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Abstract

H um an papillom avirus type 16 (H P V I6) is a causative agent o f  cei*vical cancer. The 

HPV 16 viral transcription/replication factor E2 is essential for the viral life cycle. The 

function o f  E2 is dependenton the interaction w ith cellular partner proteins. The amino- 

term inal dom ain o f  E2 is an acidic protein-protein interaction dom ain essential for all o f  

the functions o f E2. A  yeast-2-hybrid screen using the amino-term inal dom ain o f  HPV 16 

E2 as bait identified m ultiple possible partner proteins for E2 function (Boner & M organ 

2002) including the DNA replication/repair protein T opB PI. E2 m olecules from HPV16 

and HPV18 interact with m ultiple proteins involved in the cellular response to DNA 

damage (e.g. p53, B R C A l, PARP and T opB PI). The role o f  TopB PI in E2 function and 

the functional response o f E2 to DN A damage stim uli were investigated. Overexpression 

o f  TopB PI enhances the transcription and replication activation functions o f E2. 

O verexpression o f  an am ino-term inal truncation m utant o f  TopB PI has no effect on the 

transcription/replication functions o f E2. D uring this study a novel m ethod for the 

detection o f  E1/E2 DNA replication function by real-tim e PCR was developed. The UVB 

iiTadiation o f  cells resulted in the significant reduction o f both E2 transactivation flinction 

and E2 protein amount. These results dem onstrated that E2 function is altered by cellular 

DN A dam age response proteins and signaling pathways.

In m any HPV induced cancers the HPV genome is either present integrated into the 

cellular cliromosomes or is m aintained episom ally with large DNA 

deletions/rearrangem ents. Therefore HPV genom e stability is a significant risk factor for

XVIII



the developm ent o f  HPV induced cancer. Thus the fidelity o f  DNA replication activated 

by the HPV 16 E1/E2 replication factors was investigated on undam aged and UVC 

dam aged tem plates in a variety o f genetic backgrounds. On undam aged DNA templates 

there were a significant am ount o f  m utations due to DNA deletions/reanangem ents and 

the frequency o f  m utation increased when the tem plate was damaged. This increase on 

damaged tem plates was m arked in cells with defects in key DNA replication or repair 

proteins. These results highlight the instability o f  HPV 16 genome replication. The 

interaction o f  E2 with DNA damage response proteins and the reduction o f  E2 function in 

response to DNA damage m ay be an evolutionary response by the virus to ensure genetic 

integrity and host cell viability.
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Introduction

1.1 Human Papilloma Virus

Papilloma vimses are non~enveloped icosahedral double stranded DNA viruses that 

have been identified in a wide range o f animals from birds to rabbits, cattle and 

several primates including humans (Campo 2002). These small DNA tumour viruses 

generally selectively infect cutaneous and mucosal epithelia and a few also infect 

fibroblasts (e.g. Bovine papillomavirus 1). All human papillomavimses (HPVs) are 

specifically epitheliotropic. HPVs are thought to infect the undifferentiated 

kératinocytes in the basal layer o f stratified epithelium. The life cycle o f HPVs is 

subsequently dependent o f the differentiation of the epithelium. Additionally the 

ability o f HPVs to modulate cellular differentiation processes results in the wide 

variety of lesions caused by HPV infection (see review Burd 2003).

1.2 HPVs and Disease

Papilloma viruses cause a wide variety o f diseases ranging from skin and anogenital 

warts to laryngeal papillomas and anogenital intraepithélial neoplasias that often 

progress to malignancy (Croissant et al 1985). There are currently over 100 types of 

human papilloma virus identified. HPVs are termed “low risk” or “high risk” 

depending on their prevalence in cancers (Munoz et al 2003). Low risk HPVs 

commonly cause benign lesions that regress and do not progress to cancer. High risk 

HPVs are commonly detected in many epithelial derived cancers and are found in 

more than 99.7% of all cervical carcinomas (Walboomers et al 1999). HPV infection 

is thought to be a major risk factor for the malignant transformation o f epithelium. A 

summary of the characteristics o f a selection of HPV viruses is shown in table 1.1.
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The main HPV subtype studied in this project was PIPV16.

TABLE 1.1 The characteristics of a selection of HPV types

HPV type Target tissue Disease Caused 
(Risk classification)

HPVl Cutaneous epithelium Plantar warts 
(Low risk)

HPV6 Mucosal eplithelium Genital warts, 
Laryngeal papillomatosis 

(Low/high risk)
HPV8 Cutaneous epithelium Epidermodysplasia 

Verruciformis 
(High risk to 

immunocomprimised 
patients and UV exposed 

skin sites)
HPV16 Mucosal epithelium Ceiwical cancer, mouth 

and throat cancer. 
(Fligh risk)

HPV18 Mucosal epithelium Cervical cancer 
(High risk)

Table adapted from Burd 2003.

1.3 HPV16

HPV-16 is the most prevalent HPV subtype detected in cervical cancers and it is also 

found in cancer of the tonsils (Clifford et al 2003, Klussmann et al 2001). HPV 16 has 

a 7.9kb circular double stranded DNA genome that can be split into early open 

reading frames (ORFs) (E1-E7) and late ORFs (L1-L2, see figure 1.1). “Early” 

proteins modulate viral transcription, facilitate viral genome replication, modulate the 

cell cycle and impede cellular antigen presentation. “Late” proteins are the viral 

capsid proteins.

The HPV 16 genome (accession number NC 001526) can be separated into three 

regions; an “early” region containing ORFs E1-E7, a “late” region containing ORFs
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LI and L2, and a non-coding region rich in transcription factor binding sites called the 

long control region (LCR). At the end of each coding region there are polyadenylation 

sites. HPVs express many different polycystronic transcripts throughout the viral life 

cycle thus co-ordinating the expression o f the viral gene products with the 

differentiation o f the host cell. Additionally transcription initiates from several 

different promoters during keratinocyte differentiation (Doorbar et ai 1990, Baker & 

Calef 1996). Viral transcription is controlled by cellular transcription factors binding 

the LCR and by the virally encoded E2 protein (Bouvard et al 1994, Romanczuk et al 

1990, Steger & Corbach 1997). The epithelial specificity o f HPV infection is thought 

to be due in part to specific control elements in the enhancer and promoter sequences 

in the viral LCR (Vance et al 1999). Viral replication is initiated within the viral 

origin o f replication (Ori) and is dependent on the virally encoded replication factors 

E l and E2 (see review Desaintes and Demeret 1996 for details on transcription and 

replication control).
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Figure 1.1
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Map of the HPV16 genome. The above map highlights the significant features 

within the HPV 16 genome. The major open reading frames (ORFs) are drawn as 

arrows and DNA elements that control viral transcription and replication are drawn as 

boxes. The long control region (LCR) is boxed in grey and at the top this region is 

expanded out to demonstrate the position o f the El binding site and the E2 binding 

sites within the LCR. A 200 base pair region at the 3’ end of this sequence is the 

minimal region of sequence required for efficient viral DNA replication and is called 

the origin of replication (Ori). The area highlighted in dark green within the LCR is 

the epithelial specific enhancer that is rich in transcription factor binding sites.
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1.4 HPV16 Life Cycle

Following infection the HPV genome is amplified then maintained at a low level 

(approx 50 genome copies/cell) in the basal layers o f the epithelium. Expression of 

the “early” ORF facilitates the establishment o f the infection. The early proteins E5, 

E6 and E7 modulate the cellular control o f differentiation and the cell cycle (see 

Fehrmann & Laimins 2003 for review). This results in the proliferation of infected 

cells and a drive into S-phase that allows the replication of the viral genome and its 

segregation into the daughter cells. The HPV genome replication is dependent on E l 

and E2 and the cellular replication apparatus and E2 also controls viral transcription 

(see sections 1.5.2 & 1.6), As an infected cell migrates upwards from the basal layers 

the cell undergoes differentiation. Amplification o f the genome to high levels prior to 

encapsidation is thought to occur with HPV 16 in cells o f the suprabasal layer. El'^Ed 

expression is first seen in these cells (Middleton et al 2003) and cells in this layer are 

thought to be held in a pseudo-S-phase due to the co-expression o f E6, E7 and the 

E1^E4 protein (see section 1.5.2). Subsequently the vims expresses the “late” proteins 

LI and L2 and the viral genome is encapsidated. Infectious virions are released horn 

the most terminally differentiated kératinocytes as they are sloughed off the top layers 

o f the epithelium. The majority of HPV infections have a productive life cycle as 

described, however in many HPV induced cancers the viral genome is found 

integrated into the host genome (zur Hausen 1987). This integration usually deletes 

E2 coding sequences and results in the elevated expression o f the viral oncoproteins, 

thus driving the cell towards transformation (Jeon & Lambert 1995, Jeon et al 1995). 

In some tumours the viral genome can be found both integrated and episomally, and 

often some of the episomal genomes contain deletions or genomic reaiTangements 

(Kasher & Roman 1988, Deau et al 1991, Hall et al 1997, Kalantari et al 2001, Mellin
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et al 2002). Therefore the loss o f viral genome integrity is an important step on the 

road to HPV induced carcinogenisis.

1.5 HPV Proteins

1.5.1 Transforming proteins

The major transforming proteins o f HPV 16 are E6 and E7, also E5 is thought to have 

a minor role in cellular transformation. HPV E6 protein disrupts the function o f p53 

to release the cell from p53 mediated growth control mechanisms (see Mantovani & 

Banks 2001 for review). “High risk” E6 proteins target p53 for ubiquitin mediated 

degradation (Li & Coffino 1996), some “low risk” E6 proteins are able to bind p53 in 

vitro yet do not target p53 for proteolysis in vivo (Elbel et al 1997). Elucidation of 

how the binding to E6 and proteolysis o f p53 occurs has helped the understanding of 

the ubiquitin proteolysis machinery with the identification of E6-AP (E6 Associated 

Protein) and related proteins (Scheffher et al 1994).

Additional mechanisms of p53 functional down regulation have also been 

identified with both high risk and low risk E6 proteins demonstrating the ability to 

repress p53 mediated transcription. This is due to E6 binding p53 through its carboxy- 

terminus and in vitro E6 can prevent p53 from binding its DNA recognition sites 

(Crook et al 1994). E6 also binds the transcriptional coactivator p300/CBP therefore 

hypothetically downregulating p53 dependent transcription by competing for this co

factor (Zimmermann et al 1999).

E6 mediates the ubiquitin degradation of the protein disc large (DLG), a protein 

localized at cell junctions (Kiyono et al 1997). The disruption o f cell junction cell-cell 

communication results in loss of contact inhibition of growth and a subsequent 

increased probability for an invasive malignant phenotype. Also E6 interacts with
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Paxillin, a component o f focal adhesions resulting in the loss o f cell adhesion to the 

extra cellular matrix (Tong & Howley 1997). Other targets for E6 interaction include 

c-Myc, bak, the calcium binding protein E6BP and the API component of clathrin 

coated vesicles (Chen & Defendi 1992, Thomas & Banks 1999). Additionally E6 can 

stimulate telomerase activity during keratinocyte immortalisation (Klingelhutz et al 

1996). Telomerase is the terminal chromosomal DNA polymerase, a protein often 

expressed in malignant tumours that can release cells from senescence by re- 

synthesizing their telomeres.

E7 binds the tumour suppressor pRb and targets it for ubiquitin mediated proteasome 

degradation (Hickman et al 1994, Hwang et al 2002). E7 also binds and inactivates 

p i 07 and p i 30, two pRb related proteins. pRb in its hyperphosphorylated form binds 

multiple E2F family transcription factors which control the expression of cyclin E, 

cyclin A and cdc25A which are all G l/S  phase boundary control proteins (Stevaux & 

Dyson 2002). E7 also inactivates the cyclin-dependent kinase inhibitors and

p27^'^'^ resulting in further enhancement o f the proliferative signal (Jones et al 1997, 

Funk et al 1997, Sherr & Roberts 1999). Additionally E7 is able to bind transcription 

factor AP-1 and activate its activity and therefore hypothetically alter the 

differentiation o f the cell (Antinore et al 1996).

The loss of pRb function alone doesn’t allow uncontrolled proliferation due to 

negative feedback exerted by p53 on growth control. The major functions of p53 are 

to arrest the cell cycle (G1 or apoptosis) in response to DNA damage (e.g. radiation, 

oxidative stress, chemotheraputics) or improper growth signaling (e.g. oncogenic ras). 

To escape this effect tumours are often null for functional p53 and viruses that require 

a proliferating cellular environment often dismpt p53 ftmction. Therefore the
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combination o f E6 and E7 in cells strongly drives cells to proliferate and escape 

cellular growth controls.

E5 is a small hydrophobic transmembrane dimeric protein localized in the golgi 

apparatus and the plasma membrane. E5 from HPV 16 and BPVl both interact with 

the 16 kDa ductin subunit of the vacuolar H+ ATPase resulting in inhibition o f the 

acidification of the golgi and downstream endomembrane compartments (Straight et 

al 1995, Schapiro et al 2000). With BPVl and BPV4 E5 expressing cells the 

interaction with 16 kDa results in the loss o f endomembrane compartment structural 

regulation, characterized by the swelling and fragmentation of the golgi apparatus 

(Ashrafi et al 2002). One consequence o f this is thought to be the inhibition o f MHC 

class I  molecule transport to the plasma membrane, thus preventing virally infected 

cells from being recognized by the immune system (Marchetti et al 2002). 

Additionally BPV4 E5 reduces MHC I protein levels. HPV 16 E5 expression does not 

lead to endomembrane disorder however it does significantly inhibit MHCI transport 

(M.Haghshenas unpublished results). Using the epithelia cell raft culture system to 

study the HPV life cycle, HPV genomes with a deletion in the E5 ORF are able to 

establish a complete viral life cycle (Genther et al 2003). Therefore evasion ftom the 

immune system may be the primary function of E5, however there are several other 

effects o f E5. The E5-16kDa subunit association is thought to be responsible for the 

down regulation o f gap junction communication between HPV 16 infected cells as 

16kDa is an integral component o f these structures (Oelze et al 1995). HPV 16 E5 also 

activates the epidermal growth factor receptor EGF-R thus inducing a proliferative 

signal (Pirn et al 1992). E5 therefore facilitates evasion from the immune system, 

causes a mobile invasive phenotype within expressing cells and induces proliferation
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signal transduction pathways.

1.5.2 Viral DNA replication proteins

HPVs replicate their DNA using the cellular DNA replication machinery. Efficient 

HPV DNA replication requires the two HPV coded proteins E l and E2. Together 

these proteins recmit the cellular proteins required for HPV DNA replication. Also 

the viral EH E4 protein has recently been identified as having a significant role in the 

vegetative replication o f the viral genome.

The HPV 16 E l protein is a nuclear phosphoprotein of 649 amino acids. The C- 

terminal amino acids (aa 371 to 623 in HPV 16) have significant homology with SF3 

DNA helicase domains found in proteins like the SV40 replication protein large T 

antigen (Fonts et al 1999). E l is an ATP dependent DNA helicase that is essential for 

viral DNA replication (Hughes & Romanos 1993). E l binds to an AT rich region 

within the Ori as a hexamer where it hydrolyses ATP to unwind the DNA (Sedman & 

Stenlund 1998). HPV 16 E l is able to initiate DNA replication in vitro in cellular 

extracts at a low level however for efficient DNA replication E2 is required (Seo et al 

1991, Kuo et al 1994, Liu et al 1995). E l binds E2 and at the viral replication origin 

this interaction enhances the binding o f E l to the viral replication origin and thus 

allows efficient HPV DNA replication (discussed in detail later). E l i s  essential for 

both the initiation of viral replication and the elongation of the replication fork (Liu et 

al 1995). To accomplish this fiinction E l interacts with a variety of cellular proteins. 

The E l amino terminus binds multiple sub-units o f the pola-primase (Masterson et al 

1998, Conger et al 1999). Pola-primase is the only polymerase able to initiate DNA 

synthesis therefore it is essential at the replication fork. The p68 binding domain is in
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a region o f the E l C-terminal where E2 binds therefore it is possible that the initiation 

o f DNA synthesis by E l is after the ftmction o f E2 in HPV replication has been 

fulfilled.

The SWESNF chromatin altering complex has been identified as a HPV 18 E l partner 

by yeast 2 hybrid (Lee et al 1999). This multiprotein complex relaxes chromatin 

stmcture to aid access and binding o f transcription and replication factors to DNA. 

Through additive titration and antisense experiments the complex isolated, 

Inil/hSNF5, has been demonstrated to be vital for HPV replication.

HPV 11 E l can bind and functionally interact with the DNA histone HI protein 

(Swindle & Engler 1998). HI histone is the protein that links adjacent nucleosomes 

thus ordering the condensation o f chromatin to a higher order. It is thought that E l 

can displace histone HI from HPV genomic DNA. H P V ll E l also interacts with the 

chaperone proteins Hsp70 and Hsp40, this interaction enhances E l loading onto DNA 

and increases HPV replication (Liu et al 1998, Lin et al 2002).

Like SV40 large T antigen and cellular DNA helicases, E l interacts with the single 

stranded DNA binding protein complex RPA (Han et al 1999). The RPA complex is 

thought to have multiple roles during DNA replication and it is essential for the 

correct initiation and the elongation of DNA replication forks.

FIPV ll E l protein is a substrate for the cyclinE/cyclin dependent kinase (cdk). The 

cyclin E/cdk complex can phosphorylate E l and it is thought that this phosphorylation 

is essential for the function of E l (Ma et al 1999). Therefore like the cellular Mcm2-7 

DNA helicase complex, the E l hexamer requires cdk dependent phosphorylation to 

initiate replication.

10
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E4 is a 10 kDa protein that is expressed from a spliced mRNA that includes part of 

the E l ORF fused to the E4 ORF hence is often referred to as EU E4. E U E 4 is the 

only viral early protein that can be easily detected in papilloma infected lesions. 

HPV 16 EU E4 expression is first detected in the parabasal layers. In many 

papillomavims lesions vegetative DNA replication co-localises with the layers when 

E U E 4 expression is first detected (Doorbar et al 1997, Middleton et al 2003). 

Although a direct role for EU E4 in viral replication has not yet been demonstrated 

several obseiwations suggest how it may be able to significantly enhance viral 

replication. Many HPV EH E4 proteins, including HPV 16 EN E4, induce a cell cycle 

arrest at the G2/M boundary (Davy et at 2002, Nakahara et al 2002). HPV 16 EU E4 

and the DNA replication marker PCNA co-localise in a thin layer when E D E4 is first 

expressed (Middleton et al 2003). This presents the hypothesis that cells co

expressing ED E4 and the viral oncoproteins E5, E6 and E7 are held in a G2/pseudo 

S-phase cell cycle arrest. E5, E6 and E7 activate genes responsible for DNA 

replication, and during this E D E4 mediated G2/pseudo S-phase HPV DNA 

replication will have fi*ee access to cellular DNA replication proteins. The cell line 

W12 is derived from a HPV 16 infected patient and early passages o f this cell line 

contain almost exclusively episomal copies o f the HPV genome (Alazawi et al 2002). 

In undifferentiated W I2 cells the replication of the FIPV16 genome is initiated 

bidirectionally (Flores & Lambert 1997). Induction of differentiation in W12 cells 

causes a change in HPV genome replication mode to a unidirectional rolling circle 

mechanism which is thought to be more efficient at producing multiple genome 

copies (Flores & Lambert 1997). As EN E4 expression is upregulated by epithelial 

differentiation (Baker & Calef 1996) this collection of circumstantial evidence 

indicates that EU E4 has a significant role in the expansion o f FIPV genome number.

11
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Therefore the exact role o f EU E4 in HPV genome amplification is a good target for 

fiitnre study.

HPV 16 EH E4 associates with intermediate filaments resulting in the total collapse in 

the cytokeratin matrix within the cell (Doorbar et al 1991, Roberts et al 1997). The 

consequence of this is speculated to be the destruction of the influence of the 

cytokeratin matrix at desmosomes resulting in efficient virion release through easier 

sloughing off the infected epideimal layer. Also HPV 16 EH E4 binds a RNA helicase, 

E4-DBP, a function that only HPV 16 E4 demonstrates with HPV 1 and HPV 6 

exhibiting no binding (Doorbar et al 2000). E4-DBP is also thought to have a role in 

pre-mRNA stability and ribosome biogenesis therefore it is thought that E4 may play 

some role in late gene expression (Doorbar et al 2000).

1.5.3 Capsid proteins

The “late” proteins LI and L2 are expressed in the terminally differentiated layers o f 

the epithelium and encapsidate the viral genome (Firzlaff et al 1988, Okun et al

2001). LI is the major capsid protein in the virion. L2 is the minor capsid protein and 

is found mainly on the inside o f the virion. L2 is a small protein that is able to bind 

both LI and E2 (discussed 1.6.1). On encapsidation of the double stranded circular 

viral genome the virion conformationally changes into an icosahedral structure with 

72 pentamers o f L I .

12
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1.6 HPV16 E2 protein

1.6.1 Structure and functions

HPV 16 E2 is the major protein o f interest in this study. The HPV E2 protein has three 

major functions, it activates transcription, it activates viral replication and it induces 

cell cycle arrest/apoptosis (Dell & Gaston 2001 for review). HPV E2 proteins have a 

conserved structure of three domains; an amino-teiminal activation domain, a central 

hinge domain and a carboxy-terminal DNA binding domain (see figure 1.2). The 

carboxy-terminal DNA binding domain o f E2 binds as a homodimer to 12bp 

palindromic sequences in the viral LCR (Hirochika et al 1987, McBride et al 1991). 

This DNA binding ability is essential for the E2 transactivation and replication 

functions (Hirochika et al 1988, Ustav et al 1993).

The central hinge domain of E2 is a flexible region that is rich in potential 

phosphorylation sites (Gauthier et al 1991). The HPV 16 protein is a phosphoprotein, 

however the phosphorylation sites o f HPV 16 E2 have not yet been mapped (Sanders 

et al 1995). BPVl E2 is phosphorylated on both serine and threonine residues, the 

major phosphorylation sites have been mapped in the hinge domain and are serines 

289 and 301 (McBride et al 1989, Penrose & McBride 2000). Additionally the hinge 

region is enriched with proline and arginine residues that are thought to aid the 

flexibility of this region. The hinge region o f HPV E2 is highly divergent between 

different HPV subtypes.

The amino-terminal activation domain is essential for the transactivation, replication 

and apoptotic functions o f HPV 16 E2. Point mutational analysis of highly conseiwed 

residues in the E2 amino-terminal o f several different papilloraavimses has identified 

several critical residues for the transactivation and replication functions (Ferguson &
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Botchan 1996, Abroi et al 1996, Brokaw et al 1996, Saki et al 1996). Alanine 

mutation o f either R7, R37, 173, E74 or Q76 renders HPV 16 E2 null for 

transactivation function but almost wild type for replication functions. Combining this 

data and the crystal structure o f the HPV 16 amino terminus has led to the hypothesis 

that E2 can homodimerise at its amino terminus and this homodimerisation is 

essential for transactivation function (Antson et al 2000). Alanine mutation o f either 

Q12 or E39 renders the protein null for activating replication and binding E l, 

highlighting the pocket where E l binds E2. However these two mutations have a 

minimal effect on transactivation functions (Saki et al 1996). Interaction between E l 

and E2 is essential for replication o f the viral genome, E2 binds to DNA binding sites 

that flank the E l binding site and the amino-tenninal of E2 interacts with E l and aids 

E l recruitment to the origin o f replication (Chao et al 1999, Titolo et al 1999). 

Replacement o f the E2 DNA binding domain with either the Gal4 or LexA DNA 

binding domains creates a chimeric E2 molecule able to activate transcription 

(Breiding et al 1996). Additionally replacement o f the BPVl E2 DNA binding 

domain with the EBNAl DNA binding domain allows E1/E2 mediated DNA 

replication ftom a BPV replication origin with the E2 binding sites replaced with 

EBNAl binding sites (Kiviraae et al 2001).

The BPV 1 E2 protein is thought to tether the BPV genome to cellular chromosomes 

during mitosis thus ensuring efficient segregation of the papillomavirus genome into 

the daughter cells. BPVl E2 binds to the cellular condensed chromosomes during 

mitosis and this interaction is mediated through attachment at the amino-teiminal of 

E2 (Skiadopoulos & McBride 1998, Bastien & McBride 2000). While the interaction 

o f HPV 16 E2 with mitotic chromosomes has not yet been investigated it would be a 

beneficial function for HPV 16 E2 and the HPV 16 life cycle.

14
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Multiple “high risk” HPV E2 proteins modulate the cell cycle and/or induce apoptosis 

in a variety of different genetic backgrounds. This is discussed below in 1.6.3.

An interaction between the papillomavims E2 and L2 proteins has been identified for 

both BPVl (Day et al 1998, Heino et al 2000) and PIPV16 (Pablo Cordano & Afam 

Okoye unpublished results). Both the BPVl and HPV 16 L2 proteins are localised in 

punctate nuclear foci known as PODs (PME onocogenic domain). These structures 

are defined by the presence of the PME protein and other integral POD proteins 

arranged in -10  foci within the nucleus. Other viral proteins associate with these 

stmctures and this common association o f viral proteins with PODs is also observed 

in SV40, HSVl and Ad5 vimses (Maul 1998 for review). POD domains are thought 

to be cellular organisation centres o f various proteins involved in DNA replication, 

repair and cell cycle control (Negrorev & Maul 2001 for review). BPVl L2 localises 

LI and E2 to these POD organisation centres (Day et al 1998). These are 

hypothesised to be viral genome packaging centres, where E2 through binding the 

genome at its carboxy-terminal recmits HPV genomes to LI and L2. To support this 

idea it has been demonstrated that BPV 1 E2 enhances the encapsidation of viral DNA 

into pseudovirion vims like particles generated in cell culture (Zhao et al 2000). 

Additionally BPVl or HPV 16 L2 expression results in the reduction o f the E2 

transactivation function (Heino et al 2000, Afam Okoye personal communication). 

The consequence o f this during the HPV life cycle is hypothesised to result in the 

reduction o f E6/E7 expression thus allowing the kératinocytes to further differentiate.

15
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Figure 1.2
Structure of HPV16 E2
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Computer generated image of the 3D structure of HPV16 E2. The surface 

electrostatic potential is illustrated and was generated using the Swiss-PdbViewer 

programme. At the amino-terminal is the acidic activation domain, the central portion 

is the flexible hinge and at the carboxy-terminal is the largely basic DNA binding 

domain. The activation domain crystal structure was solved using X-ray diffraction by 

(Antson et al 2000), and the “Idto.pdb” entry in the protein data bank was used in the 

image above. This structure highlights the role o f the acidic transactivation domain in 

exposing hydrophobic residues at surfaces and highlights the surfaces for El 

interaction and E2 amino-terminal homodimerisation (see figure 3.1.14), The central 

region is not predicted to have a set secondary structure and is thought to be a flexible 

hinge between the amino and carboxy-terminal domains. The DNA binding domain 

crystal structure was solved using X-ray diffraction (Hegde and Androphy 1998) and 

the “ lby9.pdb” entry in the protein data bank is used in the above image. This domain 

binds the E2 DNA binding site therefore has predominantly basic surface electrostatic 

potential.
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1.6.2 E2 cellular partner proteins

The E2 protein contains no enzymatic activity therefore to function E2 interacts with 

multiple cellular partner proteins. Trying to understand the role o f each o f these 

proteins in the function o f E2 is currently central to E2 research.

