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Abstract

Our group has previously shown that IGFBP-5 expression increases dramatically during 

involution of the mammary gland and subsequently we developed a transgenic mouse model 

expressing IGFBP-5 specifically in the mammary gland, which proved that the binding protein was 

a causative factor in mammary epithelial cell death. In this study, the aim was to develop an in 

vitro system to investigate the regulation of IGFBP-5 expression and the function of the binding 

protein on cell death/survival and tissue remodelling. The mouse mammary epithelial cell line, 

H C ll, was chosen for this and initially we characterised the IGFBP expression profiles in these 

cells. We demonstrated that although IGFBP-5 protein levels are up-regulated by up to 10-fold 

during differentiation of H C ll cells induced by treatment with a lactogenic hormone mix (DIP) 

and that IGFBP-2 secretion was down regulated, there was a clear dissociation between the process 

of cell differentiation and the regulation of these IGFBPs. Furthermore, the mRNA expression 

profile of the IGFBPs was also established using quantitative RT-PCR to examine similarities and 

differences in IGFBP mRNA expression profiles between the mammary gland and the H C ll cell 

line. In addition to the significant up-regulation of IGFBP-5 message in differentiated H C ll cells, 

we report that IGFBP-5 mRNA levels were increased by a dramatic 54-fold in the involuting 

mouse mammary gland. We decided to study the DfP-induced increase in IGFBP-5 levels in HCl 1 

cells as an in vitro model in which to study the potential molecular signals responsible for the 

induction of IGFBP-5 expression in the involuting mammary gland. Using transient gene transfer 

methods, we demonstrated that there is an enhancer element(s) between positions -1004 to -156 in 

the IGFBP-5 promoter that results in significant induction of gene expression in H C ll cells and 

that there is a potential site for a novel transcriptional regulator(s) of IGFBP-5 expression at 

position -556, which merits further investigation. As H C ll cells also secrete a plasminogen 

activator in vitro, which results in cleavage of focal adhesions and cell death, and because IGFBP-5 

has been previously shown to bind to PAI-1, we decided to use this system to determine the 

biological consequences of IGFBP-5/PAI-1 interaction. Our data demonstrates that IGFBP-5 can 

induce cell death both by sequestering IGF-I and by activation of plasmin which, in turn, induces 

degradation of the extracellular matrix. We have also shown that IGFBP-5 can enhance the



activation of tPA, in a PAI-1- and IGF-independent fashion and that this can result in cell death. 

These studies thus identified the possibility that IGFBP-5 may act as a central coordinator of the 

apoptosis and ECM degradation that occurs during tissue remodelling.
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Chapter I. Introduction

1.1 Structure and Function of IGFBP-5

1.1.1 IGF-axis

Insulin-like growth factors (IGF-I and IGF-II), single chain polypeptides that share 

significant structural homology with insulin, are mitogenic and potent survival factors present in 

the circulation (reviewed by Baserga et ah, 1997). They are secreted by many cell types and have 

multiple biological functions in proliferation, differentiation and other anabolic responses, 

including resistance to apoptosis (Baserga et ah, 1997; Stewart et ah, 1996).

The biological effects of IGFs are mediated thiough binding to high-affmity receptors on 

the cell surface. The type I IGF receptor (IGF-IR), which is structurally closely related to the 

insulin receptor, is a disulphide linked heterotetrameric protein complex containing a tyrosine 

kinase domain that mediates signal transduction pathways (De Meyts et ah, 1994). IGF-IR is 

believed to mediate IGF action by the phosphorylation of cellular substrates, which specialise in 

gi'owth and differentiative functions (Cheatham, 1995; LeRoith et ah, 1995). The structurally 

distinct type II IGF receptor (IGF-IIR) lacks tyrosine kinase activity and is actually identical to the 

cation-independent mannose 6-phosphate receptor (Komfeid, 1992). There is no known signal 

transduction mechanism initiated by this receptor, so that all proliferative effects of the IGFs are 

thought to be mediated thiough IGF-IR (Czech, 1989). However, although IGF-II binds IGF-IIR 

with greater affinity than IGF-I, IGF-IIR appears to be involved in the mediation of IGF-II 

degradation and targeting of lysosomal enzymes to lysosomes (Wang et ah, 1994). Inactivation of 

IGF-IIR in mice by gene targeting results in foetal overgrowth, skeletal abnormalities, and perinatal 

death due to overexposme of the foetus to IGF-II (Lau et ah, 1994; Ludwig et ah, 1996).

The observation that most of the IGFs present in serum migrate in higher molecular mass 

fractions, while the molecular mass o f free IGFs is approximately 7.5 kDa, led investigators to



propose the existence of carrier proteins. These carrier proteins were postulated to form a complex, 

which maintains a circulating reservoir of IGFs, transporting and prolonging the half-life of the 

growth factors. These earner proteins, which were revealed to be IGFBPs, regulate IGF distribution 

to the tissues by preventing them from binding to the receptors (Zapf et ah, 1979). All six IGFBPs 

are found in the circulation either in the free form or in binary complexes with IGFs. Free or 

binary-complexes of IGFBPs are believed to exit the circulation rapidly, whereas ternary 

complexes with the Acid-labile subunit (ALS) appear to be essentially confined to the vascular 

compartment (Guler et ah, 1989; Lewitt et ah, 1994; Young and Clemmons, 1994).

The most abundant circulating IGFBP for transporting IGFs is IGFBP-3. It carries 75 % or 

more of serum IGF-I and -II in heterotrimeric complexes that also contain the ALS, which is a 

protein of approximately 85 kDa molecular weight (Baxter, 1988). IGFBP-5, which is present at 

about 10 % of the molar concentration of IGFBP-3, can also form ternary complexes with the ALS 

(Twigg and Baxter, 1998). Approximately 90 % of IGFBP-3 and 55 % of IGFBP-5 present in the 

circulation are in these binary or tertiary complexes in healthy adults (Baxter et ah, 2002).

IGFBPs exert a complex array of functions at the cellular level (Baxter et ah, 2002). There 

is little information on the exact relationship between IGFBPs in the circulation and those in the 

cellular environment, but it appears that the IGFBPs may be differentially targeted to different 

tissues depending on both their primary structure and their post-translational modifications (Baxter 

et ah, 2002). IGFBPs in the circulation can be expected to have both important autocrine and 

paracrine effects. As well as modulating activation of the IGF-IR by IGFs (Jones et ah, 1993a; 

Karas et ah, 1997; Ricort and Binoux, 2001), IGFBPs are documented to also affect cell motility 

and adhesion (Jones et ah, 1993a; Perks et ah, 1999b), apoptosis and survival, and cell cycle 

regulation in an IGF-independent manner (Firth et al., 1998a; Miyake et ah, 2000; Rajah et ah, 

1997).

A schematic diagram shown in Figure I.l illustrates the major components of the IGF axis. 

The IGF axis consists of small peptide hormones, IGF-I, IGF-II, their receptors (the type I and type 

II IGF receptors) and six known IGF binding proteins (IGFBP-1 through -6). The IGFs bind both



their receptors and binding proteins with high affinity. The IGFBPs are able to modulate the action 

of IGFs in several ways, including an inhibitoiy model in which IGFBPs sequester IGFs from their 

receptors, an enhancing model in which IGFBPs transport IGFs to their site of action, or by a 

receptor-independent model that may involve direct interaction of IGFBPs with IGFBP receptors 

(Clemmons, 1997). The modulation of IGF levels by IGFBPs is fuifher regulated by IGFBP 

proteases which cleave the high affinity IGFBPs into fragments with lower affinity for IGFs, 

thereby increasing free IGF bioavailability. This process leads to reduced inhibition of cell growth 

by IGFBPs. Finally, some IGFBPs also have been shown to bind to other cellular components, and 

cell surface receptors have been identified for both IGFBP-1 and -3. IGFBP-5 can also bind to the 

extra cellular matrix with high affinity and this will be discussed in more detail later.
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1.1.1.1 Insulin-like growth factor (iGFs)

LI. 1.1.1 Structure

It has been well demonstrated that the IGFs stimulate a wide variety of cells to proliferate, 

differentiate, and exhibit many other anabolic responses, including resistance to apoptosis (Baserga 

et al., 1997). IGF-I and -II, which are structurally similar to insulin, are two highly homologous 

small hormone peptides of approximately 7 kDa molecular mass. IGF-I is a single-chain basic 

protein of 70 amino acids, whereas IGF-II is a slightly acidic single-chain peptide of 67 residues 

(Rinderknecht and Humbel, 1976; Rinderknecht and Humbel, 1978). Both IGF-I and -II show 

-70%  homology to each other, and their A and B domains show -50%  homology to A and B 

chains of human msulin (Phillips et al., 1998). IGF-I has many growth-promoting and metabolic 

activities (Froesch and Zapf, 1985). The first 29 residues of IGF-I are homologous with the B-chaln 

of insulin (B-region; 1-29), the following 12 residues are analogous to the C-peptide of pro-insulin 

(C-region; 30-41) and the next 21 residues are homologous to the A-chain of insulin (A-region; 

42-62). The carboxy-terminal octapeptide (D-region; 63-70) has no counterpart in the insulin 

molecule. In the absence of a crystal structure, the tertiaiy structure of IGF-1 has been modelled on 

that of porcine insulin (Figure I. 2) (Blundell et al., 1983; Blundell et al., 1978). 2-D NMR studies 

have confirmed that the solution structure of IGF-1 is consistent with this model (Cooke et al., 

1991; Sato et al., 1993). In the insulin fold an A-chain of 21 residues and a B chain of 30 residues 

are cross-linked by two disulphide bridges (A20-B19 and A7-B7) on either side of the B-chain a - 

helix. A third intrachain disulphide (A6-A11) bridges the loop between the two short anti-parallel 

A-chain helices (Gill et al., 1999). The corresponding disulphide connectivity (18-61,6-48,47-52) 

has been confirmed for plasma-derived human IGF-1 (Axelsson et al., 1992). IGFs exert their 

diverse biological effects through interaction with specific cell-surface receptors.
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I.1.LL2 In vitro function

Metabolic and mitosenic effects The IGFs exert acute metabolic effects on protein and 

carbohydrate metabolism on most cell types via the widely expressed IGF-IR. IGF-I stimulates 

amino acid transport, glucose utilisation, lipid formation, and protein synthesis, though its effects 

vary depending on cell type (Miers and Barrett, 1998). In skeletal muscle the major in vitro effect 

of IGF-I is in the stimulation of glucose uptake, glycogen synthesis and glycolysis (Dimitriadis et 

ah, 1992).

Promotion o f  cell cycle yrosression The ability of IGFs to stimulate DNA synthesis has 

been widely studied. Competence factors, such as platelet derived growth factor (PDGF) and 

fibroblast growth factor (FGF) induce quiescent cells to enter Gi and IGF-1 functions as a 

progression factor late in Gi, allowing cells to continue into DNA synthesis and proliferation 

(Pardee, 1989). Since PDGF increases the numbers of IGF-IR in fibroblasts (Clemmons and Shaw, 

1983) and receptor over-expression bypasses the need for PDGF, the function of PDGF as a 

competence factor may be to increase IGF-IR levels (Baserga and Rubin, 1993). Likewise, 

haemopoietic IL-3 dependent cells over-expressing IGF-IR become IL-3 independent in the 

presence of excess IGF-1 (McCubrey et ah, 1991). As might be expected from its role in cell cycle 

progression, IGF-I induces mitogenesis in a wide variety of cell types (Baserga et ah, 1997).

Anti-apoptotic effect As discussed above, IGFs stimulate a mitogenic response in many 

cell types, however in haematopoietc cells and in some carcinoma cell lines they can function as 

survival factors preventing apoptosis (reviewed in (LeRoith and Roberts, 1993). Proliferation and 

apoptosis signals may share some common pathways as they both induce similar changes in the 

moi-phology of the cells such as chromatin condensation, loss of cell-cell contact inhibition, and 

nuclear disintegration. This is supported by the observation that over-expression of proteins 

normally associated with cell proliferation can cause apoptosis (Hartwell and Kastan, 1994; Steller, 

1995). However, IGF-I has been shown to support viability in non proliferating cells in culture
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(Beck, 1994; Calsson-Skwirat et al,, 1989; LeRoith et al., 1993) suggesting that its stimulation of 

cell proliferation and anti-apoptotic action may be two distinct signals (Rubin and Baserga, 1995).

Ll.1.1.3 In vivo function

Anabolic insulin-like effects The in vivo effects of IGFs are mainly insulin-like effects 

(stimulation of glucose uptake and glycogen synthesis) in fat and muscle cells (Froesch and Zapf, 

1985).

Growth promoting effect through mediation of Growth Hormone (GH) effects. As a result, 

IGFs appeared to stimulate body weight gain and skeletal muscle elongation (Salmon and DuVall, 

1970).

Stimulation o f  cell proliferation in a variety of organs and tissues by IGFs has also been 

observed, including nervous system development (Heidenreich, 1993), osteoblasts (Hock, 1988), 

bone endothelial cells (Fiorelli et ah, 1994), chondrocytes (Ohlsson et ah, 1992), hormone 

synthesis in ovary (Chiistman et ah, 1991; Davoren et ah, 1985; Erickson et ah, 1991; Hernandez 

et ah, 1988; Talavera and Menon, 1991), spermatogonial cells in testes (Soder, 1992), and various 

cancer cells (reviewed by (LeRoith et ah, 1995).

1.1.2 IGF recep to rs  and signalling

The two IGF receptors, IGF type I and type II receptors are found on most cell surfaces, 

but, to date, most of the biological actions of the IGFs have been attributed to interaction with IGF- 

IR.

1.1.2.1 IGF type I receptor

The IGF-I receptor (IGF-IR) is ubiquitously expressed, with highest levels seen during 

embryonic development and organogenesis (Allan et ah, 2001 for review). Mice homozygous for a 

null mutation of this receptor are small in size and die at birth. Their inability to develop properly is
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largely due to respiratory failure associated with underdeveloped respiratory muscles as well as 

poorly developed lungs and brains, and decreased bone ossification (Baker et ah, 1993; Liu et ah, 

1993a).

The IGF-IR is a disulphide-linked heterotetrameric glycoprotein composed of two ligand- 

binding a-subunits of 706 amino acid and two transmembrane p-subunits of 627 residues. The 

human protein is produced by mRNA derived from the single 21-exon IGF-IR gene, located on 

chromosome 15q25-q26 (Abbott et ah, 1992; Ullrich et ah, 1986).

The a-subunits contain the ligand-binding region of the receptor. The IGF-IR binds IGF-I 

with a dissociation constant (Kd) of ~ InM in intact cells; IGF-II binds with several-fold lower 

affinity, and insulin with more than 100-fold lower affinity (Jones and Clemmons, 1995; LeRoith 

et ah, 1995). The P-subunits are composed of a short extracellular domain, a membrane-spanning 

segment, and a large intracytoplasmic region containing a tyrosine kinase domain and sites of 

tyrosine and serine phosphorylation (LeRoith et ah, 1995; Ullrich et ah, 1986). Ligand binding to 

the a-subunits triggers activation of the intracellular tyrosine kinase, leading to receptor 

autophosphorylation by an intramolecular trans-phosphorylation mechanism similar to that used by 

other receptor tyrosine kinases (Frattali and Pessin, 1993; Jones and Clemmons, 1995; LeRoith et 

ah, 1995). The autophosphorylation activates the inherent tyrosine kinase activity of the receptor, 

which leads to phosphorylation of other important tyrosines on the receptor as well as on 

endogenous substrates (reviewed by (Petley et ah, 1999).

1.1.2.2 IGF type II receptor

The IGF-II receptor (IGF-HR) is a single-chain membrane-spanning glycoprotein that also 

is known as the cation-independent marmose-6-phosphate receptor. The mature human receptor 

contains 2,451 amino acids that can be divided into three regions, a large 2,264-residue 

extracellular domain, a 23-amino acid transmembrane region, and a 164-residue carboxyl-terminal 

cytoplasmic domain (Morgan et ah, 1987; Oshima et ah, 1988). The extracellular part of the IGF- 

IIR binds ligand, and the cytoplasmic region encodes segments responsible for interaction with
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different subcellular compartments (Lobel et al., 1988; Rohrer et al., 1995), including those 

involved in endocytosis (Lobel et a l, 1988), and potentially for coupling to inhibitory GTP-binding 

proteins (Nishimoto et ah, 1987; Okamoto et ah, 1990). The IGF-IIR is highly conserved among 

different species, with -80%  homology being found among bovine, rat, mouse, and human 

receptors (Komfeld, 1992). The extracellular domain of each receptor is composed o f 15 

contiguous segments of 134-191 residue repeats that share 16-38% identity (Lobel et ah, 1988; 

MacDonald et ah, 1988; Morgan et ah, 1987; Szebenyi and Rotwein, 1994; Zhou et ah, 1995). 

However, as mentioned before, most of the effects of IGF-II are thought to be mediated via IGF-I 

receptor (Louafi et ah, 2003).

1.1.2.3 Signalling pathways

The signal pathways leading to the different cellular responses (primarily proliferation and 

differentiation) of cells to the IGFs are distinct (reviewed by Petley et ah, 1999). In addition, 

differences in timing as well as in signalling pathways, might account for the variation in the 

cellular responses (reviewed by Petley et ah, 1999). For example, it has been demonstrated that in 

muscle cells, in addition to the differences in signalling pathways leading to proliferation and 

differentiation, their responses to IGF are also separated temporally; the proliferation response 

occurs first, followed by differentiation (Coolican et ah, 1997; Ewton et ah, 1998).

