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Abstract 

The development of novel efficient catalytic materials to improve the efficiency of 

industrial processes has been the driving force for many academic and industrial studies. 

The general approach adopted to enhance the activity of a given catalytic formulation is 

usually based on enhancing the structural and structural properties (e.g. crystal size and 

surface area) by adopting new synthesis methods, by supporting the active phase or by 

modifying the reactivity of the parent materials by adding dopants. However, in a less 

studied approach, it has been shown that the presence of interstitial species such as carbon 

or nitrogen can modify the electronic structure of parent metals apparently conferring, in 

the case of systems such as molybdenum carbide, properties akin to precious metals. This 

approach allows not just improvement of the catalytic activity in an incremental manner 

but also the design entirely new catalytic formulations. In this context, the effect of the 

interstitial elements carbon and nitrogen upon the activity of a range binary and ternary 

molybdenum based materials for ammonia synthesis and methane cracking has been 

investigated within this thesis.  

The performance of Co3Mo3N, Co3Mo3C, and Co6Mo6C for ammonia synthesis has been 

compared. Depending on the chemical composition, significant difference in catalytic 

activity was apparent. In contrast to Co3Mo3N, which is active at 400 °C, Co3Mo3C was found 

to be only active at a reaction temperature of 500 °C. Furthermore, in-situ NPD revealed 

that the catalytic activity of ternary cobalt molybdenum systems is associated with the 

presence of N in the 16c Wyckoff crystallographic site. Co6Mo6C was found to be inactive 

under the conditions tested. 

The same comparison between the chemical composition and the catalytic activity has 

been made in the context of methane cracking. Although all the prepared materials (i.e.  

Co3Mo3N, Co6Mo6N, Co3Mo3C, and Co6Mo6C) displayed catalytic activity, differences as a 

function of chemical composition were observed. Among the evaluated catalysts, the 

Co6Mo6N sample showed the highest activity. However, in-situ and post-reaction analysis 

revealed a significant phase transformation during reaction which explains the differences 

in terms of catalytic reactivity.  

In summary, this thesis details a comparison between the catalytic performance of a range 

of binary and ternary molybdenum based materials presenting different chemical 



 
 
compositions. Particular attention has been directed towards the role of, and the 

interconversion between, lattice C and N species with the intention of elucidating their 

influence upon catalytic behaviour. 
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 Thesis summary 

From the advent of the industrial chemistry era, developing highly efficient and active 

materials capable of reactions has been of major interest. In the last decades, 

heterogeneous catalysis has been dominated by the use of metal and metal oxide based 

materials. However, to meet the increasingly challenging economic and environmental 

targets imposed by recent shifts in economic and environmental policies, attention has 

been directed towards the development of alternative catalyst families displaying better 

catalytic performance in order to improve the efficiency of chemical processes. In this 

context, the presence of interstitial species such as carbon or nitrogen has been argued to 

modify the electronic structure of parent metals conferring, in the case of systems such as 

molybdenum carbide, to these materials properties akin to precious metals. In this context, 

the role of the interstitial elements, carbon and/or nitrogen, in the activity of binary and 

ternary molybdenum based materials, has been explored within this thesis with particular 

emphasis being focussed upon the evolution of structural and textural properties during 

the catalytic reaction studies. 

In this work particular attention has been directed towards the transformation pathways 

from nitride to carbide counterparts and vice-versa. The results of in-situ neutron 

diffraction and in-situ X-ray diffraction studies, presented in Chapter 3, pinpointed the 

important role of synthesis conditions on the transformation pathways. For instance, in the 

presence of hydrogen during the carburisation process of Co3Mo3N, using methane as 

source of carbon, the formation of an intermediate carbonitride phase Co3Mo3N1-xCx 

without any phase segregation occurs. In contrast, the absence of hydrogen results in the 

presence of a binary phase intermediate stage (Co3Mo3N and Co3Mo3C) before 

carburisation is complete. A similar observation was observed during the nitridation of 

Co3Mo3C to Co3Mo3N. In presence of hydrogen and nitrogen, the nitridation process occurs 

via the formation of a carbonitride while in the presence of nitrogen only, a biphasic system 

is observed. The control of reaction temperature, time, atmosphere composition and initial 

precursors is of crucial importance for the preparation of monophasic carbide and nitride 

systems.  

The Influence of composition of cobalt molybdenum based materials was studied in 

ammonia synthesis which is an important industrial process for atmospheric nitrogen 
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fixation. The performance of Co3Mo3N, Co3Mo3C, and Co6Mo6C has been compared and 

the results are presented in Chapter 4. Depending upon the chemical composition, large 

differences in the catalytic behaviour was observed. In contrast to Co3Mo3N, which is active 

at 400 °C, a reaction temperature of 500 °C, preceded by an induction period, was 

necessary for the establishment of steady state activity for Co3Mo3C. During the induction 

period, nitridation of the Co3Mo3C lattice was evidenced by in-situ neutron diffraction 

studies, and this process continued throughout the period of steady state reaction with the 

material transforming in composition towards pure Co3Mo3N. However, Co6Mo6C was 

found to be inactive under the conditions tested. These observations demonstrate that 

ammonia synthesis activity in ternary cobalt molybdenum systems is associated with the 

presence of N in the 16c Wyckoff lattice site.   

In Chapter 5, the catalytic behaviour of Co3Mo3C, Co6Mo6C, Co3Mo3N and Co6Mo6N for 

methane cracking has been studied to determine the relationship between the methane 

cracking activity and chemical composition. All the prepared materials were found to 

display activity for hydrogen production under the reaction conditions studied. However, 

the activity of these materials varied depending upon initial composition. Among the 

evaluated catalysts, the Co6Mo6N sample showed the highest activity. Post-reaction 

analysis and in-situ neutron diffraction studies revealed a significant phase transformation, 

which depends on initial composition, from metal nitrides to Co3Mo3C, α-Co and β-Mo2C 

occurring. In the case of Co6Mo6C for instance relocation of the carbon in the 0 0 0 (8a) site 

to 1/8 1/8 1/8 (16c) sites resulting in the formation of Co3Mo3C was observed. The active 

phase is believed to be a mixture of Co3Mo3C, β-Mo2C and α-Co.  

In the current thesis, comparison was made between the performance in the reactivity of 

a range of binary and ternary molybdenum based materials presenting different chemical 

compositions. The topotactic transformation pathways and pseudomorphic nature of the 

cobalt molybdenum carbide and nitride families, evidenced in this work, offer an elegant 

route to study the effect of interstitial carbon/nitrogen on the catalytic activity of cobalt 

molybdenum materials. In most cases, an important effect of chemical composition was 

observed. Comparison is also made between binary molybdenum carbide and 

molybdenum nitride systems for completeness. 
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 Experimental techniques 

In this chapter the experimental techniques are divided into three sections; material 

synthesis, testing and characterisation. 

2.1 Material synthesis 

Two general classes of materials have been prepared in this work; binary compounds (γ-

Mo2N, β-Mo2C and α-Mo2C) and ternary compounds (Co3Mo3N, Co6Mo6N, Co3Mo3C and 

Co6Mo6C). 

2.1.1 Binary compounds 

Gamma molybdenum nitride1 (γ-Mo2N) was prepared by ammonolysis of 500 mg of MoO3 

under NH3 (BOC, 99.98 %) at a flow rate of 100 ml min-1 at 700 °C for 2 h, using the 

ammonolysis reactor as represented in Figure 2.2-1. The ramp rate applied was that the 

temperature was increased from ambient to 350 °C at 5.6 °C min-1, then to 700 °C at 1 °C 

min-1. The material was subsequently cooled down to ambient temperature in the 

ammonia flow before to passivation for 1 h, using a gas mixture containing 0.2 vol. % O2 in 

Ar and nitrogen to prevent it from being exposed to air. 

Beta molybdenum carbide2 (β-Mo2C) was synthesised using the carburisation reactor as 

depicted in Figure 2.2-2 and 20 vol. % CH4 in H2 (BOC, 99.98 %) was performed by 

temperature programmed reaction (TPR), using a 12 ml min-1 flow rate at ambient 

pressure. Initially, 500 mg of MoO3 (B.D.H, 99 %) was loaded into an 8 mm (i.d.) horizontal 

quartz tube packed with quartz wool on both sides to hold the material in the middle of 

tube. The sample was heated at 6 °C min-1 from room temperature to 350 °C, and then 

heated to a final temperature of 800 °C using a ramp rate of 1 °C min-1 and held at 800 °C 

for 2 hours. The material was cooled to ambient temperature under the same gas mixture. 

Alpha molybdenum carbide3 (α-Mo2C) was prepared by the carburization of 500 mg of γ-

Mo2N under 20 vol. % CH4 in H2 (BOC, 99.98 %) at a flow rate of 12 ml min−1 at 700 °C for 2 

h with a temperature ramp rate of 6 °C min−1 to reach 350 °C followed by 1 °C min−1 to 

attain 700 °C. The carburisation reactor as presented in Figure 2.2-2 was used for this 

procedure. The material was cooled to ambient temperature under the same gas mixture.  
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2.1.2 Ternary compounds 

Dehydrated cobalt molybdenum oxide (CoMoO4) was prepared as described elsewhere.4 

In summary, 4.00 g of ammonium heptamolybdate (NH4)6Mo7O24· 4H2O (99.98 %, Sigma-

Aldrich) and 5.59 g of Co(NO3)2. 6H2O (>98 %, Sigma-Aldrich) were dissolved in 200 ml of 

deionized water. The solution was then heated to 85 °C and held at this temperature for 5 

h. The resulting purple precipitate was filtered and washed twice with distilled water and 

once with ethanol. The precipitate was then calcined at 500 °C for 3 h in air.  

Cobalt molybdenum nitride (η-6 Co3Mo3N) was prepared by ammonolysis (using the 

ammonolysis reactor as presented in Figure 2.2-2) of 1000 mg of CoMoO4 under NH3 (BOC, 

99.98 %) at a flow rate of 100 ml min−1 at 785 °C for 5 h. The temperature ramp rate applied 

was that the temperature was increased from ambient to 357 °C at 5.6 °C min−1, then after 

to 447 °C min−1 at 0.2 °C min−1 before being finally increased to 785 °C at 2.1 °C min−1.  The 

material was subsequently cooled down to ambient temperature in the ammonia flow 

before to passivation for 1 h, using a gas mixture containing 0.2 vol. % O2 in Ar further 

diluted with N2.  

Cobalt molybdenum nitride (η-12 Co6Mo6N) was prepared by reducing 300 mg of Co3Mo3N 

under 75 vol. % H2 in Ar (BOC, 99.98 %) at a flow rate of 60 ml min−1. The reduction was 

conducted at 700 °C for 7 h whit a ramp rate of 10 °C min-1. 

The preparation of cobalt molybdenum carbide (η-6 Co3Mo3C) was undertaken in the 

carburisation reactor. Co3Mo3N was carburised by the decomposition of methane, using a 

20 vol. % CH4 in H2 (BOC, 99.98%) with a 12 ml min-1 flow rate. 400 mg of nitride was loaded 

into an 8 mm (i.d.) quartz tube packed with quartz wool on both sides. The sample was 

heated from ambient temperature to 350 °C with a ramp rate at 6 °C min-1 and then at 1 °C 

min-1 to a final temperature of 700 °C, after which the obtained product was cooled to 

room temperature. This cooling process was performed in the reactor under the reaction 

gas, prior to the materials being exposed to air at ambient temperature by opening the 

reactor tube from one side and leaving overnight under back diffusion of air, to prevent 

further rapid bulk oxidation. 

Cobalt molybdenum carbide (η-12 Co6Mo6C) was prepared by reducing 300 mg Co3Mo3C 

under 75 vol. % H2 in Ar (BOC, 99.98 %) at a flow rate of 60 ml min−1. The reduction was 
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conducted at 900 °C for 5 h with a temperature ramp rate of 10 °C min-1, and the material 

was passivated in the same manner as for Co3Mo3C. 

2.2 Reactor design 

The reactors used during this project have mass flow controller controlled gas flows and 

quartz reactor tubes for containing the samples. They are explained in more detail below.  

2.2.1 Ammonolysis reactor 

Figure 2.2-1 presents a schematic of the ammonolysis reactor which is used to synthesise 

gamma molybdenum nitride (γ-Mo2N) and ternary cobalt molybdenum nitride (η-6 

Co3Mo3N). A 10 mm (i.d.) vertical sintered quartz reactor was used to place the sample in 

the centre of a Carbolite furnace. This furnace was programmed to heat the material in 

various heating stages using a temperature controller. 

  

Figure 2.2-1: Schematic showing the ammonolysis reactor set-up. 

 

Ammonia (BOC, grade N3.8, NH3) was introduced into the reactor through a Brooks 5850 

TR mass flow controller at a 100 ml min-1 flow rate. The vented gas was bubbled through 

an acid solution to scrub out unreacted ammonia. The material was passivated at ambient 

temperature using a gas mixture containing 0.2 vol. % O2 in Ar and further diluted with N2. 
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2.2.2 Carburisation and reduction reactor 

Figure 2.2-2 depicts both the carburisation and reduction reactors. In the case of the 

carburisation reactor which was used to prepare β-Mo2C, α-Mo2C and η-6 Co3Mo3C 

materials, an 8 mm (i.d.) quartz glass reactor was used to mount the sample. The material 

was held centrally in the quartz reactor tube between two plugs of silica wool positioned 

in a Carbolite furnace. The materials were treated at 700 °C for α-Mo2C and η-6 Co3Mo3C 

and 800 °C for β-Mo2C, using ramp rates of 6 °C min-1 from ambient temperature to 350 °C 

and then from 6 °C min-1 to the desired final temperature. A gas feed mixture of 20 vol. % 

CH4 in H2 (BOC, 99.98 %) was introduced into the reactor through a mass flow controller at 

a flow rate of 12 ml min-1.  

In the case of the reduction reactor which was used to prepare η-12 Co6Mo6N and η-12 

Co6Mo6C materials, the materials were heated at 700 °C for 7 h for Co6Mo6N and 900 °C for 

5 h for Co6Mo6C, using a ramp rate of 10 °C min-1 for both. A gas feed mixture of 75 vol. % 

H2 in Ar (BOC, 99.98 %) with a flow rate of 60 ml min-1 was applied. All materials were 

cooled to ambient temperature under the flowing reactant gas mixture and then the 

reactor tube was opened allowing back diffusion of air overnight prior to sample discharge. 

 

Figure 2.2-2: Schematic showing the carburisation and reduction reactor set-up. 
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2.2.3 Ammonia synthesis reactor 

Reactions were performed using 0.3 g of material under an atmosphere of 75 vol. % H2 in 

N2 (BOC, 99.98%) at ambient pressure employing a total gas feed of 60 ml min−1. An 8 mm 

(i.d.) quartz reactor was used to mount the sample. The material was held centrally in the 

quartz reactor tube between two plugs of silica wool positioned in a Carbolite furnace. 

Ammonia production was determined by measurement of the decrease in the conductivity 

of 200 ml of a 0.0018 M H2SO4 solution through which the reactor effluent stream flowed. 

An automated HACH HQ14d Portable Conductivity Meter was used. The calibration value 

applied for calculated ammonia synthesis rate is provided in the Appendix 3. 

 

Figure 2.2-3: Schematic showing the ammonia synthesis reactor set-up. 

 

2.2.4 Methane cracking reactor 

Figure 2.2-4 depicts the methane cracking reactor. An 8-mm (i.d.) quartz glass reactor was 

used to mount the catalyst sample. The sample was held centrally in the quartz reactor 

tube between two plugs of silica wool and the reactor tube was positioned in a Carbolite 

furnace. Reaction tests were performed at 800 °C, at a 50 °C min-1 ramp rate. A feed gas 

mixture of 75 vol. % methane in nitrogen (BOC, 99.98%) was introduced into the reactor 

through a Brooks 5850TR mass flow controller at a 12 ml min-1 flow rate. Nitrogen was used 

as an internal standard. Product analysis was carried out by on-line gas chromatography 

(GC). Hydrogen, nitrogen, and methane quantification was performed using thermal 

conductivity detection (TCD).  
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Figure 2.2-4: Schematic showing the methane cracking reactor set-up. 

  

2.3 Catalyst characterisation 

Material characterisation is a significant aspect of this study. In this project, a number of 

different techniques were used to characterize materials and these methods are explained 

in the following subsections.  

2.3.1 Gas chromatography (GC-TCD)  

The methane cracking products were analysed using an on-line Hewlett Packard 5890A gas 

chromatograph (GC). Hydrogen, nitrogen, and methane quantification was performed 

using a Molecular Sieve 13X filled column of 12 feet in length and thermal conductivity 

detection (TCD) with argon employed as the carrier gas. The primary product of interest in 

this project is hydrogen; therefore the calibration of hydrogen was performed using three 

different known compositions of hydrogen 2%, 5% and 25% to attain the response factor. 

Gas mixtures of different compositions were passed through the GC and the average of the 

numerical values of six consistent measurements for each data point was calculated. It was 

possible to obtain a straight line graph and a linear relationship of the GC peak intensity 

against concentration. The resultant gradient obtained was used as the response factor. 

The obtained factor for hydrogen was employed for the subsequent calculation of GC data. 

The equation applied is provided in the Appendix 4.    
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2.3.2 Thermogravimetric analysis with mass spectrometry (TGA-MS) 

Thermogravimetric analysis was carried out on a TA SDT-Q600 Instrument coupled to an 

ESS evolution mass spectrometer. 8.73 mg of material was heated from room temperature 

to 1000 °C in 75 vol. % H2 in Ar gas mixture using a ramp rate of 10 °C min-1 and mass 

spectrometry was carried out in multiple ion detection mode (MID mode). The analysis was 

kindly performed by Mr. Andrew Monaghan. 

2.3.3 Powder neutron diffraction (PND) 

In-situ controlled atmosphere high temperature time-of-flight (ToF) PND data was 

collected using the high intensity Polaris diffractometer at the ISIS pulsed spallation source 

(Rutherford Appleton Laboratory, UK). Powder samples (ca. 1 g) were loaded into 11 mm 

diameter thin-walled stainless steel cells and held in place between quartz glass frits to 

permit a flow of reaction gas to circulate through the samples during data collection.  

 

Figure 2.3-1: Images of the In-situ cell used on POLARIS; (A) the cell prior attached to the collimator and 
(B) the cell and collimator attached to the stick, thermocouple, 90° bank (as inducted by yellow arrow); 
gas flows from the bottom to the top of the cell.    

 

The cell assembly (as shown in Figure 2.3-1) was mounted in a dedicated neutron 

diffraction furnace capable of heating from room temperature to 900 °C. It was connected 

to a gas panel fitted with mass flow controllers allowing a mixture of gases to flow through 

the sample at controlled flow rates during data collection. A collimator manufactured from 

(A) (B) 
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neutron-absorbing boron nitride ceramic placed around the cell enabled diffraction 

patterns to be collected in the Polaris 2θ ≈ 90° detector bank which was free of Bragg 

reflections from the steel walls of the cell. Rietveld refinements against PND data were 

performed using the General Structure Analysis System (GSAS) through the EXPGUI 

interface and the powder pattern is calculated according to the equations provided in the 

Appendix 1.5-6  

2.3.4  Powder X-ray diffraction (PXRD)  

Powder X-ray diffraction (PXRD) patterns were acquired at room temperature on a 

Panalytical X’Pert PRO instrument fitted with a reflection/transmission spinning flat plate, 

using 40 kV and 40 mA with Cu Kα radiation (λ= 0.154 nm). Data were collected over a 

range of 2θ values, from 5° to 85°, using a step size of 0.0167° and a counting rate of 1 

second step-1. The samples were mounted into a round metallic sample holder. Phase 

identification was undertaken by comparison with JCPDS database files.  

2.3.5 Hot stage powder X-ray diffraction (HSPXRD) 

Hot stage PXRD analyses was conducted on the Panalytical X’Pert PRO instrument using an 

Anton-Parr HTK 1200N chamber fitted with a reflection/transmission spinning flat plate, 

using Cu Kα radiation (λ= 0.154 nm). Only two experiments were undertaken, Co3Mo3C and 

Co6Mo6C reacted with N2, using in-situ hot stage PXRD. The powder samples were loaded 

into the sample pan and then the pan was held in place (as shown by the yellow arrow in 

Figure 2.3-2) by a flexible ring. The samples were heated in-situ from room temperature to 

700 °C at a rate of 10 °C min-1 under N2. The data were investigated over a range of 2θ 

values from 5 to 85°, using a step size of 0.0167° and a counting rate of 1 second step-1. 

Scans were taken at room temperature, 500 °C and 600 °C (1h, 2h, 3h) for Co3Mo3C and 

room temperature, 600 °C and 700 °C (1h, 2h, 3h) for Co6Mo6C. The system was 

programmed and held 1 hour for taking a scan at each reaction condition.    
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Figure 2.3-2: Image of the sample holder of the hot stage instrument. 

 

2.3.6 Thermal gravimetric analysis (TGA) 

Thermal gravimetric analysis was carried out on a TA Instruments TGA Q500 series 

instrument. The sample weights applied were roughly 0.008 g. The sample was heated from 

room temperature to 1000 °C in 50 ml min-1 of flowing air at a temperature ramp rate of 

10 °C min-1.  

2.3.7 Elemental analysis (CHN) 

Carbon, hydrogen, and nitrogen (CHN) analysis was performed on materials by combustion, 

using a CE-440 elemental analyser under pure oxygen. Analyses were kindly performed by 

Mrs. Kim Wilson and Mr. M. G. Reddy.  

2.3.8 Scanning electron microscopy (SEM) and energy dispersive X-ray 
spectroscopy (EDXS) 

SEM images of the materials were obtained using a Philips XL30 environmental scanning 

electron microscope. The samples were coated to prevent sample charging, using a Polarn 

SC7640 Auto high-resolution sputter coater with a palladium/gold target. Some images 

were collected with the kind assistance of Mr. Jim Gallagher and some images with higher 

magnification were collected with the kind assistance of Dr. Jose L. Rico from Universidad 
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Michoacana de San Nicolas de Hidalgo, Michoacan, Mexico. Furthermore, the Glasgow SEM 

system was connected with an energy dispersive X-ray spectroscopy (EDXS) device with 

Oxford Instruments AZtec Software for SEM combined with x-act 10 mm2 SDD detector, 

used for chemical elemental analyses. 

2.3.9 Surface area measurement (BET) 

BET surface areas were determined from N2 physisorption isotherms collected at -196 °C 

upon samples using a Micromeritics Gemini Surface Area Analyser. The samples (0.05 g) 

were placed in a quartz U-tube after degassing at a 60-sccm flow of N2 overnight at 110 °C 

to remove moisture and physisorbed gases. The method of surface area determination 

applied was that detailed by Brunauer, Emmett, and Teller.6  

2.3.10  Raman spectroscopy  

Raman spectra of pre-reaction and post-reaction materials were recorded at room 

temperature on a Horiba Jobin Yvon LabRAM HR confocal Raman microscope, using 532 

nm laser excitation. Samples were illuminated for 10 seconds using a 50x objective lens and 

a grating of 600 gr/mm. The spectral region acquired was in the region of 100 ~ 3000 cm-1.  

2.3.11  Fourier transform infrared spectroscopy (FTIR) 

Fourier-transform infrared spectra were recorded using a FTIR-8400S Shimadzu apparatus. 

Each spectrum was collected at a spectral resolution of 2 cm-1, applying a scan range of 500 

to 3500 cm-1. A background spectrum (as reference) was acquired. A transmission FTIR cell 

(4 cm internal diameter and 12 cm length) was used carefully to sample the reactor element 

in a periodic manner for determination of CO and CO2 by off-line FTIR analyses. 
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Figure 2.3-3: Images of the transmission FTIR cell. 

 

2.3.12  Transmission electron microscopy (TEM) and high resolution 
transmission electron microscopy (HRTEM) 

TEM and HRTEM were carried out on samples using a Jeol JEM-2011 electron microscope 

fitted with a LaB6 filament. The TEM samples were prepared by dissolving a small amount 

of material on acetone solvent and dropping onto a holey carbon grid. The grid was left to 

dry prior to analysis. Measurements were kindly performed at the University of St. Andrews 

by Dr. Heather Greer and Prof. Wuzong Zhou. 
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 Carbide and nitride transformation 
sequences 

3.1 Introduction 

Transition metal carbides and nitrides have many properties that make them interesting 

catalytic materials in technological applications and science.7 Interstitial carbides are 

similar to interstitial nitrides in composition and structure. Carbides can be very hard 

materials whereas nitrides are not as hard as carbides. The nitrides of Groups IV and V have 

melting points above 1800 °C, whereas the nitrides of Group VI (molybdenum, tungsten 

and chromium) have lower melting points of ~1000 °C8 and carbides have higher melting 

points in the range 2000-4000 °C (e.g., tantalum carbide has the highest known melting 

point at ~3983 °C) and tensile strengths more than 300 GPa in the range of ceramic 

materials. This has given them applications as cutting tools.9 However, they also possess 

good electrical and thermal conductivity, resistance to corrosion, resistance to poisoning, 

magnetic properties and chemical stability10 which has resulted in their application as 

diffusion barriers, high temperature structural materials, superconductors and magnetic 

devices. Transition metal carbides have interesting catalytic properties as demonstrated by 

Boudart and Levy11 in 1973. The discovery of Pt-like catalytic behaviour of tungsten carbide 

has significantly advanced the progress of their potential catalytic properties as 

heterogeneous catalysts. These compounds have excellent catalytic activity in ammonia 

decomposition and synthesis,12 isomerization,13 methanation, hydrogenolysis14 and 

hydroprocessing15. The reason behind the interest in these materials in catalysis rather 

than noble metals is related to their low cost and availability. Since 1973 in particular, a 

wide range of studies have been conducted in which authors have frequently drawn 

comparisons between the performance of nitrides and carbides and the catalytic activity 

of expensive noble metals. 

3.1.1 Metal carbides and nitrides 

Metal carbides and nitrides can be categorised into several groups, according their position 

in the periodic table as shown in Table 3.1-1. The Group IV to VI transition metal nitrides 

and carbides are known as interstitial alloys which are formed from the occupation of 

nitrogen or carbon atoms in the interstitial positions of their parent metals. Nitrides and 

carbides are closely linked in crystal structure forms and bonding characteristics as well as 
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in their electronic and magnetic properties. This close relationship is easy to understand 

owing to similarities in electronic structures but at the same time it is important to consider 

the differences between nitrogen and carbon which can affect their properties. As 

summarized by Chen, these materials comprise three different classes of materials; ionic 

crystals, covalent solids and transition metals. The bonding in these materials can comprise 

simultaneous contributions from covalent, metallic and ionic interactions. Covalent 

bonding originates from the interaction of nitrogen or carbon 2s and 2p orbitals with metal 

d orbitals; metallic bonding is associated to the metal-metal bonds and the ionic 

contribution is correlated to the charge transfer between metal and nitrogen or carbon 

atoms.9 When synthesising high surface area carbides and nitrides via a temperature-

programmed reaction, molybdenum and tungsten were shown to be the most active and 

stable catalysts for dry methane reforming, methane steam reforming, and the partial 

oxidation of methane.16-18 Of these materials, it can be argued molybdenum carbides and 

nitrides have shown the greatest promise as substitute noble catalysts. 

Table 3.1-1: Known carbides and nitrides within Groups IV, V, and VI.10 

Group IV Group V Group VI 

TiC, TiN, Ti2N V2C, VC, V2N, VN  Cr23C6, Cr7C3, Cr3C2, CrN 

ZrC1-x, ZrN 
Nb2C, NbC, Nb2N, NbN, 
Nb4N3, 

β-Mo2C, Mo3C2, α-MoC1-x, β-
Mo2N, γ-Mo2N 

HfC1-x, HfN 
Ta2C, TaC, Ta2N, TaN, 
Ta3N5  

W2C, WC1-x, WC, W3C2, WN, 
β-W2N 

 

3.1.2 Crystal structure and composition 

The structure and composition of molybdenum carbides and nitrides has been extensively 

studied and well documented. Interstitial carbides and nitrides represent simple crystal 

structures of early transition metals. According to Oyama,15 there are two fundamental 

factors that influence the structure of carbides and nitrides: geometric and electronic. In 

geometric considerations, non-metal atoms are inserted into the interstitial space of the 

host metal close-packed layering in arrangements that constitute common structures, such 

as those based upon face-centred cubic (fcc), hexagonally close packed (hcp), and simple 
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hexagonal structures as illustrated in Figure 3.1-1. These metal substructures can also be 

described according to their geometric sequence of packed metal layers, such as ABCABC 

for fcc, ABABAB for hcp, and AAAA for simple hexagonal. Electronic effects relating to the 

structure of carbides and nitrides can be explained by Engel–Brewer theory, wherein the 

structure of metal depends on the s-p electron count, which represents the number of s-p 

valence electrons per atom (e/a). On this basis, the hcp structure is formed when e/a = 1.7–

2.1, and e/a = 2.5–3 occurs for the fcc structure.7 

 

Figure 3.1-1: Common crystal structures of molybdenum carbide and nitride catalyst.19 

 

Within the current chapter, gamma molybdenum nitride (γ-Mo2N), beta molybdenum 

carbide (β-Mo2C) and alpha molybdenum carbide (α-Mo2C) are included within this study 

although cobalt molybdenum nitride (Co3Mo3N, Co6Mo6N) and cobalt molybdenum 

carbide (Co3Mo3C, Co6Mo6C) are the main focus. 

3.1.3 Synthesis of binary molybdenum nitrides and carbides 

In the literature, molybdenum carbides and nitrides have been prepared by various 

synthetic methods including sonochemical synthesis from molybdenum hexacarbonyl,20 a 

solution synthesis method using sucrose as a carbon source21 and electrochemical and 

temperature programmed reactions.22 Table 3.1-2 presents a summary of the reported 

different approaches to synthesising molybdenum carbides and nitrides. 
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Table 3.1-2: Approaches to synthesising binary molybdenum nitrides and carbides. 

Preparation method Reaction Phase 

Direct reaction of metal or metal oxide with 

carbon.7, 19  

 

Mo + C  

MoO3 + C 

Mo2C 

Mo2C  

Reaction of metal or oxide  with carburizing 

or nitriding gas reagent.19  

Mo + CO                   

MoO3 + CO 

MoO3 + N2/H2 

Mo2C 

Mo2C 

β-Mo2N 

Reaction of the metal oxide with either  a 

carburizing or Ammonolysis gas using 

temperature-programmed methods.19, 23 

 

MoO3 + CH4/H2 or 

C2H6/H2  

MoO3 + NH3 

β-Mo2C,  

α-MoC1-x  

γ-Mo2N 

Reaction of metal oxide vapour with gasified 

carbon under vacuum.19  

 

MoO3 + C  Mo2C  

Pyrolysis of organometallic compounds under 

hydrocarbon.19  

 

Cp2 + Mo2(CO)4 

(dimethyl 

acetylenedicarboxylate)  

Mo2C  

Reaction of metal chloride or metal carbonyl 

under hydrocarbon gas in hydrogen.19, 24 

 

Mo(CO)6 + CO, H2 MoCl5 

+ CH4 + H2  

Mo2C   

Sonochemical decomposition of metal 

carbonyl.19  

 

Mo(CO)6  Mo2C  

Nitriding the metal or metal hydride.23 Mo + N2 

MoH + N2 

Mo2N 

Reaction of metal chlorides with ammonia or 

with H2/N2 gas.7 

 

MoCl4 + NH3 

MoCl4 + N2/H2 

Mo2N 

 

An important method of synthesising molybdenum carbide and nitride involves the direct 

carburisation or nitridation of MoO3 at a high temperature; however, this method can 

result in low surface area products. Metal carbides and nitrides with higher surface areas 

were obtained after conducting temperature-programmed reduction (TPR) involving high 

space velocities and controlled ramp rates to minimise hydrothermal sintering and thermal 

sintering respectively.25 Since their first application, TPR methods have been used in the 

preparation of many carbides and nitrides, with different precursors, carburisation and 

nitridation reagents and heating rates being reported in the literature. The precursors to 
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carbides include metals, metal oxides and metal nitrides. The carburisation reagents used 

most often are 20% CH4/H2,2-3, 22, 26-28 10% C2H6/H2,27, 29 10% C2H2/H2,29 5% n-C4H10/H2
30 and 

to a lesser extent, C3H8/H2.31 The direct TPR and carburisation of MoO3 under pre-activation 

control in a hydrogen or hydrocarbon mixture yields two phases of carbide: the 

thermodynamically stable phase β-Mo2C and the metastable phase α-MoC1-X. For further 

information see Table 3.1-3. 

Table 3.1-3: Temperature-programmed methods of synthesising binary molybdenum nitride and 
carbides. 

References Precursor Temperature Phase 

Volpe, Boudart 
19852  
 

MoO3+ CH4/H2   920 K β-Mo2C (60 m2 g-1)  

Lee et al. 
198722  
 

MoO3+ CH4/H2  875 K β-Mo2C (84 m2g-1)  

Lee et al.  
19883 
 

MoO3+ ammonia →  
γ-Mo2N+ CH4/H2 → 
MoO3+ Pt + CH4/H2 → 
 

970 K  γ-Mo2N 
α-MoC1-X  (200 m2 g-1)  
α-MoC1-X    

Xiang et al. 
200732 

MoO3 or CoMoO4 
under flow of  CH4/H2  
 

973 K  K/β-Mo2C (3.5 m2g-1), 
Co/β-Mo2C (9.2 m2g-1)  

Wang et al. 
200631  
 

MoO3 + C3H8/H2  973 K  β-Mo2C bulk and SiO2-
supported (166 m2g-1)  

Xiao et al. 
200229  
 

MoO3 under flow 10% 
C2H2/H2  

550, 630 K Mo2C-550 (26.6 m2g-1), 
Mo2C-630 (36.2 m2g-1)  

Bouchy et al.  
200033   
 

MoO3 + pure CH4  983 K  β-Mo2C  

Zhu et al. 
200734 
 

MoO3+ toluene 923 K β-Mo2C 

Bouchy et al. 
200035 

MoO3+ dihydrogen for 
24h  replaced by CH4 

 

983 K α-MoC1-x 
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3.1.4 Synthesis of ternary cobalt molybdenum nitrides and carbides 

The preparation of Co3Mo3N, reduced phase Co6Mo6N, Co3Mo3C and reduced phase 

Co6Mo6C have been described in various studies as shown in Table 3.1-4.  

Table 3.1-4: Temperature-programmed methods of synthesising ternary CoMo carbides and nitrides. 

References Method  Precursor  Phase  

Kojima et al. 
200036 

TPR CoMoO4 reacted with NH3 

 
Co3Mo3N 

Mckay et al. 
200737 

TPR Co3Mo3N reacted 
with 3:1 H2/Ar 

Co6Mo6N 

Newsam        
198838  

Two-step 
reaction  

Co(en)3MoO4 reacted with 
CO/CO2 

Co3Mo3C and 
Co6Mo6C  

Korlann          
200239  

TPR  Co3Mo3N with CH4/H2 Bulk and 
supported 
Co3Mo3C  

Alconchel et al. 
200440 

TPR  Co3Mo3N, Fe3Mo3N 
with CH4/H2/Ar  

Bulk and 
supported 
Co3Mo3C, Fe3Mo3C  

Wang et al.    
200841 

One-step 
thermal 
decomposition  

hexamethylenetetramine 
(HMT) with 
Co(CH3COO)2.4H2O, 
(NH4)6Mo7O24.4H2O with a 
mole ratio of 7:1:37 in 15% 
NH3.H2O, under 1:4 CH4/H2 

Co3Mo3C  

Wang et al.    
200841 

One-step 
thermal 
decomposition  

HMT with Co(NO3)2.6H2O, 
(NH4)6Mo7O24.4H2O with a 
mole ratio of 7:1:23 in 15% 
NH3.H2O, under 1:4 CH4/H2  

Co6Mo6C  

 

Kojima et al.36 synthesised Co3Mo3N and Cs-promoted Co3Mo3N from dehydrated cobalt 

molybdenum oxide reacted with ammonia gas. McKay et al.37 prepared the reduced phase 

Co6Mo6N from Co3Mo3N by heating under 3:1 H2:Ar for 2 hours at 700 °C. Hunter et al.4 

prepared Co3Mo3N and Co6Mo6N and investigated its structure in detail using PND. 

Newsam et al.38, prepared Co3Mo3C and Co6Mo6C using two-stage reaction methods, with 

Co(en)3MoO4 as a precursor with CO/CO2 gas in first step. Korlann et al.39 and Alconchel et 

al.40 used temperature-programmed reduction to synthesise Co3Mo3C and alumina-

supported Co3Mo3C from the nitride precursor Co3Mo3N heated with CH4/H2 gas. Wang et 

al.25, successfully prepared Co3Mo3C and Co6Mo6C through a simple one-step thermal 
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decomposition using a hexamethylenetetramine-based method without temperature-

programmed carburisation. 

3.1.5 Activity and reactivity of ternary CoMo nitrides and carbides 

The unusual properties and their structures make both carbide and nitride materials 

interesting. Their activity in processes such as homologation of methane to produce higher 

hydrocarbons will be discussed in this chapter whereas application to ammonia synthesis 

and methane cracking will be discussed in more detail in subsequent chapters. 

In terms of direct routes, the non-oxidative, low-temperature, homologation of methane 

has been proposed as an alternative to the oxidative coupling of methane (OCM) for the 

production of higher hydrocarbons to avoid deep oxidation to CO and CO2. van Santen’s 

and Amariglio’s research groups independently reported a two-step process.42 van Santen 

and colleagues operated the process at two different temperatures to circumvent 

thermodynamic limitations (see Figure 3.1-2). At 450 °C, methane dissociative adsorption 

was carried out on silica-supported transition metal catalysts (Ru, Rh, and Co), followed by 

a hydrogenation step to produce higher hydrocarbons at a lower temperature (100 °C) and 

atmospheric pressure.43   

 

Figure 3.1-2: Gibbs free energy as a function of the decomposition temperature of methane on cobalt and 
the hydrogenation of cobalt carbide to ethane.44 
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The Amariglio group conducted the two-step process under isothermal conditions on Pt, 

Ru, and Co. They suggested that C–C bonding could take place between the H-deficient CHx 

formed during the first step of methane chemisorption, while H2 saturated the alkane 

precursors in the second step and separated them from the surface.42 

As shown in Figure 3.1-3, Koerts and colleagues identified three different types of surface 

carbon species, denoted Cα, Cβ and Cγ according to their reactivity with H2 gas during 

temperature programmed surface reaction (TPSR). The Cα species is a highly active carbidic 

phase, which reacts rapidly with hydrogen and which appears to be the major form of 

carbon in the formation of higher hydrocarbons. Cβ (amorphous carbon) is a less reactive 

species hydrogenated to yield methane between 100 °C and 400 °C. Finally, Cγ (graphitic 

carbon) species is the least reactive, and hydrogenatable only between 400 °C and 600 °C.45 

It was demonstrated that homologation of olefins (C2H4, C3H6, C2H2, etc.) with methane 

could occur over Ru/ SiO2 and Co/ SiO2 catalysts.43 

 

 

Figure 3.1-3: Temperature-programmed hydrogenation of surface carbon created by methane 
decomposition on a 3 wt.% silica-supported rhodium catalyst.43 

As mentioned previously, non-oxidative conversion of methane to higher hydrocarbons 

through isothermal condition, two-step reactions on Pt/ SiO2 (EUROPT-1) and Ru/ SiO2 

catalysts was reported by Amariglio et al.46 The selectivity to heavier alkanes could be 
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increased by lowering of the hydrogenation temperature on both catalysts, when 

chemisorption of methane was set at a fixed temperature (usually below 320 °C).  

The two-step process can also be carried out over a number of bimetallic catalysts and  

oxide or zeolite-supported transition metals.42 Guczi et al demonstrated that there was a 

correlation between the hydrogen content of the surface CHx species and the chain length 

of the hydrocarbons produced in the hydrogenation step. The chemisorbed CHx species had 

the highest concentration, and all of the CHx species were hydrogenated in the second step, 

giving a selectivity of C2+ close to 84 % on Co-Pt/ NaY and 92.6 % on Co-Pt/ Al2O3.
47 Bhasin 

and co-workers investigated Ru/ SiO2 and Cu-Ru/ SiO2 catalysts via non-oxidative 

conversion of methane into higher hydrocarbons at temperatures between 127 °C and 527 

°C. The results showed that with a Cu-Ru/ SiO2 catalyst, about 95 % of the carbon deposit 

could be hydrogenated at 95 °C to enhance the net ethane yield.48 Solymosi and Cserenyi49 

explained that the improved formation of C2H6 and higher hydrocarbons could be observed 

in the two-step process over a Cu-promoted Rh/ SiO2 catalyst. Wang and colleagues 

reported that Mo/ H-ZSM-5 catalysts exhibited excellent catalytic activity and selectivity in 

the formation of aromatics (mainly C6H6) for the dehydrogenation and aromatisation of 

methane at 700 °C under non-oxidising conditions in a single-stage continuous reaction.50 

This reaction has received great attention, as it is a potential method of adding value to 

methane, a relatively cheap and abundant raw material, yielding aromatic hydrocarbons.  

Recently, based upon the Mars-van Krevelen mechanism most commonly observed in 

oxidation reactions catalyzed by oxide catalysts, Mckay et al. have revealed the ability of 

lattice nitrogen in ternary molybdenum nitrides to act as reservoir of activated nitrogen. 

The reduced phase Co6Mo6N was obtained from Co3Mo3N reacted with 3:1 H2/Ar gas to 

produce N2 and NH3 gases. Following the regeneration step of Co3Mo3N from Co6Mo6N the 

use of 3:1 H2/N2 gas mixture or solely N2 gas was found to complete the cycle. Based upon 

the analogous behaviour of carbides and nitrides, it is of interest to determine whether a 

similar two stage process can be conducted with Co3Mo3C to indirectly yield higher 

hydrocarbons from CH4 and this forms an aspect of this chapter.  
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3.2 Results and discussion  

In this chapter, the results and discussion will focus on the synthesis and characterization 

of a series of binary and ternary molybdenum-containing nitrides and carbides, as well as 

investigation of their intermediate phases when they are transformed from nitride to 

carbide and vice versa.  

3.2.1 Molybdenum trioxide (MoO3) 

Commercial molybdenum trioxide powder is chemical compound with the formula MoO3. 

This compound was used to prepare binary molybdenum nitride (γ-Mo2N) and carbide (β-

Mo2C) using the temperature programmed method. Its structure and characterisation is 

explained below in more detail.  

3.2.1.1 Powder X-ray Diffraction (PXRD) 

Crystalline molybdenum trioxide usually has three forms: the well-known 

thermodynamically stable orthorhombic phase (α-MoO3) as well as two metastable phases 

(monoclinic β-MoO3 and hexagonal h-MoO3).51 The PXRD pattern of the commercial α-

MoO3 used in this study is shown in Figure 3.2-1. The strong diffraction peaks can be 

indexed to the orthorhombic phase of α-MoO3 by reference to JCPS 035-0609, a = 3.963 Å, 

b = 13.856 Å, c = 3.697 Å, α = β = γ = 90°, space group Pbnm. 

 

Figure 3.2-1: Indexed PXRD pattern of molybdenum trioxide. 
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The intense diffraction peaks at 2θ = 12.9, 25.9 and 39.1° are indexed as the (020), (040) 

and (060) hkl crystal planes of the α-MoO3 phase respectively which is consistent with 

previous publications.51 

 

 

Figure 3.2-2: Mo-O bonds in MoO3 catalyst. 

 

Alpha molybdenum trioxide has an orthorhombic crystal structure comprising of MoO6 

octahedral units in which each molybdenum species is coordinated by six oxygen species. 

In this study we used VESTA software to draw ball and stick representations and to derive 

interatomic distances, bond angles information for all structures using previously published 

CIF files. MoO3 was published by Kihlborg52 in 1963 with code number 35076 in the 

Inorganic Crystal Structure Database Web. The Mo-O coordination of distorted octahedra 

and three inequivalent oxygen atoms namely O1, O2, and O3 respectively shown in Figure 

3.2-2. The length of the shortest bond is 1.67 Å. This corresponds to the Mo-O3 bond. In 

the a axis direction, there are two Mo-O2 bonds with the distances of 2.25 Å and 1.73 Å, 

respectively. There are three bonding interactions between O1 and Mo; two equal bonding 

interactions are along the c axis with the distance of 1.95 Å and the third bonding 

interaction is in the b axis direction with the distance of 2.33 Å. 
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3.2.1.2 Raman spectroscopy 

Raman spectroscopy is a technique which can be used to determine the structure of 

different molybdenum oxide crystal types, as each of them possess different atomic 

arrangements and display different Raman vibration bands. A Kimmon IK series He-Cd 

532.17 nm laser was employed as the excitation source. For the MoO3 material, the spectral 

range scanned was in the range up to 2000 cm-1 because there are no expected peaks 

beyond 2000 cm-1.   

  

Figure 3.2-3: Raman spectrum of molybdenum trioxide. 

 

The Raman spectrum of MoO3 is shown in Figure 3.2-3. The material displays the expected 

Raman scattering bands of α-MoO3. The absorption bands at 993, 816, 662, 361, 330, 281 

and 154 cm-1 correspond to the asymmetric stretching, vibration and wagging modes of α-

MoO3 respectively. All Raman peaks observed are in good agreement with those which 

have been described in the literature.53 According to Kihlborg’s52 results the stretching 

vibrations of Mo=O bonds at a- and b-axes are the most intense signals of the Raman 

spectrum observed at 995 and 823 cm-1; the orthorhombic MoO3 structure consisting of 

two layers of chains of MoO4 tetrahedra existing along the c-axis. According on Rao’s 

publication, the orthorhombic MoO3 structure consists of two layers of MoO6 octahedra 

associated by covalent forces in the (100) and (001) directions but by van der Waals forces 

in the (010) direction.54 
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3.2.1.3 EDX and SEM analyses 

The morphology of alpha molybdenum trioxide was examined using scanning electron 

microscopy (SEM). In this characterization, the sample was put directly on the microscope 

holder without coating. In general, SEM analysis of molybdenum trioxide was taken at a 

scale bar range interval from 100 nm to 30 µm at magnification varying from 800 to 10000. 

 

Figure 3.2-4: SEM images of molybdenum trioxide. 

 

Figure 3.2-4 presents typical SEM images at 2000 and 4000 magnification of the α-MoO3. 

The MoO3 is composed of uniform hexagonal sheets with width of 1000- 3000 nm, smaller 

thickness and length up to several tens of micrometres. A nanoparticle morphology was 

reported in earlier research.55 An EDX spectrum of MoO3 is shown in Figure 3.2-5. The EDX 

spectrum of MoO3 showed it to be composed of elemental molybdenum (39.5 wt. %) and 

oxygen (60.5 wt. %) with an atomic ratio of 1:3 Mo:O which suggests this material to be 

pure MoO3.  

  

Figure 3.2-5: EDX spectrum of molybdenum trioxide. 
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3.2.2 Gamma molybdenum nitride (γ-Mo2N) 

Previously, gamma molybdenum nitride (γ-Mo2N) with high surface area was prepared by 

Volpe et al. from molybdenum trioxide using a temperature programmed reduction (TPR) 

method.1 Its structure was investigated by Bull et al.56 using PND and PXRD. In the current 

study, γ-Mo2N was synthesised and characterized by using PXRD, BET, Raman 

spectroscopy, SEM, EDX and CHN analysis as discussed in more detail below.   

3.2.2.1 PXRD analysis 

The preparation of gamma molybdenum nitride was performed by the direct ammonolysis 

of MoO3 (Sigma Aldrich, 99.5%) using a flow rate of 86 ml min-1 NH3 (BOC, 99.98%) at 700 

°C for 2 hr as described in Chapter 2. The γ-Mo2N phase was determined by using PXRD. 

The PXRD data were collected with a step size of 0.0167° (2θ) over the range 20 ≤ 2θ/° ≤ 85 

and scan speed 0.002 degree per second for 12 hours to obtain a high quality pattern. 

 

Figure 3.2-6: Indexed PXRD pattern of gamma molybdenum nitride, (● trace peak of MoO2). 

 

The PXRD pattern in Figure 3.2-6 confirmed the formation of gamma molybdenum nitride. 