BPVl H P V ll and HPV 16 E2 are known to bind TFIIB (Rank and Lambert 1995, 

Yao et al 1998, Hou et al 2000, Ushikai et al 1994), also BPVl and H PV ll are 

known to bind TBP. These cellular proteins are two essential components o f the RNA 

polymerase II transcription apparatus. This interaction is likely to be central to the 

transactivation function o f E2.

E2 from HPV 16, HPV 18 and HPV8 all interact with the cellular co-activator protein 

p300 and/or its homologue CREB binding protein, CBP (Marcello et al 2000, Lee et 

al 2000, Muller et al 2002). p300/CBP synergistically enhance E2 mediated 

transactivation. p300/CBP molecules contain intrinsic histone acetyltransferase 

activity, activate transcription due to its chromatin remodelling activity and p300/CBP 

is an intrinsic part o f the RNA polymerase II holoenzyme. Additionally p300/CBP 

interacts with partner proteins that contain HAT activity like p/CAF. HPV 18 binds 

p/CAF and p/CAF synergistically activates E2 mediated transactivation (Lee et al

2002). For each o f these proteins the HAT activity is essential for the activation of E2 

transactivation. BPVl E2 also binds to the p300 interacting AM Fl protein (Activation 

domain modulating factor). These three proteins are thought to complex together to 

activate transcription (Breiding et al 1997, Peng et al 2000). Additionally mutants of 

E2 that fail to bind AM Fl fail to activate transcription, and are defective for 

replication even though they can still interact with EL Therefore all these results
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suggest that the ability to modulate and relax chromatin stmcture is central for E2 

mediated transactivation and replication.

BPVl E2 interacts with the SMN nuclear protein (Strasswimmer et al 1999). SMN is 

involved with the assembly o f splicosomes and the transcriptosome, SMN can interact 

with the RNA helicase A. Deletion mutants of SMN inhibit E2 mediated 

transactivation. The HPV5 E2 protein also interacts with SR an snRNP protein 

involved in pre-RNA splicing through RS/RG/SRG repeats in the hinge region (Lai et 

al 1999).

1.6.3 E2 cellular partner proteins: DNA damage proteins

The trans activation ftmction o f HPV 16 E2 is enhanced when BRCAl is 

overexpressed (Kim et al 2003). BRCAl interacts with the carboxy-terminus of E2. 

E2 interacts with both the amino-terminal domain and the carboxy-terminal BRCT 

domains in BRCAL Point mutation o f the BRCT domains in BRCAl dismpts the 

enhancement of E2 trans activation function. Additionally chromatin 

immunoprécipitation (ChIP) assays demonstrate that E2 recmits BRCAl to E2 

dependent promoters in vivo. BRCAl is a protein intimately involved in DNA 

damage responses, cell cycle checkpoints, and transcription control. However the 

biological function o f the E2-BRCA1 interaction is unknown.

The transactivation function o f HPV 18 E2 is enhanced by the overexpression o f poly 

(ADP-ribose) polymerase (PARP) (Lee et al 2002). E2 co-localises with PARP and 

PARP binds the carboxy-terminal o f E2. E2 binds to the amino-terminal domain 

containing the Zn finger and BRCT motif. Additionally PARP enhances E2 DNA 

binding in vitro and E2 recmits PARP to E2 dependent promoters in vivo as 

deteimined by ChlP. PARP is an enzyme that modifies nuclear proteins by the
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attachment o f poly(ADP)~ribose side chains, this activity is stimulated in response to 

DNA damage. PARP binds to DNA structures containing either nicks, gaps, 

cruciforms, and bent DNA structures. PARP has several functions involved in the 

regulation of cellular transcription, replication and DNA repair (Hereeg & Wang 2001 

for review). However the biological role o f the E2-PARP interaction is unclear.

The p53 tumour suppressor protein binds to the carboxy-terminal o f E2 and modulates 

several o f E2 functions. The over-expression o f p53 in p53 defective cells results in a 

significant decrease in E1/E2 mediated replication (Lepik et al 1998). This repression 

is thought to be dependent on p53 binding E2. Replication by SV40 large T antigen is 

also repressed by p53 over-expression (Lepik & Ustav 2000). In contrast Epstein-Barr 

virus replication mediated by EBNAl is unaffected (Lepik et al 1998). p53 is found at 

sites o f viral DNA replication in SV40, Heipes vimses and in Adenovimses. What 

remains to be determined is the role of this interaction in HPV replication. Is this a 

genuine repression o f E2 function or does p53 play a fundamental role in the HPV 

DNA replication process?

In cell lines derived from HPV associated cervical cancers with an integrated HPV 

genome (e.g. HeLa, CaSki) expression of HPV 16 or HPV18 E2 induces apoptosis 

(Dowhanick et al 1995, Sanchez-Perez et al 1997, Desaintes et al 1999). In HPV 

associated cancer cell lines a common event is the deletion o f E2 coding sequences 

during viral integration. This results in very high levels of expression o f the viral 

oncogenes E6 and E7. Expression o f either HPV 16 or 18 E2 in these cells represses 

the expression of E6 and E7 resulting in the induction of apoptosis.

In HPV negative cell lines two studies present differing information about the role of 

p53 in the induction o f apoptosis by HPV 16 and HPV 18 E2. HPV 16 E2 induces
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apoptosis in HPV negative cells by a p53 dependent mechanism (Webster et al 2000). 

In cells with a disrupted p53 (e.g. C33a and SaOs2) E2 fails to induce apoptosis. 

Further expression o f a trans dominant negative p53 or expression o f HPV 16 E6 

blocks the induction o f apoptosis by E2. In HeLa cells (HPV positive) the induction 

o f apoptosis is not dependent on E2 regulating transcription and the amino-terminal 

domain o f E2 is essential for the induction o f apoptosis. However the role of the 

amino-teiminal or a protein-protein interaction at the amino-terminal responsible for 

apoptosis has yet to be identified.

In contrast to HPV 16 E2, HPV 18 E2 induces apoptosis in both p53 wild type and 

compromised cell types through activation o f caspase 8 (Demeret et al 2003). The 

induction o f this apoptosis is dependent on the amino-teiminal transactivation domain 

of E2. The amino terminus o f HPV 18 E2 is a target of caspase processing and 

contains a XEXD caspase cleavage site. HPV 16 E2 also contains this motif. There is 

therefore a complex relationship between E2 and p53 and the viral life cycle that still 

requires clarification.

1.6.4 Identification of TopBPl as a potential E2 partner protein

In a yeast 2 hybrid screen using the amino-terminal o f HPV 16 E2 as the bait several 

new potential cellular partner proteins for E2 mediated function were identified and 

described in detail in Boner and Morgan 2002. From this screen TopBPl was 

identified as a potential E2 functional partner protein and this interaction is 

investigated in section 3.1 (see also Boner et al 2002). TopBPl is a large (1435aa) 

nuclear protein that is implicated in many nuclear processes such as DNA replication 

initiation, DNA repair and cell cycle control. TopBPl was first cloned from a screen 

to identify proteins that interact with the regulatory domain o f Topoisomerase 11(3 and
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it is the carboxy-terminal o f TopBPl that mediates this interaction (Yamane et al 

1997). The carboxy-teiminal o f TopBPl is where HPV 16 E2 binds TopBPl (Boner et 

al 2002).

TopBPl contains eight BRCT (i.e. BRCAl Carboxy-terminal) domains and has a 

carboxy-terminal nuclear localisation signal (figure 3.1.1). BRCT domains are 

conseiwed protein interaction domains found in proteins from yeast to humans that 

function in cellular DNA replication, repair and transcription processes (Huyton et al

2000). TopBPl is a phosphoprotein and contains a potential poly(ADP)-ribosylation 

modification site within BRCT domain six (Yamane et al 1997, Makineimi et al

2001).

Homologous proteins to TopBPl are found in all eukaryotes. In fission and budding 

yeast the TopBPl homologues, Cut5 and D p b ll respectively, control multiple DNA 

damage and cell cycle responses (Verkade et al 1998, Harris et al 2003, Arakai et al 

1995, Masumoto et al 2000). Cut5/D pbll is essential for activation o f S-phase 

checkpoint responses and DNA replication. D p b ll is found at yeast ARS sequences 

and can bind both DNA polymerase alpha and epsilon at these sequences. The 

disruption of the Drosophila homologue o f TopBPl, Mus 101, results in defective 

DNA synthesis, genetic instability and the failure to condense chromatin (Yamamoto 

et al 2000). The failure to condense chromatin in Mus 101 defective cells indicates 

that Mus 101 may be an integral part o f the chromosome scaffold and therefore 

TopBPl is a good target protein for the attachment of E2 to condensed chromosomes 

during mitosis (Bastien & McBride 2000).

The BRCT domains o f TopBPl are able to bind single stranded DNA, double 

stranded DNA and DNA ends (Yamane & Tsuruo 1999). TopBPl interacts with 

multiple proteins involved in DNA replication and DNA damage responses. TopBPl
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interacts with DNA polymerase epsilon and TopBPl is demonstrated to be essential 

for DNA replication in vitro. TopBPl co-localises with BRCAl during S-phase at 

sites distant from replication forks. In response to replication blockage by UV 

irradiation TopBPl and BRCAl co-localise with PCNA at replication forks 

(Makineimi et al 2001). In cells where double-stranded breaks are induced TopBPl 

redistributes to nuclear foci with the DNA damage response proteins BRCA l, PML, 

NBS, 53BP1, BLM, yH2AX and Rad9 (Greer et al 2003, Yamane et al 2003). 

TopBPl binds the cellular checkpoint protein Rad9 (Makineimi et al 2001). Both 

TopBPl and Rad9 are thought to be early DNA damage sensor/signalling molecules 

and the localisation o f TopBPl to double stranded DNA break sites is dependent on 

Rad9 and Rad9 phosphorylation (Greer et al 2003, St Onge et al 2003). 

Overexpression of Rad9 phosphorylation or TopBPl interaction mutants results in a 

prolonged G2/M aiTest. This is proposed to be due to defects in the S-phase 

checkpoint in a manner similar to that found with ATM, BRCAl and NBS defective 

cells (Xu et al 2002, Xu et al 2003). Additionally cells that are compromised for both 

TopBPl and BRCAl function are null for the G2/M checkpoint in response to gamma 

inadiation DNA damage (Yamane et al 2003). This is due to an abolition o f the 

regulation of Chkl kinase by this double knockout. TopBPl interacts with E2F1, a 

transcription factor that has an integral role in the control o f the cell cycle (Liu et al

2003). In response to adriamycin induced DNA damage TopBPl is responsible for the 

co-localisation o f E2F1 to punctate nuclear foci containing TopBPl and BRCAl. 

Therefore TopBPl is hypothesised to be responsible for the repression of E2F1 

activities including, the activation o f transcription and the entry into S-phase. Finally, 

TopBPl interacts with the transcription factor Miz-1, a protein that modulates the 

transcription of multiple anti-mitogenic proteins (Herold et al 2002). TopBPl is
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thought to negatively regulate the expression o f Miz-1 responsive genes. This 

repression is alleviated in response to UV inadiation due to the degradation o f 

TopBPl and is characterised by the activation of p21Cipl expression. The studies 

summarised above demonstrate that TopBPl has an integral role in DNA damage 

responses and cell cycle control.

The Xenopus homologue o f TopBPl, Xm uslOl, has been used with in vitro assays to 

show that XmuslOl is essential for the loading of the initiation factor Cdc45 to the 

DNA replication initiation complex (Van Hatten et al 2002). The loading o f XmuslOl 

at these complexes is dependent on the origin recognition complex, ORC. 

Additionally the action o f S-phase cyclin dependent kinases (CDKs) at the 

preinitiation complex is dependent on XmuslOl (Hashimoto & Takisawa 2003). In 

fission yeast the TopBPl homologue D p b ll is essential for the replication checkpoint 

response. Dpbl 1 is essential to prevent the loading o f DNA polymerase epsilon to late 

replication origins when the early replication forks are blocked by hydroxyurea 

treatment (Masumoto et al 2000).

Therefore TopBPl has a wide range o f activities from co-ordinating DNA replication 

initiation to sensing DNA damage/stalled replication and subsequently exerting 

checkpoint responses. It is therefore possible that TopBPl could have several roles in 

the function o f E2 ranging from mitotic chromosome attachment, transcription 

modulation, replication modulation, to mediating E2 induced apoptosis. The role o f 

the TopBPl-E2 interaction to the transcription and replication flmctions of E2 is 

investigated in section 3.1.

2 3



C h a p t e r  1 I n t r o d u c t i o n

1.7 DNA replication and DNA damage checkpoint control

The E2 interacting proteins p53, BRCA l, PARP and TopBPl have many common 

features about their cellular function. Each of these proteins is part of parallel 

signalling pathways involved in DNA damage responses and replication control as 

outlined in the simplified diagram in figure 1.3. At sites of DNA damage BRCAl, 

TopBPl and PARP serve as both sensors and signaller thus co-ordinating the cellular 

response to DNA damage therefore ensuring genomic integrity (Jasin 2002, Greer et 

al 2003, Herzeg & Wang 2001). Downstream signalling by the ATM/ATR/DNA-PK 

and Chkl/2 kinase network, by p53, and by PARP modulate the cell cycle to induce 

cell cycle delay/arrest or apoptosis (see Pasero et al 2003, Melo & Toczyski 2002, 

Zachos et al 2002, McGowan 2002, Bernstein et al 2002 for reviews). This network 

ensures faithful repair o f damaged DNA thus maintaining the integrity of the genome. 

The complexity of this network ensures the appropriate cellular response to the 

relevant type of DNA damage, ATM and DNA-PK are activated by double stranded 

DNA breaks throughout the cell cycle and ATR is activated by the inhibition o f the 

progress of the DNA replication fork during S-phase. However this classification is a 

generalisation and there are exclusions to the rule currently being identified. 

ATM/ATR/DNA-PK phosphorylate downstream targets including Chkl/2, p53, 

BRCAl and TopBPl resulting in the activation o f the appropriate cell cycle delay and 

DNA repair response.

The biological role o f the p53, BRCA l, PARP and TopBPl interactions with E2 is 

not clear. p53, BRCAl, PARP and TopBPl may interact with E2 to ftmction as 

scaffolds that enhance the recruitment o f cellular transcription and replication 

complexes to E2. Alternatively E2 may induce apoptosis through interacting with one

2 4
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or more o f these proteins. However it is possible the hard wiring o f E2 into these 

DNA damage response pathways may have a ftindamental role to play for the 

successfLil completion o f the viral life cycle.

This thesis has three research aims;

(i) To characterise the functional interaction between TopBPl and E2.

(ii) To evaluate the consequence o f DNA damage stimuli to E2 function.

(iii) To measure the fidelity o f HPV E1/E2 mediated DNA replication.
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Figure 1.3

Summary of checkpoint controls

TopB Pl

Simplified view of the DNA damage response network. The proteins discussed in 

section 1.7 form a complex network of signal transduction pathways that control the 

cell cycle, DNA replication, and are activated in response to DNA damage, A 

simplified interpretation of the roles o f each of these proteins throughout the cell 

cycle and in response to DNA damage stimuli is illustrated above.
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Materials and Methods

2.1 Materials

2.1.1. Antibodies

Amersham International pic (Buckinghamshire, U.K.)

Anti-mouse IgG horseradish peroxidase linked whole antibody (raised in sheep).

BD Transduction Laboratories (Oxford, U.K.)

A murine monoclonal antibody raised against amino acids 204-416 of TopBPl was 

purchased from BD Transduction Laboratories (T10620).

TVG261, a monoclonal antibody directed against amino acids 2-17 in the amino 

terminus of HPV-16 E2, was a kind gift from Dr. M. Hibma, ICRP Tumour Vims 

Group, University of Cambridge.

A polyclonal antibody directed against the amino acids 861-1287 of TopBPl was 

raised in rabbit. Epitope preparation is described in Boner et al 2002. Pre-immune and 

immune serums are used for the selective immunoprécipitation o f TopBPl in figure 

3.1.18.

2.1.2. Bacteriology

Institute of Comparative Medicine Central Services

L-broth

LB-agar

Becton Dickinson Lab ware (Oxford, U.K.)
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Falcon 1059 polypropylene tubes 

Falcon 2059 polypropylene tubes

Bibby Sterilin Ltd (Staffordshire, U.K.)

90mm and 150mm bacteriological petri dishes

Lisons Scientific Equipment (Leicestershire, U.K.)

Glycerol

Invitrogen Ltd (Paisley, U.K.)

E. coli D H 5a competent cells

E. coli DHIOB electro-competent cells 

E.coli InviO chemically competent cells

Nunc (Hereford, U.K.)

Sterile disposable inoculating loops

Sigma Chemical Co. Ltd (Dorset, U.K.)

Ampicillin

Isopropyl-thio-p-D-galactosidase (IPTG)

Kanamycin

X-Gal

2 8
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2.1.3. Cell lines

C33a cells are derived from a HPV negative cervical carcinoma and are defective for 

both p53 and pRb function. C33a cells were obtained from the ATCC.

U20S cells are derived from a p53 wild type osteosarcoma. U 20S cells were 

obtained from the CRUK.

MRC5 cells are a SV40 transformed, foetal fibroblast derived cell line. MRC5 cells 

were obtained from the CRUK.

XP12 cells are a SV40 transformed cell line derived from fibroblasts obtained from a 

Xeroderma Pigmentosum patient. The cells are deficient in the XPA protein an 

essential component for nucleotide excision repair o f damaged DNA. XP12 cells have 

been previously described (Kannouche et al 2001). XP12 cells were a kind gift from 

Dr Alan Lehmann.

XP30 cells are a SV40 transfoimed cell line derived from fibroblasts obtained from a 

Xerodeima Pigmentosum patient. The cells are defective for the DNA polymerase T[ 

protein, a protein that ensures faithful translesion DNA synthesis past DNA lesions. 

XP30 cells were a kind gift from Dr Alan Lehmann.

XP30t] cells are a SV40 transformed cell line derived from fibroblasts obtained from 

a Xeroderma Pigmentosum patient. The cells are identical to XP30 cells except the 

DNA polymerase r\ function is complemented by the stable expression of wild type 

DNA polymerase r\ from pcDNA3.1-polr| (Kannouche et al 2001). XP30ri cells were 

a kind gift from Dr Alan Lehmann.
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2.1.4. Chemicals and Reagents

Amersham International pic (Buckinghamshire, U.K.)

Enhanced Chemiluminescence (ECL-plus) Western detection agent

Invitrogen Ltd (Paisley, U.K.)

Agarose (ultrapure electrophoresis grade)

Sigma Chemical Co. Ltd (Dorset, U.K.)

P-mereaptoethanol 

Bicinchonoinic Acid (BCA) solution 

Bovine Semm Albumen (BSA)

Bromophenol Blue

Copper (II) sulphate (pentahydrate 4% (w/v) solution) 

Dithiothreitol (DTT)

Ethidium bromide 

HEPES

Nonidet P-40 (NP-40)

Phenol : Chloroform: Isoamyl Alcohol (25:24:1 (v/v)

Ponceau S solution

Tween-20 (Polyoxyethylene sorbitan nonolaurate)

Xylene Cyanol

Roche (Lewes, U.K.)

dATP

dCTP

dGTP

dTTP

dUTP
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University of Glasgow (Glasgow, U.K.)

Crude Ethanol

VWR International (Dorset, U.K.)

Acetic acid

di-sodium hydrogen orthophosphate (anhydrous) 

Dimethyl sulfoxide (DMSO)

100% pure ethanol

Ethylene diamine tetra acetate (EDTA) disodium salt

Hydrochloric acid

Magnesium chloride

Methanol

Propan-2-ol

Sodium acetate

Sodium chloride

Sodium dihydrogen orthophosphate 

Sodium dodecyl sulphate (SDS)

Tri-Sodium Citrate 

Tris base

2.1.5. Enzymes and Kits

Applied Biosystems (Warrington, U.K.)

Amplitaq® DNA polymerase with Geneamp® buffer 

Bigdye v3.1 DNA sequencing kit 

Hi-Di fonnamide

31



C h a p i e r  2 M a t e r i a l s  a n d  M e t h o d s

TaqMan® EZ RT-PCR® kit 

TaqMan® p-actin Detection Reagents 

Amersham (Buckinghamshire, U.K.)

Nick Column for purification of labelled DNA probe.

Cambio (Cambridge, U.K.)

T4 Endonuclease V. The restriction buffer used is detailed in section 2.2.2.10. 

Invitrogen Ltd (Paisley, U.K.)

The restriction enzymes BamHI, Bglll, EcoRI and PvuII and their respective reaction 

buffers.

Alkaline phosphatase 

T4 DNA ligase

New England Biolabs (Herts, U.K.)

The restriction enzymes Dpnl, Mbol and XmnI and their buffers. React buffer 2 was 

used for each enzyme.

Exonuclease III and its reaction buffer.

Promega Ltd (Southampton, U.K.)

Luciferase Assay System 

Pfu polymerase and its buffer 

Reporter Lysis 5x Buffer 

Qiagen Ltd (Crawley, U.K.)

QIAquick PCR purification kit 

QIAprep plasmid megaprep kit 

QIAprep Spin plasmid miniprep kit
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Stratagene (Amsterdam, Netherlands)

QuickHyb Hybridisation solution 

Pfu DNA polymerase

2.1.6. Miscellaneous

Amersham International pic (Buckinghamshire, U.K.)

Hybond-N

Hyperfilm ECL

Applied Biosystems Ltd (Warrington, U.K.)

Real-time PCR 96 well plates and their caps.

Costar Corporation (Bucks, U.K.)

96 well plates

Decon Laboratories Ltd (Hove, U.K.)

Decon 75

Elkay International (Basingstoke, U.K.)

Microcentrifuge tubes 

Pastettes

Equibio (Kent, U.K.)

2mm electroporation cuvettes

Safeway Supermarkets (Anniesland, U.K.)

Maiwel (dried skimmed milk)
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Sigma Chemical Co. Ltd (Dorset, U.K.)

Protein A immobilised on agarose beads

Whatman International Ltd (Maidstone, U.K.)

Whatman 3MM filter paper

2.1.7. Molecular Weight Markers 

Invitrogen Ltd (Paisley, U.K.)

Ikb ladder

See-Blue 2 protein markers

2.1.8. Plasmids

pBluescript SKII, available commercially from Stratagene. 

pCMV and pCG are mammalian expression vectors.

pCMV HPV16 E l  expresses the wild type HPV16 E l protein under the control o f the 

cytomegalovirus promoter. A kind gift from Prof. Peter Howley (Harvard University, 

Boston, U.S.A)

pCMV HPV16 E2a expresses the wild type HPV16 E2 protein under the control of 

the cytomegalovims promoter. A kind gift from Prof. Peter Howley (Harvard 

University, Boston, U.S.A). This plasmid is used during E1/E2 dependent DNA 

replication assays.

pCMV HPV-16 E2b expresses the wild type HPV-16 E2 protein under the control of 

the cytomeglovims promoter. A kind gift from Dr Lawrence Banks (International 

Centre for Genetic Engineering and Biotechnology, Italy). This plasmid is used for 

transactivation assays
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pHPV8 E2 expresses the wild type HPV-8 E2 protein under the control o f the 

cytomegalovims promoter. A kind gift from Dr Pawel Fuchs (Institute of Virology, 

University o f Koeln) and the late Prof. Herbert Plister.

pCG VP16-E2 expresses a chimaeric protein which has the VP 16 transactivation 

domain fused to the BPV-1 E2 DNA binding domain under control of the 

cytomeglovims promoter. This plasmid was a gift from Dr Mart Ustav (Estonian 

Biocentre).

pTopBPl expresses the full length human TopBPl protein under the control o f the 

cytomegalovims promoter. This plasmid was a kind gift from Dr Kazuhiko Yamane.

pATopBPl expresses the carboxy-tenninal half of TopBPl, amino acids 776-1435, 

under the control of the cytomegalovims promoter (see Boner et al 2002).

ptk contains the tk promoter from HSV-1 cloned into the pGL2 luciferase vector.

ptk6E2 contains six consecutive E2 binding sites upstream of the tk promoter from 

HSV-1 cloned into the pGL2 luciferase vector.

pfos-Luc expresses the firefly luciferase reporter gene under the control of the murine 

c-fos promoter.

p53fos-Luc expresses the firefly luciferase reporter gene under the control o f the 

murine c-fos promoter. Upstream from the promoter there are two p53-binding sites 

from the ribosomal gene cluster. 

pSKII(-) is a standard cloning vector.

pOril6 contains the HPV16 origin o f replication (nucleotides 7838-130 of the 

HPV16 genome) cloned into pSKII(-). This plasmid was a gift from Prof. Peter 

Howley (Harvard University).
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pOril6M contains the HPV16 origin o f replication cloned into pSKII(-). The origin 

spans nucleotides 7830-138 of the HPV16 genome, with a point mutation at 115 from 

C to A to create a Dpnl restriction enzyme site.

pCR2.1 is a plasmid generated from the commercially available TA cloning vector 

pCR2.1-Topo (Invitrogen Ltd). This linear vector with a covalently bound 

topoisomerase was incubated alone and plasmids were screened for LacZ. The 

pCR2.1 vector created contains an intact LacZ gene, ampicillin and kanamycin 

antibiotic resistance genes.

pOril6Lac contains the HPV16 origin o f replication cloned into Bglll site in pCR2.1. 

The origin spans nucleotides 7830-138 of the HPV16 genome, with a point mutation 

at 115 from C to A to create a Dpnl restriction enzyme site.

2.1.9. Radiochemicals

Amersham International pic (Buckinghamshire, U.K.)

Redivue [a  ^^P] dCTP

2.1.10. Tissue Culture

Institute of Comparative Medicine Central Services

Sterile phosphate buffered saline (PBS)

Becton Dickinson Labware (Oxford, U.K.)

60, 90 and 140 mm tissue culture dishes 

Falcon 2097 polypropylene tubes 

Falcon 2098 polypropylene tubes 

Serological plastic pipettes 

Sterile Plastipak syringes
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Bibby Sterilin Ltd (Staffordshire, U.K.)

Sterile plastic bijoux and universal containers

Costar Corporation (Bucks, U.K)

Disposable cell scrapers

Invitrogen Ltd (Paisley, U.K.)

Special Liquid medium

lOx Dulbecco’s Modified Eagles Medium

2.5% Trypsin

Foetal calf serum

Nunc (Hereford, U.K.)

Cryotubes

T25, T75 and T175 cm^ tissue culture flasks
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2.2.1 Human cell culture

2.2.1.1 Tissue culture

All cell culture work was perfonned using strict aseptic techniques inside a laminar 

flow hood (Class II Microbiological Safety Cabinets, Gelaire BSB4). Cells were 

incubated at 37®C in 5% (v/v) CO2 (Nopco Scientific).