The pathways involved in the mitogenic response to IGF differ dramatically from one cell 

type to another. Some cell types, such as myoblasts and adipocytes, clearly employ the Ras-Raf- 

Mitogen Activated Protein (MAP) kinase signalling pathway for cell proliferation (Coolican et ah, 

1997; Valverde et ah, 1996), while others, such as MCF-7 mammary tumours and brain capillary 

cells, proliferate in response to signals mediated by phosphatidylinositol-3 (PI-3) kinase (Dufoumy 

et ah, 1997). Similarly, most of the systems studied use a PI-3 kinase pathway during IGF- 

mediated differentiation, although some others, such as SH-SY5Y neuroblastoma cells, 

differentiate in response to the MAP kinase pathway (Petley et ah, 1999). Thus, it seems that there
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are no simple generalisations that can be used to forecast the signalling pathway that will be 

involved in any response to the IGFs.

Major pathways of Insulhi/IGF signalling have been well established, as illustrated in 

Figure I. 3. Binding of IGF-I to the extracellular a-subunit of IGF-IR results in the activation of the 

tyrosine kinase domain of the receptor |3-subunits by phosphorylation, and increased tyrosine 

phosphorylation of several downstream substrate molecules, such as IRS-1, She and Crk (Rubin 

and Baserga, 1995). Each one of these proteins can then bind several other protein substrates so 

that the signal cascade proceeds down the pathway, but it is also propagated horizontally to other 

pathways. The 1RS proteins have no intrinsic enzymatic activity, but are thought to act as a link 

between the activated receptor and downstream components of the signalling cascade.

Probably the most important pathway through which IGF-I can exert its mitogenic effects 

is the activation of the MAP kinase pathway (Rubin and Baserga, 1995). Activation of the MAP 

kinase pathway is initiated by growth factor receptor bound-2 receptor (Grb-2) binding to IRS-1, 

and the subsequent binding of SOS to this complex via SH3 domains. This is followed by 

activation of Ras and Raf and of downstream MAP kinase. The result is transcriptional activation 

of numerous genes involved in the regulation of cell division and proliferation.

In addition, activated 1RS-I also binds the p85 subunit of PI 3 kinase (PI-3K) and 

stimulates the activity o f the p i 10 catalytic subunit of PI-3K. The activated p i 10 then 

phophorylates phophoinositides, which trigger the phosphorylation of the serine kinase, protein 

kinase B (PKJB/Akt). This in turn phosphoiylates Bcl-xl/Bcl-2 associated death promoter (BAD), 

an apoptosis-inducing member of the B-cell lymphoma 2 (Bcl-2) family of proteins. BAD becomes 

sequestered by 14-3-3 proteins and is unable to bind and inactivate anti-apoptotic Bcl-2 and long 

form of Bcl-x isoform (Bcl-xl), thus resulting in the suppression of apoptosis.
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1.1.3 Insulin-like grow th  factor binding pro te in s (IGFBPs): 

General protein  structure

Analysis of the amino acid sequence reveals that the IGFBPs are clearly distinct but share 

regions containing strong homology. The structure of IGFBPs is generally described as consisting 

of three domains of approximately equal size: the conserved amino- (N~) teiminal domain, the 

highly variable midregion and the conseiwed Caiboxyl- (C-) terminal domain. IGFBPs share at 

least 50 % homology among themselves, and 80 % homology between different species (Lamson et 

ah, 1991; SMmasaki et ah, 1991). The mature proteins contain between 216 and 286 amino acids, 

giving core molecular masses of between 22.8 and 31.3 kDa.

The IGFBPs are cysteine rich proteins: 16-20 cysteines in the pre-peptides (prior to 

removal of the signal peptide, which is necessary for secretion). Stmcturally, the cysteines are 

clustered at the conserved N terminal domain (12 cysteines in IGFBP-1, -2, -3, -4 and -5, whereas 

there are only 10 in IGFBP-6) and at the conserved C-terminal third (6 cysteines) of the proteins. 

The alignment of the cysteine molecules is strongly conserved across all the six IGFBPs 

(Shimasaki et ah, 1991), The higher number of cysteine residues in these domains suggests that this 

part of the proteins is likely to be highly structured. It is believed all of the cysteines are engaged in 

disulphide bridges, and disulphide linkages of cysteines are important for the correct folding and 

maintenance of the three-dimensional structure of many proteins. In addition, it has been shown 

that the N-tenuinal cysteines in bovine IGFBP-2 form sequential pair-wise disulphide bridges, 

which demonstrates that there are no inter-domain disulphide linkages between cysteines in the N- 

and C-terminal domains (Forbes et ah, 1998). In contrast to the N- and C-terminus, the central 

domain has no cysteines except IGFBP-4 (Drop et ah, 1992; Hwa et ah, 1999). However, this 

region contains phosphorylation, glycosylation, and many proteolytic cleavage sites suggesting that 

important biological functions of IGFBPs may be regulated by this region (Conover, 1995).
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1.1.3.1 IGF binding motifs

One of the key features of the IGFBPs is their unique ability to bind IGFs with high 

affinity (Ballard et ah, 1989; Baxter, 2000). To date, the structure of IGFBP proteins has not as yet 

been determined by X-ray crystallography and it has been argued that tliis may be due to several 

factors ranging from the difficulty in expressing recombinant IGFBPs at high enough 

concentrations to the possibly flexible natui e of the midregion part of these proteins, which would 

make crystal formation problematic. However, based on two-dimensional nuclear magnetic 

resonance (NMR) spectroscopy using IGFBP fragments (Kalus et a l, 1998) and mutagenesis 

(Forbes et ah, 1998; Imai et ah, 2000) studies, it is believed that IGFBP proteins make contact with 

the IGFs with their N- and C-terminal domain simultaneously. From this work it was argued that 

the cysteine-rich N- and C-terminal ends are brought into alignment to create a high-affinity IGF 

binding site by bending of the “flexible” central domain of the IGFBPs (reviewed in Clemmons,

2001).

The observation that the N- terminal fragment of IGFBP-3 was capable of binding IGF-I 

and -II, although with relatively low affinity (Durham et ah, 1997; Fowlkes et ah, 1995), and the C- 

terminal domain of IGFBP-2 alone was shown to retain some binding activity (Wang et ah, 1993) 

initially suggested that important binding sites existed witliin both the N~ and C-teiminal domains. 

This suggestion was subsequently supported by the demonstration that both N- and C-terminal 

regions of IGFBP-3, and the C-teiminal fragment of IGFBP-2 had some IGF binding activity (Ho 

and Baxter, 1997; Spencer and Chan, 1995). Several investigators have begun to identify the 

important binding site in the N-terminal domain of IGFBPs (Andress et ah, 1993; Chemausek et ah, 

1995; Durham et ah, 1997; Hashimoto et ah, 1997; Spencer and Chan, 1995; Zapf et ah, 1990). 

Several residues in this region have side chains that could potentially interact with the appropriate 

side chains of residues in IGF-I or -II that are known to be important for binding IGFBPs (reviewed 

in (Clemmons, 2001). Some groups have proposed that the N- terminal region contains the major 

IGF binding site that is common to all six IGFBPs and further speculated that this region interacts 

with an important binding domain in the C-terminus of each protein to establish the high affinity- 

binding site (Hashimoto et ah, 1997; Kalus et ah, 1998; Qin et ah, 1997). Preliminary findings
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showed that the affinity of fragments containing this N-terminal domain-binding subunit was 

relatively low, and this led to the speculation that although the N-terminal region is absolutely 

required for IGF binding, the C-terminal domain is also necessary to stabilise the IGF/IGFBP 

complex (Hashimoto et ah, 1997; Kalus et ah, 1998; Qin et ah, 1997).

In support of this finding, it was shown that the basal binding subunit for the IGFs was 

contained in the sequence encompassing the Glu 52 to Ala 92 of rat IGFBP-3 using a solid-phase 

binding assay (Hashimoto et ah, 1997). The authors were also to show that this fragment has IGF 

binding affinity, although it only constitutes a small part of the native protein. These researchers 

also showed that the affinity for IGF-I was decreased 25-fold with a fragment containing residues 

1-92. However, when the middle portion (between 1-186) was included, the affinity was only 

reduced 8-fold. Therefore, it was concluded that flanking sequences in both the N-terminal and C- 

terminal regions adjacent to this sequence is important for folding (reviewed in Clemmons, 2001).

Using NMR spectroscopy, it has been shown that IGFBP-5 is nearly identical in sequence 

to IGFBP-3 between residues 52-92 (Kalus et ah, 1998). In this study, a fragment of IGFBP-5 

containing residues 1 -94 was prepared by limited proteolytic digestion of the whole protein, as well 

as a C-terminal fragment (residues 135-246) and a midregion fragment (residues 95-134). An 

additional fr agment containing the sequence between Ala 40 and Glu 92 was also generated by this 

proteolytic digest. BIAcore analysis was used to determine the binding affinities of each of the 

fragments for IGF-I and IGF-II. Neither the C-terminal fragment nor the midregion fragment had 

detectable affinity. In contrast, the N-terminal fragment and the smaller 40-92 fragment had easily 

detectable affinities, albeit that they were reduced 200-fold compared with full-length IGFBP-5. 

Although the association rate of IGF-I binding to the 40-92 fragment approximated that of the 

native protein, its binding to this peptide was associated with a much more rapid dissociation rate. 

Furthermore, the affinity of the Ala 40-Glu 92 fragment was sufficient to inhibit IGF-Il-stimulated 

phosphorylation of the IGF-I receptor. From these data, it was possible to constmct a three- 

dimensional model of the region contained within the mini IGFBP-5 sequence that is shown in 

Figure I. 4. This structure comprises a uniquely folded domain containing tliree anti-parallel (3- 

strands and two disulphide bridges that are responsible for its compact structure. This structure is
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further strengthened when IGF-I or -II binds to the peptide. These cysteine pairings are also present 

in IGFBP-2, -3 and -6 (Hashimoto et ah, 1997; Neumann and Bach, 1999). Since there was no 

significant difference in affinity between the larger 1-92 N-terminal fragment and the smaller 40-92 

fragments, it was concluded that this contained the major IGF binding site. However, it was also 

maintained that in order to obtain the full affinity of the native protein, this requires complex 

formation with C-terminal domain residues resulting in stabilisation of the intact protein 

(Clemmons, 2001).
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Figure I. 4 Tertiary structure of the mini-IGFBP-5, Ribbon drawing of mini- 

IGFBP-5 showing its (3-sheet, the cysteine bridges and the residues composing the hydrophobic 

patch. The charged and hydrophobic amino acids are believed to form the high-affinity binding 

pocket in the N-terminal region of IGFBP-5. These amino acids have been proposed to interact 

with amino acids containing specific side chains and charged groups within IGF-I and IGF-II 

(Kalus et al., 1998).
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In the N-terminal major IGF-binding site model, in solution the residues Val 49, Leu 70, 

and Leu 74, expose their hydrophobic side chains in a specific alignment that defines the 

hydrophobic patch on the smFaee of this IGFBP-5 fragment. In addition, Val 49, Leu 73, and Leu 

74 of IGFBP-5 are conserved among all IGFBPs, suggesting that this model is likely to be relevant 

for the binding of the other IGFBPs to IGF-I or IGF-II (Kalus et ah, 1998). It is further supported 

by site directed mutagenesis studies of IGF-I and IGF-II (Bach et ah, 1993; Franeis et ah, 1993). 

The IGF-II residues known to bind IGFBPs are Phe 48 and Glu 6, which could bind to Leu 73/Leu 

74 and Lys 68 of mini IGFBP-5 (residues Ala 40 to Glu 92) respectively. However, the sequence 

between positions 62 and 69 in IGFBP-5 is less well eonserved amongst the other IGFBPs, and this 

could explain the variation in affinity for IGF-I and -II observed amongst the six binding proteins. 

This is further supported by the observation that this region is conserved in IGFBP-3, which has an 

affinity for IGF-I and -II that is similar to that of IGFBP-5. Furthermore, a basic residue which is 

conserved between IGFBP-3, -4, and -5 (position 68 in IGFBP-5) (Lalou et ah, 1996), appears to 

be necessary for the highest affinity (reviewed in Clemmons, 2001).

A further in vitro mutagenesis study (Imai et ah, 2000; Kalus et ah, 1998) confiimed the 

model of Kalus and colleagues, suggesting that these residues in the N-terminus of IGFBP-3 and -5 

are required for the formation of a high-affinity IGF-I binding pocket in the intact protein 

(Clemmons, 2001).

Less work has focussed on the C-terminal domain of the IGFBP proteins with respect to 

IGF binding. However, one group cairied out C-terminal truncations in bovine IGFBP-2 (Forbes et 

ah, 1998) and identified a short stretch of residues that, once deleted, resulted in an 80-fold 

reduction in affinity for binding to IGF-II. Aligmnent of the amino acid sequence for this region in 

all six IGFBPs from all species analysed to date demonstrates that there are two completely 

conserved amino acids, Gly203 and Gln209 (residue numbers for murine IGFBP-5) (Bramani et ah, 

1999b). The substitution in the C-terminal region of IGFBP-4 was predicted to alter its folding 

pattern (De la Fontaine et ah, 1995). Mini deletion analysis of the region from Cys 205 to Val 214 

revealed that this region was critical for optimum affinity, and this deletion resulted in a 6-fold 

reduction in its affinity. The authors concluded that the N-terminal sequence Leu 72 to Ser 91
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contained the basal binding sub unit and the region from Cys 205 to Val 214 was necessary for 

proper folding and attainment of high-affinity binding.

Our group has previously presented evidence that the C-terminal domain of IGFBP-5 is 

necessary for optimal IGF-I binding (Bramani et ah, 1999b; Song et ah, 2000). These researchers 

determined that two specific amino acids in the C-terminal region of IGFBP-5 were critical for 

maintenance of high affinity binding using site directed mutagenesis to mutate Gly 203 to Lys and 

Gin 209 to Ala. This caused an 8-fold reduction in affinity of IGFBP-5 for human IGF-I. Since this 

region of IGFBP-5 has also been shown to be very important for ECM binding, the authors 

hypothesised that when the IGFBP-5 binds to ECM, its affinity for IGF-I is reduced. Based on the 

data of Kalus and co-workers (Kalus et ah, 1998) showing that the C-teiminal fragment has no 

intrinsic binding activity and that this sequence may be responsible for forming the high affinity 

tertiary structure, this suggested that these substitutions resulted in a major alteration in its 

aligmnent with the N-terminal region-binding site, thus disrupting the affinity of the whole protein. 

Conversely, substitutions for Gly 203 and Gin 209 resulted in no change in the affinity of this form 

of IGFBP-5 for heparin. Since binding of IGFBP-5 to ECM or heparin had been shown to lower 

the affinity of IGFBP-5 for IGF-I, this suggests that the heparin/ECM binding domain and the IGF- 

binding domain overlap. The authors further proposed that the ability of heparin binding to alter the 

affinity of IGFBP-5 (Arai et ah, 1994) for IGF-I is due, at least in part, to steric hindrance (Song et 

ah, 2000).

These conclusions were supported by a second study, which demonstrated that 

substitutions for five amino acids in IGFBP-3 (K228-R232) with residues from the corresponding 

sequence in IGFBP-1 resulted in a substantial reduction (20-fold) in the affinity of IGFBP-3 for 

IGFs (Firth et ah, 1998b). These residues are homologous to the R214-R218 sequence in IGFBP-5. 

They further showed that deletion of IGFBP-3 residues from 185-264 or from 89-184 markedly 

reduced IGF-I and -II binding. However, some affinity of the 1-89 fragment was retained, 

consistent with the results of others that the N-tenninus contains an important binding site (Kalus et 

ah, 1998).
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Therefore, the observation that residues involved in IGF binding occur in both N- and C- 

temiinal domains implies the existence of an IGF-binding pocket involving both domains as shown 

in Figure I. 3 (Diagram of IGFBP structure from (Firth and Baxter, 2002). In this figure, other 

important functional subdomains and sites of posttranslational modification are also indicated and 

will be discussed later.
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1.1.3.2 Cell membrane and ECM binding motifs

Some IGFBPs not only bind IGFs, but also interact with the surface of cells or to 

extracellular matrix (ECM), and various cell-association molecules or putative receptors (reviewed 

in (Firth and Baxter, 2002). As shown in Figure 1.4 (diagram of IGFBP structure), important 

subdomains have been identified within the C-terminal region of various IGFBPs; for example, 

Arg-Gly-Asp (RGD) integrin-binding motifs are located at residues 221-223 of IGFBP-1 (Jones et 

ah, 1993d) and residues 265-267 of IGFBP-2 (Binkert et ah, 1989) and these have been shown to 

facilitate binding of these two IGFBPs to the asPi integrin receptor (Jones et ah, 1993d; 

Rauschnabel et ah, 1999; Schutt et ah, 2004). Functionally important 18-residue basic motifs with 

heparin-binding activity have also been identified at residues 215-232 of IGFBP-3 and residues 

201-218 of IGFBP-5 and are also involved in the interaction with the serum glycoprotein ALS 

(Firth et ah, 2001; Firth et ah, 1998b; Twigg et ah, 1998), plaminogen activator inhibitor-1 (PAJ-1) 

(Nam et ah, 1997), transferrin (Weinzimer et ah, 2001) and proteins involved in cell and matrix 

binding (Booth et ah, 1995; Firth et ah, 1998b) and nuclear transport (Schedlich et ah, 2000), 

discussed in detail later. There are numerous reports that the cell association of IGFBP-3 and -5 

could lead to both potentiation and inliibition of IGF actions (Booth et ah, 1995; Conover, 1992; 

Lalou et ah, 1996; Martin et ah, 1992).

