

A common way to implement state estimation in situations where one or more elements

of the state vector are not directly measurable is using state observers. An observer

is also referred to as a soft sensor since it can generate the trajectories of unknown

states only using past input and output data, and a dynamical model of the system.

For cases where the dynamics can be approximated by a linear system, a Luenberger

observer or a linear Kalman filter can be used to estimate the system states.

The adaptation layer of AIC assumes that there is a way to estimate the time-varying

parameters of the system that is being controlled. This can be achieved by a recursive

algorithm that performs online system identification. The flexible structure of the

Kalman filter has been exploited in the past to formulate the filter either as a parameter

estimator, a state estimator, or as joint estimator which estimates both at the same

time (Haykin, 2001). To formally introduce this idea, consider the following nonlinear

dynamical system:

ẋ(t) = f (x(t), u(t), ϕm(t)) + w(t)

y(t) = h(x(t), u(t)) + v(t) ,
(3.76)

where w ∈ R
n and v ∈ R

ny are the process and measurement noise vectors, respectively.

Also, they are assumed to be additive, Gaussian, with zero mean and known covariance

matrices Q and R. The dimension of the output vector is represented by ny, and n is

the number of states.

The joint estimation problem consists of augmenting the state vector x(t) to include the

model parameters as extra states, implicitly assuming that they stay constant. Defining

the augmented state-vector xaug(t) = [x(t) ϕm(t)]T , the new dynamical model is





ẋ(t)

ϕ̇m(t)



 =





f (x(t), u(t), ϕm(t))

0



 . (3.77)

The equations of the Kalman filter are then applied to the system defined in (3.77).

Another formulation that allows the estimation of both states and parameters is known

as dual estimation, where two separate filters are implemented concurrently, one esti-

mates states and the second one does the same for the parameters. Dual estimation

introduces extra computations since a second filter is needed, however it is possible

to disable the parameter estimation if the filter converged to the real parameters. In

(Haykin, 2001), it is argued that the dual schemes have better convergence properties

over the joint schemes, although in (Hegyi et al., 2006) a detailed comparison between
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them revealed that the errors of Kalman based dual estimation are larger compared

to joint estimators for cases where the covariance matrices differ by several orders of

magnitude. Additionally, the joint estimators explicitly allow statistical dependence

between states and parameters, whereas in dual estimation the cross covariances are not

estimated, implying total independence. Some situations might assume that there is

some degree of correlation between states and parameters, therefore the joint estimator

might be better suited for these scenarios (Van Der Merwe, 2004).

3.6.2 The extended and unscented Kalman filters

The Kalman filter is considered as an optimal Bayesian estimator for linear, Gaussian

systems. This implies that if the system is truly linear, the filter would provide unbi-

ased estimates. However, most of the problems in engineering are better described by

nonlinear dynamics under a stochastic environment. For this reason, the linear Kalman

filter has been extended in several ways in order to be applied to nonlinear systems

(Lee and Ricker, 1993; Julier et al., 1995; Van Der Merwe and Wan, 2001). This sec-

tion discusses two of these extensions: the Extended Kalman filter (EKF) and the

Unscented Kalman filter (UKF).

The extended Kalman filter

An intuitive way to work with nonlinear systems is to assume that they would behave

linearly for a very short period of time. In other words, if the nonlinear equations are

approximated at each time step by linear system, then a standard Kalman filter could

be applied iteratively. This is the working principle of the EKF. The most common

way to implement this is to approximate the system using a Taylor series expansion

around the estimate, resulting in linearised Jacobian matrices that are then used by

the Kalman filter algorithm.

The main benefit of the EKF is that its formulation is relatively simple compared to

other nonlinear versions of the filter, making it easier to understand and implement.

Probably this is the reason why it has been adopted as the de facto alternative for

estimation problems in many areas of engineering. It must be said that the EKF

would perform poorly if the assumptions of local linearity are violated, in this case, the

linearisation would introduce errors that might end in estimates that do not converge

to the real values. Also, in order to avoid the online calculation of the derivatives

involved in the linearisation process, explicit versions of the Jacobian matrices are

normally computed offline and then implemented in the algorithm. This is a simple
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task for systems with a small number of states, however, large systems might require

long expressions that might introduce errors when translated into code.

Normally, the equations for Kalman filtering algorithms are presented from a discrete

point of view since it was conceived to be implemented in a computer, although contin-

uous formulations are also possible (Kalman and Bucy, 1961; Ruymgaart and Soong,

1988). The steps involved in the EKF algorithm for a discretised version of the system

described in (3.76) are as follows:

1. Initialisation step: define initial values for the estimated states x̂0, the initial

error covariance matrix P0, and the process and measurement noise covariance

matrices Q and R.

2. Prediction step: compute system Jacobian Ak, the a-priori state estimate x̂−

k ,

and the a-priori error covariance matrix P−

k .

Ak =
∂f

∂x

∣

∣

∣

∣

∣

x̂
+

k−1
,uk−1

(3.78)

x̂−

k = f (x̂+
k−1,uk−1) (3.79)

P−

k = AkP+
k−1A

T
k + Q . (3.80)

3. Correction step: compute the observation Jacobian Ck and the Kalman gain

Kk, correct the a-priori state estimates using measurements yk to produce a-

posteriori estimates x̂+
k , and obtain the a-posterirori error covariance matrix P+

k

for the next iteration.

Ck =
∂h

∂x

∣

∣

∣

∣

∣

x̂
−

k
,uk−1

(3.81)

Kk = P−

k CT
k

[

CkP−

k CT
k + R

]

−1
(3.82)

x̂+
k = x̂−

k + Kk

[

yk − h(x̂−

k ,uk−1)
]

(3.83)

P+
k = [I − KkCk] P−

k . (3.84)

Equations (3.78) and (3.81) should be implemented carefully, in some situations it is

possible to obtain analytical expressions of the derivatives which reduce the computa-

tional burden of the filter. This is preferable compared to the online approximation

of the derivatives. This motivated the extension of the filter based on fully nonlinear

methods such as the Unscented Kalman filter.
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The unscented Kalman filter

The truncation of the higher order terms made in the linearisation step of the EKF

algorithm (3.78) is the reason why the EKF is considered a suboptimal filter (Cox,

1964; Athans et al., 1968). In order to capture the behaviour of the neglected terms, it

has been proposed that using the full nonlinear equations might result in more accu-

rate estimates. This idea motivated nonlinear extensions of the filter that essentially

eliminated the explicit derivatives involved in the Jacobians of the EKF while increas-

ing the convergence properties. One particular formulation known as the Unscented

Kalman filter has gained attention since it has produced higher accuracy in differ-

ent situations compared to the EKF (Julier et al., 1995, 2000; Arulampalam, 2004;

Chowdhary and Jategaonkar, 2010; Meskin et al., 2013; Biswas et al., 2017).

The UKF implements a statistical alternative to the Jacobian matrices of the EKF

known as the unscented transformation, which consists of using a set of deterministically

selected points, collected from the a-priori mean and covariance of the states (also

known as sigma points) and passing them through a nonlinear transformation. The

a-posteriori mean and covariance of the states are obtained from the transformed sigma

points. The spread of the sigma points is determined based on design parameters that

represent the scaling of the unscented transformation.

The steps involved in the UKF algorithm are summarised as follows:

1. Initialisation step: define initial values for the estimated states x̂0, the initial

error covariance matrix P0, and the process and measurement noise covariance

matrices Q and R.

2. Define design parameters α, β, κ, and calculate the scaling parameter λ.

Then compute the weight vectors ηm
0 , ηc

0, and ηm
i , considering that n represents

the number of states.

λ = c − n where c = α2(n + κ) (3.85)

ηm
0 = λ/(n + λ) (3.86)

ηc
0 = λ/(n + λ) + 1 − α2 + β (3.87)

ηm
i = ηc

i = 1/ [2(n + λ)] , for i = 1, ..., 2n . (3.88)
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3. Compute the sigma points

χ =
[

x̂+
k−1 x̂+

k−1 +
√

c P+
k−1 x̂+

k−1 −
√

c P+
k−1

]

. (3.89)

4. Prediction transformation: propagate the sigma points χ through the process

model, compute the mean of a-priori predicted states x̂−

k , finally compute the a-

priori state covariance matrix P−

k .

χ−

k = f (χ,uk−1) (3.90)

x̂−

k =
2n
∑

i=0

ηm
i χ

−

k,i (3.91)

P−

k = Q +
2n
∑

i=0

ηc
i (χ−

k,i − x̂−

k )(χ−

k,i − x̂−

k )T . (3.92)

5. Observation transformation: propagate the a-priori sigma points χ−

k through

the observation model, compute the mean of the predicted output ŷ−

k and its

covariance matrix Pyy
k , finally obtain the cross-covariance matrix Pxy

k .

ψ−

k = h(χ−

k ,uk−1) (3.93)

ŷ−

k =
2n
∑

i=0

ηm
i ψ

−

k,i (3.94)

Pyy
k = R +

2n
∑

i=0

ηc
i (ψ−

k,i − ŷ−

k )(ψ−

k,i − ŷ−

k )T (3.95)

Pxy
k =

2n
∑

i=0

ηc
i (χ−

k,i − x̂−

k )(ψ−

k,i − ŷ−

k )T . (3.96)

6. Correct estimates using measurements: compute the Kalman gain Kk, cor-

rect the a-priori state estimates using measurements yk to produce a-posteriori

estimates x̂+
k , and obtain the a-posterirori error covariance matrix P+

k for the

next iteration.

Kk = Pxy
k (Pyy

k )−1 (3.97)

x̂+
k = x̂−

k + Kk

[

yk − ŷ−

k

]

(3.98)

P+
k = P−

k − KkPyy
k KT

k . (3.99)

The unscented transformation scaling parameter α determines the spread of the sigma

points. A small value of leads to tighter selection of the sigma-points. A range of com-

monly used values is from 0.0001 to 1. The β parameter includes information of the
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a-priori distribution, with the consideration that for Gaussian distributions the value

of β = 2 is optimal. Lastly, the κ parameter is normally set to 0. The calculation

of the sigma points in (3.89) involves the implementation of the square root of the

state covariance matrix P+
k−1, and in order to do this efficiently, a Cholesky decompo-

sition method can be used, which yields a lower triangular matrix that is used as a

representation of the square root (Press et al., 1996).

Both the EKF and UKF can be used to provide states xo and parameters ϕ to the

design step of the AIC. The following section explains the steps needed to redesign the

standard intermittent controller based on available estimates.

3.6.3 Adaptive IC design

The general intermittent control law can be formulated as

u(t) = u(ti + τ) = −kxh(τ) + ussw(t) for ti ≤ t < ti+1 , (3.100)

which considers the time between events determined by τ . including ti, and that uses

the states generated by the hold mechanism xh to drive the system. When there is an

event, however, the hold states are reset according to the following expression

xh(ti) = Ui , (3.101)

where Ui = Khxp(ti − td), and xp are the states that predictor system outputs after

considering the time-delay td, which are based on the states provided by the estimation

process in place, referred as xw. This allows us to write the control law at ti as

u(ti) = −kKhxp(ti − td) + ussw(ti) . (3.102)

During ti < t < ti+1, the hold states are determined by the following system

ẋh(τ) = Ahxh(τ) , (3.103)

where Ah is the generalised hold, which dictates the dynamics of xh. Equations

(3.100),(3.101), and (3.103), depend directly on the values of the system matrices A,

B, and C, that are part of a linear state-space representation that approximates the

dynamics of the system that is being controlled, as in (3.1). Normally, these matrices

contain entries that are linear expressions based on parameters of the system, in other

words, they are parameterised. Therefore, it is possible to use a parameter estimation

routine to update these matrices in real-time. Once the updated matrices are obtained,
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a controller redesign can take place.

Based on a recursive state-parameter estimation algorithm such as the EKF or the

UKF, it is possible to establish the previously mentioned control design stage that

obtains an updated model and a new control signal according to variations in the

system parameters. In this sense, two controllers based on the IC framework can be

proposed: 1) Adaptive system-matched hold IC, and 2) Adaptive tapping IC. The

design of both controllers starts with an underlying continuous design (UCD), then a

generalised hold is established, and finally if there is the need of implementing state

prediction, the intermittent prediction matrices must be obtained. In a non-adaptive

case, the entire design procedure can be done offline, whereas in the adaptive version

the aforementioned design procedure must be done when an event is generated.

To illustrate the steps involved in the design stage, let us assume that an estimation

algorithm is capable of tracking time-varying parameters in the plant, feeding them

back to the design stage continuously. The effect of these parameter variations can

affect the system dynamics considerably, and since the initial controller was designed

for a “different” plant, events would be generated in consequence by the triggering

mechanism of the IC. Therefore, when there is an event, a new set of system matrices

is generated using the estimated parameters as follows

Ai = A(ϕm(ti)) , Bi = B(ϕm(ti)) , (3.104)

where ϕm(ti) represents the set of parameters that are being tracked by the recursive

estimator at ti, which are part of the parameterisation of matrices A and B. This

implies that the value of Ai and Bi remains constant until the next event is generated

at ti+1, this can be defined as

Ai = A(ti + τ) , Bi = B(ti + τ) for ti ≤ t < ti+1 . (3.105)

The computation of Ai and Bi is considered the initial step of the design stage. A

fast and accurate estimation of the parameter would reduce the effect of the variations

considerably. For this reason, it is important to have robust algorithms that can provide

the parameters reliably since the entire controller redesign depends on them.

Underlying continuous design

A carefully designed control law should be obtained before establishing the components

of an intermittent controller. The fact that it is called continuous reflects that on its

own it can be considered as a standard state-feedback controller, that if implemented,
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would use feedback continuously. This step should meet all design specifications and

requirements such as rise time, overshoot and steady-state error. In essence, the under-

lying continuous design is comprised of two independent steps: i) steady-state design,

and ii) the computation of state-feedback gains, as shown in section 3.2.1. In the

adaptation context, these steps should be performed at every event time ti and can be

summarised as follows

1. Steady-state design: compute xss(ti) and uss(ti) by solving the following sys-

tem




xss(ti)

uss(ti)



 =





Ai Bi

C 0





−1 



0n×1

1



 . (3.106)

2. State-feedback gains: using the LQR approach, compute the gains

ki = R−1
c BT

i Pi , (3.107)

where Pi = P(ti + τ) is the solution of the ARE defined in (3.10) at time ti.

The steps of the UCD serve as the basis of IC regardless of the nature of the hold

mechanism.

Generalised hold

The generalised hold Ah determines the dynamics of the system during the open-

loop interval ∆ol. The two adaptive controllers proposed in this chapter use different

hold mechanisms. One uses a system-matched hold which effectively approximates the

dynamics of the closed-loop system defined by the UCD, whereas the tapping hold is

based on an impulse-like control signal defined by Laguerre functions. Both schemes

are explained in section 3.2.3. The equations involved in defining Ah for an adaptive

context are explained in the following paragraphs.

1. System-matched hold: this hold requires the computation of the closed-loop

matrix Ac as follows

Ah(ti) = Ac(ti) = Ai − Biki . (3.108)

This definition converts the generalised hold Ah into a time-varying matrix that

is redefined every ti and stays constant throughout the open-loop interval as in

Ah(ti) = Ac(ti + τ). The hold mechanism in general requires the computation

of an intermittent control gain Kh, which for the system-matched hold case is

defined as a n × n identity matrix where n is the number of states in (3.1).
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2. Tapping hold: this hold requires the design of a square matrix Ap whose ele-

ments are defined by Laguerre functions, as in (3.39). This matrix defines the

shape of the tap and its value is assigned to the generalised hold (Ah = Ap).

Notice that since Ap can be designed offline, Ah stays constant during the en-

tire time the controller is operational, contrary to the system-matched hold case.

However, the intermittent control vector Kh is recalculated once an event is de-

tected. First, an autonomous system formed by X =
[

x xh

]T
is defined as

Ẋ (τ) = Axu(ti)X (τ) , (3.109)

where τ is the intermittent time, the initial conditions are Xi =
[

x (ti) Ui

]T
,

and the matrix Axu(ti) is

Axu(ti) =





Ai Bik

0n×n Ah



 . (3.110)

Notice the appearance of the state feedback gain k in (3.110). Following the

procedure in (Gawthrop and Gollee, 2012), the approach is to fix k as a unity

vector of n × nu, where nu corresponds to the number of inputs in the system,

and only determine Kh.

