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Abstract 

Tissue microenvironments within chronic inflammatory disease sites, such as the 

synovial compartment within rheumatoid arthritis (RA) patients contains a 

plethora of factors to drive immune responses. However, one specific 

characteristic that is commonly found at these sites is the presence of tissue 

hypoxia. Therefore, both resident and infiltrating immune cells need to adapt to 

these microenvironments in order to survive and function to promote chronic 

inflammation. Adaptation to hypoxia requires a level of metabolic 

reprogramming for this purpose. Therefore, this thesis aimed to examine what 

the metabolic consequences were for human monocytes that were adapting into 

hypoxic sites and to interrogate what role these metabolic pathways had in 

driving specific functions in hypoxic conditions. 

Metabolomic analyses reveal that hypoxia induces metabolic alterations in 

human monocytes, including the decrease in abundance of carnitine 

metabolites, important for subsequent fatty acid oxidation (FAO), and increases 

in glycolytic metabolites. Furthermore, hypoxia exacerbated the release of pro-

inflammatory mediators in LPS activated monocytes, such as CCL20 and IL-1β. 

Manipulation of carnitine metabolites identify a role for FAO in the production of 

CCL20, and in the regulation of IL-1β release. To mimic the RA synovial 

environment more thoroughly in vitro, human monocytes were cultured in cell 

culture medium containing RA synovial fluid (RA-SF) under hypoxic conditions. 

Further metabolomics analysis revealed that monocytes accumulate a number of 

metabolites in comparison to untreated and LPS activated cells, suggesting that 

monocytes may enter a stasis-like phase when challenged with RA-SF. This was 

reflected by low level release of pro-inflammatory mediators under these 

conditions. Nevertheless, media supplementation with carnitine increased CCL20 

production under RA-SF treatment, highlighting FAO may have a role in CCL20 

release in several inflammatory contexts. 

This body of work shows that distinct metabolic pathways regulated by the 

extracellular environment may act in conjunction for the production of pro-

inflammatory mediators in chronic inflammatory disease. This thesis highlights 

the influencing nature of tissue microenvironments on the functional capacity of 

myeloid cells by harnessing its metabolic machinery.   
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Chapter 1. Introduction 

1.1 Human monocytes & macrophages 

1.1.1  Monocytes 

Blood monocytes are a circulating population of leukocytes derived from bone 

marrow (BM) haematopoietic precursors. In the BM, monocyte development 

originates from a series of differentiation steps from haematopoietic stem cells: 

to the common myeloid progenitor (CMP); the granulocyte-macrophage 

progenitor (GMP); the common macrophage and DC precursor (MDP) and then 

the committed monocyte progenitor (cMoP) (Geissmann et al. 2010; Hettinger et 

al. n.d.). Monocyte egress into the blood from the BM is thought to be governed 

by CCR2 dependent mechanisms (Serbina & Pamer 2006).  

Human monocytes are identified by the expression of CD14 (a co-receptor for 

TLR4) and CD16 (an FcγRIII with low affinity for IgG). Human monocytes are 

typically classified into 3 separate subpopulations on the basis of cell surface 

expression of CD14 and CD16: Classical (CD14++ CD16-); Intermediate (CD14++ 

CD16+) and Non-classical (CD14+ CD16++) (Ziegler-Heitbrock et al. 2010) (Table 

1.1). This is broadly similar in mice where Classical monocytes (Ly6Chi) and Non-

classical monocytes (Ly6Clo) monocytes have been characterised, with both 

populations sharing CD11b and CD115 expression (Geissmann et al. 2003; Shi & 

Pamer 2011). The classical and intermediate populations of monocytes are 

largely considered to possess pro-inflammatory roles, with the ability to 

infiltrate into tissues in CCR2 and/or CX3CR1 dependent mechanisms in order to 

contribute to immune responses and to differentiate into macrophages at the 

site of inflammation (Shi & Pamer 2011; Belge et al. 2002). On the other hand, 

non-classical monocytes are thought to have a patrolling role along the blood 

endothelium, whilst also possessing anti-viral capacity (Table 1.1) (Auffray et al. 

2007; Cros et al. 2010). Recent in vivo deuterium labelling studies have shown 

that classical monocytes typically circulate in the blood for around 1 day, 

whereas intermediate and non-classical populations persist in the bloodstream 

for around 4 and 7 days respectively. Interestingly, during systemic 

inflammation, it is thought a reserve population of classical monocytes from the 

bone marrow can rapidly replenish the monocyte pool in the blood. (Patel et al. 



  18 
 
2017).  Despite this varying life-span, monocytes rely on macrophage colony 

stimulating factor (M-CSF) for their survival and maturation (Wiktor-Jedrzejczak 

& Gordon 1996).  

 

 Markers Chemokine Expression Function 
Classical CD14++CD16- CCR2hi CX3CR1lo Pro-inflammatory & 

Anti-microbial 

Intermediate CD14++CD16+ CCR2lo CX3CR1hi Pro-inflammatory 

Non-Classical CD14+CD16++ CCR2lo CX3CR1hi Patrolling & Anti-Viral 

Table 1.1 Human monocyte subsets 
 

Migratory monocytes display a high degree of plasticity upon recruitment to 

tissue, and are well characterised as differentiating into tissue macrophages. 

However, an increasing body of evidence suggests that long-term tissue-resident 

macrophages are seeded from yolk sac and fetal liver precursors during 

embryonic development, and display properties of self-renewal to maintain the 

macrophage pool (Figure 1.1) (Schulz et al. 2012; Guilliams et al. 2013; Hoeffel 

et al. 2015; Hashimoto et al. 2013). This challenged the original dogma, where it 

was thought all mononuclear phagocytes derived from circulating monocytes 

(van Furth & Cohn 1968). Nevertheless, in the steady state, blood monocytes 

have been shown to replenish tissue resident populations in the skin and the gut 

(Tamoutounour et al. 2013; Bain et al. 2014).  

During an inflammatory insult in the tissue, infiltration of classical monocytes 

provides a robust immune response. For example, CCR2 deficiency in mice has 

been shown to exacerbate L. monocytogenes bacterial infections by preventing 

extravasation of monocytes into the site of infection (Kurihara et al. 1997; 

Serbina et al. 2003). In this infection, Ly6Chi monocytes (which resembles human 

classical monocytes) are thought to differentiate into dendritic cells (DCs) with 

potent production of TNF and iNOS (Serbina et al. 2003). Generally speaking, 

monocytes are known to phagocytose bacteria, such as E.coli and S.aureus, 

which is thought to be aided by their strong adherence properties (Newman & 

Tucci 1990; del Fresno et al. 2009). Furthermore, CCR2-deficient mice showed 

increased mortality when challenged with T. gondi infection. This is thought to 
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be caused by a lack of TNF and iNOS production from infiltrating monocytes 

(Dunay et al. 2008). In the context of murine cytomegalovirus (MCMV) infection, 

inflammatory monocytes are known secretors of CCL3, which is a chemokine for 

the recruitment of NK cells. Furthermore, stimulation of TLR2 by viral ligands 

promotes Type I IFN by inflammatory monocytes (Salazar-Mather et al. 1998). 

However, not all monocytes that enter the tissue are endowed to differentiate 

into macrophages. It is also thought that, at least in the steady state, monocytes 

recruited to the lung can acquire antigen and traffic to draining lymph nodes for 

subsequent presentation to naïve T cells (Jakubzick et al. 2013). This work 

challenges the view that only dendritic cells can present antigen to naive T cells 

to initiate immune responses.  

Despite the well characterised role of promoting inflammation during infection, 

monocytes have the ability to contribute to the resolution phase of 

inflammation. Indeed, during skeletal muscle injury, inflammatory LyC6hi 

monocytes can switch their phenotype to an anti-inflammatory Ly6Clo phenotype 

with the ability to secrete transforming growth factor beta (TGF-β) to aid muscle 

regeneration (Arnold et al. 2007). A similar phenotypic transition has also been 

observed during wound repair models in the skin (Crane et al. 2014). 

Furthermore, monocytes are thought to express a plethora of scavenger 

receptors in order to clear extracellular components during the resolution phase 

of inflammation (Kzhyshkowska et al. 2012). 

In addition to the central role of monocytes in immune responses associated with 

acute infection, they also have a decisive role in chronic inflammatory diseases, 

such as rheumatoid arthritis (RA). RA patients have been reported to have an 

increased proportion of CD16+ monocytes in the blood. Furthermore, these 

monocytes have an increased expression of TLR2 and appeared to reside in the 

synovial lining. Stimulation of these monocytes with a TLR2 ligand (e.g. 

lipoteichoic acid) results in increased production of TNFα, which can be 

augmented by addition of an anti-FcγRIII antibody. Suggesting a unique role for 

this population of monocytes when recruited to RA tissue, where TLR2 and CD16 

agonists may be present (Iwahashi et al. 2004). In addition, more recent 

research has highlighted that classical CD14++ CD16+ monocytes are increased in 

the peripheral blood of RA patients and appeared to promote Th17 cell 
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expansion in vitro (Rossol et al. 2012). On the other hand, the non-classical 

monocyte population (Ly6Clo) has been shown in mouse models of rheumatoid 

arthritis to infiltrate and initially differentiate into inflammatory macrophages 

within the joint, before switching their phenotype to aid the resolution of 

inflammation (Misharin et al. 2014). In the murine collagen-induced arthritis 

model, short interfering (si)RNA against nicotinamide phosphoribosyltransferase 

(NAMPT) in monocytes reduced IL-6, Th17 cell number, autoantibody titres and 

the recruitment of monocytes, macrophages and neutrophils in the joints. 

Additional work illustrated that NAMPT siRNA was engulfed preferentially by 

classical Ly6Chi monocytes, rather than Ly6Clo populations. This body of work 

emphasises an essential role for classical monocytes in driving acute and chronic 

inflammatory mechanisms (Présumey et al. 2013). 

1.1.2  Macrophages 

Macrophages were first described as phagocytic cells by Metchnikoff at the end 

of the 19th century. In 1972, van Furth described the mononuclear phagocyte 

system, whereby all macrophages derived from circulating blood monocytes, as a 

lineage from haematopoietic stem cells (van Furth et al. 1972). The concept that 

all macrophages derived from this lineage, as discussed above, was somewhat 

disputed with studies suggesting tissue macrophages are long lived and have 

proliferative activity (Sawyer et al. 1982; Melnicoff et al. 1988). However, the 

original dogma was fully challenged with a range of fate mapping studies, 

showing that tissue macrophages such as Microglia (brain) and Langerhans cells 

(skin) were primarily derived from the yolk sac and fetal liver respectively in the 

steady state (Ginhoux et al. 2010; Hoeffel et al. 2012) (Figure 1.1). Similar 

studies then attributed this phenomenon to alveolar, kidney, pancreas, liver 

(Kupffer cells) and splenic red pulp macrophages (Schulz et al. 2012). In all 

cases, it is thought that although macrophages are seeded early during 

development, they are long lived cells which self-renew to maintain the 

macrophage pool (Jenkins et al. 2011; Hashimoto et al. 2013; Davies et al. 

2011). In contrast, resident macrophages in the intestine in the steady state are 

independent of embryonic precursors, and instead rely on blood monocyte 

replenishment (Bain et al. 2014). Experimental ablation of resident tissue 

macrophages has shown that blood monocytes have the ability to fill an empty 

macrophage niche (Hashimoto et al. 2013). Therefore, inflammation may 
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promote the presence of macrophages of both embryonic origin and from the 

Mononucelar Phagocyte System (MPS) (Hettinger et al. 2013). 

Despite the increasing level of research in macrophage ontogeny, their 

phenotype(s) are subject to widespread examination. Macrophage activation was 

originally defined as two categories: either classical (IFNγ stimulation) or 

alternative (IL-4 stimulation) (Stein et al. 1992). Thereafter, the M1-M2 axis, 

reflecting classical-alternative activation respectively, was coined by Mills et al 

in 2000. This was largely due to the distinct metabolism of arginine between 

macrophages of the C57BL/6 and Balb/c mouse strains, which favoured Th1 and 

Th2 responses respectively (C. D. Mills et al. 2000). Subsequent work started to 

appreciate that macrophages did not reside in only two separate categories of 

‘M1’ and ‘M2’, and existed instead as phenotypic extremes of an activation 

continuum. Therefore to simplify this concept, expanded terminology such as 

M2a, M2b and M2c was devised (Mantovani et al. 2004; Edwards et al. 2006). The 

concept of a macrophage spectrum of activation was more fully established by a 

transcriptomic based study of macrophages stimulated in a variety of manners 

(Xue et al. 2014). In light of this work and the variability of reporting in 

macrophage terminology and culture methods in the field, a new nomenclature 

system was proposed (Murray et al. 2014). This recommended that for the 

purposes of reproducibility, the origin and differentiation of macrophages must 

be clearly indicated and detailed. Defining macrophages on the basis of their 

activator was advocated. For example, IL-4 polarised macrophages, typically 

characterised as ‘M2’, would be classified as M(IL-4) (Murray et al. 2014).   

Functionally, in line with their phenotypes, macrophages display a high degree 

of plasticity. Classically activated M1 or M(LPS + IFNγ) macrophages are regarded 

as being pro-inflammatory, with the ability to secrete a variety of cytokines and 

chemokines, such as TNF, IL-6, IL-1β, phagocytose pathogens upon recognition 

by pattern recognition receptors (PRRs) and present antigen to naïve T cells 

through high levels of MHC II (Mosser 2003). On the other hand, alternatively 

activated M2 or M(IL-4) macrophages are thought as being more anti-

inflammatory. This is primarily through the production of regulatory cytokines 

such as IL-10. They also express a plethora of scavenger receptors to clear 

cellular debris and resolve inflammation (Gordon & Martinez 2010). It must be 
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stressed that these functions are indicative of in vitro generated macrophages, 

and therefore macrophage phenotype and function will be suitably tailored to 

the environment in vivo (Gordon et al. 2014). For example, alveolar 

macrophages, which reside towards the airspaces of the lung, are highly 

regulated by bronchial and airway epithelium by a variety of mechanisms, 

including IL-10, TGF-β and CD200R interactions to prevent pro-inflammatory 

responses to innocuous antigen such as commensal bacteria (Jiang-Shieh et al. 

2010; Koning et al. 2010; Morris et al. 2003; Hussell & Bell 2014). However, they 

also express a variety of TLRs such as TLR-2 and TLR-4, which in turn can initiate 

inflammatory responses (Fernandez et al. 2004). Therefore, they are specifically 

tailored to maintain tolerance and to respond to specific antigen in this 

environment (Figure 1.1). 

 

Figure 1.1 Ontogeny and activation of macrophages. Tissue resident macrophages are largely 
thought to be seeded from yolk sac or fetal liver precursors during embryonic development. 
Maintenance of the macrophage pool is thought to be carried out by self-renewal mechanisms. 
However, some sites, such as the intestine have been shown to be primarily derive from 
infiltrating blood monocytes; conforming to the original dogma of macrophage development. 
However, it cannot be ruled out that this is the source of macrophages in the context of acute 
inflammation for example. The specific tissue environment has a major role in governing the 
phenotype of macrophages during homeostasis and inflammation, providing the concept of a 
phenotypic continuum. However, common practice in laboratory in vitro analyses focuses on 
phenotypic extremes, typically M(LPS ± IFNγ) ‘inflammatory’ macrophages or M(IL-4) ‘anti-
inflammatory’ macrophages. 
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Despite maintaining a fine balance between tolerant and inflammatory 

phenotypes in the tissue, macrophages are thought to orchestrate inflammation 

in chronic inflammatory diseases, including COPD and RA. In patients with COPD, 

where cigarette smoke presents as a primary risk factor, macrophages are 

elevated in numbers (Barnes 2016). Cigarette smoke has been reported to 

activate macrophages to secrete a range of mediators, including TNFα, CXCL1, 

CCL2, CXCL10, ROS and a variety of MMPs and cathepsins. The ability to secrete 

CXCL1, CXCL10 and CCL2 in turn acts as a chemoattractant for neutrophils, T 

cells and monocytes respectively, which perpetuates inflammation (Russell, 

Thorley, et al. 2002; Barnes 2016) . MMP-9 represents the most prevalent MMP 

produced by activated macrophages in this context, which can drive emphysema 

in these patients (Russell, Culpitt, et al. 2002). Overproduction of TGF-β is also 

associated with a fibrotic pathology. Furthermore, these macrophages display an 

impaired ability to phagocytose bacteria, which may explain why patients are 

more prone to bacterial infection (Monsó et al. 1998; Donnelly & Barnes 2012). 

As with COPD, macrophages can perpetuate inflammation in patients suffering 

with RA. Similarly, macrophages secrete a range of pro-inflammatory mediators 

such as TNFα, IL-6 and IL-1β and MMPs which can promote inflammation and 

tissue degradation (Kinne et al. 2007) . Furthermore, other secreted cytokines, 

such as IL-12 and IL-23 have been shown to polarise CD4+ T helper cells to Th1 or 

Th17 states respectively, which are both thought to drive disease pathogenesis 

(Pène et al. 2008; Roberts et al. 2015). Unique to this environment, monocytes 

and macrophages have the ability to differentiate into bone degrading cells 

termed osteoclasts. This process called osteoclastogenesis is thought to be 

dependent on M-CSF and receptor activator of nuclear factor kappa-β ligand 

(RANKL). It is thought that within the joints of RA patients, the inflammatory 

environment can alter bone homeostasis to promote bone erosion (Takayanagi 

2007; Tondravi et al. 1997; Kong et al. 1999).  



  24 
 
1.2 Chronic inflammatory disease 

1.2.1  Rheumatoid arthritis 

1.2.1.1 Introduction 

Rheumatoid arthritis is a chronic inflammatory disease where patients display 

immune-mediated pathology and articular destruction of the joints, typically in 

the hands and knees. This in turn develops into progressive disability with 

systemic manifestations, such as osteoporosis, cardiovascular complications and 

socioeconomic consequences. The condition primarily affects women with a 

peak onset of between 30 and 50 years of age. Treatment for the condition is 

largely dependent on the patient and progress of disease. Therapy typically 

includes painkillers, Disease Modifying anti-rheumatic drugs (DMARDS) and 

immunosuppressant drugs (Firestein & McInnes 2017; McInnes & Schett 2011). 

1.2.1.2  Joint structure in rheumatoid arthritis 

The normal joint is surrounded by a joint capsule which contains the synovium, 

responsible for lubrication and nutrient supply to cartilage. The synovium 

contains two lining layers: a sublining layer which is inhabited with fibroblasts, 

some immune cells and blood vessels; and a leaky intimal lining layer which 

primarily contains fibroblast-like and macrophage-like synoviocytes which can 

freely enter the synovial fluid (Smolen et al. 2018.). During RA, these layers 

become activated and expanded. The intimal lining layer expands due to 

synoviocyte activation while immune cells infiltrate the sublining layer. These 

cells include monocytes, macrophages, DCs, memory T cells and B cells (McInnes 

& Schett 2011). This results in a complex inflammatory milieu that contains 

inflammatory cytokines, chemokines, immune complexes and proteases to drive 

inflammation. 

The synovial fluid is a viscous lubricant of articular cartilage which is rich in 

hyaluronic acid. In RA, the fluid volume accumulates and plays host to a variety 

of synovial membrane derived proteins, metabolites, immune complexes and 

immune cells such as infiltrating monocytes, T cells and B cells (Penatti et al. 

2017). These are thought to include inflammatory cytokines and chemokines 
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such as IFNa, TNFa, IL-1Ra, IL-1b, IL-10, IL-6, CCL17, CXCL8 and metabolites 

including succinate and citrulline (Hampel et al. 2013; Kim et al. 2014).  

1.2.1.3 Risk factors 

Whilst the exact cause of RA is largely unknown, onset of RA is thought to be 

dependent on a variety of risk factors, including genetics and the environment. 

Genetic predisposition is thought to have an important role in RA, where 

Genome wide association studies (GWAS) attribute immune-regulatory genes in 

the disease. For example, susceptibility genes such as CTLA4 and PTPN22 

highlight an important role for T cell mediated inflammation in this context 

(Begovich et al. 2004; Kallberg et al. 2007). However, the most prominent 

genetic risk allele appears to be in MHC class II, with around 40% of total genetic 

influence (Weyand et al. 1992). This indicates that bridging both innate and 

adaptive arms of immunity is important for the pathology of RA. 

It is thought that in addition to genetic predisposition, environmental factors 

have a significant role in disease onset. One of the most prominent risk factors 

for the development of RA is smoking. Smokers with genetic susceptibility in 

HLA-DRs have been reported to have enhanced risk of developing RA (Symmons 

et al. 1997). Moreover, smoking increases the risk of anti-citrullinated protein 

antibodies (ACPAs). In line with this, studies have led to the belief that 

pulmonary insult has promoted citrullination of proteins including fibrinogen, 

vimentin and collagen (Mahdi et al. 2009; van der Woude et al. 2010). The role 

of ACPAs in disease pathogenesis will be discussed in 1.2.1.3. 

1.2.1.4  Immunopathology of rheumatoid arthritis 

GWAS studies have made it quite clear that RA synovitis is governed by immune-

mediated mechanisms. Furthermore, it indicates that both the innate and 

adaptive immune system has a role in pathogenesis. However, it is well 

established that a loss of tolerance has to occur in the first instance. The most 

well characterised mechanism for this is the presence of autoantibodies such as 

ACPAs or rheumatoid factor (RF), which are present in at least 80% of patients 

(Firestein & McInnes 2017). Interestingly, these are present before clinical onset 

and are thought to increase in established disease. These antibodies are known 
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to bind Fc receptors in the form of immune complexes on the surface of 

macrophages and can promote the production of TNFα. Furthermore, Fc 

receptor interaction on the surface of myeloid cells can induce 

osteoclastogenesis, which can lead to increased bone degradation (Takayanagi 

2007). Despite the importance of autoantibodies in RA, they are not thought to 

cause disease pathogenesis in mice alone (Kuhn et al. 2006). 

The innate immune system is exploited to drive pathology in RA patients, where 

the variety of functional mechanisms that monocytes and macrophages possess 

promote inflammation (1.1.1 & 1.1.2) in the synovial membrane. In addition to 

myeloid cells, neutrophils are also often present in the synovial fluid and can 

exacerbate inflammation via the production of reactive oxygen species, 

prostaglandins and proteases (Cascão et al. 2010). Furthermore, mast cells have 

been implicated in disease pathogenesis. They express a number of TLRs and Fc 

receptors, which upon stimulation can result in the release of cytokines such as 

TNF and proteases (Nigrovic & D. M. Lee 2007) (Figure 1.2). 

GWAS studies, as discussed above, heavily implicate MHC class II, which suggests 

antigen presentation and co-stimulation of T cells may contribute to disease 

severity. Indeed, inflammatory arthritis chronicity is considered to be driven by 

pathogenic populations of Th1 and Th17 cells. Treg cells have also been shown 

to be present in this milieu, however, studies have reported that they are 

functionally impaired (Behrens et al. 2007). This may be caused by the high level 

of TNFα in the synovium, which has been shown to prevent Treg functionality 

(Nadkarni et al. 2007). T helper cells are also involved in aiding B cells to 

produce antibody responses, and more specifically in RA the associated 

autoantibodies. B cells in the RA synovium have been observed to be present in 

ectopic lymphoid follicles containing T cells and B cells to promote B cell 

differentiation and somatic hypermutation to drive a pathogenic phenotype 

(Seyler et al. 2005). Furthermore, the presence of B cells survival factors such as 

BAFF, APRIL and IL-6 supports their ability to persist in this environment (Ohata 

et al. 2005) (Figure 1.2). 

Finally, it is important to consider the contribution of stromal tissue cells in the 

pathogenesis of RA. An example of this are fibroblast-like synoviocytes (FLSs). 

During hyperplasia in the RA synovium, the FLS population is known to be 
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expanded, a phenomenon thought to be dependent on the prevention of 

apoptosis (Korb et al. 2009). Furthermore, they characteristically release a 

variety of matrix metalloproteinases (MMPs) and cathepsins that can contribute 

to articular damage (Filer 2013). Their role in promoting bone erosion is marked 

by the production of RANKL, which is essential for the differentiation of 

osteoclasts (Shigeyama et al. 2000). In addition to promoting a loss of structural 

integrity in the joint, FLSs can interact with immune cells to exacerbate 

inflammation. For example, FLSs can support the recruitment of T cells by the 

production of the chemokines CCL5, CXCL12 and CX3CL1 and can present antigen 

to and co-stimulate T cells through expression of MHC class II and CD40 

respectively. Finally, they have the ability to recruit macrophages (CCL2, CCL4, 

CCL5 & CCL20), neutrophils (CXCL1, CXCL5 & CXCL8) and B cells (CXCL12 & 

CXCL13) to the joint (Manzo et al. 2005; Koch et al. 1995; Filer 2013) (Figure 

1.2).  

Inflammatory cascades in the synovial compartment are known to enhance bone 

erosion. This is primarily through the bone-resorption activities of osteoclasts 

which can maturate in response to RANKL, TNFα, IL-6 (secreted by T cells, 

macrophages and FLSs), and in response to autoantibodies (Schett & Gravallese 

2012; Takayanagi 2007). Together with synovial membrane inflammation and 

cartilage damage, bone erosion contributes heavily to the pathophysiology of RA 

(Figure 1.2). 

 



  28 
 

 

Figure 1.2 Pathogenesis of rheumatoid arthritis. Co-stimulatory interactions in the lymph node 
are thought to take place between dendritic cells, T cells and B cells to generate autoimmune 
inflammatory responses against antigens such as citrullinated self-proteins. This can lead to the 
production of autoantibodies (ACPAs and/or rheumatoid factor) and immune complexes. In the 
synovial membrane of an RA joint, infiltrating monocytes and macrophages can drive 
inflammation with a number of inflammatory mediators, and can promote fibrosis, articular 
damage through MMPs and angiogenesis via VEGF. Osteoclasts can promote bone erosion and 
secrete MMPs. Neutrophils and Mast cells can exacerbate inflammation and articular destruction 
through the production of proteases, ROS, prostaglandins and TNFα. Fibroblast-like synoviocytes 
produce MMPs, cathepsins and pro-inflammatory cytokines. Together, these interactions 
contribute to the pathology of an RA joint, which include inflammation and hyperplasia of the 
synovial membrane, cartilage destruction and bone erosion. 
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1.2.2  Chronic obstructive pulmonary disorder (COPD) 

1.2.2.1  Introduction 

Chronic obstructive pulmonary disorder (COPD) is a progressive inflammatory 

disease which causes irreversible airway obstruction of the lungs. The largest 

risk factor for the disease in the developed world is cigarette smoking and is 

thought to affect around 10% of those over 45 years of age (Lozano et al. 2012). 

Inflammation in COPD patients tends to be localised within the lung parenchyma 

and the peripheral airways. The irreversible obstruction of the airways is largely 

due to fibrotic mechanisms and a loss of elasticity of the parenchyma. 

Inflammation of the airways involves both the innate and adaptive arms of 

immunity, however, macrophages and neutrophils are thought to predominate. 

Despite the inflammatory nature of the condition, COPD patients typically lack 

responsiveness to steroid treatment (Barnes 2016). 

1.2.2.2  Macrophages in COPD 

Alveolar macrophages are well characterised as being a long lived self-renewing 

population of tissue resident cells derived from embryonic precursors (1.1.2) 

(Guilliams et al. 2013). In the lung, they reside in close contact with lung 

epithelial cells towards the airspace. Alveolar macrophages are important cells 

that assist in the maintaince of lung homeostasis. They possess an 

immunosuppressive phenotype, exhibit low phagocytic capacity, respiratory 

burst and have a decreased capacity to present antigen to T cells (Lyons et al. 

1986; Hoidal et al. 1981; Hussell & Bell 2014). Combined with their ability to 

produce TGF-β, these mechanisms are thought to promote tolerance to 

innocuous antigens (Coleman et al. 2013).  

Notably, these mechanisms are severely altered during COPD pathology. Fibrosis 

in the small airways and lack of elasticity of the lung parenchyma during COPD is 

largely attributed to inflammatory processes in these sites. In COPD patients, 

macrophage populations are significantly increased in the lungs and their 

numbers correlate with disease severity (Grashoff et al. 1997). Macrophages in 

this environment are well known to be activated when exposed to cigarette 

smoke. Their contribution to inflammation in COPD is marked by their ability to 

secrete ROS, TNFα and a variety of chemokines such as CXCL1, CXCL8 and CCL2, 
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which will drive recruitment of neutrophils and blood monocytes (Barnes 2016). 

The recruitment and subsequent differentiation of blood monocytes into 

macrophages is thought to be the main cause of the expansion of the 

macrophage pool in COPD (Traves et al. 2004). Furthermore, macrophages have 

been reported to recruit Th1 cells to the site of inflammation via the production 

of CXCL10, 11 and 12 (Grumelli et al. 2004). Exposure of macrophages to smoke 

also results in the secretion of a range of elastolytic enzymes such as MMPs 

(MMP-2,9 &12) and cathepsins, which contribute to emphysema (Russell, 

Thorley, et al. 2002) (Figure 1.3). It is thought that the production of these 

mediators, particularly MMP-9, is governed by the activation of NF-κβ subunits 

(Caramori et al. 2003). Generally speaking, macrophages are known to be 

phagocytic, whether that is the engulfment of bacteria during infection, or the 

clearance of cellular debris during resolution phases of inflammation. However, 

the COPD environment has been shown to impair the ability of macrophages in 

the lung to phagocytose bacteria and debris. This proposes a mechanism as to 

why COPD suffers are prone to bacterial colonisation (found in 50% of COPD 

patients) and fail to resolve inflammation (Berenson et al. 2013; Hodge et al. 

2003; Richens et al. 2009) (Figure 1.3). Subsequent studies have credited the 

impaired phagocytosis to defective cellular microtubular function (Donnelly & 

Barnes 2012). Despite the effectiveness of corticosteroids against these 

mechanisms in vitro, these findings have not been translated in patients. This is 

thought to be as a result of reduced Histone deacetylase 2 (HDAC2) activity 

induced by glucocorticoids, which would in turn prevent the transcription of 

inflammatory genes (Mitani et al. 2016). 

1.2.2.3  Other immune cells in COPD 

The other main contributor to disease pathology is through the recruitment of 

neutrophils. Neutrophils migrate to the lungs in response to the increased levels 

of Leukotriene B4, CXCL1 and CXCL8 (Biernacki et al. 2003). In a similar manner 

to macrophages, activated neutrophils secrete cathepsin G, MMP-8, MMP-9 and 

neutrophil elastase, which cause damage to the airways and parenchyma (Vlahos 

et al. 2012; Barnes 2016). Furthermore, these mediators have been suggested as 

being activators of alveolar goblet cells to secrete mucus, which can increase 

airway obstruction and cause chronic bronchitis (Fahy & Dickey 2010) (Figure 
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1.3). As neutrophils are short lived in nature, the impaired ability of 

macrophages to engulf neutrophil cellular debris may exacerbate inflammation. 

 

 

Figure 1.3 Pathogenesis of COPD. Cigarette smoke and other inhaled irritants activate a number 
of inflammatory and fibrotic mechanisms in the lung. One of the biggest contributors to disease 
pathology are macrophages which secrete a variety of cytokines and chemokines to perpetuate 
inflammation. Alveolar macrophages also secrete elastolytic enzymes such as MMPs and 
cathepsins to promote emphysema. Finally, they exhibit defective phagocytosis that leads to 
bacterial colonisation. Neutrophils also contribute to emphysema in a similar manner, but can 
induce goblet cell activation to increase mucus secretion. Cigarette smoke can also activate 
epithelial cells to produce pro-inflammatory cytokines, including TNFα, IL-1β and IL-6. 
Furthermore, CD8 T cells can further contribute to emphysema by promoting apoptosis of 
pneumocytes via secreted perforin and granzyme. Finally, Th1 and Th17 cells are abundant in 
this disease environment, which in turn drives disease chronicity. 
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the increased presence of Th17 cells, which can further drive neutrophil-

mediated inflammation (Figure 1.3).  

Although not an immune cell per se, epithelial cells share some properties with 

immune cells in COPD. For example, when exposed to cigarette smoke, they 

secrete a variety of pro-inflammatory cytokines such as TNFα, IL-1β and IL-6 to 

exacerbate inflammation (Gao et al. 2015) (Figure 1.3). Furthermore, epithelial 

cells can contribute to physical obstruction of the airways. Together with 

neutrophil-derived elastases, cigarette smoke can promote mucus 

hypersecretion via epithelial growth factor receptor (EGFR) stimulation on 

goblet cells in the epithelial layer (Shao et al. 2004). 

 

1.3  Hypoxia in chronic inflammatory disease 

1.3.1  Origins of hypoxia in inflammatory tissue 

One of the most common features of many chronic inflammatory diseases, such 

as RA and COPD, is the presence of hypoxia within the tissue microenvironment. 

Hypoxia within the synovial fluid of the RA joint for example was first described 

in the 1970s (Lund-Olesen 1970) and is becoming more appreciated in COPD 

(Kent et al. 2011). Hypoxia within an inflammatory environment results when 

the oxygen demand exceeds the supply. In inflammation, this phenomenon is 

attributed to the increased infiltration and proliferation of immune cells, all of 

which primarily utilise oxygen for metabolic purposes for effective function. It is 

also thought that in the context of RA, tissue hyperplasia, synovial fluid effusion 

and movement of the affected joint can disrupt the capillary network and 

prevent blood flow to the tissue (Jawed et al. 1997). Due to this excessive 

demand for O2, neovascularisation occurs. However, these structures are rather 

dysfunctional and poorly organised and hence acts as a contributing factor 

towards tissue hypoxia (Kennedy et al. 2010; Strehl et al. 2014). Therefore, 

infiltrating cells such as blood monocytes are met with an environmental 

challenge upon recruitment to the inflammatory tissue. It is well accepted that 

for continued survival and functionality, immune cells adapt quickly to hypoxic 

microenvironments, and this is primarily through the expression of the 

transcription factor hypoxia inducible factor 1 alpha (HIF-1α) (Semenza & G. L. 
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Wang 1992). This master regulator has been reported to regulate a variety of 

processes, including cell metabolism, angiogenesis, migration and inflammatory 

cascades (Semenza 2009). 

1.3.2  Hypoxia in the rheumatoid arthritis joint 

Hypoxia was first described in the rheumatoid joint in the 1970s by measuring 

pO2 in the synovial fluid of RA patients in comparison to OA patients (Lund-

Olesen 1970). More recent work however has identified that the median pO2 in 

the joint is 3.2% with a range between 0.46-7% (Fearon et al. 2016). Hypoxia in 

the rheumatoid environment correlates with synovial inflammation in vivo (Ng et 

al. 2010). This is in contrast to other tissues during homeostasis. For example, 

alveoli have been reported to have a concentration pO2 of 13.5% while arterial 

blood is thought to be around 9.5%. These concentrations diffuse further when 

oxygen reaches the tissue. For example, the brain and liver have both been 

measured to have a median O2 tension of 4% (McKeown 2014). Other tissues such 

as the pancreas have a median O2 tension of 7%. In diseases such as cancer, the 

oxygen tension is thought to reduce substantially in peripheral tissues, typically 

below 2% (McKeown 2014). As discussed briefly in 1.3.1, there are several causes 

for synovial hypoxia. Synovial inflammation is thought to activate endothelial 

vessels to support increased infiltration of immune cells to the synovium. This in 

turn assists in the expansion of the synovium which results in an increased rate 

of metabolic turnover and requirement for oxygen (Fearon et al. 2016). In 

addition, synovial hyperplasia can result in an increased distance between 

vessels and the cellular infiltrate, further diluting oxygen diffusion. Disrupted 

angiogenesis is another feature which contributes to joint hypoxia. Activated 

endothelial cells are thought to lose their polarity, structure and their 

association with the pericyte layer (Fearon et al. 2016). This can render the 

vessel dysfunctional in the supply of nutrients and oxygen to the joint. 

Therefore, infiltrating immune cells must adapt at a transcriptional and 

metabolic level in order survive and to drive disease pathogenesis. 

1.3.3  Myeloid cell adaptation to hypoxia 

Cellular adaption to hypoxia is achieved via the stabilisation of hypoxia inducible 

factors (HIFs). HIFs are typically composed of heterodimers, containing an alpha 
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subunit regulated by oxygen, and a stable beta subunit (Semenza & G. L. Wang 

1992). In normoxia, the alpha subunits are hydroxylated by prolyl hydroxylases 

(PHDs) and are targeted by an E3 ubiquitin (Ub) ligase complex, termed von 

Hippel Lindau tumour suppressor protein (pVHL). The polyubiquitinated alpha 

subunits are then targeted for proteasomal degradation (Berra et al. 2003) 

(Figure 1.4). In hypoxic conditions, the PHDs lose their enzymatic activity due 

to the lack of oxygen, which, along with α-ketoglutarate, acts as a co-substrate 

for their activity. This allows the stabilisation of the alpha subunits and 

formation of the heterodimers (Epstein et al. 2001; Ivan et al. 2001). This in turn 

permits the HIFs to enter the nucleus in order to carry out transcriptional 

regulation of target genes for the adaptation to hypoxic conditions (Figure 1.4). 