ECM  bindin2 m otif Biochemical analysis has shown that IGFBP-5 is the most abundant 

form of IGFBP in the ECM derived from connective tissue cells (reviewed in Clemmons, 2001), 

whereas there are minimal concentrations of IGFBP-3 present in ECM from fibroblast cells (Jones 

et ah, 1993c). This group also found that adding increasing concentrations of salt resulted in the 

decreased binding of IGFBP-5 to fibroblast ECM. This clearly demonstrated that the binding of 

IGFBPs to the ECM is due to charge dependent ionic bonds and is not a hydrophobic event. 

Therefore, charged amino acids in the IGFBP-5 protein are important for ECM binding.

IGFBP-3 and -5 have the greatest potential to bind ECM via a stretch of basic amino acid 

in their C-terminal domain. This sequence is highly conserved between IGFBP-3 and -5, because 

these two IGFBP genes are thought to originally have been duplicated from a single gene (Allander
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et al., 1995). However, in spite of this sequence similarity, the major differences in the amounts of 

ECM-bound IGFBP-3 and IGFBP-5 perhaps suggests that the region of IGFBP-5 that accounts for 

ECM binding is folded differently in IGFBP-3 sueh that there is less surface exposrue of this 

sequence (Clemmons, 2001).

Several studies have focused on the ability of two highly basic regions within IGFBP-5 to 

bind to the ECM. One sequence is located between amino acids 131 and 141 in the central domain, 

and the other between 201 and 218 in the C-tenninal domain. Small oligopeptides were prepared 

that contained the sequences from each of these regions, and their ability to inliibit IGFBP-5 

binding to human fibroblast ECM was determined. Although the 131-141 region contained a 

higher percentage of basic residues, it accounted for very little ECM binding, and the principal 

ECM-binding site was located in the 201-218 region (Jones et ah, 1993c; Rees and Clemmons, 

1998).

To further determine the important amino acids in IGFBP-5 for ECM binding, several 

mutagenesis studies were conducted. IGFBP-5 mutants, engineered to contain up to four neutral 

substitutions for a combination of the ten basic residues between 201 and 218, were synthesized 

and expressed and their ability to bind ECM was compared to the native IGFBP-5 protein. A 

systematic mutational analysis of this region using, either single or combined substitutions of basic 

amino acids, identified Arg 207 and Arg 214 as the most critical amino acids for ECM binding 

(Pai'ker et ah, 1998).

Furthermore, binding studies show that IGF has deereased affinity for IGFBPs when the 

IGFBP is associated with the cell surface or matrix (reviewed in Baxter, 2000)). For IGFBP-3, a 

40-fold lower IGF-I affinity was reported when IGFBP-3 was bound to the human fibroblast cell 

lines GMIO and T98G compared with IGFBP-3 in solution (McCusker and Clemmons, 1997); 

IGFBP-2, which associates with cell-surface proteoglycans in the brain, shows a 3-fold decrease in 

IGF affinity when bound to chondroitin sulfate (Russo et ah, 1997). In the case of IGFBP-5, 

binding to fibroblast matrix decreases its affinity for IGF I 7-fold (Jones et ah, 1993c).
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A helical wheel prediction of the 201-218 residues of IGFBP-5 (Figure 1.6) places the 

critical ECM binding residues, Arg 207 and Arg 214, adjacent to Gly 203, which was demonstrated 

to be critical for IGF binding, while Glu 209, another amino acid essential for IGF binding, is 

flanked by two other basic residues in the wheel (Bramani et ah, 1999b; Parker et ah, 1998). In 

addition, mutation of the basic residues 201, 202, 206 and 214 resulted in attenuated heparin 

binding, but only a small reduction in the affinity for IGFs (Song et ah, 2000). This strongly 

suggests that ECM and IGF binding sites are located in close proximity to each other and may even 

overlap, providing an alternative explanation for the reduced IGF affinity of ECM-bound IGFBP-5 

(Bramani et ah, 1999b; Schneider et ah, 2002), rather than binding of heparin to this domain 

producing a conformational change that might reduce the affinity for the IGFs (Andress and 

Bimbaum, 1992; Arai et ah, 1994; Jones et ah, 1993b).
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Ars-Glv-Asp (RGD) intesrin binding m otif Cell biological events such as the interaction 

between cells and extra cellular matrix are mediated by cell surface integrin receptors. Integiins 

modulate cell proliferation and apoptosis, as well as mediating cell attachment, migration and 

spreading. These receptors are made up of an a  and a p subunit. Integrins have no intrinsic enzyme 

activity, but their activation can lead to the recruitment of signalling proteins which form focal 

adhesion complexes. From the literature, it has been shown that there are at least 50 different 

proteins, including focal adhesion kinase (FAK) and paxillin, that associate at sites of focal 

adhesions and transduce signals that mediate changes in cell shape or gene expression 

(Berditchevski, 2001; Caiy and Guan, 1999; Clark and Brugge, 1995; Clezardin, 1998; Zamir and 

Geiger, 2001).

Particular integrin receptors recognise specific ECM components such as fibronectin and 

vitronectin. Many ECM proteins, such as fibronectin, contain an amino-acid sequence, RGD, 

which is a consensus recognition sequence for the integrin receptor family and which, ultimately, 

modulates cell attachment and motility. The RGD integrin binding motif has been identified in the 

C-terminus of IGFBP-1 and -2, but in no other IGFBP (Jones and Clemmons, 1995).

The RGD sequence in IGFBP-1 has previously been shown to be functional. IGFBP-1 was 

shown to stimulate Chinese hamster ovary (CHO) cell migration in an IGF-independent manner, 

the effect being mediated through its RGD sequence via the a^Pi-integrin receptor (fibronectin 

receptor) (Jones et ah, 1993d). Similarly, integiin binding by IGFBP-1 was found to be 

important in human trophoblast cell migration, because antibodies against either integrin subunit 

blocked the stimulatory effect of IGFBP-1 (hving and Lala, 1995). The RGD motif in IGFBP-1 

also appears to be involved in the induction of FAK dephosphorylation, cell detachment, and 

subsequent apoptosis, because addition of IGFBP-1 to T47D and Hs578T breast cancer cells which 

have asPi integrin receptor promoted the dephosphorylation of FAK (Perks et ah, 1999b). In 

addition, IGFBP-2 has shown to bind breast cancer cells and Ewing sarcoma cells via the a$Pi 

integrin receptor (Schutt et ah, 2004; Shutt et ah, 2000), and these authors also reported an 

associated decrease in FAK phosphorylation.
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G AGs or heparin binding m otif Most of the IGFBPs have cell surface glycosaminoglycan 

(GAG: such as heparin and heparan sulphate proteoglycan) binding properties (Hodgkinson et ah, 

1994). G AGs are normal components of the cell surface and extracellular matrix and one particular 

GAG, heparin, is produced by most cells and stored in cytoplasmic granules, before being released 

into the circulation during inflammatory processes. Heparin can easily compete for binding of 

IGFBPs to cell surface-associated binding sites and is believed to be involved in the translocation 

of IGFs to extra-vascular tissues (Andress, 1995; Andress, 1998; Booth et ah, 1995; Fowlkes and 

Serra, 1996).

The importance of GAG binding for IGFBPs has been demonstrated by the fact that this 

can result in the dissociation of the components of the IGF/IGFBP-3/ALS complex in serum 

(Baxter, 1990). It has also been shown that IGFs can localize to specific cell types that do not 

express IGF mRNA, but which synthesize IGFBPs, and it was postulated that ECM/cell surface- 

associated IGFBPs could direct IGF to specific cell types within the tissue (Jones et ah, 1993c).

Subsequently, it was shown that GAGs could also interfere with both the binding of 

IGFBP-3 to the cell smTace and of IGFBP-5 to the ECM (Andress, 1995; Booth et ah, 1995; Jones 

et ah, 1993e). Furthermore, GAG and proteoglycan binding of IGFBP-3 and -5 has been shown to 

play an important role in the ability of both of these IGFBPs to modify the cellular actions of IGF- 

I. It was shown that adherence to proteoglycan results in a major reduction of the affinity of 

IGFBP-5 for IGF-I by 8-fold, whereas it had only a small 3-fold effect on the affinity of IGFBP-3 

(Arai et ah, 1994; Jones et ah, 1993c). However, the heparin binding capabilities of other IGFBPs 

has not, as yet, been reported, with the exception that the ability of IGFBP-2 to bind GAGs requires 

the binding protein to be pre-complexed with either IGF-I or -II (Arai et ah, 1996a).

The specific amino acids in IGFBP-3 and IGFBP-5 that bind to cell surface proteoglycans 

have not been definitively identified. However, several studies have shown that a peptide 

containing amino acids 201-218 of IGFBP-5 competitively inhibited IGFBP-5 binding to cell 

surface proteins and to proteoglycans (Andiess, 1995; Jones et ah, 1993c; Rees and Clemmons,

1998). Using a combination of substitutions for charged amino acids in the 201-218 region of
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IGFBP-5, it was deduced that the heparin binding motif, K206 R207 K208 Q209 C210 K211 

(BBBXXB, where B represents a basic amino acid and X is any residue), contained the primary 

binding site (Arai et ah, 1994). Mutants with substitutions for several of the amino acids in this 

region demonstrated that R201, K202, K206 and R214 were required for heparin binding, while not 

affecting IGF binding (Arai et ah, 1996b; Song et ah, 2000). For IGFBP-3, the corresponding 

sequence lies between amino acids 214 and 232, which also contains a heparin-binding consensus 

site (Booth et ah, 1996; Campbell and Andress, 1997a; Fowlkes and Serra, 1996). A definitive 

study published by Firth and colleagues (Firth et ah, 1998b) in which they used a mutant form of 

IGFBP-3, where the residues from K228 through R232 had been substituted with the 

corresponding residues from IGFBP-1, demonstrated that the mutant protein associated much less 

with cell surfaces, strongly suggesting that these residues were an important component of the cell 

surface binding site.

Heparin binding to IGFBP-5 results in an 8- to 12-fold reduction in its affinity for IGF-I 

(Arai et ah, 1996a). When the effects of specific amino acid substitutions on this affinity shift were 

deteimined, it was noted that single substitution for K211 or a double substitution for K217 and 

R218 resulted in no reduction in heparin binding, but that these substitutions were associated with a 

marked reduction in the ability of heparin to alter the affinity of IGFBP-5 for IGF-I (Arai et ah, 

1996b). As noted for ECM binding, the amino acids Gly 209 and Gin 203 in IGFBP-5 that are 

important for formation of the high-affinity IGF-binding pocket (Bramani et ah, 1999b; Shand et 

ah, 2003), and G203 lies close to these charged residues in a helical wheel model for this region 

(Figure I. 6). Heparin/ECM bound IGFBP-5 has between an 8- to a 17-fold reduced affinity for 

binding IGF-I (Andress and Bimbaum, 1992; Arai et ah, 1994; Jones et ah, 1993c). As argued 

above, this could possibly imply that heparin binding induces a conformational change in IGFBP-5 

protein stmcture or that the heparin binding site may actually physically overlap with an IGF 

binding site in the C-terminal domain.
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1.1.3.3 Post-translational modification

IGFBPs are post-translationally modified by processes including glycosylation and 

phosphorylation. Most post-translational modifications occur in the central domain, but not in the 

N- or C- terminal domains (Firth and Baxter, 2002).

Glycosylation There has been no clear evidence to date that IGFBP-1 or -2 are 

glycosylated, whereas IGFBP-3 and -4 are N-glycosylated, and IGFBP-5 and -6 are 0-glycosylated 

(Conover and Kiefer, 1993; Standlker et al., 1998). N- glycosylation occurs only on an asparagine 

that is part of the consensus sequence Asn-X-Ser/Tlir, where X is any amino acid except proline. 

Three N-glycosylation sites in the mature IGFBP-3 protein are found at Asn 89, Asn 109 and Asn 

172 (Zapf et al., 1988) and variability in glycosylation accounts for the 40-50 kDa forms of 

IGFBP-3 seen on immunoblotting (Firth and Baxter, 1999). IGFBP-4 is N-glycosylated in its 

central domain on Asn 104 (Ceda et ah, 1991) and the N-glycosylated and non-glycosylated forms 

migrate with apparent molecular masses of 28 and 24 kDa respectively. Although there is one 

potential N-glycosylation site in the C-terminal domain of IGFBP-6, this site does not appear to be 

glycosylated (Bach et ah, 1992). In contrast to N-glycosylation, no amino acid consensus sequence 

exists for 0-glycosylation, therefore the location of these sites must be determined empirically. 

Even though IGFBP-5 and -6 are both O-glycosylated, only recently were the O-glycosylation sites 

determined in the central domain o f IGFBP-6 at Thr 102, Ser 120, Thi' 121, Thr 122, and Ser 128 

(Neumann et ah, 1998). To date, an exhaustive study of IGFBP-5 glycosylation sites has not been 

performed, but it has been shown that Thr 152 is O-glycosylated (Standlker et ah, 1998).

Although N- or O-linked glycosylation may affect some functions of IGFBPs, such as 

resistance to proteolysis, it does not appear to affect their ability to bind to IGFs (Neumann et ah,

1998). Glycosylation has no effect on high affinity IGF binding by IGFBP-3 (Firth and Baxter,

1999), IGFBP-4 (Chelius et ah, 2001), IGFBP-5 (Shand et al 2003) or IGFBP-6 (Bach et ah, 1992; 

Marinaro et ah, 2000). For example, comparison of bacterially derived and mammalian CHO cell 

derived IGFBP-3 indicates that glycosylation has no significant effect on the binding of IGF-I



31

(Sommer et al., 1993) and also bacterially expressed IGFBP-5 has almost exactly the same affinity 

for binding IGF-I in solution phase assays and biosensor analysis as commercial mouse wt IGFBP- 

5 protein which was expressed in mammalian cells (Shand et ah, 2003), showing that glycosylation 

of IGFBP-5 has no effect on IGF binding. In addition, N-glycosylation of IGFBP-3 had no effect 

on ternary complex formation with the acid-labile subunit (Firth and Baxter, 1999). However, 

IGFBP-3 forms in which various N-glycosylation sites have been altered by mutagenesis reveal 

that decreasing glycosylation tends to increase cell surface association, so that non-glycosylated 

IGFBP-3 shows approximately 3-fold higher binding to both CFIO cells and T47/D breast cancer 

cells compared with the fully glycosylated protein (Firth and Baxter, 1999; Firth et ah, 1999). 

Similarly, 0-linked glycosylation of IGFBP-6 inhibits cell surface binding, probably by inhibiting 

binding to glycosaminoglycans (Marinaro et ah, 2000). Finally, O-glycosylation of IGFBP-6 also 

inhibits proteolysis of the binding protein (Marinaro et ah, 2000; Neumann et ah, 1998).

Phosphorylation Three of the six IGFBPs, IGFBP-1, -3, and -5, have been shown to be 

post-translationally phosphorylated on Ser residues (Coverley and Baxter, 1997; Jones et ah, 1991). 

Human IGFBP-1 might be phosphoi-ylated on Ser 101, Ser 109 (both in the central domain) and Ser 

169 (in the C-domain), with Ser 101 being the predominant phosphorylation site (Jones et ah, 

1993a), whereas rat IGFBP-1 might be phosphorylated on Ser 70 and Ser 132 in the central domain 

(Peterkofsky et ah, 1998). Human IGFBP-3 might be phosphoiylated on Ser 111 and Ser 113 in the 

central domain (Hoeck and Mukku, 1994), whereas phosphorylation of lGFBP-5 has only been 

reported in one abstract and the site was not proven (Jones et ah, 1992; reviewed in Schneider et ah,

2002).

Phosphorylation of proteins is an important and critical post-translational modification 

mechanism that is used by cells to stringently regulate the activities of numerous intracellular 

proteins, including proteins involved in signal transduction pathways, the cell cycle, and gene 

expression. The purpose o f phosphorylating secreted proteins like IGFBPs is unclear, but there is 

evidence that, at least for human IGFBP-1, phosphoiylation enhances the affinity of this binding 

protein for IGF-I 6-fold (Jones et ah, 1991), but has no effect on its affinity for IGF-II (Jones et ah,
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1991). Phosphorylation of rat IGFBP-1 (Peterkofsky et ah, 1998) and human IGFBP-3 (Hoeck and 

Mukku, 1994) has no effect on IGF binding. There is also evidence that phosphorylation inhibits 

IGFBP-3 cell surface association (Coverley et ah, 2000). However, although the biological 

significance of IGFBP-5 phosphorylation has not been elucidated, it is clear that, as with 

glycosylation above, the affinity for phosphorylated and non-phosphorylated IGFBP-5 for IGFs is 

the same, as evidenced by comparing bacterially expressed protein and that expressed in 

mammalian cells (Shand et ah, 2003).

Proteolytic cleavase All IGFBPs can be cleaved by spedific proteases at lease 3 classes: 

serine protease, metalloproteases and aspartic proteases (Parker et ah, 1995) and this results in 

reduction or loss of IGF-binding activity (Firth and Baxter, 2002). Most cleavage sites for IGFBPs 

are in their central domain which non-conserved region suggesting a potential mechanism by which 

IGF activies can be regulated in a tissue-specific manner (Clemmons, 1997) and this is possibly 

because this region is more surface-exposed (Fowlkes et ah, 1997).