The solution of (3.109) is then used to formulate a cost function that depends

on Pi, which is the solution to the ARE obtained in the UCD step

JIT C = X(τ1)T Pxu(ti)X(τ1) , (3.111)

where τ1 is the optimisation horizon used in (3.41) and Pxu(ti) is

Pxu(ti) =





Pi 0n×n

0n×n 0n×n



 . (3.112)

By calculating the matrix JXX(ti) = eAxu(ti)T τ1 (Pxu(ti)) eAxu(ti)τ1 , it is possible

to rewrite the cost function as JIT C = XT
i JXX(ti)Xi. Then, the intermittent

control gain at ti can be computed using

Kh(ti) = J−1
UUJUx , (3.113)

with JUU and JUx being entries of (3.50).
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Intermittent prediction

If state prediction is needed to compensate against system delays, then the matrices

Epp and Eph in (3.59) should be evaluated every ti, resulting in the following expression

xp(ti) = Eppxw(ti) + Ephxh(ti) . (3.114)

These matrices come from an autonomous dynamical system formed by a state-vector

defined by the predicted and the hold states X̄(τ) = [ xp(τ) xh(τ) ]

d

dτ
X̄(τ) = Aph(ti)X̄(τ) , (3.115)

which is driven by the dynamics imposed by matrix Aph(ti), defined as

Aph(ti) =





Ai −Biki

0n×n Ah



 . (3.116)

Notice that Aph(ti) contains the generalised hold matrix Ah defined in the previous

section. The solution of (3.115) involves the computation of matrix E(ti) (defined in

(3.60)), which contains the necessary matrices to obtain (3.114).

3.6.4 Summary

The previous section defined the equations for system-matched hold and tapping based

adaptive intermittent controllers. Both evolve in an open-loop configuration between

events, based on dynamics dictated by a generalised hold. The occurrence of an event

forces the use of feedback, sampling the estimated states and parameters and then

redesigning the controller for the next open-loop interval. A summary of the main

steps of AIC is presented in the following list:

Adaptive Intermittent Control

Initialisation (offline): design an initial IC based on the state-space model defined

in (3.1), and the initial parameters for the EKF/UKF.

Open-loop control (t 6= ti)

Apply u(t) = −kxh(τ) + ussw(t) for ti < t < ti+1.

Closed-loop control (t = ti)
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Apply u(ti) = −kKhxp(ti − td) + ussw(ti) and update control parameters for the

next ∆ol as follows:

1. Update state-space model

Compute the new system matrices based on the set of estimated parameters ϕm,

Ai = A(ϕm(ti)), Bi = B(ϕm(ti)).

2. Underlying continuous design

• Steady-state: compute xss(ti) and uss(ti) by solving (3.106)

• State-feedback (LQR): compute ki = R−1
c BT

i Pi, by solving the ARE in (3.10)

3. Generalised hold

System-matched

• Obtain Ac(ti)

Ah(ti) = Ac(ti) = Ai − Biki

Tapping

• Find Axu(ti) based on (3.110), with

Ah = Ap defined in (3.39)

• Find JXX(ti) based on (3.112)

• Obtain Kh(ti) = J−1
UUJUx using

(3.50)

4. Intermittent prediction

• Find E(ti) based on (3.60) and the value of Aph defined in (3.116)

• Compute the predicted states using xp(ti) = Eppxw(ti) + Ephxh(ti)

3.7 Discussion

In this section, we will discuss some aspects that should be considered when imple-

menting AIC. For this purpose, the ideas about AIC as a whole are considered first,

followed by parameter and state estimation related remarks to then end with the ones

that are control specific.

IC is a model based control strategy, which implies that dynamical model of the system

is needed to design a controller. When the model matches reality closely, the designed

controller would have the expected performance. However, modelling is not an easy

problem in higher dimension systems with complex nonlinear dynamics and interac-

tions. A first source of discrepancy is introduced when the values of the parameters

used to design the controller are not close to the true system parameters. Although it

is not possible to know the true parameters, a strategy like adaptive control is useful
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when the discrepancy affects the dynamics considerably, and reducing it is critical to

achieve the desired performance. Nevertheless, there are situations where neglected

dynamics might introduced an extra source of error that the adaptive control might

not be able to counteract unless the model used to design the controller includes them

explicitly. Therefore, having a model that is as close as possible to reality greatly

improves the performance of any adaptive controller.

The aforementioned adaptive controllers are all based on the assumption that the

dynamical model of the system can be written in a state-variable form, where the

state vector includes system states x and also the parameters of interest ϕ(t), which is

fundamental to formulate a joint Kalman filter as a recursive estimator by means of an

augmented state vector. A linearisation process on the nonlinear system yields linear

system matrices A, B, and C, which contain entries that depend on the parameters

of interest. For implementation purposes, only the entries dependent on ϕ(t) must be

recomputed every ti.

The indirect self-tuning architecture of the proposed AIC allows the formulation con-

trollers that might rely on different estimation techniques such as a more traditional

recursive least squares algorithm. This provides flexibility in the design of AIC and

makes testing a simpler process since the controller is unaffected by the chosen esti-

mation algorithm in terms of its architecture. However, the accuracy of the parameter

estimation does play an important role in order to improve performance.

State and parameter estimation

The initial values of the EKF and UKF have an important role in the performance

of both filters as stated by (Crassidis, 2006), where large initialisation errors might

have a greater impact in terms of the linearisation errors associated with the EKF.

There are some authors that state that the reported under-performing EKF results

in literature are mostly related to a trial and error selection of its design parameters

such as the process covariance matrix Q and measurement noise covariance matrix

R, mentioning that a well tuned EKF might perform as well as more complex filters

(Daum, 2005; Schneider and Georgakis, 2013). The EKF is attractive to engineers

because its equations are probably easier to understand compared to those of the UKF

and in many situations the differences in performance are rather small (Hegyi et al.,

2006; Gross et al., 2012); however, the performance of the EKF might differ and even

diverge from that of the UKF in situations when the process to be estimated is highly

nonlinear.
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It is important to notice that the computational cost of the UKF is of the same order

than the EKF (Wan and Van Der Merwe, 2000) and it captures the posterior mean

and covariance reliably to the third order of a Taylor series expansion when propagated

through the nonlinear system. This feature might be a decisive factor when selecting

the kind of filter to implement depending on the type of system.

Control

The differences between the proposed AIC schemes are the hold mechanism (either

system-matched or tapping) and the comparison made by the triggering mechanism to

determine event times (using predicted states xp for a system-matched hold and closed

loop states xc for the tapping case) as explained in section 3.2.5.

An adaptive system-matched based IC is a natural extension of the non-adaptive ver-

sions presented in (Gawthrop and Wang, 2009a). This version in particular has been

used in many other publications of the same authors. Its formulation is intuitive in the

sense that the inter-sample behaviour is dictated by a dynamical system that would

evolve in the same way as the closed-loop system in the absence of perturbations.

Therefore, the hold is automatically determined by the underlying continuous design

process which can be achieved by traditional linear control methods. On the contrary,

adaptive tapping IC which is based on (Gawthrop and Gollee, 2012) uses orthogonal

functions known as Laguerre polynomials to form the hold. As a result, this controller

uses an extra set of design parameters compared to the system-matched version such

as the p parameter and the order N of the Laguerre matrix Ap defined in 3.2.3.

The following two chapters describe different applications of intermittent controllers

to real-time systems. The next chapter presents how multivariable IC was used to

balance a humanoid robotic structure, focusing on clock and event-driven versions of

IC. This implementation constitutes the first use of IC (as described in this chapter)

as a control framework for a multi-segmental robot. This is followed by a chapter

that discusses the implementation of Adaptive IC on a rotational inverted pendulum

system, in simulation and experimentally, showcasing some of the main properties and

advantages of using this method.
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Chapter 4

Intermittent control of a humanoid

robot

4.1 Introduction

The extent of continuous control (CC) in human motor control covers two main ideas:

i) it replicates the mean human response to stimuli and, ii) variability in human con-

trol (like the irregular body sway pattern in human balance) can be fitted by adding

suitably filtered random noise to the motor and sensory states (Levison et al., 1969;

Kleinman et al., 1970; Baron et al., 1970). However, the paradigmatic advance in ex-

planation has been limited (Loram et al., 2014), as it does not include smooth con-

trol comprised of a sequence of sub-actions as it was observed in human balance

(Loram and Lakie, 2002) or in more complex movements such grasping objects or even

handwriting.

For this type of movements, the continuous (inner) feedback loop requires a nested

control structure with a discontinuous outer feedback loop to (initiated by a triggering

event or condition) automate the change from one system state to another. For exam-

ple, in the case of balance, switching from an ankle strategy to a hip strategy. This

requires a predefined list of states plus its triggering condition for each transition. The

intermittent behaviour provides a convenient way of implementing state transitions,

and the open-loop interval provides the conceptual benefit of movement and response

planning inside the control loop.

The IC framework possesses several more inherent properties that could be beneficial

for robotics. In the presence of (static) friction or backlash, a CC approach is not always

necessary, especially when a certain residual error is acceptable. As a solution, a dead-
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band can be introduced in the control scheme, as for example done in motor control

(Wescott, 2010). Because of the trigger thresholds, IC provides a way to implement

controller dead-bands. It is also a means to influence energy expenditure, because

of the typical control pulses that can arise from the triggering. In case of delayed

communication (which in humans is present due to the nervous system) smart usage of

triggers and only using feedback when needed is a way of preventing instabilities and

reducing the network load. For remotely operated robots, this is acknowledged and

investigated by robotics and control researchers (Santos et al., 2012, 2014).

In the field of humanoid robotics, real-time constraints make online optimal control

and model predictive control (MPC) challenging tasks. Because of the hybrid, nonlin-

ear system with possibly many degrees of freedom, computing the optimal trajectory

can take a lot more time than a single time step of the real-time system. Therefore,

a lot of effort has been put into the development of fast, efficient algorithms, leading

to promising results (Diehl et al., 2006; Todorov and Li, 2005; Li and Todorov, 2004).

Though, it is not essential to complete such complex calculations in short intervals.

This is why some recent work has suggested the use of a predictor to deal with com-

putational time delay (Neunert et al., 2014; Koenemann et al., 2015). The delay in

the IC framework can be used to model computational delays (Ronco et al., 1999).

As a result, the framework is able to naturally deal with using computationally heavy

control policies.

This chapter is organised as follows: first, an overall description the software and

hardware in TUlip is given. Then, the details of the real-time experiment are introduced

along with the controllers that were designed and implemented on the robot. This is

followed by an overview of the analysis methods and the experiment results. An overall

discussion is presented after the results to end the chapter.

4.2 TUlip humanoid robot

In a collaboration with the Technical University of Delft, specifically the Delft Centre

for Systems and Control (DCSC) and Delft Biorobotics Laboratory, two visits were

made to Delft, Netherlands, in order to implement and asses IC on a humanoid robot.

Since 1995, Delft Biorobotics Laboratory have focused on designing balancing and

walking robot prototypes as well as other bio-inspired robotic applications (Wisse et al.,

2005; Hobbelen et al., 2008; Hobbelen and Wisse, 2008; de Boer, 2012).

One of the most iconic and important prototypes they have developed is a humanoid

robot named TUlip, which was designed based on two fundamental goals: i) to develop
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Figure 4.1: TUlip humanoid robot. Complete version of the final prototype, which
was designed based on a predecessor bidpedal robot named Flame (Hobbelen et al.,
2008) In the picture, the robot is presented with a head and two arms; however, these
components were removed in order to run the experiments reported in this chapter.

a testing platform for energy-efficient gait controllers and, ii) to compete regularly at

the robotic soccer competition known as RoboCup. Fig. 4.1 shows an image of TUlip.

These goals led the mechanical design in such a way that the prototype had human-

like features, particularly the lower extremities, focusing on generating light limbs that

allowed the use of low power motors. From the actuation perspective, TUlip uses

a concept introduced by Pratt and Williamson (1995) called series elastic actuation

(SEA), which has been used successfully in other platforms.

4.2.1 Series elastic actuation

The purpose of SEA is to create compliant joints by connecting the motor to the joint

through an elastic element, normally a tension string. The amount of torque that is

applied by the motor can be then controlled by measuring the elongation of the elastic
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element. This configuration is particularly helpful to absorb impacts, extending the

life of the internal components of the motors. Moreover, it enables the measurement

of energy at the joint without considering the energy consumed by the motor. On

the other hand, a potential disadvantage of this approach is that when large torques

are demanded, motor saturation might happen since high speeds are required due to

the large elongation of the spring, leading to low control bandwidth (de Boer, 2012).

Fig. 4.2 shows a simplified diagram of a SEA joint.

joint

spring
motor

Figure 4.2: SEA Joint. Schematic of the actuation principle in TUlip. Joints are
connected to the motors through elastic elements. SEA produces high torques by in-
troducing a gearbox in the drive chain, which in turn reduces the speed and impedance
due to increased inertia, friction and backlash. The role of the elastic element placed
between the actuator and the load is to introduce compliance, with the benefit of
improving force control and output impedance (Pratt and Williamson, 1995)

In TUlip, both the joint and the motors are equipped with incremental encoders to

measure position, then by measuring the difference in orientation between them, the

extension of the elastic element can be calculated, this provides a measurement of the

torque applied on that particular joint.

In terms of human balance, this actuation principle is conceptually similar to the

dynamic bias model used by (Loram et al., 2005). This model represents the human

body as an inverted pendulum, where the gastrocnemius and soleus muscles act on the

ankle joint by means of a spring-like element. It is also known that in IC, the fact

that the open-loop interval allows for in-the-loop optimisation, imposes a trade-off in

terms of control bandwidth and stability margins (Loram et al., 2014), rendering low

bandwidth controllers compared to those of CC. For these reasons, TUlip’s actuation

system makes it an ideal candidate to test IC and its potential benefits to robotics.

4.2.2 Mechanical properties and hardware

The legs in TUlip have six degrees of freedom (DoF) each, with two DoF in the ankle

joint, allowing roll and pitch rotations, one DoF in the knee joints and three per each

hip, with a total of 12 DoF. Fig. 4.3 presents a diagram of all segments and DoF in

TUlip.
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Figure 4.3: TUlip DoF diagram. Ankle and hip joints allow pitch and roll rotations, the
knee is restricted to pitch rotations only. CoM position offsets are measured according
to the individual coordinate frames

For this study, the DoF that were considered are the ones corresponding to pitch

rotations for ankles, knees, and hip. These joints are all actuated based on the SEA

principle. The motors that power all joints are Maxon RE 30 motors with HEDS 5540

encoders mounted on them to obtain the angular position of the shaft. The joints are

also equipped with incremental encoders (Scancon 2RMHF) to measure the joint angle

and the displacement of the elastic elements in the SEA chain. Mounted in the chest

of TUlip, there is a 1GHz Diamond Systems Poseidon board used as a target computer

to monitor and control the robot.

Table 4.1 shows the length and mass of each section of TUlip, which is 1.095 m tall and

weighs 17.98 kg, including the position offsets in x and z directions of the CoM, which

are the ones that have a greater influence on a standing position. For this particular

experiment, the robot was controlled to perfrom movements only in the sagittal plane.

Table 4.1: TUlip mechanical parameters: mass, length, and CoM offsets.

Section Mass [kg] Length [m] CoM in x [m] CoM in z [m]

Trunk 11.654 0.5 0.06 -0.202
Upper legs 4.28 0.275 0.05 -0.097
Lower legs 2.046 0.320 0.0375 -0.15
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Calibration

In order to execute any task with TUlip, it must be mounted on a metal rig to start a

calibration procedure. This is required since the joint encoders are incremental and the

reference position is lost every time the target computer is restarted. Fig. 4.4 shows

TUlip in its current state, mounted in a calibration rig.

Figure 4.4: TUlip robot in calibration rig.

The calibration procedure imposes several constraints to use TUlip as an experimental

platform. It normally takes between 15 and 20 minutes to position the robot in the rig,

perform the calibration, to then take it out and find a stable standing configuration.