The strong diffraction peaks at 2θ = 37.4, 43.4, 63.2, 75.7 and 79.8° are indexed as the 

(111), (200), (220), (311) and (222) hkl crystal planes of the γ-Mo2N phase respectively 

which is consistent with reference JCPS 003-0907 pdf file and previous publications.1  The 

nitrogen content of the material obtained from CHN analysis was 10.5 wt. % which 
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corresponds to a Mo:N atomic ratio of 2:1.4. This result indicates that the nitrogen content 

was significantly higher than expected in Mo2N for which the stoichiometric N content 

would be 6.8 wt. %. This excess N might be, at least partly, as a result of surface bound NHx 

residues.  

 

 

Figure 3.2-7: Unit cell of gamma molybdenum nitride. 

 

The structure of gamma Mo2N ( VESTA using previous published CIF files by Bull et al. in 

200656 with code number 172801 in the Inorganic Crystal Structure Database Web) is 

shown in Figure 3.2-7. The structure of gamma Mo2N can be defined as a face centred cubic 

arrangement of molybdenum with nitrogen occupying one-half of the octahedral 

interstitial positions of the host metal. The space group is Fm-3m, a = b = c = 4.161 Å, β = γ 

= α = 90° and the unit cell volume = 72.06 Å3. 
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3.2.2.2 Raman spectroscopy 

Raman spectroscopy was conducted at room temperature and in air on the molybdenum 

nitride sample. A Kimmon IK series He-Cd 532.17 nm laser was employed as the excitation 

source for the laser. For the γ-Mo2N material, the spectral range scanned was in the range 

up to 2000 cm-1 because peaks beyond 2000 cm-1 are not expected.   

 

Figure 3.2-8: Raman spectrum of gamma molybdenum nitride. 

The Raman spectrum of the γ-Mo2N sample is shown in Fig. 3.2-8 and corresponds to that 

expected for MoO3. The absorption bands at 990, 816, 655; 355, 331, 276 and 144 cm-1 

correspond to the asymmetric stretching, vibration and wagging modes of α-MoO3. This 

result suggested that there is an oxide layer on the surface of nitride material which may 

be a result of the expected surface passivation layer given that γ-Mo2N is air sensitive. All 

Raman peaks observed are good agreement with that which has been described by Suszko 

et al.57  

3.2.2.3 EDX and SEM analyses 

The morphology of gamma molybdenum nitride powder was characterized by scanning 

electron microscopy. For this characterization, the samples were observed directly without 

coating. From Figure 3.2-9 the gamma molybdenum nitride morphology appears to 

comprise smooth platelets and the morphology of the parent oxide particles is retained. It 

is well known that the transformation of MoO3 platelets to γ-Mo2N when using the 

temperature programmed ammonolysis is topotactic due to the (100) planes of Mo2N 
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being analogous to (010) planes of MoO3
1 and also Hargreaves and co-workers58 mentioned 

that this type of ammonolysis system is known to yield γ-Mo2N with pseudomorphic  

morphology in relation to the MoO3 precursor. The BET surface area results increased to a 

63 m2g-1, pore volume 0.09 cm3g-1, pore diameter 6.0 nm compared with fresh MoO3 which 

was a 10 m2g-1 with a pore volume 0.003 cm3g-1 and pore diameter 1.4 nm. The increased 

value of BET surface area for γ-Mo2N is consistent with the previously published 

observations of Mckay et al.59 (85 m2g-1).  

 

Figure 3.2-9: SEM images of gamma molybdenum nitride. 

An EDX spectrum of γ-Mo2N is shown in Figure 3.2-10. The spectrum showed that the 

sample was composed of elemental molybdenum and nitrogen with 7.6 wt. % N, 92.4 wt. 

% Mo. These values are close to the expected stoichiometric value of 93.2 wt. % Mo and 

6.8 wt. % N in Mo2N which suggests that this material is pure Mo2N. 

  

Figure 3.2-10: EDX analysis of gamma molybdenum nitride. 
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3.2.3 Beta molybdenum carbide (β-Mo2C) 

Beta molybdenum carbide was prepared by Boudart60 in 1979 from molybdenum 

hexacarbonyl Mo(CO)6. Prior to this Lander61 first prepared molybdenum carbide by 

decomposition of the carbonyl at low temperature. In 1985 Boudart2  applied the 

temperature programmed reaction of a methane/ hydrogen gas mixture with molybdenum 

trioxide to prepare molybdenum carbide as used in the current study. The obtained phase 

was characterised by X-ray diffraction, BET, SEM, CHN analysis as described below in more 

detail.  

3.2.3.1 PXRD analysis 

Previously, the structure of beta molybdenum carbide (β-Mo2C) was reported by Volpe and 

Boudart2 who ,as stated above, prepared the transition metal carbide from molybdenum 

trioxide using a temperature programmed reduction (TPR) method under a mixture of 

methane and hydrogen. In this project, the preparation of beta molybdenum carbide from 

molybdenum trioxide was performed by the direct carburisation of MoO3 using a flow of 

12 ml min-1 of 20 vol. % CH4 in H2 gas at 800 °C for 2 h. 

 

Figure 3.2-11: Indexed PXRD pattern of beta molybdenum carbide. 

The PXRD pattern in Figure 3.2-11 confirmed the formation of beta molybdenum carbide. 

The diffraction peaks at 2θ = 34.4, 37.9, 39.4, 52.1, 61.5, 69.5, 72.3, 74.6 and 75.5° are 

indexed as the (100), (002), (101), (102), (110), (103), (200), (112) and (201) hkl crystal 

planes of the β-Mo2C phase respectively, indicating a high degree of phase purity. The 
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diffraction pattern of this hcp phase is consistent with reference to the JCPS 001-1188 PDF 

file and previous publications.3, 30, 62 The carbon content of the material obtained from CHN 

analysis was 5.8 wt. % which corresponds to the expected Mo:C molecular ratio of 2:1. 

 

Figure 3.2-12: Unit cell of β-Mo2C. Mo1 and C1 refer to molybdenum and carbon atoms respectively. 

The structure of beta Mo2C (VESTA using previous published CIF files by Fries et al. in 196063 

with code number 43669 in the Inorganic Crystal Structure Database Web) is shown in 

Figure 3.2-12. The structure of beta Mo2C can be defined as a hexagonal close packed array 

with literature unit cell information: space group P 63/m m c (194), a = b = 3.003 and c = 

4.729 Å, β = γ = 90 and α = 120° and unit cell volume = 36.93 Å3. 

3.2.3.2 Raman spectroscopy 

Raman spectroscopy was conducted at room temperature in air on the molybdenum 

carbide sample. A Kimmon IK series He-Cd 532.17 nm laser was employed as the excitation 

source for the laser. For the β-Mo2C material, the spectral range scanned was in the range 

up to 2000 cm-1. The Raman spectrum of β- Mo2C is shown in Figure 3.2-13 and, as for the 

nitride discussed previously, the material presents the typical Raman scattering bands of 

MoO3. The absorption bands at 990, 816, 656; 352, 334, 277; and 144 cm-1 correspond to 

the asymmetric stretching, vibration and wagging modes of α-MoO3. Two weaker 

characteristic peaks for the disorder (D) and graphite (G) bands of carbon are detected at 

1310 and 1548 cm-1 respectively which may be related to preparative method at high 
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temperature. All Raman peaks observed are in good agreement with those which have 

been described in literature for α-MoO3.29 

 

Figure 3.2-13: Raman spectrum of beta molybdenum carbide. 

 

3.2.3.3 EDX and SEM analyses 

The morphology of the molybdenum carbide material was characterized by scanning 

electron microscopy. For this characterization, the samples were placed directly onto the 

microscope holder without coating.  

 

Figure 3.2-14: SEM images of beta molybdenum carbide. 

 

0 250 500 750 1000 1250 1500 1750 2000

In
te

n
si

ty
/ 

a.
u

.

Wavenumber (cm-1)

6
5

6

3
5

2

2
7

7

1
4

4

1
5

4
8

1
3

1
0

9
9

0

8
1

6

3
3

4



Chapter 3  34 

After the molybdenum trioxide was carburised at 800 °C for 2 h, the morphology (as shown 

in Figure 3.2-14) undergoes a significant change. From both the 2000 and 4000 

magnification images, it appears the particles aggregate producing cubes of various sizes. 

BET surface area results show that beta molybdenum carbide was not significantly changed 

in its surface area which was 13 m2g-1 with pore volume 0.005 cm3g-1 and pore diameter 

1.5 nm as compared to that of fresh MoO3 which was 10 m2g-1 with pore volume 0.003 

cm3g-1 and pore diameter 1.4 nm. Direct carburisation of the oxide precursor does not 

result in pseudomorphism as was the case for ammonolysis to prepare the nitride.3 An EDX 

spectrum of beta molybdenum carbide is shown in Figure 3.2-15 The EDX spectrum of β-

Mo2C showed that it was composed solely of elemental molybdenum and carbon with an 

atomic ratio of 1:3 respectively which suggests that the carbon content was quite high 

which could due to the carbon based discs used as the sample holders during the SEM/EDX 

measurements as well as additional carbon formed in the process as evidenced in the 

Raman spectrum. The stoichiometric content of carbon corresponding to the pure Mo2C 

phase is expected to be 5.8 wt. %. 

 

  

Figure 3.2-15: EDX analysis of beta molybdenum carbide. 
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3.2.4 Alpha molybdenum carbide (α-Mo2C) 

Previously, alpha molybdenum carbide (α-Mo2C) with high surface area was prepared by 

Volpe et al. from a gamma molybdenum nitride precursor using a temperature 

programmed reduction (TPR) method.1 Its structure was investigated by Lee et al.3 using 

PXRD. In this study, α-Mo2C was synthesised and characterised by using PXRD, BET, Raman 

spectroscopy, SEM, EDX and CHN analysis as discussed in more detail below. 

3.2.4.1 PXRD analysis 

The formation of metastable cubic molybdenum carbide with a specific surface area of ca. 

200 m2g-1 using (TPR) has been previously described by Lee et al. The interstitial nitrogen 

atoms in γ-Mo2N can be replaced by carbon to produce α-Mo2C with high surface area. 

Characterization was undertaken using PXRD, SEM, BET and CHN analysis. The PXRD 

pattern in Figure 3.2-16 confirmed the formation of alpha molybdenum carbide. The 

diffraction peaks at 2θ = 36.9, 42.8, 62.2, 74.5 and 78.2° are indexed as the (111), (200), 

(220), (311) and (222) hkl crystal planes of the α-Mo2C phase respectively which is 

consistent with reference to the JCPS 015-0457 PDF file and other previous publications.2-

3, 64 The carbon content of the material obtained from CHN analysis was 5.8 wt. % which 

corresponds to a Mo:C ratio of 2:1.   

 

 

Figure 3.2-16: Indexed PXRD pattern of alpha molybdenum carbide. 
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Figure 3.2-17: Unit cell of alpha molybdenum carbide. 

 

The structure of alpha Mo2C ( VESTA using previous published CIF files by Sathish et al. in 

201265 with code number 236296 in the Inorganic Crystal Structure Database Web) is 

shown in Figure 3.2-17. The structure of alpha Mo2C can be defined as a face centred cubic 

array of molybdenum atoms with carbon atoms occupying one-half of the octahedral 

interstitial positions of the host metal with the literature reported unit cell information: 

space group Fm-3m, a = b = c = 4.26 Å, β = γ = α = 90°, unit cell volume = 77.66 Å3. 

3.2.4.2 Raman spectroscopy 

Raman spectroscopy was conducted at room temperature in air on the molybdenum 

carbide sample. A Kimmon IK series He-Cd 532.17 nm laser was employed as the excitation 

source for the laser. For the α-Mo2C material, the spectral range scanned was in the range 

up to 2000 cm-1. 
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Figure 3.2-18: Raman spectrum of alpha molybdenum carbide. 

The Raman spectrum of α-Mo2C is shown in Figure 3.2-18 and, as for the previous two 

samples (γ-Mo2N and β-Mo2C), the material demonstrates the typical Raman scattering 

bands of alpha-MoO3. The Raman spectrum of alpha molybdenum carbide could not be 

found in literature.  

3.2.4.3 EDX and SEM analyses 

The morphology of alpha molybdenum carbide powder was characterized by scanning 

electron microscopy. Figure 3.2-19 shows typical SEM images obtained at 2000 and 4000 

times magnification.  

 

Figure 3.2-19: SEM images of alpha molybdenum carbide. 
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Alpha-Mo2C has a similar morphology to γ-Mo2N, comprising smooth platelets. The 

morphology of the parent oxide is retained in gamma molybdenum nitride and alpha 

molybdenum carbide. Lee et al.3 reported that the reactions involved in ammonolysis of α-

MoO3 to produce γ-Mo2N and subsequent carburisation to produce α-Mo2C processes are 

topotactic and are pseudomorphic with respect to the parent platelets of MoO3. The BET 

surface area decreased to 52 m2g-1 (0.07 cm3g-1, 5.5 nm) for α-Mo2C compared with γ-Mo2N 

(63 m2g-1). EDX spectra of alpha molybdenum carbide are shown in Fig. 3.2-20. The EDX 

spectrum of α-Mo2C showed that it was composed of only elemental molybdenum and 

carbon with an atomic ratio of 1:3 respectively which suggests that the carbon wt. % was 

very high which could due to the issue with the sample holders discussed previously. The 

corresponding stoichiometric values would be 94.2 wt. % Mo and 5.8 wt. % C for Mo2C. It 

should also be remembered that the stoichiometry of this molybdenum carbide phase is 

variable (i.e. the phase is α-MoC1-x).  

  

Figure 3.2-20: EDX analysis of alpha molybdenum carbide. 

3.2.5 Cobalt molybdenum oxide (CoMoO4.nH2O). 

Four polymorphs of cobalt molybdate have been previously reported; the low temperature 

α-phase66 with (space group C2/m, a = 9.67 Å, b = 8.85 Å, c = 7.76 Å, β = 113.49°), the high 

pressure hp-phase67 with (space group P2/c, a = 4.65 Å, b = 5.68 Å, c = 4.91 Å, β = 90.52°), 

the high temperature β-phase68 with space group C2/m, a = 10.21 Å, b =  9.31 Å, c = 7.01 Å, 

β = 106.40°) and the hydrate69 a violet phase with space group P-1, a = 6.84 Å, b = 6.93 Å, c 

= 9.33 Å, β = 84.18°). In this project, a series of hydrated and subsequently dehydrated 

CoMoO4 phases was synthesised following the approach described in detail in the 

literature.70-71  
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3.2.5.1 PXRD analysis 

Hydrated compounds CoMoO4.nH2O were synthesised by a hydrothermal method which is 

greatly reproducible with the same dark purple phase product being repeatedly formed. 

Cobalt nitrate and ammonium heptamolybdate were dissolved in 200 ml of distilled water 

and heated with mixing at 80 °C. The obtained precipitate was filtered, washed twice with 

distilled water and once with ethanol. The product was placed in an oven overnight at 100 

°C to dry and then the resulting material was calcined at 500 °C for 3h in static air to obtain 

the dehydrated cobalt molybdate phase. Single phase products of the hydrated and 

dehydrated phases were obtained and confirmed by powder X-ray diffraction as shown in 

Figure 3.2-21 and Figure 3.2-22 respectively.  

 

Figure 3.2-21: Indexed PXRD pattern of hydrated cobalt molybdenum oxide. 

 

Figure 3.2-21 displays the powder X-ray diffraction pattern for the CoMoO4.nH2O material.  

The XRD results are similar to those presented in JCPDS file number 01-074-8729 reported 

for CoMoO4.0.75H2O with space group P-1 (number 2), a = 6.84 Å, b = 6.93 Å, c = 9.33 Å, β 

= 84.18°, α = 76.61°, γ = 74.51°). The diffraction peaks at 2θ = 9.7, 13.4, 20.9, 22.5, 23.3, 

26.6, 29.5, 30.7, 31.0, 32.7, 41.4, 42.5, 43.6, 52.8, 54.2, 55.7 and 60.9° are indexed and 

labelled as the (001), (100), (-111), (102), (-1-11), (121), (003), (113), (212), (221), (-123), (-

2-22), (230), (-105), (2-14), (412) and (432) hkl crystal planes of the hydrate phase 

respectively. 
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Figure 3.2-22: Indexed PXRD pattern of beta cobalt molybdenum oxide. 

 

Figure 3.2-22 presents the powder X-ray diffraction pattern for the anhydrous β-CoMoO4 

material. This pattern agrees very well with the corresponding JCPDS file number 021-0868 

reported for the beta-phase anhydrous cobalt molybdate with (space group C2/m, space 

group number 12, a = 10.21, b = 9.31, c = 7.01 Å, β = 106.4, γ = α = 90°). The reflections at 

2θ = 12.8, 18.7, 22.9, 25.1, 26.2, 26.8, 28, 31.7, 33.3, 36.3, 38.4, 39.7, 43.1, 46.5, 51.7 and 

57.9° are indexed and labelled as the (001), (201), (021), (201), (002), (112), (310), (022), 

(222), (400), (040), (003), (113), (421), (204) and (440) hkl crystal planes of the beta phase 

respectively. 

In order to confirm that the structure was hydrated cobalt molybdenum oxide, Rietveld 

refinement was performed against PXRD data using the General Structure Analysis System 

(GSAS) through the EXPGUI interface.5-6 The position in the unit cell of the atoms, the space 

group and the unit cell parameters of hydrated CoMoO4 were refined over a 2 theta range 

of 5 to 80°. The background was modelled by a type 7 function and 23 term Chebyschev 

polynomial function model in GSAS. The refinement parameters and Rietveld refinement 

fits are shown in Table 3.2-1, Table 3.2-2 and Figure 3.2-23 respectively.  
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Table 3.2-1: PXRD refined crystallographic parameters for CoMoO4.nH2O. 

Parameter Value 

Chemical formula 
Colour of material 

Crystal system 
Space group 

Space group number 
Cell parameter, a/ Å 
Cell parameter, b/ Å 
Cell parameter, c/ Å 

Alpha/ Degrees 
Beta/ Degrees 

Gamma/ Degrees 
Unit cell volume/ Å3 

Calculated weight / gmol-1 
Calculated density / gcm-3 
Number of observations 

Number of variables 
Rp 

Rwp 
X2 

CoMoO4. 0.75 H2O 
Dark violet 

Triclinic 
P-1 
2 

6.8296(3) 
6.9357(5) 
9.3379(1) 

76.62 
84.19 
74.72 

414.71(9) 
939.472 

3.762 
4487 

78 
0.173 
0.231 
3.156 

 

Table 3.2-2: PXRD refined parameters for CoMoO4.nH2O. 

Atoms Ox state/ 
sites 

X Y Z Occupancy 100*Uiso 

Co1 

Co2 

Mo1 

Mo2 

O1 

O2 

O3 

O4 

O5 

O6 

O7 

O8 

O9 

O10 

+2 (2i) 

+2 (2i) 

+6 (2i) 

+6 (2i) 

-2 (2i) 

-2 (2i) 

-2 (2i) 

-2 (2i) 

-2 (2i) 

-2 (2i) 

-2 (2i) 

-2 (2i) 

-2 (2i) 

-2 (2i) 

0.1751(27) 

0.2015(31) 

-0.0078(17) 

0.2404(17) 

0.160(9) 

0.208(8) 

0.010(10) 

-0.312(8) 

0.231(7) 

0.297(8) 

0.365(10) 

0.445(9) 

0.554(9) 

-0.628(8) 

0.6542(30) 

0.8294(28) 

0.1962(17) 

0.2853(17) 

0.077(9) 

0.426(9) 

0.266(10) 

0.321(10) 

0.519(9) 

-0.050(9) 

0.293(10) 

0.262(9) 

0.673(10) 

0.099(8) 

0.7007(20) 

0.9832(20) 

0.6687(13) 

0.0543(13) 

0.781(5) 

0.660(7) 

0.400(7) 

0.637(6) 

1.019(6) 

1.000(7) 

0.291(7) 

0.051(6) 

0.663(7) 

0.586(6) 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

0.500 

0.500 

0.500 

0.500 

0.500 

0.500 

0.500 

0.500 

0.500 

0.500 

0.500 

0.500 

0.500 

0.500 
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Figure 3.2-23: PXRD refinement of CoMoO4.nH2O. 

 

A Crystallographic Information File, which was obtained from ICSD website with code 

153169 from Eda et al.69 for CoMoO4.0.75H2O, was used to refine the obtained XRD data; 

it gave the best fit for CoMoO4.nH2O compared with other CIF published files. However, 

the refinement does not produce a very good fit to the data which could be related to 

different amounts of water present in this material.  

The structure of the material has been well studied and it is apparent that cobalt is 

octahedrally coordinated to oxygen (CoO6) and molybdenum is tetrahedrally coordinated 

to oxygen (MoO4) in both the dehydrated and hydrated phases. Figure 3.2-24 displays the 

unit cell for the hydrate CoMoO4.0.75H2O drawn using Vesta software using CIF file code 

153169; whereas Figure 3.2-25 presents the unit cell for beta CoMoO4 using CIF file with 

code number 23808 as proposed by Smith et al. from the ICSD website.72  
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Figure 3.2-24: Unit cell of hydrated cobalt molybdate. 

 

 

Figure 3.2-25: Unit cell of the anhydrous beta CoMoO4 phase. 
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Figure 3.2-26: PXRD patterns of hydrated cobalt molybdenum oxide calcined under air (A) CoMoO4.nH2O; 
(B) 200 °C, 1h; (C) 300 °C, 1h; (D) 350 °C, 1h; (E) 400 °C, 1h; (F) 500 °C, 1h.( the peak at 2θ= 29° which is 
related to CoMoO4.nH2O which completely disappeared at 350 °C as highlighted by the red arrow). 

 

Ex-situ experiments were performed to investigate the effect of calcination in air from 200 

to 500 °C for 1 hr, in order to investigate any possible intermediate phases formed when 

the hydrated phase undergoes transformation to the anhydrous beta phase. The PXRD 

patterns presented in Figure 3.2-26 indicated that no change in the diffraction pattern was 

observed at 200 °C and the hydrated molybdenum oxide phase transformed to the 

dehydrated phase between 300 to 350 °C. There was no significant change observed 

beyond 350 °C and beyond this point the dark violet hydrated phase converted to the pale 

violet dehydrated phase. This result agrees well with the TGA result presented below and 

the work of Rodriguez and co-workers.73  
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3.2.5.2 TGA analysis 

 

Figure 3.2-27: TGA trace of CoMoO4.nH2O performed from room temperature up to 500 °C in air. 

 

TGA for the hydrated cobalt molybdenum oxide was performed from room temperature to 

500 °C in air. Upon heating CoMoO4-nH2O to high temperature, water loss in two stages 

was evidenced as can be seen in Figure 3.2-27. The first stage occurs between 50 and 150 

°C which is associated with the weight loss corresponding adsorbed water on the surface 

of the hydrated material. The second peak appears in the range 200 to 350 °C and is 

assigned to the loss of water molecules from the crystal structure. At the end of the second 

stage a total loss of around 7 % mass in total of the material, equivalent to that of 0.85 

moles of water per formula unit of CoMoO4, which is more than the expected amount of 

0.75 moles.  
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3.2.5.3 Raman spectroscopy 

The Raman spectrum of the anhydrous beta- CoMoO4 material was recorded in air at room 

temperature using a Horiba Jobin Yvon LabRam HR confocal Raman microscope with 

532.17 nm laser excitation. The scanning range was up to 2000 cm-1. 

 

Figure 3.2-28: Raman spectrum of dehydrated β-phase cobalt molybdenum oxide. 

 

The Raman spectrum for the dehydrated β-phase CoMoO4 material (as prepared material) 

is presented in Figure 3.2-28. The positions of the Raman bands at 354, 806, 866, 930 and 

941 cm-1 were attributed to the CoMoO4 Raman bands at 350, 880 and 930 assigned to Mo-

O-Co stretching vibrations in cobalt molybdate species.74 Moreover, the stronger band at 

941 cm-1 is due to the A1 mode of Mo=O in the MoO4 tetrahedral unit;30 whereas the band 

at 806 cm-1 occurs also in MoO3 as a strong band. 
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3.2.5.4  SEM images 

 

Figure 3.2-29: SEM images of the hydrate CoMoO4.nH2O phase. 

 

Figure 3.2-29 shows the scanning electron microscopy images of hydrated CoMoO4.nH2O 

nanorods of various lengths (in the range ca. 5 µm) and diameter of ca. 600 nm. Previously, 

several groups have reported that the hydrated CoMoO4.nH2O material has nanorod 

morphology.75 Figure 3.2-30 presents the SEM images for the beta-CoMoO4 phase in which 

rods of various lengths between 1 and 10 µm and diameter ca. 600 nm are evident, in 

agreement with the observations of  Rico et al.71   

 

Figure 3.2-30: SEM images of the anhydrous beta CoMoO4 phase. 
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3.2.6 Cobalt molybdenum nitride (η-6 Co3Mo3N) 

Cobalt molybdenum nitride is characterised by a face centred cubic arrangement of the Co 

and Mo species with the lattice nitrogen occupying octahedral interstitial positions located 

at 16c Wyckoff sites.4, 76-77 Co3Mo3N has received much attention as a result of its excellent 

catalytic properties in ammonia synthesis.78 This nitride is usually prepared via 

temperature programmed nitridation of the bimetallic oxide precursor which is obtained 

from the reaction of cobalt nitrate with ammonium heptamolybdate.79 The preparation of 

this material drew upon prior literature that reported the formation of a pure ternary 

molybdenum nitride phase.70 The goal of the work detailed in the current chapter was to 

prepare and investigate the intermediate phases for nitride and carbide materials when 

ternary molybdenum nitrides are converted to ternary molybdenum carbides and vice 

versa using nitrogen or carbon sources such as N2/H2, N2, CH4/H2, CH4 and H2/Ar. 

3.2.6.1 PXRD and PND analysis 

The formation of the η-6 Co3Mo3N (abbreviated as 331N) phase was confirmed using PXRD. 

The obtained material was scanned at a step size of 0.0167° over the range 10 ≤ 2θ/° ≤ 90 

and scan speed 0.002 degree per second run over 12 hours to obtain accurate peaks for 

use in refinement. The pattern was matched using the JCPDS reference standard for η-6 

Co3Mo3N (01-89-7953). 

 

Figure 3.2-31: Indexed PXRD pattern of Co3Mo3N showing indexed reflections. 
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The indexed PXRD pattern for η-6 Co3Mo3N is presented in Figure 3.2-31. The 17 reflections 

in the 2θ range at 20-90° (22.4, 32.2, 35.2, 39.7, 42.3, 46.2, 49.2, 54.7, 59.5, 64.5, 67.9, 69.3, 

72.3 73.9, 79.0, 79.6 and 88.1°) are representative of the ternary cobalt molybdenum 

nitride; and the associated hkl crystal planes are identified in the figure. In addition, this 

result confirms that this obtained material was free from reflections relating to Mo2N, Co, 

Mo or oxide formation. Based on the CHN elemental analysis results, the nitrogen content 

of the material was found to be 3.1 wt. % which is similar to the calculated stoichiometric 

value for Co3Mo3N (which is 2.9 wt. %). 

Rietveld analysis was performed to fit a published structural model of Co3Mo3N to the 

experimental PXRD data. The structure of the Co3Mo3N was refined by the Rietveld method 

against PXRD data using GSAS and EXPGUI software packages. The initial model used was 

the cubic Fe3W3C structure type which was proposed by Jackson80 et al. and taken from the 

ICSD database website with code 88267, in which the molybdenum atoms are placed at 48f 

Wyckoff positions and the cobalt species occupy in two non-equivalent the 16d, 32e sites, 

while the nitrogen species are located at 16c sites.  

 

Figure 3.2-32: Fitted PXRD data profiles from Rietveld refinement for Co3Mo3N. 
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The background was modelled using a power series in Q**2n/n! and n!/Q**2n function 

(function type 6 and 6 terms within GSAS). Cell parameters, scale factor and zero point 

were also refined in the initial cycles. The isotropic thermal factors (Uiso) of the cobalt, 

molybdenum and nitrogen were refined in final cycle.  The nitrogen site occupancy factor 

was refined which further improved the goodness of fit parameters. The results of 

Co3Mo3N refinement obtained from PXRD data are presented in Figure 3.2-32 and Table 

3.2-3.  

 

Figure 3.2-33: Fitted PND data profiles from Rietveld refinement for Co3Mo3N. 

 

PND was used in the current studies to establish how much carbon or nitrogen was present 

within the bulk carbide or nitride structure as PXRD is unable to distinguish them. The 

reason for this based on the fact that the difference between carbon and nitrogen atoms 

is only one electron which makes their distinction impossible when using X-ray diffraction 

which is sensitive to electron density, whereas, neutrons are diffracted by nuclei.   

At room temperature, time-of-flight (ToF) PND data were collected using the high intensity 

Polaris diffractometer at the ISIS pulsed spallation source (Rutherford Appleton Laboratory, 

UK). Powder samples (ca. 1 g) were loaded into 11 mm diameter thin-walled stainless steel 

cells. A collimator manufactured from a neutron-absorbing boron nitride ceramic placed 
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around the cell enabled diffraction patterns to be collected in the Polaris 2θ ≈ 90° detector 

bank which were free of Bragg reflections from the steel walls of the cell. Rietveld 

refinements against PND data were performed using the General Structure Analysis System 

(GSAS) through the EXPGUI interface.  

The background was modelled using a liner interpolation function (function type 7 and 23 

terms within GSAS). Cell parameters, the scale factor and zero point were also refined in 

initial cycles. The isotropic thermal factors (Uiso) of the cobalt, molybdenum and nitrogen 

were refined in the final cycle.  The nitrogen site occupancy factor was refined which 

further improved the goodness of fit parameters. The results of Co3Mo3N refinement 

obtained from PND data are presented in Figure 3.2-33 and Table 3.2-3.  

Table 3.2-3: Crystallographic parameters of Co3Mo3N from PXRD and PND refined data. 

Parameter PXRD value PND value 

Formula 
Crystal system 

Space group 

Space group number 
Cell parameter a/ Å 
Cell parameter b/ Å 
Cell parameter c/ Å 

Alpha/ Degrees 
Beta/ Degrees 

Gamma/ Degrees 
Unit-cell volume/ Å3 

Calculated formula weight/ gmol-1 
Calculated density/ gcm-3 
Number of observations 

Number of variables 
Rp 

Rwp 
X2 

Co3Mo3N 
Cubic 

Fd 3  m 
227 

11.0260(9) 
11.0260(9) 
11.0260(9) 

90 
90 
90 

1340.49(6) 
7690.938 

9.527 
4787 

19 

0.0139 
0.0176 
1.196 

Co3Mo3N 

Cubic 

Fd 3  m 

227 

11.0272(8) 

11.0272(8) 

11.0272(8) 

90 

90 

90 

1340.92(9) 

7750.530 

9.598 

1945 

37 

0.0394 

0.0277 

1.031 

 

Rietveld refinement of the X-ray data within the Fd 3  m space group of the η-6 cobalt 

molybdenum nitride produced an acceptable fit with Rwp = 1.76 % and Rp = 1.39 % (Table 

3.2.-3 and Figure 3.2-32). The ToF neutron diffraction data were also successfully refined 
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within the same space group, giving Rwp = 2.77 % and Rp = 3.94 % (Table 3.2-3, Figure 3.2-

33). The lattice parameters determined from X-ray and neutron results were in excellent 

agreement with each other: a = 11.0260(9) and a = 11.0272(8) Å, respectively. The 

correspondence between the X-ray and neutron data, and the successful Rietveld 

refinement of the powder data through the structural model confirms that all N atoms 

occupy the 16c (0, 0, 0) site within the structure. When using a model in which the nitrogen 

atoms occupied the 8a (1/8, 1/8, 1/8) site, no reasonable fit to the data was obtained 

therefore confirming the occupation of the 16c site. The composition of the material has 

been identified from the structural refinements against PXRD data in Table 3.2-4 and PND 

data in Table 3.2-5 which are Co3Mo3N1.15 and Co3Mo3N1.02 respectively and which is close 

to that determined by stoichiometric in previous studies Co3Mo3N. 

Table 3.2-4: Co3Mo3N PXRD refined parameters. 

Atoms/site X Y Z Occupancy 100*Uiso(Å2) 
Co1 (32e) 
Co2 (16d) 
Mo (48f) 
N (16c) 

0.292275(0) 
0.500000(0) 
0.324245(0) 
0.000000(0) 

0.2922750(0) 
0.500000(0) 
0.125000(0) 
0.000000(0) 

0.2922750(0) 
0.5000000(0) 
0.1250000(0) 
0.0000000(0) 

1.00 
1.00 
1.00 
1.15 

1.78 
1.52 
2.07 
4.30 

 

Table 3.2-5: Co3Mo3N PND refined parameters. 

Atoms/site X Y Z Occupancy 100*Uiso(Å2) 
Co1 (32e) 
Co2 (16d) 
Mo (48f) 
N (16c) 

0.290817(0) 
0.500000(0) 
0.32435(9) 

0.000000(0) 

0.290817(0) 
0.500000(0) 
0.125000(0) 
0.000000(0) 

0.290817(0) 
0.500000(0) 
0.125000(0) 
0.000000(0) 

1.00 
1.00 
1.00 
1.02 

0.068 
0.123 
0.286 
0.391 

 

The structure of Co3Mo3N consists of a distorted fcc arrangement of cobalt and 

molybdenum, with nitrogen occupying distorted octahedral interstitial sites. The cobalt, 

molybdenum and nitrogen atomic distances and bond angles in Co3Mo3N were obtained 

from Rietveld refinement against PXRD and PND data as illustrated in Tables 3.2-6 and 3.2-

7 respectively. PXRD and PND refined data are similar. The distances from the molybdenum 

atom to the remaining metallic atoms in this range between ca. 2.61(2) to 3.10(6) Å, the 

distances from cobalt in 32e Wyckoff site to the 16d site species in this range between ca. 
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2.38(3) to 2.57(9) Å and the distances from molybdenum to nitrogen in the 16c site are ca. 

2.11(4) Å. These values are consistent with those published previously.4  

 
Table 3.2-6: Bond angles for Co3Mo3N from PXRD and PND refined data. 

Bond angle (°) PND value  PXRD value 

N-Mo-N*1 
Mo-N-Mo*6 
Mo-N-Mo*6 
Mo-N-Mo*3 

Mo-Co1-Mo*3 

Co1-Mo-N*4 

Co1-Mo-Co1*1 

Co1-Co2-Co1*6 

Co1-Co2-Co1*3 

Co1-Co2-Co1*6 

Co2-Co1-Mo*3 

Co2-Co1-Mo*6 

Co2-Co1-Co2*3 

134.38(5) 

94.622(32) 

85.378(32) 

180.000(0) 

73.035(32) 

86.853(11) 

163.72(4) 

113.454(0) 

180.000(0) 

66.546(0) 

66.434(21) 

124.731(3) 

109.102(0) 

134.436(1) 

94.581(1) 

85.419(1) 

180.000(0) 

72.342(1) 

87.027(1) 

164.607(0) 

114.465(0) 

180.000(0) 

65.535(0) 

66.247(0) 

124.232(1) 

109.733(0) 

 

Table 3.2-7: Bond lengths for Co3Mo3N from PXRD and PND refined data. 

Bond length (Å) PND value  PXRD value 

N-Mo*6 

Mo-Mo*6 
Mo-Mo*6 
Co1-Mo*3 
Co1-Mo*3 
Co1-Co1*3 
Co1-Co2*3 
Co2-Mo*6 
Co2-Co1*6 

2.1148(4) 

2.8677(4) 

3.1089(13) 

2.61222(15) 

2.7242(8) 

2.62566(9) 

2.39294(7) 

2.7480(7) 

2.39294(7) 

2.11409(3) 

2.86789(5) 

3.10688(6) 

2.63207(3) 

2.72824(4) 

2.57990(3) 

2.38337(4) 

2.74857(4) 

2.38337(4) 
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The structure of η-6 Co3Mo3N phase has been previously studied and it is obvious that 

cobalt (Co1, Co2), molybdenum and nitrogen occupy Wyckoff locations (32e, 16d), 48f and 

16c respectively. Figure 3.2-34 displays the unit cell for η-6 Co3Mo3N including all elements 

in the figure on the left hand side (which was drawn by Vesta software using Jackson’s CIF 

file code 88267 from the ICSD database website); whereas only the Mo and N sub-lattice is 

shown on the right hand side figure.  

 

 

 

Figure 3.2-34: The Unit cell of Co3Mo3N on the left hand side and Mo-N coordination on the right hand 
side by using VESTA software. Brown, grey, green and blue spheres represent the Mo, N, Co1 and Co2 
respectively.  

 

In the structure of Co3Mo3N, cobalt occupies two non-equivalent sites in which each site is 

surrounded by six molybdenum and six cobalt atoms resulting in the formation of Co 

[Mo6Co6] units. In the case of molybdenum, the species is surrounded by four 

molybdenum, six cobalt species and two nitrogen species forming Mo [Mo4Co6N2] units 

while nitrogen is surrounded by six molybdenum species and coordinated exclusively to 

molybdenum in 16c Wyckoff sites, resulting in the formation of [NMo6] units as illustrated 

in Figure 3.2-35.     

  



Chapter 3  55 

 

 

 

 

 

 

Figure 3.2-35: Atomic coordination of Co1 (32e), Co2 (16d), Mo (48f) and N1 (16c) sites. 
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3.2.6.2 Raman spectroscopy  

The Raman spectrum of Co3Mo3N was recorded at room temperature on a Horiba Jobin 

Yvon LabRam HR confocal Raman microscope in air, using 532.17 nm laser excitation.  

 

Figure 3.2-36: Raman spectrum of Co3Mo3N. 

 

The Raman spectrum is presented in Figure 3.2-36. The positions of the Raman bands at 

356, 806, 871, 928 cm-1 can be attributed to the published CoMoO4 Raman bands at 350, 

880 and 930 assigned to Mo-O-Co stretching vibrations in cobalt molybdate species.74 This 

observation is consistent with the formation of a surface oxide passivation layer. 
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3.2.6.3 EDX and SEM analyses 

Figure 3.2-37 shows the SEM images of Co3Mo3N. It can be seen that the morphology of η-

6 Co3Mo3N material appears to consist of aggregates of needles and it still retains its 

precursor shape and size of the crystallites. The BET surface area recorded for η-Co3Mo3N 

was 18 m2g-1 which is higher than that of oxide precursor (7 m2g-1).  

 

Figure 3.2-37: Typical SEM images of the Co3Mo3N phase. 

EDX data were collected for several crystallites for η-6 Co3Mo3N and showed similar results. 

All EDX spectra evidenced the presence of molybdenum, cobalt and nitrogen as illustrated 

in Figure 3.2-38. However, detection and quantification of the N content is challenging. The 

obtained elemental values (4.1 wt. % N, 50.1 wt. % Co and 45.8 wt. % Mo) can be compared 

to the 36.9 wt. % Co, 60.2 wt. % Mo and 2.9 wt. % N values expected for Co3Mo3N.  

 

Figure 3.2-38: EDX analysis of Co3Mo3N. 
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3.2.7 Cobalt molybdenum nitride (η-12 Co6Mo6N) 

As mentioned in the experimental chapter, η-12 Co6Mo6N was synthesized by reduction of 

η-6 C3Mo3N under a 75 vol. % H2 in Ar gas mixture at 700 °C for 5 h and it was characterised 

by PXRD, PND and CHN elemental analysis. The synthesis of the η-12 Co6Mo6N phase has 

been reported previously in the literature.4, 37, 81 

3.2.7.1 PXRD and PND analysis 

The formation of the η-12 Co6Mo6N (abbreviated as 661N) phase was confirmed using 

PXRD. The PXRD data were collected with a step size of 0.0167° (2θ) over the range 10 ≤ 

2θ/° ≤ 90 and scan speed 0.002 degree per second for 12 hours to get accurate reflection 

positions to use for refinement. The patterns were identified using the related JCPDS 

reference standard for η-12 Co6Mo6C (03-065-8115).  

 

Figure 3.2-39: Indexed PXRD pattern of the Co6Mo6N phase. 

 

The PXRD pattern in Figure 3.2-39 presents reflections at 2 theta = 21.9, 32.5, 35.6, 40.3, 

42.9, 46.9, 49.9, 54.9, 60.4, 65.5, 70.4, 73.5, 75.2, 79.2, 81.4 and 87.6° which can be 

assigned to eta-12 cobalt molybdenum nitride; the associated hkl crystal planes are 

identified and labelled in the figure. According to the CHN elemental analysis results, the 

nitrogen content of the material was found to be 1.5 wt. % which is consistent with the 

calculated stoichiometric value for Co6Mo6N (1.4 wt. %).  
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The structure of the Co6Mo6N phase was refined applying the Rietveld method against 

PXRD data using GSAS and EXPGUI software packages. The initial model used was the cubic 

Mo6Ni6C structure type which was proposed by Newsam et al. (1988) and taken from the 

ICSD database website with code 68120, which the molybdenum species are located at 48f 

positions, the cobalt species occupy two non-equivalent the 16d, 32e Wyckoff positions, 

whereas the carbon species located at the 8a Wyckoff position were replaced by nitrogen 

atoms. The background was modelled using a shifted Chebyschev polynomial function 

(function type 7 and 23 terms within GSAS). The cell parameters, the scale factor and the 

zero point were also refined in initial cycles. The isotropic thermal factors (Uiso) of the 

cobalt, molybdenum and nitrogen were refined in final cycle. The nitrogen site occupancy 

factor was refined which quite improved the goodness of fit parameters. The results of 

Co6Mo6N refinement results obtained from the PXRD data are presented in Figure 3.2-40 

and Table 3.2-8.  

 

Figure 3.2-40: Fitted PXRD data profiles from Rietveld refinement for Co6Mo6N. 
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Figure 3.2-41: Fitted PND data profiles from Rietveld refinement for Co6Mo6N. 

 

At room temperature, time-of-flight (ToF) PND data were collected using the high intensity 

Polaris diffractometer at the ISIS pulsed spallation source (Rutherford Appleton Laboratory, 

UK). Powder samples (ca. 1 g) were loaded into 11 mm diameter thin-walled stainless steel 

cells. A collimator manufactured from neutron-absorbing boron nitride ceramic placed 

around the cell enabled diffraction patterns to be collected in the Polaris 2θ ≈ 90° detector 

bank which were free of Bragg reflections from the steel walls of the cell. Rietveld 

refinements against PND data were performed using the General Structure Analysis System 

(GSAS) through the EXPGUI interface.  

The background was modelled using a shifted Chebyschev polynomial function (function 

type 7 and 23 terms within GSAS). Cell parameters, the scale factor and the zero point were 

also refined in initial cycles. The isotropic thermal factors (Uiso) of the molybdenum and 

nitrogen were refined whereas cobalt species were constrained in the final cycle.  The 

nitrogen site occupancy factor was refined which further improved the goodness of fit 

parameters. The results of Co6Mo6N refinement obtained from PND data are presented in 

Figure 3.2-41 and Table 3.2-8.  
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Table 3.2-8: Crystallographic parameters of Co6Mo6N from PXRD and PND refined data. 

Parameter PXRD value PND value 

Formula 
Crystal system 

Space group 

Space group number 

Cell parameter a/ Å 
Cell parameter b/ Å 
Cell parameter c/ Å 

Alpha/ Degrees 
Beta/ Degrees 

Gamma/ Degrees 
Unit-cell volume/ Å3 

Calculated formula weight/ gmol-1 
Calculated density/ gcm-3 
Number of observations 

Number of variables 
Rp 

Rwp 
X2 

Co6Mo6N 
Cubic 

Fd 3  m 
227 

10.8733(8) 
10.8733(8) 
10.8733(8) 

90 
90 
90 

1285.56(6) 
7564.208 

9.771 
4787 

34 
0.0133 
0.0169 
1.147 

Co6Mo6N 

Cubic 

Fd 3  m 

227 

10.8809(8) 

10.8809(8) 

10.8809(8) 

90 

90 

90 

1288.26(1) 

7548.691 

9.730 

1901 

34 

0.0489 

0.0332 

1.022 

 

Rietveld refinement of the X-ray data within the Fd 3  m space group of the η-12 cobalt 

molybdenum nitride produced a successful fit with Rwp = 1.69 % and Rp = 1.33 % (Table 3.2.-

8 and Figure 3.2-40). The ToF neutron diffraction data were also successfully refined within 

the same space group, giving Rwp = 3.32 % and Rp = 4.89 % (Table 3.2-8, Figure 3.2-41). The 

lattice parameters determined from X-ray and neutron results were in excellent agreement 

with each other: a = 10.8733(8) and a = 10.8809(8) Å, respectively. The correspondence 

between the X-ray and neutron data, and the successful Rietveld refinement of the powder 

data through the structural model confirms that all N species occupy the 8a (1/8, 1/8, 1/8) 

site within the structure. When using a model in which nitrogen occupied the 16c (0, 0, 0) 

site, no reasonable fit to the data was obtained, further confirming the occupation of the 

8a site. The composition of the material has been identified from the structural refinements 

against PXRD data in Table 3.2-9 and PND data in Table 3.2-10 which are Co6Mo6N1.36 and 

Co3Mo3N1.02 respectively and which is close to that determined in previous studies. 
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Table 3.2-9: Co6Mo6N PXRD refined parameters. 

Atoms/site X Y Z Occupancy 100*Uiso(Å2) 
Co1 (32e) 
Co2 (16d) 
Mo (48f) 

N (8a) 

0.292400(0) 
0.500000(0) 
0.320984(0) 
0.125000(0) 

0.292400(0) 
0.500000(0) 
0.125000(0) 
0.125000(0) 

0.292400(0) 
0.500000(0) 
0.125000(0) 
0.125000(0) 

1.00 
1.00 
1.00 
1.36 

1.327 
1.327 
1.114 
4.150 

 

Table 3.2-10: Co6Mo6N PND refined parameters. 

Atoms/site X Y Z Occupancy 100*Uiso(Å2) 
Co1 (32e) 
Co2 (16d) 
Mo (48f) 

N (8a) 

0.292400(0) 
0.500000(0) 
0.32168(14) 
0.125000(0) 

0.292400(0) 
0.500000(0) 
0.125000(0) 
0.125000(0) 

0.292400(0) 
0.500000(0) 
0.125000(0) 
0.125000(0) 

1.00 
1.00 
1.00 
1.02 

0.319 
0.319 
0.271 
0.692 

 

The structure of Co6Mo6N consists of a distorted fcc arrangement of the cobalt and 

molybdenum, with nitrogen occupying distorted octahedral interstitial sites. The cobalt, 

molybdenum and nitrogen distances and bond angles in Co6Mo6N were obtained from 

Rietveld refinement against PXRD and PND data as illustrated in Table 3.2-11 and Table 3.2-

12 respectively. PXRD and PND refined data are very similar. The distances from the 

molybdenum species to the remaining metallic species is in the range between ca. 2.59(2) 

to 2.84(1) Å, the distances from cobalt in 32e Wyckoff site to the 16d site species is in the 

range between ca. 2.54(7) to 2.34(9) Å and the distances from molybdenum to nitrogen in 

the 16c site are ca. 2.14 Å from PND and 2.13 Å from PXRD refined data. These values are 

consistent with those previously reported.4 

The structural comparison of Co3Mo3N and reduced phase Co6Mo6N (wherein nitrogen 

occupies the 8a Wyckoff site as opposed to the 16c site) is discussed here. It is remarkable 

to observe that regarding the metal–metal distances, the molybdenum to cobalt and 

molybdenum to molybdenum atomic distances present similar features in both Co3Mo3N 

and Co6Mo6N being slightly longer in 331N. Concerning the cobalt 32e site and 16d site 

atomic distances, they exist as similar distances in both the Co3Mo3N and Co6Mo6N, being 

slightly smaller in 661N. Finally, for the Mo-N atomic distances, the Mo-N distance in 661N 
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is slightly longer than the Mo-N distance in 331N which relates to migration of nitrogen 

species from the 16c position to the 8a position.  

 

Table 3.2-11: Bond lengths for Co6Mo6N from PXRD and PND refined data. 