IGFBP-3 and -5 are known to cleaved by plasmln (Campbell and Andress, 1997b). 

Plasminogen, a precursor of active plasmin, binds to the highly basic C-domain regions of IGFBP- 

3 (Campbell et ah, 1999) and IGFBP-5 (Campbell and Andress, 1997b). Similarly, the same region 

o f IGFBP-3 is involved in binding fibrin and fibrinogen (Campbell et ah, 1999). Binding of 

protease precursors to IGFBPs may be a mechnism whereby proteolysis of specific IGFBPs is 

achieved. Further, GAGs inhibit proteolysis of IGFBP-5 and a possible mechanism is via inhibition 

of binding of protease precursors (Campbell and Andress, 1997a). Similarly, a potential mechnism 

whereby ALS prolons the circulating half-life of IGFBP-3 and -5 may be inhibition of binding of 

pretease precursors, since ALS binds to the same regions of IGFBP-3 and -5 (Parker et ah, 1998).

1.1A Functions o f  IGFBPs

It has been well established from in vitro studies that IGF signalling through the IGF-IR 

results in acute anabolic effects on metabolism as well as on cell replication and differentiation 

(Jones and Clemmons, 1995). However, the bioactivity of IGFs is not only dependent on their
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interaction with IGF-IR, but is also influenced by the family of IGFBPs in the local cellular 

environment, which can potentially either inhibit or enhance IGF actions depending on the 

complement of IGFBPs present (Firth and Baxter, 2002).

1.1.4.1 IGF-dependent functions

The teim “IGF-dependent” functions of IGFBPs has been used to define functions of 

IGFBPs, both positive and negative, that are directly linked with IGF bioactivities (Jones and 

Clemmons, 1995).

I.1.4.1.1 Inhibition of IGF activity by IGFBPs

As discussed earlier, the diverse activities of IGFs in stimulating mitogenesis, increasing 

substrate uptake and metabolic activity, inhibiting apoptosis, and modulating a variety of specific 

functions in highly differentiated cell types are for the most part mediated though binding and 

activation of IGF-IR (reviewed in Baxter, 2000). Furthermore, many in vitro studies have 

demonstrated that all IGFBPs can have growth-inhibitory effects through binding IGFs, and 

presumably though prevention of IGF binding to the IGF-IR (Feny et ah, 1999). Studies in vivo 

have also suggested that IGFBPs inhbit growth by reducing the free IGF levels (Hasegawa et ah, 

1997; Powell et ah, 1999). These inhibitory effects of all six of the IGFBPs on IGF action have 

been shown to operate at all levels from cellular DNA synthesis to blood glucose regulation to 

whole body growth (Bach et ah, 1994; Cheung et ah, 1991; Cox et ah, 1994; De Mellow and 

Baxter, 1988; Hoflich et ah, 1998; Imai et ah, 1997; Lewitt et ah, 1991) and have been extensively 

reviewed (Martin and Baxter, 1999; Murphy, 1998).

Since IGFBPs are well-established to be secreted proteins, the extracellular sequestration 

of IGFs by IGFBPs has been proposed to result on the consequent loss of interactions between 

IGFs and IGF-IR (Hwa et ah, 1999). Studies using the IGF-I analog des-(l-3)-IGF-I, which binds 

IGF-IR and stimulates DNA synthesis, but does not bind IGFBPs, supports this sequestration



34

mechanism. In the human pro-myeloid cell line HL-60, adding IGFBP-3 to serum-free media 

inhibited cell proliferation induced by IGF-I and IGF-II, but not by des-IGF-I (Li et ah, 1997b).

Molecular evidence to support the importance of IGFBP proteolysis on IGF-dependent 

actions was demonstrated when site specific mutagenesis of a major proteolytic site in the central 

domain of IGFBP-5 (Imai et ah, 1997) and IGFBP-4 (Rees et ah, 1998), resulted in enhanced 

IGFBP growth-inhibitory effects. Furthermore, mutagenesis of the IGFBP-4 cleavage sites 

demonstrated that a protease-resistant mutant was more active in inhibiting IGF-I action (Conover 

et ah, 1995a). IGFBP fragments generated by cellular endo-proteases typically show a marked loss 

of IGF binding, and proteolytic degradation of IGFBPs to these low-activity forms appears to be an 

important mechanism by which cells can regulate IGF activity (Baxter, 2000; Hwa et ah, 1999). 

Thus IGFBP-degrading proteases secreted by prostate and breast cancer cells have been proposed 

to act as growth stimulators by increasing local IGF availability (Conover et ah, 1995b; Salahifar et 

ah, 1997), and the timed release of IGFBPs and their proteases during differentiation of a variety of 

cell types, including osteoblast cells, suggests that IGFBP degradation could play a key regulatory 

role (Tlirailkill et ah, 1995).

In general, phosphoiylated IGFBP proteins inhibit IGF-I action, whereas de- 

phosphorylated forms seem to have some stimulatory activity (Clemmons, 1993). It has been 

proposed that this effect may be caused by the non-phosphorylated binding protein having an IGF 

affinity low enough to approximate that of the receptor, whereas upon phosphorylation of the 

IGFBP there is a several-fold increase in IGF affinity, which results in exelusion from the receptor 

and an overall inhibitory effect on IGF biological actions. In support of this it has been 

demonstrated that de-phosphorylated IGFBP-1 has been shown to enliance IGF-I-induced DNA 

synthesis (Busby et ah, 1988; Elgin et al., 1987; Yu et ah, 1998), whereas phosphorylated IGFBP-1 

inhibits IGF-I effects (Busby et ah, 1988; Ritvos et ah, 1988; Yu et ah, 1998).

One study suggested an alternative mechanism of IGF regulation whereby IGFBP-3 

interacts with the IGF-I receptor, causing confoimational change in the receptor and subsequent 

loss of affinity for IGF-I (Mohseni-Zadeh and Binoux, 1997).
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Ll.4.1.2 Stimulation of IGF activity by IGFBPs

The stimulation of IGF activity was first described for IGFBP-1 and -3, although it is now 

also well documented for IGFBP-5 (Baxter, 2000). Although the expression of IGFBP-2 is reported 

to cause enhanced growth of tumour cells (Menoimy et ah, 1998), evidence that it can potentiate 

IGF activity is sparse.

IGFBP-1 enhanced the effect of IGF-I on DNA synthesis several fold in porcine aortic 

smooth muscle cells and chick embryo fibroblasts (Clemmons and Gardner, 1990; Elgin et ah, 

1987; Koistinen et ah, 1990), and, as discussed above, others have shown that non-phosphorylated 

IGFBP-1 can stimulate the effects of IGF-I (Jones et ah, 1991). Thus, in certain circumstances, 

IGFBP-1 may prolong IGF/receptor interaction by providing a slow and steady release of IGF-I. 

This is supported by another study which found that an IGF-I mutant that binds poorly to IGFBP-1 

did not produce optional stimulation of DNA synthesis in human fibroblasts compared to a wild 

type IGF-I (Clemmons et al., 1990).

Potentiation of IGF activity by IGFBP-3 has been demonstrated in many cell culture 

systems. It has even been shown that pre-incubation of the cells with IGFBP-3 followed by its 

removal still caused subsequent potentiation of IGF-I effects (Conover, 1992; De Mellow and 

Baxter, 1988). This study proposed that cell associated IGFBP-3 fragments, which would have an 

affinity to IGF-I that is lower that that of the IGF-IR, might enhance the presentation of IGF-I to its 

receptor. IGF-I has also been shown to stimulate release of IGFBP-3, but not IGFBP-4, in a lung 

cancer cell line (Noll et ah, 1996). Intriguingly, it was also demonstrated that in proliferating 

opossum kidney cells fluorescently labelled IGF-I and IGFBP-3, whether added to the media in 

combination or alone, were absorbed from the media and co-localised to the nucleus (Li et ah, 

1997a). Given the presence of a Nuclear localisation signal (NLS) in IGFBP-3, which is absent 

from IGF-I, and that a non-IGFBP-3-binding analogue of IGF-I is not localized to the nucleus, the 

authors suggest that IGFBP-3 may carry IGF-I to the cell nucleus, providing another regulatory 

mechanism for IGF action. In addition, in vivo studies have shown that administration of IGFBP-3 

in association with IGF-I results in better wound healing and stimulation of growth in rats (Bagi et
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al., 1994; Hamon et al., 1993). Finally, over-expression of IGFBP-3 in transgenic mice may 

enhance the effects of IGF-I, since these animals display visceral tissue enlargement 

(Neuenschwander et ah, 1996).

IGFBP-5 also has been shown to have the potential to potentiate IGF-I activity (reviewed 

in Baxter, 2000). An important in vitro study in fibroblasts demonstrated that IGFBP-5 binds to 

ECM components including collagen, laminin and fibronectin, causing a loss of IGF affinity but 

prolonged IGF half-life, thereby potentiating IGF-I stimulatoiy fibroblast growth when present in 

the matrix (Jones et ah, 1993c; reviewed in Baxter, 2000). Furthermore, administration of 

recombinant human IGFBP-5 to mice in combination with IGF-I increased serum osteocalcin 

levels to a greater level than either peptide given alone (Richman et ah, 1999). Althougli 

stimulatory effects of IGFBPs have been associated with low affinity forms and are hypothesized 

to involve the stabilization of bound IGFs in binary complexes, or the presentation of IGFs to their 

receptor by cell- or matrix-bound IGFBPs, no definitive mechanism has yet been explicitly 

demonstrated for this phenomenon.

1.1.4.2 IGF-independent functions

IGFBPs have been shown to stimulate several biological effects, apart from modulating 

IGF action, either in the absence of IGFs (IGF-independent effects) or in the presence of IGFs 

without triggering IGF-IR signalling (IGF-IR-independent effects) (Firth and Baxter, 2002).

One of the first reports of IGF-independent actions of IGFBP-1 was shown on cell motility 

and adhesion in CHO cell line (Jones et ah, 1993d). These authors went on to show that this effect 

was mediated by the RGD integiin-binding motif present in the carboxyl teiminal domain of 

IGFBP-1 interacting with aspi integrin. The RGD motif in IGFBP-1 also appears to be hivolved in 

the induction of focal adhesion kinase dephosphorylation, cell detachment, and subsequent 

apoptosis, because IGFBP-1 and a synthetic RGD containing peptide had similar effects in 

initiating these events in breast cancer cells (Perks and Holly, 1999; Perks et ah, 2002b). Similarly, 

aspi integrin binding by IGFBP-1 was found to be important in human trophoblast cell migration.
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since antibodies against either integrin subunit blocked the stimulatory effect of IGFBP-1 (Irving 

andLala, 1995).

Although a homologous RGD motif is also present in IGFBP-2, the evidence supporting 

IGF-independent action of IGFBP-2 mediated by integiin binding is still preliminaiy (reviewed in 

Firth and Baxter, 2002). Over-expression of IGFBP-2 in Y-a adrenocortical tumor cells resulted in 

enhanced proliferation (Hoeflich et ah, 2000). This study showed that this proliferative effect of 

IGFBP-2 over-expression was IGF independent since IGF-IR was down-regulated and an IGF-I 

analog with decreased IGFBP interaction had the same mitogenic potency as IGF-1. In addition, 

IGFBP-2 has been shown to be mitogenic for uterine endometrial epithelial cells and osteosarcoma 

cells in the absence of IGFs (Badinga et ah, 1999; Slootweg et ah, 1995).

Recently, there has been considerable interest in the ability of IGFBPs, especially IGFBP-3, 

to induce or modulate apoptosis independently of inhibiting the survival functions of IGF-I (Baxter, 

2000; Clemmons, 2001). Mouse IGFBP-3 was shown to inhibit fibroblast growth factor stimulated 

DNA synthesis, an effect that appeared not to depend on the sequestration of endogenous IGFs, but 

which was reversed by IGF-I (Villaudy et ah, 1991). The addition of IGFBP-3 to human breast 

cancer cells has been shown to inlnbit DNA synthesis independently of its effects on IGF-I actions 

(Oh et ah, 1993a). This study also presented preliminaiy evidence for an IGFBP-3 receptor. More 

recently it has been demonstrated that induction of IGFBP-3 expression by transforming growth 

factor-P (TGF-P) leads to apoptosis through an IGF independent pathway and the TGF-p receptor 

is also the putative receptor for IGFBP-3 (Leal et ah, 1997; Rajah et al., 1997). In addition, 

proteolysis of IGFBP-3 at the cell surface has been shown to release fragments that have IGF- 

independent effects that can either enhance or inhibit cellular responsiveness to IGF-I (Lalou et ah, 

1996; Lalou et ah, 1997; Maile et ah, 1999; Zadeh and Binoux, 1997). Interestingly, it has also 

been shown that IGFBP-3 or -5 can enter the cell and bind to several different targets in the 

cytoplasm (Schedhch et ah, 1998). Furthermore, it has been shown that both proteins can localize 

in the nucleus (Jaques et ah, 1997; Schedlich et ah, 1998) and bind to important growth-regulatory 

proteins for cellular differentiation (Liu et ah, 2000; Schedlich et ah, 1998).
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It has also been shown that a 22 kDa proteolytic fragment of IGFBP-5 is able to stimulate 

directly DNA synthesis in osteoblast cells independently from IGF-I (Andress, 1995). IGF- 

independent effects of IGFBP-4 and -6 are not well established and it is generally accepted that 

IGFBP-4 and -6 act primarily through inhibition of IGF actions (Firth and Baxter, 2002).

1.1.5 IGFBP-5 function

IGFBP-5 plays an important role in several biological processes including bone formation, 

cell death (in the ovary, mammary gland and embryo), kidney physiology and muscle 

differentiation (Kelley et ah, 1996). The actions of IGFBP-5 are complex as it can either inhibit or 

augment the actions of IGF-I and, in addition, has IGF-independent effects, particularly in relation 

to apoptosis (reviewed in Baxter, 2000).

1.1.5.1 Bone formation

One group has reported the stimulatory effects of IGFBP-5 on osteoclastic activity and 

osteoclast formation (Kanatani et ah, 2000), in contrast to IGFBP-4, which exerts exclusively 

inhibitory actions on bone cells both in vitro (Mohan et ah, 1995b) and in vivo (Miyakoshi et al.,

1999). These observations demonstrated both IGF-dependent and IGF-independent regulation by 

IGFBP-5.

The stimulatory actions of IGFBP-5 were postulated to be mediated by its ability to bind to 

the cell membrane or ECM (Andress and Bimbaum, 1992), since IGFBP-5 has been shown to bind 

to a component of the ECM of bone (Bautista et ah, 1991). The proposed mechanism is that 

IGFBP-5 sequesters IGFs and concentrates them in bone and then releases the growth factors 

during bone remodelling or after injury, which would stimulate the proliferation of neighbouring 

osteoblasts (reviewed in Schneider et ah, 2002). The age-related decline in the skeletal 

concentration of IGF-I and IGFBP-5 supports this model and provides an explanation for the age- 

related impairment of bone formation versus resorption (Mohan et ah, 1995a).
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The inhibition o f IGFs by IGFBP-5 has also been reported in osteosar coma cells (Schmid 

et ah, 1995). In contrast to stimulatory actions, which were associated with binding to the ECM 

(Andress and Bimbaum, 1992; Bautista et ah, 1991), the inhibitory activities were present 

exclusively in the culture medium (Conover and Kiefer, 1993). The important factor responsible 

for this apparent divergence might be the localisation of IGFBP-5 (Schneider et al., 2002). 

Similarly, stimulation of growth of human fibroblasts was associated with IGFBP-5 located in the 

ECM, whereas when present only in the medium, IGFBP-5 was rapidly degraded and did not affect 

proliferation (Jones et ah, 1993c).

1.1.5.2 Cell proliferation and differentiation

In addition to the functions of IGFBP-5 in bone formation, it has been reported that the 

expression of IGFBP-5 is associated with stimulatory effects on cell proliferation, activation and 

differentiation (Cheng et ah, 1999; Kanatani et ah, 2000; Ricliman et ah, 1999; Zimmermann et ah, 

1997).

The increased expression of IGFBP-5 was demonstrated in myoblast cells during the early 

stages of cell differentiation (James et ah, 1993; Rotwein et ah, 1995). Increased IGFBP-5 

secretion was also observed in differentiating myoblasts that over-express IGF-II (Stewart et ah,

1996) or after treatment with insulin and IGFs (Ewton and Florini, 1995). IGFBP-5 expression has 

also been reported to increase during cell differentiation in L6A1 muscle cells (Ewton et ah, 1998) 

and in C2 mouse myoblasts (Rousse et ah, 1998). In L6A1 cells, IGFBP-5 was shown to have an 

inhibitoiy effect on IGF stimulated proliferation and a potentiating effect on cell differentiation 

stimulated by IGF-I, but not IGF-II (Ewton et ah, 1998). As with the studies on bone cells 

discussed above, this work also showed that although IGFBP-5 exhibited both inhibitory and 

stimulatory actions in these cells, IGFBP-4 had only inhibitory actions, inhibiting both IGF-I and 

IGF-Il-stimulated proliferation and differentiation (Ewton et ah, 1998).