This particular feature had an impact in the way the experiments were designed.

4.2.3 Software

Previous implementations in TUlip used Linux based real-time frameworks to establish

communication channels with the sensors and actuators in the system. However, in

order to allow quick implementations of motion controllers, the control framework was

migrated to Simulink, relying on the Real-Time Windows Target (MathWorks, Inc.)

toolbox to generate executable code.
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The software architecture comprises low level controllers that apply appropriate PWM

signals to each of the actuators. These signals are derived from high level torque

references generated by motion controllers running in real-time.

4.3 Balance experiment

The experiment performed on TUlip was a balance test (standing configuration), where

the robot was perturbed by means of an actuator during different control regimes such

as continuous control (CC), clock-driven IC (ICc) and event-driven IC (ICe). The

purpose of this task is to evaluate how effective the different controllers are when they

have to compensate for an external perturbation, and to measure for the first time

the effects of a system-matched hold IC on the angles and control signals of humanoid

robotic platform.

4.3.1 Experiment setup

Fig. 4.5 shows the experiment setup for the balance test, represented both as a diagram

and with an image of the actual testing rig. In Fig. 4.5b, TUlip is shown standing

sideways, attached to a frame via a security cable, that catches the robot in case

of a sudden fall from the effects of a perturbation or from instabilities. To deliver

perturbations, a linear actuator is attached to a clamping point in the trunk of the

robot by means of a small spring and a cable. The role of the linear actuator is to

pull TUlip in the x direction (sagittal plane), for 0.5 secs, at a constant velocity profile

that was imposed after considering the transient response of the actuator, forcing the

controller in place to compensate in order to bring it back to a predefined stable

configuration. The clamping point was positioned in the front of the robot, at -2.5 cm

from the top edge of TUlip’s trunk in the z direction and at the geometrical centre

in the y direction, dividing the trunk by half. This location would enforce the largest

angular momentum around the ankle joints. The pull from the actuator had the same

displacement profile throughout all trials.

The robot was kept at the same distance relative to the test rig for all trials, facing the

linear actuator in order to ensure that the pull would apply the same amount of force.

The linear actuator was fixed to the test rig at a height of 1.12 m, slightly above the

edge of the trunk, in order to avoid direct contact in the case of a fall.
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actuator

security cable

frame

(a) Experiment diagram. (b) Side view of TUlip in the test rig.

Figure 4.5: TUlip experimental setup.

4.3.2 Experiment protocol

The robot needs a control action to be applied all the time in order to maintain balance;

in other words, in the absence of a stabilising controller, the robot falls to the ground

quickly. Therefore, even when no perturbations are applied, the controllers must be

operational. To test the effects of CC, ICc and ICc under the same calibration settings,

the trials were designed in such a way that the controllers would operate sequentially

with one perturbation being applied for each of them.

The trials were divided into three groups of 90 sec, allowing 30 sec of operation for

the three controllers. For each group, three perturbations were applied. After the

first group of perturbations, the controllers are redesigned using different LQR design

parameters to then start a second group of perturbations. At the end of the second

group, the controllers are redesigned one more time to run the final group. A total of

9 perturbations are applied during the trial. Two different controller sequences were

tested within each group: 1) CC - ICc - ICe, and 2) ICc - ICe - CC. Fig. 4.6 shows a

graphical representation of the full procedure for the first sequence.

The controller redesign mentioned above involves a new computation of the state-

feedback gains k shown in (3.11), considering different weights for matrix Rc in the

LQR approach. Specifically, the controllers of groups 1 and 3 are designed using scaled

versions of a nominal Rc matrix used for group 2. The details of the control design

used for all trails are given in the following sections.
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Figure 4.6: TUlip trial. Three different groups of three perturbations each are tested
sequentially. Within each group, CC, ICc, and ICe controllers are used to keep TUlip in
balance and reject perturbations (denoted by p) coming from the actuator. At the start
of each group, the three controllers are designed using a specific LQR weight matrix
Rc, which changes for each group, meaning that the only difference between groups
is the set of feedback control gains k that is used as a part of the underlying control
design. The values of Rc used for the different trials are discussed in the following
sections.

Data acquisition

The most relevant signals coming from the robot were logged using a data acquisition

system and the Real-Time Windows Target toolbox in Simulink. For each trial, 360

sec at a sampling rate of 0.5 kHz were recorded, giving enough time to position the

robot after calibration, run the disturbance rejection test and then manually save the

recorded data.

4.4 Controller design

This section is dedicated to review the design considerations that were made to im-

plement continuous and intermittent controllers in TUlip. First, the modelling of the

robot in a state-space formulation is introduced including a nonlinear steady-state de-

sign procedure. Then, an explanation of the control architectures is given, concluding

with the LQR and timing parameters used for the real-time experiments.

4.4.1 Dynamical model

It is common to represent a robotic system with n degrees of freedom using n generalised

coordinates q ∈ R
n, that define the joint positions. This notation commonly leads to
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motion equations of the form

M(q)q̈ + C(q̇, q)q̇ + G(q) = Bu(t) , (4.1)

where M(q) ∈ R
n×n is the inertia matrix, C(q̇, q) ∈ R

n×n the Coriolis matrix, and

G(q) ∈ R
n the gravity effects. Matrix B ∈ R

n×nu maps the control inputs to the degrees

of freedom and u ∈ U ⊂ R
nu are the nu control inputs, bounded by actuator limits.

These equations can be derived manually using standard methods as in for example

(Spong et al., 2006; Murray et al., 1994). Alternatively, they can be computed with

efficient algorithms (Featherstone, 2008, 2010a,b). Given the equations of motion of

(4.1), the state space equations can be formulated in such a way where x ∈ R
nx, with

nx = 2n, represents the system state.

ẋ(t) = f (x(t), u(t)) . (4.2)

The nonlinear motion equations described in (4.2) are often linearised around an

equilibrium point, with the purpose of using linear techniques to derive appropriate

controllers. Also for the purpose of understanding human balance, single or multi-

ple degree of freedom pendulum models are often linearised (Gawthrop et al., 2015)

(Alexandrov et al., 2005) (van der Kooij et al., 2001) (Günther et al., 2012). This step

greatly simplifies the analysis or control problem at hand. Assuming the linearisation

point α to be an equilibrium of the system, the linearisation of the equations of motion

(4.1) yields

M̄q̈ + K̄q = B̄u , (4.3)

where M̄ ∈ R
n×n is a mass matrix and K̄ ∈ R

n×n a stiffness matrix due to gravity.

The actuator matrix B̄ ∈ R
n×nu remains the same as that of equation (4.1).

Linearisation

Considering the left hand side of (4.1), the following nonlinear function is established

f (q̈, q̇, q) = M(q)q̈ + C(q̇, q)q̇ + G(q) . (4.4)

It is possible to linearise the nonlinear function f (q̈, q̇, q) by using the Taylor series

expansion method and neglecting the higher order terms that result from it. This lin-

earisation is done around the operating point α, which is assumed to be an equilibrium

where q = α, q̇ = α̇ = 0, and q̈ = α̈ = 0.

f (q̈, q̇, q) ≃ f (0, 0,α) +
∂f

∂q̈

∣

∣

∣

∣

∣

α

(q̈ − α̈) +
∂f

∂q̇

∣

∣

∣

∣

∣

α

(q̇ − α̇) +
∂f

∂q

∣

∣

∣

∣

∣

α

(q −α) . (4.5)
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Generally, only natural equilibrium points are considered. In other words, no control

effort should be required to maintain the equilibrium position. By doing so, the first

term of the series: f (0, 0,α), can be neglected, which for mechanical systems comes

down to assuming G(α) = 0. For an inverted pendulum with equal mass distribution,

for example, the upright position is such an equilibrium. Also, define qα = q−α as the

generalised coordinate with respect to the equilibrium and consequently, q̈α = q̈ − α̈,

q̇α = q̇ − α̇. It is then found that

f (q̈, q̇, q) ≃ M|α q̈α +

(

∂C
∂q̇
q̇ + C

)∣

∣

∣

∣

∣

α

q̇α +

(

∂M
∂q

q̈ +
∂C
∂q
q̇ +

∂G
∂q

)∣

∣

∣

∣

∣

α

qα

= M|α q̈α +
∂G
∂q

∣

∣

∣

∣

∣

α

qα .

(4.6)

After evaluating the individual terms at α, most of the terms can be neglected. Note

that the Coriolis matrix with q̇ = 0 also equals zero, for all values of q. Therefore, the

linearisation of equation (4.1), including the right hand-side, is defined as

M̄q̈ + K̄q = B̄u , (4.7)

with

M̄ = M|α K̄ =
∂G
∂q

∣

∣

∣

∣

∣

α

B̄ = B ,

where the mass matrix M̄ is the original mass matrix at α and where stiffness matrix

K̄ is the Jacobian of the original gravity vector, also evaluated at α. The actuator

matrix remains the same and, dropping the subscripts, the generalised coordinates q

are now with respect to α.

4.4.2 State-space realisation

The linearised equations of motion can be expressed in state-space form as follows

ẋ(t) = Ax(t) + Bu(t) , (4.8)

where the state vector is x(t) = [q , q̇]T , the dimensions are A ∈ R
nx×nx and B ∈

R
nx×nu, and the system matrices are defined as

A =





0 I

−M̄−1K̄ 0



 B =





0

M̄−1B̄



 . (4.9)

The system in (4.9) has six states (nx = 6) corresponding to joint positions and angular

velocities, and three inputs (nu = 3), one per joint. The control input based on (4.9)
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is applied to the corresponding actuator in both legs, the reason for this is that the

model assumes that TUlip is a three-segment inverted pendulum. In (4.9), the inputs

are mapped according to B̄ = Inu×nu
, and the corresponding values of M̄ and K̄ are

M̄ =











6.0593 3.383 1.426

3.383 2.036 0.930

1.426 0.930 0.504











K̄ =











−83.323 −41.280 −15.198

−41.280 −41.280 −15.198

−15.198 −15.198 −15.198











. (4.10)

The knee joints have restricted motion in TUlip, where negative angles are not feasible

due to physical constraints. The knee can not rotate backwards, to prevent hyper-

extension the same way as in humans. The implemented controllers were designed

without any constraints in terms of the joint angles that could be achieved based on

the control signals, for this reason, the knee joint was “locked” via software to restrict

motions that could damage the joint, while allowing small rotations.

4.4.3 Nonlinear steady-state design

In section 3.2.1, a general procedure to introduce a setpoints is explained, which is

a completely linear approach. In this case, our reference is always going to be the

vertical equilibrium position, which in a linear inverted pendulum model would ensure

that the system stays static in the absence of any perturbation. TUlip however, is

under the effect of position offsets for the CoM of each link, which generate torques

due to gravity. In order to counteract these effects, a different approach was taken to

calculate the steady-state versions of both inputs and states. Based on the work from

Featherstone (2008) on rigid body dynamics and spatial vectors, the inverse kinematics

problem for a robotic platform can be solved by means of a recursive Newton-Euler

algorithm, that considers the inertial properties of all bodies in the kinematic chain.

This method was used to calculate the joint torques that yield zero acceleration when

the system is in the upright position.

Using the system matrices in (4.9), the steady-state state xss and control input uss

can be computed, given a desired system output yss and the fact that the rate of

change of the state is zero. yss ∈ R
nss×nss is an identity matrix that corresponds to an

equilibrium task space. The matrix Css ∈ R
nss×nx maps the equilibrium state space

xss ∈ R
nx×nss to this task space. Note that Css is not necessarily equal to C. The

matrix uss ∈ R
nu×nss is the control space. By defining a steady-state output matrix

Css, it is possible to obtain Xss if the following inverse is computed

Xss(t) = C−1
ss yss(t) , (4.11)
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then Xss(t) is multiplied by the setpoint to obtain

xss(t) = Xss(t)w(t) , (4.12)

where xss(t) can be partitioned as

xss(t) = [qss q̇ss]
T , (4.13)

using qss, q̇ss, and q̈ss = 0, it is then possible to solve (4.1) for the steady-state joint

torques uss

M(qss)q̈ss + C(q̇ss, qss)q̇ss + G(qss) = Buss . (4.14)

Once uss is obtained, a continuous control law can be written as follows

u(t) = −k (x(t) − xssw(t)) + ussw(t)

= −kxw(t) + ussw(t) .
(4.15)

To solve (4.14), the recursive Newton-Euler algorithm discussed previously can be

used, as shown in (Featherstone, 2010b). This algorithm only needs joint positions,

velocities, and accelerations to compute joint torques as well as a description of the

robotic structure that includes the number of bodies in the mechanism, the connectivity

between them, and an array of spatial inertias for each body. A description of the

equations behind the algorithm can be found in Appendix (B).

4.4.4 Control architectures

The role of all the controllers (CC, ICc and ICe) is to provide high-level joint torque

references τj,ref for the series elastic actuators. This overall structure is shown in

Fig. 4.7, where the SEA stage is comprised by a torque controller, that takes as inputs

the joint torque references generated by either CC or IC controllers, and the measured

joint torque τj .

The output of the torque controller is the required motor torque τm (i.e. current) to

achieve the desired configuration. The joint torque τj is proportional to the measured

difference between the motor angle θm and joint angle θj .

The high-level controllers, continuous control (CC) and intermittent control (ICc and

ICe), can be described by the block diagrams in Figs. 4.8 and 4.9 respectively. Both

controllers are based on the architectures shown in chapter 3, where the main difference

is the fact that there is no need of an observer to estimate angular velocities since they

are already provided by the control layers of TUlip.
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IC/CC Torque
Control Motor Spring Joint

x = [θj , θ̇j ]T

w τj,ref

τm

θm

τj

θj , θ̇j

SEA
TUlip

−

−

Figure 4.7: TUlip joint torque control scheme. IC/CC controllers generate reference
torques τj,ref for the low level control stages in order to generate appropriate commands
for the motors. Measured joint angles and velocities θj , θ̇j are used as feedback. The
blue colour block represents the series elastic actuation principle applied to the joints.
TUlip is represented by the green colour box as the system to be controlled.

It is worth mentioning that the SEA controllers are used by all the high-level con-

trollers currently implemented in TUlip, without changing the parameters or default

configuration. The fact that they are independently tuned for all applications allows

flexibility in terms of testing any kind of high-level control that provides reference joint

torques as an output.

Another important point is that the intermittent controller in Fig. 4.9 can accommo-

date both clock-driven and event-driven versions, by simply adjusting the triggering

thresholds q.

JointSEA

TUlip

State FB Delay Predictor

x(t)
xssw(t)

τj

xw(t)

xw(t)xp(t)xp(t − td)

+u(t) = τj,ref
−

Figure 4.8: TUlip continuous controller (CC). Predicted states xp are used to com-
pensate for a deliberately introduced time delay. The output of the State Feedback
block is a joint torque reference τj,ref which is used as high-level for input for TUlip.
The signals in this controller flow continuously, as opposed to the IC case where the
triggering mechanism samples the states based on events.
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JointSEA

TUlip

τj

Trigger

State FB Hold Delay Predictor

x(t)

xssw(t)

xw(t)

xw(t)

ti

xw(ti)

xp(ti)xp(ti − td)

xh(t)

u(t) = τj,ref + −

Figure 4.9: TUlip intermittent controller (ICc and ICe). Predicted states xp are used to
compensate for a deliberately introduced time delay. A trigger mechanism is included
to generate events every ti. Between events, the controller evolves in an open-loop
configuration dictated by the system matched hold represented by the Hold block.
The output of the State Feedback block is a joint torque reference τj,ref .

4.4.5 Controller parameters

The continuous controller (CC) is based on state-feedback, where the gains are ob-

tained using the LQR optimisation approach. This controller also uses a predictor

to compensate for a time-delay. This continuous design is the base of the intermit-

tent controller, which takes the same state-feedback approach and adds a triggering

mechanism to generate events based on the difference of the hold states and the mea-

sured states. In this case, the system-matched hold (SMH) was used to generate the

open-loop trajectories.