2.2.1.2 Transient transfection

All cells were transiently transfected using a standard calcium phosphate precipitation 

technique. For luciferase assays cells were plated out at 6x10^ cells/60 mm tissue 

culture dish for C33a cells and 3x10^ cells/60 mm tissue culture dish for U 20S cells. 

The following day a calcium phosphate precipitate containing the DNA was added to 

the cells. This was carried out as follows for each 60 mm cell monolayer: 250 pi o f a 

solution containing the plasmid DNA in 250 mM C aC f was added dropwise with 

gentle mixing to 250 pi o f 2x HEPES buffered saline (280 mM NaCl, 1.5 mM 

Na2HP0 4 .2 H2 0 , 50 mM HEPES, to pH 7.05 with NaOH). The mixture was left for 30 

min to allow a fine precipitate to form and added directly into the medium above the 

cell monolayer. Sixteen to eighteen hours later the cells were washed twice with PBS 

and refed with fresh growth medium. For transient replication assays C33a cells were 

plated out at 6x10^ cells/100 mm tissue culture dish, U 20S, MRC5, XP30, XP30T| 

and XP12 cells were all plated out at 3x10^ cells/100 mm tissue culture. Transfection 

was carried out as above except 500pl 250 mM C aC f with DNA was added to 500pl 

o f2x  HBS.
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2.2.1.3 Luciferase assay

C33a and U 20S cells were lysed directly on the tissue culture plates. The medium 

was removed and the cells washed twice with PBS. 300 pi o f Reporter Lysis Buffer 

(Promega) was added to the plate and left for 10 minutes. The cell lysate was then 

scraped from the dish and placed in a 1.5 ml centrifuge tube. The lysate was cleared 

by centrifuging the sample for 10 min (14000 g-force) and removing the supernatant 

to a fresh tube. Two 80 pi aliquots o f the supernatant were then assayed for luciferase 

activity using the Luciferase Assay System (Promega) with a Luminoskan Ascent 

plate reader (Thermo Labsystems). To standardize for cell number, the protein 

concentration was determined using the BCA/C11SO4  assay. All transfections were 

repeated at least three times in duplicate.

The BCA/C11SO4 assay is a spectrometric assay to calculate protein concentration. 

Into a 96 well plate lOpl of protein solution was placed. 200pl o f developing solution 

(5ml BCA(Bicinchoninic acid) solution, lOOpl of 4% (w/v) CUSO4  (copper II 

sulphate pentahydrate) solution) was added to the protein samples and incubated at 

37°C for 30 minutes. The absorbance of each sample was read at 562nm using a 

Labsystems Multiskan Ascent automatic plate reader. The absorbance reading was 

converted to concentration in pg/pl using a standard cuiwe generated from a series of 

control BSA solutions (2pg/pl to 0.08pg/pl) and the Microsoft Excel computer 

program.

2.2.1.4 Transient replication assay

Replication assays were carried out as a modification o f a previously published 

technique (Sakai et al 1996). 6x10^ C33a or 3x10^ U 20S, MRC5, XT 12, XP30 or 

XP30ri cells were plated out in 100 mm dishes and the following day transfected
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using the calcium phosphate method. Three days post transfection low molecular 

weight DNA was extracted using the Hirt method. 800 pi of Hirt solution (0.6% SDS, 

lOmM EDTA) was directly put on the cells for five minutes to lyse them, then the 

sample was scraped into a 1.5 ml microcentrifuge tube. 200 pi o f 5M NaCl was added 

and the samples were then left at 4°C overnight. After centrifugation they were 

extracted once with phenol-chloroforni-isoamyl alcohol and precipitated with ethanol 

(see section 2.2.2.11). Following centrifugation the DNA pellet was washed with 

0.5ml 70% ethanol and dried then resuspended in H2O. For each replication assay 

different levels o f DNA was digested with a combination of restriction enzymes 

depending on the assay or the detection method.

For each cell line in section 3.1 eveiy transfection was done on one lOOmnf plate, 

and the DNA from each plate was dissolved in lOOpl of dH20. For the Southern blots 

each sample of 25pl DNA was digested with XmnI or Xnml/Dpnl, as indicated, in a 

total volume of 50pl. For the real-time PCR assays 25pl o f DNA were digested with 

either Dpnl or Mbol as indicated in a total volume of 50pl. The next morning the 

DNA was further digested in lOOunits o f Endonuclease III for 30 minutes. 

Subsequently the enzymes were deactivated through heating to 70°C for 30 minutes. 

lOpl o f each digest were used for each individual real-time PCR reaction (see also 

section 2.2.2.19). For each cell line in section 3.3 eveiy transfection was done in 

duplicate using lOOmm^ plates. DNA from the two plates was resuspended in a total 

volume of lOOpl. For Southern blots 50pl o f DNA were digested with Xmnl/Dpnl 

overnight. For the recoveiy o f pOril6Lac plasmid DNA into bacteria 42pi o f DNA 

were digested with Dpnl overnight. All digests described above were done in Ix New 

England Biolabs buffer 2 (50 mM NaCl, 10 mM Tris-HCl, 10 mM MgCfi, 1 mM 

dithiothreitol pH 7.9) supplemented with 100 pg/ml BSA in a total volume of 60pl.
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2.2.1.5 Whole cell extract preparation

The cells were washed twice with PBS, then trypsinised, and washed two times with 

10ml of ice cold PBS. The cell pellet was then resuspended in 1ml o f ice cold PBS 

and transferred to a 1.5ml microfuge tube and pelleted. They were then resuspended 

in lOOpl of lysis buffer (0.5% NP40, 50mM Tris pH7.8, 150mM NaCl with a protease 

inhibitor cocktail (Roche, Lewes, UK) dissolved in the lysis buffer). The extracts 

were then incubated on ice for 30 minutes with occasional mixing. Following this 

they were centrifuged in a refrigerated microfuge for 10 minutes at maximum speed at 

4°C. The supernatant was then removed to another tube and the cell debris discarded. 

The protein concentration was then determined using the BCA/CUSO4 assay.

2.2.1.6 RNA preparation

RNA extraction from cells was done using a Qiagen RNeasy kit with QIAshredder 

columns. Cells were washed twice with Ix PBS, then lysed by addition of 600pl o f 

RTL buffer. Cells were then scraped into a QIAshredder spin column then centrifuged 

to homogenise the sample. Next 600pl o f 70% ethanol was added to the lysate and the 

sample was added to a RNeasy mini column by centrifugation. Subsequently the 

column was washed with 700pl o f RW l once, and with 500pl RPE twice by 

centrifugation. The purified RNA was eluted from the column in 30pl of RNase-ffee 

water.
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2.2.2 Molecular biology

2.2.2.1 Oligonucleotide synthesis

Oligonucleotides used as primers in PCR reactions were synthesized by Invitrogen 

Ltd. Oligonucleotides were purified by Invitrogen Ltd under desalt conditions. 

Briefly, this method involves deprotecting the primer under gas phase conditions, and 

normal phase desalted. The organic products are subsequently removed with 90% 

Acetonitrile water wash and products are then eluted under aqueous conditions then 

lyophilized. On receipt of the oligonucleotides they were resuspended in dHzO to a 

concentration of lOOpmol/pl.

Dual labeled (5 TA M , 3’TAMRA) oligonucleotide probes used for real-time PCR 

were purchased from Cmachem Ltd. Oligonucleotides were HPLC purified and the 

lyophilised DNA was resuspended in dH20 to 20pM.

2.2.2.2 DNA concentration and purity determination

The concentration of either plasmid or DNA oligonucleotides was determined by 

absorbance measurement at 260 nm and 280 nm using a Biotech spectrophotometer 

model U V llO l. An OD2 6 0  reading o f 1 corresponds approximately to 33 pg/ml single 

stranded DNA or 50 pg/ml double stranded DNA. The OD2 6 0 /OD2 8 0  ratio provided an 

estimate of the DNA sample purity.

2.2.2.3 Agarose gel electrophoresis

Agarose gel electrophoresis was perfoimed using horizontal gel cast apparatus 

(Biorad). 1% agarose gels were routinely used. The appropriate amount of ultrapure 

electrophoretic grade agarose was dissolved in 0.5x TBE buffer (lOx TBE: 900mM
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Tris base, 900mM boric acid, 25mM EDTA, pH 8.0) by heating the solution in a 

glass conical flask in a microwave. The gel cast apparatus with a comb containing the 

appropriate number and size of teeth to fonn the sample wells was assembled and the 

gel was poured. The solidified gel was placed in the gel tank and submerged in 0.5x 

TBE buffer containing 0.5 pg/ml ethidium bromide. Samples containing Ix loading 

buffer (lOx loading buffer is 65% (w/v) sucrose, lOmM Tris-HCl pH7.5, 10 mM 

EDTA, 0.3% (w/v) Bromophenol Blue) were loaded into individual wells. An 

appropriate sized DNA ladder was loaded into the first and/or last well in the gel and 

the DNA was separated by running at 70-100 constant voltage until the dye front was 

1-4 cm from the end of the gel. Separated DNA was visualised by illumination on a 

short wave (312 nm) UV light box and photographed using UVP Gel Documentation 

System. Agarose gel images presented were capPired on a P.C.

2.2.2.4 Southern transfer of DNA

Agarose gels that have separated digested Hirt extract DNA from DNA replication 

assays (see section 2,2.1.4) are subjected to Southern Transfer (modified from cunent 

protocols) to transfer the DNA to nylon membrane (Hybond-N). After electrophoresis 

the agarose gel was washed in distilled water then placed in dénaturation solution 

(1.5M NaCl, 0.5M NaOH) and gently agitated twice for 30 minutes. Next the gel was 

washed in distilled water and agitated in neutralisation solution (1.5M NaCl, 0.5 Tris- 

HCl pH7.0) twice for 30 minutes. Finally the gel was rinsed twice in distilled water. 

The transfer of the DNA onto the nylon membrane relies on capillaiy action. 20x SSC 

solution (3M NaCl, 0.3M C 6H 5 0 ?Na3 (tri-sodium citrate)) was placed in a glass dish. 

On a square platform above the level o f the SSC was placed two wicks made of 3MM 

filter paper to cover the platform and draw SSC upward. Three squares of 3MM filter
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paper soaked in 20x SSC the size o f gel were placed on top of the wick, followed by 

the gel, then a square of prewetted Hybond-N nylon membrane 5minutes in distilled 

water), then five squares o f 3MM filter paper, and finally a stack o f folded paper 

towels ~4cm thick. The transfer tower was very gently compressed overnight by a 

200g weight to allow efficient DNA transfer.

The following morning the tower was disassembled and the Hybond-N membrane 

was briefly washed in 2x SSC. The DNA was crosslinked to the DNA membrane 

through inadiation with 1600 J/m^ of UVC at 254nm using a Spectrolinker XL 1500 

(Spectronics Corperation). Next the membrane was baked for > lh  at SO'̂ C in a Hybaid 

mini-oven MKII hybridisation oven.

2.2.2.5 Radio-labelled DNA probe preparation and purification

Radiolabelled probes were generated using the Stratagene Prime-it II® random primer 

labelling kit as per the manufacturers instructions. For the majority of Southern blots 

the probe used to detect the replicated pO ril6 or pOril6Lac plasmids was a 700bp 

PvuII fragment released from pO ril6M  by PvuII restriction digest. For the XP30 and 

XPSOp blots in figure 3.3.4 a smaller 200bp Bglll fiagment released from pOril6Lac 

was used for the probe. The longer 700bp probe has two benefits over the 200bp 

probe; it gives a slightly stronger hybridisation signal and it cross-reacts with the 

transfected E l and E2 expression plasmids thus demonstrating if  the Dpnl digest has 

been completed, if it was incomplete then there would be a signal from these plasmids 

at ~5-6kb. However with the XP30ri cells the probe cross-reacts with the plasmid 

sequences in the integrated copies o f the DNA polymerase r\ expression plasmid, 

therefore the more specific 200bp probe derived from HPV16 Ori sequence allows the 

detection of the pOril6Lac without interference.
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25ng of the DNA to be labelled was mixed with lOjil of 9-mer random 

oligonucleotide primers and boiled in a total volume of 34^1 for 5 minutes. Next lOpl 

o f the 5x dCTP primer buffer was added (contains dATP, dGTP and dTTP), with 5pl 

o f Redivue ^^P dCTP (Amersham) and 5U of Exo(-) Klenow DNA polymerase. The 

reaction was left for 10 minutes at 37°C in a water bath.

Next the probe was purified using a NICK^^ Column from Amersham Biosciences as 

per manufacturers instructions. The column was equilibriated in buffer (lOmM Tris- 

HCl pH7.5 with ImM EDTA) then the probe reaction was loaded to the column with 

400pl of TE buffer, and finally the purified probe was eluted with 400|il of TE buffer 

and stored at -20 °C in a lead lined pot.

2.2.2.6 Nucleic acid hybridisation and visualisation

The nucleic acid hybridisation of the Hybond-N nylon membrane was using QuikHyb 

hybridisation solution purchased from Stratagene. The nylon membrane, with 15ml of 

QuickHyb hybridisation solution, in a conical hybridisation tube, was revolved in a 

hybridisation oven for 1 hour at 68°C to reduce non-specific nucleic acid 

hybridisation. The probe generated in section 2.2.2.5 was boiled for five minutes and 

lOOjLil o f the probe was mixed with 1ml of warm QuikHyb solution and this mixture 

was then added to the hybridisation tube. The radio-labelled probe was then 

hybridised at 68°C for an hour. Next the membrane was washed twice for 15 minutes 

at room temperature with a 2x SSC and 0.1% (w/v) SDS wash solution. Further the 

membrane was washed once for 40 minutes at 60°C with a O.lx SSC and 0.1% (w/v) 

SDS solution. The membrane was then sealed in Saran wrap and exposed to a 

Phosphor screen for ~16 hours. The image stored on the screen was developed using a 

Storm^'^ image system and visualised using the ImageQuant™ software on a P.C.
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Densitometiy was performed as per the instractions for the ImageQuant^^ software. 

Strength of replication was calculated by measuring the ratio of double cut 

Xmnl/Dpnl versus the XmnI single cut bands. This method of measurement controls 

for variation in transfection efficiency.

2.2.2.7 Polyacrylamide gel electrophoresis

The gels used to separate protein were NuPAGE® 4-12% Bis-Tris-HCl buffered (pH 

6.4) poly-aciylamide gels purchased from Invitrogen Ltd. Protein samples were mixed 

with 4x NuPAGE® LDS Sample buffer (40% Glycerol, 500mM Tris-HCl (pH 6.8), 

8% LDS, 0.075% Serva Blue G250, 0.025% Phenol Red), and lOx NuPAGE® 

Reducing Agent (0.5M DTT), at a ratio of 40:10:4 for sample:sample-buffer:reducing 

agent, respectively. Subsequently the sample was heated at 70”C for 10 minutes prior 

to loading.

The gel tanks used to separate the proteins were the Xcell Siirelock Mini-cell tanks 

purchased from Invitrogen Ltd and the electrophoresis was perfonned as per the 

manufacturer’s instructions. Each sample was loaded into the wells o f the gel and on 

each gel at least one lane contains the See-Blue2 coloured protein markers purchased 

from Invitrogen. 20x MOPS SDS Running Buffer (IM  MOPS, IM Tris Base, 

69.3mM SDS and 20.5mM EDTA) was purchased from Invitrogen Ltd. The 

electrophoresis was perfonned in Ix MOPS SDS Running Buffer at a constant voltage 

o f 200V for -50  minutes.

2.2.2.8 Wet Electrophoretic Transfer of Proteins

Separated protein samples were transferred to nitrocellulose by wet electrophoretic 

transfer using a Xcell II^'^ blotting apparatus purchased from Invitrogen Ltd. Blotting
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protocol was as manufacturers instmctions. After SDS-PAGE, one of the gel cassette 

plates was removed and the wells were cut away. Two sheets o f Whatmann 3MM 

paper, a piece of nitrocellulose membrane (Hybond and blotting pads cut to the

size o f the gel were purchased from Invitrogen Ltd. Each were soaked in Ix 

NuPAGE® transfer buffer with 10% methanol. 20x NuPAGE® transfer buffer was 

purchased from Invitrogen Ltd (0.5M Bicine, 0.5M Bis-Tris, 20.5mM EDTA, ImM 

Chlorobutanol). Two blotting pads were placed on the bottom plate (cathode) of the 

blotting apparatus, followed by a sheet o f filter paper, then the gel, then the 

nitrocellulose membrane, then a sheet of filter paper and finally two blotting pads. 

Any air bubbles were removed and the transfer was performed at 30V constant for 1 

hour in Ix NuPAGE® transfer buffer with 10% methanol. The fidelity o f transfer was 

checked by staining the nitrocellulose with Ponceau S solution.

2.2.2.9 Immunoprécipitation

lOOp-g o f Protein A sepharose beads (Sigma) were swollen overnight in 1ml of lysis 

buffer (0.5% NP40, 50mM Tris pH7.8, 150mM NaCl with a protease inhibitor 

cocktail (Roche Lewes, UK) dissolved in 10 ml of the lysis buffer) at 4°C with 

continual rotation. Next day the beads were washed three times in lysis buffer and 

resuspended in 300|ul lysis buffer.

3x10^ U 20S cells were plated out on a 6cm plate and the next day were transfected 

with 2pg o f E2 expression plasmid, either WT or mutant as indicated. Two days later 

the cells were haiwested and the whole cell extract was prepared as described in 

section 2.2.1.5. 60pl of cell extract was mixed with 40pl lysis buffer and lOpl protein 

A beads in a 1.5ml eppendorf and incubated rotating for Ih at 4®C to pre-dear the 

extract of proteins that non-specifically interact with the beads. Next the beads were
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pelleted out and the supernatant was incubated rotating for Ih at 4°C with Ipl of 

antibody as indicated. Next lOpl of protein A beads were added to the mixture and the 

samples were incubated rotating for Ih at 4*^0. The complexes containing the 

antibody-protein A bead complexes were pelleted and they were washed five times 

with 0.5ml of lysis buffer. The proteins pulled down were resuspended in LDS- 

polyacrylamide gel sample buffer and the proteins were eluted of the beads through 

heating at 75 °C for 20 minutes. The beads were then pelleted and the supernatant was 

electrophoresed using a SDS-PAGE system and subjected to western blot.

2.2.2.10 Restriction enzyme digests

Restriction digests were performed using the appropriate enzymes and reaction 

buffers according to the manufacturer instmctions. Typically, 5-10 units of restriction 

enzyme/|ig DNA was used. In general, small quantities of plasmid DNA (<5 pg) were 

digested in a 30 pi reaction volume for 2-3 hrs at 37°C. Hirt DNA extracts used for 

replication assays were typically digested in a 50pl reaction volume overnight at 37®C 

(see section 2.2.1.4) unless otherwise stated.

Exonuclease III digest was done in the same buffer as the prior restriction enzyme 

digest (i.e. NEB buffer 2 with mg/ml BSA). See section 2.2.1.4.

T4 Endonuclease V digestion was done on both DNA in vitro and using DNA 

harvested from transiently transfected cells. The samples were first put in Ix T4 

Endonuclease V buffer (Im M  EDTA, 50mM NaCl, Tris-HCl pH 7.9, ImM  DTT and 

100 pg/ml BSA) and digested with 20U of T4 Endonuclease V at 2 T C  for 12 hours in 

a total volume of 50pl. Next 5pi o f lOOmM MgCl] was added to the reaction to make 

a final concentration of -lO m M  M gC f - Next 2OU of XmnI was added to linearise the 

DNA and the restriction digest was earned out at 37°C for 12 hours.
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2.2.2.11 DNA purification

DNA samples were purified by phenol chlorofoiTn extraction after each manipulation 

to remove contaminants such as residual enzyme activities. An equal volume of 

phenol;chloroform;isoamyl alcohol (24:24:1 v/v/v) was added to the DNA solution. 

The aqueous DNA and organic phases were mixed by voitexing and separated by 

centrifugation in a microfuge (14 000 ipm, 5 min, room temp). The upper aqueous 

phase was carefully removed making sure none o f the interphase was taken and 

transfened to a clean eppendorf tube. Double stranded DNA was precipitated by 

adding 1/10 volume of 3M sodium acetate and 2.5 volumes ethanol. The sample was 

mixed and left at -20°C for 1 hour to facilitate precipitation. The DNA was pelleted in 

a microfuge (14 000 ipm, 20 min, 4^C), washed with 70% ethanol to remove any 

traces of salt and pelleted again. After the ethanol was removed, the purified DNA 

was air dried and resuspended in the appropriate volume of sterile distilled water.

PCR fragments used for cloning were routinely purified using the Qiagen QIAquick® 

PCR Purification Kit as per the manufacturers instructions.

2.2.2.12 DNA ligation

Plasmid DNA and the DNA fragment to be inserted into the vector were separately 

digested using the appropriate restriction enzymes (Section 2.2.2.10). The 5’ 

phosphate residues o f linearised vector DNA were dephosphoiylated to prevent vector 

religation. 1 pi (1 unit) of alkaline phosphatase was added at the end of a restriction 

digest reaction. The reaction mixture was incubated for 30 min at 37^C followed by a 

second incubation at 70°C for 10 min to stop all enzyme activity. The plasmid DNA 

and DNA fragment were then purified as detailed above (Section 2.2.2.11). The DNA 

fragment was ligated into the cut vector using 1 pi (4 units) of T4 DNA ligase in Ix
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ligase buffer in a 20 pi reaction volume. This was carried out according to the 

manufacturer’s instruction. An excess o f DNA fragment compared to vector was used 

for ligation reactions. Reactions were routinely incubated overnight at ll^C .

2.2.2.13 Transformation of Competent Bacterial Cells

E. coli D H 5a competent cells were used for the propagation o f plasmid DNA unless 

stated otheiwise. Stocks o f competent cells were stored at -70^C until use when they 

were thawed on ice. 1 pi o f purified ligation reaction or 1-2 ng plasmid DNA was 

added to a chilled 1.5ml microfuge tube. 20 pi of competent cells were then aliquoted 

into each tube and left on ice for 30 min. Cells were heat shocked at 42^C for 1 min 

and then rePmied to ice for 5 min. 100 pi sterile SOC medium (25 bactotryptone, 

0.5% yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2 , 10 mM MgS0 4 , 20 

mM glucose) was added to each sample and the tubes were incubated at 37°C for 1 

hour with shaking. The transfoimation mixes were spread on L-agar plates containing 

the appropriate antibiotic, plates were inverted and incubated overnight at 37®C to 

allow colony formation.

The rescue of pOril6Lac plasmid DNA replicated by E1/E2 is described in detail in 

section 2.2.2.21.

2.2.2.14 Small Scale Preparation of Plasmid DNA (Miniprep)

Small amounts of plasmid DNA were obtained from transformed bacterial colonies to 

allow the identification of positive transfonnants. A single bacterial colony was used 

to inoculate 3 ml o f L-Broth (1% (w/v) bactotiyptone, 0.5% (w/v) yeast extract, 1% 

(w/v) NaCl) containing antibiotic (100 pg/ml ampicillin unless stated otherwise) and 

was grown overnight at 37^C with shaking. 1.5 ml o f bacterial culPire was pelleted by
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centrifugation in a microfuge (14 000 rpm, 1 min). Plasmid DNA was prepared from 

the colony using the QIAprep Spin plasmid miniprep kit according to the 

manufacturer’s instmctions.

2.2.2.15 Large Scale Preparation of Plasmid DNA (Megaprep)

1 ml o f a 3 ml overnight bacterial culture was used to inoculate 500 ml o f L-broth 

containing the appropriate antibiotic in a 2 litre glass conical flask. The culture was 

incubated overnight at 37°C with shaking. Bacterial cells were pelleted by 

centrifugation (6000g, 10 min, 4®C) using a Sorvall rotor. The bacterial pellet was 

resuspended in 50ml PI (50 mM Tris-Cl (pH 8.0), 10 mM EDTA, lOOpg/ml RNase 

A) then gently mixed with 50ml P2 (200 mM NaOH, 1% SDS (w/v)) and allowed to 

stand at room temperature for 5 minutes to ensure efficient lysis. 50ml o f ice cold P3 

(3M potassium acetate pH5.5) was added and the contents were mixed by inverting 

the tube sharply several times. The solution was incubated on ice for 30 min and then 

centrifuged at 8000g for 20 min at 4^C. The bacterial debris forms a tight pellet on the 

bottom of the tube. The supernatant was filtered through nylon gauze and was loaded 

onto a QIAfilter Mega Cartridge. The column was washed twice with 100ml of QC 

(IM  NaCl, 50mM MOPS pH7, 15% isopropanol (v/v), 0.15% Triton (v/v)). Plasmid 

DNA was eluted by 35ml o f QF (1.25M NaCL, 50mM Tris-Cl pH 8.5, 15% 

isopropanol (v/v)). DNA was precipitated by the addition of 24.5ml isopropanol. 

Nucleic acid was pelleted by centrifugation as before, the supernatant was removed 

and the pellet was washed with 70% ethanol (v/v). Nucleic acid was pelleted by 

centrifugation as before, the supernatant was removed and the pellet was allowed to 

air dry. The pellet was resuspended in 1 ml distilled H2 O
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2.2.2.16 Polymerase Chain Reaction (PCR)

Unless stated otheiwise, PCR reactions containing 1 ng of DNA template, 20 pmol of 

each primer, 200 pM each dNTP, 1 pi (2.5 units) Pfu polymerase in a total volume of 

50 pi containing Ix Pfu reaction buffer were set up in 0.5 ml sterile tubes. A negative 

control containing no template and a positive control were always included with each 

set o f PCR reactions. PCR amplification was earned out using a MJ Research PTC- 

200 gradient cycler. Unless otheiwise stated, samples were heated to 94®C for 1 min 

(denaturing step), 50®C for 1 min (annealing step) and 72®C for 1 min (elongation 

step). This cycle of denaturing, annealing and elongation was repeated 25 times. Ten 

microlitres of each PCR reaction were analysed by agarose gel electophoresis and the 

PCR products were purified using the techniques described in Section 2.2.2.11.

Using pl6ori as a template and primers 5'-Oritaq and 3'-Oritaq an EcoKl-BamHl 

fragment was cloned into pSKII(-) to generate pOril6M  (see table 2.1). This fragment 

represents nucleotides 7838-139 from the HPV16 genome and contains the HPV16 

minimal origin of replication. Additionally there is a point mutation of base 115 from 

C to A to create a Dpnl restriction site so that this plasmid could be used in a 

TaqMan® real time PCR-based protocol to detect viral DNA replication. The point 

mutation is highlighted in bold italic for both 3'-Oritaq and 3’-Ori Bglll.

Using pOril6M  as a template primers 5’-Ori Bglll and 3’-Ori Bglll generated a Bglll 

fragment which was cloned into the Bglll site in pCR2.1-Topo. This fragment 

represents nucleotides 7838-139 from the HPV16 genome as was inserted into the 

pO ril6M  plasmid.