Other studies examining the role of IGFBP-5 in myoblst differentiation using the mouse 

myoblast cell line C2, indicated that IGFBP-5 expression increased with the differentiation of this
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line (James et al., 1996). However, these authors also showed that the over-expression of IGFBP-5 

led to the failure of transfected cells to differentiate normally, whereas antisense RNA expression 

resulted in a more extensive differentiation of cell cultures (James et ah, 1996). Furthermore, these 

effects could be neutralised by the addition of exogenous IGFs. It has also been demonstrated that 

IGFBP-5 can block TNF-a-induced apoptosis in differentiating skeletal muscle cells (Meadows et 

ah, 2000).

1.1.5.3 Apoptosis

Increased in vivo expression of IGFBP-5 has been observed in tissues undergoing 

apoptosis, such as the involuting prostate (Nickerson et ah, 1998), mammary gland (Tonner et ah,

1997), atretic ovarian follicles (Besnard et ah, 1996), thyroid (Phillips et ah, 1994) and in the rat 

brain following hypoxic-ischemic injury (Beilharz et ah, 1993). As discussed below, it has now 

been demonstrated that IGFBP-5 is a causative agent in the cell death observed in the involuting 

mammary gland (Tonner et ah, 2002). It has also been reported that IGFBP-5 expression is highly 

restricted to regions o f cell death in the developing mouse limb bud (Allan et ah, 2000).

In vitro, endogenous IGFBP-5 has been shown to mediate the growth inhibitory effects of 

both anti-estrogens (Huynh et ah, 1996) and vitamin D-related compounds (Rozen and Poliak, 

1999; Rozen et ah, 1997) in MCF-7 breast cancer cells. However, the addition of exogenous 

IGFBP-5 to a different human breast cancer line, Hs578T cells, had the opposite effect by 

protecting these cells from ceramide-induced apoptosis (Perks et ah, 1999a; Perks et ah, 2000), 

suggesting that IGFBP-5 may also have a suiwival function in response to apoptotic stimuli. 

However, a later study from the same group showed that a non-IGF binding IGFBP-5 mutant had 

no effet on ceramide-induced apoptosis in IGF-responsive MCF-7cells, whereas the same mutant 

blocked IGF-induced survival when it could not bind to IGF. Therefore, Hs578T cells are IGF-non- 

responsive and so the survival effect of IGFBP-5 in this cell line was IGF-independent (Perks et ah, 

2002a). These authors suggested that, as this IGFBP-5 mutant could not bind to IGF-I, IGFBP-5 

may also be able to block the survival effects of IGF-I via integrin receptors (Perks et ah, 2002a).
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Although it has previously been demonstrated that IGFBP-3 can translocate to the cell 

nucleus (Schedlich et ah, 1998) and transcriptionally down-regulate the anti-apoptotic Bcl-2 gene 

(Butt et ah, 2000), it was subsequently shown that its nuclear translocation is not necessary for its 

pro-apototic and anti-proliferative effects in breast cancer cells (Butt et ah, 2002). Using a transient 

over-expression system, IGFBP-5 was also observed in the nuclear compartment of human breast 

cancer cells (Butt et ah, 2003) and was shown to significantly inhibit the growth of these cells both 

in vitro and in vivo. In this study, IGFBP-5 expression resulted in an up-regulation of the mRNA 

for the pro-apoptotic regulator Bax and a down-regulation of the anti-apoptotic Bcl-2. Furthermore, 

these effects appeared to be mediated by intracellular IGFBP-5, independent of signalling thi'ough a 

cell-surface receptor, since the purification of secreted IGFBP-5 from the transfected cells followed 

by its addition to the culture medium of untransfeceted cells had no effect on cell growth (Butt et 

ah, 2003). This may indicate that intracellular expression of IGFBP-5 interacts with different, cell 

surface-independent signalling pathways (Butt et ah, 2003) as has been suggested by recent studies 

with IGFBP-3 (Butt et al., 2002). In support of this, the inhibitory and pro-apoptotic effects of 

IGFBP-5 on breast cancer cell growth appear to be independent of IGF signalling, as neither MDA- 

MB-231 nor Hs578T cells are responsive to the mitogenic and anti-apoptotic effects of IGFs (Oh et 

ah, 1993b).

1.1.5.4 tntracelluar effects and nuclear localisation of IGFBP-5

IGFBPs are classically considered to be secreted proteins whose major functions are 

extracellular. However, there is now evidence that two members of this family, IGFBP-5 and -3, 

may also have intracellular functions, because they are transported to the cell nucleus (Firth and 

Baxter, 2002). It has been speculated that IGFBP-5 might also act in an intracrine fashion, perhaps 

serving as a cytosol-to-nuclear shuttle for its ligand, although as to why an IGF would be 

transported to the nucleus, when they have no known nuclear functions, remains unresolved. 

Nevertheless, within the multiple basic residues in the C-Terminal 201 to 218 region of IGFBP-5 

there is a sequence that is similar to the bipartite NLS found in viral and mammalian transcription 

factors (Radulescu, 1995). Indeed, when added to cultured human tumour and breast cancer cells, 

exogenous IGFBP-5 was shown to be capable of cellular and nuclear entry (Amaar et ah, 2002;



42

Schedlich et al., 1998). It has also been shown that IGFBP-5 is localized in the nuclei of vascular 

smooth muscle cells (VSMC) and suggested that it possesses transcription-regulatoiy activity that 

is IGF independent (Xu et ah, 2004). IGFBP-3 regulates apoptosis in an IGF-independent fashion 

and has been shown to localixe to nuclei by interacting with nuclear receptor retinoid X receptor- 

alpha (RXR-alpha) within the nucleus. IGFBP-3-induced apoptosis was ablolished in RXR-alpha- 

konckout cells. Thus, RXR-alpha-IGFBP-3 interaction leads to modulation of the transcriptional 

activity of RXR-alpha and is essential for mediating the effects of IGFBP-3 on apoptosis (Liu et al., 

2000).

1.1.6 IGFBP'S action s on the M ammary Giand

The development of the mammary gland proceeds in distinct phases. In the newborn animal, 

there is a rudimentaiy system of small ducts present, which grows slowly until the onset of puberty 

when pronounced ductal growth occurs. Development of the ducts continues in the virgin animal 

leading to the formation of a ductal tree, which is made up of mammary epithelial cells sitting 

within adipose tissue. Extensive ductal branching and alveolar growth occurs during pregnancy and 

is largely completed at parturition. Terminal differentiation of the alveolar epithelium is completed 

at the end of gestation with the onset of milk secretion at parturition. After weaning the majority of 

the alveolar epithelium undergoes apoptosis, which is called involution, and the gland is 

remodelled back to a ductal epithelium resembling the virgin gland. The different developmental 

stages in the mammary gland are shown in Figure 1.7.
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IGF-I has been shown to suppresses apoptosis of primaiy mammary epithelial cells in vitro 

(Farrelly et al., 1999) and in vivo IGF-I and -II have been shown to inhibit mammary cell death in 

transgenic mouse models (Hadsell et ah, 1996; Moorehead et ah, 2001; Neuenschwander et ah, 

1996). In these mice there was a delayed involution in their mammary glands as a result of reduced 

levels of apoptosis. Regulating the availability of IGFs to mammary epithelial cells may therefore 

represent a physiological mechanism for initiating apoptosis during the process of involution 

(Marshman and Streuli, 2002).

It has previously been observed that an increase in IGFBP-5 protein expression in rat milk 

after 48 hours of involution was associated with apoptosis of mammary epithelial cells (Tonner et 

ah, 1997). More recently, our group has shown that IGFBP-5 mRNA levels are also significantly 

increased during involution in the mouse mammaiy gland (Boutinaud et ah, 2004). Therefore, it 

has been proposed that one of the early events associated with mammary gland involution is the 

secretion of IGFBP-5, which in turn seiwes to inhibit IGF-I-mediated cell survival.

A role for IGFBP-5 as an inhibitor of IGF-I-mediated cell survival was supported by the 

demonstration that the delay in involution that was observed in signal transducers and activators of 

transcription (STAT)-3 knock-out mice was also associated with a reduction in IGFBP-5 

expression (Chapman et ah, 1999), whereas in interferon regulatory factor-1 (IRF-1) knockout 

mice, both involution and IGFBP-5 expression were accelerated (Chapman et ah, 2000). 

Furthermore, over-expressing the tumour suppressor PTEN (phosphate and tensin homologue) 

specifically in the mammary glands of transgenic mice resulted in impaired mammary gland 

development and microarray analysis of mammaiy glands from these animals revealed a 26-fold 

increase in the expression of IGFBP-5 (Dupont et ah, 2002). This reveals that IGFBP-5 is a 

downstream target for PTEN, which is the second most commonly mutated tumour suppressor 

gene in breast cancer tumours after p53 (Li et ah, 2002), and suggests that IGFBP-5 itself may have 

possible tumour suppression potential.
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A causal relationsliip between IGFBP-5 synthesis and cell death in the mammary gland has 

now been demonstrated in three studies, where IGFBP-5 has been administered exogenously in 

vitro (Marshman et ah, 2003) and in vivo (Allan et ah, 2002) and in a transgenic mouse model 

involving the over-expression of IGFBP-5 using a mammaiy-specific promoter (Tomier et ah, 

2002). As discussed above, recent studies using human breast cancer cells have also revealed that 

IGFBP-5 can inhibit their growth both in vivo and in vitro (Butt et ah, 2003).

The addition of exogenous IGFBP-5 or IGFBP-3 to mammary epithelial cells has been 

shown to inhibit IGF-I-mediated survival, resulting in 3-fold greater rates of apoptosis (Marshman 

et ah, 2003). Also, subcutaneous injection of recombinant IGFBP-5 into mice during late 

pregnancy resulted in impaired mammary development as evidenced by reduced invasion of the 

mammary fat pad (Allan et ah, 2002). However, the most convincing evidence comes from our 

group’s studies in transgenic mice expressing IGFBP-5 in the mammary gland, using a mammary- 

specific promoter, (3-lactoglobulin (BLG) (Tonner et ah, 2002). The DNA content in the mammary 

glands of the transgenic mice relative to the wild-type controls was decreased as early as day 10 of 

pregnancy and mammary cell number and milk synthesis were both decreased by approximately 

50% during the first 10 days of lactation (Tonner et al., 2002). At parturition concentrations of both 

the pro-apoptotic molecule caspase-3 and the ECM-remodelling associated molecule plasmin were 

both increased, whereas the concentrations of two pro-survival molecules, Bcl-2 and Bcl-xl were 

significantly reduced. These findings strongly support a pro-apoptotic effect of IGFBP-5 in the 

mammary gland in vivo.

Although there is a growing literature supporting the concept that IGFBP-5 is produced at 

sites of apoptosis, a number o f studies have also identified an enhancing effect of IGFBP-5 on IGF- 

I action in vitro (Jones et ah, 1993c). Augmentation of IGF action by IGFBPs has been proposed to 

involve proteolysis and/or reduction in the affinity of the IGFBP for IGF-1, with possible 

interaction with components of the ECM implicated in this event (Clemmons, 1998; Nam et ah,

2000). Typically, augmentation o f IGF actions takes place when IGFBP and IGF are approximately 

equimolar, but, when IGFBP concentrations are in excess, IGF actions are inhibited (Ewton et ah,

1998). During involution of the mammai-y gland, IGFBP-5 has been shown to retain its high
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affinity for IGF-I and concentrations of this binding protein in milk were in excess of 50 mg/1, 

which is several orders of magnitude greater than that of IGF-I (Tonner et al., 1997). These 

findings strongly suggested that the increased IGFBP-5 secretion dming mammary involution was 

acting to inhibit IGF actions and thereby induce cell death. One possible model for how IGFBP-5 

may inhibit IGF action, thereby promoting apoptosis, is shown in Figure I. 8. In this model it was 

postulated that IGFBP-5 could exert a pro-apoptotic effect by sequestering the IGFs to the ECM 

and thereby preventing the interaction of the growth factors with IGF-IR on the cell surface. In 

turn, this would inlnbit the cell survival signalling action of the IGFs and allow apoptosis to 

proceed.
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Finally, the plasminogen activation system is also hivolved in tissue remodelling and 

apoptosis, and we postulate that this could provide a further route for IGFBP-5 action. IGFBP-5 

has previously been shown by others to bind to plasminogen-activating inhibitor-I (PAI-I), through 

the basic amino acid region in the C-terminus of the binding protein (201-218) (Nam et ah, 1997). 

More recently, it was shown that IGFBP-5 also binds to the milk protein aS2-casein and, in 

particular, to its dimeric form (Tonner et ah, 2000b). Dimeric aS2-casein has also been shown to 

bind to both plasminogen and tissue type plasminogen activator (tPA), and this binding results in 

the enhanced activity of tPA, thereby enhancing the conversion of plasminogen to plasmin 

(Heegaard et ah, 1997b).

Plasmin plays a central role in cleaving a number of pro-enzymes, such as procollagenases, 

and thereby initiating the degradation of the ECM at the end of lactation when extensive tissue 

remodelling occurs (Matrisian, 1990). Therefore, the close physical proximity of IGFBP-5 and 

components of the plasminogen system on the casein micelle suggest a possible functional 

interaction, supported by the observation that IGFBP-5 binds to PAI-I (Nam et ah, 1996). We have 

postulated that this binding may inhibit the action of PAI-1, which would, in turn influence the 

activation of plasminogen and the consequent breakdown of the ECM that takes place during tissue 

remodelling (Flint et ah, 2000). As PAI-I binds to tPA and inhibits its actions, it is conceivable that 

IGFBP-5 plays a dual role in tissue remodelling/apoptosis of the mammary gland by, A. binding to 

IGF-I thereby inhibiting its function through sequestration and consequently promoting cell death, 

and, B. binding PAI-1, inhibiting its function and thereby promoting tPA activation and consequent 

ECM remodelling as a result of the generation of plasmin (Figure I. 9). In support of this, both 

prolactin and GH inhibit tPA activity and plasminogen activation in the involuting mammary gland 

(Tonner et ah, 2000a). In conclusion, IGFBP-5 may play a central role in co-ordinating the cell 

death and ECM remodelling that takes place during mammary gland involution by regulating both 

IGF and PAI-1 actions. Of course, it remains to be ascertained whether IGFBP-5 can bind to IGF-I 

and PAI-I simultaneously, although overlap o f their important contact sites in the IGFBP-5 

sequence may suggest that this is not straightfoi-ward.
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1.2 Regulation of lGFBP-5

1.2.1 G enom ic evoiu tion

Although the six IGFBPs have distinct amino acid sequences, they do share regions of 

strong homology and a similar genomic organisation (Allander et ah, 1994; Kou et ah, 1994a; Kou 

et ah, 1994b; Upton et ah, 1993; Zhu et ah, 1993). The evolutionary conservation of IGFBPs 

supports their fundamental importance in regulatory processes. The IGFBP genes are physically 

associated on chromosomes with the homeobox (HOX) genes, which are widely expressed m 

multicellular organisms and encode transcriptional factors that are crucial for early development 

(Figure 1.10). The vertebrate homeobox (HOX) genes are suggested to be true homologs to the 

insect homeotic gene complexes and to have arisen from duplications of a single ancestral gene 

cluster (Akam, 1989; Pendleton et ah, 1993; Schughart et ah, 1989). The human HOX gene family 

consists of four gene clusters, HOX A-D, localized to human chromosomes 2, 7, 12, and 17 

respectively (Acampora et ah, 1989; Cannizzaro et ah, 1987; Scott, 1992). IGFBP-1 and -3 are 

localised on the same chromosome as the HOXA cluster, the IGFBP-2 and -5 genes map to the 

same chromosomal region as the HOXD cluster while the IGFBP-4 gene is found in the vicinity of 

the HOXB genes. Finally, IGFBP-6 and HOXC genes are found on the same chromosome (Figure I. 

10).

Furthermore, in both humans and mice pairing is observed between IGFBP-2 and -5, and 

between IGFBP-1 and -3 with respect to their clnomosomal locations, which could suggest co

regulation of the IGFBPs within each pair (Allander et al., 1994; Kou et ah, 1994b). It has been 

suggested that all 6 IGFBP genes have evolved from a single ancestral IGFBP gene througli a 

process of gene duplication and chromosomal translocation and were dispersed to multiple 

chromosomal loci as a result. In this model, IGFBP-3 and -5 were duplicated from a single gene, as 

were IGFBP-1 and -2. Thus, the evolution of the HOX and IGFBP gene families appears to follow 

a similar pattern (Allander et ah, 1995), and the association of the human genes at the same 

chromosomal loci suggests that ancestral IGFBP and HOX genes were linked before the first 

duplication of chromosomal DNA containing the ancestral HOX cluster (Allander et ah, 1994).
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Whether there is any functional significance to this linkage remains to be seen. It should be noted 

that the mouse IGFBP genes do not share the same chromosomal localization as mouse HOX A 

and D (Kou et ah, 1995), and this might reflect two different evolutionary pathways after the 

divergence of humans and mice (Allander et ah, 1995).
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Figure 1 .10 Schematic diagram of IGFBP/Hox gene evolution.
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1.2.2 G enom ic structure o f  the iGFBP-5 gen e

The IGFBP-5 gene has a conserved structure of four exons separated by three introns in 

human, mouse and rat. To date, cDNA clones have been isolated and sequenced from human, 

mouse, rat and chicken (Allander et ah, 1997; Kiefer et ah, 1991; Sliimasaki and Ling, 1991; Zhu et 

ah, 1993). The first intron has a length of several kilobases, encompassing more than 50 % of the 

gene. The mouse IGFBP-5 gene has been cloned and the genomic structure and sequence of its four 

exons established. It spans a length of 17 kb on mouse chromosome 1 (Kou et ah, 1994a). In 

humans, the IGFBP-5 gene spans 33 kb and is localised to chi*omosome 2 (Allander et ah, 1994). 