Each trial is divided in three groups as depicted in Fig. 4.6. Every group would use a

controller designed from a different set of state-feedback gains k, where these gains are

obtained from optimising the following cost function in the LQR approach

JLQR =
∫

∞

0

[

x(t)T Qcx(t) + u(t)T Rcu(t)
]

dt . (4.16)

From preliminary tests on the robot, the following value of Rc was found to give an

acceptable performance in most situations.

Rc,nom =











1.3 0 0

0 0.5 0

0 0 1.2











. (4.17)
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For this reason, the matrix in (4.17) was used as the basis to design the controllers of

each group, by simply scaling it up or down according to a predefined percentage.

In Table 4.2, relevant parameters used for CC, ICc and ICe controllers are shown.

These parameters did not change throughout the trial. The CC case is not affected by

any triggering, therefore the minimum open-loop interval ∆min and the threshold q do

not apply, but they are relevant for both ICc and ICe. The triggering mechanism of

ICe was designed to use all states of the state vector in (4.8) to generate events, based

on the comparison of the prediction error defined in (3.62) and the threshold q.

Table 4.2: TUlip controller parameters used for all trials. td, ∆min, q, correspond to the
time delay, open-loop interval and threshold values. Qc is the state weighting matrix
from (4.16)

td [sec] ∆min [sec] q [deg] Qc diag.

0.014 0.032 2 [1,1,1,0,0,0]

Table 4.3 shows the percentage of Rc,nom used for each group in all trials, and the

controller sequence within a group. Trials 1 and 2 started the groups with CC, then

changing to ICc and finishing with ICe. This is the sequence shown as an example

in Fig. 4.6. Trials 3, 4, and 5 use a reversed sequence that starts with ICc, then it

switches to ICe, and finishes with CC. A total of 45 perturbations were applied over

the 5 trials.

Table 4.3: Percentage values of Rc,nom used for each trial.

Trial Group sequence Group 1 (%) Group 2 (%) Group 3 (%)

1 CC - ICc - ICe 75 100 125
2 CC - ICc - ICe 75 100 125
3 ICc - ICe - CC 125 100 75
4 ICc - ICe - CC 110 100 90
5 ICc - ICe - CC 105 100 95

The controllers of Group 2 always used the nominal value of Rc,nom shown in (4.17),

while groups 1 and 3 used scaled versions of this matrix. The percentages shown in the

group columns of Table 4.3 indicate the scaling of Rc,nom used for a particular group.

These percentages lead to a broad classification of the controller gains k that result

from the LQR approach (explained in section 3.2.1, expression (3.11)), using matrices

Rc,nom and Qc. The classification is as follows: in general, we know that if a large value

of Rc is selected, this would penalise the control effort, reducing it in order to keep
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∆1
∆2

w

t

∆θ̄

θdeg

θ̄2θ̄1

Figure 4.10: Diagram of a perturbation response for the joint angle θ. ∆1 and ∆2 are
data portions of 8 seconds each, θ̄1 and θ̄2 are the corresponding mean values, ∆θ̄ is
the difference between the two means and w is the setpoint.

the optimisation cost in (4.16) small. This scenario produces controller gains k that

are also low. A low value of Rc works in the opposite way, generating more control

effort which is associated to a set of high gains. Based on this, the gains produced

by Rc,nom which applies to group 2 in all trials, are regarded as the nominal gains (or

medium gains). The groups that worked with Rc values that are lower than Rc,nom

(percentages below 100% in Table 4.3) are considered as high gain cases. Conversely,

the groups with Rc values above 100% are low gain cases. This classification was used

to perform the statistical analysis of the results for all trials, shown in section 4.6.3.

4.5 Analysis methods

The overall results were analysed from a statistical point of view for all of the 45

perturbations applied to the robot. To do this, three different quantities were used

to capture the performance of each controller. In Fig. 4.10, a typical joint angle re-

sponse is presented with the purpose of showing what portions of θ were considered

for the analysis. ∆1 and ∆2 were defined as a time span of 8 seconds before and after

each perturbation, ∆1 started 8 seconds before the perturbation was triggered and ∆2

started 4 seconds after the perturbation trigger, allowing the joint angle to return to a

steady-state value. Based on this considerations, the following quantities were used to

perform the analysis:

• Joint angle shift: the joint angle shift is shown in Fig. 4.10 as ∆θ̄. This value

provides information on how capable the controllers were in terms of bringing

the joint angles back to the steady-state after the perturbation, by subtracting

the mean joint angles in ∆1 and ∆2. Defining m as the number of data points
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in ∆1 and ∆2, and the initial and final data points in each range as ∆0 and ∆f

respectively, the expression for the joint angle shift is obtained as follows

θ̄ =
1
m

∆f
∑

i=∆0

θi (4.18)

∆θ̄ = θ̄2 − θ̄1 , (4.19)

where θ̄1 and θ̄2 correspond to the mean joint angles in ∆1 and ∆2.

• Mean steady-state error: considering the data points in ∆ = ∆1 + ∆2, and

m as the number of data points in this range, the definition for the mean steady-

state error is established as

ew =
1
m

∆f
∑

i=∆0

| θi − w | , (4.20)

where w is the predefined angle setpoint for the joint.

• Steady-state error variance: similarly, the steady-state error variance Var(ew)

over ∆ is defined as

Var(ew) =
1

m − 1

∆f
∑

i=∆0

(| θi − w | − ew)2 , (4.21)

where ew is the mean steady-state error.

4.6 Results

This section introduces the results of the balance test in two ways: 1) the results of

a representative trail are presented first (trial 1 in Table 4.3), showing the evolution

of the control inputs (reference joint torques), joint angle, and open-loop intervals for

both the ankle and hip joints. 2) the grouped results from all trials are shown based

on the analysis methods explained in the previous section. The results for the knee

are not included since this joint was restricted to have limited movement via software.

The following section introduces the results for the ankle joint during trial 1.

4.6.1 Ankle data

Figs. 4.11, 4.12 and 4.13 correspond to ankle data for groups 1, 2, and 3 respectively.

In each of these figures, the results for the three controllers are presented (every column
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Figure 4.11: Trial 1 - Group 1 - Ankle data. Each column represents a single controller,
in the corresponding group sequence (CC-ICc-ICe). First row shows joint angle θ,
setpoint w, threshold q, and the perturbation trigger d. Second row shows the reference
joint torque u and the measured joint torque τ . The third row corresponds to the open-
loop interval ∆ol.

represents a different controller i.e., CC, ICc, or ICe), where the first row shows the

joint angle θ, the setpoint defined for that trial w, the moment in time when the pull

was triggered d, and the threshold value q that applies only to the ICe case. The second

row reveals the control input history during the trial, where u corresponds to the joint

torque references τj,ref and τ is the measured joint torque. Finally, the third row shows

the open-loop intervals ∆ol, which are relevant only for both intermittent controllers.

For this particular trial, the resulting gains obtained by the LQR design in group 1 are

higher than those from group 3, therefore Fig. 4.11 shows the results of all controllers

using high gains for the ankle joint. It is possible to see that θ oscillates at a higher

frequency for CC case compared to both intermittent controllers, which exhibit a quasi-

regular sway close to the setpoint value.

A similar trend is observed for the control input for all controllers. The intermittent

interval ∆ol in the ICe case raises above the minimum value of 0.032 sec, reaching 0.1
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Figure 4.12: Trial 1 - Group 2 - Ankle data.

sec several times and 0.2 sec as a maximum. The ICc triggers periodically every 0.032

sec.

The controllers in group 2 were designed with the nominal value of Rc (medium

gains), as shown in Table 4.3. Fig. 4.12 shows the results of group 2 for the ankle

joint; for this condition, the continuous controller does not exhibit high frequency

oscillations anymore in terms of θ, instead it shows a similar sway pattern compared

to those generated by both intermittent controllers.

The control input generated as a consequence of the perturbation in CC is smaller in

amplitude compared to ICc and ICe. The intermittent interval for the ICe case still

shows some instances where it reaches 0.2 sec, while getting to the 0.05 to 0.1 sec region

most of the time.

In group 3, a low set of gains (125% of Rc,nom) was used to design the controllers.

For this condition, the joint angle θ in both intermittent controllers does not return

to the state they were in before the perturbation takes place, while CC stays closer to

the setpoint w the entire time compared to ICc and ICe. This drift from the reference
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Figure 4.13: Trial 1 - Group 3 - Ankle data.

created by the perturbation generates events at the maximum possible rate, forcing a

clock-driven behaviour for ICe, for this reason ∆ol stays fixed at 0.032 sec.

4.6.2 Hip data

The hip joint is particularly difficult to control since it is the heaviest link of the

structure; the chest area is where the motherboard and all the amplifiers are located,

as well as other electronic components. The presence of these components in the trunk

and their particular locations further enhance the effects of the CoM offsets shown in

Table 4.1. Figs. 4.14, 4.15, and 4.16 correspond to hip data for groups 1, 2, and 3

respectively.

A very similar pattern compared to the ankle data is observed for this joint, where the

high gain condition (group 1) results in high frequency oscillations of θ, the nominal

gains (group 2) generate acceptable results for all controllers, swaying regularly and

rejecting the pull from the actuator, and finally the low gain condition (group 3)

shows how the intermittent controllers have difficulties bringing back θ to the values

observed before the perturbation, however they are able to maintain a stable upright
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Figure 4.14: Trial 1 - Group 1 - Hip data. Each column represents a single controller, in
the corresponding group sequence (CC-ICc-ICe). First row shows joint angle θ, setpoint
w, threshold q, and the perturbation trigger d. Second row shows the reference joint
torque u and the measured joint torque τ . The third row corresponds to the open-loop
interval ∆ol.

configuration.

The aforementioned high frequency oscillations were observed also in trial 2 (shown in

Appendix (A), Figs. A.1,A.4), which shared the same design parameters and controller

sequence as in trial 1. The control inputs also behaved in a similar way compared to

the ankle joint. In reaction to the perturbation, CC showed reference torques of less

amplitude compared to those of ICc and ICe. This can be seen in Figs. 4.14 and 4.15.

Overall, the best performance for this particular trial was achieved with the controllers

of group 2, rejecting the applied perturbations while swaying quietly around a steady-

state value. It can be seen that the response generated by each controller induced

steady-state errors (differences between the equilibrium states and the setpoints) for

all cases since there is no explicit integral action in them. A particularly interesting

result is that the open-loop intervals raised up to 0.2 sec during some instances when

the ICe controller was operational, without introducing any negative effects in terms
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Figure 4.15: Trial 1 - Group 2 - Hip data.

of the amplitudes of joint angles and reference torques.

4.6.3 Grouped results

The grouped results, which consider all the trials in Table 4.3) were analysed using the

classification explained in 4.4.5. The data corresponding to cases with high gains were

grouped together, the same was done for the medium and low cases. These results are

based on the quantities introduced previously in 4.5 and are shown in Figs. 4.17, 4.18,

and 4.19, where data for both the ankle (a) and hip (b) joints are included.

First, the results for the joint angle shift are presented in Fig. 4.17. Both joints show

similar results for the high and medium gain conditions, small joint shifts in terms of

degrees for all controllers, where the CC and ICe controllers exhibit slightly less shift

compared to that of ICc. Alternatively, the data spread for the low gain condition is

higher, as well as the joint shift values.

The mean steady-state error results are shown in Fig. 4.18. The ankle joint follows

a very similar trend compared to the joint angle shift data in Fig. 4.17, in which the
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Figure 4.16: Trial 1 - Group 3 - Hip data.

high and medium gain conditions show small mean steady-state errors in contrast with

the low gain condition. In this case, CC shows smaller values compared to ICc and

ICe, specially for the ankle joint.

Interestingly, the results change for the hip joint. It can be seen that in the high gain

condition, the spread of the data is less for the intermittent controllers. This is also

the case for the medium gain condition, with the difference that both ICc and ICe

controllers registered errors of a smaller magnitude overall compared to CC.

Finally, in Fig. 4.19 the data for the steady-state error variance are presented. It

is possible to see that the high gain condition shows higher variances overall for both

ankle and hip joints; this is a consequence of the high frequency oscillations observed

in Figs. 4.11 and 4.14. The medium and low gain conditions registered lower variance

values for the two joints; with CC generating values with less spread compared to the

two intermittent controllers.
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Figure 4.17: Joint angle shift ∆θ̄ for ankle (a) and hip (b) joints across trials. Results
for all perturbations grouped as high, medium, and low gain cases. The box centres,
notches, edges, whiskers and crosses show median, confidence in median, inter-quartile
limits, range and outliers, respectively.

4.7 Discussion

A balancing experiment using a humanoid robot, in the presence of perturbations, was

carried out using multi-input, multi-output continuous and intermittent controllers to

maintain stability. The design of all controllers was based on LQR methods, and the

intermittent ones used a system-matched hold to generate open-loop trajectories as

shown in (Gawthrop et al., 2015). This design consideration allowed us to manipulate

the performance of the controllers while retaining control over the amplitude of the

control input, in order to keep it within safe limits. In addition to this, it was possible

to evaluate the controllers over a range of design values that had a direct influence on

the control signal.

The results of the experiment show that it is possible to use intermittent controllers for

quiet balancing of a complex multi-segmental robotic structure, resulting in similar per-

formance in terms of stability when compared to a continuous controller designed with

the same LQR parameters. This is interesting from the perspective of the computa-
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Figure 4.18: Mean steady-state error ew for ankle (a) and hip (b) joints across trials.
Results for all perturbations grouped as high, medium, and low gain cases. The box
centres, notches, edges, whiskers and crosses show median, confidence in median, inter-
quartile limits, range and outliers, respectively.

tional resources used to generate an appropriate control action. While these advantages

were not directly measured from the experiment, it is possible to argue that the inter-

mittent open-loop intervals observed in the event driven cases (Fig. 4.11) could allow

roboticists to implement additional optimisation routines to deal with constraints dur-

ing more complicated tasks such as walking. This adds flexibility to the design, since

other computationally expensive procedures can be computed efficiently within the

minimum open-loop interval as opposed to the idea of completing calculations before

the next iteration of the real-time loop. Modern robotics is probably one of the fastest

evolving fields in engineering and the use of the latest technology in robots is vital

to achieve the best performance; however, there are still many robotic structures that

have been operating for several years now that could benefit from these ideas. As hard-

ware becomes older, intermittent controllers might provide a consistent paradigm that

could enhance the performance of robots that are limited by less powerful processors.

It was expected during the experiment to have steady-state errors to the setpoint of each

joint due to the fact that the controllers were implemented without any integral action.
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Figure 4.19: Steady-state error variance Var(ew) for ankle (a) and hip (b) joints across
trials. Results for all perturbations grouped as high, medium, and low gain cases. The
box centres, notches, edges, whiskers and crosses show median, confidence in median,
inter-quartile limits, range and outliers, respectively.

Furthermore, these errors are probably enhanced by the fact that the methods to design

the controllers are based on a linear model, which yields dynamics that might differ

considerably compared to the true dynamics. In other words, un-modelled dynamics

contribute negatively, reducing stability margins. This situation is certainly present in

TUlip; for instance, there is friction in every joint and backlash in many mechanical

components, also the state-space model described in (4.9) does not contain an explicit

description of the SEA joints, which neglects the delays introduced by the springs.

With this in mind, the output responses observed from the high gain conditions in

trails 1 and 2 (Figs. 4.14, A.4), seem to be related to un-modelled dynamics, where the

high frequency oscillations in the continuous control cases arise due to reduced stability

margins. The intermittent controllers seems to be able to cope with this mismatch in

a better way, since they exhibit regular sway around a steady-state value instead of

aggressive oscillations.

In situations where the model is an accurate representation of the plant (i.e., no con-

siderable mismatch), the continuous controller should provide higher frequency band-
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width and increased stability margins while sacrificing flexibility, whereas the intermit-

tent controller stays flexible at reduced frequency bandwidth (Gawthrop et al., 2015).

However, during the high gain conditions of the experiment, the modelling errors effects

were amplified for the continuous controllers. Obtaining accurate models of complex

robotic mechanisms is not a simple task; furthermore, wear and deterioration due to en-

vironmental conditions might contribute to modelling errors and reduced performance

if there is no adaptation mechanism to properly identify and compensate against these

changing parameters in real-time. This is another possible situation where robotics can

benefit from the use of intermittent controllers since a more robust solution is achieved

when uncertainty in the parameters is present.