This regulatory cascade is well characterised in macrophages (Hirani et al. 2001; 

Fangradt et al. 2012; Staples et al. 2011). However, this is disputed in human 

monocytes. Although HIF-1α is stabilised under hypoxic conditions in monocytes, 

it has been postulated that NF-κβ carries out the necessary transcriptional 

processes, as HIF-1α appears to be absent from the nucleus (Fangradt et al. 

2012) (Figure 1.4). More recent work however has proposed that mitochondrial 

complex II may regulate hypoxia adaptation processes in monocytes (Sharma et 

al. 2017). These studies demonstrate that the precise mechanism of monocyte 

adaptation to hypoxia warrants further investigation. 
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Figure 1.4 Myeloid cell adaptation to hypoxia. In normoxic conditions, HIF-1α is hydroxylated 
by Proyl Hydroxylases (PHDs) and is then targeted by an E3 ubiquitin (Ub) ligase complex, termed 
von Hippel Lindau tumor suppressor protein (pVHL). After ubiquitination, HIF-1α is subject to 
proteosomal degradation. In hypoxic conditions, HIF-1α entry into the nucleus is thought to be 
blocked in monocytes, with NF-κβ postulated as carrying out gene transcription of hypoxia 
specific genes. In macrophages, HIF-1α, in a complex with the constitutively active HIF-1β, forms 
a complex with transcriptional coactivators including P300 and CREB-binding protein (CREB) to 
carry gene transcription of hypoxia responsive elements (HREs). 
 

1.3.4  The impact of hypoxia on the function of myeloid cells 

Once encountered with an environmental challenge such as hypoxia, it is 

thought that myeloid cells alter their functional phenotype. In an attempt to 

elucidate exactly how hypoxia impacts the phenotype of human monocytes, 

Bosco et al carried out a global transcriptomic study of monocytes cultured 

under hypoxic conditions (Bosco et al. 2006). This study highlighted that 

monocytes upregulate a number of genes associated with typical hypoxia 

responses, such as VEGF (angiogenesis), BNIP3 (apoptosis), GLUT-1 (glucose 

transport) and HK2 (glycolytic metabolism). The authors also identified 

alterations in scavenger receptors (STAB1, MARCO & MSR1) and chemokine-

related genes (CCL15, CCL2, CCR2). Strikingly, monocytes appeared to up-

regulate CCL20 at both the transcript and protein level in response to hypoxic 
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conditions, illustrating that hypoxia may act to promote the recruitment of 

other immune cells to the site of inflammation (Bosco et al. 2006). Subsequent 

studies identified CD300a as a hypoxia-inducible surface receptor that was able 

to regulate the expression of CCL20 and VEGF (Raggi et al. 2014). The 

importance of hypoxia in mediating chemotactic responses in monocytes was 

further marked by the up-regulation of CXCR4 receptor expression (Schioppa et 

al. 2003). CCL20 production has also been associated with the activation of the 

NF-κβ subunit, p50 (Battaglia et al. 2008). The action of this subunit supports 

the suggestion that NF-κβ is important for hypoxia adaption in human monocytes 

(Battaglia et al. 2008; Fangradt et al. 2012) (1.3.2 & Figure 1.4). Interestingly, 

lower O2 levels in the joint has been associated with increased canonical NF-κβ 

signalling in synovial fluids of active RA patients (Oliver et al. 2009). 

In vitro hypoxia has been shown to promote an increased rate of survival in both 

monocytes and macrophages in a mechanism thought to be through the induction 

of glycolytic metabolism (Roiniotis et al. 2009). Once monocytes are recruited to 

the site of hypoxic inflammatory sites, they are thought to differentiate into 

macrophages. Studies assessing monocyte differentiation into macrophage 

suggests that severe hypoxia reduces phagocytosis, CD40 and CD206 expression 

after 5 days (Staples et al. 2011). In contrast, earlier studies report that hypoxia 

rather increases phagocytosis in RAW 264.7 and primary peritoneal macrophages 

(Anand et al. 2007). Increased VEGF production in response to hypoxia has also 

been observed in macrophages which suggests a pro-angiogenic phenotype under 

these conditions (Staples et al. 2011). Upon encountering the site of hypoxia, 

monocytes and macrophages together have been shown to reduce their 

migratory properties (L. Turner et al. 1999; Grimshaw & Balkwill 2001). 

Monocyte-derived macrophages also exhibit lower levels of CCL2 and increased 

CXCR4 in response to hypoxic conditions, suggesting severe alterations in 

chemotactic activities (Schioppa et al. 2003). Furthermore, macrophages are 

thought to modify their proteolytic capacity under hypoxic conditions by 

increasing MMP-7 gene expression (Burke et al. 2003). In palmitate-activated 

macrophages, hypoxia is thought to amplify the production of IL-6 and IL-1β 

(Snodgrass et al. 2016). Taken together, this evidence suggests that hypoxia may 

promote pro-inflammatory properties in myeloid cells, and its presence in 

chronic inflammatory tissue may drive disease severity. 
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1.4 Pro-inflammatory mediators in chronic inflammatory 
disease 

1.4.1  Introduction 

In chronic inflammatory diseases such as RA and COPD, the affected tissue 

microenvironment contains a specific milieu of inflammatory cytokines and 

chemokines which drive disease (Figures 1.2 & 1.3). Monocytes and 

macrophages contribute to this further upon activation by a range of stimulants 

found in these environments. The in vitro studies which are relevant to chronic 

inflammatory disease in this thesis have implicated several of these mediators. 

Therefore, this section will give an overview of the mediators that were 

interrogated in this work. 

1.4.2  TNFα 

Tumour necrosis factor alpha (TNFα) is a pro-inflammatory cytokine produced by 

myeloid cells such as monocytes and macrophages in response to inflammatory 

ligands. TNFα has a number of functions to drive disease pathogenesis in RA and 

COPD by promoting mechanisms of cell death, survival and the activation of  

NF-κβ. TNFα can bind either of its two receptors, TNF receptor 1 (TNFR1) and 

TNFR2. Upon receptor engagement, TNFR1 binds to TNFR1-associated death 

domain protein (TRADD), which then recruits receptor-interacting 

serine/threonine-protein kinase 1 (RIPK1). The ubiquitination status of RIPK1 can 

determine if the signalling can promote canonical NF-κβ signalling 

(ubiquitinated) or cell death cascades (non-ubiquintinated) (Brenner et al. 

2015). TNFα is thought to be the primary inducer of oxidative stress via reactive 

oxygen species. This stress can induce an inflammatory gene expression 

programme and can also signal for apoptosis or necrosis (Blaser et al. 2016). In 

the context of disease, TNFα has been shown to promote fibrosis and collagen 

deposition, which is of clinical importance in COPD and RA (Piguet et al. 1990). 

This is coupled with the induction of MMPs and TGF-β which can promote tissue 

remodelling (Sasaki et al. 2000; Sullivan et al. 2005). Furthermore, it is thought 

to have chemoattractant properties for inflammatory cells such as neutrophils 

and eosinophils, while promoting CCL2 release for the recruitment of other 

myeloid cells (Lukacs et al. 1995).  Given the functional diversity of TNFα in the 
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exacerbation of inflammation, this has provided an attractive target for 

therapeutics. In light of this, a range of anti-TNFα drugs have been developed, 

such as monoclonal antibodies (Infliximab, Adalimumab, Golimumab and 

Certolizumab) and fusion proteins (Etanercept) (Rubbert-Roth et al. 2017). 

Generally speaking, these therapies have proven successfully in the treatment of 

RA. However, this has not been as efficacious in the treatment of COPD 

(Malaviya et al. 2017). 

1.4.3  IL-6 

Interleukin 6 (IL-6) is another pro-inflammatory cytokine produced by a variety 

of immune cells including monocytes, macrophages, T cells, B cells and even 

fibroblasts. IL-6 receptor binding induces an inflammatory cascade through the 

phosphorylation of Janus kinase (JAK) families and the recruitment of signal 

transducers and activators of transcription (STAT)-1 and STAT-3 (Heinrich et al. 

1998). IL-6 promotes a range of immunological processes in chronic inflammatory 

diseases. This cytokine is involved in the recruitment of neutrophils to the site 

of inflammation, tissue hyperplasia and angiogenic properties (Lally et al. 2005). 

It can promote the survival of B cells and the differentiation of autoantibody 

secreting plasma cells (Diehl et al. 2008). In conjunction with IL-1β, IL-6 has 

been shown to mediate the up-regulation of RANKL in fibroblast-like 

synoviocytes from RA patients, which contributes to the generation of 

osteoclasts and the subsequent bone resorption (Hashizume et al. 2008). 

Moreover, IL-6 has an important role in T cell immunity. For instance, IL-6 is 

considered as a primary factor for the differentiation of pathogenic Th17 cells 

and T follicular helper cells, which can mediate B cell class switching in follicles 

(Nurieva et al. 2009; Volpe et al. 2008). Furthermore, stimulating Treg cells with 

IL-6 is has been shown to inhibit FoxP3 expression in these cells, and promote 

Th17 cell induction through RORγt (Komatsu et al. 2014). This suggests that IL-6 

may promote an imbalance between inflammatory and regulatory cells in 

chronic inflammation. IL-6 and its signalling have been the focus of several 

therapies for chronic inflammatory diseases. This includes the monoclonal 

antibody, tocilizumab, which prevents IL-6 binding to its receptor (Hunter & 

Jones 2015). This treatment has proved effective in the control of RA pathology, 

especially in combination with methotrexate (Dougados et al. 2013). JAK 
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inhibitors such as tofacitinib which interfere with the IL-6 signalling cascade 

have also been utilised for the treatment of RA (Fleischmann et al. 2012).  

 
1.4.4  IL-1β 

IL-1β represents another highly inflammatory cytokine which is heavily regulated 

in its production from monocytes, macrophages and dendritic cells. IL-1β is 

originally translated into an inactive form, termed pro-IL-1β, before being 

cleaved by caspase-1 to create its active form (Wilson et al. 1994; Burns et al. 

2003). In order for this processing to take place, caspase protein complexes 

called inflammasomes are formed to active caspase-1 from its inactive pro-

caspase-1 derivative (Lamkanfi & Dixit 2014). This process is typically carried out 

by canonical inflammasomes such as NLRP1 and NLRP3 which leads to pyroptosis 

and the release of IL-1β and IL-18 after recognition of a variety of PAMPS (Netea 

et al. 2015). However, monocytes are able to release IL-1β without undergoing 

pyroptosis. It is thought a TLR-4 specific alternative inflammasome forms when 

human monocytes are stimulated with LPS to avoid pyroptosis (Gaidt et al. 

2016). 

Once IL-1β has been processed and released, it has a range of pro-inflammatory 

functions. It is thought to be involved in the initiation of the acute phase 

response and induction of fever, as evident by a lack of these responses in IL-1β 

deficient mice (Zheng et al. 1995). Caspase-1 deficient mice show an increased 

susceptibility to a variety of infections, including shigella, salmonella and 

influenza viruses (Suzuki et al. 2007; Raupach et al. 2006; Ichinohe et al. 2009). 

Furthermore, IL-1β has been reported to be important for the development of 

Th17 differentiation, emphasising its inflammatory nature (Mailer et al. 2015). 

Stimulation of human alveolar macrophages from smokers and COPD patients 

with IL-1β results in the release of IL-8, GM-CSF and MMP-9, promoting 

inflammation and tissue fibrosis (Culpitt et al. 2003). The release of IL-1β from 

necrotic cells in hypoxic conditions is thought to have a role in the recruitment 

and retention of monocytes and macrophages at sites of inflammation (Rider et 

al. 2011).  
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With this range of function in mind, IL-1β has been targeted for therapy in RA 

and COPD. Although few studies have been carried out in COPD, anti-IL-1R 

treatment to prevent IL-1β responses have not revealed any statistical 

improvement in lung function of patients (Calverley et al. 2017). Similarly, anti-

IL-1β antibody treatments such as Canakinumab have not been shown to be 

particularly effective for the treatment of RA (Dinarello & van der Meer 2013) 

1.4.5  CCL20 

C-C chemokine ligand 20 (CCL20) is a chemoattractant for a variety of immune 

cells during homeostasis and inflammation. It is one of few ligands for its 

receptor, CCR6. Furthermore, it is now becoming apparent that it may have a 

role in other processes, such as in the development and maturation of B cells 

(Krzysiek et al. 2000). However, GWAS studies have identified single nucleotide 

polymorphisms (SNPs) in the CCR6 locus as a susceptibility gene in RA, which 

implicates the CCL20-CCR6 axis in disease pathogenesis (Kochi et al. 2010). 

Interestingly, both Th17 and Tregs show surface expression of CCR6 (Yamazaki et 

al. 2008). To investigate this axis inflammatory arthritis, studies in Sakaguchi 

mice (a murine model for autoimmune RA) revealed that CCL20 is produced by 

synoviocytes and Th17 cells in the joints. This suggests that in this RA model, 

Th17 cell recruitment is favoured over Tregs to perpetuate inflammation 

(Sakaguchi et al. 2003; Hirota et al. 2007). In support of this, CCL20 has been 

found to correlate with levels of IL-17 in human synovial fluid (Hirota et al. 

2007). The increased expression of CCR6 on the surface of memory T cells in the 

periphery of RA patients compared to healthy controls suggests a role for the 

axis in the recruitment of this population as well (Liao et al. 1999; Ruth et al. 

2003).  

In addition, CCL20 has been reported to have a role in myeloid cell immunity. 

This is evident in its ability to recruit monocytes to the inflamed joint (Ruth et 

al. 2003). Furthermore, CCL20 is thought to activate osteoclasts which are 

important for bone erosion (Lisignoli et al. 2007). The production of CCL20 has 

been observed in neutrophils and osteoblasts in RA synovial fluid and bone tissue 

respectively (Pelletier et al. 2010; Lisignoli et al. 2009).  
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1.4.6  CCL22 

CCL22 is a chemokine ligand for the receptor CCR4. It is classically produced by 

M(IL-4) or M2 polarised macrophages and by monocyte-derived dendritic cells, 

especially when stimulated with microbial PAMPs such as LPS (Godiska et al. 

1997; Wu et al. 2001). CCR4 has been shown to be expressed on antigen-

experienced T cells such as Th2, Th17 and Treg and on monocytes, macrophages 

and natural killer (NK) cells (Imai et al. 1999; Lim et al. 2008; Griffith et al. 

2014). This expression profile indicates that CCL22 is a potent chemoattractant 

of all of these cell types to sites of inflammation. Given CCL22 production is 

typically associated with IL-4 macrophage stimulation and CCR4 expression of 

Th2 cells, suggests this inflammatory cascade has a degree of specificity for Th2-

mediated immunity such as asthma (Panina-Bordignon et al. 2001).  However, 

CCL22 has been illustrated to be present in the joints of RA patients, with CCR4 

being expressed on memory T cells in these sites, indicating that this axis could 

also contribute to RA pathogenesis (Flytlie et al. 2010). 

1.4.7  IL-8 

Interleukin 8 (IL-8) is a pro-inflammatory chemoattractant produced by 

monocytes and macrophages when stimulated by a variety of PAMPs. IL-8 binds 

both CXCR1 and CXCR2, although there is thought to be a predominance for 

CXCR1 (D. A. Hall et al. 1999). IL-8 was first characterised as being a potent 

chemoattractant of neutrophils (Baggiolini et al. 1992). However it has been 

implicated in the recruitment of other immune cells such as monocytes, 

lymphocytes and eosinophils in airway inflammation (Miller et al. 1992). Upon 

binding to its receptor, especially CXCR1, IL-8 induces the activation of 

intracellular G proteins which can promote calcium efflux which trigger the 

degranulation of neutrophils to provide anti-microbial immunity (M. D. Turner et 

al. 2014). Furthermore, the mitogen activated protein kinase (MAPK) and 

phosphatidylinositol-3 kinase (PI3K) pathways can be activated via this 

chemokine to induce the expression of the adhesion molecules such as MAC-1 for 

efficient chemotaxis (Takami et al. 2002). 
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1.5 Immunometabolism of myeloid cells 

1.5.1  Introduction 

The field of immunometabolism, the study of intracellular metabolic control of 

immune responses, is a growing area of research after some seminal studies 

highlighted how interlinked metabolic pathways and immune regulation are. 

However, in the context of myeloid cells, this is by no means a new area of 

research. Indeed, polarised M1 and M2 macrophages were originally 

characterised by their distinct utilisation of arginine. M(LPS), M(IFNy) or M1 

polarised macrophages are well characterised as generating nitric oxide (NO) 

from arginine via inducible nitric oxide synthase (iNOS). In contrast, M(IL-4) or 

M2 macrophages generate ornithine via arginase-1 (Arg-1) (C. D. Mills et al. 

2000). This finding epitomised how differential metabolic cascades can govern 

macrophage function. However, research interest in this field has only grown in 

more recent years. 

1.5.2  Glycolysis  

Glycolysis is a cytoplasmic metabolic pathway responsible for the conversion of 

glucose to pyruvate. This is a very inefficient mechanism of producing ATP, 

where only 2 ATP molecules are generated from 1 glucose molecule. Therefore, 

pyruvate enters the mitochondria and is converted into acetyl-CoA for the 

generation of more ATP through the tricarboxylic acid (TCA) cycle. In hypoxic 

conditions however, pyruvate is reduced to lactate as a by-product. The 

glycolytic pathway is illustrated in Figure 1.5.  

Research has highlighted a number of links between glycolytic metabolites and 

enzymes with inflammatory cascades. For instance, studies in LPS activated 

murine macrophages has illustrated that glycolysis has an important role in the 

production of IL-1β production, in a mechanism mediated by HIF-1α and the 

accumulation of succinate (Tannahill et al. 2013) (Figure 1.5). Subsequent 

studies have shown that the glycolytic enzyme, pyruvate kinase muscle isozyme 

M2 (PKM2), enters a complex with HIF-1α which in turn binds the IL-1β promoter 

to increase its gene transcription (Palsson-McDermott et al. 2015). PKM2 is also 

thought to regulate the activation of the NLRP3 inflammasome by activating the 
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eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2) (Xie et al. 

2016). Furthermore, inhibition of glycolysis is now thought to suppress 

macrophage migration both in vitro and in vitro in a process mediated by HIF-1α 

(Semba et al. 2016). These results indicate an important role for HIF-1α-

mediated switching to glycolysis for the induction of inflammatory mechanisms 

in macrophages. 

Upstream in the glycolytic pathway, the glycolytic activator 6-phosphofructo-2-

kinase/fructose-2,6-biphosphatase 3 (PFKFB3) is thought to be an important 

mediator for the uptake of virally infected cells by macrophages (H. Jiang et al. 

2016). In a regulatory role, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

has been shown in primary human monocytes and macrophages to bind and 

repress TNFα mRNA translation when glycolysis is at a low state of flux. This 

phenomenon was reversed when glycolysis was increased or when GAPDH was 

knocked down, thereby increasing TNFα production (Millet et al. 2016). Other 

glycolytic enzymes, such as hexokinase, have also been shown to act as an 

innate immune receptor with the ability to activate the NLRP3 inflammasome for 

the production of IL-1β and IL-18 (Wolf et al. 2016). Furthermore, cell surface 

expression of enolase has been observed to increase on monocytes and 

macrophages from RA patients. Antibodies against cell surface enolase promoted 

the production of TNFα, IL-1α/β and IFNγ (Bae et al. 2012) (Figure 1.5). 

Although the main train of thought with glycolysis is with pro-inflammatory 

cascades, it has been growingly associated with an immunoregulatory 

macrophage phenotype. For example, there has been a growing body of 

evidence supporting a role for glycolysis for the differentiation of M(IL-4) 

macrophages (Tan et al. 2015). Indeed, IL-4 induced AKT signalling has been 

shown to increase glucose uptake in alternatively activated macrophages for 

optimal IL-4 mediated gene transcription (Covarrubias et al. 2016). Separate 

work has suggested that the increased utilisation of glucose for M(IL-4) 

polarisation is mediated by the activation of the mTORC2/IRF4 pathway (S. C.-C. 

Huang et al. 2016). These studies highlight the complex role of the glycolytic 

pathway in macrophages, and how it can form the basis of pro-inflammatory and 

regulatory mechanisms. 
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In monocytes, glycolysis is considered to have a governing role in trained 

immunity. Trained immunity refers to the pre-programming of a cell so that has 

an amplified activatory profile upon re-stimulation. Studies assessing this 

phenomenon in a candida albicans trained immunity model with histone 

modification profiling, illustrated that trained monocytes displayed higher 

transcription of glycolytic genes and levels of aerobic glycolysis. The authors 

demonstrated that this was the result of the Warburg effect, which appeared to 

be mediated by an mTOR-HIF-1α cascade (Cheng et al. 2014; Saeed et al. 2014).  

 

 

Figure 1.5 Glycolytic metabolism has an important role in M(LPS ± IFNγ) macrophages. 
Schematic of glycolytic metabolism with intermediates in black and enzymes associated with 
immune metabolic functions in red. Boxed text describes the known immune functioning of each 
enzyme. Hexokinase and PKM2 are thought to promote IL-1β production via NLRP3 inflammasome 
activation. PFKFB3 has been associated with viral uptake and clearance. GAPDH dissociates from 
TNF mRNA during high glycolytic flux, allowing its translation. Activation of cell surface enolase 
by antibodies promotes the release of inflammatory mediators such as TNFα, IFNγ and IL-1α/β. 
Finally, PKM2 associates with HIF-1α to promote IL-1β release.  
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1.5.3  Tricarboxylic acid (TCA) cycle 

The tricarboxylic acid (TCA) cycle is a vital aerobic metabolic pathway in the 

mitochondrial matrix for the production of ATP. This typically occurs from the 

oxidation of acetyl-CoA, which is generated from fatty acids, amino acids and 

carbohydrates (Akram 2014). The cycle and its intermediates are illustrated in 

Figures 1.6 & 1.7. 

M(LPS + IFNγ) polarised macrophages exhibit a fragmented TCA cycle in 

comparison to their M(IL-4) counterparts, where it remains intact (Van den 

Bossche et al. 2017) (Figures 1.6 & 1.7). One of the TCA cycle breaks has been 

well characterised to initiate the accumulation of succinate, which has been 

published to enhance IL-1β production by stabilising HIF-1α (Tannahill et al. 

2013). Inflammatory macrophages in murine models of RA have been shown to 

release and recycle succinate via the GPR91 receptor. Therefore, this 

intracellular store is thought to be as a result of both autocrine and paracrine 

mechanisms to perhaps act as an intracellular danger signal (Littlewood-Evans et 

al. 2016). Other work has noted that during LPS stimulation, macrophages show 

an increased mitochondrial membrane potential and mitochondrial oxidation of 

succinate through succinate dehydrogenase. Together, these processes are 

thought to induce the production of ROS and further IL-1β. These studies 

highlight an important role for succinate in inflammation in macrophages (E. L. 

Mills et al. 2016) (Figure 1.6). 

As well as succinate, another break point in the TCA cycle has been reported to 

occur during isocitrate conversion to α-ketoglutarate, which results in the 

accumulation of citrate in M(LPS + IFNγ) macrophages (Jha et al. 2015; O'Neill 

2015) (Figure 1.6). Citrate accumulation has been reported to increase fatty 

acid synthesis which can promote the production of NO and prostaglandins 

(Infantino et al. 2014; Infantino et al. 2011) (1.5.4 & Figure 1.6). In addition to 

a build-up of citrate, studies have shown a reduction in the expression of the 

enzyme isocitrate dehydrogenase, which mediates the conversion of isocitrate to 

α-ketoglutarate. The same study observed an increased expression of immune-

responsive gene 1 (IRG1), which mediates the cis-aconitate to itaconate reaction  

(Jha et al. 2015) (Figure 1.6). This suggests that citrate is directed for the 

production of itaconate in inflammatory macrophages. Itaconate has been 
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previously reported in macrophages to possess anti-microbial properties 

(Michelucci et al. 2013). Despite its anti-microbial role, itaconate has recently 

been shown to have anti-inflammatory properties, by possessing the ability to 

inhibit succinate dehydrogenase (SDH) activity and therefore regulate cellular 

succinate levels (Lampropoulou et al. 2016). This proposes that itaconate acts as 

a negative feedback to limit IL-1β secretion through succinate. Furthermore, 

SDH has been recently implicated in the production of reactive oxygen species 

(ROS), highlighting the importance of itaconate to limit inflammatory responses 

in macrophages (E. L. Mills et al. 2016). Separate studies have shown that in vivo 

inhibition of SDH during bacterial insult reduces IL-1β and increases IL-10 

production from murine macrophages and thus impairs bacterial control. This 

work emphasises the importance of SDH in promoting inflammation (Garaude et 

al. 2016). Collectively, these reports highlight that TCA cycle breaks are a 

necessity in directing inflammatory cascades in macrophages in response to LPS 

+ IFNγ polarising conditions. 
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Figure 1.6 The TCA cycle is broken in classically activated macrophages. Inflammatory 
macrophages exhibit two breaks in the TCA Cycle. One occurs after Isocitrate, which leads to 
citrate accumulation and the generation of Itaconate through cis-aconitate. This reaction is 
mediated by Immune-responsive gene 1 (IRG1). Itaconate possesses anti-microbial function and 
has been shown to regulate succinate levels in a regulatory manner. Furthermore, citrate 
accumulation has been shown to promote fatty acid synthesis for subsequent production of nitric 
oxide and prostaglandins. The second break occurs after succinate which promotes its build up. 
Its accumulation is thought to stabilise HIF-1α for the production of IL-1β. Glutamate and the 
arginosuccinate shunt are thought to replenish α-ketoglutarate and fumarate respectively. The 
arginosuccinate shunt is also thought to cause the production of nitric oxide and IL-6.  
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Figure 1.7 The TCA cycle remains intact in M(IL-4) macrophages. Unlike in inflammatory 
macrophages, IL-4 polarised macrophages display no breaks in the TCA cycle, which is 
replenished by glucose and glutamine. This however causes the increased utilisation of UDP-
GlcNAc pathways which promotes glycosylation events, such as on scavenger receptors. 
 

1.5.4  Fatty acid oxidation (FAO) 

Fatty acid oxidation (FAO) typically refers to the process whereby fatty acids are 

oxidised to acetyl-CoA, which then enters the TCA cycle for the generation of 

ATP. Fatty acids can be intracellularly synthesised in the cytoplasm by acetyl-

CoA and NADPH via the action of an enzymatic complex named fatty acid 

synthase. Fatty acid synthesis has been previously reported to be associated with 

M(LPS ± IFNγ) macrophages (Jha et al. 2015). Fatty acids can also be taken up 

from extracellular sources via scavenger receptors such as CD36 (Park 2014). 

Oxidation of fatty acids typically take place in the mitochondrial matrix. 

Therefore, fatty acids need to traffic from the cytoplasm. Long chain fatty acyl-

CoA groups are transported by a carnitine shuttling system across the 

mitochondrial membrane (Figure 1.8) The fatty acid acyl group binds to free 

carnitine to form acylcarnitine by carnitine palmitoyltransferase 1 (CPT1), and is 

then trafficked into the inner mitochondrial membrane. The acyl group is then 

released into the mitochondrial matrix by CPT2 where it binds to a CoA group to 
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reform as an acyl-CoA (Houten & Wanders 2010). The long chain fatty acid 

(which varies in chain length) then undergoes a series of oxidation reactions to 

form acetyl-CoA.  

 

 

Figure 1.8 Carnitine shuttling into the mitochondria. Illustration of the mitochondrial 
membrane (right) within the boxed region of the whole mitochondria (left). Fatty acid acyl-CoA 
groups are trafficked by carnitines into the mitochondria for subsequent β-oxidation. Fatty acid 
acyl groups bind to free carnitine, prompting the release of CoA and the formation of acyl-
carnitines. This enzymatic reaction is achieved through carnitinepalmitoyl transferase 1 (CPT1). 
The acyl group is then released from the carnitine and transferred to a free CoA group in the 
mitochondrial matrix in a mechanism mediated by CPT2. The carnitine is recycled for the 
trafficking of further acyl groups from the cytoplasm into the mitochondrial matrix. The acyl-CoA 
groups then undergo a series of oxidation reactions (β-Oxidation), and the end product, acetyl-
CoA enters the TCA cycle. 
 

The majority of research into fatty acid oxidation in myeloid cells has assessed 

its importance in macrophage polarisation. Initial microarray analysis attributed 

FAO in the polarisation of M(IL-4) or alternatively activated macrophages, which 

were reported to increase CD36 cell surface expression and gene expression of 

carnitine transferases. Furthermore, fatty acid uptake was noticeably increased 

under these conditions (Vats et al. 2006). More recent work identified that the 

fatty acids originated from triacylglycerol substrates after CD36 uptake and their 

lipolysis was important for the activation of M(IL-4) macrophages (S. C.-C. Huang 

et al. 2014). As previous studies were restricted to murine macrophages, 

Namgaladze and Brune tested if this was applicable to human macrophages. 

However, inhibition of FAO with etomoxir (ETO) appeared to have no impact on 
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IL-4 induced polarisation of human macrophages. IL-4 treatment itself did not 

appear to have any significant effect on CPT1 protein levels either (Namgaladze 

& Brüne 2014). Such findings promote increased debate of the translational 

capacity of murine studies into the human context (Seok et al. 2013; Takao & 

Miyakawa 2015). However, genetic ablation of CPT2 and FAO has been recently 

shown to have no effect on IL-4 mediated polarisation in bone marrow derived 

macrophages from mice (Nomura et al. 2016). Given the fact other work showed 

the inhibitory effect of ETO on IL-4 macrophage activation, this may suggest ETO 

could have off target effects. Nevertheless, increased glucose metabolism 

appears to have a role in M(IL-4) activation but the precise role of FAO in this 

process remains elusive (S. C.-C. Huang et al. 2016). A different approach 

assessed the role of the fatty acid transporter protein 1 (FATP1) in murine 

macrophages. The authors concluded that a loss of FATP1 promoted a glycolytic 

shift from FAO and supported a more pro-inflammatory phenotype in mouse 

adipose tissue macrophages, hinting at a regulatory role for fatty acid 

metabolism in macrophages (Johnson et al. 2016). 

Given its association with regulatory M(IL-4) macrophages, the common train of 

thought in the field is that fatty acid metabolism is regulatory or anti-

inflammatory. However, macrophage stimulation through the saturated fatty 

acid, palmitate, has been implicated in the production of IL-1β release through 

the NLRP3 inflammasome. This suggests that its oxidation promotes an 

inflammatory cascade in macrophages (Wen et al. 2011). Furthermore, 

impairment of the utilisation of fatty acids prevents ROS production via 

oxidative phosphorylation and limits their bactericidal activity (C. J. Hall et al. 

2013).  

In somewhat contrast to the association of FAO with M(IL-4) macrophage 

metabolism, studies have linked fatty acid synthesis (FAS) with M(LPS) 

macrophage metabolism (Feingold et al. 2012; Jha et al. 2015). This also seems 

to be the case during M-CSF mediated differentiation of monocytes into 

macrophages, which exhibit increased levels of FAS and of genes associated with 

FAS, such as fatty acid synthase (FASN). Mechanistically, this was caused by the 

upregulation of sterol regulatory element-binding transcription factor 1c 

(SREBP1c) (Ecker et al. 2010). The role of FAS in inflammatory macrophages has 



  51 
 
been linked to NLRP3 inflammasome activation via mitochondrial uncoupling 

protein 2 (UCP2) during murine sepsis (Moon et al. 2015). This work further 

highlights the complex nature of fatty acid metabolism and the opposing immune 

outcomes of fatty acid synthesis and oxidation. 

1.5.5  Nucleotide metabolism  

Nucleotide metabolism and their intermediates have a range of biochemical 

processes. For example, it forms the basis of ATP, the primary form of 

intracellular energy, and the precursors of DNA and RNA. Moreover, they are 

components of coenzymes such as CoA, NAD, and serve as intermediates in a 

range of biochemical pathways (Carver & Allan Walker 1995).  

The role of nucleotide metabolism in immunological processes is relatively 

unknown in myeloid cells. However, it has been shown that purine 

intermediates, such as guanine, hypoxanthine and inosine are increased in LPS 

activated macrophages (Tannahill et al. 2013) (Figure 1.9). Furthermore, earlier 

studies indicated that adenosine may aid the metabolic switching to glycolytic 

metabolism in M(LPS) macrophages. Ligation of cell surface adenosine receptors 

such as A2A and A2B to adenosine on LPS activated macrophages can induce the 

expression of the glycolytic enzyme PFKFB3 (Ruiz-Garcia et al. 2011) (Figure 

1.9). Despite its supposed role in promoting glycolysis, adenosine receptor 

signalling is thought to have a variety of anti-inflammatory functions, such as by 

suppressing TNFα, IL-12 and NO in monocytes and macrophages (Haskó & Pacher 

2012) (Figure 1.9). Similar effects have been witnessed by a breakdown product 

of adenosine, inosine (IMP). Inosine has also been shown to reduce TNFα and in 

addition IL-1 production in LPS stimulated murine peritoneal macrophages 

(Haskó et al. 2000) (Figure 1.9). These studies may suggest that while 

nucleotides and their intermediates may promote or be indicative of an 

inflammatory metabolic program in macrophages, they could provide a negative 

feedback mechanism. 

An important provider of nucleotides is the pentose phosphate pathway, which 

branches off the glycolytic pathway to divert intermediates for the production of 

nucleotides and amino acids during processes such as cell growth and 

proliferation. It also provides reducing equivalents of NADPH to maintain a 
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favourable cellular redox environment (Patra & Hay 2014). This pathway is 

largely thought to be upregulated in M(LPS) macrophages (Tannahill et al. 2013; 

Galvan-Pena & O'Neill 2014). Earlier studies illustrated that M(IL-4) macrophages 

upregulate expression of the sedoheptulose kinase termed carbohydrate kinase-

like protein (CARKL). CARKL is thought to possess regulatory properties, as its 

expression switches macrophage phenotype to a more anti-inflammatory 

phenotype (Haschemi et al. 2012). Therefore, this pathway is likely to mediate 

the nucleotide pool to carry out both biochemical and perhaps immunological 

functions in inflammatory macrophages. However, further work is needed to 

fully elucidate such mechanisms. 

 

 

Figure 1.9 Overview of purine metabolism. Schematic of purine metabolism for the production 
of DNA and RNA (Red circles) or the degradation from hypoxanthine to urate. Black circled 
intermediates indicate those which have been published as being increased in inflammatory 
macrophages. Adenosine has been shown to induce the glycolytic enzyme PFKFB3 whilst also 
promoting suppressive effects when bound to adenosine receptors. Inosine (IMP) has been shown 
to have similar suppressive functions as adenosine in murine peritoneal macrophages. 
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1.5.6  Amino acid metabolism 

Another area of immune-metabolic research is centred around the role of amino 

acids and their metabolism. One of the most studied amino acids in myeloid cell 

immunity is arginine. It has been known for a number of years that arginine is 

utilised differently in polarised M(LPS ± IFNγ) and M(IL-4) macrophages. It is well 

characterised that M(LPS) macrophages generate NO and citrulline from arginine 

via iNOS. On the other hand, M(IL-4) macrophages generate ornithine through 

arginase activity, which implicates the urea cycle in M(IL-4) activation (C. D. 

Mills et al. 2000). Elsewhere in the urea cycle, arginine can be broken down for 

the production of creatine and creatinine. Both of which have been shown to 

promote a downregulation of a TLRs such as TLR-2, 3, 5 and 7 in RAW 264.7 

macrophages (Leland et al. 2011). Therefore, distinct biochemical pathways 

from arginine can influence the inflammatory state of macrophages. 

Glutamine represents another amino acid with a role in myeloid cell immunity. 

Early studies suggested that sufficient levels of glutamine are required for the 

production of both IL-1 and NO, the latter by entering into arginine metabolic 

pathways (Wallace & Keast 1992; Murphy & Newsholme 1998). Although this 

highlights a role for glutamine in inflammatory cascades in macrophages, more 

recent work has found that glutamine fluxes into the intact TCA cycle and 

uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) biosynthetic pathways, 

which are essential for M(IL-4) macrophage activation (Figure 1.7). Indeed, 

glutamine deprivation experiments prevents CCL22 production, CD206, CD301 

and Relma expression in IL-4 treated macrophages (Jha et al. 2015). In light of 

this work, glutamine metabolism can be argued to be associated with both 

inflammatory and regulatory type macrophages.  

Taken together, amino acid metabolism represents one of many metabolic 

pathways which are interlinked with immunological cascades. The work in this 

thesis will aim to elucidate how an inflammatory disease microenvironment can 

influence immune-metabolic networks which can drive disease severity.   
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1.6 Aims 

There is a growing body of research aimed at elucidating metabolic pathways 

that control of immunological cascades in monocytes and macrophages. 

However, the majority of studies utilise end polarised macrophages (typically 

M(LPS ± IFNγ) or M(IL-4)) and often in murine derived cells which have been 

shown to contain species differences compared to humans (Seok et al. 2013). 

Furthermore, experimental polarisation conditions reduce these studies 

relatability to chronic inflammatory disease settings in humans, such as RA and 

COPD.  

Therefore, this thesis has set out to assess what impact the disease environment 

may have on the immune-metabolic functioning of monocytes in chronic 

inflammatory disease. Inflammatory diseases are characteristically hypoxic sites, 

therefore monocytes have to not only adapt to environmental pressure at a 

metabolic level, but carry out appropriate effector function in response to 

stimuli when they are recruited to the tissue. The studies addressed here will 

aim to carry out metabolomics analysis of monocytes cultured under hypoxic 

conditions and stimulated with RA synovial fluid. By conducting functional 

analysis of monocytes under the same conditions, the importance of altered 

metabolic pathways will be determined by pharmacological investigation. 

