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Abstract 

 

Nanowire transistors (NWTs) represent a potential alternative to Silicon FinFET technology 

in the 5nm CMOS technology generation and beyond. Their gate length can be scaled 

beyond the limitations of FinFET gate length scaling to maintain superior off-state leakage 

current and performance thanks to better electrostatic control through the semiconductor 

nanowire channels by gate-all-around (GAA) architecture. Furthermore, it is possible to 

stack nanowires to enhance the drive current per footprint. Based on these considerations, 

vertically-stacked lateral NWTs have been included in the latest edition of the International 

Technology Roadmap for Semiconductors (ITRS) to allow for further performance 

enhancement and gate pitch scaling, which are key criteria of merit for the new CMOS 

technology generation. However, electrostatic confinement and the transport behaviour in 

these devices are more complex, especially in or beyond the 5nm CMOS technology 

generation. 

At the heart of this thesis is the model-based research of aggressively-scaled NWTs suitable 

for implementation in or beyond the 5nm CMOS technology generation, including their 

physical and operational limitations and intrinsic parameter fluctuations.  The Ensemble 

Monte Carlo approach with Poisson-Schrödinger (PS) quantum corrections was adopted for 

the purpose of predictive performance evaluation of NWTs. The ratio of the major to the 

minor ellipsoidal cross-section axis (cross-sectional aspect ratio - AR) has been identified 

as a significant contributing factor in device performance. Until now, semiconductor 

industry players have carried out experimental research on NWTs with two different cross-

sections: circular cylinder (or elliptical) NWTs and nanosheet (or nanoslab) NWTs. Each 

version has its own benefits and drawbacks; however, the key difference between these two 

versions is the cross-sectional AR. Several critical design questions, including the optimal 

NWT cross-sectional aspect ratio, remain unanswered.  To answer these questions, the AR 

of a GAA NWT has been investigated in detail in this research maintaining the cross-

sectional area constant. Signatures of isotropic charge distributions within Si NWTs were 
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observed, exhibiting the same attributes as the golden ratio (Phi), the significance of which 

is well-known in the fields of art and architecture. 

To address the gap in the existing literature, which largely explores NWT scaling using 

single-channel simulation, thorough simulations of multiple channels vertically-stacked 

NWTs have been carried out with different cross-sectional shapes and channel lengths. 

Contact resistance, non-equilibrium transport and quantum confinement effects have been 

taken into account during the simulations in order to realistically access performance and 

scalability.  

Finally, the individual and combined effects of key statistical variability (SV) sources on 

threshold voltage (VT), subthreshold slope (SS), ON-current (Ion) and drain-induced barrier 

lowering (DIBL) have been simulated and discussed. The results indicate that the variability 

of NWTs is impacted by device architecture and dimensions, with a significant reduction in 

SV found in NWTs with optimal aspect ratios. Furthermore, a reduction in the variability of 

the threshold voltage has been observed in vertically-stacked NWTs due to the cancelling-

out of variability in double and triple lateral channel NWTs.  
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1 Chapter 1.  Introduction  
 

 

 Research Motivation 

Silicon Complementary Metal-Oxide Semiconductor (CMOS) technology and 

corresponding Integrated Circuits (IC) have constantly improved in terms of functionality 

and performance over many decades. Metal Oxide Semiconductor Field Effect Transistors 

(MOSFET) is at the heart of CMOS technology and IC, with more than one billion 

transistors integrated today on a single IC chip. Through the advancement in IC 

manufacturing technology, Silicon chip manufacturers are able to deliver 7nm FinFET 

CMOS technology generation with 19nm channel length transistors this year. With the 

reduction of gate length in the FinFET CMOS technology, it is necessary to shrink the fin 

width in order to maintain electrostatic control and to deliver the required contact pitch 

scaling. In order to maintain good electrostatic control and to minimise the short-channel 

effects (SCE) simultaneously increasing the performance, the development of tall and 

narrow fins has been crucial.  

The current focus of the advanced CMOS technology development has been the introduction 

of 7nm FinFETs CMOS technology this year by the world leading foundry TSMC [1]–[3]. 

Yet the FinFET size must be reduced further in order to continue scaling [4]. The issue 

involved reducing the FinFET fin width while sustaining or even increasing the fin height, 

however, is the mechanical fin integrity, the increase in process variability and the 

subsequent increase in the statistical variability of the transistors [5]. It is highly challenging 

to control the channel geometry and shape when narrowing and elongating the fin for the 

purpose of maximising drive current. Although the increase in SCE control and threshold 

voltage (VT) that arises during the scaling of the fin width (Wfin) leads to a reduction in 

leakage current (Ioff), scaling of the Wfin below 4nm results in a significant VT increase and 

Ion saturation and even reduction. The reason for this is the growing contribution of quantum 

confinement effect to the charge distribution, scattering and carrier transport, suggesting that 
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scaling below a specific gate length and channel cross-section is challenging to achieve in 

practice. This highlights the issues involved with the extreme scaling of FinFET transistors.  

Silicon Nanowire Transistors (NWTs) represent a potential alternative to Si FinFET 

technology, perhaps taking the lead compared with the exploration of other performance 

improvement options investigating alternative channel materials [6]. Here, the gate length 

can be scaled beyond the minimum FinFET channel length scaling whilst managing to keep 

the off-state leakage minimal, due to the greater electrostatic control over semiconducting 

nanowire channels offered by the gate-all-around (GAA) NWT architecture. Researchers 

have confirmed the advantages of the GAA transistors when dealing with short-channel 

effects, highlighting GAA transistors as the most effective option for ultimate channel length 

scaling. In principle, the engineering and optimisation of GAA NTW transistors requires an 

ideal balance between leakage current and device performance. In earlier research [7]–[9], 

it has been proven that NWT mobile charge and gate capacitance are significantly affected 

by the cross-sectional nanowire shape, with the greatest mobile charge per gate voltage 

observed in a <110> channel-orientation NWT with an elongated elliptical (shape) cross-

section, and the longer diameter running parallel to the Si wafer surface. Additionally, it has 

been shown that the device performance is significantly influenced by the major-minor 

cross-sectional axis ratio, or aspect ratio (AR). Experimentally, NWTs are largely available 

with a circular or elliptical shape [10], [11] or as nanosheet/nanoslab FETs geometries [12]. 

There are benefits and drawbacks to each of the above types, but the cross-sectional AR is 

one of the main design features determining NWTs performance. At present, there is no 

clear answer to the question of what the ideal cross-sectional AR in NWTs is. Other key 

design issues including the use of multiple NWT channels, which also remains poorly 

understood.  

Given the above points, the current research is mainly focused on the simulation-based 

design optimisation of NWTs suitable for the 5nm Si CMOS technology generation. This 

includes optimisation of the NWTs cross section to achieve an optimal quantum mobile 

charge to gate capacitance ratio [7], [9]. Here, the NWT’s intrinsic speed [13] is measured 

through intrinsic delay (τ). The simulations also take into account contact resistance, non-



Chapter 1.  Introduction                                                                 3 

 

equilibrium transport and quantum confinement effects in order to achieve optimisation 

based on realistic predictive Technology Computer Aided Design (TCAD) simulations.  

The increase in the saturation current Isat needed for the 5nm CMOS node has been 

thoroughly evaluated in the simulations in order to ensure that the performance improvement 

expected by the industry in this technology generation is attainable. In recent research the 

adoption of a replacement metal gate (RMG) technique has proved effective in GAA 

stacked-NWTs. However, these devices, which are similar to RMG FinFETs, come with 

certain technical requirements. Research demonstrates that the 3D vertically-stacked 

channels bring high drive current at the optimal layout footprint of GAA NWTs. Compared 

to vertical NWTs, which are associated with more technological challenges, horizontal GAA 

NW devices have the advantage that they can be manufactured without varying the current 

FinFET technology too much. Therefore, many semiconductor manufacturers are at present 

considering the use of GAA stacked-NWT architecture for extreme CMOS scaling. 

Nanowire stacking may be necessary to improve per-footprint drive current. Given these 

points, the last 2015 edition of the International Roadmap for Semiconductor (ITRS) 

incorporates vertically-stacked horizontal nanowire GAA transistors in order to bring the 

contacted gate pitch down to less than 40nm by 2021. This is one of the major viable 

approaches in terms of increasing the CMOS device density beyond the 7nm CMOS 

technology. The current study therefore explores vertically-stacked NWTs in line with their 

significance for future CMOS developments in the semiconductor industry.  

In order for the chipmaker to make the decision to implement a particular technology, 

complex research is needed where predictive simulations play an extremely important role. 

The simulation and evaluation of the statistical variability introduced by the discreteness of 

charge and granularity of matter is key in the evaluation of future potential technologies. 

The study of the statistical transistor parameter distributions requires 3D simulation of large 

statistical samples of microscopically different transistors. Metal gate granularity (MGG), 

line edge roughness (LER) and random discrete dopants (RDD) are among the key sources 

of statistical variability and have been explored by many researchers. In the context of the 

current study, the exploration of the statistical variability in stacked NWTs has been carried 

out with the most advanced TCAD simulation tools available.   
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 Research Aim and Objectives 

The current study aims to investigate the scaling of silicon NWT MOSFETs taking into 

consideration quantum confinement effects, performance and statistical variability in 

order to evaluate their applicability for the 5nm CMOS technology generation and 

beyond. Therefore, the objectives of this research are: 

1. To design a realistic, highly-scaled Si NWT in line with new generations of 

technological advancement and requirements. This entails. 

• Designing the device structure according to the ITRS criteria, and following up 

research results; 

• Exploring the ways in which NWT gate capacitance, transport charge, 

subthreshold slope (SS) and drain-induced barrier lowering (DIBL) are impacted 

by the cross-sectional nanowire shape. 

• Identifying the ideal cross-sectional shape and cross-sectional AR; 

• Applying the ITRS criteria and up-to-date research findings in order to optimise 

nanowire configuration. 

• Thoroughly investigating quantum confinement effects in <5nm-CMOS 

technology compatible NWTs with different cross-sections. 

2. Performing Poisson–Schrödinger (PS) and density gradient (DG) based quantum 

corrections in order to determine the suitability of the DG approach to NWT 

design and simulation.  

3. To utilise the experimental design for predictive understanding of the impact of 

source/drain doping, spacer and gate lengths and trade-offs between Ion, Ioff, 

DIBL and SS in order to optimise nanowire configuration. 

4. To determine: a) whether a strained single-channel silicon NWT can be used to 

achieve the 5nm technology node performance target; and b) the number of 

lateral channels required in a single device if more than one channel is needed to 

achieve the performance target. 
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5. To address the gap in the existing literature, which explores scaling using only 

single-channel NWT simulation, through the simulation of NWTs with 

numerous lateral channels and channel cross-sections and lengths. Contact 

resistance, non-equilibrium transport and quantum confinement effects are taken 

into account during the simulation in order to achieve predictable simulations 

and realistic conclusions.  

6. To carry out a study of the NWT statistical variability using 3D simulation of 

large statistical samples employing the key statistical variability sources (e.g., 

RDD, LER, MGG). 

7. To analyse the effects of statistical variability on threshold voltage VT, on-current 

Ion, and DIBL. 

8. To compare the performance of vertically-stacked NWTs to that of single-

channel NWTs with the incorporation of sources of statistical variability. 

  

  Thesis Outline 

This chapter has presented an introduction to the research topic, highlighting the significance 

of NWT scaling to future developments within the industry. The chapter began with a 

discussion of the motivation for the research, with the research aim and objectives outlined 

thereafter. 

Chapter 2 presents a review of the existing research and current issues associated with 

MOSFET scaling and short-channel effects. This chapter also discusses the physics behind 

the topic along with the scaling theory. It introduces multi-gate MOSFET architectures, 

including FinFET and GAA NWTs. The key variability sources are then discussed outlining 

their effects on the performance of devices and circuits.   
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The research methodology is presented in Chapter 3, with a discussion of the main 

simulation approaches and tools, and the physical mechanisms relevant to the exploration 

of multi-gate CMOS devices, used in this research. This section specifically evaluates the 

drift-diffusion (DD) and Monte Carlo (MC) models, outlining their advantages and 

limitations in terms of studying quantum mechanical effects and non-equilibrium transport 

in nano-scaled devices. The reasons behind the adoption of a calibrated DD-based quantum-

corrected 3D Monte Carlo method are then explained. 

Chapter 4 begins with a description of the NWT design adopted in this study, along with a 

discussion of key design considerations such as the main NWT structure design parameters, 

the structure editor and the doping profiles used. Following this, the design specifics for the 

5nm CMOS compatible NWT are then outlined, with the simulation methodology and 

density gradient calibration also being discussed. The chapter ends with an exploration of 

the impact of quantum confinement on the electrostatic integrity (e.g., SS and DIBL) of the 

nanowire based on an analysis of quantum confinement effects on channel gate capacitance 

and transport charge. The optimal cross-sectional AR is then investigated.  

There are four sections presented in Chapter 5. In the first section, non-equilibrium transport 

in single mono-channel NWT simulation is addressed. In the second section, multi-lateral 

channel 5nm CMOS compatible NWT simulation is explored, with contact resistance, non-

equilibrium transport and quantum confinement effects being considered in the 3D MC 

simulation model. The remainder of the chapter then focuses specifically on two questions, 

in relation to the research objectives. The first question is whether the semiconductor 

industry target can be met in highly-scaled 5nm CMOS technology compliant single-channel 

silicon NWTs. The second question addresses the alternative if the target cannot be met 

using single-channel NWTs, i.e. elaborating how many lateral channels are needed within a 

single NWT to achieve this target.  

The introduction of variability sources in the DD-based simulator is then presented in 

Chapter 6, with an outline of the approaches used for this purpose. Here, calibration of the 

DD model is achieved with the MC and Poisson-Schrödinger approaches. This allows for 

the exploration of the impact of the key sources of variability on NWTs. The simulation of 
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thousands of devices with random discrete dopants (RDD), metal gate granularity (MGG) 

and line edge roughness (LER) is then discussed, with the results presented and analysed.   

Chapter 7 is the final chapter of this dissertation. This chapter reviews the general findings 

and conclusions from the research presented in the thesis. It also provides directions for 

further research in the vibrant area of NWT simulations.  
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2 Chapter 2. Background 

 

 Introduction: 

Over the last fifty years, silicon-based microelectronics has transformed our lives. The 

requirement for improved computing technology at lower costs has driven unrelenting 

CMOS scaling. The development of integrated circuits towards the end of the 1950s first 

revealed the potential for employing transistors in practically every type of electronic circuit 

[14].  The first MOS transistor was patented in 1928 by Lilienfeld [15] [16]. Subsequently, 

production of the first metal-oxide semiconductor field-effect transistor (MOSFET) in 1960 

by Kahng and Atalla permitted the cost-effective integration of multiple transistors with 

interconnects on a single silicon chip [14], [17].  This was followed in 1965 with the 

postulation of Moore’s Law. Gordon Moore made the momentous observation that the 

number of components in integrated circuits had increased by a factor of approximately two 

per year [18] and predicted that this trend would continue in the future. Still standing strong 

half a century later, Moore’s Law has held its ground despite the frequent challenges it has 

faced over the decades. Industry response has been to attempt to reach the predicted target 

set by Moore’s Law, for fear that this target will be reached by competitors by any means. 

Moore’s Law with regard to the number of transistors in microprocessors is depicted in 

Figure 2-1 ,  whilst Figure 2-2 depict Moore’s Law with respect to the number of transistors 

[19] and the processor area for Intel’s microprocessors, correspondingly [19]–[21].  

A modern microprocessor contains a few billion transistors. Nowadays Moore’s Law is 

slowed down by doubling the number of transistors on the chip every three years instead of 

the original two years because the scaling of the transistors’ dimensions has become more 

challenging [22].  Transistor scaling has a number of benefits over and above increasing the 

on-chip transistor density [23]. For example, the delay of the logic gates is reduced and the 

operating frequency of the transistors is increased by a factor of 1/Lg (where Lg = transistor 

gate length) which permits faster circuit operation. For an equivalent degree of functionality, 

the chip area is reduced by a factor of 1/(Lg)
2 and this permits an increased number of dies 
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to be produced on a single wafer thereby reducing production costs.  In addition, as the die 

size is smaller, the quantity of defects per die is also reduced, resulting in an increased 

manufacturing yield and productivity [24]. The active switching power per area stays steady, 

with technology scaling permitting the circuits to operate at reduced power or permitting the 

circuits to have greater functionality at fixed power.  Whilst planar bulk silicon MOSFETs 

have remained the backbone of the semiconductor industry in attaining constant scaling, the 

bulk planar FET struggles to deliver scaling benefits beyond the 32/28nm CMOS technology 

generation [25]. 

From the early 1990s the semiconductor industry and academia have worked together to 

forecast the industry’s future. These efforts have been formalised in an international 

organisation - the International Technology Roadmap for Semiconductors (ITRS) [26] 

which remained in existence until 2015.  The ITRS used to produce bi-annual reports which 

contained predictions, recommendations and guidelines for the semiconductor industry. The 

ITRS reports outlined the advancements of the technology, design tools, equipment and 

metrology tools that need to be developed in order to maintain the exponential evolution of 

the semiconductor chips needed to sustain Moore’s Law. 

The backbone technology of the semiconductor industry is silicon Complementary Metal 

Oxide Semiconductor (CMOS) technology, with the fundamental unit of CMOS chips being 

the MOS Field Effect Transistor, the MOSFET.  In order to keep up with the frenetic 

development speed prescribed by Moore’s Law, transistor linear dimensions have decreased 

by 70%, initially every two years, and since the beginning of this century every three years 

the transistor and the chip areas have been reduced by 50% in every new technology 

generation. The sub-micron dimension milestone was passed in the first half of the 1980s, 

and this year (2018) regular mass production of the 7nm FinFET CMOS technology will be 

in place with transistors with a 19nm gate length.  

Although initially integrated circuits and the corresponding transistors were being 

manufactured on “bulk” silicon wafers by the end of the 1990s, it was realised that major 

performance enhancements could be achieved by introducing a novel type of substrate, 

known as Silicon-On-Insulator (SOI) substrate.  Here, transistors are produced in a thin 
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silicon layer located on the top of a silicon dioxide layer. SOI technology offers performance 

enhancements in both circuit speed and power reduction. At the beginning of the 2000s, 

IBM commenced production of microprocessors utilising SOI substrates on an industrial 

scale.  These SOI devices provided benefits of reduced parasitic capacitances and enhanced 

the drive current. 

 

 

Figure 2-1 Moore’s Law with regard to count of transistors and year of introductions 

[19]. 

 

 

 

Figure 2-2 Moore’s Law with regard to the number of transistors of transistors in Intel’s 

microprocessors [19-21]. 
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 Bulk MOS transistor scaling  

A number of technical challenges rendered Si bulk MOS transistor scaling impossible in the 

technology generation of below 22/20-nm.  In a long channel, bulk MOSFETs’ transistor 

operation can be described using the gradual channel approximation treating the lateral and 

vertical components of the electrical field in the 2D transistor cross section separately: (1) a 

gate-controlled vertical electric field is responsible for the charge formation in the channel, 

and (2) a drain-controlled lateral field governs the charge transport [27]. In long channel 

MOSFETs the threshold voltage VT is independent of the drain voltage.  The application of 

the gate voltage reduces a potential barrier between the source and the drain at the interface 

between the silicon and the gate insulator and permits electrons to flow from the source to 

the drain. During normal transistor operation, basic thermionic emission limits the 

subthreshold slope (SS) to a minimum of 60 mV/decade at 300K. Degraded 2-D electrostatic 

integrity at short gate lengths increases the SS above 60 mV/decade resulting in increased 

off-state leakage current at identical values of VT. In practice, the potential barrier at the 

source is regulated by the gate, in addition to the drain via their respective capacitive 

coupling to the charge in the channel [28]. Reducing gate length, the drain influence 

increases.  Consequently, it becomes more difficult for the gate to regulate the channel 

barrier and turn off the channel. The 2-D short channel effects (SCE) have multiple 

manifestations. First, they result in a reduction of the threshold voltage with the reduction 

of the gate length (VT roll-off). Secondly the VT is reduced with the increase in the drain 

voltage (which is also termed ‘drain induced barrier lowering’, or DIBL, at the interface) 

Thirdly the SCEs degrade the subthreshold swing. Taken together with the SCE, they result 

in an increase of off-state static leakage power.  

MOSFET design requires careful offsetting between drive current, short channel effects and 

power consumption. The on-state current (Ion) of a MOSFET can be approximated by 

 𝐼𝑜𝑛 = 𝑊𝑄𝑖𝑛𝑣(𝑉𝐺𝐺) × 𝜈(𝑉𝐷𝐷) ≈ 𝑊𝐶𝐺(𝑉𝐺𝐺 − 𝑉𝑇) × 𝜈(𝑉𝐷𝐷) (2-1) 
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where W represents the device’s width, VT represents threshold voltage, Qinv represents the 

inversion charge density at the maximum potential barrier near the source and 𝜈 represents 

the velocity close to the source region (injection velocity) which is dependent on the drain 

bias VDD. The power consumption (PC) can be estimated by 

 𝑃𝑑𝑖𝑠 = 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑝𝑜𝑤𝑒𝑟 + 𝑆𝑡𝑎𝑡𝑖𝑐 𝑝𝑜𝑤𝑒𝑟 (2-2) 

 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑝𝑜𝑤𝑒𝑟 = 𝛼𝑓𝐶𝑙𝑜𝑎𝑑𝑉𝐷𝐷
  2  (2-3) 

 
𝑆𝑡𝑎𝑡𝑖𝑐 𝑝𝑜𝑤𝑒𝑟 = 𝑉𝐷𝐷 (𝐼𝑙𝑒𝑎𝑘 +  𝐼𝑡ℎ10−(

𝑉𝑇
𝑆𝑆⁄ )) 

(2-4) 

where α is the activity factor, f operating frequency, and SS is the sub-threshold slope, Ileak 

represents the total leakage current from gate, the junctions and the band-to-band tunnelling, 

and Ith is the drain current at VT. In order to maintain low power consumption, lower VDD 

and leakage current, higher VT and a steeper SS is required according to equations (2-3 and 

2-4). On the other hand, large gate capacitance, low VT and high injection velocity are 

required to attain high performance in terms of saturation current. 

To date, device engineers have tried to reduce SCE in short gate length devices using several 

techniques. The first technique is by minimising the gate oxide thickness to enhance gate 

control over the channel. The second technique is by reducing the source/drain junction 

depth (particularly close to the gate edge, where the source/drain areas are known as 

‘extensions’) in order to minimise the drain coupling the mobile charge in the channel and 

its impact on the source barrier height. The third technique is by raising the degree of channel 

doping to restrain the electric field lines which commence from the source and propagate 

towards the drain and condoling the depletion and the inversion charge under the gate. In 

contemporary bulk MOSFETs, bespoke channel doping is achieved by utilising complex 

vertical and horizontal profiles in order to reduce the SCE. The creation of complex high 

doping profiles in the channel incurs extra costs and also leads to a reduction in the transistor 

performance (speed) together with an increased static leakage current due to enhanced band-
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to-band tunnelling and gate induced drain leakage (GIDL). When the gate oxide becomes 

2nm thick, quantum mechanical tunnelling leads to an increase in the gate leakage current. 

For oxides thinner than 2nm, the direct-tunnelling gate leakage current sharply increases 

(~3X for each 1 Ao reduction in oxide thickness). This gate leakage increases the standby 

power consumption and in addition can interfere with proper logic gate operation.  As a 

consequence, most foundries now have replaced the conventional silicon dioxide (SiO2) as 

a gate dielectric with high permittivity (high-k) gate dielectrics [29], predominantly hafnia 

(HfO2). This results in high gate capacitance with physically thick insulators with very low 

probability of tunnelling. Nevertheless, the introduction of such new materials is not without 

challenges and achieving the desired results with no associated losses in mobility and 

reliability is currently a field of intensive further research.  

Another challenge is the resistance of the source/drain regions. For example, when the 

source/drain junction depths are reduced to control SCE, there is a need to increase doping 

levels in order to maintain constant sheet resistance. The upper limit for the solid solubility 

of dopants is around 1020 cm−3 depending on the dopant space.  Consequently, the reductions 

in junction depth lead to raised series resistance reducing the performance of the transistor.  

Simultaneously, from a technological perspective, the formation of ultra-shallow junctions 

which does not diffuse deeper following doping activation annealing, required to achieve 

low resistivity [28], [30] becomes difficult. With increasing doping density in the channel 

for SCE suppression, the carrier mobility is degraded as a consequence of increased ionized 

impurity scattering.  Furthermore, the subthreshold slope deteriorates as a consequence of 

increased depletion capacitance which impedes the control of the surface potential by the 

gate voltage. Due to very high channel doping close to the source/drain extensions, an 

additional static leakage mechanism, band-to-band tunnelling (BTBT), becomes significant.  

Lastly, with reducing channel volume in extremely scaled transistors, the stochastic 

positioning of discrete dopant atoms leads to random inter-device variations. 

The requirement to increase drive currents with transistor scaling and to reduce the supply 

voltage is associated with an exponential increase in the static, off-state leakage of the 

transistor. Although the active power density of the chip has grown steadily with the gate 

length scaling, the static power density has increased much more rapidly. The active power 
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is a consequence of the dissipative current flow through the complementary CMOS 

transistor pairs during logic switching. The sub-threshold, static or standby power is 

dissipated even when the integrated circuit is inactive. The subthreshold leakage was the 

major leakage mechanisms for long channel transistors.  For contemporary nano-scaled bulk 

MOSFETs BTBT, GIDL and gate leakage dominate the static power dissipation. Whilst 

static power dissipation was a relatively minor issue a few decades ago, in the latest 28nm 

and 20nm bulk technology generations it compares in magnitude to the active power. 

Control and suppression of static power became a major issue for continued gate length 

scaling in bulk CMOS technology marking eventually its end. The needed higher channel 

doping and halo implant required to regulate SCE also increases the source/drain to bulk 

parasitic capacitances slowing the speed in the latest generations’ bulk MOSFETs. 

Due to the deficiencies in performance, insufficient control of the CER and exploding power 

consumption, traditional bulk MOSFETs reached the end of their scaling and useful life with 

the 20nm bulk CMOS technology which has been introduced into production by only one 

foundry: TSMC. New device architectures aiming to replace the conventional bulk CMOS 

in combination with a new channel and gate stack materials have been driving 

semiconductor research over the past two decades  [31], [32]. 

 

 

 

Figure 2-3 Typical PDSOI (a) and(b) FDSOI structures [32].  
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 SOI MOSFETs 

The first alternative to the bulk MOSFET adopted commercially is the SOI transistor. As 

depicted in Figure 2-3, two types of SOI transistors exist: partially depleted (PD) and fully 

depleted (FD). In the PD SOI MOSFETs, a stratum of insulating SiO2 divides the top device-

containing layer from the bulk Si underneath. The PD MOSFET has a similar design and 

similar dimensions to a bulk MOSFET [28].  When in the OFF state, the depletion depth 

beneath the gate is below the depth of the top silicon layer [33]. The PD MOSFET delivers 

reduced parasitic Source/Drain capacitance in an inverter circuit, reducing the propagation 

delay and increasing switching speeds.  The potential of the floating body is controlled 

dynamically by capacitive coupling of the range of electrodes associated with this layer. 

Therefore, a floating charge can build up in this area, leading to modification of the floating-

body charge and the historical effects of transistor characteristics [34]–[39] . Such floating 

body voltage can alter the threshold voltage of the device, potentially resulting in serious 

discrepancies between two identical transistors  [40]–[42]. 

PD MOSFET techniques have been successfully applied to high volume production, 

although this encounters the same challenges associated with scaling as the bulk MOSFET 

and therefore this is not a scalable technology with a long-term future [43].  

A further issue with SOI transistors is self-heating [44], [45].  In SOI circuits, the active 

transistors are positioned on top of a thermally insulating layer of silicon oxide. When the 

circuit is in operation, the power generated in the active region cannot be easily dissipated 

through the silicon substrate. Consequently, the temperature of the silicon body increases 

resulting in a reduction in mobility and in drive current. 

In the fully Depleted (FDSOI) MOSFET the top silicon film is thinned down to such an 

extent that it becomes entirely depleted in the OFF state (see Figure 2-3). Elimination of the 

partially depleted region in the FDSOI MOSFET enables suppression of the floating body 

effects. The reduction of the silicon film thickness also allows better control of the short 

channel effects and therefore tolerates a reduction in the channel doping densities. In 

addition, the vertical electric field is reduced for the same channel carrier concentration. 
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Therefore, the inversion layer mobility is enhanced without detrimentally affecting the OFF-

state current. Hence, by increasing the buried oxide thickness, optimal subthreshold slopes 

of 60 mV/decade can be attained.  However, this also increases the drain control on the 

source-channel barrier via the buried oxide.  Employment of a thin buried oxide can 

overcome this problem through the termination of the drain field lines on the back substrate, 

but at the cost of a degraded sub-threshold slope [34], [46]–[50]. 