Bond length (Å)  PND value PXRD value 
N-Mo*6 

Mo-Mo*3 
Mo-Mo*3 
Co1-Mo*3 
Co1-Mo*3 
Co1-Co1*3 
Co1-Co2*3 
Co2-Mo*6 
Co2-Co1*6 

2.1401(15) 

3.0265(21) 

2.8413(6) 

2.59558(21) 

2.7173(13) 

2.54210(14) 

2.35123(13) 

2.7322(11) 

2.35123(13) 

2.13101(1) 

3.01370(2) 

2.84242(1) 

2.59285(1) 

2.72205(1) 

2.54033(1) 

2.34959(1) 

2.73562(1) 

2.34959(1) 
 

Table 3.2-12: Bond angles for Co6Mo6N from PXRD and PND refined data. 

Bond angle (°) PND value  PXRD value 
N-Mo-N 

Mo-N-Mo*12 
Mo-N-Mo*3 

Co2-Co1-Co2*3 

Co2-Co1-Mo*6 

Co2-Co1-Mo*3 

Mo-Co1-Mo*3 

Co1-Co2-Co1*6 

Co1-Co2-Co1*3 

Co1-Co2-Co1*6 

Co1-Mo-Co1 

Co1-Mo-N 

135.86(8) 

90.000(0) 

180.000(0) 

109.787(0) 

124.096(6) 

66.839(32) 

71.33(5) 

65.448(0) 

180.000(0) 

114.552(0) 

165.90(6) 

82.950(32) 

136.245(0) 

90.000(0) 

180.000(0) 

109.787(0) 

124.070(0) 

67.005(0) 

71.064(0) 

65.448(0) 

180.000(0) 

114.552(0) 

166.231(1) 

83.115(0) 
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The structure of η-12 Co6Mo6N has been previously studied and it is apparent that cobalt 

(Co1, Co2), molybdenum and nitrogen occupy Wyckoff locations (32e, 16d), 48f and 8a 

respectively. Figure 3.2-42 presents the unit cell for η-12 Co6Mo6N including all elements 

in the figure on the left hand side (which was drawn using Vesta software when using the 

obtained refined cif file by using PND refined data through Newsam’s CIF file code 68120 

from the ICSD database website); whereas only the Mo and N sub-lattice is shown on the 

right hand side figure.  

  

 

 

Figure 3.2-42: The Unit cell of Co6Mo6N on the left hand side and Mo-N coordination on the right hand 
side drawn using VESTA software. Brown, grey, green and blue spheres represent the Mo, N, Co1 and Co2 
respectively. 

 

In the structure of Co6Mo6N, cobalt occupies two inequivalent sites in which each site is 

surrounded by six molybdenum and six cobalt species resulting in the formation of Co 

[Mo6Co6] units. In the case of molybdenum, the molybdenum is surrounded by four 

molybdenum, six cobalt and one nitrogen forming Mo [Mo4Co6N1] units while nitrogen in 

8a Wyckoff sites is surrounded by six molybdenum and coordinated exclusively to the 

molybdenum, resulting in the formation of [NMo6] units as illustrated in Figure 3.2-43.     
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Figure 3.2-43: Atomic coordination of Co1 (32e) and Co2 (16d), Mo (48f) and N2 (8a) sites. 
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3.2.7.2  Raman spectroscopy  

Raman spectroscopy was employed to perform further characterization. Figure 3.2-44 

shows the Raman spectrum of the η-12 Co6Mo6N. Like the η-6 Co3Mo3N sample, the Raman 

spectrum is very similar to that for CoMoO4 (see Figure 3.2-27). The probable explanation 

relates to the presence of an oxide phase on the surface of sample due to the passivation 

of the material upon exposure to air. 

 

 

Figure 3.2-44: Raman spectrum of Co6Mo6N. 

 

The positions of the Raman bands at 343, 792, 859 and 918 cm-1 can be inter-related to 

CoMoO4 Raman bands at 350, 880 and 930 and assigned to Mo-O-Co stretching vibrations 

in cobalt molybdate.74 This suggests that the main phase on the surface of Co6Mo6N is beta-

CoMoO4. 
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3.2.7.3 EDX analysis and SEM images 

Figure 3.2-45 shows typical SEM images of the Co6Mo6N material. It can be seen that the 

morphology appears to consist of aggregates of needles and it still retains the precursor 

shape and size of the crystallites. The BET surface area determined for η-12 Co6Mo6N is 4 

m2g-1 which is close to that of oxide precursor (7 m2g-1). 

 

Figure 3.2-45: Representative SEM images of Co6Mo6N. 

EDX data were collected for several crystallites of η-12 Co6Mo6N and showed similar 

results. EDX spectra evidenced the presence of molybdenum, cobalt and nitrogen as 

illustrated in Figure 3.2-46. These values (55.7 wt. % Co, 34.5 wt. % Mo, 9.8 wt. % N) were 

found to differ from the calculated values of 37.5 wt. % Co, 61.0 wt. % Mo and 1.5 wt. % N 

in Co6Mo6N.  

  

Figure 3.2-46: EDX analysis of Co6Mo6N. 
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3.2.8 Cobalt molybdenum carbide (η-6 Co3Mo3C) 

A detailed investigation concerning the formation of cobalt molybdenum carbide was 

reported by Newsam38 and the preparation of the eta-6 cobalt molybdenum carbide phase 

from the analogous nitride through the temperature programmed reaction in a 20% CH4/H2 

mixture at 675 °C was first performed by Korlann.39 In this project, η-6 Co3Mo3C was 

successfully synthesized and investigated by PXRD, PND and CHN elemental analysis.  

3.2.8.1 PXRD and PND analysis 

The η-6 Co3Mo3C (abbreviated as 331C) phase was confirmed by using PXRD. The PXRD 

data were collected with a scanning step size of 0.0167° (2θ) over the range 10 ≤ 2θ/° ≤ 90 

and step size 0.002 run over 12 hours to obtain accurate peaks for use in refinement. The 

pattern was matched using the related JCPDS reference standard for η-6 Co3Mo3C (03-065-

7128).  

 

Figure 3.2-47: Indexed PXRD patterns of Co3Mo3C. 

 

The PXRD pattern for the η-6 Co3Mo3C material is presented in Figure 3.2-47. The 17 

reflections in the 2θ range at 20-90° (22.6, 32.2, 35.2, 39.7, 42.26, 46.2, 49.1, 54.8, 59.5, 

64.5, 66.8, 69.3, 72.27, 73.9, 78.1, 78.6 and 87.5°) correspond to the ternary molybdenum 

carbide; the associated hkl crystal planes are identified in the figure. In addition, this result 

confirms that this obtained material was free from additional reflections corresponding to 
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Mo2C, Co, Mo or oxides. According to the CHN elemental analysis results, the carbon 

content of the material was found to be 2.8 wt. % which is similar to the calculated 

stoichiometric value for Co3Mo3C (2.6 wt. %). 

Rietveld analysis was performed to fit a published structural model of Co3Mo3C to 

experimental PXRD data.  The structure of the Co3Mo3C was refined applying the Rietveld 

method against PXRD data using GSAS and EXPGUI software packages. The initial model 

used was the cubic Fe3W3C structure type which was proposed by Alconchel et al. (2004) 

and taken from the ICSD database website with code 190003, in which the molybdenum 

species are placed at 48f Wyckoff sites, the cobalt species occupy the two non-equivalent 

16d, 32e sites and carbon species are located at 16c sites. The background was modelled 

using a shifted Chebyschev polynomial function (function type 7 and 23 terms within GSAS). 

Cell parameters, scale factor and zero point were also refined in initial cycles. The isotropic 

thermal factors (Uiso) of the molybdenum and carbon were refined in final cycle whereas 

cobalt was constrained. The carbon site occupancy factor was refined which further 

improved the goodness of fit parameters. The results of Co3Mo3C refinement obtained 

from PXRD data are presented in Figure 3.2-48 and Table 3.2-13.  

 

Figure 3.2-48: Fitted PXRD data profiles from Rietveld refinement for Co3Mo3C. 
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Figure 3.2-49: Fitted PND data profiles from Rietveld refinement for Co3Mo3C. 

 

At room temperature, time-of-flight (ToF) PND data were collected using the high intensity 

Polaris diffractometer at the ISIS pulsed spallation source (Rutherford Appleton Laboratory, 

UK). Powder samples (ca. 1 g) were loaded into 11 mm diameter thin-walled stainless steel 

cells. A collimator manufactured from neutron-absorbing boron nitride ceramic placed 

around the cell enabled diffraction patterns to be collected in the Polaris 2θ ≈ 90° detector 

bank which were free of Bragg reflections from the steel walls of the cell. Rietveld 

refinements against PND data were performed using the General Structure Analysis System 

(GSAS) through the EXPGUI interface.  

The background was modelled using a liner interpolation function (function type 7 and 23 

terms within GSAS). Cell parameters, scale factor and zero point were also refined in initial 

cycles. The isotropic thermal factors (Uiso) of the cobalt, molybdenum and nitrogen were 

refined in final cycle.  The nitrogen site occupancy factor was refined which further 

improved the goodness of fit parameters. The results of Co3Mo3C refinement obtained 

from PND data are presented in Figure 3.2-49 and Table 3.2-13.  
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Table 3.2-13: Crystallographic parameters of Co3Mo3C from PXRD and PND refined data. 

Parameter PXRD value PND value 

Formula 
Crystal system 

Space group 
Space group number 
Cell parameter a/ Å 
Cell parameter b/ Å 
Cell parameter c/ Å 

Alpha/ Degrees 
Beta/ Degrees 

Gamma/ Degrees 
Unit-cell volume/ Å3 

Calculated formula weight/ gmol-1 
Calculated density/ gcm-3 
Number of observations 

Number of variables 
Rp 

Rwp 
X2 

Co3Mo3C 
Cubic 

Fd 3  m 
227 

11.0591(4) 
11.0591(4) 
11.0591(4) 

90 
90 
90 

1352.58(5) 
7677.688 

9.426 
4787 

34 

0.0123 
0.0156 
1.280 

Co3Mo3C 

Cubic 

Fd 3  m 

227 

11.0591(6) 

11.0591(6) 

11.0591(6) 

90 

90 

90 

1352.59(4) 

7634.640 

9.373 

1805 

35 

0.0385 

0.0286 

1.550 

 

Table 3.2-14: Co3Mo3C PXRD refined parameters. 

Atoms/site X Y Z Occupancy 100*Uiso(Å2) 
Co1 (32e) 
Co2 (16d) 
Mo (48f) 
C (16c) 

0.293695(0) 
0.500000(0) 
0.323507(0) 
0.000000(0) 

0.293695(0) 
0.500000(0) 
0.125000(0) 
0.000000(0) 

0.293695(0) 
0.500000(0) 
0.125000(0) 
0.000000(0) 

1.00 
1.00 
1.00 
1.27 

0.568 
0.568 
0.537 
0.976 

 

Table 3.2-15: Co3Mo3C PND refined parameters. 

Atoms/site X Y Z Occupancy 100*Uiso(Å2) 
Co1 (32e) 
Co2 (16d) 
Mo (48f) 
C (16c) 

0.293063(0) 
0.500000(0) 
0.32357(9) 

0.000000(0) 

0.293063(0) 
0.500000(0) 
0.125000(0) 
0.000000(0) 

0.293063(0) 
0.500000(0) 
0.125000(0) 
0.000000(0) 

1.00 
1.00 
1.00 
1.04 

0.256 
0.350 
0.383 
0.641 
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The structure of Co3Mo3C comprises a distorted fcc arrangement of the cobalt and 

molybdenum, with carbon occupying distorted octahedral interstitial positions. The cobalt, 

molybdenum and carbon atomic distances and bond angles in Co3Mo3C were obtained 

from Rietveld refinement against PXRD and PND data as illustrated in Table 3.2-16 and 

Table 3.2-17 respectively. PXRD and PND refined data are analogous. The distances from 

the molybdenum to the remaining metallic species range between ca. 2.65(0) and 3.10(5) 

Å, the distances from cobalt in 32e Wyckoff site to 16d site atom in this range between ca. 

2.54(3) to 2.38(5) Å and the distance from molybdenum to carbon in the 16c site is ca. 

2.11(7) Å. These values are in good agreement with those previously reported.38 

The structure of Co3Mo3C is very similar to the isostructural Co3Mo3N analogue. The metal–

metal distances, the molybdenum to cobalt and molybdenum to molybdenum atomic 

distances present analogous features in both the Co3Mo3C and Co3Mo3N, being slightly 

longer in the carbide. Concerning the cobalt 32e site and 16d site distances, the Co1(32e)–

Co1(32e) distance is slightly smaller in the carbides, whereas the Co1(32e)-Co2(16d) is 

slightly longer. Finally, comparing the Mo-C and Mo-N distances, the Mo-C distance in 331C 

is slightly longer than Mo-N in 331N. 
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Table 3.2-16: Selected atomic angles for Co3Mo3C from PXRD and PND refined data. 

Bond angle (°)  PND value XRD value 

C-Mo-C*1 
Mo-C-Mo*6 
Mo-C-Mo*6 
Mo-C-Mo*3 

Mo-Co1-Mo*3 

Co1-Mo-C*4 

Co1-Mo-Co1*1 

Co1-Co2-Co1*6 

Co1-Co2-Co1*3 

Co1-Co2-Co1*6 

Co2-Co1-Mo*3 

Co2-Co1-Mo*6 

Co2-Co1-Co2*3 

134.81(5) 

94.365(1) 

85.635(1) 

180.000(0) 

71.785(0) 

87.039(1) 

165.31(0) 

115.016(0) 

180.000(0) 

64.984(0) 

66.267(0) 

123.944(2) 

110.070(0) 

134.843(0) 

94.306(1) 

85.694(1) 

180.000(0) 

71.654(0) 

87.226(0) 

165.49(0) 

115.460(0) 

180.000(0) 

64.540(0) 

66.344(2) 

123.924(1) 

110.338(0) 

 

 

Table 3.2-17: Bond lengths for Co3Mo3C from PXRD and PND refined data. 

Bond length (Å) PND value PXRD value 

C-Mo*6 
Mo-Mo*4 
Mo-Mo*4 
Co1-Mo*3 
Co1-Mo*3 
Co1-Co1*3 
Co1-Co2*3 
Co2-Mo*6 
Co2-Co1*6 

2.1176(4) 

2.8794(4) 

3.1057(14) 

2.65008(14) 

2.7449(9) 

2.56299(10) 

2.38560(9) 

2.7621(7) 

2.38560(9) 

2.11728(2) 

2.87969(3) 

3.10465(5) 

2.65891(3) 

2.74712(4) 

2.54322(4) 

2.38171(3) 

2.76257(3) 

2.38171(3) 
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The structure of η-6 Co3Mo3C has been previously studied and it was found that cobalt 

(Co1, Co2), molybdenum and carbon occupy Wyckoff locations (32e, 16d), 48f and 16c 

respectively. Figure 3.2-50 presents the unit cell for η-6 Co3Mo3C including all elements in 

the figure on the left hand side (which was drawn by Vesta software when using the 

Alconchel’s CIF file code 190003 from the ICSD database website); whereas only the Mo 

and C sub-lattices are shown in the right hand side figure.  

 

 

Figure 3.2-50: The Unit cell of Co3Mo3C shown on the left hand side and the Mo-C coordination on the 
right hand side as determined using VESTA software. Brown, dark brown, green and blue spheres 
represent the Mo, C, Co1 and Co2 respectively.  

 

In the structure of Co3Mo3C, cobalt occupies two non-equivalent sites in which each site is 

surrounded by six molybdenum and six cobalt species resulting in the formation of Co 

[Mo6Co6] units. In the case of molybdenum, it is surrounded by four molybdenum, six 

cobalt and two carbon species forming Mo [Mo4Co6C2] units while carbon is surrounded by 

six molybdenum and coordinated exclusively to the molybdenum in 16c Wyckoff sites, 

resulting in the formation of [CMo6] units as illustrated in Figure 3.2-51.    
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Figure 3.2-51: Atomic coordination of Co1 (32e) and Co2 (16d), Mo (48f) and C1 (16c) sites. 
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3.2.8.2 Raman spectroscopy 

Raman spectroscopy was employed to perform further characterization. Figure 3.2-52 

shows the Raman spectrum of the η-6 Co3Mo3C material. Like the η-6 Co3Mo3N sample, 

the Raman spectrum is very similar to that for CoMoO4 (see Figure 3.2-27) which, again, 

most probably relates to a passivating oxide phase on the surface of sample. The positions 

of the Raman bands at 330, 807, 863 and 922 cm-1 can be attributed to CoMoO4. 

 

Figure 3.2-52: Raman spectrum of Co3Mo3C. 

 

3.2.8.3 SEM and EDX analyses 

The Co3Mo3C material was analysed by Scanning Electron Microscopy (SEM) coupled with 

Energy-dispersive X-ray Spectroscopy (EDX). Figure 3.2-53 presents representative SEM 

micrographs. It can be seen that the morphology of the η-6 Co3Mo3C material comprises 

aggregates of needles and it still retains the precursor shape and size. Korlann et al.39 

reported that the production of 331C from 331N can be considered as topotactic in the 

sense that the position of the metal atoms remains unchanged, while the nitrogen and 

carbon species exchange. Alconchel et al.40 reported that the inter conversion of 331N to 

331C is topotactic and pseudomorphic in the sense that both the structure and the 

morphology are retained. The topotactic production of carbide from nitride has also been 

previously described for the preparation of bimetallic carbides W9Nb8Cx, Mo3Nb2Cx and 
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Mo2Ta2Cx.
27 The BET surface area recorded for the η-Co3Mo3C is 13 m2g-1 which is a little 

lower than the 18 m2g-1 for the Co3Mo3N precursor. 

 

Figure 3.2-53: SEM images of Co3Mo3C. 

 

EDX data were collected for η-6 Co3Mo3C and showed comparable results. EDX spectra 

showed that molybdenum, cobalt and carbon are present as illustrated in Figure 3.2-54. 

However, the accurate % of carbon was difficult to determine this material due to the fact 

that carbon based discs were used as sample holders for the SEM/EDX measurements. 

These values (29.2 wt. % Co, 41.1 wt. % Mo, 29.7 wt. % C) were found to differ from the 

37.2 wt. % Co, 60.2 wt. % Mo and 2.6 wt. % C values expected for Co3Mo3C. 

  

Figure 3.2-54: EDX analysis of Co3Mo3C. 
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3.2.9 Cobalt molybdenum carbide (ƞ-12 Co6Mo6C) 

As mentioned in the experimental chapter, the η-12 Co6Mo6C was synthesized by reduction 

of η-6 C3Mo3C under a 75 vol. % H2 in Ar at 900 °C for 5 h. It was characterised by PXRD, 

PND and CHN elemental analysis. The formation of the η-12 Co6Mo6C phase has also been 

documented in the literature.38 

3.2.9.1 PXRD and PND analysis 

The formation of the η-12 Co6Mo6C (abbreviated as 661C) phase was confirmed using 

PXRD. The patterns were identified by reference to the JCPDS reference standard for η-12 

Co6Mo6C (03-065-8115). 

  

Figure 3.2-55: Indexed PXRD pattern of Co6Mo6C. 

 

The PXRD pattern in Figure 3.2-55 exhibits reflections at 2 theta = 21.9, 32.5, 35.6, 40.3, 

42.9, 46.9, 49.9, 54.9, 60.4, 65.5, 70.4, 73.5 and 75.2° which can be assigned to η-12 

Co6Mo6C; the associated hkl crystal planes are identified and labelled in the figure. 

According to the CHN elemental analysis, the carbon content of the material was found to 

be 1.3 wt. % which is consistent with the calculated stoichiometric value for Co6Mo6C (1.3 

wt. %).  
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The structure of the Co6Mo6C was refined by the Rietveld method against PXRD data using 

GSAS and EXPGUI software packages. The initial model used was the cubic Co6Mo6C 

structure type proposed by Newsam et al. (1988) and taken from the ICSD database 

website with code 68120, in which the molybdenum species are located at 48f sites, the 

cobalt atoms occupy non-equivalent the 16d, 32e Wyckoff positions, whereas carbon 

atoms located at the 8a Wyckoff site. The background was modelled using a shifted 

Chebyschev polynomial function (function type 7 and 23 terms within GSAS). Cell 

parameters, the scale factor and the zero point were also refined in initial cycles. The 

isotropic thermal factors (Uiso) of the cobalt, molybdenum and carbon were refined in the 

final cycle. The carbon site occupancy factor was refined which improved the goodness of 

fit parameters. The results of Co6Mo6C refinement obtained from PXRD data are presented 

in Figure 3.2-56 and Table 3.2-18.  

 

 

Figure 3.2-56: Fitted PXRD data profiles from Rietveld refinement for Co6Mo6C. 
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Figure 3.2-57: Fitted PND data profiles from Rietveld refinement for Co6Mo6C. 

At room temperature, time-of-flight (ToF) PND data were collected using the high intensity 

Polaris diffractometer at the ISIS pulsed spallation source (Rutherford Appleton Laboratory, 

UK). Powder samples (ca. 1 g) were loaded into 11 mm diameter thin-walled stainless steel 

cells. A collimator manufactured from neutron-absorbing boron nitride ceramic placed 

around the cell enabled diffraction patterns to be collected in the Polaris 2θ ≈ 90° detector 

bank which were free of Bragg reflections from the steel walls of the cell. Rietveld 

refinements against PND data were performed using the General Structure Analysis System 

(GSAS) through the EXPGUI interface.  

The background was modelled using a power series in Q**2n/n! and n!/Q**2n function 

(function type 6 and 5 terms within GSAS). Cell parameters, the scale factor and the zero 

point were also refined in initial cycles. The isotropic thermal factors (Uiso) of the cobalt, 

molybdenum and carbon were refined in the final cycle.  The carbon site occupancy factor 

was refined which further improved the goodness of fit parameters. The results of the 

Co6Mo6C refinement obtained from PND data are presented in Figure 3.2-57 and Table 3.2-

18.  
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Table 3.2-18: Crystallographic parameters of Co6Mo6C from PXRD and PND refined data. 

Parameter PXRD value PND value 

Formula 
Crystal system 

Space group 
Space group number 
Cell parameter a/ Å 
Cell parameter B/ Å 
Cell parameter C/ Å 

Alpha/ Degrees 
Beta/ Degrees 

Gamma/ Degrees 
Unit-cell volume/ Å3 

Calculated formula weight/ gmol-1 
Calculated density/ gcm-3 
Number of observations 

Number of variables 
Rp 

Rwp 
X2 

Co6Mo6C 
Cubic 

Fd 3  m 
227 

10.8962(7) 
10.8962(7) 
10.8962(7) 

90 
90 
90 

1293.70(2) 
7245.69 

9.300 
4787 

38 
0.0153 
0.0207 
1.825 

Co6Mo6C 

Cubic 

Fd 3  m 

227 

10.9099(8) 

10.9099(8) 

10.9099(8) 

90 

90 

90 

1298.56(4) 

7494.14 

9.584 

1945 

24 

0.0531 

0.0438 

2.086 

 

Rietveld refinement of the X-ray data within the Fd 3  m space group of the η-12 cobalt 

molybdenum carbide produced a successful fit with Rwp = 2.07 % and Rp = 1.53 % (Table 

3.2.-18 and Figure 3.2-56). The TOF neutron diffraction data were also successfully refined 

within the same space group, giving Rwp = 4.38 % and Rp = 5.31 % (Table 3.2-18, Figure 3.2-

57). The lattice parameters determined from X-ray and neutron results were in excellent 

agreement: a = 10.8962(7) Å and a = 10.9099(8) Å, respectively. The concordance between 

the X-ray and neutron data, and the successful Rietveld refinement of the powder data 

through the structural model confirms that all C species occupy the 8a (1/8, 1/8, 1/8) site 

within the structure. When using a model in which the carbon atoms occupy the 16c (0, 0, 

0) site, no reasonable fit to the data was obtained and therefore confirms the occupation 

of the 8a site. This is contrary to the case for Co3Mo3C the composition of the material has 

been identified from the structural refinements against PXRD data in Table 3.2-20 and PND 
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data in Table 3.2-19 which are Co6Mo6C1.05 and Co6Mo6C1.03 respectively and which are 

close to that determined in previous studies of Co6Mo6C.38 

Table 3.2-19: Co6Mo6C PND refined parameters. 

Atoms/site X Y Z Occupancy 100*Uiso(Å2) 
Co1 (32e) 
Co2 (16d) 
Mo (48f) 

C (8a) 

0.293090(0) 
0.500000(0) 

0.3215(7) 
0.125000(0) 

0.293090(0) 
0.500000(0) 
0.125000(0) 
0.125000(0) 

0.293090(0) 
0.500000(0) 
0.125000(0) 
0.125000(0) 

1.00 
1.00 
1.00 

1.038 

0.203 
0.409 
0.178 
0.459 

 

Table 3.2-20: Co6Mo6C PXRD refined parameters. 

Atoms/site X Y Z Occupancy 100*Uiso(Å2) 
Co1 (32e) 
Co2 (16d) 
Mo (48f) 

C (8a) 

0.292600(0) 
0.500000(0) 

0.3221(1) 
0.1250 

0.292600(0) 
0.500000(0) 
0.125000(0) 
0.125000(0) 

0.292600(0) 
0.500000(0) 
0.125000(0) 
0.125000(0) 

1.00 
1.00 
1.00 

1.053 

0.044 
0.260 
0.044 
0.305 

 

The structure of Co6Mo6C consists of a distorted fcc arrangement of cobalt and 

molybdenum, with atomic carbon occupying distorted octahedral interstitial positions. The 

cobalt, molybdenum and carbon distances and bond angles in Co6Mo6C were obtained 

from Rietveld refinement against PXRD and PND data as illustrated in Table 3.2-21 and 

Table 3.2-22 respectively. PXRD and PND refined data are almost equivalent. The distances 

from the molybdenum species to the remaining metallic species in this range between ca. 

2.60(2) to 3.03(3) Å, the distances from cobalt in 32e Wyckoff site to the 16d site species 

ranges between ca. 2.52(7) to 2.35(3) Å and the distances from molybdenum to carbon in 

16c site is ca. 2.14 Å. These values are consistent with those previously reported.38 

The structural comparison of Co3Mo3C and reduced phase Co6Mo6C (when carbon species 

occupy the 8a Wyckoff site as opposed to the 16c site) is discussed. It is interesting to note 

that regarding the metal–metal distances, the molybdenum to cobalt and molybdenum to 

molybdenum distances are slightly longer in the 331C. Concerning the cobalt 32e site and 

16d site distances, they are similar in both Co3Mo3C and Co6Mo6C although they are slightly 

smaller in 661C. Finally, the Mo-C distances, the Mo-C distance in 661C is slightly longer 

than Mo-C distance in 331C.  
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Table 3.2-21: Bond lengths for Co6Mo6C from PXRD and PND refined data. 

Bond length (Å) PXRD value PND value 
C-Mo*6 

Mo-Mo*3 
Mo-Mo*3 
Co1-Mo*3 
Co1-Mo*3 
Co1-Co1*3 
Co1-Co2*3 
Co2-Mo*6 
Co2-Co1*6 

2.1442(7) 

3.0338(9) 

2.8446(1) 

2.6022(24) 

2.7202(5) 

2.5399(18) 

2.3535(14) 

2.7347(2) 

2.3539(4) 

2.1467(11) 

3.0359(15) 

2.8485(5) 

2.6122(51) 

2.7253(10) 

2.5275(79) 

2.3532(48) 

2.7387(8) 

2.3532(48) 
 

 

Table 3.2-22: Bond angles for Co6Mo6C from PXRD and PND data. 

Bond angle (°) PXRD value  PND value 
C-Mo-C 

Mo-C-Mo*12 
Mo-C-Mo*3 

Co2-Co1-Co2*3 

Co2-Co1-Mo*6 

Co2-Co1-Mo*3 

Mo-Co1-Mo*3 

Co1-Co2-Co1*6 

Co1-Co2-Co1*3 

Co1-Co2-Co1*6 

Co1-Mo-Co1*1 

Co1-Mo-C*2 

136.15(0) 

90.000(0) 

180.000(0) 

109.873(2) 

124.031(1) 

66.771(13) 

71.29(2) 

65.307(1) 

180.000(0) 

114.693(1) 

165.94(2) 

82.969(16) 

135.91(1) 

90.000(0) 

180.000(0) 

110.082(0) 

123.856(4) 

66.710(24) 

71.05(4) 

64.965(0) 

180.000(0) 

115.035(0) 

166.24(5) 

83.121(24) 
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The structure of η-12 Co6Mo6C has been previously studied and it is apparent that cobalt 

(Co1, Co2), molybdenum and carbon occupy Wyckoff locations (32e, 16d), 48f and 8a 

respectively. Figure 3.2-58 displays the unit cell for η-12 Co6Mo6C including all elements in 

the figure on the left hand side (which was drawn using Vesta software using Newsam’s CIF 

file code 68120 from the ICSD database website); whereas only the Mo and C sub-lattice is 

shown on the right hand side figure.  

 

 

Figure 3.2-58: The Unit cell of Co6Mo6C on the left hand side and Mo-C coordination on the right hand 
side drown using VESTA software. Brown, dark brown, green and blue spheres represent the Mo, C, Co1 
and Co2 respectively.  

 

In the structure of Co6Mo6C, cobalt occupies two non-equivalent sites in which each site is 

surrounded by six molybdenum and six cobalt species resulting in the formation of Co 

[Mo6Co6] units.  In the case of molybdenum, the species is surrounded by four molybdenum 

and one carbon forming Mo [Mo4Co6C1] units while the carbon species is surrounded by six 

molybdenum and coordinated exclusively to the molybdenum in 8a Wyckoff sites, resulting 

in the formation of [CMo6] units as illustrated in Figure 3.2-59.     
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Figure 3.2-59: Atomic coordination of Co1 (32e) and Co2 (16d), Mo (48f) and C2 (8a) sites. 

 

A comparison of η-6 Co3Mo3N, η-6 Co3Mo3C, η-12 Co6Mo6N and η-12 Co6Mo6C PXRD 

patterns indicate upon reduction of η-6 Co3Mo3N and η-6 Co3Mo3C to the η-12 Co6Mo6N 

and η-12 Co6Mo6C phases respectively, all the peaks are slightly shifted to the right with 

respect to η-6 Co3Mo3C. When looking closely in the range between 71-74° as seen in Figure 

3.2-60; the difference between 661N and 661C is mainly in intensity and for 331C and 331N 

they are clearly shifted. In addition to this change, microanalysis showed that there was a 
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reduction in the carbon and nitrogen content of the materials to 1.3 wt. % C for 661C and 

1.5 wt. % N for 661N which is close to half 2.8 wt. % of the carbon present prior to reduction 

of 331C and 3.1 wt. % of the nitrogen present prior to reduction of 331N. This provides a 

nominal stoichiometry of Co3Mo3N, Co3Mo3N, Co6Mo6N and Co6Mo6C which is in good 

agreement with the results reported previously by Newsam38, Korlann39 and Hunter4.  

 

Figure 3.2-60: Comparison of PXRD patterns for 331C (red), 661C (green), 331N (blue) and 661N (black). 

 

3.2.9.2 Raman spectroscopy 

  

Figure 3.2-61: Raman spectrum of Co6Mo6C. 
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Raman spectroscopy was employed to perform further characterization. Figure 3.2-61 

shows the Raman spectrum of the η-12 Co6Mo6C. As for Co3Mo3C, the Raman spectrum is 

very similar to that for CoMoO4 (see Figure 3.2-27) which, again, suggests the presence of 

a surface oxide phase on the sample. 

3.2.9.3 SEM and EDX analyses 

The Co6Mo6C was analysed by Scanning Electron Microscopy (SEM) coupled with Energy-

dispersive X-ray Spectroscopy (EDX) to investigate particle size, morphology and elemental 

composition. Figure 3.2-62 shows representative SEM micrographs for the η-12 Co6Mo6C 

material. The SEM images for Co6Mo6C show a broadly similar morphology to that of the 

Co3Mo3C material. It can be seen that the morphology of η-12 Co6Mo6C material appears 

to consist of aggregates of needles and that it still retains its precursor morphology. The 

BET surface area recorded for η-Co3Mo3C was 3 m2g-1 which is lower than that of 331C 

precursor (13 m2g-1) and may be a consequence of the calcination of the material at the 

high temperature of 900 °C. 

 

Figure 3.2-62: Representative SEM images of Co6Mo6C. 

EDX data were collected for η-12 Co6Mo6C. EDX spectra showed that molybdenum, cobalt 

and carbon are detected as illustrated in Figure 3.2-63. However, the accurate % of carbon 

was difficult to determine for this material due to the carbon based disc used as the sample 

holder. The obtained values (33.2 wt. % Co, 42.1 wt. % Mo, 24.7 wt. % C) were found to 

different from 37.5 wt. % Co, 61.2 wt. % Mo and 1.3 wt. % C values expected for Co6Mo6C.  
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Figure 3.2-63: EDX analysis of Co6Mo6C. 

 

3.2.9.4 TGA-MS analysis for identified co-products from the homologation of 
methane step 

The two stage homologation of methane was investigated using CH4/H2 reduction of 

Co3Mo3N to Co3Mo3C and subsequent reduction to Co6Mo6C. Mass spectrometry was 

applied to determine the product of reduction of Co3Mo3C to yield Co6Mo6C. Figure 3.2-64 

shows the TGA data with the derivative weight loss curves for η-6 Co3Mo3C heated under 

3:1 H2/Ar gas mixture at ramp rate of 10 °C/ min from room temperature to 1000 °C. The 

TGA curve in Figures 3.2-64 exhibits several weight loss steps.  The first weight loss step 

most likely relates to the loss of water from the material around 100 °C. The second weight 

loss step requires further investigation but could correspond to the removal of the 

passivation layer. The third weight loss step is attributed to the reaction of carbon to form 

methane at 616 °C. The MS fragment ion curve for CH4 (15 m/z) in Figure 3.2-65 displays a 

large peak that corresponds closely to the individual TGA step at 650 °C. It is not clear what 

the weight loss beyond 700 °C corresponds to. The possible formation of higher 

hydrocarbons (28, 29, 30, 32, 43, 44, 46, 55, 56, 71 and 72 m/z) was investigated and 

excluded. 
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Figure 3.2-64: The TGA and derivative weight curves for Co3Mo3C with 3:1 H2/Ar up to 1000 °C. 

 

 

Figure 3.2-65: The MS fragment ion curves for 15 m/z. 
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3.2.10  Investigation of the transformation of CoMo nitride to CoMo carbide 

The lattice nitrogen mobility and reactivity of Co3Mo3N towards hydrogen to produce 

ammonia has been reported by Hargreaves et al.4, 37, 58 Results of nitrogen isotopic 

exchange and the ability of Co3Mo3N to produce ammonia under reducing conditions have 

suggested the possible occurrence of a Mars-van Krevelen mechanism where the nitride 

acts as source of reactive nitrogen. Interestingly, cobalt molybdenum has been reported to 

form a range of carbide products (e.g. Co3Mo3C and Co6Mo6C) that are structural isomorphs 

to their nitride counterparts. From an environmental and catalytic point of view, the ability 

of CoMo nitrides to form interstitial carbide materials upon reaction with CH4
39 or CO2/ 

CO38 is of interest.  

In the current study, the reaction of nitride materials namely Co3Mo3N and Co6Mo6N with 

CH4 in the presence and in absence of hydrogen to form cobalt molybdenum carbide 

materials has been probed. The structural changes occurring during the carburization stage 

were studied using a combination of in-situ powder neutron diffraction and powder X-ray 

diffraction techniques. Furthermore, the restoration of the nitride structure by reaction of 

the resultant carbides with N2 both in the presence and in the absence of H2 was 

investigated.  

3.2.10.1 Pathways of carburisation of Co3Mo3N with CH4  

The structural evolution of Co3Mo3N upon reaction with CH4 in presence of hydrogen was 

investigated using a variety of in-situ and ex-situ diffraction techniques. 

a) Structural features of Co3Mo3N upon reaction with CH4 

Figure 3.2-66 presents ex-situ PXRD patterns collected upon reaction of Co3Mo3N with 12 

ml min-1 of 20 vol. % CH4 in H2 at different reaction temperatures. All the diffraction 

patterns showed only features assignable to the η-6 Co3Mo3C structure without any 

additional phases being apparent during reaction. However, a gradual shift toward lower 

2θ was observed for all reflections, indicating that the Co3Mo3N retained the same 

structural features during the carburization process but with different cell parameters, 

which may be attributed to nitrogen substitution by carbon.  
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Figure 3.2-66: Ex-situ PXRD patterns collected upon reaction of 331N with 12 ml min-1 of 20 vol. % CH4 in 
H2 at various temperatures and applying a temperature ramp rate of 10 °C min-1; A (at room 
temperature), B (500 °C), C (600 °C), D (700 °C), E (700 °C, 2h), F (700 °C, 3h).  

 

b) In-situ PND study of Co3Mo3N phase-structural transformations 

In-situ neutron diffraction patterns collected at different temperature for Co3Mo3N 

material upon reaction with 60 ml min-1 of 20 vol. % CH4 in H2 are presented in Figure 3.2-

67. The patterns were fitted applying the Rietveld method using the η-6 nitride Co3Mo3N 

structure as the starting model and η-6 carbide Co3Mo3C as the end model. Structure 

refinements were started by fitting the background to linear interpolation function 

(background function 7 in GSAS with number of terms 10), lattice parameters, scale factor, 

peak shapes, atomic parameters and subsequently absorption/reflectivity correction 

(absorption function 1). The nitrogen and carbon occupancy of 16c sites was allowed to 

freely vary for the final refinement. During the reaction, no change in the structural 

features was observed and all diffraction peaks were correlated to the η-6 carbide 

structure. However, a gradual shift to higher d-spacing was observed in all neutron 

diffraction peaks indicating a change in the lattice parameter of Co3Mo3N during the 

carburisation process (Figure 3.2-68). 
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Figure 3.2-67: In-situ PND patterns collected at different temperatures for Co3Mo3N heated under 60 ml 
min−1 of 20 vol. % CH4 in H2.  

 

 

 

Figure 3.2-68: In-situ PND patterns collected at different temperature for Co3Mo3N heated under 60 ml 
min−1 of 20 vol. % CH4 in H2 with zoom in on d-spacing range between 1.9 and 2.3 Å.  
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The lattice parameters, determined during the different reaction stages and calculated 

from Rietveld refinements, are presented in Figure 3.2-69. With increasing temperature to 

500 °C, a linear change of lattice parameter was observed. This can be attributed to thermal 

expansion of the lattice. However, a change in the slope was detected at temperatures 

ranging above 500 °C, which could be related to the structural transformation of Co3Mo3N 

upon nitrogen substitution by carbon. In addition to lattice parameter determination, the 

large differences in neutron scattering lengths of carbon (6.646 fm) and nitrogen (9.36 fm) 

allowed the assessment of the C/N substitution during reaction. The evolution of the C/N 

occupancy at the 16c Wyckoff lattice site as a function of reaction temperature is presented 

in Figure 3.2-70 where a gradual substitution of nitrogen by carbon is evidenced.  At 

temperatures lower than 400 °C, no carbon inclusion in the Co3Mo3N structure was 

observed. In contrast, a gradual substitution of nitrogen with carbon is observed at 

temperatures higher than 400 °C, which accelerated at 600 °C. The refinement of the C/N 

mixing in the 16c Wyckoff lattice indicates that at 413, 519, 580, 632, 679 °C the C/N 

sublattice comprised 97.5, 88.3, 79.4, 15.2, 3.2 % C and 2.5, 11.7, 20.6, 84.8, 96.8 % N 

respectively. Complete conversion to the Co3Mo3C was observed when the temperature of 

the reaction reached 700 °C. Co3Mo3C is typically formed upon 2h of Co3Mo3N reaction 

with CH4/ H2 gas, as evidenced in section 3.2.8, Figure 3.2-49 and Table 3.2-13, page 70. In-

situ PND confirmed that the carburisation of the Co3Mo3N proceeded upon nitrogen 

substitution by carbon and the formation of carbonitride as a transitional intermediate 

phase at temperatures the ranging between 400 and 600 °C without any phase segregation 

being observed. An example of Co3Mo3CxNy formed at 632 °C is presented in Figure 3.2-71 

and Table 3.2-23. The lattice parameter derived from Rietveld refinement was found to be 

a = 11.1312(2) Å, falling between the lattice parameter observed for Co3Mo3N (a = 11.027 

Å at 23 °C) and Co3Mo3C (a = 11.145 at 700 °C) as presented in Appendix 2 Table 8.2-1. The 

refinement of carbon and nitrogen occupancy of the 16c Wyckoff site converged to an 

estimated chemical composition of Co3Mo3C0.85N0.15. For more quantitative analysis data 

see Appendix 2 Table 8.2-1. 
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Figure 3.2-69: The evolution of lattice parameters obtained from Rietveld refinements of in-situ PND data 
collected at different temperatures for Co3Mo3N heated under 60 ml min−1 of 20 vol. % CH4 in H2.  

 

 

Figure 3.2-70: Evolution of the C/N occupancy of the 16c Wyckoff lattice site in Co3Mo3N as a function of 
reaction with 60 ml min−1 of 20 vol. % CH4 in H2 at different temperatures. (■) Fractional carbon content 
and (●) fractional nitrogen content as determined from the Rietveld refinement against in-situ powder 
neutron diffraction data.  
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Figure 3.2-71: Fitted powder neutron diffraction profile from Rietveld refinement against powder neutron 
diffraction data for Co3Mo3N after reaction with 60 ml min−1 of 20 vol. % CH4 in H2 at 632 °C.  

 

Table 3.2-23: Structure parameters of Co3Mo3N after reaction with 60 ml min−1 of 20 vol. % CH4 in H2 at 
632 °C obtained from neutron diffraction data. 

Atom Site Occupancies x y z 100*Uiso(Å2) 

Co1 32e 1.000 0.29266(0) 0.29266(0) 0.29266(0) 0.46(0) 

Co2 16d 1.000 0.50000(0) 0.50000(0) 0.50000(0) 0.84(0) 

Mo1 48f 1.000 0.32358(0) 0.12500(0) 0.12500(0) 1.28(1) 

C1 16c 0.848(6) 0.00000(0) 0.00000(0) 0.00000(0) 1.355(5) 

N1 16c 0.152(4) 0.00000(0) 0.00000(0) 0.00000(0) 1.355(5) 

a Space group F d 3  m Z (227); a = 11.1312(2) Å, V = 1379.20(3) Å3
, Rwp = 0.0706, Rp = 

0.1032, χred
2=0.8720 
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3.2.10.2 Pathways of carburisation of Co6Mo6N upon reaction with CH4 

The structural evolution of Co6Mo6N upon reaction with CH4 was investigated using a 

variety of in-situ PND and ex-situ PXRD techniques. 

a) Structural features of Co6Mo6N upon reaction with CH4 

Some initial insight into the carburisation process of Co6Mo6N can be obtained by XRD. 

PXRD patterns collected upon Co6Mo6N reaction with 60 ml min-1 CH4 at various 

temperatures are shown in Figure 3.2-72. The PXRD pattern of Co6Mo6N collected at room 

temperature confirmed the preparation of a well-crystalized and pure nitride phase. At 

678°C, the PXRD showed that the material is no longer monophasic and Co3Mo3C was 

detected as the major phase along with the Co6Mo6N and graphite as minor phases. 

Reaction at higher temperature (800 °C) resulted in the complete conversion of Co6Mo6N 

to Co3Mo3C and to the formation of graphite. The initial XRD results seem to indicate that 

the mechanism of carburisation of Co6Mo6N proceeds differently to that which was 

observed in the case of Co3Mo3N and that at two distinct phases are present in the 

intermediate carburisation stages, although such comparisons must be treated with 

caution since CH4/H2 was used as carburising gas in one case and CH4 alone in the other.  

 

Figure 3.2-72: PXRD patterns of Co6Mo6N with 60 ml min-1 CH4 gas under various temperature and times 
on stream at A (at room temperature), B (678 °C), C (800 °C, 3h).  
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b) In-situ PND study of Co6Mo6N phase-structural transformations 

The structural transformation of the Co6Mo6N upon reaction with methane was studied 

using in-situ neutron diffraction. Neutron diffraction patterns collected during the reaction 

of Co6Mo6N with 60 ml min-1 CH4 are presented in Figure 3.2-73. 

 

Figure 3.2-73: In-situ PND data of Co6Mo6N through heating with 60 ml min-1 CH4. 

 

The results from room temperature PND supported the preparation of a pure Co6Mo6N 

phase (a = 10.8809(8) Å, Table 3.2-8, page 60). Rietveld refinement against PND data were 

performed using the iso-type structure of Co6Mo6C38 with nitrogen replacing carbon in 8a 

site to model the nitride phase as the starting model. The formation of carbide phases upon 

reaction with methane was verified using Co3Mo3C40 as the second phase during Rietveld 

refinement. The formation of carbonitride phases was verified by refining mixed occupancy 

of the 16c site and/or 8a site by carbon and nitrogen. From 32 °C up to 678 °C, no apparent 

change in PND diffraction profiles was detected and all diffraction peaks observed were 

related to Co6Mo6N with the exception of few minor peaks related to the in-situ reaction 

cell. The lattice parameters derived from Rietveld refinements of in-situ PND is presented 

in Figure 3.2-74. A linear change of lattice parameter was observed which can be attributed 

to thermal expansion of the lattice.  

 



Chapter 3  98 

 

 

Figure 3.2-74: Evolution of lattice parameters obtained from Rietveld refinements of in-situ PND data 
collected at different temperature for Co6Mo6N heated under 60 ml min−1 CH4. 

 

 

Figure 3.2-75: Investigation of phase fractions of Co6Mo6N (♦) and Co3Mo3C (●) present during reaction of 
Co6Mo6N with 60 ml min−1 CH4 at different temperature as determined from the Rietveld refinement 
against in-situ powder neutron diffraction data.   
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Most importantly, the refinement of the powder neutron diffraction profile against PND 

data at 678 °C, highlighted in red, has shown that the material is not monophasic any longer 

and revealed co-existence of Co6Mo6N alongside the Co3Mo3C phase. The phase fraction 

derived for the refinement PND profile was estimated to 20.9 wt. % and 79.1 wt. % for 

Co6Mo6N and Co3Mo3C respectively. When the temperature reached 728 °C, the material 

was completely converted to Co3Mo3C. The gradual formation of Co3Mo3C and the 

concomitant loss of the Co6Mo6N during the reaction is presented Figure 3.2-75. It can be 

clearly seen that the carburisation process was rapid and occurred in a narrow temperature 

window. The structural features of Co6Mo6N and Co3Mo3C obtained from the refinement 

of PND profile are presented in Figure 3.2-76 and Table 3.2-24. The lattice parameter 

derived from Rietveld refinement was found to be a = 11.1188(4) Å for Co3Mo3C and a = 

10.9525(9) Å for Co6Mo6N. The refinement of carbon, nitrogen occupancy of the 16c and 

in the 331C phase and the 8a site in the 661N respectively (Table 3.2-24) resulted in an 

estimated chemical composition of Co3Mo3C1.03 and Co6Mo6N0.96. For more quantitative 

analysis data see Appendix 2 Table 8.2-2. 

 

Figure 3.2-76: Fitted powder neutron diffraction profile from Rietveld refinement against powder neutron 
diffraction data for: Co6Mo6N after reaction with 60 ml min−1 of CH4 (BOC, 99.98%) at 678 °C.  
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Table 3.2-24: Structure parameters of Co6Mo6N after reaction with 60 ml min−1 of CH4 (BOC, 99.98%) at 
678 °C obtained from neutron diffraction data. 