This work aims to: 

1. Metabolically profile monocytes cultured under short term hypoxia to 

identify hypoxia specific metabolic pathways. 

2. Functionally profile monocytes cultured under short term hypoxia and LPS 

stimulation to identify functional characteristics altered in hypoxia. 

3. Pharmacologically inhibit or promote altered metabolic pathways to 

assess their impact, if any, on monocyte functionality. 

4. Analyse the metabolome, function and metabolically manipulate 

monocytes cultured under hypoxia and synovial fluid from an RA patient. 
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5. Assess if the findings from monocytes are translated into human alveolar 

macrophages. 
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Chapter 2. Materials and Methods 

2.1 Human samples, patients and controls 

Buffy coats from the Scottish National Blood Transfusion Service (SNBTS) and 

peripheral blood from healthy volunteers was used as a source of monocytes. 

Synovial fluid was obtained from active rheumatoid arthritis (RA) patients, which 

were identified from Rheumatology clinics in Glasgow Royal Infirmary and 

fulfilled the 2010 ACR/EULAR criteria for RA. Lung resection tissue was obtained 

from lobectomy procedures from the Sahlgrenska University Hospital, 

Gothenburg, Sweden. Tissue was derived from lung cancer, transplant or 

patients with Chronic Obstructive Pulmonary Disorder (COPD) with variable 

smoking status. All samples were obtained after written consent, with the 

appropriate ethical approvals in place. 

2.2 Primary human cell culture 

2.2.1  Isolation of peripheral blood mononuclear cells (PBMCs)  

Peripheral blood mononuclear cells (PBMCs) were separated from human buffy 

coats provided by the SNBTS or from peripheral blood from healthy volunteers by 

density gradient centrifugation. Human blood from the SNBTS was diluted 1:1 in 

sterile DPBS (Gibco, Thermo Fisher), while peripheral blood was left undiluted. 

In 15ml centrifuge tubes, 8ml of blood was carefully layered on top of 3ml of 

Ficoll® Paque Plus (Sigma-Aldrich). This was centrifuged at 400g for 30 minutes, 

at room temperature (RT) with no brake. The buffy coat layer containing PBMCs 

was harvested into 50ml centrifuge tubes. The PBMCs were washed once in 

sterile DPBS at 300g for 10 minutes, with full brake, and a second time at 200g 

for 10 minutes to remove platelets. The cells were re-suspended in 10ml of cell 

separation buffer (DPBS containing 2% Fetal Bovine Serum (FBS; Invitrogen), 1mM 

EDTA). To count and evaluate viability, the PBMCs were assessed by trypan blue 

exclusion. 50µl of cells were diluted in 200µl of DPBS and 50µl of this cell 

suspension was mixed in 50µl of trypan blue (Sigma-Aldrich), giving a total 10x 

dilution. 10µl of this suspension was loaded onto a haemocytometer and viable 

cells were counted under light microscopy. For direct analysis, the PBMCs were 

re-suspended at a density of 1x106/ml in RPMI 1640 (Gibco, Thermo Fisher) 
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containing 10% FBS, 2mM L-glutamine (Sigma-Aldrich) and 1% pen-strep (Sigma-

Aldrich). For monocyte enrichment, the PBMCs were re-suspended at 5x107/ml in 

cell separation buffer. 

2.2.2  Monocyte enrichment from PBMCs 

To enrich the monocyte population from the PBMCs, the EasySep monocyte 

enrichment kit, without CD16 depletion (StemCell Technologies), was used. It is 

assumed that monocytes constitute approximately 10-20% of total PBMCs. From 

this estimation, an appropriate volume of PBMCs (at a cell density of 5x107/ml in 

cell separation buffer) was transferred to capped 6ml polystyrene tubes (BD 

Falcon). The antibody cocktail was added to the cell suspension at 50µl/ml and 

the tubes were incubated at 4°C for 10 minutes. Thereafter, magnetic beads 

were vortexed for 30 seconds and added to the cell suspension at 50µl/ml. The 

tubes were incubated at 4°C for 5 minutes. The tubes were topped up with cell 

separation buffer to a final volume of 2.5ml. The tubes were placed into an 

EasySep™ Magnet (StemCell Technologies) for 2.5 minutes. Afterwards, the 

magnet containing the tubes, was inverted into a fresh centrifuge tube to collect 

the negatively selected cells. 50µl of the negatively selected cells were added to 

50µl of trypan blue (giving a total 2x dilution) and viable cells were counted by a 

haemocytometer under a light microscope. The enriched monocytes were 

centrifuged at 300g for 5 minutes and re-suspended at a density of 1x106/ml in 

monocyte medium (RPMI 1640 containing 10% Human Pooled Plasma (BioWest), 

2mM L-glutamine, 1% pen-strep) unless otherwise stated. 

2.2.3  Stimulation of human monocytes 

Human monocytes were stimulated with 10ng/ml LPS-EK ultrapure (Invivogen) 

unless otherwise stated. For synovial fluid experiments, monocytes were treated 

with media containing 5% or 10% synovial fluid from active RA patients. For 

metabolic manipulation, monocytes were treated with 10mM L-carnitine (Sigma-

Aldrich) simultaneously with LPS or RA synovial fluid unless otherwise stated. 

Monocytes were pre-treated for 1 hour with etomoxir (ETO; Sigma-Aldrich) at 

50µg/ml or 2-Deoxyglucose (2-DG; Sigma-Aldrich) at 3mM. PMA (Abcam) was 

used at a concentration of 10ng/ml. Dimethyloxalyglycine (DMOG; Sigma-

Aldrich) was used at a concentration of 100µM and 1mM. 
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2.2.4  Human alveolar macrophage (AM) isolation  

Human lung tissue was transported to the laboratory at 4°C in transport medium 

(DMEM, 10% FBS, 2% antibiotic-antimycotic (Invitrogen), 2% non-essential amino 

acids (NEAAs; Invitrogen)). The tissue was placed in a large petri dish, and was 

flushed extensively with sterile DPBS using a 19-gauge needle. This process was 

repeated until no more cells were flushed out and the DPBS ran clear. The cell 

suspension was harvested and transferred into 50ml centrifuge tubes. The tubes 

were centrifuged at 300g for 10 minutes and the cells were pooled. The white 

blood cells (WBC) were counted using an automatic haematological analyser 

(Sysmex). The WBCs were re-suspended at a density 2x106/ml in serum-free 

phenol red-free RPMI (Gibco, Thermo Fisher). The WBCs were plated in Costar® 

(Corning®) tissue culture treated plate, typically 500µl in 24 well plates. The 

cells were allowed to rest for 1 hour at 37°C to allow macrophage adherence. 

Non-adherent cells were gently removed by washing at least 3 times in serum-

free phenol-red free RPMI. After the final wash, the cells were allowed to rest 

overnight in X-Vivo™ 10 media (Lonza) supplemented with 2mM L-glutamine and 

1% pen-strep.  

2.2.5  Polarisation and treatment of alveolar macrophages  

Alveolar macrophages were polarised to an M0 (control), M(LPS ± IFNγ) (pro-

inflammatory macrophage) or M(IL-4) (anti-inflammatory macrophage) 

phenotype. Macrophages treated with media alone (X-Vivo™ 10) are referred to 

as M0. Macrophages treated with 100ng/ml LPS (Sigma-Aldrich) and 20ng/ml 

IFNγ (Peprotech) for 24 hours are referred to as M(LPS ± IFNγ). Macrophages 

treated with 200ng/ml IL-4 (Peprotech) for 24 hours are referred to as M(IL-4). 

For metabolic manipulation, the cells were treated with L-carnitine and ETO in 

the same manner as in 2.2.3.  

2.3 Culture of cell lines 

2.3.1  Culture and treatment of Raji cells 

Raji cells (Burkitt’s Lymphoma; B lymphocyte cell line) were a kind gift from 

Mark Williams. Aliquots of Raji cells were frozen at -80°C in BAMBANKER™ 

solution (Wako Chemicals) in screw-capped vials at a density of 1x106/ml. For 
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recovery, the cells were thawed in a 37°C water bath and were re-suspended in 

5ml of growth media (RPMI 1640 with 10% FBS, 2mM L-glutamine and 1% pen-

strep). The cells were centrifuged at 300g for 5 min and re-suspended in 15ml of 

fresh medium. The cells were transferred to a 75cm2 tissue culture flask 

(Corning®) which was placed in an incubator at 37°C with 5% CO2. The medium 

was changed every 2 to 3 days and the cells were sub-cultured at a 1:10 ratio 

when they reached a cell density of 3x106/ml. To sub-culture, the cell 

suspension was transferred to centrifuge tubes and centrifuged at 300g for 5 

minutes. The cells were re-suspended in 10ml of fresh growth medium and 

viable cells were counted using trypan blue (2.2.1). 3x105 viable cells were 

transferred to a new 75cm2 tissue culture flask in an upright position. For 

treatment of the Raji cells, cobalt chloride (CoCl2: Sigma-Aldrich) was used at 

30µg/ml and 70µg/ml.  

2.3.2  Culture of Caco-2 cells 

Caco-2 cells (human colorectal adenocarcinoma epithelial cells) were purchased 

from ATCC® (HTB-37™). The cells were cultured as per manufacturer’s 

instructions. For recovery, the cells were thawed in the vial in a 37°C water 

bath and transferred to a centrifuge tube. The cells were centrifuged at 300g for 

5 minutes and re-suspended in growth medium (DMEM (Gibco, Thermo Fisher) 

with 10% FBS, 1% Pen-Strep, 2mM L-glutamine, 1% NEAA and 15mM HEPES (pH 

7.4)). The cells were counted by trypan blue exclusion under light microscopy 

(2.2.1) and were seeded into a 75cm2 tissue culture flask at a cell density of 

1x104/cm2 or 5x104/ml. The cells were sub-cultured when they reached a 

confluency of approximately 80%. To sub-culture the cells, the medium was 

aspirated from the culture vessel and discarded. The cell monolayer was rinsed 

briefly with 0.25% (w/v) trypsin-EDTA solution (Sigma-Aldrich) to remove traces 

of serum, which contains trypsin inhibitor. 3ml of fresh 0.25% trypsin-EDTA 

solution was added to the monolayer, and the cells were then incubated for 5 

minutes at 37°C to aid detachment from the surface. The cells were then placed 

under an inverted light microscope and observed until full detachment. 7ml of 

fresh growth medium was added to the vessel and cells were transferred to a 

centrifuge tube. The cells were centrifuged at 300g for 5 minutes, re-suspended 

in fresh growth medium and sub-cultured at a 1:6 ratio. Medium was renewed 

every 3-4 days. For scratch assays (2.6.1) the cells were seeded and grown to 
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confluence in 12 well tissue culture treated plates (Corning®). For long term 

storage, cells were re-suspended at a density of 1x106/ml in BAMBANKER™ 

solution and kept at -80°C. 

2.3.3  Culture of HUVECs 

Human umbilical cord vein endothelial cells (HUVECs) were a kind gift from 

Jonathan Noonan. Aliquots of HUVECs were frozen at -80°C in BAMBANKER™ 

solution in screw-capped vials and were thawed in a 37°C water bath. The cells 

were transferred from the storage vial into a 75cm2 tissue culture flask 

containing 15ml of growth medium (Endothelial cell media with SupplementMix; 

PromoCell). The cells were allowed to adhere overnight and the medium was 

changed to remove traces of BAMBANKER™ solution. The HUVECs were sub-

cultured when they reached a confluency of approximately 80%. To sub-culture, 

the cells were detached with 0.25% trypsin-EDTA solution in the same manner as 

in 2.3.2. The cells were transferred to centrifuge tubes, centrifuged at 220g for 

5 minutes and re-suspended in 2ml of growth medium for counting by trypan 

blue. The cells were inoculated into new culture vessels at a density of 

5x103/cm2 or 2.5x104/ml. Medium was changed every 2 days and cells were not 

grown beyond passage 12. For long term storage, cells were re-suspended at a 

density of 1x106/ml in BAMBANKER™ solution and kept at -80°C.  

2.4 Induction of Hypoxia 

2.4.1  Induction of 5% oxygen 

Hypoxia was induced in vitro at oxygen (O2) tensions of 5%, 2.3% and 1%. For the 

induction of 5% and 2.3% O2, a Heraeus HERA cell 150 tissue culture incubator 

with O2 control (Thermo Fisher) was used. The incubator was set to 37°C, 5% CO2 

and 5% or 2.3% O2 by using its digital control panel. To flush out and maintain 

low oxygen tension, the incubator was connected to a nitrogen (oxygen-free) 230 

bar W sized gas cylinder purchased from the British Oxygen Company (BOC).  
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2.4.2  Induction of 1% oxygen 

For the induction of 1% O2, a hypoxic chamber (with its associated single-flow 

meter) was purchased from Billups-Rothenburg. Cell culture plates were placed 

inside the chamber which was clamped closed and kept airtight. The chamber 

was then purged with a speciality gas mixture purchased from BOC, containing 

1% O2, 5% CO2 and N2 balance (with an uncertainty of ± 1% of each gas 

component), through an inlet port at a flow rate of 40L per minute, for 3 

minutes. The inlet and outlet port was sealed closed and the chamber was 

placed in a standard tissue culture incubator set to 37°C.  

2.5 Western Blotting 

2.5.1  Cell lysis (RIPA buffer) 

To generate cell lysates from monocytes for subsequent Western Blot analysis, a 

RIPA buffer-based lysis method was carried out. Cells were aspirated from the 

tissue culture well and transferred to an ice-cold microcentrifuge tube. The well 

was flushed with ice cold DPBS to remove any adherent cells, which was also 

transferred to the same tube. The tubes were centrifuged at 300g for 5 minutes 

to pellet the cells, which were then washed twice in ice-cold DPBS (300g for 5 

minute centrifugations). Meanwhile, protease and phosphatase inhibitors 

(Thermo Fisher) were added to the RIPA lysis buffer (Thermo Fisher) 

immediately before use, at a concentration of 10µl/ml. After the final wash, 

ice-cold RIPA Buffer was added directly to the cell pellet to lyse the cells, at a 

concentration of 20µl per 1x106 cells. The samples were incubated on ice with 

intermittent vortexing for 20 minutes. The samples were then centrifuged at 

17,000g for 10 minutes to pellet cellular debris. The supernatants were stored at 

-80°C until Western Blot analysis. 

2.5.2  Cell lysis (Laemmli buffer)  

An alternative direct lysis method protocol was used to generate lysates for 

Western Blot analysis. The cells were harvested from the culture well and 

washed as described in 2.5.1. β-Mercaptoethanol (Sigma-Aldrich), which acts as 

a reducing agent of protein disulphide bonds, was added to 2x Laemmli Sample 

Buffer (Bio-Rad) to a final concentration of 5%. This sample buffer was added 
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directly to the cell pellet at a concentration of 20µl per 1x106 cells. The samples 

were incubated on ice and vortexed intermittently for 20 minutes. When 

necessary, the samples were sonicated to shear DNA and reduce viscosity. The 

samples were then boiled at 95°C for 5 minutes to denature the proteins. The 

samples were subsequently stored at -80°C until Western Blot analysis. 

2.5.3  Protein quantification  

To ensure equal loading of protein lysates prior to Western Blotting, the RIPA 

buffer lysates were normalised by protein concentration. To determine the 

protein concentration in the samples, the Bradford assay method was used. 5x 

Bio-Rad protein assay (Bradford) reagent was diluted to 1x with distilled water 

(dH2O). To generate the standard curve, a 1.5mg/ml BSA (Sigma-Aldrich) 

standard solution in 1x PBS was made. 1ml of 1x protein assay reagent was 

aliquoted into microcentrifuge tubes. A range of standards was prepared from a 

1.5µg/ml lower standard to a 15µg/ml top standard by adding 1µl and 10µl of 

BSA standard solution respectively into the appropriate microcentrifuge tube. 

1µl of sample of unknown concentration was added to a microcentrifuge tube 

containing 1ml of protein assay reagent. A blank sample was made by adding 1µl 

of lysis buffer to 1ml of protein assay reagent. All tubes were vortexed briefly 

and 200µl of each standard and sample was pipetted in triplicate into a 96 well 

plate. The absorbance was read on a Tecan Sunrise microplate reader at 595nm. 

The final concentration of the unknown sample was determined by using a log-

parameter curve fit in Excel and taking into account the original dilution. 

Laemmli buffer is incompatible with the Bradford assay, due to its bromophenol 

blue content. The protein content of samples in Laemmli buffer was estimated 

by a NanoDrop™ 2000/2000c Spectrophotometer (Thermo Fisher) using the 

Protein 280nm method. 

2.5.4  Protein denaturation 

To prepare RIPA buffer lysates for denaturing before gel electrophoresis, 4x 

NuPAGE® LDS Sample Buffer (Thermo Fisher) was added to the samples to bring 

the overall concentration to 1x. The sample buffer contains lithium dodecyl 

sulfate, which aids the reducing agent to denature and reduce protein disulphide 

bonds. 10x NuPAGE™ Sample Reducing Agent (Thermo Fisher) was added to the 
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sample and LDS sample buffer solution to a final 1x concentration. The samples 

containing LDS sample buffer and reducing agent were boiled at 95°C for 5 

minutes. Lysates prepared using the direct lysis method in Laemmli buffer did 

not require any further denaturing step. 

2.5.5  Protein gel electrophoresis 

Protein gel electrophoresis was carried out using the XCell SureLock® Mini-Cell 

(Thermo Fisher) apparatus and a NuPAGE pre-cast 4-12% Bis-Tris Gel (Thermo 

Fisher). The gel was removed from its packaging, storage solution was rinsed off 

with H2O and the tape covering the slot on the back of the gel cassette was 

peeled off. The apparatus was assembled as follows: pre-cast gel at the front 

with notch facing inwards; buffer code in centre with negative electrode slotting 

into the gold plate; buffer dam behind the buffer code and then the lock. 20x 

NuPAGE® MOPS SDS running buffer (Thermo Fisher) was diluted in dH2O to 1x 

(500ml total volume needed) and was loaded into the inner chamber (between 

gel and buffer code) and allowed to overflow. The comb was gently removed 

from the gel and 10µg of sample protein (unless otherwise stated) was loaded by 

using elongated pipette tips into each well. 10µl of BenchMark™ Pre-stained 

Protein Ladder (Thermo Fisher) was added to the first well as a reference. The 

apparatus was connected to an electrophotometer (red to the (+) jack and black 

to (-) jack) and was run at 120V until the samples migrated to the bottom. 

2.5.6  Gel transfer to PVDF membrane 

When the electrophoresis had ended, the gel cassette was removed from the 

apparatus and the gel was removed from the cassette by using a gel knife. The 

gel was cut to size and transferred into dH2O. Transfer of the proteins from the 

gel to a PVDF membrane was carried out using an iBlot® Dry Blotting System and 

the associated iBlot® Transfer Stack apparatus (Thermo Fisher). The bottom 

anode stack was inserted into the tray and the gel was placed on top of the 

transfer membrane. Pre-wetted filter paper (in dH2O) was placed on top of the 

gel and bubbles were removed by rolling the assembly with the iBlot roller. The 

top cathode stack was placed on top and the assembly was rolled again. The 

sponge was placed into the tray in the lid of the iBlot system and the lid was 

closed. The proteins were transferred to the PVDF membrane using the default 
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programme P3 at 20V for 7 minutes. When the programme had finished, the 

PVDF membrane was stained briefly with Ponceau S (Sigma-Aldrich) to ensure a 

uniform transfer. 

2.5.7  Probing 

The Ponceau S stain was washed off the membrane in PBS-T (1x PBS, 0.1% 

Tween™ 20 (Sigma-Aldrich)) and the membrane was then blocked in blocking 

buffer (PBS-T, 5% non-fat dried milk (Marvel)) for 1 hour at RT. The membrane 

was incubated overnight at 4°C in primary antibody with rocking. When probing 

for HIF-1α, the membrane was cut at 55kDa (using protein ladder as reference) 

so HIF-1α (predicted weight: 120kDa) and GAPDH (predicted weight: 37kDa) 

housekeeping could be probed simultaneously. The primary antibody was 

aspirated and washed 3 times in PBS-T (10 minutes per wash). The membrane 

was incubated in secondary antibody for 1 hour at RT. The secondary antibody 

was aspirated and the membrane was washed 4 times in PBS-T. To visualise the 

detected bands, the membrane was incubated in WestPico or WestFemto 

substrate solution (to increase sensitivity; Thermo Fisher) for 3 minutes. The 

solution was poured off, the membranes were air-dried briefly and wrapped in 

cling film. The membranes were visualised by chemiluminescent detection using 

an Azure Biosystems c500 Western Blot imaging system. 

2.5.8  Western Blot antibodies 

The following antibodies were used for Western Blot analysis: Rabbit anti-human 

HIF-1α primary antibody (Cell Signalling Technologies (CST)); Mouse anti-human 

HIF-1α primary antibody (BD Transduction Laboratories); GAPDH XP® Rabbit 

primary antibody (CST); Anti-rabbit IgG, HRP-linked secondary antibody (CST); 

Rabbit polyclonal anti-mouse IgG HRP (Abcam) secondary antibody; Polyclonal 

goat anti-mouse IgG HRP (Dako). The antibodies used are noted in Table 2.1. 
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Table 2.1 Western Blot antibodies 
 
Target Antibody Reactivity Supplier Dilution Buffer (in PBS-T) 
HIF-1α Primary Human CST 1:1000 5% BSA 
HIF-1α Primary Human BD 1:750 5% Milk 
GAPDH Primary Human CST 1:1000 5% BSA 
Rabbit-IgG Secondary Rabbit CST 1:1000 5% Milk 
Mouse-IgG Secondary Mouse Abcam 1:2000 5% Milk 
Mouse-IgG Secondary Mouse Dako 1:2000 5% Milk 
 

2.6 Cellular assays 

2.6.1  Wound healing scratch assay 

Wound healing (scratch) assays were performed on monolayers of Caco-2 cells 

and HUVECs, which were cultured as described in sections 2.3.2 and 2.3.3 

respectively. Both cell types were seeded and grown to confluence in 12 well 

tissue culture plates (Corning®). Upon confluency, the cells were serum-starved 

for 24 hours by culturing in growth medium depleted in serum. The monolayers 

were scratched using a sterile P10 pipette tip. The monolayer was washed twice 

in growth medium to remove detached cells. As an alternative protocol, to 

obtain a more consistent area for cells to migrate, IBIDI culture inserts (2 well in 

µ-dish, 35mm) were used. Cells were seeded and grown to confluence in each 

chamber of the silicone culture insert. Using a pair of sterile tweezers, the 

silicone insert was removed from the surface of the dish to create a uniform, 

500µm gap for migration. In both protocols, 2.5x105 human monocytes were then 

plated in each well or dish on top of the monolayer in monocyte medium 

(2.2.2). Still images (using an EVOS Cell Imaging System (Thermo Fisher)) of the 

scratched area were taken immediately at 0 hours and at 4 and 16 hours after 

culture in normoxic and hypoxic conditions. The scratched areas were drawn and 

measured using Image J software and the percentage wound closure was 

calculated, using the area measured at 0 hours as a reference. 

2.6.2  Cellular adherence assay 

Cellular adherence of monocytes was evaluated using crystal violet staining. 

Human monocytes were seeded in 96 well tissue culture plates at 2x105 

cells/well and were cultured under normoxic or hypoxic conditions for 4 hours. 
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Non-adherent cells were removed by washing the wells with 200µl of 1x PBS. The 

cells were fixed by adding 50µl of 96% ethanol (EtOH) for 10 minutes at RT. The 

wells were washed twice by submersing the plates in a beaker containing dH2O. 

The plates were allowed to air dry. The cells were stained with 100µl of 0.5% 

crystal violet (Active Motif) in 2% EtOH for 15 minutes at RT. Excess stain was 

washed off in dH2O and plates were left to air dry. The stain was solubilised by 

adding 100µl of 1% SDS (Sigma-Aldrich) and the plates were shaken until the 

colour became uniform. The absorbance was read at 570nm by using a Tecan 

Sunrise microplate reader.  

2.6.3  MTT assay 

Untreated and treated monocytes were seeded in 96 well tissue culture plates at 

a cell density of 1x106/ml, 100µl per well. Thiazoyl blue tetrazolium bromide 

(MTT) salt (Sigma-Aldrich) stock solution was prepared in 1x PBS at 6mg/ml. 10µl 

of the stock solution was added to each well, mixed briefly, and the cells were 

incubated at 37°C for 3 hours. During this time, metabolically active cells 

metabolise the salt and produce purple formazan crystals as a by-product. After 

incubation, the media was aspirated and the wells were left to air dry. The 

formazan crystals were solubilised by adding 100µl of 100% dimethylsulfoxide 

(DMSO; Sigma-Aldrich). The plate was placed on a shaker at RT until the crystals 

were fully dissolved. The absorbance was read at 550nm (650nm reference) by 

using a Tecan Sunrise microplate reader.  

2.7 Supernatant assessment 

2.7.1  Sample harvest 

The cell culture supernatant was harvested to assess the levels of cytokines, 

chemokines and lactate secreted by cells in culture. The cell culture plates were 

removed from the incubator and centrifuged at 400g for 5 minutes to pellet cells 

and debris. The cell-free supernatant was carefully pipetted into 

microcentrifuge tubes or aliquoted into 96 well plates, which were wrapped in 

parafilm. The supernatants were stored at ≤-20°C until analysis. 
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2.7.2  Enzyme-linked immunosorbent assay (ELISA) 

ELISAs were performed using manufacturer’s instructions, which were specific to 

each kit and supplier. Suppliers used were Life Technologies (LT) and R&D 

Systems (R&D). All ELISAs were performed using high binding, half well, 96 well 

ELISA plates (Corning®) using Duoset kits. The plates were coated overnight in 

capture antibody (50µl/well) diluted in 1x PBS at either 4°C (LT) or RT (R&D). 

The capture antibody was aspirated and the plates were washed once (LT) or 3 

times (R&D) in PBS-T ELISA wash buffer (1x PBS, 0.05% Tween™ 20). The plates 

were blocked for 1 hour at RT to prevent non-specific antibody binding by adding 

150µl/well of assay buffer (1x PBS, 5% BSA, 0.1% Tween™ 20, 0.5% ProClin™ 300 

(Sigma-Aldrich)). Meanwhile, the standards were made by serial dilution and the 

samples were diluted as appropriate in assay buffer. In kits supplied by LT, the 

assay buffer was aspirated and 50µl of standards and samples were added to the 

plate. 25µl of detection antibody (diluted in assay buffer) was then added and 

the plates were left on a shaker at RT for 2 hours. In kits supplied by R&D, the 

assay buffer was aspirated and the plates were washed 3 times in wash buffer. 

50µl of standards and samples were added and the plates were left on a shaker 

at RT for 2 hours. The standards and samples were aspirated, the plates washed 

a further 3 times and 50µl of detection antibody (diluted in assay buffer) was 

added. The plates were left on a shaker at RT for 2 hours. In both kits, after the 

incubation in detection antibody, the plates were aspirated and washed 5 times 

(LT) or 3 times (R&D) in wash buffer. 50µl of streptavidin-HRP (diluted in assay 

buffer) was added to each well and the plates were left on a shaker for 30 

minutes (LT) or 20 minutes (R&D). The plates were aspirated and washed 5 times 

(LT) or 3 times (R&D) in wash buffer. In both kit suppliers, 50µl of 

tetramethylbenzidine (TMB) substrate solution (eBioscience) was added until a 

blue colour developed in the standards (plates were incubated in the dark). 

Once the standards were suitably developed to give a standard curve, 50µl of 

stop solution (2N sulphuric acid (H2SO4)) was added to each well to prevent any 

further development. The plates were read using a Tecan Sunrise microplate 

reader at 450nm (650nm reference). The data was exported to Excel and a 

standard curve was generated. The concentrations of the samples were 

calculated using the equation of the straight line. Samples which fell out-with 

the standard curve were re-run on the assay with an adjusted dilution. Samples 
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which were detected below the lowest standard were deemed non-detectable. 

The ELISA kits used are outlined in Table 2.2. 

Table 2.2 ELISA kits 
 
Cytokine/Chemokine Species Supplier Detection Range 
IL-1β Human Life Technologies 31.24-2000pg/ml 
IL-6 Human Life Technologies 15.62-1000pg/ml 
IL-8 Human Life Technologies 15.62-1000pg/ml 
TNFα Human Life Technologies 15.62-1000pg/ml 
CCL20 Human R&D Systems 15.62-1000pg/ml 
 

2.7.3  Meso-Scale Discovery (MSD) 

The following assays were used from MSD: V-PLEX Pro-inflammatory Panel 1 

(human); Custom U-PLEX Pro-inflammatory Panel (IL-8, TNFα, IL-1β. IL-6 

(human)); Custom U-PLEX Chemokine Panel (CCL17, CCL22 (human)). All 

reagents were thawed and brought to RT. The calibrator (MSD standard) was 

reconstituted in Diluent 2 (Pro-inflammatory Panels) or Diluent 43 (Chemokine 

Panel) and serial dilutions were created for the standard curve. Samples were 

diluted as appropriate in Diluent 2 (Pro-inflammatory Panels) or Diluent 43 

(Chemokine Panel). The calibrators and samples were added to each well 

(50µl/well) of the pre-coated MSD plates, and were shaken at RT for 2 hours. 

The plates were aspirated and washed 3 times in ELISA wash buffer. For pro-

inflammatory panels, the detection antibody solution was created by combining 

60µl of detection antibody of each analyte and then topping up to 3ml in Diluent 

3. In the chemokine panel, the solution was topped up to 6ml in Diluent 3. 25µl 

(pro-inflammatory panel) or 50µl (chemokine panel) of detection antibody 

(conjugated to SULFO-TAG electrochemiluminescent (ECL) labels) was added to 

each well and the plates were incubated for 2 hours on a shaker. The detection 

antibody was aspirated and the plates were washed a further 3 times. 150µl of 

MSD Read Buffer T (diluted from 4x to 2x in dH2O) was added to each well and 

the plates were read on either a MESO QuickPlex SQ 120 (MSD) or a MESO 

SECTOR S 600 (MSD) Imager. The imagers measure the light emission from the 

SULFO-TAG labels by passing an electrical current through the plate electrodes, 

giving an ECL reading. Using Discovery Workbench 4.0 (MSD) software, the ECL 

signals of each analyte in the samples and standards were converted to their 
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corresponding concentrations (pg/ml). The concentrations of the unknown 

samples which fell on the standard curve were extrapolated.  

2.7.4  Lactate assay 

Extracellular lactate concentrations were tested by using a Lactate Assay Kit 

(Abcam). All samples and reagents were brought to RT. Cell supernatants were 

diluted 1:10 in lactate assay buffer and the L-lactate standard was diluted from 

100mM to 1mM in lactate assay buffer. 50µl of standards (standard curve range 

from 0-10 nM/well) and diluted samples were added to a 96 well plate. 50µl of 

the reaction mix (46µl lactate assay buffer, 2µl substrate mix, 2µl enzyme mix) 

was added onto the samples and standards. 50µl of a background reaction mix 

(48µl lactate assay buffer, 2µl substrate mix) was added to control wells. The 

plates were placed on a shaker and incubated at RT for ≤30 minutes for the 

colour reaction to occur. The absorbance was measured at 450nm by using a 

Tecan Sunrise microplate reader. The final OD reading was calculated by 

subtracting the OD from a medium alone blank and again from the background 

reaction mix reading. The concentration in the test sample was calculated by 

extrapolating the unknown sample concentration against the standard curve. 

The final concentration was calculated using the following equation. 

𝐿𝑎𝑐𝑡𝑎𝑡𝑒	𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 =
𝐿𝑎
𝑆𝑣

∗ 	𝐷 

La = Lactate concentration in sample well calculated from standard curve (nmol) 

Sv = Volume of sample added into the well 

D = Sample dilution factor 

2.8 Flow cytometry (FACS) 

2.8.1  Cell surface staining 

For FACS analysis, cell surface staining was performed to evaluate the cell purity 

of human monocytes before and after enrichment from PBMCs, as described in 

2.2.2. Typically, 1x106 cells were transferred to 6ml polystyrene tubes. If 

necessary, the volume was topped up to 1ml in FACS buffer (1x DPBS, 0.5% BSA). 

The cells were centrifuged at 300g for 5 minutes and the supernatant was 
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discarded. The cell surface was stained for the following receptors to distinguish 

between monocytes, T cells and B cells: CD16-PE, CD3-APC, CD14-APC-Cy7, 

CD19-FITC. In an independent experiment, CD36 expression on the surface of 

monocytes was also assessed (Table 2.3). In each case, the cells were incubated 

for 15 minutes at 4°C in the dark. The cells were washed once in FACS buffer to 

remove excess stain and the supernatant was discarded. The cells were re-

suspended in 250µl in FACS buffer. The samples were analysed by using an LSRII 

flow cytometer (BD) and the data was analysed by using FlowJo 10 software.  

2.8.2  Apoptosis assay 

Monocyte apoptosis levels was assessed by using the Annexin V Apoptosis 

Detection kit FITC (eBioscience) with propidium iodide staining solution 

(eBioscience). The 10x binding buffer was diluted to 1x by using dH2O. 1x106 

monocytes were transferred to microcentrifuge tubes and were washed once in 

1x PBS and then once in 1x binding buffer (300g for 5 minutes, discarding 

supernatant between each wash). The cells were re-suspended in 1x binding 

buffer at 1x106 cells/ml. 5µl of Annexin V-FITC was added to 100µl of cell 

suspension, and the cells were left to incubate for 15 minutes at RT in the dark. 

The cells were washed in 2ml of 1x binding buffer by centrifuging at 300g for 5 

minutes. The supernatant was discarded and the cells were re-suspended in 

200µl of 1x binding buffer. 5µl of propidium iodide staining solution was then 

added to the cells, which were then analysed on a MACS QUANT (Miltenyi 

Biotech) flow cytometer. The data was analysed by using FlowJo 10 software. 

 

Table 2.3 FACS antibodies 
 
Specificity Reactive Species Clone Fluorochrome Supplier µl/test 
Annexin V Human  FITC eBioscience 5 
CD3 Human UCHT1 APC BD 5 
CD14 Human M5E2 APC-Cy7 BD 5 
CD16 Human 3G8 PE BD 5 
CD19 Human HIB19 FITC BD 5 
CD36 Human CB38 APC BD 20 
PI Human  PI eBioscience 5 
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2.9 Gene expression analysis 

2.9.1  RNA extraction 

RNA was extracted from monocytes using the RNeasy® Mini Kit (Qiagen). The 

supernatant was aspirated from each well from the tissue culture plate and the 

cells were lysed by adding 350µl of Buffer RLT to each well. The cells were 

transferred to QIAshredder columns (Qiagen), and the lysates were centrifuged 

through the columns at max speed for 2 minutes. 350µl of 70% EtOH was added 

to the lysates and the combined sample was transferred into an RNeasy spin 

column in a 2ml collection tube. The sample was centrifuged for 15 seconds at 

8000g and the flow-through was discarded. A DNase digestion step was included 

in the protocol. 350µl of Buffer RW1 was added to the spin column, which was 

centrifuged at 8000g for 15 seconds, and flow-through discarded. Meanwhile, 

10µl of DNase I stock solution (prepared by injecting 550µl of RNase-free water 

into the DNase I vial) was added to 70µl Buffer RDD and mixed gently. 80µl of 

the DNase I incubation mix was added directly to the RNeasy spin column 

membrane, and allowed to incubate at RT for 15 minutes. 350µl of Buffer RW1 

was then added to the column and centrifuged at 8000g for 15 seconds. 500µl of 

Buffer RPE was added to the column and centrifuged through the column for 15 

seconds at 8000g. This step was repeated, but the column was centrifuged for 2 

minutes. The column was transferred to a new 2ml collection tube, and which 

was then centrifuged at max speed for 1 minute to dry the membrane. The spin 

column was transferred to a new 1.5ml microcentrifuge tube. The RNA was 

eluted from the column by adding 30µl of RNase-free water directly onto the 

membrane and centrifuging for 1 minute at 8000g. The concentration and purity 

(260/280) of the RNA was evaluated by a NanoDrop™ 2000/2000c 

Spectrophotometer. 

2.9.2  cDNA synthesis 

cDNA was synthesised from extracted RNA using the Affinity Script cDNA 

synthesis kit (Agilent Technologies). For each experiment, the concentration of 

RNA for each sample was normalised by diluting in RNase-free water. In 0.2ml 

flat capped PCR tubes (Starlab), 12.7µl of diluted RNA was added to 3µl of 

random primers. The tubes were centrifuged briefly to ensure all reagents were 
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mixed at the bottom of the tube. The samples were incubated at 65°C for 5 

minutes and then cooled at 20°C for 10 minutes in a thermal cycler (Applied 

Biosystems 2720 thermal cycler), to allow the primers to anneal to the RNA. 

4.3µl of a master mix containing: 2µl 10x AffinityScript RT Buffer; 0.8µl DNTP 

mix; 0.5µl RNase block ribonuclease inhibitor and 1µl AffinityScript multiple 

temperature RT were added to each tube and mixed briefly. The samples were 

returned to the thermal cycler to run the remainder of the programme, as 

outlined in Table 2.4.  