  

 Multi-Gate MOSFETs  

The channel gate control is improved by the structural positioning of the gate close to the 

channel.  Improved gate control may also be achieved by utilising more gates. Multi-gate 

MOSFETs can be considered an extension of the fully-depleted SOI MOSFETs, but with a 

greater number of gates around the thin silicon body. Multi-gate MOSFETs provide greater 

electrostatic control of the inversion channel [51].  

The improved electrostatic control in the multi-gate MOSFET minimises the detrimental 

short channel effects (SCE) and improves the scalability of multi-gate FETs compared to 

planar bulk MOSFETs.  To achieve this, planar double-gate [52], fully Depleted Lean-

channel Transistor (DELTA) [53], vertical double-gate (FinFET) [54]–[56],  omega-shaped 

gate (Ω-gate) [57], [58], Φ-FET[59], and Gate-All-Around (GAA) nanowire [59]–[63] have 

been proposed by researchers over the last fifteen years. 

The double-gate MOSFET has a symmetrical device structure where the channel is 

controlled by a gate on either side of the Si layer. Better gate control allows further reduction 

of the Si film thickness for a similar gate length compared with FD-SOI at an identical OFF-

state current.  Appropriate device design enables volume inversion in the thin Si film, where 

the majority of the inversion charge resides at the Si film centre, and the vertical field results 

in greatly enhanced mobility.  Due to better electrostatic integrity delivered by the two gates, 

the channel length can be reduced further, compared with FDSOI. 
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 There are three techniques to fabricate a double-gate transistor. The first possibility is 

structuring the device laterally with two opposing single gates on the top and on the bottom 

as shown in Figure 2-4 (a). The second possibility is to structure the device perpendicularly 

to the Si substrate with the current flowing perpendicular to the Si surface as shown in Figure 

2-4 (c). The third way is to structure the device with the channel and gate vertically to the Si 

surface but with the current flowing parallel to the surface, as shown in Figure 2-4 (b). The 

third structure is identical with the FinFET concept [64]. Improved structures like the tri-

gate MOSFET hve been employed to improve the electrostatic control of the gate permitting 

additional gate length reduction. Section 2.5 gives a brief overview of the scaling theory and 

how multi-gates improve the SCE.  

 

 

Figure 2-4 Double gate FET transistor structure to improve performance whilst 

reducing Ioff. (a) double gate FET with a channel in the plane of the wafer, with the 

first gate over it and the second gate beneath. The channel is vertical on the wafer’s 

surface with one gate on each side (b) and (c). Two structures of the vertical 

channel have the current direction parallel to the FinFET (b), or parallel to the 

wafer surface (c)[64]. 
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 Scaling Theory of MOSFET  

SOI-MOSFET scaling behaviour and electrostatics is controlled by the channel surface 

potential which leads to the injection of carriers from the source to the drain terminal. The 

distribution of the electrical potential in the channel of an FD-SOI-MOSFET is given by the 

solution of the Poisson's equation in the depletion approximation [65], [66]. 

 𝑑2𝜓(𝑥, 𝑦, 𝑧)

𝑑𝑥2
+

𝑑2𝜓(𝑥, 𝑦, 𝑧)

𝑑𝑦2
+

𝑑2𝜓(𝑥, 𝑦, 𝑧)

𝑑𝑧2
=

𝑞𝑁𝑎

𝜀𝑆𝑖
 

(2-5) 

Which can be rewritten as [66]: 

 𝑑𝐸𝑥(𝑥, 𝑦, 𝑧)

𝑑𝑥
+

𝑑𝐸𝑦(𝑥, 𝑦, 𝑧)

𝑑𝑦
+

𝑑𝐸𝑧(𝑥, 𝑦, 𝑧)

𝑑𝑧
= 𝐶 

(2-6) 

This form of the equation indicates that, at arbitrary (x, y, z) point in the device’s channel, 

the total change of the electrical field components remains equivalent to a constant C.  

Therefore, if any one of the components of the electric field increases, the sum of the other 

two must decrease.  The x-component of the electric field (Ex) represents the encroachment 

of the drain electric field on the channel region, and thereby is responsible for the short-

channel effects. The impact of Ex on a potential barrier near the source positioned at 

coordinates (x, y, z) can be minimised either by lengthening the channel, or by increasing 

the electric field inserted by the top/bottom gates, along the direction y, or the lateral gates 

along the direction z of the channel.  This can be achieved by minimising the silicon film 

thickness, and/or the fin thickness.  Furthermore, an increase of ,  
𝑑𝐸𝑦(𝑥,𝑦,𝑧)

𝑑𝑦
+

𝑑𝐸𝑧(𝑥,𝑦,𝑧)

𝑑𝑧
  and, 

therefore, an improved regulation of the channel by the gates and less short-channel effects, 

may also be attained by raising the number of gates:  
𝑑𝐸𝑦(𝑥,𝑦,𝑧)

𝑑𝑦
   which can be achieved by 

the existence of a top and bottom gate instead of merely a single gate, with   
𝑑𝐸𝑧(𝑥,𝑦,𝑧)

𝑑𝑧
   further 

raised by the existence of a lateral gate [66][65].  
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Poisson’s equation can be used to obtained the electrostatic potential in the channel, using 

closed form parabolic expression proposed by Young [67]:  

  𝜓(𝑥, 𝑦) = 𝑐0(𝑥)𝑦0 + 𝑐1(𝑥)𝑦1 + 𝑐2(𝑥)𝑦2 (2-7) 

where x and y represent directions along and perpendicular to the direction of current 

respectively.  The surface potential (ψs) for the variety of channel geometries, can be 

represented by the 1D Poisson’s equation. It can be written simply as: 

 𝑑2𝜓𝑠(𝑦)

𝑑𝑦2
+

𝜓𝑠(𝑦) − 𝜓𝑔𝑎𝑡𝑒 − 𝜓𝑏𝑢𝑖𝑙𝑡

𝜆2
=

𝑞(𝜌 ∓ 𝑁)

𝜀𝑆𝑖
 

(2-8) 

where ψs , ψbuilt , ρ, N and εsi represent the gate and built in potentials, mobile and channel 

doping densities and channel permittivity electric field. The 2nd order differential equation 

(2-8) has a solution expressed in an exponential form: 

 𝜓𝑠(𝑦) ∝ 𝑒(−
𝑦
𝜆

)
 

(2-9) 

where λ represents the so-called natural length (or screening length), i.e. the length scaling 

the channel potential variation. The natural length depends on the device geometry. The 

analytical solutions for single gate [67], [68], double gate, and gate-all-around structures are 

expressed by equations (2-10), (2-11) and (2-12), respectively [51]:  

 

𝜆𝑠𝑖𝑛𝑔𝑙𝑒 = √
𝜀𝑠𝑖

𝜀𝑜𝑥
𝑡𝑠𝑖𝑡𝑜𝑥 

(2-10) 
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𝜆𝑑𝑜𝑢𝑏𝑙𝑒 = √
𝜀𝑠𝑖

2𝜀𝑜𝑥
(1 +

𝜀𝑜𝑥𝑡𝑠𝑖

4𝜀𝑠𝑖𝑡𝑜𝑥
) 𝑡𝑠𝑖𝑡𝑜𝑥 

(2-11) 
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√

2𝜀𝑠𝑖𝑡𝑠𝑖
2 ln (1 +

2𝑡𝑜𝑥

𝑡𝑠𝑖
) + 𝑡𝑠𝑖

2𝜀𝑜𝑥

16𝜀𝑜𝑥
 

(2-12) 

The purpose of scaling is to achieve optimum performance from each MOSFET generation 

in order to maximise the ON current Ion minimising the short-channel effects the drain-

induced barrier lowering (DIBL), and the off-current. Preserving the electrostatic integrity 

has allowed scaling to progress by reducing gate length, gate width, oxide thickness and 

improving the drain current.  The constraints limiting the scaling include thermodynamic 

constraints restricting active doping concentration in source and drain; physical constraints 

due to SCE, tunnelling through gate oxide, band-to-band tunnelling and GIDL; statistical 

constraints which are associated with transistor parameter fluctuation due to discreteness of 

charge and matter; and economic constraints associated with the manufacturing costs per 

transistor.  

The limits of conventional bulk MOSFET scaling including dimensions and voltage scaling 

have been reached at the 28/20nm bulk CMOS technology generations. Researchers and 

manufacturers are now focused on overcoming the scaling limitations and extending the life 

of Moore’s law. There is potential for employing novel channel materials offering high 

mobility and potential for higher performance including strained Si, Si/SiGe III-V 

heterostructures.  The OFF-state gate leakage has been minimised by the introduction new 

gate stacks with high-K dielectric, such as HfO2 and new gate materials, including metal 

gates, and fully silicide gate. A second avenue to overcome scaling limitations involves the 

development of novel device architecture, to include SOI, double gate, trigate, and gate all-
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around GAA transistors enhancing the electrostatic integrity and also relaxing the limit of 

the oxide scaling. 

 

 FinFETs 

The fully depleted double gate SOI structure (or delta FET) was initially experimentally 

suggested by Hisamato et. al. in 1989 [69].  Chenming Hu and his team reported the idea of 

FinFET in 1999 and UTB-SOI (FD SOI) in 2000 [70].  The fundamental concept underlying 

both innovations is a very thin body (approximately 10nm or less), enabling the gate to be 

coupled strongly to the channel with no leakage path a great distance from the gate. As a 

result, the gate is able to control the leakage current much better. FinFETs possess include 

the formation of a vertical channel known as the Fin, so the channel width of a FinFET is 

defined in terms of fin height resulting in channel ‘width quantization’ (single, double or 

multiple fins).  Therefore, the current in the FinFETs can be increased by increasing the fin 

numbers retaining the improved gate control over the channel charge. fin height determines 

the structural stability of the FinFET: the smaller the Fin height the more stable the structure 

is. 

FinFETs can be fabricated on bulk silicon wafers where all fins share a common silicon 

substrate. In this case shallow trench insolation and punch-through doping are used to isolate 

the individual fins. In the case of SOI FinFETs the fins are naturally isolated by the buried 

oxide layer. Figure 2-5 schematically compares bulk and SOI FinFETs. 

The first generation of multi-gate transistors with three-sided gate control has been 

manufactured by Intel at their 22nm node with 90nm fin pitch and 34nm fin height featuring 

a 3rd-generation high-k metal-gate technology and a 5th generation of channel strain 

techniques. The lower threshold voltage combined with the strain enhancement have lead to 

a 13% and 27% increase in Idsat in N and P channel FinFETs respectively at 0.8V and 

10nA/um leakage current compared with the 28nm CMOS technology [71], [72]. 
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The fin width-height ratio determines the robustness of the FinFET structure. In order to 

create more robust device, the fin Si has been etched with multiple angles to construct the 

first FinFET generation shown on Figure 2-6 The non-rectangular fin structure leads to non-

uniform mobile charges distribution and somewhat compromises the device performance. 

The height and angle of the fin of the first generation FinFET have been considered as two 

of the most important parameters in fabrication optimizing processes [73]. However, the 

fabrication of the fin leads to significant challenges with respect to gate length scaling. 

The 2nd generation of FinFET in the 14 nm CMOS node of Intel reduced the fin pitch and 

gate pitch by 0.7 (42nm, 70nm respectively).  The Idsat improvement is 15% for NMOS and 

41% for PMOS compared to the Intel 22nm technology [71]. The height of fin has been 

increased from 34nm to 42nm [74].  

The possibility of improving the performance of the 2nd generation FinFET is reported in 

[75] which records the first 14nm strained Ge P-channel FinFETs offering higher 

performance P-channel transistors while sharing the same technology platform. This PMOS 

FinFET with 45nm and 100nm fin and gate pitches respectively offers Isat=1.2mA/um. 

However, replacing the Si with high mobility materials is not without challenges [76]: The 

first challenge is the trade-off between the transistor performance and the OFF state current. 

Secondly the scalability should be economically affordable and co-integration with Si 

 

Figure 2-5 Three-dimensional schematic representation for the SOI and 

bulk FinFET. 
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transistors will be necessary, therefore these materials need to be integrated on a Silicon 

platform. The mismatch between Si and Ge is approximately 4%, and for III-V is 

approximately 12% in the case of InAs. Therefore, achieving active semiconductors layers 

with significant low defectivity is one of the important concerns. Finally, finding a native 

gate stack with high-k dielectric and low interface defects could be something of a show- 

stopper [77].   

Since fin-width scaling below 8nm is critical [74], Zheng et. al. proposed the inserted-oxide 

FinFET (also called iFinFET) to facilitate gate-length scaling below 10 nm while mitigating 

the need to form very-high fin aspect-ratio (>10:1 height: width) fin [78]. Since the benefits 

of the iFinFET stem from the improved capacitance coupling between the gate and the 

segmented channel regions, it is beneficial to consider high-k oxide materials like HfO2 or 

Si3N4 as inserted iFinFET dielectrics. The drawback of inserting higher-k material to form 

iFinFET is the higher capacitance between the channel, drain, and source. As a result, the 

channel regions have compromised electrostatic integrity. 

Scallop-shaped FinFETs (S-FinFETs) are another structural modification merging the 

advantages of the conventional Si GAA NWT and FinFET.  The proposed S-FinFETs 

demonstrate superior electrostatic integrity in the channels compared with classic bulk-Si 

FinFETs or tri-gate FETs due to the configuration of quasi-surrounding gate electrodes on 

 

Figure 2-6 Three-dimensional schematic representation for the SOI FinFET. The 

fin diverges from the vertical by 8o [73]. 
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scalloping fins by a specific Si etching process. S-FinFETs could extend general FinFET 

technology into the sub-10-nm node [79]. Although, S-FinFETs improve the drain-induced 

barrier lowering and subthreshold swing, they do not yield a significant improvement to the 

drain saturation current - Idsat.  

The contact all around CAA T-FinFET structure has been proposed for 10nm CMOS. It has 

better device performance including immunity from SCEs, bulk stressor selectivity, lower 

source/drain resistance and is very effective in series resistance reduction. However, 

controlling process variability of such strictures is challenging for 10nm CMOS technology 

and beyond [80]. 

The 10nm Intel CMOS technology features in the 3rd generation of FinFET and the 7th 

generation of strained silicon. The 10nm FinFET technology features rectangular 7nm x 

46nm fin shape. An important innovation of the 10 nm FinFET technology is the low 

dielectric constant of the spacers that leads to approximately a 10% reduction in parasitic 

capacitances. The reduction of the contact resistance together with the reduction of the gate 

pitch provides boost to the saturation current [55].  

Scaling down the fin width beyond 7nm is expected to improve the gate control. X. He et 

al. [81] presented an experimental study and a simulation study of the impact of the ultimate 

fin width scaling up to 1.6 nm on the FinFET performance. The results show improvement 

in DIBL and SS due to better gate control. However, the DIBL and SS decrease with fin 

width until it reaches a critical point (Wc≈4nm). When fin width becomes less than 4nm the 

DIBL and the SS deteriorates due to punch-through in the region below the fin. The FinFET 

performance (Ion/Ioff) retreated when the fin width becomes less than 5nm as shown in Figure 

2-7. 
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Figure 2-7 Impact of fin width on FinFET Ion/Ioff performance. TCAD simulations have been 

shown that DIBL, SS, and gate length (LG) are optimised at Wc≈4nm. This critical fin width has 

been selected as reference point refer to (100% performance). Here, performance Ion/Ioff is 

improved as the fin width is scaled up to 5.5nm but deteriorates swiftly with fin width [81]. 
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 Nanowire transistor (NWT) 

 The relentless pursuit of high-performance and low-power transistors with ever increasing 

integration density has driven CMOS technology to the ultimate nanoscale dimensions. 

Table 2-1 highlights the relations between Si thickness for a given gate length (Lg) with 

acceptable electrostatic integrity for a range of structures including planar ultra-thin-body 

SOI, double-gate FinFET, tri-gate FET and gate-all around nanowire transistors. 

Multi-gate MOSFET have superior electrostatic integrity compared with conventional 

planar bulk MOSFETs providing a way forward for extended transistor scaling delivering 

higher performance, lower supply voltage and reduced threshold voltage VT variability due 

to tolerance to low channel doping. Amongst all multi-gate CMOS transistors, the silicon 

nanowire transistor (NWT) provides the route to ultimate CMOS scaling based on its 

superior electrostatic integrity. These silicon-based NWTs, have an additional benefit -

silicon was and has remained the workhorse of the semiconductor industry over more than 

forty years. It is, therefore, a very attractive candidate for extending the CMOS scaling at or 

beyond the 5 nm CMOS technology. The gate-all-around (GAA) structure offers optimum 

capacitive coupling between the gate and the channel allowing the scaling to channel lengths 

that are unattainable for the alternative single and multi-channel transistor architectures  

[66]. 

Table 2-1 The association between Si thickness for a given gate length (Lg) and 

acceptable electrostatics for a range of Si MOSFET structures 

Structure Silicon thickens 

planar ultra-thin-body SOI ≅ 1
3 ⁄ 𝐿𝐺 

double-gate FinFET ≅ 2
3 ⁄ 𝐿𝐺 

Tri-gate FET FinFET ≅  𝐿𝐺 

gate-all around nanowire FET ≤ 2 𝐿𝐺 
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Nanowire transistors (NWT) could be faster than traditional bulk, SOI and FinFET 

transistors and could be scaled to smaller channel lengths.  NWTs are in an active stage of 

research and development by semiconductor manufacturers and research groups around the 

globe as promising candidates for sustaining Moore’s Law.  A variety of factors have led to 

the explosion of research into NWTs. Firstly, semiconductor nanowires can easily be 

manufactured on a large scale with reproducible electronic characteristics needed for large-

scale integrated systems. Secondly, compared with “top–down” nanofabricated device 

architectures, “bottom–up” synthesised compounds nanowires provide good control for at 

least one of the critical device dimensions, the channel width, which is at or beyond the 

limits of the conventional lithography. Furthermore, the crystalline structure, smooth 

surfaces and the capability of producing radial and axial nanowire heterostructures can 

reduce scattering and permit higher carrier mobility, when compared with nanofabricated 

samples of similar dimensions. Lastly, because the nanowire body diameter can be 

controlled well below 4 nm, the electrical integrity of nanowire-based electronics can be 

sustained even if the gate length is aggressively scaled, an accomplishment that has become 

increasingly difficult for conventional top-down fabricated FETs. 

 

Figure 2-8 A Uniform NWT with four elliptical cross-sections (18.8nm×20.2nm), 

(16.5nm×13.8nm), (10.2nm×10.6nm), and (6.3nm×5.0nm) [82]. 
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Bangsaruntip et al have developed a fabrication process to fabricate a highly uniform NWT 

with an elliptical cross-section (see Figure 2-8). Several NWTs with different cross-sectional 

areas (190π-15.75π) have been made in order to find the impact of NWT diameter on SCE 

[82]. Characterisation results have shown that a good electrostatic control and satisfactory 

drive currents, for example the drive current of an elliptical NWT with the cross-section 

(9nmx13.6nm) is 0.95 mA/µm.  There is a significant dependency of the SCE against wire 

size [82].  

Over the past three years many scenarios have been proposed to scale NWTs.   R. Kim et 

al., present an NWT performance guideline based on atomistic quantum transport simulation 

including strain effects for Ge, Si, GaAs, and InAs NWT with a 13nm gate length. Results 

have shown that a Ge NWT with improved source and drain design could deliver better 

current versus delay performance whilst III-V NWTs have shown  themselves to be superior 

for power reduction capacitance [83].  Y. Lee et al., presented an experimental way to scale 

the Ge and Ge0.9Si0.1 NWT with an unusual diamond-shape [84]. An experimental study 

endorses simulations on industry-related solutions for FinFET and NWT based on different 

semiconductors such as Si, Ge, and III-V. A substantial impact on self-heating effects was 

observed by converting from FinFET to NWT. However, modifying the S/D doping or the 

material of the gate had a little impact on self-heating effects [85]. Another comprehensive 

study based on state-of-the-art physical models has examined the performance, reliability 

limits, and variability of 10 nm technology and beyond based on NWT. there have been 

indication of degradation of ON current of NWT  technology compared to FinFETs [86]. 

Bangsaruntip et al (IBM) have demonstrated for the first time that Si NWT can be integrated 

to density targets equivalent to CMOS scaling target of the 10 nm technology. This scaled 

NWT achieves a good performance (The Ion at  VDD = 1.0 V 0.976 mA/μm) [87]. The 

perpendicular stacked NWT architecture, designed for sub-7nm CMOS technology, can 

offer considerable benefits such as low off-state current thanks to gate all around 

electrostatic control, whilst  this structure drive high on-state current thanks to 3-D vertically 

stacked channels [88]. The stacked NWT structure has been utilised to construct a 

functioning ring oscillator [89]. Nanosheet devices are a special case of NWT considered at 



Chapter 2. Background                                                                 29 

 

the 7nm design rules as a replacement for FinFETs, enabling further scaling down to the 

5nm and 3nm technology nodes. 

 With a relaxed pitch, it is possible to match the effective width of ultra-scaled FinFETs 

leading, however to a 30% increase in width when broad nanosheets were considered. The 

vertical stacked nanosheets offer flexible design choices for performance and management 

of the power due to the acceptable Weff. It has excellent electrostatics and dynamic 

performance compared with aggressively scaled FinFETs [12]. Figure 2-9 compares the 2D 

cross-section of a FinFET, lateral stacked NWT, and vertically stacked nanosheets.  

Nanowire FETs are fabricable in two configurations; horizontal and vertical.  The horizontal 

NWTs configuration is utilised in plain 2D layouts similar to FinFETs in which the available 

space for contact and gate placement will be very tight. Therefore, the scaling the NWTs 

beyond 3nm is a major challenge, as in the end the horizontal configuration will reach 

physical limits.   The vertical configuration of NWTs turns the layout configuration from a 

2D to a 3D layout (see Figure 2-10). Here, the gate length can be extended without   

 

Figure 2-9 2D-Cross-section of a FinFET, vertically-stacked lateral NWTs and stacked 

Nanosheets. 
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occupying a wide area on the wafer. This technology requires intensive research of process 

design co-optimization. 

 Statistical Variability 

One major challenge with the further scaling of traditional MOSFET is the statistical 

variability in the transistor characteristics associated with the discreteness of charge and 

granularity of matter. Transistor sizes are now quantifiable in atomic-scale units and, 

consequently, self-averaging of atomic scale fluctuations and imperfections in the transistor 

structure is no longer occurs. MOSFET manufacturing techniques cannot be controlled 

accurately on atomic scales, resulting for example in a random number and position of 

individual dopant atoms controlling the transistor performance. This means that variability 

in MOSFET performance happens as a consequence of factors such as random dopant 

placement, atomic scale interface roughness and gate morphology, discrete charges at the 

interface and in the gate oxides and others. This is highlighted by the fact that, merely tens 

of atoms within the channel determine the responses of a sub-30 nm gate length MOSFET.  

Off-state current (leakage current) and VT variability have been significantly enhanced by 

the introduction of high-k metal gates.  Introduction of these new materials leads to 

additional variability sources which should also be taken into account. These include 

variations in the high-k composition and metal gate granularity resulting in local variations 

 

Figure 2-10 Schematics of vertical NWTs with an array of 3×3 NWTs. 
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of the gate work function.  Intrinsic parameter fluctuations already represent a significant 

challenge for the semiconductor industry and the forecast is that they will continue to be an 

important issue in the future.  

Both systematic and statistical sources of variation are present at the device level. Systematic 

variation represents a sub-class of process variability, which is layout dependent, and is a 

result of strain and lithography including proximity effects, (e.g. imperfections in 

lithography processes) which are predominantly deterministic and predictable, however 

complex.  Consequently, they are controllable to a certain extent with compensation 

techniques available at the circuit design stage. As an example, distortions which take place 

during the photo-lithography process can be corrected by employment of the Optical 

Proximity Correction (OPC). Furthermore, strain, which is commonly employed to improve 

transistor performance, leads to both microscopic statistical variations and larger scale 

deterministic variations which are predominantly are due to the effects of the circuitry 

layout.  In this instance, the layout dependent variations could be more significant than the 

local fluctuations and consequently, strain can be effectively regarded as a systematic 

variability source and its impact could be examined using TCAD tools.  A more serious 

challenge, however, are entirely statistical intrinsic parameter fluctuations and their inherent 

stochasticity. Statistical fluctuations are caused by the fundamental discreteness of charge 

and granularity of matter which are impossible to accurately control (e.g. the arrangement 

of dopant atoms in a device). These variability sources are responsible for in excess of 50% 

of the total variability in the 45/40 nm technology generation and have a much more 

pronounced effect at the 32nm technology. It is therefore clear that statistical fluctuations 

are of key significance to CMOS scaling and integration in the future.  

Random discrete dopants (RDDs) in the channel and source/drain regions are the 

predominant source of statistical variability in modern bulk MOSFETs, in the 45/40 nm and 

32/28 nm technology generations. Whilst RDDs are the predominant source of statistical 

variability, the contribution of line edge roughness (LER) increases in significance because 

LER scaling currently lags behind ITRS requirements. Whilst innovative device 

architectures such as SOI and multi-gate MOS FETs tolerate low channel doping, resulting 

in reduced RDD variability, they are liable to LER effects.  Line edge roughness is a 
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consequence of the molecular morphology of the photo-resist employed in the lithography 

process. Its primary influence on MOSFET operation is connected with local variations in 

the gate length where the transistor has non-regular gate edges along the channel width. The 

significance of LER will increase as a source of variability as transistor dimensions decrease.  

LER introduces serious variability in subthreshold current and DIBL in addition to the 

threshold voltage variability. A further concern with LER is the degradation in Ion/Ioff ratio, 

resulting from enhanced short channel effects which can lead to significant degradation of 

both device and circuit output.  

Metal Gate Granularity (MGG) is an issue mainly connected with the “gate first” process 

technology, whereby the gate metal is deposited prior to any high temperature annealing 

procedure. During high temperature processing, the nominally amorphous metal gate 

material becomes poly-crystalline. This results in the formation of grains with different 

crystallographic orientation and differing metal work function. within the case of polysilicon 

gates, the interfaces between grains cause Fermi level pinning and doping non-uniformity 

as a consequence of rapid diffusion along grain boundaries. Both effects introduce 

significant variability in the performance of the devices. The effect of MGG on device 

performance is closely correlated with the metal grain size, in respect to the overall gate size.  

In the case of metal gate, large grain size with respect to overall gate size, has a bimodal 

effect on transistor performance, whereby differing device instances are controlled by 

 

Figure 2-11 The main statistical variability sources (RDD, MGG, and LER) in Si NWT. 
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different grain work functions. Interestingly, small grain size, relative to overall gate area, 

causes self-averaging of the grain work functions and has a smaller influence on overall 

device performance.  In the gate last processes, where the gate is deposited post annealing 

(and other high-temperature processes), the gate granularity could be significantly reduced.  

Figure 2-11 shows the fluctuation of the electric potential of three stacked NWTs suffering 

from the main sources of statistical variability.  

 Summary 

This chapter describes the challenges that need to be addressed in the scaling of conventional 

MOSFETs and presents the technological innovations that have been proposed. The theory 

of MOSFET scaling is also outlined.  

The relentless requirement for high-performance and low power devices with density of 

integration drives CMOS technology to ultimate nanoscale dimensions.  Nanowire 

MOSFETs are among the candidates to extend CMOS downscaling to ultimate limits, 

eventually replacing the triple gate FinFET architectures after the 7nm CMOS technology 

generation.  The nanowire gate-all-around configuration has the best immunity against short 

channel effects (SCE) allowing ultimate transistor scaling. Since statistical variability is 

becoming a serious scaling constraint factor, the sources of statistical variability have been 

discussed in detail. 

To summarise, the fast progression in nanofabrication technology has created possibilities 

for the applications of silicon nanowire transistors in the future CMOS technology 

generations. As a result, more profound understanding of NWT physics and the development 

of TCAD (Technology Computer Aided Design) tools for NWT design is becoming 

increasingly important. The aim of this thesis is to comprehensively investigate TCAD 

simulations in order to examine the physics of silicon nanowire transistor devices. With the 

advanced modelling tools employed in this study, the ultimate performance limits of SNWTs 

will be evaluated and important challenges in NWT device design will be addressed.  
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3 Chapter 3. Simulation Methodology 

 

 Introduction 

Semiconductor device design and optimisation depend greatly on the accurate simulation of 

the device’s physical behaviour and electrical characteristics. By modelling a semiconductor 

device’s behaviour as part of the CMOS Technology Computer Aided Design (TCAD) 

process, we can assess its key parameters and operation and understand how to improve its 

functionality and performance. Evaluating device performance using back of an envelope 

calculation becomes practically impossible with the scaling-down of the devices, due to the 

three-dimensional structure and the sophisticated physics mechanisms governing the 

nanoscale device operation. In order to effectively assess the operation of 3D MOSFETs, it 

is essential to carry out 3D numerical simulation of the device’s characteristics and 

behaviours. The modelling of new CMOS transistors has been performed using a number of 

different approaches, such as Nonequilibrium Green Functions (NEGF), Monte-Carlo (MC), 

hydrodynamic, and drift-diffusion (DD) methods. However, since the computational 

intensity associated with the physically more accurate methods is extremely high, the choice 

of simulation techniques is always a trade-off between accuracy and computational 

efficiency. Therefore, a compromise the solution will be to calibrate relatively simple, 

computationally efficient simulation such as DD on models provide an accurate physical 

information on the quantum mechanical phenomena and can be appropriately deal with non-

equilibrium transports occurring in the device.   