Using pG13 Cont as a template primers 5’-SV40Ori and 3’-SV40Ori generated a Bglll 

fragment which was cloned into the Bglll site in pCR2.1-Topo. This fragment 

represents the SV40 minimal origin o f replication.
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Table 2.1 Oligonucleotides to PCR amplify HPV16 Ori and SV40 Ori

Primer Nucleotide Sequence

5 ’-Oritaq 5 ’GTACGGATCCTGCACATGGGTGTGTGCAA 3 ’

3 ’-Oritaq 5 ’GTACGAATTCTAACTTTCTGGGTCGCTCCTGTGrtTCCTG 3 ’

5 ’Ori Bglll 5 ’ GTACAGATCTTGCACATGGGTGTGTGCAA 3 ’

3 ’Ori Bglll 5 ’ GTACAGATCTTAACTTTCTGGGTCGCTCCTGTGTTCCTG 3 ’

5 ’ SV40Ori 5 ’ GTACAGATCTCCAGGCAGGCAGAAGTATGCAAAGC 3 ’

3 ’ S V40Ori 5 ’ GT AC AG ATCTCG AA AATGGATAT ACA AGCTCC 3 ’

2.2.2.17 Site directed mutagenesis

The site directed point mutagenesis was done using a QuikChange® II Site-Directed 

Mutagenesis Kit as per manufacturers instructions. The primers used to make point 

mutations in the HPV16 E2 ORE are listed in table 2.2. Primers were designed to be 

25-45 nucleotides in length, and to have a Tm greater than 78°C as figured using the 

equation; Tm=81.5 + 0.41(%GC) - 675/N - %mismatch, when N equals the primer 

length. For each mutation generated 25ng o f pCMV HPV16 E2 was mixed with 

125ng of each 5’ and 3 ’ primer, with Ix Pfu buffer, 2.5U PfuUltra HF DNA 

polymerase and dNTPs in a total volume of 50p,l. PCR amplification was carried out 

using a MJ Research PTC-200 gradient cycler. Samples were heated to 94^C for 30 

seconds (denaturing step), 55^C for 1 min (annealing step) and 68°C for 5 min 

(elongation step). This cycle of denaturing, annealing and elongation was repeated 25 

times. After PCR amplification lOU of Dpnl was added to the reaction to digest the 

template plasmid and the sample was incubated for 1 hour at 37°C. The mutated
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plasmids were transformed into XL-Blue supercompetent cells as directed by the 

manufacturers instructions. The sequence o f the plasmids was confirmed by DNA 

sequencing (see section 2.2.2.18).

Table 2.2 Oligonucleotide sequences for site directed mutagenesis 

Primer Nucleotide Sequence

5 ’ -Y44A 5 ’ CTAGAATGTGCTATTTATGCCAAGGCCAGAGAAATGG 3 ’

3 ’-Y44A 5’ CCATTTCTCTGGCCTTGGCATAAATAGCACATTCTAG 3 ’

5’-R47A 5’ CGCCTAGAATGTGCTATTTATTACAAGGCCGCAGAAATGGGA3’

3’-R47A 5 ’ TCCCATTTCTGCGGCCTTGTAATAAATAGCACATTCTAGGCG 3 ’

5’-K68A 5’ CACTGGCTGTATCAAAGAATGCAGCATTACAAGCAATTGAAC 3 ’

3 ’ -K6 8 A 5 ’ GTTC AATTGCTTGT A ATGCTGC ATTCTTTG AT AC AGCCAGTG 3 ’

5 ’-Y 102A 5’ GACGTTAGCCTTGAAGTGGCTTTAACTGCACCAACAGGATG 3 ’

3 ’-Y 102A 5 ’ CATCCTGTTGGTGCAGTTAAAGCCACTTCAACGCTAACGTC 3 ’

2.2.2.18 DNA sequencing

The fidelity of all plasmid constiuctions was verified using an Applied Biosystems 

3100 automated sequencer. The region to be sequenced was sequenced using a primer 

complementaiy to the appropiate region of the vector DNA (see table 2.3). Reactions 

containing 0.5 pg plasmid DNA, 3.2 pmol primer and 8 pi Big Dye Terminator 

Reaction premix were made up to 20 pi with dH20. 250 pi thin walled eppendorf 

tubes were used for all sequencing PCR reactions. Samples were heated to 95^C for 

30 sec, 50°C for 30 sec and 60*̂ C for 4 min. This cycle was repeated 25 times. PCR
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products were precipitated using sodium aeetate and ethanol as shown in Section

2.2.2.11 and dried under vacuum using a speedivac. Next the sample was resuspended 

in 25p,l Hi-Di formamide. Subsequently the sample was analysed using an ABI3100 

genetic analyser.

Table 2.3 Oligonucleotides used for sequencing

Primer Nucleotide Sequence Plasmid Sequenced

5'seqCMV 5 ’ TGTACGGTGGGAGGTCTATA 3’ pCMV-E2

3’seqCMV 5 ’ AACAGACTGATCCACAGGAG 3’ pCMV-E2

5’E2seq200 5’ GCAGCAACGAAGTATCCTCTCC 3 ’ pCMV~E2

5’E2seq300 5 ’ GTGTCGTCTACATGGCATTGGAC 3 ’ pCMV-E2

3’E2seq300 5’ GTCCAATGCCATGTAGACGACAC 3 ’ pCMV-E2

Fwdseqinseit 5’ATGGACAGCAAGCGAAC 3’ pOril6Lac, pOriSV40Lac

Revseqinsert 5’CATCAGAGCAGCCGATTGT 3’ pOrilbLac, pOriSV40Lac

T7 primer 5’ GTAATACGACTCACTATAGGGC 3 pOril6M

2.2.2.19 Real-time PCR detection of E1/E2 dependent transient DNA replication

The design o f primers and probes was carried out using Primer Express software 

(Applied Biosystems). The primer set chosen amplifies a 99bp region o f the HPV16 

Ori cloned into pOrilôM  and has the Dpnl site at the 3’ end o f the probe binding site. 

PCR conditions were optimized and were found to be 5.5mM MgCb; 200|iM dATP, 

dCTP and dGTP; 400pM dUTP; 900nM of each primer; lOOnM probe and lU  

Amplitaq® per reaction with Ix geneamp® buffer. PCR reactions were performed on
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a sequence detection system (ABI Prism 7700, Applied Biosystems) according to the 

manufacturer's instructions by using universal PCR conditions (95°C for 30 sec and 

60°C for 1 min, in 40 cycles). Primers and probes used for the detection o f pOril6M  

were; Fwd Primer 5’ ATCGGTTGAACCGAAACCG 3% Rev Primer 

5’TAACTTCTGGGTCGCTCCTG 3’, Probe 5’FAM-

ACCAAAAGAGAACTGCAATGTTTCAGGATCC-TAMRA3’.

To differentiate between replicated and input molecules of pOril6M , haivested DNA 

was digested with either Dpn I or Mbo I. Dpn I will only digest the GATC site when 

both strands are dam methylated and Mbo I digestion is only possible when both 

strands are unmethylated. Therefore Dpn I will not digest the replicated DNA and 

Mbo I will not digest the input DNA.

To detect replicated pO ril6M  25pl o f sample was digested with Dpn I or to detect 

input pOril6M  25pl of sample was digested with Mbo I, each digested overnight. 

Treatment of each sample with exonuclease III for 30min reduces the background that 

is seen with real-time PCR due to incompletely digested DNA. Exonuclease III is then 

heat inactivated by heating each sample to 70^C for 30min. lOpl o f each treated 

sample was run in triplicate using real-time PCR. Quantitation was performed using a 

12 step standard curve from a pO rilôM  dilution series of lOOpg to 10‘̂ pg.

2.2.2.20 Real-time PCR detection of mRNA quantity

Probe and primers for the HPV16 E2 were designed using the Primer Express 

Software (Perkin-Elmer), those for (3-actin were purchased from Applied Biosystems 

and conditions used as per manufacturer. Real-time RT-PCR was perfonned using the 

TaqMan® EZ RT-PCR kit (Applied Biosystems), PCR conditions were as per 

manufacturers recommendations; 3mM MnAc; 300pM dATP, dCTP and dGTP;
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600|iM dUTP; 200nM of each primer; lOOnM probe and 5U rTth polymerase per 

reaction. PCR reactions were performed on a sequence detection system (ABI Prism 

7700, Applied Biosystems) according to the manufacturer's instructions by using 

universal PCR conditions (60°C for 30 min, 95°C for 10 min, then 94'^C for 20 sec 

and 62°C for 1 min, in 40 cycles). Quantitation of E2 was performed using a 12 step 

standard cuiwe from a pCMV-HPV16E2b dilution series of lOOpg to 10'^pg. All 

samples were mn in triplicate. Primers and probe for HPV16 E2 were; Fwd Primer 

5 ’CCTGAAATTATTAGGCAGC ACTTG3 ’, Rev Primer

5’GCGACGGCTTTGGTATGG3’, Probe 5’FAM-CAACCACCCCGCCGCGA- 

TAMRA3’. The (3-actin was perfoimed using the endogenous control TaqMan® (3- 

actin Detection Reagents from Applied Biosystems.

To ensure no DNA contamination was in the RNA sample an equivalent aliquot of 

DNase-I treated RNA was used in a real-time PCR reaction using taq polymease 

(Applied Biosystems) and similar amplification conditions to the real-time RT-PCR 

reaction, no DNA was detected.

2.2.2.21 Detection of mutation frequency

42pi o f sample was digested overnight with Dpnl to remove unreplicated pOril6Lac, 

the sample was then extracted once with phenol-chloroform-isoamyl alcohol, 

precipitated with ethanol and washed with 70% ethanol. The DNA was resuspended 

in 3pi water and electroporated into 25pl DHIOB E.coli bacteria (Invitrogen). 

Electroporation was done in a 2mm electroporation cuvette (Equibio) using a Biorad 

Genepulser II. The conditions used were 2.5kV, 200D, and 25pF. The bacteria were 

subsequently incubated for 1 hour at 37°C in 1ml o f SOC media in a 1.5ml eppendorf. 

Next the bacteria were plated onto two 10cm diameter kanamycin LB agar plates
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containing lOOpg/ml X-gal (Sigma). The a-complementation between the LacZ’ 

gene on pOril6Lac and the deleted LacZ in DHIOB means that DHIOB canying 

pOrilbLac with a wild type LacZ are blue, and those pOril6Lac with mutations in 

LacZ are light blue/white. Selected colonies were picked and grown overnight and 

restreaked on the same medium to confirm the phenotype. Plasmid DNA was 

prepared using small-scale alkali lysis miniprep system (Quiagen) and samples eluted 

in 50pl. 5pi of DNA was digested with BamHI, then subjected to 1% agarose gel 

electrophoresis to highlight plasmid rearrangements.

2.2.3 DNA damage treatments

2.2.3.1 UVB irradiation of cells in culture

UVB irradiation of cells was performed using a Bio-link BLX-312 (Flowgen) that 

emits UVB at a wavelength o f 3 12nm. The media was briefly removed from all plates 

and the cells were irradiated with the dose o f UVB as indicated in each figure legend, 

the media from each plate was then returned to each plate.

2.2.3.2 UVC irradiation of plasmid DNA

pOril6Lac DNA was diluted to 50ng/pl and placed on a plastic petri dish. The DNA 

was then either mock irradiated or irradiated with 1600 J/m^ of UVC at 254nm using 

a Spectrolinker XL1500 (Spectronics Corporation).
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2.2.4 Bioinformatics

2.2.4.1 Protein images

All protein images were generated using the Swiss-Pdb Viewer v3.7 (downloaded for 

free from http://www.expasy.org/spdbv). The image of a full length HPV16 E2 

protein was generated by displaying the amino-terminal crystal stmcture (Idto.pdb) 

with the carboxy-terminal crystal stmcture (lby9.pdb) and a random stmcture of the 

hinge region o f HPV16 E2 was generated using Swiss-Pdb Viewer and placed in 

between the amino-terminal and carboxy-terminal domains.

The Swiss-Pdb Viewer program generated the molecular surface displayed in figures

1.2 and 3.1.14. The electrostatie potential of the surface of the each molecule in the 

two figures was calculated using the Poisson-Bolzmann computational method using 

the Swiss-Pdb Viewer program.

2.2.4.2 E2 amino-terminal homodimerisation modelling

The prediction of the homodimerisation of the amino-terminal of HPV16 E2 was done 

using the Chemera/Bigger molecular graphics and modelling suit obtained from Bio 

Technol, Portugal. This software package was developed by Nuno Palma & Ludwig 

Krippahl at the Universidade Nova de Lisboa, Poitugal, with the support o f Bio 

Technol, Portugal. The Bigger module is a protein docking prediction program and 

the Chemera module is a molecular graphics program used to evaluate the data 

generated with the Bigger program. Using this package I screened different 

conformations o f HPV16 E2 amino-terminal for a homodimerisation interaction and 

assessed the most likely good candidates as models. The final conformation chosen 

was due to very high seoring for the electrostatic interactions, high scoring for 

hydrophobic interactions, side chain interaction and surface contact. Also there was a

5 9
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very high score for the role of R7, R37 and 173 in the homodimerisation with the 

conformation chosen.

2.2.4.2 Phosphorylation site prediction

The predietion of possible phosphorylation sites in HPV 16 E2 was done using the 

online-based NetPhos 2.0 program fhttn://www.cbs.dtu.dk/services/NetPhos/l 

developed by Blom et al 1999. Only those phosphorylation sites predicted with over 

90% confidence are shown.

2.2.4.3 PEST sequence prediction

The prediction o f possible PEST protein degradation control sequences was done 

using the online-based prediction program PESTFIND 

(http://bioweb.pasteur.fr/seQanal/interfaces/pestrrnd.html) hosted by the Pasteur 

Institute, Paris, France. This program is written by Michael K. Schuster and Martin 

Grabner and is a modification o f the original PESTFIND program by Scott Rogers 

and Martin Rechsteiner ©1986.
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Results

3.1

Characterisation of the E2-TopBPl interaction

3.1.1 

Identification of TopBPl as a potential partner protein for E2 function

The amino terminal transactivation domain is essential for the various functions of 

HPV 16 E2. Identification o f potential cellular interacting proteins for the amino- 

terminal domain of E2 was done by Dr W.Boner using a yeast 2 hybrid system (Boner 

et al 2002, Boner & Morgan 2002). The screen was done using a cDNA library made 

from HeLa cells, and a total o f 5x10^ cDNAs were screened using the mating 

technique. HeLa cells are derived from a HPV 18 positive cervical cancer. From this 

screen 20 colonies grew on selective media. Three of the colonies that grew coded for 

the domain in HPV 18 E l that interacts with E2. This result indicates that the yeast 2 

hybrid screen is able to identify biologically relevant E2 binding partners.

Six o f the clones isolated coded for the carboxy-teiminus of TopBPl, a large 1435 

amino acid 171kD protein. TopBPl was cloned when the carboxy-terminus of 

TopBPl was pulled out o f a HeLa cDNA based yeast 2 hybrid screen that was 

looking for proteins that interact with the carboxy-terminal regulatory domain of 

Topoisomerase Iip (Yamane et al 1997). Stracturally TopBPl contains eight BRCT 

domains and has a carboxy-terminal nuclear localisation signal (figure 3.1.1). BRCT 

domains are conserved protein interaction domains found in proteins from yeast to 

humans that function in cellular DNA replication, repair and transcription processes. 

The cellular functions o f TopBPl and the possible role for the E2-TopBPl interaction 

are discussed in section 1.6.4.
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Figure 3.1.1

Diagrammatic representation of TopBPl

Similar to S.c. Dpb11 

 ► M------

Similar to Hs BRCA1 

-► <  ►

Topoisomerase lip and HPV16 E2 
interaction domain

Diagram of the important features in TopBPl. The black boxes represent each of 

the eight numbered BRCT domains. The yellow box highlights the nuclear 

localisation signal. The carboxy-terminal region o f TopBPl, which binds to both 

Topoisomerase Iip and HPV 16 E2, is highlighted in black. Two regions o f homology 

are highlighted by the green and red arrows (adapted from Makeneimi et al 2001). 

The green arrows highlight the amino-terminal regions o f TopBPl that have 

significant homology with the Saccharomyces cerevisiae Dpbll protein. The red 

arrow highlights the caboxy-terminal region that has significant to human BRCAl 

protein.

62



C h a p t e r  3 R e s u  Ils

3.1.2 

Enhancement of E2 transactivation function

To assess the effect of TopBPl on the transactivation potential o f E2, the 

transactivation function o f E2 was measured alone, and with the overexpression of 

TopBPl. Transient transfection o f the cervical carcinoma cell line C33a with ptk6E2 

and the HPV 16 E2 expression plasmid pCMV-E2b allows the measurement o f E2 

transactivation potential. The C33a cell line was used as it is a cervical carcinoma 

epithelial derived cell line that contains no HPV sequences, and therefore does not 

contain any viral proteins that may alter E2 function. The ptk6E2 plasmid has 

luciferase reporter gene expression driven by the HSV tk promoter with six 

consecutive E2 binding sites. E2 binds here and drives the expression of the luciferase 

reporter (Vance et al 1999). E2 alone efficiently transactivates the tk6E2 promoter in 

ptk6E2. When TopBPl is overexpressed this E2 dependent transactivation is 

enhanced 2-4 fold. To test if  this enhancement is due to an indirect effect on the tk 

promoter a parallel experiment was done using a reporter plasmid that lacks the six E2 

binding sites (ptk). E2 expression led to no increase in tk activity, and with all E2 

levels overexpression o f TopBPl led to a 20-40% reduction in the tk promoter 

activity. These results demonstrate that TopBPl enhances E2 mediated transactivation 

(see figure 3.1.2),
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Figure 3.1.2, 

Enhancement of HPV16 E2 transactivation function
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(c) Activation of ptk6E2 by HPVI6 E2 and TopBPl

CM
UJ
CD

Q.
C0

1 
I
O

40

35

30

25

20

15

10

5

0
HPV16

E2
- 1ng 10ng 100ng

TopBPl ipg - iug - ipg - iug

64



C h a p t e r  3 R esu l t s

(d) Activation of ptk by HPV16 E2 and TopBPl

I ■

HPV16
E2

- 1ng 10ng 100ng

TopBPl i u g i u g - i u g 1ug

(a) and (b) are both a diagrammatic representation of the reporter constructs used. 

Red box is the tk promoter from HSVl, yellow arrow is the luciferase gene and 

the green boxes are the E2 binding sites.

(c) C33a cells were transfected with lOOng ptk6E2 with the indicated amounts of 

HPV 16 E2 expression plasmid with or without Ipg TopBPl expression plasmid. 

Results are graphed as the fold activation o f transcription relative to the level o f  

transcription in the absence o f E2.

(d) C33a cells were transfected with lOOng ptk with the indicated amounts o f HPV 16 

E2 expression plasmid with or without Ipg TopBPl expression plasmid. Results 

are graphed as the fold activation of transcription relative to the basal level of 

transcription.
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3.1,3 

HPV E1/E2 mediated DNA replication.

A transient viral DNA replication assay allows the measurement o f the ability of 

E1/E2 to use the cellular replication machineiy to replicate a plasmid containing the 

HPV 16 viral origin of replication, pOril6. Briefly, plasmids expressing the viral E l 

and E2 proteins are transfected along with pO ril6 into the target cell line (pOril6 is a 

plasmid containing the HPV 16 origin o f replication). E l and E2 mediate the 

replication of pO ril6 and at three days post-transfection the low molecular weight 

DNA was harvested. The plasmid DNA haivested was linearised using the Xm nI 

endonuclease, then the input plasmid DNA is selectively digested with the D pnl 

endonuclease. D pnl will only digest DNA that contains the bacterial dam adenine 

méthylation, therefore only DNA transfected will be digested because DNA replicated 

in mammalian cells lack dam méthylation. Subsequent agarose gel electrophoresis 

and Southern blotting allows the visualisation and quantitation o f the level o f DNA 

replication mediated by E l and E2 (see figure 3.1.3)

To initially set-up and characterise the transient replication assay system the level of 

transfected E2 that allows maximal and sub-maximal rates o f DNA replication was 

first established. E2 was titrated into the system, with pO ril6 and E l levels kept 

constant. Figure 3.1.4a is a representative Southern blot from these experiments. No 

replication was detectable when pO ril6M  was transfected alone, or with pE l or pE2 

individually. When E l and E2 are co-expressed significant levels of replication are 

visible with lOng of pE2, replication levels peak at Iqg and are significantly reduced 

at 5|ig o f pE2. When results from three experiments are graphed it is clear that some
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replication can be detected at Ing pE2 on occasions, and that maximal levels of 

replication occur between lOOng and lp.g pE2 (see figure 3.1.4b).

3.1.4

Effect of TopBPl on HPV DNA replication.

To test if  TopBPl effects E1/E2 mediated replication, C33a cells were transfected 

with pOril6M , E l, E2 and TopBPl. Levels o f replication are summarised in figure 

3.1.5a. In C33a cells overexpression o f TopBPl at both submaximal and maximal 

levels o f E2 had no significant effect on the level of replication. To further investigate 

if  TopBPl has any effect, similar assays were done in U 20S cells. U 20S cells 

demonstrated greater activation o f E2 transcription function by TopBPl 

overexpression when compared to C33a cells (1. Morgan, Boner et al 2002). In U 20S 

cells the submaximal level of replication is at lOOng pE2 and maximal is Iqg pE2 

(data not shown). At submaximal levels of pE2 (lOng) in U 20S cells the 

overexpression o f TopBPl enhances E1/E2 mediated replication by 2-3 fold, with no 

significant enhancement at maximal levels o f pE2 lOOng (see figures 3.1.5 b and c).
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Figure 3.1.3

Outline of transient DNA replication assay

Dam methylated plasmids
/ ^©OO

CaP0 4  
T ransfection Cartoon of southern blot.

M Ê
3kbl

72h post transfection  
h arv es t low MW DNA

Dam methylated Unmethylated

Linearise all DNA with Xmn 1

Ori16 E l E2 Oii16

Replicated Dpn1 
resistant Orl16 plasmid

1.2kb Dpn1 cut Input 
Orl16 plasmid

Digest methylated Input DNA with Dpn 1
Oii16 E l E2 O rlie

Schematic diagram of a transient DNA replication assay. The HPV 16 Ori

containing plasmid (pOril6), and the El and E2 expression plasmids are transfected 

into the target cell line. Three days post transfection low molecular weight DNA is 

harvested. In the DNA harvested there are the bacterially dam methylated plasmids 

(pOril6, pCMV-El and pCMV-E2a) that were initially transfected, and the freshly 

replicated unmethylated pOril6 plasmid DNA. All plasmid DNA is linearised by 

XmnI digestion. Digestion with D pnl multiply digests and therefore fragments the 

transfected dam methylated DNA, the unmethylated replicated DNA is D pnl resistant. 

Agarose gel electrophoresis and subsequent Southern blotting using a pOri 16 derived 

probe allows the detection of replicated pOri 16 at 3kb, and input pOri 16 at ~1.2kb.
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Figure 3.1.4 

Transient replication of pOril6 in C33a ceils

(a) Southern blot of E1/E2 dependent DNA replication in C33a cells
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(b) Summary of results of three replication experiments with pOril6
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(a) Southern blot of E1/E2 dependent DNA replication in C33a cells. The

determination o f the effects of various levels o f E2 expression on DNA 

replication. The replication template, pO ril6, and the E l and E2 expression 

vectors were transfected as indicated. Samples were first linearised by XmnI 

digestion, then digested with D pnl as indicated to reveal the replicated band at 

3kb. Linearised pO ril6 loaded at 40pg, lOpg and 4pg are the markers in the left 

three lanes respectively.

(b) Summary of results of three replication experiments with pOril6. Levels of 

the pO ril6 replication template, and the E l and E2 expression plasmids 

transfected is indicated. Quantitation was done using a phosphor-imager. The 

value graphed is the ratio obtained when the Xmnl-Dpnl band quantity is divided 

by the X m nlhm ià  quantity. See materials and methods 22.2.6  for an explanation 

o f the band quantitation procedure.
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Figure 3.1.5 

Effect of TopBPl expression on replication function 

in C33a and U20S cells

(a) Summary of replication in C33a cells 
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(c) Summary of replication in U20S cells 

0.8
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(a) The effect of TopBPl overexpression on the level of replication in C33a cells. 

Graphed results from three experiments, with the pOri 16 replication template, and 

the E l, E2 and TopBPl expression plasmids transfected as indicated. The value 

graphed is the ratio obtained when the Xm nl-Dpnl band quantity is divided by the 

XmnI band quantity. Quantitation was done using a phosphorimager.

(b) The effect of TopBPl overexpression on DNA replication in U20S cells. The 

replication template, pOril6M, and the El and E2 expression vectors were 

transfected as indicated. Samples were first linearised by XmnI digestion, then 

digested with Dpnl as indicated to reveal the replicated band at 3kb.

(c) Effect of TopBPl overexpression on DNA replication in U20S cells. Graphed 

results from three experiments, with the pOril6 replication template, and the E l, 

E2 and TopBPl expression plasmids transfected as indicated. The value graphed 

is the ratio obtained when the Xm nl-Dpnl band quantity is divided by the XmnI 

band quantity. Quantitation was done using a phosphor-imager.
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3.1.5 

Design of a real-time PC R based HPV transient replication detection protocol

The traditional method of detection o f E1/E2 mediated replicated molecules by 

Southern blot is not ideal for several reasons; the lower threshold for the detection of 

DNA is Ipg, the quantitation is not ideal due to its semi-quantitative nature as 

highlighted by the background in figure 3.1.4 b, the protocol is labour intensive 

resulting in limitations on experimental size and design, and Southern blotting is 

hazardous due to the use of radiolabeled probe. Real-time PCR is an established 

technique for the quantitative detection o f specific DNA molecules. 1 therefore 

designed and set-up a real-time PCR based protocol for the detection o f E1/E2 

mediated replicated pO ril6 molecules.

To detect and quantitate the target DNA molecules real-time PCR uses a specific 

primer set and a dual labelled DNA probe. In this case they were designed to detect 

the HPY16 replication origin (see figure 3.1.6, design protocol see section 2.2.2.19). 

To distinguish between transfected and replicated molecules a point mutation was 

introduced into a non-essential region o f the origin within the real-time PCR 

amplicon, creating a D pnl site (see figure 3.1.6). Therefore when a sample is digested 

with D pnl all transfected pOril6M  molecules will no longer support PCR 

amplification, but the D pnl resistant replicated pOril6M  will be detected by real-time 

PCR. To enhance the distinction between replicated and transfected molecules the 

sample is subsequently digested with endonuclease 111, which indiscriminately digests 

DNA from free ends. Replicated pOril6M  DNA is resistant to exonuclease III 

digestion due to the molecules still being circular. This digestion reduces the 

background signal resulting fi om incomplete digestion o f transfected pOril6M .
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Figure 3.1.6

Design of the real-time PCR replication assay

Dpn
restriction site 13 9

7 8 3 8

5
e1  { E l GATC

3

JI
Fwd Fluorescent Probe Rev 

Primer Primer

Design of real-time PCR based replication assay. Outline o f HPV 16 origin 

sequence cloned into pOril6M. Dark grey shaded area is the minimal origin of 

replication from HPV 16 (nt 7838 -  139) cloned into pSK II(-). This contains one El 

binding site and three E2 binding sites. The real-time PCR primers and probe were 

designed against nt 49 -  139 and their positions are shown. Within the probe binding 

site the sequence GATC, a D pnl restriction site, is highlighted. This was created by 

point mutation of nt 115 from C to T, the mutated T is underlined. “F” is the reporter 

FAM fluorochrome and “T” is the quencher fluorochrome.
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3.1.6

Titration of pOril6M

Initial experiments with the real-time PCR protocol used identical conditions to those 

used for the previous Southern blot experiments, with Ipg pOril6M , with 5pg pE2 

and lOOng pE2 transfected into C33a cells to activate replication. These experiments 

were disappointing, as there was a very high background signal when there was no 

E1/E2 present. However there was a small and repeatable four to ten fold increase in 

the signal when E l and E2 were transfected (data not shown). A possible explanation 

for this is that there is a small fraction o f the transfected molecules that are resistant to 

D pnl or Endonuclease III digestion, and these molecules are heterogeneous in size 

and are therefore undetectable on a Southern blot. To test this hypothesis I titrated 

pOril6M  into the system while keeping E l and E2 expression constant.