The IGFBP-5 gene has been shown to be located on the same chr omosome as IGFBP-2 in humans 

and mice, with the two genes orientated in a tail-to-tail fashion so that they have the opposite 

transcriptional direction. The distance between both genes comprises only 20 kb in humans 

(Allander et ah, 1994) and 5 kb in mice (Kou et ah, 1994a). Similarly, the IGFBP-1 and -3 genes 

are tightly linked and are positioned in a tail-to tail orientation on chromosome 7 in humans 

(Ehrenborg et al, 1992). The IGFBP-4 and -6 genes are located on separate chromosomes. The 

genomic distribution and the close relationship between certain IGFBPs suggest that these proteins 

have developed after duplication of an ancestral IGFBP. The resulting gene pair might then have 

been dispersed to different chromosomal locations (Allander et ah, 1994). Since IGFBP-5 is the 

most conserved IGFBP between different species it appears likely that it represents the binding 

protein which is most similar to the ancestral proto-IGFBP.

At present, the cDNAs encoding the six rat and human IGFBPs have been isolated and 

characterized revealing that the six IGFBPs are clearly distinct, but share regions with strong 

homology (Drop et ah, 1992). IGFBP gene expression is tissue specific and developmentally 

regulated (Rechler and Brown, 1992).

1.2.3 The iGFBP-5 prom oter

The IGFBP-5 promoter has a simple stnrcture, typical for regulated eukaryotic genes (Zhu 

et ah, 1993). Conserved TATA and CAAT consensus sequences are present upstream of the
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transcription start site in human (Allander et a l, 1994), mouse (Kou et ah, 1995), and rat (Zhu et ah, 

1993) promoters. It has been shown that there is a single transcriptional start site located 772 

nucleotides 5' (or downstream) of the ATG translational start codon (Zhu et ah, 1993). In addition 

to the TATA and CAAT boxes, there are other multiple putative cis-regulatory elements present in 

the promoter region, including sites for activation protein-1 (AP-1), AP-2 and a binding site for 

progesterone receptor (Zhu et ah, 1993).

Earlier work demonstrated the orientation-dependency of DNA fragments containing 

different regions of upstream sequence, between nucleotide positions -31 to -4,100 relative to the 

transcriptional start site, of the mouse IGFBP-5 gene in directing expression of the heterologous 

reporter gene luciferase after transient transfection in Hep G2 cells (Kou et ah, 1995). These 

transient transfection experiments showed that 4100 bp of mouse IGFBP-5 5'-flanking sequences 

and the first 120 nucelotides of exon 1 directed 25 times more luciferase expression than a 

promoter-less plasmid in transfected Hep G2 cells. Although a 1,004 bp nucleotide fragment was 

the most active in these transient transfection assays, a promoter segment containing only 156 bp of 

5’-flanking DNA mediated > 60 % of the promoter’s activity, and a segment comprising only the 

TATA box and the adjacent 5’ untranslated region of exon 1 still conferred some promoter function 

(Kou et ah, 1995). Furthermore, a 37 bp region from position -70 to -34 within the highly active 

156 bp nucleotide fragment was identified as a proximal promoter that is required for full 

transcriptional activity (Kou et ah, 1995) and this sequence is almost completely conserved in the 

rat and human genes (Allander et ah, 1994; Zhu et ah, 1993). Furthermore, this region was shown 

to contain a binding site for a, as yet unknown, transcription factor as evidenced by the footprint 

detected by DNase I protection assays, and small internal deletions within this 37-bp sequence led 

to a significant reduction in the activity of the intact promoter.

Further transient transfection experiments from the same group demonstrated that 1004-bp 

of IGFBP-5 5'-flanking sequence linked to the luciferase reporter gene resulted in levels of 

luciferase activity in C21 myoblast cells that were > 100-fold higher than that obtained with a 

promoter-less luciferase plasmid control (Rotwein et ah, 1995). Furthermore, a fragment 

containing the same 156 bp of 5'-flanking DNA described above retained >70% of maxnnal
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activity, which was consistent with the studies in Hep G2 cells (Kou et ah, 1995). The authors also 

showed that this 156 bp sequence mediated at least part of the differentiation-dependent rise in 

IGFBP-5 gene transcription in C21 myoblasts, since constructs containing this sequence produced 

a 2.2- to 2.8-fold increase in luciferase activity in differentiated cells compared with proliferating 

cells (Rotwein et ah, 1995).

Work from a different group identified an AP-2 recognition sequence 5’ of the TATA box 

and showed that AP-2 regulated basal and cAMP-dependent IGFBP-5 transcription (Duan and 

Clemmons, 1995). Subsequently, the same group demonstrated that transfection of IGF-I treated 

smooth muscle cells with 1278 bp of human IGFBP-5 5'-flanking sequence, containing the TATA 

and CAAT boxes and the putative AP-2 regulatory element, fused to a luciferase reporter gene 

resulted in very high levels of luciferase activity that were 345% higher than the controls (Duan et 

ah, 1996).

It has also been shown that prostaglandin E2 (PGE2) and parathyroid hormone (PTH) 

stimulate the synthesis of IGFBP-5 in osteoblasts (Conover et ah, 1993; McCarthy et ah, 1994) 

through cAMP-dependent processes (Ji et ah, 1999). The minimal DNA sequence required for 

basal and PGE2-stimulated IGFBP-5 promoter activity appeared to be within -69 to -35 bp. This 

region adjoins the TATA box and contains, in addition to the AP-2 site, an E-box element and 

consensus recognition binding sequences for CCAAT enhancer binding protein (C/EBP) and 

nuclear factor-1 (NF-1) (Ji et ah, 1999). Yet another gioup has shown that the stimulation of 

IGFBP-5 transcription by progesterone was mediated by a CACCC sequence in the proximal 

promoter (Boonyaratanakomkit et al., 1999).

In addition to the consensus binding motifs in the 5’ IGFBP-5 flanking described above, 

more recent work has also revealed two potential Myb protein binding sites (Tanno et ah, 2002). 

The first (M l) lies witliin the proximal region described above in close proximity to the TATA-box 

and overlapping the E-box element, whereas the second (M2) is much further downstream at 

position -429 to -424 from the transcription start site. Interestingly, these authors also present
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evidence that Myb proteins can regulate IGFBP-5 transcription. Furthermore, others have shown 

that bone morphogenetic protein-7 (BMP-7) actually down-regulates the transcription of IGFBP-5 

in primary cultures of fetal rat calvaria cells through a 21-bp control element that includes the rat 

homologue of the M l site(Yeh and Lee, 2000). The BMP genes are critical in controlling proper 

development during emhryogenesis, and, in particular, comect signalling between neighbouring 

epithelial-mesenchymal cell populations and aie likely to play an analogous role in adult tissues 

that undergo developmental changes and display similar cellular interactions, such as the mammary 

gland or prostate.

Finally, there are three papers from different groups, which might offer a mechanistic 

explanation for the large up-regulation in IGFBP-5 expression that is observed at the onset of 

involution in the adult mammary gland. As described above, one group has shown that the up- 

regulation of IGFBP-5 expression in osteoblasts is partly mediated by C/EBP, indicating that the 

C/EBP binding motif in the IGFBP-5 promoter must be functional (Ji et al., 1999). Subsequently, a 

second group has shown by band shift and antibody interference assays that C/EBP delta is 

activated by signal transducer and activator o f transcription (STAT)-3 in both growth-arrested 

mouse mammary epithelial cells and in the involuting mouse mammary gland (Hutt et ah, 2000). 

This is very interesting, when you consider that a third group have shown that IGFBP-5 levels did 

not increase significantly in the involuting glands o f STAT-3 conditional knock-out mice, which 

was also associated with a decrease in the levels of apoptosis in these glands (Chapman et ah,

1999). These authors concluded that IGFBP-5 must be a target for STAT-3 regulation in the 

involuting mammary gland. However, there are no STAT-3 consensus binding motifs in the 

IGFBP-5 promoter. Therefore, it is conceivable that STAT-3 up-regulates IGFBP-5 expression 

indirectly at the start of involution, by first activating C/EBP, which in turn up-regulates IGFBP-5, 

although this mechanism is purely speculative and remains to be proven.
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1.3 Aims of this study

This study was a continuation of our group’s previous work on the structure/hinction of 

IGFBP-5, with particular reference to the role of the binding protein in cell death in the involuting 

mammary gland. An initial aim was to establish an in vitro cellular model that was relevant to the 

adult mammary gland and which could be used to test the regulation of IGFBP-5 expression and 

the function of the binding protein on cell death/survival and tissue remodelling through 

association with members of the plasminogen activation system.

The mouse mammary epithelial cell line, HCl 1, was initially chosen as these cells could be 

effectively induced to differentiate as measured by p-casein expression. However, it was first 

important to characterise the expression of the IGFBP profiles in these cells and this is presented in 

Chapter III in the results section. During the course of this work, we also demonstrated that there 

was a significant up-regulation of IGFBP-5 expression during the differentiation and death of 

HCl 1 cells, and so it was decided that these cells could provide a valuable in vitro model for the 

increase in IGFBP-5 expression that is observed upon involution of the adult mammary gland. This 

is presented in Chapter IV in the results section.

Finally, with respect to in vitro functional studies of IGFBP-5, we were also able to use 

HCl 1 cells to examine the role of IGFBP-5 in modulation of plasmin generation. This was possible 

because H C ll cells made sufficient concentrations of endogenous plasminogen activators to 

induce major morphological changes in overnight cultures and they were able to generate 

significant amounts of plasmin, capable o f being used in a quantitative assay. This allowed us to 

develop a powerful in vitro assay to examine the effects of IGFBP-5 on the plasminogen system, 

and, in particular inhibition of the effects of PAI-I. This is presented in the results section of 

Chapter V.
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Chapter II. Materials and Methods

General laboratory chemicals and reasents were supplied by BDH (Poole, Dorset, UK) 

and by Fisher Scientific (Loughborough, Leicestershire, UK). Unless specified otherwise, most of 

the other chemicals were from Sigma (Poole, Dorset, UK). Molecular biology reagents were fiom 

Boehringer Mannheim (East Sussex, UK), Promega (Southampton, UK) or New England Biolabs 

(Hertfordshire, UK). Water (tissue culture grade) was fi'om Life Technologies, otherwise double 

distilled tap water was used. Unless otherwise stated, all centrifugations of Eppendorf tubes were 

carried out with bench top microfuge (MSE microcentaur), while eentrifugations necessary for cell 

culture routine maintenance and experimental work were conducted in a MSE mistral 2000 

centrifuge (MSE Loughborough, Leicestershire, UK).

General materials for cell culture. The mouse mammaiy epithelial cell line H C ll 

(Danielson et ah, 1984) was a kind gift from Dr Bruce Whitelaw, Roslin Institute, Edinburgh. 

Sheep anti-human/rat IGFBP-5 antiserum was generated “in-house” as described below. Anti- 

bovine IGFBP-2 (Cat no. 06-107) was fi'om Upstate Biotech (Charlottesville, USA). IGF-II 

(product no. OMOOl) was from GroPep Ltd (Adelaide, Australia). Bovine insulin (1-6634), 

dexamethasone (D-4902), ovine prolactin (L-6520) and EGF (E-4127) were from Sigma (Dorset, 

UK). ^^^Na (product no.391) was from ICN (Hampshire, UK). Sheep anti-mouse P-casein antibody 

was generated as described below. Tissue culture plasticware was from Coming Costar (Bucks, 

UK). Dulbecco’s modified Eagle’s medium (DMEM) (phenol red free-31053-028), Penicillin and 

Streptomycin (15140-122), L-glutamine (25030-024) and foetal calf serum from Gibco Brl 

(Scotland). Na pymvate (P-2256) and Protease Inhibitor Cocktail (P-8340) were from Sigma 

(Dorset, UK). Hanks Balanced Salt Solution without Mg and Ca, Gibco cat no 14170-088, 500 ml 

(HBSS). Trypsin-EDTA (0.5 mg/ml trypsin, 5.3 mM EDTA), Gibco cat no 15400-054, 100ml lOx 

concentration diluted with HBSS to Ix. 4% Paraformaldehyde (PFA). Phosphate-buffered saline 

(PBS), non-sterile/sterile (filter sterilised). Ci-ystal violet. 0.2% Triton xlOO. Semm-free (SF) and 

semm media with foetal calf serum (10%) additions. 2 pM Plasminogen, 500 pi aliquots.
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Plasminogen activator inhibitor-1 (PAI-1) and plasminogen were from Calbiochem, cat nos. 

528208 and 528175 respectively.

Animals All animal studies were conducted under appropriate Licence from the UK Home 

Office and after approval by local Ethical Review Committees. The source of mammary tissues 

used for these studies were from BAxC57Bl/6 strains of mice, and the developmental stages were 

as follows: late pregnant (18 days gestation; PI 8), lactating (day 1 and day 10 postpartum; LI and 

LIO respectively), and involution (2 and 4 days after pup removal; 12 and 14, respectively). All 

animals were piimiparous and litters were fixed at 8 to minimise mouse-to-mouse variation in 

suckling response. Animals were killed by cervical dislocation. Mammaiy glands were surgically 

removed from the mice and rapidly fi'ozen in liquid nitrogen and stored at -80° C until use. The 

samples were then reduced to powder by pulverising the frozen tissue in liquid nitrogen with a 

mortar and pestle.

11.1 General materials and methods

U.1.1 Solu tions an d  buffers

11.1.1.1 Nucleic acid work

Tris Borate EDTA (10 X  TBE )

IM Tris-HCl, 0.9M Boric acid, O.OIM EDTA, pH 8.4.

electrophoresis loading DNA sample buffer (5 X  Orange G )

lOOmM EDTA, 20% (w/v) Ficoll, water to 100ml, Orange G (approximately 0.1% w/v).

Trls-EDTA (TE) buffer 

lOmM Tris-HCl, pH 8.0, ImM EDTA, Autoclaved.
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Sodium chloride and Sodium Citrate (20xSSC)

3M NaCl/0.3M sodium citrate

Luria-Bertaini (LB) medium

1% (w/v) Tryptoue (Oxoid, Hampshire, UK), 0.5% (w/v) Yeast extract, 0.5% (w/v) Sodium 

Chloride, pH 7.5, Autoclaved. When selection was required, ampicilin was added to the LB to give 

a final concentration of 100 pg/ml.

LB agar plate

LB medium, 1.5% (w/v) Agar (Oxoid, Hampshire, UK), pH 7.0. Autoclaved and with 

addition of appropriate antibiotics.

Antibiotic stock solutions

Ampicillin 125mg/ml in HgO.

11.1.1.2 Protein expression and purification

Cleavage buffer 

50 mM Tris (pH 7.0), 150 mM NaCl, and 1 mM EDTA

Equilibrium buffer 

0.5M Sodium Chloride, 50mM Tris-HCl, pH 6.5.

Basic washing buffer 

O.IM Tris-HCl, 0.5M Sodium chloride, pH 8.5.

Acidic washing buffer 

O.IM Sodium Acetate, 0.5M Sodium Chloride, pH 4.5.

:ïïî|:
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Elution buffer

0.5% (v/v) Acetic acid, pH 3.0.

Concentrated Tris buffer 

2M Tris base. 

Column stroraae buffer

50mM Tris HCl, 0.5M Sodium Chloride, pH 7.4, 0.01% (w/v) Sodium azide.

11.1.1.3 Protein assay

Cell lysis buffer

50 mM Tris.HCl (pH 7.4), 150 mM NaCl, 1% Triton-X 100, 2mM EDTA, 0.33% (v/v) 

Protease Inhibitor Cocktail

Tris-buffered saline (TBS-T).

20 mM Tris-HCl, 137 mM NaCl, pH 7.6 with 0.1 % Tween 20

Radioimmunoassay (RIA) buffer 

50 mM NaH2P0 4  (pH 7.4) 150 mM NaCl, 2 mM EDTA, 0.025 % (w/v) sodium azide

U.1.2 A ntisera

Antirat IGFBP-5 antisera was made in house by immunizing sheep with recombinant rat 

IGFBP-5 protein. Antiserum was kindly donated by Dr. David Flint, and was first reported in 

Tonner et al. (Tonner et al., 1997). This antiserum was routinely used at a dilution of 1:2000 for 

Western immuno blotting.

Antirat IGFBP-2 antisera raised in rabbit was purchased from TCS Biologicals (Bucks, 

UK), and used at a dilution 1:5000 for Western blot.
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Antisera to sheep or rabbit Imimoslobulin (IsG) conjugated to horse radish peroxidase 

(HRP) were purchased from Sigma and used at a dilution 1:5000 and 1:10000, respectively.

11.1.3 lodination

Mouse IGFBP-2 and IGFBP-5 and human IGF-I were iodinated to specific activity of 

approximately 100 pCi/pg by the iodogen-coated tube method (Fraker and Speck, 1978). 

Unincorporated *̂ Î was separated from protein-bound isotope by gel filtration over a 3 ml gel 

column of Sephadex GIO. The authenticity of radiolabelled protein was confimied by 

trichloroacetic acid precipitation of product, which resulted in values typically between 80 and 90 

% counts precipitated.

11.1.4 S ta tis tics

Differences in IGFBP-2 and IGFBP-5 levels following treatment of H C ll cells with 

various hormonal combinations (as determined by RIA) were analysed using Student’s /-test and 

were considered significant at P<0 .0 1 .