In this study the self-consistent Poisson- Schrödinger solver was adopted for studying the 

impact of the quantum confinement on the mobile charge and capacitance of NWTs with 

different cross section.  Although the PS quantum corrections provide very accurate 

quantum charge distribution in the channel of the simulated NWTs, the large number of 

cross-sectional solutions of the Schrödinger equation significantly slows the simulations and 

reducing efficiency and productivity. Therefore, we calibrate the DG quantum corrections 

to the PS charge distribution and then use the DG simulations Figure 3-1 shows a simplified 
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calibration flowchart of DD to Poisson- Schrödinger simulation. This approach has been 

widely employed in chapter 4 to investigate the quantum confinement effect. We also 

employed the 3D ensemble MC simulation approach with accurate quantum corrections for 

the predictive simulation of nanowire transistor (NWT) charge transport.  For the simulation 

of large multichannel NWTs and for the simulation of statistical variability we use drift 

diffusion simulations thoroughly calibrated to the results of the Monte Carlo simulations. 

Figure 3-2 presents an overview of the calibration flowchart of DD to quantum corrected 3D 

Monte Carlo simulation. This approach has been widely employed to investigate 

performance and statistical variability of NWTs in chapter 5 and chapter 6 respectively. 

The following section of this chapter (section 3-2) will concentrate on basic aspects of 

classical DD approach and its unsuitability to deal with physical phenomena occurs at in 

NWTs.  

Section 3-4 present relevant modifications of the basic DD, namely, density gradient 

calibrations. The detailed description of Schrödinger and Monte Carlo is presented in 

sections 3-3 and 3-5 respectively. Further improvement to DD can be achieved by a large 

variety of mobility models. Section 3-7 illustrates the most efficient mobility models and 

how can be used to calibrate DD to accurate models such as quantum corrected Monti Carlo. 

The conclusions are drawn in the final Section 
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Figure 3-1 The calibration flowchart of DD to Poisson-Schrödinger simulation. 

Figure 3-2 The calibration flowchart of DD to quantum corrected 3D Monte Carlo. 
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 Drift Diffusion 

Near equilibrium device physics and behaviour are primarily modelled using the drift 

diffusion (DD) approach. The DD method is suitable when the devices are of an adequate 

size to discount quantum effects, and for long-channel devices that are not rapidly switched. 

Whilst one of the main benefits of the model is its straightforward implementation, resulting 

in widespread adoption, it is incapable of capturing nonequilibrium transport effects. The 

DD method works based on the assumption that carriers are in thermal equilibrium, and 

although field-dependent diffusivities and mobilities can be used, the assumption is that 

these parameters can react immediately to any electric field fluctuation. This assumption is 

inaccurate for smaller devices, wherein the transport variables are not directly correlated to 

the local electric field. Additionally, the classic DD method cannot capture velocity 

overshoot [90] and other non-local effects. Furthermore, the DD model can provide highly 

inaccurate representations of charge velocity distribution, potential configuration, and 

charge density in aggressively scaled transistors. Thus, the DD approach is often unsuitable 

for exploring the in-depth physics of short-channel devices during simulation [91], [92].  

The DD method is based the Poisson’s equation (a fundamental electrostatics equation based 

on the Maxwell equation), current transport equations for electrons and holes in drift-

diffusion approximation (derived from Boltzmann’s transport equation) implemented in the 

current continuity equation. The above equations are solved self-consistently using 

numerical techniques. The DD equations are outlined in further detail in the following 

sections. 

3.2.1 Maxwell's equations 

 

The differential-form of Maxwell's equations are; 

I. Gauss's law of electrostatics: 

 ∇. 𝐷 = 𝜌  , ∇. 𝐸 = −
𝜌

𝜖𝜊
 (3-1) 

II. Gauss's law for magnetism: 

 ∇. 𝐵 = 0 (3-2) 

III. Faraday's law of induction: 
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∇ × 𝐸 = −

𝜕𝐵

𝜕𝑡
 

(3-3) 

IV. Ampère's circuital law: 

 
∇ × 𝐸 = 𝜀𝜊 (𝐽 + 𝜀𝜊

𝜕𝐸

𝜕𝑡
) 

(3-4) 

The wave equation is one of the key equations used in the field of electromagnetics. The 

wave equation is derived from Ampere’s law and Faraday’s law, demonstrating that all 

waves travel at the speed of light: 

 
∇2𝐸 = 𝜇𝜀

𝜕2𝐸

𝜕𝑡2
 

(3-5) 

The wave equation expresses the relationship between electrostatic potential and space 

charge, or between a given electron density distribution and the relevant electric field. Here, 

E is vector. For instance, we can say that field E is travelling in z-direction, with no variation 

in the x- and y-direction (i.e., zero partial derivatives in the z- and y-direction). In this case, 

Equation (3-5) can be reduced to a simplified scaler wave equation: 

 
∇2𝐸𝑥 =

𝜕2𝐸𝑥

𝜕𝑧2
= 𝜇𝜀

𝜕2𝐸𝑥

𝜕𝑡2
 

(3-6)      

Equation (3-6) is transferable to 𝑓(𝑧 + 𝑐𝑡)  form where be simplified by “chain rule” 

  

 
𝑐𝑜 =

1

√𝜇𝜀
 

(3-7) 

 
𝜆 =

𝑐

𝑓
 

(3-8) 

A quasi-stationary condition is assumed for the electric field given that standard device 

dimensions are significantly lower than λ. This can be expressed in the form of a scalar 

potential field gradient: 
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3.2.2 Poisson’s equation 

Poisson’s equation is derived from the aforementioned Gauss’s law of electrostatics in 

combination with Equation (3-9): 

 𝛻. 𝛻𝛹 = −
𝜌

𝜖𝜊𝜖𝑟
 (3-10) 

In semiconductors, space charge density ρ consists of mobile charges (determined by 

electrons and holes) and fixed charges (determined by ionized donors and acceptors): 

 𝛻2𝜓 = −
𝑞

𝜖𝜊𝜖𝑟

(𝑝 − 𝑛 + 𝑁𝐷
+ − 𝑁𝐴

−) (3-11) 

where ρ is charge density; ε is permittivity; 𝜓 is electrical potential; 𝑝 and 𝑛 are electron and 

hole densities, respectively; and 𝑁𝐷
+ and 𝑁𝐴

− are donor and acceptor densities. If only 

electrons, are considered in unipolar MOSFET operation Poisson’s equation is presented as 

follows: 

The Poisson’s equation is non-linear as a result of the carrier concentrations’ dependency on 

electrostatic potential.  

  

 

E = −∇𝜓 

(3-9) 

 
𝛻2𝜓 = −

1

𝜀
(−𝑛 + 𝑁𝐷

+ − 𝑁𝐴
−) (3-12) 
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3.2.3 Current continuity equations 

The following equation is derived based on the divergence of Ampere’s circuital law: 

 
∇. (∇ × 𝐻) = ∇. 𝐽 + ∇.

𝜕𝐷

𝜕𝑡
= 0 

(3-13) 

In semiconductors, the sum of electron and hole current densities, Jn and Jp, produce total 

current density J: 

 
∇𝐽𝑛 − 𝑞

𝜕𝑛

𝜕𝑡
= 𝑞𝑅 

(3-14) 

 
∇𝐽𝑝 + 𝑞

𝜕𝑝

𝜕𝑡
= −𝑞𝑅 

(3-15) 

The electron dynamics can be expressed using transport equations, such as the Boltzmann 

transport equation (BTE), which capture the dynamics of electron density distribution 

resulting from driving forces such as the electron density gradient or external electric field. 

In drift-diffusion approximation the electron current density is given by 

  𝐽𝑛 = −𝑞𝑛𝜇𝑛𝛻𝛹 + 𝑞𝐷𝑛𝛻𝑛 (3-16) 

where 𝐽𝑛 is electron current density, n is electron density,  𝜇𝑛 is electron mobility, and 𝐷𝑛 is 

the electron diffusion coefficient. 

Maxwell’s equations can be used to obtain the continuity equation, addressing carrier 

generation, recombination and other time-based phenomena. It is effectively an equation 

that expresses current conservation, as a key feature of nature: 
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 𝜕𝑛

𝜕𝑡
=

1

𝑞
𝛻𝐽𝑛 − 𝑅𝑛 + 𝐺𝑛 (3-17) 

where Gn is the electron generation rate, and Rn is the recombination rate. When generation 

or recombination are absent, ∇𝐽𝑛 = 0, denoting a constant current density in the case of a 

constant cross-section region.  

3.2.4 Transport equations 

The classical transport description in semiconductor devices is based on the Boltzmann 

transport equation (BTE). BTE is an integral-differential equation derived from classical 

mechanics and statistical dynamics laws. This is represented as in [93]: 

 𝜕𝑓

𝜕𝑡
+ 𝑣. ∇𝑟𝑓 + 𝑞𝐸. ∇𝑝𝑓 = (

𝜕𝑓

𝜕𝑡
)

𝑐𝑜𝑙𝑙
 (3-18) 

where f (r, p, t) is the single particle distribution function, v is the group velocity of electrons, 

and E is the applied electric field.  

 𝜇 = 𝑞〈𝜏〉𝑚−1 (3-19) 

As shown in (3-19) the mobility value is evidently impacted directly by the 〈τ〉 value, where 

〈τ〉 is the average momentum relaxation time, and m is the effective mass tensor. Therefore, 

mobility can be estimated more efficiently when scattering mechanisms are captured. A 

diagonal effective mass tensor with even diagonal elements is seen in Si. Thus, a scalar µ is 

used to express mobility. 

Electron motion can be determined by numerous scattering mechanisms in a real Si sample. 

Matthiessen’s rule can be adopted to combine the mobilities associated with different 
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scattering mechanisms based on the assumption that the scattering mechanisms are 

statistically independent: 

  1

𝜏
=

1

𝜏1
+

1

𝜏2
+. . +

1

𝜏𝑛
 

(3-20) 

where n is the independent scattering mechanisms. Thus, the following equation expresses 

overall mobility: 

 1

𝜇
=

𝑚∗

𝑞𝜏
=

1

𝜇1
+

1

𝜇2
+. . +

1

𝜇𝑛
 

(3-21) 

A gradient of material properties, temperature or carrier concentrations can result in carrier 

transport in semiconductors, together with the application of an electric field. The following 

simplification of the BTE in is adopted in order to arrive at an approximated expression for 

the current density, in response of concentration gradients and electric field. The BTE 

collision term (on the right side) can be expressed using the following equation based on the 

relaxation time approximation (RTA): 

 
(

𝜕𝑓

𝜕𝑡
)

𝑐𝑜𝑙𝑙
=

𝑓 − 𝑓𝜊

𝜏
 (3-22) 

where (f0) denotes the equilibrium distribution function. The following equation can be used 

to express 1D BTE under the assumption of steady state conditions: 

 
𝑣𝑥𝑐

𝜕𝑓

𝜕𝑡
+

𝑞𝐸

𝑚

𝜕𝑓

𝜕𝑣𝑥
=

𝑓 − 𝑓𝜊

𝜏
 (3-23) 
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The following equation is derived through the multiplication of (3-23) with 𝑣𝑥, integrated 

across the 3D velocity space: 

 
∫ 𝑣𝑥

2
𝜕𝑓

𝜕𝑥
𝑑3𝑣 +

𝑞𝐸

𝑚
∫ 𝑣𝑥

𝜕𝑓

𝜕𝑣𝑥
𝑑3𝑣 =

∫ 𝑣𝑥𝑓0𝑑3𝑣 ∫ 𝑣𝑥𝑓𝑑3𝑣

𝜏
 (3-24) 

The right-hand side of the BTE is then expressed as follows, with the first integral on the 

right-hand side disappearing as a result of the symmetrical equilibrium function [94]: 

 
𝐽𝑥 = −𝑞 ∫ 𝑣𝑥𝑓𝑑3𝑣 (3-25) 

 
𝐽𝑥 = 𝑞

𝑞𝜏

𝑚
𝐸 ∫ 𝑣𝑥

𝜕𝑓

𝜕𝑣𝑥
𝑑3𝑣 − 𝑞𝜏

𝑑

𝑑𝑥
∫ 𝑣𝑥

2𝑓𝑑3𝑣 (3-26) 

 
∫ 𝑑𝑣𝑦 ∫ 𝑑𝑣𝑧 ∫ 𝑣𝑥

𝜕𝑓

𝜕𝑣𝑥
𝑑𝑣𝑥

= ∫ 𝑑𝑣𝑦 ∫ 𝑑𝑣𝑧[𝑣𝑥𝑓]−∞
+∞ − ∫ 𝑓𝑑3𝑣

= −𝑛 ∫ 𝑣𝑥
2𝑓𝑑3𝑣 = 𝑛〈𝑣𝑥

2〉 

(3-27) 

Current density is expressed as follows, with mobility µ and the 〈𝑣𝑥
2〉 =

𝑘𝐵𝑇

𝑚
 average value 

incorporated: 

𝐽𝑛 = 𝑞𝜇𝑛 [𝑛𝐸 +
𝑘𝑇

𝑞
∇𝑛] (3-28) 

Hole current density is expressed similarly: 
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𝐽𝑝 = −𝑞𝜇𝑝 [𝑝𝐸 −
𝑘𝑇

𝑞
∇𝑝] (3-29) 

The essential DD-based simulation equations are then assembled including the Poisson 

equation (3-12), the current continuity equations (3-17), and the current expression in drift-

diffusion approximation (3-28) and (3-29): 

𝐽𝑛 = 𝐽𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 + 𝐽𝑑𝑟𝑖𝑓𝑡 = 𝑞𝐷𝑛∇𝑛 − 𝑞𝜇𝑛∇𝜓 (3-30) 

𝐽𝑝 = 𝐽𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 + 𝐽𝑑𝑟𝑖𝑓𝑡 = 𝑞𝐷𝑝∇𝑝 − 𝑞𝜇𝑝∇𝜓 (3-31) 

where μn and μp are electron and hole mobility, respectively, and Dn and Dp are the diffusion 

coefficients relevant to each type of carriers. The Einstein relation links carrier mobility with 

the carrier diffusion coefficient or near to thermal equilibrium. In the case of nondegenerate 

semiconductors, 𝐷 = 𝜇
𝑘𝑇

𝑞
: where k is Boltzmann’s constant, T is absolute temperature, and 

q is single electron charge. 

In summary the semiconductors’ electrical behaviour is effectively described through the 

self-consistent solution of the DD set of equations including the Poisson’s equation and the 

current continuity equation in drift-diffusion (DD) approximation. In the next sub-section 

(3-2-5) we will discuss how the above equations are consequently solved. However, 

nanoscale MOSFETs demands for the inclusion of quantum effects and as the device 

dimension shrinkage, classical DD  cannot be appropriately capture quantum effects without 

corrections [95]. The classical DD does not deal with non-equilibrium transport.  
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3.2.5 Self-consistent calculation based on the Gummel’s method 

In most cases, electron device simulation requires the solution of a self-consistent system of 

equations describing the devices’ charge distribution and the electrostatic potential ψ. Self-

consistency occurs when flow of charge in the device is in equilibrium with the potential 

distribution in the device, which in part is affected by the moving charges. Here, charge 

density ρ adjusts when ψ is altered which in turns changes the potential, ‘self-consistency’ 

is reached when the charge and the potential reach equilibrium condition.  

The achievement of self-consistency is essential for correctly obtaining the simulated 

devices’ field distribution and current flow. In order to achieve this, we solve Poisson’s 

equation and the current continuity equation simultaneously, which enables to determine the 

correct mobile charge distribution and corresponding current (3-11). 

 The numerical solution of the DD set of equation is based on the self-consistent solution of 

the electron density (n) and the electrostatic potential (ψ) as two unknown variables. Both 

variables are position dependent. In the case of a MOSFET in absence of generation and 

recombination the current continuity equation results in constant current density (J) along 

the channel. The self-consistency in the Gummel approach is obtained by alternated 

solutions of the Poisson and the current continuity equation. Typically, the solution for the 

electron density n from the current continuity equation is based on the previous solution for 

the electrostatic potential ψ. An updated ψ distribution is than obtained by applying the new 

carrier concentration distribution n when solving again the Poisson’s equation. Convergence 

is achieved if the new ψ distribution is sufficiently close to the previous ψ distribution. If 

not, the iterations between the solution of the current continuity equation and the Poisson 

equation continue. [96], [92]. 

The electrical characteristics of a single CMOS transistor can be simulated using the GSS 

TCAD device simulator, GARAND. This is a DD simulator based on finite volume 

discretisation of the Poisson and the current continuity equations. The self-consistency in 

Garand is achieved using Gummel iterations (Figure 3-3). Additionally, GARAND also 

considers the quantum mechanical confinement effects using the density gradient quantum 
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corrections approach. GARAND is a 3D simulator and arbitrary-shaped 3D MOSFET 

structures can be simulated using GARAND. 

3.2.6 Limitations of classical Drift-Diffusion approach 

The DD approach has been adopted widely by the industry and was accurate in the 

simulation of relatively large devices in above 100nm technology generations. The main 

benefits of the DD approach in 2D and 3D simulation environment, its simplicity and its 

computational efficiency. The DD method assumes local relation between carrier velocity 

and the electric field, incapable to describe non-local effects  based on the fact that the 

velocity and energy at particular point depends on the field distribution along the particle 

trajectory leading to the current position [90]. The DD method applied to contemporary and 

future CMOS transistors is most suitable in the subthreshold region of the device operation 

where the electrostatics plays a dominant role, and where there is a weak coupling between 

the current continuity and the Poisson equation solution. Here, the channel contains only a 

small amount of mobile charge due to the high source-to-drain potential barrier. Gate 

voltage, drain voltage together with line-edge roughness (LER), interface roughness, 

differences in dopant placement, and other barrier fluctuation sources determine the barrier 

landscape [97]–[99]. It is well understood that DD is inaccurate in capturing on-current (Ion) 

and the on-current variability in contemporary MOSFETS above the threshold level [100].  

The assumptions that form the basis of DD equations are violated as the devices are scaled 

to nanometre dimensions, resulting in a non-equilibrium and non-local transport problem. 

Here, prior scattering along the carrier trajectories must be considered. The traditional DD 

approach assumes that the carriers are in thermal equilibrium with the crystal lattice, 

discounting the carrier heating and the non-equilibrium transport. The hot carriers arise due 

to an increase in the electric field caused by the device scaling. Therefore, the DD approach 

runs out of steam as the devices are scaled to nanometre dimensions, Non-local effects are 

not represented by the DD simulation, since it only captures instant local velocity 

modifications related to the local electric field. In small devices, field changes occur quickly, 

with μn and Dn no longer related directly to the local electric field, and with carrier history 

now a determining the velocity and the energy at particular point in the simulation domain.  
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In particular the DD simulation approach does not capture the carrier velocity overshoot 

which is non-equilibrium transport phenomenon [101], arising as a result of the carriers 

moving with velocity higher than the saturation velocity in the case of small devices with 

rapidly varying electric field in the channel. The spatial velocity overshoot is a result of the 

faster response in average carrier velocity with the average kinetic energy lagging when 

carriers move from a low field a high field region in rapidly field changing conditions. Since 

the DD approach is based on a simple field-dependent mobility model that is connected to 

the electric field at a local level, the DD approach does not capture the velocity overshoot 

[102]. Previous research indicates that velocity overshoot has beneficial impact on the 

transistor performance, increasing drive current, transconductance and reducing circuit 

switching time [103]. Higher order approximation to the BTE, where thermal equilibrium is 

not assumed, including the energy transport equations and hydrodynamic set of equations 

[104] can capture overshoot effects at greater computational expense. The need for more 

accurate BTE solutions has been highlighted due the deficiencies of the DD and the 

hydrodynamic approach in the simulation of extremely-scaled devices [104].   

With the transistor scaling to nanometre dimensions there is a greater need to represent 

accurately the quantum effects in the simulations. In particular in NWT FETs, the accurate 

simulation of mobile charge and gate capacitance require quantum mechanical treatment. 

Quantum corrections can be introduced into DD simulations. Methods based on the solution 

of the Schrödinger equation are adopted in the research presented in this thesis.  The 

effective quantum potential extracted from the quantum solution is combined with the 

classical potential (obtained by solving Poisson’s equation) providing the driving potential 

that is used in the current continuity equation in the DD simulation, or for determining the 

particles’ driving force in the MC simulations. A 2D Poisson-Schrödinger solver used in the 

planes normal to the transport direction to provide the quantum charge distribution and the 

associated effective quantum potential. Next section (section 3-3) will describe Poisson-

Schrödinger simulation.  
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 Poisson-Schrödinger 

The simulation of aggressively-scaled MOSFET requires the accurate inclusion of quantum 

effects. Contemporary MOSFETs have a channel length close to the mean carrier free path, 

with an oxide layer approximately three Si lattice interatomic atomic layers thick. In order 

to improve the electrostatic control in NWTs, the gate completely surrounds the nanowire 

channel on top of the gate oxide layer. Quantum confinement starts to play important role 

when the nanowire diameter becomes smaller than 8nm. The self-consistent solution of the 

Schrödinger and the Poisson equations in the 2D cross sectional plane of the NWT can 

provide accurate description of the quantisation effects in the NWT channel. The potential 

well in the NWTs is narrow leading to strong quantisation effects including sub band 

splitting and affecting the shape of the carrier distribution in the channel, the ground state 

(the lowest permitted electron energy level in the quantum well) is shifted above the bottom 

of the conduction band resulting in threshold voltage shift. The 1D quantum transport  

direction along the channel,  surrounded by the gate, is perpendicular to the confinement 

planes (2D)  [105].  

The quantum mechanical confinement has a significant impact on charge distribution. In 

classical DD simulations the maximum of the inversion layer charge is at the interface, with 

the charge density exponentially decreasing away from the interface. In reality the quantum 

mechanical charge distribution peaks at a distance away from the interface. In NWTs the 

quantum mechanical charge distribution results in volume inversion with the current flowing 

dominantly in the middle of the NWT channel.  

In GARAND the first-order quantum mechanical effects are taken into account using density 

gradient quantum corrections. However, in this study a more sophisticated quantum 

mechanical model is adopted, based on the self-consistent Poisson-Schrödinger (PS) 

equation solutions. This offers more accurate description of the quantum mechanical effects, 

at the expense of lower computational efficiency and greater computational times. Similarly, 

to the DG simulation approach, the more accurate PS based quantum corrections are 

implemented in the DD simulations using an iterative convergence scheme. The iterations 

start with classical DD simulation. Once convergence is achieved, the DD solution is used 
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to determine the quasi-Fermi level, used as reference in the PS simulations and the initial 

shape of the confinement potential in each discretisation plane normal to the transport 

direction. The 2D quantum mechanical charge distribution in each 2D discretisation plane 

is then obtained by solving self consistently the Poisson-Schrödinger equation in each 

discretization plane. Figure 3-4 presents a flowchart of this simulation.  

A quantum correction term is derived from the quantum mechanical charge distribution 

obtained from the Schrödinger solution, and this term applied to the current density equation 

in the next iteration of the DD system solution. The iterations between the DD and the PS 

solutions are repeated until convergence. Figure 3-5 illustrates the secondary DD loop. The 

same quantum correction term can also be used in simulations carried out using the Monte 

Carlo method.  

The Poisson and Schrödinger equations are solved in the 2D discretisation plane providing 

the correct charge distribution and gate capacitance in the channel of the NWTs. The Poisson 

equation (3-12)  in this case includes the doping charge and the quantum mechanical charge 

distribution acquired from the solution of the Schrödinger equation. The Schrödinger 

equation in tensor effective mass approximation is given in the form:  

 
−

ℎ2 

2
∇

1

𝑚𝑖𝑗
∇𝜓 = (𝜓 − 𝐸)𝜓 (3-32) 

The wavefunction is set to zero through the default setting of Dirichlet boundary conditions 

to the outer bounds of the Schrödinger domain. In order to prevent the wavefunction entering 

metallic regions, metals are also subject to the same boundary condition. The LAPACK 

libraries’ numerical eigenvalue solver is applied to calculate the eigenvalues and the wave 

functions.  The solutions of the Schrödinger equation provide the wave functions in each 

valley in the band structure within each of the 2d discretisation cross-sections. The total 

mobile charge distribution is obtained as a sum of the charge distribution in each calculated 

from the corresponding wave function distributions. The new potential value is then solved.  
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 Density gradient calibration 

Whilst the accuracy in simulating the NWTs’ quantum charge distribution using non-

equilibrium Green’s functions or direct Poisson/Schrödinger equation solutions in cross-

sectional discretisation planes is high, this comes at great computational expense, yielding 

lower productivity, reduced efficiency, and slower simulation speed. Computational 

efficiency is of great importance when evaluating many design options, and it is therefore 

essential to use efficient methods capturing first-order quantum mechanical effects in order 

to support the computer-aided design of upcoming devices. This is particularly important 

when dealing with statistical variability which requires the 3D simulations of large statistical 

samples of macroscopically identical but microscopically different transistors.  

 A further quantum correction term (ψqm), which corresponds to the second-derivative of the 

carrier density’s square root [7], [106], [105], is introduced by the density gradient 

formalism in the extended version of the BTE: 

 𝜕𝑓

𝜕𝑡
+ 𝑣. ∇𝑟𝑓 +

1

ℏ
𝐹𝑞𝑐. ∇𝑝𝑓 = (

𝜕𝑓

𝜕𝑡
)

𝑐𝑜𝑙𝑙
 (3-33) 

where Fqc is the quantum correction force derived from the sum of the classical and the quantum 

correction potentials expressed as: 

 
𝐹𝑞𝑐 = −∇ (𝜓𝑐 −

ℏ2

12𝑚∗
∇2 ln(𝑛)) (3-34) 

where ψc is classical potential, m* is effective mass, and n is electron concentration. The 

quantum correction based on the second derivative of the carrier concentration is derived 

through series expansion and taking into account the lowest-order element. Introducing the 

new quantum correction to the current expression in DD approximation to the following 

quantum corrected current equation:  
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𝐽𝑛 = 𝑞𝐷𝑛∇𝑛 − 𝑞𝜇𝑛n∇𝜓 + 2𝜇𝑛∇ (𝑏𝑛

∇2√𝑛

√𝑛
) (3-35) 

𝑏𝑛 =
ℏ2

4𝑞𝑚∗𝑟
 

where r is a fitting parameter taking values between 1 and 3, based on the number of 

occupied sub-bands.  

In many cases, first-order quantum corrections are implemented through a so-called 

effective quantum potential. Here, a quantum correction term is applied to adjust the 

electrostatic potential used in traditional simulation methods. This allows the necessary 

quantum mechanical effects to be modelled, therefore maintaining the stability of the 

simulator and its computational efficiency. 

As noted, a further the quantum correction term ψqm, which corresponds to the second-

derivative of the carrier density’s square root, can be obtained using the density gradient 

(DG) formalism. The effective quantum potential ψqm is related to the quasi-Fermi level 𝛷𝑛 

by the following equation: 

 
𝜓𝑞𝑚 = 2𝑏𝑛

𝛻2√𝑛

√𝑛
= 𝛷𝑛 − 𝛹 +

𝑘𝐵𝑇

𝑞
𝑙𝑛 (

𝑛

𝑛𝑖
) (3-36) 

𝑏𝑛 =
ℏ2

12𝑞𝑚𝑛
 

where bn is a parameter, which can be calibrated to replicate the electron distribution 

obtained usually from self-consistent Poisson-Schrödinger (PS) simulations. Figure 3-3 

presents a standard DD simulation flowchart incorporating density gradient quantum 

corrections.  
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𝜓𝑞𝑚 = 2𝑏𝑛

𝛻2√𝑛

√𝑛
= 𝛷𝑛 − 𝛹 +

𝑘𝐵𝑇

𝑞
𝑙𝑛 (

𝑛

𝑛𝑖
) (3-37) 

 

Effective mass is used as a fitting parameter, with the density gradient equation calibration 

3-38 solved numerically and calibrated against the results of Poisson-Schrödinger solution. 