Atom 
331C 

site occupancies x y z 100*Uiso(Å2) 

Co1 32e 1.000 0.29266(0) 0.29266(0) 0.29266(0) 1.20(4) 

Co2 16d 1.000 0.50000(0) 0.50000(0) 0.50000(0) 1.47(0) 

Mo1 48f 1.000 0.32358(0) 0.12500(0) 0.12500(0) 1.29(4) 

C1 16c 1.032(7) 0.00000(0) 0.00000(0) 0.00000(0) 1.37(9) 

a Space group F d 3  m Z (227); a = 11.1188(4) Å, V = 1374.60(8) Å3
, Rwp = 0.0766, Rp = 

0.1252, χred
2=0.7573 

 

Atom 
661N 

site occupancies x y z 100*Uiso(Å2) 

Co1 32e 1.000 0.29200(0) 0.29200(0) 0.29200(0) 5.66(8) 

Co2 16d 1.000 0.50000(0) 0.50000(0) 0.50000(0) 5.66(8) 

Mo1 48f 1.000 0.32100(0) 0.12500(0) 0.12500(0) 2.77(8) 

N1 16c 0.000 0.00000(0) 0.00000(0) 0.00000(0) 0.32(9) 

N2 8a 0.967(3) 0.12500(0) 0.12500(0) 0.12500(0) 5.64(1) 

a Space group F d 3  m Z (227); a = 10.9525(9) Å, V = 1313.86(7) Å3
, Rwp = 0.1591, Rp = 

0.1942, χred
2=0.7573 

 

Again, within the limitations previously stated, the process of the carburisation was 

inherently different from the carburisation process of Co3Mo3N, as in this case no 

intermediate carbonitride phase was observed. The carburisation process apparently 

proceeded via the decline of Co6Mo6N and the formation of Co3Mo3C. 

3.2.11  Investigation of the transformation of CoMo carbide to CoMo nitride 

In this section, the ability of CoMo nitride to activate CH4 and form a range of carbide and 

carbonitride materials that depend upon the nature of the precursors and the carburisation 

conditions demonstrating the mobility of nitrogen mobility within these structures has 

been studied In the following section, the regeneration of the nitride structure using N2 as 

well as a mixture of N2/H2 is reported. 

3.2.11.1 Pathways of nitridation of Co3Mo3C structure with H2/N2 or N2 

The structural evolution of Co3Mo3C upon reaction with H2/N2 and N2 was investigated 

using a variety of in-situ and ex-situ diffraction techniques. 
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a) Evolution of Co3Mo3C structure upon reaction with N2/H2 or N2 

Initial investigation of the nitridation process of Co3Mo3C was conducted by XRD. Figure 

3.2-77 presents PXRD patterns collected upon reaction of Co3Mo3C with 60 ml min-1 of 75 

vol. % H2 in N2 at 500 °C and different reaction times. All the diffraction patterns showed 

only features attributable to the η-6 Co3Mo3C structure without any extra-phases being 

present. However, a gradual shift to higher 2θ was observed for all reflections, indicating 

that the Co3Mo3C retained the same structural features during the nitridation process but 

with different cell parameters, which may be related to carbon substitution by nitrogen. 

CHN elemental analysis was applied to determine the C and N content of the materials. The 

results are presented in Figure 3.2-77 A (at room temperature), B (stopped when the 

temperature reached 500 °C), C (stopped after 1 hour), D (2 hours), E (3 hours), F (4 hours) 

were (2.8 wt.% C), (2.8 wt.% C, 0.4 wt.% N), (1.9 wt.% C, 1.2 wt.% N), (1.8 wt.% C, 1.7 wt.% 

N), (1.4 wt.% C, 1.4 wt.% N) and (1.2 wt.% C, 2.1 wt.% N) respectively. This result confirmed 

that the material was converted to nitride through carbonitride as intermediate single 

phase. 

 

Figure 3.2-77: PXRD patterns of Co3Mo3C after reaction with 3:1 H2/N2 at 500 °C stopped at 0, 1, 2, 3 and  
4 h on stream; A 331C (at room temperature), B (when reached 500 °C), C (500 °C, 1h), D (500 °C, 2h), E 
(500 °C, 3h), F (500 °C, 4h).  
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In order to investigate the intermediate phase and the possible conversion with only N2 in 

the absence of H2, PXRD patterns were collected upon Co3Mo3C reaction with 60 ml min-1 

N2 as shown in Figure 3.2-78. 

 

Figure 3.2-78: PXRD patterns of Co3Mo3C after reaction with 60 ml min-1 N2 at various temperatures and 
times on stream; A (at room temperature), B (500 °C, 5h), C (600 °C, 5h), D (700 °C, 3h). 

 

The PXRD pattern of Co3Mo3C collected at room temperature confirmed the preparation 

of a well-crystalized and pure carbide phase. At 600 °C (in Figure 3.2-78 C), the PXRD 

showed that the material is no longer monophasic and Co3Mo3C was detected as a minor 

phase along with Co6Mo6Nx and graphite as major phases. Reaction at higher temperature 

(700 °C in Figure 3.2-78 E) resulted in the complete conversion of Co3Mo3C to Co3Mo3N. 

The removal of carbon from the lattice and its exchange for nitrogen was identified by using 

CHN microanalysis which confirmed that the starting composition of Co3Mo3C 

corresponded to 2.8 wt. % C and the final composition of Co3Mo3Nx corresponded to 2.7 

wt. % N. The initial XRD results seem to indicate that the mechanism of nitridation of 

Co3Mo3C proceeds differently to that observed in the case of presence of hydrogen in that 

two segregated phases are present in the intermediate nitridation stages and the change 

occurred at higher temperature. Also, the same result was confirmed using an in-situ PXRD 

experiment as presented in Figure 3.2-79.  
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Figure 3.2-79: In-situ PXRD patterns of Co3Mo3C with 60 ml min-1 N2 under various temperatures and 
times on stream; A (at room temperature), B (500 °C), C (600 °C, 1h), D (600 °C, 2h) and E (600 °C, 3h).  

 

b) In-situ PND for nitride formation using Co3Mo3C 

In-situ neutron diffraction patterns collected upon reaction of Co3Mo3C at different 

temperatures and reaction times for Co3Mo3C reacting with 60 ml min-1 of 75 vol. % H2 in 

N2 are presented in Figure 3.2-80. The crystal structure of Co3Mo3C along with the lattice 

parameters derived from Rietveld refinement against PND data collected at room 

temperature were presented in section 3.2.8.1, Figure 3.2-49, Table 3.2-13. During the 

regeneration reaction, the phase composition and concentration of each phase were 

analysed by the Rietveld method using Co3Mo3C40 as the starting model and the formation 

of carbonitride phases was assessed by refining the C/N mixed occupancy of 16c Wyckoff 

site. The presence of Co6Mo6N and Co3Mo3N was also assessed. The in-situ PND patterns 

were all similar in the range of temperature studied indicating that the material retained 

its initial structure (space group Fd 3  m) upon reaction with 3:1 H2:N2. However a gradual 

shift to lower d-spacing was observed during the temperature programmed section of the 

reaction while a shift to higher d-spacing was observed during isothermal conditions at 500 

°C, as evidenced in Figure 3.2-81, indicating a change in the lattice parameter. 
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Figure 3.2-80: In-situ PND patterns collected at (A) different temperatures and (B) isothermal conditions 
at 500 °C over different durations for Co3Mo3C heated under 60 ml min−1 of 75 vol. % H2 in N2. 
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Figure 3.2-81: In-situ PND patterns collected at isothermal conditions at 500 °C for Co3Mo3C heated under 
60 ml min−1 of 75 vol. % H2 in N2 with an expanded on d-spacing range between 1.9 and 2.3 Å; A (427 °C), 
B (482 °C), C (500 °C), D (500 °C, 10 min), E (20 min), F (30 min), G (60 min), H (90 min), I (140 min), J (300 
min). 

 

The evolution of the lattice parameter during the different segments of reaction is 

presented in Figure 3.2-82. When increasing the temperature to 500 °C, a linear change of 

lattice parameter as a function of temperature was generally observed. This can be 

attributed to thermal expansion of the lattice. However, a change in the slope was detected 

at temperatures ranging between 400 and 500 °C, which could relate to structural 

transformation. At 500 °C, no variation of the lattice parameters was observed within the 

first 10 minutes of reaction. Thereafter, a gradual contraction of the lattice with reaction 

time was detected which can be correlated to carbon substitution by nitrogen. The 

evolution of the C/N occupancy at the 16c Wyckoff lattice site as a function of reaction time 

at 500 °C is presented in Figure 3.2-83. Gradual substitution of carbon with nitrogen under 

reaction conditions is evidenced. The refinement of C/N occupancy indicate that at 500 °C 

the material was composed both of 85.6, 76.7, 74.9, 67.3, 61.8, 59.3, 55.9, 53.8 % of C and 

14.4, 23.3, 25.1, 32.7, 38.2, 40.7, 44.1, 46.2 % of N at reaction times 0, 10, 30, 40, 65, 95, 

110, 125 minutes respectively. The transformation therefore seems to occur via a single 

intermediate carbonitride phase.    
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Figure 3.2-82: Evolution of the lattice parameter taken from Rietveld refinements of in-situ PND data of 
Co3Mo3C reacted with 60 ml min-1 75 vol. % H2 in N2 (BOC, 99.98%) as function of temperature and time: 
(A) temperature programmed reaction and (B) isothermal conditions at 500 °C. 

 

 

 

Figure 3.2-83: Evolution of the C/N occupancy of the 16c Wyckoff lattice site in Co3Mo3C as a function of 
reaction time with 60 ml min−1 of 75 vol. % H2 in N2 at 500 °C. (▲) fractional carbon content and (●) 
fractional nitrogen content as determined from the Rietveld refinement against PND data. 
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The results of the Rietveld refinement against PND data collected at isothermal conditions 

showed the formation of intermediate carbonitride phases before complete conversion to 

Co3Mo3N structure upon higher time of reaction. Representative Co3Mo3CxN1-x refinement 

data obtained from PND data at 500 °C and 2h of reaction are presented in Figure 3.2-84 

and Table 3.2-25. The lattice parameter derived from Rietveld refinement was found to be 

a = 11.0370(3) Å. The refinement of carbon, nitrogen occupancy of the 16c Wyckoff site in 

Co3Mo3CxN1-x phase (Table 3.2-25) resulted in an estimated chemical composition of 

Co3Mo3C0.33N0.66. 

 

Figure 3.2-84: Fitted powder neutron diffraction profile from Rietveld refinement against powder neutron 
diffraction data for: Co3Mo3C after 2 h of reaction with 60 ml min−1 of 75 vol. % H2 in N2 at 500 °C. 

 

Table 3.2-25: Structure parameters of Co3Mo3C after 2 h of reaction with 60 ml min−1 of 75 vol. % H2 in N2 
(BOC, 99.98%) at 500 °C obtained from neutron diffraction data. 

atom site occupancies x y z 100*Uiso(Å2) 

Co1 32e 1.000 0.2936(3) 0.2936(3) 0.2936(3) 0.11(9) 

Co2 16d 1.000 0.50000(0) 0.50000(0) 0.50000(0) 0.19(1) 

Mo1 48f 1.000 0.3237(4) 0.12500(0) 0.12500(0) 0.19(3) 

N1 16c 0.66(4) 0.00000(0) 0.00000(0) 0.00000(0) 0.65(3) 

C1 16c 0.33(5) 0.00000(0) 0.00000(0) 0.00000(0) 0.65(3) 

a Space group F d 3  m Z (227); a = 11.0370(3) Å, V = 1344.5(2) Å3
, Rwp = 0.0624, Rp = 

0.1001, χred
2=0.9175 
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3.2.11.2 Pathways of nitridation of Co6Mo6C with H2/N2 or N2 

With the intention of considering the intermediate phase and occupation of the 16c 

Wyckoff site in Co6Mo6C by reaction with H2/N2 or N2, the structural evolution of Co6Mo6C 

upon reaction with H2/N2 or N2 was investigated using a variety of in-situ PND and ex-situ 

PXRD measurements. 

a) Evolution of Co6Mo6C structure upon reaction with N2 or N2/H2 

 

 

Figure 3.2-85: PXRD patterns of Co6Mo6C with 60 ml min-1 N2 under various temperature and time on 
stream; A (room temperature), B (400 °C, 3h), C (500 °C, 3h), D (600 °C, 3h), E (700 °C, 4h), F (800 °C, 8h). 

 

Some initial understanding of the nitridation process of Co6Mo6C can be achieved by XRD. 

PXRD patterns collected upon reaction of Co6Mo6C with 60 ml min-1 N2 at various 

temperatures are shown in Figure 3.2-85. The PXRD pattern of the Co6Mo6C precursor 

collected at room temperature confirmed the preparation of a well-crystalized and pure 

carbide phase. At 700 °C (in Figure 3.2-85 E), the PXRD showed that the material is no longer 

monophasic and Co3Mo3N was detected as a minor phase along with Co6Mo6C and graphite 

as major phases. Reaction at higher temperature (800 °C in Figure 3.2-85 F) resulted in the 

complete conversion of Co6Mo6C to Co3Mo3N. Loss of carbon and increase in nitrogen 

content was identified by using CHN microanalysis which confirmed that the starting 
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formula of Co6Mo6C was 1.3 wt. % of C and resultant end formula of Co3Mo3Nx was 2.4 wt. 

% N. The initial XRD results seem to indicate that the mechanism of nitridation of Co6Mo6C 

proceeds differently to what was observed in the case of Co3Mo3C and that at two distinct 

phases are present in the intermediate nitridation stages. This result was also confirmed 

by using in-situ PXRD of Co6Mo6C heated with 60 ml min-1 N2 at various temperatures as 

presented in Figure 3.2-86. 

 

Figure 3.2-86: In-situ PXRD patterns of Co6Mo6C with 60 ml min-1 N2 after various temperatures and times 
on stream; A (at room temperature), B (600 °C), C (700 °C, 1h), D (700 °C, 2h), E (700 °C, 3h). 

 

With the aim of examining the intermediate phase and occupation of the 16c Wyckoff site 

in Co6Mo6C upon reaction with H2/N2 instead of only N2; PXRD patterns of Co6Mo6C reacted 

with 60 ml min-1 75 vol. % H2 in N2 gas at various temperatures are presented in Figure 3.2-

87. The PXRD pattern of Co6Mo6C collected at room temperature confirmed the 

preparation of a pure carbide phase. At 500 °C (in Figure 3.2-87 C), the PXRD showed that 

the material is no longer monophasic and Co3Mo3N was detected as the minor phase along 

with Co6Mo6C as major phase. Reaction at higher temperature (600 °C in Figure 3.2-85 D) 

resulted in the complete conversion of Co6Mo6C to Co3Mo3N. As opposed to the case when 

using only N2, the XRD results seem to indicate that the intermediate stage of nitridation 

of Co6Mo6C comprises distinct Co6Mo6C and Co3Mo3N phases at lower temperature. 
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Figure 3.2-87: Ex-situ PXRD patterns of Co6Mo6C with 60 ml min-1 75 vol. % H2 in N2 under various 
temperature and time on stream; A (at room temperature), B (400 °C, 5h), C (500 °C, 5h), D (600 °C, 1h), E 
(700 °C, 5h). 

 

b) In-situ PND for nitride formation using Co6Mo6C 

In-situ neutron diffraction patterns collected at different temperatures for the Co6Mo6C 

material reacted with 60 ml min-1 N2 gas are presented in Figure 3.2-88. The diffraction 

patterns demonstrated that there was a change in the structure. The results from room 

temperature PND confirmed the initial preparation of a pure Co6Mo6C phase (a = 

10.9099(8) Å, Table 3.2-18 in section 3.2.9.1). Rietveld refinement against PND data were 

performed using the structure of Co6Mo6C38 with carbon in the 8a site. The formation of 

nitride phases upon reaction with nitrogen was verified using Co3Mo3N as a second phase 

during Rietveld refinement. The formation of carbonitride phases was verified by refining 

mixed occupancy of the 16c site and/or 8a site by carbon and nitrogen. From 17 °C to 681 

°C, no apparent change in PND diffraction profiles was detected and all diffraction peaks 

observed were related to the Co6Mo6C with the exception of few minor peaks related to 

the in-situ reaction cell. The examination of the lattice parameters derived from Rietveld 

refinements of in-situ PND is presented in Figure 3.2-89. A linear change of lattice 

parameter was observed which could be attributed to thermal expansion of the lattice.  
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Figure 3.2-88: In-situ PND patterns collected at (A) different temperature and (B) isothermal conditions at 
700 °C for Co6Mo6C heated under 60 ml min−1 N2. 

 

(A) 

(B) 
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Figure 3.2-89: Evolution of the lattice parameter taken from Rietveld refinements of in-situ PND data of 
Co6Mo6C reacted with 60 ml min-1 N2 as function of temperature and time: (a) temperature programmed 
reaction and (b) isothermal conditions at 700 °C. 

The investigation of the fractional carbon and nitrogen occupancy of the 16c and 8a 

Wyckoff lattice sites in Co3Mo3N and Co6Mo6C respectively as a function of temperature as 

obtained from the Rietveld refinement against In-situ PND data is presented in Figure 3.2-

90. The refinement obtained data indicate that at 695 and 697 °C the materials were 

comprised of 58.2 and 26.2 % of the 661C phase with C occupancy of the 8a Wyckoff lattice 

site and 41.8 and 73.8 % of 331N fractional phase with N occupancy of the 16c Wyckoff 

lattice site respectively. When the temperature reached 700 °C, the material was 

completely converted to Co3Mo3N. For more quantitative analysis data see Appendix 2 

Table 8.2-4.  

 

Figure 3.2-90: Investigation of phase fractions of Co6Mo6C (■) and Co3Mo3N (●) present during reaction of 
Co6Mo6C with 60 ml min−1 N2 as a function of temperature as determined from the Rietveld refinement 
against in-situ powder neutron diffraction data. 
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Most importantly, the refinement of powder neutron diffraction profiles against PND data 

at 695 and 697 °C, highlighted in red, has shown that the material is not monophasic any 

longer and revealed co-existence of Co6Mo6C alongside the Co3Mo3N phase. When the 

temperature reached 700 °C, the material was completely converted to Co3Mo3N. The 

evolution of the formation of Co3Mo3N and the decay of the Co6Mo6C during the reaction 

is presented in Figure 3.2-90. It can be clearly seen that the carburisation process was rapid 

and occurred in a narrow temperature window. The structural features of Co6Mo6C and 

Co3Mo3N obtained from the refinement of PND profiles are presented in Figure 3.2-91, 

Table 3.2-26 at 695 °C and Figure 3.2-92, Table 3.2-27 at 697 °C. The lattice parameter 

derived from Rietveld refinement was found to be a = 11.1211(4) Å for Co3Mo3N and a = 

10.987(4) Å for Co6Mo6C at 695 °C, and a = 11.1218(1) Å for Co3Mo3N and a = 10.9903(2) Å 

for Co6Mo6C at 697 °C. The refinement of carbon, and nitrogen occupancy of the 16c (331N 

phase), and 8a (661C) Wyckoff sites respectively (Table 3.2-26 and 3.2-27) resulted in an 

estimated chemical composition of, Co3Mo3N0.96, Co6Mo6C1.03 at 695 °C and  Co3Mo3N0.8 , 

Co6Mo6C1.17 at 697 °C.  

 

 

Figure 3.2-91: Fitted powder neutron diffraction profile from Rietveld refinement against powder neutron 
diffraction data for: Co6Mo6C after reaction with 60 ml min−1 of N2 (BOC, 99.98%) at 695°C.  



Chapter 3  114 

Table 3.2-26: Structure parameters of Co6Mo6C after reaction with 60 ml min−1 of N2 (BOC, 99.98%) at 
695°C obtained from neutron diffraction data. 

Atom 
661C 

site occupancies x y z 100*Uiso(Å2) 

Co1 32e 1.000 0.29200(0) 0.29200(0) 0.29200(0) 1.77(2) 

Co2 16d 1.000 0.50000(0) 0.50000(0) 0.50000(0) 1.94(3) 

Mo1 48f 1.000 0.32100(0) 0.12500(0) 0.12500(0) 1.22(6) 

C1 16c 0.000 0.00000(0) 0.00000(0) 0.00000(0) 0.32(9) 

C2 8a 1.025(9) 0.12500(0) 0.12500(0) 0.12500(0) 0.77(4) 

a Space group F d 3  m Z (227); a = 10.987(4) Å, V = 1326.43(6) Å3
, Rwp = 0.0712, Rp = 

0.1149, χred
2=0.7578 

 

Atom 
331N 

site occupancies x y z 100*Uiso(Å2) 

Co1 32e 1.000 0.29220(0) 0.29220(0) 0.29220(0) 0.07(7) 

Co2 16d 1.000 0.50000(0) 0.50000(0) 0.50000(0) 0.07(7) 

Mo1 48f 1.000 0.32390(0) 0.12500(0) 0.12500(0) 1.06(4) 

N1 16c 0.975(1) 0.00000(0) 0.00000(0) 0.00000(0) 2.40(3) 

a Space group F d 3  m Z (227); a = 11.1211(4) Å, V = 1375.46(3) Å3
, Rwp = 0.1891, Rp = 

0.1665, χred
2=0.7578 

 

 

Figure 3.2-92: Fitted powder neutron diffraction profile from Rietveld refinement against powder neutron 
diffraction data for: Co6Mo6C after reaction with 60 ml min−1 of N2 (BOC, 99.98%) at 697 °C. 
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Table 3.2-27: Structure parameters of Co6Mo6C after reaction with 60 ml min−1 of N2 (BOC, 99.98%) at 
697°C obtained from neutron diffraction data. 

Atom 
331N 

site occupancies x y z 100*Uiso(Å2) 

Co1 32e 1.000 0.29220(0) 0.29220(0) 0.29220(0) 1.52(0) 

Co2 16d 1.000 0.50000(0) 0.50000(0) 0.50000(0) 1.32(2) 

Mo1 48f 1.000 0.32390(0) 0.12500(0) 0.12500(0) 1.49(4) 

N1 16c 0.829(4) 0.00000(0) 0.00000(0) 0.00000(0) 1.27(0) 

a Space group F d 3  m Z (227); a = 11.1218(1) Å, V = 1375.71(0) Å3
, Rwp = 0.0616, Rp = 

0.0962, χred
2=0.7609 

 

Atom 
661C 

site occupancies x y z 100*Uiso(Å2) 

Co1 32e 1.000 0.29200(0) 0.29200(0) 0.29200(0) 2.01(1) 

Co2 16d 1.000 0.50000(0) 0.50000(0) 0.50000(0) 1.80(0) 

Mo1 48f 1.000 0.32100(0) 0.12500(0) 0.12500(0) 1.80(0) 

C1 16c 0.000 0.00000(0) 0.00000(0) 0.00000(0) 0.32(9) 

C2 8a 1.170(6) 0.12500(0) 0.12500(0) 0.12500(0) 1.63(0) 

a Space group F d 3  m Z (227); a = 10.9903(2) Å, V = 1327.49(0) Å3
, Rwp = 0.0616, Rp = 

0.0962, χred
2=0.7609 

 

 

The process of the nitridation of Co6Mo6C was different from the nitridation of Co3Mo3C, 

as in this case no carbonitride intermediate phase was observed. The nitridation process 

proceeded via the decline of Co6Mo6C and the concomitant formation of Co3Mo3N.  
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3.2.12  Pathways of reduction of Co3Mo3C with H2/Ar  

With the aim of investigating the intermediate phases and reduction phase in which carbon 

atoms transferred from the 16c to 8a Wyckoff site, ex-situ PXRD of Co3Mo3C heated with 

60 ml min-1 75 vol. % H2 in Ar gas at various temperatures was undertaken as shown in 

Figure 3.2-93. 

 

Figure 3.2-93: Ex-situ PXRD patterns of Co3Mo3C with 60 ml min-1 75 vol. % H2 in Ar under various 
temperatures and times on stream; A (room temperature), B (500 °C), C (700 °C, 5h), D (800 °C, 4h), E (850 
°C, 5h), F (900 °C, 5h).  

 

The PXRD patterns show that all patterns of Co3Mo3C are slightly shifted to the right as a 

function of reaction temperature to form directly η-12 Co6Mo6C without any intermediate 

phase. The shift was clear within Figure 3.2-93 D when temperature reached 800 °C; the 

661C related pattern was starting to appear. When the temperature was increased to 850 

°C as in Figure 3.2-93 E, the patterns of 661 were further increased with respect to those 

of 331C. When the temperature was increased to 900 for 5 hours, the transformation to 

the 661C phase was completed. Removal of carbon from the lattice was substantiated using 

CHN microanalysis which confirmed that the starting phase of Co3Mo3C was 2.8 wt. % C 

and final phase of Co6Mo6C contained 1.3 wt. % C.  
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3.2.13  Pathways of reduction of Co3Mo3N with H2/Ar 

In-situ neutron diffraction patterns collected at different temperatures for Co3Mo3N 

material (as post-reaction material which was obtained from reacting Co3Mo3C with H2/N2 

at 500 °C during in-situ PND) reacted with 60 ml min-1 of 75 vol. % H2 in Ar gas presented in 

Figure 3.2-94. The diffraction patterns demonstrated that there was a change in structure. 

The patterns also display minor impurity peaks present within the material when increasing 

temperature, although these could not be easily assigned such as that with a d-spacing at 

2.05 Å. A possible source of impurity peaks came from the vanadium sample can; which 

was excluded from the refinements.  

 

 

 

Figure 3.2-94: In-situ PND patterns collected at (A) different temperature and (B) isothermal conditions at 
820 °C for Co3Mo3N heated under 60 ml min−1 of 75 vol. % H2 in Ar.  

(A) 

(B) 
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The lattice parameters taken from Rietveld refinements of in-situ PND data collected at 

different temperatures and dwell times for Co3Mo3N heated from room temperature to 

820 °C under 60 ml min−1 of 75 vol. % H2 in Ar gas is presented in Figure 3.2-95. With 

increasing temperature to 820 °C, a linear change of lattice parameter as a function of 

temperature was observed as presented in Figure 3.2-95 A. This can be attributed to 

thermal expansion of the lattice. However, a change in the slope was detected at 

temperatures beyond 820 °C as illustrated in Figure 3.2-95 B, which could relate to the 

structural transformation from 331N to 661N forming mixed phases of 331N and 661N. The 

reaction was left for 4 hours on stream before being cooled to room temperature under 

the same gas, within this period, the lattice parameters corresponded to 331N (around 

11.15 Å) and 661N (around 10.98 Å).  

  

Figure 3.2-95: Evolution of the lattice parameter taken from Rietveld refinements of in-situ PND data of 
Co3Mo3N reacted with 60 ml min-1 75 vol. % H2 in Ar as function of temperature and time: (A) 
temperature programmed reaction and (B) isothermal conditions at 820 °C  with mixed phases of (●) 
331N and (■) 661N. 

The investigation of the fractional nitrogen occupancy of the 16c and 8a Wyckoff lattice 

sites in Co3Mo3N and Co6Mo6N respectively as a function of time on stream at 820 °C as 

obtained from the Rietveld refinement against In-situ PND data are presented in Figure 3.2-

96. The refinement obtained data indicate that at, for example, 50, 120, 160 minutes and 

an iso-temperature 820 °C the material was composed of 81.3, 64.8, and 59.7 % of 331N 

fraction with N occupancy of the 16c Wyckoff lattice site and 18.7, 35.2 and 40.3 % of 661N 

with N occupancy of the 8a Wyckoff lattice site. For more quantitative analysis see 

Appendix 2 Table 8.2-3.  
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Figure 3.2-96: Investigation of phase fractions of Co6Mo6N (■) and Co3Mo3N (●) present during reaction of 
Co3Mo3N with 60 ml min−1 75 vol. % H2 in Ar at 820 °C as determined from the Rietveld refinement 
against in-situ powder neutron diffraction data. 

When the refinement had converged the thermal parameters were varied isotopically 

except for the cobalt species in both nitride phases which were constrained. The Co6Mo6N 

phase was investigated and the same process was performed. The nitrogen occupancy of 

8a and 16c sites were allowed to freely vary for the final refinement. The results of the 

Co3Mo3N and Co6Mo6N refinement obtained from PND data were discussed earlier in 

Sections 3.2.6.1 and 3.2.7.1 respectively. Selected results of mixed phases of Co3Mo3N and 

Co6Mo6N refinement gained from PND data are presented in Figure 3.2-97 and Table 3.2-

26. 

Once all of the parameters were refined, a good fit to the selected model when the reaction 

reached 820 °C and cooling down to 394 °C corresponding to a mixture of both Co6Mo6N 

and Co3Mo3N phases was obtained. The results are shown in Figure 3.2-97 and Table 3.2-

28. The lattice parameter derived from Rietveld refinement was found to be a = 11.1179(8) 

Å for Co3Mo3N and a = 10.9438(5) Å for Co6Mo6N. The refinement of nitrogen occupancy 

of the 16c in 331N phase, 8a in 661N Wyckoff sites respectively (Table 3.2-28) resulted in 

an estimated chemical composition of Co3Mo3N0.89 and Co6Mo6N1.10.  
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Figure 3.2-97: Fitted powder neutron diffraction profile from Rietveld refinement against powder neutron 
diffraction data for: Co3Mo3N after 220 minutes of reaction with 60 ml min−1 of 75 vol.% H2 in Ar (BOC, 
99.98%) at 820°C and cooling down to 394°C under same gas.  

Table 3.2-28: Structure parameters of Co3Mo3N after 220 minutes of reaction with 60 ml min−1 of 75 vol.% 
H2 in Ar (BOC, 99.98%) at 820°C and cooling down to 394°C obtained from neutron diffraction data. 

Atom 
661N 

site occupancies x y z 100*Uiso(Å2) 

Co1 32e 1.000 0.29200(0) 0.29200(0) 0.29200(0) 1.07(3) 

Co2 16d 1.000 0.50000(0) 0.50000(0) 0.50000(0) 1.07(3) 

Mo1 48f 1.000 0.32100(0) 0.12500(0) 0.12500(0) 0.66(7) 

N1 16c 0.000 0.00000(0) 0.00000(0) 0.00000(0) 0.32(9) 

N2 8a 1.10(5) 0.12500(0) 0.12500(0) 0.12500(0) 3.02(1) 

a Space group F d 3  m Z (227); a = 10.9438(5) Å, V = 1310.72(1) Å3
, Rwp = 0.0556, Rp = 

0.0921, χred
2=0.9041 

 

Atom 
331N 

site occupancies x y z 100*Uiso(Å2) 

Co1 32e 1.000 0.29266(0) 0.29266(0) 0.29266(0) 0.35(1) 

Co2 16d 1.000 0.50000(0) 0.50000(0) 0.50000(0) 0.35(1) 

Mo1 48f 1.000 0.32358(0) 0.12500(0) 0.12500(0) 0.90(2) 

N1 16c 0.89(5) 0.00000(0) 0.00000(0) 0.00000(0) 1.89(6) 

a Space group F d 3  m Z (227); a = 11.1179(8) Å, V = 1374.27(8) Å3
, Rwp = 0.0811, Rp = 

0.1107, χred
2=0.9063 

 

The process of the reduction of Co3Mo3C was investigated and as result in this case no 

intermediate phase was observed. The reduction process proceeded via the decline of 
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Co3Mo3C and the formation of Co6Mo6C when using 3:1 H2:Ar. The co-product from this 

process, based on TGA-MS result in section 3.2.9.4, to our knowledge was only methane. 

On the other hand, a similar pathway of the reduction of Co3Mo3N was observed, 

elsewhere such a reduction process has been shown to produce N2 and NH3.37    

3.3 Conclusion 

In this chapter, the analysis of the structure and synthesis of binary molybdenum nitride 

(γ-Mo2N), molybdenum carbides (β-Mo2C, α-Mo2C) and ternary cobalt molybdenum 

nitrides (ƞ-6 Co3Mo3N, ƞ-12 Co6Mo6N) and ternary cobalt molybdenum carbides (ƞ-6 

Co3Mo3C, ƞ-12 Co6Mo6C) were successfully undertaken using a variety of characterisation 

techniques. The systems investigated are outlined in the following bullet points: 

 Pure binary gamma molybdenum nitride (γ-Mo2N) has been synthesised and 

confirmed by PXRD, ESM, EDX, BET and CHN elemental analysis. 

 Pure binary beta and alpha molybdenum carbide (β-Mo2C and α-Mo2C) have been 

synthesised and confirmed by PXRD, ESM, EDX, BET and CHN elemental analysis. 

 Two pure ternary molybdenum nitrides (η-6 Co3Mo3N and η-12 Co6Mo6N) have 

been synthesised and confirmed by PXRD, PND, ESM, EDX, BET and CHN elemental 

analysis. 

 Two pure ternary molybdenum carbides (η-6 Co3Mo3C and η-12 Co6Mo6C) have 

been synthesised and confirmed by PXRD, PND, ESM, EDX, BET and CHN elemental 

analysis. 

In this work, the synthesis conditions (e.g. reaction atmosphere, reaction time and 

temperature) of binary molybdenum nitride, binary molybdenum carbides and ternary 

cobalt molybdenum nitrides, carbides were identified resulting in the preparation of highly 

pure phases.   

All the above materials were previously synthesised and extensively studied except for η-

12 Co6Mo6C which was quite difficult to optimize in relation to the temperature required 
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for complete reduction. Moreover, all these materials have been used in ammonia 

synthesis and methane cracking as detailed in Chapters 4 and 5. 

Furthermore, the ability of Co3Mo3N or Co3Mo3C to uptake and release carbon and/or 

nitrogen was studied.  In-situ neutron diffraction studies revealed that in both cases, 

nitridation of the Co3Mo3C or carburisation of Co3Mo3N in presence of hydrogen proceeded 

via the formation of an intermediate carbonitride phase (Co3Mo3CxN1-x) with carbon and 

nitrogen both occupying the 16c Wyckoff site. However, the results of carburisation of 

Co6Mo6N and the nitridation of Co6Mo6C followed a different reaction path. Major findings 

are summarized below: 

 The η-6 Co3Mo3N phase was converted to η-6 Co3Mo3C using 1:4 CH4:H2 through 

the formation of intermediate Co3Mo3CxN1-x (with various % of C and N) phases in 

the temperature range between 600 to 700 °C. The process was confirmed by in-

situ PND, ex-situ PXRD and CHN elemental analysis. The atomic site occupancies 

were determined by Rietveld refinement of ToF neutron diffraction data. The 

results showed that nitrogen and carbon atoms simultaneously occupy 16c sites 

within the intermediate carbonitride structures.  

 The η-12 Co6Mo6N phase was converted to η-6 Co3Mo3C when reacted with 

methane. The reaction proceeded via the formation of Co3Mo3C phase and the 

destruction of the Co6Mo6N phase. The presence of the two segregated phases was 

only observable in a narrow temperature window around 678 °C. 

 The η-6 Co3Mo3C phase was converted to η-6 Co3Mo3N upon reaction with 1:3 

N2/H2 gas mixtures. As also observed in the case of carburisation of the η-6 

Co3Mo3N phase, the reaction proceeded through the formation of Co3Mo3CxN1-x at 

500 °C intermediate phases and no additional phases were observed. 

 When reacted with N2, η-6 Co3Mo3C was converted to η-6 Co3Mo3N. However, two 

segregated (Co3Mo3C, Co6Mo6N) phases were observed at 600 °C and this result 

was confirmed by ex and in-situ PXRD and CHN elemental analysis. 
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 In the reduction step, the η-6 Co3Mo3C phase was converted to η-12 Co6Mo6C 

through two segregated (Co3Mo3C, Co6Mo6C) phases at 800 °C when using 3:1 

H2/Ar. When reacting η-6 Co3Mo3N with 3:1 H2:Ar, the material reduced to η-12 

Co6Mo6N through two segregated (Co3Mo3Nx, Co6Mo6Nx) phases at 820 °C.  

 The η-12 Co6Mo6C phase was converted to η-12 Co3Mo3N through two segregated 

(Co6Mo6Cx, Co3Mo3Nx) phases at 700 °C when using only N2; whereas when using 

3:1 H2:N2 a similar result was observed at 500 °C.  

 In terms of the homologation of methane to produce C2+ products, η-6 Co3Mo3C 

was reduced to synthesize η-12 Co6Mo6C using a 3:1 H2:Ar gas mixture at 900 °C for 

5 hours and the products were detected by TGA-MS. According to the mass 

spectroscopy results, methane as opposed to higher hydrocarbons, is the sole 

product of reduction which indicates a limitation of this system for application in 

methane homologation. 

The phase transformation pathways for the ternary systems investigated within this 

chapter is summarized as: 

 

 

 

 

 

 

 

  
Co6Mo6N 

Co3Mo3C Co3Mo3N 

Co6Mo6C 

1:4 CH4/H2, 700 °C, Co3Mo3CxN1-x 

3:1 H2/N2, 500 °C, Co3Mo3CxN1-x 

Only N2, 600 °C, 331Cx and 661Ny 

 



Chapter 4  124 

 Ammonia synthesis 

4.1 Introduction 

4.1.1 Importance of ammonia in modern society 

Nitrogen containing products are important in many industrial applications but also in 

many biological processes. In fact, proteins which are the main building blocks of muscles, 

skin and hair etc., are made up of varying combinations of nitrogen containing amino 

acids.82 Nitrogen is one of the most abundant elements in nature with ~ 78 % of our 

atmosphere being constituted of diatomic nitrogen providing an almost limitless source of 

nitrogen. However, due to the strong nitrogen-nitrogen triple bond, diatomic nitrogen is 

relatively inert and needs to undergo many complex and slow biological transformations 

to produce reactive nitrogen. In this context, the Haber - Bosch process, which is the 

current large-scale industrial process for nitrogen fixation, is considered one of the most 

significant achievements.83 The process provides a direct and rapid route for the fixation of 

diatomic nitrogen into the more reactive nitrogen building block ammonia.  

The advent of the Haber - Bosch (H-B) process is usually linked to the net increase in the 

global population which occurred during the 20th Century. Although the increase in the 

global population is attributed to many factors, there is a consensus that the actual raise 

of the population could not be sustained without the artificial production of reactive 

nitrogen (ammonia). The production of ammonia from the H-B process enabled the 

production of fertilizers at an industrial scale and thus supported intensive agriculture and 

farming.84-85 Figure 4.1-1 illustrates the effect of the development of the H-B process upon 

the development of the global population. Nowadays, about 6000 million tons of artificial 

fertilizer is made every year by Haber-Bosch process sustaining ~48 % of the population of 

the world. Meanwhile, the Haber-Bosch process as currently operated uses about 1 % of 

the total world energy supply.86 Therefore, if the population continues to grow as expected, 

then by 2050, about 270 million tons of coal or equivalent energy will be needed to produce 

enough fertilizer to prevent mass starvation.87 Thus, there is a need to improve the present 

technology to develop a low energy demand process, which can be operated on a more 

localised scale using hydrogen generated from renewable electricity.  
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Figure 4.1-1: Trend in human population and the effect of Haber-Bosch process on the world population 
throughout the 20th Century. 82  

Industrial production of Ammonia: Haber –Bosch process 

The development of the H-B process provided a direct and affordable route for reactive 

nitrogen building block production in the form of ammonia. The majority of ammonia 

produced industrially is consumed for the preparation of fertilizers. However, an important 

part is utilized for the preparation of nitrogen containing products of industrial importance 

including urea (NH2CONH2), nitric acid (HNO3), hydrogen cyanide (HCN), cleaning fluids, 

refrigerants, polymers and explosives etc. The global ammonia production is dominated by 

the H-B process and it has been constantly growing, at rate of 1-2 % per annum, since the 

first H-B ammonia synthesis plants, peaking at 140 million tonnes produced in 2012 which 

consumed about 2 % of the world’s energy.88-89 

The production of ammonia in H-B plants is conducted by combining diatomic nitrogen with 

dihydrogen, as depicted in Eq. 4.1,58 over a promoted iron catalyst. The reaction is generally 

conducted at temperature ranging between 400 and 500°C and at very high pressure, e.g. 

200 bar, using an iron based catalyst and very pure nitrogen and hydrogen. In the first 

attempts to develop industrial scale ammonia production, scientists had to face many 

challenges related to the thermodynamic limitations of ammonia synthesis and the poor 

reaction kinetics at low temperature.  
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3 H2 (g) + N2 (g) ↔ 2 NH3 (g)                (ΔHӨ = -92 kJ mol-1)                                                         Equation 4-1 

The basis of the H-B process was established by Firtz Haber in the early 1900’s.83, 90-91 In the 

earliest work for the development of a viable ammonia synthesis catalyst, uranium and 

osmium based catalysts where found to be the first promising candidates. However, the 

use of these materials at an industrial level would be very strongly limited due to their high 

cost and low abundance. The first viable catalyst for industrial ammonia synthesis was 

developed by Alwin Mittasch after numerous trial-and-error experiments resulting in the 

development of the "promoted iron” based catalyst. While non-promoted iron proved to 

be initially a poor catalyst, the addition of promoters such as potassium and alumina 

increased the reaction rate by over two orders of magnitude. The presence of potassium is 

believed to facilitate the desorption of ammonia from the surface of the catalyst and to 

enhance the nitrogen dissociation process by weakening the dinitrogen bond via an 

electron-donor effect. In this catalytic formulation, alumina is added the development of 

“promoted iron” catalyst is considered as the genuine start of the industrial ammonia 

production era.92   

Alternative materials for ammonia generation  

The actual production of ammonia is currently dominated by the H-B process. In spite of its 

industrial efficiency, as mentioned previously, the process is estimated to account for >1 % 

of global energy demand when the production of the reactants is taken in account. 

Furthermore, the process is estimated to contribute ca. 3 % of global greenhouse gas 

emissions.93 Thus, effort was directed towards the development of new catalytic materials 

that could operate at lower temperatures and pressures in order to reduce the energy 

consumption, production cost of the process and lower industrial ammonia carbon 

footprint. Over the years, iron based catalysts for ammonia generation have been subject 

to many studies to improve catalytic activity and life expectancy. However, no significant 

improvement was obtained and the industrial catalyst is practically the same as that of the 

original formulation.  
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Non-ferrous based catalysts 

Since no appreciable improvement was obtained since the development of the iron based 

catalyst, scientists started to investigate other non-ferrous alternative based catalysts. 

Among these catalysts, Ru was reported for its high activity for ammonia generation. The 

earliest studies can be dated to Mittasch’s work in the early 1900’s in which 20000 mixtures 

for their catalytic activity were screened.94-95 The work of Aika and Ozaki rekindled the 

interest for ruthenium based materials and eventually an doubly promoted ruthenium 

catalyst supported on graphitised carbon was developed as a novel ammonia catalyst.96 

The potential of alkali as a promoter on Ru based catalysts was demonstrated by Ozaki et 

al.97 The study emphasises that the use of both Cs+ and Ba2+ greatly enhances Ru ammonia 

synthesis activity. In 1980, the M. W. Kellogg and British Petroleum companies cooperated 

to develop a novel ammonia synthesis process (KAAP), in which BP was to create a new Ru-

based catalyst with a high surface graphite support and high activity at low temperatures 

and low pressures.98 After 14 years, an doubly promoted Ru catalyst was first implemented 

in the KAAP process in 1994. The high activity of the Ru/Cs/Ba/HSAG catalyst which is ~20 

times more active than conventional iron catalyst allowed the KAAP process to operate 

lower pressure, lower temperature and at higher ammonia concentration than the H-B 

process leading to an appreciable reduction of the operational cost.99 The main part of the 

KAAP process is the converter which reaches 21.7 % of ammonia concentration at the 

outlet. The methanation of the carbon material with time might be avoided when the 

reaction is performed at relatively low temperature in the KAAP system.98 It is still of 

interest to further develop highly active materials for ammonia generation.   

In same line of work to develop non-ferrous-based catalyst, unsupported CoRe related 

materials were found to be promising. In recent work which done by Hargreaves group, 

CoRe4 was reported to be a very active material for ammonia synthesis at ambient pressure 

especially when prepared without an ammonolysis step. In-situ XAS analysis suggests the 

cobalt rhenium active phase is bimetallic in nature and that both Co and Re need to be 

reduced prior to being active. Furthermore, CoRe4 has been shown to maintain high activity 

on repeated reaction and after exposure to air and ambient moisture, which is of potential 

industrial relevance. However, no study on the behaviour of this material in high-pressure 

ammonia synthesis is available currently.100  
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Metal nitride based materials  

Mittasch was among the first to study nitride materials as an indirect route to activate 

nitrogen from air. In his earliest work, Mittasch determined the ability of some metals to 

form nitrides under ammonia synthesis conditions but the studied materials didn’t show 

particularly promising activity. Over the years, the use of nitrides as catalytic materials for 

ammonia synthesis was then explored by a number of researchers. Vanduim oxynitride101 

and uranium nitride have been among the first materials studied as source of activated 

nitrogen than can be rapidly hydrogenated to produce ammonia.102 Molybdenum nitride 

has been also reported to be an active catalyst for ammonia generation. The activity of γ-

Mo2N, β-Mo2C and α-Mo2C for ammonia synthesis was investigated by Kojima and Aika. 

and the results show that the β-Mo2C is more active than α-Mo2C and γ-Mo2N at 400 °C; 

the activity of the β-Mo2C being comparable with that of promoted iron.103   

 

Figure 4.1-2 Calculated turnover frequencies for ammonia synthesis as a function of the adsorption 
energy of nitrogen. The synthesis conditions are 400 °C, 50 bar, gas composition H2:N2 = 3:1 containing 5% 
NH3.104 

  

Within the nitrides subsequently studied for ammonia synthesis, Co3Mo3N is of particular 

interest due to its high catalytic activity, especially when promoted with Cs+.36 It is 

interesting to note that the development of this material was based on a simple 

assumption. According to Nörskov et al.,104 a material presenting an optimal nitrogen 

binding energy can be obtained by mixing an element presenting a low N2 binding energy 

(Co in this case) with a second element presenting a high N2 binding energy (Mo in this 
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case) with N2 binding being a descriptor of ammonia synthesis performance. The 

combination of Co and Mo in Co3Mo3N was proposed to result in the creation of the (111) 

surface presenting optimal properties for ammonia generation (Figure 4.1-2). The role of 

nitrogen in the Co3Mo3N was limited by the authors to the creation of the correct 

crystallographic ordering without the lattice N being involved in the reaction. Experimental 

observations tend to confirm the ability of Co3Mo3N to acts as source of reactive nitrogen. 

The work of Hargreaves et al.37 demonstrated the ability of Co3Mo3N to directly produce 

ammonia under reducing conditions. The reaction was associated with the reduction of 

nitrogen content in the Co3Mo3N to Co6Mo6N and the relocation of nitrogen from the 16c 

Wyckoff to the 8a site.4 Furthermore, isotopic exchange experimentation showed that a 

large fraction of lattice nitrogen is exchangeable under conditions relevant to ammonia 

synthesis.105 Further evidence suggesting an important role of lattice nitrogen in ammonia 

synthesis was recently provided by computational studies. In a recent work, Catlow et al. 

showed the occurrence of high concentration of surface vacancy sites in the (111) surface 

that are capable of activating nitrogen N2 under conditions that are of relevance for 

ammonia generation. The study found that the occurrence of nitrogen vacancies exposes 

Co8 clusters and Mo3 clusters that could adsorb and activate N2.106-107 

Thus, experimental observations and theoretical investigations tend to confirm the lability 

and reactivity of lattice nitrogen suggesting its possible role in the mechanism of ammonia 

synthesis reaction in Co3Mo3N related materials. In such a mechanism, ammonia is 

generated directly via the hydrogenation of the lattice nitrogen, resulting in the creation of 

nitrogen vacancies (Co8 clusters and Mo3 clusters) which are, subsequently, replenished 

from gas phase N2.  

In this chapter, the catalytic performance of cobalt molybdenum carbide material, 

Co3Mo3C and Co6Mo6C, in ammonia synthesis will be investigated. The particular interest 

in these systems arises from their related structures to the Co3Mo3N and Co6Mo6N. In spite 

of evidence of a Mars−van Krevelen pathway for ammonia synthesis, the efficacy of 

Co3Mo3N for ammonia synthesis is still often attributed to the combination of the Co and 

Mo components having a close to optimal binding energy for N2. It is of interest 

consequently, to prove the extent in which the carbide materials exhibit related behaviour 

to their nitrides counterparts. Accordingly, the requirement of lattice nitrogen, in the CoMo 

reactivity will be assessed in this study.  
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4.2 Results and discussion  

Ammonia synthesis over ternary nitride (η-6 Co3Mo3N) and carbides (η-6 Co3Mo3C, η-12 

Co6Mo6C) were conducted and compared with binary nitride (γ-Mo2N) and carbides (β-

Mo2C, α-Mo2C) under the same conditions. 