Table 2.4 cDNA synthesis cycling 
 
Temperature Time 
25°C 10 minutes 
42°C 5 minutes 
55°C 60 minutes 
70°C 15 minutes 
  

2.9.3  Primer design for qPCR 

The forward and reverse primers (Table 2.5) were either obtained in-house or 

were designed by using PrimerBank (http://pga.mgh.harvard.edu/primerbank/). 

The primers were designed using a length of between 18-22 base pairs, a GC 

nucleotide content of between 40-60%, and a melting temperature (Tm) between 

59-63°C. Specificity and efficiency of the primers were confirmed by using the 

Primer-BLAST web tool by NCBI. All primers were purchased from Integrated DNA 

Technologies and are listed in Table 2.5.  
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Table 2.5 Primer sequences 
 
Gene Forward Primer 5’-3’ Reverse Primer 5’-3’ 

ALDOA ATGCCCTACCAATATCCAGCA GCTCCCAGTGGACTCATCTG 

CXCR4 ACTACACCGAGGAAATGGGCT CCCACAATGCCAGTTAAGAAGA 

 
GAPDH GAACATCATCCCTGCCTCTAC GCCAAATTCGTTGTCATACAGG 

GLUT1  TCTGGCATCAACGCTGTCTTC CGATACCGGAGCCAATGGT 

HK2 TTGACCAGGAGATTGACATGGG CAACCGCATCAGGACCTCA 

LDHA ATGGCAACTCTAAAGGATCAGC CCAACCCCAACAACTGTAATCT 

PGK1 TGGACGTTAAAGGGAAGCGG GCTCATAAGGACTACCGACTTGG 

VEGFA AGGGCAGAATCATCACGAAGT AGGGTCTCGATTGGATGGCA 

 

2.9.4  Primer validation prior to qPCR 

To validate the primers, in 0.2ml PCR tubes: 0.5µl forward primers; 0.5µl 

reverse primers; 1µl cDNA; 23µl RNase free water and 25µl MyTaq™ Red Mix 

(Bioline) was mixed and loaded into a thermal cycler and the following 

programme was run (Table 2.6). The samples were run on an agarose gel. 1.8g 

of agarose was added to 100ml of 1x TAE Buffer (diluted from 50x TAE buffer: 

242 g Tris free base, 18.61g EDTA, 57.1 ml glacial acetic acid, 1L dH2O. 1x 

solution made by diluting 1:50 in dH2O.) to make a 1.8x buffer. This was 

microwaved for 2 minutes, and left to cool for 5 minutes at RT. 20µl of ethidium 

bromide (Sigma-Aldrich) was added to the buffer. The buffer was loaded 

carefully into the gel electrophoresis tank (avoiding bubbles) and was left for 30 

minutes at RT to set. The comb was removed to expose the wells for loading and 

the tank was topped up with approximately 1L of 1x TAE buffer. 15µl of sample 

and 15µl of 1kb DNA ladder (Thermo Fisher) was loaded into the appropriate 

wells. The electrodes were connected to the power supply and the gel was run 

for 1 hour at 110V. The gel was removed and the ethidium bromide staining was 

visualised under a UV transluminator. Primers which were visualised at its known 

amplicon size (by reading against the ladder) indicated successful and specific 

binding of the primers, which were subsequently used for qPCR.  
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Table 2.6 MyTaq Red thermal cycling 
 
Temperature Time Cycles 
94°C 5 minutes 1 
94°C 15 seconds 35 
55°C 30 seconds 
72°C 30 seconds 
72°C 10 minutes 1 
 

2.9.5  qPCR 

Gene expression was analysed by qPCR in 10µl reactions in 96 well plates 

(Starlabs). Each reaction contained the following: 2µl cDNA, 5µl Power SYBR™ 

Green master mix (Applied Biosystems); 0.1µl forward primer; 0.1µl reverse 

primer and 2.8µl nuclease-free water. Once loaded into the plate, the plates 

were sealed and centrifuged at 400g for 1 minute to ensure all contents were 

mixed and at the bottom of the well. The following method was used on an 

Applied Biosystems Step One Plus Real Time PCR System: 95°C for 10 minutes 

and 40 cycles of 95°C for 15 seconds and 60°C for 1 minute (Table 2.7). The 

amplification data was exported to Excel. To analyse the data, the target genes 

were normalised to the housekeeping control by subtracting the Ct value of the 

housekeeping gene away from the Ct value of the target gene, generating the 

ΔCt value.  From the ΔCt, the 2- ΔCt value was calculated. Using the 2-ΔΔCt method 

(Livak & Schmittgen 2001), the relative quantification of each sample compared 

to the experimental control was determined. 

Table 2.7 qPCR cycling conditions 
 
Temperature Time Cycles 
95°C 10 minutes 1 
95°C 15 seconds 40 
60°C 1 minute  
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2.9.6  Taqman Low Density Array (TLDA) 

The customised TLDAs (Thermo Fisher) were a kind gift from Simone Kidger and 

the target genes are listed in Table 2.8. The TLDA microfluidic cards were 

brought to RT before use. In microcentrifuge tubes, 50µl of cDNA (from 100ng 

extracted RNA) was added to 50µl Taqman Universal MasterMix II, (Thermo 

Fisher). The samples were briefly vortexed and centrifuged to mix the contents 

and eliminate air bubbles. 100µl of the sample was carefully pipetted into the 

fill port of the microfluidic card. The microfluidic cards were loaded into 

Sorvall/Heraeus centrifuge buckets, and were centrifuged twice at 331g for 1 

minute. The plates were sealed using a TaqMan® Array Micro Fluidic Card Sealer 

and the fill ports cut off. The plates were loaded into an Applied Biosystems 

7900HT Sequence Detection System with the TaqMan Array Micro Fluidic Card 

Thermal Cycling Block installed. Using SDS2.4 software, the plates were run 

using the TaqMan Low Density Array cycling method. The amplification data was 

exported to Excel using RQ manager software, and the data was analysed using 

the 2-ΔΔCt method as described in 2.9.5.  

Table 2.8 TLDA target genes 
 
CCL2 CCL22 CD36 GAPDH MRC1 CREB1 IL8 CXCL10 CCL17 CD1C 

IL6 IL12B CSF2 CCL3 CCL4 UBC CLEC4E CSF2RA TLR4 IRF5 

TNF CD1A CD200R1 CCL20 CD209 CHI3L1 STAB1 CXCL2 CD163 CCR2 

 

2.10  Metabolomics 

2.10.1 Intracellular metabolite extraction of monocytes 

All reagents and vessels were incubated on ice to bring to ≤4°C before 

extraction. The tissue culture plates containing monocytes were immediately 

placed on ice, and the monocytes were aspirated and transferred to 15ml 

centrifuge tubes containing 13ml of ice-cold DPBS. Each well was flushed out 

with ice-cold DPBS to remove any more adherent cells, and the flush was 

transferred to the same centrifuge tube for the same well. The tubes were 
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centrifuged at 300g for 5 minutes at 4°C. The pellet was re-suspended in 1ml 

ice-cold PBS, and this was transferred to pre-cooled 1.5ml microcentrifuge 

tubes. The tubes were centrifuged at 300g for 5 minutes at 4°C. All of the DPBS 

was aspirated, and the pellet was re-suspended in 200µl ice-cold extraction 

solvent (chloroform:methanol:water at a 1:3:1 ratio). The tubes were incubated 

for 1 hour at 4°C in an Eppendorf ThermoMixer® with shaking at 1500rpm. The 

tubes were then centrifuged at 17,000g for 10 minutes at 4°C to pellet any 

cellular proteins and debris. The supernatant containing metabolites were 

collected into screw-capped vials and stored at -80°C until analysis. A pooled 

sample containing an equal volume of all samples (to a total of 200µl) was 

generated at this point. This sample was run during mass spectrometry analysis 

to assess the reproducibility of the mass spectrometer (2.10.3). 

2.10.2  Intracellular metabolite extraction of macrophages 

As macrophages are strongly adherent to the tissue culture plates, a modified 

protocol was used to extract metabolites. All reagents and vessels were 

incubated on ice to bring to at least ≤4°C before extraction. The tissue culture 

plates containing macrophages were immediately placed on ice. The medium 

was aspirated and the cells were washed once with ice-cold DPBS. 400µl (24 well 

plates) or 250µl (48 well plates) of ice-cold extraction solvent was added 

directly onto the monolayer in the well. The plates were placed on a shaker for 

1 hour at 4°C. The solvent was transferred to pre-cooled 1.5ml microcentrifuge 

tubes, which were incubated in a ThermoMixer with shaking at 1500rpm at 4°C 

for 10 minutes. The tubes were centrifuged at 17,000g for 10 minutes at 4°C to 

pellet any cellular proteins and debris. The supernatant containing metabolites 

were collected into screw-capped vials and stored at -80°C until analysis. 

2.10.3  Untargeted Mass Spectrometry (MS) 

Untargeted metabolomics was carried out by the metabolomics staff at the 

Glasgow Polyomics Facility. Hydrophilic interaction liquid chromatography 

(HILIC) was carried out on a Dionex UltiMate 3000 RSLC system (Thermo Fisher) 

using a ZIC-pHILIC column (150 mm × 4.6 mm, 5 µm column, Merck Sequant). For 

the MS analysis, a Thermo Orbitrap QExactive (Thermo Fisher) was operated in 

both positive and negative mode. The column was maintained at 30°C. The 
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samples were eluted with a linear gradient from 80% acetonitrile to 20% 

ammonium carbonate (20mM in water) over 24 minutes, at a flow rate of 

0.3ml/min. Each sample was run in a random order, with a pooled sample 

(2.10.1) run between every 5 samples to assess for reproducibility. The MS 

settings were as follows: 70,000 resolution; m/z range of 70-1050; automatic 

gain control target of 1e6; sheath gas flow rate of 40; auxillary gas flow rate 5; 

sweep gas flow rate 1; probe temperature of 150°C and capillary temperature of 

320°C. For positive mode ionisation: source voltage +3.8 kV, S-Lens RF Level 

30.00, S-Lens Voltage -25.00 (V), Skimmer Voltage -15.00 (V), Inject Flatopole 

Offset -8.00 (V), Bent Flatapole DC -6.00 (V). For negative mode ionisation: 

source voltage-3.8 kV. The calibration mass range was extended to cover small 

metabolites by inclusion of low-mass calibrants with the standard Thermo calmix 

masses (below m/z 138), butylamine (C4H11N1) for positive ion electrospray 

ionisation (PIESI) mode (m/z 74.096426) and COF3 for negative ion electospray 

ionisation (NIESI) mode (m/z 84.9906726). 

2.10.4  Data processing of untargeted MS 

Processing of the raw data and analysis was performed using a processing 

pipeline through IDEOM Excel based software. According to the metabolomics 

standards initiative (MSI), metabolite identifications (MSI level 1) are given when 

more than one feature matches an authentic standard (i.e. mass and retention 

time) and annotations are made when matching to a metabolite is made by mass 

only (MSI level 2). Included in the MS analysis was a mixture of 240 standards. 

These covered a range of metabolic pathways to allow metabolite identifications 

to be made. In the comparisons tab of the IDEOM package, the peaks were 

visually interrogated. Generally speaking, peaks not showing a Gaussian-type 

shape were rejected as a false identification, although this required some 

subjective judgement.  

2.10.5  Targeted MS of carnitine metabolites 

100µl of metabolite extract from alveolar macrophages (2.10.2) and 100µl of a 

calibration sample from a 6-point calibration curve (300 to 0.02nM) was added to 

400µl methanol:acetonitrile containing 20µl of carnitine internal standard 

solution (NSK-B isotope labeled L-carnitine and acyl-carnitines in 1ml methanol; 
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Cambridge Isotope Laboratories, Cat. NSK-B). Liquid chromatography-mass 

spectrometry was performed by Lars Löfgren at AstraZeneca (Mölndal, Sweden). 

Liquid-chromatography was carried out by using an Acquity UPLC ® BEH Amide 

column (1.7µm, 2.1 x 100mm; Waters, part no 186004801). Acetonitrile was used 

for mobile phase A. 20mM AmF + 10mM FA in 100% water was used for mobile 

phase B with an injection volume of 2µl. Separation was achieved in gradient 

mode with 0% B from 0-1min and 3-50% B from 1-5 min. The column was then 

washed with 50% B from 5-6 min and equilibrated at 0% B from 6.1-8.0 min 

before next sample was injected. Total run time was 8 minutes per sample. L-

carnitine and acyl carnitines with internal standards were analysed by negative 

electrospray-ionisation tandem mass spectrometry (ESI-MSMS) in multiple 

reaction monitoring (MRM) mode using a cone voltage for ionisation of analytes 

of 30 (V) and a collision energy for fragmentation of the molecular ions of 20 (V) 

for L-Carnitine and all acyl-carnitines.  All analytes were analyzed as m/z = 

[M+H] as parent ions and the fragment m/z = 85. The concentration of L-

carnitine and each acyl carnitine was determined from the MRM signal intensity 

for the analyte versus the internal standard in the sample and in the calibration 

samples using Masslynx 4.0 software (Waters). 

 
2.11  Statistical analysis 

Statistical analysis was carried out by using GraphPad Prism 6 software. 

Metabolomics data was analysed by MetaboAnalyst. All data is shown as the 

mean ± standard deviation (SD) unless otherwise stated. To determine if the 

data was normally distributed, the Pearson/D’Agostino normality test was used. 

Normally distributed data were subject to parametric statistical tests. However, 

when the data was not normally distributed, or when the distribution could not 

be determined, non-parametric tests were used. The figure legends indicate 

which statistical test was used for each experiment. A p value of less than 0.05 

was considered significant. Heatmaps were generated by John Cole by using the 

R statistical software package, ggplot2. 
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Chapter 3. The impact of hypoxia on the 
metabolic profile on human monocytes 

3.1 Introduction 

Cellular metabolism is of growing interest to the immunological community, who 

have recently coined the area of immunometabolism. This is a very complex 

system, where there are many pathways, thousands of metabolites and a very 

dynamic relationship between each. Nevertheless, this field has emphasised how 

certain metabolic pathways, their metabolites and/or enzymes can directly 

influence immune cell function. Some pioneering studies influenced the 

immunological field to think about cellular metabolism. This is particularly the 

case in myeloid cells, where murine M(LPS + IFNγ; M1) and M(IL-4; M2) polarised 

macrophages exhibit distinct metabolic profiles and aerobic glycolysis is 

essential for the induction of trained immunity (Jha et al. 2015; Cheng et al. 

2014; Galvan-Pena & O'Neill 2014). Although there has been increased interest in 

this area recently, immunometabolism has some historical relevance. 

Experimentally it is now well established that inflammatory ‘M1’ polarised 

macrophages and anti-inflammatory ‘M2’ macrophages utilise the metabolite 

arginine differentially. When challenged with LPS, M1 murine macrophages 

generate nitric oxide (NO) from arginine through inducible nitric oxide synthase 

(iNOS). In comparison, M2 macrophages utilise arginase-1 (Arg-1) to generate 

ornithine from arginine (C. D. Mills et al. 2000). 

There are extensive studies investigating the importance of metabolism in 

myeloid cells, with an emphasis on macrophages and their polarised (M(LPS + 

IFNγ) or M(IL-4)) state. This use of terminology was discussed in 1.1.2. To fully 

characterise these distinct populations, Jha et al (2015) carried out a high-

throughput transcriptional-metabolic screen of M(LPS + IFNγ) and M(IL-4) 

macrophages. Their study illustrated that M(LPS + IFNγ) macrophages displayed a 

fragmented TCA cycle, which was compensated by an aspartate-arginosuccinate 

shunt. NO and IL-6 production was inhibited when this shunt pathway was 

pharmacologically blocked. On the other hand, M(IL-4) macrophages had 

activated glutamine catabolism and UDP-GlcNAc associated pathways, 

responsible for glycosylation events. Indeed, inhibition of glycosylation and 
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glutamine starvation prevented M(IL-4) polarisation and production of CCL22 

(Jha et al. 2015). 

Moreover, stimulation of polarised macrophages with TLR ligands such as LPS 

results in altered metabolism. For example, murine M(LPS ± IFNγ) macrophages 

activate a glycolytic metabolic programme at the expense of mitochondrial 

metabolism (Rodriguez-Prados et al. 2010). This programme involves succinate, 

a TCA cycle intermediate, that accumulates in these cells, which in turn caused 

stabilised HIF-1α protein to enhance IL-1β release. This can be perturbed by 

inhibition of glycolytic metabolism with 2-Deoxyglucose (2-DG). In this context, 

LPS is unable to induce IL-1β production (Tannahill et al. 2013). In juxtaposition 

to the glycolytic pathways in M(LPS + IFNγ), it is known that glutamine 

metabolism and UDP-GlcNAc synthesis are associated with M(IL-4) polarisation 

(Jha et al. 2015). These alternatively activated macrophages are recognised to 

be dependent on mitochondrial metabolism, which include fatty acid oxidation. 

The source of the fatty acids is thought to be from uptake from the scavenger 

receptor, i.e., CD36. Following uptake, it has been shown that these fatty acids 

undergo lipolysis by lysosomal acid lipase. These fatty acids enter the 

mitochondria and are subject to β-oxidation and oxidative phosphorylation to 

fuel M(IL-4) macrophage survival and function (S. C.-C. Huang et al. 2014). 

Despite all of these findings, the dependence of fatty acid oxidation on M(IL-4) 

polarisation has been challenged. Genetic ablation of CPT2a in mouse bone-

marrow derived macrophages had no impact on M(IL-4) polarisation in this 

setting despite being deficient in FAO (Nomura et al. 2016). Furthermore, 

inhibition of FAO in human macrophages had no significant effect on M(IL-4) 

polarisation as well (Namgaladze & Brüne 2014). 

It is important to note that the vast majority of research into myeloid 

metabolism has been focussed solely on M(LPS + IFNγ) or M(IL-4) polarised 

macrophages, and more often than not murine cells. It must be emphasised that 

these two populations represent extremes of a phenotypic continuum, as 

discussed in 1.1.2. This was highlighted by Xue et al (2014) with an extensive 

transcriptomic based study. Furthermore, environmental factors can heavily 

influence myeloid cell phenotype and associated function, as illustrated in 

tissue-resident macrophages, where the micro-environment can profoundly alter 
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chromatin state (Lavin et al. 2014). Given the importance of the chronic 

inflammatory microenvironment of diseases, such as RA and COPD, on the 

phenotype and function of immune cells, it is important to address if the current 

research of immunometabolism translates into human disease. Even before 

researchers considered modulating cellular metabolism to control inflammation 

in inflammatory diseases, drugs were already available for this purpose. For 

example, the disease modifying anti-rheumatic drug (DMARD) and purine 

metabolism inhibitor, methotrexate, was first used in low doses for the 

treatment for rheumatoid arthritis in the 1980s. 

With this in mind, the purpose of this chapter is to deviate away from the 

current research, which uses experimental polarisation conditions with little 

focus on disease. The emphasis is therefore on human monocytes, and mimicking 

the initial phases of blood monocyte recruitment to a site of chronic 

inflammation. One of the most common features of chronic inflammation in the 

rheumatoid joint is hypoxia: a feature dating back to 1970 (1.3.1) (Lund-Olesen 

1970). Therefore, when monocytes enter this hypoxic microenvironment, they 

are met with a metabolic challenge. Yet they are able to adapt to this 

environment and drive disease severity. The studies here will model tissue 

hypoxia in vitro to replicate this phenomenon. 

The aim of this chapter was to obtain a metabolic profile of monocytes exposed 

to short-term hypoxia. To achieve this aim, it was important for the monocytes 

to be cultured appropriately for metabolic analysis. Furthermore, it was 

essential to confirm that hypoxia induction was reliable, and that the monocytes 

were adapting and surviving in low levels of oxygen. Thus, the three main aims 

of this chapter were: 

1. Optimise a monocyte culture for metabolic assessment 

2. Induce hypoxia in cells and confirm hypoxic induction by investigating HIF-

1α protein stability 

3. Assess the impact of hypoxia vs normoxia on the metabolic profile of 

monocytes. 
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3.2 Results  

3.2.1  Optimisation of monocyte purification and in vitro culturing  

The primary aim of this chapter was to metabolically profile human monocytes 

after exposure to short term hypoxia. However, it was important to optimise the 

monocyte culture before this analysis. This included the assessment of monocyte 

purity after the enrichment protocol (2.2.2), and to analyse monocyte cell 

survival under hypoxic conditions and when cultured with human plasma. Culture 

with human plasma aimed to keep monocytes alive without inducing a 

macrophage differentiation programme which may have interfered with 

subsequent metabolic analyses (Safi et al. 2016). 

The first task was to check monocyte purity after enrichment from isolated 

PBMCs obtained from buffy coat donors. The StemCell monocyte enrichment kit, 

without CD16+ cell depletion (2.2.2) was used because monocytes are negatively 

selected and are thus ‘untouched’ by tetrameric antibodies and magnetic beads. 

This crucially avoids any metabolic changes that may be induced by antibody and 

magnetic bead binding. It is also important to note that this kit isolates all three 

blood monocyte populations: CD14++ CD16- (classical monocytes), CD14+ CD16++ 

(non-classical, patrolling monocytes) and CD14++ CD16+ (intermediate 

monocytes).    

To assess monocyte purity, the whole PBMC population and the negatively 

selected monocyte population were stained with fluorescently labelled 

antibodies to CD3 (T cells), CD19 (B cells) and CD14 and CD16 for monocyte 

populations and analysed by flow cytometry. Pre-separation analysis revealed 

that the PBMC population contained approximately 5% CD19+ B cells and 27% 

CD3+ T cells (Figure 3.1A). Following enrichment for monocytes, the CD19+ B 

cells population was depleted to below 3% and CD3+ T cells below 1.5% (Figure 

3.1B). The PBMC population consisted of 12% CD14- CD16+ monocytes, 4.8% 

CD14+ CD16+ monocytes and 37% CD14+ CD16- monocytes (Figure 3.1C) While 46% 

of the total population consisted of T cells, B cells and other non-monocyte cells 

(Figure 3.1C). After the enrichment, the total monocyte population 

represented, on average, 96.3% ± 2.1% of the remaining cells (n = 4). In this 

representative example, the composition of the monocyte compartment was 
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made up of 21% CD14- CD16+ monocytes, 11% CD14+ CD16+ monocytes and 63% 

CD14+ CD16- monocytes (Figure 3.1D).  

 

 

Figure 3.1 Human monocyte purity analysis. Representative example of PBMC populations 
before and after monocyte enrichment. Cells were selected on the basis of FSC and SSC, and 
‘doublets’ were excluded. Percentage of CD3+ T cells and CD19+ B cells before [A] and after [B] 
enrichment for monocytes. Percentage of each monocyte population on the basis of CD14 and 
CD16 before [C] and after [D] enrichment for monocytes. 
 

Based on evaluation of the enrichment protocol, ³94% was considered of 

sufficient purity to evaluate monocyte metabolism. However, prior to assessing 

metabolic changes in monocytes it was essential to address two further 

questions: 
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1.  Does short term hypoxia initiate cell death in the monocytes? 

2.  Do monocytes survive when cultured with human plasma rather than 

 M-CSF?  

To check that monocytes did not undergo overt apoptosis or necrosis under (a) 

hypoxic conditions, (b) human plasma, (c) M-CSF, and (d) LPS stimulation, cells 

were evaluated for classical apoptosis/necrosis markers. To analyse cell 

viability, human monocytes were stained for Annexin-V and Propidium Iodide 

(PI), well established markers for apoptosis and cell death, and analysed by flow 

cytometry. The staining showed that there was very little difference in viability 

between culturing the cells under human plasma or M-CSF, in both normoxic and 

hypoxic (5% O2) conditions, as viable cells (Annexin-V- PI-) constituted around 

83% of the total monocyte population (Figure 3.2). When stimulated with LPS, 

the percentage of viable cells did not significantly change and there appeared to 

be minimal impact between normoxic and hypoxic conditions and between 

human plasma and M-CSF (Figure 3.2).  

These results support the concept that within the realms of this experimental 

setup hypoxia had very little impact on the viability of the cells. Furthermore, 

these results also supported the culturing of monocytes in human plasma (10% 

pooled human plasma in medium) rather than with M-CSF. M-CSF is classically 

used in the field at non-physiological concentrations to differentiate blood 

monocytes into macrophages, before subsequent polarisation. The decision to 

culture the monocytes with human plasma rather than M-CSF was to avoid 

capturing early metabolic changes of a differentiation programme. It was 

hypothesised that the metabolic profile captured in these conditions would 

reflect solely on hypoxia adaptation, as human plasma would maintain survival 

by providing physiological levels of growth factors and stimuli, without driving 

macrophage differentiation immediately. This method is used routinely in 

monocyte trained immunity models to maintain a longer-term monocyte culture 

(Cheng et al. 2014). 
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Figure 3.2 Monocyte apoptosis assessment. Representative experiment of monocytes stained 
for Annexin-V and Propidium Iodide (PI) after 4 hours of culture. Cells were selected based on 
their FSC and SSC characteristics, and ‘doublets’ were excluded based on FSC area vs height. [A] 
Annexin-V and PI staining of monocytes cultured in media containing 10% human plasma or 
100ng/ml M-CSF ± 100ng/ml LPS in normoxia and hypoxia (5% O2). [B] Percentages of the 
proportion of monocytes in each state of viability when cultured under each condition. N = 2.  
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3.2.2  Confirming hypoxic adaptation 

To confirm the impact of hypoxia on monocytes and demonstrate that they were 

adapting to this environment, HIF-1α stability was assessed by Western Blot. 

Alternative methods of hypoxia induction were tested for this purpose. This 

included using a cell culture incubator capable of reaching 5% O2 (Section 2.4.1) 

and CoCl2, which is used to chemically induce HIF-1α expression in cells, even in 

normoxic conditions (Piret et al. 2002). Firstly, monocytes were cultured in 5% 

O2 for 4 hours and lysates were taken using the RIPA buffer lysis method (Section 

2.5.1) for subsequent blotting. However, HIF-1α could not be detected under 

these conditions. Secondly, CoCl2 at final concentrations of 100µM and 1mM 

were used in monocytes which were cultured for 2 hours and 4 hours. Despite 

this, HIF-1α could not be detected in monocytes, even when 30µg and 70µg of 

protein was loaded onto the gel (data not shown). 

To assess if the lack of chemical induction of HIF-1α in monocytes was specific to 

CoCl2, another chemical inducer of HIF-1α, DMOG (1mM) was utilised (Milkiewicz 

et al. 2004). However, this also failed to induce detectable HIF-1α after 

treatment of monocytes for 2, 4 and 18 hours (data not shown). 

In addition, previously published work had stimulated monocytes with LPS or 

PMA to induce HIF-1α expression in monocytes as a positive control (Fangradt et 

al. 2012). Therefore, these stimulations were carried out in a bid to replicate 

this. Conversely, neither LPS (100ng/ml) nor PMA (10ng/ml) induced the protein, 

which is at odds with the published work. 

In all the experiments described above, the loading control (GAPDH) was 

detectable (data not shown), which indicated that a lack of detection was 

specific for HIF-1α. Taken together, this collection of results suggested that the 

protein extraction method using RIPA buffer may not have been suitable for HIF-

1α detection from primary human monocytes, possibly by degrading the protein. 
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Figure 3.3 Searching for a HIF-1α positive control. [A] Raji cells (from 3 independent 
experiments) were either untreated (UT) or treated for 4 hours with 100µM Cobalt chloride 
(CoCl2). 30µg or 70µg of whole cell protein extract was loaded for probing for HIF-1α or GAPDH 
(loading control). A positive control (PC) lysate from HeLa cells cultured in normoxia (N) or 
hypoxia (H) was also blotted. [B] Human monocytes were either left untreated (UT) or treated 
with 200µM Dimethyloxaloylglycine (DMOG) or 200µM Cobalt chloride (CoCl2) for 4 hours.  A 
positive control (PC) lysate from HeLa cells cultured in normoxia (N) or hypoxia (H; 1% O2) was 
also blotted for HIF-1α and GAPDH (loading control). N = 3. 
 
 

To find a positive control for HIF-1α expression in non-immune cells, the Raji 

cell line was utilised, as they are considered to have constitutive HIF-1α 

expression (Kambayashi et al. 2015). The cells were either untreated in 

normoxia, or cultured in CoCl2 at a final concentration at 100µM for 4 hours to 

chemically induce expression further. The whole cell lysates were harvested in 

RIPA buffer. In contrast to the published work, untreated cells did not have 

detectable HIF-1α protein (Figure 3.3A; (Kambayashi et al. 2015)). However, in 

this instance, CoCl2 treated Raji cells did show HIF-1α detection, when the gel 

was loaded with both 30µg and 70µg of protein (Figure 3.3A). The positive 

identification of HIF-1α from CoCl2 treated Raji cells highlighted a possible 

compatibility issue of RIPA buffer and HIF-1α from primary human monocytes. 
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In addition to preparing unstimulated and stimulated Raji samples, a HIF-1α 

positive and negative control lysate from Novus Biologicals were also run on the 

same gel, and the target protein was detected in the positive control sample 

(Figure 3.3A). Notably, these control protein extracts were from HeLa cells 

cultured in normoxia (negative control) or hypoxia (positive control).  

Despite the ability to detect HIF-1α in these positive control samples, the ability 

to detect HIF-1α in primary human monocytes still remained elusive. However, a 

previous study had examined and successfully detected HIF-1α stability in 

monocytes under hypoxic conditions (Fangradt et al. 2012). It was noted that in 

this work, and in the Novus Biologicals control samples, that the methods used 

to generate cell extracts was based on direct lysis in 2x Laemmli sample buffer 

(Section 2.5.2), rather than RIPA lysis buffer. In addition, a primary HIF-1α 

antibody from BD Transduction laboratories was used instead of an antibody 

from CST (Table 2.1). 

Taking these factors into account, HIF-1α stability was once again assessed in 

primary monocytes after treatment with DMOG or CoCl2, but the cells were lysed 

directly in Laemmli buffer. In this experiment, the monocytes were left 

untreated, or were treated with 200µM DMOG or 200µM CoCl2 for 4 hours. By 

probing with the BD Transduction laboratories antibody, HIF-1α was readily 

detected the expected 120kDa band in the positive control sample (Novus 

Biologicals) and the DMOG and CoCl2 stimulated samples (Figure 3.2B). This 

indicated that Laemmli buffer was able to maintain HIF-1α integrity for blotting. 

After optimising the detection of HIF-1α, we also decided to further optimise the 

induction of hypoxia. Maintaining a hypoxic environment in a cell culture 

incubator used up a considerable volume of N2 gas, which required continuous 

purging whereby cylinders needed constant replacement, making it impractical. 

Therefore, an airtight chamber which only required 3 minutes of purging before 

it could be sealed and maintained as hypoxic without a need for a gas source 

was used (Section 2.4.2). It must be noted that the airtight chamber was used at 

1% O2, while the incubator could only reach a minimum tension of 2.3%.    

With increased confidence in the lysate extraction method, monocytes were 

cultured in normoxia and hypoxia (1% O2) ± LPS for 4 hours, prior to whole cell 
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lysate preparation in Laemmli buffer. These hypoxic conditions and sample 

preparation successfully allowed detection of stabilised HIF-1α (Figure 3.4A). It 

should be noted that although stabilised levels of HIF-1α continued to be 

detectable upon LPS stimulation, in the representative example one replicate 

had no detectable HIF-1α, which was caused by pipetting error (Figure 3.4A). 

With this knowledge, a time-course experiment was carried out to assess how 

early HIF-1α became detectable in primary monocytes. HIF-1α was not 

observable after 1 or 2 hours of exposure to hypoxia, however, after 3 hours it 

was evident and levels increased by 4 and 5 hours (Figure 3.4B).  

In these experiments, the monocytes were cultured in 96 well plates. In order to 

obtain a metabolic profile of monocytes, it was necessary to increase the 

number cells in each condition to enable sufficient levels of metabolites for 

subsequent detection. To achieve this and ensure that alterations in cell 

culturing conditions (i.e., increased media volume) did not alter the level of 

hypoxia induction, monocytes were cultured in tissue culture plates of increasing 

well volume. To this aim, monocytes were cultured at 4x106 cells/ml in 96 well 

plates (250µl), 24 well plates (500µl) and 12 well plates (1ml) and whole cell 

lysates harvested after 4 hours of hypoxia (Figure 3.4C). The results showed 

that HIF-1α was detectable in volumes of up to 1ml in 12 well plates (Figure 

3.4C). Based on this data and the requirements for metabolite analysis, 

culturing in 12 well plates was sufficient for extracting a suitable level of 

metabolites for metabolic profiling. 

To further analyse the induction of hypoxia in primary monocytes, the level of 

expression of two hypoxia specific marker genes, VEGFA and CXCR4 (Fangradt et 

al. 2012; Raggi et al. 2014) was interrogated. Human monocytes were cultured 

in normoxia or hypoxia for 4 hours and the level of gene expression was analysed 

by qPCR. The results showed that compared to the normoxia control, monocytes 

cultured in hypoxic conditions upregulated both VEGFA and CXCR4 transcript 

(Figure 3.4D).  
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Figure 3.4 Confirming hypoxia in monocytes. [A] Monocytes were cultured in Normoxia (N) or 
Hypoxia (H; 1% O2) ± 100ng/ml LPS for 4 hours. 15µl of whole cell extract protein in Laemmli 
buffer was blotted for HIF-1α and GAPDH (loading control). A positive control (PC) lysate from 
HeLa cells cultured in normoxia (N) or hypoxia (H; 1% O2) was also probed. N = 3. [B] Timecourse 
of HIF-1α induction in monocytes from 0 hours to 5 hours of culture in hypoxia (1% O2). A positive 
control (PC) lysate from HeLa cells cultured in normoxia (N) or hypoxia (H; 1% O2) was also 
probed for HIF-1α and GAPDH. N = 2. [C] Monocytes were seeded at 4x106 cells/ml in 96 well 
(250µl), 24 well (500µl), 12 well (1ml) and 6 well (2ml) for 4 hours in hypoxic (1% O2) conditions. 
Cells were lysed directly in 20µl Laemmli buffer and were probed for HIF-1α and GAPDH (loading 
control). A positive control (PC) lysate from HeLa cells cultured in normoxia (N) or hypoxia (H; 
(1% O2) was also blotted. N = 2. [D] Monocytes were cultured for 4 hours in normoxia or hypoxia 
(1% O2), and the expression of the hypoxic marker genes, VEGFA and CXCR4, were assessed by 
qPCR. Fold change in hypoxia relative to normoxia (control) shown. Data shown as the Mean ± 
SD. N = 3. 
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3.2.3  Assessing the impact of hypoxia on the metabolic profile of 
monocytes 

The results described above demonstrated that primary human monocytes 

tolerate culturing in human plasma, survive in hypoxic conditions, and adapt to 

the hypoxic environment by stabilising HIF-1α. Thus, based on these results, the 

experimental setup was considered sufficient to evaluate metabolic profiling in 

monocytes. To achieve this and determine the global metabolic profile, an 

untargeted mass-spectrometry based metabolomics analysis was chosen. 

However, prior to acquiring the global metabolome it was deemed appropriate 

to initially confirm via standard assays that monocytes show metabolic changes 

upon hypoxic challenge. In the first instance, the general metabolic activity of 

the monocytes was assessed via the MTT assay (Section 2.6.3). The MTT assay 

evaluates the NADH-dependent reduction of thiazoyl blue tetrazolium bromide 

to purple formazan crystals; a surrogate of mitochondrial activity (Berridge et 

al. 2005). Notably, cells cultured in hypoxic conditions for 4 hours showed, on 

average, a 15.6% ± 3.1% reduction in metabolic activity when compared to cells 

cultured in normoxia (Figure 3.5A). This suggested that there is altered 

mitochondrial dependence in hypoxia. This was not unsurprising, as glycolytic 

metabolism is typically associated with hypoxic conditions, especially in the 

tumour microenvironment (Eales et al. 2016). Therefore, to further evaluate this 

pathway, two methods were chosen; transcriptional changes in glycolytic genes 

and lactate secretion. With regard to the transcriptional changes, monocytes 

cultured under hypoxic conditions showed increases in several of the glycolytic 

genes evaluated; GLUT-1, HK2, PGK1 and LDHA (Figure 3.5B). Taken together 

this suggested that glycolytic enzymes were up-regulated, at least at transcript 

level, throughout all stages of the pathway (illustrated in Figure 1.5) in hypoxia. 

In agreement with this, the level of lactate secreted into the cell culture 

supernatant was augmented after 16 hours of exposure to hypoxic conditions 

(Figure 3.5C). However, it should be appreciated that this experiment was only 

performed on one healthy donor while the samples were performed in triplicate.  
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Figure 3.5 Monocytes are metabolically distinct in hypoxic conditions. [A] MTT assay of 
monocytes cultured normoxia or hypoxia (1% O2) for 4 hr. N = 3. [B] Monocytes were cultured in 
normoxia or hypoxia (1% O2) for 4 hours and the expression of genes of the glycolytic pathway 
were assessed by qPCR. Fold change in hypoxia relative to normoxia (control) shown. Statistically 
analysed by t Test. * p < 0.05. N = 3. [C] Monocytes were cultured in nomoxia or hypoxia (1% O2) 
for 16 hours and the levels of lactate secretion was assessed by lactate assay. N = 1. All data 
shown as the Mean ± SD. 
 