At Ipg o f input pOril6M  there is a ~10 fold difference between non-replicating 

background samples and replicating samples (figure 3.1.7). As the amount of 

pOrilôM  is reduced by 10 fold the amount o f background is reduced until it reaches 0 

at lOOpg pOril6M . Significantly as pO ril6M  is reduced the amount of replication as 

detected in this assay falls by a relatively small amount (~ 5 fold from Ipg pOril6M  

to Ing pOril6M ) whereas the background is reduced by -400  fold. At lOOpg 

pO ril6M  transfected the level o f pOril6M  significantly limits the amount of 

replication able to occur. The representative Southern blot for this experiment 

highlights that the signal detected when E1/E2 is present miiTors the bands on the 

blot, however the background signal observed with real-time PCR is not detected at 

all concentrations of pO ril6M  on the blot. Additionally at Ing pO ril6M  the 

efficiency o f viral replication is good, and the background is approximately 4000 fold 

less than the signal when there is replication activated by E l and E2.
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Figure 3.1.7

Titration of pOril6M
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A titration of the amount of pOril6M transfected with either no El and E2, or 

with El and E2 co transfected. Samples were analysed with both real-time PCR and 

Southern blot. Real-time PCR results are plotted on a bar chart and the Southern blot 

is below. Real-time PCR samples were digested with D pnl and Southern blot samples 

were digested with Dpn/and XmnI to reveal linear replicated pOril6M at 3kb.
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3.1.7

Evaluating the sensitivity of real-time PCR protocol

To evaluate the sensitivity o f the real-time PCR protocol a titration o f E2 expression 

plasmid was transfected into the system with Ing pOril6M  (Figure 3.1.8). Replication 

peaked with lOOng E2 transfected, at Ing and lOng E2 the replication is sub-optimal 

and at Ijig E2 there is a decrease in replication probably due to “squelching”. Also 

there is no detectable replication with just E l or E2 expressed individually confirming 

that co-operation between E l and E2 is required for replication of pOril6M . 

Comparing the results for the real-time PCR with the Southern blot reveals that the 

real-time PCR detection method is more sensitive at detecting replication. The 

Southern blot could only detect replication at lOOng and Ipg E2 with lOng pOril6M  

and lOOng E2 with Ing pOril6M . With both Ing and lOng pOril6M  real-time PCR is 

able to detect viral DNA replication at levels at least 100 fold lower than the Southern 

blot can detect. This set o f experiments highlights the increased sensitivity o f the real

time PCR protocol.

3.1.8 

Selective detection of transfected pOril6M by Mbol digestion

To internally control a replication assay the quantitation of the amount o f input 

pOril6M  is an effective method for controlling against variation in transfection and 

DNA harvest efficiency. To use this method with real-time PCR, I digested the 

samples with MboL The restriction site for M bol is the same as D pnl (GATC) except 

M bol can only digest DNA that is dam negative, it is blocked by the méthylation on 

dam positive DNA. This results in the digestion of freshly replicated pO ril6M  in the 

sample and dam positive input DNA is detected using real-time PCR. An experiment
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using M bol digested samples from Figure 3.1.8 was done using real-time PCR (see 

figure 3.1.9). This demonstrates the clear detection of the transfected input pOril6M  

and the consistency between samples. This information can be used in future 

experiments to internally control for variations in transfection efficiency and DNA 

harvest efficiency.

3.1.9 

Enhancement of HPV replication by TopBPl overexpression in C33a cells

I previously demonstrated that overexpression o f TopBPl enhances E1/E2 mediated 

replication in U 20S cells using Southern blotting. Similar experiments in C33a cells 

showed no reproducible difference in the level o f replication observed with TopBPl 

using Southern blotting (Boner et al 2002 and figure 3.1.5a). It is possible however 

that no difference was observed as the replication system was not fully optimised in 

C33a cells, and therefore the subtle effects that the overexpression o f an E2 

interacting protein may have on replication were undetectable. To highlight the 

benefits o f the increased sensitivity the real-time PCR protocol offers, I overexpressed 

TopBPl with sub-maximal levels o f E2 (Ing and lOng) with Ing pO ril6M  in C33a 

cells. Overexpression o f TopBPl significantly enhances the E1/E2 dependent 

replication with a 5 fold increase using Ing E2 and a 2.5 fold increase using lOng E2. 

Therefore there is a significant effect on E1/E2 mediated DNA replication following 

TopBPl overexpression that was undetectable using Southern blotting in C33a cells. 

This demonstrates that the real-time protocol described here has enhanced sensitivity 

and quantitation for assaying E1/E2 mediated DNA replication.
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Figure 3.1.8

Titration of E2
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Titration of E2 with Ing pOril6M  transfected. Samples were analysed with both 

real-time PCR and Southern blot. Real-time PCR samples were digested with D pn/ 

and Southern blot samples were digested with D pnl and XmnI to reveal linear 

replicated pOril6M at 3kb.
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Figure 3.1.9

Detection of input pOril6M for use as an internal control
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Detection of input pOril6M for use as an internal control. Mbol digests the 

replicated dam negative DNA leaving the dam positive DNA intact and therefore 

detectable by real-time PCR. Samples from figure 3.1.8 were Mbol treated and 

analysed using real-time PCR.
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Figure 3.1.10

Increased replication with overexpression of TopBPl
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Increased replication with overexpression of TopBPl in C33a cells. Internally 

controlled detection of replication using either Ing or lOng E2, with or without Ipg 

TopBPl. Data shown is the D pnl digest o f each sample detected with the real-time 

PCR protocol.
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3.1.10 

ATopBPl does not activate E2 mediated transcription/replication

The enhancement of E2 mediated transcription and replication by the overexpression 

o f TopBPl suggests that TopBPl is a functional partner for E2. TopBPl has multiple 

domains potentially responsible for the enhancement of the transactivation function o f 

E2 and E1/E2 dependent replication. The E2 binding region o f TopBPl that was 

identified in the yeast 2 hybrid screen for E2 interacting proteins was the C-teiminal 

half o f TopBPl. In yeast the two BRCT domains at the amino terminus of TopBPl 

have the ability to activate transcription therefore a similar function may be present in 

mammalian cells (Makiniem et al 2001). Additionally the amino teiminal half of 

TopBPl has close structural homology to C ut5/D pbll, while the C-tenninal E2 

binding domain has limited homology to the C-tenninus of BRCAl. A deletion 

mutant of TopBPl that binds to E2 yet lacks the amino-tenninal 5 BRCT domains 

was used in transcription and replication assays for two reasons. Firstly, to test if the 

full length TopBPl protein is required for enhancement o f E2 function. Secondly, to 

potentially demonstrate a dominant negative effect from a deleted TopBPl on E2 

Jhmction.

To begin to understand what region o f TopBPl is responsible for the enhancement of 

E2 function, and if  an amino terminal deleted TopBPl can act as a dominant negative 

molecule for E2 function, transactivation and replication assays were repeated using a 

deletion mutant of TopBPl (amino acids 776-1435, see figure 3.1.11). Over 

expression of ATopBPl did not result in a reduction o f E2 transactivation potential, 

and it did not enhance the transactivation function o f E2 to the levels that the full 

length TopBPl does in C33a cells (see figure 3.1.12). A similar experiment was
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carried out in U 20S cells demonstrating that ATopBPl does not significantly alter E2 

mediated transactivation function (Boner et a l 2002).

The effect o f over expression o f ATopBPl on replication function was tested and a 

representative Southern blot is shown in figure 3.1.13. 

No significant effect on the levels o f sub-maximal replication in U 20S cells was 

observed with ATopBPl in contrast to the enhancement of replication with full length 

TopBP 1 (see figure 3.1.13).

Figure 3.1.11

Diagram of TopBPl deletion mutant

Topoisomerase lip and HPV16 E2 
interacting domain

776 1435

Diagram of the TopBPl deletion mutant used in transcription and replication

assays. Amino acid numbers are displayed below, the black numbered boxes are the

BRCT domains and the yellow box is the nuclear localisation signal.
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Figure 3.1.12

Effect of ATopBPl overexpression on E2 dependent transcription

E2 - 10ng 100ng
TopBPl - ipg - - ing - - ipg -

ATopBPl - - ipg - Ipg - - ipg

Effect of ATopBPl overexpression on E2 dependent transcription. U 20S cells 

were transfected with lOOng ptk6E2 with the indicated amounts o f HPV16 E2 

expression plasmid with or without Ipg TopBPl or ATopBPl expression plasmid. 

Results are graphed as the fold activation o f transcription relative to the basal level of 

transcription. Graphed results from three experiments.
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Figure 3.1.13

Effect of expression of ATopBPl on the level 

of E1/E2 mediated replication

pCh16 1p9
El 5ug
E2 100ng

TopBPl 1 1M9 -
ATopBPl - 1m9 5m9

Cpnl
digBSt

+ - + + +

Effect of expression of ATopBPl on the level of E1/E2 mediated replication. The

replication template, pOril6M, and the El and E2 expression vectors were transfected 

as indicated into U 20S cells. Samples were first linearised by XmnI digestion, then 

digested with D pnl as indicated to reveal the replicated band at 3kb.
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3.1.11 Point mutation analysis of the amino-terminal of E2

ATopBPl is unable to alter the transactivation function of E2 or E1/E2 mediated 

replication, suggesting that TopBPl is not essential for either of these functions of E2. 

However endogenous TopBPl may be able to functionally compete and maintain E2 

function in the presence o f the ATopBPl, or ATopBPl may still have the domains 

responsible for E2 function and may only lack the enhancement effect of the amino 

teiminus. The inability of ATopBPl to repress the transactivation function of E2 or 

E1/E2 mediated replication also suggests that TopBPl neither disrupts the 

hypothesised amino tenninal homodimerisation o f E2 necessary for transactivation 

function, or the interaction between E2 and E l on the amino terminus o f E2. A point 

mutant of HPV16 E2 that does not bind TopBPl would be a useful tool in 

understanding if TopBPl is an essential partner for E2 function. In vitro pull down 

data indicate that TopBPl requires the first 25-110 amino acids o f E2 for efficient 

interaction (LMorgan, Boner et al 2002). This region contains many conserved amino 

acids essential for either transactivation or replication function and these residues are 

localised to discrete domains on the surface o f E2 (Saki et al 1996, Antson et al 

2000). There are also many conserved residues that have had no previous role in 

transcription or replication identified. These latter residues are either hydrophobic 

internal stmctural amino acids, or are external amino acids that potentially interact 

with E2 partner proteins. I therefore made targeted mutants o f E2 with the aim of 

making a functional E2 protein that is unable to bind TopBPl.

The amino terminal crystal structure has been resolved and is therefore a useful tool in 

the prediction of possible surfaces for TopBPl interaction with E2. The residues 

picked for point mutation were chosen due to their high conseiwation and their 

exposure on the surface o f E2. Additionally, to prevent the dismption of the E2
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homodimerisation or the E1-E2 interaction the residues chosen were preferentially 

away from these two interaction surfaces. To aid this choice I used the amino teiminal 

crystal structure and computer modelled the homodimerisation o f two E2 amino 

terminal domains (see figure 3.1.14a); residues essential for transcription (R37, 173 

and Q76) and replication (Q12 and E39) are highlighted (Saki et al 1996). The model 

produced for the homodimerisation o f the amino teiminal of HPV16 E2 was veiy 

favourable for electrostatic interactions, and was further refined by scoring for the 

involvement o f three essential residues o f transactivation (R7, R37 and 173). The 

model generated is similar to that produced by Antson et al 2000. The identification 

o f the E2-E2 and the E1-E2 interaction surfaces aided the choice of four residues for 

point mutation distant from these interaction surfaces. The four residues chosen were 

Y44, R47, K68 and Y 102. Two of these residues, R47 and K68, have previously been 

characterised as having no significant effect on E2 function (Saki et al 1996) and two 

residues have not been previously characterised (Y44 and Y 102). Figure 3.1.14b 

shows the location of the four residues mutated, and it also shows the location o f two 

residues essential for transactivation or replication function (R37 and E39 

respectively).

Initial characterisation o f the E2 point mutants by sequencing and western blotting 

ensured that the plasmids created expressed the coiTect proteins, and that these 

proteins were expressed at a similar level to the wild type E2 protein. Figure 3.1.15 is 

a western blot o f the wild type and each point mutant E2 protein transiently expressed 

in C33a cells from 2jig o f expression vector. No signal is visible when no E2 is 

transfected, however for the wild type and all the point mutants of E2 a similar strong 

level o f expression of E2 was detected using the anti-E2 antibody.
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Figure 3.1.14

Design of point mutations in the amino-terminal domain 

ofHPV16E2

(a) Computer generated model of a dimeric amino terminal

(b) Diagram of the residues chosen for point mutation

(•
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(a) Computer generated model of a dimeric amino terminal of HPV16 E2. Using 

the ciystal strucutre of HPV16 E2 (Idto.pdb) and the Chemera/Bigger protein 

docking prediction program a model o f the dimeric configuration of HPV16 E2 

amino terminal was created. The model was generated using the Bigger protein 

docking algorithm and the Chemera molecular graphics and modelling software. 

The Bigger algorithm searches every possible surface contact and orientation that 

two molecules can have with each other searching through a set o f 1 A angular 

rotational steps. Each possible contact generated is then scored on surface contact, 

electrostatic interactions, hydrophobic interactions and side chain interactions. 

Further refinement of the model was done using the Chemera program to highlight 

those interactions where the residues R7, R37 and 173 are important for E2 

homodimerisation.

(i) Two HPV 16 E2 amino terminal domains are illustrated. One subunit has its 

molecular surface shown with the molecules surface electrostatic potential 

shown. The second subunit is drawn as a cartoon, important residues (see text 

section 3.1.10) are highlighted and are drawn as sticks.

(ii), (iii) and (iv) all show the stracture o f a dimer o f the amino-terminal domian of 

HPV 16 E2 from various angles. The yellow dashed line highlights the contact 

surface between the two subunits. The amino and carboxy tenninals o f each 

subunit is highlighted as N and C respectively.

(b) Cartoon diagram of the residues chosen for point mutation. Cartoon o f the 

crystal stmcture o f HPV 16 E2 amino terminal domain. The four residues chosen 

for point mutation were Y44, R47, K68 and Y102. They are drawn as sticks in 

blue. Two residues essential for transactivation (R37) and replication (E39) are 

drawn as sticks in purple and green respectively.
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Figure 3.1.15

Western blot of E2 mutants

TopBPl

HPV16
E2

2pg - WT Y44A R47A K68A Y102A
HPV16 E2

Expression of HPV16 E2 mutants. U 20S cells were transfected with 2|ig o f wild 

type and mutant E2 as indicated. Cellular protein extracts were prepared and were 

subjected to SDS-page electrophoresis and western blotted. The upper portion of the 

blot was probed with an a-TopBPl antibody and the lower was probed using the 

TVG261 a-E2 antibody. The positions o f the molecular markers are indicated on the 

left in kD.
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3.1.12

Ability of E2 point mutant proteins to activate transcription and the effect of 

TopBPl over expression

The transactivation function o f the E2 point mutants was next analysed with the 

ability of over expression o f TopBPl to enhance this function also tested (see figure 

3.1.16). In the absence of E2 the overexpression o f TopBPl leads to a repression of 

the tk6E2 promoter in ptk6E2, a result similar to that observed with the tk promoter in 

ptk in figure 3.1.2d. For wild type E2 there is a three-fold enhancement o f the 

transactivation o f tk6E2 promoter by the overexpression o f TopBPl. With the Y44A 

mutant E2 there is no significant transactivation o f the tk6E2 promoter by E2, and 

overexpression of TopBPl leads to a repression o f the tk6E2 promoter in a similar 

manner to that observed when no E2 is expressed. The R47A mutant o f E2 behaves in 

a similar mamier to wild type E2, with transactivation of the tk6E2 promoter by E2 

and this is enhanced by the overexpression o f TopBPl. The K68A and Y 102A mutant 

E2 proteins share similar transactivation characteristics, both alone do not 

transactivate the tk6E2 promoter significantly, however with both proteins 

transactivation is enhanced by the overexpression of TopBPl by two fold. The 

enhancement o f transactivation by E2 with the R47A, K68A and the Y 102A mutants 

suggests that TopBPl can bind to and enhance the transactivation function of the 

proteins. The lack o f transactivation by the Y44A mutant protein and the repression of 

the tk6E2 promoter could indicate one o f three possibilities. Firstly, the Y44A mutant 

protein is itself unable to bind the ptk6E2 plasmid, and therefore the tk6E2 promoter 

is repressed by TopBPl due to no E2 binding the plasmid. Secondly, the Y44A 

mutant protein is unable to activate transcription, and TopBPl overexpression only 

enhances transcription from the tk6E2 promoter when E2 initiates the conformational
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changes in chromatin at the promoter associated with transcription. Thirdly, the Y44A 

protein does not bind TopBPl and therefore the overexpression o f TopBPl leads to 

repression of the tk6E2 promoter in trans, similarly to when no E2 is present.

3.1.13

Ability of E2 point mutant proteins to activate DNA replication and the affect of 

TopBPl over expression

Further characterisation o f the E2 mutant proteins was done by analysing their ability 

to activate DNA replication, and the ability of TopBPl overexpression to enhance 

replication with each mutant was tested (figure 3.1.17). Wild type E2 activated DNA 

replication efficiently and the overexpression o f TopBPl resulted in a two-fold 

enhancement o f the replication level. Each point mutant o f E2 was able to activate 

DNA replication to a similar level as the wild type E2, and with each E2 point mutant 

TopBPl overexpression affected DNA replication to vaiying degrees. The replication 

with the Y44A and R47A mutant E2 proteins was unaffected by TopBPl 

overexpression, and with the K68A and Y 102 mutants the replication was enhanced 

by two to four fold respectively. These results suggest that the Y44A and R47A 

mutants are unable to interact with TopBPl.

3.1.14 

In vivo interaction between TopBPl and the E2 point mutant proteins

To test if TopBPl can bind to each of the E2 point mutants in vivo co- 

immunoprecipitation of TopBPl with transfected E2 was perfoimed to demonstrate 

the amount o f E2 that can bind to TopBPl. Figure 3.1.18 is the western blot of the 

immunoprecipitated protein pulled down using a polyclonal TopBPl antibody. The
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upper half of the western blot is probed for TopBPl and the lower half is for HPV 16 

E2. In lanes 1 and 2 when no E2 is expressed no signal is detected at -4 3 kD and 

TopBPl is only visible when immunoprecipitated with the immune TopBPl serum, 

not the pre-immune. In lanes 3 and 4 WT E2 is expressed and E2 is co- 

immunoprecipitated with TopBPl, no signal for E2 is visible when using the pre- 

immune seram. In lanes 5 to 9 the point mutants o f E2 are expressed as indicated and 

co-immunoprecipitated using the immune TopBPl semm. The amount of TopBl 

pulled down is similar with each point mutant and with each point mutant of E2 there 

is a significant amount of E2 pulled down. While on the blot shown there is variation 

in the amount o f E2 pulled down these differences were not repeatable. This 

experiment demonstrates that while the E2 point mutants have varying phenotypes in 

response to TopBPl overexpression, these phenotypes cannot be explained solely due 

to an inability o f the mutant E2 to bind TopBPl. On the contrary this result suggests 

that the phenotypes displayed by the E2 point mutants are due to alterations o f E2 

function that the point mutations cause.
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Figure 3.1.16

Effect of TopBPl on mutant E2 proteins transactivation function

g  25

O 20

E2 - WT Y44A R47A K6 8 A Y102A
TopB Pt lu g lu g lu g - 1 lu g lu g lu g

The effect of TopBPl overexpression on the transactivation function of E2 

mutants. U20S cells were transfected with Ipg ptk6E2 with the indicated amounts 

o f HPV 16 E2 mutant expression plasmid with or without Ipg TopBPl expression 

plasmid. Results are graphed as the fold activation of transcription relative to the basal 

level o f transcription.
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Figure 3.1.17

Effect of TopBPl overexpression on E1/E2 replication function 

using E2 point mutants

g 10

pOriieM Ing
E1 - 5u9n - lOng WT lOng Y44A lOng R47A lOng k68A lOng 102A

TopBPl - 1 ipg - 1 1u9 - 1 1pg - 1 1u9 - 1 iug - 1 1u9

The effect of TopBPl overexpression on the ability of mutant E2 proteins to 

activate E1/E2 mediated replication. C33a cells were transfected with E l, wild type 

or mutant E2 and TopBPl as indicated. The amount o f replicated DNA was 

determined by real-time PCR as described in section 3.1.8.
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Figure 3.1.18

Co-immunoprecipitation of E2 mutants with TopBPl

E2 - - WT
E2

WT
E2

Y44A
E2

R47A
E2

K68A
E2

Y102A
E2

I.P.
Pre-immune

4- - 4- - - - - -

I.P.
Immune TopBPl

- 4- - 4- 4- 4- 4- 4-

Ability of E2 mutant proteins to bind TopBPl. U 20S cells were transfected with 

2pg of wild type and mutant E2 as indicated. Cellular protein extracts were prepared 

and immunoprecipitated with either pre-immune serum or a-TopBPl serum as 

indicated. The immunoprecipitated material was subjected to SDS-page 

electrophoresis and western blotted. The upper portion of the blot was probed with an 

a-TopBPl antibody and the lower was probed using the TVG261 a-E2 antibody. The 

positions o f the molecular markers are indicated on the left in kD.

96



C h a p t e r  3 R e s u l t s

3.2

Response of HPV16 E2 protein to UVB irradiation

The HPV 16 E2 protein has many cellular binding partners (see sections 1.6.2-1.6.4). 

Several o f these proteins have central roles in signal transduction pathways that 

control the cellular response to DNA damage (p53, BRCAl, TopBPl, PARP, see 

sections 1.6.3-1.6.4). These proteins have altered levels, modifications and functions 

in response to genomic insult. These interactions suggest that E2 may itself respond to 

DNA damage stimuli thus the response o f E2 to cellular UVB irradiation (and other 

DNA damage agents) was evaluated. UVB inadiation induces both direct and indirect 

damage to DNA (see Ravanat et al 2001 for review) and causes the activation of the 

cellular DNA damage checkpoint responses. U 20S cells were used for most assays in 

this study for two reasons. Firstly, U 20S cells are p53 wild type and on starting these 

experiments it was deemed desirable to have p53 present because p53 has important 

roles in the HPV life cycle, and is an E2 interacting protein. p53 suppresses E1/E2 

mediated viral DNA replication (Lepik et al 1998), the E6 protein targets p53 for 

degradation, and HPV 16 E2 induces apoptosis in HPV negative cells through a p53 

dependent mechanism. Secondly, U 20S cells do not undergo apoptosis by HPV 16 E2 

expression even though they are p53 wild type, and this is highlighted by the creation 

of U 20S cells that stably express E2 (these cell lines were prepared by Dr Winifred 

Boner, see Taylor et al 2003 a). This point is important because a combination o f E2 

and UVB irradiation could be very toxic for many other cell lines. Unfortunately there 

are no known epithelial cell lines that are p53 wild type and resistant to E2 induced 

apoptosis.
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3.2.1 

Cellular UVB irradiation reduces the transactivation potential of E2

To test what effect UVB irradiation has on the transactivation frmction, cells 

transfected with ptk6E2 and E2 Were inadiated or mock irradiated with UVB 

irradiation 24 hours post transfection. 16 hours post irradiation cell extracts were 

harvested and luciferase counts were determined. With lOng of E2 present there was a 

25 fold activation of the tk6E2 promoter, UVB irradiation repressed the E2 dependent 

transactivation by 5 fold, see figure 3.2.1a and compare lane 4 with lanes 5 and 6. No 

significant effect on the activation o f the tk6E2 promoter was observed with UVB 

irradiation in the absence o f E2. To control for cell death and more general effects on 

transcription a parallel experiment was done using the ptk reporter plasmid (see figure 

3.2.1b). When cells are irradiated there is no significant effect on transcription from 

the ptk plasmid. When E2 is expressed the transcription from ptk is repressed by 50% 

however this level o f transcription is not affected by UVB irradiation. These results 

demonstrate that cellular UVB irradiation results in a significant reduction in the 

transactivation potential o f E2 and this reduction is independent of cell death and 

general transcription inhibition.

HPV 16 E2 is from a high-risk HPV subtype that infects mucosal epithelium, therefore 

to further characterise the effect o f UVB irradiation on E2 the effect of UVB 

iiradiation on HPV8 E2 transactivation function was tested. HPV8 is a virus that 

infects cutaneous epithelia (see table 1.1). With the ptk6E2 reporter HPV8 E2 

activates the tk6E2 promoter twenty fold. With 300 J/m^ UVB irradiation there is a 

four fold repression of this activation and at 400 J/m^ UVB the activation by E2 is 

reduced to levels similar to the basal level of transcription (see figure 3.2.2a). When
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the response o f ptk was tested no significant effect on transcription was obseiwed with 

UVB irradiation, either with or with-out E2 (see figure 3.2.2b). Also HPV8 E2 

expression alone did not effect the level of transcription from the ptk reporter.

Additional characterisation o f the response o f E2 to UVB was done using a chimeric 

E2 molecule. VP16-E2 contains the hinge and DNA binding domain o f BPVl E2 and 

the heipes virus VP 16 transactivation domain replaces the BPVl E2 transactivation. 

With the ptk6E2 reporter VP16-E2 activates the tk6E2 promoter four hundred fold 

and with UVB irradiation there is a four fold repression of this activation. This result 

is o f interest and will be discussed in detail later.