I. Binary molybdenum nitride and carbides 

This section presents information related to ammonia synthesis using binary γ-Mo2N, β-

Mo2C and α-Mo2C materials. The activity of these materials for ammonia synthesis has 

been investigated previously at 400 °C and 0.1 MPa. Kojima and Aika have stated that β-

Mo2C is more active than γ-Mo2N and α-Mo2C materials for ammonia synthesis.103  

4.2.1 Gamma molybdenum nitride (γ-Mo2N) 

Gamma molybdenum nitride was extensively investigated and has been identified as an 

active ammonia synthesis material. Most of these studies were carried out with 

experiments at 400 °C and 0.1 MPa, closely following conditions employed by Aika and 

Kojima.103 The ammonia synthesis rate of γ-Mo2N was reported to be 43 µmolNH3 h-1g-1. 

However, this material was tested to compare to binary carbides at different temperatures. 

Within the current study, the material was reacted under 75 vol. % H2 in N2 at different 

temperatures and times on stream. The vent gas was bubbled through a solution of 

0.00108 M H2SO4 and conductivity monitored. The post-reaction sample was investigated 

by PXRD, SEM and CHN analysis as discussed in more detail below. 
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4.2.1.1 Conductivity 

Figure 4.2-1A presents a plot of conductivity versus temperature and time on stream for γ-

Mo2N reacted with 75 vol. % H2 in N2 at 400 °C for 4 hours then changed to 500 °C for 4 

hours under the same gas or in the opposite way in Figure 4.2-1B. The reaction profile in 

both figures shows that over the initial hour there is a high rate of reaction which could be 

correlated to the hydrogenation of residual NHx species upon the surface of the material. 

After the initial hour a rate of 123 µmolNH3 h-1g-1 at 400 °C, 188 µmolNH3 h-1g-1 at 500 °C 

for A and 202 µmolNH3 h-1g-1 at 500 °C, 48 µmolNH3 h-1g-1 at 400 °C for B could be 

determined from the gradients to the profiles shown below. 

 

  

Figure 4.2-1: Conductivity Profile for γ-Mo2N reacted with 75 vol. % H2 in N2 at A (400 °C for 4 h and 500 °C 
for 4 h) and B (500 °C for 4 h and 400 °C for 4 h). 
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4.2.1.2 PXRD analysis 

From studying the PXRD patterns for the pre- and post-reaction γ-Mo2N it can be seen that 

the formation of ammonia does not apparently affect the bulk structure of the material. 

The PXRD patterns for post-reaction γ-Mo2N shown in Figure 4.2-2A (400 °C for 4 h and 500 

°C for 4 h) and Figure 4.2-2B (500 °C for 4 h and 400 °C for 4 h) coincide, presenting five 

main peaks at 2θ = 37.4, 43.4, 63.3, 75.7 and 79.8° that can be matched to the (111), (200), 

(220), (311) and (222) hkl crystal planes of cubic γ-Mo2N (JCPS 003-0907). The nitrogen 

content of the post-reaction samples were decreased from 10.1 wt. % as prepared to 6.2 

wt. % N for A and 6.0 wt. % N for B. The expected stoichiometric N content of Mo2N is 6.8 

wt. %. 

  

Figure 4.2-2: PXRD pattern of the post-reaction of γ-Mo2N: A (400 °C for 4 h and 500 °C for 4 h) and B (500 
°C for 4 h and 400 °C for 4 h). 

4.2.1.3 SEM Images 

In order to consider the morphology and structural evolution of the material during the 
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SEM images of the post-reaction γ-Mo2N, are presented in Figure 4.2-3A (400 °C for 4 h and 

500 °C for 4 h) and Figure 4.2-3B (500 °C for 4 h and 400 °C for 4 h). the materials exhibit a 

platelet morphology, as described in earlier research.55 The SEM morphology of both 

samples is similar to that of pre-reaction material in section 3.2.1.3, and predominantly 

comprises large (ca. 5.42 x 3.16 µm) platelet crystals with secondary, smaller (ca. 1.38 x 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

In
te

n
si

ty
/ 

a.
u

.

2 Theta/ Degrees

(A)

(B)



Chapter 4  133 

1.84 µm) rod-like formations. This suggests retention of the platelet morphology 

characteristic of their precursor structures. 

 

Figure 4.2-3: SEM images of the post-reaction of γ-Mo2N: A (400 °C for 4 h and 500 °C for 4 h) and B (500 
°C for 4 h and 400 °C for 4 h). 

 

4.2.2 Beta Molybdenum Carbide (β-Mo2C) 

With the purpose of examination of the ability of beta molybdenum carbide to produce 

ammonia, the material was reacted under 75 vol. % H2 in N2 at different temperatures and 

times on stream. The vent gas was bubbled through a solution of 0.00108 M H2SO4 and 

conductivity monitored. The post-reaction sample was investigated by PXRD, SEM and CHN 

analysis as discussed in more details below. Oyama15 and Kojima103 have reported that β-

Mo2C is more active than γ-Mo2N for ammonia synthesis at 400 °C.  
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4.2.2.1 Conductivity 

Figure 4.2-4A presents a plot of conductivity versus temperature and time on stream for β-

Mo2C reacted with 75 vol. % H2 in N2 at 400 °C for 4 hours then increased temperature to 

500 °C for 4 hours under the same gas or with the temperature profile applied in the 

opposite direction as shown in Figure 4.2-1B. 

 

 

  

Figure 4.2-4: Conductivity Profile for β-Mo2C reacted with 75 vol. % H2 in N2 at A (400 °C for 4 h and 500 °C 
for 4 h) and B (500 °C for 4 h and 400 °C for 4 h). 
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The reaction profile in Figure 4.2-4A shows that over the initial 4 hours when temperature 

was 400 °C there is a low steady state rate of reaction (18 µmolNH3 h-1g-1), while after 

increasing temperature to 500 °C a high steady state rate of reaction (131 µmolNH3 h-1g-1) 

was observed. The reaction profile in Figure 4.2-4B shows that the decrease was observed 

after an induction period of approximately 30 minutes with rate of 115 µmolNH3 h-1g-1 and 

then the changed temperature to 400 °C after 4 hours on stream resulted in a decrease of 

the ammonia production rate to 21 µmolNH3 h-1g-1.  

4.2.2.2 PXRD analysis 

From studying the PXRD patterns for the pre- and post-reaction β-Mo2C it can be seen that 

the formation of ammonia does not apparently affect the bulk structure of the material. 

The PXRD patterns for post-reaction β-Mo2C shown in Figure 4.2-5 A (400 °C for 4 h and 

500 °C for 4 h) and Figure 4.2-5 B (500 °C for 4 h and 400 °C for 4 h) coincide, presenting 

eight intense peaks at 2θ = 34.4, 37.9, 39.4, 52.1, 61.5, 69.5, 72.3, and 74.59° that can be 

matched to the (100), (002), (101), (102), (110), (103), (200) and (112) hkl crystal planes of 

β-Mo2C (JCPS 001-1188) respectively. The carbon content obtained from CHN analysis of 

the post-reaction samples were 7.0 wt. % C for A and 7.1 wt. % for B, these results were 

decreased from the pre-reaction samples 7.5 wt. % for A and 7.6 wt. % for B. The expected 

stoichiometric C content of Mo2C is 5.8 wt. %. 

 

Figure 4.2-5: PXRD pattern of the post-reaction of β-Mo2C: A (400 °C for 4 h and 500 °C for 4 h) and B (500 
°C for 4 h and 400 °C for 4 h). 
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4.2.2.3 SEM Images 

Figure 4.2-6 presents typical SEM images at 4000 and 6000 magnification of the post-

reaction β-Mo2C: A (400 °C for 4 h and 500 °C for 4 h) and B (500 °C for 4 h and 400 °C for 

4 h). It can be seen that the post-reaction sample consists of aggregates of cubes and it still 

retains the pre-reaction morphology. 

 

Figure 4.2-6: SEM images of the post-reaction of β-Mo2C: A (400 °C for 4 h and 500 °C for 4 h) and B (500 
°C for 4 h and 400 °C for 4 h). 
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4.2.3 Alpha Molybdenum Carbide (α-Mo2C) 

With the intention of consideration of the ability of alpha molybdenum carbide to produce 

ammonia, the material was reacted under 75 vol. % H2 in N2 at different temperatures and 

time on stream. 

4.2.3.1 Conductivity 

Figure 4.2-7A presents a plot of conductivity versus temperature and time on stream for α-

Mo2C reacted with 75 vol. % H2 in N2 at 500 °C for 4 hours followed by decreased 

temperature to (400 °C for 4 hours) with the opposite temperature profile as shown in 

Figure 4.2-1B. 

 

    

Figure 4.2-7: Conductivity Profile for α-Mo2C reacted with 75 vol. % H2 in N2 at A (500 °C for 4 h and 400 °C 
for 4 h) and B (400 °C for 4 h and 500 °C for 4 h). 
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The reaction profile in Figure 4.2-7A shows that the decrease was observed after an 

induction period of approximately 40 minutes with a rate of 291 µmolNH3 h-1g-1 and then   

73 µmolNH3 h-1g-1. The reaction profile in Figures 4.2-7B shows that over the initial 4 hours 

when temperature was 400 °C there is a small steady state rate of reaction (47 µmolNH3 h-

1g-1), while at 500 °C a high steady state rate of reaction of 306 µmolNH3 h-1g-1 was 

observed.  

4.2.3.2 PXRD analysis 

From studying the PXRD patterns for the pre- and post-reaction α-Mo2C it can be seen that 

the formation of ammonia does apparently affect the bulk structure of the material. The 

PXRD patterns for pre- and post-reaction α-Mo2C shown in Figure 4.2-8 A (as prepared), 

Figure 4.2-8 B (500 °C for 4 h and 400 °C for 4 h) and Figure 4.2-8 C (400 °C for 4 h and 500 

°C for 4 h) coincide, presenting five main peaks that can be matched to the (111), (200), 

(220), (311) and (222) hkl crystal planes of cubic α-Mo2C (JCPS 015-0457) with a small shift 

to higher 2θ  after reaction which suggests that the material may have was transformed 

from carbide phase to carbonitride. The carbon and nitrogen content of the post-reaction 

samples were 4.1 wt. % C and 1.8 wt. % N for A, and 3.0 wt. % C, and 2.8 wt. % N for B which 

corresponds to carbonitride material, with the stoichiometric C content of Mo2C being 5.8 

wt. %. 

 

Figure 4.2-8: PXRD patterns of the pre- and  post-reaction of α-Mo2C: A (as prepared), B (500 °C for 4 h 
and 400 °C for 4 h) and C (400 °C for 4 h and 500 °C for 4 h). 
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4.2.3.3 SEM images 

Figure 4.2-9 presents typical SEM images at 4000 and 6000 magnification of the post-

reaction α-Mo2C: A (500 °C for 4 h and 400 °C for 4 h) and B (400 °C for 4 h and 500 °C for 

4 h). It can be seen that the post-reaction sample consists of aggregates of plates. The 

material retains its morphology upon reaction. 

 

 

Figure 4.2-9: SEM images of the post-reaction of α-Mo2C: A (500 °C for 4 h and 400 °C for 4 h) and B (400 
°C for 4 h and 500 °C for 4 h). 
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Comparison between γ-Mo2N, β-Mo2C, α-Mo2C for ammonia synthesis 
 
The role of the lattice nitrogen and carbon in the catalytic activity was studied by comparing 

the results of β-Mo2C and α-Mo2C for ammonia synthesis to the activity of the γ-Mo2N 

system. The α-Mo2C system was found to be highly active for ammonia synthesis at 500 °C 

and ambient pressure exhibiting a rate of ca. 299 ±8 μmolNH3 g-1 h-1 which is very high and 

is worthy of further study. Under the same reaction conditions, the β-Mo2C (123 ±8 

μmolNH3 g-1h-1) system displayed a lower activity than γ-Mo2N (195 ±7 μmolNH3 g-1 h-1). 

However, this was only exhibited after an induction time of ca. 40 minutes for α-Mo2C and 

30 minutes for β-Mo2C, during which the materials demonstrated very poor activity. 

Nonetheless beyond the induction time, the materials exhibited a steady state 

performance during 4 h of reaction with no sign of deactivation before the temperature 

was changed to 400 °C. PXRD patterns of post-reaction β-Mo2C and γ-Mo2N were very 

similar to the pre-reaction samples; whereas the reflections in α-Mo2C had shifted toward 

the higher 2θ.  From elemental analyses, the nitrogen content in post-reaction γ-Mo2N was 

decreased compared to pre-reaction material (from 10.1 to 6.2 wt. % N) and no presence 

of nitrogen was found in post-reaction β-Mo2C, which suggests that these phases are stable 

under ammonia synthesis at 500 °C although α-Mo2C was transformed into a carbonitride 

under the same conditions. In this context it is notewortly that α-Mo2C can have a variable 

stoichiometry and is often described as MoC1-x in this context. This may facilitate 

incorporation of lattice N under reaction conditions. The SEM studies indicate that the 

morphologies of post-reaction β-Mo2C, α-Mo2C and γ-Mo2N are similar when compared to 

the pre-reaction β-Mo2C, α-Mo2C and γ-Mo2N materials. On this basis, there is strong 

evidence that the influence of difference in morphology and the nitrogen or carbon 

presence within the structure can lead to a difference in performance; it is the difference 

in composition between Mo2N and Mo2C that emphasises this. Indeed it is the case that 

the lag period associated with the development of activity, in the case of the carbides, 

corresponds to the further replacement of lattice C with N. This would be consistent with 

the operation of a Mars-van Krevelen mechanism in which the presence of lattice nitrogen 

has to be present for ammonia synthesis to occur once a critical population of lattice N is 

established.  
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II. Ternary molybdenum nitride and carbides  

Ammonia synthesis using ternary oxide, nitride and carbides was conducted according to 

the procedure documented in the catalyst testing section in Chapter 2.  

4.2.4 Dehydrated Cobalt molybdenum oxide (CoMoO4) 

Dehydrated cobalt molybdenum oxide was investigated for ammonia synthesis at 500 °C 

under 75 vol. % H2 in N2 for 48 hours. The post-reaction material was characterized using 

PXRD, SEM and CHN analysis as discussed in more detail below. 

4.2.4.1 Conductivity  

Experiments were undertaken in order to clarify the relation between structures of CoMo 

oxide, nitride and carbides in relation to catalytic activity and to determine whether the 

activity for ammonia production required the presence of lattice nitrogen within the 

material. Figure 4.2-10 presents a plot of conductivity versus time for dehydrated CoMoO4 

at 500 °C under 75 vol. % H2 in N2 run for 48 hours. The reaction profile in this figure shows 

that the decrease was observed after an induction period approximately 100 minutes, 

during which the material demonstrated very poor activity, and beyond which the material 

exhibited steady state performance during 48 h of reaction with a rate of 219 ±73 µmolNH3 

h-1g-1 and with no sign of deactivation.  

 

Figure 4.2-10: Extended reaction conductivity profile for CoMoO4 under 75 vol. % H2 in N2 gas at 500 °C for 
48 h. The inset corresponds to the expanded induction period. 
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The vent gas was bubbled through a solution of 0.00108 M H2SO4 and this solution had to 

be changed many times since it had been completely consumed by the ammonia produced 

from the reaction and the conductivity measurements continued. The standard error 

calculation applied is provided in the Appendix 4.  

4.2.4.2 PXRD analysis  

To investigate any changes in phase, PXRD was performed and the results are presented in 

Figure 4.2-11 for pre- and post-reaction materials denoted as A and B respectively. The 

PXRD patterns shown in Figure 4.2-11B; present a poorly crystalline phase of post-reaction 

material. The diffraction peaks at 2θ = 36.8, 42.9 and 62.1° could be related to CoO (JCPS 

card No. 01-072-1474), 2θ = 18.3, 36.8 and 56.6° could be related to MoO2 (JCPS card No. 

01-078-1072) and 2θ = 35.3, 42.9° could be related to Co3Mo3N (JCPS card No. 01-089-

7953). Based on CHN analysis, the nitrogen content of the post-reaction sample was found 

to be 1.0 wt. % with 0.4 wt. % hydrogen content. This result potentially indicated that the 

substitution of lattice oxygen by nitrogen is initiated during the induction time, although 

further investigation to eliminate alternative possibilities is required.  

 

 

Figure 4.2-11: PXRD patterns of pre- and post-reaction dehydrated CoMoO4 for A and B respectively. 
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4.2.4.3 SEM analyses  

Figure 4.2-12 presents typical SEM images at 5000 and 6000 magnification of the post-

reaction dehydrated CoMoO4. It can be seen that the post-reaction sample consists of 

aggregates of needles which retain the precursor shape and size. 

 

Figure 4.2-12: Typical SEM images of the post-reaction dehydrated CoMoO4. 

 

4.2.5 Cobalt molybdenum nitride (η-6 Co3Mo3N) 

Co3Mo3N has been extensively investigated in terms of lattice nitrogen reactivity and high 

ammonia synthesis activity. Most of these studies were carried out with experiments at 

400 °C and 0.1 MPa, closely following conditions employed by Aika and Kojima.108 The 

higher ammonia synthesis rates (µmolNH3 g-1h-1) reported in the literature are 986 for 

Co3Mo3N-Cs2, 869 for Co3Mo3N-K5, 652 for Co3Mo3N, 492 for CoR4,109 330 for Fe-K2O-

Al2O3, 275 for Ni-Mo-N, and 143 for Fe-Mo-N.58, 108 The ammonia synthesis rates for all 

catalysts must be compared to the equilibrium restriction, where if the thermodynamic 

equilibrium was achieved under the same reaction conditions (400 °C, 0.1 MPa), it would 

correspond to a 0.4 % product yield and a limiting mass normalised rate of 2140 µmolNH3 

g-1h-1 as tested within this thesis.100 
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4.2.5.1 Conductivity  

The conductivity as function of time plots for the reaction of Co3Mo3N under 75 vol. % H2 

in N2 at 500 °C and ambient pressure for 48 hours is shown in Figure 4.2-13. The reaction 

profile shows an immediate linear decrease in conductivity over time and there was not a 

sign of an induction period as was observed in the case of dehydrated CoMoO4. Although 

this material has oxide passivating layer on the surface from the passivation step, it is active 

from the beginning of the reaction. It is also clear that this material already contains 

nitrogen. The rate observed was 489 ±17 µmol NH3 g-1h-1. 

 

Figure 4.2-13: Extended reaction conductivity profile for Co3Mo3N under 75 vol. % H2 in N2 gas at 500 °C 
for 48 h. The inset corresponds to the expanded initial portion. 

 

4.2.5.2 PXRD analysis 

The post-reaction PXRD patterns of the pre- and post-reaction Co3Mo3N samples for A and 

B respectively studied under the conditions described in Chapter 2 are presented in Figure 

4.2-14. The diffraction patterns of the pre-reaction Co3Mo3N sample in Figure 4.2-14A show 

the same characteristic reflections. Also, the post-reaction microanalysis shows there is no 

change in the nitrogen content upon the reaction time which is 2.8 wt. %.  
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Figure 4.2-14: PXRD patterns for the pre and post-reaction Co3Mo3N for A and B respectively. 

 

4.2.5.3 SEM analyses 

Figure 4.2-15 presents typical SEM images at 5000 and 6000 magnification of the post-

reaction Co3Mo3N. It can be seen that the post-reaction sample consists of aggregates of 

needles and it still retains the precursor crystallite shape and size. 

 

Figure 4.2-15: Typical images of the post-reaction Co3Mo3N. 
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4.2.5.4 Effect of reaction temperature 

The ammonia synthesis reaction is exothermic and temperature dependent. Consequently, 

it is important to assess the activity of Co3Mo3N at 400 °C for consistency with the literature 

and 500 °C to compare to cobalt molybdenum oxide and carbide as detailed below. Using 

Co3Mo3N and a 75 vol. % H2 in N2 gas feed different temperatures were examined and the 

results are presented in Figure 4.2-16. Comparison between 400 and 500 °C, shows that 

there is an increase in the ammonia synthesis rate with increasing reaction temperature. 

At 500 °C there was a sharp decay in conductivity, which was observed within 4 hours 

without any deactivation.  

 

Figure 4.2-16: Comparison reaction profiles for Co3Mo3N under 75 vol. % H2 in N2 at 400 and 500 °C. 
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4.2.6 Cobalt molybdenum carbide (η-6 Co3Mo3C) 

Co3Mo3C was investigated for ammonia synthesis at 500 °C under 75 vol. % H2 in N2 for 48 

hours and the post-reaction material was characterized using PND, PXRD, SEM and CHN 

analysis as discussed in more detail below. 

4.2.6.1 Conductivity 

The conductivity versus time on stream plots for the reaction of Co3Mo3C under 75 vol. % 

H2 in N2 at 500 °C and ambient pressure for 48 hours is shown in Figure 4.2-17. It is evident 

that 500 °C gives an induction period of approximately 40 minutes prior to the catalyst 

developing ammonia synthesis activity. This is in contrast to Co3Mo3N which is an active 

material characterised by an immediate linear decrease in conductivity over time. In the 

case of Co3Mo3C, it is of interest to note that beyond the induction period, during which 

the material is apparently inactive, the reaction has reached steady state performance 

close to that of the Co3Mo3N ammonia synthesis rate. This material also exhibits behaviour 

analogous to that of the CoMoO4 under the same conditions. The ammonia synthesis rate 

of Co3Mo3C was 461 ± 17 µmolHN3 g-1h-1. 

 

Figure 4.2-17: Extended reaction conductivity profile for Co3Mo3C under 75 vol. % H2 in N2 at 500 °C for 48 
h. The insert corresponds to the expanded induction period. 
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4.2.6.2 PXRD analysis  

The pre- and post-reaction X-ray diffraction patterns of the Co3Mo3C samples are presented 

in Figure 4.2-18A and B respectively. From the Figure 4.2-18 all XRD reflections of Co3Mo3C 

are shifted to slightly higher 2θ angles upon reaction.  This shift confirms the conversion of 

Co3Mo3C to a material of composition close to Co3Mo3CxN1-x  which was previously reported 

by Xiao el al.110 The post-reaction carbon and nitrogen contents of the Co3Mo3C material 

can be used to precisely determine if this material is in fact a carbonitride, which has been 

previously reported by Bussell el al.39 as intermediate during analogous process to the 

carburisation of Co3Mo3N using 20 vol. % CH4 in H2. The chemical composition of post-

reaction material is Co3Mo3C0.13N0.87 based on carbon (0.3 wt. %) and nitrogen (2.5 wt. %) 

elemental analysis results. The post-reaction carbon/ nitrogen content of the 

Co3Mo3C0.13N0.87 carbonitride material confirms the incomplete removal of carbon from the 

ternary carbide to the equivalent nitride.      

 

Figure 4.2-18: PRDX patterns for pre- and post- reaction Co3Mo3C for A and B respectively. 
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4.2.6.3 SEM and TEM analyses 

SEM analyses were performed to further study the microstructures of the materials. The 

typical SEM images at 4000 and 6000 magnification of the post-reaction Co3Mo3C material 

are depicted in Figure 4.2-19. it can be seen that post-reaction Co3Mo3C consists of 

aggregates of needles and that it still retains the precursor crystallite shape and size.  

 

Figure 4.2-19: SEM images of the post-reaction of Co3Mo3C reacted with 75 vol. % H2 in N2 under 500 °C 
and 48 h on stream. 

 

As explained in the introduction, it is still uncertain whether the production of ammonia is 

due to a Mars van Krevelen mechanism in which lattice nitrogen may be active or whether 

performance can attributed to the combination of the Co and Mo components having a 

close to optimal binding energy for N2. It is of interest therefore to prove to the extent in 

which the carbide materials exhibit related behaviour to their nitride counterparts. To this 

end, the reaction of lattice N in Co3Mo3N with hydrogen has been previously investigated, 

where it was found that some NH3 could be produced in the absence of gas-phase N2.59, 70 

Recent computational modelling has indicated the occurrence of significant concentrations 

of surface N vacancies at the (111) surface of Co3Mo3N under conditions of relevance to 

the ammonia synthesis reaction.106 The current aim was to determine whether it is possible 

to use HRTEM to investigate and compare the (111) surface plane which expresses both Co 

and Mo in Co3Mo3N and equivalent materials. 
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TEM was performed at the University of St. Andrews by Prof. Wuzong Zhou and Dr. Heather 

Greer, to estimate the particle size and d-spacing values of the pre- and post-reaction 

Co3Mo3C material, HRTEM was carried out. Figure 4.2-20 shows the HRTEM micrographs 

of several nanoparticles on the surface of pre- and post-reaction Co3Mo3C. The highlighted 

neighbouring interlayer distance in Figure 4.2-20C for pre-reaction Co3Mo3C and Figure 4.2-

20 D for post-reaction Co3Mo3C is less than 0.5 nm. Compared to previous studies for 

Co3Mo3N111 and for Co3Mo3C110, d-spacing values of 0.64, 0.39 nm and 0.25 nm respectively 

corresponding to the (111), (220) and (422) crystallographic planes are presented in Figure 

4.2-20 A and B. The materials present passivation layers which make definitive 

identification of surface termination planes problematic, and so this approach could not be 

taken further.  

 

Figure 4.2-20: HRTEM micrograph (A) of as-prepared Co3Mo3N,111 (B) of as-prepared Co3Mo3C,110 (C) of 
pre-reaction Co3Mo3C and (D) of post-reaction of Co3Mo3C reacted with 75 vol. % H2 in N2 at 500 °C for 48 
h. 
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4.2.6.4 Investigation of Co3Mo3C materials for ammonia synthesis at 
different temperatures and times on stream 

As mentioned before the ammonia synthesis reaction is exothermic and temperature 

dependent. Therefore, it is crucial to consider the activity of Co3Mo3C under different 

temperature regimes. Using Co3Mo3C and a 75 vol. % H2 in N2 gas feed different 

temperatures were studied and the results are presented in Figure 4.2-21. This material is 

essentially inactive for ammonia synthesis at 400 °C over 4 hours while at 500 °C within 2 

hours the material is significantly more active (403 µmolNH3 g-1h-1). At 600 °C within 1 hour 

a less sharp decay in conductivity was observed (336 µmolNH3 g-1h-1). At 700 °C within 1 

hour a much lower decay in conductivity was observed (170 µmolNH3 g-1h-1). The probable 

explanation for the profile from 500 °C onwards is related the fact that the reaction is 

progressively becoming more thermodynamically limited as temperature is increased.  

Consequently, 500 °C has been found to be an optimal reaction temperature when applying 

Co3Mo3C to ammonia synthesis. An understanding of the structure before and after 

activation may help elucidate the active material.  In relation to this, as shown in Figure 

4.2-22, when a 2 hour pre-treatment at 700 °C under 75 vol. % H2 in N2 is undertaken after 

which the Co3Mo3C material can be anticipated to be nitrided, activity at 400 °C (69 

µmolNH3 g-1h-1) is apparent and the rate of reaction can be seen to be increased by further 

increase in reaction temperature to 500 °C (449 µmolNH3 g-1h-1). 

 

Figure 4.2-21: Reaction profile for Co3Mo3C with 75 vol. % H2 in N2 under different temperatures and time 
on stream (400 °C, 4h), (500 °C, 2h), (600 °C, 1h), (700 °C, 1h). 
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Figure 4.2-22: Extended reaction profile for Co3Mo3C with 75 vol. % H2 in N2 under different temperatures 
and time on stream (400 °C, 8h), (500 °C, 4h) after pre-treatment for 2 hours at 700 °C. 

 

4.2.6.5 Investigation of the induction period of the Co3Mo3C material 

An induction time, during which the activity “switched-on” was observed in the cases of 

CoMoO4 and Co3Mo3C for ammonia synthesis. This implies that the materials might 

undergo structural/surface changes that lead to the formation of active phases. 

Consequently, this aspect was further investigated for Co3Mo3C using PND, PXRD and CHN 

analysis. 

a) PND analysis 

As explained in Chapter 3, Figure 3.2-80 (on page 104) presents selected in-situ neutron 

diffraction patterns collected at different temperatures and at 500 °C at different reaction 

times for the Co3Mo3C material. All the patterns were analysed by the Rietveld method 

using the η-6 Co3Mo3C structure as the starting model. The evolution of the lattice 

parameter during the different stages of reaction is presented in Figure 3.2-82 which can 

be found on page 106. 

When increasing the temperature to 500 °C, a linear change of lattice parameter as a 

function of temperature was generally observed. This can be attributed to thermal 

expansion of the lattice. However, a change in the slope was detected at temperatures 
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ranging between 400 and 500 °C, which could relate to structural transformation. At 500 

°C no variation of the lattice parameters was observed within the first 10 minutes of 

reaction. Thereafter, a gradual contraction of the lattice with reaction time was detected. 

In addition to lattice parameter determination, the evolution of the C/N occupancy at the 

16c Wyckoff lattice site as a function of reaction time at 500 °C is presented Figure 3.2-83 

which can be found on page 106. Gradual substitution of carbon with nitrogen under 

reaction conditions is evident.  

Following 2 h of reaction at 500 °C, the sample temperature was decreased to room 

temperature under the same reaction atmosphere and a long neutron diffraction run was 

then performed. Initially, an attempt was made to refine the structure to the Co3Mo3C 

model for this sample; however, the atomic displacement parameters were unrealistic. 

Instead a very good agreement was obtained when the structure was refined against the 

Co3Mo3N reference (Figure 3.2-84 and Table 3.2-25, page 107). The lattice constants 

derived from Rietveld refinement of the neutron diffraction data was found to be a = 

11.0370(3) Å, falling between the lattice parameter observed for Co3Mo3C (a = 11.0591(4)) 

and Co3Mo3N (a = 11.0260(9)) as presented in Table 3.2-13 and 3.2-3 respectively. An 

estimated chemical composition of Co3Mo3C0.38N0.62 was calculated applying Vegard’s law. 

This was further confirmed by elemental analysis. Furthermore, refining the C/N mixing in 

the 16c Wyckoff lattice leads to a ratio of 0.33(5)/0.66(4), again similar to the composition 

estimated using Vegard's Law, revealing a significant carbon substitution by nitrogen during 

ammonia synthesis (Table 3.2-25, page 107).  

b) PXRD analysis 

Ex-situ experiments were performed at 500 °C and different times on stream to investigate 

the induction period and possible intermediate phases formed when the ternary carbide 

material undergoes transformation to the equivalent nitride material during the ammonia 

synthesis reaction. The pre- and post-reaction XRD patterns of Co3Mo3C samples after 

reaction with 75 vol. % H2 in N2 at 500 °C stopped at 0, 1, 2, 3 and 4 hours on stream are 

presented in Figure 4.2-27 A Co3Mo3C as prepared material, B (500, 0), C (500, 1h), D (500, 

2h), E (500, 3h), F (500, 4h) respectively. All the diffraction patterns showed features 

attributable to the Co3Mo3C structure without any extra-phases being present with a 

gradual shift to higher 2θ. The selected post-reaction PXRD analysis conducted after 3h of 
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reaction (Figure 3.2-77E, page 89), this shift from 42.4 to 42.5° confirms the conversion of 

Co3Mo3C to a material of composition close to Co3Mo3C0.56N0.47 (42.5°). Moreover, to 

ascertain the evolution of the chemical composition of the Co3Mo3C during ammonia 

synthesis reaction at 500 °C, elemental analysis of post-reaction material was conducted 

after different times on stream (Figure 4.2-23). The gradual substitution of carbon with 

nitrogen was observed and close to complete carbon substitution occurred after 48h of 

reaction (0.3 wt. % C and 2.5 wt. % N) as prior mentioned in section 4.2.7.2. This result 

confirmed that the material was converted to a carbonitride as intermediate single phase 

Co3Mo3CxN1-x. 

 

Figure 4.2-23: Evolution of the Co3Mo3C chemical composition after different reaction time with 60 ml 
min−1 of 75 vol. % H2 in N2 (BOC, 99.98%) at 500 °C. (▲) fractional carbon content and (●) fractional 
nitrogen content as determined by elemental analysis. The first data point corresponds to a material 
which was immediately cooled under the reaction flow upon attaining 500 °C. 

c) SEM analyses 

SEM images of pre- and post-reaction Co3Mo3C reacted with 75 vol. % H2 in N2 under 

500 °C stopped at 0, 1, 2, 3 and 4 h on stream are presented (labelled as A, B, C, D, E 

and F respectively). Post-reaction SEM analysis demonstrated that the morphology was 

unaffected by reaction (Figure 4.2-24). All samples are pseudomorphic with the 

precursor. It can be seen that the morphologies of all samples appears to consist of 

aggregates and it still retains its precursor shape and size of the crystallites. 
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Figure 4.2-24: SEM images of pre- and post-reaction Co3Mo3C reacted with 75 vol. % H2 in N2 under 500 °C 
stopped at 0, 1, 2, 3 and 4 h on stream (labelled as A, B, C, D, E and F respectively). 

4.2.7 Cobalt molybdenum carbide (η-12 Co6Mo6C) 

Co6Mo6C was investigated for ammonia synthesis at 500 °C under 75 vol. % H2 in N2 for 48 

hours and the post-reaction material was characterized using PXRD, SEM and CHN analysis 

as discussed in more detail below. The material was inactive at 400 °C. 

(A) (B) 

(C) (D) 

(E) (F) 
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4.2.7.1 Conductivity  

The conductivity versus time on stream plots for the reaction of Co6Mo6C under 75 vol. % 

H2 in N2 at 500 °C and ambient pressure for 48 hours is shown in Figure 4.2-25. It is evident 

that 500 °C gives an inactive material for ammonia synthesis since the overall change in 

conductivity is minimal and can be explained by thermal fluctuations in the laboratory. 

 

Figure 4.2-25: Reaction conductivity profile for Co6Mo6C under 75 vol. % H2 in N2 at 500 °C for 48 h. 

4.2.7.2 PXRD analysis 

 

Figure 4.2-26: PRDX patters for the pre and post-reaction Co6Mo6C for A and B respectively. 
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The pre- and post-reaction X-ray diffraction patterns of the Co6Mo6C samples are presented 

in Figure 4.2-26 A and B respectively. All diffraction patterns of the pre-reaction Co6Mo6C 

sample in Figure A show the same characteristic reflections in B. Furthermore, the post-

reaction microanalysis shows there is no change in the carbon content upon the reaction 

time being 1.3 wt. %. 

In contrast to the Co3Mo3C, elemental analysis did not reveal any nitrogen insertion in the 

structure of Co6Mo6C after the ammonia synthesis reaction test. To probe the possibility 

that the low surface area of Co6Mo6C (ca. 3 m2 g-1) was responsible for the limited 

incorporation of lattice N, the material was kept under reaction conditions for 48h. 

However, the material continued to be inactive with no nitrogen incorporation was 

observed and the resultant phase observed by PXRD corresponded to that expected for 

Co6Mo6C. The stability of the Co6Mo6C phase during ammonia synthesis reaction might 

explain the inactivity of this material for ammonia generation, and the development of 

activity might be associated with the formation of an active nitride or carbonitride phase. 

4.2.7.3 SEM analyses 

Figure 4.2-27 shows representative SEM micrographs for the post-reaction Co6Mo6C 

material. The SEM images for post-reaction Co6Mo6C sample show a broadly similar 

morphology to that of the pre-reaction Co6Mo6C. It can be seen that the morphology of the 

post-reaction Co6Mo6C appears to consist of aggregates of needles and it still retains its 

precursor morphology. 

 

Figure 4.2-27: Typical SEM images of the post-reaction of Co6Mo6C reacted with 75 vol. % H2 in N2 under 
500 °C and 48 h on stream. 
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 Comparison between Co3Mo3N, Co3Mo3C, Co6Mo6C, CoMoO4 for ammonia 
synthesis 
 
The role of the lattice nitrogen in the catalytic activity was studied by comparing the results 

of dehydrated CoMoO4, Co3Mo3C and Co6Mo6C for ammonia synthesis to the well-

established activity of the Co3Mo3N system. Figure 4.2-28 shows the evolution of ammonia 

at 500 °C as a function of time under an atmosphere of 75 vol. % H2 in N2 (BOC, 99.98 %) at 

a total gas feed of 60 ml min-1. As expected, the Co3Mo3N system was found to be highly 

active for ammonia synthesis at ambient pressure exhibiting a rate of 489 ±17 μmolNH3g-

1h-1 which can be compared to ca. 690 μmolNH3g−1h−1 which would correspond to the 

thermodynamically limited yield of 0.129 %. Under the same reaction conditions, the 

Co3Mo3C system displayed a comparable activity to Co3Mo3N (461 ±17 μmolNH3g-1h-1). 

However, this was only exhibited after an induction time of ca. 40 minutes, during which 

the material demonstrated very poor activity, and beyond which the material exhibited 

steady state performance during 48 h of reaction with no sign of deactivation. It’s 

noteworthy that Co3Mo3C was found to be inactive at 400 °C, a temperature at which 

Co3Mo3N is known to be highly active.108 Similar general behaviour for Co3Mo3C was found 

in dehydrated CoMoO4 although with a longer induction period time and lower ammonia 

synthesis rate. In the case of Co6Mo6C, the material was found to be inactive at 500 °C even 

upon extended times on stream.  

 

Figure 4.2-28: The rates of ammonia synthesis of CoMoO4, Co3Mo3N, Co3Mo3C, Co6Mo6C at 500 °C for 48 
h. 
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When considered in the context of their related structures, it is interesting to make direct 

comparisons between performance of the nitride and the two carbide materials. According 

to literature, the efficacy of Co3Mo3N for ammonia synthesis has been attributed to the 

combination of the Co and Mo components having a close to optimal binding energy for 

N2.104 In this model, it has been proposed that the active crystallographic face of the 

material is the (111) termination plane which expresses both Co and Mo. It was also 

proposed that the interstitial nitrogen is not active in itself but instead maintains the 

required crystallographic ordering. Alternatively, it has been proposed by others Co3Mo3N 

might operate via Mars-van Krevelen mechanism in which the catalytic lattice nitrogen is 

hydrogenated to yield NH3 and a lattice vacancy. This vacancy is subsequently replenished 

from N2 with further hydrogenation of the resultant lattice N species continuing the 

catalytic cycle. There have been both experimental and modelling based studies which 

support this viewpoint.4, 37, 58-59, 70, 105-107 In the current study it is noted that, unlike 

Co3Mo3N, both carbides are inactive at 400 °C. In fact, Co6Mo6C does not demonstrate any 

detectable activity under any of the conditions tested. Structure-sensitivity, which arises 

from the suggestion of the (111) surface plane being predicted to be the active termination 

plane, has yet to be experimentally demonstrated in the Co3Mo3N system; in the current 

investigation the SEM studies indicate the gross morphology to be similar for all the 

materials tested. On this basis, there is strong evidence that the influence of difference in 

morphology can be discounted as the origin of the observed difference in performance and 

that rather it is the difference in composition between Co3Mo3N and Co3Mo3C that might 

be determining. Indeed, it is the case that the lag period associated with the development 

of activity in the case of the carbide corresponds to the further replacement of lattice C 

with N. This would be consistent with the operation of a Mars-van Krevelen mechanism in 

which the presence of lattice nitrogen has to be present for ammonia synthesis to occur 

once a critical population of lattice N was established. However, a degree of caution is 

necessary in drawing this tentative conclusion since it has yet to be established whether 

there is a complicating role of in-situ removal of the passivation layer76 during reaction 

which could conceivably occur to different extents for the two materials, and also it has yet 

to be definitively established whether the nitridation of the carbide lattice precedes 

ammonia synthesis or indeed results from it. It is, however, noteworthy that upon attaining 

500 °C under the reaction mixture, the lattice partially nitrides (the nitrogen content for a 

sample cooled under the mixture immediately upon attaining 500 °C was ~0.4 wt. %) which 

suggests that a critical degree of N incorporation into the material may be required for the 
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development of activity, since at this stage the material does not apparently produce 

detectable quantities of ammonia. It is also noteworthy that beyond the induction period, 

given the steady state nature of the reaction, the performance of the material does not 

further change with increasing lattice nitrogen content thereby demonstrating that 

Co3Mo3N (as evident after 48 h on stream) and the intermediate carbonitride materials 

exhibit equivalent performance. In the case of Co3Mo3C which develops activity as a 

function of time and Co6Mo6C which does not produce ammonia or nitride even on 

prolonged reaction, the effect of the passivation layer would be expected to be less of a 

consideration due to the close chemical similarity of the materials. On this basis, it seems 

that the subtle difference in crystallography with the former material containing twice the 

carbon content of the latter and in a different crystallographic site (i.e. the 16c Wyckoff site 

as opposed to the 8a site) is determining. In this respect, it is interesting to note the 

comparative enhanced stability of carbides with respect to nitrides, with the latter being in 

general much more reactive to, for example, water as well as oxygen. Previous work 

involving the reaction of Co6Mo6N with nitrogen containing feeds has shown the 

replenishment and relocation of lattice nitrogen resulting in the formation of Co3Mo3N. It 

appears that even with a potentially reactive N2/H2 source under conditions known to 

rapidly replenish the Co6Mo6N system, the corresponding carbide is much less reactive and 

no analogous phase transformation occurs. 

The observations reported in this chapter demonstrate that ammonia synthesis is 

associated with the presence of N in the 16c Wyckoff crystallographic site. Whether the 

origin of the activity is associated directly with the presence of this specific species or 

whether its presence is the result of secondary nitridation originating from the formation 

of ammonia has yet to be definitively established. It is also of interest that intermediate 

carbonitride phases do not exhibit substantially different performance from the Co3Mo3N 

phases which is ultimately produced. This might be indicative of the fact that it is only a 

minority of the 16c lattice N, possibly in the near surface region, which participates in 

reaction. In the case of Co6Mo6C, the C in the 8a site seems much less reactive compared 

to the 16c site. This observation is to a degree consistent with the fact that upon reduction 

Co3Mo3N stops at Co6Mo6N. However, unlike Co6Mo6N,81 Co6Mo6C does not readily 

transform to Co3Mo3N under the reaction conditions employed in this study. 
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4.3 Conclusion 

 
This chapter is the first investigation of ammonia synthesis over γ-Mo2N, β-Mo2C and α-

Mo2C using 75 vol. % H2 in N2 at 500 °C. The order of ammonia synthesis activity was α-

Mo2C (299 ±8 µmolNH3 g-1h-1) > γ-Mo2N (195 ±7 µmolNH3 g-1h-1) > β-Mo2C (123 ±8 µmolNH3 

g-1h-1). This activity was only showed after an induction time of ca. 40 minutes for α-Mo2C 

and 30 minutes for β-Mo2C, however beyond the induction time, the materials 

demonstrated a steady state performance during 4 h of reaction with no sign of 

deactivation. γ-Mo2N and β-Mo2C were stable under reaction conditions whereas α-Mo2C 

was transformed to carbonitride phase. 

Also in this chapter, the effect of composition upon the reactivity of dehydrated CoMoO4, 

Co3Mo3N, Co3Mo3C and Co6Mo6C for ammonia synthesis has been investigated. Despite 

the isostructural nature of Co3Mo3N and Co3Mo3C in particular, a significant difference in 

performance was evident. Co6Mo6C, which has a closely related structure to the Co3Mo3N 

and Co3Mo3C materials, was found to be inactive for ammonia synthesis under the 

conditions tested while an induction period time of 100 minutes for dehydrated CoMoO4 

and 40 minutes for Co3Mo3C were observed prior to the materials developing any activity. 

In the case of Co3Mo3C, in-situ PND and post-reaction analysis revealed the substitution of 

carbon by nitrogen is initiated during the induction time and continues during the reaction 

until complete conversion of the carbide to nitride. These results are consistent with the 

proposal of the origin of the high activity of the Co3Mo3N materials being the reactivity of 

its lattice nitrogen via a Mars-van Krevelen mechanism. 
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 Cracking of methane 

5.1  Introduction 

Environmental challenges rising from the current patterns of energy production and 

consumption have spurred the development of clean energy sources. The actual mode of 

energy production relies heavily on fossil fuels by the burning of natural gas (NG), oil and 

coal for heating, transportation and electricity production, resulting in a significant release 

of greenhouse-gas.112 In this context, hydrogen has been studied extensively as a suitable 

clean energy carrier which can be produced from any primary energy source and used 

efficiently in fuel cells without any harmful emissions. Furthermore, hydrogen can also be 

used for the production of various high value chemicals such as methanol, ethanol and 

other products of industrial interest.113 However, hydrogen is presently produced by steam 

reforming and partial oxidation of methane resulting in the co-formation of CO and CO2. 

However, for PEM fuel cell applications, even very low amounts of carbon monoxide can 

lead to rapid degradation of performance. As a potential alternative to these processes, 

catalytic decomposition of methane (CH4 → C + 2H2) is a direct method of COx-free 

hydrogen production and valuable carbon structures such as nanofibers (CNFs) or 

nanotubes (CNTs) are produced as co-products.114 Consequently, there has recently been 

much effort to develop alternative catalysts for COx-free hydrogen production. 

5.1.1 Hydrogen production  

Hydrogen can be produced by different industrial processes such as steam reforming, 

partial oxidation or dry reforming of natural gas and biomass, and coal gasification. It can 

also be produced by electrolysis of water. Currently, hydrogen is predominantly produced 

from fossil fuels (96%) by conventional processes with 48% of H2 being produced by steam 

reforming of methane, 18% by coal gasification and 30% by partial oxidation in oil refineries 

resulting in substantial greenhouse gas emissions.115 Therefore, the direct non-oxidative 

methane conversion method is an elegant route for CO-free H2 generation that can meet 

the requirement of strict greenhouse gas emission legislation. In this approach, H2 

production is accompanied with carbon deposition that can be subsequently valorised for 

higher hydrocarbon production for example.115-116 In this chapter, the use of non-oxidic 

based catalysts such as cobalt molybdenum nitrides and carbides are investigated as 

alternative catalysts for direct non-oxidative thermo-catalytic methane cracking. 
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Information regarding the textural and structural as well as the catalytic properties of these 

materials is presented. 

5.1.1.1 Hydrogen formation from methane 

Methane is the simplest and most stable hydrocarbon molecule. It has the highest H/C 

ratio. Its conversion into higher value chemicals has been extensively studied both in gas-

phase homogeneous routes and routes involving heterogeneous catalysis.117 

 

Figure 5.1-1: Schematic representation of various methods of activating methane.118 

Over the past several decades, a significant research effort has been directed towards 

methane activation. The conversion of methane into hydrocarbons can be accomplished 

through either direct or indirect routes as depicted in Figure 5.1-1. The indirect methane 

conversion method involves the generation of hydrocarbons via intermediates formed 

from methane reacting with carbon dioxide, steam and oxygen, whilst the direct methane 

conversion method involves the generation of hydrocarbons from the coupling of methane 

under either oxidative or non-oxidative conditions (including high-temperature coupling 

and low-temperature two-step homologation) or partial oxidation to yield methanol 

and/or formaldehyde.118-119 

The most common process for methane activation for hydrogen generation is steam 

reforming (SMR). In this process, methane reacts with steam in the presence of a catalyst 

to produce hydrogen and carbon monoxide (Eq. 1).119 
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CH4 + H2O → CO + 3H2             (∆HӨ
298K = 206 kJ mol-1)                          Equation 5-1 

Dry reforming (DRM) of methane to produce syngas using carbon dioxide is also an 

important reaction. This reaction (Eq. 2) is extremely endothermic; and hence it requires 

high temperature to achieve suitable equilibrium transformations to syngas.120-121 

CH4 + CO2 → 2CO + 2H2            (∆HӨ
298K = 247 kJ mol-1)                          Equation 5-2 

If only hydrogen is required, CO production from these processes is undesirable and has to 

be converted into CO2 by the water gas shift reaction in subsequent processing causing 

additional costs in purification and separation systems and contributing to the overall cost 

of production, although this does provide a means of producing additional H2 from H2O 

indirectly. Furthermore, these processes require a large energy input. By contrast, partial 

oxidation (POM)(Eq. 3) which is exothermic is perhaps a more preferable route for 

hydrogen generation.122 With this approach, synthesis gas produced can be converted into 

hydrocarbons using a low-temperature exothermal process. 