With the assumption that the density gradient effective mass is anisotropic, with different 

effective mass components of the principle direction (mx, my and mz) the DG equation can 

be written in the following form: 

 2𝑏𝑛

𝑆
(

1

𝑚𝑥

𝜕2𝑆

𝜕𝑥2
+

1

𝑚𝑦

𝜕2𝑆

𝜕𝑦2
+

1

𝑚𝑧

𝜕2𝑆

𝜕𝑧2
)

= 𝜙𝑛 − 𝜓 +
𝑘𝐵𝑇

𝑞
𝑙𝑛 (

𝑆2

𝑛𝑖
) 

(3-38) 

where 𝑏𝑛 = ℏ2/12𝑞, and 𝑆 = √𝑛. The charge distributions derived from the Poisson-

Schrödinger solutions along the NWT cross-section’s major and minor axes are used as the 

basis for calibrating the conduction band density gradient effective masses in the silicon and 

in the oxide.  

To secure charge neutrality being maintaining taking into account the impact of the 

electrostatic potential on the electron injection, Neumann boundary conditions (NBCs) are 

adopted in the source and drain when implementing NEGF simulation approach and other 

quantum mechanical transport methods. Whilst most DD simulators use the Dirichlet 

boundary conditions for the potential at the ohmic S/D contacts, NBCs are also employed in 

GARAND to allow for the consistent application of the DG quantum corrections. NBCs are 

well suited for DG quantum corrections because they allow the correct quantum mechanical 

charge distribution to be maintained in the source/drain regions. This is especially important 
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in the case of NWTs, FinFETs, and FDSOI transistors. Where implementations of the DG 

approach, care should be taken when applying the quantum potential boundary conditions 

at the interface between the semiconductor and the oxide. The  approach described in [107] 

adopted in GARAND to take into account the wave function penetration in the oxide. Using 

this approach, the gradient of the electron concentration perpendicular to the 

semiconductor/oxide interface is influenced by the effective masses in the two media. The 

calculation of electron density penetration, as a function of distance (x) from the 

semiconductor/oxide interface, is as described by the following expression:   

 
𝑛(𝑥) = 𝑛(0)𝑒𝑥𝑝 (−

2𝑥

𝑥𝑝
) (3-39) 

where n(0) is electron density at the interface, and xp is penetration depth, derived from the 

Wentzel-Kramers-Brillouin (WKB) equation: 

 
𝑥𝑝 = −

ℏ

√2𝑚𝑜𝑥Φ𝐵 

 (3-40) 

where mox is the oxide’s electron effective mass, and ΦB is the oxide’s potential barrier. 

Based on Eqn. (3-37), the component 𝑏𝑛∇√𝑛 set normally to the semiconductor/oxide 

interface can be expressed as: 

 
𝑛. 𝑏𝑛∇𝑝√𝑛 = − (

𝑏𝑜𝑥

𝑥𝑝
) √𝑛 (3-41) 

where box is expressed as: 
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𝑏𝑜𝑥 = −

ℏ2

12𝑞𝑚𝑜𝑥
 (3-42) 

Normally, density gradient effective masses would be would be calibrated in respect of the 

results achieved from NEGF, Poisson-Schrödinger simulations.  

The DG quantum corrections are essential when carrying out ‘atomistic’ simulations 

including random discrete dopants (RDD). In classical DD ‘atomistic’ simulations deep 

Coulomb well generated by each discrete dopant in the simulation can trap carriers resulting 

in an increase of the resistance of the RDD region. The trapping of majority carriers results 

in an artificial reduction of the current. At the same time, the trapping of the minority carrier 

can affect the shape and the width of the depletion region. In classical DD simulations these 

effects are dependent on the mesh spacing, and they can be completely eliminated by the 

incorporation of the density gradient quantum corrections in the DD simulation approach.  

The GSS Enigma framework allows automatic calibration of the DG parameters to the 

solution of the Poisson-Schrödinger equation capturing also the orientation dependence of 

the DG parameters. Furthermore, artificial S/D tunneling is avoided by setting large density 

gradient effective mass along the transport direction allowing quantum confinement to be 

applied correctly in the direction perpendicular to the transport. 
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Figure 3-3 Simulation flowchart for Drift Diffusion based a modified 

Gummel algorithm [8]. 
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Figure 3-4 Flow Diagram of the 2D Poisson-Schrödinger model [8]. 
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Figure 3-5 Flow diagram of the fixed Schrödinger quantum 

correction DD model [8]. 
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 Monte Carlo 

MC allows different parameterisations for electrons with different energy levels and thus it 

is more flexible in allowing integration of Poisson-Schrodinger. In this section, we will 

investigate on normal Monte Carlo first. The Monte Carlo method applied to semiconductor 

device simulations provides a direct solution to the BTE. It provides and accurate solution 

for the energy and momentum distribution in the presence of strong external electric field 

leading to nonequilibrium transport effects. The solutions consider all relevant scattering 

mechanisms, in a 2D/3D simulation domain which could be a very realistic representation 

of the simulated device. The Monte Carlo approach simulates the effects of random 

scattering events and the free flight carrier trajectories in electric field, bridging the classical 

Newtonian mechanics and quantum mechanical scattering rates to provide a numerical 

solution to the BTE. 

 Figure 3-6 illustrates a common simulation flow for an Ensemble Monte Carlo simulation 

engine. The initialisation of the MC simulations proceeds by introducing MC super particles 

into the solution domain according to the carrier density distribution obtained from DD 

simulations. The energy dependent total scattering rate is calculated based on all relevant 

scattering mechanisms. A random number in connection with the total scattering rate is then 

used to determine a ‘free flight’ time for each super particle. During the free flight period 

carriers move following classical lows of motion accelerated by the electric field. At the end 

of the free flight an additional random number is used to select the scattering mechanism, 

which is introduced once the free flight period ends. Here, the relevant scattering probability 

distributions along with the choice of the superparticle state following scattering event 

enable the device physics to be accurately reproduced by the MC simulations. Self-scattering 

is also introduced leading to a constant total scattering rate, in order to simplified the flight 

time selection process. Self-scattering is the most commonly-selected scattering 

mechanisms in the majority of cases reducing the efficiency of the MC simulations. Statistics 

are collected after scattering, with average values obtained, for particle velocity (3-43) and 

energy (3-44) taking into account the nonparabolic band dispersion, described by 

nonparabolicity factor. Using the expressions below.  
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𝑣 =
ℏ𝐾

𝑚∗(1 + 2𝛼𝐸(𝐾))
 (3-43) 

𝐸(𝐾)(1 + 𝛼𝐸(𝐾)) =
ℏ2𝐾2

2𝑚∗
 (3-44) 

Current and other ensemble averages are also obtained. Both self-consistent and frozen field 

simulation are possible using the Monte Carlo approach. In the former case, Poisson’s 

equation is solved at regular time steps (3-12), using the electron distribution achieved at the 

completion of each time step. This provides a new field distribution for the next time step. 

The process is repeated until convergence is achieved. In the latter case, the field distribution 

is fixed and based on the results of prior simulation DD- simulations. In terms of 

computational efficiency in the case of 3D MC, the main challenge is the frequent solution 

to Poisson’s equation which consumes most of the simulation time. Thus, it is crucial to 

adopt a highly efficient Poisson solver, such as the black/red successive over relaxation 

(SOR) method [108], [109] with Chebishev acceleration which is highly efficient in parallel 

processing environment. The biconjugate gradient-stable (BICGSTAB) METHOD [110], or 

the multigrid method [111] are also god candidates for accelerating the MC simulations. 

Different approximations for the material band structure can be used in the MC simulations. 

The most straightforward approach is the use of single parabolic or nonparabolic bands 

[112], with ellipsoidal or spherical shape depending on the tensorial form of the effective 

mass. A more complex approach is to use full band structure based on k · p, pseudopotential 

[113]–[115] and tight-binding [116] methods. However, as the description of band structure 

becomes more sophisticated the computational efficiency is significantly eroded. The Monte 

Carlo method is superior to the DD method in simulating contemporary and future nano-

CMOS transistors with fewer scattering events resulting in near-ballistic and non-

equilibrium transport. Previous research confirms the increasing role of the non-equilibrium 

transport in the presence of carrier heating, as a result of the decrease in scattering event 

quantity [117]. Other studies also confirm the increasing significance of velocity overshoot 

and the non-local transport effects [118]. Overall, the Monte Carlo method offers adequate 

computational efficiency for 3D simulation, nano-scale semiconductor devices. It should be 
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noted that the method is a direct numerical solution to the BTE whole accuracy depends on 

the number of superparticles and the time step used in the simulations [119].  

 

 

Figure 3-6 Flowchart showing the computational steps needed for Self-

Consistent Quantum Monte Carlo [120]. 
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 Scattering in Monte Carlo 

In order to accurately represent drive current variations and magnitude along with 

electrostatic effects, which primarily impact threshold voltage and sub-threshold current, it 

is crucial to introduce the relevant scattering processes into the Monte Carlo simulation. 

However, this requires consideration of the trade-off with physical accuracy and 

computational efficiency. The most common approach taken to achieve this is random 

number selection, which determines the scattering process employed in the simulation via a 

comparison table of the probabilities associated with each process [120]. Fermi’s golden 

rule (3-45), (obtained through the Schrödinger equation) provides the probability of 

perturbation Hamiltonian Hk',k leading to a shift between state k and k' (S(k, k')): 

𝑆(𝑘, 𝑘′) =
2𝜋

ℏ
|𝐻𝑘′,𝑘|

2
𝛿[𝐸(𝑘′) − 𝐸(𝑘)] (3-45) 

The scattering probabilities associated with each process, as derived from the above 

equation, are then tabulated, enabling the calculation of the total scattering rate and the 

selection of the particular scattering process at the end of the free flight. This approach is 

adopted for example for calculating acoustic and optical phonon scattering rates [112], as 

well as scattering rates for ionised impurities  and interface roughness [121]. The simulation 

of the interface roughness scattering can also be achieved by using an alternative approach, 

wherein specular or diffusive reflection [122] is introduced through weighted selection 

[123]. However, the limitation of this approach is that it depends on a the selection of the 

specular-diffusive scattering ratio which is device specific [124].  

A new final state is randomly selected post-scattering. The randomly selected scattering 

mechanism determines the modification of the particle’s energy, direction and magnitude 

and direction of the momentum (k-vector). Numerous studies discuss the selection methods 

used for each of the individual scattering mechanisms.  
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In the case of random discrete dopant ‘ab initio’ ionised impurity scattering can be 

implemented in the Monte Carlo simulation. In this case, the impurity scattering is 

represented not via scattering rate and corresponding random number selection and 

respective scattering rate probabilities, but by the direct impact if the impurities Coulomb 

potential on real the space trajectories. The ab initio method has been adopted in earlier 

research to study the impact of Coulomb scatting from random ionised impurities or a 

trapped charge [125]. Here, the particle-particle-particle-mesh (P3M) algorithm is used to 

calculate the short-range Coulomb force determining real space trajectory of each particle: 

 
𝐹𝑆𝑅(𝑟) = −

𝑄𝑟 

4𝜋𝜀(𝑟2 + 0.5𝑟𝑐
2)

3
2

 (3-46) 

Where rc is a cut-off radius selected to block unwanted carrier heating [126] and r is the 

distance to the point like charge. The long-range interactions are included via the solution 

of Poisson’s equation. This allows the random dopant scattering induced current variability 

to be simulated [127], [128]. This has proved to be an efficient method that could capture 

not only the localised carrier-impurity interactions but the carrier-carrier scattering in small 

devices where rc is a threshold radius restricting carrier heating, and r is the distance to the 

charge. The solution to the Poisson equation provides the long-range interactions, enabling 

a high level of accuracy in simulating the current variability caused by random dopant 

scattering. Previous research confirms the  ability of this approach to accurately represent 

both localised interactions between carriers and impurities as well as scattering between 

carriers in small-scale devices [127].  
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 Quantum Corrections in Monte Carlo 

 The incorporation of quantum corrections into the Monte Carlo simulation method enables 

the accurate simulation of quantum confinement effects which play important role 

determining the performance of nano-CMOS transistors. The quantum-corrected Monte 

Carlo method provides accurate simulation results in highly-scaled devices with tSi thickness 

in the range of 10 - 7 nm [129]–[133]. Therefore, the incorporation of quantum corrections 

into the Monte Carlo model both upholds the approach’s computational efficiency and 

enables tunnelling and size quantisation effects to be captured. Different methods have been 

used to introduce quantum corrections in the MC simulations including the solution of the 

Schrödinger [134], [135] and Wigner [136] equations, as well as by using effective 

potentials derived from accurate quantum simulations or related to the DG approach [119], 

[137], [138]. The standard method introduces quantum-correction potential (ψq) as follows: 

𝜓𝑞 = 𝜓𝑐 + 𝜓𝑞𝑐 (3-47) 

where ψc is classical potential (derived from the solution to Poisson’s equation), and ψqc is 

quantum-corrected potential (derived via the methods outlined below). rather than 

integrating the quantum-correction potential with the current continuity equation, as in the 

case of DD simulation, quantum-corrected potential is instead utilised to determine the force 

(F) impacting particles during the free flight period under the Monte Carlo method: 

𝐹 = 𝐹𝑐 + 𝐹𝑞𝑐 (3-48) 

𝐹𝑐 = −∇𝜓𝑐 (3-49) 

𝐹𝑞𝑐 = −∇𝜓𝑞𝑐 (3-50) 
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Compared to quantum transport simulations, which offer greater accuracy and detail at high 

computational expense, the introduction of quantum correction into semi-classical transport 

offers greater efficiency, particularly given that PS equations are typically solved in the cross 

sectional discretisation lanes once in only few times during the 3D  Monte Carlo simulations 

[139]. This is the most accurate method used to introduce quantum corrections in GARAND 

MC engine. Alternatively, the DG method can be used for introducing the quantum 

correction force in GARAND MC. In this case the calibrated DG quantum correction 

method is used in the DD simulations used for initialisation of the MC simulations. The 

mobile charge distribution at the end of the DD simulations is used to obtained ψqc  

In the case of two-dimensional Monte Carlo simulation, a previous study presents a method 

for incorporating the Poisson- Schrödinger solution into the model with greater efficiency 

[139]. Here, periodic solutions to the Schrödinger equation are calculated, with a 

perturbative method used to calculate eigen energies during the remaining time steps. In 

other research, a Wigner distribution function-based correction term has also been presented 

[136]. This is expressed as follows [140], beginning with the Wigner transport equation, as 

a modified BTE: 

𝜓𝑞 = 𝜓𝑐 +
ℏ2

4𝑚∗𝑟𝑘𝐵𝑇
[∇2𝜓𝑞 −

1

2𝑘𝐵𝑇
(𝜓𝑞)

2
] (3-51) 

Calculating the solution to the above equation is challenging given its highly non-linear 

structure. This being said, compared to the earlier approach, Eqn. (3-51) provides the benefit 

of lower noise sensitivity. Previous research has confirmed the effectiveness of the 

correction term in two-dimensional Monte Carlo simulations. Additionally, other studies 

have adopted the method and applied it to incorporate numerous valleys’ electron 

distribution [140], with the equation also applied beyond the thermal equilibrium 

assumption. Both two-dimensional and three-dimensional Monte Carlo simulations have 

been carried out in the literature using the effective potential method to accurately capture 

confinement effects. Additionally, with multi gate MOSFETs, the method has also been 
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adopted to explore surface roughness scattering [141]. A scattering rate must be used to 

ensure accuracy in modelling whilst also overcoming the limitation of the effective potential 

method, in that it overestimates the degree to which carriers are turned away from the 

interface. Thus, the selection of a weighted specular/diffusion reflection is unsuitable in this 

case. The method has also been used to explore Coulomb interactions with unintended 

doping [142], with dopant channel placement being found to be effective in capturing 

degradation. 

 The adoption of the fitting parameter  poses a noteworthy limitation to the method, however 

[142]. When the field is overestimated, the interface’s electron concentration is 

underestimated, resulting in the peak concentration moving away from the interface. In 

comparison with Poisson-Schrödinger solutions, if the parameter is reduced in order to 

correct this issue, this can result in a lower correction term than anticipated, along with a 

peak concentration that is too high. The fitting parameter values must be varied in the normal 

and parallel directions to the interface when the method is applied in 3D simulation.  

The replacement of the Gaussian distribution with a Pearson IV distribution has been carried 

out in order to present an alternative effective potential approach. Depending on the distance 

between the carrier and semiconductor-oxide interface, the Pearson distribution can be tuned 

at different points in the vertical direction. This is achieved using four parameters, rather 

than the single parameter used in the Gaussian approach. The benefit of this method is 

greater consistency with the Poisson-Schrödinger solution-based electron distribution [142]. 

However, validation and implementation of this method has only been achieved in 2D 

simulation to date, with no extensive simulation research adopting the approach. The 

following equation can be used to obtain a more computationally efficient Schrödinger-

based correction term, compared to the incorporation of a PS-based solution into Monte 

Carlo simulation: 
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𝜓𝑞(𝑧) = −𝑘𝐵𝑇 log (𝑛𝑞(𝑧)) − 𝜓𝑐(𝑧) + 𝑉0 (3-52) 

where nq(z) is quantum density (derived from the solution to the Schrödinger equation) 

[134]. Here, nq(z) does not reflect values, but distribution shape. Quantum density is 

calculated by periodically applying the eigenvalue solver to slices along the quantisation 

direction, which upholds self-consistency. The correction term expressed in Eqn. (3-52) is 

modified based on the result, although the solution to the Poisson equation is reached 

separately based on the Monte Carlo electron distribution. This allows the simulation to 

achieve the same computational efficiency as traditional models. This approach does not 

require consideration of the Fermi level, since it only requires the quantum carrier density 

shape. The method can be applied beyond the assumption of thermal equilibrium by means 

of the varying carrier temperatures between the slices. Additionally, consistency with the 

solution to the Poisson- Schrödinger is achieved due to the method’s adoption of the 

Schrödinger solution. Both two-dimensional [143], [144] and three-dimensional [143], 

[145], [146] applications of the method have been carried out, with correction and transport 

being two- and three- dimensional, respectively. In both cases, a good level of accuracy has 

been found in terms of size quantisation. However, the method has been found to be 

unsuitable for capturing tunnelling effects [147].  

 

 Mobility and I-V calibration 

One of the key parameters impacting semiconductor device performance in DD simulations 

is the carrier mobility (μ). The dependence of mobility with the field (mobility models) has 

traditionally been the way that DD simulations have been parameterised and calibrated to 

correctly match theoretical results with experiment. There is a strong correlation between 

the drive current and the mobility, with the drive current increasing as mobility increases. 

Since scattering mechanisms such as surface roughness, lattice/phonon and ionised impurity 

scattering have an impact on mobility, the accurate representation of carrier mobility 
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requires the key scattering mechanisms to be taken into account. Matthiessen’s rule (3-20) 

is used when multiple scattering mechanisms are introduced in the mobility models.  

The carrier mobility is reduced by ionised donor/acceptor-induced impurity scattering in 

doped semiconductors. A typical mobility model in DD simulations has three components 

including low-field mobility model, perpendicular-field mobility dependence and lateral-

field mobility dependence. There is a large variety of mobility models used in DD 

simulations with different level of complexity and sometimes the low field mobility and the 

field dependency cannot be clearly separate. 

The low-field mobility model is further educed by the perpendicular-field model. The 

combination of the two models determine the ID-VG characteristics of the CMOS transistor 

at low drain bias. At high drain bias the mobility if further reduced by the lateral-field 

mobility model which accounts for the velocity saturation effects at high electric field. The 

three mobility models used in this study are explained in further detail below. 

 

 Low field mobility dependence      

The low-field mobility value determines the base mobility mainly determined by the phonon 

and the impurity scattering. Near the interface the low filed mobility is modified to take into 

account the impact of the interface on the mobility in the MOSFET channel. It can also be 

modified by the strain used to enhance the performance of contemporary CMOS transistors. 

The Masetti (concentration-dependent) [148], Arora [149] (concentration-dependent) or 

Philips [150] (concentration-dependent, including screening effects) mobility models are 

available for selection in the atomistic simulator GARAND. 
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 Vertical field mobility dependence      

In order to capture the effects of surface roughness scattering at the semiconductor/insulator 

interfaces, the low-field mobility value is adjusted through the use of the perpendicular-field 

mobility model to deliver the perpendicular field-dependent mobility (μ⊥). This value is then 

further adjusted using the chosen lateral field-dependent mobility model. The available 

perpendicular field-dependent models in GARAND include the Yamaguchi [151], , 

Lombardi [152] and Thin-Layer [153] models .  

The Yamaguchi model [151],  (Eqn. (3-53) is an empirical model that delivers a reduction 

in the low field mobility of the inversion layer as a response to the confinement field 

perpendicular to the interface and therefore to the direction of the carrier flow in the channel: 

where μ0 is the low-field mobility, Ec is the critical electric field (used as a fitting parameter 

for the model), and α is an exponential factor used as a second fitting parameter. The above 

equation (3-53) presents the numerous parameters expressed in the model, and these are also 

outlined in previous research [151].  

  

𝜇(𝐸⊥) =
𝜇𝑜

√1 + 𝐷(𝑟⊥) (
𝐸⊥

𝐸𝑐
)

𝛼

 

(3-53) 

The low field mobility µ0 impacts low drain bias current in the linear region of operation, 

𝐸⊥impacts the start of the bending in the ID-VG characteristics, and α impacts the curvature 

of the bending. This can be illustrated by using the simple current model in the linear region, 

work function can be used as a fitting parameter VT taking into account the impact of the 

short channel effects: 
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𝐼𝐷(𝑉𝐺) = 𝑊𝜇(𝐸⊥) 𝐶𝑂𝑋(𝑉𝐺 − 𝑉𝑇)
𝑉𝐺

𝐿
 (3-54) 

 Lateral field mobility dependence 

The use of a lateral field-dependent model causes high-field velocity saturation effects to be 

reflected in mobility. The mobility μ value is taken as the final value for isotopic application 

across the simulation region.  

The following equation presents the Caughey-Thomas field-dependent mobility model 

[154], which is in empirical accordance with velocity-field characteristics: 

𝜇(𝐸∥) =
𝜇𝑜

(1 + (
𝜇𝑜 𝐸∥

𝑣𝑠
)

𝛽

)

1
𝛽⁄

 
(3-55) 

The fitting parameter vsat impacts the slope if the ID-VG curve is at high VD, whilst a β 

impacts bending. The following equation expresses the temperature-dependent saturation 

velocity vsat [155]: 

𝑣𝑠𝑎𝑡 = 𝑣𝑠𝑎𝑡 (
300

𝑇
)

𝑣𝑒𝑥𝑝

 (3-56) 

Temperature-dependent fitting parameter β can also be expressed as: 
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𝛽 = 𝛽𝑜 (
300

𝑇
)

𝛽𝑒𝑥𝑝

 (3-57) 

The high drain bias the simple current model in the saturation region is expressed as:        

𝐼𝐷(𝑉𝐺) =
𝑊

2𝐿
𝜇(𝐸∥) 𝐶𝑂𝑋(𝑉𝐺 − 𝑉𝑇)2 (3-58) 

In the simple current model in the saturation region the lateral field can be approximated as 

Ell = VD/L, with work function again used as a VT as the fitting parameter taking into account 

the impact of the short channel effects.  

 

 TCAD Tools and Data Analyses 

This research has adopted the GSS 3D statistical atomistic TCAD simulator GARAND and 

the automation and optimisation engine Enigma, which offer significant accuracy and 

efficiency in device calibration, optimisation and modelling.  

3.9.1 GARAND 

GARAND used comprehensively in this research is a TCAD simulator specifically 

developed to simulate statistical variability and reliability in contemporary and future 

CMOS transistor. The GSS (Synopsys) website details a number of applications of the 

GARAND tool in this context. GARAND has offers different simulation modules, including 

Monte Carlo, drift-diffusion with PS and DG quantum corrections. Additionally, GARAND 

also provides the latest physical models, supporting accuracy at atomic scale. The tool 

provides the ability to use density gradient quantum corrections for both electrons and holes 

simultaneously. Additionally, GARAND also offers extremely efficient computation with 
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guaranteed convergence in complex 3D simulations. Furthermore, GARAND takes into 

account random discrete dopants, trapped discrete charges, gate stack granularity, line edge 

roughness, and other key sources of statistical variability individually and in combination.  

Figure 3-7 illustrates the statistical drift-diffusion simulation engine fits into the GARAND 

tool-chain. 

3.9.2 Enigma 

The statistical simulation of CMOS transistors requires simulation in 3D of large statistical 

samples which can be efficiently performed on computing clusters using farming. Data flow 

between tools within the GSS tool chain is maintained through the use of a specific database 

architecture. The automated cluster job submission and management system provided by the 

GSS tool chain offers high productivity and efficiency, enabling high numbers of simulation 

tasks to take place at the same time in clusters with large number of processors. The results 

 

Device Structure 
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Input File 
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Input File 

Figure 3-7 Flow diagram defining the relation between the GARAND drift-diffusion and Monte 

Carlo simulation modules. 
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of the simulations are automatically gathered and summarised through the job submission 

and management interface with the GSS database. 

  

 Summary 

This chapter has outlined in the basis of the 3D drift/diffusion simulation, presenting both 

the drift/diffusion and the density gradient equations as well as the algorithms employed 

solve them self consistently. Semi-classical approaches are used to simulate the charge 

transport based on the Monte Carlo method, where the charge trajectories between two 

scattering events are simulated using classical dynamics. Fermi’s golden rule [156]  is uses, 

to calculate the scattering rates based on analytical non-parabolic band structure. The 3D 

EMC simulations are used to capture the non-equilibrium transport in aggressively-scaled 

NWT, leading to accurate estimation of the transistor performance. This chapter has also 

described the quantum correction based on the solution to 2D Poisson-Schrodinger 

equations for each discretisation cross-sectional plane perpendicular to the transport 

direction [157]. The quantum potential obtained from the PS solution determines the driving 

field, which controls the free flight of the particles. This chapter has also discussed the 

stability and efficiency of the DD simulation method, with a straightforward yet effective 

DG approach to the introduction of quantum effects into simulation. It was clarified that 

non-equilibrium transport effects cannot be represented by the DD model in nano-scale 

devices. Furthermore, transport variability due to ionised impurity scattering is also difficult 

to capture using DD- simulation. Monte Carlo simulation are used to calibrate the drift-

diffusions of large multichannel NWTs and to perform statistical variability simulations 

[158].  
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4 Chapter 4. Si Nanowire Transistors Design 

 

 Introduction: 

Electronics manufacturers, influenced by Moore’s law, have been drawn into innovating 

many key technical CMOS technology developments including high-k gate dielectrics 

technology and strain technology, which involve both new processes and new materials  

[26], [159]–[161].  Multi-gate MOS FET modelling is anticipated to be a primary focus for 

future developments. The superior electrostatic integrity provided by Nanowire (all gate 

around) Transistors (NWT) [7]–[9], [162] ensures that these innovative transistors remain 

popular candidates for achieving ultimate CMOS scaling limits [162]–[164].  The scaling 

limits are ultimately defined by the quantum mechanical effects which control the operation 

of NWT transistors [4].  Threshold voltage shift, resulting from confinement effects, 

together with the reduction of the gate-to-channel capacitance are reducing the available for 

transport charge within the channel [6].  Lower gate-to-channel capacitance will additionally 

negatively impact the electrostatic integrity.  These effects increase with the reduction of the 

NWT dimensions and are therefore key to the assessment of NWT scaling limits [9].  

Density gradient quantum corrections, in commercially available TCAD tools, represent the 

pragmatic approach for dealing with quantum confinement effects [7].  However, no 

investigations of the importance of quantum effects and the relevance of the DG technique 

for the modelling of ultimately scaled NWTs of varying cross-sectional shape at the scaling 

limits have yet been conducted.  This means that the effect of NWT cross-sectional shape 

on ultimate scaling limits remains unaddressed, along with other critical design questions.  

This chapter examines the ultimate scaling limits of NWTs with different cross-sectional 

shapes, using simulations employing Poisson Schrodinger (PS) quantum corrections 

implemented in the ‘atomistic’ drift-diffusion (DD) simulator GARAND [GSS].   Realistic 
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design parameters of the source-drain extensions and their impact on SS and DIBL are 

considered. In addition, the effect of the nanowire cross-sectional shape on the gate 

capacitance CG, the charge available for transport QG and the speed (evaluated by using the 

QG/CG ratio) are investigated and contrasted with τ. 