UVB iiTadiation stimulates multiple DNA damage signalling pathways therefore to 

test if  the reduction of E2 transactivation function is due to a generic DNA damage 

signal cells were treated with the chemotheraputic agents hydroxyurea or etoposide 

(LMorgan. Taylor et al 2003 a). Hydroxyurea is an inhibitor o f ribonucleotide 

reductase resulting in the depletion o f nucleotides available for DNA synthesis and 

causes the stalling o f replication forks and a cell cycle arrest early in S-phase (Yarbro 

1992). Etoposide is a DNA topoisomerase II inhibitor that results in double stranded 

DNA breaks during late S-phase and G2 that results in a G2 arrest (Chow & Ross 

1987). Treatment of U 20S cells with both these agents does not result in a reduction 

in E2 transactivation potential even though a DNA damage repsonse is induced as 

demonstrated by the increase in p53 level (E.Doman. Taylor et al 2003 a).
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Figure 3.2.1

UVB mediated repression of HPV16 E2 transactivation function

(a)
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UVB irradiation downregulates H PVI6 E2 transactivation function

(a) U 20S cells were transfected with ptk6E2 (Ipg), lOng of E2 and UVB irradiated 

as indicated (red bars). Lanes 1-3 show the effect o f UVB irradiation on the basal 

level o f transcription fi'om the tk6E2 promoter. Lanes 4-6 show the effect o f UVB 

irradiation on E2 mediated transactivation.

(b) U 20S cells were transfected with ptk (Ipg), lOng of E2 and UVB hradiated as 

indicated (red bars). Lanes 1-3 show the effect o f UVB irradiation on transcription 

from the tk promoter. Lanes 4-6 show the effect of UVB iiTadiation on 

transcription when E2 is present.
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Figure 3.2.2

UVB mediated repression of HPV8 E2 transactivation function

(a)
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UVB irradiation downregulates HPV8 E2 transactivation function

(a) U 20S cells were transfected with ptk6E2 (Ipg), lOng of E2 and UVB irradiated 

as indicated (red bars). Lanes 1-3 show the effect of UVB irradiation on the basal 

level o f transcription from the tk6E2 promoter. Lanes 4-6 show the effect of UVB 

iiTadiation on E2 mediated transactivation.

(b) U 20S cells were transfected with ptk (Ipg), lOng of E2 and UVB irradiated as 

indicated (red bars). Lanes 1-3 show the effect o f UVB irradiation on 

transcription from the tk promoter. Lanes 4-6 show the effect o f UVB inadiation 

on transcription when E2 is present.
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Figure 3.2.3

UVB mediated downregulation of VP16-E2 transactivation function
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UVB irradiation downregulates VP16-E2 transactivation function. U 20S cells 

were transfected with ptk6E2 (Ipg), lOng o f VP16-E2 and UVB irradiated as 

indicated (red bars). Lanes 1-3 show the effect o f UVB irradiation on the basal level 

o f transcription from the tk6E2 promoter. Lanes 4-6 show the effect of UVB 

irradiation on VP16-E2 mediated transactivation.
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3.2.2 

Repression of E2 function is independent of p53 function

The p53 protein is functionally altered in response to DNA damage due to direct 

protein modifications, protein abundance and protein turnover (see review Wahl & 

Carr 2001). HPV16 E2 and p53 fiinctionally interact therefore p53 is a good candidate 

cellular interacting protein for modifying E2 Emotion. The HPV16 E6 protein binds 

and degrades p53 and can therefore be used as a tool to investigate the role of p53 on 

the response of E2 to UVB iiTadiation.

To demonstrate that transfection with E6 results in a reduction in p53 function 

reporter plasmids containing the fos promoter with or without upstream p53 binding 

sites (Midgley et al 2000) were transfected into U20S cells. The fos promoter is 

activated fifteen fold when there is upstream p53 binding sites (see figure 3.2.4). Co

transfection with HPV16 E6 results in repression o f this activation three fold, 

demonstrating that E6 is reducing p53 function in U 20S cells. Assaying the effect of 

E6 expression on the repression o f E2 function by UVB irradiation was done using 

the ptk6E2 reporter (see figure 3.2.5a). The presence o f E6 has no significant effect 

on the ability o f HPV16 E2 to transactivate nor on the UVB mediated reduction of E2 

transactivation o f ptk6E2 (figure 3.2.5a compare lanes 5 and 6 with lanes 7 and 8). 

This indicates that p53 is not primarily responsible for the repression o f E2 by UVB. 

This experiment was done in parallel with the ptk reporter to control for general 

effects on transcription and cell death, no significant differences were observed with 

E2, E6, UVB or with combinations o f all three (see figure 3.2.5b).

To further highlight that the UVB mediated repression of E2 function is independent 

o f p53 function, transcription assays similar to figure 3.2.5 were done by Eilidh 

MacKay in the human osteosarcoma cell line Saos2 that is p53 null. In Saos2 cells
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HPV16 E2 activates transcription from ptk6E2 by 400 fold and UVB irradiation 

represses this activation by two fold (see Taylor et al 2003 a). This result confirms 

that p53 is not primarily responsible for the repression of the transactivation function 

of E2 by UVB irradiation.

Figure 3.2.4

Reduction of p53 function by HPV16 E6

1 2 3 4
Reporter pfos pfos pfos53BS pfos53BS

E6 - + - +

Reduction of p53 transactivation function by expression of HPVI6 E6. pfos-Luc 

reporter (l|ig ) was co transfected with or without Ipg of HPV16 E6 (lanes 1 and 2). 

p53BSfos-Luc reporter (Ipg) was co-transfected with or without Ipg o f HPV16 E6 

(lanes 3 and 4). Lanes 1 and 2 show the effect o f HPV16 E6 expression on the level of 

transcrioption from the fos promoter. Lanes 3 and 4 show the level o f transcription 

from a fos promoter with consecutive p53 binding sites.
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Figure 3.2.5

UVB reduces HPV16 E2 transactivation function in a p53 

independent manner
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Compromisation of p53 function by expression of HPV16 E6 has no effect on 

UVB downregulation of E2 transactivation function

(a) ptk6E2 (Ipg) was co-transfected with lOng E2 and Ipg E6 into U 20S cells as 

indicated. 300 J /n f  UVB irradiation is as indicated (red bars). Lanes 1-4 show the 

effect of E6 and UVB irradiation o f the basal level o f transcription from the tk6E2 

promoter. Lanes 5-8 show the effect o f E6 and UVB irradiation on the 

trans activation of the tk promoter by E2.

(b) ptk (Ipg) was co-transfected with lOng E2 and Ipg E6 into U 20S cells as 

indicated. 300 J/m^ UVB irradiation is as indicated (red bars). Lanes 1-4 show the 

effect of E6 and UVB iiTadiation of the level of transcription from the tk 

promoter. Lanes 5-8 show the effect of E6 and UVB iiTadiation of the level of 

transcription from the tk promoter when E2 is present.
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3.2.3 

E2 protein level is reduced after UVB irradiation

The reduction o f the E2 trans activation function could be due to a reduction of E2 

protein level. To test this U 20S cells were transfected with 500ng of pCMY-E2b then 

UVB irradiated. Western blot analysis of E2 protein levels was done at various time 

points after UVB iiTadiation as indicated in figure 3.2.6. E2 protein levels remain 

constant for the first two hours after irradiation after which E2 levels are significantly 

reduced with maximal effect eight hours after irradiation. Sixteen hours after 

irradiation E2 levels are restored. This experiment has been repeated by Dr Winifred 

Boner using the U 20S cells that stably express HPV16 E2 (see Taylor et al 2003 a). 

These experiments demonstrate a similar reduction in the level of HPV16 E2 post 

UVB iiTadiation. These western blots also show that post UVB irradiation p53 levels 

are increased significantly therefore demonstrating that there is activation o f the DNA 

damage response post UVB irradiation. Additionally hydroxyurea treatment of these 

stable cell lines induces p53 however this does not lead to the degradation o f HPV16 

E2 (E.Doinan, Taylor et al 2003 a).

To ensure that the reduction o f E2 protein level is not due to a reduction in E2 mRNA 

amount quantitative Taqman® RT-PCR was performed on mRNA extracts two and 

eight hours post irradiation. This was done using the U 20S cells that stably express 

HPV16 E2. The relative amount of mRNA present at these time points was compared 

to that prior to irradiation and the relative value plotted in figure 3.2.7, actin mRNA 

was used as an internal control. There was no significant reduction in E2 mRNA in 

response to UVB irradiation. This experiment indicates that the reduction in E2 level 

is done post transcriptionally.

109



C h a p t e r  3 Kesi i l l s

Inhibition of proteasome function by MG 132 resulted in stabilisation of E2 in 

response to UVB (W. Boner, Taylor et al 2003 a) indicating the involvement of 

ubiquitin mediated proteolysis as the mechanism for E2 degradation following UVB 

irradiation. Determination o f E2 protein half-life demonstrated that the half-life o f E2 

is reduced two fold following UVB irradiation (E.Doman, Taylor et al 2003 a).

Figure 3.2.6

Reduction of HPV16 E2 protein level by UVB irradiation

E2 - 500ng
Harvested 
post UVB 

(h) ^

16 0 0 2 4 6 8 16

300 J/m^ 
UVB

- - +

HPV16 
E2 -  

~43kD

Reduction in the level of HPV16 E2 in response to UVB irradiation. U 20S cells 

were transfected with 500ng E2 and subsequently UVB irradiated with 300 J/m^ as 

indicated. Protein extracts were harvested at the time points post-irradiation as 

indicated. Protein concentrations were determined using the BCA protein assay (see 

2.2.1.3) and an equal amount of protein were added to each well. Levels o f HPV16 E2 

were assessed by western blot.
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Figure 3.2.7

Fold difference in E2 and actin mRNA level post UVB irradiation

y  0.6

2h p o s t  UVB 8h p o s t  UVB

Quantitation of HPV16 E2 and P actin mRNA levels post UVB-irradiation in 

U 20S cell lines that express HPV16 E2. Duplicate plates were set-up, with one 

irradiated and one left untreated. At the time points indicated post-irradiation mRNA 

was harvested and the amount of P actin (blue bars) and E2 (red bars) mRNA present 

was calculated using RT-PCR Taqman. Results are graphed as the fold difference in 

signal 2 and 8 hours post-irradiation, when comparing UVB irradiated samples to non 

irradiated.
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3.2.4

Bioinformatic search for future targets for understanding UVB mediated 

reduction of E2 protein level

Future study o f the mechanism for the reduction of E2 protein half life by UVB 

irradiation should involve deletion mapping o f HPV16 E2 to help identify what 

sequences are involved in the stability o f the protein. Additionally HPV16 E2 is a 

phosphoprotein and phosphorylation protein modifications commonly control the 

stability and turnover o f proteins. With BPVl E2 protein it has been demonstrated 

that the two phosphorylation sites within the hinge region can influence protein half- 

life. Point mutation o f serine 301 o f BPVl E2 to alanine increases the proteins half- 

life two fold and reduces the level o f protein ubiquitination. This phosphorylation site 

is within a region o f the hinge o f BPVl that contains a consensus PEST sequence. 

PEST sequences are a group of short divergent protein motifs that control protein 

turnover and are often controlled by protein phosphorylation. It is possible that the the 

half-life of HPV16 E2 is also controlled by similar phosphorylation events. Computer 

based bioinfbruiatic analysis o f protein sequences using m otif prediction programs are 

useful for rapid assessment o f suitable regions o f a protein for deletion and point 

mutagenesis. Bioinformatic prediction o f phosphorylation sites with the NetPhos2.0 

program (see materials and methods 2.2.4.2, Blom et al 1999) on the HPV16 E2 

protein suggests that like other E2 proteins the major phosphorylation sites are in the 

flexible hinge of the protein. Within this hinge there is a potential PEST sequence at 

amino acids 242-252 as determined using the PESTFIND program (materials and 

methods 2.2.4.3). Within this sequence there is the highest scoring predicted 

phosphorylation site (see figure 3.2.8). Further analysis o f the sequence sunounding 

this serine reveals that this site is the consensus for both casein kinase II (CKII) and
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the check point kinase Chk2. Serine 301 o f BPVl also has the consensus sequence for 

CKII suggesting that S243 of HPV16 E2 may have a similar function in protein 

stability. Both CKII and Chk2 are activated in response to DNA damage (gamma 

irradiation, UV irradiation) and phosphorylate multiple target proteins (e.g. p53, 

BRCAl). Also CKII has been demonstrated to control the turnover o f IicBa in 

response to DNA damage by the phosphorylation o f serine 283 (Shen et al 2001) and 

Chk2 controls the turnover o f Cdc25a in response to UV irradiation by 

phosphorylation o f serine 75 (Hassepass et al 2003). Both these residues are located 

within predicted PEST sequences. The sequence surrounding serine 243 o f HPV16 E2 

shows limited homology to those around 8293 of iKBa and 875 o f Cdc25a (see figure 

3.2.8). Therefore serine 243 o f HPV 16 E2 is good target for investigation. Finally 

HPV 18 E2 has a caspase cleavage consensus site within the amino terminus (Demeret 

et al 2003) and HPV 16 E2 also contains an identical site between amino acids 19-23 

compared to amino acids 23-28 o f HPV 18 E2. This is also worth investigation.

Figure 3.2.8

Bioinformatic search for possible motifs responsible for HPV16 E2 degradation

Hinge domainAmino terminal 
domain

DNA binding 
domain

99.5%

cleavage site

S261 S274 
S243 96%
99.8%

HPV16 E2 a a .  238-237 I S E P D T
IkB o  a a .  277-287 L Q w B g #  S E D E E
Cdc25A a a .  71-80 L Q  R #  S S E S  T

CKII consensus. S X  XD/E
Chk2 consensus. I/L x R x x S/T

113



_______________________________________________________________________ _________________ C h a p  I Cl' 3  R c m i I i s

3.3 

Analysis of the frequency of mutation during HPV16 E1/E2 mediated 

DNA replication

Replication of the viral genome is activated by the viral E l and E2 proteins. E l and 

E2 recruit cellular DNA polymerases to replicate the viral genome. Therefore 

maintenance of the genetic integrity o f the viral genome through multiple generations 

is assumed to be dependent on cellular replication/repair processes. Cellular DNA 

replication has a low frequency of spontaneous mutation indicating that HPV DNA 

may be similar. However HPV DNA from naturally occurring lesions often contains 

HPV genomes with deletion/insertion rearrangements or parts o f the HPV genome 

chromosomally integrated. A study using tonsillar cancer biopsies recently 

demonstrated that in three from eleven HPV 16 episomal DNA positive samples 

examined there were episomal viral genomes containing deletions present, and two of 

these were coexistent with full length episomal HPV DNA (Mellin et al 2002). There 

have been cancerous lesions identified that contain only mutant episomal HPV 

genomes containing deletions or rearrangements in the viral LCR and caps id protein 

coding regions (Rasher & Roman 1988, Dean et al 1991). Additionally in the PIPV16 

model cell line, W12, episomal copies o f the viral genome can be lost rapidly due to 

integration over the course of less than 10 passages (Alazawi et al 2002). Integration 

o f the viral genome is an event closely linked to tumour progression. These 

observations indicate that HPV replication may be less stable and accurate compared 

to cellular DNA replication. Double-stranded DNA breaks created during 

replication/repair processes are efficient substrates for recombination events resulting 

in DNA reaiTangement and integration. It is these events that will be responsible for
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HPV genome rearrangement and integration. I therefore set out to examine the fidelity 

o f HPV 16 replication.

3.3.1 Determination of mutation frequency in C33a cells

Initial experiments were done in the C33a cell line as this cell line is the standard cell 

line used for HPV mediated DNA replication assays due to them being derived from a 

HPV negative cervical carcinoma. The system used is based on transiently replicating 

a HPV 16 replication origin containing plasmid pOril6Lac (see figure 3.3.1), a 

plasmid that contains a phenotypic marker, LacZ. Subsequently the freshly replicated 

plasmids were rescued into DHIOB E.coli. The a-com plem entation between the 

LacZ’ gene on pOril6Lac and the deleted LacZ in DHIOB means that DHIOB 

canying pOril6Lac with a wild type LacZ are blue, and those pOril6Lac with 

mutations in LacZ are light blue/white. Selected colonies were picked and grown 

overnight and restreaked on the same medium to confirm the phenotype. The 

frequency o f mutation can then be calculated by scoring for LacZ-/LacZ+. Efficient 

replication was confirmed by Southern blotting (see figure 3.3.2a); this blot 

demonstrates that pOril6Lac is efficiently replicated by E l and E2. To measure the 

fidelity o f replication parallel experiments were carried out and the replicated 

molecules electroporated into DHIOB and scored for the number o f blue and white 

colonies. This experiment was earned out three times and the cumulative results from 

these experiments are shown in Table 3.3.1. The mutation frequency detected was 

rather high, being 4x10'^. To determine what types of mutations are responsible for 

the mutation frequency plasmid DNA was prepared fiom the transfoimed bacteria and 

digested with BamHI. This would be predicted to provide bands o f 2.9 and 1.2 kb; 

however as shown in Figure 3.3.2b this is not what is seen in most cases. In many
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colonies the pOril6Lac has undergone deletions insertions and more complex DNA 

rearrangements. These reaiTangement mutants account for the majority o f the 

plasmids and subsequent DNA sequence analysis demonstrated that many plasmids 

that showed a WT restriction map have smaller insertions or deletions o f about 40bp 

(E.Doman, J.Connolly & S.McNair, see Taylor et al 2003 b). These plasmids can 

only be created through inaccurate repair o f double strand DNA breaks created during 

the replication process.

To gain further insight in to the reason for this high rate o f spontaneous mutation I 

next tested to see if it is because o f eiTor prone replication by E1/E2 or is it due to the 

genetic background the plasmid is replicating in. C33a cells are a carcinoma derived 

cell line and have been shown to have a high rate of sister-chromatid exchange and 

microsatellite instability (Larson et al 1996).

3.3,2 Genetic defects that effect DNA replication fidelity

Xeroderma pigmentosum (XP) patients have increased sensitivity to UV irradiation 

due to genetic defects in proteins involved in nucleotide excision repair (NER) or 

trans-lesion synthesis (TES). UV irradiation induces a range o f DNA lesions (see 

section 4.2.2) the most common of which is the covalent bonding between two 

adjacent pyrimidine bases creating a cyclobutane pyrimidine dimer (CPD). Patients 

that lack NER functions have mutations in a group of proteins (XPA-XPG) that are 

involved in the excision o f DNA lesions (Bemeburg & Lehmann 2001). Patients with 

defective TLS (XP variant, XPV) lack the TLS DNA polymerase Tj (Cordonnier & 

Fuchs 1999). DNA polymerase p i s  a member o f the Y family o f polymerases that are 

involved in trans-lesion synthesis across DNA damage. Polp allows efficient by-pass
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replication with relatively high fidelity. Defects in DNA polymerase p result in the 

error prone replication bypass or the collapse of the replication fork. Cell lines have 

been established from several XP patients by immortalizing primary fibroblasts using 

SV40 infection (Kannouche et al 2001). XPV cell lines, and those expressing restored 

polp, have been used in SV40 replication assays to confirm that polp is indeed 

involved in the efficient replication of CPD containing DNA (Stary et al 2003). To 

investigate if HPV mediated DNA replication can use cellular DNA TLS polymerases 

and cellular NER mechanisms the fidelity o f replication was measured on both 

damaged and undamaged templates in a variety o f XP cells with genetic defects in 

DNA repair.

Figure 3.3.1

Plasmid map of pOril6Lac
L a c Z a  P ro m o te r

■BamHI 253

pUC ori I"™ L a c Z a  ORF

3709 413

f1 ori

3297 825
pOril6Lac

2885
4125 bp

1237

A m plcillin

Xmnl2513

^Bglll1266 

HPV16 Ori
^2473 1649 ̂  / \B a m H 1 1 4 5 0

y   ̂ 2061 ^ B g lll1 4 7 8

K an am y cin

A map of the pOril6Lac replication vector. Darkened area highlights the 

LacZa promoter and ORF, the target for isolation of mutations arising during HPV 16 

E1/E2 mediated replication. The HPV 16 origin sequence was cloned into the B glll 

site, and the kanamycin antibiotic resistance gene allows selective rescue of 

pOri 16Lac plasmids.
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Figure 3.3.2

Replication and rescue o f  pOril6Lac in C33a cells

(a) Replication of pOril6Lac in C33a cells
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(a) Replication of pOril6Lac in C33a cells. C33a cells were transfected with 

plasmid DNA as indicated. Three days post-transfection low MW DNA was 

haiwested. DNA was Xm nl/Dpnl digQstQd to reveal a linear band of replicated 

pOril6Lac as indicated. Lane 1 has no E1/E2 present therefore there is no 

pOril6Lac replication. Lane 2 has E1/E2 present therefore pOril6Lac is 

replicated.

(b) Mutant pOril6Lac plasmids are commonly rearranged. 5pi o f miniprep DNA 

from mutant pOriLac 16 plasimd rescued was BamHI digested and resolved on an 

agarose gel. DNA was visualized using ethidium bromide staining. Ikb marker is 

loaded in lane 1 with the values in base pairs marked on the left o f the gel. Wild 

type DNA is in lane 2, DNA from white colonies from E1/E2 mediated replication 

in C33a cells are in lanes 3-14.

Table 3.3.1 

Mutation frequency of pOriI6Lac by E1/E2 mediated replication in c33a cells

Cell Type C33a

Total 9477

White 39

MF (X10“®)“ 412

Rearranged'" 25

Rearranged MF (X10 ®f 263

MF; mutation frequency (calculated by white/total) 

 ̂As scored by BamHI digestion.

Calculated by rearranged/total.
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3.3.3 Determination of ÜVC mediated damage level on plasmid DNA

pOril6Lac was irradiated with UVC using a Stratagene cross-linker. To ensure the 

UVC irradiated DNA transfected contains multiple DNA lesions I tested UVC 

irradiated DNA in vitro for its sensitivity to T4 endonuclease V, an enzyme that nicks 

CPD lesions (see figure 3.3.3a). At lower levels of UVC irradiation (0-800 J/m^) a 

significant band of full length DNA is visible at 4.2kb indicating that not all 

pOril6Lac DNA may be damaged. Optimal levels o f UVC irradiation appear at 1600 

J/m^ UVC and greater with the clear demonstration that >99% of the DNA treated has 

multiple UVC lesions. 1600 J /n f  UVC is the level o f damage used for all future work. 

To ensure that the damaged pOril6Lac transfected is not completely repaired by 

nucleotide excision repair prior to replication, undamaged and damaged pOril6Lac 

DNA were harvested from C33a cells three days post-transfection. The DNA was 

linearised and digested with T4 endonuclease V. Figure 3.3.3b demonstrates that 

>90% of the DNA UVC iiTadiated prior to transfection still contains multiple CPD 

lesions 3 days post-transfection.
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Figure 3.3.3

Detection of UV induced CPD DNA lesions in vitro and in vivo

(a) Detection of UVC induced CPD lesions in vitro
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(b) Detection of UVC induced CPD lesions in UVC damaged plasmid rescued

3 days post transfection
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(a) Titration of in vitro UVC DNA damage to pOril6Lac. pOril6Lac was UVC 

iiTadiated as indicated, then mock digested or digested with T4 endonuclease V to 

remove CPD, all samples were then linearised hy Xnm l digestion and lOOpg of 

each sample was resolved on an agarose gel. DNA was visualized by Southern 

blot.

(b) UVC irradiated DNA is still DNA damaged three days post transfection.

Mock or UVC irradiated DNA was transfected into c33a cells then three days 

post-transfection low MW DNA was haiwested. DNA was treated and visualized 

as in figure 3.3.3a.
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3.3.4 Genetic characterisation of the fidelity of E1/E2 to replicate damaged DNA.

HPV 16 mediated E1/E2 replication assays were carried out in a range o f cell lines; 

XP30 cells defective in Polrj, XPSOr] cells are XP30 cells with stable expression o f 

P oIt], XP12 cells are defective in the XPA protein and lack NER, MRC5 cells are 

genetically wild type for DNA replication/repair proteins and C33a were used also 

and have been described previously. Replication assays were carried out in these cells 

using undamaged and UVC damaged pOril6Lac. These assays were earned out at 

least three times and Southern blots earned out to measure the amount o f replication, 

a representative example o f the Southern blots for each cell line is shown in figure 

3.3.4. In both MRC5 and C33a there is little difference in the amount o f replication 

that is detected with either the damaged or non-damaged template. However, in all XP 

cell lines there is a clear reduction in the amount o f replication that is detected with 

the damaged template. This may be expected in the XP30 and XP12 cells due to the 

genetic lesions in these cells that hinder their response to DNA damage. However, 

restoration of polp, as demonstrated by XP30p, does not enhance the ability of this 

cell line to replicate damaged DNA.

To test the fidelity o f E1/E2 mediated replication in each of these cells lines replicated 

pOril6Lac DNA was rescued into DHIOB E.coli and the ratio o f blue to white 

colonies was calculated. This was done at least three times and the total number for 

each cell line is shown in Table 3.3 To aid the study of these results figures 3.3.5 a-c 

are graphs summarising these results. A number of obseiwations can be made about 

the fidelity of replication in the different genetic backgrounds.

Firstly, all o f the cell lines have statistically insignificant differences in their 

background mutation frequency, apart from C33a cells where the number o f mutants
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is four fold significantly higher (p<0.001). This difference in mutation frequency may 

in part be due to the eiTor phenotype o f the cell. Secondly, damaging the template to 

be replicated with UVC significantly increased the numbers of mutants rescued in all 

cell types (p<0.001). These mutations are due to incorrect TLS or non-homologous 

recombination. Thirdly, restoration of polp to XP30 cells reduced the number of 

mutations observed around three-fold demonstrating once more the role o f this 

polymerase in the replication o f UV damaged DNA (p<0.001). Fourthly, upon 

restoration of polp the mutation frequency observed is no different from the MRC5 

cell line. Fifthly, the number o f mutations observed in MRC5 upon replication o f the 

damaged template is significantly lower than that obseiwed in XP30, XP12 and C33a 

cells (p<0.001). Sixthly, damaging the template to be replicated with UVC 

significantly increased the numbers o f re-arrangement mutants rescued in all cell 

types (p<0.001). Seventhly, the number o f reairanged recombinant plasmids detected 

following replication o f the UVC damaged template are significantly increased in 

XP30, XP12 and C33a cells when compared with MRC5 (p<0.001). Finally, the large 

increase in mutations obseiwed in the XP12 cells following replication of the UVC 

damaged template suggests that most o f the mutagenic damage on the template is 

repaired using NER prior to replication o f the template in S phase.

The higher mutation frequency with each XP cell line compared to MRC5 cells when 

the template is damaged is expected and highlights several points about the 

maintenance of the integrity o f the viral genome. The cellular DNA replication 

complex that E1/E2 recruits is able to use cellular TLS mechanism to bypass DNA 

lesions during replication (XP30 compared to MRC5 and XP30Tj). Additionally the 

high mutation frequency (MF) in XP12 cells in response to DNA damage
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demonstrates that the majority of the mutagenic DNA lesions caused by UVC 

iiTadiation are repaired via NER prior to the replication of the DNA.

These results give a unique insight into the role o f cellular DNA replication/repair 

proteins during E1/E2 mediated DNA replication. With each cell line tested the ME 

observed using E1/E2 replication is reflective o f the genetic background of the cell. 