CH4 + ½ O2 → CO+ 2H2               (∆HӨ
298K = -35 kJ mol-1)                            Equation 5-3 

Autothermal reforming (ATR) is an alternative route for hydrogen generation based on the 

combination of both steam reforming and partial oxidation (Eq. 4).123 It has a major 

advantage over classical reforming routes in terms of energy requirements due to the 

combination of endothermic steam reforming and exothermic methane oxidation. This 

reaction occurs in two simultaneous stages by feeding the fuel together with an air or 

oxygen feed and steam over the catalyst bed to produce syngas. However, autothermal 

reforming is an environmentally unattractive option for hydrogen production because it’s 

accompanied with feed contamination such as CO2 which is potentially harmful to the 

environment.124  

CH4 + x (O2) + (2- 2x) H2O ↔ CO2 + (4- 2x) H2                                              Equation 5-4  

In this context, the non-oxidative, low-temperature homologation of methane has been 

proposed as an alternative to the oxidative coupling of methane (OCM).42 The process has 

been reported by van Santen’s43 and Amariglio’s44 research groups independently as a two-
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step reaction designed to avoid deep oxidation of methane to CO and CO2 (further details 

are presented in section 3.1.5).  

In the approach investigated within the present chapter, the methane is decomposed into 

carbon and hydrogen in the presence of a catalyst and in the absence of oxygen as shown 

in Eq. 5. 

CH4 → C(s) + 2H2                          (∆HӨ
298K = 75.6 kJ mol-1)                                 Equation 5-5 

Non-catalytic methane cracking at high temperature is not economical for commercial 

production of hydrogen. Thus, the use of a catalyst is essential to decrease the high 

temperature required for methane thermal cracking as illustrated in Figure 5.1-2. The 

catalytic methane cracking process115-116, 125-126 is a moderately endothermic process; the 

thermal energy demand per mole of hydrogen formed is only 37.8 kJ per mole of H2 

compared to 63 kJ per mole of H2 for steam methane reforming.127 This process does not 

produce CO or CO2 in large amounts and as a consequence the overall process is simplified, 

as there is no requirement for any further purification as it is the case in the conventional 

hydrogen production methods (e.g., SMR, coal gasification and POM). 

 

Figure 5.1-2: Graphical representation of the bulk of literature data on catalysts, preferred temperature 
range and carbon products related to catalytic methane decomposition reaction. Catalysts: 1—Ni-based, 
2—Fe-based, 3—carbon-based, 4—summary of data related to Co, Ni, Fe, Pd, Pt, Cr, Ru, Mo, W catalysts, 
5—non-catalytic decomposition. Carbon products: CF—carbon filaments, TC—turbostratic carbon, GC—
graphitic carbon, AmC—amorphous carbon.127 
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Furthermore, it is possible to decrease the cost of hydrogen production in such a route by 

valorising the carbon co-produced during the process. Depending upon the reaction 

conditions and the catalyst used, carbon nanotubes (CNTs) and carbon nanofibers (CNFs) 

with suitable chemical and physical properties such as high mechanical strength, high 

surface area, and high electrical conductivity can be formed and can be of potential interest 

in a number of technological applications such as as adsorbents, catalysts and catalyst 

supports.127 Several factors affecting the efficiency of the process such as the activity of 

catalysts, support type, promoters, synthesis methods, carbon products, reaction 

conditions (temperature, flow rate of methane), deactivation and regeneration of catalysts 

have been discussed in the literature.  

Catalysts for catalytic methane cracking 

Different transition metals such as cobalt, iron and nickel have been reported to be active 

for the catalytic cracking of methane. It has been demonstrated that the methane 

decomposition activity for transition metals follows the order: Co, Ru, Ni, Rh> Pt, Re, Ir> Pd, 

Cu, W, Fe, Mo.112 Amongst the studied systems, Ni is the most intensively investigated 

catalyst due to his high activity and carbon yield. Co-based catalysts have been reported to 

exhibit lower catalytic activity compared to nickel based catalysts128 and present higher 

price and higher toxicity.129 Several supports have been used to enhance the activity of 

nickel including TiO2, SiO2, MgO, ZrO2 and Al2O3. SiO2 gives the best carbon yield.130 Koerts 

et al. reported that Ni and Fe presented higher activity when supported on Al2O3.43 In 

recent work by Hargreaves et al., the activity of two waste iron-containing materials was 

reported, which were found to generate H2, COx and carbon (both filaments and 

encapsulating graphite) during reaction at 800 °C using a 3:1 CH4:N2 feed.131 Methane 

decomposition into H2 and C was investigated over Fe2O3/Al2O3 and Fe2O3/SiO2 at 800 °C 

by Takenaka and co-workers.132  

The design of novel highly efficient materials for catalytic reactions has been a focus of 

research in recent years. Although most of the materials studied in heterogeneous catalysis 

are metal and metal oxide based, attention has been directed recently towards the 

development of entirely novel catalyst families that could display higher catalytic activities 

and selectivities and better thermal stabilities (e.g. carbides, nitrides etc.).58, 76, 133 Amongst 

these materials, carbides have attracted much attention due to their behaviour being 
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related to that of precious metals. The presence of interstitial carbon species has been 

argued to modify the catalytic properties of the parent metal, hence resulting in the 

modified electronic properties of carbides.134 

The exceptional catalytic properties of carbides has motivated high interest for these 

materials as replacements for precious metal catalysts in a variety of reactions. Carbides 

have been proved to be viable catalysts for applications including the Fischer-Tropsch 

process,135-137 hydrogenation reactions,14, 138-139 dehydroaromatisation,140 

oxygen/hydrogen evolution reactions141 and ammonia decomposition.12, 142 For instance, 

the catalytic activity of cobalt molybdenum carbide has been studied for ammonia 

synthesis at ambient pressure as outlined in Chapter 4. Although, Co3Mo3C was found to 

be active for ammonia synthesis, the material was only active at higher temperature (500 

°C) compared to its nitride counterpart which was active at 400 °C. Ammonia synthesis 

studies coupled with in-situ neutron diffraction studies indicated an important role of the 

chemical composition in the carbide’s activity for ammonia synthesis.143 The activity of 

vanadium nitride supported an silicon nitride for methane cracking was recently reported 

by Alshibane et al.144 Izhar et al. investigated the methane decomposition over cobalt 

molybdenum catalysts (CoMo100-x; x = 0, 25, 50, and 75) carburized at temperatures of 

700- 973 K; they reported that the Co50Mo50C-800 catalyst results in a higher conversion 

of methane and hydrogen production rate compared to the Mo100C, Co25Mo75C, 

Co75Mo25C and β-Mo2C.145 

Deactivation in catalytic methane cracking  

Catalyst deactivation involves a loss of catalyst activity over time and is a continuing 

concern for industrial catalytic processes due to the costs associated with catalyst 

replacement and process shutdown. The causes of catalyst deactivation are (i) chemical 

(poisoning, vapour compound formation by transport, vapour-solid and/or solid-solid 

reaction), (ii) mechanical (fouling) and (iii) thermal (sintering and/or evaporation of active 

phase).146 Catalytic deactivation during methane cracking has been a subject of 

investigation over the years and the results of these studies have been summarised in a 

number of publications and reviews.147-152 During catalytic methane cracking, coking and 

sintering are the predominant deactivation mechanisms reported. 
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Coking is defined as the physical deposition of carbonaceous species from the reacting 

species on the surface of the catalyst, resulting in loss of catalytic activity as an outcome of 

blocking of pores and/ or catalytic sites. In the case of large amounts of carbon deposit, 

coking may cause the disintegration of catalyst particles and reactor plugging. The 

formation of coke during hydrocarbon processing is dependent upon the nature of the 

reaction, the catalyst and the reaction conditions.116 The deactivation process resulting 

from carbon deposition can occur via different mechanisms as depicted in Figure 5.1-3. The 

carbon can adsorb strongly on the active phase surrounding and blocking access to the 

active phase surface; encapsulate the active metal particle; plug micro- and mesopores, 

thereby denying access to the active phase inside the pores; accumulate as strong carbon 

filaments leading to catalyst pellet disintegration and finally in extreme cases, physically 

blocking the reactor.146, 153  

 

 

Figure 5.1-3: Theoretical model of fouling, crystallite encapsulation and pore plugging of a supported 
metal catalyst due to carbon deposition.154 

 

Sintering processes usually occur at high reaction temperatures (>500 °C). Sintering results 

in the loss of catalytic surface area caused by crystallite growth of the catalytic phase or 

loss of support area caused by pore collapse. Two basic mechanisms of metal crystallite 

growth have been observed: (A) crystallite migration and (B) atomic migration. The 
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processes of crystallite and atomic migration are presented in Figure 5.1-4. Crystallite 

migration includes the migration of whole crystallites over the support surface followed by 

collision and coalescence while atomic migration occurs via the detachment of metal atoms 

from crystallites and migration of these atoms over the support surface and eventually, 

capture by larger crystallites.  

 

 

Figure 5.1-4: Two theoretical models for crystallite growth due to sintering by (A) atomic migration or (B) 
crystallite migration.154 

 

Catalyst regeneration 

Due to the nature of the catalytic methane decomposition reaction, the deactivation of the 

catalyst over time is inevitable. Thus, a main challenge for researchers is the regeneration 

of the deactivated catalyst. In the literature, two different approaches are frequently 

suggested: air and steam regeneration. In the steam regeneration method, the deposited 

carbon reacts with the steam generating H2, CO2 and CO, whereas in air regeneration, the 

deposited carbon is burnt in oxygen generating carbon oxides depending the amount of 

excess air used.112, 155 The choice of the regeneration method depends on three significant 

factors; the effect on catalyst performance, the energy needs for the process and the 

catalyst regeneration time.116 
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5.1.2 Carbon production  

Carbon products via catalytic decomposition of methane should be considered as high 

value products due to their chemical and physical properties. Their unique properties can 

be of economic value for further applications resulting in more positive outcomes for COx-

free hydrogen production via methane cracking. However, in many cases the carbon 

products are burned off for energy generation.156 

There are three types of carbon product generated via decomposition of methane: 

amorphous, filamentous, and graphitic carbon. Amorphous carbon is produced during 

thermal decomposition of hydrocarbons at very high temperature. Amorphous carbon is a 

highly disordered network of carbon atoms, mostly in the form of rings as shown in Figure 

5.1-5A, while graphite has a layered hexagonal planar form stacked in an orderly fashion 

with weak van der Waals interlayer bonds as shown in Figure 5.1-5B; and filamentous 

carbon consists of carbon nanotubes and carbon nanofibers which will be discussed in 

more detail below. 

 

   

Figure 5.1-5: Schematic representation of an amorphous carbon (A)157 and a graphitic carbon (B)158 
structures. 

 

 

(A) (B) 
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5.1.2.1 Carbon nanotubes (CNTs) 

In 1991, carbon nanotubes (CNTs) were reported by Iijima.159 Particularly since that time, 

they have been studied extensively in various fields such as physics, chemistry, electrical 

engineering and materials science. They have unique physical and mechanical properties 

which make them important for several applications such as as fillers in polymers, in 

electronics and in catalysis.160 Carbon nanotubes are hexagonal networks of carbon atoms 

rolled up into cylindrical forms. Structurally, CNTs are similar to graphite. There are two 

kinds of carbon nanotubes: single-walled carbon nanotubes (SWCNTs) comprising 

individual graphene cylinders and multi-walled carbon nanotubes (MWCNTs) which consist 

of several graphene cylinders bound together by weak van der Waals forces (Figure 5.1-

6).161-166  

 

  

Figure 5.1-6: Schematic representation of the single-wall and multi-wall carbon nano-tubes.161 

 

Historically, methane catalytic decomposition has been proposed as viable route for the 

preparation of carbon nanotubes. For instance, Li et al. reported the formation of carbon 

nanotubes over the Fe/MgO catalysts.162 Both high quality single-wall and multi-wall 

carbon nanotubes were successful synthesised as illustrated in Figure 5.1-7.  
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Figure 5.1-7:  HRTEM images of the deposited carbon on the Fe/MgO catalysts.162 

Various methods are utilized for CNT synthesis such as arc discharge routes,159 laser 

vaporization,167 pyrolysis,168 plasma-enhanced methods169 or thermal chemical vapour 

deposition (CVD).170-171 The catalytic chemical vapour deposition (CCVD) method is 

considered as a viable method to produce carbon nanotubes on a large scale and at low 

cost compared with other methods which require high energy input. The use of methane 

gas in this process is reported to be the most suitable and the most inexpensive carbon 

source. Two growth models are reported for the growth of CNTs114; the tip growth and base 

growth models. In the tip growth route, the catalytic particles typically remain at the tip of 

CNTs as shown in Figure 5.1-8B, whereas in the base growth mechanism, the catalytic 

particles are located at the base of CNTs as shown in Figure 5.1-8A.   

 

Figure 5.1-8: HRTEM images of the both tip and base growth types of CNTs.172-173 

During tip growth, the methane decomposition reaction occurs on the catalyst metal 

surface. The carbon atoms deposited on the metal surface will dissolve in the metal and 

(A) (B) 

(A) (B) 
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diffuse through the metallic particle. Since the concentration of carbon dissolved in metal 

at the gas side of the metallic particle can exceed the solubility at the support side of the 

metallic particle, a concentration gradient over the metallic particle becomes possible, and 

thus, a driving force for the carbon diffusion through the metal particle is established.174-

175 The diffused carbon precipitates as a graphitic layer at the interface between the 

metallic particle and the support. The formation of graphitic layers detaches the metallic 

particle from the support. Continuous formation of carbon atoms at the support side 

continues the growth of carbon nanotubes with the metal lifted at the tip of the carbon 

nanotubes. If the carbon deposited is not removed from the surface of metallic particles, 

the carbon will encapsulate the metal surface and deactivate the catalyst. Figure 5.1-9A 

shows the schematic image of carbon nanotubes where the metallic particles are found at 

the tips.  

 

Figure 5.1-9: Schematic representation of the tip and base growth mechanisms of CNTs.176 

 

The base growth model177 is similar to the tip growth model except that the metallic 

particle is located on the support (Figure 5.1-9B) and the growth of carbon nanotubes 

occurs upwards from the metallic particle attached on the support. This model assumes a 

strong interaction of the metallic particle with the catalyst support that cannot be easily 

separated by the graphitic layer formed at the metal-support interface.  

 

(A) (B) 
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5.1.2.2 Carbon nanofibers (CNFs) 

Carbon nanofibers (CNFs) were initially synthesized from the interaction of carbon 

containing gases with hot metal surfaces in 1890 by Robertson.178 CNFs have generated 

considerable interest as polymer additives, gas storage materials, biological protection 

materials, catalyst supports for many catalytic reactions, nanoprobes, sensors, in 

microelectronics and for energy storage particularly after the work of lijima in 1991.159 The 

catalytic chemical vapour deposition (CCVD) process is the most widely used route for the 

preparation of CNFs from decomposition of carbonaceous gas (e.g. methane, ethylene, 

carbon monoxide, ethane and propane). Usually, Fe, Co, Ni, Pt and Cu or their alloys at 

temperatures between 500 and 1200 °C are used as catalysts. Three types of CNFs are 

reported in the literature,179 platelet (perpendicular), ribbon (parallel) and herringbone 

structures as shown in Figure 5.1-10. The distinction between CNFs and CNTs is related to 

the occurrence of hollow core and graphite sheet arrangements with a difference in the 

width range of 5 nm to hundreds nanometres, lengths from 5 to 10 microns for CNFs which 

are larger than the 5 to 30 nm widths for CNTs. 

 

Figure 5.1-10: TEM and schematic representations of the (A) platelet, (B) herringbone, and (C) ribbon 
structure of CNFs.179 

 

 

(A) (B) (C) 



Chapter 5  175 

Different parameters affect CNF growth, such as catalyst composition, reducibility of the 

catalyst, nature of the metal/support interaction, carbon source, particle size of the active 

metal, synthesis temperature, and composition of the reaction gas mixture. The 

mechanism of the catalytic growth of CNFs has been investigated and reported in the 

literature.116 It is now generally accepted that the growth of a carbon filament proceeds 

through three stages. The first stage is the decomposition of carbon-containing gases on 

the metal surface at the gas-particle interface. The second stage includes carbon 

dissolution in the particles, and carbon diffusion through the surface and bulk of the metal 

particles. Finally, precipitation of carbon atoms occurs on the crystal facets forming the 

CNFs at low temperature or CNTs at high temperature as shown in Figure 5.1-11A and B 

respectively.   

 

Figure 5.1-11: Schematic representation of the growth mechanisms of CNFs (A) and CNTs (B).116 

 

(A) 

(B) 
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5.1.2.3 Carbon nano-onions (CNOs) 

Carbon onions are nano-spherical carbon particles comprising graphitic shells in the form 

of carbon layers or encapsulated metals. Due to their peculiar properties, CNOs have been 

studied for a range of applications including electromagnetic shielding, solid lubrication, 

gas and energy storage and heterogeneous catalysis.180 After the onion-like structures were 

observed by Iijima in 1980181 using vacuum deposited amorphous carbon films, various 

physical methods to synthesise carbon nano-onions have been developed such as arc-

discharge, high-energy electron irradiation or thermal treatment of carbonaceous 

materials and plasma enhanced chemical vapour deposition. Chemical vapour deposition 

is a widely applied method. Zhao et al.182 used this method in the presence of a Ni/Al 

catalyst containing 80 wt.% nickel at 600 °C to demonstrate two types of nano-onion 

carbon, the metal partical-filled core or the hollow core as shown in Figure 5.1-12A and B 

respectively.  

 

Figure 5.1-12: HRTEM images of the carbon nano-onion formed from methane cracking over Ni/Al 
catalyst, (A) metal particle-filled core and (B) hollow core.182 

The mechanism of growth of carbon nano-onions was investigated by Zhao el al.183 using 

HRTEM and applying the CVD method as presented in Figure 5.1-13. First of all, after the 

catalytic decomposition of methane, the process of the dissolution of the decomposed 

carbon into the catalytic particles occurred (Figure 5.1-13B). Then, the catalytic particles 

became saturated by carbon due to the carbon solubility limit (Figure 5.1-13D) and carbon 

segregation began (Figure 5.1-13E), which resulted in the formation of carbon atom 

clusters on the catalytic particle surfaces (Figure 5.1-13F). When carbon cluster 

encapsulation was complete, the graphitization of the carbon clusters occurred. The 

(A) (B) 
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formation of graphitic layers on the catalytic particle surfaces led to the stress on the 

catalytic particle, which would give a pull stress to the catalytic particle to make it escape 

from encapsulation (Figure 5.1-13G). If the graphitic layer encapsulation was defective and 

the pull stress was enough, the catalyst particle can escape and the graphite layers close 

upon themselves to form hollow carbon onions (Figure 5.1-13I). 

 

Figure 5.1-13: Schematic illustration of the growth processes of the carbon-encapsulated catalytic 
particles and hollow carbon onions by CVD.183 

 

In this work, the catalytic performance of Co3Mo3C and Co6Mo6C for methane cracking is 

studied. The process is reported as an environmentally friendly approach for carbon-free 

hydrogen production with no additional purification required (CH4 → 2H2 + C). The role of 

the interstitial elements (carbon) upon the catalytic behaviour of Co3Mo3C and Co6Mo6C 

has been studied and compared against their nitride counterparts (Co3Mo3N and 

Co6Mo6N). The interest in studying cobalt molybdenum nitride arises from the isostructural 

nature of these materials to their carbide counterparts. Further information of the effect 

of lattice species on the catalytic properties of cobalt molybdenum compounds can thus be 

obtained. 



Chapter 5  178 

5.2 Results and discussion 

In this chapter, the results of the characterisation and catalytic activity of the cobalt 

molybdenum related materials and silicon nitride supported vanadium nitride materials 

are presented for hydrogen production by methane cracking.    

5.2.1 Molybdenum trioxide (MoO3) 

Methane cracking over MoO3 was conducted at 800 °C using a 3:1 CH4:N2 gas mixture with 

a flow rate of 12 ml min-1 for 8 hours.  

5.2.1.1 Catalytic activity 

Figure 5.2-1 displays the hydrogen formation rate as a function of time-on-stream for the 

molybdenum trioxide pre-catalyst. The reaction run was repeated to confirm 

reproducibility. From the data shown, it is apparent that the maximum H2 production rate 

was observed after the 30 minutes on stream.  

0 60 120 180 240 300 360 420 480

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

1
0

E
4

 H
2
 f

o
rm

a
ti

o
n

 r
a

te
/ 
m

o
l 
H

2
 g

-1
 m

in
-1

Time on stream/ min

  

Figure 5.2-1:  Hydrogen formation rate as a function of time on stream for CH4 cracking over the MoO3 
catalyst at 800 °C. The solid line is a guide for the eye.  

However due to the frequency of sampling it was not possible to pinpoint exactly where 

the true maximum may exist. Significant reduction in H2 formation rate is observed 
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between 30 and 60 minutes, followed by a fairly steady state H2 production for the duration 

of the experiment (at around 0.7 × 10-4 molH2 g-1 min-1), although there is a slight decline 

with time on stream. 

5.2.1.2  FTIR  

The COx co-products were identified by FTIR analysis of aliquots of the vent reactor stream 

which were sampled by passage through an in-line gas-phase FTIR cell which could be 

periodically by-passed. FTIR analysis was undertaken using a Jasco 4100 FTIR spectrometer 

operating in the range of 400 to 4400 cm-1 acquiring 64 scans for each spectrum at a 

resolution of 4 cm-1 following background subtraction. In the case of MoO3, off-line FTIR 

spectra, recorded periodically during reaction, showed that the production of CO and CO2 

during methane cracking reaction was clearly observed as shown in Figure 5.2-2.  

 

Figure 5.2-2: FTIR analysis of gas phase products from MoO3 with CH4/N2 (A) background of the gas; (B) 
800 °C; (C) 800 °C, 12 min; (D) 800 °C, 25 min; (E) 800 °C, 36 min; (F) 800 °C, 50 min; (G) 800 °C, 70 min; (H) 
800 °C, 90 min.  

FTIR analysis of gas phase products from reacting MoO3 showed, after 12 minutes of 

reaction, bands at 660 and 2349 cm-1 (Bands 1,3- Figure 5.2-2C) which can be related to 

CO2
184-185 and at ca. 2143 cm-1 which can be related to CO (Band 2- Figure 5.2-2C). The 

production of CO and CO2 as by-products in presence of oxides is documented in the 

literature.186-187 The production of CO and CO2 ceased after 70 minutes of reaction as 

shown in Figure 5.2-2G which presumably corresponds to the point at which MoO3 is 

converted to β-Mo2C (see later). It is worth mentioning that the production of CO, even in 
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small concentration, can be particularly harmful in the case of hydrogen production for 

PEMFC applications and can lead to rapid degradation of their performance and also that 

CO2 could generate CO in the system by reaction with H2 via the reverse water-gas shift 

reaction.  

5.2.1.3 PXRD analysis 

Figure 5.2-3 shows the indexed PXRD patterns of post- reaction MoO3 which had been 

reacted with 3:1 CH4:N2 at 800 °C for 8 h. The PXRD data were collected with a scan step 

size of 0.0167° (2θ) over the range 5 ≤ 2θ/° ≤ 85 for 52 minutes. It is clear from the PXRD 

pattern that β-Mo2C is formed from this reaction, with characteristic reflections occurring 

at 2θ = 34.4, 37.9, 39.4, 52.1, 61.5, 69.5, 72.5, 74.6 and 75.6° which can be assigned to this 

phase. This pattern was matched using the database of the Joint Committee on Powder 

Diffraction Standards (JCPDS) with the match being β-Mo2C with file number 001-1188. The 

reflections in the pattern have been indexed. It is noteworthy that the characteristic 

graphite reflection which would occur at 26° 2θ is absent from the pattern. The carbon 

content in this sample is 9.6 wt. % C which is close to double the calculated stoichiometric 

value of 5.8 wt. % for Mo2C, and which suggests that the material contains excess carbon 

content.    

 

Figure 5.2-3: Indexed PXRD pattern of post-reaction MoO3 material. 
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5.2.1.4 TGA analysis 

To further characterise the nature of the carbon deposit after reaction, thermogravimetric 

analysis of the post-reaction MoO3 was carried out in air in the temperature range between 

100 – 1000 °C to estimate the amount of carbon deposited on it and to determine its 

reactivity profile. Figure 5.2-4 presents the TGA trace and derivative weight change profiles. 

Prior to the mass loss expected from the oxidation of post-reaction carbon deposited, an 

increase in the weight of the material was observed in the temperature window of 400 to 

700 °C which may be related to the re-oxidation process of the post-reaction catalyst. 

Above 700 °C, a significant mass loss was observed and it can be related to carbon oxidation 

under these conditions. The weight loss of material was around 100 wt. %. This indicates 

that not only is the carbon lost, but also that the entire molybdenum component is lost. 

This is consistent with the known sublimation properties of MoO3. 

  

 

Figure 5.2-4: TGA trace and derivative weight of post-reaction MoO3 under air up to 1000 °C. 
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5.2.1.5 EDX and SEM analyses 

EDX and SEM analyses of the pre- and post- reaction samples have been undertaken. The 

EDX spectra taken from the sample from different areas, evidenced the presence of Mo 

and carbon in atomic ratio Mo : C of 32 : 68 (Figure 5.2-5) thus exceeding the percentage 

of stoichiometric carbon present in the β-Mo2C phase but the limitations of EDX for light 

elements analysis and the fact that carbon stubs are used to mount the samples should be 

born in mind.  

  

 

Figure 5.2-5: EDX analysis of post-reaction MoO3 catalyst. 

 

SEM images of pre- and post-reaction molybdenum trioxide are presented in Figure 5.2-6. 

It is evident from the images C, D that there are differences in the morphology of the post-

reaction compared to A, B of the pre-reaction for MoO3 material.  At high magnification, it 

can be seen that the morphology from E, F, G and H images is comprised of numerous cubic 

structures or rods with different diameters and no carbon structures such as filamentous 

carbon can be observed.  
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Figure 5.2-6: SEM images of pre and post-reaction MoO3. (A, B pre-reaction at 2000, 4000 magnification), 
(C, D, E, F, G and H post-reaction at 2000, 4000, 10000, 10000, 25000 and 100000 magnification 
respectively). 

(A) (B) 

(C) (D) 

(E) (F) 

(G) (H) 
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5.2.1.6 Raman spectroscopy 

Raman spectroscopy was conducted at room temperature and in air on the post-reaction 

MoO3 sample. A Kimmon Ik Series He-Cd 532.17 nm laser was employed as the excitation 

source. The spectral range scanned was in the range of up to 3000 cm-1 since peaks beyond 

3000 cm-1 were not expected. Raman bands associated with carbon were observed as 

shown in Figure 5.2-7, namely the D band, located at 1341 cm-1 and the G band, located at 

1572 cm-1 respectively. The D band is attributed to the presence of structural imperfections 

in the graphitic layers. The G band is attributed to the in-plane carbon–carbon stretching 

vibration of the sp2 atoms present in the graphite layers.188 Additional to the G and D 

Raman bands, some of MoO3 related bands were detected at 137, 168, 224 and 644 cm-1. 

This result is in agreement with the result obtained for β-Mo2C reported in section 3.2.3.2. 

  

 

Figure 5.2-7: Raman spectrum of post-reaction MoO3 material. 
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5.2.2 Cobalt molybdenum oxide (CoMoO4) 

Methane cracking over CoMoO4 was conducted at 800 °C. 

5.2.2.1 GC analysis 

Figure 5.2-8 shows the hydrogen formation rate from methane decomposition over 

dehydrated cobalt molybdenum oxide at 800 °C for 8 hours. This reaction was repeated to 

confirm the reproducibility of this result. The results obtained indicated that the hydrogen 

formation rate reached an initial maximum around 30 minutes on stream, and then 

decreased slightly. A subsequent slow increase was then observed until the reaction 

reached a rate of around 8 × 10-4 molH2 g-1 min-1. Deactivation of this material was not 

observed during the reaction time. 

0 60 120 180 240 300 360 420 480

0

2

4

6

8

10

1
0

E
4

 H
2
 f

o
rm

a
ti

o
n

 r
a

te
/ 
m

o
l 
H

2
 g

-1
 m

in
-1

Time on stream/ min

  

Figure 5.2-8: Hydrogen formation rate as a function of time on stream for CH4 cracking over CoMoO4 at 
800 °C. The solid line is a guide for the eye.  

5.2.2.2 FTIR  

The production of CO and CO2 during methane cracking was investigated by off-line FTIR 

spectroscopy as presented in Figure 5.2-9. In general all the recorded FTIR spectra 

displayed all bands corresponding to CH4 which are comparable to the FTIR recorded in the 

absence of reaction (backround). However, FTIR spectra recorded after 20 min of reaction, 
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extra bands at 665 and 2349 cm-1 (labelled as 1,3) at 2177 cm-1 (labelled as 2) was observed 

which can be related to CO2
184-185 and CO189 respectively. The production of CO and CO2 in 

presence of oxides is documented in the literature.186-187 However, the production of CO 

and CO2 stopped after 60 minutes of reaction as evident in Figure 5.2-9E. As mentioned 

previously, the presence of CO and CO2 in H2 feed streams can be detrimental for PEM fuel 

cell applications.  

 

Figure 5.2-9: FTIR analysis of gas phase products from the reacted CoMoO4 with CH4/N2 (A) background of 
the gas, (B) 800 °C, (C) 800 °C, 20 min; (D) 800 °C, 50 min; and (E) 800 °C, 60 min. 

5.2.2.3 PXRD analysis 

 

Figure 5.2-10: PXRD pattern of the post-reaction CoMoO4 material (1, 2, 3 represent β-Mo2C, α-Co and 
graphite respectively). 
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The PXRD data were collected applying the conditions described previously for the post-

reaction CoMoO4 sample. The resultant pattern is presented in Figure 5.2-10. Phase 

analysis showed the presence of graphite (PDF number 003-0401) at 2θ = 26.2°, β-Mo2C 

(PDF number 001-1188 which was found to be the predominant phase), and α-Co (PDF 

number 01-089-7093) and graphite. The carbon content determined by elemental analysis 

in this sample was 71 ±1 wt. % C which is in accordance with significant deposition of 

carbon. 

5.2.2.4 TGA analysis 

Thermogravimetric analysis of the post-reaction CoMoO4 was carried out in air in the 

temperature range between 100 – 1000 °C. The TGA oxidation profile under air and the 

corresponding first derivative profile of the post-reaction CoMoO4 are presented in Figure 

5.2-11.  

 

Figure 5.2-11: TGA trace and derivative weight profile of the post-reaction CoMoO4 under air in the range 
from room temperature to 1000 °C. 

The total mass loss from the TGA result was around 65 wt. % C which is in line with the 

results obtained with elemental analysis (71 ±1 wt. % C). It is evident from the first 

derivative profile that there are two regions of the weight loss centred at  580 °C and at 

700 °C suggesting the presence of two forms of carbon. This is suggestive of different 

carbonaceous residues of differing reactivity. In this case, unlike that for post-reaction 
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MoO3, the Mo component does not appear to be completely lost during the measurement, 

nor does there seem to be a significant mass gain associated with sample oxidation. 

5.2.2.5 EDX and SEM analyses 

The morphology of the dehydrated cobalt molybdenum oxide as prepared present in rod-

like particles as presented in Figure 5.2-13 (A and B). By contrast, reaction with 3:1 CH4:N2 

at 800 °C for 8 hours results in the formation of rounded particles. Illustrative scanning 

electron microscopy images are presented in Figure 5.2-13 (C and D) where it can be seen 

that post- reaction CoMoO4 material is comprised of circular crystallites which may reflect 

the morphology of the deposited carbon on the material. At higher magnification as shown 

in Figure 5.2-13 (E, F, G and H), it is evident that these circular crystallites are serpentine 

circles with tubular features sometimes evident. However, it’s complicated to identify 

which type of carbon formed on this material using only SEM. EDX analysis (Figure 5.2-12) 

revealed the presence of carbon and there was no detectable nitrogen and hydrogen. The 

CoMoO4 post-reaction sample was found to contain 71 ±1 wt. % C and there was not any 

hydrogen or nitrogen detected which is in agreement with the EDX analysis. The BET 

surface area recorded for CoMoO4 as prepared is 7 m2g-1 and that for the post-reaction 

material was 31 m2g-1 which can be related to carbon deposition.   

  

 

Figure 5.2-12: EDX analysis of post-reaction CoMoO4. 
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Figure 5.2-13: SEM images of pre- and post-reaction CoMoO4. (A, B pre-reaction at 2000, 4000 
magnification), (C, D, E, F, G and H post-reaction at 2000, 4000, 25000, 25000, 100000 and 100000 
magnification). 

 

(A) (B) 

(C) (D) 

(E) (F) 

(G) (H) 



Chapter 5  190 

5.2.2.6 Raman spectroscopy 

The post-reaction Raman spectrum, displayed in Figure 5.2-14, provided strong evidence 

of the presence of disordered and graphitic carbon with Raman bands observed at 1348 

and 1570 cm-1 labelled (D) and (G) respectively. A 2D peak is also observed at 2687 cm-1 

associated with the two photon elastic scattering process, which can be used as an 

indicator of the purity and quantity of carbon. A small shoulder D’ peak at 1600 cm-1 

associated with some randomly distributed impurities or surface charges in the graphene 

was also observed.188, 190-191 Additional Raman bands related to the presence of the oxide 

phase were detected in the post-reaction CoMoO4 sample and they are located below 1000 

cm-1.  

 

Figure 5.2-14: Raman spectrum of post-reaction CoMoO4. 
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5.2.3 Cobalt molybdenum nitride (η-6 structured Co3Mo3N) 

Methane cracking over the η-6 carbide structured Co3Mo3N was conducted at 800 °C. 

5.2.3.1 GC analysis 

The results of the catalytic activity of Co3Mo3N for methane cracking are shown in Figure 

5.2-12. It can be seen that the hydrogen formation rate increases slowly until it reaches 

steady state after ca. 120 minutes on stream. The activity of the material is found to 

stabilize around 12 × 10-4 molH2 g-1 min-1 which is higher than the value achieved for 

CoMoO4. The origin of the difference of the catalytic activity between the oxide and the 

nitride may originate from the structural and textural evolution of these materials during 

methane cracking. Thus, it was of interest to characterise the post-reaction material using 

multiple characterisation techniques to assess the evolution of the material during 

methane cracking. Based on FTIR spectra, it is noteworthy that the only methane bands 

were observed during the whole reaction time on stream for methane cracking over this 

material and no COx bands were observed unlike for the case of the oxide materials. 
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Figure 5.2-15: Hydrogen formation rate as a function of time on stream for CH4 cracking over the 
Co3Mo3N material at 800 °C. The solid line is a guide for the eye. 
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5.2.3.2 PXRD analysis 

Figure 5.2-16 shows the PXRD pattern of Co3Mo3N collected after reaction with CH4/N2 at 

800 °C. The presence of graphite in the post reaction sample is clearly indicated by the 

strong reflection at 2θ ~ 26°. The post-reaction PXRD revealed also carburisation of 

Co3Mo3N to the Co3Mo3C phase (PDF 03-065-7128; peaks marked as No. 1). Alongside the 

Co3Mo3C phase, the presence of β-Mo2C and Co phases were also detected in the post- 

reaction sample. The peaks at 2θ = 34.4, 39.4, 52.1, 61.5, 74.5 and 75.5° are assigned to the 

β-Mo2C phase (PDF 001-1188, marked as No. 2) and the peaks at 2θ = 44 and 51.5° can be 

assigned to cobalt (PDF 01-089-7093, marked No. 4). The presence of the carbon deposit 

was further confirmed by elemental analysis of the post-reaction sample. The carbon 

content was found to be 85 ±3 wt. % C. The large amount of carbon deposited during the 

reaction is due to the inevitable carbon deposition accompanying methane cracking.  

 

Figure 5.2-16: PXRD pattern of the post-reaction Co3Mo3N material [1 Co3Mo3C (03-065-7128), 2 Beta-
Mo2C (001-1188), 3 Graphite (003-0401), 4 α-Co (01-089-7093)].  
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5.2.3.3 TGA analysis 

Thermogravimetric analysis of the post-reaction Co3Mo3N was carried out in air in the 

temperature range between 100 – 1000 °C. Figure 5.2-17 depicts the TGA oxidation profile 

and the first-derivative weight profile under air for the post-reaction sample. It is evident 

that the post-reaction Co3Mo3N sample showed a weight loss in the region beyond 500 °C 

resulting from the burning off carbon formed on the samples (approximately 80 wt. % C) 

which is in good agreement with the results of elemental analysis (85 ±3 wt. % C). It became 

therefore apparent, that the carbon deposition in the Co3Mo3N system is higher than in the 

oxide systems. From the first-derivative weight change profile, it can be observed that the 

weight loss profile is characterised by two features, a small shoulder feature at range ca. 

500 to 600 °C and a large peak at 600 to 700 °C that might both be related to carbon 

oxidation. These differences in the oxidation temperature could indicate the presence of 

different types of carbonaceous species (G and D) deposited on the material. These 

observations were further confirmed by Raman spectroscopy (Figure 5.2-20). These results 

are not surprising considering that the hydrogen formation rate was the highest, and that 

the results of the XRD patterns showed strong evidence of the presence of a significant 

graphite reflection at 2θ ≈ 26°.  

 

Figure 5.2-17: TGA trace and derivative weight of post-reaction Co3Mo3N under air from RT to 1000 °C. 
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5.2.3.4 EDX and SEM analyses 

The presence of a large amount of carbon was clearly detected by EDX analysis (Figure 5.2-

18). Furthermore, no nitrogen, associated with Co3Mo3N, was detected. The results of 

elemental analysis are in line with EDX measurement as the post-reaction sample was 

found to be composed mostly of carbon 85 ±3 wt. % C and no nitrogen was detected. It’s 

also interesting to note that the post-reaction material displayed higher surface area, 62 

m2 g-1, than the pre-reaction material (18 m2 g-1) probably mainly due to the presence of 

the carbon. The morphology of the pre-reaction and post-reaction materials has been 

investigated by SEM (Figure 5.2-19). The pre-reaction material was present as rod like 

particles (Figure 5.2-19A, B) that possess similar morphology to the dehydrated cobalt 

molybdenum oxide, used as a precursor for the nitride preparation, confirming the 

pseudomorphic nature of the nitridation reaction. However, after the catalytic reaction, 

the material displayed a different morphology as can be seen in Figure 5.2-19C, D. The post-

reaction material was composed of rounded particles that differ from the initial rod-like 

morphology observed for the pre-reaction material. At higher magnification as shown 

(Figure 5.2-19 E, F, G and H), it is evident that these crystallites are serpentine circular. The 

difference in the observed morphology may be due to the presence of the carbon deposit. 

 

 

Figure 5.2-18: EDX analysis of post-reaction Co3Mo3N. 
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Figure 5.2-19: SEM images of pre (A, B) and post (C, D at low magnification and E, F, G, H at high 
magnification)-reaction Co3Mo3N. 

(A) (B) 
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5.2.3.5 Raman spectroscopy 

Raman spectroscopy was conducted at room temperature and in air on the post-reaction 

Co3Mo3N sample. The post-reaction Raman spectrum, presented in Figure 5.2-20, as for 

the post-reaction CoMoO4 discussed previously, provided strong evidence of the presence 

of disordered and graphitic carbon with Raman bands observed at 1330 and 1565 cm-1 

labelled (D) and (G) respectively. Furthermore, a 2D peak is also observed at 2672 cm-1 

associated with the two photon elastic scattering process, and can be used as an indicator 

of the purity and quantity of carbon. A small shoulder D’ peak at 1610 cm-1 associated with 

some randomly distributed impurities in the graphene was also detected. Additional 

Raman bands related to the oxide phase were detected in the post-reaction Co3Mo3N 

located below than 1000 cm-1. 

  

 

Figure 5.2-20: Raman spectrum of post-reaction Co3Mo3N. 
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5.2.4 Cobalt molybdenum nitride (η-12 structured Co6Mo6N) 

Methane cracking over η-12 carbide structured Co6Mo6N was conducted at 800 °C.  

5.2.4.1 GC analysis 

The hydrogen formation profile at temperature 800 °C of η-12 carbide structured Co6Mo6N 

phase reacted with 3:1 CH4:N2 for 8 hours was determined. This experiment was repeated 

to confirm the reproducibility. Figure 5.2-21 presents the hydrogen formation rate against 

time-on-stream at 800 °C as a result of cracking of methane over the Co6Mo6N material. It 

can be observed that the hydrogen formation rate increases with time on stream until 

reaching the maximum value at 17 x 10-4 molH2 g-1 min-1. The enhancement of the hydrogen 

formation rate in this material compared to Co3Mo3N could be related to their structures. 

661N was prepared using pre-treatment with N2/H2 gas for 2 hours to convert it from an 

amorphous phase to a more crystalline phase. In addition, deactivation of this material was 

not observed during the reaction time for 8 hours, and indeed it potentially further 

activated with time on stream. From FTIR analyses, it is notable that only methane bands 

were observed during the whole reaction time on stream for methane cracking over this 

material and no COx bands as co-products were observed. 
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Figure 5.2-21:  Hydrogen formation rate as a function of time on stream for CH4 cracking over Co6Mo6N. 
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5.2.4.2 PXRD analysis 

The change of the structural properties of the Co6Mo6N following reaction was 

characterised by PXRD as presented in Figure 5.2-22. The post-reaction sample showed a 

phase composition similar to the post-reaction Co3Mo3N material. The presence of graphite 

in the post-reaction sample was confirmed by a strong diffraction reflection at 2θ ~ 26°. 

Carburisation of the Co6Mo6N to Co3Mo3C was also observed. Additionally, Co and β- Mo2C 

were observed as minor phases. In summary, the phase composition of the post-reaction 

Co6Mo6N was very similar to the post-reaction Co3Mo3N. Based on CHN elemental analysis 

results, the carbon content of the post-reaction sample was found to be 84 ±1 wt. % C.  

 

Figure 5.2-22: PXRD pattern of the post-reaction Co6Mo6N material [1 Co3Mo3C (03-065-7128), 2 β-Mo2C 
(001-1188), 3 Graphite (003-0401), 4 α-Co (01-089-7093)]. 
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5.2.4.3 TGA analysis 

The carbon deposition during the catalytic reaction was studied by thermogravimetric 

analysis under air. Figure 5.2-23 shows the mass loss profiles. The oxidation of carbon 

initiated at 500 °C and was complete at 700 °C. The percentage of weight loss, 78 wt. %, 

possibly associated with the removal of carbon is found to be consistent with the CHN 

elemental analyses of post-reaction material indicating the presence of 84 ±1 wt. % C. The 

first derivative profile shows two mass loss features centred at around 552 and 602 °C 

suggesting the possible presence of two forms of carbon.  

 

 

Figure 5.2-23: TGA trace and derivative weight of post-reaction Co6Mo6N under air up to 1000 °C. 
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5.2.4.4 EDX and SEM analyses 

The carbon deposition was clearly evidenced by the EDX analysis (Figure 5.2-24) which 

further confirms the results of the TGA and elemental analyses. The evolution of the 

textural and structural properties of the Co6Mo6N was also accompanied by an increase in 

the surface area from 4 to 59 m2g-1 which is most probably mainly related to carbon 

laydown during the catalytic reaction. The morphology of the Co6Mo6N is very similar to 

that observed of the Co3Mo3N being in the form of nano-rods confirming that the reduction 

of Co3Mo3N to Co6Mo6N is a pseudomorphic reaction resulting in the material maintaining 

its initial morphology (Figure 5.2-25A, B). However, the post-reaction Co6Mo6N was found 

to be present in the form of rounded particles. Representative scanning electron 

microscopy images are presented in Figure 5.2-25 (C and D) where it can be seen that post- 

reaction Co6Mo6N is comprised of circular crystallites.  

  

 

Figure 5.2-24: EDX analysis of post-reaction Co6Mo6N. 
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Figure 5.2-25: SEM image of pre- and post-reaction Co6Mo6N. 
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5.2.4.5 Raman spectroscopy 

Raman spectroscopy was conducted at room temperature and in air on the post-reaction 

Co6Mo6N sample. Raman spectroscopy is an analytical technique that can be used to 

characterise carbon and also differentiated multi-layer graphene. Post-reaction Raman 

spectra, displayed in Figure 5.2-26 and as for the previous two samples (CoMoO4 and 

Co3Mo3N), provided strong evidence of the presence of disordered and graphitic carbon 

with Raman bands observed at 1340 and 1565 cm-1 labelled (D) and (G) respectively. 

Furthermore, a 2D peak is also observed at 2672 cm-1 associated with the two photon 

elastic scattering process, and can be used as an indicator of the purity and quantity of 

carbon. A small shoulder D’ peak at 1595 cm-1 associated with some randomly distributed 

impurities or surface charges in the graphene was observed. Additional Raman bands 

related to the oxide phase were detected in the post-reaction CoMoO4 located below 1000 

cm-1. 

 

 

Figure 5.2-26: Raman spectrum of post-reaction Co6Mo6N. 
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5.2.5 Cobalt molybdenum carbide (η-6 structured Co3Mo3C) 

Methane cracking over the η-6 carbide structured Co3Mo3C was conducted at 800 °C. 

5.2.5.1 GC analysis 

Figure 5.2-27 presents the hydrogen formation rate against time on stream at 800 °C as a 

result of cracking of methane over the Co3Mo3C material. In this case, the hydrogen 

formation rate was characterised by strong fluctuation of hydrogen production over time. 

Although, the catalytic behaviour of Co3Mo3C seems peculiar, this kind of behaviour has 

been previously reported by Moliner et al. who stated that the methane decomposition 

reaction over a carbonaceous catalyst was controlled by two simultaneous processes, one 

a decrease in methane decomposition rate due to the blocking by carbon species deposited 

and the other an increase rate due to the formation of catalytically active carbon species 

produced from methane.192 It should be noted that the carbon deposition on both samples 

run in the present study led to pressure-drop effects during the reaction. 
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Figure 5.2-27: Hydrogen formation rate as a function of time on stream for CH4 over Co3Mo3C at 800 °C. 
(● First reaction run and ■ second reaction run) The solid line is a guide for the eye. 
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5.2.5.2 PXRD analysis 

Figure 5.2-28 presents the powder X-ray diffraction pattern of Co3Mo3C post-reaction 

materials. The PXRD of both post-reaction materials were very similar and no disparity 

between the two samples was observed. The phase analysis of both materials showed the 

presence of graphite at 2θ = 26.2° (PDF number 003-0401). Upon reaction, the materials 

were observed to undergo partial phase segregation with the formation of α-Co (PDF 

number 01-089-7093) and β-Mo2C (PDF number 001-1188). The carbon contents in these 

samples were 84 and 79 wt. % C for A and B respectively. No nitrogen or hydrogen were 

detected by CHN elemental analysis. 

  

Figure 5.2-28: PXRD pattern of two attempts (A, B) of post-reaction Co3Mo3C [1 for Co3Mo3C (03-065-
7128), 2 for Beta-Mo2C (001-1188), 3 for Graphite (003-0401), 4 for α-Co (01-089-7093)]. 
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5.2.5.3 TGA analysis 

To assess the reactivity of the carbon deposit, TGA analysis was performed under air. The 

change of the weight as function of temperature and the first derivative profile are 

presented in Figure 5.2-29. The removal of carbon started at a similar temperature,~ 500 

°C, to that observed for the cobalt molybdenum nitride systems and all the carbon was 

removed at ~ 700 °C as shown in Figure 5.2-29A. In both post-reaction materials, the total 

mass loss was around 76 wt. % C which is in line with the elemental analysis results (84 and 

79 wt. % C). 

 

 

Figure 5.2-29: TGA trace (A) and derivative weight (B) of post-reaction Co3Mo3C under air up to 1000 °C. 
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5.2.5.4 EDX and SEM analyses 

SEM and EDX analyses of both samples have been undertaken. EDX analysis further 

confirmed the presence of carbon in a percentage that exceeds those expected for the pure 

carbide phase. For instance, in the post-reaction Co3Mo3C the atomic ratio was found to be 

Co : Mo : C  of 1.1 : 0.4 : 98.5 (Figure 5.2-30). This example shows also relative enrichment 

in Co, compared to Mo which is possible consistent with the phase segregation observed 

by XRD.  

SEM images of pre- and post-reaction Co3Mo3C samples are presented in Figure 5.2-31. 

Morphological differences were readily apparent between the pre-reaction and post-

reaction samples. While, the pre-reaction Co3Mo3C sample was present as nano-rod 

particles as shown in Figure 5.2-31 A, B, the post-reaction Co3Mo3C material was present 

as an aggregated round particle morphology as apparent in Figure 5.2-31 C, D and Figure 

5.2-31 E, F for the first and second reaction runs respectively. 