Collectively, these results confirm that the monocyte response to hypoxia 

included the modulation of cellular metabolism, which justified evaluation of 

the global metabolome via mass-spectrometry. To assess the metabolome of the 

monocytes in normoxia and hypoxia, the intracellular metabolites were 

harvested at three time-points and prepared as described in Section 2.10.1. It is 

important to note that due to the perceived heterogeneity of human samples 

this dataset was based on one human donor but individual metabolic profiles are 

from independent wells. Thus, when interpreting these data, we have to take 

into account that all observations are donor specific and further work would 

need to be done to demonstrate that these changes are universal and have 

biological significance. The first extraction was immediately after plating (T0), 

to obtain a baseline level of metabolites in the cells at the start of the culture. 

The second point of extraction was at 1 hour after exposure to normoxia or 

hypoxia (1% O2). The final extraction was at 4 hours of exposure to normoxia or 

hypoxia (1% O2). The metabolite extracts were then analysed at the Glasgow 

Polyomics Facility by liquid-chromatography mass spectrometry (Section 

2.10.3).  
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Once the metabolites were analysed by the mass spectrometer, the data was 

processed through the IDEOM Excel based pipeline (Section 2.10.4; (Creek et al. 

2012)). IDEOM is a macro-enabled Excel template for the automated processing 

of mass spectrometry raw data files into annotated metabolite lists. 

Subsequently, IDEOM provides a number tools for data analysis and visualisation 

for biological interpretation. This package offers a more simplified method for 

metabolite identification and the removal of noise against more complex 

alternatives, which use specialised statistical software (Creek et al. 2012). 

As this is an untargeted analysis, there were two levels of identification of 

metabolites, according to the metabolomics standards initiative (MSI). The first 

and most confident level is by identification (mass and retention time) of a 

metabolite against an authentic standard, of which a standard mix is included in 

the analysis. If no authentic standard is included, then the metabolites 

(annotations) are identified on the basis of mass. After the initial automated 

identification of metabolites, the peaks of the identified metabolites were 

manually checked by interrogating the peak shape in the IDEOM package. Peaks 

which did not show Gaussian-like integrity (i.e. presence of shoulders and noise) 

were excluded from the analysis. This step is important to exclude any false 

identifications from the IDEOM pipeline. Metabolites which are identified as 

lipids were also excluded from any further analysis. This is because lipids 

generally elute from the column as a bolus and cannot be discriminated by 

retention time on this LC-MS method. Thus, the putative identification that is 

made by IDEOM is considered unreliable. 

After data filtering (as described above), the resulting metabolites were 

analysed via PCA analysis to investigate the overall influence of time-point and 

oxygen tension. The PCA analysis demonstrated that there was a distinct 

separation in metabolic profile between cells at T0 and cells that have been 

cultured in plates for a period of time (Figure 3.6A). Moreover, specific analysis 

of the 1h and 4h samples revealed that there is also a time-dependent metabolic 

profile (Figure 3.6B), and this is independent of normoxia and hypoxia. Despite 

the changes cell culture has over time on the metabolic profile of the 

monocytes, our main interest was to interrogate the metabolic changes between 

normoxia and hypoxia. Therefore, the samples were examined at the 1 hour and 
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4 hour time-points separately (Figures 3.6C & 3.6D). In both cases, the 

metabolic profiles between normoxia and hypoxia showed some separation in 

the PCA, albeit with some overlap at each time-point (Figures 3.6C & 3.6D). 

 

 

Figure 3.6 The monocyte metabolome changes over time and between normoxia and 
hypoxia. [A] PCA plot of the monocyte metabolome after extraction at 0 hours of culture, and 
at 1 hour and 4 hour of culture in normoxia and hypoxia (1% O2). [B] PCA assessing the 
metabolome without the 0 hour time-point. [C] PCA assessing the 1 hour time-point between 
normoxia and hypoxia (1% O2) only. [D] PCA assessing the 4 hour time-point between normoxia 
and hypoxia (1% O2) only. The dataset was generated from one human donor with individual 
metabolic profiles from 4 independent wells. 
 

To begin to investigate the metabolites that were contributing to this 

separation, heatmap analysis was performed. For this analysis, all time-points 

and conditions were compared to the metabolic profile obtained at T0. 

Visualisation of the data (Figure 3.7A) further illustrated the change in 
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metabolism between T0 and 4 hours of culture. Interestingly, the 1 hour culture 

appeared to have what resembled an intermediate metabolic profile between T0 

and 4 hours. However, the focus of this study (as indicated above) was to 

evaluate the impact of hypoxia on cellular metabolism. To investigate this, the 

metabolic changes between normoxia and hypoxia (at 1 hour and 4 hour) was 

interrogated at single metabolite level by analysing the peak intensity data. At 1 

hour of culture, 14 metabolites were significantly altered via hypoxia (p < 0.05) 

compared to normoxia. Thirteen of the metabolites decreased in hypoxia 

compared to normoxia, whilst only one had higher abundance (Figure 3.7B & 

Table 3.1). Evaluation of the 4 hour time point revealed that 33 metabolites 

where significantly altered in hypoxia compared to normoxia. Nineteen 

metabolites were of higher abundance in hypoxic conditions, while 14 

metabolites were of lower abundance (Figure 3.7B & Table 3.2). 

Interrogation of the metabolic pathways that were associated with the 

differentially identified metabolites at 1 hour revealed that there appeared to 

be a lower level of metabolites associated with mitochondrial metabolism. This 

included malate and fumarate, both TCA cycle intermediates, and the 

acylcarnitines, linoelaidylcarnitine and elaidiccarnitine all showing this tendency 

(Table 3.1). This finding suggests that hypoxia promotes immediate changes in 

mitochondrial processes for the adaptation to hypoxia. The loss of abundance in 

metabolites here implies that carnitine shuttling of fatty acids into the 

mitochondria (1.5.4) may be actively inhibited in hypoxic conditions. However, 

given that only one metabolite was increased at this time-point, the 1 hour 

extraction may have been too early to postulate which metabolites and 

associated pathways are increased to compensate for any loss of ATP produced 

from the mitochondria under these circumstances. 
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Figure 3.7 The monocyte metabolome changes over time and between normoxia and 
hypoxia.[A] Heatmap of all significantly altered metabolites (229 metabolites; p ≤ 0.05) 
between each condition. Yellow indicates high abundance and blue indicates low abundance. T0 
indicates metabolites harvested after 0 hours of culture and normoxia (N) and hypoxia (H; 1% O2) 
after 1 hour (1h) and 4 hours (4h) of culture. The data at 1h and 4h was normalised to T0. [B] 
Heatmaps of significantly different metabolites (p ≤ 0.05) between normoxia and hypoxia (1% O2) 
only at the 1 hour and 4 hour time-points. Yellow indicates high abundance and blue indicates 
low abundance. The associated table lists the total number of metabolites found to be altered. 
The metabolites are listed in Tables 3.1 and 3.2 respectively. The dataset was generated from 
one human donor with individual metabolic profiles from 4 independent wells. The data was 
statistically analysed by t Test. 
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KEGG ID Metabolite Pathway Standard P value Change 

C03741 (S)-4-Amino-5-
oxopentanoate 

  0.0011 Down 

C00559 Deoxyadenosine Purine metabolism Yes 0.0023 Down 

C00122 Fumarate Tricarboxylic Acid Cycle Yes 0.0024 Down 

C12455 5-Aminopentanal   0.0076 Down 

C00093 sn-Glycerol 3-phosphate Glycerolipid metabolism Yes 0.0133 Down 

C09999 Aralionine A   0.0146 Down 
C00149 (S)-Malate Tricarboxylic Acid Cycle Yes 0.0163 Down 

C06771 Triethanolamine Glycerophospholipid 
metabolism 

 0.0164 Down 

No 
KEGG 

hexanamide   0.0239 Down 

C01041 Monodehydroascorbate Ascorbate & Aldarate 
metabolism 

 0.0241 Down 

No 
KEGG 

Elaidiccarnitine Fatty Acid metabolism  0.0330 Down 

C01019 6-Deoxy-L-galactose Fructose and Mannose 
metabolism 

 0.0399 Up 

No 
KEGG 

Linoelaidylcarnitine Fatty Acid metabolism  0.0408 Down 

 
 

Table 3.1 Significantly altered metabolites in hypoxia (1% O2) compared to normoxia after 1 
hour of culture. Metabolites which do not have a KEGG ID are listed as No KEGG. The standard 
column indicates the metabolite that had an authentic standard during the mass spectrometry 
analysis. Metabolites with a P value ≤ 0.05 are listed. Change indicates whether the metabolite 
was increased (up) or decreased (down) in abundance in comparison to the level of abundance in 
normoxia. 
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KEGG ID Metabolite Pathway Standard P value Change 
C00262 Hypoxanthine Purine Metabolism Yes 0.00004 Up 
C00093 sn-Glycerol 3-phosphate Glycerolipid 

Metabolism 
Yes 0.0001 Up 

C03017 O-Propanoylcarnitine Fatty Acid 
metabolism 

 0.0004 Down 

C00118 D-Glyceraldehyde 3-
phosphate 

Glycolysis / PPP  0.0009 Up 

No KEGG N-(octanoyl)-L-homoserine   0.0014 Down 

C00354 D-Fructose 1_6-
bisphosphate 

Glycolysis  0.0019 Up 

C00447 D-Sedoheptulose 1_7-
bisphosphate 

Energy metabolism  0.0025 Up 

C03901 Thiomorpholine 3-
carboxylate 

  0.0039 Down 

C00197 3-Phospho-D-glycerate Glycolysis / PPP Yes 0.0041 Up 

C00065 L-Serine Glycine, serine, 
threonine 
metabolism 

Yes 0.0042 Up 

C03771 5-Guanidino-2-
oxopentanoate 

Arginine & proline 
metabolism 

 0.0042 Down 

C03741 (S)-4-Amino-5-
oxopentanoate 

  0.0046 Down 

C00042 Succinate Tricarboxylic acid 
cycle 

Yes 0.0088 Down 

C00003 NAD+ Oxidative 
Phosphorylation 

 0.0095 Down 

C02504 2-Isopropylmaleate Valine, leucine and 
isoleucine 
biosynthesis 

 0.0121 Down 

C00130 IMP Purine Metabolism Yes 0.0123 Up 

C00670 sn-glycero-3-
Phosphocholine 

Glycerophospholipid 
metabolism 

Yes 0.0134 Up 

C03248 Acetylenedicarboxylate Pyruvate 
Metabolism 

 0.0138 Down 

C03824 2-Aminomuconate 
semialdehyde 

Tryptophan 
metabolism 

 0.0143 Down 

C00327 L-Citrulline Arginine 
biosynthesis 

Yes 0.0149 Up 

No Kegg 2-Methylbutyroylcarnitine Fatty Acid 
metabolism 

 0.0200 Down 

C13050 Cyclic ADP-ribose Calcium signalling 
pathway 

 0.0204 Down 

C00668 D-Glucose 6-phosphate Glycolysis / PPP Yes 0.0230 Up 

C00064 L-Glutamine Amino acid & 
Nucleotide 
metabolism 

Yes 0.0271 Up 

C06455 Hydroxymethylphosphonate Phosphonate 
metabolism 

 0.0288 Up 

C00318 L-Carnitine Fatty Acid 
metabolism 

Yes 0.0297 Down 

C01144 Hydroxybutyrylcarnitine Fatty Acid 
metabolism 

 0.0347 Up 

C00020 AMP Purine metabolism  0.0434 Up 

C00137 myo-Inositol Galactose 
metabolism 

 0.0440 Up 

C01092 8-Amino-7-oxononanoate Biotin metabolism  0.0464 Down 

C00077 L-Ornithine Arginine 
biosynthesis 

Yes 0.0481 Up 
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Table 3.2 Significantly altered metabolites in hypoxia (1% O2) compared to normoxia after 4 
hours of culture. Metabolites which do not have a KEGG ID are listed as No KEGG. The standard 
column indicates the metabolite that had an authentic standard during the mass spectrometry 
analysis. Metabolites with a P value ≤ 0.05 are listed. Change indicates whether the metabolite 
was increased (up) or decreased (down) in abundance in comparison to the level of abundance in 
normoxia. 
 

Due to the increased number of metabolites altered at the 4 hour time-point 

under hypoxic conditions further analysis was focussed on this dataset. Based on 

the pathway associations (Table 3.2), there were three main metabolic aspects 

which appeared to be changed under hypoxic conditions; mitochondrial 

metabolism, glycolysis, and purine metabolism. These metabolic nodules 

contained at least four altered metabolites. Whereas the majority of the other 

identified pathways only contained one significantly changed metabolite (Table 

3.2). With regard to mitochondrial metabolism (Figure 3.8), this dataset 

illustrated a reduction in cellular carnitine levels in hypoxic conditions. Carnitine 

can be synthesised by the methylation of the amino acid lysine or can be 

obtained from the diet. In its unbound form (L-carnitine), carnitine binds 

cytosolic fatty acid acyl groups on the outer mitochondrial membrane to form 

acyl-carnitines through the carnitine palmitoyltransferase I (CPTI) enzyme. The 

acyl-carnitine then transports the acyl group to the inner mitochondrial 

membrane. The acyl group is then released from the carnitine and trafficked 

through to the mitochondrial matrix, where it binds a fatty acid CoA to form 

acyl-CoA (Figure 3.8A). The fatty acid acyl-CoA then undergoes β-oxidation to 

form acetyl-CoA, which then enters the TCA cycle for the production of ATP. In 

this dataset, we have identified that both the unbound carnitine (L-carnitine) 

and a group of acyl-carnitines (O-propanoylcarnitine, hexanoylcarnitine & 2-

methylbutyroylcarnitine) are substantially decreased after exposure to hypoxia 

(Figure 3.8B). Furthermore, the TCA cycle intermediate, succinate, had a lower 

level in extracts taken from hypoxic conditions (Figure 3.8C). Staying with 

mitochondrial metabolism, the electron carrier, NAD+ was also reduced in 

monocytes cultured in hypoxic conditions (Figure 3.8D). These results could 

have indicated that the reduction in carnitine metabolites could influence 

C00559 Deoxyadenosine Purine metabolism Yes 0.0484 Up 

C00209 Oxalate Glyoxylate and 
dicarboxylate 
metabolism 

 0.0490 Up 
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subsequent mitochondrial activities for the generation of ATP. For example, by 

reducing the pool of acetyl-CoA for its consumption in the TCA cycle. 

It was interesting to note that in a preliminary experiment performed in 

monocytes cultured in 5% O2 for 6 hours, alterations in both free carnitine 

(Figure 3.9A) and in acyl-carnitines (Figure 3.9B) were observed. Supporting 

the findings from the dataset obtained through culturing at 1% O2. This result 

was encouraging as it showed that this particular metabolic perturbation was 

reproducible and was identifiable during culture in a milder level of hypoxia. 

 

Figure 3.8 Mitochondrial metabolism is altered in monocytes cultured in hypoxia (1% O2) 
after 4 hours. Graphical representation of significantly altered metabolites (from the dataset in 
Figure 3.7B (4 hours) and Table 3.2) associated with mitochondrial metabolism between 
normoxia and hypoxia (1% O2) at 4 hours. [A] Diagram showing the carnitine shuttling pathway 
within the mitochondrial membrane (boxed area) [B] Alterations in carnitine metabolites 
associated with the shuttling pathway identified in the dataset. [C] Change in abundance of 
succinate, a TCA cycle intermediate, between normoxia and hypoxia (1% O2). [D] Abundance of 
the electron carrier, NAD+, associated with mitochondrial oxidative phosphoylation. The data 
was generated from one human donor with individual peak intensities from 4 independent wells. 
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The data was statistically analysed by t Test. Line shows the Mean ± SD. * P ≤ 0.05, ** p ≤ 0.01, 
*** p ≤ 0.001. 
 

 

Figure 3.9 Carnitine levels are also altered under 5% oxygen. Monocytes were cultured for 6 
hours under normoxia or hypoxia (5% O2) and metabolites extracted. [A] Level of free L-Carnitine 
in normoxia and hypoxia. [B] Levels of altered acylcarnitines between normoxia and hypoxia. 
Data shown as Mean ± SD. The dataset was generated from one human donor with individual 
peak intensities from independent wells. The data was statistically analysed by t Test. Line 
shows the Mean ± SD. * P ≤ 0.05. 
 

First and foremost, these data indicated that mitochondrial metabolism is 

altered under hypoxic conditions. As the results showed that there was a 

reduction in the level of identified metabolites, one may assume that the 

pathway was lower in activity. However, it cannot be ruled out that the 

carnitine shuttle is highly active when monocytes are first exposed to hypoxia. It 

could be suggested that once cellular carnitine is depleted in an initial active 

stage, the lack of oxygen may prevent this pathway from occurring in the long 

term. Furthermore, as fatty acid β-oxidation, which begins from carnitine, feeds 

into the TCA cycle, it was encouraging to see the TCA cycle intermediate 

succinate, was reduced as well. 
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In juxtaposition to the mitochondrial metabolism pathways, the reverse effect 

was observed in the glycolytic metabolism, where glycolysis-associated 

metabolites were significantly increased (Figure 3.10). Notably, 4 out of 8 of 

the key metabolites in the glycolytic pathway (Figure 3.10) were putatively 

identified as being significantly up-regulated after 4 hours of hypoxia. In brief, 

there was an increase in levels of glucose 6-phosphate, fructose 1:6-

bisphosphate, 3-P-Glyceraldehyde and 3-P-Glycerate (Figure 3.10). These 

results show that glycolysis may be increased in hypoxic conditions, which is in 

agreement with the transcriptional data in Figure 3.5B. As lactate is produced 

from pyruvate in anaerobic conditions, it was reassuring that there was an 

increased level of lactate production in monocytes under hypoxia (Figure 3.5C), 

illustrating that the cells are undergoing glycolysis at a higher rate than in 

normoxia, and in an anaerobic state. Accelerating glycolytic metabolism under 

hypoxic conditions may fill the void of ATP left due to the reduction in 

mitochondrial aspects of metabolism. 
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Figure 3.10 Metabolites of the glycolytic pathway are altered under hypoxic (1% O2) 
conditions. Illustration showing the glycolytic pathway in the cytoplasm. Graphical 
representation of significantly altered (circled blue) glycolytic metabolites (from the dataset in 
Figure 3.7B (4 hours) and Table 3.2) between normoxia and hypoxia (1% O2) after 4 hours. The 
levels of these metabolites are shown graphically The data was generated from one human donor 
with individual peak intensities from 4 independent wells. The data was statistically analysed by 
t Test. Line shows the Mean ± SD. * P ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001. 
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Another pathway which was substantially altered in hypoxia compared to 

normoxia was the metabolism of purines. Purine nucleotides, along with 

pyrimidines, are classically known as the building blocks of RNA and DNA. 

Besides their main function to manufacture DNA and RNA, purines are also 

known to be components of ATP, NADH and CoA. The pathway of key 

intermediates of purine metabolites (Figure 3.11), also illustrates the 

metabolites (circled) that were significantly increased upon exposure to hypoxia. 

Notably, the metabolites IMP, AMP, deoxyadenosine and hypoxanthine were all 

increased in hypoxia compared to normoxia. Purine metabolism has not been 

covered in great depth in immunological cells, but purine synthesis has been 

shown to be accelerated in highly proliferative cells, such as cancer cells (Pedley 

& Benkovic 2017). Therefore, an active state is associated with cells that are 

met with high bioenergetic demands. It could be speculated that cells adapting 

to hypoxic conditions are met with a bioenergetic burden. These results suggest 

that monocytes switch from mitochondrial metabolism, which is a highly 

efficient process to generate ATP, to anaerobic glycolysis. Anaerobic glycolysis is 

a highly active process, and although is far less efficient as mechanisms such as 

oxidative phosphorylation, it is very rapid. Therefore, this active process may 

require input from purine synthesis which, as stated previously can form 

components of ATP itself, to compensate for the increased requirement for ATP. 

In addition, the adaptation process to hypoxia, possibly by HIF-1α, to mediate 

this metabolic transition and the transcription and translation of hypoxia-

specific genes is energy consuming and may be reliant on nucleotide synthesis. 
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Figure 3.11 Hypoxia (1% O2) alters purine metabolism in monocytes. Diagram showing the 
purine metabolic pathway for the synthesis of DNA and RNA. Graphical representation of 
significantly altered (circled blue) purine intermediates (from the dataset in Figure 3.7B (4 
hours) and Table 3.2) between normoxia and hypoxia (1% O2) after 4 hours. The levels of these 
metabolites are shown graphically. The data was generated from one human donor with 
individual peak intensities from 4 independent wells. The data was statistically analysed by t 
Test. Line shows the Mean ± SD. * P ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001.  
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3.3 Discussion 

The presence of tissue hypoxia in chronic inflammatory diseases such as 

rheumatoid arthritis has been well established. In this chapter, the recruitment 

of human monocytes into a site of hypoxia was mimicked in vitro in order to 

obtain a metabolic profile of monocytes cultured in these conditions. Firstly, it 

was confirmed that monocytes were suitably enriched from the isolated PBMC 

population. Furthermore, hypoxia had a minimal impact on cell viability. From 

this point, extensive western blot analysis of HIF-1α at protein level confirmed 

that the monocytes were adapting to the hypoxic environment by exhibiting 

stabilised expression. This work gave confidence that a reliable metabolic profile 

of monocytes adapting to hypoxia could be obtained. After confirming that 

monocytes had altered transcript levels of glycolytic genes, and secreted an 

increased level of lactate, a global metabolomic screen of monocytes in hypoxic 

conditions was conducted. The metabolomics analysis revealed substantial 

alterations in mitochondrial metabolism, particularly the carnitine shuttle, 

purine metabolism and glycolysis. 

The initial aim of the chapter was to assess the effect, if any, of hypoxia on the 

ability of monocytes to survive in culture. The results showed that short term 

hypoxia did not have any detrimental effect on cell apoptosis (Figure 3.2). This 

result is in agreement with other published work (Roiniotis et al. 2009), which 

showed that human monocytes cultured for 3 days have rather a higher survival 

rate in hypoxic conditions than in normoxic conditions. In the same study, 

monocytes were cultured in medium containing only 10% fetal bovine serum, 

suggesting that M-CSF is not required under these circumstances (Roiniotis et al. 

2009). This supports the use of human plasma in the work presented here, which 

aimed to prevent the immediate induction of macrophage differentiation 

(discussed in 3.2.1; (Safi et al. 2016)). The increased survival rate extended to 

monocyte derived macrophages in this publication, which proposes a shared 

survival mechanism between myeloid cells. Taken together, this reflects a 

previous transcriptomic study of monocytes in hypoxia, which showed increased 

expression of the anti-apoptotic protein, Bcl-2 (Bosco et al. 2006). It is thought 

that an increased level of glycolytic metabolism in myeloid cells in hypoxia acts 

as an anti-apoptotic mechanism to promote cell survival (Roiniotis et al. 2009). A 

phenomenon that is classically used in cancer cell metabolism to aid their 
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survival (D. Huang et al. 2014). Glycolytic metabolism was also observed in 

human monocytes under hypoxic conditions in this chapter, postulating that 

monocytes shift their cellular metabolism in hypoxia to meet their survival 

requirements.  

With the knowledge that hypoxic conditions did not significantly impact 

monocyte viability, HIF-1α stability at protein level was analysed to confirm that 

the monocytes were adapting to the hypoxic conditions. HIF-1α stabilisation in 

this hypoxic set up occurred after only 3 hours of exposure (Figure 3.4). 

Although monocytes do stabilise HIF-1α in this work and in other published work 

(Fangradt et al. 2012), the precise role of HIF-1α in monocytes is debatable. 

Indeed, in the same study, Fangradt et al found that HIF-1α, a key transcription 

factor for cellular adaptation to hypoxia, does not translocate to the nucleus 

and remains solely in the cytoplasm. The authors illustrated that in fact, NF-κβ1 

translocated to the nucleus, which they claim is responsible for cellular 

adaptation to hypoxia. In addition, a novel adaptation process has recently been 

postulated, whereby mitochondrial complex II downregulation facilitates the 

transcriptional changes induced by hypoxia in monocytes (Sharma et al. 2017). 

Interestingly, pharmacological inhibition of complex II highlights that this 

adaptation appears to be independent of HIF-1α stabilisation, which is in support 

of the earlier work (Sharma et al. 2017; Fangradt et al. 2012). Taken together, 

this work illustrates that hypoxia adaptation in human monocytes may be 

independent of the HIF system. However, its stabilisation in hypoxic conditions 

in this chapter suggests a role for HIF-1α cannot be completely ruled out. The 

work presented here aimed to confirm the stabilisation of HIF-1α as a marker of 

hypoxia induction, however, genetic studies would be needed to establish the 

role, if any, of HIF-1α in hypoxia adaptation. In support of a role for HIF-1α, 

increased expression of the HIF-1α inducible genes CXCR4 and VEGFA was 

observed in monocytes under hypoxic conditions (Figure 3.4), which is in 

agreement with published studies (Fangradt et al. 2012; Bosco et al. 2006). 

The main aim of the chapter was to determine the metabolic impact of hypoxia 

on monocytes. Before carrying out mass spectrometry based metabolomics, it 

was found that hypoxic conditions increased the expression of genes associated 

with the glycolytic pathway and an increase in secretion of lactate, a by-product 
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of anaerobic glycolysis (Figure 3.5). In addition, monocytes cultured in hypoxia 

showed alterations in metabolic activity in the MTT assay (Figure 3.5). Although 

the MTT assay is widely used to assess proliferation and cell viability, it actually 

measures the rate of reduction of MTT salt by NADH oxioreductases in the 

mitochondria (Berridge et al. 2005). Prior to the mass spectrometry analysis, 

these data led to a tentative hypothesis that monocytes actively repurpose their 

metabolism to favour glycolytic metabolism over mitochondrial pathways.  

With the culture conditions optimised, we were confident we could obtain a 

robust metabolic profile of monocytes in hypoxic conditions by mass 

spectrometry based metabolomics. This work focussed on the metabolic 

differences which were induced by hypoxia compared to normoxia. The most 

striking observation, which was detected at both 1% and 5% O2, was the decrease 

in cellular carnitine and acyl-carnitines (reviewed in Section 1.5.4). This is in 

support of published studies showing similar alterations in fatty acid metabolism 

at transcriptional level when monocytes were exposed to hypoxia (Bosco et al. 

2006). This finding endorses the result from the preliminary experiment with the 

MTT assay, showing that monocytes may be less dependent on mitochondrial 

metabolism under hypoxic conditions. Carnitine metabolism and fatty acid β-

oxidation are typically associated with murine M(IL-4) macrophages, and appears 

to have a minimal role in M(LPS + IFNγ) macrophages (S. C.-C. Huang et al. 2014; 

Galvan-Pena & O'Neill 2014). Metabolically speaking, it appears that hypoxia 

induces a mitochondrial programme which reflects a more inflammatory 

phenotype than in normoxia. In addition, M(LPS + IFNγ) macrophages classically 

express NF-κβ for the production of pro-inflammatory mediators, and HIF-1α has 

been linked with the production of IL-1β after succinate accumulation (Tannahill 

et al. 2013). This suggests that certain intracellular events caused by 

inflammation and hypoxia may be interlinked. This train of thought can be 

applied to monocyte trained immunity, where glycolytic metabolism promotes 

innate-like memory responses via HIF-1α (Cheng et al. 2014; Saeed et al. 2014). 

Taking this work into account, the data supports the notion that hypoxia actively 

limits fatty acid oxidation for the adaptation to hypoxia, which may have direct 

implications on cellular function, which will be interrogated in Chapter 4. 
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In contrast to the decreased reliance on mitochondrial metabolism under 

hypoxic conditions. The data in this chapter illustrated that there was a shift to 

increased glycolytic metabolism (Figures 3.5 & 3.10). This is in accordance with 

macrophages exposed to hypoxic conditions, where HIF-1α causes a metabolic 

switch to glycolysis from mitochondrial metabolism (Cramer et al. 2003). This is 

achieved by inducing the expression of glycolytic enzymes, glucose transporters 

and lactate dehydrogenase (Mole et al. 2009; Semenza & G. L. Wang 1992). 

Oxidative phosphorylation (OXPHOS), partly fed by glycolytic pyruvate, 

predominates in cells in aerobic conditions for the generation of ATP. However, 

in hypoxia, pyruvate is metabolised to lactate by lactate dehydrogenase to 

prevent pyruvate supplementing the mitochondria, a process termed anaerobic 

glycolysis (Semenza & G. L. Wang 1992). Anaerobic glycolysis is a rapid, but very 

inefficient mechanism of generating ATP in comparison to OXPHOS (2 ATP per 

glucose). Therefore, the loss of metabolites shown in the mitochondria in the 

results presented in this chapter could be caused by the increase in glycolysis, 

fitting with the published work. This metabolic switch may provide a swift 

means of adaptation and survival in a hypoxic microenvironment in order to 

carry out effector function. 

Another pathway which was altered in the metabolomics data was purine 

metabolism, where associated metabolites were higher in abundance in hypoxic 

conditions compared to normoxic conditions (Figure 3.11). Up-regulating purine 

metabolism may act as a means to supplement glycolysis and ATP production. 

Indeed, in LPS stimulated macrophages, activation of adenosine receptors can 

increase PFKFB3 activity, which in turn leads to the accumulation of fructose 

2,6-bisphosphate. This can then cause increased glycolytic flux and ATP 

production in activated cells (Ruiz-Garcia et al. 2011). Whether this 

phenomenon occurs in unstimulated cells exposed to hypoxia remains to be 

seen, as this seemed to be dependent on Sp1 and adenosine receptor expression 

following TLR activation (Ruiz-Garcia et al. 2011). However, studies assessing 

adenosine receptor expression under hypoxic conditions could reveal if this 

mechanism is involved during hypoxia adaptation. Nevertheless, these results 

propose that purine metabolism is increased in hypoxic conditions to enhance 

glycolytic fluxing during metabolic switching. 
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In summary, this chapter illustrated how monocytes adapt to hypoxic conditions 

at a metabolic level. Early optimisation studies presented here ensured that the 

metabolic profile captured was from a pure, viable monocyte population that 

was readily adapting to hypoxic conditions. Metabolomics analysis revealed that 

monocytes appear to switch their metabolism from mitochondrial pathways, 

particularly fatty acid transport, to glycolysis to generate ATP. This seems to be 

supplemented via an increased level of purine metabolism, which may further 

promote glycolytic fluxing. With the knowledge that monocytes differ 

metabolically upon exposure to hypoxia, the next chapter will address what 

functional impact hypoxia may have and if this can be altered by metabolic 

manipulation. 
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Chapter 4. Assessing the impact of hypoxia on the 
functional profile of monocytes. 

4.1 Introduction 

The previous chapter illustrated the direct influence hypoxia had on monocyte 

metabolism. However, the impact of hypoxia on the monocyte cellular 

functionality was not determined. In this chapter, a number of assays were used 

to assess how resting and activated monocytes react at a functional level under 

hypoxic conditions. Furthermore, using the metabolomics insights gained from 

the studies in Chapter 3, experiments in this chapter were also aimed at 

addressing how altering the identified metabolic pathways could manipulate 

monocyte function.  

As discussed in section 1.3.1, the chronic inflammatory environment can be 

extremely hypoxic (Lund-Olesen 1970), and we hypothesised that this directly 

influences monocyte function. The literature surrounding the impact of hypoxia 

on monocyte function is limited. However, early studies did reveal that the 

chemokine receptor CXCR4 was upregulated in monocytes under hypoxic 

conditions (Schioppa et al. 2003); a finding which was confirmed in Chapter 3. 

Furthermore, monocytes and macrophages exhibited a reduced migratory 

capacity under hypoxia (L. Turner et al. 1999; Grimshaw & Balkwill 2001). 

Additional insights into monocyte metabolism and function were made via the 

global transcriptomic analysis of monocytes cultured in 1% O2 for 16 hours (Bosco 

et al. 2006). This study produced supporting evidence that monocytes modulate 

their chemotactic activities under hypoxia, particularly by increasing their 

expression of CCL20; a finding which carried through to the protein level. In 

addition to the alteration in CCL20, this study went on to show that a 

monocyte’s ability to scavenge was also effected by exposure to hypoxia. In 

brief, the investigators observed altered expression of specific scavenger 

receptors. Notably, both MARCO and MSR1 were upregulated while CD163 and 

STAB1 were down-regulated. Follow-on studies by the same group demonstrated 

that CCL20 induction was via NF-κβ in a CD300a-dependent pathway (Raggi et al. 

2014). 
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Although these findings illustrated that hypoxia influences both monocyte 

function and cellular metabolism. There is a paucity of research that suitably 

describes what effect hypoxia-specific metabolism may have on cellular function 

in hypoxia, and whether these metabolic alterations prime the cells towards an 

inflammatory state. This train of thought was supported by studies which 

showed that hypoxia exacerbates the release of pro-inflammatory mediators 

from palmitate-activated macrophages by increasing JNK pathway activity 

(Snodgrass et al. 2016). 

The metabolomics results from the previous chapter highlighted decreases in 

carnitine metabolites, which suggested a down-regulation of FAO in hypoxic 

conditions. In terms of myeloid cells, FAO has largely been considered to have a 

regulatory role. This was primarily due to studies suggesting that murine 

macrophages rely on this pathway for the induction of an M(IL-4) phenotype and 

the reduction of pro-inflammatory cytokines released from these cells (Vats et 

al. 2006). More recent work has since highlighted that FAO is favoured in murine 

M(IL-4) macrophages for the clearance of parasitic infections in vivo (S. C.-C. 

Huang et al. 2014). However, these findings have not been translated into the 

human M(IL-4) macrophages, which appear to be independent of FAO 

(Namgaladze & Brüne 2014; Nomura et al. 2016). Nevertheless, these studies 

highlight a potentially important role for FAO in the regulation of inflammation 

in myeloid cells. Given the altered state of carnitines in hypoxia (Section 3.2.3), 

the regulation of inflammatory mechanisms in monocytes may be impaired under 

these conditions.  

Despite this body of research suggesting a regulatory role for FAO in 

macrophages. Studies utilising the carnitine shuttling inhibitor, etomoxir (ETO), 

has shown that FAO has an influence on macrophage inflammatory function as 

well. Indeed, it is now apparent that oxidation of the fatty acid palmitate via 

CPT1a can activate the NLRP3 inflammasome and promote the production of IL-

1β and IL-18 in macrophages (C. J. Hall et al. 2013; Wen et al. 2011). 

Furthermore, hexokinase-1 dependent glycolysis and fatty acid synthesis are 

known to contribute to this inflammatory cascade (Moon et al. 2015). This 

illustrated that metabolic pathways are not separate entities and are rather 

interlinked in a complex manner when influencing immune cell function. Taken 
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together, the studies implicated that FAO has the ability to participate in both 

inflammatory and anti-inflammatory mechanisms in macrophages. Therefore, 

the studies in this chapter will interrogate if the reduction in cellular carnitine 

promotes monocytes towards an inflammatory or anti-inflammatory state. 

In juxtaposition to the reduction of carnitine metabolites under hypoxic 

conditions in Chapter 3, glycolytic metabolites and enzymes were up-regulated 

(Section 3.2.3). This led to the hypothesis that monocytes actively switch their 

metabolism in order to survive under these conditions (Roiniotis et al. 2009). In 

addition to offering survival mechanisms, glycolytic metabolism has been at the 

forefront of immune-metabolic literature for the control of inflammatory 

functions in myeloid cells. The adoption of glycolytic metabolism in 

macrophages was initially evident in M(LPS ± IFNγ) cells (Rodriguez-Prados et al. 

2010). More recent work has since shown that inhibition of glycolysis by 2-DG 

prevented the production of IL-1β in murine M(LPS) macrophages (Tannahill et 

al. 2013). Furthermore, it has been reported to form the molecular basis of 

memory responses in monocyte trained immunity models (Cheng et al. 2014; 

Saeed et al. 2014). In addition to glycolysis, monocyte trained immunity and 

macrophage IL-1β production are thought to be mediated by HIF-1α. Therefore, 

metabolic rewiring induced by hypoxia to favour glycolysis could have a 

significant role in exacerbating inflammatory cascades in monocytes. 

The governing role of glycolysis in activated macrophages proposed that this 

pathway is ‘pro-inflammatory’. However, other work has suggested that, like 

FAO, glycolysis displays regulatory properties. For example, it is now apparent 

that glucose uptake and metabolism is important during the activation of 

regulatory murine M(IL-4) macrophages (S. C.-C. Huang et al. 2016).  Moreover, 

it has been shown that, GAPDH, when uncoupled from the glycolytic pathway, 

can inhibit the translation of TNFα mRNA (Millet et al. 2016).  

Altogether, these studies highlight the flexible nature of both FAO and glycolysis 

in coordinating immune responses. The results from Chapter 3 illustrated that 

the balance between these two pathways was altered under hypoxic conditions, 

which may affect monocyte functionality in these circumstances. As reductions 

in carnitine metabolites were observed (Chapter 3), the work in this chapter 
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focussed on this pathway and its manipulation to assess how it influences pro-

inflammatory mechanisms in monocytes under hypoxia.  