11.2 General techniques for characterisation of HC11 

cells

li.2.1 T issue Cuitures

HCl 1 cells were seeded in 2.4x1 O '̂/well and grown to confluence in 24-well culture dishes 

(over a period of two to three days) in 500 pi complete medium -  DMEM- 10 % PCS, 100 U/ml 

PenStrp, 2 mM glutamine, 1 mM Na pymvate, 5 pg/ml insulin, 10 ng/ml EGF. Insulin and EGF are 

required in culture medium to produce competent cultures, which are able to respond to treatment 

with lactogenic hormones. After two days at confluence, competent cell cultures were induced to 

differentiate by treatment, under semm free conditions, with DMEM containing 5 pg/ml hisulin, 5 

pg/ml prolactin and 1 pM dexamethasone (500 pi per well). Incubations were continued for
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typically 2-4 days at which time conditioned medium were removed for analysis of IGFBP-5 

profile and cell monolayers were lysed for the analysis of (3-casein synthesis. Control, 

undifferentiated FICll cell cultm'cs were obtained by culturing competent cells in DMEM in the 

absence of lactogenic hoimones.

11.2.2 Cell ly s is

Cell monolayers were lysed in lysis buffer (Section II. 1.1.3). Lysates were centrifuged for 

15 min at 15800 g  in a bench-top Eppendorf centrifuge at 4°C and supernatants were removed and 

stored at -20 °C prior to analysis for P-casein protein. Routinely 10 pi lysate was electrophoresed 

under reducing conditions and blotted for p-casein as described below.

11.2.3 Protein a s s a y

11.2.3.1 Western immunoblot

Conditioned medium was removed from cell monolayers and centrifuged briefly to remove 

cellular debris. Typically 10 pi of conditioned medium or cell lysate was mixed with x4 NuPAGE 

LDS sample buffer (non-reducing for ligand blotting; reducing for Western blotting). 

Electrophoresis was performed using Pre-cast NuPAGE 10 % Bis-Tris Gel at constant 200 V for 50 

min using the manufacturer’s protocol. Transfer from the gel to Hybond-C extra (Amersham) 

membranes was performed using the Novex Pre-Cast gel system (Gibco/Invitrogen) using the 

manufacturer’s protocol. Western blots of cell-conditioned medium with anti-IGFBP-5 were 

performed in Tris-buffered saline (20 mM Tris-HCl, 137 mM NaCl, pH 7.6) with 0.1 % Tween 20 

(TBS-T). After blocking for 1 hour in TBS-T/3% BSA, filters were incubated with anti-IGFBP-5 

antiserum at a dilution of 1:2000 for 1 hour at room temperatur e or overnight at 4 °C. Following 

washes in TBS-T (six tunes 15 min), blots were probed with horseradish peroxidase (HRP)- 

conjugated anti-sheep (1:5000) in TBS-T/5% dried skimmed milk for 1 hour at room temperature. 

After drying, the protein detection was performed with the Enhanced Chemi-Luminescence 

technique (ECL™ Amersham, Buckinghamshire, UK) by exposing blots for various lengths of
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time to Hyperfilm™ ECL '̂'^ (Amersham). Typically, membranes were exposed to autorad films 

(Hyperfilm Pmax, Amersham) in an 18x24 radiographic cassette (Genetic Research 

Instrumentation Ltd. Essex, UK) at -70 °C for 4-10 days. The films were bathed in GBX Kodak 

developer for approximately 3 min followed by a quick rinse in water, moved to GBX Kodak fixer 

solution for 5 min and then extensively washed in tap water.

Western blots of conditioned medium for IGFBP-2 and of cell lysates for P-casein were 

performed in a similar mamrer with the inclusion of 1% fish gelatin and 1 % BSA in TBS-T buffer 

for blocking and antibody dilution. The presence of fish gelatin in TBS-T/1% BSA buffers 

considerably reduced background levels in IGFBP-2 and P-casein blots. Primary antibodies were 

used at a dilution of 1:1000 (or occasionally 1:2000 for Reichmann anti-P-casein antibody). FIRP- 

conjugated anti-rabbit secondary antibody was used at a dilution of 1:5000 for P-casein blots 

(Reichmann) and 1:10,000 for IGFBP-2 blots. Blots using the in-house sheep anti-rat P-casein blots 

were developed with anti-sheep-HRP at a dilution of 1:5000.

11.2.3.2 ^^=l-IGF-ll ligand blot

ligand blotting was performed essentially as described by (Hossenlopp et al.,

1986). After transfer, membranes were washed with 50ml 3 % (v/v) NP40 Tris-saline solution (10 

mM Tris, 60 mM NaCl 0.05 % (w/v) sodium azide, pH 7,6) for 30min, with 50 ml 1% (w/v) BSA 

Tris-salme solution for 2hour and finally with 50 ml 0.1% (v/v) Tween 20 Tris-saline solution for 

lOmin. Approximately 1.5-2 x lO^cpm ^^^I-IGF-II in 1.5 ml of 1 % (w/v) BSA, 0.1 % (v/v) Tween 

20 Tris-saline solution was added to a plastic bag containing each blot and incubation was 

continued overnight at 4 °C. Blots were then washed twice for 15 min in 50 ml 0.1 % (v/v) Tween 

20 Tris-saline solution and three times for 15 min in 50 ml Tris-saline solution. Dried blots were 

exposed to a Molecular Dynamics Phospho-imager screen for 2 days at room temperature and the 

resulting image was visualized with the PhosphoLnager 445 SI software (Molecular dynamics) and 

Image Quant software.
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11.2.3.3 Radioimmunoassay (RIA)

Levels of IGFBP-2 and -5 in undifferentiated and differentiated H C ll cell-conditioned 

medium were determined by RIA with the same antibodies that were used for Western blotting. For 

IGFBP-2 RIA, approximately 25,000 cpm ‘̂ ^I-IGFBP-2 (100 pi) in RIA buffer (11.1.1.3) and 0-45 

ng/ml unlabelled mouse IGFBP-2 protein were incubated with primary antibody (1:5000) in a final 

volume of 300 pi anti-rabbit precipitating antiserum [RIA buffer: 16% PEG : anti-rabbit y-globulin 

: normal rabbit serum (1:1:0.08:0.008 v/v/v/v)]. Following a 1 hour incubation at room temperature 

and centrifugation (1700 g  for 30 min), supernatants were decanted and radioactivity in pellets 

deteimined by y-counting. An identical protocol was used in RIA of IGFBP-5 with the exception 

that IGFBP-5 standards were present over a concentration range of 0-750 ng/ml and precipitating 

antisemm contained anti-sheep y-globulin and normal sheep serum. There was no cross-reactivity 

of IGFBP-2 or -5 in respective RIAs. For IGFBP-5 RIA, intra- and inter-assay coefficients of 

variance (determined at ED50) were 13.1 and 16.8% respectively; ED50 was 41.5 ± 4.37 ng/ml (n=4 

± S.E.). Samples of conditioned medium were assayed at appropriate dilutions to fall into the range 

of the standard curves and to ensure parallelism in the assay and all samples fiom individual 

experiments were analysed in a single assay.

11.2.4 Total RNA extraction

For the total RNA extraction, H C ll cells were seeded in SxlOVwell and grown to 

confluence in 1 2 -well culture dishes (over a period of two to three days) in 1ml complete medium. 

After two days at confluence, competent cell cultures were induced to differentiate under serum 

free conditions by treatment with DMEM containing 5 pg/ml insulin, 5 pg/ml prolactin and 1 pM 

dexamethasone (500 pi per well). Incubations were continued for 2 days at which time cell 

monolayers were lysed for extracting total RNA. Undifferentiated control HCl 1 cell cultures were 

obtained by culturing competent cells in DMEM in the absence of lactogenic hormones.

Total RNA was extracted from the mammary gland samples and H C ll cells using 

TRIZOL Reagent according to the manufacturer’s protocol (Life Technologies, Paisley, UK).
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Briefly, 100 mg of mammaiy tissue powder was homogenised in 1 ml of TRIZOL Reagent at room 

temperature. For H C ll cells, 1 ml of TRIZOL was added after removal of growth medium, the 

cells were harvested and homogenised by passing the solution through a pipette tip several times. 

Chloroform (0.267 ml) was added to the homogenate and after 2 minutes incubation at room 

temperature, the mixture was centrifuged at 12,000 g  for 15 minutes at 4°C. The aqueous 

supernatant containing total RNA was separated and 0.667 ml of isopropyl alcohol was then added 

for 10 minutes at -20°C to precipitate the RNA. The RNA was pelleted by centriftigation (12,000 

g  for 10 minutes at 4°C), rinsed with 70% ethanol and finally dissolved in sterile distilled water 

(Life Technologies, Paisley, UK). The amount of total RNA extracted fiom either mammary gland 

tissue or HCl 1 cells was measured by absorbance at 260 nm.

11.2.5 R everse  Transcription

A  First Strand cDNA Synthesis Kit (Roche Diagnostics, Lewes, UK) was used for cDNA 

synthesis according to the manufacturer’s instructions. 2 pg of total RNA was incubated for 1 h at 

42°C with 15 units of AMV Reverse transcriptase, 1.6 pg Oligo (dT)i5 primer, RNAse inhibitor at 

2.5 units/pl, deoxynucleotide mix at 1 mM, Ix reverse transcription buffer (10 mM Tris HCL, pH 

8.3, 50 mM KCl) and 5 mM MgCb in a total volume of 20 pi. After the reaction was complete, the 

mixture was heated to 95°C for 5 min to inactivate the AMV reverse transcriptase and chilled at 

4°C.

11.3 Promoter analysis

11.3.1 C om parison o f  transfection reagen ts

To find the most efficient transfection reagent and to optimise condition for transfection 

into the H C ll cells, the efficacy o f the various transfection reagents were compared using the 

pGL3-Control vector plasmid (Promega). Tfx (Promega), SuperFect (Quiagen), GeneJuice 

(Novagen) and FuGENE 6  (Roche Applied Science) were chosen. Transfections were perfomied 

with various amounts of DNA (0.25, 0.5, 0.75, Ipg) and various ratios of transfection reagents to
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DNA [Tfx; 2:1, 3:1, 4:1/SuperFect; 2:1, 3:1, 5:l/GeneJuice; 2:1, 3:1, 4:l/FuGene; 2:3, 3:1, 6:1] 

using the manufacturer’s protocol. Transfected cells were maintained in cultur e for a further 48 hr 

in complete medium. Cells were harvested 48 hours post-transfection and assayed for luciferase 

with the Promega Luciferase Assay System using the manufacturer’s protocol.

11.3.2 Transient transfection s and iuciferase a ssa y

HCl 1 cells were plated into 24-well plates at 1x10^ cells/ml and grown to confluence over 

a period of two days in 500 pi complete medium -  DMEM- 10% FCS, 100 U/ml PenStip, 2 mM 

glutamine, 1 mM Na pyruvate, 5 pg/ml insulin, 10 ng/ml EGF. After two days at confluence, all 

cells were transfected in 24-well plates with 1 pg of plasmid and a 3:1 ratio of GeneJuice 

(Novagen) reagent/well using the manufacture’s protocol for the transfection of adherent cells and 

also treated in the presence or absence of lactogenic hormones [DMEM containing 5 pg/ml Insulin, 

5 pg/ml prolactin and 1 pM dexamethasone (500 ul per well)] under semm free conditions. 

Transfected wells were maintained in culture for a further 48 hours. Cell extracts were then 

prepared and assayed for luciferase activity with the Promega Luciferase Assay System using the 

manufacturer’s protocol.

11.3.3 DNA d o t b lo t an alysis

The luciferase activity for each well was normalized for the relative transfection efficiency 

of plasmid DNA in each well, deteimined by dot-blotting a portion of the cell extract on the 

Biotrans nylon membrane (ICN) and hybridizing this to the pGL3-basic vector (Abken and 

Reifenrath, 1992). In brief, a 15 pi sample from a total of 100 pi of cell extract was boiled for 5 

min, diluted with 20xSSC (3 M NaCL/0.3 M sodium citrate) and dot-blotted onto nylon membrane. 

The DNA was UV-fixed to the membrane and hybridised to the pGL3-basic vector labelled with 

[^^P]dCTP with random primers (Feinberg and Vogelstein, 1983). The filter was then washed and 

exposed to a Kodak phosphor screen overnight. The resulting images were then scanned and the 

volumes of individual dots determined as described above. The luciferase activity was then
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expressed as the luciferase activity/well divided by the relative amount of plasmid DNA/well (in 

arbitary units).

IL3.4 Subcloning to pG L3-basic vec to r

Restriction enzyme digestion. Restriction digests were typically performed in excess of 

enzyme: 20 pi reaction volume containing 1 pg DNA, 2 pi lOx buffer (containing 0.5mg/ml BSA), 

10 units enzyme. Endonuclease enzymes and appropriate lOx buffers were supplied by Boehringer, 

Promega or New England biolabs. Digestion mixes were incubated at the recommended 

temperature for 1 -2  houi".

Agarose gel electrophoresis. 1% (w/v) agarose (Sigma) was dissolved in IxTBE buffer 

and 0.5pg/ml ethidium bromide was added. Gels were electrophoresed in IX TBE buffer at 100 V 

for 30 min to 1 hour. Low melting point agarose gels were used for DNA inserts, that were to be 

excised from the gel and extracted with QIAquick Gel extraction kit (QIAGEN, Germany) 

following the instructions provided by the manufacturer. Electrophoresed DNA was visualised on a 

Herolab transilluminator (Mididoc, gel documentation analysis system and EASI store software 

Herolab Molekulare Trenntechnik,)

Ligation. A typical ligation reaction would be perfom ed in 15pi volume containing: 1.5pi 

X 10 ligation buffer (500 mM Tris-HCl (pH7.5), 100 mM MgCb, 100 mM D TT, 10 mM ATP, 250 

pg/ml BSA); 100-200 ng of linearized plamid DN A , 100-200 ng of D N A  insert with compatible 

restriction enzyme ends and 15 U T4DNA ligase (0.5 pi of high concentration T4DNA ligase from 

New England Biolab, Hertfordshire, UK). Reactions were incubated at 16 °C overnight.

Transformation. For a typical transformation, aliquots of JM109 competent cells would 

be thawed on ice for approximately 10  min. 1 0 0  pi of cell suspension would be placed in pre

chilled polypropylene tubes and after the addition of 50 ng of plasmid DNA, tubes would be mixed 

and incubated on ice for 30 min. Tubes were incubated at 42 °C for 45 seconds and immediately 

chilled on ice for 2 min. After the addition of 900 pi LB medium to each tube, cells were incubated
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at 37 °C for 1 hour with shaking to allow them time to express the antibiotic resistance gene on the 

plasmid which they have just taken up before being exposed to this antibiotic. 1 0 0  pi of cell 

suspension would be plated onto LB-agar plates in the presence or absence of appropriate drug 

selection and plates incubated at 37°C for 18-24 hours.

Small Scale DNA preparation. Minipreps were performed by using Ultraclean™ mini 

plasmid prep kit (MoBio Laboratories, Solana Beach, CA) to obtain purified DNA that could be 

subsequently used for most molecular biological techniques. The procedure used was that 

recommended by the manufacturer.

Large Scale DNA preparation. Maxipreps were performed using QIAGEN tips 500 

(QIAGEN, west suss ex, UK) following the method recommended by the manufacturer.

11,3.5 Construction o f  iGFBP5-Luc se r ie s  in pGL3 vec to r

Mouse IGFBP-5 promoter — luciferase reporter constructs: IGFBP5-Luc2, 3, 4 and 5 were 

kindly provided by Professor Peter Rotwein (Oregon Health & Sciences University, USA). This 

IGFBP-5 promoter deletion series contained different length fragments of the mouse IGFBP-5 5’ 

flanking DNA sequence ranging from -3000 to -156 relative to the transcriptional start site: Luc2 

extends to the BamHI site (-3000), Luc3 to EcoRI (-1406), Luc4 to PstI (-1004) and Luc5 to StuI 

(-156), with all constructs containing the same 3’ end point at + 120 bp in exon 1. All of the series 

have been blunt end cloned into the blunted Hindlll site of the pGL2-basic vector (Promega) (Kou 

et ah, 1994a).

To subclone all of the IGFBP-5 promoter deletion series into the pGL3-basic vector, 

IGFBP5-Luc2, 3, 4 and 5 constmcts in pGL2-basic vector were initially digested with Xhol and 

Narl restriction enzymes as described above. The resulting Xhol and Narl fragments were then 

ligated with the same sites in the pGL3-basic vector (Promega) as shown in Figure II, 1. Ligation 

reactions were transfoimed into JM109 cells, and grown on ampicillin plates for 24 h at 37°C.
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Single colonies were picked and giown in LB with ampicillin selection. Mini and maxi preps were 

prepared as described above (II.3.4).
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11.3.6 S ite-d irected  m u tagen esis

In order to introduce a unique Xhol restriction enzyme site necessary for creating a new 

IGFBP-5 promoter-luciferase deletion construct, we first had to carry out site-directed mutagenesis 

of the IGFBP5-Luc4 construct using the QuikChange™ system (Stratagene, La Jolla, CA, USA), 

following the protocol provided by the manufacturer. Site-directed mutagenesis of IGFBP5-Luc4 

was carried out using the oligonucleotides: 5’-CCC TCT GCC CCT TFT AAT GOT CGA GGG 

GTC TAG ACA CGC GC-3’ and 5’-GCG CGT GTG TAG ACC CCT CGA GCA TTA AAA GGG 

GCA GAG GG-3’ to introduce an Xhol restriction enzyme site at position -556 and create the 

IGFBP5 -Luc4(XhoI) constmct. The stmcture of the new constructs and the strategy for making 

them is shown in Figure IV. 8 . All oligos were synthesized by MWG BioTech, Milton Keynes, 

UK. Following site-directed mutagenesis, restriction enzyme analysis (Sad and Xhol) was 

perfonned to confirm the presence of the new Xhol site in the IGFBP5-Luc4(XhoI) construct 

(Figure IV.9A).