The structural and textural evolution of the Co3Mo3C during reaction altered additionally 

the accessible surface area. While the surface area of the post-reaction material was 13 

m2g-1, the post-reaction material displayed an increase in the surface area to ~ 50 m2g-1. 

  

 

Figure 5.2-30: EDX analysis of post-reaction Co3Mo3C for first reaction run. 
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Figure 5.2-31: SEM images of pre- and post-reaction Co3Mo3C. 
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5.2.5.5 Raman spectroscopy 

Post-reaction Raman spectra are shown in Figure 5-2-32. It can be seen that there are three 

main bands at 1280 cm-1 (D band), 1520 cm-1 (G band), and at 2640 cm-1 (2D band) which 

reveals the presence of graphitic and disordered structural carbon for both samples. A 

small shoulder D’ peak at 1551 cm-1 associated with some randomly distributed impurities 

in the graphene was observed in both samples. Additional Raman bands related to the 

oxide phase located below 1000 cm-1 were detected in the both post-reaction Co3Mo3C 

samples. 

 

 

Figure 5.2-32: Raman spectrum of post-reaction Co3Mo3C: (A) first reaction run and (B) second reaction 
run. 
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5.2.6 Cobalt molybdenum carbide (η-12 structured Co6Mo6C) 

Methane cracking over η-12 carbide structured Co6Mo6C was conducted at 800 °C using a 

3:1 CH4:N2 gas mixture flowing at 12 ml min-1. 

5.2.6.1 GC analysis 

The reactivity of the Co6Mo6C was studied for the methane cracking reaction. The hydrogen 

formation rate against time-on-stream at 800 °C is presented in Figure 5.2-33. As observed 

previously for the cobalt molybdenum carbide and nitrides, the hydrogen formation rate 

increased slowly, with the hydrogen formation rate being around 10 x 10-4 mol H2 g-1 min-1 

at the end of the reaction. The Co6Mo6C presented slightly lower catalytic activity than the 

Co6Mo6N (17 x 10-4 mol H2 g-1 min-1). In addition, no deactivation of this material was 

observed during the reaction time for 8 hours and, if anything, a gradual activation of the 

material was evident. From FTIR analyses methane bands were observed over the entire 

reaction time and no COx bands were observed. 

0 60 120 180 240 300 360 420 480

0

2

4

6

8

10

12

14

1
0

E
4

 H
2
 f

o
rm

a
ti

o
n

 r
a

te
/ 
m

o
l 
H

2
 g

-1
 m

in
-1

Time on stream/ min

  

Figure 5.2-33: Hydrogen formation rate as a function of time on stream for methane cracking over 
Co6Mo6C at 800 °C. The solid line is a guide for the eye. 
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5.2.6.2 PXRD analysis 

The PXRD pattern of the post-reaction Co6Mo6C is presented in Figure 5.2-34. The phases 

present were identified using the JCPDS database as η-6 Co3Mo3C (PDF number: 03-065-

7128), β-Mo2C (PDF number: 001-1188), α-Co (PDF number01-089-7093) and graphite 

(003-0401). η-6 Co3Mo3C is depicted as 1, β-Mo2C is depicted as 2 and α-Co is depicted as 

3. Based on CHN elemental analysis results, the carbon content of the post-reaction sample 

was found to be 70 ±1 wt. % C.  

 

Figure 5.2-34: PXRD pattern of post-reaction Co6Mo6C [1 Co3Mo3C (03-065-7128), 2 Beta-Mo2C (001-1188), 
3 Graphite (003-0401) and 4 α-Co (01-089-7093)]. 
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5.2.6.3 TGA analysis 

The TGA profile of the post-reaction Co6Mo6C conducted under static air is presented 

Figure 5.2-35. Similar to the previous results, the carbon removal characterised by weight 

loss during the experiment, which started at ~ 500 °C and which was complete by ~700 °C. 

The total mass loss was around 56 wt. % C which is slightly lower than the value expected 

from elemental analysis (70 ±1 wt. % C). The first derivative profile (red colour) displays 

two mass loss components placed between 500 to 600 °C and 600 to 750 °C, which might 

be attributed to the loss of two different forms of carbon.  

The similarity of the TGA profiles in all nitride and carbide related materials is consistent 

with analogous reactivity of the types of carbon species formed over all materials, although 

there are some differences in the peak-size and temperature profile. 

 

 

Figure 5.2-35: TGA trace and derivative weight of post-reaction Co6Mo6C under air up to 1000 °C. 
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5.2.6.4 EDX and SEM analyses 

The significant carbon laydown during methane cracking was further confirmed by EDX 

analysis. EDX taken from different zones evidenced the presence of Co, Mo and carbon in 

an atomic ratio of C : Mo : C of 0.7 : 0.4 : 98.9 (Figure 5.2-36). Once more, the accessible 

surface area recorded for the post-reaction Co6Mo6C, 24 m2g-1, was higher than the surface 

area measured for the pre-reaction Co6Mo6C which was around 3 m2g-1. 

Figure 5.2-37 presents SEM images of the pre- and post-reaction Co6Mo6C materials. The 

pre-reaction Co6Mo6C displayed a needle morphology, while the post-reaction material 

presented similar morphology to the other post-reaction carbides and nitrides. The 

rounded circular shape of the post-reaction materials might originate from the growth of 

carbon deposits. It is interesting to mention that no filamentous carbon was observed in all 

the post- reaction samples presented within in this chapter.  

 

  

 

Figure 5.2-36: EDX analysis of post-reaction Co6Mo6C. 
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Figure 5.2-37: SEM images of pre- and post-reaction Co6Mo6C. 

(A) (B) 

(C) (D) 

(E) (F) 

(G) (H) 



Chapter 5  214 

5.2.6.5 Raman spectroscopy 

The Raman spectrum of the post-reaction Co6Mo6C is shown in Figure 5.2-38. The presence 

of both G and D peaks at 1565 and 1365 cm−1 respectively can be observed. A 2D peak is 

also observed at 2679 cm-1. Furthermore, it can be seen that the 2D peak is a roughly half 

the height of the G peak which indicated the presence of graphite in this material and not 

graphene because  if there is graphene the 2D peak is expected to be four times more 

intense than the G peak. A small shoulder D’ peak associated with some randomly 

distributed impurities in the graphene was not observed. The band D+D’’ at 2450 cm-1 was 

first reported in graphite by Nemanich and Solin.193 A small D+D’ peak associated with the 

combination of phonons with different momenta was observed at 2910 cm-1.194 

Furthermore, Raman bands positioned below than 1000 cm-1 corresponding to the trace 

oxide phase was observed. 

 

 

 

Figure 5.2-38: Raman spectrum of post-reaction Co6Mo6C. 
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Comparison of CoMo oxide, nitride and carbide for methane cracking 

The isomorphism of the cobalt molybdenum carbide and nitride families offers, in principle, 

an elegant route to study the effect of interstitial carbon/nitrogen on the catalytic activity 

of cobalt molybdenum based materials. In this context, a range of materials with different 

chemical compositions namely Co3Mo3N, Co3Mo3C, Co6Mo6N and Co6Mo6C, have been 

prepared and studied for the methane cracking reaction. All the prepared materials possess 

activity for hydrogen production upon methane cracking under the reaction conditions 

applied. Interestingly, the catalytic activity of these materials varied depending on initial 

composition, with Co6Mo6N being the most active. The activity of the material was found 

to stabilise at around 1.8 mmol H2 g-1 min-1, which is very high when compared against the 

activity of some nitride systems (e.g. 180 µmol H2 g-1 min-1 reported for a silicon-vanadium 

nitride nanocomposite under directly comparable conditions).144 In fact, the activity of the 

Co6Mo6N is directly comparable to the activity of iron oxide systems (1 mmol H2 g-1 min-1 

reported for iron oxide under the same reaction conditions).131 In general, the activity of 

carbides and nitrides presented a normalised hydrogen production rate ranging from 1.1 

to 1.8 mmol H2 g-1 min-1 while a slightly lower activity (0.8 mmol H2 g-1 min-1) was measured 

for the CoMoO4 system. In addition to the enhanced activity of cobalt molybdenum carbide 

and nitride systems when compared to the oxide counterpart, the absence of the 

production of COx during methane cracking reaction is of potential interest in relation to 

COx free H2 production. 

As expected, the production of H2 was accompanied by carbon deposition. Due to the 

nature of the reaction, the amount of carbon deposited in carbide and nitride systems can 

be correlated directly to the activity of methane cracking. Elemental analysis showed 

significant carbon deposition of ~ 85 wt. % on Co3Mo3N, Co3Mo3C and Co6Mo6N confirming 

the high activity of these materials, in spite of the oscillatory hydrogen production 

behaviour of the Co3Mo3C observed particularly in one case. Thermogravimetric analyses 

conducted under air confirmed that the weight loss associated with carbon oxidation to be 

consistent with the elemental analyses of post-reaction materials. The nature of the carbon 

present upon reaction has been investigated by Raman spectroscopy. The Raman features 

were dominated by the presence of two forms of carbon: disordered and graphitic carbon. 

The existence of several forms of carbon was also evident from the derivative weight curves 

for post- reaction samples.  
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While it is tempting to discuss the activity of the catalysts against their initial composition, 

post-reaction analysis revealed changes in the structural properties upon reaction. As 

expected, post-reaction PXRD showed the carburisation of all the catalysts studied upon 

reaction with methane. However, the products of carburisation slightly differ depending 

on the initial composition. In the post-reaction CoMoO4, only β-Mo2C, α-Co and graphite 

are observed as results of the carburisation of CoMoO4. However, a mixture of Co3Mo3C, 

α-Co and β-Mo2C is detected upon reaction of Co3Mo3N, Co3Mo3C and Co6Mo6N with 

methane. In the case of Co6Mo6C relocation of the carbon located in the 0 0 0 (8a) site to 

1/8 1/8 1/8 (16c) sites resulting in the formation of Co3Mo3C occurs which is formed with 

traces of β-Mo2C and α-Co phases as observed for the other materials. The apparent 

similarity in H2 production profile is a striking feature of both ƞ-12 structured materials. 

In summary, for the three most active catalysts, the phases detected after reaction were 

comprised of a mixture of Co3Mo3C, α-Co and β-Mo2C. While, for the least active material 

CoMoO4, only the β-Mo2C and α-Co were detected. Another major aspect, where 

differences are evident, is the accessible surface area of the active phases. The surface area 

measured in post-reaction Co3Mo3N, Co3Mo3C and Co6Mo6N samples ranged between 50-

63 m2 g-1 while in the case of CoMoO4 and Co6Mo6C the surface area was limited to ~ 30 

m2 g-1. Despite the fact that no simple link can be established between the catalytic activity 

to phase composition and accessible surface area, it can be argued that the presence of 

both Co3Mo3C and β-Mo2C and high surface area leads to an enhanced  activity for methane 

cracking when compared to phases where only Co3Mo3C or β-Mo2C are present. In 

addition, the initial composition seems to play an important role in the final activity of the 

catalysts. These differences may indicate differences in the active surface composition 

resulting from the carburisation process of different cobalt molybdenum precursors. 
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5.2.7 Si3N4 and VN/Si3N4 materials 

Si3N4 and VN/ Si3N4 materials were prepared by Andrew Hector’s group in Southampton 

University as described in a recent publication144 and their methane cracking was 

investigated in Glasgow.  

Introduction for Si3N4 and VN/Si3N4 materials 

Gel-derived silicon imidonitrides have been investigated for catalytic reactions by a number 

of groups as base catalysts. For instance, the catalyst has been examined for alkene 

isomerization reactions195 and for Knoevenegal condensation reactions196. Silicon nitride 

possesses great thermal conductivity corresponding to the more widely utilised silicas, and 

therefore is employed as a catalyst support for in elevated temperature applications. 

Silicon nitride support in the form of α-Si3N4 has an oxidation resistance at typical catalytic 

process temperatures.197 The gel-based ways to silicon nitrides and imidonitrides employ 

solution-phase reactions of precursor molecules. These precursors are usually amides with 

cross-linking groups for example isocyanate198 or ammonia199. The  polymeric species were 

obtained in solution, and when the polymeric material immobilises, the liquid phase can be 

removed to deliver high surface area materials that often comprise basic surface groups.200 

These reactions deliver widely applicable sol-gel chemistry that has been employed to yield 

films,201  powders,202  membranes203  and monolithic aerogels.204 

The Mo2N catalyst is a highly active Group 6 nitride catalyst and has been investigated 

extensively. Meanwhile, a number of metal nitrides have been previously investigated to 

have useful catalytic activities.205  Most of these investigations placed emphasis on the 

similarity of the activities of some metal nitrides to those of the platinum metals, with 

surface areas typically being maximised by careful temperature control in reactions 

between ammonia and high surface area metal oxides.206  However, the Group 5 nitrides 

can exhibit various selectivities, which can also differ between phases.207  VN has been 

reported to be a suitable catalyst in amination of ethanol208, dehydrogenation of 

propane209 and ammonia decomposition.210 Recent studies have attempted to modify the 

properties of gel-derived silicon nitride materials by incorporating aluminium,211  

titanium,212 boron213  or terbium214  into the silicon imidonitride framework, or by using it 

to support palladium nanoparticles,215 but there is only a scant investigation in this area. In 
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this work, the catalytic activity of VN/ Si3N4 and Si3N4 composite materials in methane 

cracking was investigated. 

Results and discussion  

Methane cracking over Si3N4 and VN/ Si3N4 was conducted at 800 °C using at 75 vol. % CH4 

in N2 gas mixture at a flow rate 12 ml min-1 with a temperature ramp rate 50 °C min-1. 

5.2.7.1 GC analysis 
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Figure 5.2-39: Hydrogen formation rate as a function of time on stream of VN/Si3N4 at 800 °C. Similar 
values were obtained in a repeat run with the same mass of material; the solid line is a guide for the eye. 
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Figure 5.2-40: Hydrogen formation rate as a function of time on stream of Si3N4 at 800 °C. Similar values 
were obtained in a repeat run with the same mass of material; the solid line is a guide for the eye. 

  

The reaction profile illustrating the mass normalised hydrogen formation rate over a period 

of 14 hours for VN/ Si3N4 is presented in Figure 5.2-39. Following an initial period of decay 

over the first 3-4 hours on stream, the activity of the material was found to stabilise to a 

value of around 180 μmol H2 g-1 min-1. Whilst this mass normalised rate does not compare 

favourably with, for example, iron oxide systems in the literature (for example, a peak rate 

of 1 mmol H2 produced g-1 min-1 under directly comparable reaction conditions has been 

reported for biogenic iron oxide) one potential advantage is that the absence of oxide 

phase in the system results in the absence of CO production which is particularly 

deleterious for H2 streams applied to PEM fuel cells. Off line FTIR analysis taken at regular 

intervals throughout the catalyst runs showed the CO and CO2 levels to be below the limit 

of detection. CO2 formation, which can also occur in the presence of oxides, could also be 

problematic under these conditions since CO formation could occur via the reverse water 

gas-shift reaction which is particularly thermodynamically favourable at such high reaction 

temperature. In order to determine the background activity of the silicon nitride material, 

directly comparable catalytic reaction runs were undertaken (Figure 5.2-40). This material 

was also reasonably active for methane cracking, again without producing COx. However, 
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there is evidence of an induction period followed by deactivation leading to a rate of ca. 40 

μmol g-1 min-1, which is much lower than that of its vanadium containing counterpart. This 

is indicative of the promotional effect of vanadium upon reaction. A particularly 

noteworthy aspect of the vanadium containing composite is the relative stability of H2 

production at extended periods upon stream.  

5.2.7.2 PXRD analysis 

X-ray diffraction (PXRD) of these materials mainly showed broad amorphous features as 

expected for silicon nitride at this temperature as shown in Figure 5.2-41A,199 but with 

further broad peaks corresponding to the most intense expected reflection (the 200) for 

rocksalt-type VN at 600 °C as shown in Figure 5.2-42A. The peaks at 2 theta = 10.7 and 22.9° 

disappeared and become more amorphous in post-reaction VN/ Si3N4 as shown in Figure 

5.2-42B. 

 

Figure 5.2-41: PXRD pattern of (A) pre- and (B) post- reaction Si3N4. 
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Figure 5.2-42: PXRD pattern of (A) pre- and (B) post- reaction VN/SixNy. 

5.2.7.3 TGA analysis 

To further characterise the nature of the carbon deposit after reaction, thermogravimetric 

analysis of the post-reaction Si3N4 and VN/ Si3N4 were carried out in air in the temperature 

range between 100 – 1000 °C to estimate the amount of carbon deposited and to 

determine its reactivity profile with respect to air.  

 

Figure 5.2-43: TGA trace and derivative weight of post-reaction VN/Si3N4 under air up to 1000 °C. 
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Figure 5.2-44: TGA trace and derivative weight of post-reaction Si3N4 under air up to 1000 °C. 

 

TGA conducted under air for the both post-reaction materials (Figure 5.2-43 and Figure 5.2-

44) shows the weight loss associated with the removal of carbon to be consistent with the 

CHN analyses of post-reaction materials. The first derivative profiles clear show two mass 

loss features centred at around 450 and 680 °C in the case of the vanadium based system, 

suggesting two forms of carbon as shown in Figure 5.2-43. This is in contrast with the single 

mass loss feature centred around 700 °C observed in the case of post-reaction silicon 

nitride as shown in Figure 5.2-44. However caution must be exercised in this respect, as it 

could be possible that the presence of vanadium catalyses the oxidation of a proportion of 

the carbon deposited causing its loss at lower temperature. As anticipated, the production 

of H2 was associated with the deposition of carbon upon the materials. The vanadium-

containing sample post catalysis was found to contain 23 wt. % C by combustion analysis 

in comparison to ca. 9 wt. % C deposited on the silicon nitride.  
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5.2.7.4 Raman spectroscopy 

Raman spectroscopy was conducted at room temperature and in air on the post-reaction 

Si3N4 and VN/ Si3N4 samples. 532 nm laser was employed as the excitation source for laser. 

The spectral range scanned was in the range of up to 3000 cm-1 because peaks beyond 3000 

cm-1 are not expected.  

 

Figure 5.2-45: Raman spectrum of post-reaction Si3N4. 

 

 

Figure 5.2-46: Raman spectrum of post-reaction VN/ Si3N4. 
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Raman spectroscopic analyses of both post-reaction samples (Figure 5.2-45 and Figure 5.2-

46) evidence disordered (D) and graphitic (G) bands; although the relative intensity implies 

that the carbon is less well ordered in the vanadium containing material.  

5.2.7.5 EDX and SEM analyses 

 

Figure 5.2-47: SEM images of (A) pre- and (B, C, D, E, F) post-reaction Si3N4. 
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Figure 5.2-48: EDX analysis of pre-reaction Si3N4. 

 

  

Element Weight% Atomic% 

C K 25.10 33.88 
N K 39.46 45.66 
Si K 35.44 20.46 
Totals 100.00  

 

Figure 5.2-49: EDX analysis of post-reaction Si3N4. 
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Figures 5.2-47A and 5.2-51A present the morphology of pre-reaction of Si3N4 and VN/ Si3N4 

samples respectively. It can be seen that both pre-reaction Si3N4 and VN/ Si3N4 are 

comprised of spherical aggregate particles of various sizes. Energy dispersive X-ray (EDX) 

analyses yielded Si:N atomic ratio of 35:65 (as shown in Figure 5.2-48) for Si3N4 and Si:N:V 

atomic ratio of 30:69:1 (as shown in Figure 5.2-52) for VN/ Si3N4 which suggest that the gel 

was well cross-linked with very low levels of volatile species and hence negligible loss of V 

or Si occurred upon pyrolysis. Both materials were found to contain 10 wt. % N by 

combustion analysis. The surface area was 162 m2g-1 for Si3N4 and 126 m2g-1 for VN/ Si3N4 

as prepared. 

In contrast, the use of Si3N4 or VN/ Si3N4 reacted with 3:1 CH4:N2 at 800 °C for 14 hours 

results in the formation of rounded particles. Illustrative scanning electron microscopy 

images are presented in Figures 5.2-47B and 5.2-51B where it can be seen that both post- 

reaction samples of these materials are comprised of circular morphology feature. This 

possibly reflects the morphology of the deposited carbon. EDX analyses revealed the 

presence of carbon and nitrogen in these materials as shown in Figure 5.2-49 for Si3N4 and 

in Figure 5.2-53 for VN/ Si3N4. The vanadium-containing sample post catalysis was found to 

contain 7 wt. % N and 23 wt. % C by combustion analysis in comparison to 3 wt. % N and 

ca. 9 wt. % C deposited for the silicon nitride. The BET surface area recorded for both post-

reaction materials had fallen to 19 m2g-1 for Si3N4 and 18 m2g-1 for VN/ Si3N4. 
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Figure 5.2-50: SEM image of (A) pre- and (B, C, D, E and F for 4000, 10000, 10000, 25000 and 10000 
magnification respectively) post-reaction VN/ Si3N4.  
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Figure 5.2-51: EDX analysis of pre-reaction VN/ Si3N4. 

 

  

Element Weight% Atomic% 

C K 36.40 44.34 
N K 43.22 45.15 
Si K 19.90 10.37 
V K 0.48 0.14 
Totals 100.00  
 

Figure 5.2-52: EDX analysis of post-reaction VN/ Si3N4. 
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5.3 Conclusion 

In this study, catalytic methane cracking to produce hydrogen and carbon was investigated 

over MoO3, CoMoO4, Co3Mo3N, Co6Mo6N, Co3Mo3C, Co6Mo6C, Si3N4 and VN/ Si3N4 

materials. For comparison purposes, all the materials were tested for activity under the 

same conditions of temperature (800 °C), at atmospheric pressure and using a reactant 

composition of 75 vol. % CH4 in N2 (BOC, 99.98%) at a total gas feed of 12 ml min-1. 

Hydrogen production was measured by online gas chromatography (GC) using a TCD. For 

most samples the gas exhaust was analysed in a periodical manner for the determination 

of COx by off-line FTIR analyses employing a gas-phase FTIR cell. The characterisation of 

post-reaction samples by Raman spectroscopy, X-ray diffraction (XRD), thermal analysis 

(TGA) and by scanning electron microscopy (SEM), N2-physisorption (BET), energy 

dispersive X-ray spectroscopy (EDX) and CHN elemental analysis was undertaken. 

In general, Co6Mo6N, Co3Mo3N, Co6Mo6C and CoMoO4  materials showed better activity 

and stability during catalytic methane cracking over time with hydrogen formation rates in 

order respectively  (1700, 1200, 1000 and 800 µmol H2 g-1min-1) while MoO3 deactivated 

after 60 minutes to stay around 70 µmol H2 g-1min-1. In all cases, hydrogen production 

reached a plateau after 120 minutes on stream. However, significantly unstable 

performance was observed in the case of the Co3Mo3C sample, which was possibly related 

to significant carbon deposition during the reaction resulting in the reactor blockage 

problems. Similar observations were observed upon repeating the reaction and the 

structural and textural properties of both the post-reaction samples were all similar. 

For the Co6Mo6N, Co3Mo3N, Co3Mo3C and Co6Mo6C materials, the phases detected after 

reaction comprised of a mixture of Co3Mo3C, α-Co, β-Mo2C and graphite. For the least 

active material CoMoO4, β-Mo2C, α-Co and graphite were detected. For MoO3, only β-Mo2C 

was detected. Another major aspect, where differences are evident, is the accessible 

surface area of the active phases. The surface area measured in post-reaction Co3Mo3N, 

Co3Mo3C and Co6Mo6N samples ranged between 50-63 m2 g-1 while in the case of CoMoO4 

and Co6Mo6C the surface area was limited being ~ 30 m2 g-1. Despite the fact that no simple 

link can be established between the catalytic activity and the phase composition and 

accessible surface area, it can be argued that the presence of both Co3Mo3C and β-Mo2C 
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and high surface area lead to an enhanced activity for methane cracking when compared 

to phases where only β-Mo2C is present.   

In the case of cobalt molybdenum nitrides and carbides, off-line FTIR spectra, measured 

periodically during reaction, showed that the production of CO and CO2 during methane 

cracking was below the detection limit. However, CO and CO2 were clearly observed when 

MoO3 and CoMoO4 were used. It is worth considering that the production of CO, even in 

small concentrations, can be particularly harmful in the case of hydrogen production for 

PEMFC and can lead to rapid degradation of their performance. The use of nitride or 

carbide as catalysts for methane cracking affords the production of COx- free hydrogen.  

Graphitic carbon was present at all materials except MoO3 where only carbide observed 

and it was significantly higher for the cobalt molybdenum nitrides followed by the carbides 

and then the oxide. Carbon deposition studies by TGA and Raman spectroscopy showed 

that most of the carbon was present as two types of carbon graphitic and disordered forms. 

Vanadium incorporation into silicon nitride is also worthy of further attention as a catalyst 

for the production of hydrogen from methane since, although the activity is lower than that 

of other systems, the absence of oxygen containing phases again results in effluent streams 

which are free from the presence of CO, a notable downstream poison for some 

applications.  
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 Conclusions and further work 

6.1 Conclusion 

The underlying objective of this work was to investigate the role of chemical composition 

and crystal structure on the reactivity of molybdenum related materials. To this end, a large 

number of molybdenum related materials presenting different characteristics and chemical 

compositions were prepared including binary molybdenum (γ-Mo2N, β-Mo2C, α-Mo2C) and 

ternary cobalt molybdenum η-6 Co3Mo3N, η-12 Co6Mo6N, η-6 Co3Mo3C, η-12 Co6Mo6C) 

systems. Although, the majority of studied phases were reported in the literature, the 

preparation of these phases required a careful control of the synthesis parameters. The 

nature of the starting precursors, reaction temperature, temperature rate and the reaction 

atmosphere were found to be of critical importance for the generation of monophasic 

materials especially in the case of the carbide systems. In Chapter 3, the ability of Co3Mo3N 

and Co3Mo3C to uptake and release carbon or nitrogen was studied.  

The synthesis reaction paths for the preparation of carbide and nitride materials were 

studied extensively. In-situ neutron diffraction studies revealed that in both cases, 

nitridation of the Co3Mo3C or carburisation of Co3Mo3N in presence of hydrogen proceeded 

via the formation of an intermediate carbonitride phase (Co3Mo3CxN1-x) with carbon and 

nitrogen both occupying the 16c Wyckoff site. However, the results of carburisation of 

Co6Mo6N and the nitridation of Co6Mo6C followed a different reaction path. 

The following bullet points highlight some of the major findings: 

 Preparation of η-6 Co3Mo3C:  η-6 Co3Mo3N was converted to η-6 Co3Mo3C using 20 

vol. % CH4 in H2 via the formation of a range of intermediate Co3Mo3CxN1-x phases 

in the temperature range between 600 to 700 °C. The results showed that nitrogen 

and carbon atoms simultaneously occupy 16c sites within the intermediate 

carbonitride structures.  

 Synthesis of η-6 Co3Mo3C: η-12 Co6Mo6N was converted to η-6 Co3Mo3C when 

reacted with methane. The reaction proceeded via the formation of Co3Mo3C phase 
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and destruction of the Co6Mo6N. However, the presence of the two segregated 

phases was observable at a narrow temperature window around 678 °C. 

 Synthesis of η-6 Co3Mo3N: η-6 Co3Mo3C was converted to η-6 Co3Mo3N upon 

reaction with 75 vol. % H2 in N2. As also observed in the case of carburisation of the 

η-6 Co3Mo3N, the reaction proceeded through the formation of Co3Mo3CxN1-x 

intermediate phases at 500 °C and no additional phases where observed. 

 Synthesis of η-6 Co3Mo3N: When reacted with N2, η-6 Co3Mo3C was converted to 

η-6 Co3Mo3N. However, two segregated (Co3Mo3C, Co6Mo6N) phases were 

observed at 600 °C. 

 Synthesis of η-12 Co6Mo6C and Co6Mo6N: η-6 Co3Mo3C was converted to 12-η 

Co6Mo6C through two segregated (Co3Mo3C, Co6Mo6C) phases at 800 °C using 75 

vol. % H2 in Ar, whereas, when reacting η-6 Co3Mo3N with 75 vol. % H2 in Ar, the 

material reduced to η-12 Co6Mo6N via two segregated (Co3Mo3Nx, Co6Mo6Nx) 

phases at 820 °C.  

 Synthesis of η-6 Co3Mo3N: η-12 Co6Mo6C was converted to η-6 Co3Mo3N through 

two segregated (Co6Mo6Cx, Co3Mo3Nx) phases at 700 °C when using only N2.  

In Chapter 4, the effect of composition of cobalt molybdenum related materials (CoMoO4, 

Co3Mo3N, Co3Mo3C and Co6Mo6C) upon the catalytic activity for ammonia synthesis 

reaction was explored. Despite the isostructural nature of Co3Mo3N and Co3Mo3C disparate 

performance was evident. Co6Mo6C was found to be inactive for ammonia synthesis under 

the conditions tested. An induction period time of 100 minutes for dehydrated CoMoO4 

and 40 minutes for Co3Mo3C were observed prior to the materials developing any activity. 

In the case of Co3Mo3C, in-situ PND and post-reaction analysis revealed the substitution of 

carbon by nitrogen is initiated during the induction time and continues during the reaction 

until complete conversion of the carbide to nitride. These results are consistent with the 

proposal of the origin of the high activity of the Co3Mo3N materials being the reactivity of 

its lattice nitrogen via a Mars-van Krevelen mechanism. Furthermore, the incorporation of 

a cobalt in ternary materials has resulted in greater activity for ammonia synthesis relative 

to the binary materials. 
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In Chapter 5, catalytic methane cracking to produce hydrogen and carbon was investigated 

on MoO3, CoMoO4, Co3Mo3N, Co6Mo6N, Co3Mo3C, Co6Mo6C, Si3N4 and VN/Si3N4. For 

comparison purposes, all the materials were tested for activity under the same conditions 

of temperature (800 °C), atmospheric pressure and reactant composition of 75 vol. % CH4 

in N2 (BOC, 99.98%) at a total gas feed of 12 ml min-1. In general, Co6Mo6N, Co3Mo3N, 

Co6Mo6C and CoMoO4 showed better activity and stability during catalytic methane 

cracking over time with hydrogen formation rates in order respectively  (1700, 1200, 1000 

and 800 µmol H2 g-1 min-1) while MoO3 deactivated after 60 minutes to around 70 µmol H2 

g-1 min-1. In all cases, hydrogen production reached a plateau after 120 min on stream. 

However, unstable performance was observed in the case of the Co3Mo3C sample, which 

was possibly related to significant carbon deposition during the reaction resulting in reactor 

blockage problems. Similar observations were observed upon repeating the reaction and 

the structural and textural properties of both the post-reaction samples were all similar. 

For the Co6Mo6N, Co3Mo3N, Co3Mo3C and Co6Mo6C, the phases detected after reaction 

comprised a mixture of Co3Mo3C, α-Co, β-Mo2C and graphite. For the least active material 

CoMoO4, β-Mo2C, α-Co and graphite were detected. For MoO3, only β-Mo2C was detected. 

Another major aspect, where differences are evident, is the accessible surface area of the 

active phases. The surface area measured in post-reaction Co3Mo3N, Co3Mo3C and 

Co6Mo6N samples ranged between 50-63 m2 g-1 while in the case of CoMoO4 and Co6Mo6C 

the surface area was limited ~ 30 m2 g-1. Despite the fact that no simple link could be 

established between the catalytic activity and the phase composition and accessible 

surface area, it can be argued that the presence of both Co3Mo3C and β-Mo2C and high 

surface area led to an enhanced  activity for methane cracking when compared to instances 

where only Co3Mo3C or β-Mo2C were present.   

In the case of cobalt molybdenum nitride and carbide, off-line FTIR spectra, recorded 

periodically during reaction, showed that the production of CO and CO2 during methane 

cracking reaction was below the detection limit. However, CO and CO2 were clearly 

observed when MoO3 and CoMoO4 were used. It is worth considering that the production 

of CO, even in small concentration, can be particularly harmful in the case of hydrogen 

production for PEMFC and can lead to rapid degradation of their performance. The use of 

nitrides or carbides as catalyst for methane cracking potentially affords the production of 

COx- free hydrogen. Graphitic carbon was present at all materials except MoO3 where only 

carbide observed and it was significantly higher for the cobalt molybdenum nitrides 
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followed by the carbides and then the oxide. Carbon deposition studies by TGA and Raman 

spectroscopy showed that most of the carbon was present as two types of carbon graphitic 

and disordered forms. Vanadium incorporation into silicon nitride is also worthy of further 

attention as catalysts for the production of hydrogen from methane since, although the 

activity is lower than that of other systems, the absence of oxygen containing phases results 

in effluent streams which are free from the presence of CO, a notable downstream poison 

for some applications.  

In conclusion, we have demonstrated an important effect of the chemical composition of 

the cobalt molybdenum related materials in the catalytic activity of these materials. 

 

6.2 Further work 

 

It would be beneficial and complimentary to this project if the Fe3Mo3C and Ni2Mo3C 

systems were also studied in a similar manner, which would allow a more complete 

understanding of catalytic behaviour of these types of material in ammonia synthesis. In 

addition, it would be good to further expand this study to cover the quaternary systems 

such as Fe-Co-Mo-C. Doping Co3Mo3C with promoters such as Cs, K+, Ba2+, or by supporting 

Co3Mo3C might also enhance catalytic performance relative to ammonia synthesis or 

methane cracking. Application of complementary techniques such as X-ray absorbance 

spectroscopy, HRTEM and computational studies could provide a method to understand 

the complex relationship between structure, composition and activity for these materials 

in terms of nitrogen and carbon mobility, and thereby lead on to new discoveries and 

applications.  

 

 

  



7  235 

7  References 

1. Volpe, L.; Boudart, M., Compounds of molybdenum and tungsten with high specific 
surface area: I. Nitrides. Journal of Solid State Chemistry 1985, 59 (3), 332-347. 
2. Volpe, L.; Boudart, M., Compounds of molybdenum and tungsten with high specific 
surface area: II. Carbides. Journal of Solid State Chemistry 1985, 59 (3), 348-356. 
3. Lee, J. S.; Volpe, L.; Ribeiro, F. H.; Boudart, M., Molybdenum carbide catalysts: II. 
Topotactic synthesis of unsupported powders. Journal of Catalysis 1988, 112 (1), 44-53. 
4. Hunter, S. M.; McKay, D.; Smith, R. I.; Hargreaves, J. S. J.; Gregory, D. H., Topotactic 
nitrogen transfer: structural transformation in cobalt molybdenum nitrides. Chemistry of 
Materials 2010, 22 (9), 2898-2907. 
5. Toby, B.; EXPGUI, A graphical user interface for GSAS. Journal of Applied 
Crystallography 2001, 34 (2), 210-213. 
6. Larson, A. C.; von Dreele, R. B., General Structure Analysis System (GSAS). Los 
Alamos National Laboratory Report LAUR 2004, 86-748. 
7. Oyama, S. T., Introduction to the chemistry of transition metal carbides and nitrides. 
In The Chemistry of transition metal carbides and nitrides, Oyama, S. T., Ed. Springer 
Netherlands: Dordrecht, 1996; pp 1-27. 
8. Pierson, H. O., Handbook of refractory carbides and nitrides. Technology & 
Engineering: The USA, 1996. 
9. Chen, J. G., Carbide and nitride overlayers on early transition metal surfaces:  
preparation, characterization, and reactivities. Chemical Reviews 1996, 96 (4), 1477-1498. 
10. Zhong, Y.; Xia, X.; Shi, F.; Zhan, J.; Tu, J.; Fan, H. J., Transition metal carbides and 
nitrides in energy storage and conversion. Advanced Science 2016, 3 (5), 1500286. 
11. Levy, R.; Boudart, M., Platinum-like behavior of tungsten carbide in surface 
catalysis. science 1973, 181 (4099), 547-549. 
12. Pansare, S. S.; Torres, W.; Goodwin, J. G., Ammonia decomposition on tungsten 
carbide. Catalysis Communications 2007, 8 (4), 649-654. 
13. Ribeiro, F. H.; Boudart, M.; Dalla Betta, R. A.; Iglesia, E., Catalytic reactions of n-
Alkanes on β-W2C and WC: The effect of surface oxygen on reaction pathways. Journal of 
Catalysis 1991, 130 (2), 498-513. 
14. Ranhotra, G. S.; Bell, A. T.; Reimer, J. A., Catalysis over molybdenum carbides and 
nitrides: II. Studies of CO hydrogenation and C2H6 hydrogenolysis. Journal of Catalysis 1987, 
108 (1), 40-49. 
15. Oyama, S. T., Preparation and catalytic properties of transition metal carbides and 
nitrides. Catalysis Today 1992, 15 (2), 179-200. 
16. P. E. York, A.; B. Claridge, J.; J. Brungs, A.; Chi Tsang, S.; L. H. Green, M., Molybdenum 
and tungsten carbides as catalysts for the conversion of methane to synthesis gas using 
stoichiometric feedstocks. Chemical Communications 1997,  (1), 39-40. 
17. Claridge, J. B.; York, A. P. E.; Brungs, A. J.; Marquez-Alvarez, C.; Sloan, J.; Tsang, S. 
C.; Green, M. L. H., New catalysts for the conversion of methane to synthesis gas: 
molybdenum and tungsten carbide. Journal of Catalysis 1998, 180 (1), 85-100. 
18. Brungs, A. J.; York, A. P. E.; Green, M. L. H., Comparison of the group V and VI 
transition metal carbides for methane dry reforming and thermodynamic prediction of 
their relative stabilities. Catalyst Letters 1999, 57 (1), 65-69. 
19. Lee, J. S., Metal carbides. In Encyclopedia of catalysis, John Wiley & Sons, Inc.: 2002. 
20. Hyeon, T.; Fang, M.; Suslick, K. S., Nanostructured molybdenum carbide:  
sonochemical synthesis and catalytic properties. Journal of the American Chemical Society 
1996, 118 (23), 5492-5493. 



7  236 

21. Preiss, H.; Meyer, B.; Olschewski, C., Preparation of molybdenum and tungsten 
carbides from solution derived precursors. Journal of Materials Science 1998, 33 (3), 713-
722. 
22. Lee, J. S.; Oyama, S. T.; Boudart, M., Molybdenum carbide catalysts: I. Synthesis of 
unsupported powders. Journal of Catalysis 1987, 106 (1), 125-133. 
23. Oyama, S. T., Chemistry of Transition Metal Carbides and Nitrides. Springer: 1996. 
24. Montéverdi, S.; Bettahar, M. M.; Bégin, D.; Maréché, F., Characteristics and 
hydrogenating properties of active carbon supported β-Mo2C. Fuel Processing Technology 
2002, 77-78 (Supplement C), 119-124. 
25. Wang, H.-M.; Wang, X.-H.; Zhang, M.-H.; Du, X.-Y.; Li, W.; Tao, K.-Y., Synthesis of 
Bulk and Supported Molybdenum Carbide by a Single-Step Thermal Carburization Method. 
Chemistry of Materials 2007, 19 (7), 1801-1807. 
26. Ribeiro, F. H.; Dalla Betta, R. A.; Guskey, G. J.; Boudart, M., Preparation and surface 
composition of tungsten carbide powders with high specific surface area. Chemistry of 
Materials 1991, 3 (5), 805-812. 
27. Claridge, J. B.; York, A. P. E.; Brungs, A. J.; Green, M. L. H., Study of the temperature-
programmed reaction synthesis of early transition metal carbide and nitride catalyst 
materials from oxide precursors. Chemistry of Materials 2000, 12 (1), 132-142. 
28. Oshikawa, K.; Nagai, M.; Omi, S., Characterization of molybdenum carbides for 
methane reforming by TPR, XRD, and XPS. The Journal of Physical Chemistry B 2001, 105 
(38), 9124-9131. 
29. Xiao, T.; Wang, H.; Da, J.; Coleman, K. S.; Green, M. L. H., Study of the preparation 
and catalytic performance of molybdenum carbide catalysts prepared with C2H2/H2 
carburizing mixture. Journal of Catalysis 2002, 211 (1), 183-191. 
30. Xiao, T.-C.; York, A. P. E.; Al-Megren, H.; Williams, C. V.; Wang, H.-T.; Green, M. L. 
H., Preparation and characterisation of bimetallic cobalt and molybdenum carbides. 
Journal of Catalysis 2001, 202 (1), 100-109. 
31. Wang, X.-H.; Hao, H.-L.; Zhang, M.-H.; Li, W.; Tao, K.-Y., Synthesis and 
characterization of molybdenum carbides using propane as carbon source. Journal of Solid 
State Chemistry 2006, 179 (2), 538-543. 
32. Xiang, M.; Li, D.; Li, W.; Zhong, B.; Sun, Y., Synthesis of higher alcohols from syngas 
over K/Co/β-Mo2C catalysts. Catalysis Communications 2007, 8 (3), 503-507. 
33. Bouchy, C.; Schmidt, I.; Anderson, J. R.; Jacobsen, C. J. H.; Derouane, E. G.; 
Derouane-Abd Hamid, S. B., Metastable fcc α-MoC1−x supported on HZSM5: preparation 
and catalytic performance for the non-oxidative conversion of methane to aromatic 
compounds. Journal of Molecular Catalysis A: Chemical 2000, 163 (1), 283-296. 
34. Zhu, Q.; Chen, Q.; Yang, X.; Ke, D., A new method for the synthesis of molybdenum 
carbide. Materials Letters 2007, 61 (29), 5173-5174. 
35. Bouchy, C.; Derouane-Abd Hamid, S. B.; Derouane, E. G., A new route to the 
metastable fcc molybdenum carbide α-MoC. Chemical Communications 2000,  (2), 125-
126. 
36. Kojima, R.; Aika, K.-i., Cobalt molybdenum bimetallic nitride catalysts for ammonia 
synthesis. Chemistry Letters 2000, 29 (5), 514-515. 
37. McKay, D.; Gregory, D. H.; Hargreaves, J. S. J.; Hunter, S. M.; Sun, X., Towards 
nitrogen transfer catalysis: reactive lattice nitrogen in cobalt molybdenum nitride. 
Chemical Communications 2007,  (29), 3051-3053. 
38. Newsam, J. M.; Jacobson, A. J.; McCandlish, L. E.; Polizzotti, R. S., The structures of 
the η-carbides Ni6Mo6C, Co6Mo6C, and Co6Mo6C2. Journal of Solid State Chemistry 1988, 75 
(2), 296-304. 



7  237 

39. Korlann, S.; Diaz, B.; Bussell, M. E., Synthesis of bulk and alumina-supported 
bimetallic carbide and nitride catalysts. Chemistry of Materials 2002, 14 (10), 4049-4058. 
40. Alconchel, S.; Sapina, F.; Martinez, E., From nitrides to carbides: topotactic synthesis 
of the η-carbides Fe3Mo3C and Co3Mo3C. Dalton Transactions 2004,  (16), 2463-2468. 
41. Wang, X.-H.; Zhang, M.-H.; Li, W.; Tao, K.-Y., Synthesis and characterization of 
cobalt–molybdenum bimetallic carbides catalysts. Catalysis Today 2008, 131 (1), 111-117. 
42. Xu, Y.; Bao, X.; Lin, L., Direct conversion of methane under nonoxidative conditions. 
Journal of Catalysis 2003, 216 (1), 386-395. 
43. Koerts, T.; Deelen, M. J. A. G.; van Santen, R. A., Hydrocarbon formation from 
methane by a low-temperature two-step reaction sequence. Journal of Catalysis 1992, 138 
(1), 101-114. 
44. Amariglio, H.; Saint-Just, J.; Amariglio, A., Homologation of methane under non-
oxidative conditions. Fuel Processing Technology 1995, 42 (2), 291-323. 
45. Amariglio, H.; Pareja, P.; Amariglio, A., Periodic operation of a catalyst as a means 
of overcoming a thermodynamic constraint. The case of methane homologation on metals. 
Catalysis Today 1995, 25 (2), 113-125. 
46. Amariglio, H., Belgued, M., Pareja, P., Amariglio, A., Oxygen-free conversion of 
methane to higher hydrocarbons through a dual-temperature two-step reaction sequence 
on platinum and ruthenium - 2. Removal of products at a fixed temperature. Journal of 
Catalysis 1998, 177 (1), 121-128. 
47. Guczi, L.; Sarma, K. V.; Borko, L., Non-oxidative methane coupling over Co-Pt/NaY 
bimetallic catalysts. Catalysis Letters 1996, 39 (1-2), 43-47. 
48. Koranne, M. M.; Goodman, D. W., Two-step, oxygen-free route to higher 
hydrocarbons from methane over ruthenium catalysts. In Methane and alkane conversion 
chemistry, Bhasin, M. M.; Slocum, D. W., Eds. Springer US: Boston, MA, 1995; pp 49-58. 
49. Solymosi, F.; Cserenyi, J., Enhanced formation of ethane in the conversion of 
methane over Cu-Rh/SiO2. Catalysis Letters 1995, 34 (3-4), 343-350. 
50. Wang, L., Tao, Longxiang, Xie, Maosong, Xu, Guifen, Huang, Jiasheng, Xu, Yide, 
Dehydrogenation and aromatization of methane under non-oxidizing conditions. Catalysis 
Letters 1993, 21 (1-2), 35-41. 
51. Chithambararaj, A.; Rajeswari Yogamalar, N.; Bose, A. C., Hydrothermally 
synthesized h-MoO3 and α-MoO3 nanocrystals: new findings on crystal-structure-
dependent charge transport. Crystal Growth & Design 2016, 16 (4), 1984-1995. 
52. Kihlborg, L., Least squares refinement of the crystal structure of molybdenum 
trioxide,. ArK. Kemi 1963, 21 (34), 357-364. 
53. Siciliano, T.; Tepore, A.; Filippo, E.; Micocci, G.; Tepore, M., Characteristics of 
molybdenum trioxide nanobelts prepared by thermal evaporation technique. Materials 
Chemistry and Physics 2009, 114 (2), 687-691. 
54. MS Shekhawat MC Rao; K Ravindranadh; Kasturi, A., Structural stoichiometry and 
phase transitions of MoO3 thin films for solid state microbatteries. 2: Research Journal of 
Recent Sciences, 2013; pp 67-73. 
55. Klinbumrung, A.; Thongtem, T.; Thongtem, S., Characterization of orthorhombic α-
MoO3 microplates produced by a microwave plasma process. J. Nanomaterials 2012, 2012, 
10-10. 
56. Bull, C. L.; Kawashima, T.; McMillan, P. F.; Machon, D.; Shebanova, O.; Daisenberger, 
D.; Soignard, E.; Takayama-Muromachi, E.; Chapon, L. C., Crystal structure and high-
pressure properties of γ-Mo2N determined by neutron powder diffraction and X-ray 
diffraction. Journal of Solid State Chemistry 2006, 179 (6), 1762-1767. 