This is highlighted in C33a cells by the error phenotype exhibited on both undamaged 

and damaged templates. The related polyoma virus SV40 large T antigen is thought to 

replicate DNA in a similar manner as HPV 16 E1/E2. Therefore 1 investigated the ME 

of SV40 large T mediated replication in C33a cells on both undamaged and damaged 

templates to test if it is similar to that o f HPV 16 E1/E2 replication to confirm that the 

error prone phenotype is due to the cellular environment. Transient replication assays 

using a SV40 origin containing pCR2.1 derived vector pOriSV40Lac (Ipg) was 

replicated by the expression of the SV40 Large T antigen protein (5pg). Southern blot 

analysis o f replication demonstrates that the level o f Large T mediated replication in 

C33a cells is not reduced when the template is UVC damaged (data not shown). Also 

in C33a cells SV40 replicated DNA with a similar fidelity to E1/E2. On an 

undamaged pOriSV40Lac the ME was 1042x10'^ and on a UVC damaged 

pOriSV40Lac the ME was 3531x10'^. All o f the mutations on the undamaged 

template were due to DNA rearrangements. This experiment suggests that both HPV 

E1/E2 and SV40 large T replicate DNA with similar fidelity, and C33a cells have an 

error prone cellular environment.
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Figure 3.3.4

Replication of UVC damaged pOril6Lac in various cell types

Cell Type MRC5 X P30 x P 3 0 n XP12 C 33a

Replication
E1/E2

- - + + - - + + - - + + - - + + - - + +

UVC 1600 
J/m 2

- + - + - + - + - + - + - + - + - + - +

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Replicated
pOri16Lac-----»

4.2kb
IW mm g#

Dpnl digest f  
input 4 

plasmids I il
Response of E1/E2 mediated replication in response to UV damaged template in 

different DNA replication/repair deficient backgrounds. Plasmid DNA was 

transfected into cells as indicated, three days post transfection DNA was harvested 

and digested with both XmnI and Dpnl. For each cell type lanes 1 and 2 have no 

E1/E2 present therefore there is no pOril6Lac replication. Lanes 3 and 4 have E1/E2 

present therefore pOril6Lac is replicated. Lanes 1 and 3, no UVC irradiation of 

pOril6Lac, lanes 2 and 4 pOril6Lac was UVC irradiated prior to transfection.
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Table 3.3.2

Mutation frequency of pOril6Lac by E1/E2 mediated replication in a variety of 

DNA repair/replication deficient cells

Cell Type MRC5 XP3Ü XP30ri XP12 C33a

pOri16Lac No 1600 No 1600 No 1600 No 1600 No 1600

Treatment

a

UVC J/m^

UVC

UVC J/m^

UVC

UVC J/m^

UVC

UVC J/m^

UVC

UVC J/m^

UVC

Total 10634 4104 8330 1502 6565 2262 10971 1157 9477 2850

White 10 50 5 46 5 20 3 83 39 104

M F  (X 1 0  Y 94 1218 60 3062 76 884 27 7174 412 3649

R earranged '^ 4 14 5 11 3 9 2 14 25 27

R e a rra n g e d  

MF (X10'Y

38 341 60 732 45 398 18 1210 263 947

“ UVC irradiation prior to transfection.

MF; mutation frequency (calculated by white/total). 

 ̂As scored by BamHI digestion.

 ̂Calculated by rearranged/total.
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Figure 3.3.5

Summary of replication and mutation data from the replication of 

damaged pOril6Lac in various cell types
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(c)
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(a) Summary of the percentage of replication of pOril6Lac following UVC 

irradiation, and the percentage of bacterial colonies rescued. The results are 

shown as the percentage compared to when pOril6Lac is not UVC irradiated. 

Changes in the amount o f replication following UVC irradiation were quantified 

from Southern blots.

(b) Summary of the frequency of mutations (MF) on the replicated pOril6Lac in 

a variety of cell types.

(c) Summary of the rearranged mutant frequency (rMF) on the replicated 

pOril6Lac in a variety of cell types. Data shown is the average o f at least three 

independent experiments for each cell type in figure 3.3.5 a-c.
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Discussion

This thesis is composed o f three studies: the functional characterisation o f the E2- 

TopBPl interaction; the investigation o f the effect on E2 function of DNA damage 

stimuli; and the investigation o f HPV E1/E2 mediated DNA replication fidelity. The 

broad based approach to study the involvement o f cellular DNA replication/repair 

processes in the modulation o f E2 functions evolved from initial studies investigating 

the role o f E2-TopBPl interaction. The data presented in the three studies contained 

in this thesis highlight the functions o f E2 and the possible roles o f E2 during the 

HPV life cycle thus providing an extensive range o f future targets to study. Also this 

thesis highlights the range o f cellular processes that E2 can interact with. Therefore 

viral proteins like E2 have great future potential for use as molecular tools for the 

investigation o f multiple cellular processes including transcription control, replication 

modulation and DNA repair.

4.1 

Functional interaction between HPV16 E2 and the DNA damage 

response protein TopBPl

4.1.1 E2 and TopBPl

The major functions of HPV 16 E2 protein are to regulate viral transcription, to 

regulate viral replication and to induce apoptosis. HPV E2 proteins can be stiucturally 

divided into three domains; an amino terminal transactivation domain, a central hinge 

domain and a carboxy-teiminal DNA binding domain. The amino terminal 

transactivation domain o f E2 is essential for the transcription, replication and 

apoptotic properties o f E2 (see section 1.6). Using a yeast 2 hybrid screen a novel
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interaction between the transactivation domain of HPV 16 E2 and the carboxy 

terminal of the cellular DNA replication/repair protein TopBPl was identified (Boner 

et al 2002, Boner & Morgan 2002), TopBPl is a large nuclear protein that has 8 

BRCT domains, the largest number in any known protein. BRCT domains are protein 

interaction domains therefore TopBPl is a possible scaffold protein that may ensure 

the co-ordination of cellular processes. TopBPl functions are essential for cellular 

DNA replication initiation, the sensing o f DNA damage and DNA damage checkpoint 

responses (see introduction section 1.6.4). Therefore there could be multiple purposes 

for the E2-TopBPl interaction. The function of the interaction between TopBPl and 

HPV 16 E2 was investigated, to assess the influence o f TopBPl on E2 mediated 

activation of transcription and replication.

The overexpression o f TopBPl results in an increase in E2 mediated transcription and 

replication. E2 interacts with several proteins that activate transcription and 

replication through the modification o f chromatin stracture. E2 interacting proteins 

p300/CBP and p/CAF possess intrinsic HAT activity. Another E2 interacting protein 

BRCAl activates cellular promoters due to an interaction with p300/CBP (Pao et al

2000). This activation o f cellular promoters and E2 transactivation is dependent on 

the carboxy-terminal BRCT domain o f BRCAl (Kim et al 2003). It is likely that 

TopBPl is able to activate E2 transcription and replication function due to similar 

interactions by chromatin remodelling proteins with the BRCT domains o f TopBPl. 

In contrast to full length TopBPl the overexpression o f a deletion mutant o f TopBPl 

that lacks the BRCT domains 1 to 5 is unable to activate E2 mediated transcription or 

replication. The BRCT domains 1 and 2 in TopBPl are able to activate transcription 

in yeast therefore it is possible that they play a similar role in mammalian cells and 

are responsible for the enhancement o f the transactivation function o f E2 by TopBPl
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(Makiniemi et al 2000). Further deletion mapping of TopBPl will highlight which 

regions o f TopBPl are responsible for the enhancement of E2 mediated 

transactivation function. It is probable that TopBPl enhances E2 mediated 

transcription function through the recruitment o f chromatin modification proteins 

and/or through direct interaction with the transcription complex.

Overexpression o f TopBPl enhances the level o f E1/E2 mediated DNA replication. 

Additionally overexpression o f the amino terminal deletion mutant o f TopBPl has no 

significant effect on E1/E2 mediated DNA replication. However TopBPl has several 

replication specific functions that E2 may use to facilitate replication. TopBPl binds 

to DNA polymerase epsilon and this interaction is thought to be essential for DNA 

replication (Makiniemi et al 2000). The budding yeast TopBPl homologue D pb ll 

binds to both DNA polymerase alpha and epsilon. The localisation o f Dpbl 1 to ARS 

(autonomously replicating sequence) DNA elements in yeast is essential for the 

association o f DNA polymerase alpha and epsilon with ARS elements (Masumoto et 

al 2000). The region of TopBPl that is homologous to Dpbl 1 encompases the BRCT 

domains 1 , 2 , 4  and 5, therefore this region may have similar functions m enhancing 

HPV DNA replication initiation. The Xenopus homologue o f TopBPl, 

XrauslOl/XcutS, is essential for the initiation o f DNA replication in egg extracts (Van 

Hatten et al 2002, Hashimoto & Takisawa 2003). XmuslOl/XcutS is essential for the 

loading o f cdc45 and DNA polymerase alpha and epsilon to the initiation complex. It 

is however not essential for the loading o f the origin recognition complex (ORC) or 

Mem 2-7 helicase proteins. Therefore TopBPl has a hypothesised essential role in the 

formation of the DNA replication initiation complex which E2 may utilise. 

Additionally E2 could be viewed as the viral ORC complex as it is essential for
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efficient recmitraent of the viral E l helicase hexamer and initiation of viral 

replication.

HPV DNA replication can be initiated several times per cell cycle, this is in contrast 

to cellular DNA replication where each replication origin can fire only once per cell 

cycle (Piirsoo et al 1996). Eukaiyotic DNA replication initiation is tightly controlled 

to prevent the re-firing o f cellular replication origins, thus ensuring the integrity o f the 

genome (see Bell & Dutta 2002, Woo & Poon 2003, DePamphillis 2003 for reviews). 

Initiation o f eukaryotic DNA replication involves the stepwise binding of initiation 

factors to foini the pre-replication complex during G l. The ORC complex binds to 

eukaiyotic replication origins during G l and is essential for the loading o f the Mcm2- 

7 helicase complex and additional factors (e.g. Cdtl, Cdc6p, Mem 10). Multiple events 

dependent on phosphoiylation by CDKs (cyclin dependent kinases) and Cdc7 at the 

G l/S  boundary result in the release o f Cdtl and Cdc6p, the loading o f Cdc45, RPA 

and DDK and the phosphorylation o f the Mem 2-7 helicase proteins. This creates a 

licensed initiation complex that is able to load the DNA polymerases and initiate 

replication on entry into S-phase. The failure o f any o f these licensing steps (i.e. ORC, 

Mcm2-7, Cdc45 or DNA polymerase loading) prevents DNA replication. This control 

o f DNA replication therefore prevents the re-replication o f DNA during S-phase or 

G2. HPVs presumably achieve multiple firing o f DNA replication origins by coding 

for their own ORC-like and DNA helicase proteins, E2 and E l respectively. Unlike 

their cellular counteiparts, it is presumed that E l and E2 are able to form DNA 

replication initiation complexes multiple times during S-phase thus ensuring the 

exponential increase in papillomaviius genome copy number during few cell divisions 

(Ravnan et al 1992). Therefore there are two possible roles for the E2-TopBPl 

interaction. Firstly, E2 may recmit TopBPl to ensure the efficient reciuitment of the
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cellular DNA polymerases alpha and epsilon. This would facilitate the efficient 

initiation o f DNA replication. E l can also bind DNA polymerase a  therefore E2, 

TopBPl and E l may exist as a stabilising multi-protein complex during HPV DNA 

replication initiation. Secondly, E2 may need to interact with TopBPl so that it can 

efficiently license the E1/E2 replication initiation complex multiple times during S- 

phase thus ensuring replication o f the HPV genome multiple times during S-phase. 

Amplification o f the viral genome is essential for the establishment of viral infection 

and for the production o f viral genomes suitable for package into new virions. 

TopBPl therefore could be essential for the viral life cycle.

4.1.2 Point mutation analysis of E2-TopBPl interaction

To further investigate the role o f the TopBPl interaction on E2 function an attempt to 

make an HPV 16 E2 molecule that does not interact with TopBPl was made. The 

point mutation substitution o f four conserved amino acids in the E2 amino terminal to 

alanine were made. The four residues chosen (Y44, R47, K68 and Y 102) were picked 

due to their conservation among different HPV subtypes, and because they were 

predicted to be distant from the E2 homodimerisation and El interaction domains on 

the surface o f HPV 16 E2. Each o f the point mutants of E2 was tested for its ability to 

activate transcription and replication. Also the effect of TopBPl overexpression on 

the transcription/replication functions o f E2 and the ability o f these mutant E2 

molecules to bind TopBPl in vivo were tested.

The wild-type and the R47A, K68A and Y 102A mutant E2 molecules vary in their 

ability to activate transcription however the overexpression of TopBPl results in an 

two to four fold enhancement o f transcription from the tk6E2 promoter. In contrast 

Y44A is unable to activate the tk6E2 promoter and the overexpression of TopBPl
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leads to a two fold repression o f the tk6E2 promoter when the Y44A mutant E2 

protein is co-expressed. This result has one o f two implications. Firstly, TopBPl may 

be essential for E2 mediated transactivation and the Y44A mutant is unable to bind 

TopBPl. Alternatively, the Y44A E2 mutant is fundamentally unable to activate 

transcription and the increased level o f free TopBPl therefore cannot enhance E2 

mediated transcription. Each mutant E2 molecule tested can activate DNA replication 

with E l to a similar degree however only with WT E2 and the K68A and Y 102 

mutant E2 proteins is E1/E2 mediated DNA replication enhanced by TopBPl. With 

the Y44A and R47A mutant E2 proteins there was no significant increase in the level 

of DNA replication. This result suggests that both Y44 and R47 mediate the 

interaction between TopBPl and E2.

To investigate the ability o f the mutant E2 proteins generated to bind TopBPl, co- 

immunoprecipitation experiments were done. E2 was pulled down by TopBPl in each 

immunoprécipitation including with wild type E2 and each of the four point mutants 

E2 proteins tested. On the blot shown in figure 3.1.18 there is variation in the amount 

o f E2 co-immunoprecipitated however these differences were unrepeatable. This 

experiment demonstrates that none o f the E2 mutants proteins created totally 

abolishes the interaction between E2 and TopBPl. However the functional data in 

figures 3,1.16 and 3.1.17 suggests that the interaction may be disrupted in vivo for the 

Y44A and R47A mutant E2 proteins. It is possible that the conditions used for the 

immunoprécipitation experiment were not optimal for the detection o f subtle effects 

on the interaction between the two molecules. Future optimisation o f the protocol 

through titration o f the level o f TopBPl antibody or the level o f cell extract used may 

increase sensitivity o f the technique.
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4.1.3 Future work

While the attempt to find a TopBPl non-interacting mutant o f E2 was not a complete 

success in this study the principle o f finding a non-interacting mutant is the most 

logical approach for future experiments. A mutant of E2 that fails to bind TopBPl 

will provide a useful tool that will highlight the role o f TopBPl in the transactivation, 

replication and apoptosis functions o f E2. Two experiments will demonstrate the 

precise role for the E2-TopBPl interaction on the transactivation and replication 

flmctions o f E2.

Firstly, the reverse yeast two-hybrid technique can be used to dissect the interaction 

between two proteins through the mutational screening o f a protein region o f interest 

(see Vidal & Legrain 1999 for review). Briefly, this methodology uses the principles 

o f a convential yeast-two hybrid screen with the use of bait and prey chimeric proteins 

to activate transcription o f a sui'vival gene. The bait protein contains a DNA binding 

domain (e.g. LexA) and the protein sequence of interest. The prey protein contains a 

transcription activation domain (e.g. Gal4) and a libraiy o f coding sequence (e.g. 

cDNA library or point mutation libraiy o f target protein). A reverse yeast two-hybrid 

screen could be used to screen for a mutant o f HPV 16 E2 that can not bind to 

TopBPl. The carboxy-terminal of TopBPl could be the interaction domain on the bait 

protein, and a degenerate libraiy coding for the amino-terminal of E2 on the prey 

protein. Expression o f bait and prey proteins that interact in yeast causes the 

expression of a protein that sensitises the yeast to cyclohexamide. Therefore this 

protocol will select E2 amino terminal protein sequences that are unable to interact 

with TopBPl. This more thorough approach to finding a non-interacting E2 mutant 

allows a more systematic approach to investigating the E2-TopBPl interaction. 

Subsequent experiments with an E2 non-interacting mutant will test its ability to
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activate transcription, replication, apoptosis and the ability of E2 to be tethered to 

mitotic chromosomes.

Secondly, the chromatin immunoprécipitation technique (ChIP) allows the 

investigation o f the recruitment of proteins to DNA sequences (Kuo & Allis 1999). 

This technique has been used previously to study the loading o f the ORC complex 

Mcm2-7 proteins and EBNAl onto an EBV replication origin (oriP) during the 

passage o f the cell cycle (Chaudhuri et al 2001, Ritzi et al 2003). A similar approach 

could be applied to investigate the recmitment o f TopBPl to activate transcription and 

replication. ChIP could be used to demonstrate recmitment of TopBPl by E2 to E2 

dependent promoters (e.g. on ptk6E2) and to the HPV replication origin (e.g. on 

pOril6). One important question to ask would be is a mutant of E2 that is unable to 

activate transcription but is wild type for replication function (e.g. R37A or Y44A) 

able to recmit TopBPl to an E2 dependent promoter. In such a scenario TopBPl may 

still enhance E1/E2 mediated replication, however it is o f interest to find out if 

TopBPl can still be recmited to E2 dependent promoters. Mutant E2 proteins like 

R37A and Y44A are likely to be still able to bind E2 binding sites however the failure 

to form a transcription initiation complex may prevent the recruitment o f TopBPl. In 

contrast it is also of interest to see if  a mutant o f E2 that has very poor affinity for E l 

and is defective for replication activation, yet wild type for transactivation (e.g. 

E39A) can recmit TopBPl to the HPV replication origin as efficiently. This is of 

particular interest due to the ORC-like functions o f E2 and the helicase function of 

E l, and this experiment would demonstrate if TopBPl is preferentially recmited to an 

E1/E2 complex at the replication origin, or if E2 is enough. Additionally the effect of 

TopBPl overexpression on the loading o f E l to replication origin by E2 is of interest. 

Finally if  a mutant o f E2 is found that is defective for TopBPl interaction the ChIP
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method described may demonstrate if  any mutant E2 proteins fail to recmit TopBPl 

to either transcription promoters or replication origins.

4.2 

Reduction of E2 function in response to UVB irradiation

4.2.1 Reduction of E2 function in response to UVB irradiation

The HPV 16 E2 protein interacts with a variety o f DNA damage response proteins; 

p53, BRCAl, PARP and TopBPl (see 1.6 and 3.1). Each o f these proteins is 

functionally modified in response to DNA damage stimuli (see section 1.7). Therefore 

the ability of DNA damage stimuli to modulate E2 function was tested. The method 

of DNA damage first used was UVB inudiation, this was due the wide range o f DNA 

lesions caused and the range o f DNA damage pathways activated by UV damage. In 

response to UVB irradiation the transactivation frinction o f HPV 16 and HPV8 E2 

were significantly reduced. This reduction was independent o f effect to the tk 

promoter used and general effects on cell viability. UVB iiradiation results in a rapid 

decrease in the level o f E2 protein about four to eight hours post irradiation. This 

reduction is independent o f mRNA levels and translation, and is due to a proteasome 

dependent reduction in the protein half-life. These observations suggest that it may be 

possible to down-regulate the function of HPV E2 proteins in HPV lesions. The 

reduction in E2 function is independent o f p53 function, and other DNA damage 

treatments such as hydroxyurea and etoposide do not induce the degradation of E2 

levels. Thus the identification of the pathway responsible for UVB mediated 

downregulation of E2 function will provide novel targets for HPV therapy.
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4.2.2 Possible role in the viral life cycle

The reduction in both HPV 16 and HPV8 E2 protein levels in response to UVB 

suggests a common response to UVB stimuli and could play a role in protecting the 

virus in response to UVB irradiation. Additionally the response o f the HPV 18 LCR to 

UVB inadiation was tested (W.Boner, Taylor et al 2003a) and UVB irradiation 

significantly repressed transcription from the LCR. Therefore there are several 

common results from UVB irradiation on the viral life cycle. Firstly, repression of the 

HPV 18 LCR would result in a reduction of E6 and E7 levels, thereby elevating levels 

of p53 and pRb. These proteins are essential for mediating an appropriate cellular 

response to DNA-damaging agents such as UVB. Reactivation o f p53 and pRb will 

therefore protect the cell from extensive damage and/or apoptosis thus protecting the 

infected cell. Secondly, the reduction in E2 level in response to UVB will reduce the 

level o f viral replication allowing the viral genome to be repaired, and thereby 

maintain integrity. The HPV 18 LCR has been demonstrated to contain elements that 

control the level o f replication (Demeret et al 1995) and UVB irradiation may also 

influence HPV replication controlled by the LCR. Thirdly, the HPV 16 E2 protein can 

itself induce apoptosis (Webster et a l, 2000) and therefore the presence o f E2 with a 

DNA damage response could induce massive levels apoptosis in viius-infected cells. 

In summary, the inactivation o f E6 and E7 proteins by transcriptional repression, and 

the reduction o f the E2 protein levels, would provide an opportunity for repair o f both 

the cellular and viral genome.

4.2.3 UVB mediated signal transduction pathways

The key to understanding why E2 responds to UVB iiradiation is to understanding 

what UVB mediated signal(s) induce the degradation of E2. UVB irradiation induces
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both direct and indirect damage to DNA (see Ravanat et al 2001 for review). The 

majority o f DNA lesions caused by UV irradiation are due to the direct photochemical 

formation of intrastrand dimers between adjacent pyrimidine bases. The most 

common lesion created is the cis-syn cyclobutane pyrimidine dimer (CPD). The 

second most common is the 6-4 pyrimidine-pyrimidone (6-4pp) photoproduct. 

Additionally UV irradiation induces a significant amount o f free radical formation 

and oxidative stress. This leads to the creation o f a variety of lesions including 8- 

oxoguanine, pyrimidine hydrates and thymine glycol. Also oxidative stress induces 

single strand DNA breaks. All o f these DNA lesions and the oxidative stress result in 

the activation o f many cellular signalling pathways (Kuhns & Schwarz 2002).

DNA damage activates an interlinking signalling network that is activated by the 

blockage o f transcription and DNA replication processes, and DNA damage on 

transcription/replication inactive DNA (see Qin & Li 2003 for review). UV irradiation 

induces three checkpoints on the progression o f the cell cycle, a G l late anest to 

repair DNA prior to S-phase, a lengthened S-phase, and a delay at the G2/M 

boundary. While the signalling cascade responsible for S-phase and G2/M 

checkpoints are relatively well characterised the G l anest is less clear. Unlike gamma 

irradiation UV induced G l anest is independent o f p53/p21/pRb function. This has 

led to the suggestion that UV iiTadiation results in only a brief stall at the Gl 

boundary and results in an early and severe S-phase checkpoint (Al-Mohanna et al 

2001, Loignon & Drobetsky 2002). However this delay in the initiation o f DNA 

replication allows the activation o f the NER and the removal of DNA lesions prior to 

DNA replication.

During S-phase the stalling o f replication fork and induction of double stranded DNA 

breaks activates ATR/DNA-PK/ATM/Chkl/Chk2 dependent signalling to elicit a S-
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phase checkpoint, the appropriate DNA repair and a subsequent G2/M aiTest (Qin & 

Li 2003, Yang et al 2003). The stalling o f the replication fork can occur through three 

mechanisms; through inhibition o f the DNA polymerase e.g. aphidicolin, depletion of 

free dNTP pool e.g. hydroxyurea (Cobb et al 2003), and through blockage of DNA 

polymerase progression e.g. CPD lesion (Svoboda et al 1998). Replication dependent 

DNA breaks occur through two mechanisms; due to introduction o f DNA nicks at the 

replication fork e.g. UV lesion or captothecitin (Furuta et al 2003) and through 

recombination mediated resolution o f stalled replication forks and reversed “chicken- 

foot” replication forks e.g. HU or CPD (Limoli et al 2002, Sogo et al 2002, Sengupta 

et al 2003). Co-ordination o f these events requires a wide range o f phosphoiylation 

events and protein-protem interactions that are cuiTently being elucidated. At stalled 

and broken DNA replication forks the sensor DNA dependent kinases ATR and 

DNA-PK are recmited by protein complexes that bind single stranded DNA and 

double stranded breaks. Both these kinases are essential for the inhibition of 

replication in response to UV inudiation (Park et al 1999, Heffeman et al 2002). ATR 

is activated by both the stalling o f replication forks and by replication dependent 

double strand DNA breaks (Tibbets et al 2000, Fumta et al 2003). Downstieam 

targets o f ATR include C hkl, Chk2, p53, and H2AX (Zhao & Piwnica-Womis 2001, 

Foray et al 2003, Ward & Chen 2001). DNA-PK is activated by DNA breaks through

out the cell-cycle. The downstream targets o f DNA-PK are p53, RPA, JNK, and 

XRCC4 (Woo et al 2002, Allen et al 2002, Park et al 2001, Hsu et al 2002). 

Interestingly the SV40 large T antigen is though to be phosphoiylated and 

functionally inhibited by DNA-PK (Chen et al 1991, Wang et al 1999). DNA-PK is 

part o f a complex o f proteins that are central to the repair o f double stranded breaks. 

DNA-PK is essential for non-homologous end joining and is thought to have a role in
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homologous. ATM is essential for multiple DNA repair and checkpoint functions in 

response to DNA breaks throughout the cell cycle (Abraham 2003). ATM is thought 

to have a role in the recognition o f double stranded breaks induced during DNA 

replication. ATM hyperphosphorylates the RPA-32 subunit in response to UV 

irradiation, this phosphoiylation is blocked by the inhibition of DNA replication by 

aphidicolin, therefore is dependent on the replication of damaged DNA (Oakley et al

2001). Therefore UV induced DNA lesions encountered during S-phase can cause 

both DNA breaks and stalled replication forks resulting in the activation o f ATR, 

ATM and DNA-PK and their downstream signalling partners.

UVB irradiation also results in the activation o f cellular MAP and stress induced 

kinase pathways (see Yang et al 2003 for review). This is thought to be both due to 

two stages o f cellular stimuli. The early signal transduction is thought to be due to 

direct activation o f cellular membrane receptors, this is due to UV induced oxidative 

stress (Rossette & Karin 1996, Marchese et al 2003). This early effect is characterised 

by the release o f NFkB from its cytoplasmic inhibitor within the first hour o f 

irradiation (Devary et al 1992). The activation o f receptors like EGFR results in the 

activation of MEK and p38 dependent signal transduction processes. Late signal 

transduction is initiated about 6 hours post UV irradiation and is thought to be due to 

the persistence of lesions within the DNA (Kibitel et al 1998). The published 

literature on late UVB signal transduction events (e.g. TN Fa induction) has no 

explanation o f the trigger for late events, therefore I suggest that it is due to the 

activation of the replication checkpoint upon encountering UV induced DNA lesions 

in veiy early S-phase. Work on the elucidation o f signalling responsible for the 

induction of TN Fa has highlighted the rapamycin sensitive DNA-PK like kinase 

FRAP as a possible mediator of this effect (Yarosli et al 2000). In response to UVB
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irradiation FRAP is thought to phosphorylate many cellular proteins, including 

BRCAl, p53, RNA polymerase II and p70®̂  ̂(Yarosh et al 2000, Canning et al 2003). 