The results across trials from Figs. 4.17, 4.18 and 4.19, show interesting behaviour for

particular situations. While the CC cases exhibit slightly superior performance for

joint angle shift and mean steady-state error measurements for the ankle joint, the in-

termittent controller performs better when controlling the hip joint, this is particularly

evident in Fig. 4.18 specially for the medium and low gain conditions, where the ICe

case recorded smaller steady-state errors compared to CC and ICc. This is related to

the fact that the control inputs for the intermittent controllers had larger amplitudes

compared to CC, applying more energy to the system which in turn helps generating

the minimum amount of torque needed to maintain or start motion, overcoming stic-

tion. These larger amplitudes are explained in terms of the triggering mechanism of

intermittent control, where an update to the open-loop trajectories determined by the

hold only happens after the minimum open-loop period elapses (ICc case) or when an

event is generated (ICe case). In case of a sudden perturbation, the controller responds

until one of these conditions is met, whereas the continuous controller does not wait in

order to compensate against the perturbation.

The controllers used in this experiment were unconstrained, meaning that the design

procedure did not consider saturation limits in order to avoid the computation of unsafe

control signals. The robot has safety mechanisms in place though, that prevent possible

damage of the actuators and amplifiers, but it must be said that a constrained version of

these controllers is needed for more complicated experiments or tasks. Normally, push

recovery experiments in robotics measure the performance of the controllers in terms of

the maximum allowable perturbation while keeping constant the controller parameters.

For this experiment, the perturbation was kept constant while changing the controller

structures and the gains, evaluating responses for each of them individually. The fact

that the controllers were unconstrained had an impact in the strength of the applied

perturbations. The perturbations that were applied on TUlip generated control signals

that stayed within a safe operating regime in terms of the actuator saturation limits.
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Large perturbations were not applied to avoid operating close to these limits, specially

since no spare parts were available. Further tests should be carried out to explicitly

explore the maximum perturbation values that each of these controllers would tolerate

before an imminent fall, based on a constrained controller design.
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Chapter 5

Adaptive intermittent control of a

rotational pendulum

5.1 Introduction

In this chapter, the two adaptive intermittent controllers that were presented previously

are tested in simulation and experimentally. The testing platform is an under-actuated,

single input - multiple output (SIMO) rotational pendulum, which means that it is a

system that has more degrees of freedom than available actuators. Under-actuated

systems in general exhibit interesting properties and can be found in many robotic

structures, aircraft and underwater vehicles (Olfati-Saber, 2001), and they are consid-

ered particularly challenging from a control point of view. The rotational pendulum is

also known in the literature as the Furuta inverted pendulum (Furuta et al., 1992) and

it consists of a rotating arm that is controlled by a torque generated with a motor; the

arm is coupled with the motor at one end, the other end of the arm is connected to a

pendulum, which rotates freely.

The rotational pendulum has been used extensively to test linear and nonlinear con-

trollers, focusing on the swing-up phase first, which makes the arm oscillate until

the pendulum “stands up” and reaches a position that is close enough to the vertical

(Gordillo et al., 2003; Åström et al., 2008). Then, a second controller takes over to

apply fine control actions to keep the pendulum balanced (Ibáñez and Azuela, 2007;

Ramı́rez-Neria et al., 2014). One possible way to deal with uncertainties in the pa-

rameters of the rotational pendulum is to propose a robust controller that withstands

perturbations (Rigatos et al., 2017); however, an adaptive controller can also identify

the plant in real-time and correct its control policy (Chen and Huang, 2014). In this

context, an adaptive intermittent controller can be formulated to deal with models of
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the pendulum that contain parameters that are incorrect, or that are even changing ac-

cording to time, in order to stabilise the pendulum at the unstable vertical equilibrium

point.

Two different adaptation scenarios are considered in this chapter: 1) a time-varying

case is evaluated in simulation, where a defined set of parameters from the rotational

pendulum are modified at specific times forcing the controllers to track the variations

in order to adjust the control law. 2) an uncertain parameter case is evaluated experi-

mentally, where the initial controllers are designed using an incorrect model, half way

during the experiment the redesign stage of the adaptive controllers is enabled in order

to reduce the errors caused by the model mismatch.

This chapter is organised as follows: first, a description of the rotational pendulum sys-

tem is given, this includes an overview of the physical pendulum used for the real-time

experiments, the mathematical model of the rotational pendulum and the augmented

model needed to formulate state and parameter estimators. Then, the results of the

simulation study are presented and followed by the experimental results obtained from

the real-time system. The chapter ends with an overall discussion.

5.2 Rotational pendulum

The rotational pendulum system is composed of two elements: a rotating arm of length

Lr mounted on a base that contains a motor, and a pendulum of length Lp; both of

these elements can rotate 360 degrees in their respective planes. The basic control idea

behind this system is to find a controller that would stabilise the pendulum element

around the unstable equilibrium point by generating a torque τ that moves the arm.

In Fig. 5.1, a diagram of a generic rotational pendulum is shown, including a picture

of the physical pendulum used in the real-time experiments reported in this chapter.

The equipment consists of a Quanser Consulting SRV-02 servo motor module coupled

with a ROTPEN-E module that serves as the rotational arm.

The two outputs of the system are the pendulum angle α and the arm angle θ. Nor-

mally, the controller in place should keep both outputs at zero degrees while being able

to reject perturbations. It is also possible to keep α close to zero degrees while forcing

θ to follow a predefined reference trajectory.

For the real-time experiments, the two outputs were measured by two incremental

US Digital optical encoders, with a resolution of 4096 counts per revolution. The

position of the arm was controlled through the input provided by a Faulhaber DC
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Figure 5.1: Diagram of the rotational pendulum and the Quanser Consulting SRV02
ROTPEN system. A rotating arm of length Lr is attached to the base. At this point,
the torque τ is applied, making the arm rotate on the horizontal plane. The other end
of the arm is connected to a pendulum of length Lp that rotates freely. The pendulum
angle α and the arm angle θ are measured by incremental encoders. An angle of α = 0
deg means that the pendulum is positioned at the vertical unstable point. A motor
drives the rotating arm which is coupled to the pendulum through a planetary gearbox.

motor (2338S006) equipped with an internal gearbox. The motor shaft drives the

external planetary gearbox that rotates the arm. A power amplification stage is used

to provide the correct levels of voltage to the motor, which is part of the universal

power module provided by Quanser (UPM-15-03).

The data interface between the computer and the rotational pendulum was imple-

mented using a data acquisition card from National Instruments (PCI-6024E). In or-

der to run the experiments, discrete versions of all controllers were implemented using

MATLAB/Simulink (MathWorks, Inc.) and the Real-Time windows target, based on

a zero-order hold approximation with a sample interval of 1 ms.

The following section introduces the dynamical model of the rotational pendulum in-

cluding the linear state-space formulation that was used to implement the controllers.
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5.2.1 Dynamical model

The nonlinear equations of the rotational pendulum can be written in a compact way

as follows

M(q)q̈ + C(q̇, q)q̇ + G(q) = T , (5.1)

where, M(q) ∈ R
n×n is the inertia matrix, C(q̇, q) ∈ R

n×n the Coriolis matrix, and

G(q) ∈ R
n the gravity effects. The vector T corresponds to the torques generated

by the actuator and q = [ θ α ]T is the vector of joint positions. Equation (5.1) is

the result of applying Euler-Lagrange equations of motion to the rotational pendulum

system (Fantoni and Lozano, 2002), which results in the following matrices

M(q) =





mpL2
r + mpl2

p − mpl2
p cos(α)2 + Jr −mplpLr cos(α)

−mplpLr cos(α) Jp + mpl2
p



 (5.2)

C(q̇, q) =





(

2mpl2
p sin(α) cos(α)

)

α̇ (mplpLr sin(α)) α̇

−
(

mpl2
p cos(α) sin(α)

)

θ̇ 0



 (5.3)

G(q) =





0

−mplpg sin(α)



 and T =





τ − Drθ̇

−Dpα̇



 , (5.4)

where Lr and Jr are the length and moment of inertia of the rotational arm, Lp is the

total length of the pendulum with its centre of mass located at lp = LP /2, a moment

of inertia represented by Jp and mass mp. The viscous damping coefficients for the

arm and the pendulum are Dr and Dp respectively. The acceleration due to gravity is

depicted as g.

Solving for the acceleration terms and defining z =
[

θ̈ α̈
]T

, the following state

variable representation is obtained











θ̇

α̇

z











=











θ̇

α̇

M(q)−1 (T − C(q̇, q)q̇ − G(q))











. (5.5)

The expression in (5.5) is nonlinear; however, a linear state-space model is needed

for the design of adaptive intermittent controllers. Linearisation around the vertical

equilibrium point (α = 0 deg) yields the following equations for the acceleration terms

θ̈ =
1

JT

[

−
(

Jp + mpl2
p

)

Drθ̇ + mplpLrDpα̇ + m2
pl2

pLrgα +
(

Jp + mpl2
p

)

τ

]

(5.6)
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α̈ =
1

JT

[

mplpLrDrθ̇ −
(

Jr + mpL2
r

)

Dpα̇ − mplpg
(

Jr + mpL2
r

)

α − mplpLrτ

]

, (5.7)

where JT is

JT = JpmpL2
r + JrJp + Jrmpl2

p . (5.8)

Establishing the state vector x(t) =
[

θ α θ̇ α̇
]T

, and using the following relations

θ = x1, α = x2, θ̇ = x3, α̇ = x4, it is possible to obtain a linear model that approximates

the nonlinear dynamics of (5.5) as follows

ẋ(t) = Ax(t) + Bu(t) (5.9)

y(t) = Cx(t) , (5.10)

where

A =
1

JT

















0 0 JT 0

0 0 0 JT

0 m2
pl2

pLrg −
(

Jp + mpl2
p

)

Dr mplpLrDp

0 −mplpg (Jr + mpL2
r) mplpLrDr − (Jr + mpL2

r) Dp

















(5.11)

B =
1

JT

















0

0

Jp + mpl2
p

−mplpLr

















C =





1 0 0 0

0 1 0 0



 . (5.12)

The linear model in (5.9), based on the system matrices described by (5.11) and (5.12),

is both controllable and observable, and can be used to formulate linear controllers to

balance the pendulum around the upright position. This model assumes that the

control input u is a torque signal, which needs to be converted to a voltage Vm that

is eventually applied to the servo motor. This conversion is described by the following

expression

Vm =
Rmu

ηgηmKgkt

+ Kgkmθ̇ , (5.13)

where ηg and ηm are the gearbox and motor efficiency values respectively, Kg is the

gear ratio, kt is the motor current to torque constant and km is the motor back EMF

constant.
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5.2.2 Augmented model for parameter estimation

In order to implement the proposed adaptive intermittent controllers for the rotational

pendulum, the set of parameters ϕ that the recursive estimator should track must be

selected, to then augment the state-vector in (5.5) as shown in (3.77).

Consider the case where the mass mp and the distance from the rotating joint to

the centre of mass lp of the pendulum are the set of uncertain parameters defined as

ϕ = [ mp lp ]T . Based on this, the new augmented state-vector is defined as

xaug(t) =
[

θ α θ̇ α̇ mp lp
]T

. (5.14)

Considering that z =
[

θ̈ α̈
]T

, mp = x5, and lp = x6, the state variable system can

be written as

ẋaug =























θ̇

α̇

z

ṁp

l̇p























=























x3

x4

f (xaug(t), τ(t))

0

0























, (5.15)

where the function f (·) represents the solution for the angular accelerations of the

system in terms of the xaug and the torque τ

f (xaug(t), τ(t)) = M−1









τ − Drx3

−Dpx4



− C [x3 x4]T −




0

−x5x6g sin(x2)







 (5.16)

and

M =





x5L2
r + x5x

2
6 − x5x

2
6 cos(x2)2 + Jr −x5x6Lr cos(x2)

−x5x6Lr cos(x2) Jp + x5x2
6



 (5.17)

C =





(2x5x
2
6 sin(x2) cos(x2)) x4 (x5x6Lr sin(x2)) x4

− (x5x2
6 cos(x2) sin(x2)) x3 0



 . (5.18)

The system defined in (5.15) is the model upon which the Kalman based estimator is

formulated.

5.2.3 System parameters

The nominal parameters of the rotational pendulum that were used for the simulation

study are shown in Table 5.1.
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Table 5.1: Rotational pendulum constants

Constant Value Units

mp 0.230 kg
lp 0.320 m
Lr 0.216 m
Jp 0.008 kg m2

Jr 0.001 kg m2

Dr 0.0024 N.m.s/rad
Dp 0.0024 N.m.s/rad

For the real-time experiments, the nominal parameters were the same as in Table 5.1

except from mp = 0.127 kg, lp = 0.160 m, and Jp = 0.001 kg m2. The values associated

to the servo motor are shown in Table (5.2)

Table 5.2: Actuator constants

Constant Value Units

ηg 0.90 -
ηm 0.69 -
Kg 70 -
kt 0.0077 N.m/A
km 0.0077 V/(rad/s)

5.3 Simulation scenario

Two different cases were used to test the system-matched hold and tapping hold adap-

tive intermittent controllers presented in the previous chapter. First, a tracking case

is evaluated, where the controllers force the arm angle θ to follow a reference w in the

form of a square function between 0 and 11.5 deg with a period of 10 sec, while keeping

the pendulum angle α as close as possible to zero degrees (vertical unstable equilibrium

point). The second case uses zero degrees as a reference for both θ and α angles, this

situation is commonly known as a the regulation case.

During the simulation, the pendulum parameters Lp = 2lp and mp are artificially

modified to a different value, thus changing the dynamics of the simulated plant at

different times. The goal of all controllers is to keep track of these changes and adjust

the control law accordingly.

In addition to the adaptive system-matched hold IC (referred in the figures as SMH)

and the adaptive tapping IC (shown as ITC), the data generated by an adaptive con-
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tinuous controller (CC) is also shown for comparison purposes (the structure of this

controller is shown in Fig. 3.10). The adaptive CC implements the following control

law

u(t) = −kxw(t) + ussw(t) , (5.19)

with the distinction that the gain k is recalculated continuously (i.e. every simulation

step) based on the parameters ϕ(t). This controller can be seen as a result of imple-

menting only the steps in the underlying continuous design stage that serves as a basis

for IC. In terms of the state and parameter estimation, all controllers were implemented

using both Extended and Unscented Kalman filters.

5.3.1 Controller and estimator design

The details about the control design parameters used for the simulations are presented

in the following paragraphs, including the times when the system parameters were

modified and the values used to simulate input and output noise.

Timing parameters for AIC: the intermittent controllers were implemented using a

minimum open-loop interval of ∆min = 0.05 sec, a delay of ∆ = 0.003 sec (this delay is

compensated by the intermittent predictor in (3.114)), and q = 0.5 deg as the threshold

value. The triggering mechanism, which dictates when the events are generated, only

uses the measured states θ and α, discarding the respective angular velocities.

LQR design: the following values were used to calculate the state-feedback gains k

using the linear quadratic regulator approach

Qc,diag =
[

1 1 0 0
]

Rc = 1 , (5.20)

where the vector Qc,diag is the diagonal of Qc. Both matrices stay constant during

the entire simulation, therefore the variation in k is only modulated by the online

computation of the system matrices A and B.

Tapping hold design: the tapping controller was designed using p = 15 and N = 2

to generate Ap following (3.39). This choice yields

Ap =





−p 0

−2p −p



 =





−15 0

−30 −15



 . (5.21)
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The optimisation horizon τ1 was selected to be as long as the open-loop interval ∆ol,

which is 0.05 sec.

Kalman filter parameters: both the EKF and UKF were designed using the same

values of the initial error Po, the process noise Q and the measurement noise R covari-

ance matrices. The respective diagonals of Po and Q are described by the following

vectors

P0,diag =
[

0.1 0.1 0.1 0.1 1 1
]

Qdiag =
[

10−8 10−8 10−8 10−8 10−7 10−7
]

,

(5.22)

and R = 0.002 Iny×ny
, where ny represents the number of measured outputs in the

system, which is 2 in this case. Additionally the vector of initial conditions for both

estimators was defined as xo(0) =
[

0 5.15 0 0 1 1
]

, which assigns 5.15 deg for

the pendulum angle θ and a value of 1 for both lp and mp. The design parameters

of the UKF, which control the spread of the sigma points involved in the unscented

transformation, and the a-priori distribution of x respectively were set to αukf = 0.0001

and βukf = 2 as suggested by Wan and Van Der Merwe (2000).