7  238 

57. Suszko, T.; Gulbiński, W.; Jagielski, J., The role of surface oxidation in friction 
processes on molybdenum nitride thin films. Surface and Coatings Technology 2005, 194 
(2), 319-324. 
58. Hargreaves, J. S. J., Nitrides as ammonia synthesis catalysts and as potential 
nitrogen transfer reagents. Applied Petrochemical Research 2014, 4 (1), 3-10. 
59. McKay, D.; Hargreaves, J. S. J.; Rico, J. L.; Rivera, J. L.; Sun, X. L., The influence of 
phase and morphology of molybdenum nitrides on ammonia synthesis activity and 
reduction characteristics. Journal of Solid State Chemistry 2008, 181 (2), 325-333. 
60. Leclercq, L.; Imura, K.; Yoshida, S.; Barbee, T.; Boudart, M., Synthesis of new 
catalytic materials: metal carbides of the Group VI B elements. In Studies in surface science 
and catalysis, Delmon, B.; Grange, P.; Jacobs, P.; Poncelet, G., Eds. Elsevier: 1979; Vol. 3, pp 
627-639. 
61. Lander, J.; Germer, L., Transactions of the american institute of mining and 
metallurgical engineers 1947, 14. 
62. Roohi, P.; Alizadeh, R.; Fatehifar, E., Thermodynamic study and methanothermal 
temperature-programmed reaction synthesis of molybdenum carbide. International 
Journal of Minerals, Metallurgy, and Materials 2016, 23 (3), 339-347. 
63. Fries, R. J.; Kempter, C. P., 195. Dimolybdenum carbide. Analytical Chemistry 1960, 
32 (13), 1898-1898. 
64. Lee, J. S.; Locatelli, S.; Oyama, S. T.; Boudart, M., Molybdenum carbide catalysts 3. 
Turnover rates for the hydrogenolysis of n-butane. Journal of Catalysis 1990, 125 (1), 157-
170. 
65. Sathish, C. I.; Guo;, Y.; Wang;, X.; Tsujimoto, Y.; Li;, J.; Zhang;, S.; Matsushita, Y.; Shi;, 
Y.; Tian;, H.; Yang;, H.; Li;, J.; Yamaura, K., Superconducting and structural properties of 
.DELTA.-MoC0.681 cubic molybdenum carbide phase. Journal of Solid State Chemistry 
2012, 196, 579-585. 
66. Smith, G. W.; Ibers, J. A., The Crystal structure of cobalt molybdate, CoMoO4. Acta 
Cryst 1965, 269 (19). 
67. Sleight, A. W.; Chamberland, B. L., Transition metal molybdates of the type AMoO4. 
Inorganic Chemistry 1968, 7 (8), 1672-1675. 
68. Livage, C.; Hynaux, A.; Marrot, J.; Nogues, M.; Ferey, G., Solution process for the 
synthesis of the "high-pressure" phase CoMoO4 and X-ray single crystal resolution. Journal 
of Materials Chemistry 2002, 12 (5), 1423-1425. 
69. Eda, K.; Uno, Y.; Nagai, N.; Sotani, N.; Stanley Whittingham, M., Crystal structure of 
cobalt molybdate hydrate CoMoO4·nH2O. Journal of Solid State Chemistry 2005, 178 (9), 
2791-2797. 
70. Hargreaves, J. S. J.; McKay, D., A comparison of the reactivity of lattice nitrogen in 
Co3Mo3N and Ni2Mo3N catalysts. Journal of Molecular Catalysis A: Chemical 2009, 305 (1), 
125-129. 
71. Rico, J. L.; Ávalos-Borja, M.; Barrera, A.; Hargreaves, J. S. J., Template-free synthesis 
of CoMoO4 rods and their characterization. Materials Research Bulletin 2013, 48 (11), 4614-
4617. 
72. Karlsruhe, F. http://icsd.cds.rsc.org/viscalc/jsp/listView.action. 
73. Rodriguez, J. A.; Chaturvedi, S.; Hanson, J. C.; Albornoz, A.; Brito, J. L., Electronic 
properties and phase transformations in CoMoO4 and NiMoO4:  XANES and time-resolved 
synchrotron XRD studies. The Journal of Physical Chemistry B 1998, 102 (8), 1347-1355. 
74. Herrera, J. E.; Resasco, D. E., Role of Co−W interaction in the selective growth of 
single-walled carbon nanotubes from CO disproportionation. The Journal of Physical 
Chemistry B 2003, 107 (16), 3738-3746. 

http://icsd.cds.rsc.org/viscalc/jsp/listView.action


7  239 

75. Ding, Y.; Wan, Y.; Min, Y.-L.; Zhang, W.; Yu, S.-H., General Synthesis and Phase 
Control of Metal Molybdate Hydrates MMoO4·nH2O (M = Co, Ni, Mn, n = 0, 3/4, 1) 
Nano/Microcrystals by a Hydrothermal Approach: Magnetic, Photocatalytic, and 
Electrochemical Properties. Inorganic Chemistry 2008, 47 (17), 7813-7823. 
76. Alexander, A.-M.; Hargreaves, J. S. J., Alternative catalytic materials: carbides, 
nitrides, phosphides and amorphous boron alloys. Chemical Society Reviews 2010, 39 (11), 
4388-4401. 
77. Alconchel, S.; Sapina, F.; Beltran, D.; Beltran, A., Chemistry of interstitial 
molybdenum ternary nitrides MnMo3N (M=Fe, Co, n=3; M=Ni, n=2). Journal of Materials 
Chemistry 1998, 8 (8), 1901-1909. 
78. Perret, N.; Alexander, A.-M.; Hunter, S. M.; Chung, P.; Hargreaves, J. S. J.; Howe, R. 
F.; Keane, M. A., Synthesis, characterisation and hydrogenation performance of ternary 
nitride catalysts. Applied Catalysis A: General 2014, 488 (Supplement C), 128-137. 
79. Kojima, R.; Aika, K.-i., Cobalt molybdenum bimetallic nitride catalysts for ammonia 
synthesis: Part 3. Reactant gas treatment. Applied Catalysis A: General 2001, 219 (1), 157-
170. 
80. Jackson, S. K.; Layland, R. C.; zur Loye, H.-C., The simultaneous powder X-ray and 
neutron diffraction refinement of two η-carbide type nitrides, Fe3Mo3N and Co3Mo3N, 
prepared by ammonolysis and by plasma nitridation of oxide precursors. Journal of Alloys 
and Compounds 1999, 291 (1), 94-101. 
81. Gregory, D. H.; Hargreaves, J. S. J.; Hunter, S. M., On the regeneration of Co3Mo3N 
from Co6Mo6N with N2. Catalyst Letters 2011, 141 (1), 22-26. 
82. Erisman, J. W.; Sutton, M. A.; Galloway, J.; Klimont, Z.; Winiwarter, W., How a 
century of ammonia synthesis changed the world. Nature Geoscience 2008, 1, 636. 
83. Nørskov, J.; Chen, J.; Miranda, R.; Fitzsimmons, T.; Stack, R. Sustainable Ammonia 
Synthesis – Exploring the scientific challenges associated with discovering alternative, 
sustainable processes for ammonia production; ; US DOE Office of Science: 2016; p 
Medium: ED; Size: 33 p. 
84. Smith, B. E., Nitrogenase reveals its inner secrets. Science 2002, 297 (5587), 1654-
1655. 
85. Hardy, R. W. F., Biological nitrogen fixation. National Academy Press: Washington, 
D.C., 1994. 
86. Arvin Mosier; J. Keith Syers; Freney, J. R., Agriculture and the nitrogen cycle: 
assessing the impacts of fertilizer use on food production and the environment. Science: 
Island Press, 2013. 
87. Smil, V., Global Population and the Nitrogen Cycle. Scientific American 1997, 277 
(1), 76-81. 
88. Mathew, M.; Thaker, A., A Review of ammonia fuel cells. 2015. 
89. Gert-Jan Monteny; Hartung, E., Ammonia emissions in agriculture. Science: 
Wageningen Academic Publishers, the Netherlands, 2007; p 403. 
90. Kandemir, T.; Schuster, M. E.; Senyshyn, A.; Behrens, M.; Schlögl, R., The Haber–
Bosch Process Revisited: On the Real Structure and Stability of “Ammonia Iron” under 
Working Conditions. Angewandte Chemie International Edition 2013, 52 (48), 12723-
12726. 
91. Haber, F.; Rossignol, R. L., Über die technische Darstellung von Ammoniak aus den 
Elementen. Zeitschrift für Elektrochemie und angewandte physikalische Chemie 1913, 19 
(2), 53-72. 
92. Rayment, T.; Schlögl, R.; Thomas, J. M.; Ertl, G., Structure of the ammonia synthesis 
catalyst. Nature 1985, 315, 311. 



7  240 

93. Leigh, G. J., The world's greatest Fix: A history of nitrogen and agriculture. Science: 
Oxford University Press, USA, 2004; p 242. 
94. Mittasch, A. Catalytic agents and process of making them. 1916. 
95. Walas, S. M., Reaction kinetics for chemical engineers: butterworths series in 
chemical engineering. Butterworth-Heinemann: the USA, 2013. 
96. Aika, K.; Ozaki, A., Kinetics and isotope effect of ammonia synthesis over ruthenium. 
Journal of Catalysis 1970, 16 (1), 97-101. 
97. Ozaki, A., Development of alkali-promoted ruthenium as a novel catalyst for 
ammonia synthesis. Accounts of Chemical Research 1981, 14 (1), 16-21. 
98. Liu, H., Ammonia synthesis catalysts: innovation and practice. World Scientific: 
2013. 
99. Rhodes, A. K., New ammonia process, catalyst proven in Canadian plant. Oil and Gas 
Journal 1996, Medium: X; Size: pp. 37-41. 
100. McAulay, K.; Hargreaves, J. S. J.; McFarlane, A. R.; Price, D. J.; Spencer, N. A.; Bion, 
N.; Can, F.; Richard, M.; Greer, H. F.; Zhou, W. Z., The influence of pre-treatment gas 
mixture upon the ammonia synthesis activity of Co–Re catalysts. Catalysis Communications 
2015, 68, 53-57. 
101. King, D. A.; Sebba, F., The catalytic synthesis of ammonia over vanadium nitride 
containing oxygen: I. The reaction mechanism. Journal of Catalysis 1965, 4 (2), 253-259. 
102. Segal, N.; Sebba, F., Ammonia synthesis catalyzed by uranium nitride: II. The 
transient behavior. Journal of Catalysis 1967, 8 (2), 113-119. 
103. Kojima, R.; Aika, K.-i., Molybdenum nitride and carbide catalysts for ammonia 
synthesis. Applied Catalysis A: General 2001, 219 (1), 141-147. 
104. Jacobsen, C. J. H.; Dahl, S.; Clausen, B. S.; Bahn, S.; Logadottir, A.; Nørskov, J. K., 
Catalyst design by interpolation in the periodic table:  bimetallic ammonia synthesis 
catalysts. Journal of the American Chemical Society 2001, 123 (34), 8404-8405. 
105. Hunter, S. M.; Gregory, D. H.; Hargreaves, J. S. J.; Richard, M.; Duprez, D.; Bion, N., 
A study of 15N/14N isotopic exchange over cobalt molybdenum nitrides. ACS Catalysis 
2013, 3 (8), 1719-1725. 
106. Zeinalipour-Yazdi, C. D.; Hargreaves, J. S. J.; Catlow, C. R. A., Nitrogen activation in 
a Mars–van Krevelen mechanism for ammonia synthesis on Co3Mo3N. The Journal of 
Physical Chemistry C 2015, 119 (51), 28368-28376. 
107. Zeinalipour-Yazdi, C. D.; Hargreaves, J. S. J.; Catlow, C. R. A., DFT-D3 study of 
molecular N2 and H2 activation on Co3Mo3N surfaces. The Journal of Physical Chemistry C 
2016, 120 (38), 21390-21398. 
108. Kojima, R.; Aika, K., Cobalt molybdenum bimetallic nitride catalysts for ammonia 
synthesis: Part 2. Kinetic study. Applied Catalysis A: General 2001, 218 (1), 121-128. 
109. Kojima, R.; Aika, K., Rhenium containing binary catalysts for ammonia synthesis. 
Applied Catalysis A: General 2001, 209 (1), 317-325. 
110. Wang, X. H.; Zhang, M. H.; Li, W.; Tao, K. Y., A simple synthesis route and 
characterisation of Co3Mo3C. Dalton Transactions 2007,  (44), 5165-5170. 
111. Fu, X.; Su, H.; Yin, W.; Huang, Y.; Gu, X., Bimetallic molybdenum nitride Co3Mo3N: a 
new promising catalyst for CO2 reforming of methane. Catalysis Science & Technology 2017, 
7 (8), 1671-1678. 
112. Abbas, H. F.; Wan Daud, W. M. A., Hydrogen production by methane 
decomposition: A review. International Journal of Hydrogen Energy 2010, 35 (3), 1160-
1190. 
113. Holladay, J. D.; Hu, J.; King, D. L.; Wang, Y., An overview of hydrogen production 
technologies. Catalysis Today 2009, 139 (4), 244-260. 



7  241 

114. Li, Y.; Li, D.; Wang, G., Methane decomposition to COx-free hydrogen and nano-
carbon material on group 8–10 base metal catalysts: A review. Catalysis Today 2011, 162 
(1), 1-48. 
115. Abánades, A.; Rubbia, C.; Salmieri, D., Thermal cracking of methane into Hydrogen 
for a CO2-free utilization of natural gas. International Journal of Hydrogen Energy 2013, 38 
(20), 8491-8496. 
116. Amin, A. M.; Croiset, E.; Epling, W., Review of methane catalytic cracking for 
hydrogen production. International Journal of Hydrogen Energy 2011, 36 (4), 2904-2935. 
117. Solymosi, F.; Erdöhelyi, A.; Cserényi, J., A comparative study on the activation and 
reactions of CH4 on supported metals. Catalyst Letters 1992, 16 (4), 399-405. 
118. Choudhary, T. V.; Aksoylu, E.; Goodman, D. W., Nonoxidative activation of methane. 
Catalysis Reviews-Science and Engineering 2003, 45 (1), 151-203. 
119. Lunsford, J. H., Catalytic conversion of methane to more useful chemicals and fuels: 
a challenge for the 21st century. Catalysis Today 2000, 63 (2), 165-174. 
120. Brungs, A. J.; York, A. P. E.; Claridge, J. B.; Márquez-Alvarez, C.; Green, M. L. H., Dry 
reforming of methane to synthesis gas over supported molybdenum carbide catalysts. 
Catalyst Letters 2000, 70 (3), 117-122. 
121. Wang, S.; Lu, G. Q.; Millar, G. J., Carbon dioxide reforming of methane to produce 
synthesis gas over metal-supported catalysts:  state of the art. Energy & Fuels 1996, 10 (4), 
896-904. 
122. Freni, S.; Calogero, G.; Cavallaro, S., Hydrogen production from methane through 
catalytic partial oxidation reactions. Journal of Power Sources 2000, 87 (1), 28-38. 
123. Halabi, M. H.; de Croon, M. H. J. M.; van der Schaaf, J.; Cobden, P. D.; Schouten, J. 
C., Modeling and analysis of autothermal reforming of methane to hydrogen in a fixed bed 
reformer. Chemical Engineering Journal 2008, 137 (3), 568-578. 
124. Dias, J. A. C.; Assaf, J. M., Autothermal reforming of methane over Ni/γ-Al2O3 
catalysts: the enhancement effect of small quantities of noble metals. Journal of Power 
Sources 2004, 130 (1), 106-110. 
125. Konieczny, A.; Mondal, K.; Wiltowski, T.; Dydo, P., Catalyst development for 
thermocatalytic decomposition of methane to hydrogen. International Journal of Hydrogen 
Energy 2008, 33 (1), 264-272. 
126. Ahmed, S.; Aitani, A.; Rahman, F.; Al-Dawood, A.; Al-Muhaish, F., Decomposition of 
hydrocarbons to hydrogen and carbon. Applied Catalysis A: General 2009, 359 (1–2), 1-24. 
127. Muradov, N. Z.; Veziroǧlu, T. N., From hydrocarbon to hydrogen–carbon to 
hydrogen economy. International Journal of Hydrogen Energy 2005, 30 (3), 225-237. 
128. Ermakova, M. A.; Ermakov, D. Y.; Kuvshinov, G. G., Effective catalysts for direct 
cracking of methane to produce hydrogen and filamentous carbon: Part I. Nickel catalysts. 
Applied Catalysis A: General 2000, 201 (1), 61-70. 
129. Avdeeva, L. B.; Kochubey, D. I.; Shaikhutdinov, S. K., Cobalt catalysts of methane 
decomposition: accumulation of the filamentous carbon. Applied Catalysis A: General 1999, 
177 (1), 43-51. 
130. Ermakova, M. A.; Ermakov, D. Y.; Kuvshinov, G. G.; Plyasova, L. M., New nickel 
catalysts for the formation of filamentous carbon in the reaction of methane 
decomposition. Journal of Catalysis 1999, 187 (1), 77-84. 
131. Alharthi, A.; Blackley, R. A.; Flowers, T. H.; Hargreaves, J. S. J.; Pulford, I. D.; Wigzell, 
J.; Zhou, W., Iron ochre – a pre-catalyst for the cracking of methane. Journal of Chemical 
Technology and Biotechnology 2014, 89 (9), 1317-1323. 
132. Takenaka, S.; Serizawa, M.; Otsuka, K., Formation of filamentous carbons over 
supported Fe catalysts through methane decomposition. Journal of Catalysis 2004, 222 (2), 
520-531. 



7  242 

133. Chaturbedy, P.; Ahamed, M.; Eswaramoorthy, M., Oxidative dehydrogenation of 
propane over a high surface area boron nitride catalyst: exceptional selectivity for olefins 
at high conversion. ACS Omega 2018, 3 (1), 369-374. 
134. Vojvodic, A.; Hellman, A.; Ruberto, C.; Lundqvist, B. I., From electronic structure to 
catalytic activity: a single descriptor for adsorption and reactivity on transition-metal 
carbides. Physical Review Letters 2009, 103 (14), 146103. 
135. Weller, S.; Hofer, L. J. E.; Anderson, R. B., The role of bulk cobalt carbide in the 
Fischer—Tropsch synthesis. Journal of the American Chemical Society 1948, 70 (2), 799-
801. 
136. Ordomsky, V. V.; Legras, B.; Cheng, K.; Paul, S.; Khodakov, A. Y., The role of carbon 
atoms of supported iron carbides in Fischer-Tropsch synthesis. Catalysis Science & 
Technology 2015, 5 (3), 1433-1437. 
137. Vo, D.-V. N.; Adesina, A. A., Evaluation of promoted Mo carbide catalysts for Fischer-
Tropsch synthesis: synthesis, characterisation, and time-on-stream behaviour. In Synthetic 
Liquids Production and Refining, American Chemical Society: 2011; Vol. 1084, pp 155-184. 
138. Kojima, I.; Miyazaki, E.; Inoue, Y.; Yasumori, I., Catalysis by transition metal carbides: 
IV. Mechanism of ethylene hydrogenation and the nature of active sites on tantalum 
monocarbide. Journal of Catalysis 1982, 73 (1), 128-135. 
139. Lee, J. S.; Yeom, M. H.; Park, K. Y.; Nam, I.-S.; Chung, J. S.; Kim, Y. G.; Moon, S. H., 
Preparation and benzene hydrogenation activity of supported molybdenum carbide 
catalysts. Journal of Catalysis 1991, 128 (1), 126-136. 
140. Perret, N.; Wang, X.; Delannoy, L.; Potvin, C.; Louis, C.; Keane, M. A., Enhanced 
selective nitroarene hydrogenation over Au supported on β-Mo2C and β-Mo2C/Al2O3. 
Journal of Catalysis 2012, 286, 172-183. 
141. Jiang, J.; Liu, Q.; Zeng, C.; Ai, L., Cobalt/molybdenum carbide@N-doped carbon as a 
bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. Journal of 
Materials Chemistry A 2017, 5 (32), 16929-16935. 
142. Choi, J.-G., Ammonia decomposition over vanadium carbide catalysts. Journal of 
Catalysis 1999, 182 (1), 104-116. 
143. AlShibane, I.; Daisley, A.; Hargreaves, J. S. J.; Hector, A. L.; Laassiri, S.; Rico, J. L.; 
Smith, R. I., The role of composition for cobalt molybdenum carbide in ammonia synthesis. 
ACS Sustainable Chemistry & Engineering 2017, 5 (10), 9214-9222. 
144. AlShibane, I.; Hargreaves, J. S. J.; Hector, A. L.; Levason, W.; McFarlane, A., Synthesis 
and methane cracking activity of a silicon nitride supported vanadium nitride nanoparticle 
composite. Dalton Transactions 2017, 46 (27), 8782-8787. 
145. Izhar, S.; Kanesugi, H.; Tominaga, H.; Nagai, M., Cobalt molybdenum carbides: 
Surface properties and reactivity for methane decomposition. Applied Catalysis A: General 
2007, 317 (1), 82-90. 
146. Argyle, M.; Bartholomew, C., Heterogeneous catalyst deactivation and 
regeneration: a review. Catalysts 2015, 5 (1), 145. 
147. Figueiredo, J. L. In Carbon formation and gasification on nickel, Dordrecht, Springer 
Netherlands: Dordrecht, 1982; pp 45-63. 
148. Denny, P. J.; Twigg, M. V., Factors determining the life of industrial heterogeneous 
catalysts. In Studies in surface science and catalysis, Delmon, B.; Froment, G. F., Eds. 
Elsevier: 1980; Vol. 6, pp 577-599. 
149. Bartholomew, C. H., Catalyst deactivation. Chemistry and Engineering 1984, 91, 96-
112. 
150. Hughes, R., Deactivation of catalysts. London, UK, 1984. 
151. Oudar, J.; Wise, H., Deactivation and poisoning of catalysts. Marcel Dekker: New 
York, NY, 1985. 



7  243 

152. Butt, J. B.; Petersen, E. E., Activation, deactivation, and poisoning of catalysts. 
Academic Press: San Diego, CA, USA, 1988. 
153. Zhang, Y.; Smith, K. J., Carbon formation thresholds and catalyst deactivation during 
CH4 decomposition on supported Co and Ni catalysts. Catalyst Letters 2004, 95 (1), 7-12. 
154. Bartholomew, C. H., Mechanisms of catalyst deactivation. Applied Catalysis A: 
General 2001, 212 (1), 17-60. 
155. Abbas, H. F.; Daud, W. M. A. W., Thermocatalytic decomposition of methane for 
hydrogen production using activated carbon catalyst: Regeneration and characterization 
studies. International Journal of Hydrogen Energy 2009, 34 (19), 8034-8045. 
156. Shekhawat, D.; Spivey, J. J.; Berry, D. A.; Gardner, T. H., "Catalytic reforming of liquid 
hydrocarbon fuel cell applications" Catalysis. Royal Society of Chemistry: USA, 2006; Vol. 
19, p 186-257 pages. 
157. Marks, N. A.; McKenzie, D. R.; Pailthorpe, B. A.; Bernasconi, M.; Parrinello, M., 
Microscopic structure of tetrahedral amorphous carbon. Physical Review Letters 1996, 76 
(5), 768-771. 
158. Lau, A. K.-T.; Hui, D., The revolutionary creation of new advanced materials—carbon 
nanotube composites. Composites Part B: Engineering 2002, 33 (4), 263-277. 
159. Iijima, S., Helical microtubules of graphitic carbon. Nature 1991, 354, 56. 
160. Rafique, M. M. A.; Iqbal, J., Production of carbon nanotubes by different routes-a 
review. Journal of Encapsulation and Adsorption Sciences 2011, Vol.01No.02, 6. 
161. Yellampalli, S., Carbon nanotubes-polymer nanocomposites. InTech 2011, 978-953 
(307), 498-6. 
162. Jin, Y.; Wang, G.; Li, Y., Catalytic growth of high quality single-walled carbon 
nanotubes over a Fe/MgO catalyst derived from a precursor containing Feitknecht 
compound. Applied Catalysis A: General 2012, 445-446, 121-127. 
163. Donaldson, K.; Aitken, R.; Tran, L.; Stone, V.; Duffin, R.; Forrest, G.; Alexander, A., 
Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and 
workplace safety. Toxicological Sciences 2006, 92 (1), 5-22. 
164. Saifuddin, N.; Raziah, A. Z.; Junizah, A. R., Carbon nanotubes: a review on structure 
and their interaction with proteins. Journal of Chemistry 2013, 2013, 18. 
165. Ying, L. S.; bin Mohd Salleh, M. A.; b. Mohamed Yusoff, H.; Abdul Rashid, S. B.; b. 
Abd. Razak, J., Continuous production of carbon nanotubes – A review. Journal of Industrial 
and Engineering Chemistry 2011, 17 (3), 367-376. 
166. Tessonnier, J.-P.; Su, D. S., Recent progress on the growth mechanism of carbon 
nanotubes: a review. ChemSusChem 2011, 4 (7), 824-847. 
167. Thess, A.; Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y. H.; Kim, S. 
G.; Rinzler, A. G.; Colbert, D. T.; Scuseria, G. E.; Tománek, D.; Fischer, J. E.; Smalley, R. E., 
Crystalline ropes of metallic carbon nanotubes. Science 1996, 273 (5274), 483-487. 
168. Terrones, M.; Terrones, H.; Grobert, N.; Hsu, W. K.; Zhu, Y. Q.; Hare, J. P.; Kroto, H. 
W.; Walton, D. R. M.; Kohler-Redlich, P.; Rühle, M.; Zhang, J. P.; Cheetham, A. K., Efficient 
route to large arrays of CNx nanofibers by pyrolysis of ferrocene/melamine mixtures. 
Applied Physics Letters 1999, 75 (25), 3932-3934. 
169. Ren, Z. F.; Huang, Z. P.; Xu, J. W.; Wang, J. H.; Bush, P.; Siegal, M. P.; Provencio, P. 
N., Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 1998, 282 
(5391), 1105-1107. 
170. Li, W. Z.; Xie, S. S.; Qian, L. X.; Chang, B. H.; Zou, B. S.; Zhou, W. Y.; Zhao, R. A.; Wang, 
G., Large-scale synthesis of aligned carbon nanotubes. Science 1996, 274 (5293), 1701-
1703. 



7  244 

171. Fan, S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H., Self-
oriented regular arrays of carbon nanotubes and their field emission properties. Science 
1999, 283 (5401), 512-514. 
172. Takenaka, S.; Kobayashi, S.; Ogihara, H.; Otsuka, K., Ni/SiO2 catalyst effective for 
methane decomposition into hydrogen and carbon nanofiber. Journal of Catalysis 2003, 
217 (1), 79-87. 
173. Chen, X.; Wang, R.; Xu, J.; Yu, D., TEM investigation on the growth mechanism of 
carbon nanotubes synthesized by hot-filament chemical vapor deposition. Micron 2004, 35 
(6), 455-460. 
174. Moshkalev, S. A.; Verissimo, C., Nucleation and growth of carbon nanotubes in 
catalytic chemical vapor deposition. Journal of Applied Physics 2007, 102 (4), 044303. 
175. Kumar, M.; Ando, Y., Chemical vapor deposition of carbon nanotubes: a review on 
growth mechanism and mass production. Journal of Nanoscience and Nanotechnology 
2010, 10 (6), 3739-3758. 
176. Baker, R. T. K., Catalytic growth of carbon filaments. Carbon 1989, 27 (3), 315-323. 
177. Kumar, M., Carbon nanotube synthesis and growth mechanism. In Carbon 
nanotubes - synthesis, characterization, applications, Yellampalli, S., Ed. InTech: Rijeka, 
2011; p Ch. 08. 
178. Rodriguez, N. M., A review of catalytically grown carbon nanofibers. Journal of 
Materials Research 2011, 8 (12), 3233-3250. 
179. Rodriguez, N. M.; Chambers, A.; Baker, R. T. K., Catalytic engineering of carbon 
nanostructures. Langmuir 1995, 11 (10), 3862-3866. 
180. Han, F.-D.; Yao, B.; Bai, Y.-J., Preparation of carbon nano-onions and their 
application as anode materials for rechargeable lithium-ion batteries. The Journal of 
Physical Chemistry C 2011, 115 (18), 8923-8927. 
181. Iijima, S., Direct observation of the tetrahedral bonding in graphitized carbon black 
by high resolution electron microscopy. Journal of Crystal Growth 1980, 50 (3), 675-683. 
182. He, C.; Zhao, N.; Shi, C.; Du, X.; Li, J., Carbon nanotubes and onions from methane 
decomposition using Ni/Al catalysts. Materials Chemistry and Physics 2006, 97 (1), 109-115. 
183. He, C. N.; Shi, C. S.; Du, X. W.; Li, J. J.; Zhao, N. Q., TEM investigation on the initial 
stage growth of carbon onions synthesized by CVD. Journal of Alloys and Compounds 2008, 
452 (2), 258-262. 
184. Sandford, S. A.; Salama, F.; Allamandola, L. J.; Trafton, L. M.; Lester, D. F.; Ramseyer, 
T. F., Laboratory studies of the newly discovered infrared band at 4705.2 cm−1 (2.1253 μm) 
in the spectrum of Io: The tentative identification of CO2. Icarus 1991, 91 (1), 125-144. 
185. Asscher, M.; Kao, C. T.; Somorjai, G. A., High-resolution electron energy loss 
spectroscopic study of carbon dioxide adsorbed on rhenium(0001). The Journal of Physical 
Chemistry 1988, 92 (10), 2711-2714. 
186. Witko, M., Oxidation of hydrocarbons on transition metal oxide catalysts — 
quantum chemical studies. Journal of Molecular Catalysis 1991, 70 (3), 277-333. 
187. Ruiz Puigdollers, A.; Schlexer, P.; Tosoni, S.; Pacchioni, G., Increasing oxide 
reducibility: the role of metal/oxide interfaces in the formation of oxygen vacancies. ACS 
Catalysis 2017, 7 (10), 6493-6513. 
188. Livneh, T.; Haslett, T. L.; Moskovits, M., Distinguishing disorder-induced bands from 
allowed Raman bands in graphite. Physical Review B 2002, 66 (19), 195110. 
189. Li, C.; Sakata, Y.; Arai, T.; Domen, K.; Maruya, K.-i.; Onishi, T., Carbon monoxide and 
carbon dioxide adsorption on cerium oxide studied by Fourier-transform infrared 
spectroscopy. Part 1.-Formation of carbonate species on dehydroxylated CeO2, at room 
temperature. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry 
in Condensed Phases 1989, 85 (4), 929-943. 



7  245 

190. Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A., Raman spectroscopy of 
carbon nanotubes. Physics Reports 2005, 409 (2), 47-99. 
191. Ferrari, A. C.; Meyer, J.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, 
S.; Jiang, D.; Novoselov, K.; Roth, S., Raman spectrum of graphene and graphene layers. 
Physical review letters 2006, 97 (18), 187401. 
192. Pinilla, J. L.; Suelves, I.; Lázaro, M. J.; Moliner, R., Kinetic study of the thermal 
decomposition of methane using carbonaceous catalysts. Chemical Engineering Journal 
2008, 138 (1), 301-306. 
193. Nemanich, R. J.; Solin, S. A., First- and second-order Raman scattering from finite-
size crystals of graphite. Physical Review B 1979, 20 (2), 392-401. 
194. Antunes, E. F.; Lobo, A. O.; Corat, E. J.; Trava-Airoldi, V. J.; Martin, A. A.; Veríssimo, 
C., Comparative study of first- and second-order Raman spectra of MWCNT at visible and 
infrared laser excitation. Carbon 2006, 44 (11), 2202-2211. 
195. Farrusseng, D.; Schlichte, K.; Spliethoff, B.; Wingen, A.; Kaskel, S.; Bradley, J. S.; 
Schüth, F., Pore-size engineering of silicon imido nitride for catalytic applications. 
Angewandte Chemie International Edition 2001, 40 (22), 4204-4207. 
196. Bradley, J. S.; Vollmer, O.; Rovai, R.; Specht, U.; Lefebvre, F., High surface area silicon 
imidonitrides: a new class of microporous solid base. Advanced Materials 1998, 10 (12), 
938-942. 
197. Kurzina, I.; Cadete Santos Aires, F. J.; Bergeret, G.; Bertolini, J. C., Total oxidation of 
methane over Pd catalysts supported on silicon nitride: Influence of support nature. 
Chemical Engineering Journal 2005, 107 (1), 45-53. 
198. Balan, C.; Völger, K. W.; Kroke, E.; Riedel, R., Viscoelastic properties of novel silicon 
carbodiimide gels. Macromolecules 2000, 33 (9), 3404-3408. 
199. Sardar, K.; Bounds, R.; Carravetta, M.; Cutts, G.; Hargreaves, J. S. J.; Hector, A. L.; 
Hriljac, J. A.; Levason, W.; Wilson, F., Sol-gel preparation of low oxygen content, high 
surface area silicon nitride and imidonitride materials. Dalton Transactions 2016, 45 (13), 
5765-5774. 
200. Hector, A. L., Materials synthesis using oxide free sol-gel systems. Chemical Society 
Reviews 2007, 36 (11), 1745-1753. 
201. Hassan, S.; Hector, A. L.; Kalaji, A., Sol-gel processing of silicon nitride films from 
Si(NHMe)4 and ammonia. Journal of Materials Chemistry 2011, 21 (17), 6370-6374. 
202. Rovai, R.; Lehmann, C. W.; Bradley, J. S., Non-oxide sol–gel chemistry: preparation 
from tris(dialkylamino)silazanes of a carbon-free, porous, silicon diimide gel. Angewandte 
Chemie International Edition 1999, 38 (13-14), 2036-2038. 
203. Cheng, F.; Kelly, S. M.; Clark, S.; Bradley, J. S.; Baumbach, M.; Schütze, A., 
Preparation and characterization of a supported Si3N4 membrane via a non-aqueous sol–
gel process. Journal of Membrane Science 2006, 280 (1), 530-535. 
204. Hassan, S.; Hector, A. L.; Hyde, J. R.; Kalaji, A.; Smith, D. C., A non-oxide sol-gel route 
to synthesise silicon imidonitride monolithic gels and high surface area aerogels. Chemical 
Communications 2008,  (42), 5304-5306. 
205. Hargreaves, J. S. J., Heterogeneous catalysis with metal nitrides. Coordination 
Chemistry Reviews 2013, 257 (13), 2015-2031. 
206. Spivey, J. J.; Dooley, K. M., Catalysts. Technology & Engineering: 2007. 
207. Neylon, M.; Choi, S.; Kwon, H.; Curry, K.; Thompson, L., Catalytic properties of early 
transition metal nitrides and carbides: n-butane hydrogenolysis, dehydrogenation and 
isomerization. Applied Catalysis A: General 1999, 183 (2), 253-263. 
208. Neylon, M. K.; Bej, S. K.; Bennett, C. A.; Thompson, L. T., Ethanol amination catalysis 
over early transition metal nitrides. Applied Catalysis A: General 2002, 232 (1), 13-21. 



7  246 

209. Krawiec, P.; De Cola, P. L.; Gläser, R.; Weitkamp, J.; Weidenthaler, C.; Kaskel, S., 
Oxide foams for the synthesis of high-surface-area vanadium nitride catalysts. Advanced 
Materials 2006, 18 (4), 505-508. 
210. Oyama, S. T., Kinetics of ammonia decomposition on vanadium nitride. Journal of 
Catalysis 1992, 133 (2), 358-369. 
211. Cheng, F.; Kelly, S. M.; Lefebvre, F.; Clark, S.; Supplit, R.; Bradley, J. S., Preparation 
of a mesoporous silicon aluminium nitride via a non-aqueous sol-gel route. Journal of 
Materials Chemistry 2005, 15 (7), 772-777. 
212. Cheng, F.; Kelly, S. M.; Clark, S.; Young, N. A.; Archibald, S. J.; Bradley, J. S.; Lefebvre, 
F., ammonothermal synthesis of a mesoporous Si−Ti−N composite material from a single-
source precursor. Chemistry of Materials 2005, 17 (22), 5594-5602. 
213. Cheng, F.; Archibald, S. J.; Clark, S.; Toury, B.; Kelly, S. M.; Bradley, J. S.; Lefebvre, F., 
Preparation of mesoporous silicon boron imide gels from single-source precursors via a 
nonaqueous sol−gel route. Chemistry of Materials 2003, 15 (24), 4651-4657. 
214. Hassan, S.; Carravetta, M.; Hector, A. L.; Stebbings, L. A., Nonoxide sol–gel synthesis 
of terbium-doped silicon nitride phosphors. Journal of the American Ceramic Society 2010, 
93 (4), 1069-1073. 
215. Cheng, F.; Kelly, S. M.; Young, N. A.; Clark, S.; Francesconi, M. G.; Lefebvre, F.; 
Bradley, J. S., General method of preparation of mesoporous M/Si3N4 nano-composites via 
a non-aqueous sol-gel route. Chemical Communications 2005,  (45), 5662-5664. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



8  247 

 

8 Appendix 

Appendix 1 
 
The Rietveld refinement equations were used in GSAS and EXPGUI software  
 
  

                                                   t = 505.56 L sin 𝜃 d    or      d = 
1.977 ×10−3

𝐿 sin 𝜃
 t    

 
where t is the total time of flight (µs); L is the total flight path from moderator to sample to 
detector (m); d is the interplanar spacing (Å); and θ is half the Bragg scattering angle (2θ). 
 
 
 

𝑦𝑖
𝑐 = s ∑ 𝐿𝑘

𝑖

𝐹𝑘
2 𝜑 (2𝜃𝑖 − 2𝜃𝑘)𝑃𝑘𝐴 + 𝑦𝑖

𝑏 

 
where 𝑦𝑖

𝑐 is calculated intensity at point i; s is phase scale factor; k is miller indicies (hkl); 
𝐿𝑘 is contains Lorentz, polarisation and multiplicity factors; ϕ is profile function; 𝑃𝑘 is 
preferred orientation; A is absorption factor; 𝐹𝑘 is structure factor for the 𝐾𝑡ℎ Bragg peak; 

𝑦𝑖
𝑏 is background intensity at point i. 

 

                                                       M = ∑ 𝑊𝑖𝑖  (𝑦𝑖
𝑜 −  

1

𝑐
𝑦𝑖

𝑐) 

 
where M is the residual difference between a calculated profile and the observed data; 𝑊𝑖 
is the statistical weight; c is overall scale factor. 
 

                                                           Rp =
∑ (𝑦𝑖

𝑜
𝑖 − 𝑦𝑖

𝑐)

∑ 𝑦𝑖
𝑜

𝑖
 

 
where Rp is profile factor,  𝑦𝑜 is observed intensity, 𝑦𝑐 is calculated intensity  
 

                                                            Rexp = √
(𝑁−𝐶+𝑃)

∑ 𝑊𝑖𝑖  (𝑦𝑖
𝑜)2

 

where N is number of observations; P is number of refinable parameters; c is number of 

constraints and 𝑊𝑖 = 
1

𝑦𝑜𝑖
 . 

 

                                                              Rwp = √
∑ 𝑤𝑖 (𝑦𝑖

𝑜− 𝑦𝑖
𝑐)2

𝑖

∑ 𝑊𝑖(𝑖 𝑦𝑖
𝑜)2

 

 

                                                          X2 = (
𝑅𝑤𝑝

𝑅𝑒𝑥𝑝
)2 = (

∑ 𝑊𝑖(𝑦𝑖
𝑜− 𝑦𝑖

𝑐)𝑖

𝑁−𝐶−𝑃
)

2

 

 
For a goodness fit X2 is equal to 1, however commonly a value less than 5 can be considered 
as a good fit.  
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Appendix 2 
Table 8.2-1: Evolution of the C/N occupancy of the 16c Wyckoff lattice site in Co3Mo3N as a function of 
reaction at different temperature with 60 ml min−1 of 20 vol. % CH4 in H2. Fractional nitrogen and carbon 
content as determined from the Rietveld refinement against in-situ powder neutron diffraction data. 

T/ °C 
 

Phase 
 

N % 
(16c) 

C % 
(16c) 

a (Å) 
 

% 
331N 

% 
331C 

RT 331N 1.019  11.027 100 0 

17-23 331N 1.035  11.029 100 0 

24-43 331N 1.008  11.028 100 0 

44-67 331N 1.033  11.031 100 0 

67-90 331N 1.036  11.033 100 0 

92-121 331N 1.042  11.037 100 0 

122-157 331N 1.011  11.038 100 0 

159-205 331N 0.998  11.042 100 0 

207-263 331N 1.007  11.050 100 0 

266-331 331N 1.043  11.058 100 0 

334-413 331N>+331C 0.975 0.025 11.070 97.50 2.50 

418-519 331N>+331C 0.883 0.117 11.077 88.27 11.73 

522-580 331N>+331C 0.794 0.206 11.091 79.41 20.59 

582-632 331N<+331C 0.152 0.848 11.131 15.24 84.76 

634-679 331N<+331C 0.032 0.968 11.142 3.20 96.80 

680-684 331C  1.096 11.145 0 100 

685-685 331C  0.983 11.145 0 100 

685-695 331C  0.981 11.145 0 100 

700 °C 331C  0.949 11.145 0 100 

 

 

 

 

 

 

 

 

 



8  249 

Table 8.2-2: analysis of phase fractions of Co6Mo6N and Co3Mo3C present during the reaction. 

T/ °C 
 

Phase 
 

661N % 
(8a) 

331C % 
(16c) 

661a 
(Å) 

331a 
 (Å) 

Phase 
fraction % 
661N 

Phase 
fraction % 
331C 

RT 661N 1.024  10.881  100 0 

17-23 661N 1.079  10.883  100 0 

24-41 661N 0.964  10.885  100 0 

42-68 661N 1.013  10.886  100 0 

69-98 661N 0.919  10.891  100 0 

100-132 661N 1.009  10.892  100 0 

134-171 661N 1.016  10.895  100 0 

173-219 661N 1.128  10.899  100 0 

221-278 661N 1.074  10.908  100 0 

280-347 661N 1.007  10.912  100 0 

350-428 661N 1.150  10.924  100 0 

433-513 661N 0.950  10.931  100 0 

516-572 661N 0.986  10.940  100 0 

574-626 661N 0.974  10.950  100 0 

628-678 331C>661N 0.967 1.033 10.952 11.119 20.91 79.09 

680-728 331C  0.994  11.134 0 100 
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Table 8.2-3: analysis of phase fractions of Co3Mo3N and Co6Mo6N present during the reaction. 

T/ °C 
 

Time 
/min 

Phase 
 

331N % 
(16c) 

661N % 
(8a) 

331a 
(Å) 

661a 
(Å) 

Phase 
Fraction% 
331N 

Phase 
Fraction% 
661N 

37-41  331N 0.853  11.039  100.00 0 

42-67  331N 0.861  11.040  100.00 0 

68-95  331N 0.845  11.041  100.00 0 

96-119  331N 0.863  11.043  100.00 0 

121-151  331N 0.855  11.048  100.00 0 

152-188  331N 0.858  11.051  100.00 0 

190-239  331N 0.886  11.056  100.00 0 

242-301  331N 0.859  11.064  100.00 0 

304-373  331N 0.850  11.072  100.00 0 

376-439  331N 0.856  11.081  100.00 0 

441-496  331N 0.842  11.089  100.00 0 

498-549  331N 0.808  11.095  100.00 0 

551-600  331N 0.811  11.104  100.00 0 

602-650  331N 0.791  11.115  100.00 0 

701-748  331N 0.767  11.133  100.00 0 

750-812  331N 0.746  11.143  100.00 0 

814-839 10 m 331N 0.746  11.143  100.00 0 

839-825 20 331N>661N 0.764 1.236 11.152 10.994 96.33 3.67 

824-822 30 331N>661N 0.754 1.246 11.151 10.986 90.59 9.41 

822-822 40 331N>661N 0.801 1.199 11.152 10.989 86.66 13.34 

822-822 50 331N>661N 0.761 1.239 11.154 10.987 81.29 18.71 

822-822 60 331N>661N 0.807 1.193 11.154 10.989 79.02 20.98 

822-822 70 331N>661N 0.751 1.249 11.154 10.989 75.61 24.39 

822-822 80 331N>661N 1.008 0.908 11.153 10.985 68.72 31.28 

822-821 90 331N>661N 0.780 1.220 11.156 10.985 67.50 32.50 

821-821 100 331N>661N 1.097 0.903 11.155 10.986 66.67 33.33 

821-821 110 331N>661N 0.769 1.231 11.159 10.986 64.75 35.25 

821-821 120 331N>661N 0.746 1.254 11.156 10.988 64.75 35.25 

821-820 130 661N>331N 0.746 1.254 11.159 10.987 63.38 36.62 

820-820 140 661N>331N 0.741 1.259 11.158 10.987 60.39 39.61 

820-819 150 661N>331N 0.792 1.208 11.160 10.987 58.27 41.73 

819-819 160 661N>331N 0.734 1.266 11.159 10.988 59.71 40.29 

819-819 170 661N>331N 0.797 1.203 11.160 10.987 58.62 41.38 

819-818 180 661N>331N 0.838 1.162 11.161 10.986 55.24 44.76 

818-818 190 661N>331N 0.811 1.189 11.162 10.987 53.58 46.42 

817-817 200 661N>331N 0.789 1.211 11.162 10.988 53.74 46.26 

817-816 210 661N>331N 0.861 1.239 11.160 10.988 53.32 46.68 

816-815 220 661N>331N 0.913 1.087 11.162 10.987 51.37 48.63 

433-394  661N>331N 0.895 1.105 11.118 10.943 46.81 53.19 
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Table 8.2-4: analysis of phase fractions of Co6Mo6C and Co3Mo3N present during the reaction. 

T/ °C 
 

Phase 
 

661C % 
(8a) 

331N % 
(16c) 

661a 
(Å) 

331a 
(Å) 

Fraction 
% 
661C 

Phase 
Fraction % 
331N 

RT 661C 1.038  10.909  100 0 

17-22 661C 1.087  10.911  100 0 

23-36 661C 1.025  10.913  100 0 

37-59 661C 1.116  10.913  100 0 

60-83 661C 1.053  10.915  100 0 

84-115 661C 1.056  10.919  100 0 

117-157 661C 1.073  10.922  100 0 

160-215 661C 1.064  10.928  100 0 

218-283 661C 1.044  10.936  100 0 

286-359 661C 1.037  10.944  100 0 

362-443 661C 1.104  10.953  100 0 

447-516 661C 1.155  10.962  100 0 

518-573 661C 1.081  10.969  100 0 

575-626 661C 1.049  10.975  100 0 

628-674 661C 1.104  10.979  100 0 

675-681 661C 1.082  10.982  100 0 

681-695 661C>331N 1.025 0.975 10.987 11.121 58.16 41.84 

695-697 331N>661C 1.170 0.829 10.990 11.121 26.18 73.82 

700°C /10 m 331N  0.839  11.123 0 100 

30°C 331N  0.908  11.051 0 100 
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Appendix 3 
 
 During the ammonia synthesis reaction, the formation of ammonia was monitored 

through a drop in the conductivity of a 200 mL of 0.0018 mol l-1 solution of H2SO4. This drop 

relates to the consumption of H+ ions by NH3 and forming NH4
+ ions. 

To calculate the calibration value which was used for ammonia synthesis rate, the 

conductivity of six different 0.0018 mol l-1 solutions of H2SO4 and (NH4)2SO4 was 

investigated and listed in the table below: 

Conductivity H2SO4 / μScm-1 Conductivity (NH4)2SO4 / μScm-1 

886 311 

881 324 

898 329 

876 315 

894 318 

885 327 

Mean ca. 887 Mean ca. 321 

 
 
Number of moles of H2SO4 = Concentration (H2SO4) x Volume (H2SO4) 

= 0.00108 mol l-1 × 0.2 l = 2.16 x 10-4 moles  

Due to stoichiometric concerns 2 x 2.16 x 10-4 moles of ammonia are required to entirely 

react with H2SO4. 

The change in conductivity = the mean Conductivity H2SO4
 – the mean Conductivity 

(NH4)2SO4 = 887 μScm-1 – 321 μScm-1= 566 μScm-1 

The calibration value = the number of moles of ammonia required/ the change in 

conductivity 

= 4.32 x 10-4 moles/ 566 μScm-1= 7.63 x 10-7 mol/ μScm-1 
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Appendix 4 
 
Standard error calculation 

To calculate the standard error during this work following points were used:  

 Calculate the mean.                                                                            (M) 

  Calculate each measurement's deviation from the mean.       (M-i) 

  Square each deviation from mean.                                               (M-i)2 

 Sum the squared deviations.                                                         ∑(M-i)2 

 Divide that sum by one less than the data point (n-1).            
∑(𝑀−𝑖)

2

(𝑛−1)
 

  Take the square root of the number. That gives you the standard deviation (SD).           

SD= 
√∑(𝑀−𝑖)

2

(𝑛−1)
  

 Divide the standard deviation by the square root of the data points (n). That gives 

you the standard error (SE).   SE= 
𝑆𝐷

√𝑛
 

 To gives: mean experimental rate  M ±1 SE 

Hydrogen formation rate: 

Nitrogen was used as an internal standard; calculation of the hydrogen formation rate was 

performed taking into account the change in volume on reaction, and then data was 

calculated as follows: 

Hydrogen formation rate (molH2g⁻¹min⁻¹) =   

[[%H₂∗
(

N₂ in
N₂ out

)

100
]∗ [

flow rate ml min⁻¹

22400 ml
]]

 Mass of material 
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