This chapter will commence with an introduction detailing the NWT design employed in 

this investigation.  The next section, demonstrates the key elements of the NWT structure 

design. Section 4-3 describes the structure editor employed in this study. Section 4-4 

provides an overview of the design details of 5 nm NWT.  The simulation methodology and 

the density gradient calibration have been explained in Sections 4-5 and 4-6. The analysis 

of effect of quantum confinement on the gate capacitances and the available charge for 

transport in the channel are described in Section 4-7. Sections 4-8 examines the effects of 

quantum confinement on the nanowire electrostatic integrity, including SS and DIBL.  

Section 4-9 attempts to find the optimal cross-sectional aspect ratio. The penultimate Section 

4-10 investigates the effect of varying source/drain doping designs on optimal channel 

length for different NWT cross sections.  The conclusions are drawn in the final Section 4-

11.    

 

 Nanowire Transistor Design Structure  

A nanowire FET comprises of a silicon body within a nanowire shape acting as the 

conducting channel; whilst the gate dielectric layers and gate material wrap around the 

semiconductor to form the MOS structure, as depicted in  Figure 4-1.  

4.2.1 Silicon Channel 

Ever since the first silicon transistor was produced in the 1950s, silicon (Si) has been the 

basis of computer chips and the foundation of the semiconductor industry, with substantial 

investments in R&D over the following decades to ensure production of dependable scaled 

transistors.  So, whilst other elemental or compound semiconductors may offer greater speed 

than Si at ultra-high-speed and ultra-low-power applications [165], a waste amount of 
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additional R&D expenditure in time and money would be required to deliver and optimise 

corresponding new chip manufacturing and design processes.  A primary advantage of Si is 

its susceptibility to oxidation that produce silicon dioxide SiO2, a gate dielectric with 

exceptional properties.  The oxidation proceeds in dry or wet oxygen atmosphere at high 

temperature.  Si also remains stable at high temperatures of operation.  Additionally, Si is 

insoluble in water and this is beneficial in minimising various problems associated with 

manufacturing and functionality.  Si exists naturally as a perfect crystal with only minute 

defects apparent in ultra-large ULSI integrated chips.  Si is also inexpensive and commonly 

sourced across the Earth. These properties make Si the semiconductor of preference in the 

production of robust transistors and chips.  

  Based on a set of commercial criteria, for each technology node, a key research objective 

is to continually investigate a variety of transistor scenarios with the aim of ensuring that Si 

remains the basis for future chip manufacturing.  Strained Si has demonstrated important 

key benefits for improving transistor performance, particularly with regard to p-type 

MOSFETs. Particular strain patterns result in tripling the hole mobility and doubling the on-

state current of p-type transistors.  Further to Si strain development, alternative channel 

materials are also being investigated for their potential of enhancing MOSFETs speed.  

 

 

Figure 4-1 schematic view and material details of the circular NWT (S/D contacts 

are not shown). 
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4.2.2 Gate dielectrics layers 

Excessive scaling of SiO2 layer results in higher gate leakage as a consequence of quantum 

mechanical tunneling effects [166].  Minimising the gate leakage current in CMOS 

components, necessitates replacing the traditional SiO2 gate dielectric layer with an 

alternative dielectric of higher dielectric constant ‘high-k’.   HFO2 has high permittivity (k 

> 20) and has therefore was introduced as an alternative gate dielectric.   

Conversely, Hafnia and the majority of high-k MOS dielectrics have unstable interfaces with 

Si channels. Here the high-k layer reacts with Si under equilibrium conditions to produce an 

undesired interfacial layer (IL). To enhance the capacitance of the gate stack and match the 

high-k layer with the Si interface, an insulating interfacial layer is needed [167].  The 

insulating interface provided by SiO2 circumvents undesired movements of threshold 

voltage and flat band voltage. It also offers improved thermodynamic stability [168].   

Insertion of a thin IL of SiO2 between the high-k gate stacks and Si channel promotes 

reliability by lowering ITC (interface trap density) defects at the Si-interface [29], [166], 

[167], [169]–[174].  The IL lowers gate stacked/Si roughness and improves the mobility 

[175]. The peak mobility in MOSFET devices with a high-k layer has been shown to be 

dependent not only on IL material, but also to be directly proportional to IL thickness for 

both poly-Si and metal gates [176], [177].  

Conversely, the hafnia thickness tends to increase the low-frequency noise associated with 

the MOSFET current when compared with SiO2 alternatives. The IL minimises noise,  whilst 

reducing SiO2 thickness results in greater, low-frequency noise as a consequence of interface 

trapping and mobility variations [178], [179]. 

The SiO2 IL is found between the Si conducting channel and the high-κ dielectric layer can 

be deliberate or unintentional. The thin IL develops between the high-κ layer and the Si as 

a consequence of many high-κ dielectric deposition techniques resulting in thermally 

unstable interfaces with Si. The IL derives from the diffusion of oxygen from the high-κ 

layer towards the Si interface mainly during the process of activation annealing, rather than 

the process of high-κ deposition itself. The molecular bonding of Si atoms to oxygen 
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promotes the controlled diffusion of  the oxygen by producing high-κ stacks with SiO2 

IL[180], [181].   

Whilst the IL offers improved mobility, better stability and reduced noise for high-k gate 

stacks, it also lowers the total gate capacitance [174], [182], [183].  The total capacitance of 

MOS devices comprises the two dielectrics layers in series (4-1): 

 1

𝐶𝑜𝑥
=

1

𝐶𝑆𝑖𝑂2

+
1

𝐶ℎ𝑖𝑔ℎ−𝑘
 

(4-1) 

The MOS capacitance Cox is determined by dielectric primitivity and thickness as described 

in equation (4-2): 

 𝐶𝑜𝑥 =
𝜀𝑜𝑥𝜀𝑜

𝑡𝑜𝑥
 (4-2) 

Where Ɛox represents the relative dielectric permittivity, Ɛo represents the permittivity of 

vacuum, and tox represents the oxide thickness. More specifically, the employing a dielectric 

with high Ɛox more facilitates the scaling to the transistor dimensions. The expression 

“equivalent oxide thickness” (EOT) is employed to extrapolate the thickness of SiO2 

necessary to achieve capacitance of high-k material of an equivalent area. The EOT equation 

(4-3) is: 

 
𝐸𝑂𝑇 = 𝜀𝑆𝑖𝑂2

𝑡ℎ𝑖𝑔ℎ−𝑘

𝜀ℎ𝑖𝑔ℎ−𝑘
 

(4-3) 

Equations (4-1), (4-2) , and (4-3) give rise to the EOT of two layers of gate stack (4-4;  

 
𝐸𝑂𝑇 = 𝜀𝑆𝑖𝑜2

(
𝑡𝑆𝑖𝑂2

𝜀𝑆𝑖𝑜2

+
𝑡ℎ𝑖𝑔ℎ−𝑘

𝜀ℎ𝑖𝑔ℎ−𝑘
) 

(4-4) 
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4.2.3 Gate Electrodes 

Metal gates, in combination with Si and appropriate dielectric, can act as gate electrodes to 

form a MOS channel region.  However, use of poly-Si as a gate electrode can result in 

problems with poly-depletion and resistivity effects.  Therefore, metallic TiN gates are used 

in contemporary CMOS technologies [172]. 

 

 3-D Structure Modelling Tools 

 Adaptable techniques are required for modelling the new innovative 3-D Nano-transistors.  

This study uses the Structure Editor Sigmund [GSS] to generate accurate simulation domains 

of nanowire structures stored in VTK format which can be loaded and used by the device 

simulator GARAND. The hierarchy of object structure flow employed by the Sigmund 

Structure Editor is depicted in Figure  4-2.  The structure editor sets the 3-D simulation 

domain, which can then be populated with material regions, doping regions and contact. 

Sigmund also meshes the simulation domain prior storing it in the VTK file. This is a five-

step process:  

1- Identification of materials, doping type, dimensions and other device parameters. 

2- Utilisation of the template geometry objects (triangular prism, cylinder, cuboid, 

tetrahedron, regular tetrahedron and sphere) to generate the 3-D structure.  

Amalgamations of the template objects permits creation of more complex structures.  
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Figure  4-2 Process flow of (Sigmund)  strector editor. 
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3- Following the generation of the structure, doping can be introduced via inbuilt analytical 

doping regions employing a combination of position and materials options.  The 

Sigmund Structure Editor offers five doping options: Block, Gaussian 1-D, Gaussian 2-

D, Gaussian 3-D, Block-Gaussian.  

4- Whilst meshing is defined at the same time as the objects, remeshing can be applied at 

any time to achieve target resolution. 

5- Metal gate granularity and line edge roughness (LER) are additional options which can 

be used to supplement the device structure or selected objects. 

 

 5 mm Nanowire Transistor Design 

Key design criteria: 

1- Material composition of channel, interfacial layer, high-k gate stack. 

2- Dimensions of device cross-sectional shape, gate length, effective oxide thickness and 

source/drain spacers. 

3-  Crystallographic orientations and strain of the semiconductor channel. 

4- Doping concentrations, such as peak and roll-off doping. 

Si is used for the simulated NWT channel, source, and drain regions.  SiO2 and Hafnia 

comprise the 0.4 nm interfacial layer and 0.8 nm high-k layer determine the gate stack 

(according to the ITRS scaling criteria). According to Equation 4-4 this results in gives 

equivalent effective oxide thickness EOT=0.6.  Figure 4-3  depicts the 3D structure of a 

cylinder NWT.  In this investigation, the electrostatic performance is examined for silicon 

channels with four different cross-sectional shapes: circle; ellipse; rectangular; square.  To 

ensure an unbiased comparison, all cross-sectional shapes were designed with identical 
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surface areas: Across-section= 9π nm2, i.e. the diameter or (fin-pitch) of the circular NWT is 

6nm.  Table 4-1 gives the precise cross-sectional dimensions for all four investigated shapes.  

The two channel crystallographic orientations studied on (001) wafer are <110> and <100>. 

Table 4-2 summarises design parameters for all devices: the effective gate length is 10-20 

nm, the spacer thickness is 5nm, the source/drain peak doping concentration is 4x1020 cm-3 

The low channel doping boosts charge mobility with a significant improvement of the FET 

performance and it also reduce local (statistical) variability. It has been demonstrated that 

doped FinFETs retain a variability advantage over classical planar MOSFET if the channel 

doping is lower than a few 1018cm-3 [184]. The channel doping of Intel 14nm FinFET is 

about 1017 cm-3. Better electrostatic integrity, offered by gate-all-around nanowire transistor 

(NWT) architectures allow reducing the doping of the channel [7]. [8], [9], [162], [164], 

[185]–[189]. In this study, the channel doping is lowered up to 1014 cm-3. 

Sigmund Structure Editor was used to generate suitable NWT structures for this study. 

Figure 4-4 depicts the doping profile of the Si NWT studied with a gate length Lg = 12 nm 

and spacer length Ls = 5 nm.  
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Figure 4-3 A 3D representation of cylindrical NWTs with S/D contacts. 

 

 

 

 

Table 4-1 Physical dimensions of simulated devices 

 Y(nm) Z(nm) Y/Z Area (nm2) 

Circular 6 6 1 9π 

Elliptical  3.45 4.64 0.74 9π 

Square 3.54 3.54 1 9π 

Rectangular  3.06 4.13 0.74 9π 
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Figure 4-4 The doping profile of the Si NWT with gate length Lg12 nm 

and spacer length Ls=5nm. 

 

 

 
Table 4-2 Parameters of the simulated devices 

TIL (nm) 0.4  

Thigh-k (nm) 0.80 

Gate length (nm) 14 

Spacer thickness (nm) 5.0 

S/D peak doping (cm-3) 4x1020 

Channel doping (cm-3) 1014 

Substrate orientation 001 

Nanowire orientation <110> & <100> 
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Figure 4-5 Wave functions in the Δ1, Δ2, Δ3, and Δ4 degenerate valleys in 

the perpendicular (slice) cross-section of Si NWT(PS simulation). 
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Figure 4-6 Four NWT’s cross-sections simulated in this subsection. 

Comparison of the charge distribution in the NWT cross-section obtained 

from three simulations methods; Poisson-Schrödinger, density gradient the 

classical DD. The simulations at low drain voltage and at gate voltage 

VG=0.60V. 
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 Simulation Methodologies 

Subsequent to the generation of the VTK files with required NWT structures, the simulation 

was conducted to examine three simulation options: Poisson-Schrödinger (PS) quantum 

correction directly implemented in the drift-diffusion (DD) simulator; a Density Gradient 

(DG) quantum corrections and classical simulation.  The PS and DG simulations have been 

compared to assess the accuracy of the DG simulations of quantum confinement effects in 

the NWTs appropriate for sub-5-nm CMOS applications with varying cross-section. 

Non-parabolic band structure efects were not captured in the 2D cross-sectional slices along 

the gate length of the simulated 3D transistors forming the 2D solution of the Schrödinger 

equation.  A LAPACK solver was utilised to solve the 2D Schrödinger equation in the 

effective mass approximation.  The wave function penetration in gate oxide is taken into 

account. Figure 4-5 depicts the wave functions in the Δ1, Δ2,  Δ3, and Δ4 degenerate valleys 

in the cross-section of an cylindrical Si NWT at gate bias of 0.60V.  The probability 

distribution obtained from the wavefunctions combined with the occupation density 

resulting from the Fermi level and eigenvalues (subband energies) are used to calculate the 

2D charge distribution.  The PS charge distribution is coupled to the DD transport.  A DD 

simulation is initially performed until convergence is attained, and then the quasi-Fermi 

level resulting from the converged DD solution is employed as a fixed reference for the PS 

solution [9].  The effective quantum- potential is used as the driving potential in the solution 

of the current-continuity equation, where the charge distribution in the NWT cross-section 

mirrors the charge distribution resulting from the solution of the Schrödinger equation [7], 

[185].  

The charge distribution in the NWT channel from the Poisson–Schrödinger (PS), density 

gradient (DG) and classical simulation is comported and analysed. Figure 4-6 depicts the 2D 

charge distribution at the centre of the NWT channel. Figure 4-6  illustrates how the 2D 

charge distribution resulting from uncalibrated (standard) DG simulations may not 

effectively capture the quantum mechanical effects in respect of the mobile charge 

distribution in the channel.  Results of Poisson–Schrödinger (PS) and density gradient (DG)-
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based quantum corrections are subject to a detailed comparison to evaluate the applicability 

of the DG approach for simulation and design of scaled NWTs in the following section. 

 Density Gradient calibration 

Whilst the PS quantum corrections deliver highly accurate quantum charge distribution in 

the simulated NWT channel, the large number of cross-sectional solutions for the 

Schrödinger equation causes substantial slowing of the simulations with  concomitant 

reduction in productivity and efficiency [162], [164].  Therefore, to address these issues a 

compromise solution involves calibrating the DG quantum corrections to the PS charge 

distribution and then utilising the DG simulations. The DG formulation includes a quantum 

correction term, ψqm, proportional to the second derivative of the square root of the carrier 

density as explained in chapter three (equation (3-37)). 

The DG equation is calibrated against quantum-mechanical simulations using Poisson-

Schrödinger solution using the DG effective mass, as a fitting parameter.  Furthermore, the 

DG effective mass is considered to be anisotropic, resulting in different effective mass 

components associated with each of the coordinate system directions mx, my and mz. As 

explained in chapter three, equation (3-38) is the form of the solved DG equation. 

The DG effective masses for both the conduction band in Si and the SiO2 are calibrated to 

match the charge distributions resulting from PS solutions associated with the major and 

minor axes of the NWT cross-section and the integrated mobile charge in the channel at a 

0.60V gate voltage. It is important that the orientation dependence is taken into account by 

the PS solution. The DG effective masses simply represent fitting parameters. Additionally, 

the quantum confinement is only relevant normal to the direction of the transport, and the 

DG effective mass along the transport direction is set so as to be sufficiently large to prevent 

artificial S/D tunnelling.  

Figure 4-6 illustrate the charge distribution obtained from the standard DG and calibrated 

DG of Si NWT. Figure 4-7 illustrate the charge distribution differences between different 

NWT cross-sections resulting from PS, DG and classical DD simulations.   It can be seen 
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that the calibration of the drift-diffusion simulations can significantly impact charge 

distributions. A fuller illustration of the reliability of the calibration process is provided in 

Figure 4-9 in comparison with the 1D charge distributions resulting from the PS and DG 

solutions along the main ‘diameters’ of the NWT cross-section.  

Optimum channel gate control with excellent electrostatic integrity is offered by GAA 

design.  However, quantum mechanics exerts significant effects in such ultra-scaled GAA 

NWT, which must be addressed in order to produce accurate performance results for the 

device using simulations.  Four different NWTs cross-sections are studied here using 

simulatios: cylindrical, elliptical, square and rectangular. Although the elliptical and 

rectangular NWTs have different characteristic dimensions, all devices have the same cross-

sectional area of 9π nm2. <110> and <100> and crystallographic orientations on (001) wafer 

are examined. Table 4-2 summarises the cross-sectional dimensions for all six nanowires. 

 

 

 

Figure 4-7 Charge distributions obtained from the standard DG and 

calibrated DG of Si NWT (y-z) and (x-z) cross-sections. 

 

 

 



Chapter 4. Si Nanowire Transistors Design                                                                 89 

 

 

 

Figure 4-9 1D charge distributions obtained from the PS simulation and DG 

simulation. The cutline is along of perpendicular ‘diameters’ (y and z) of the 

NWT’s slice at the mid of the gate. 

 

 

 

Figure 4-8 Capacitance-voltage (C-V) characteristics of the simulated NWT with six 

different cross-sections. 
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 NWT Mobile Charge and Gate Capacitance 

The influence of the quantum mechanical (QM) effects on the gate voltage dependence of 

the gate capacitance for the different cross-sections depicted in Figure 4-6 and Table 4-1 are 

examined.   An infinite gate length has been assumed to emphasise the effect that cross-

section has on the gate capacitance. Figure 4-8 depicts the capacitance-voltage (C-V) 

characteristics of the simulated NWT with six cross-sections. The impact of the QM effects 

on the gate capacitance are clearly demonstrated. In the quantum simulations the gate 

capacitance is reduced by a mean value of approximately 32% compared to the results of 

the classical simulations.  Most significantly, the magnitude of the QM effects is for different 

cross-sectional shapes, despite the identical cross-sectional area. Figure 4-8 shows that NWT 

with an extended elliptical cross-section (elliptical 2) exhibits the largest gate capacitance. 

This is probably due to the compensating effect that the elliptical shape induces in respect 

to the anisotropic spatial confinement / electrostatic confinement resulting from the 

dissimilar quantum masses along the cross-sectional diameters which provide a greater 

extent uniform charge distribution that the wrapped-around gate can control more 

effectively.  

The mobile charge in the channel per unit length QM at a particular gate voltage VG is directly 

proportional to the NWT gate capacitance per unit length CG and is given by the following 

equation: 

 𝑄𝑀 = 𝐶𝐺(𝑉𝐺 − 𝑉𝑇) (4-5) 

Where VT is the threshold voltage and VG-VT represents the gate overdrive.  

This indicates that reduction of the NWT gate capacitance will result in lower mobile charge 

in the channel and also in lower transistor performance.  It is interesting that the precisely 

calibrated DG model closely resembles the PS results and therefore can be considered as an 

efficient approach to capture the quantum mechanical effects in TCAD device simulations, 

even for complex 3D transistors. Figure 4-10 depicts the gate voltage dependence of the 
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mobile charge in the channel for the NWTs in Table 4-1 (NB this refers to the integral mobile 

charge in the channel per unit area at low drain bias). 

Eqn. (4-5) indicates that the reduction in gate capacitance results in a reduction of mobile 

charge in the channel, which consequently is an indicator of poorer NWT performance. 

Similar to gate capacitance, the mobile charge for NWTs with identical cross-sectional areas 

depends on the cross-sectional shape. The effects of NWT shape on potential NWT 

performance can be evaluated from Table 4-3 which compares QM(VG=0.60V) for identical 

QM(VG=0.0V). To perform this comparison the QM(VG) curves were aligned by changing 

the gate work function.  Like the gate capacitance, the elliptical 2 NWT exhibits the largest 

mobile charge in the channel. Table 4-4 includes an additional case compared with the 

NWTs outlined in Table 4-1: the structures in this case have been rotated by 90 degrees 

whilst retaining the original crystal orientation.  This perpendicular rotation of the optimal 

performing NWT leads to an improved QM, CG which represents around 11% and 10% 

improvement of QM/CG ratio.  Here, the asymmetric spatial confinement induced by the 

elliptical shape aggravates the similar electrostatic confinement induced by the various 

quantum masses along the cross-section diameters, which gives rise to a charged distribution 

that is predominantly focussed on only one of the two diameters and consequently less 

tightly controlled by the wrapped-around gate. Table 4-3 illustrates how the QM/CG ratio can 

be utilised as an indicator for the ‘intrinsic’ NWT speed. QM and QM/CG are directly 

correlated which highlights not only the approximate nature of Eqn (4-5), but also the 

requirement to assess both QM and CG.  Extended elliptical NWT exhibits the optimum 

QM/CG when compared to the other cross-sections. Table 4-5 provides the values for QM, CG 

and QM/CG ratio for the wires with identical matching cross-sectional areas as presented in 

Table 4-3, but also including the <100> channel orientation. Analyzing the results 

summarized in Table 4-3, Table 4-4, Table 4-5, gives rise to the following main conclusions. 

First, all wires with the <100> channel direction have greater charge in the channel 

compared to the <110> wires. This confirms that varying the crystal orientation of the silicon 

channel results in change of mobile charge within the channel and therefore is an important 

design parameter.  Consequently, the gate capacitance also increases leading to enhanced 
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electrostatic control.  Additionally, the extended elliptical and rectangular NWTs offer about 

~11% and 8% performance improvement compared to the circular and square shapes.  

 

Figure 4-10 Dependence of the mobile on charge gate voltage for the NWT’s(C-

V) characteristics illustrated in 4 10 Capacitance-voltage (C-V) characteristics 

of the simulated NWT with six different cross-sections. 
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Table 4-3 QM(VG=0.600V), CG (VG=0.600V) and QM/CG ratio at identical QM 

(VG=0.00V) for NWTs at LG=12nm. With crystallographic channel orientation 

<110>. 

 QM (×106/cm) CG (fF/cm) QM/CG (1017/F) 

Circular 
2.126 0.929 2.2876 

Elliptical1 
2.374 0.996 2.3839 

Elliptical2 
2.581 1.015 2.5429 

Square 
1.972 0.905 2.1784 

Rectangular1 
2.266 0.985 2.3005 

Rectangular2 
2.480 0.996 2.4888 

 

Table 4-4 QM(VG=0.600V), CG (VG=0.600V) and QM/CG ratio at identical QM 

(VG=0.00V) for NWTs at LG=12nm. With crystallographic channel orientation 

<110> where the structure is rotated by 90o.  

 QM (×106/cm) CG (fF/cm) QM/CG (1017/F) 

Circular 
2.1476 1.0094 2.1275 

Elliptical1 
2.6362 1.1683 2.2562 

Elliptical2 
2.964 1.1907 2.4892 

Square 
1.992 0.9834 2.0260 

Rectangular1 
2.527 1.1734 2.15386 

Rectangular2 
2.765 1.1632 2.37758 
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 Effect of Quantum Mechanics on SS and DIBL 

Figure 4-11 depicts the effects of gate length on DILB (defined as ΔVT/ΔVD) and on the 

subthreshold slope (SS).  Noticeable difference can be observed in the electrostatic integrity 

between the NWTs with different cross-sectional shapes, with the circular nanowire and the 

prolonged elliptical nanowire performing marginally better than the others. The quantum 

effects have less influence on DIBL and SS compared to their impact on of QM and CG, 

where the difference is approximately 11 %. Figure 4-12 and Figure 4-13 depict the gate 

length dependence of the error between the classical and QM estimate of DIBL   and SS 

respectively.  The error is gate length dependent and is inversely proportional to gate length.  

Table 4-5 QM(VG=0.60V), CG (VG=0.60V) and QM/CG ratio at identical QM 

(VG=0.0V) for NWTs at LG=12nm. With crystallographic channel orientation 

<100>. 

 QM (×106/cm) CG (fF/cm) QM/CG (1017/F) 

Circular 

2.3579 1.0038 2.3489 

Elliptical1 
2.6101 1.0758 2.4260 

Elliptical2 
2.9347 1.0964 2.6765 

Square 
2.17960 0.9780 2.2285 

Rectangular1 
2.50250 1.0805 2.3159 

Rectangular2 

2.7383 1.0711 2.5564 
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For DIBL, the error increases from few percent to approximately 7% with a decrease in gate 

length from 20 nm to ~10 nm. The equivalent error for SS increases from ~0.5% to ~3.4%. 

 

 

 

Figure 4-11 Impact of the gate length on SS and DIBL for NWT with six individual 

cross-sections. 
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Figure 4-13 Percentage (%) error when using DD simulations without 

quantum corrections for estimating SS. 

 

 

 

 

Figure 4-12 Percentage error (%) when using DD simulation without 

quantum corrections for estimating DIBL. 
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 Optimum Cross-Sectional Aspect Ratio 

It has been clearly demonstrated that the cross-sectional shape of  NWT’s gate has strong 

impact on gate capacitance CG and mobile charge QM in the NWTs.  It has been 

demonstrated that the NWT with <110> channel orientation and elongated elliptical cross-

section where the long diameter is parallel to the Si wafer surface exhibits the highest mobile 

charge for any given gate voltage.  The major to minor axis ratios (cross-section aspect ratio 

[AR]) have been highlighted as a important design parameter determining the device 

performance.  Nonetheless, experimentally NWTs are still typically produced in two 

versions: circular (or elliptical) NWT and nanosheet (or nanoslab) FET.  Each version comes 

with its own advantages and disadvantages.  The fundamental difference between these two 

versions remains the cross-sectional AR.  However, critical design questions addressing the 

optimal NWT cross-sectional aspect ratio, remain unanswered. 

In an attempt to remedy this situation, the effect of varying the AR of GAA NWT while 

keeping a constant cross-sectional area has been investigated.  An interesting finding 

emerged from this investigation was that the observed signatures of isotropic/anisotropic 

charge distributions exhibit the same attributes as the golden ratio (Phi).  

The structure, and dimensional characteristics associated with NWTs suitable for 5 nm Si 

CMOS technology will be investigated, along with the ratio of quantum mobile charge to 

gate capacitance, using the intrinsic delay (τ) as a marker for the intrinsic speed and NWT 

performance. Quantum confinement effects are also considered to ensure the acuracy of the 

simulations. 

 The NWT structure comprises a single lateral NWT.  To evaluate optimal AR, the NWT 

structure illustrated in Figure 4-3 is utilised.   Here the Si channel is wrapped by a 0.4 nm 

SiO2 IL and a 0.8 nm HFO2 (High-k) layer in the gate region. The channel doping level is 1 

x 1014/cm3, rising to 1 x 1020/cm3 in the extensions, and to 4 x 1020/cm3 in the source/drain 

regions.  The x-axis is used for charge transport direction alignment. Table 4-6  outlines the 

cross-sectional dimensions for 9 elongated elliptical shape nanowires with matching cross-

sectional areas of 10π nm2. The NWT y-axis diameter ranges between 4.440 nm to 9.0 nm, 
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whilst the corresponding diameter along the z-axis ranges between 9.0 nm to 4.44 nm.  

Consequently, the associated aspect ratios vary between 2.020 to 0.490. Cross-sectional 

dimensions include wires representing Phi and 1/Phi (numeric) [186]. 

PS quantum corrections deliver a precise charge distribution within simulated NWT 

channels. Figure 4-14 depicts Phi ovals graphically represented on a 2D cross-section at the 

centre of the gate. The analysis of isotropic charge distributions resulting from the PS 

simulations exhibit identical characteristics to the golden ratio. Whilst charge distributions 

are voltage-dependent, phi oval signatures are observed at all gate voltages. 

In order to make an unbiased assessment of the influence of NWT cross-sectional 

dimensions on device performances, Figure 4-15 illustrates the gate voltage dependence of 

the the quantum mobile charge in the channel for the nine NWTs summarised in Table 4-6 

Alignment of QM-VG curves is achieved via amendment of the gate work function. The most 

interesting finding from the QM-VG features illustrated in Figure 4-15 is that the NWT with 

Phi and 1/Phi aspect ratios deliver the highest quantum charge when compared with all other 

NWT scenarios.  In addition, the lowest charge within the channel is associated with the 

NWT with a perfectly circular cross-section when compared with the charge in the channel 

of elliptical devices. 

Table 4-7 and Table 4-8 compare the simulated gate capacitance (CG) and the mobile 

quantum charge in the channel per-unit-length (QM) at specific gate voltages VG for two 

crystal orientations, <110> and <100>.  Eqn (4-5) has shown that QM is directly proportional 

to the NWT gate capacitance.  Consequently, lowering NWT gate capacitance also results 

in a lower mobile charge within the channel and therefore poorer transistor performance. 