Time-varying parameters ϕ(t): the nominal value of mp in Table 5.1 is 0.230 kg,

which is used to start the simulation until it is increased by a factor of 2.5 at t = 7.5

sec. Similarly, lp = 0.320, was doubled at t = 17.5 sec.

Input and measurement noise: as shown in Fig 3.11, vu and vy represent input and

measurement noise respectively. These were simulated using randomly seeded Gaussian

noise with vu = 0.01 and vy = 0.001 as the respective amplitudes.

5.3.2 Results

Before showing the results obtained from the adaptive controllers, it makes sense to

present the responses of each of them in two different conditions: i) when the non-

adaptive version of the controllers is used with an invariant pendulum model (con-

stant parameters), and ii) when the pendulum parameters do change but the same

non-adaptive controllers are used. This simulation was performed in a noise free envi-

ronment (vu = vy = 0) and using an EKF to estimate the system state x =
[

θ α θ̇ α̇
]

.

Notice that in this case, the parameters lp and mp are not considered for estimation

purposes, therefore the controller is unaware of any variation. The evolution of the

arm angle θ and the associated control input are shown in Fig. 5.2.
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Figure 5.2: Non-adaptive control. Each controller is represented by a row in the figure:
CC corresponds to sub-figures (a,b,c) in green, SMH to (d,e,f) in blue, and ITC to
(g,h,i) in red. The first column (titled fix) shows the evolution of θ when the model
is not changed (no mismatch). The second column (titled vp) shows θ when the
parameter mp is changed from 0.230 to 0.345 kg at t = 17.5 sec. The third column
overlaps the control input u(t) which corresponds to the response from the fix column
(ufix) and the control input associated to the vp column (uvp).

The first case, where the model parameters are fixed (no variation) is represented by

the column labelled as fix. The column labelled as vp (varying parameters) shows

the response when the mass of the pendulum mp is changed from 0.230 to 0.345 kg at

17.5 sec. Lastly, the third column overlaps the control input corresponding to the fix

column (ufix) and the control input that generated the response of the vp column (uvp).

Each controller is represented by a row in the figure: sub-figures (a,b,c) correspond to

CC, (d,e,f) to SMH, and (g,h,i) to ITC.

These results show how the arm angle trajectory θ is affected by a sudden parameter

change at t = 17.5 sec (indicated by the vertical dashed line) if there is no adaptive

strategy in place. It can be seen from (b) and (e) that the CC response is less affected

compared to the SMH, where the oscillations grow considerably. Still, the SMH is

capable of withstanding the variation and follow the reference. On the contrary, ITC

gives an unstable response soon after mp is changed. This illustrates the need to track
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how mp is changing over time. The next section shows the results of the tracking case

when adaptation is used.

Tracking case

First, the evolution of θ, α, and the control input u is shown for both the EKF (Fig. 5.3)

and UKF (Fig. 5.4).
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Figure 5.3: Adaptive control - EKF. (a) shows the arm angle θ, (b) is the pendulum
angle α, and (c) is the control input u. Each controller is shown in a different colour:
green for CC, blue for SMH, and red for ITC. The times when mp and lp change are
represented by vertical lines by tm and tL respectively. The reference w is a square
function for θ and 0 deg for α.

The outputs from both filters (EKF and UKF) are similar and follow the same general

trend. However, there are small differences between the two:

• The transient during the first seconds of the simulation is shorter for the EKF.

This is particularly evident in Fig. 5.4b,c where the pendulum angle α and the

control input u oscillate several times before reaching its steady-state.

• At tm = 7.5 sec, the mass of the pendulum changes and this increases the tracking

error for all controllers, being larger for SMH and ITC and being approximately
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Figure 5.4: Adaptive control - UKF. (a) shows the arm angle θ, (b) is the pendulum
angle α, and (c) is the control input u. Each controller is shown in a different colour:
green for CC, blue for SMH, and red for ITC. The times when mp and lp change are
represented by vertical lines by tm and tL respectively. The reference w is a square
function for θ and 0 deg for α.

similar in amplitude between the EKF and UKF. However, after tL = 17.5 (when

the pendulum length changes), θ from Fig. 5.3 responds in the opposite direction

compared to the one in Fig. 5.4 for SMH and ITC.

After t = 20, the reference w goes from 11.5 deg to 0; the intermittent controllers

respond faster to this change compared to CC. This is due to the fact that SMH

and ITC have parameter estimates that are closer to the nominal value by the time

the reference changes, as shown in Fig. 5.5. The estimated parameters are shown

together with the open-loop interval distribution for both intermittent controllers in

Fig. 5.5. The first row (a,b) shows a comparison between the true parameter mp and

the corresponding estimates obtained with each controller; similarly, the second row

(c,d) is a comparison for lp and finally, the third row (e,f) shows the open-loop intervals

for SMH and ITC. The left column in the figure corresponds to EKF based controllers,

the one in the right for UKF.

During first seconds of the simulation, the parameter estimates provided by the EKF in
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Figure 5.5: Adaptive control - Estimated parameters and open-loop intervals. The first
row (a,b) shows mp estimates obtained with each controller; similarly, the second row
(c,d) corresponds to lp estimates. The third row (e,f) shows the open-loop intervals
for SMH and ITC respectively. The left column (a,c,e) corresponds to EKF based
controllers, the one in the right (b,d,f) for UKF.

Fig. 5.5a,c converge to the correct values faster compared to the UKF (b,d). This effect

is particularly evident for the SMH and ITC, converging only after the first change in

reference at t = 5 sec. Once mp and lp change to their new values, the estimates

provided by the SMH and ITC start converging steadily, while the CC estimates have

to wait until the next change in reference to catch up. This is due to the fact that

the CC control signal does not excite the system enough after the parameter change,

resulting in poor estimation. Both intermittent controllers generate control signals that

are higher in amplitude in response to the increased tracking error of θ and α, which

aids the estimation process.

The open-loop interval ∆ol is presented in Fig. 5.5e,f, showing that the SMH generates

a longer ∆ol on average compared to the ITC, specially before tL = 17.5 sec. Right

after tm and tL, the open-loop intervals reduce considerably for both controllers, which

is a consequence of the growing errors in θ and α; the intermittent controllers are forced

to close the loop more often, leading to more frequent controller redesigns.
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Figure 5.6: Adaptive control - Comparison between the estimated angular velocity ˆ̇θ
and the simulated value θ̇. Each controller is represented a row: (a,b) for CC, (c,d)
for SMH, and (e,f) for ITC. The left column shows data for EKF based controllers,
whereas the UKF is displayed on the right side column.

Finally, Fig. 5.6 shows angular velocity ˆ̇θ estimates for the arm in comparison with the

simulated velocity θ̇. This is in fact a state-variable which is not measured directly,

therefore the estimators generate this state based on angle measurements only. The

estimation error is small for all controllers, increasing slightly only after the parameters

change, converging to the true values a few seconds later.

Regulation case

The regulation case can be seen as part of the tracking case where the reference w

is zero for all states. This implies that once the system reaches the steady-state, the

control input also decays to zero. The results of this case are presented in a similar

way to the tracking case, showing the outputs and inputs for EKF and UKF in Fig. 5.7

and Fig. 5.8 respectively, estimated parameters and open-loop distributions in Fig. 5.9

and estimated arm angular velocity in Fig. 5.10.

As in the tracking case, the responses shown in Fig. 5.7 and Fig. 5.8 share similar
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Figure 5.7: Adaptive control - EKF. (a) shows the arm angle θ, (b) is the pendulum
angle α, and (c) is the control input u. Each controller is shown in a different colour:
green for CC, blue for SMH, and red for ITC. The times when mp and lp change are
represented by vertical lines by tm and tL respectively. Reference w is 0 for θ and α.

trends and are all stable. However, there are important things to notice from both

figures:

• After the parameter mp changes at tm = 7.5 sec, the tracking error of all con-

trollers increases. Interestingly, the EKF based response of the SMH controller

in Fig. 5.7 is affected considerably more compared to its UKF counterpart in

Fig. 5.8. Moreover, the ITC response shows similar tracking errors regardless the

type of estimator.

• Once the length of the pendulum lp changes at tL = 17.5 sec, the SMH and ITC

controllers respond with similar tracking errors, recovering approximately within

5 sec.

• The parameter change at tL introduces small oscillations to both angles in Fig. 5.7,

whereas the response given by the UKF based CC is affected considerably more,

with oscillations that grow up approximately to 5 deg for θ and 1.5 deg for α,

around t = 30 sec.
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Figure 5.8: Adaptive control - UKF. (a) shows the arm angle θ, (b) is the pendulum
angle α, and (c) is the control input u. Each controller is shown in a different colour:
green for CC, blue for SMH, and red for ITC. The times when mp and lp change are
represented by vertical lines by tm and tL respectively. Reference w is 0 for θ and α.

Fig. 5.9 shows clearly how the estimated parameters obtained with CC do not converge

to the expected value regardless the type of estimator, in fact, the estimation error of

the EKF never decreases once the parameters change. The UKF estimation error de-

creases significantly around t = 30 sec as a result of the increasing oscillations observed

in Fig. 5.8, these oscillations force the controller to increase the control signal to reduce

the tracking error, which improves the estimation slightly. The situation is completely

different for the SMH and ITC, where both of them start responding as soon as the

parameter changes, converging to the correct values. The open-loop intervals of the

intermittent controllers are comparable to the ones in the tracking case, where ∆ol is

consistently higher for the SMH specially before the length of the pendulum changes

at tL = 17.5.

Finally, the estimated angular velocity ˆ̇θ is shown in Fig. 5.10. In contrast with the

tracking case 5.6, the estimation error of CC (for EKF and UKF) is now affected by

the fact that estimated parameters never converge to the correct values, resulting in

an error that increases with time.
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Figure 5.9: Adaptive control - Estimated parameters and open-loop intervals. The first
row (a,b) shows mp estimates obtained with each controller; similarly, the second row
(c,d) corresponds to lp estimates. The third row (e,f) shows the open-loop intervals
for SMH and ITC respectively. The left column (a,c,e) corresponds to EKF based
controllers, the one in the right (b,d,f) for UKF.

5.4 Real-time experiment

In this section, the experimental results of applying adaptive intermittent controllers

on a real rotational pendulum are presented. In this sense, the same controllers were

used to balance the pendulum around the equilibrium point; however, the situation is

different since in reality, the parameters of the pendulum do not change with time (as

in the simulation study). The experiment was designed to consider an initial controller

design that is based on parameters that do not match the nominal values. In a way,

this is equivalent to designing controllers for a different system, which deteriorates the

overall response. Since the estimation process runs continuously, an approximation to

the real values is obtained and then the redesign stage of AIC is enabled in order to

update the controllers.

The results are presented in the same style as in the simulation scenario, showing data
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Figure 5.10: Adaptive control - Comparison between the estimated angular velocity ˆ̇θ
and the simulated value θ̇. Each controller is represented a row: (a,b) for CC, (c,d)
for SMH, and (e,f) for ITC. The left column shows data for EKF based controllers,
whereas the UKF is displayed on the right side column.

for each controller, using both estimators (EKF and UKF).

5.4.1 Experiment protocol

The experiment involves running three adaptive controllers (CC, SMH, and ITC) to

control the pendulum angle α at zero degrees (unstable equilibrium point) while forcing

the arm angle θ to follow a square reference signal w(t) that switches between -10 and

10 deg. The total length of the experiment is 60 sec, divided in 30 seconds of evolution

using an initial design based on an erroneous pendulum mass parameter mp = 0.07 kg,

then the redesign of the controllers based on available parameter estimates is enabled

at ta = 30 sec. During the 30 seconds of adaptation, the intermittent controllers use

estimates of mp to update their respective control laws at event times ti, whereas the

continuous controller does this every sample interval.

In order to start the experiment, the pendulum had to be manually rotated to an angle

of α = 12. At this point, the controllers took over and started balancing the pendulum.
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Usually, this can be implemented automatically if a swing-up controller is designed to

apply a voltage to the system that would eventually take the pendulum up to angle

where the balance controller can start operating. For this experiment, this part is not

relevant and was omitted. The fact that the experiment had to be started manually

resulted in controllers that started operating in slightly different times; however, after

the first change in reference w(t), these differences decrease considerably.

5.4.2 Performance index

To compare the performance of implemented controllers, the following performance

indexes are introduced:

• Root mean squared tracking error (RMS): the tracking error e(t) for each

controller can be defined for both outputs as

eθ(t) = θ(t) − w(t) eα(t) = α(t) − w(t) . (5.23)

Then, the tracking RMS error is formulated as

RMS(e) =

√

√

√

√

1
m

m
∑

i=1

| e(ti) |2 , (5.24)

with m being the number of data samples used for the computation.

• Root mean squared estimation error: the parameter estimation error can

be established as the difference between the nominal parameter value mp,nom and

its estimate m̂p

emp
(t) = mp,nom − m̂p(t) , (5.25)

based on this, the estimation RMS error can be computed as in (5.24).

These performance indexes are applied to the recorded data of all controllers before

and after the redesign stage is enabled.

5.4.3 Controller and estimator design

The values used to design the controllers are the same as in the simulation study (5.3)

except from ∆min = 0.01 sec, the threshold q being set to 1 deg, and the diagonal of

the LQR design matrix Qc being defined now by the vector [1.5 1.5 0 0].
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Since only mp is being estimated in this experiment, the augmented state vector upon

which both Kalman filters were designed is as follows

xaug(t) =
[

θ α θ̇ α̇ mp

]T
. (5.26)

Defining θ = x1, α = x2, θ̇ = x3, α̇ = x4, mp = x5, and using expression (5.26), it is

possible to write

ẋaug =
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f (xaug(t), τ(t))
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, (5.27)

where z =
[

θ̈ α̈
]T

and f (·) being

f (xaug(t), τ(t)) = M−1









τ − Drx3

−Dpx4



− C [x3 x4]T −




0

−x5lpg sin(x2)







 , (5.28)

and

M =





x5L2
r + x5l

2
p − x5l

2
p cos(x2)2 + Jr −x5lpLr cos(x2)

−x5lpLr cos(x2) Jp + x5l
2
p



 (5.29)

C =





(

2x5l2
p sin(x2) cos(x2)

)

x4 (x5lpLr sin(x2)) x4

−
(

x5l
2
p cos(x2) sin(x2)

)

x3 0



 . (5.30)

The initial condition for the Kalman filters was set to xo(0) = [0 0 0 0 2]T , and the

state covariance matrix Q, was defined by the following vector in its diagonal:

Qdiag =
[

10−7 10−7 10−3 10−3 10−6
]

. (5.31)

5.4.4 Results

In Figs. 5.11 and 5.12, the outputs θ and α along with the control input u are presented.

In both cases, the oscillations around the setpoint w(t) for θ (shown in (a)), decrease

after the redesigns start taking place at ta. In terms of amplitude, the oscillations

are very similar for SMH and ITC, matching closely when the reference is at -10 deg.

For CC, the oscillations are slightly smaller compared to both intermittent controllers.

The pendulum angle α, shown in (b), also shows a reduction in the amplitude of

the oscillations; however, CC and ITC have larger errors specially when the reference

changes suddenly.
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The control inputs in Figs. 5.11c, 5.12c show very clearly the effect of the parame-

ter mismatch (before ta), high control values are generated for some portions of the

experiment, these being particularly higher for the intermittent controllers. Once the

redesigns start, the control inputs decrease significantly since the estimates of mp are

used to improve the controllers.
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Figure 5.11: Adaptive control - EKF. (a) shows the arm angle θ, (b) is the pendulum
angle α, and (c) is the control input u. Each controller is shown in a different colour:
green for CC, blue for SMH, and red for ITC. The time when adaptation is enabled
ta, is represented by a vertical line. The reference w is a square function for θ and 0
deg for α.