The aims of this chapter are: 

1. Profile the impact of hypoxia on monocyte cellular function 

2. Manipulate metabolic pathways found to be altered under hypoxia and 

assess how this influences monocyte function 

 

4.2  Results 

4.2.1  Functional profiling of monocytes under hypoxic conditions 

4.2.1.1  Transcriptional analysis 

Before any metabolic manipulation, it was important to profile monocytes 

functionally, to assess if the hypoxia-specific cellular metabolic profile was 

associated with modulation of any specific monocyte function. To achieve this, 

we used an array of standard functional assays. These assays have been 

published extensively, however, studies in this chapter were modelled on a 

study from Dabritz et al (2015), where they comprehensively characterised the 

function of GM-CSF stimulated monocytes. The transcriptomic profiling study 

from Bosco et al (2006) was also considered when designing a custom-made 

myeloid Taqman Low Density Array (TLDA) plate. The target genes are outlined 

in Table 2.8 and Figure 4.1A.  

Initial experiments evaluated the impact of short term hypoxia on the 

transcriptional signature of monocytes, in order to identify particular pathways 

that may be modified. Thus providing insight into the functional consequences of 

hypoxia. Monocytes were cultured in normoxia or hypoxia (1% O2) for 4 hours. 

Transcriptional analysis of 3 healthy donors via the custom TLDAs, revealed that 

the scavenger receptors CD36 and CD163 were significantly down-regulated in 

monocytes exposed to hypoxic conditions (Figure 4.1A). Which is in support of 

published work (Bosco et al. 2006). In addition to these scavenger receptors, the 

C-type lectin receptors MRC1, CLEC4E and CD209 were also substantially 
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decreased. Analysis of the chemokine/chemokine receptor transcripts evaluated 

in this assay revealed that CCL2, CCL22, CXCL10 and CCR2 all showed decreases 

in expression upon exposure to hypoxia. In juxtaposition to these down-

regulated transcripts, IL-8 expression was increased upon exposure to hypoxia, 

although this did not reach statistical significance (Figure 4.1A). The up-

regulation of IL-8 at transcript level in both the work presented here and by 

Hirani et al (2001) suggest a possible hypoxia-specific function of monocytes 

(Hirani et al. 2001). 

To validate the transcriptional changes identified at 4 hours and investigate the 

kinetics of these changes, a time-course experiment was undertaken. Monocytes 

were cultured in normoxia or hypoxia for 2, 4, 8 and 24 hours, and samples 

processed for subsequent TLDA analysis. The experiment presented here was 

carried out in triplicate from 2 healthy donors (Figures 4.1B, 4.1C & 4.1D). 

Analysis focussed on the chemokine/chemokine receptor transcripts confirmed 

that both CCL20 and IL-8 were up-regulated at 4 hours (Figure 4.1B). Despite an 

initial downregulation of CCL20 (0.5-fold) at 2 hours, its expression was 

increased at both 4 (5-fold) and 8 hours (4.5-fold), before it decreased to a 

similar expression to that of normoxia at 24 hours. IL-8 was also up-regulated by 

4 hours (11-fold) and the levels of this transcript were maintained over the 

entire 24 hours (Figure 4.1B). All other observed changes (i.e., down-regulated 

CCL2, CXCL10 and CCL4) were not reproduced in this data set (Figure 4.1B).  

Evaluation of the scavenger receptor transcript data revealed that CD36 and 

STAB1 were down-regulated over the 24 hour period (Figure 4.1C). It must be 

noted that the 2 and 8 hour time-points were analysed on a separate TLDA plate 

to the 4 and 24 hour time-points. This may reflect the fluctuations seen in CD163 

expression, which could indicate a plate-specific effect in this instance (Figure 

4.1C). The decreased level of STAB1 at 4 hours (Figure 4.1C) is at odds with the 

initial TLDA analysis shown in Figure 4.1A. However, the data at later time-

points was in accordance with the published transcriptomic study (Bosco et al. 

2006), which was carried out at 16 hours of hypoxic exposure. Taken together, 

this data proposes that prolonged hypoxia promotes a more robust reduction in 

expression of scavenger receptors in monocytes. Moreover, the C-type lectin 

receptors, CLEC4E and CD209, showed a decrease in transcript in hypoxic 
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conditions, especially at the 24 hour time-point (0.19 & 0.13-fold respectively). 

This finding was not as robust at earlier time-points, suggesting that longer-term 

hypoxia is required to modulate C-type lectin receptor transcript levels (Figure 

4.1D).  

One of the most consistent findings from this data, was the decreased expression 

of CD36 (Figure 4.1A & 4.1C). To determine if this decrease in transcript 

corresponded with a change in protein expression, the cell surface expression of 

CD36 on monocytes was interrogated by FACS. Monocytes were cultured in 

normoxia or hypoxia for 16 hours, to allow sufficient time for receptor cycling 

and were stained for surface CD36. No difference in surface expression between 

normoxia and hypoxia was observed (Figure 4.1E), in technical duplicates of 1 

healthy donor tested. 
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Figure 4.1 Hypoxia induces transcriptional changes in monocytes. [A] Monocytes were 
cultured for 4 hours in normoxia or hypoxia (1% O2). The gene expression of indicated targets was 
analysed by TLDA based qPCR. Data analysed by t Test with Holm-Sidak correction. N = 3. * 
p<0.01. [B-D] Monocytes were cultured for indicated times in normoxia or hypoxia (1% O2). The 
gene expression of Chemokines [B], Scavenger receptors [C] and C-type lectin receptors [D] 
were analysed by TLDA based qPCR. The experiment was carried out in triplicate in 2 donors. [E] 
Monocytes were cultured for 16 hours in normoxia or hypoxia (1% O2) and the surface expression 
of CD36 was analysed by FACS. The experiment was carried out in duplicate in 1 donor. All data 
shown as the Mean ± SD. 
 

4.2.1.2  Wound healing & cellular adherence 

The transcript data of CD36 and STAB1 in Figure 4.1 suggested that hypoxia 

could alter the ability of monocytes to scavenge, a function typically associated 

with M(IL-4) macrophages (Mantovani et al. 2013). Another characteristic of 

M(IL-4) macrophages which we thought could be affected by hypoxia is the 

ability to aid in wound healing (Mantovani et al. 2013). Dabritz et al (2015) 

utilised a Caco-2 cell monolayer, and cultured resting or GM-CSF activated 

monocytes on top of a scratched monolayer and assessed wound closure. 

Therefore, the impact of hypoxic conditions on a monocyte’s ability to close a 
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scratch in a wound healing assay was investigated. Initial experiments using the 

Caco-2 cell monolayer assay were technically compromised due to tearing and 

necrosis induced by the sterile pipette tip method of scratching (Figure 4.2A). 

Based on this technical issue, the type of cells and the method of cell separation 

was changed. In all subsequent experiments HUVECs were used and in order to 

limit scratch size variability, IBIDI silicone cell culture inserts were utilised. The 

silicone inserts are supplied in small petri dishes and contain two chambers for 

cell culture, separated by a silicone ‘wall’. Once the HUVECs were confluent in 

each chamber, the silicone insert was removed to create a consistent cell free 

‘wound’ of 500µm in length (Figure 4.2B). In a separate culture, monocytes 

were conditioned in normoxia or hypoxia for 4 hours and were then transferred 

onto the HUVEC monolayer. The wound was allowed to close for 16 hours in 

normoxia and the rate of healing was measured by light microscopy and ImageJ 

software. The addition of monocytes into this assay, regardless of prior exposure 

to normoxia or hypoxia, did not alter wound closure when compared to the 

control (no cell addition) (Figure 4.2B & 4.2C). Thus, within the realms of this 

experimental set up, hypoxia had no impact on the ability of monocytes to aid 

wound healing. 

Another known function of monocytes is their ability to adhere to endothelial 

cells (Tso et al. 2012). Therefore, we assessed if hypoxia modulated adherence 

properties of monocytes.  To this end, monocytes were cultured in normoxia or 

hypoxia or 4 hours. In addition, monocytes were treated with LPS, which has 

been previously shown to enhance adherence properties in these cells (Hmama 

et al. 1999). Non-adherent cells were washed off the plate and adhering cells 

were stained by crystal violet. The stain was then solubilised and read on a 

microplate reader to assess adherence. Both hypoxia or LPS had no impact on 

the capacity of monocytes to adhere in tissue culture plates in this assay 

compared to untreated cells in normoxia (Figure 4.3). Indicating that short-term 

hypoxia may not alter the ability of monocytes to adhere. 
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Figure 4.2 Hypoxia has a minimal impact on wound healing in monocytes. [A] Representative 
image of a Caco-2 cell monolayer after scratching with necrotic region (Black). [B] Monocytes 
were cultured in normoxia or hypoxia for 4 hours and were then transferred onto a HUVEC 
monolayer after removal of an IBIDI cell culture insert. The control refers to a monolayer with no 
monocytes added. The cells were then left for 16 hours to allow for wound closure in normoxic 
conditions. [C] Graphical representation of wound closure, analysed by ImageJ. Data shown as 
Mean. The experiment was carried out in triplicate in 1 healthy donor. 
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Figure 4.3 Hypoxia has a minimal impact on cellular adherence in monocytes. Monocytes 
were cultured in normoxia or hypoxia ± 100ng/ml LPS for 4 hours. Adherent cells were subject to 
crystal violet staining, which was solubilised and analysed at 570nm. Data shown as the Mean ± 
SD. The experiment was carried out in triplicates in 2 human donors.  
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functional level in terms of scavenger receptor expression and wound healing. 
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graph in Figure 4.4 determined that the dynamic range appears to be from 

between 1-10ng/ml. To ensure a consistent responsiveness to LPS in individual 

donors, the higher concentration of 10ng/ml was used in subsequent 

experiments. 

With a suitable concentration of LPS determined for stimulation. Monocytes 

were cultured in normoxia and hypoxia (5% O2 & 1% O2) ± LPS for 4 hours and the 

supernatant harvested. In cells cultured in 5% O2, there was no significant 

impact on the ability of monocytes to secrete the pro-inflammatory cytokines 

TNFα, IL-6 and IL-1β compared to those cultured in normoxia (Figure 4.5A). 

Despite promoting a higher level of production of mediators, LPS did not induce 

any differences between normoxia and hypoxia (Figure 4.5A).  Evaluation of the 

1% O2 also showed that there was no difference between the production of IL-8 

and IL-6. In contrast however, there appeared to be a reduction in the release of 

IL-1β when cells were stimulated with LPS in hypoxic conditions, although this 

did not reach statistical significance (Figure 4.5B).  

 

Figure 4.4 LPS Dose response curve of inflammatory mediators. Monocytes were cultured in 
normoxia ± LPS of varying concentrations (ng/ml) for 6 hours. Levels of IL-6 and IL-8 in harvested 
cell free supernatant was analysed by ELISA. Data shown as the Mean ± SD. The experiment was 
performed in triplicate in 2 healthy donors. 
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The results from Figure 4.5 illustrated that short term hypoxia modulated IL-1β 

production, but not other classical mediators such as TNFα, IL-6 and IL-8. To 

supplement this finding, we sought to validate the key finding from Bosco et al 

(2006), where hypoxia induced CCL20 production at protein level, since, to the 

best of our knowledge, no other group had investigated this phenomenon. The 

results from Figure 4.1 was in agreement with Bosco et al, as increases in CCL20 

transcript level were detected in hypoxic conditions. The published work 

however used a 16 hour time-point and a 1% O2 tension for the detection of 

CCL20 by ELISA. Thus, a time-course experiment at 5% O2 and at a lower tension 

of 2.3% O2 (achieved using the hypoxic incubator) was adopted to assess if both 

short term and overnight culture of hypoxia had the same effect. Thus, 

monocytes were cultured in normoxia or hypoxia (5% O2 & 2.3% O2) ± LPS for 0, 

6, 18 and 24 hours and the CCL20 release was measured by ELISA. In contrast to 

the published findings, hypoxia alone did not induce CCL20 production in 

monocytes (Figure 4.6A & 4.6B). Furthermore, whilst CCL20 production was 

induced after 6 hours of culture when the cells were stimulated with LPS, there 

appeared to be no hypoxic effect. Intriguingly, longer term hypoxia (18 and 24 

hours) appeared to increase the production of CCL20 in 5% O2 (Figure 4.6A). At 

18 hours there was an increase from, on average, 312 ± 5 pg/ml in normoxia to 

406 ± 80 pg/ml in hypoxia. This change was maintained at 24 hours, from 358 + 9 

pg/ml in normoxia to 447 + 50 pg/ml (Figure 4.6A). In a separate experiment at 

2.3% O2, this finding was exacerbated. Indeed, at 18 hours the monocytes 

produced 1690 ± 416 pg/ml of CCL20 in normoxia and 4320 ± 991 pg/ml in 

hypoxia. Furthermore, monocytes secreted, on average, 2067 ± 448 pg/ml of 

CCL20 in normoxia and 4867 ± 295 pg/ml in hypoxia after 24 hours of culture 

(Figure 4.6B). Taken together, these data show that hypoxia enhances the 

production of CCL20 from LPS activated monocytes. 

The increased level of CCL20 production in hypoxic conditions identified a 

hypoxia-specific function of LPS activated monocytes. To determine if this was 

specific only for CCL20 or was replicated in other pro-inflammatory mediators, 

supernatants were interrogated by Meso Scale Discovery and further ELISA 

analysis. In this instance, monocytes were cultured in normoxia or hypoxia (1% 

O2) ± LPS for 16 hours and the supernatant was harvested for analysis. 

Unstimulated cells did not produce detectable levels of the of the cytokines; IL-
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1β, IL-6 & TNFα and chemokines; CCL20 and IL-8 (except in one donor) under 

both normoxia or hypoxia (Figure 4.7B). However, in one donor (performed in 

triplicate), hypoxia alone did increase the production of IL-8 (Figure 4.7A). This 

is in agreement with the result at transcript level in Figures 4.1A & 4.1B. 

However, throughout the supernatant analysis in activated cells, IL-8 was 

detected above the dynamic range of the assay. Therefore, under these 

circumstances, IL-8 would have to be tested further with an adjusted dilution. 

Strikingly, in monocytes stimulated with LPS, hypoxia enhanced the production 

of pro-inflammatory mediators. For instance, there was a significant increase of 

approximately 4-fold in the release of CCL20 in hypoxic conditions compared to 

normoxia (Figure 4.7B). This result, which was obtained at 1% O2, is in 

agreement with the results in Figure 4.6, which also highlighted hypoxia-

specific enhancement of CCL20 release. In addition, significant increases were 

observed in the secretion of IL-6 (1.7-fold increase) and IL-1β (1.6-fold increase) 

in hypoxic conditions in comparison to normoxia (Figure 4.7B). The increase in 

IL-1β in this experiment is at odds with the result in Figure 4.5B, which 

indicated a reduction in IL-1β secretion from activated cells in hypoxic 

conditions. Further work is warranted to fully appreciate the kinetics of IL-1β 

release in this context. However, given the links between IL-1β and cell death 

pathways (at least in macrophages; (England et al. 2014)), by actively limiting 

IL-1β during the initial phases of hypoxia adaptation, this could promote cell 

survival during this process. Moreover, TNFα production seemed to be increased 

under hypoxic conditions, however, this was largely a donor specific 

phenomenon and did not yield statistical significance (Figure 4.7B). 
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Figure 4.5 Hypoxia has a minimal impact on the production of pro-inflammatory mediators in 
the short term. Monocytes were cultured in normoxia or [A] 5% O2 or [B] 1% O2 (hypoxia) ± LPS 
(10ng/ml) for 4 hours. Cell culture supernatant was harvested and assessed by ELISA for 
indicated mediators. Dots are indicative of separate donors with the Mean shown. N = 3. n.d. = 
non-detectable. 
 
 

 

Figure 4.6 Time and oxygen tension influences LPS stimulated monocyte secretion of CCL20. 
Monocytes were cultured in either normoxia or [A] 5% O2 or [B] 2.3% O2 (hypoxia) ± LPS 
(10ng/ml) for the indicated time-points. CCL20 release into the cell culture supernatant was 
harvested and analysed by ELISA. Dots are indicative of individual donors and the line represents 
the Mean. The experiments were performed in triplicate from 2 healthy donors.  
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Figure 4.7 Longer term hypoxia increases the secretion of pro-inflammatory mediators in LPS 
stimulated monocytes. [A] Monocytes were cultured in normoxia or hypoxia (1% O2). Cell free 
supernatant was harvested and assessed by MSD. n = 1 [B] Monocytes were cultured in normoxia 
or hypoxia (1% O2) ± LPS (10ng/ml) for 16 hours. Cell free supernatant was harvested and 
assessed by MSD (IL-6, IL-1β & TNFα) & ELISA (CCL20). Data shown as the Mean and dots are 
indicative of separate healthy donors. Statistically analysed by paired t Test (IL-6 & IL-1β) or 
Wilcoxon rank test (CCL20 & TNFα) after D’Agostino & Pearson normality testing. N = 11-12. *** p 
≤ 0.001.  
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cell culture media with exogenous carnitine. With this approach, it was 

expected that the cells would uptake the exogenous carnitine and therefore 

boost fatty acid oxidation by increasing fatty acid transport into the 

mitochondria. This was based on the fact that carnitines were depleted in 

hypoxic conditions (Figure 3.8). Uptake of exogenous carnitine in monocytes 

and macrophages has been reported to occur via OCTN2 (Ingoglia et al. 2017). 

Earlier studies in murine macrophages had revealed that high doses (>300mM) of 

exogenous carnitine was toxic to these cells (Fortin et al. 2009). Therefore, in 

order to ensure that any changes in functionality caused by this intervention 

could not be attributed to cell death, a toxicity assay was performed. For this 

purpose, an MTT toxicity assay was utilised at a number of doses in culture with 

monocytes. The assay determined that concentrations above 10mM of exogenous 

carnitine was detrimental to the monocytes (Figure 4.8A). Monocytes were, 

therefore, cultured in the presence or absence of 10mM exogenous carnitine 

under both normoxia or hypoxia (1% O2) ± LPS for 16 hours. Strikingly, the results 

showed that in both normoxic and hypoxic conditions, exogenous carnitine 

significantly increased the production of CCL20 when the cells were stimulated 

with LPS (Figure 4.8B). However, this finding did not extend to IL-1β production 

in LPS treated monocytes, where exogenous carnitine appeared to have no 

significant impact (Figure 4.8B).  

In light of this result, the effect of a carnitine dose response on both CCL20 and 

IL-1β production in LPS stimulated monocytes was evaluated. Interestingly, 

CCL20 production was increased by exogenous carnitine in a dose dependent 

manner in both normoxic and hypoxic conditions, however, this only reached 

significance at the top concentration of 10mM (Figure 4.8C). In validation of the 

result in Figure 4.8B, the top dose (10mM) of carnitine had no effect on IL-1β 

production. Furthermore, lower doses of carnitine did not have any effect on the 

release of IL-1β in both normoxia and hypoxia. (Figure 4.8C). 
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Figure 4.8 Carnitine supplementation increases CCL20 release from monocytes. [A] 
Monocytes were cultured in normoxia with increasing doses of carnitine (0-20mM) for 4 hours and 
toxicity was assessed by MTT assay. Dots indicative of separate donors and line showing the 
Mean. N = 3 [B] Monocytes were cultured in normoxia or hypoxia (1% O2) ± LPS (10ng/ml) and 
were supplemented with Carnitine (10mM) for 16 hours. Cell culture supernatant was assessed by 
CCL20 or IL-1β ELISA. Data statistically analysed by Wilcoxon rank test. N = 7-10. Dots are 
indicative of separate donors and line illustrating the Mean. [C] Monocytes were cultured in 
normoxia or hypoxia (1% O2) ± LPS (10ng/ml) and were supplemented with incremental doses of 
Carnitine (1-10mM) for 16 hours. Cell culture supernatant was assessed by CCL20 or IL-1β ELISA. 
Data statistically analysed by Friedman’s test followed by Dunn’s post-test compared to LPS 
alone as the control condition. N = 7. Dots are indicative of separate donors and line illustrating 
the Median. ** P ≤ 0.01.  
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4.2.2.2 Inhibition of carnitine biosynthesis 

These data support a role for fatty acid transport in the secretion of CCL20 but 

not IL-1β. To assess if intracellular carnitine biosynthesis had a role in the 

production of CCL20, the small molecule inhibitor, Mildronate, was used. This 

inhibitor blocks the hydroxylation of γ-butyrobetaine by γ-butyrobetaine 

hydroxylase and thus prevents the biosynthesis of carnitine. Accordingly, 

monocytes were pre-treated with the inhibitor for 1 hour prior to being cultured 

in normoxia or hypoxia ± LPS for 16 hours. The results showed that pre-

treatment with Mildronate, at three separate concentrations, did not 

significantly alter the production of CCL20 release in normoxia or hypoxia in LPS 

stimulated monocytes (Figure 4.9A). Furthermore, pre-treatment of monocytes 

for 1 hour with Mildronate (50µM) had no effect on IL-1β production when the 

cells were stimulated with LPS (Figure 4.9A). 

 

Figure 4.9 Mildronate treatment has little effect on the production of inflammatory 
mediators in monocytes. Monocytes were pre-treated for 1 hour with Mildronate (50-500µM) in 
normoxia. Cells were then stimulated with LPS (10ng/ml) and cultured in normoxia or hypoxia 
(1% O2) for 16 hours. Cell culture supernatants were harvested assessed by CCL20 [A] or IL-1β [B] 
ELISA. Dots representative of separate donors with line showing the Mean. N = 3.  
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4.2.2.3 Inhibition of carnitine shuttling 

Although Mildronate acts as an inhibitor against carnitine biosynthesis, it does 

not inhibit the carnitine shuttle, which transports fatty acid acyl-CoA groups for 

β-oxidation. Therefore, an alternative inhibitor, etomoxir (ETO), which inhibits 

CPT-1 and subsequent fatty acid transport into the mitochondria was used. CPT-

1 is located on the outer face of the inner mitochondrial membrane of the 

mitochondria and starts the carnitine shuttle by promoting the binding of free 

carnitine to fatty acid acyl groups. Monocytes were pre-treated with ETO for 1 

hour, before subsequent culture in normoxia or hypoxia ± LPS for 16 hours. In 

LPS stimulated monocytes under normoxia conditions, pre-treatment with ETO 

significantly increased the production of CCL20. In contrast, ETO had no effect 

on the production of CCL20 in hypoxic conditions (Figure 4.10A). Intriguingly, 

pre-treatment with ETO significantly increased the level of IL-1β secretion in LPS 

stimulated cells, in both normoxia and hypoxia (Figure 4.10B). Taken together, 

the results from Figures 4.8 and 4.10, identify a role for the carnitine shuttle 

and fatty acid oxidation in the enhanced production of CCL20 and in the 

suppression of IL-1β release. 
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Figure 4.10 Etomoxir (ETO) increases the release of IL-1β from monocytes in normoxic and 
hypoxic conditions. Monocytes were cultured in normoxia or hypoxia (1% O2) ± LPS (10ng/ml) for 
16 hours and supernatant harvested. Cells were pre-treated with ETO (50µg) for 1 hour. The 
supernatant was analysed by ELISA for CCL20 [A] or IL-1β [B]. Data statistically analysed by 
Wilcoxon rank test. Dots are indicative of separate donors with the line showing the Mean. N = 6. 
* p ≤ 0.05. 
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4.2.2.4  Glycolysis inhibition 

In addition to fatty acid metabolism, the metabolic data from Chapter 3 

identified glycolysis as a perturbed pathway in hypoxia. To understand the 

influence of this pathway on the production of pro-inflammatory mediators, 

monocytes were treated with the glucose analogue, 2-deoxyglucose (2-DG), 

which is known to inhibit glycolysis. In brief, cells which utilise glycolysis will 

readily uptake 2-DG into the cell via glucose transporters. After uptake, 2-DG 

can be phosphorylated by hexokinase to generate 2-DG-P, however, it cannot be 

further metabolised in the pathway. Thus, 2-DG-P will accumulate and glycolysis 

will become inhibited. Monocytes were therefore pre-treated for 2 hours with 

10mM 2-DG and cultured in normoxia or hypoxia ± LPS for 16 hours. The level of 

pro-inflammatory mediators in the supernatant were analysed by ELISA. In 

normoxic conditions, 2-DG had no impact on the production of IL-6, CCL20 and 

IL-1β when the cells were stimulated with LPS (Figure 4.11). In stark contrast, 

pre-treatment with 2-DG dramatically decreased the secretion of IL-6, CCL20 

and IL-1β in hypoxic conditions (Figure 4.11). It is important to note that in this 

experiment, the monocytes were isolated directly from fresh blood rather than 

buffy coat, which may explain the lower levels of IL-1β and CCL20 that was 

detected. In summation, these results suggest that, particularly in hypoxic 

conditions, glycolysis has a governing role in the production of pro-inflammatory 

mediators from LPS stimulated monocytes. 

 



  132 
 

 

Figure 4.11 2-Deoxyglucose (2-DG) inhibits pro-inflammatory cytokine production in hypoxic 
conditions. Monocytes were left unstimulated, stimulated with LPS (10ng/ml) or were pre-
treated for 2 hours with 2-DG (10mM) before LPS stimulation. Cells were then cultured under 
normoxia or hypoxia (1% O2) for 16 hours. Cell culture supernatant was harvested and assessed 
for IL-6, IL-1β or CCL20 by ELISA. Dots representative of separate donors. The experiment was 
conducted in triplicate in 2 healthy donors. 
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4.3 Discussion 

This chapter has utilised a number of assays with the aim of profiling how 

hypoxia impacts monocyte function. Transcriptomic analysis revealed that a 

range of transcripts, including chemokines and scavenger receptors were altered 

by hypoxia. However, these transcriptional changes did not fully correlate with 

changes at protein level. Supernatant analysis identified that hypoxia augments 

the production of pro-inflammatory mediator from LPS stimulated monocytes, 

such as CCL20 and IL-1β. Linking this with the data produced in Chapter 3, it 

was postulated that the oxidation of fatty acids may have a role in the 

production of pro-inflammatory cytokines and chemokines under these 

conditions. Indeed, this chapter has shown that supplementation of monocytes 

with carnitine enhances CCL20 production in both normoxia and hypoxia. In 

addition, inhibition of the carnitine shuttle augmented IL-1β production in 

normoxia and hypoxia, while it only increased CCL20 production in normoxic 

conditions.  Furthermore, initial studies suggested that glycolysis also has an 

important role in the production of CCL20, IL-1β and IL-6, especially under 

hypoxic conditions. 

Little is known about the impact of hypoxia specifically on monocyte function 

(discussed in 1.3.3). However, monocytes have an array of inflammatory 

functions, including the production of cytokines and chemokines in response to 

stimuli. They also retain strong adherence to extracellular matrices to carry out 

processes such as phagocytosis (discussed in 1.1.1 & 1.4). In addition, 

monocytes possess a number of regulatory roles, such as scavenging cellular 

debris and aiding in wound healing processes to resolve inflammation (discussed 

in 1.1.1). Therefore, a plethora of assays were utilised to assess how hypoxia 

alters monocyte functionality.  

In the first instance, pre-designed TLDA plates were used to analyse a number of 

gene targets, which may have given indications of a functional phenotype. The 

analyses revealed that hypoxia had an impact on the expression of scavenger 

and C-type lectin receptors. These results also implicated changes within the 

chemokine network and their receptors. Likewise, a global transcriptomic 

analysis of monocytes under hypoxic conditions was carried out by Bosco et al 

(2006). In line with the results in this chapter, the authors identified altered 
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gene expression levels of scavenger receptors and chemokines/receptors. CD36 

showed a lower level of gene expression in this work and the published work in 

hypoxia compared to normoxia. As CD36 is a scavenger receptor for fatty acid 

uptake, it is an important mechanism for feeding fatty acid oxidation, and 

therefore fits the metabolomic results from the previous chapter. CD36 is largely 

associated with anti-inflammatory M(IL-4) macrophages, while knockout studies 

suggest it is essential for murine M(IL-4) macrophage activation (S. C.-C. Huang 

et al. 2014). Therefore, hypoxia may promote a more inflammatory phenotype in 

monocytes by downregulating its expression. However, altered transcriptional 

expression did not translate into decreased cell surface expression. CD36 surface 

expression was only analysed on one donor, which may have been as a result of 

donor specific effects in this instance. Furthermore, this could indicate that 

CD36 may not be trafficked to the cell surface under these conditions. Given 

decreases in other scavenger receptors, such as CD163 and STAB1, were 

observed in this work and in the published transcriptomic study, conducting a 

thorough FACS examination of a number of scavenger receptors, and at a later 

time-point, may be more appropriate to fully determine if hypoxia reduces cell 

surface expression.  

Monocytes display strong adherent properties to extracellular matrices in vivo to 

enhance functional properties such as phagocytosis (Newman & Tucci 1990). The 

results presented here illustrated that hypoxia had no impact on monocyte 

adherence in vitro (Figure 4.3). The experimental set up used in this work 

resembled that of the adherence assay used by Dabritz et al (2015). The authors 

pre-treated monocytes with GM-CSF prior to seeding into tissue culture plates 

and observed increased levels of adherence. The monocytes used for the 

experiments in this chapter were, however, seeded immediately upon exposure 

to normoxia and hypoxia. Therefore, a pre-exposure to hypoxia before seeding 

into plates may have yielded some alterations. In addition, pre-coating of wells 

with fibronectin was attempted in this assay to aid adherence. However, no 

difference was observed between normoxia and hypoxia (data not shown), 

indicating that hypoxia may not have any effect on cellular adherence.  

These studies do not rule out the possibility of hypoxia being able to alter 

adherence properties in vivo. This may include the expression and activation of 
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β2 integrins (such as CD11a-d), all of which have been reported to be expressed 

on human monocytes (Schittenhelm et al. 2017). Integrins are thought to 

contribute to the pathogenesis of RA. For example, CD11a is increased in RA and 

is associated with aiding transendothelial migration of monocytes to the 

inflamed synovium (Schittenhelm et al. 2017). Therefore, studies assessing β2 

integrin expression by flow cytometry or through the utilisation of static 

adhesion assays may provide increased understanding into how hypoxia may 

modulate monocyte adherence properties. 

In addition to promoting inflammation, monocytes participate in immune 

regulation. The work by Dabritz et al found that GM-CSF activated monocytes 

could close a scratched monolayer of Caco-2 cells more rapidly than untreated 

cells. The authors suggested that GM-CSF induced characteristics in monocytes 

that are shared with anti-inflammatory M(IL-4) macrophages which in turn 

contributed to the regulation of intestinal inflammation. However, in the 

experiments here, scratching a monolayer of Caco-2 cells lead to cell death and 

tearing of the monolayer, which questioned the suitability of this cell line for 

the assay. This process was more reproducible when using HUVECs, however no 

difference was observed between normoxia and hypoxia. Likewise, with this 

study, the published work also observed a non-significant difference in wound 

closure between a monolayer without monocytes and with untreated monocytes. 

In summation, the results in this chapter suggest that hypoxia does not promote 

wound healing processes in monocytes. 

In response to bacterial ligands, such as LPS, monocytes secrete an array of pro-

inflammatory mediators. In a robust finding, hypoxia was shown to enhance the 

production of pro-inflammatory cytokines (IL-6 and IL-1β) in response to LPS 

(Figure 4.7). Furthermore, the increases were only seen after 16 hours of 

culture in hypoxia, and hypoxia had no effect on secretion in resting cells. Taken 

together, this suggests that tissue hypoxia at inflamed sites augments 

inflammatory cascades. In support of this, hypoxia also enhanced the release of 

pro-inflammatory mediators by human macrophages in response to palmitate 

(Snodgrass et al. 2016). These results strengthen the argument that hypoxia may 

prime the cells for a more robust inflammatory response and could act as a 
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‘danger’ signal. On the other hand, bystander effects of hypoxia, such as 

metabolic adaptation, could enhance such responses.  

In addition to the increase in cytokines, hypoxia increased the secretion of 

CCL20, but only in LPS stimulated monocytes (Figure 4.7). The results here did 

not fully validate published work which suggested that hypoxia increased the 

production of CCL20 in resting monocytes (Bosco et al. 2006). However, the 

enhanced secretion observed in activated cells does implicate a role for hypoxia 

in CCL20 release. CCL20 and its corresponding receptor, CCR6 have been 

associated with the pathogenesis of autoimmune diseases, such as rheumatoid 

arthritis (Tanida et al. 2009). Direct links have been made between CCL20 and 

its recruitment of CCR6+ Th17 cells, monocytes and in the proliferation and 

activation of osteoblasts and osteoclasts respectively (Hirota et al. 2007; Ruth et 

al. 2003; Lisignoli et al. 2009). Therefore, the hypoxic microenvironment 

commonly found in inflammation may prime infiltrating monocytes to secrete 

increased levels of CCL20 upon stimulation. This in turn could drive pathogenesis 

by promoting the recruitment of other immune cells. Increased cell infiltration 

into the inflammatory milieu could further decrease the oxygen tension via 

increased oxygen consumption, which may drive chronicity. On the other hand, 

CCR6 is also present on the surface of Treg populations, which are said to be 

present in the joint too (Möttönen et al. 2005). Therefore, further work is 

needed to establish if the CCL20:CCR6 axis has a role in the resolution of 

inflammation too. 

To interrogate the impact of metabolic pathways for the enhanced release of 

pro-inflammatory mediators under hypoxia. A few approaches were undertaken 

to assess the effect of carnitine shuttling (and subsequently fatty acid 

oxidation), which was revealed to be significantly down-regulated in the 

metabolomics analysis in Chapter 3. Pre-treatment of the monocytes with 

Mildronate had no effect on the production of pro-inflammatory mediators upon 

LPS stimulation, which suggested that intracellular carnitine biosynthesis does 

not influence CCL20 secretion. On the other hand, inhibition of carnitine 

shuttling itself with etomoxir, significantly increased the production of IL-1β (in 

both normoxia and hypoxia) and CCL20 (in normoxia only). Together with LPS 

stimulation, hypoxia may have saturated the production of CCL20, as the 
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inhibitor induced a significant increase only in normoxia. As etomoxir prevents 

fatty acid oxidation in the mitochondria, it could be speculated that in order to 

generate sufficient ATP under these conditions, monocytes would have a greater 

reliance on glycolysis. Such circumstances have been reported when cancer cells 

have been treated with etomoxir (Schlaepfer et al. 2015). Therefore, the 

increases in IL-1β and CCL20 (normoxia only) secretion by etomoxir could be 

caused by increased glycolytic flux. However, subsequent metabolomic analysis 

would be needed to confirm this hypothesis. Nevertheless, knockdown studies of 

CPT1a and treatment with ETO in macrophage-differentiated THP-1 monocytic 

cells increased the expression of pro-inflammatory cytokines in response to 

palmitate at transcript level (Namgaladze et al. 2014). As well as being in 

support of the studies in this chapter, this highlights that FAO may have 

regulatory functions, by actively limiting the release of IL-1β and CCL20 in this 

instance. Indeed, overexpression of CPT1a in THP-1 macrophages and RAW 264.7 

macrophages attenuated inflammatory responses in response to palmitate 

(Namgaladze et al. 2014; Malandrino et al. 2015). Thus, metabolic switching to 

glycolysis may promote a more inflammatory programme in myeloid cells. The 

interplay between glycolysis and FAO has been studied in macrophage 

polarisation. Glycolysis has been typically associated with inflammatory M(LPS ± 

IFNγ) macrophages while the predominant view in the field has identified FAO 

with anti-inflammatory M(IL-4) macrophages (Vats et al. 2006; S. C.-C. Huang et 

al. 2014; Rodriguez-Prados et al. 2010). Although, a growing body of evidence 

has now suggested that FAO may not be required for IL-4-induced polarisation in 

human macrophages (Namgaladze & Brüne 2014; Nomura et al. 2016). 

In addition to carnitine inhibition, the promotion of fatty acid oxidation was 

attempted by supplementing the cells with exogenous carnitine. Carnitine 

supplementation increased the secretion of CCL20, but had no effect on IL-1β 

release, which suggest a specific role for FAO, perhaps in conjunction with 

glycolysis, in CCL20 production. The lack of effect of exogenous carnitine on IL-

1β release was surprising, given that Fortin et al (2009) illustrated that carnitine 

suppressed the secretion of IL-6, IL-1β and TNFα in murine macrophages. 

Furthermore, in human monocytes stimulated with LPS, carnitine reduced TNFα 

and IL-12 (Alesci et al. 2003). In both studies, very high doses of exogenous 

carnitine were used (>100mM), which were based on a lack of toxicity (by MTT 
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assay) in HeLa cells in concentrations of up to 400mM. When an MTT assay 

assessing the impact of increasing doses of carnitine was conducted human 

monocytes in the work presented here, toxicity was observed in concentrations 

above 10mM (Figure 4.8A), which questioned the concentrations used in the 

published studies. The reduction in the secretion of pro-inflammatory cytokines 

in the published work and the lack of effect in IL-1β production by exogenous 

carnitine here was in stark contrast with the increase in the production of the 

chemokine, CCL20. This suggested that cytokines and chemokines could be 

differentially regulated at metabolic level. Indeed, alternative metabolic 

pathways for the control of cytokine and chemokine release has been reported 

before. This includes glycolysis for the control of IL-1β release from M(LPS ± 

IFNγ) macrophages and the glutamine metabolic module for CCL22 production in 

M(IL-4) macrophages (Tannahill et al. 2013; Jha et al. 2015). To determine if 

FAO is specific for CCL20 release, experiments are warranted to interrogate if 

exogenous carnitine (and subsequent FAO) enhances the production of other 

chemokines, such as IL-8. 