Both tables indicate that for either crystal orientation, the capacitance is greatest for the wires 

that conform to the golden ratio.  In addition, for wires with the <100> channel orientation, 

the charge in the Phi and 1/Phi examples is practically the same due to identical effective 

masses in Y and Z directions [185]. 

Therefore, it could be suggested that the two recent research attempts to construct  NWTs 

with cross-sectional AR≈1 (circular NWT [11]and AR≈3.5 (sheet NWT) [12], have not 
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taken into consideration the fact that AR is an important design  factor determining the NWT 

performance (NB in this investigation, the term “sheet NWT” refers to NWT where 0.5≥ 

AR ≥2). 

Figure 4-16 illustrates the ID-VG characteristics of the simulated NWTs.  Consistent with the 

data obtained thus far, the NWT with AR equal to Phi or 1/Phi exhibits the largest ON-

current and this is valid at both low and high drain voltages. 

Figure 4-17 highlights how the intrinsic delay (τ) varies with the gate length. The intrinsic 

delay τ is directly inversely proportional to the speed of the device, where:   

 
𝜏 = 𝐶𝐺 (

𝑉𝐷𝐷

𝐼𝑒𝑓𝑓
) 

(4-6) 

where CG represents the total gate capacitance, and the effective current is given by: 

 
𝐼𝑒𝑓𝑓 =

𝐼𝐻 + 𝐼𝐿

2
 

(4-7) 

where  

IH=ID(VG=VDD, VD=VDD/2) 

IL=ID(VG=VDD/2, VD=VDD) 

VDD=0.60V 

And the leakage current is given by  

 Ioff=0.60 µA/µm 
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Figure 4-17 shows that the NTWs with dimensions 8.1nm x 5nm and 5nm x 8.1nm have the 

shortest intrinsic delay.  The assessment of the intrinsic delay corroborates the results of 

QM/CG summarised in Table 4-7. 

 

 

Table 4-6 Physical dimensions of the cross-section of simulated NWTs 

Z(nm)x Y(nm) Y/Z Area (nm2) 

4.44×9.0 2.0200 10.0π 

5.0×8.1 (Phi) 1.6200 10.0π 

5.7×7.0 0.8100 10.0π 

6.0×6.66 0.900 10.0π 

6.32×6.32 1.00 10.0π 

6.66×6.0 1.110 10.0π 

7.0×5.7 1.220 10.0π 

8.1×5.0 (1/ Phi) 0.620 10.0π 

9.0×4.44 0.490 10.0π 
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Figure 4-14 The charge distribution in the 5.0 nm× 8.10 nm NWT cross-section (obtained 

from the Poisson-Schrödinger simulations) and Phi ovals (white ovals). 
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Table 4-7 QM/CG ratio at identical QM (VG=0.0V) for NWTs with 

crystallographic channel orientation <110>. 

Z(nm)x 

Y(nm) 

QM 

(×107/cm) 

CG (10-

10F/cm) 
QM/CG (1017/F) 

<110> 

4.44×9.0 2.733 1.140 2.3970 

O
b
late N

W
T

 

5.0×8.1  2.842 1.147 2.4760 

5.7×7.0 2.750 1.129 2.4350 

6.0×6.66 2.580 1.109 2.3260 

6.32×6.32 2.548 1.109 2.2970 Circular 

6.66×6.0 2.631 1.116 2.3560 

P
ro

late N
W

T
 

7.0×5.7 2.773 1.135 2.4400 

8.1×5.0  2.892 1.160 2.4910 

9x4.44 2.727 1.137 2.3980 

 

 

Figure 4-15 Gate voltage versus the mobile charge in the mid of the channel 

for the NWTs with different cross-section aspect ratio and same cross-sectional 

area. The crystallographic channel orientation is <110> and LG= 12 nm.  
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Table 4-8 QM/CG ratio at identical QM (VG=0.0V) for NWTs with 

crystallographic channel orientation <100>. 

Z(nm)x 

Y(nm) 

QM 

(×107/cm) 

CG (10-

10F/cm) 
QM/CG (1017/F) 

<100> 

4.44×9 
2.732 1.135 2.407 

O
b
late N

W
T

 

5.0×8.1 Phi 
2.890 1.159 2.492 

5.7×7.0 
2.779 1.138 2.444 

6.0×6.66 
2.640 1.118 2.360 

6.32×6.32 
2.610 1.116 2.337 Circular 

6.66×6.0 
2.640 1.118 2.361 

P
ro

late N
W

T
 

7.0×5.7 
2.779 1.138 2.442 

8.1×5.0 
2.891 1.159 2.491 

9x4.44 
2.732 1.134 2.409 

 

 

Figure 4-16 The impact of all 9 cross-section AR on the ID-VG characteristics. 

Dashed curves are at VD=0.050V, and solid curves are at VD=0.70 V. LG= 

12.0 nm with <110>crystallographic channelientation10>. 
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 Design of experiment 

A more systematic design of experiment would assess the way in which NWTs FOM interact 

with other parameters associated with AR. Figure 4-18 depicts the design of experiment, 

including the impacts of gate length, effective oxide thickness and NWT cross-sectional 

dimensions on Ioff, Ion and SS. The focus is on 5 nm NWT, three-dimensions (4nm ×4.6nm, 

5nm × 8.1nm and 6nm × 6.9 nm) with cross-sectional areas (4.6π nm2, 10.125π nm2, and 

10.35π nm2) involving the golden ratio in the design of experiment.  In this study only the 

<110> channel orientation was investigated.  

The results indicate that the highest drive current is observed for the NWT with the smallest 

gate length and oxide thickness. The SS mirrors the electrostatic integrity of the transistors. 

The NWTs possessing a long channel with narrow cross-sectional dimensions offer greater 

 

Figure 4-17 Impact of 5 different gate lengths (10-18nm) on the intrinsic 

delay (τ) for NWTs with 9 different cross-section AR including. LG= 12.0 

nm with <110>crystallographic channel orientation. 
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gate control, resulting in a steeper SS.  Reducing the nanowire cross-sectional area from 

41.5 nm2 to 18.56 nm2 (while keeping the same cross-sectional aspect ratio) offers in the 

region of 1.4mV/decade and 8mV/decade SS for respective gate lengths of 18nm and 12 

nm. 

Notwithstanding these marginal electrostatic improvements, drive current of the device is 

diminished by 38%.  Reducing the gate length while increasing the NWT cross-sectional 

area can raise the drive current, but then the influence of parasitic effects becomes a 

significant issue leading to reduced performance when compared with larger NWT based 

 

Figure 4-18 Experimental design (4D) for NWT and the effects of the NWT’s 

dimensions, Oxide thickness, and Lg  on Ioff, DIBL, VT , and Ion. 
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devices. The NWT with gate dimensions 12nm-16nm exhibits an acceptable trade-off 

between the Ion, Ioff and SS. 

 

 Conclusions  

The quantum mechanical impact on the electrostatic performance of NWTs suitable for 

CMOS technologies at and beyond 5-nm mark have been investigated. It has been 

highlighted how the shape of NWT influences the gate capacitance and the mobile charge 

in the channel.  Furthermore, circular and elliptical NWT, with channel orientations <110> 

and <100>, have been investigated showing enhanced performance (with respect to 

electrostatic driven performance and ‘intrinsic’ (QM/CG) ratio) when compared with square 

and rectangular ultra-scaled GAA NWTs.  For instance, the circular and elliptical nanowires 

exhibit a greater quantum mobile charge (QM) in the channel and also a higher (QM/CG) ratio 

compared to the square and rectangular nanowires.  In addition, the results show that the 2D 

charge profile and the quantity of charge in the channel depend on the channel direction.  

For instance, all nanowires with the <100> channel have approximately ~11% greater 

mobile charge compared to the <110> nanowires. Such findings are important for 

determining the optimal designs of NWTs.  Signatures of isotropic charge distributions 

within Si NWTs were observed exhibiting the same attributes as the golden ratio (Phi), the 

significance of which is well known in the fields of art and architecture.   

The research demonstrates that the quantity of mobile charge within the channel, along with 

the intrinsic speed of the device are determined by device geometry and may be affiliated 

with the golden AR (Phi) of the nanowire transistors. This investigation has demonstrated 

NWT with aspect ratios equal or close to the golden ratio (Phi) can enhance gate capacitance 

and mobile charge in the channel and therefore could optimise the intrinsic speed of the 

device.  We have also investigated the influences of the gate length on the time delay and 

the main FoM, such as VT, IOFF and ION and DIBL. 
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5 Chapter 5.  Performance of Si NWTs 

 

 Introduction: 

The semiconductor industry must continually cope with performance eroding factors 

including short-channel effects, high leakage current, and other issues associated with 

highly-scaled planar metal-oxide-semiconductor field-effect transistors (MOSFETs) [74], 

[190]. The Fin field effect transistor (FinFET) has been developed in an attempt to overcome 

these issues, with 7 nm FinFETs technology presently receiving much attention in research 

and development [191]. Whilst it is necessary to reduce FinFET size in order to retain scaling 

[4], statistical and process variability both increase as a result of the reduced FinFET 

dimensions [5]. The difficulty involved in FinFETs scaling increase with the Fin shape and 

geometry becoming difficult to manage when the fin is made slimmer and elongated in an 

effort to maximise drive current. Nanowire transistors (NWTs) have therefore been 

proposed as a potential FinFET, replacement [6]. The next-gen technology node could 

indeed be served by the gate-all-around NWTs as an alternative to FinFETs due to their 

superior electrostatic integrity [88].  

The semiconductor industry is now focusing on the possibility of a 15% increase in the 

saturation current (Isat) needed beyond 7 nm technology nodes in to deliver the expected 

performance increase. For the 5 nm technology transistor, there is an approximate 1.6 

mA/µm Isat target, with Table 5-1, Figure 5-1, and Figure 5-2 presenting three technology 

nodes alongside the 14 nm FinFET.  
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Previous research [10], [11], [192] addresses the potential to increase the single NWT’s 

performance issues through the fabrication of a single transistor with two lateral nanowire 

channels. In order to increase the drive current, taller fins must be fitted to the 7 nm FinFET 

chip. However, the vertically-stacked lateral Si NWT would have a smaller chip footprint 

and would be shorter, compared to the FinFET counterparts.  

For each new generation, a 15% increase in saturation current could be achieved using Si 

NWTs, as a result of their electron transport characteristics. Performance improvements can 

also be realised through the use of strain in the channel; through the inclusion of multi-lateral 

channels within devices; and by engineering the channel orientations, cross-sectional 

geometries and other design parameters of the transistors. Furthermore, device structure 

engineering could also provide better balance between leakage currents and performance.  

 

Much of the existing literature has explored only single-channel NWT in simulation, with 

very few studies simulating multi-lateral 5 nm node NWTs at the time of conducting this 

research. For this reason, this chapter attempts to address this shortcoming and discuss the 

simulation of NWTs with multiple channels and various channel lengths. Contact resistance, 

non-equilibrium transport and quantum confinement effects are all taken into account during 

 

Figure 5-1 Comparison of Intel’s 14 nm FinFET and 5 nm NWT with one, two, and 

three lateral channels. 
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the simulations in order to provide reliable and accurate results appropriate for highly-scaled 

NWTs.  Importantly, this chapter also aims to address two main questions: firstly, whether 

a single-channel silicon (NWT) at 5 nm technology node is able to achieve the 

semiconductor industry target; and, secondly, if this is not possible, what number of 

nanowire channels are required in a single NWT is in order to reach this target.    

The following section of this chapter describes the device, whilst the simulation 

methodology is presented in Section 5.3. Section 5.4 discusses the calibration methodology. 

The results are presented in Section 5.5 and Section 5.6. Finally, conclusions from the 

simulation are presented in Section 5.7. 

 

 

Figure 5-2 Saturation current scaling target from 14 nm to 5 nm technology.  

 

 

 

Table 5-1 Layout pitch and corresponding saturation current for(14-5nm) 

technology.  

Node 14 nm  10 nm 7 nm  5 nm 

Layout pitch  42nm 29nm 21nm 14nm 

Isat x15% (mA/um) 1.040  1.1960  1.3750  1.580  

 



Chapter 5.  Performance of Si NWTs                                                                 110 

 

 Device Description: 

The previous chapter elucidated the relationship between performance, electrostatic 

integrity, quantum effects and cross-sectional geometry in highly-scaled NWTs. The results 

demonstrate that the strongest performance is found in NWTs with elliptical cross-sections 

compared to the performance NWTs with circular and square cross-sections. 

The current section analyses the performance of Si n-channel gate-all-around NWTs with 

elliptical 7 nm x 5 nm and 8.1 nm x 5 nm cross-sections. Each of the simulated devices has 

a 0.4nm SiO2 interfacial and 0.8nm HfO2 (High-k) gate dielectric layers. As illustrated in 

Figure 4-5 and 4-6, doping concentrations of - 1014/cm3, 1020/cm3 and 4x1020/cm3 were used 

in the channel, extensions and source/drain, respectively. The study includes simulation of 

10 nm, 12 nm, 16 nm and 20 nm gate length NWTs, with single-, double- and triple-

channels. The source/drain contacts were set at the tops of the devices in each case (see 

Figure 4-5) for overall device structure).  

   

 Ensemble Monte Carlo (EMC) Simulation: 

Charge transport and performance of a single nanowire NWT was analysed using Ensemble 

Monte Carlo (EMC) simulations including band structure, relevant scattering mechanisms 

[193], [194], volume inversion [195], and other physical relevant for Si NWT scaled below 

14 nm. As a result of the impact of confined acoustic phonon and body thickness variation-

induced scattering [101], a rapid reduction in mobility been observed below 4 nm. Extensive 

downward scaling of NWT thickness has also been achieved, with a near-5 nm nanowire 

diameter. Significant quantization effects can observed in the nanowire cross-section, as a 

result of a high electric field and small confinement dimensions [196]. Consequently, 

discrete sub-bands are formed from the conduction band, with the maximum charge density 

trends shifting towards the channel centre and away from the metal-oxide interface. These 

quantum effects impact device properties and should therefore be taken into account when 

analysing device performance. Thus, in this study, the impact of quantum confinement 
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effects on saturation current are explored using a self-consistent three-dimensional quantum 

mechanical Monte Carlo (3D-MC) simulator. The primary benefit of quantum-corrected 3D-

MC simulation approach is the ability to simulate the quantum effects across the entire NWT 

structure. Furthermore, this approach also takes into account the transition of electrons 

between quantized states, resulting in greater accuracy when self-consistently calculating 

nonequilibrium electron distribution and current. 

The MC method provides a direct solution to the Boltzmann transport equation (BTE), and 

therefore can capture non-equilibrium, quasi ballistic transport in nanometre scale 

semiconductor devices. It is suitable to apply to the simulation of Fin-FET, nanowire 

transistors and other novel 3D transistors. Furthermore, it is more accurate and predictive 

compared to drift-diffusion (DD) simulations. The smaller the transistor the more non-

equilibrium the transport becomes with carrier heating [197] and with an increasingly 

significant velocity overshoot as a non-local effect.  

The Ensemble Monte Carlo (EMC) [198] approach with Poisson-Schrödinger (PS) quantum 

corrections was adopted for the purpose of these simulations. As mentioned before the 

Monte Carlo approach provides a direct solution to the BTE. The method takes into account 

key electron scattering mechanisms such as intra- and inter-valley electron-phonon 

scatterings, surface roughness scattering, ionised impurity scattering, and the stochastic 

characteristics of electron transport. The k·p method was also utilised to calculate a full-

band structure, which was approximated with and analytical band structure model comprised 

of ellipsoidal non-parabolic valleys. The movement of hundreds of thousands of particles 

within a field distribution was tracked in order to achieve self-consistent simulation, with 

Poisson’s equation solved in 3D every 0.50 fs. The 3D-EMC simulation began with initial 

conditions set as the DD solution and the corresponding potential profiles and charge 

distribution. During simulation, self-consistent time-varying electrostatic potential and field 

distributions were upheld through the solution of the linear Poisson equation and the 

application of QM correction. In highly-scaled channel transistors, the 3D-EMC simulation 

approach has been shown to offer high levels of accuracy in forecasting ON-state transistor 

performance and in the handling of non-equilibrium transport [199].  
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The ID-VG characteristics obtained from the DD and MC-based NWT simulations (see 

Section 3.2) are illustrated in Figure 5-3.  In the case of highly-scaled NWTs, DD-based 

simulation is unable to capture the non-equilibrium effects, although many recognise the 

efficiency and stability offered by the approach in alternative scenarios, with DD simulation 

being for large complex structures including external contacts.  

The results of the MC simulation deliver drain current of ID = 1.16 mA/µm at high drain 

bias, with a marginally lower drain current than the DD simulation results at low drain bias. 

The results demonstrate that the DD simulation does not provide the desired accuracy in 

forecasting ON-state transistor performance despite the incorporation of density gradient 

quantum correction for charges. The DD and quantum-corrected MC simulation 

subthreshold slopes are similar. DD calibration is then performed in respect of the quantum-

corrected MC simulation results. This step allows the DD approach to fully capture the 

MC/PS simulation results. The calibrated DD model then can be used to simulate complex 

multichannel NWTs and to carry out statistical variability and reliability simulation, as well 

 

Figure 5-3 ID-VG curves of 7nm x 5nm silicon Nanowire simulated by two methods a) 

Monti Carlo MC and drift diffusion DD. Dashed lines correspond to high drain voltage 

VD=0.7V, while the solid lines are for low drain voltage VD=0.05V.  The gate length of 

NWT is 12 nm. 
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as a simulation of the interplay between these two elements (see Figure 5-4 for a high-level 

simulation flowchart).  

 

 Drift Diffusion Calibration 

Whilst the MC approach is widely recognised as being amongst the top transistor simulation 

approaches in terms of accuracy, it places immense strain on the CPU usage [200]. 

Furthermore, the computational speed, efficiency and flexibility of the DD method has been 

found to be supplementary to the accuracy of the MC simulation approach. For instance, 

using a 3.00GHz Intel Xeon 16 Core CPU, simulation of each bias point of Figure 5-3 was 

achieved in just 58 minutes using the DD approach, and 96 hours using the MC approach 

(1% error, mesh = 0.2).    

 

Figure 5-4 The simulation tool calibration flow chart. 
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Drift diffusion calibration is conducted in order to identify the DD simulation parameters 

suitable for reducing the difference between the results provided by EMC simulations. Here, 

the density gradient confinement effective mass, gate work function, and mobility models 

with their corresponding parameters are amongst the parameters selected for calibration.  

ID-VG calibration is conducted based on a three-stages strategy, with the first stage targeting 

the sub-threshold region, the second stage targeting the low field current voltage 

characteristics, and the third stage targeting the high field current voltage characteristic. 

Here, the impact of each parameter calibration stage is virtually independent on the 

following stages. The mobility models and additional parameters along with the relevant I-

V characteristic areas that they most significantly influence are illustrated in  Table 5-2. An 

oxide interface is found in the NWT structure during the calibration first stage, with a density 

gradient quantum correction carrier confinement effective masses normal z-direction (mdgz) 

and y-direction (mdgy). These affect the subthreshold slope (SS) by way quantum 

confinements’ decrease in effective oxide capacitance. This being said, since the PS-

Table 5-2 The mobility models and other parameters with the corresponding regions 

of I-V characteristics on which they have major impact.  

Parameter / Mobility models Major impact on I-V region 

Density gradient effective mass Subthreshold; Low drain (LD) 

and high drain(HD) 

Work-function All; shift in VG 

Low-Field mobility models Low drain (LD); above threshold 

Perpendicular-Field mobility 

models 

Low drain (LD) 

Lateral-Field mobility models High drain(HD) 
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calibration of the density gradient effective masses has already been carried out, it does not 

need to be changed at this stage. Modification of the work function at any of the calibration 

stages realigns the VT.  

In the (Poisson-Schrödinger (PS) / Drift-Diffusion (DD)) simulation, up to three mobility 

models can be selected to use in a given simulation: 1) Low-field mobility (that considers 

ionized impurity scattering); Arora mobility model [149], Masetti mobility model [148], and 

Philips mobility model [150]. 2)Perpendicular field-dependent mobility (that considers 

surface roughness scattering); Yamaguchi [151], Lombardi [152], and thin-layer mobility 

model [153].  3) Lateral field-dependent mobility (for velocity saturation); Caughey-Thomas 

velocity saturation model [154]. In this work, the following three carrier mobility models 

have been used, Masetti, Lombardi, and Caughey-Thomas. At low VD, the NWT ID-VG 

characteristics are determined by the low-field mobility for a gate voltage around and just 

above VT. then the device calibration process is the calibration of the complete ID-VG 

characteristics at low drain bias. During the 1st calibration iteration a perpendicular electric 

field model has been activated and the lateral electric field model disabled. In the final stage 

of the calibration process, the complete ID-VG behaviour at high applied VD is calibrated. 

During the first calibration iteration a lateral electric field model has been enabled and the 

perpendicular electric field model disabled. At all stages of the calibration the VT can be 

realigned by modifying the work function.  

 

 5nm NWT: MC simulation  

Simulations of the ID-VG characteristics of the NWTs under consideration are carried out 

following the aforementioned methodology. The ID-VG characteristics of a 14 nm FinFET 

transistor is compared to that of a single Si-NWT simulation in Figure 5-5, with the results 

benchmarked against the 5 nm CMOS’ target drive current of 1.58 mA/µm. This was 

justified during the introduction. Alignment of the two characteristics provides the same 

leakage current. The results demonstrate that the 14 nm FinFET has a lower Iast than the 

single nanowire transistor at both high and low drain biases. Here, SS is approximately 62.55 
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[mV/dec], while DIBL is approximately 9.04 [mV/V]. Although the drive current of the 

single NWT is higher than the drive current of the FinFET, the Isat value falls significantly 

short of the 1.58 mA/µm target at high (0.7V) drain bias (Figure 5-5). It should be 

highlighted that all currents shown in Figure 5-5 are normalised by the transistor pitch (see 

Table 5-1).  

 

 Strain and channel orientation effects  

Chip manufacturing is based on silicon, despite the potential use of Ge, GaAS, InGaAs, InAs 

[201] and other high-mobility materials for the enhancing of the NWT performance. The 

performance of silicon-based transistors can be improved by suitable surface orientation and 

channel direction choices. The Si NWT performance and mobility can also be further 

enhanced through the introduction of strain [202]. Therefore, identifying solutions to 

 

Figure 5-5 ID-VG characteristics of Intel’s 14 nm FinFET (experimental) comparable to 

the performance of 5 nm Si NWT (3D-MC simulations). Lg=12nm for the NWT. Dashed, 

solid curves represent ID-VG characteristics at drain voltage 0.070V and 0.050V 

respectively. 
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achieve the highest strain levels possible at the present time is a high priority for the 

semiconductor industry. Recent research reports a successful attempt to move significantly 

beyond the limits of SiGe-based virtual substrates by using a 4.5% elastic strain of 7.6 GPa 

uniaxial tensile stress in Si nanowires with a width of 30 nm [203]. In traditional FETs, high 

STI-based compressive stress result in a saturation current of scaled <110> nFETs being 

close to <100> nFETs. The velocity saturation of <110> pFETs is lower than that of nFETs, 

with mobility also being higher in <110> pFETs compared to <100> pFETs, rendering the 

scaled <110> pFETs more preferable [204]. Significant research is focused on <110> 

surface orientation, which has been heavily adopted in gate-all-around FETs, FinFETs and 

other FET structures [205].  

Extreme downward scaling of NWT diameter to 5 nm has been achieved. Significant 

quantization effects can be seen in the corresponding NWTs. , [196]. Consequently, discrete 

sub-bands are formed from the conduction band, with the maximum charge density shifting 

towards the channel centre and away from the metal-oxide interface. It is also possible for 

the charge density to have an isotropic distribution. These quantum effects have an impact 

on device performance and must therefore be taken into account during device simulation 

analysis. Therefore, this study investigates the impact of the quantum mechanical effects on 

the NWTs saturation current using a self-consistent three-dimensional quantum mechanical 

Monte Carlo (3D-MC) simulation approach. The ability of the quantum-corrected 3D-MC 

approach to capture accurately the quantum effects is one of the main advantage of this 

approach.  

We begin by analysing 7 nm x 5 nm NWTs with channel orientations of <110> and <100> 

with regards to strain impact. Here, axis rotation necessitates that each valley’s effective 

mass tensor must be converted, and thus the impact of switching between the <110> to 

<100> channel orientation without strain must be assessed first.  
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 Figure 5-6 presents the ID–VG characteristics of (7nm × 5nm) Si NWT with channel 

orientations of <110> and <100> without strain. The mobile charge is higher in the <100> 

channel orientation than in the <110>, in line with the chapter 4 results. Therefore, the 

channel’s mobile charge increases when the crystal orientation of the silicon channel is 

changed. Furthermore, a 4% increase in saturation current is shown in the <100> NWTs 

compared to the <110> NWTs. The cross-sectional area and shape are the same in both 

NWTs. 

The ID-VG characteristics for a 90o NWT rotation are presented in Figure 5-7. The ID-VG 

results of the <110> NWT are largely the same as for the <100> NWT and unrotated NWT, 

due to symmetrical charge distribution (as result of identical electron effective masses in the 

principal confinement plane). Anisotropic charge distribution occurs in the case of the 

<110> NWT due to the differences between the electron effective masses. The results 

indicate that NWT performance can be enhanced by changing the <110> channel 

orientation, with NWT performance significantly impacted by its geometry.  

The enhanced transport and superior electrostatic control of strained Si nanowires make 

them viable candidate for further CMOS scaling. Consequently, there is significant interest 

 

Figure 5-6 ID-VG characteristics compares the simulation results (MC) for two 

stacked channels (7nm x 5nm) each NWT has a different channel orientation 

<110>and <100>. Lg=12nm.  Dashed, solid curves represent ID-VG characteristics 

at drain voltage 0.070V and 0.050V respectively.  The gate length is 12 nm. 
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in increasing the NWT performance by strain. The introduction of strain can result in 

significant Isat current enhancement. However, further research is necessary to explore this 

possibility at NWT cross sections below 7 nm, taking into account also the quantum 

confinement effects[206]. 

The key benefits of strain include reduction in the effective masses and increase of the band 

separation all increasing mobility [207], [208]. The impact of strain on Si is discussed in the 

existing literature [209]. However, the valley splitting due to quantum confinement can 

minimise strain effect in transistors scaled transistors. Figure  5-8 illustrates conduction band 

constant energy ellipsoids (Δ) with six valleys in silicon across the confinement plane and 

uniaxial tensile strain, with the x-axis denoting transport direction. 

The Figure 5-9 and Figure 5-10 illustrate the ID-VG characteristics of four single NWTs with 

varying strain values and a <110> and <100> channel orientation respectively. The results 

indicate that a 5-27% increase in Isat magnitude and 3-21% increase in saturation current can 

be achieved through the introduction of channel strain in the <110> and <100> channel 

orientations, respectively. This being said, strain of 2.0 GPa still did not allow us to achieve 

the target drive current in either case.  

 

Figure 5-7 ID-VG characteristics compares the simulation results (MC) for two stacked channels (5nm ×7nm) each 
NWT has a different channel orientations <110>and <100>. Lg=12nm.  Dashed, solid curves represent ID-VG 
characteristics at drain voltage 0.070V and 0.050V respectively. 
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Within the crystal unit cell, atom location is impacted by tensile strain, resulting in a change 

in effective mass conductivity and band structure, with strained semiconductors 

demonstrating changes in band edge curvature, band warping, band splitting and band edge 

energies.  

 

  

 

 

Figure  5-8 conduction band constant energy ellipsoids (Δ) six valleys in silicon along the 

confinement plane and uniaxial tinsel strain. The transport direction is the x-axis. 
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Figure 5-9 ID-VG characteristics compares the simulation results (MC) for 4 

(7nm×5nm) NWT with different level of tensile strain channel orientations 

<110>. Lg=12nm.  Dashed, solid curves represent ID-VG characteristics at drain 

voltage 0.070V and 0.050V respectively.  

 

Figure 5-10 ID-VG characteristics compares the simulation results (MC) for 4 

(5nm×7nm) NWT with different level of tensile strain channel orientations 

<100>. Lg=12nm.  Dashed, solid curves represent ID-VG characteristics at drain 

voltage 0.070V and 0.050V respectively. 

 

 



Chapter 5.  Performance of Si NWTs                                                                 122 

 

 Vertically stacked lateral NWT 

Whilst more difficult to simulate and manufacture, introducing multiple channels in a single 

NWT is one potential solution to enhance Isat. Per-footprint drive current deficiency could 

be addressed through the development of vertically-stacked lateral NWTs at the 5 nm node, 

with reduced contacted gate pitch [11], [12]. The ITRS roadmap also incorporates vertically-

stacked NWTs [210]. The difficulty in simulating vertically-stacked NWTs stems from its 

structure size, which remains an issue even with the adjustment of the discretization mesh. 