The EKF and UKF estimates of mp, along with the open-loop interval distributions of

the intermittent controllers are shown in Fig. 5.13. Comparing (a) and (b), it is clear

that the variance of the EKF estimates is higher than the estimates obtained with the

UKF. Also, the UKF estimates take longer to converge to the nominal value of mp. In

(b), the estimates for CC and ITC start deviating, increasing the error; however, the

SMH estimates stays close to the nominal value the entire time.

The EKF and UKF open-loop interval distributions in 5.13c and 5.13d, show a small

increase in the overall duration of ∆ol after the redesigns start at ta. Throughout the

entire experiment, ∆ol reaches values between 0.1 and 0.2 sec consistently, which is
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Figure 5.12: Adaptive control - UKF. (a) shows the arm angle θ, (b) is the pendulum
angle α, and (c) is the control input u. Each controller is shown in a different colour:
green for CC, blue for SMH, and red for ITC. The time when adaptation is enabled
ta, is represented by a vertical line. The reference w is a square function for θ and 0
deg for α.

approximately 10 times greater the imposed minimum open-loop interval.

In Fig. 5.14, the phase planes for θ and α are shown. The data for all UKF based

controllers is represented by row, with the first row (a,b) corresponding to CC, the

second row (c,d) to SMH, and (e,f) to ITC. The figure shows trajectories before ta

in grey colour. The yellow trajectories reflect the corrections made by all controllers

after the redesigns start at ta. The left column (a,c,e) displays two yellow circles that

correspond to the oscillations made around the setpoint w(t) at 10 and -10 deg. In

(c) and (e), it is possible to see how the parameter mismatch of the initial controller

design affects the intermittent controllers before ta (grey colour trajectories). Once the

redesign takes place, the trajectories become very similar in shape to those displayed

in (a), corresponding to CC.

The trajectories for α in right column (b,d,f) are centred around 0 deg, which is the

equilibrium point for the pendulum. The CC case in (b) shows how these trajectories

actually move away from the centre and grow in magnitude after ta. In contrast, the
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Figure 5.13: Adaptive control - Estimated parameter and open-loop intervals. The
first row (a,b) shows mp estimates obtained with each controller. The second row (c,d)
shows the open-loop intervals for SMH and ITC respectively. The left column (a,c)
corresponds to EKF based controllers, the one in the right (b,d) for UKF.

two intermittent controllers reduce the trajectories as a result of adaptation.

Performance index results

In Table 5.3, the results of applying the performance indexes described in 5.4.2 are

presented. The table shows the RMS tracking error for both θ and α, labelled as

θEKF , θUKF , αEKF , and αUKF , with all of them measured in degrees. Also, the RMS

parameter estimation error is shown as mp,EKF and mp,UKF , measured in Kg. Two

columns are presented for each of these performance indexes, t−

a represents data before

the redesign of all controllers, specifically between 5 and 30 sec, while t+
a corresponds

to the data after adaptation is enabled, from 30 to 60 sec.

The overall results show how all the controllers are capable of reducing the tracking

error once adaptation is enabled. The CC reaches smaller tracking errors for θ (t+
a =

7.35 for EKF and t+
a = 6.72 for UKF), in comparison with both intermittent controllers,

independently of the estimation procedure; however, the tracking error is smaller when
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Figure 5.14: Adaptive control - Phase planes. The first row shows phase planes for θ
(a) and α (b) for CC. The second (c,d) and the third rows (e,f) show phase planes for
SMH and ITC respectively.

Table 5.3: RMS tracking and parameter estimation errors

θEKF θUKF αEKF αUKF mp,EKF mp,UKF

t−

a t+
a t−

a t+
a t−

a t+
a t−

a t+
a t−

a t+
a t−

a t+
a

CC 8.47 7.35 9.20 6.72 2.05 1.95 1.96 1.98 0.05 0.10 0.06 0.09
SMH 9.49 7.50 9.04 7.81 2.17 1.81 1.97 1.82 0.05 0.08 0.08 0.03
ITC 9.58 7.51 10.67 7.98 2.31 1.85 2.35 2.15 0.07 0.06 0.07 0.09

the UKF is used. The tracking error for α shows a different trend, with SMH reaching

smaller errors (t+
a = 1.81 for EKF and t+

a = 1.82 for UKF) compared to CC and ITC.

This is consistent also before ta.

In terms of parameter estimation errors, the UKF based SMH controller is capable of

reducing the estimation error from t+
a = 0.08 to t+

a = 0.03. On the contrary, CC and

ITC deviate from the nominal values, resulting in an error of t+
a = 0.09 for both of

them.
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5.5 Discussion

The results presented in this chapter show that it is possible to formulate adaptive

intermittent controllers based on Kalman filters for multivariable real-time systems.

The Kalman filter framework allows a straight forward formulation based on a state-

space representation of the system, which uses a state-vector that is augmented with

system parameters as extra states. The self-tuning architecture of these controllers

provides flexibility in terms of having independence between the control redesign stage,

and the estimation part of the problem. This is also the first time that adaptive

intermittent controllers (based on the non-adaptive versions in Gawthrop et al. (2011);

Gawthrop and Gollee (2012)) are implemented on a real-time system.

The simulation results show how the proposed adaptive intermittent controllers can be

used in situations where some of the physical properties of the plant change with time.

These results belong to an extreme case, that can only be implemented in simulation,

since the varying parameters that are being tracked by the controllers would never

change in such way in a real pendulum. However, the value of the simulation resides in

the fact that it shows how the intermittent controllers can provide a feasible solution

to changing environments by exploiting the benefits of switching between open and

closed-loop. The idea of not applying a control action for a period of time to better

understand causality between inputs and outputs has been suggested by (Loram et al.,

2011, 2012), arguing that when a control signal is applied continuously it is more

difficult to distinguish between the effects of disturbances, motor noise, and parameter

variations. In contrast, not applying a control input allows errors to grow exponentially,

therefore revealing the possible sources of it and more importantly, clarifying the next

steps in terms of correction.

Loram et al. (2011) evaluated this ideas in a visuo-manual tracking task to control a

virtual single inverted pendulum by using either continuous or intermittent contact

with a joystick. Essentially, the intermittent strategy implemented in their work is

based on the the concept of a tap, which is an impulse-like control signal that the

subject generates by “tapping” the joystick, decaying quickly to zero, thus applying

zero control for the rest of the open-loop period. In fact, this is a feature of intermit-

tent control in general, the production of impulsive actions (determined by the trigger

mechanism) helps with the excitation of higher frequencies in the system. This can be

seen in Figs. 5.3c, 5.4c, 5.7c, and 5.8c), where the control input of the two adaptive in-

termittent controllers is shown for the different cases and estimators. The impulse-like

behaviour mentioned by Loram et al. (2011) is observed in these figures, whereas the

input from the continuous controller is zero once the output reaches the steady-state.
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This characteristic is important for estimation purposes, in a way it can be seen as if

the adaptive intermittent controllers had a built in mechanism to probe the system in

order to obtain more information about it, which relates to the concept caution and

probing established by Fel’dbaum (1965) and discussed by Bar-Shalom (1981).

These features come with a cost, the presence of noise, disturbances, varying param-

eters or even neglected dynamics, influence the system greatly, causing the open-loop

behaviour imposed by the generalised hold to differ from the closed-loop response. This

difference results in more events, which if seen from the estimation perspective might

be beneficial; but it also means that the outputs evolve with a certain degree of steady-

state error, as seen in Figs. 5.2d,g. This trade-off can be regulated directly by adjusting

the thresholds, where a threshold of zero results in a clock-driven configuration, with

events generated at a rate imposed by the minimum open-loop interval ∆min. If ∆min

is set to zero, then the response is similar to the continuous control case from Fig. 5.2a.

Another interpretation of this trade-off between a perfect steady-state response and the

ability to probe the system to detect possible variations can be made in terms of the

stability-plasticity dilemma (Carpenter and Grossberg, 1988), which poses the question

of how a system can be designed to remain plastic (or adaptive) when facing changes

or new environments, while retaining stability gained from previous knowledge. The

case of the biological controllers that the human brain implements is a good example

of a system that actively regulates this trade-off: achieving adaptation in response

to changes in a previously learned task (or even learning a new one), and exploiting

stability for when there are no changes and high precision control is needed. In this

sense, the adaptive intermittent controllers presented in this chapter are capable of

detecting possible changes by tracking differences between a built-in ideal system (i.e.

the hold mechanism) and the estimated states, to then generate control signals that

constantly excite the system.

The Kalman filter as a joint state and parameter estimator allows the implementation

of adaptive intermittent controllers. Certainly, this is not the only way to implement

them; but its formulation is consistent with the state-space framework of intermittent

control, and provides an intuitive way to implement a state observer and a parameter

estimator in one single algorithm. Also, an extended Kalman filter which is based on

the linearised version of the nonlinear equations is convenient in terms of its relative

simple implementation, and as seen in the simulations, can perform as well as an

unscented Kalman filter. This might be a result of the type of system, in this case

the rotational pendulum, meaning that the nonlinearities might not be as strong as in

other systems. Still, having the alternative to choose between the two configurations
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is a powerful advantage, specially when considering that the computational cost of the

UKF is of the same order than the EKF (Wan and Van Der Merwe, 2000).

In terms of real-time estimation, the results obtained by using EKF based controllers

are not significantly different from those of the UKF, both of them produce very similar

responses qualitatively speaking, which was expected. We can argue on the side of ease

of implementation then and use the EKF configuration over the more complex UKF;

however, based on the estimated parameter results shown in Table 5.3 and in Fig. 5.13b,

the estimates that the UKF provided were closer to the nominal values even when the

controllers started adjusting their respective control laws. The EKF estimates (as seen

in Fig. 5.13a) seem to be more sensitive to the reduced levels of excitation in the control

input as a result of the redesigns. In addition, the variance of the EKF estimates is

higher compared to the UFK counterpart. These differences suggest that the UKF

might be a more suitable solution for the adaptation problem.

The two adaptive controllers proposed in this chapter are different from each other

in the way the open-loop behaviour is implemented. This might be related to the

differences observed in terms of performance (Table 5.3), where the SMH produced

smaller tracking and estimation errors compared to the ITC. It is possible to argue that

a better tuning of the ITC controller might have resulted in improved performance; on

the other hand, this in itself can be seen as a disadvantage for ITC since the tuning of

the SMH controller involves less design variables, with the LQR matrices Qc and Rc

being the most influential to the response. The Laguerre function approach on which

the ITC bases its open-loop behaviour requires the tuning of two extra parameters: p

which controls the shape of the tap and N which is the order of the resulting matrix

Ap defined in (3.39), for this experiment, the selection of these parameters was done

by trial and error, since there is no systematic procedure to obtain values that result

in the desired response.

The rotational pendulum used for the real-time experiment uses a planetary gearbox

driven by the motor shaft. This gearbox is coupled with the pivot of the arm and

transmits the torque generated by the motor. This design introduces backlash between

the gears and also adds friction to the system, resulting in steady-state errors and

oscillations. This nonlinear characteristics were not considered when the controller

and the estimators were designed and no active strategy to compensate against them

was implemented. Also, the controllers did not have any integral action in the de-

sign, which would have contributed to reduce the steady-state errors even further. The

oscillations around the setpoint, enhanced by the aforementioned reasons, might con-

tribute positively to the parameter estimation since the control signal is actively trying
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to compensate for them. We can speculate that this is the reason why the CC case

does not show the behaviour seen in the simulation results of Fig. 5.5, where the CC

parameter estimates are updated only when the setpoint changes suddenly, and stay

constant when there is no excitation provided by the control input.

The results of these experiments suggest that the intermittent controllers, specially

the SMH in combination with a UKF, are viable alternatives to implement adaptation

within the IC framework. Moreover, they provide the first real-time evidence of an

adaptation process being driven and improved by IC. This improvement is directly

associated with the shape and impulsive nature of the control signal generated by the

IC. Although this is a simple, but illustrative experiment, further experiments must be

carried out in order to confirm this idea.
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Chapter 6

Conclusions and future work

This chapter presents the overall conclusions of this PhD thesis, including a discussion,

the limitations, and a future work section.

6.1 Discussion

The discussion is presented in terms of the application of intermittent controllers to

robotic structures first, to then focus on adaptation in an intermittent control context.

6.1.1 Intermittent control and humanoid robotics

IC has been proposed as an explanation to the sensory analysis - response selection - re-

sponse execution problem that is present in human motor control (van de Kamp et al.,

2013a). These ideas provide an explanation to the selection of competing actions in a

redundant system with multiple sensory information streams. The argument relies on

placing the response planner mechanism within the feedback loop, in a serial configura-

tion, to solve the redundancy problem. This is different compared to the traditionally

accepted idea of a planner mechanism working in parallel with the control loop. The

authors provide experimental evidence supporting these claims and suggest that such

an architecture could be beneficial for other fields such as humanoid and soft robotics.

The results obtained in chapter 4, constitute the first real-time implementation of

intermittent control as understood in (Gawthrop et al., 2015), which incorporates the

ideas described by (van de Kamp et al., 2013a). Important observations can be made

from these results, where the most relevant is related to the observed behaviour of the

robot in terms of the outputs. The angles generated by IC are comparable to the ones

obtained with a traditional continuous controller. This can be seen specially in group 2
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of the first two trials (Figs. 4.12, 4.15, A.2, A.5), although this applies to all trials in

general. Focusing on the ankle angles in Fig. 4.12, the average amplitude is less than

0.5 deg for all controllers, the joint angle shift for CC is 0.009 deg, 0.057 deg for ICc,

and 0.026 deg for ICe. The mean steady-state error shows also this trend, with 0.214

deg for CC, 0.449 deg for ICc, and 0.539 deg for ICe. For trial 2 in Fig. 4.12, the story is

very similar since the mean steady-state error for CC is 0.138 deg, 0.407 and 0.474 deg

for ICc and ICe respectively. These relatively small differences were obtained despite

the fact that the system switched between open and closed-loop configurations. This

result is particularly interesting for roboticists, since in order to perform complicated

motion patterns with humanoid robots, multiple optimisation routines and calculations

should be performed every time step of the real-time execution. Solving these routines is

computationally expensive in most applications. For this reason, the open-loop interval

introduced by IC provides extra resources to finish these calculations over multiple time-

steps without affecting considerably the overall performance of the system. (Fig. 4.14,

Fig. A.4)

Moreover, these results suggest that IC could be applicable to other robotic structures

as well, specially for cases where the hardware imposes restrictions in terms of the com-

putational power, limiting the available bandwidth of the controllers. Since industrial

robots have been present for many years now, some applications might benefit from a

scheme like IC, where the extra computational resources could be used to implement

adaptation to counteract performance variations due to wear and ageing of the physical

components in a robot.

The high frequency oscillations observed in the high gain groups of trials 1 and 2

(Fig. 4.14, Fig. A.4) suggest that IC might be a robust alternative in situations where

the model used to design the controller does not include important system dynamics.

The amplitude of these oscillations at the hip, generated by CC, was 4 deg on average

for trial 1 and almost 2.5 deg for trial 2, whereas for ICc the values were 1.2 deg in

trial 1 and less than a quarter of a degree for trial 2. The CC and IC controllers

were based on a model that did not consider the full actuation principle in TUlip,

resulting in effects that were amplified during the high gain cases. However, IC seems

to be affected much less compared to CC. This idea still needs to be validated in a

simulation environment and tested in other systems in order to generalise the result.

Nevertheless, the evidence presented here can be used as a starting point to prove this

feature of IC.

The experimental work on TUlip allowed us to evaluate IC in the presence of pertur-

bations. More work should be carried out in order to evaluate the range of allowable
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disturbances before a fall is imminent. Also, the location of the perturbation was not

evaluated, since it was always applied from the front of the robot in the from of a

pull. This decision was related to the fact that the model used to design the controllers

assumed that TUlip was a three-segment inverted pendulum. In order to evaluate dif-

ferent types of perturbations such as lateral pulls or pushes, a model that considers

both legs and the involved degrees of freedom should be generated. Similarly, there are

many areas in which IC could be improved to make it a better fit for motion control in

robots. For instance, classic robotic measurements could be used as additional sources

of information to generate events or to modulate the control signal, such as the centre

of mass position or the instantaneous capture point (ICP), which defines the place on

the ground where the robot has to take a step instantaneously to avoid a fall. If the

ICP is kept within a defined area known as the support polygon (de Boer, 2012), then

a control method like IC can be used to generate joint torques to maintain balance,

if the ICP moves outside the polygon, then a step must be taken by the robot. This

information might be used to switch to a walking strategy or to a different type of

controller.