Glycolysis is thought to have an important role in inflammatory macrophage 

activation (Palsson-McDermott et al. 2015; Rodriguez-Prados et al. 2010; 

Tannahill et al. 2013). Moreover, the metabolomics dataset from Chapter 3 

identified glycolysis as being higher in hypoxic conditions. Therefore, the impact 

of glycolysis on a monocyte’s ability to release higher levels of pro-inflammatory 

cytokines and chemokines in hypoxia was analysed. Pre-treatment with 2-DG had 

no impact in normoxia, but strikingly, decreased CCL20, IL-1β and IL-6 

production in hypoxic conditions. Although, to increase the power of this 

finding, this experiment would need to be repeated as n = 2. A similar 

observation was made when 2-DG inhibited the production of IL-1β in LPS 

activated macrophages (Tannahill et al. 2013). Nonetheless, these results 

indicated an important role for glycolysis in monocyte function, especially in 

hypoxia. As monocytes under hypoxic conditions reduce their mitochondrial 

metabolism and increase glycolysis for ATP, inhibiting glycolysis with 2-DG may 

cause the cells to undergo arrest or apoptosis in low oxygen. Consequently, this 

could have caused the reduction in inflammatory mediator release. 



  139 
 
This chapter has illustrated that upon LPS stimulation, monocytes show 

enhanced production of pro-inflammatory mediators in hypoxia. This proposed 

that a hypoxic microenvironment can act as an extracellular danger signal which 

can prime monocytes for an amplified inflammatory response to stimuli. 

Alteration of fatty acid metabolism revealed a metabolic disconnect for the 

control of CCL20 and IL-1β, where FAO may promote CCL20 production but act 

to limit IL-1β release. This indicated that cytokines and chemokines could be 

differentially controlled at metabolic level. In all cases, glycolysis appears to 

have a vital role in the production of both cytokines and chemokines, especially 

in hypoxic conditions. The next chapter will address if these findings extend to 

the context of inflammatory disease, by using synovial fluid from a rheumatoid 

arthritis patient as a stimulus. As monocytes typically differentiate into tissue 

macrophages upon recruitment from the blood, the impact of metabolic 

pathways in end differentiated cells (alveolar macrophages) will also be 

interrogated. 

Chapter 5. Assessing the impact of the chronic 
inflammatory milieu on the metabolism and 
function of monocytes 

5.1 Introduction 

The previous chapters have characterised the metabolome of monocytes 

cultured under hypoxia, and have identified a novel link between cellular 

metabolism and CCL20 production in LPS stimulated cells under these 

conditions. To extend these findings, studies in this chapter addressed the 

impact of biological stimuli associated with chronic inflammatory disease. (i.e., 

synovial fluid). By incorporating hypoxia and simultaneous stimulation with 

synovial fluid from a rheumatoid arthritis patient (RA-SF), these studies set out 

to mimic aspects of the chronic disease state in an in vitro setting. As this is a 

more complex stimulus, this metabolic profile was compared to the profile 

obtained from a comparator stimuli (LPS). Furthermore, by using human alveolar 

macrophages (AM) from lung resection patients, we questioned if the work from 

the previous chapter extended to end differentiated cells isolated directly from 

tissue. 
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RA is a complex inflammatory disease of the joints with large heterogeneity 

amongst patients. The RA synovial membrane is a destructive environment, 

characterised by an immune cell infiltrate of both the innate (such as myeloid 

cells) and adaptive arms (T & B cells) of immunity. Macrophages with an 

inflammatory phenotype are thought to play a central role in pathology, by 

secreting a range of inflammatory cytokines, chemokines and MMPs to drive 

disease. The importance of metabolic pathways in governing polarisation of 

inflammatory M(LPS + IFNγ) macrophages has been discussed previously (Section 

1.5). Inflammatory mediators such as cytokines (TNFα, IL-6, IL-1β) can in turn 

stimulate other infiltrating immune cells to promote severity. In addition to 

cytokines, RA synovitis is classically characterised by the presence of 

autoantibodies, such as ACPAs and rheumatoid factor. Autoantibodies have the 

ability form immune complexes that contain self-antigens such as citrullinated 

fibrinogen, which can in turn bind FcγRs and potentially PRRs on macrophages to 

secrete TNFα (Sokolove et al. 2011). Interestingly, immune complexes can 

activate osteoclasts and stimulate bone degradation which in turn leads to pain 

and the production of IL-8 (Harre et al. 2012; Krishnamurthy et al. 2016). 

In addition to humoral immune responses, T cell immunity has a vital role in 

perpetuating inflammation. In particular, the immuno-metabolomic set-point of 

T cells has been shown to be important. For instance, naïve RA T cells are 

thought to possess a defected glycolytic flux, where glucose was shunted into 

the PPP instead. This resulted in higher NADPH and ROS consumption. Thus, the 

increased reduction capacity had the ability to cause hyperproliferation in 

activated T cells, which characteristically prefer to adopt pathological Th1 or 

Th17 phenotypes (Yang et al. 2016) 

Intracellular immune metabolism is becoming increasingly important in driving 

inflammatory mechanisms (discussed in Section 1.5) and therefore could have 

biological relevance in disease. However, there is a paucity of immune-

metabolic research in myeloid cells in response to complex stimuli from chronic 

inflammatory disease (i.e., RA-SF). Nevertheless, studies have identified 

pathogenic properties in monocytes that are induced by RA-SF, such as increased 

CD86 expression (Chimenti et al. 2016). Furthermore, stimulation of different 

TLR ligands has recently been shown to induce alternative metabolic cascades, 
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highlighting the necessity of metabolic profiling in response to biologically 

relevant stimuli (Lachmandas et al. 2016; Domínguez-Andrés et al. 2017). 

Nonetheless, metabolomics is being increasingly utilised in clinical settings. Even 

though RA is a heterogeneous disease, there have been a variety of studies 

which aimed to metabolically profile various biological fluids from RA patients 

including, serum, plasma, urine and synovial fluid to identify biomarkers of 

disease (Kapoor et al. 2013; Kim et al. 2014; Tatar et al. 2016; M. Jiang et al. 

2013). Global metabolomics revealed that synovial fluid from RA patients 

significantly differed from those with non-RA pathologies (Kim et al. 2014). This 

study identified 20 metabolites that could be potential biomarkers of RA. These 

included metabolites such as succinate, glutamine and citrulline (Kim et al. 

2014), reassuring given citrulline’s role in ACPAs. 

As previously discussed (Sections 1.1.1 & 1.1.2), once recruited to the tissue 

during inflammation, monocytes can differentiate into macrophages. One such 

macrophage population are alveolar macrophages, which are long lived resident 

cells in the airspace of the lung tissue and reside in close proximity to airway 

epithelial cells and the mucus layer (Hussell & Bell 2014). In the steady state, 

alveolar macrophages are essential for maintaining homeostasis, by exhibiting 

low phagocytic capacity, respiratory burst, and are thought to be poor at 

presenting antigen to T cells (Lipscomb et al. 1986; Hoidal et al. 1981). 

Furthermore, they are active producers of TGFβ that suppresses T cell activation 

(Coleman et al. 2013). These mechanisms are vital for providing tolerance to 

innocuous antigen that in turn prevents unnecessary tissue damage.  

Although macrophages display immunosuppressive properties during 

homeostasis, they show a degree of plasticity. During acute microbial infection, 

AM have a number of inflammatory functions. For example, they are important 

in the recruitment of other inflammatory cells to the airspace (Maus et al. 

2002). In addition, AM produce pro-inflammatory cytokines and ROS to drive 

inflammation (Losa García et al. 1999; Persoons et al. 1996). Moreover, their 

role in the resolution of inflammation is evident in their ability to clear 

apoptotic neutrophils (Cox et al. 1995) 

In chronic disease, AM are thought to increase between 5 to 10 fold in those 

suffering with COPD. This is largely due to cigarette smoke, which presents as 
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the primary risk factor for COPD (Saetta et al. 1993). Cigarette smoke is known 

to activate AM, which prompts the release of pro-inflammatory mediators and 

MMPs, resulting in a milieu that can cause destruction of the lung parenchyma 

(Barnes et al. 2003). At a metabolic level, cigarette smoke and oxidative stress 

are known to disrupt glutathione metabolism in AM, which has been associated 

with impaired AM clearance of bacteria and apoptotic cells (Hodge et al. 2011). 

This is only one mechanism whereby COPD can lead to increased susceptibility to 

respiratory infection (Lange 2009). As AM are highly plastic cells, it has been 

illustrated that the COPD microenvironment can promote distinct macrophage 

subpopulations of which are resembling of both M(LPS + IFNγ) and M(IL-4) in 

vitro generated phenotypes (Eapen et al. 2017). M(LPS + IFNγ) macrophages 

promote inflammation and oxidative stress, while M(IL-4) macrophages release 

MMPs that are involved in lung remodelling and damage. Thus, it has been 

suggested that the specific ratio of these populations contributes to disease 

pathology (Vlahos & Bozinovski 2014).  

Rheumatoid arthritis and COPD represent two chronic inflammatory diseases 

with a central role for myeloid cells. In the previous chapters, hypoxia, which is 

prominent in both diseases (Lund-Olesen 1970; Kent et al. 2011), has been 

shown to affect the metabolism and functionality of monocytes by altering 

carnitine metabolites and the production of pro-inflammatory mediators. As 

stated above, in this chapter the metabolic profile of monocytes cultured under 

normoxic and hypoxic condition and simultaneous RA-SF or LPS stimulation will 

be investigated. At a functional level, monocytes will be assessed for their 

ability to secrete CCL20 when stimulated with RA SF. In addition, by using the 

same methods to alter carnitine shuttling as in Chapter 4, the role of this 

pathway in CCL20 secretion will be interrogated. Finally, this chapter will begin 

to scrutinise the impact of hypoxia on carnitine metabolism and cellular function 

in AM, an end differentiated monocyte-derived cell. Therefore, the aims of this 

chapter are: 

1. Metabolically profile monocytes when untreated or treated with RA-SF & 

LPS under normoxic or hypoxic conditions. 

2. Assess the impact of carnitine metabolism on the ability of monocytes to 

release pro-inflammatory mediators in response to RA-SF. 
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3. Investigate carnitine metabolism at a metabolic and functional level in 

AM. 

 

5.2 Results 

5.2.1  Metabolic profiling of monocytes treated with RA-SF under 
normoxia or hypoxia 

5.2.1.1  Overview of metabolic changes induced by RA-SF 

The metabolic profile of monocytes under hypoxic conditions has been 

established already in Chapter 3. However, to further relate these studies to the 

context of inflammatory disease, monocytes were cultured in the presence of RA 

synovial fluid. Furthermore, the monocytes were cultured in normoxic or hypoxic 

conditions to mimic the hypoxic environment commonly found in the rheumatic 

joint. To obtain the metabolic profile, monocytes were cultured in medium 

containing 10% RA-SF (from one RA patient in active disease) and were exposed 

to normoxia or hypoxia (1% O2) for 4 hours. The intracellular metabolites were 

harvested and analysed by liquid chromatography mass spectrometry. Given that 

RA-SF is a complex stimulus that exhibits heterogeneity amongst donors, LPS 

stimulation was utilised as a comparator stimulus in the metabolomic 

experiment.  

The mass spectrometry data was processed and filtered by using the IDEOM Excel 

pipeline (Discussed in Sections 2.10.4 and 3.2.3). To obtain an initial overview 

of the metabolic changes between each condition, the data was visualised via a 

heatmap (Figure 5.1). The processed data (N = 4) was statistically analysed by 

multiple paired t Tests with Benjamini Hochberg correction. After correction, 

the analysis did not reveal many significant alterations between the conditions. 

Therefore, the metabolites which were determined as significant (p < 0.01) 

before correction and between each condition were plotted in the heatmap.  

The overall heatmap profile indicated that cell stimulation (RA-SF & LPS), rather 

than hypoxia, induced distinct metabolic changes in comparison to unstimulated 

(Unstim) cells (Figure 5.1). Indeed, there appeared to be a large block of 
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metabolites where, compared to unstimulated cells (Unstim), there was an 

increase in abundance of metabolites in RA-SF treated cells (Block 1; Figure 

5.1). Furthermore, Block 2 indicated a group of metabolites that were more 

abundant in RA-SF treated cells when compared to both unstimulated and LPS 

stimulated cells. An accumulation of metabolites in RA-SF treated cells when 

compared to unstimulated cells was also observed in Block 3 (Figure 5.1). These 

observations suggested that RA-SF induces an accumulation of metabolites in 

comparison to untreated monocytes. In addition, the metabolic profile from RA-

SF treated cells appeared to be divergent from LPS treated cells. Notably, 

hypoxia did not have a substantial impact within stimuli groups when compared 

to the impact of stimuli alone (Figure 5.1). The initial observations from the 

analysis are highlighted in the corresponding table, which illustrated a higher 

number of significantly different metabolites between treatment than oxygen 

tension within each treatment (Figure 5.1). The metabolites which are 

significantly altered between each condition are listed in the tables (Sections 

7.1-7.8; highlighted metabolites indicate those which were significant after 

correction) in the Appendices. 
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Figure 5.1 Metabolomics overview of monocytes unstimulated, stimulated with LPS or 
treated with RA-SF. Monocytes were left unstimulated, stimulated with LPS (10ng/ml) or were 
treated with RA-SF (10% in media) in normoxia (N) or hypoxia (H) for 4 hours. The intracellular 
metabolites were harvested and analysed by mass spectrometry. Heatmap of significantly 
altered metabolites (p <0.01; Paired t Test) between each condition. Yellow indicates high 
abundance and blue indicates low abundance. N = 4. Associated table illustrates the number of 
significantly different metabolites between each comparison. Number in brackets indicates the 
number of significantly different metabolites after Benjamini Hochberg correction (adjusted p < 
0.05). 
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5.2.1.2  Metabolic alterations in cellular energy metabolites 

To investigate if certain metabolic pathways were altered by RA-SF, the 

metabolic profiles under each condition was evaluated at a single metabolite 

level. The analysis focussed on the metabolic differences between RA-SF treated 

and unstimulated monocytes. 

One of the most predominant group of metabolites that were changed by RA-SF 

in comparison to both unstimulated and LPS stimulated cells, were those 

associated with cellular energy. The most notable was ATP; the ‘energy 

currency’ of the cell. It was apparent from the results that, at least in hypoxic 

conditions, RA-SF stimulation induced a significant accumulation of ATP when 

compared to unstimulated monocytes. In normoxia, there was an increase in 

abundance of ATP in RA-SF monocytes in comparison to cells stimulated with LPS 

(Figure 5.2). However, there was no difference in ADP levels between 

unstimulated cells and RA-SF treated cells. Interestingly, LPS stimulation 

substantially reduced the levels of ATP and ADP (Figure 5.2). These data 

immediately indicated that RA-SF stimulation may induce profound metabolic 

changes. 

NAD+ and NADH represent the oxidised and reduced forms of NAD respectively. 

The analyses revealed that, in normoxia, NAD+ abundance was augmented in RA-

SF treated monocytes when compared to untreated monocytes. This increase 

was also observed in comparison to LPS treated monocytes (Figure 5.2). These 

results show that RA-SF promotes the accumulation of NAD+. Additionally, a 

significant upregulation in NADH abundance in RA-SF cells was observed between 

unstimulated cells, but this was only identified in hypoxic conditions (Figure 

5.2). This is in juxtaposition with LPS stimulation, which attenuated NADH 

abundance in comparison to untreated cells (Figure 5.2).  

Taken together, these results suggest that RA-SF and LPS stimulations induced 

contrasting levels of cell metabolic activity in monocytes. Given that LPS 

stimulates a strong pro-inflammatory response in monocytes, they may deplete 

their ATP stores to meet the high bioenergetic demand. However, RA-SF 

monocytes appeared to have higher ATP reserves and could ultimately be less 

active and dependent on mitochondrial pathways, similar to that of a resting or 
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regulatory cell. NAD acts as an electron carrier in the mitochondria and is 

important for the occurrence of OXPHOS. Therefore, if this pathway is more 

highly utilised in RA-SF cells in comparison to LPS, it could suggest that RA-SF 

did not induce as strong an inflammatory response. 

 

 

Figure 5.2 Cellular energy metabolites are more abundant in RA-SF treated monocytes 
compared to LPS stimulated monocytes. Mass spectrometry analysis of metabolites indicative 
of cellular energy metabolism which showed an accumulation in abundance between RA-SF (N) 
and LPS (N) treated monocytes. Dots indicative of separate donors and line showing the Mean. N 
= 4. Red dots = Normoxic conditions; Blue dots = Hypoxic conditions. Statistically analysed by 
two-way ANOVA with Tukey’s correction. * P ≤ 0.05, ** p ≤ 0.01. 
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5.2.1.3  Carnitine metabolites 

A second pathway which illustrated that RA-SF induced a distinct metabolic 

profile was carnitine metabolism. This pathway has been discussed in Chapter 3, 

where there was a lower level of abundance of carnitine metabolites in hypoxic 

conditions compared to normoxic conditions (Chapter 3). As in Chapter 3, in 

unstimulated cells, hypoxia appeared to decrease the abundance of unbound L-

carnitine and acyl-carnitines (O-acetlycarnitine & 3-dehydroxycarnitine), 

although this appeared to be donor dependent (Figure 5.3). However, in treated 

cells, the hypoxic impact seen in unstimulated cells was negated (Figure 5.3). A 

more robust finding was made in O-propanoylcarnitine, where hypoxia 

significantly reduced its abundance in both unstimulated and RA-SF treated 

cells. Although these results somewhat validated the findings from Chapter 3, it 

did indicate that there is a degree of donor specificity in this observation.  

In a finding that was shared between L-carnitine and O-propanoylcarnitine in 

normoxia, RA-SF stimulation induced an accumulation of both metabolites when 

compared to unstimulated cells (Figure 5.3). In contrast, LPS did not alter the 

abundance of either of these metabolites, which further emphasises the 

metabolic disconnect between LPS and RA-SF stimulations (Figure 5.3). In 

hypoxic conditions, RA-SF significantly increased the intracellular levels of 3-

dehydroxycarnitine in comparison to unstimulated cells. However, RA-SF had no 

effect on the abundance of O-acetylcarnitine when these groups were evaluated 

(Figure 5.3). 

Collectively, there was a higher abundance of carnitines in RA-SF stimulated 

cells, especially when compared to LPS stimulated cells. These data suggested 

that carnitine shuttling, and subsequent FAO, is utilised at a higher rate in RA-SF 

simulated cells than in unstimulated and LPS stimulated cells. This metabolic 

observation is shared with murine M(IL-4) macrophages (S. C.-C. Huang et al. 

2014), which are widely regarded as immune-regulatory. Therefore, these 

findings suggest that, at least in comparison to LPS, RA-SF may not induce as 

robust an inflammatory response from monocytes.  
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Figure 5.3 Carnitine shuttling components are altered in monocytes cultured in RA-SF after 4 
hours. [A] Diagram showing the carnitine shuttling pathway in the mitochondrial membrane [B] 
Carnitines and acyl-carnitines which were significantly altered in RA SF in comparison to LPS in 
normoxia. Dots indicative of separate donors and line showing the Mean. N = 4. Red dots = 
Normoxic conditions; Blue dots = Hypoxic conditions. Statistically analysed by two-way ANOVA 
with Tukey’s correction. * P ≤ 0.05, ** p ≤ 0.01. 
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5.2.1.4  Urea cycle and creatinine biosynthesis 

Another pathway that showed alterations was the Urea cycle and creatinine 

biosynthesis (Figure 5.4). Notably, in addition to participating in the Urea cycle, 

arginine can transfer an amidino group onto glycine to generate guanidino-

acetate, which is subsequently used for the synthesis of creatine and creatinine 

(Figure 5.4). Interestingly, in hypoxia, RA-SF significantly increased the 

abundance of glycine and guanidino-acetate when evaluated against 

unstimulated (Figure 5.4). Furthermore, RA-SF promoted a considerable build-

up of creatinine in monocytes when compared to unstimulated cells in both 

normoxia and hypoxia. Furthermore, increased levels of creatine were also 

observed, but only when evaluated against LPS stimulated cells. (Figure 5.4). 

These results illustrate the RA-SF specifically enhances creatinine biosynthesis in 

monocytes. 

Intriguingly, in comparison to unstimulated cells, RA-SF did not have any effect 

on the levels of l-ornithine and l-arginine. This suggests that Urea cycle activity 

is not altered after RA-SF treatment, but rather is repurposed for creatine and 

creatine biosynthesis (Figure 5.4). This cycle is indicative of a more immune 

tolerant, less inflammatory phenotype, at least in comparison with M(LPS + IFNγ) 

polarised macrophages (Jha et al. 2015). Moreover, exogenous creatine and 

creatinine has been shown to cause a down-regulation of TLR-2, TLR-3, TLR-4 

and TLR-7 in RAW 264.7 macrophages (Leland et al. 2011), supporting an anti-

inflammatory role. Therefore, these results further support that concept that 

RA-SF promotes a more modulatory phenotype in monocytes to regulate 

pathological responses. 
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Figure 5.4 Urea cycle and creatinine synthesis intermediates accumulate in monocytes 
stimulated with RA-SF. Illustration of the Urea cycle with the creatinine synthesis pathway 
branching off. Metabolites circled in blue were identified as being significant between LPS and 
RA-SF in normoxia after 4 hours of culture. The levels of these metabolites are shown 
graphically. Dots indicative of separate donors and line showing the Mean. N = 4. Red dots = 
Normoxic conditions; Blue dots = Hypoxic conditions.  Statistically analysed by two-way ANOVA 
with Tukey’s correction. * P ≤ 0.05, ** p ≤ 0.01. 
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5.2.1.5  Nucleotide metabolism 

The final group metabolites which showed significant alterations in abundance 

after RA-SF stimulation was found within nucleotide intermediates. In purine 

metabolism, RA-SF induced a significant up-regulation of the metabolites 

xanthine and urate when compared against unstimulated monocytes in normoxia 

and hypoxia (Figure 5.5). Additionally, RA-SF promoted a build-up of IMP and 

hypoxanthine when evaluated against unstimulated cells. In contrast to these 

results, RA-SF attenuated the levels of AMP and had no impact on the 

intracellular levels of adenosine (Figure 5.5). Intriguingly, hypoxia significantly 

augmented IMP abundance in unstimulated cells, which concurs with the results 

from Chapter 3. However, hypoxia had no significant impact on any other purine 

intermediates. (Figure 5.5). Taken together, RA-SF has a variable effect on the 

abundance of intermediates that are required for DNA and RNA synthesis (IMP, 

AMP & adenosine). However, the consistent accumulation of intermediates 

associated with purine breakdown (hypoxanthine, xanthine and urate) suggests 

that purines are actively degraded in response to RA-SF.  

The pyrimidine metabolic pathway also exhibited changes after stimulation with 

RA-SF. Indeed, in hypoxia, RA-SF increased the accumulation of UTP when 

evaluated against unstimulated cells. In addition, orotate was significantly 

increased after RA-SF treatment in comparison to LPS stimulated cells, but only 

in normoxia (Figure 5.6). Furthermore, LPS substantially reduced the abundance 

of l-aspartate and UMP. However, RA-SF treated cells did not exhibit any 

significant alteration. (Figure 5.6).  

In summation, the data suggests that RA-SF induces the accumulation of 

metabolites associated with purine nucleotide breakdown. However, no 

consistent observations were made in purine and pyrimidine intermediates 

involved in DNA and RNA synthesis. Nevertheless, the results emphasise that RA-

SF induces profound metabolic changes in human monocytes. 
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Figure 5.5 Purine metabolism is altered in monocytes cultured in RA-SF in comparison to 
LPS. Diagram showing the purine metabolic pathway for the synthesis of DNA and RNA. 
Metabolites circled blue indicate those which showed a significant difference between LPS and 
RA-SF in normoxia after 4 hours. The levels of these metabolites are shown graphically. Dots 
indicative of separate donors and line showing the Mean. N = 4. Red dots = Normoxic conditions; 
Blue dots = Hypoxic conditions.  Statistically analysed by two-way ANOVA with Tukey’s 
correction. * P ≤ 0.05, ** p ≤ 0.01. 
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Figure 5.6 Pyrimidine metabolism is altered in monocytes cultured in RA-SF in comparison to 
LPS. Diagram showing the pyrimidine metabolic pathway for the production of RNA components. 
Metabolites circled in blue were identified as significant between LPS and RA-SF in normoxic 
conditions. Dots indicative of separate donors and line showing the Mean. N = 4. Red dots = 
Normoxic conditions; Blue dots = Hypoxic conditions. Statistically analysed by two-way ANOVA 
with Tukey’s correction. * P ≤ 0.05, ** p ≤ 0.01. 
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Figure 5.7 Assessment of pro-inflammatory mediators in RA synovial fluids. The levels of 
TNFα, IL-6, IL-1B and CCL20 within the synovial fluids from 2 individual RA patients were tested 
by ELISA. The analysis was conducted in technical duplicate. Data shown as the Mean. n.d. = 
non-detectable.  
 

Before any functional analysis was carried out, the levels of pro-inflammatory 

mediators within RA-SF from 2 separate donors (RA-SF 1 & 2; 10% in media) was 

determined by ELISA to obtain a baseline level of each within the cell culture. 

ELISA analysis revealed that RA SF 1 contained a higher level of pro-

inflammatory mediators (TNFα, IL-6, IL-1β & CCL20) than RA SF 2 (Figure 5.7). 

The difference in levels of pro-inflammatory mediators between the two RA-SFs 

emphasise the heterogeneity amongst samples. Therefore, the studies 

subsequently presented herein focussed on one RA-SF sample (RA-SF 1) across 

multiple healthy donor monocytes. Thus, further studies will be required to 

determine the generalisability of these findings to all RA-SF. In addition, RA-SF 1 

did not induce the release of IL-1β or TNFα from monocytes above the baseline, 

suggesting that these mediators are not produced by RA-SF in this culture system 

(data not shown). However, additional secretion of CCL20 and IL-6 was observed 

above the baseline values, hence the release of these mediators was assessed 

after metabolic perturbation (Figures 5.8 & 5.9).   
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Figure 5.8  Exogenous carnitine increases CCL20 production in monocytes treated with RA-SF 
in hypoxia. Monocytes were left unstimulated, or were stimulated with RA SF (10% in medium) ± 
10mM exogenous carnitine in normoxia or hypoxia (1% O2). The cells were left for 16 hours, 
supernatants harvested and analysed by CCL20 and IL-6 ELISA. The levels of CCL20 and IL-6 in the 
media containing RA-SF was analysed to give baseline levels of each (dotted line). Dots are 
indicative of separate healthy donors of monocytes with line showing the Mean. N = 5-7. 
Statistically analysed by Wilcoxon rank test. * P < 0.05. n.d. = non-detectable. 
 

The first approach to assess the influence, if any, of carnitine metabolism on the 
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presence or absence of 10mM carnitine. The cells were incubated for 16 hours 

and the supernatant was harvested and analysed by ELISA. The results showed 

that RA-SF 1 induced IL-6 secretion from monocytes, as it was above the level of 

IL-6 in the media supplemented with RA-SF by 1.5 fold. (Figure 5.8). Notably, 

there was no difference between cells in normoxia or hypoxia. This is counter to 

what was observed after LPS stimulation (Figure. 4.7). The addition of 

exogenous carnitine also had no significant effect on the production of IL-6 

(Figure 5.8). Evaluation of CCL20 secretion in normoxia showed that induction 
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5.8). In hypoxic conditions, additional secretion of CCL20 in response to RA-SF 

was also donor dependent. Remarkably, carnitine promoted a significant 

increase in the production of CCL20 in hypoxia (Figure 5.8) Exogenous carnitine 

not only enhanced the release of CCL20 in donors that showed additional CCL20 

secretion, but it induced CCL20 secretion in donors that previously did not 

secrete additional CCL20 (Figure 5.8). These data support the results in the 

previous chapter, where exogenous carnitine also increased the secretion of 

CCL20 in response to LPS (Figure 4.8). Intriguingly, the level of CCL20 that was 

detected in some donors was below the level of CCL20 found in the RA-SF 

medium, indicating that the monocytes may have started to exhibit consumption 

/uptake of CCL20 via CCR6. Indeed, CCL20 has been reported to attract CCR6+ 

monocytes to RA joints (Ruth et al. 2003). 

The second approach to interrogate carnitine metabolism in this context was by 

pre-treatment with ETO (50µM). In the same manner as with LPS stimulated 

monocytes in the previous chapter, monocytes were pre-treated with ETO for 1 

hour, and were then stimulated with media containing RA-SF (10%). Despite this, 

ETO had no significant effect on the production of IL-6 or CCL20 in normoxia or 

hypoxia (Figure 5.9). As with the results from Figure 5.8, hypoxia did not 

enhance the production of IL-6 or CCL20 in a manner similar to that observed 

with LPS in Chapter 4. When comparing the level of cytokine and chemokine 

that is produced by monocytes in response to RA-SF (Figures 5.8 & 5.9) to the 

levels released in response to LPS (Figure 4.7), the levels are markedly reduced, 

especially with IL-6. These data indicated that synovial fluid from a rheumatoid 

arthritis patient, which possesses a variety of pro-inflammatory mediators, does 

not induce as strong an inflammatory response as a pure TLR4 stimulus (LPS). 

Nevertheless, in both LPS and RA-SF stimulated monocytes, carnitine 

supplementation aids the secretion of CCL20, especially in hypoxia. These 

results propose a role for FAO in inflammatory responses mediated by both TLR-4 

signalling via LPS and by the complex stimulus of RA-SF.  
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Figure 5.9 Hypoxia and ETO has no effect on CCL20 & IL-6 production in RA-SF treated 
monocytes. Monocytes were left unstimulated or were stimulated with RA-SF (10% in medium) 
for 16 hours in normoxia or hypoxia (1% O2). In a separate condition, RA-SF treated monocytes 
were pre-treated for 1 hour with ETO (50µM). Supernatants were harvested and analysed by 
CCL20 and IL-6 ELISA. Dots indicative of separate healthy donors of monocytes with line showing 
the Mean. N = 5-6. n.d. = non-detectable. 
 

5.2.3  Metabolic profiling and manipulation of intracellular 
carnitine in end polarised alveolar macrophages 

Once blood monocytes are recruited to sites of inflammation in tissue, they 

often differentiate into tissue macrophages. Although carrying out experiments 

where isolated monocytes are differentiated experimentally in vitro in the 
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human tissue. Joint tissue from RA patients were not available for this purpose. 

However, alveolar macrophages were readily accessible and were isolated 

directly from human lung tissue. It must be noted that human lung tissue 

originates from variable pathologies, such as transplant, COPD and cancer. 

Furthermore, the smoking status, age and gender are all variable in these 

patients, increasing variability in the overall study. 

Normoxia

Hypoxia

 R
A S

F 
1 M

ed
ia

Uns
tim

RA S
F 

1

ETO
 + 

RA S
F 

1

Uns
tim

RA S
F 

1

ETO
 + 

RA S
F 

1
0

1000

2000

3000

4000

5000

6000

IL
-6

 (p
g/

m
l)

IL-6

n.d n.d

Normoxia Hypoxia
RA S

F 
1 M

ed
ia

Uns
tim

RA S
F 

1

ETO
 + 

RA S
F 

1

Uns
tim

RA S
F 

1

ETO
 + 

RA S
F 

1
0

100

200

300

400

500

600

700

C
C

L2
0 

(p
g/

m
l)

CCL20

n.d n.d

Normoxia Hypoxia



  159 
 
The metabolomics analyses from Chapter 3 and in this chapter had identified 

that carnitine metabolites were altered in both hypoxia and in RA-SF compared 

to LPS and unstimulated cells. Therefore, this pathway was targeted specifically 

by mass spectrometry to assess how hypoxia and polarisation status of alveolar 

macrophages influences this metabolic pathway. This was achievable by 

measuring the abundance of a variety of carnitines against a set of known 

standards on the mass spectrometry platform (2.4.4). Alveolar macrophages 

were isolated, rested overnight and were either left untreated as ‘M0’, or were 

polarised to an M(LPS ± IFNγ) or M(IL-4) state (2.2.5). The intracellular 

metabolites were then harvested and the carnitine profile was analysed by mass 

spectrometry. In Figure 5.10, the name of each carnitine metabolite assessed is 

shown, with each having a corresponding shorthand name (C0-C16). This is based 

on the number of fatty acid acyl groups that have bound to free L-carnitine (C0). 

The results show that in untreated M0 macrophages, hypoxia reduced the level 

of C2, C4, C6 and C8 carnitine. However, these findings did not reach statistical 

significance (Figure 5.10). These observations resemble the findings in Chapter 

3, where hypoxia reduced the level of carnitines in untreated monocytes (Figure 

3.8). In comparison to M0 macrophages, LPS and IFNγ treatment did not appear 

to have a significant influence on the abundance of the carnitines, with the 

exception of C0 and C3, which did exhibit increases in specific donors. 

Furthermore, hypoxia again had a non-significant effect in M(LPS + IFNγ) 

macrophages, but donor specific decreases were observed in C4, C5 and C6 

(Figure 5.10). Likewise, the polarisation conditions of M(IL-4) macrophages did 

not induce any noticeable changes in metabolites when compared with M0 or 

M(LPS + IFNγ) macrophages. However, hypoxia promoted some reduction in C2, 

C4, C6 and C8 abundance in certain donors (Figure 5.10). In summation, these 

data suggest that polarising macrophages in vitro to M(LPS + IFNγ) or M(IL-4) 

does not significantly alter the abundance of intracellular carnitines. 

Furthermore, hypoxia has little impact on carnitine abundance in polarised 

macrophages. 
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Figure 5.10 Endogenous carnitine abundance in polarised alveolar macrophages. Alveolar 
macrophages were left untreated (M0) or were polarised to M1 (M(LPS + IFNγ)) or M2 (M(IL-4)) 
states in normoxia or hypoxia (1% O2) for 24 hours. Intracellular metabolites were extracted and 
carnitine metabolites were analysed by mass spectrometry. Dots are indicative of separate 
donors with line showing the Mean. N = 3-4.  
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CCL22, a classical chemokine secreted in these cells in response to IL-4. The 

results indicated that neither pre-treatment with ETO or supplementation with 

carnitine had any effect on the production of IL-6 or TNFα in M(LPS + IFNγ) 

macrophages in normoxia and hypoxia. (Figure 5.11). In addition, there were no 

consistent observations in regards to IL-1β secretion under these conditions 

(Figure 5.11). A more consistent observation was made with IL-8, where ETO 

and exogenous carnitine, although to a lesser extent, reduced the level of IL-8 in 

all donors in hypoxic conditions (Figure 5.11). CCL20 showed significant 

alterations in LPS and RA-SF treated monocytes under hypoxic conditions, 

therefore this was assessed in the context of alveolar macrophages as well. 

Despite this, the two donors assessed showed inconsistent changes in CCL20 

production across both treatments (Figure 5.11). The variable results from 

M(LPS + IFNγ) macrophages extended to M(IL-4) polarised cells. Indeed, when 

assessing CCL22 secretion, neither oxygen tension or carnitine manipulation 

yielded any conclusive findings. (Figure 5.11). These data suggest that when 

treated in the same way as healthy monocytes, alveolar macrophages may not 

possess the same level of sensitivity to metabolic manipulation. Nonetheless, 

these experiments would need to be repeated extensively due to the 

heterogeneous nature of patients.  
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Figure 5.11 ETO and carnitine has no impact on the production of inflammatory mediators in 
alveolar macrophages. Alveolar macrophages were left untreated (M0) or were polarised to M1 
or M2 states in normoxia or hypoxia (1% O2) for 24 hours. For metabolic manipulation, 
macrophages were pre-treated with ETO (50µM) for 1 hour before polarisation or were 
supplemented with carnitine (10mM) simultaneously at time of polarisation. Supernatants were 
harvested and were analysed by MSD or ELISA. Dots representative of separate donors. N = 2-3. 
 

In the previous experiment and in the studies in monocytes, the cells were 

stimulated, exposed to hypoxia and supplemented with carnitine simultaneously. 

In addition, the inhibitor, ETO, was typically added to the culture before 

subsequent stimulation for 1 hour. In a final preliminary experiment, alveolar 

macrophages were pre-exposed to hypoxia to assess if this could sensitise the 

cells to metabolic perturbation. To test this, untreated alveolar macrophages 

were cultured in normoxia or hypoxia for 3 hours. For treatment with ETO, the 

cells were pre-treated with the inhibitor for a further 1 hour before stimulation. 