Direct simulation of multiple channel NWTs is computationally prohibitive using MC 

simulation. The MC simulations cannot also take into account the contact resistance. 

Therefore single channel NWT MC simulations with PS-based quantum correction were 

performed for the purpose of calibrating a single NWT’s DD simulations needed to assess 

the vertically-stacked NWT performance [211], [212]. Once satisfactory calibration has 

been achieved, the vertically-stacked lateral NWTs were simulated using the calibrated DD. 

The vertically-stacked NWT with 7 nm x 5 nm elliptical channel is illustrated in 3D in Figure 

5-12. 

Single-, double- and triple-channel devices of four gate lengths were compared and analysed 

as illustrated in Figure 5-11. It was not possible to reach the target drive current in the single 

channel NWT devices, meaning that the 5 nm CMOS technology’s scaling requirements 

could not be met. For instance, double-channel devices – discounting the source/drain (S/D) 

contact resistance – can exceed the target drive current in the case of an LG=12 nm device, 

but this cannot be achieved at LG=20 nm. 

Based on these results, the target performance is achievable through the use of a double-

channel lateral NWT. However, this is only possible if the S/D contact resistance is not taken 

into account and the gate length is of a certain size. 
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Compared to the 5 nm CMOS node target value of (15%) Isat current values are significantly 

greater for the triple-channel lateral nanowires, as shown in Figure 5-11. Therefore, the 

results indicate that the 5 nm CMOS scaling performance target could be safely achieved 

through the introduction of three lateral channels stacked in a single NWT device. Still these 

results do not take into account the S/D contact resistance. 

 

 

Figure 5-12 3D schematic view of the vertically stacked NTW of two lateral channels 

and material details. 

 

 

 

Figure 5-11 Characteristics of the ID versus the VG obtained from calibrated DD for 

the NWTs with one, two, and three channels. The DD is calibrated for each gate 

lengths (10nm, 12nm,16nm, and 20nm). Dashed, solid curves represent ID-VG 

characteristics at drain voltage 0.070V and 0.050V respectively. 
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 Source/drain contact resistance 

As noted, source/drain contact resistance (R) is not taken into account in the simulation 

illustrated in Figure 5-11. In the simulation analysis presented here four values of R 

considered as lump S/D resistance (100 Ω, 500 Ω, 750 Ω, and 1K Ω). The contact resistance 

is introduced at both the source and drain contacts (Figure 5-12).  

The results illustrated in Figure 5-13, which does not include strain, illustrate the negative 

impact of the S/D resistance on Isat. For example, the Isat value is approximately 0.82 mA/µm 

for single-channel NWTs, 1.49 mA/µm for double-channel NWTs and 1.92 mA/µm for 

triple-channel NWTs at a drain bias of 0.7V and contact resistance of 1KΩ. Interestingly, 

the double-channel NWTs also fall below the target Isat current. Therefore, the introduction 

of contact resistance into the simulations suggests that the 5 nm CMOS scaling requirements 

cannot be met using double-channel NWTs. Conversely, the target value is exceeded by 

triple- channel transistors, suggesting that performance at or above the scaling target can 

only be achieved using triple-channel Si NWTs.  

Figure 5-14 illustrates an experimental design for single-, double- and triple-channel NWTs 

with 10 nm – 20 nm gate lengths at a contact resistance varying from 500 Ω to 2500 Ω.  The 

devices presented in Figure 5-13 are shown again in Figure 5-15. However, in this case, 

channel strain of 2.0 GPa is introduced. Here, the double-channel NWT exceeds the target 

Isat current across all R values, indicating that the industrial target could be achieved using 

with two channels NWT. 

As shown in Figure 5-9, a single-channel NWT’s drain current can increase by 27% as a 

result of 2.0 GPa strain. However, Figure 5-15 demonstrates that the double- and triple-

channel lateral NWTs show a significant decline in the single channel drive current, which 

is the result of a current path voltage decrease across series resistance at the S/D contacts, 

and in S/D regions that are highly doped. In the double-channel NWT the bottom nanowire 

current decreases by 21.6% at 1K Ω, whilst the triple-channel NWT the current decreases 

by 23.5% at the same resistance, between the channel and the contact. 
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 Current density: series resistance effect  

The single-, double- and triple-channel NWTs’ current density is illustrated in 3D in Figure 

5-16, which highlights the variance between current densities. Whilst the nanowires in the 

triple-channel NWTs have the same cross-sectional area, current density is higher in the top 

channel (nearest to the metal) compared to the lower and middle channels. This is 

represented by the large red region near to the drain, with the red becoming weaker at the 

second and third channels. Similar results are depicted for the double-channel device, with 

greater current density in the top channel compared to the bottom channel. Therefore, the 

results suggest that as the distance between the channel and the contact becomes greater, a 

reduction in current density is experienced in each of the lateral channels.  

 

Figure 5-13 Characteristics of the ID versus the VG obtained by calibrated DD for the 

NWTs with one, two, and three channels at four different ohmic contact resistance. 

Lg=12nm. Dashed, solid curves represent ID-VG characteristics at drain voltage 0.070V 

and 0.050V respectively. 
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The metal source/drain contacts are at the top of the highly doped source/drain regions, 

which are the same for every NWT configuration. However, it is only the top of the 

source/drain region that connects with the contact. Thus, the top channel has greater current 

density due to proximity to the metal contact (see. Figure 5-16). 

The current density of lateral NWT stack containing NWTs with varying cross section of 7 

nm × 5nm (top), 7.4 nm × 5 nm (middle), and 8 nm × 5 nm (bottom) is illustrated in Figure 

5-17.Channels with larger cross-sections are able to conduct stronger currents than their 

smaller counterparts, thus resulting in asymmetrical current density through the channels. 

Therefore, the same current could be sent through the stack from the top and bottom 

channels, at least in theory.  

 

 

 

Figure 5-14 Experimental design (4D) for stacked lateral NWT and the impact of the 

number of stacked channels, Lg (nm), R (Ω) on SS and saturation current Isat.  
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Figure 5-15 Characteristics of the ID versus the VG obtained by calibrated DD for 

NWTs with one, two, and three channels. Each NWT strained by 2.0 GPa. 

Considering 4 different ohmic contact resistance. Lg=12nm. Dashed, solid curves 

represent ID-VG characteristics at drain voltage 0.070V and 0.050V respectively. 

 

 

Figure 5-16 Current density for NWTs with one, two, and three channels 

Lg=12.0nm.  
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Figure 5-17 (Top) the current density of NWT with three stacked channels. cross-

section.  (Bottom) Slicing the S/D contact up to the middle of the stack.  

 

 

 

 

Figure 5-18(A) the current density of stack with three lateral NWTs: top 5nm×7nm, 

5nm×8.6nm (middle), and 5nm×9.4nm bottom. (B, C, D) the current density of single 

(5nm×7nm) NWT in the top, middle, the bottom of the stack. 
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This theory, however, is refuted in Figure 5-17where, it can be seen that current density 

cannot be completely equilibrated by upscaling the diameter of the lower nanowires, with 

the top and middle channels still having higher current density than the bottom channel. 

Additionally, the figure also demonstrates that current density varies even when a single-

channel NWT is used in place of the stack (see B, C and D). This is due to the impact of the 

increasing access length, and corresponding increase in the resistance of the highly-doped 

S/D regions.  

As shown in Figure 5-18, bringing the metal contacts to the side could be an option to reduce 

the S/D series resistance, but the differences between the vertical placement of lateral 

nanowires and the respective lateral NWT diameters can have an impact on transistor 

variability. 

Whilst the use of stacked multi-lateral NWTs has been proposed as a solution, the 

nanowires’ diameters will impact the drive current, with the drive current increasing with 

the increase in the NWT diameter. Assuming that the cross-sectional area is increased by 

the same ratio, the following equation can be used to estimate the area: 

Here we investigate further the options the NWT based 5 nm CMOS node with integrating 

double or triple lateral NWTs whilst increasing the vertical diameter 𝑥 × 7𝑛𝑚 , 𝑥 > 1 . 

Here, the cross-sectional area will be larger at the same footprint, but the device’s 

electrostatic integrity will be affected. Figure 5-19 illustrates the increase in a single NWT’s 

cross-sectional area to double its size, which is equal to the stacked (double) NWT’s total 

cross-sectional area (Si). 

The double NWT’s cross-sectional area can be expressed as: 

 𝐴𝑟𝑒𝑎 = 𝑥(𝑎/2) × (𝑏/2) × 𝜋     𝑎 = 7𝑛𝑚,   𝑏 = 5𝑛𝑚,   𝑎𝑛𝑑 𝑥

> 1  

(5-1) 



Chapter 5.  Performance of Si NWTs                                                                 130 

 

    𝐴𝐷𝑜𝑢𝑏𝑙𝑒 = 2 ×
5

2
×

7

2
×  𝜋 = 17.5𝜋 (𝑛𝑚2) 

The tall single NWT’s cross-sectional area can be expressed as: 

   𝐴𝑇𝑎𝑙𝑙 =
5

2
×

14

2
×  𝜋 = 17.5𝜋 (𝑛𝑚2)  

Based on the results of the simulation, single increase area NWTs of the same gate length 

are found to have worst SS and DIBL compared to the double NWTs. Furthermore, double 

NWTs are found to be better in terms of the total quantum charge to gate capacitance ratio 

than single NWTs of the same (Si) cross-sectional area. 

 

 

 Single-, double- and triple-channel NWT capacitance 

The simulation conducted in this study computes nanowire capacitances as Cij = ∂Qi/∂Vj, 

where i and j represent the four device contacts: gate (g), source (s), drain (d) and bulk (b). 

Here, bulk capacitance is excluded from the analysis. The gate capacitances related to the 

gate contact are expressed as Cgg, Csg, Cdg and Cbg; the source capacitances related to the 

 

Figure 5-19 Single NWT with the same area of the double NWT. The current density 

and charge distribution at Vg=0.7V, VD=0.7V, and Lg=12nm. 
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source contact are expressed as Cgs, Css, Cds and Cbs; and the drain capacitances related to 

the drain contact are expressed as Cgd, Csd, Cdd and Cbd 

𝐶𝑖𝑗 = ∂Qi/ ∂Vj = |

𝐶𝑔𝑔     𝐶𝑠𝑔   𝐶𝑑𝑔

𝐶𝑔𝑠    𝐶𝑠𝑠    𝐶𝑑𝑠

𝐶𝑔𝑑    𝐶𝑠𝑑    𝐶𝑑𝑑

| 

Single channel NWT        𝐶𝑖𝑗 = |
9.83     5.28    4.47
8.07    5.19    2.72
1.56     0.13    1.84

| × 10−18𝐹 

Double channel NWT      𝐶𝑖𝑗 = |
19.4     10.3    8.86
15.2    9.35    5.12
4.20     1.09    4.19

| × 10−18𝐹 

 Trible channel NWT       𝐶𝑖𝑗 = |
27.9     12.4    13.2
20.9    10.7    7.95
7.08   0.21    6.21

| × 10−18𝐹 

With the stacking capacitance of NWT rapidly increasing, it is not only Ion criteria that 

should be considered when using laterally-stacked NWs. This is particularly true based on 

the fact that modern CMOS technology is more often restrained in terms of power than 

speed. Nonetheless, NWTs, FinFETs and other multi-gate MOS-FET must still consider the 

issue of parasitic capacitances. A potential solution is the use of a diamond-shaped 3D multi-

gate transistor [213]    

 Optimization of 5 nm NWT 

The connection between the cross-sectional dimensions of NWTs and electrostatic integrity 

was discussed in details in Section 4.8 of this study, which also highlighted that the lowest 

intrinsic delays can be found in NWTs of 8.1nm × 5nm and 5nm × 8.1nm. These results are 

based on the QM/CG criteria. 

The failure to meet the expected scaling performance NWTs has been highlighted, in terms 

of Ion per lay-out pitch. It has been suggested that the introduction of strain to the channel 
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can enhance Si NWTs’ electron transport, together with altering the channel orientation and 

geometry of the NWT [189], [176], [206]. 

The simulation of ID-VG characteristics for a <110> channel orientation 5 nm × 8.1 nm (Phi) 

NWT for four levels of strain is illustrated in Figure 5-20, which confirms that 5-27% 

increase in the saturation current magnitude occurs with the increase of the channel strain. 

In particular 27% increase in NWT performance (compared to the unstrained NWT) has 

been observed at a tensile strain of 2.0 GPa. Still the 5 nm CMOS industrial target is only 

just met by the Ion value, with the S/D contact resistance excluded from this analysis.  

The results clearly demonstrate greater Ion in the 1/Phi NWT compared to the Phi NWT, 

indicating the potential for higher speed applications. This being said, the CMOS device 

density is minimised by the 1/Phi NWT which has a narrower footprint. Drive current could 

be maximised by high S/D doping, as shown in recent studies, which have gone beyond 

 

Figure 5-20 Characteristics of the ID versus the VG for 5.0nm×8.10 nm NWTs at 

4 different tensile strain. with one. Lg=12.0nm, channel orientations <110>. 

Dashed, solid curves represent ID-VG characteristics at drain voltage 0.070V 

and 0.050V respectively.  
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doping levels of 1021cm [214]; however, the development of 5 nm technology still requires 

further work in the area of contact resistance. Phi NWT Ion is compared with S/D doping of 

a maximum 1.2x1021cm-3, with contact resistance (500 - 2500 Ω), and (10 – 22 nm) gate 

length  (Figure 5-21). As illustrated in the Figure 5-21 Ion value is 1.4 mA/µm at the 5 nm 

node with Lg=12 nm and R=2314 Ω [4], [215], [6]. 

The ITRS roadmap incorporates vertically-stacked lateral NWT nanowires in order to 

maximise per-footprint current and minimise contacted gate pitch. Vertically-stacked Phi 

and 1/Phi NWTs are illustrated in Figure 5-23, with their IDVG characteristics presented in 

Figure 5-22.  

 

  

 

Figure 5-21 Correlation between NWT performance (Ion)and S/D peak doping,  S/D 

contact resistance, and Lg. NWT cross-section is Phi (5.0nm×8.1nm) and channel 

orientation is <110>. Ion is evaluated at VD=0.70V. 
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Figure 5-22 Characteristics of the ID versus the VG of vertically stacked of two 

lateral Phi (5.0nm×8.1nm) (red) and (8.1nm×5.0nm) 1/Phi (black) NWTs at 

VD=0.70V. The gate length is 12.0 nm. The crystallographic channel 

orientation is <110>. 

 

 

 

 

Figure 5-23 (left) Vertically stacked lateral NWT of both phi and 1/Phi. The 

gate pitch layout for Phi and 1/Phi NWTs. 
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 Summary 

In this chapter, the use of a quantum-corrected Monte Carlo simulator when exploring 

nonequilibrium transport in NWTs’ suitable for the 5nm CMOS technology generation. The 

simulations were performed in order to assess whether the semiconductor industry targets 

can be met through the use of a single-channel NWT. It was found that this is not possible 

with the saturation current falling short of the target value of 1.58 mA/µm. The simulations 

also reveal that NWT saturation current, still does not meet the target even if high tensile 

strain is introduced in the channel of single nanowire NWT. Whilst the quantum-corrected 

MC simulations are effective in predicting the transistor performance in the case of small 

NWTs, they cannot take into account the S/D contact resistance. Additionally, the MC 

simulation approach is highly time- and memory-intensive when simulating stacked NWTs. 

Following calibration (based on density gradient confinement effective mass, the gate work 

function, and mobility models and their relevant parameters), the DD simulation approach 

was adopted for the simulation of vertically-stacked NWTs.  

The DD simulations have revealed that the industrial target value of the drive current can be 

met by NWTs with two vertically-stacked lateral channels and highly-doped S/D regions. 

This being said, the current is greater in the top nanowire compared to the bottom nanowire, 

since the top nanowire is closer to the S/D contact. The reason for this is the voltage decrease 

due to the S/D series resistance, and this can result in faster degradation of the top nanowire 

with time. A more even current density can be achieved by the slicing of the S/D contacts. 

Finally, this chapter also discussed the effects of the golden ratio Phi on device performance 

and electrostatic integrity in n-type silicon nanowire transistors for 5 nm CMOS technology, 

demonstrating that NWT performance can be maximised through the use of NWT shapes 

with near-golden ratio (Phi) aspect ratios.  
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6 Chapter 6. Study of statistical variability 

 

 Introduction 

NWT statistical variability, associated with the discreteness of charge and granularity of 

matter, which cannot be controlled through tightening process control and which is a key 

contributor to variability in CMOS devices, is discussed in this chapter. It is possible to 

model deterministically the impact of stress and lithography on the systematic CMOS 

variability, and to capture this in the design and verification process. However, it is only 

possible to model and represent the impact of the statistical variability on the transistor 

characteristics probabilistically. When measuring a pair of identical adjacently-placed 

transistors, the two transistors can have characteristics from the extreme tails of the statistical 

distribution.  

Today, the traditional approach of simulating, designing and describing CMOS transistors, 

in terms of smooth interfaces and boundaries and continuous ionised dopant charge, is 

becoming outdated. The contemporary transistors are increasingly atomistic in nature.   

Figure 6-1illustrates the random discrete dopants (RDD) in a NWT with S/D peak doping 

NS/D=1×1020cm-1 and NS/D=8×1020cm-1, and with channel doping Nch=1×1017cm-1. The top 

of the image illustrates the random dopant distributions. The middle illustrates the impact of 

RDD on the 3D electric potential distribution. The bottom of the image illustrates the impact 

of RDD on the NWT’s potential distribution, depicted by the sliced y-x and z-x plane at the 

centre of the two NWTs. 
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Significant variations in the transistor characteristics can be introduced by the atomicity of 

matter and electric charge granularity. There is both variation in numbers and positions of 

activated dopants in the NWT’s active region. This results in a high level of variation to the 

transistor characteristics as a result of the microscopic differences between each transistor. 

Furthermore, gate oxide thickness is equal to approximately three atomic layers with an 

average of 1-2 atomic layers of interface roughness, resulting in considerable variation in 

oxide thickness. Consequently, correlations can be seen between the body thickness and the 

oxide thickness of the transistors. Both gate pattern line edge roughness (LER) and 

corresponding geometrical statistical variations are the inevitable result of photoresist 

granularity and illumination nonuniformities [216]. Furthermore, statistical variability can 

also arise as a result of metal gate or poly-silicon granularity, as well as high- κ dielectric 

granularity.  

 

Figure 6-1 The RDD source/drain peak doping NS/D=1×1020cm-1and NS/D=8×1020cm-1, 

the channel doping Nch=1×1017cm-1(top). The effects of RDD on the electric potential 

distribution on the conduction channel and also in the S/D regimes (mid). Two slices cut 

along y-x plane and along z-x plane at centre of the NWT to show the effect of RDD on 

potential distribution inside the NWT(down).  
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In this chapter, the impact of the key sources of variability on NWTs are explored using 

variability aware MC- and PS-calibrated DD simulations.  

  Variability sources 

In-depth numerical GAA NWT simulations has been performed in order to examine the 

magnitude of the statistical variability resulting from Metal gate granularity (MGG), line 

edge roughness (LER), random discrete dopants (RDD) and other sources [217] [218], 

[219]. The results will be discussed in the present chapter. Earlier research has illustrated 

the use of GARAND in the analysis of statistical variability through the simulation of 

various statistical variability sources [220]–[223]. The key sources of statistical variability 

will be discussed individually in greater details in the following subsections.  

 Random discrete dopants (RDD) 

Notable changes in device characteristics due to the random and discrete nature of dopant 

charges (RDD) in the channel region can be observed in highly-scaled NWTs. The impact 

of RDD has been discussed in earlier research of both multi-gate MOSFET and traditional 

MOSFET [224], both experimentally [225], [226] and in simulation analysis [99], [227], 

[228]. The traditional approach to numerical device simulation is now changing as a result 

of the effect of the RDD on the output, the functionality and the reliability the relevant 

systems [229], macroscopic simulations now unable to represent accurately the transistor 

behaviour using a continuous charge distribution [98]. In the statistical ‘atomistic’ device 

simulations random discrete dopants are primarily created using classical TCAD process 

simulation-based doping profiles. A more modern and accurate approach is the 

determination of the discrete dopant atom locations by means Kinetic Monte Carlo 

‘atomistic’ process simulations. In the RDD simulations ensembles of devices with 

microscopic different dopant distributions representing exactly the same average 

(macroscopic) dopant distributions must be created. Each location of the silicon lattice in 

GARAND DD simulation domain is scanned individually based on the methodology 

outlined in [230], [231], with dopants added at random to the crystal sites based on a 

probability value derived from the relevant levels of dopant to silicon using a rejection 
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method. The frequently-adopted in MC simulations cloud-in-cell (CIS) method [232] is then 

adopted to distribute each dopant’s charge to the eight neighbouring mesh nodes . Figure 

6-1 presents a standard 3D potential distribution denoting the effect of randomly-introduced 

discrete topics in an average 7 nm n-channel NWT. 

The existing literature addresses the issues arising from the use of fine mesh for individual 

charge resolution in atomistic DD simulation [233]. Here, the electrostatic potential, derived 

from the output of the Poisson equation, determines the electron concentration when using 

Fermi-Dirac or Boltzmann statistics in the traditional DD model. Consequently, mobile 

charge localisation in the deep Coulomb potential wells, resolved by the fine mesh occurs. 

In quantum mechanics terms, due to the high ground electron state in the Coulomb well, this 

localisation (trapping) is non-physical. The current voltage characteristics and the threshold 

voltage are artificially modified as a result of greater resistance in the S/D regions and 

changes in the depletion layer as a result of the artificial charge trapping. Additionally, 

charge trapping can also result in a greater influence of mesh size on the accuracy and the 

convergence of the traditional DD simulations. Here, an increase in trapped charge arises in 

line with the mesh refinement, which may be used to improve the resolution of the single 

Coulomb potential well. 

Two of the approaches addressing the above issues in atomistic simulation scenarios include 

the application of screening [234] criteria to divide Coulomb potential into short- and long-

range elements [233], as well as charge smearing [234]. The latter method, which is entirely 

empirical in nature can arbitrarily reduce the RDD impact particularly, in smaller devices. 

In the former method, limitations include the risk of double counting of mobile charge 

screening, as well as the random selection of cut-off points. Furthermore, long-range 

potential well depth at the charge point is significantly greater than the Coulomb well ground 

state, with significant charge trapping still a possible outcome. 
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Confinement effects associated with the Coulomb potential of discrete dopants are 

accurately represented through the application of DG quantum corrections. which also takes 

into account the confinement effects within the channel. DG corrections in DD simulations 

can be calibrated in respect of the more accurate results obtained from a coupled Poisson/ 

Schrödinger (PS) solution. 

 

Figure 6-3 Saturation transfer characteristics of 5nm × 8nm NWT (1000) device 

ensembles under influence of RDD at high drain voltage (0.7V). 

 

Figure 6-2 Saturation transfer characteristics of 5nm × 8nm NWT (1000) device 

ensembles under influence of RDD at low drain voltage (0.05V). 
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The microscopic effects of RDD within device 7 nm NWT are illustrated in Figure 6-1, with 

RDD-based potential fluctuation also presented. Here, S/D peak doping is NS/D=1x1020cm-1 

and NS/D=8x1020 cm-1, whilst channel doping is Nch=1x1017cm-1 (shown at the top of the 

image). The figure also demonstrates the impact of RDD on electric potential distribution in 

the conduction channel and S/D regimes. The impact of RDD on the potential distribution 

within the NWT is illustrated in the y-x and z-x slices through the NWT centre. The S/D 

regimes demonstrate significant fluctuation in electric potential, with the S/D extensions 

showing a lower level of fluctuation. The doping concentrate has an influence on the 

different levels of potential fluctuation seen in these simulations. Because there are a small 

number of ionised acceptors in the gate region of the Si channel, this results in smooth 

potential within the channel. It is interesting to note that because of the low doping in the 

channel, RDD VT fluctuations are minimised in NWTs compared to conventional 

MOSFETS.  

This section discusses the effect of RDD on the on current Ion and the threshold voltage VT 

in NWT with two cross sections of 5 nm and equal gate lengths. The RDD-based fluctuations 

are simulated using a statistical ensemble of 1,000 microscopically different NWTs. 

Significant fluctuations in S/D access resistance arise as a result of the potential fluctuation 

stemming from S/D extension donors, leading to greater on-current variance. RDD 

introduces also VT fluctuations as a result the potential fluctuations in the channel. Figure 

6-3 depicts the set of 1,000 gate transfer characteristics at high drain voltage, while Figure 

6-2 depicting the low drain voltage characteristics. There is a relatively low I-V dispersion 

in the sub-threshold region due to the relatively low-doped channel, with a rapid increase in 

on-current dispersion occurring as performed result of the access resistance variation which 

has greater impact at low drain bias.  

Figure 6-4 and Figure 6-5 respectively illustrate the correlation between the on-current and 

the threshold voltage at high and low drain bias. The standard deviation of the threshold 

voltage (σVT) at high and low drain biases is 1.99 mV and 1.48 mV respectively. These low 

standard deviations suggest that VT fluctuations are effectively minimised due to the low 

channel doping, with no ionised impurities beneath the gate in most cases. At the high drain 

voltage, the on-current standard deviation (σIon) is 0.0412 mA/μm, with the low drain 
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voltage on-current standard deviation is 0.0125 mA/μm. The reason for this are the S/D 

access resistance fluctuations resulting from variation in numbers and positions of the S/D 

extension donors, indicating that scaling causes a marked rise in on-current variability. 

Additionally, it should be pointed out that RDD also impacts DIBL fluctuations as a result 

of a change in the effective potential as illustrated in Figure 6-6.  

 

 

 

 

 

 

Figure 6-4 Scatter plots of Ion versus VT at saturation for 1000 device 

ensembles with RDD. At high drain voltage (0.7 V). 
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Figure 6-5 Scatter plots of Ion versus VT at saturation for 1000 device ensembles with 

RDD, at low drain voltage (0.05 V).  

 

Figure 6-6 Histograms of the impact of RDD- generate fluctuations on DIBL of 

5nmx 8nm NWT. 

 



Chapter 6. Study of statistical variability                                                                 144 

 

 Line edge roughness (LER)  

Figure 6-7 and Figure 6-8 depict the impact of the line edge roughness (LER) on the 

simulated NWTs, which is one of the key source of fluctuation introduced during 

lithography and consequent etching [87]. The reduction of LER to less than 1 nm is 

challenging, with the photoresist used in the 14 nm lithography systems [235], [236] having 

restricted molecular dimensions. Given this, LER will become a key source of intrinsic 

parameter fluctuation with rising importance over the coming years [87].  

One-dimensional (1D) Fourier synthesis is conducted to create random junction patterns. 

Here, gate edges are created from a power spectrum relating to a Gaussian autocorrelation 

function, using as parameters the correlation length (Ʌ) and RMS amplitude (Δ). RMS 

amplitude is essentially the standard deviation of the gate edge’s x-coordinate (based on the 

assumption of a gate edge parallel to the y-direction). The LER value is equal to three times 

the value of RMS amplitude (3Δ). 

 The Gaussian autocorrelation function provides the power spectrum needed to determine 

the amplitudes of a sophisticated set of N elements, generated using a random line algorithm. 

As illustrated in (6-1), the power spectrum for the Gaussian autocorrelation function is 

represented by SG: 

 

Figure 6-7 Si NWT After the final anneal process LER = 1.12 ± 0.02 nm LER = 0.85 

± 0.01 nm [87]. 
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 𝑆𝐺(𝑘) = √𝜋𝜎2Λ𝑒−𝑘2Λ2/4 (6-1) 

where 𝑘 = 𝑖(
2𝜋

𝑁
, 𝑑𝑥) ) is the discrete spacing utilised for the line, with 0 ≤ i ≤ N/2. 

Whilst no two lines are identical, due to the random selection of element phases, all but the 

(N/2)-2 elements (which are independent elements) are chosen based on symmetry 

considerations, resulting in a real height function (H (x)) following inverse Fourier 

transform. Figure 6-9 and Figure 6-12 respectively illustrate the effect of LER on gate 

transfer characteristics in 1,000 5nm × 8nm NWTs (with this number limiting the risk of 

statistical error) at low and high drain bias.  