A more detailed analysis on the effects of the different IC parameters such as delays

and thresholds should be carried out to fully explore the limitations of this method.

Although theory and intuition tells us that the performance would deteriorate as they

grow, an evaluation should still be made in order to find out the range of admissible

values, since this has a direct impact on the open-loop intervals.

6.1.2 Adaptation in the context of intermittent control

Adaptation is a central part of our daily lives. It provides a basic mechanism of sur-

vival and it leads to learning new skills and behaviours. Scientists and engineers have

been trying to formulate models that capture this complex phenomenon for many

years, both experimentally and theoretically. In this sense, different models have

been used to explain human motion from a computational point of view (Craik, 1947;

McRuer and Jex, 1967; Johansson et al., 1988; Kooij and Vlugt, 2007; Loram et al.,

2009, 2011; van de Kamp et al., 2013a; Gollee et al., 2017), with many of them relying

heavily on control engineering concepts. In particular, the results in (Loram et al.,

2011; Gawthrop and Gollee, 2012; Gawthrop et al., 2015) posed interesting questions

on the applicability of IC to the adaptation problem, and the possible benefits of this

framework in the context of human motor control and engineering systems in general.

The adaptation results presented in this thesis were greatly motivated by the afore-

mentioned ideas and they constitute the first implementation of AIC in a real-time
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environment. Two different scenarios were evaluated: a time-varying case where phys-

ical parameters of a rotational pendulum were modified in order force the adaptive

controllers to adjust accordingly, and a case where the controller design assumed a

model with a parameter that was considerably different from the nominal or true

value, to then identify the system and redesign the controller. The main observation

from these results is the fact that the hybrid nature of IC (i.e., alternating between

closed and open-loop behaviour) provides a level of balance in terms of how capable the

controller is to react to parametric changes and how close it keeps the outputs to their

references. This feature was not always observed in the continuous adaptive controllers

that were used as a comparison, since they reduce the output error and the control

effort to the minimum, which makes the scheme unaware or insensitive of parametric

variations until more control effort is applied to excite the system or until the effects of

the variations have an effect in the dynamics. This effect is observed clearly in Fig. 5.9,

where the IC controllers converge to the real parameter value after 2.5 sec for the mass

mp and after 5 sec for the pendulum length lp. The CC case reaches mp and lp after

approximately 8 sec.

The two scenarios discussed above were evaluated using two different versions of IC:

tapping IC and system-matched IC, which work similarly except for the way the open-

loop behaviour is generated. It has been argued by Gawthrop and Gollee (2012) that

tapping IC might be helpful for systems with friction and backlash since the shape

of the control signal can be modified by adjusting the Laguerre functions behind the

open-loop behaviour. However, the results from the real-time experiment in chapter 5

showed that steady-state error of the system-matched, UKF based IC was 7.81 for the

arm angle θ and 1.82 for the pendulum angle α, which are slightly smaller compared

to those of tapping IC (7.91 for θ and 2.15 for α). The parameter estimation error

for mp shows a similar trend, where tapping IC had an error of 0.09 and the system-

matched IC value was 0.03, being the only controller capable of reducing the error once

adaptation was enabled.

The joint configuration of the Kalman filters allowed us to perform state and param-

eter estimation using only one algorithm, and to extend the IC framework to include

nonlinear estimation techniques. In the real-time experiments, the unscented version

of the filter resulted in parameter estimates that were closer to the true values with less

variance compared to the extended version, specially after the redesign was enabled.

Further testing of AIC on other engineering platforms is needed to fully grasp the

potential of this technique. The combination of AIC with constrained versions of in-

termittent control would provide a robust solution engineering systems. A constrained
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solution is always desirable in the sense of keeping the outputs, states, and inputs of the

system under predefined values (Mayne et al., 2000; Gawthrop, 2004; Gawthrop et al.,

2013). This requirement, in combination with the hardware capabilities and the di-

mensions of the system at hand, might impose strict timing requirements to obtain

feasible control inputs. Continuous redesign (every sampling instant) of the controller,

as in adaptive CC, would contribute negatively to this bottleneck. The adaptive inter-

mittent controllers provide time in the form of open-loop intervals that could be used

to solve optimisation routines while redesigning the controller only when events are

detected.

6.2 Conclusions

The overall aim of this research was to formulate multivariable adaptive intermittent

controllers for real-time structures and to investigate whether intermittent control could

be applied to multi-segmental, autonomous, humanoid robots. The results obtained

from the experiments in this thesis allow us to establish the following conclusions:

• IC is a viable alternative to traditional control methods in the field of humanoid

robotics. For a balancing task, its application resulted in output levels that were

comparable to the ones obtained with continuous predictive control, with the

added benefit of providing extra computational resources through the open-loop

interval, while rejecting small perturbations.

• The results from the adaptation experiments suggest that the typical control

signal that IC generates and its triggering mechanism provide a balanced solution

in terms of system excitation and steady-state error compared to a continuous

adaptation approach.

• Adaptive intermittent control, based on the system-matched hold, generated

smaller steady-state and parameter estimation errors when compared to the tap-

ping hold method.

• The Kalman filtering framework was used as the basis to implement state and

parameter estimation routines. The adaptation experiment shows that the use of

unscented Kalman filters results in smaller steady-state and parameter estimation

errors when compared to the extended Kalman filter. This suggests that the way

in which the unscented version deals with the system nonlinearities is better

suited for adaptation environments where parametric uncertainty is present.
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As an overall conclusion, the controllers that were used in this thesis could help in

the investigation of neural mechanisms behind adaptation in a human motor control

context, while being applicable also to generic engineering systems.

6.3 Limitations

Although intermittent control was applied on different real-time multivariable systems,

showing interesting properties and results, there are some limitations about the frame-

work that were identified, which are discussed below:

• IC is a model based technique, meaning that in order to have a working con-

troller, a reliable and accurate model of the system should be used. The adaptive

intermittent controllers introduced in chapter 3 aim to reduce the problems that

are generated when the model of the system is not accurate or even partially

unknown; however, they rely on some degree of knowledge about the system in

order to be implemented. In reality, having a good model of the plant is not al-

ways feasible and in some scenarios it is not possible to capture the entire range

of complex dynamics behind most applications. Therefore, for a real-time imple-

mentation, time and effort should be destined to obtain a detailed model of the

system or to perform system identification tests.

• The IC framework is based on a linear state-space representation of the system.

This means that the stability is guaranteed only if the linearity assumptions

are not violated and the system always operates within the considered range.

Many systems can be approximated by a linearisation approach given that the

operating regimes are well known; however, if the system starts operating outside

the assumed range, or close to the boundaries, the performance would decrease

considerably. Many techniques are available to deal with these limitations, one

of them is the unscented Kalman filter described in chapter 3, which attempts

to reduce the effects of the neglected high order derivative terms introduced by

the traditional linearisation process of the extended Kalman filter. Even though

the use of such a filter would be beneficial in some situations, the rest of the IC

framework is still formulated exclusively in linear terms.

• The AIC scheme shown in this thesis exploits the advantage of a control signal

that behaves in an impulse-like fashion. As argued in chapter 5, such a control

input helps to excite the system constantly, making it more aware of possible

changes in its parameters. On the other hand, this characteristic might not be
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ideal for real-time systems with tight saturation limits or with actuators that are

sensitive to abrupt changes in the control signal.

• The adaptation controllers described in chapter 3 belong to the class of para-

metric adaptation schemes. Such controllers can handle parameter uncertainty

or variations only, but would not perform well for systems that experience struc-

tural changes with time. A more complete version of AIC should compensate for

both parametric and structural changes efficiently.

6.4 Future Work

The work carried out during this PhD project resulted in control schemes that could

serve as the basis for other intermittent adaptation mechanisms or even learning in-

termittent control. Some follow up ideas that could be explored based on the results

presented in this thesis are:

• Formulation of AIC using a direct self-tuning architecture.

• Formulation of AIC based on multiple model structures.

• Evaluation of the explanatory power of AIC as presented in chapter 3 in human

motor control tasks.

• Evaluation of power consumption and computational features associated to IC.

• Performance evaluation of AIC in humanoid robotic structures.

6.4.1 Formulation of AIC using a direct self-tuning architecture

The adaptive schemes in this thesis are formulated as indirect self-tuning controllers

which provide the advantage of decoupling the control and estimation stages. This

gives flexibility in terms of testing and implementation. On the other hand, direct self-

tuning adaptive controllers might reduce the number of involved computations since

an explicit design stage is not required. The parameter estimation procedure is im-

plemented in such a way that it provides the controller parameters that should be

adjusted directly, instead of the model parameters, leading to simpler control formu-

lations. This particular scheme has been related to reinforcement learning algorithms

previously (Sutton et al., 1992), suggesting a possible path to establish learning adap-

tive controllers that exploit this architecture.
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6.4.2 Formulation of AIC based on multiple models

Multiple model schemes have been formulated in the past as an alternative to systems

with parametric and structural changes, and for situations where the variations in

the system model are large and fast (Narendra and Balakrishnan, 1997; Landau et al.,

2011). The basic idea behind this approach relies in the formulation of a network or

bank of models, which are selected based on the measurement of the system inputs

and outputs, and an error criterion. Different controllers can be formulated for each

of the models in the bank. A fixed model is selected in real-time by a switching

mechanism and the corresponding predefined control law is applied. At this point,

parametric adaptive control methods, like the ones presented in this thesis, can be

applied to further improve the parameters of the selected controller. The parameters

of the selected model can be updated if the performance improves in terms of the error

criterion.

This scheme would cover a wider range of possible parameter variations and changes

in the operating conditions of the system. At the same time, it would require a higher

degree of knowledge of the process that is being controlled, previous testing, and the

derivation of controllers for all the models in the bank. Some difficulties can be in-

troduced by the mechanism that switches between models, since a smooth transition

might not always be feasible depending on the variations of the plant.

6.4.3 Explanatory power of AIC in human motor control

Many of the human motor control experiments discussed in this thesis involved some

form of adaptation and learning. A possible future project could use AIC to evaluate

how well they explain the experimental data in comparison with traditional continuous

schemes.

The visuo-manual task of balancing an virtual inverted pendulum using a joystick, as in

(Loram et al., 2011), is a good starting point to test AIC in a well defined environment.

Another possibility is to apply them to a reaching task under the influence of a variable

force field as presented by Gawthrop et al. (2015).

6.4.4 Power consumption and computational features of IC

It has been argued in this thesis that IC can provide extra computational resources

by enforcing an open-loop intermittent interval. However, this has not been directly
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quantified in terms of number of operations and the efficiency of the algorithm. Simi-

larly, the power consumption associated to the IC input signals, which might be higher

in amplitude compared to a continuous approach, has not been studied in detail for

complex real-time systems. A thorough quantitatively analysis is needed in order to

evaluate the tradeoff between increased computational resources and energy consump-

tion caused by the impulsive nature of the IC signals.

6.4.5 Performance evaluation of AIC in humanoid robotics

The evaluation of multivariable IC in the field of humanoid robotics was presented

in chapter 4, showing promising results in terms output performance while providing

extra computational resources introduced by the open-loop intervals. However, having

accurate models is not a simple task for highly complex robotic structures. It is a

common problem in robotics to formulate controllers for systems with parametric un-

certainty and in some cases, with un-modelled dynamics. AIC could be used to reduce

the levels of uncertainty in such systems based on approximate models.
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Appendix A

Figures chapter 4

The following figures, show the joint angle, control input (reference torque) and open-

loop interval for the ankle and hip, during trials 2, 3, 4, and 5, as shown in Table 4.3.
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Figure A.1: Trial 2 - Group 1 - Ankle data.
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Figure A.2: Trial 2 - Group 2 - Ankle data.
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Figure A.3: Trial 2 - Group 3 - Ankle data.
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Figure A.4: Trial 2 - Group 1 - Hip data.
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Figure A.5: Trial 2 - Group 2 - Hip data.
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Figure A.6: Trial 2 - Group 3 - Hip data.
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Figure A.7: Trial 3 - Group 1 - Ankle data.
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Figure A.8: Trial 3 - Group 2 - Ankle data.
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Figure A.9: Trial 3 - Group 3 - Ankle data.
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Figure A.10: Trial 3 - Group 1 - Hip data.
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Figure A.12: Trial 3 - Group 3 - Hip data.
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Figure A.13: Trial 4 - Group 1 - Ankle data.
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Figure A.15: Trial 4 - Group 3 - Ankle data.
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Figure A.17: Trial 4 - Group 2 - Hip data.
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Figure A.18: Trial 4 - Group 3 - Hip data.
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Figure A.19: Trial 5 - Group 1 - Ankle data.
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Figure A.20: Trial 5 - Group 2 - Ankle data.
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Figure A.21: Trial 5 - Group 3 - Ankle data.
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Figure A.22: Trial 5 - Group 1 - Hip data.
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Figure A.23: Trial 5 - Group 2 - Hip data.
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Figure A.24: Trial 5 - Group 3 - Hip data.
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Appendix B

Recursive Newton-Euler algorithm

Equation (4.14) can be solved efficiently by means of a recursive Newton-Euler algo-

rithm. These solutions are based on the idea that rigid bodies have six degrees of

freedom, and that the motions and forces acting on these bodies can be described us-

ing a form of six-dimensional vectors called spatial vectors (Featherstone, 2008). This

description allows a problem formulation that suitable for recursive solutions and that

reduces the number of operations compared to traditional three-dimensional methods.

The following paragraphs will provide simple description of the equations involved in

the algorithm; however, an in depth, formal introduction to this topic can be found in

(Featherstone, 2010a,b).

The joint torques τj that would generate a set of desired joint accelerations q̈ can be

computed recursively for robotic mechanisms defined by a kinematic tree. These can be

modelled as a set of links numbered from 1 to N , a fixed base link, and corresponding

joints that connect the links. For instance, joint i connects from link λ(i) to link i,

considering the link at the base as the start of the tree. In this case, λ(i) corresponds

to the link number of the parent of link i. This notation is useful for structures with

many branches; however, in the case of a single branch (as in a multi-segment inverted

pendulum), λ(i) = i − 1, resulting in a consecutive numbering of the joints and links

from the base until the end of the tree. Fig. B.1 shows a diagram of a single branch,

multi-link structure.

With this in mind, the velocity of link i (denoted by vi) can be calculated based on

the velocity of link i − 1 and the velocity across the joint i as follows

vi = vi−1 + siq̇i

v0 = 0
(B.1)
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joint N

link N

Figure B.1: Multi-link structure diagram. Joints and link are numbered from 1 to N .
The base is considered the root link in the chain.

where q̇i is the di × 1 joint velocity vector, si represents a 6 × di matrix describing the

axis of motion for joint i, and v0 is the velocity of the base. In this context, di represents

the degree of freedom. The link acceleration ai can be obtained as derivatives with

respect to time of the link velocities in (B.1), this yields

ai = ai−1 + ṡiq̇i + siq̈

a0 = −g
(B.2)

with q̈ being a vector of joint acceleration variables, a0 is the acceleration of the base

defined by the gravity, and ṡi = vi × si. Expressions (B.1) and (B.2) can be used to

calculate the spatial force transmitted from link i − 1 to i across the joint (represented

by fi) obtaining

fi = fi+1 + Iiai + vi × Iivi (B.3)

where Ii is a 6 × 6 spatial inertia matrix. Finally, it is possible to extract the vector of

joint forces τi (which corresponds to joint torques in the case of revolute joints) from

fi as follows

τi = sT
i fi (B.4)

Equations (B.1), (B.2), (B.3), and (B.4) are the basis of the Newton-Euler algorithm.

Their implementation requires further considerations which were not included in this

description. Details on code implementations can be found in (Featherstone, 2010b).
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Åström, K., Aracil, J., and Gordillo, F. (2008). A family of smooth controllers for

swinging up a pendulum. Automatica, 44(7):1841 – 1848.



Bibliography 159
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