The macrophages were then polarised for 24 hours to an M(LPS + IFNγ) 

phenotype under normoxia or hypoxia and the supernatants harvested for ELISA 

analysis. The data illustrates that neither hypoxia, ETO nor carnitine 

supplementation had any effect on IL-6 production (Figure 5.12). However, 

hypoxia induced a slight increase in the production of IL-1β and CCL20 in M(LPS + 

IFNγ) macrophages. Moreover, pre-treatment with ETO increased IL-1β in 

normoxic conditions. Supplementation of the cells with carnitine decreased the 

production of IL-1β in both normoxia and hypoxia. In agreement with the 

previous work in monocytes, exogenous carnitine increased the production of 

CCL20 in hypoxia, albeit in only one donor (Figure 5.12). Caveats remain around 

the study size and the necessity for a pre-exposure to hypoxia to increase 

sensitivity to metabolic manipulation. However, these studies are one of the 

first to show that perturbation of alveolar macrophage metabolism can influence 

pro-inflammatory mediator release. 
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Figure 5.12 Pre-exposure of alveolar macrophages to hypoxia reveals differences in pro-
inflammatory mediator release similar to that seen in monocytes. Untreated alveolar 
macrophages were incubated in normoxia or hypoxia (1% O2) for 3 hours. For ETO (50µM) 
treatment, macrophages were pre-treated for a further 1 hour. Macrophages were then polarised 
to an M(LPS+IFNγ: termed M1) state for 24 hours. For carnitine (10mM) supplementation, the 
carnitine was added at the point of polarisation. The supernatants were harvested and analysed 
by ELISA. N = 1. Data shows the Mean ± SD of 4 technical replicates. 
 

5.3 Discussion 

This chapter has set out to metabolically profile human monocytes under 

physiologically relevant in vitro conditions. By isolating primary human 

monocytes, exposing them to hypoxia and culturing the cells in the presence of 

synovial fluid spiked media, we aimed to capture a metabolic profile of 

monocytes recently recruited to a chronic disease state. The metabolomics 

analysis revealed that, in comparison to unstimulated cells, RA-SF promoted an 

accumulation of metabolites belonging to several pathways, including carnitines, 

creatinine biosynthesis and intermediates of purine degradation. In addition, RA-

SF induced a divergent metabolic profile to that of LPS stimulation. Functional 

analysis indicated that RA-SF monocytes did not secrete inflammatory mediators 

to the levels of monocytes stimulated with LPS. However, carnitine 

supplementation increased CCL20 secretion in hypoxic conditions, a finding that 

was originally seen in LPS treated cells in Chapter 4. Since monocytes have the 

capacity to differentiate into macrophages in the tissue, the ability of alveolar 

macrophages to behave in a similar manner to hypoxia and carnitine 

manipulation was interrogated. Preliminary results suggest that aspects of 

cellular metabolism for the control of pro-inflammatory cascades are shared in 
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monocytes and macrophages under these conditions. However, this appeared to 

be dependent on the kinetics of hypoxic induction in the experimental setup. 

One of the most striking observations in the metabolomic experiment was the 

increased abundance of metabolites in RA-SF treated cells in comparison to 

those untreated and treated with LPS. As opposed to unstimulated macrophages, 

stimulation with LPS induces a highly active metabolic programme which 

resembles the Warburg effect, by exhibiting increased glycolytic flux at the 

expense of mitochondrial metabolic cascades such as the TCA cycle and OXPHOS 

to generate ATP (Rodriguez-Prados et al. 2010; Tannahill et al. 2013). 

Furthermore, increased PPP has also been reported in these cells to boost 

nucleotide production for biosynthetic cascades (Freemerman et al. 2014; 

Haschemi et al. 2012). Therefore, the loss of metabolites observed in LPS 

stimulation when compared to RA-SF in this study may reflect monocytes 

undergoing a higher metabolic turnover and consumption of metabolites. Since 

metabolome analysis represents a snapshot of metabolites at the point of 

extraction, gene expression analysis of metabolic enzymes may reveal the full 

extent of metabolic activity within each pathway. In addition, when comparing 

the raw values of secretion of pro-inflammatory mediators in response to RA-SF, 

it was markedly reduced when compared to the levels of secretion in response to 

LPS. Thus, the metabolic profile obtained in RA-SF cells may be representative 

of a cell experiencing a phase of stasis, rendering the cell less inflammatory. 

Alternative metabolic programmes and functional characteristics have been 

observed in human monocytes stimulated with different TLR ligands 

(Lachmandas et al. 2016). In the work by Lachmandas et al (2016), monocytes 

stimulated with LPS (TLR-4) and P3C (TLR-2) both increased their glycolytic 

machinery, however only P3C stimulated monocytes showed increased 

mitochondrial respiration. Furthermore, C-type lectin receptor stimulation has 

also been shown to promote glycolytic metabolism and the PPP in response to 

hyphae of candida albicans. Interestingly, the same study suggested that in 

addition to glycolysis and the PPP, candida albicans yeast induced OXPHOS and 

glutaminolysis to efficiently carry out an amplified inflammatory response 

(Domínguez-Andrés et al. 2017). The work presented in this chapter indicated 

that RA-SF induced a distinct metabolic programme in monocytes compared to 
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other inflammatory ligands such as LPS. This was emphasised by the notable 

accumulation of metabolites belonging to a number of pathways induced by RA-

SF in comparison to LPS, including: carnitine metabolism; purine breakdown 

intermediates and creatinine biosynthesis. In addition to LPS, further work is 

warranted to assess the metabolome of monocytes in response to stimuli that 

may have been present in RA-SF. An obvious candidate being FcR stimulation via 

immune-complexes, known to be present in the RA synovial compartment 

(discussed in 1.2.1.3). Nevertheless, work to elucidate which inflammatory 

mechanisms are engaged in response to RA-SF could provide useful targets for 

alteration, however, given the heterogeneity amongst patients, this may vary. 

Given the robust accumulation of creatinine in RA-SF treated monocytes here, 

this could promote inflammatory or anti-inflammatory cascades that is shared 

amongst RA patients.  

The literature surrounding monocytes cultured under RA-SF is limited, however, 

SF derived from RA patients has been shown to decrease receptor expression of 

Immunoglobulin-like transcript 4 (ILT4) and increase CD86 expression in 

monocytes (Chimenti et al. 2016). Furthermore, T cells produced significantly 

more TNFα and IFNγ when costimulated with monocytes cultured in the 

presence of RA-SF. In a separate study, synovial fluid monocytes showed higher 

surface expression of CD80, CD276 and HLA-DR compared to those in the 

peripheral blood of the same patients (Yoon et al. 2014). In addition, RA-SF (1:1 

with culture medium) induced Activin-A, PHD3 and MMP-12 production in 

monocytes (Soler Palacios et al. 2015). These studies propose that RA-SF induces 

a pathogenic phenotype in monocytes, by showing a higher expression of 

costimulatory molecules and a lower expression of ILT4, which has been shown 

to be immunomodulatory in antigen presenting cells. The pathogenic phenotype 

induced by RA-SF is supported by the studies in this chapter, which showed that 

monocytes secrete the pro-inflammatory mediators, IL-6 and CCL20, in response 

to RA-SF. However, to the best of our knowledge, there has been no work which 

has evaluated the effect of RA-SF on the metabolomic set-point in human 

monocytes. The most robust alteration in monocytes cultured under RA-SF 

compared to unstimulated and LPS stimulated cells was the accumulation of 

creatinine. The importance of creatinine metabolites on myeloid cell function is 

not well understood, but creatinine and creatine supplementation of RAW 264.7 
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macrophages has been reported to reduce the expression of a variety of TLRs 

(Leland et al. 2011). Assessing the impact of creatinine and creatine 

supplementation on the inflammatory function of activated monocytes would be 

worth investigating in future studies. The accumulation of creatine/creatinine 

could limit the inflammatory response when the cells are exposed to RA-SF. This 

may support the concept that monocytes enter a period of stasis when they are 

subject to these conditions. 

In addition, monocytes have been reported to exhibit lower levels of apoptosis in 

the presence of RA-SF (Chimenti et al. 2016). In support of this, conditioned 

medium from cultured RA synovial fibroblasts has been suggested to increase 

monocyte viability by up to 60% in co-culture systems. This was enhanced 

further when the synovial fibroblasts were stimulated with IL-1β and TNFα, 

which are cytokines known to be present in the synovial milieu (Darrieutort-

Laffite et al. 2014). This research could indicate that the metabolic profile of 

RA-SF treated monocytes could resemble one for the preparation of longer-term 

survival. The accumulation of metabolites may be a necessary fuel for catabolic 

metabolism in monocytes to survive in this environment for the long term. Such 

characteristics have been reported in memory T cell populations (van der Windt 

& Pearce 2012), where fatty acid oxidation is thought to have a prominent role 

in their long term functioning. The metabolomics data suggest that carnitine 

metabolites are increased in RA-SF, which signals an increased utilisation of 

fatty acid metabolism. Interestingly, published work has revealed that CD14+ 

cells isolated from the SF of RA patients exhibit higher gene expression levels of 

CD36, an important surface receptor for fatty acid uptake (Soler Palacios et al. 

2015). Taken together, stock piling of carnitine metabolites and the increased 

CD36 could lead to a dependence on fatty acid oxidation in this environment 

should they persist for longer periods of time. 

The results showed that RA-SF induces the production of IL-6 and, in a donor 

specific fashion, CCL20. Although ETO had no impact on the production of either 

IL-6 or CCL20, exogenous carnitine increased the release of CCL20 in monocytes 

in hypoxic conditions. A familiar finding was made in LPS stimulated monocytes 

in the previous chapter. The mechanism of action of ETO is under some debate. 

While it has been reported to cause up to 90% inhibition of FAO at 10µM, higher 
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concentrations (250µM) are thought to be needed to influence cellular 

respiration (Namgaladze et al. 2014). In the studies presented here, 50µM was 

used, therefore further studies could be carried at higher concentrations to 

assess the impact of cellular respiration in this context. More specifically, this 

could be achieved with rotenone treatment, an inhibitor of the electron 

transport chain. Off target effects have also been reported in the use of this 

inhibitor (Vats et al. 2006). With this in mind, and given the differences in 

murine and human macrophage metabolism, genetic manipulation of human 

metabolic genes could specifically dissect the role of metabolic pathways in 

monocytes. This could be employed in BLaER1 monocytes, where Crispr/Cas9 

gene editing has been successfully carried out for interrogation of the 

inflammasome pathway (Gaidt et al. 2016). Despite this, the findings witnessed 

with exogenous carnitine suggested a specific link between carnitines, FAO and 

CCL20 production. This appeared to be regardless of the original stimulus, be it 

through TLR4 (LPS) or through a variety of cytokines in the synovial 

environment. A human trial of patients with osteoarthritis has shown that 

carnitine supplements reduce serum IL-1β and MMP1 in these individuals (Malek 

Mahdavi et al. 2016). Studies assessing the effect of carnitine supplements 

effect CCL20 levels (and other inflammatory mediators) in synovial fluid of RA 

patients could determine if the results presented here represent a biological 

phenomenon in RA. More work however is needed to assess the mechanism for 

this finding. Metabolites are now increasingly being implicated in the control of 

epigenetic modifications. For example, during FAO, acetyl-CoA has been 

reported to promote acetylation of histones in tumour cells (J. V. Lee et al. 

2014). In addition, the NAD+-dependent histone deacetylase, SIRT1, has more 

recently been shown to reduce IL-9 production from Th9 cells by negatively 

regulating HIF-1α and mTOR activity (Y. Wang et al. 2016). Therefore, FAO may 

have a role in the control of CCL20 production by inducing epigenetic 

alterations. However, the precise role of CCL20 in the context of rheumatoid 

arthritis needs further clarification. For instance, does it promote an imbalance 

between inflammatory cells (such as monocytes, Th1, Th17) and 

immunomodulatory cells (Tregs) in this environment?  

As well as exhibiting effector function upon recruitment to the tissue, 

infiltrating blood monocytes have the ability to differentiate into tissue 
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macrophages. Due to the availability of obtaining alveolar macrophages, this 

population was interrogated to test if polarised macrophages displayed similar 

metabolic and functional characteristics compared to monocytes. As carnitine 

metabolites were altered in monocytes (Chapter 3), these metabolites were 

exclusively analysed. Compared to M0 macrophages, M(IL-4) macrophages 

polarisation alone did not significantly increase carnitine metabolites. This is 

rather at odds with the published work, where carnitine and fatty acid oxidation 

are greatly associated with murine M(IL-4) macrophages (Jha et al. 2015; S. C.-

C. Huang et al. 2014). However, a proteomic study in human macrophages 

suggests that rather gluconeogenesis predominates when macrophages are 

polarised to an M(IL-4) state (Reales-Calderón et al. 2014). In support of this, 

human M(IL-4) macrophages have been reported to lack PGC-1β, which is 

involved in the induction of FAO. In addition, ETO treatment in M(IL-4) 

macrophages did not alter M(IL-4) macrophage function, such as CCL18 

production and MRC1 expression (Namgaladze & Brüne 2014). These studies 

strongly suggest that murine and human macrophages display distinct metabolic 

programmes and perhaps FAO does not have an essential role in cell 

functionality under this context. The work in this chapter did show that some 

donor M(IL-4) polarised alveolar macrophages exhibited an increase in carnitines. 

Therefore, the study may need to be increased to assess for biological 

significance. Interestingly, carnitine supplementation increased CCL20 

production in M(LPS + IFNγ) polarised alveolar macrophages after pre-exposure 

to hypoxia (Figure 5.12). As with monocytes, these results suggested a role for 

FAO for the production of CCL20 in M(LPS + IFNγ)  macrophages. On the other 

hand, the accumulation of carnitine metabolites alone could act as an 

intracellular danger signal for the production of CCL20, in a similar manner that 

has been reported for succinate and citrate in different contexts (Infantino et al. 

2011; Tannahill et al. 2013). As macrophage phenotypes are now considered to 

be part of a broad spectrum (Xue et al. 2014), in future work it would be 

interesting to determine if this finding extends to other macrophage phenotypes. 

This chapter is, to the best of our knowledge, one of the first to integrate the 

growing field of intracellular immunometabolism in monocytes in the context of 

chronic inflammatory disease. Here, the studies carried out in monocytes 

incorporated the response to RA-SF, show that at a metabolic level, they appear 
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divergent to those cultured with experimentally used ligands such as LPS. 

Notably, this work does reveals a novel link between FAO and CCL20 production 

that appears to be shared between monocytes stimulated with LPS, RA-SF and 

end differentiated alveolar macrophages. Progressing these studies in alveolar 

macrophages to assess their metabolic and functional response to 

bronchoalveolar lavage fluid from COPD patients remains an attractive 

proposition. It is of our belief that such experiments give a clearer indication of 

myeloid cell characteristics in a chronic inflammatory environment. 
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Chapter 6. General discussion 

This body of work has set out to determine what impact the inflammatory 

disease microenvironment has on inflammatory mechanisms in human 

monocytes. One of the most characteristic features of such an environment, is 

the presence of hypoxia (Lund-Olesen 1970). Monocytes are capable of adapting 

to these conditions to survive and carry out effector function to drive 

inflammation, perhaps through mechanisms involving HIF-1α, NF-κβ and/or 

mitochondrial complex II (Fangradt et al. 2012; Sharma et al. 2017). 

Nevertheless, we postulated that metabolic changes may drive any associated 

functional changes under hypoxic conditions. 

In Chapter 3, a mass spectrometry based metabolomics approach was utilised to 

metabolically profile human monocytes under hypoxic conditions in vitro. An 

early time point of hypoxia exposure (4 hours) was chosen for metabolite 

extraction. This was a bid to mimic early metabolic changes monocytes would 

exhibit during recruitment from the blood to an affected tissue in vivo. Mass 

spectrometry analysis revealed that carnitine metabolites (for subsequent FAO) 

were decreased in human monocytes in comparison to cells cultured in normoxic 

conditions (Figure 6.1). The loss of carnitines resembled that of cancer cells, 

where HIF-1α is thought to actively turn off FAO in these cells (D. Huang et al. 

2014). Increases in glycolytic and purine metabolites further support the 

adoption of cancer cell like metabolism in hypoxic conditions (Guillaumond et al. 

2013). This suggested that hypoxia severely shifts monocyte cellular metabolism 

towards glycolysis for their survival and functionality, fitting with published work 

(Roiniotis et al. 2009).  

In order to ascertain how hypoxia influenced monocyte function, Chapter 4 

aimed to carry out a comprehensive analysis of functional characteristics. 

However, from the assays used, hypoxia did not induce any observable changes 

in untreated monocytes. Therefore, it was hypothesised that hypoxia may alter 

activated cells. To this aim, a classical TLR-4 stimulus, LPS, was used for this 

purpose. Strikingly, hypoxia significantly increased the production of pro-

inflammatory mediators such as IL-1β (Figure 6.1). This proposed that hypoxia 

in the inflammatory milieu can act as an extracellular danger signal. We did not 

detect any production of pro-inflammatory cytokines when monocytes were 
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exposed to hypoxia without LPS stimulation. This suggested that hypoxia may 

prime the cells at a metabolic level for an enhanced inflammatory response in 

response to specific stimuli. 

Seminal immune-metabolic studies in LPS activated murine macrophages 

highlight the importance of glycolysis in production on IL-1β (Tannahill et al. 

2013). Therefore, the increased glycolytic flux observed both in hypoxia and in 

LPS activation may explain the synergistic increase in IL-1β release. This 

supports the concept that hypoxia acts as a danger signal and primes monocytes 

metabolically (enhanced glycolysis) for a more robust inflammatory response 

after LPS stimulation. Hypoxia alone has previously been shown to increase 

CCL20 production in unstimulated monocytes (Bosco et al. 2006). Although this 

wasn’t repeated in the work presented here, hypoxia did increase CCL20 release 

in LPS stimulated monocytes (Figure 6.1). This could reflect a role for metabolic 

pathways in the production of CCL20 in a similar manner to IL-1β. 

From these data, it was postulated that the metabolic changes induced by 

hypoxia may be an influencing factor in the increases in pro-inflammatory 

mediators. Therefore, studies to alter carnitine metabolites were exploited to 

determine its role, if any, in the production of these mediators. One method for 

this was to try and increase carnitine metabolism by supplementing the cell 

culture medium with exogenous carnitine, previously shown to be consumed by 

monocytes (Ingoglia et al. 2017). Interestingly, carnitine supplementation 

significantly increased CCL20 further in LPS activated monocytes, in both 

normoxia and hypoxia, suggesting a role for FAO in CCL20 production (Figure 

6.1). However, no difference was observed in IL-1β. In contrast, carnitine 

inhibition with ETO significantly increased the release of IL-1β in activated 

monocytes in normoxia and hypoxia (Figure 6.1). However, an increase was only 

detected in CCL20 in normoxic conditions. The metabolic profile of monocytes 

cultured under ETO treatment was not analysed here. However, in order to 

generate sufficient acetyl-CoA for ATP generation through the TCA cycle, other 

sources may need to be relied upon, such as increased glycolysis (Schlaepfer et 

al. 2015). Such a shift could rationalise why IL-1β production was increased 

under these circumstances (Tannahill et al. 2013). Taken together, pathways 
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such as glycolysis and FAO may work in conjunction for the suitable release of 

pro-inflammatory mediators. 

Given the important role of glycolysis under these conditions, preliminary work 

was also carried out to assess the role of this pathway in this experimental set 

up. In a striking result, inhibition of glycolysis with 2-DG severely reduced the 

release of IL-6, IL-1β and CCL20 in hypoxic conditions, although this study would 

need to be expanded. This highlights a seemingly vital role for glycolysis in pro-

inflammatory function in hypoxic conditions. Since glycolysis is imperative for 

cell survival in hypoxic conditions too, this reduction could be attributed to cell 

death (Roiniotis et al. 2009). 

Despite the hypoxic nature of inflammatory disease sites, alone it does not fully 

reflect the tissue environment, which contains a variety of PAMPS. Thus, 

Chapter 5 set out to incorporate RA synovial fluid (RA-SF) to the in vitro hypoxic 

set up used in the previous chapters. In a similar approach to Chapter 3, 

monocytes were cultured in cell culture medium containing 10% RA-SF under 

normoxia and hypoxia and metabolically profiled by mass spectrometry. This 

profile was compared to the metabolic profile of untreated and LPS stimulated 

monocytes. Throughout the study, RA-SF monocytes showed an accumulation of 

metabolites (in comparison to untreated and LPS stimulated monocytes) 

belonging to several pathways, including carnitines, amino acids, nucleotides 

and energy metabolites such as ATP and NAD. The lack of abundance in 

metabolites from LPS treated monocytes may reflect a cell that is more 

energetically active than RA-SF monocytes with a constant metabolic turnover. 

The metabolite accumulation could suggest the monocyte is under a phase of 

stasis. Published work, however, does show that RA-SF monocytes express 

increased level of CD86, suggesting that RA-SF induces an inflammatory 

phenotype in these cells (Chimenti et al. 2016).  Interestingly, hypoxia did not 

yield any significant changes in these metabolites. Thus metabolites which were 

not able to be putatively identified from this mass spectrometry analysis may be 

important. 

Since carnitine metabolites were found to be altered in RA-SF monocytes, we 

examined if carnitine supplementation and/or inhibition changed the output of 

pro-inflammatory mediators under RA-SF treatment. In a similar finding to LPS 
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treated monocytes in Chapter 3, carnitine supplementation significantly 

increased the production of CCL20 in hypoxia (Figure 6.1). This may be as a 

result of similar processes as described for the findings in monocytes, where FAO 

and glycolysis may act together to regulate the release of cytokines and 

chemokines. Nevertheless, it shows that certain intracellular signalling processes 

may be shared between LPS stimulation and RA-SF treatment. 

 

 

Figure 6.1 Hypoxia specific metabolism influences the release of pro-inflammatory mediators 
in monocytes. Compared to normoxia, hypoxia promotes the reduction of fatty acid oxidation 
(FAO) and increased glycolytic flux at metabolic level. In response to stimuli such as LPS or the 
plethora of PAMPs found in RA synovial fluid (RA-SF), monocytes show increased production of 
CCL20 and IL-1β in hypoxia compared to normoxia. However, at both oxygen tensions, carnitine 
supplementation exacerbates CCL20 production whereas FAO inhibition with etomoxir (ETO) 
increases IL-1β secretion further. 
 

As well as carrying out effector function upon recruitment to the inflamed 

tissue, monocytes typically differentiate into macrophages. Therefore, the last 

section of Chapter 5 analysed if the results of Chapter 3 and 4 extended from 

monocytes into end differentiated macrophages. At the time of the study, 

alveolar macrophages (AM) from lung resection patients were available, and 

were chosen for this work. Targeted mass spectrometry for carnitines was 
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utilised to measure their abundance in M(LPS + IFNγ ; M1) and M(IL-4; M2) AM in 

normoxia and hypoxia. However, there were no statistically significant changes 

in carnitine abundance under any condition, suggesting the study would need to 

be extended to a larger cohort of patients. The apparent important role of FAO 

in M(IL-4) murine macrophages does not seem to translate into human 

macrophages, which questions the importance of this pathway under these 

polarisation conditions (Namgaladze & Brüne 2014; Nomura et al. 2016). 

Nevertheless, we tested the ability of polarised macrophages to secrete pro-

inflammatory mediators in normoxia and hypoxia. Hypoxia increased the 

production of IL-1β and CCL20 in M(LPS + IFNγ) polarised AM, however, this was 

only achieved if the macrophages were pre-exposed to hypoxia before 

stimulation and not simultaneously as seen in monocytes. This subtle difference 

could be explained in the seemingly different adaptation processes to hypoxia 

(Fangradt et al. 2012; Sharma et al. 2017). Moreover, exogenous carnitine 

further increases CCL20 production in M(LPS + IFNγ) AM, especially in hypoxia, in 

a similar finding to monocytes in Chapter 4. In addition, pre-treatment with ETO 

increased IL-1β production in M1 AMs, highlighting that metabolic and functional 

characteristics may be shared between LPS treated monocytes and M(LPS + IFNγ) 

macrophages under hypoxic conditions.  

6.1 Critical appraisal 

With the benefit of hindsight, there are aspects to this body of work that may 

have been altered. From the outset, the oxygen tension defined as ‘hypoxia’ 

could have been more consistent. For instance, in Chapter 3, the viability of 

monocytes via an Annexin-V assay was assessed in 5% O2 which was termed as 

hypoxia, but this study was not conducted at 1% O2. This applies to the time-

course experiment in Chapter 4 with regard to CCL20 production in response to 

LPS. This experiment was carried out at 2.3% using the hypoxic incubator, but 

not at 1% O2. Therefore, experiments to assess the effect of an oxygen gradient 

may have been more appropriate in these instances. 

At a metabolic level, this study illustrated that hypoxia had reduced carnitine 

shuttling, and possibly FAO in human monocytes. Given that this metabolomics 

approach is not suitable for detecting lipids, more specific lipidomics platforms 

could have been utilised to assess FAO specifically. Further, preliminary 
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transcript data from Chapter 4 postulated that hypoxia attenuated CD36 

expression, an important receptor for fatty acid uptake. However, only 1 donor 

was tested for CD36 receptor expression on the cell surface. Thus, additional 

studies are warranted to fully characterise its expression and functionality in a 

number of donors. These experiments also apply to the context of RA-SF and 

LPS, which were stimuli used throughout this thesis. 

The metabolomic study in Chapter 5 assessed monocyte metabolism in response 

to RA-SF, while LPS stimulation was utilised as a comparison. A more appropriate 

comparator stimulus with relevance to the RA milieu may have been used in this 

experiment, such as immune complex stimulation. This would have provided 

more detail in to how specific aspects of the RA environment can influence 

monocyte metabolism and function. 

6.2 Future work 

The work presented in this thesis has identified a novel link between 

intracellular metabolism (FAO and glycolysis) and the production of the pro-

inflammatory mediators (IL-1β and CCL20) in response to LPS and RA-SF in 

hypoxic conditions. However, precisely how metabolic pathways influence the 

release of these mediators in these instances remains elusive. Therefore, studies 

to describe a precise mechanism for this should be undertaken. For example, 

increased carnitine shuttling and FAO may increase the intracellular pool of 

acetyl-CoA which in turn may promote acetylation of histone residues, 

commonly associated with gene activation. Studies to assess acetylation (and 

activation status) around the CCL20 and IL-1β promoter regions may describe 

how metabolism and mediator production are interlinked.  

6.3 Conclusions 

The work in this thesis has emphasised the importance of environmental factors 

in the functionality of myeloid cells in chronic inflammatory disease. Specific 

aspects of the tissue microenvironment such as hypoxia has been shown here to 

heavily influence the metabolic activities of monocytes, which in turn can 

promote inflammatory cascades in these conditions. This included the 

exacerbated secretion of IL-1β and CCL20. Pharmacological manipulation of 
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altered metabolic pathways, such as carnitine shuttling, highlights their 

importance in regulating the release of pro-inflammatory mediators. 

The metabolic and functional profiling of monocytes cultured under RA-SF 

stresses the diversity of this inflammatory milieu in comparison to classical 

stimuli such as LPS. Nevertheless, similarities in the regulation of CCL20 under 

LPS and RA-SF treatment may exist, as evident in its increased production after 

carnitine supplementation. Despite its difficulties, it is important to relate 

myeloid cell research further into the context of chronic inflammatory disease to 

gain a better understanding of inflammatory mechanisms. 
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Appendices 

7.1 Metabolites that are significantly altered by hypoxia 
in comparison to normoxia in unstimulated monocytes 
(Unstim N vs H) 

Metabolite P value 

sn_Glycerol_3_phosphate 0.004 

4_Imidazolone_5_propanoate 0.006 

R_Lactate 0.008 
 

7.2 Metabolites that are significantly altered by hypoxia 
in comparison to normoxia in LPS stimulated monocytes 
(LPS N vs H) 

Metabolite P value 

D_Glyceraldehyde_3_phosphate 0.001 

N_Acetyl_D_glucosamine 0.002 

Glycerophosphoglycerol 0.003 

UDP_N_acetyl_D_glucosamine 0.003 

Butyro_betaine 0.004 

L_1_Pyrroline_3_hydroxy_5_carboxylate 0.007 

Ecgonine 0.008 

Leucyl_leucine 0.009 

Thiamin 0.009 
 

 

7.3 Metabolites that are significantly altered by hypoxia 
in comparison to normoxia in RA-SF treated monocytes 
(RA-SF N vs H) 

Metabolite P value 

N_octanoyl_L_homoserine 0.001 

1_Hydroxy_2_beta_D_glucosyloxy_9_10_anthraquinone 0.005 

Hydroxybutyrylcarnitine 0.006 

1H_Imidazole_4_ethanamine_2 0.006 
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7.4 Significantly altered metabolites in LPS stimulated 
cells in comparison to unstimulated monocytes in 
normoxia (Unstim vs LPS (N)) 

Metabolite P value 

PC_18_0_1_octadecanoyl_sn_glycero_3_phosphocholine 0.0001 

DL_2_Aminooctanoicacid 0.0003 

AMP 0.0003 

UMP 0.001 

D_Gluconic_acid 0.001 
SP_methyl_13_0_13_0_2_0_methyl_3_13_13_dibromotrideca_1
E_12_dienyl_2H_azirine_2S_carboxylate 0.001 

ADP 0.001 

Asp_Gly_His 0.001 

hydrogen_iodide 0.001 

O_Butanoylcarnitine 0.002 

Taurine 0.002 

Hippurate 0.003 

beta_Citryl_L_glutamic_acid 0.003 

IMP 0.003 

13_Hydroxylupanine 0.004 

L_Aspartate 0.006 

ATP 0.006 

3_Dehydroxycarnitine 0.006 

Ile_Pro 0.007 

FA_amino_11_0_11_amino_undecanoic_acid 0.007 

Hydroxybutyrylcarnitine 0.007 

Hydroxymethylphosphonate 0.007 

UDP 0.008 

O_Acetylcarnitine 0.008 

Citrate 0.008 

Creatine 0.009 
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7.5 Significantly altered metabolites in RA-SF stimulated 
cells in comparison to unstimulated monocytes in 
normoxia (Unstim vs RA-SF (N)) 

Metabolite P value 

Guanosine 0.0005 

ST_2_0_22S_25S_furospirost_5_en_3beta_26_diol 0.001 

SP_Sphing_4_enine_1_phosphate 0.001 
ST_hydrox_3alpha_7alpha_Dihydroxy_5beta_cholan_24_oic_Aci
d 0.003 

Acetaminophenglucuronide 0.003 

Lys_Val 0.003 

4_Coumaryl_alcohol 0.003 

1_8_Dihydroxy_3_methylnaphthalene 0.004 

demethylsuberosin 0.004 

Cholate 0.004 

Val_Gly 0.005 

SP_Sphinganine_1_phosphate 0.005 

5_Acetylamino_6_amino_3_methyluracil 0.005 

NAD_ 0.007 

Z_4_Hydroxyphenylacetaldehyde_oxime 0.007 

N6_Methyl_L_lysine 0.008 

Creatinine 0.009 

Ethyl_R_3_hydroxyhexanoate 0.009 
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7.6 Significantly altered metabolites in LPS stimulated 
cells in comparison to unstimulated monocytes in hypoxia 
(Unstim vs LPS (H)) 

Metabolite P value 

Stachydrine 0.0001 

Hydroxybutyrylcarnitine 0.0002 

D_Galactosamine 0.0003 

O_Butanoylcarnitine 0.0003 

O_Acetylcarnitine 0.001 

Methylmalonate 0.001 
SP_methyl_13_0_13_0_2_0_methyl_3_13_13_dibromotrideca_1
E_12_dienyl_2H_azirine_2S_carboxylate 0.001 

FA_hydroxy_10_0_N_3S_hydroxydecanoyl_L_serine 0.002 

CAI_1 0.002 

L_1_Pyrroline_3_hydroxy_5_carboxylate 0.002 

Hippurate 0.003 

Phenylacetic_acid 0.003 

PC_18_0_1_octadecanoyl_sn_glycero_3_phosphocholine 0.003 

Hypoxanthine 0.003 

FA_amino_10_0_10_amino_decanoic_acid 0.004 

Orthophosphate 0.004 

O_Propanoylcarnitine 0.004 

3_Butynoate 0.004 

D_Glucose 0.005 

4_4_Deoxy_alpha_D_gluc_4_enuronosyl_D_galacturonate 0.005 

FA_8_0_octanoic_acid 0.005 

Sulfate 0.006 

trans_Hexadec_2_enoylcarnitine 0.006 
FA_trihydroxy_18_1_9S_12S_13S_trihydroxy_10E_octadecenoic_
acid 0.006 

Betaine 0.008 

Harringtonine 0.008 

Gly_His 0.008 

Pyruvate 0.008 

2_5_Dioxopentanoate 0.008 
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7.7 Significantly altered metabolites in RA-SF stimulated 
cells in comparison to unstimulated monocytes in hypoxia 
(Unstim vs RA-SF (H)) 

Metabolite P value 

Cholate 0.0001 

2_Oxooctadecanoic_acid 0.0002 

3_4_Hydroxyphenyl_lactate 0.0003 

ST_2_0_22S_25S_furospirost_5_en_3beta_26_diol 0.001 

Anthocyanin_3_O_beta_D_glucoside 0.001 

D_Xylulose 0.001 

N_acetyl_D_glucosaminitol 0.001 

demethylsuberosin 0.002 

O_Acetyl_L_homoserine 0.002 

Acetaminophenglucuronide 0.002 

1_8_Dihydroxy_3_methylnaphthalene 0.002 

5_Acetylamino_6_amino_3_methyluracil 0.004 

Phosphonate 0.004 

Nalpha_Methylhistidine 0.004 

Gly_His 0.004 

Orthophosphate 0.005 
ST_hydrox_3alpha_7alpha_Dihydroxy_5beta_cholan_24_oic_Aci
d 0.005 

Ethyl_cinnamate 0.005 

2_Hydroxyethanesulfonate 0.006 

L_Rhamnose 0.007 

FA_20_4_5Z_8Z_11Z_14Z_eicosatetraenoic_acid 0.008 

Oxamate 0.008 

Urate 0.008 

NG_NG_Dimethyl_L_arginine 0.008 

Val_Gly 0.008 

1H_Imidazole_4_ethanamine_2 0.009 
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7.7 Significantly altered metabolites in RA-SF stimulated 
cells in comparison to LPS stimulated monocytes in 
normoxia (RA-SF vs LPS (N)) 
 

Metabolite P value 

Cholate 0.0001 

ST_2_0_22S_25S_furospirost_5_en_3beta_26_diol 0.0001 
ST_hydrox_3alpha_7alpha_Dihydroxy_5beta_cholan_24_oic_Aci
d 0.0001 

Xanthine 0.0001 

demethylsuberosin 0.0001 

Val_Gly 0.0001 

4_Imidazolone_5_propanoate 0.0001 

Z_4_Hydroxyphenylacetaldehyde_oxime 0.0001 

Acetaminophenglucuronide 0.0001 

DL_2_Aminooctanoicacid 0.0001 

1_8_Dihydroxy_3_methylnaphthalene 0.0001 

Nalpha_Methylhistidine 0.0001 

3_Dehydroxycarnitine 0.0001 

5_Acetylamino_6_amino_3_methyluracil 0.0002 

N5_Ethyl_L_glutamine 0.0002 

Ecgonine 0.0003 

2_Oxooctadecanoic_acid 0.0004 

L_thiazolidine_4_carboxylate 0.0004 

L_Citrulline 0.0005 

Creatinine 0.0005 

NG_NG_Dimethyl_L_arginine 0.0005 

homomethionine 0.001 

L_Rhamnose 0.001 

4_Guanidinobutanoate 0.001 

Ethyl_cinnamate 0.001 

N_Acetyl_D_glucosamine 0.001 

3_4_Hydroxyphenyl_lactate 0.001 

Methylimidazoleacetic_acid 0.001 

N6_Methyl_L_lysine 0.001 

FA_amino_11_0_11_amino_undecanoic_acid 0.001 

Urate 0.001 

hydrogen_iodide 0.001 

R_Lactate 0.002 

Homocysteinesulfinicacid 0.002 
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7_8_diketopelargonate 0.002 

Pirbuterol 0.002 

Linamarin 0.002 

Uncinatone 0.002 

Creatine 0.002 

S_glutathionyl_L_cysteine 0.002 

1H_Imidazole_4_ethanamine_1 0.003 

Leucyl_leucine 0.003 

Hippurate 0.003 

Anthocyanin_3_O_beta_D_glucoside 0.003 

FA_oxo_14_0_3_oxo_tetradecanoic_acid 0.003 

L_Arabinonate 0.003 

O_Acetyl_L_homoserine 0.003 

CAI_1 0.004 

N_Ethylglycocyamine 0.004 

L_Methionine_S_oxide 0.004 

N_Acetyl_D_glucosamine_6_sulfate 0.004 

S_Carnitine 0.004 

L_Aspartate 0.004 

O_Acetylcarnitine 0.004 

ADP 0.005 

N_acetyl_D_glucosaminitol 0.005 

L_Carnitine 0.005 

FA_hydroxy_10_0_N_3S_hydroxydecanoyl_L_serine 0.005 

N_Formimino_L_glutamate 0.006 

1H_Imidazole_4_ethanamine_2 0.006 

L_Cysteate 0.007 

FA_20_4_5Z_8Z_11Z_14Z_eicosatetraenoic_acid 0.007 

5_6_Dihydrothymine 0.007 

Athamantin 0.007 

N6_N6_N6_Trimethyl_L_lysine 0.007 

Pyruvate 0.008 

N1_Methyl_2_pyridone_5_carboxamide 0.008 

N6_Acetyl_L_lysine 0.008 

R_2_Hydroxyglutarate 0.008 

D_Gluconic_acid 0.009 

Leu_Pro 0.009 

Hydroxymethylphosphonate 0.009 

Phosphodimethylethanolamine 0.009 

2S_2_1_R_Carboxyethyl_amino_pentanoate 0.009 
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3_Butynoate 0.009 

Cholate 0.009 
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