Figure 6-10 represent the impact of LER on the DIBL distribution, while Figure 6-11 and 

Figure 6-13 represent the correlations between Ion, and VT at high and low drain bias 

respectively. It is clear that DIBL fluctuations in this case are similar to the fluctuations 

caused by RDD as a result of changes in channel length across the transistor width. The LER 

results in a standard deviation of 5.58 [mV] for σVT (compared to 1.99 under RDD), and 

0.0317 [mA/µm] for σIon (compared to 0.0312 under RDD), 0.2 [mV/dec] for SS (compared 

to 0.26 under RDD), and 0.96 [mv/V] for DIBL (compared to 1.01 under RDD). The DIBL 

 

Figure 6-8 General 3-D representation of the LER and WER of single NWT 
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and VT-Ion distributions become wider, indicating greater variability, as the dimensions of 

the scaled devices are reduced 

 

 

Figure 6-9 Saturation transfer characteristics of 5nm x 8nm NWT (1000) device 

ensembles under influence of LER at low drain voltage (0.005V)  

 

Figure 6-10 Histograms of the impact of LER-induced fluctuations on DIBL of 5nm× 

8nm NWT 
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Figure 6-12 Saturation transfer characteristics of 5nm × 8nm NWT (1000) device 

ensembles under influence of LER at high drain voltage (0.7V) 

 

 

Figure 6-11 Scatter plots of Ion versus VT at saturation for 1000 device ensembles with 

LER. At high drain voltage (0.7 V). 
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 Metal gate granularity (MGG)  

Intrinsic fluctuations in the transistor characteristics originate also from metal gate 

granularity (MGG). Following thermal annealing, crystallisation of the metal gate occurs. 

Randomly-sized grains emerge during the gate’s polycrystallysation, with various 

crystallographic orientations and different corresponding work functions. At the time of 

writing, this is one of the key sources of fluctuation in the distribution of transistor 

parameters.  

In the gate region the local threshold voltage experiences random variation based on the 

work functions of different crystallographic metal grains at the metal/oxide interface. Each 

metal grain differs from the next in terms domain orientations, probability for occurrence, 

the work-function value, and the average grain size (which is determined greatly by the 

annealing temperature and metal utilised). As discussed in the literature, the grains in the 

TiN metal gate commonly used in the contemporary CMOS technology can have <200> or 

<111> orientations [237], thus leading to a 0.2 eV difference between the corresponding 

 

Figure 6-13 Scatter plots of Ion versus VT at saturation for 1000 device 

ensembles with RDD. At low drain voltage (0.005 V) 
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work-function. Additionally, research indicates that there is a 60% probability for the 

crystalline orientation with 4.6 eV work-function and 40% probability for the orientation 

with  of a 4.4 eV work-function [238]. 

Figure 6-14 illustrates the electric surface potential in a NWT for MGG with average size of 

3 nm, 4nm, 5nm and 6nm. Here, a statistical ensemble of 1,000 NWTs with microscopically 

different MGG configurations were simulated and the impact on VT, Ion and DIBL 

distributions were evaluated. Figure 6-15 illustrates the complete ID-VG characteristics of the 

simulated NWTs with different average metal grain size. Clearly with the increase of the 

MGG size the variability increases. It is interesting to note that in the case of LER and RDD 

 

Figure 6-14 The electric surface potential in the body of the device in the presence 

of MGG for the four size of MGG 3nm, 4nm, 5nm, and 6nm. 
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the average ID-VG characteristic is above the median ID-VG characteristic, whilst in the case 

of MGG, the average ID-VG characteristic is below the median. 

The effect of MGG on the standard deviations of VT, Ion, SS and DIBL is illustrated in Table 

6-1. Additionally, Figure 6-16 presents Ion / VT scatter plots at high drain bias (0.7 V) for 

1,000 device samples with MGG average sizes of 3nm, 4nm, 5nm and 6nm. 

In comparison to LER and RDD, as sources of variability, work function variability appears 

to have a significant impact on the spread of the dispersion of the transistor characteristics. 

Here, MGG diameter is positively correlated with the degree of dispersion. It is worth 

highlighting that a near-parallel change in current-voltage characteristics was observed.  

 

 SV combinations 

This section we examine the combined effect of RDD, LER and MGG on VT, Ion and DIBL 

with an exploration of the combined impacts of the three approaches. Since MGG represents 

the metal gate granularity arising out of the annealing process at high temperatures, it is 

important to incorporate MGG into SV simulation due to the impact this has on increasing 

statistical variability. MGG occurs once S/D high-temperature annealing has been 

performed on the metal gate during the gate-first process [239]. On the other hand, the metal 

gate is created following S/D annealing in the gate-last process, which can significantly 

minimise the MGG effects. Simulation without the incorporation of MGG relates to the gate-

last process, though the gate-first and gate-last processes exist side by side. In this study, If 

RDD, MGG and LER are independent the approximate standard deviation (σ) of the relevant 

transistor figure of merit corresponding to the combined effect of the three parameters is 

given in equation 6-2: 

 𝜎𝑡𝑜𝑡𝑎𝑙 = √(𝜎𝑅𝐷𝐷)2 + (𝜎𝐿𝐸𝑅)2 + (𝜎𝑀𝐺𝐺)2 (6-2) 
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Figure 6-15 Saturation transfer characteristics of 5nm x 8nm  NWT (1000) device ensembles under influence of 
MGG for the four size of MGG 3nm, 4nm, 5nm, and 6nm at high drain voltage (0.7V)  
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Table 6-1 Impact of MGG size on standard deviations of VT, Ion, SS, and DIBL. 

MGG ơVT [mV] ơIon  [mA/um] ơSS [mV/dec] ơDIBL [mv/V] 

3 (nm) 17.46 0.04465 0.58 3.25 

4 (nm) 23.31 0.06050 0.77 3.99 

5 (nm) 27.80 0.073353 0.92 4.53 

6 (nm) 32.48 0.085672 0.97 5.00 

 

 

 

Figure 6-16 Scatter plots of Ion versus Vth at saturation for 1000 device ensembles 

under influence of MGG for the four size of MGG 3nm, 4nm, 5nm, and 6nm at high 

drain voltage (0.7V)  
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Both the 5 nm × 8 nm (Phi) and 8 nm × 5nm (1/Phi) NWTs simulated here have a gate length 

(Lg) of 12 nm, with the same cross-sectional area and channel orientation. A statistical 

sample of 1,000 microscopically different transistors was simulated. Figure 6-17 and Figure 

6-18  illustrate histograms of the Ion, and VT distributions arising based on the individual and 

combined RDD, LER and MGG effects. LER is found to have a more significant impact on 

SV than RDD, while MGG having the strongest impact on Ion compared to RDD and LER. 

Furthermore, the results reveal that the standard deviation of Ion values for the 1/Phi NWTs 

falls below that of the Ion SD of the Phi NWTs at a channel orientation of <110>. 

It can therefore be proposed that the ideal AR is provided by the Phi and 1/Phi ratios, which 

represents one of the most important findings of the simulation experiments. It is clear that 

the specific parameters of the sources of variability dictate the variability of VT and Ion, 

therefore highlighting the need for further research into the impact of singular SVs on VT 

and Ion for Phi and 1/Phi NWTs.  

 

Figure 6-17 Ion distributions subject to individual SV and combined SV (RDD, LER, and 

MGG) which are defined of “gate-first technology” of Phi NWT and 1/Phi NWT.  
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In this study, as noted, sets of 1,000 transistors with microscopic differences were simulated 

in order to test each variability source. The impacts of SV sources on Ion of Phi NWTs echo 

those of 1/Phi NWTs, with a 0.1mA/µm change in Gaussian distribution noted. Since the 

mobile charge (QM) in the 1/Phi NWTs’ channel exceeds that of the Phi NWTs, this change 

is important. Additionally, the variability of MGG is significantly broader in the case of Ion 

compared to other SV sources. The validity of these findings also holds true for variability 

in threshold voltage (see. Figure 6-17 and  Table 6-2.  

The VT distributions arising out of the impacts of RDD and LER (individual and combined) 

are depicted in Figure 6-18 and Table 6-3. The standard deviation values of VT are found to 

be positively related to Ion in both the Phi and 1/Phi devices. Furthermore, the VT statistical 

variability of Phi NWTs appears to be better than that of the 1/Phi NWTs. The greater 

fluctuation in statistical parameters in the scaled devices has important implications for 

device performance with regards to transistor scaling.  

Table 6-2 Mean and standard deviation values of Ion, subject to individual SV and 

combined SV (RDD, LER, and MGG) which are defined of “gate-first technology” 

of Phi and 1/Phi NWTs. 

Ion 

mA/µm 

5nm x 8.1nm 8.1nm x 5nm 

SD Mean  SD Mean 

WER 0.03800 1.2460 0.02760 1.3100 

RDD 0.03790 1.2030 0.04010 1.2650 

MGG 0.08820 1.2230 0.08930 1.2860 

SV 0.10310 1.1710 0.09980 1.2320 
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The distribution and correlations between the figures of merit (FoM) of the Phi and 1/Phi 

NWT obtained from the TCAD simulations are illustrated in Figure 6-19. Here, RDD, LER 

and MGG as the key sources of variability (combined effects) are combined in the 

simulations. Based on the results presented in Figure 6-18 and Figure 6-19, VT, Ioff, and Ion 

appear to be correlated; although DIBL and the other FoM are weakly correlated. One of the 

main findings from the simulations is the superior Ion and lower variability in the 1/Phi 

NWTs, indicating a potential for greater speed and lower power design. This being said, 

with a wider footprint than the Phi NWTs, this will negatively impact the density of the 

CMOS device, thus representing a key limitation of the 1/Phi NWT. 

 

 

 

 

Figure 6-18 Threshold voltage (VT) distributions subject to individual SV and combined SV 

(RDD, LER, and MGG) which are defined of “gate-first technology” of Phi NWT and 1/Phi 

NWT.  
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Figure 6-19 DIBL, VT, Ioff, and ION, distributions subject to combined SV (RDD, 

LER, and MGG) which are defined of “gate-first technology” of Phi NWT and 

1/Phi NWT 

 

 

Table 6-3 Mean and standard deviations values of VT subject to individual SV and 

combined SV (RDD, WER, and MGG) which are defined of “gate-first technology” 

of Phi NWT and 1/Phi NWT.  

VT mV 5nm x 8.1nm 8.1nm x 5nm 

  SD  Mean  SD Mean 

WER 5.807 107.85 2.247 93.29 

RDD 2.001 110.66 1.91 96.18 

MGG 27.82 110.41 27.59 96.24 

SV 28.52 111.9 27.74 97.65 
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  Cross-sectional aspect ratio improves SV  

Due to quantum mechanical effects the shape and the cross-sectional aspect ratio of the 

NWT has significant impact on the electrostatic-driven performance in 5 nm NWTs. The 

VT, Ion, DIBL and Ioff distributions in Figure 6-20 have been subjected to combined to the 

combined effect of RDD, LER and MGG for the gate-first technology. The distributions are 

near-Gaussian, based on of the results of the simulations of a statistical sample of 1,000 

microscopically different transistors the nine NWTs from Table (4-6). The Phi and 1/Phi 

ratio NWTs have more favourable Ion, DIBL, VT and Ioff distributions. This could be 

associated with the fact that the Phi and 1/Phi ratio NWTs having greater gate capacitance, 

larger mobile charge and better electrostatic integrity.  

 

 

Figure 6-20 DIBL VT, Ioff, and Ion, distributions subject to combined SV (RDD, LER, and 

MGG) with a trap sheet density of 1x1012 cm-2 of all NWTs listed in table (4-6). 
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 Statistical variability of stacked NWT  

In order to maximise the current-per-footprint whilst minimising the contacted gate patch, 

the ITRS roadmap incorporates vertically-stacked lateral NWT nanowires. Simulations 

indicate that there is no significant relationship between the number of stacked NWTs and 

its electrostatic integrity including DIBL and SS. For instance, a minor 1% shift in SS is 

noted when comparing single-, double- and triple-channel lateral NWTs [164]. Stacked 

NWTs are widely recognised as the superior alternative to Fin-FETs based on their high 

drive current ultimate reduction of gate length and high immunity to short channel effect. 

This being said, the SV remains of crucial significance to CMOS technology, although no 

earlier studies address the impact of stacked NWTs on variability. The SV of vertically-

stacked lateral NWTs are analysed in this section. Figure 6-22,  illustrates the current-

voltage transfer characteristics of a statistical ensemble 1,000 two-channel atomistically 

different devices under the combined impact of RDD, LER and MGG. Figure 6-21 illustrates 

the same statistical characteristics, but for NWT with three-lateral channels instead of two. 

It is clear the triple-channel NWTs has lower variability, with the difference being strongly 

pronounced in the sub-threshold region. The threshold voltage (VT) distributions of 1,000 

single-, double- and triple-stacked NWTs under the combined impact of RDD, LER and 

MGG as SV are illustrated in Figure 6-23. Triple-stacked lateral NWTs were found to have 

a lower VT standard deviation (ơ) compared to the double-stacked NWTs. Additionally, 

single NWTs demonstrated the greatest ơVT value of all three types. It is worth highlighting 

that the ơVT variation declines with the increase in the number of stacked lateral channels. 

As illustrated in the histogram presented in Figure 6-25, a 27.39% or 1.52 mV/V decrease 

in σDIBL is seen with the introduction of two lateral channels.  Additionally, a 13.73% 

decrease in σSS is observed in the double-channel NWT, with a 16.67% decrease in the 

triple-channel NWT as shown in Figure 6-24.  As illustrated in Figure 6-26, the results also 

demonstrate that the σIon of the double-stacked NWTs exceeds that of the single NWTs by 

25% (0.02). Furthermore, the σIon of triple-stacked NWTs is 1% compared to that of the 

double-stacked NWTs. Additionally, as shown in Table 6-4, the introduction of stacked 

lateral channel NWTs reduces the variability or standard deviations of SS, DIBL and VT. 
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Figure 6-22 Linear transfer characteristics for the ensemble (1000) with 

main sources of SV (RDD, LER, and MGG) for Si NWT with two channels. 

Lg=12.0 nm, VD=0.70V.  

 

 

 

Figure 6-21 Linear transfer characteristics for the ensemble (1000) with 

main sources of SV (RDD, LER, and MGG) for Si NWT with three channels. 

Lg=12.0 nm, VD=0.70V  
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Figure 6-23 VT distributions subject to combined SV (RDD, LER, and MGG) of single, 

double and triple NWTs. 



Chapter 6. Study of statistical variability                                                                 161 

 

 

 

Figure 6-25 comparison of DIBL distributions of single, double, and triple NWT 

subject to combined SV (RDD, LER, and MGG) 

 

 

 

Figure 6-24 comparison of the SS distributions subject to combined SV (RDD, 

LER, and MGG) of single, double and triple NWTs. 
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Figure 6-26 Ion  distributions subject to combined SV (RDD, LER, and MGG) of single , double and 

triple NWTs 

Table 6-4 Mean and standard deviations values of VT ,SS, and ION subject to combined 

SV (RDD, LER, and MGG) of single, double, and triple NWTs 

NWT VT [mV] SS[mV/dec] Ion [mA/µm] 

Mean ơVT Mean ơSS Mean σIon 

Single 112.8 28.9 62.33 1.02 0.973 0.084 

Double 89.86 22.08 62.45 0.88 1.714 0.102 

Triple 74.6 18.93 62.55 0.85 2.156 0.11 
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 Additional variability sources  

Process variability may be increased due to variation in the cross-sectional shape of the 

NWT, based on the fact that electrostatic driven performance and NWT geometry are 

corelated. Additionally, VSL NWT performance is determined by the position of lateral 

NWTs within the vertical stack. This is due to greater process variability as a result of series 

resistance between the S/D contacts and lateral channels.  

 

 Summary 

The statistical variability of scaled NWT devices with characteristic cross section of 5 nm 

and with 12 nm gate length has been explored through extensive simulation and the 

corresponding results presented and analysed this chapter. The individual and combined 

effects of RDD, LER and MGG on VT, SS, Ion and DIBL have been simulated and 

discussed, with the findings suggesting that the key source of variability for all main 

electrical parameters considered in this research is MGG. For instance, VT standard 

deviation was 1.9 mV under RDD, 5.8 mV under LER, and 27.8 mV under MGG; with Ion 

standard deviation being 0.0316 mA/um under RDD, 0.0312 mA/um under LER, and 0.0733 

mA/um under MGG.  

The results also indicate that NWT variability is impacted by cross-section shape and 

dimensions, with a significant reduction in SV found in NWTs with optimal aspect ratios. 

Furthermore, a reduction in the variability of threshold voltage drive current are observed in 

vertically-stacked NWTs. As noted, the reduction in ơVT found in vertically-stacked NWTs 

is due to the cancelling-out of variability in double lateral and triple-channel NWTs.  
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7 Chapter 7. Conclusions and Future work 

 

 Conclusions 

This PhD study was carried out with the primary objective of simulating and optimising a 

realistically-scaled Si NWTs suitable for and beyond the 5nm CMOS technology generation. 

We have adopted a simulation approach that could effectively reflect quantum confinement 

effects with non-equilibrium transport. The aim of this thesis is to carry out comprehensive 

TCAD simulation research in order to study the physics of silicon nanowire transistor 

devices at the ultimate scaling limits. With the advanced modelling tools employed in this 

study, the performance limits of Si NWTs near the end of the CMOS technology scaling 

have been evaluated and important challenges in NWT device design have been addressed.  

Chapter two describes the challenges that need to be addressed in scaling of conventional 

MOSFETs and presents the technology innovations that have been implemented and 

proposed for the future. The theory of the MOSFET scaling is also outlined.  

The relentless requirement for high-performance and low power devices with ever 

increasing density of integration drives the CMOS technology to the ultimate nanoscale 

dimensions.  Nanowire MOSFETs transistors (NWTs) are among the candidates to extend 

CMOS downscaling to ultimate limits, eventually replacing the triple gate FinFET 

architectures after the 7nm CMOS technology generation.  The nanowire gate-all-around 

configuration has the best immunity against short channel effects (SCE) allowing ultimate 

transistor scaling. Since statistical variability is becoming a serious scaling limitation factor, 

the sources of statistical variability have been discussed in detail. 

Semiconductor device design and optimisation depend highly on the accurate simulation of 

the device’s physical behaviour and electrical characteristics. By modelling semiconductor 

device behaviour as part of the CMOS Technology Computer Aided Design (TCAD) 
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process, we can assess its key parameters and operation and understand how to improve its 

functionality and performance. 

Chapter three has outlined the basis of the 3D drift/diffusion simulation, presenting both the 

drift/diffusion (DD) system of semiconductor equations and the density gradient approach 

to introduce quantum corrections in the DD system as well as the algorithms employed solve 

them self consistently.  

In this study we also use the 3D ensemble MC simulation approach with accurate quantum 

corrections for the predictive simulation of nanowire transistor (NWT) charge transport and 

performance.  For the simulation of large multichannel NWTs and for the simulation of 

statistical variability we use drift diffusion simulations thoroughly calibrated to the results 

of the Monte Carlo simulations. It was clarified that non-equilibrium transport effects in 

nano-scale devices cannot be represented by the DD model. Furthermore, transport 

variability due to ionised impurity scattering is also difficult to capture using DD- 

simulation. Monte Carlo simulation are used to calibrate the drift-diffusion simulations of 

large multichannel NWTs and to perform statistical variability simulations. Self-consistent 

Poisson- Schrödinger solver is adopted for studying the impact of the quantum confinement 

on the mobile chare and capacitance of NWTs with different cross section. 

Chapter four examines the ultimate scaling limits of NWTs with different cross-sectional 

shapes, using simulations employing Poisson Schrodinger (PS) quantum corrections 

implemented in the ‘atomistic’ drift-diffusion (DD) simulator GARAND [GSS].   Realistic 

design parameters of the source-drain extensions and their impact on SS and DIBL are 

considered. In addition, the effect of the nanowire cross-sectional shape on the gate 

capacitance, the charge available for transport and the speed are investigated and discussed. 

Signatures of isotropic charge distributions within Si NWTs were observed exhibiting the 

same attributes as the golden ratio (Phi), the significance of which is well known in the fields 

of art and architecture.  The research demonstrates that the quantity of mobile charge within 

the channel, along with the intrinsic speed of the device are determined by device geometry 

and may be related to the golden AR (Phi) of the nanowire transistors. This investigation 
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has demonstrated that NWT with aspect ratios equal or close to the golden ratio (Phi) can 

enhance gate capacitance and mobile charge in the channel and therefore could optimise the 

intrinsic speed of the device.  This study has also investigated the influences of the gate 

length on the time delay and the main FoM, such as VT, IOFF and ION and DIBL. 

In chapter five, quantum-corrected Monte Carlo simulations are used when exploring 

nonequilibrium transport in NWTs’ suitable for the 5nm CMOS technology generation. The 

simulations were performed in order to assess whether the semiconductor industry targets 

can be met through the use of a single-channel NWT. It was found that this is not possible 

with the saturation current falling short of the target value of 15% increase in the saturation 

current. The simulations also reveal that NWT saturation current, still does not meet the 

target even if high tensile strain is introduced in the channel of single nanowire NWT. Whilst 

the quantum-corrected MC simulations are effective in predicting the transistor performance 

in the case of small single channel NWTs, they cannot take into account the S/D contact 

resistance. Additionally, the MC simulation approach is highly time- and memory-intensive 

when simulating stacked NWTs. Following calibration (based on the gate work function, 

density gradient confinement effective mass, and mobility models and their relevant 

parameters), the DD simulation approach was adopted for the simulation of vertically-

stacked NWTs.  

The calibrated DD simulations have revealed that the industrial target value of the drive 

current can be met by NWTs with two vertically-stacked lateral channels and highly-doped 

S/D regions. This being said, the current is greater in the top nanowire compared to the 

bottom nanowire, since the top nanowire is closer to the S/D contact. The reason for this is 

the voltage decrease due to the S/D access resistance, and this can result in faster degradation 

of the top nanowire with time. A more uniform current density can be achieved by the side 

placement of the S/D contacts. Additionally, NWT performance was found to be optimised 

when using NWT shapes with aspect ratios similar to the golden ratio (Phi), based on the 

exploration of the impacts of Phi on 5 nm CMOS n-type silicon nanowire transistor 

performance and electrostatic integrity.  
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The impact of variability sources in the DD-based simulator is then presented in Chapter 

six. The individual and combined effects of RDD, LER and MGG on VT, SS, Ion and DIBL 

have been simulated and discussed, with the findings suggesting that the key source of 

variability for all main electrical parameters considered in this research is MGG. For 

instance, the VT standard deviation was 1.9 mV under RDD, 5.8 mV under LER, and 27.8 

mV under MGG; with Ion standard deviation being 0.0316 mA/um under RDD, 0.0312 

mA/um under LER, and 0.0733 mA/um under MGG.  

The results also indicate that NWT variability is impacted by cross-section shape and 

dimensions, with a significant reduction in SV found in NWTs with optimal aspect ratios. 

Furthermore, a reduction in the variability of threshold voltage and drive current are 

observed in vertically-stacked NWTs. As noted, the reduction in ơVT found in vertically-

stacked NWTs is due to the cancelling-out of variability in double lateral and triple-channel 

NWTs. Additionally, device performance was also found to be significantly driven by the 

vertical position of lateral NWTs in the vertical stack as a result of the heightened process 

variability caused by series resistance between the S/D contacts and lateral channels.  

Overall, the results of this study indicate that NWTs may be a valuable option as next 

generation transistor for industry application.  

 

 Contributions 

The main contributions of this study is the finding that multichannel NWT are suitable 

candidates for the 5nm technology node meeting the performance targets and the pitch 

requirements. Some of the other important contributions are summarized as follows: 

1- Developed novel methodology for DG calibration against more physical PS solution. The 

study has demonstrated that after careful calibration against the PS results the DG approach 

can be used for practical 3-D simulations of NWTs [7], [9]. 
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2- For the first time we have studied in details the impact of the quantum mechanical effect 

on the electrostatically driven performance of NWTs suitable for a 5 nm CMOS technology 

and beyond. We have demonstrated that the NWT shape has a strong impact on the gate 

capacitance and the mobile charge in the NWTs at high gate bias. The quantum mechanical 

confinement results in a reduction in the mobile charge, gate capacitance, and intrinsic speed 

[9], [162], [185], [240]. 

3- An interesting observation was made in this research regarding the fact that the signatures 

of isotropic charge distributions in silicon nanowire transistors (NWT) displayed identical 

characteristics to the golden ratio (Phi). In turn, a simulation was conducted regarding ultra-

scaled n-type Si (NWT) suitable for 5-nmCMOS technology and beyond. The results reveal 

that the amount of mobile charge in the channel and the intrinsic speed of the device are 

determined by the device geometry and could also be correlated to the golden ratio (Phi) 

[185], [186].  

4- Ensemble Monte Carlo (MC) simulations with quantum correction are used to predict 

accurately the drive current of Si (NWT). The complex the carrier transport in the vertically 

stacked lateral NWTs and their performance are evaluated using novel methodology 

involving the thorough calibration of the current in a single channel to accurate reference 

MC simulations.[162], [164], [188], [189] 

5- We have investigated the correlation between channel strain and device performance in 

various n-type Si- NWTs suitable for 5-nmCMOS technology and beyond. We have 

establish a correlation between strain, gate length and a cross-section dimension of the 

transistors [189].  

6- Our simulations have shown that a single nanowire transistor even with strained Si 

channel will not be able to provide the required drive current in comparison to the industrial 

target at 5nm CMOS technology generation [164], [188].  
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7- Based on predictive simulations have proposes a “vertically stacked lateral NWTs” 

structure for the 5-nm CMOS technology that meets the required industry scaling projection 

[164], [185]. 

8- The current density degrades from the top to the bottom of identically sized lateral NWTs 

in the vertical stack. The upper lateral nanowires, closer to the source/drain contacts carry 

more current than the ones that are farther away (close to the bottom) due to the series 

resistance related voltage drop and may become weak point suffering extensive ageing. 

Solutions including the idea of increasing the diameter of lower nanowires concerning the 

upper nanowires in the stack.  However, although the drain current is increased with the 

increase of the NWT cross-sectional area, the voltage drop will increase across the highly 

doped S/D regions. Furthermore, the possibility of decreasing the doping concentrations 

near the top lateral NWT and increasing it gradually near the middle and the bottom lateral 

NWTs would decrease the total drain current (Ion). Therefore, we have developed strategy 

to optimise S/D contacting by the deformation of S/D contacts [16] [17]. 

9- For the first time we have carried a comprehensive computational study of the impact of 

the principal sources of statistical variability including RDD, LER, and MGG, on the 

threshold voltage, drain-induced barrier lowering, and drive current of vertically stacked 

lateral NWTs suitable for the 5-nm CMOS technology [164], [185].  

10- We have investigated for the first time the position dependent performance and 

geometrical variation of the lateral nanowires in the stack as new sources of process 

variability (IWCN17). 

11- We have found that VT standard deviation of triple lateral stacked NWTs has a lower 

standard deviation (ơ) than the double stacked NWTs while the value of ơVT for a single 

NWT shows the highest ơ compared with double and triple NWTs [164]. 
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 Recommendations 

It will be useful if future research focuses on the optimisation of power and/or performance 

of ultimately scaled NWT beyond the 5nm CMOS technology optimising carrier mobility, 

electrostatics and parasitic capacitance in order to determine the value of NWT devices.  

Mobility tends to suffer as a result of quantum confinement effects in conventional 5 nm 

NWTs, caused by phonon and surface roughness scatting. Alternative materials may need 

to be adopted to improve carrier transport as the scaling continues, with SiGe (offering better 

hole transport) and Ge (offering better electron and hole mobility) recommended for this 

purpose. Furthermore, decreasing the effects of fringing field capacitance could enhance 

NWT performance. At high frequencies, NWTs with a diamond-shaped S/D structure might 

have good performance.  

Greater transistor performance can be achieved through the employment of 3D integration 

and vertical channel orientation, resulting in more favourable circuit delay and greater 

performance due to better per-footprint effective width. This approach can be applied to 

NWTs, with nanosheet structures providing an interesting alternative for optimising the 

effective width per layout footprint. This should maintain power density whilst enhancing 

drive current. The effective width per layout footprint is smaller in nanosheets than in regular 

NWTs. Using a thin and wide nanosheet, the effective width can be increased significantly 

in comparison to conventional NWTs. A greater effective width along with improved overall 

performance can be achieved through the use of a wider nanosheet due to the larger footprint, 

while short channel effects remaining unchanged.  

There are still many technological and simulation issues associated with the advancement 

of NWTs and nanosheet transistor technologies, including the optimisation of shape with a 

decrease in roughness, inner spacer, access optimisation and strain management. However, 

recent testing and research have demonstrated the value of this alternative configuration to 

the future scaling and development of the industry. Therefore, we recommend further study 

of the positive impact of device width on performance, highlighting the potential benefits of 

nanosheet transistors in the optimisation of future CMOS applications.  
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The scaling NWTs beyond 3nm CMOS technology is high challenge, expecting that in the 

end the horizontal configuration (such as lateral nanosheet) will punch physics limits.  The 

vertical configuration of NWTs transforms the layout configuration from a 2D to a 3D, 

where the gate length can be extended without occupation a wide area on the wafer. This 

technology requires intensive research of design co-optimization. 
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