Interestingly the DNA polymerase alpha inhibitor aphidicolin prevents the activation 

o f p70®̂ '̂  by UVB irradiation (Brenneisen et al 2000), therefore strengthening the idea 

that these late events are due to activation due to cellular replication machinery 

encountering the UV induced DNA lesions.

4.2.4 Future work

Future work should concentrate on elucidating the pathway(s) responsible for the 

UVB mediated degradation o f E2. There are two logical methods to accomplishing 

this aim.

Firstly, the investigation o f which region within HPV 16 E2 is essential for the 

reduction of E2 function and protein level by UVB will aid the identification of the 

pathway responsible. Deletion and point mutation analysis will identify what amino 

acids are responsible (see section 3.2.4) and this may indicate the upstream protein 

that is essential for the degradation o f E2.

Secondly, a broad approach to investigating the signalling o f UVB irradiation and 

other DNA damage treatments will identify the UVB activated pathway responsible 

for the reduction o f E2 function and protein level. Clearly the number o f possible 

pathways responsible for the effect of UVB on E2 is very large. There are a wide 

range of DNA damage treatments that may be tried to mimic the effect o f UVB on 

E2, however an important point to first address would be to establish if the UVB 

mediated signal to reduce E2 protein levels occurs during the replication of damaged 

DNA. The treatment of cells with aphidicolin prevents DNA replication and induces 

an early S-phase anest, therefore aphidicolin pre-treatment before UVB irradiation
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will demonstrate if the reduction in E2 level is caused by a signal induced during the 

replication of damaged DNA, Distinguishing if the UVB induced signal that leads to 

reduction of E2 function emanates during DNA replication will direct future targets 

for study. Additionally if  the signal does occur during the replication o f damaged 

DNA then this will highlight the differences in the DNA damage signals caused by 

hydroxyurea, etoposide and UVB irradiation. While both hydroxyurea and etoposide 

are known to activate similar DNA damage responses compared to UVB (e.g. ATR 

activity, p53 modification) it is possible that UVB irradiation stimulates a unique 

subset o f DNA damage pathways. The understanding o f the complexity o f DNA 

damage signalling and the differences between different genotoxic insults is still in its 

infancy, therefore the reduction o f E2 function by UVB may provide a unique insight 

to these processes.

If  aphidicolin prevents the reduction of E2 function/level then both the interference 

with DNA damage signalling and mimicking UVB damage may highlight a pathway 

of interest. Various DNA damage pathways can be blocked through small molecules 

that inhibit the activity o f DNA damage response proteins (e.g. Wortmannin inhibits 

ATM/ATR/DNA-PK (Sarkaria et al 1998), or 3-aminobenzamide inhibits PARP 

(Pivazyan et al 1992)). Use o f these small molecule inhibitors or the use o f cells that 

are genetically defective in any o f the major signalling molecules may help the 

elucidation of the UVB mediated pathway involved. A similar approach can be used 

to investigate any possible roles of cellular MAP kinase pathways in the UVB 

mediated reduction o f E2 function. There are many commercially available kinase 

specific inhibitors and genetically defective cell lines that will allow the investigation 

o f the MAP kinase pathways.
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Several different treatments can mimic the different types of DNA damage caused by 

UVB irradiation. 4NQO (4-nitroquinoiine 1-oxide) induces bulky intrastrand DNA 

lesions that block DNA replication and transcription in a manner similar to UVB. 

Treatment of cells with the topoisomerase I inhibitor camptothecin results in a 

replication dependent double stranded DNA break at replication forks in a mechanism 

similar to UVB (Fumta et al 2003). Additionally, camptothecin induces a similar 

replication arrest to UVB iiTadiation. Induction of oxidative stress through use of 

H 2 O2 will mimic the activation o f membrane receptors and the induction o f DNA 

lesions by the oxidative stress caused by UVB irradiation. Alternatively oxidative 

stress could be limited by the pre-treatment o f cells with an antioxidant like genistein. 

The experiments described above will provide initial direction for the understanding 

o f the UVB mediated downregulation o f HPV 16 E2 and will provide targets for future 

study, and possibly future dmg targets for treatment of HPV infection.

4.3

HPV DNA replication fidelity and the implications for HPV 

carcinogenesis

4.3.1 The significance of HPV genome disruption in HPV induced cancer

HPV infection has two recognised consequences; a complete infectious life cycle with 

efficient virion release and possible subsequent clearance of the vims, or an abortive 

(latent) life cycle that is linked with carcinogenesis and the development o f HPV 

related tumours (Stubenrauch & Laimins 1999). The latter is thought to occur 

concurrently when portions o f the viral genome become chromosomally integrated 

and results in the increased expression o f E6 and E7 (Jeon & Lambert 1995, Jeon et al
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1995). Also often found in HPV tumours are episomally maintained viral genomes 

that have significant DNA re-ainangements and often contain deletions within the 

“late” ORFs or the LCR (Kasher & Roman 1988, Dean et al 1991, Hall et al 1997, 

Kalantari et al 2001, Mellin et al 2002). Therefore progression to HPV induced 

carcinogenesis is linked to the genetic instability of the viral genome. The fidelity of 

E1/E2 mediated DNA replication was studied to investigate if FIPV DNA replication 

is prone to events that may lead to viral intégration/rearrangement.

4.3.2 Methods for double strand break creation

The substrates for viral DNA re-arrangement and integration are double stranded 

DNA breaks and DNA ends, these are subsequently repaired through recombination 

and strand invasion mediated repair (Van Gent et al 2001). Double stranded breaks 

occur by DNA replication independent and dependent mechanisms. Endogenous and 

carcinogen induced DNA damage (e.g reactive oxygen intermediates, gamma 

irradiation) can induce double stranded DNA breaks throughout the cell cycle, 

however these events are thought to be rare. During DNA replication there are several 

opportunities for the creation o f double stranded DNA breaks. Inhibition of 

topoisomerase I by drugs like camptothecin or by DNA lesions like those created by 

UV irradiation can cause a nick in the template strand at the replication fork 

(Kuzminov et al 2001, Pourquier & Pommier 2001). This nick on the template in 

combination with the subsequent termination o f the nascent DNA strand creates a 

double stranded break on the daughter DNA duplex. Intrastrand and interstrand DNA 

lesions (e.g. CPD and mitomycin C crosslink respectively) can also cause the reversal 

o f the replication fork into a “chicken foot stracture” that can be a substrate for 

recombination mediated repair and replication fork restart. In cells that have defects in
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excision repair and translesion synthesis the creation of double stranded breaks at 

replication forks, as discussed above, is thought to be more frequent. This is 

highlighted in cells that are fimctionally null for the TLS DNA polymerase p , when 

these cells are UV irradiated there is -14  fold more cells with the M rel 1/Nbsl/Rad50 

recombination foci (Limoli et al 2002, Cleaver et al 2002). Also the inhibition of 

replication fork elongation due to hydroxyurea results in the subsequent reactivation 

o f the replication fork through recombination (Mirozeva & Petrini 2003).

4.3.3 Summary of results

E1/E2 mediated replication o f undamaged template plasmid pOril6Lac results in a 

portion o f daughter molecules that contain mutations within the phenotypic marker 

LacZ. The majority o f these are due to DNA rearrangements resulting from >5bp 

DNA insertions and deletions. On UVC damaged pOril6Lac there is a significant 

increase in the number o f DNA re-arrangements and a significant increase in the 

number o f point mutations. These assays were repeated in a variety o f different 

genetic backgrounds to dissect the role that cellular DNA replication/repair processes 

have on HPV replication fidelity.

The cells initially used for these assays were C33a cells, a non HPV related cervical 

carcinoma derived cell line commonly used for HPV replication assays. A number of 

SV40 immortalised fibroblast cell lines were used to investigate the role o f cellular 

translesion synthesis (XP30, XP30p) and NER (XP12) functions on the frequency of 

mutagenesis. XP30 cells are functionally null for the major translesion synthesis DNA 

polymerase p . XP30p cells are derived from XP30 cells and express WT DNA 

polymerase p . XP12 cells are functionally null for the essential NER protein XPA.
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Additionally the SV40 immortalised MRC5 fibroblast cell line was used as they are 

genetically wild type for DNA replication/repair ftinctions.

On undamaged DNA templates replicated in C33a the rate o f spontaneous mutation 

due to DNA re-arrangement is 4-8 fold higher than in all the fibroblast cell lines. 

C33a cells have an error prone phenotype and display a high rate o f sister chromatid 

exchange and microsatellite instability. Therefore the rate of HPV mutation is 

reflective o f the genetic background of the cell. On UVC damaged DNA templates the 

frequency of mutation due to re-arrangements is higher in C33a, XP30 and XP12 cells 

compared to both MRC5 and XP30p cells. The difference in MF between XP30 and 

MRC5 and XP30p demonstrates that HPV mediated DNA replication can use cellular 

TLS mechanisms to replicate UV induced DNA lesions. The significant increase in 

MF in XP12 cells demonstrates that a large proportion of the UV induced mutagenic 

lesions encountered during HPV DNA replication are repaired by NER prior to 

replication. The reason for the increase in the MF in C33a cells is likely due to the 

cellular eiTor prone phenotype. Additionally when the replication template is 

irradiated there is a significant 3-4 fold reduction in the level o f replication in XP30, 

XP30r| and XP12 cells, however there is only a slight and insignificant decrease in 

C33a and MRC5 cells. All these results give a clear insight into the mechanisms 

involved in maintaining HPV genome integrity.

4.3.4 Role of cellular TLS and NER functions on viral mutagenesis

The increased MF in XP30 compared to MRC5 and XP30q demonstrates that the 

HPV replication fork is protected against point mutation and replication fork stalling 

in response to DNA lesions by the use of cellular TLS polymerases. The failure to 

replicate past DNA lesions often results in recombination mediated resolution of the
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stalled replication fork i.e. due to double strand break or “chicken foot” (Cleaver et al

2002). The use of cellular TLS mechanisms by HPV 16 E1/E2 mediated replication 

indicates that the error prone phenotype exhibited by HPV replication is not due to an 

inability to recruit TLS DNA polymerases to replicate past DNA lesions. The increase 

in the MF in XP12 cells compared to MRC5 shows that DNA lesions are repaired by 

cellular NER mechanisms probably prior to replication (Muotri et al 2002).

4.3.5 Viral replication error phenotypes

Replication o f the viral genome is dependent on cellular DNA polymerases and the 

E1/E2 mediated DNA replication fork is able to recmit the cellular TLS DNA 

replication functions. The use o f cellular DNA polymerases by HPV DNA replication 

thus ensures HPV vimses have a low frequency o f point mutation when compared to 

RNA vimses like HIV (Munoz et al 1993). This is because RNA vimses replicate 

their genomes with a non-proofreading polymerase (e.g. reverse transcriptase) thus 

leading to a heterogeneous viral population due to frequent point mutation, often 

refeiTed to as quasispecies. To RNA vimses this genetic heterogeneity enables 

antigenic variation and efficient evasion from the immune system. DNA vimses, 

including HPVs, are generally not thought to be found as heterogeneous populations 

due to their use of proofreading error free cellular DNA polymerases (Villaneal et al

2001). For HPV 16 genomes detected in benign lesions few variants are found 

between unrelated infected individuals in the same continent. Instead HPV 16 

variation is limited to a few nucleotide changes between each of five different 

continental locations (Wheeler & Icenogle 1995). Consequently HPV 16 genome 

variation has been dismissed as insignificant in the pathogenesis of DNA vims 

associated disease. However several clinical studies demonstrate that in HPV

149



C h a p t e r  4  D i s c u s s i o n

associated cancerous lesions a heterogenous population o f episomal viral genomes is 

found, and the mutations present in the HPV genome are thought to be responsible for 

the virally induced cancer (Kasher & Roman 1988, Deau et al 1991, Hall et al 1997, 

Kalantari et al 2001, Mellin et al 2002). For example the deletion o f the transcription 

repressor site YYl is thought to increase E6/E7 expression (Dong et al 1994, May et 

al 1994), and the deletion o f the late ORFs L1/L2 may prevent completion o f viral life 

cycle and possibly cellular differentiation (Deau et al 1991). However unlike the point 

mutations associated with RNA virus heterogeneity, in HPV lesions larger deletion or 

re-arrangement mutations have been predominantly detected. The above investigation 

into HPV replication fidelity demonstrates that HPV quasispecies can be recreated in 

cell culture, and this error prone phenotype is not due to a failure of HPV E1/E2 

mediated replication to use cellular TLS and NER functions. An attractive future 

target to understand why HPV mediated DNA replication is prone to DNA 

deletion/re-arrangement is to investigate the differences between E1/E2 mediated 

replication control and cellular DNA replication control.

4.3.6 Role of replication initiation control on mutation frequency

Initiation and elongation o f HPV replication requires the virally encoded DNA 

helicase E l (Liu et al 1995). E l is thought to functionally replace the cellular MCM 

2-7 helicase complex and facilitates viral DNA replication initiation and elongation. 

Cellular MCM proteins are loaded onto cellular replication origins only once per S- 

phase in a process dependent on the loading o f the origin recognition complex (ORC) 

to the origin (see Bell & Dutta 2002 for review, discussion 4.2). HPVs in contrast can 

load the E l helicase multiple times onto the HPV origin, and this loading is enhanced 

by E2 (Piirsoo et al 1996). E2 could be viewed as the virally encoded ORC complex
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that loads the helicase accessoiy factors to the viral origin to ensure efficient firing of 

DNA replication multiple times during S-phase. This would be highly beneficial to 

the vims due to limited number of S-phases that the one viral genome would 

encounter during the viral life cycle. The vims needs to rapidly expand the genome 

copy to first establish infection in the basal layers and in the upper layer to provide the 

genomes required for new virions. However replication origins that fire more than 

once per S-phase can cause the creation o f secondary replication bubbles within active 

replication bubbles in a process called “onion skin” replication (Botchan et al 1979, 

Baran et al 1983, Mannik et al 2002). These stmctures occur when a replication origin 

initiates DNA replication before the previous replication bubble has terminated. If  a 

second replication fork collides into the first replication bubble a complex DNA 

stmcture is created that requires recombinational repair mechanisms to resolve. 

Further if  a DNA lesion blocks the first replication bubble then these collision events 

may occur more often. The collision o f the first and second replication forks therefore 

could potentially produce double stranded DNA breaks or complex DNA structures 

thus providing substrates for homologous and non-homologous recombination, 

resulting in HPV genome re-arrangement or viral integration. In all lines tested when 

the pOril6Lac template is UVC irradiated there is a significant increase in the re

arrangement frequency. This is expected to be due to both recombination mediated 

replication past the UV lesion and due to recombination mediated repair o f collided 

“onion skin” replication forks.

The potential role of “onion skin” type replication in viral mutation frequency is 

highlighted in a study that compares the fidelity of SV40 large T antigen mediated 

replication, and Epstein-Barr vims EBNAl mediated DNA replication (James et al 

1989). Large T antigen, like E1/E2, is not thought to be dependent on cellular ORC
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related replication origin liscencing and can therefore initiate DNA replication 

multiple times per S-phase, thus creating “onion skin” type replication intermediates. 

In contrast EBNAl mediated DNA replication is dependent on ORC related 

replication fork licensing (Yates & Guan 1991, Dhar et al 2001, Ritzi et al 2003) and 

is therefore unable to create “onion skin” type replication intermediates. Large T 

antigen mediated replication had a similar mutation frequency to that o f HPV16 

E1/E2 mediated replication (James et al 1989). Also a large proportion o f the mutants 

plasmids recovered had DNA deletions/re-arrangements. In contrast the mutation 

frequency obtained from EBNAl mediated DNA replication was 100 fold lower and 

over long term culture the EBNAl maintained plasmids retained integrity and showed 

little sign o f DNA deletion/re-arrangements. This study demonstrates that the ability 

to initiate viral DNA replication is a significant risk factor for the induction of genetic 

instability (James et al 1989). A recent study using BPVl E l and E2 demonstrates 

that BPVl E1/E2 mediated replication in the presence of high levels o f E l creates a 

heterogeneous population o f replication products (Mannik et al 2002). This is thought 

to be due to “onion skin” type DNA replication. Therefore it is possible that for HPV 

E1/E2 mediated DNA replication the ability to initiate DNA replication multiply is 

the primary reason for the error prone replication phenotype.

4.3.7 Possible HPV replication checkpoint

When the pOril6Lac template is UVC inadiated there is a significant reduction in the 

level o f replication in all cells except C33a and MRC5. This observation poses several 

questions about why there is a reduction in the level of DNA replication. It may be 

due to a cell cycle delay in cells replicating UVC damaged pOriI6Lac. The reduction 

in replication level could be due to fewer E1/E2 replication origins firing. It may be
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due to a failure to re-licence E1/E2 origins for multiple firing during S-phase. It could 

be due to a significant inhibition of DNA elongation. Finally it could also be due to a 

complete failure and abortion o f the replication fork upon encountering damage. The 

latter is the least likely because in C33a and MRC5 cells the replication level o f UVC 

damaged template is similar to when undamaged. At high levels o f cellular UV 

induced DNA damage one report demonstrates that there is a decrease in the rate of 

DNA replication elongation and a decrease in DNA initiation (Miao et al 2003). At 

lower levels o f UV irradiation there is still an inhibition o f DNA replication initiation 

however no inhibition o f elongation. Therefore rate of HPV E1/E2 mediated DNA 

replication elongation needs to be tested.

The reduction of HPV replication levels by UVC damage on the template could be 

due to a replication checkpoint-like response that prevents replication initiation. The 

cellular replication checkpoint is activated in response to the blockage o f replication 

fork progression by DNA lesions, nucleotide depletion or DNA polymerase inhibition 

(Heffeman et al 2002, Feijoo et al 2001). The subsequent responses mediated by ATR 

and Chkl/2 result in the stabilisation o f the stalled replication fork and the delay in 

the firing o f late replication forks. This is thought to be due to the modulation o f the 

loading o f TopBPl, cdc45, the MCM helicases and the DNA polymerases to the late 

origins, therefore preventing replication initiation. Replication at the HPV origin 

could also be modulated by the replication checkpoint. E1/E2 requires the recmitment 

o f the cellular DNA polymerases to initiate replication. The recmitment o f cellular 

DNA polymerases is dependent on the loading o f the helicase complex (i.e. E l), the 

ORC complex (i.e. E2) and multiple DNA initiation factors (e.g. TopBPl, cdc45, 

cd tl, cdc6 and cdc7). It is unknown if E1/E2 can initiate DNA replication when 

cellular proteins essential for replication initiation are inhibited by the replication
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checkpoint. TopBPl is central to the co-ordination of DNA replication initiation and 

the transition from a pre-replication complex to active DNA replication. In Xenopus 

extract the TopBPl homologue Xmusl01/Xcut5 recruits the essential initiation factor 

Cdc45 to the replication origin. Further cdc45 and TopBPl together are essential for 

the co-ordination of the initiation process. Therefore HPV DNA replication initiation 

may be inhibited by cellular initiation proteins, and therefore result in the protection 

of the viral genome. Future work to address this point will require the dissection o f 

what components of the cellular initiation complex is required by E1/E2. This could 

be done using in vitro replication assays and through the selective depletion o f each 

protein from the nuclear extracts used.

The functions of E l and E2 themselves may also be targeted by the replication 

checkpoint response. Firstly, BPVl E l is phosphorylated in vivo by the cdk2/cyclinE 

cell cycle dependent kinase (Cueille et al 1998). Cdk2/cyclinE is thought to activate 

the function of E l and in vitro HPV replication is dependent on cdk2/cyclinE function 

(Lin et al 2000). In response to DNA damage (p53/p21) and the replication 

checkpoint (Chkl/2) cdk2/cyclinE function is repressed by p53/p21 and Chkl/2. 

Therefore the function o f HPV 16 E l may also be reduced in response to a checkpoint 

signal eminating from the replication of the UVC damaged pOril6Lac template. 

Secondly, in section 3.2 the HPV 16 E2 protein is demonstrated to be functionally 

repressed and degraded in response to cellular UVB irradiation. It is thought that UV 

irradiation induces a veiy early S-phase arrest and induces the replication checkpoint 

(see section 4.2.2). Therefore the reduction in E2 levels could be in direct response to 

the activation of the replication checkpoint, or due to a signalling event that is 

preferentially activated during the replication o f UVC damaged DNA.
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Several E2 partner proteins are functionally modified in response to DNA damage. 

TopBPl is pliosphorylated and its levels are altered (Honda et al 2002, Greer et al 

2003), the possible consequence of which on replication initiation is discussed above. 

p53 represses DNA replication of damaged DNA templates in vitro (Zhou & Prives

2003) therefore there may be a similar role in vivo. BRCAl in response to replication 

fork stalling is rapidly phosphorylated and is essential for activating Chkl. BRCAl 

recently been demonstrated to be essential for many ATM/R phosphorylation events, 

possibly due to BRCAl acting as a scaffold ensuring efficient signal transduction. 

Therefore a similar role may exist with E2 and BRCAl may modulate a possible 

checkpoint signal to E2 that may result from the replication o f damaged pOril6Lac.

4.3.8 Future experiments

While the numbers o f different possible roles of viral and cellular proteins in the 

control o f HPV replication initiation, elongation and DNA repair are numerous, a few 

simple experiments will provide a great deal o f insight into these processes.

The first target would be to try and knockout the reduction in the level of viral 

replication by targeting cellular pathways responsible for reducing replication rate in 

response to damage. Treatment o f cells with the ubiquitous PIKK inhibitor 

wortmannin, or the Chkl inhibitor UNC-01 during a transient replication assay will 

identify if  any of these damage responsive kinases have a role (Limoli et al 2002, 

Heffeman et al 2002). Additionally the co-transfection of cells with dominant 

negative versions o f p53 or BRCAl during a transient replication assay may identify a 

role for either o f these proteins. Further for all the DNA damage responsive proteins 

mentioned in this chapter there are cell lines available that are functionally null for all
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these proteins and therefore provide different genetic backgrounds to do transient 

replication assays in. However the ideal system to use would be to do all transient 

replication assay in primary untransformed MRC5 cells. To dissect what cellular 

processes are essential for the reduction in replication siRNA would be used to knock 

out each protein of interest (Brummellcamp et al 2002).

Elucidation o f the possible roles that E l and E2 may have in the reduction o f 

replication level may be a more subtle problem to solve. Due to the transient nature of 

the replication assay the cells are asynchronous and not all cells will be transfected 

with the E1/E2 expression plasmids and the pOril6Lac template. Additionally not all 

cells will be in S-phase replicating the pOrilôLac at the time o f haiwest. Therefore it 

is likely to be hard to determine possible modifications or regulation o f overexpressed 

E1/E2 proteins in this system. Further refinement o f the replication assay by 

synchronising the cells and enhancing the transfection protocol by electroporation 

may overcome these limitations. Investigation o f any differences o f E1/E2 binding to 

the HPV origin through use o f chromatin immunoprécipitation (ChIP) will also be o f 

interest (Keller et al 2002, Cobb et al 2003, Rizi et al 2003).

In budding yeast the stmctural study o f stalled replication forks is done through the 

use o f 2D agarose gel electrophoresis (Lopez et al 2001). This technique allows the 

separation and visualisation o f DNA replication structures including both short and 

long replication bubbles and Y-shaped replication forks. When budding yeast with a 

mutation in the regulatoiy FHA domain o f the Chk2 homologue Rad53 are incubated 

with hydroxyurea a distinct signal is observed on the 2D gel that is representative o f 

the formation of X-shaped structures resulting from the collapse of replication forks 

(Lopez et al 2001). No similar work has been done yet in mammalian cells. Therefore 

using either E l/E2 or EBNAl to initiate replication similar experiments to those done
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by the lab o f Foiani (Lopez et al 2001) can be done in human cells. 2D gel 

electrophoresis has been previously done using BPVl replication templates before 

(Mannik et al 2002) therefore the setting up of an assay of this description is 

achievable. Due to the transient nature of these assays the stalling o f the replication 

fork on the DNA template may be achieved by direct DNA damage (UV, mitomycin 

C) to the DNA replication template prior to transfection or the replication fork could 

be stalled by treatment o f the cells with hydroxyurea. Subsequent ID and 2D agarose 

gel electrophoresis will demonstrate the amount o f replication completed and the 

stmcture of the DNA intermediates created (Lopez et al 2001, Mannik et al 2002). 

Additionally the replicated plasmids could be rescued into E.coli and screened for 

mutations that arise due to genetic reanangement. Further the development of a vector 

to directly measure homologous recombination events will highlight the frequency 

that homologous templates are used to repair the replication fork. The potential power 

o f this technology comes from its ability to detect DNA replication amount, DNA 

replication structures and the fidelity o f DNA replication all from the same sample.

The work presented on E1/E2 mediated DNA replication fidelity demonstrates that 

while HPV DNA replication is error prone E1/E2 mediated DNA replication forks are 

able to use the error free TLS DNA polymerase r\. The frequency o f deletion and 

DNA rearrangements presents important questions about the reasons for the creation 

and the resolution o f non-homologous recombination DNA repair events that will lead 

to these mutations. The future use o f the HPV 16 E1/E2 mediated replication system 

as outlined above will provide deep insight into both viral and cellular DNA 

replication initiation, elongation and repair mechanisms.
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4.4 A novel technique with enhanced detection and quantitation of HPV-16 E l 

and E2 mediated DNA replication.

The traditional method for the detection of HPV E1/E2 mediated replication is by 

Southern blot. This teclinique is hazardous, labour intensive and has limitation on its 

sensitivity. I have developed a real-time PCR based methodology for the detection of 

E1/E2 mediated replication. When an optimal level o f pOril6M  is used (Ing) the real

time PCR assay is a highly sensitive and quantitative method for detection o f transient 

viral DNA replication. Importantly it allows for detection of replication at origin input 

levels where the replication mediated by E1/E2 is on a linear scale. This cannot be 

said for the Southern blotting technique. This advantage has resulted in the detection 

o f enhanced replication by TopBPl in C33a cells, something that was not possible 

using Southern blotting (Boner et al, 2002). The optimised conditions used in this 

assay and the enhanced sensitivity means that this method facilitates the detection of 

more subtle effects on DNA replication. This is ideal for looking at the way cellular 

partner proteins or HPV DNA elements and E1/E2 control viral DNA replication. 

Finally real-time PCR is a significantly faster way to generate results, the use o f 96- 

well plates and a two-hour ran time creates a high throughput assay that has potential 

for commercial application. Disraption o f the E1/E2 interaction prevents viral DNA 

replication (Yasugi et al 1997, Kasukawa et al 1998) and is an attractive target for 

HPV drag development (Plumpton et al 1995, Clark et al 1998). The real-time PCR 

assay described here is an ideal template for the development o f a screen for the 

discovery of HPV antiviral compounds. Several simple modifications o f this assay 

will ensure success for commercial application. The current transfection protocol has 

a relatively low efficiency. Use of electroporation or lipid based transfection protocols
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will allow the assay to be performed using less cells in multiwell plates. Also 

replacement of the DNA purification protocol with a mini-column based protocol may 

allow the technique to be performed by biological robots.
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