11.4 Production of recombinant mouse IGFBP-5

11.4.1 Bacterial ex p ressio n  o f  recom binant iGFBP-5

Expression of recombinant IGFBP-5 proteins (wild type and mutants) was carried out 

using conditions identical to those described by Allan and co-workers (Allan et al., 2002). cDNAs 

for mouse wt IGFBP-5 and various IGFBP-5 mutants minus the signal peptide-encoding sequence, 

were cloned into the pGEX 6P-1 vector (Amersham Pharmacia Biotech, Arlington Heights, IE) 

between BamHI and EcoRI in the multiple cloning site, so that the proteins would have an N- 

terminal glutathione 6"-transferase (GST) tag. 50 ng of this construct were then used to transform 

the Origami B (DE3) pLysS strain (Novagen) of Escherichia coll, and the cells were incubated 

overnight at 37 °C in 10 ml LB medium containing 12 pg/ml ampicillin and 30 pg/ml 

chloramphenicol. After a 40-fold dilution into fresh LB/ampicillin/chloramphenicol, the cells were 

re-grown to mid-log phase (E6oonm=~0.6), then the expression of IGFBP-5, as a glutathion-.?-
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tranferase (GST) fusion protein, was induced by addition of 1 mM isopropyl p-D-thioglactoside 

(IPTG) and allowed to proceed at 25 °C overnight.

11.4.2 Mutant IGFBP-5

An IGFBP-5 mutant with greatly reduced affinity for IGF-I (N-tenn: K6 8 N, P69Q, L70Q, 

L73Q, L74Q), (Imai et a l, 2000; Shand et a l, 2003) and two other mutants with greatly reduced 

affinity for heparin were used as described in the results section. The Hep- mutant (R201L, K202E, 

K206Q, R214A) was made as described in Song et al. (Song et a l, 2000). The mutant (C-Term E) 

had all of the basic residues in the region 201-218 mutated to alanines (R201A, K202A, K206A, 

R207A, K208A, K211A, R214A, R216A, K217A, R218A) and mutant C-term F, based upon C- 

term E, but with additional mutations in the central domain of IGFBP-5 (R136A, R137A) which 

involved in a second putative heparin binding domain as described in Allan et al (Allan et a l, 

2006).

11.4.3 Purification o f  recom binan t IGFBP-5

11.4.3.1 GST-affinity chromatography purification

Cells were harvested by centrifugation at 1,500 x g  for 15 min, washed once in 50 ml PBS, 

and resuspended in 10 ml PBS containing 1 protease inhibitors tablet (Roche, Indianapolis, IN). 

The suspension was frozen and thawed once to lyse the cells, then the bacterial DNA was sheared 

by three 30-sec cycles of sonication (KT-40, Kontes Co., Vineland, NJ; 4-mm prove, full power) 

with cooling on ice. Insoluble material was removed by centrifugation at 11,000 x g  for 30 min, 

then the supernatant was filtered through a 0.45-pm pore membrane and incubated overnight at 

4°C with 1 ml (packed volume) washed glutathione-Sepharose (Amersham Pharmacia Biothech). 

The suspension was decanted into a disposable plastic column (Bio-Rad Laboratories, Inc., 

Hercules, CA), and unbound material allowed to flow through, then the glutathione-Sepharose was 

washed twice with 10 ml PBS and once with 10 ml cleavage buffer (II. 1.1.2). The column was 

sealed, and the glutathione-Sepharose was resuspended in 2 ml cleavage buffer containing 160
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units of PreScission protease (Amersham Pharmacia Biothech). After 4h at room temperature with 

hourly resuspension, the column was reopened, and the cleaved IGFBP-5 was recovered in the 

eluate. GST and PreScission protease remained bound to the glutatliione-Sepharose. IGFBP-5 

remaining in the column was recovered by washing with 10 ml cleavage buffer. A 400-ml bacterial 

culture typically yielded about 2 mg of IGFBP-5 protein.

11.4.3.2 IGF-II affinity chromatography purification

Columns were prepared and run following the recommendations described in “Affinity 

chromatography. Principle and methods” hand book (Pharmacia LKB biotechonology Cat.N 18- 

1022-29). 500 pg of activated CM Sepharose 4B (Cat N. 17-0490— 01 Pharmacia Biotech, Uppsala 

Sweden) was washed in a sintered glass filter with 150 ml of ImM HCl. Then 0.9 mg of rhIGF-II 

(media grade GroPep) was dissolved in coupling buffer (O.IM NaFICOs, pH 8.0) and mixed with 

the gel end over end for Ihr at room temperatuie. Sepharose gel coupled with IGF-II was pomed 

into a Biorad plastic column and, after discaiding the excess coupling buffer, was washed first with 

100 ml of 0.05 M Tris, 0.5 M NaCl pH 8.0, then with 100 ml of 0,05 M formate, 0.5 M NaCl, pH 

4.0. Excess activated CM groups were blocked with O.IM Tris-HCl pH 8.0 and the column re

equilibrated in 50 mM Tris, 0.5 M NaCl, 0.01% sodium azide pH 7.4. The column volume was 

1ml.

Protein purification was performed following the method described by Carr et al. (Carr et 

al., 1994). 800 pi of IGF-II-coupled Sepharose gel, prepaied as described above, was equilibrated 

with 10ml equilibration buffer (0.5 M NaCl, 50 mM Tris-HCl pH 6.5). 1 ml of concentrated GST- 

affinity purified IGFBPs was applied to the column. The gel was mixed gently with the sample 

several times and incubated overnight at 4°C. Unbound protein solution was run through the 

column, reapplied twice and finally harvested and kept at -20°C to be analysed for the residual 

presence of IGFBPs. The column was washed with 10 ml equilibration buffer (0.5 M NaCl, 50 mM 

Tris-HCl pH 6.5) (the first 1ml of the flow through was retained for analysis), 6  ml of elution 

buffer (0.5 M acetic acid pH 3) was incubated with column gel for lOmin before starting the 

elution. 6 x 1ml fractions were collected in Eppendorf tubes already containing 300-360 pi of 2 M
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Tris base necessary for immediate pH buffering to pH 7.0. Fractions were kept on ice and the 

column washed with 10ml equilibrium buffer (0.5 NaCl, 50 mM Tris-HCl pH 6.5). Subsequently, 

alternate washes with 5ml of basic washing buffer (O.IM Tris-HCl, 0.5 NaCl, pH 8,5) and 5 ml of 

acidic washing buffer (0.1 M Na acetate, 0.5 M NaCl, pH 4.5) were repeated twice. For storage the 

column was equilibrated in colmnn storage buffer (50 mM Tris-HCl, 0.5 M NaCl, 0.01 % (w/v) 

sodium azide, pH 7.4) and kept at 4°C.

All fractions eluted from the affinity column were analysed for their relative protein 

content by Coomassie blue gels and the presence of purified proteins was confirmed by ^^^I-IGF-II 

ligand blots and Western immunoblots using anti IGFBP-5 and -2 antisera. Measurement of 

protein concentration was by Bradford assay (see below).

11.4.3.3 Reverse Phase-High Performance Liquid Chromatography 

(RP-HPLC)

IGFBP-5 proteins were further purified by RP-HPLC using a polymeric column (PLRP-S; 

300Â; 8 pm bead; 4.6 mm diam X 150 mm Polymer Laboratories Ltd, Church Stretton, UK) 

equilibrated with a mobile phase consisting of 3 part solution A [0.1% trifluoroacetic acid (TFA) in 

water] and 1 part solution B (0.1% TFA in acetonitrile). Aliquots (1-2 ml) of GST-affinity purified 

protein (2-3 mg) in cleavage buffer was injected onto the column which was run at Iml/min 

throughout. After 5 min of isocratic elution, a linear gradient fi'om 25 % solution B to 40 % 

solution B was applied over the next 50 min. Absorbance of column effluent was monitored at 2 2 0  

nM; IGFBP-5 proteins were collected, typically between 25 and 30 min after sample injection, and 

fractions were assessed for protein purity by Sodium dodecyl sulphate polyaci-ylamide gel 

electrophoresis (SDS-PAGE) (Figure V. 12B). Coomassie blue staining was employed to visualise 

protein bands after electrophoretic separation and to estimate their relative concentration. Gels 

were stained in 0.3 % (w/v) Coomassie Briliant Blue R250, 5 % (v/v) methanol, 7.5 % (v/v) glacial 

acetic acid by shaking gently for approximately 30 min at room temperature. To enable the 

detection of protein bands from the stained background, gels were destained in 30 % (v/v) 

methanol, 10  % (v/v) glacial acetic acid for 1 hour with shaking, followed by fresh destaining,
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without shaking overnight. The gel was then dried using the EasyBreeze system (Hoefer Scientific 

Instruments, San Francisco, USA) according to the manufacturer’s instructions. Proteins in all the 

fractions were also quantitated by Bradford assay. Fractions were lyophilized and stored at -70  °C. 

Proteins were re-dissolved in Tris.HCl/Tween 20, pH 7.4 buffer for use.

11.4.4 Protein an a lysis using Bradford a ssa y

Proteins were quantified using the Bio-Rad protein assay system (Pierce, Chester, UK) 

which is adapted from Bradford et al. (Bradford, 1976). Five dilutions of a BSA standard in 0.5 % 

acetic acid-2 M Tris (pH 7.0), which was an appropriate blank for the protein solutions to be tested, 

were prepared as a standard solution. The linear range of the assay was 5.0 pg/ml to approximately 

100 pg /ml. Standard and protein sample solutions were normally assayed in triplicate. 160 pi of 

each standard and sample solution were pipetted into separate microtitre plate wells, and then 40 pi 

of diluted dye reagent concentrate was added to each well and mixed thoroughly using a multi

channel pipette. Samples were incubated for 10 min at room temperatuie, and loaded into a 

TitreTeck® multi-scan and absorbance measured at 600 nm.

11.5 General techniques for functional studies of IGFBP-5

H C ll cells were routinely cultured at 37 °C in medium culture flasks (Coming) with 

DMEM containing 10 % v/v FCS (Gibco) plus 2 mM L-glutamine, ImM sodium pymvate, 

Pen/Strep (100 U/ml), epidermal growth factor (EGF) (10 ng/ml) and Insulin (5 pg/ml) for passage 

12-14. At confluence cells were washed with HBSS and detached from the plastic surface by a few 

minutes incubation at 37 °C in the presence of 4 ml of xlTrypsin-EDTA solution (0.5 g/f Trypsin 

and 0.2 g/( EDTA, obtained by diluting xlO concentrated solution with HBSS). 15-20 ml of 10% 

FBS DMEM medium were added to inactivate trypsin, then cells were harvested in 50 ml 

centrifuge tubes and centrifriged at 1000 rpm for 5min. Supernatant was discarded and cell pellets 

resuspended in complete medium.
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After trypsinisation, 100 pi of diluted cell suspensions were seeded into 96-well flat bottom 

tissue culture plates and grown to confluence for 1-2 days in DMEM or RPMI with 10 % Foetal 

Calf Semm (FCS) plus 2 mM L-glutamine, ImM sodium pymvate, Pen/Strep (100 U/ml), 

epidermal growth factor (EGF) (10 ng/ml) and Insulin (5 pg/ml). When cells reached confluence, 

the competent cell cultures were washed with serum free medium and treated with various 

combinations of plasminogen, plasminogen activator inhibitor-I and wt IGFBP-5 or mutant 

proteins under semm free conditions. For the control, H C ll cells were cultured in DMEM in the 

absence of semm. Incubations were continued for typically 24-48 hours at which time conditioned 

medium were removed for analysis of plasmin activity, while cell monolayers were washed with 

PBS and treated with 4 % PFA for histological analysis. The concentrations of these reagents are 

indicated in the relevant Figm'es and accompanying legends. Each treatment was done in duplicate 

or triplicate.

11.5.1 H istological an alysis o f  H C ll ce lls

After 24-48 hours incubation with various combinations of proteins, H C ll cells were 

washed with PBS twice to remove traces of medium. lOOul of 4% paraformaldehyde (PFA) was 

added to each well for 20 min to 2 hours in order to fix the cells. Wells were then washed twice 

with PBS. The cells were then stained with 100 pi crystal violet for 5-30 minutes and washed with 

double distilled water (ddH20) until clear, before microscopic analysis and photography was 

carried out.

II. 5.2 A s s a y  for p lasm in  activ ity

Plasmin activity was measured by incubating conditioned media in 50 mM Tris HCl, 0.1% 

Tween 20, pH 7.4 with 25ul of the artificial substrate 6mM H-Val-Leu-Lys-p-nitroanilide (VLL- 

pNA) from Bachem UK (0554101). The absorbance at 405 nm was measured at 15 min inteiwals 

for 4 hours and plasmin activity was determined by the rate of change in absorbance.
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11.5.3 C elt-free-system  plasm in  a ssa y

The assay described above is dependent on the fact that HCl 1 cells are known to express 

their own plasminogen activator (PA). However, we also wanted to employ a cell-free system in 

which we could control the amount of PA present. Initially, we examined the effect of tPA and 

urokinase plasmin activator (uPA) alone on plasmin generation. First, tPA (typically 50 ng/ml) or 

uPA (typically 1.1 pg/ml) was added to a 96-well microtitre plate containing 10 pi of 2mM 

plasminogen, 10 pi of 6  mM VLL-pNA and made up to 100 pl/well with 50 mM Tris.HCl plus 

0.1% Tween 20 pH 7.4. Thereafter, absorbance at 405 nm was measured at 15 min intervals for 4 

hours and the generation of nitroaniline was determined by the rate of change in absorbance. 

Second, to test the relationship between IGFBP-5 and tPA/uPA, a range of concentrations of 

IGFBP-5 (500 pg/ml, 250 pg/ml, 125 pg/ml) were added to plasminogen, tPA/uPA, VLL-pNA and 

Tris.HCl, 0.1% Tween 20 pH 7.4 and plasmin activity was measured as described above. The 

control was bovine serum albumin (BSA) at the same concentrations (500 pg/ml, 250 pg/ml, 125 

pg/ml) instead of IGFBP-5.
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Chapter III. Characterisation of HC11 cells

lil.1 Introduction

The cycle of various mammary gland developmental stages requires the coordinated action 

of growth factors and hormones that promote morphological development and milk protein 

production (Topper and Freeman, 1980). The IGF axis plays an important role in an autocrine and 

paracrine manner in this process (Hadsell et ah, 1996; LeRoith et ah, 1995; Neuenschwander et ah, 

1996; Ruan and Kleinberg, 1999). In order to understand the IGF axis contribution to mammary 

gland development and differentiation, an in vitro cell culture system has been developed.

The H C ll mouse mammary epithelial cell line may serve as a useful model system for 

studying functional characteristics of mammary cell differentiation, because primaiy mammary 

epithelial cells require either co-cultivation with mesenchymal cells or with exogenous ECM 

components to differentiate in the presence of lactogenic hormones and produce milk proteins. 

H C ll cells however are an exception, since they produce large quantities of (3-casein, a marker of 

epithelial cell differentiation, when lactogenic hormones are added to confluent cells previously 

grown in the presence of EGF and insulin even in the absence of mesenchymal cells (Ball et ah, 

1988a; Ball et ah, 1988b; Merlo et ah, 1996). This cell line was clonally derived from the 

heterogeneous COMMA-ID line isolated from a mid-pregnant Balb/c mouse mammary gland 

(Danielson et ah, 1984).

This study demonstrates the characterisation of the IGFBP secretion profile in relation to 

undifferentiated and differentiated HCl 1 cells and analyses the hoimonal regulation of the IGFBP- 

2 and -5 by H C ll cells by dexamethasone (D), insulin (I), and prolactin (P). hi addition, the 

mRNA profile of IGFBPs was ascertained using quantitative RT-PCR during various stages of 

murine mammary gland developments. Moreover, a study was undertaken to examine similarities 

and differences in IGFBP mRNA expression profiles between mammary gland and HCl 1 cell line.
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III.2 Results

III. 2.1 IGFBP secre tion  profile o f  HC11 cells

111.2.1.1 IGFBP-5 expression increases during HC11 differentiation

Initial analysis of the profile of IGFBP secretion by undifferentiated and differentiated 

HCl 1 cell cultui-es was performed using ligand blotting with *^^I-IGF-II and Western Blotting with 

specific antisera to IGFBP-2 and -5. Figure III.l illustrates the profile of IGFBP secretion into the 

conditioned medium of undifferentiated (U) and differentiated (D) cell cultures. Ligand blot 

analysis using radio-labelled IGF-II (^^^I-IGF-II) (Figure III.l A) indicated that an IGF binding 

species of approximately -30 kDa was expressed in both the undifferentiated and differentiated 

H C ll cell cultures. This species was only weakly present in the conditioned medium from 

undifferentiated cells, but significantly up-regulated in the differentiated H C ll cell culture 

medium. The identity of this up-regulated binding protein(s) was determined by probing Western 

blots of the conditioned culture medium from undifferentiated and differentiated H C ll cells with 

specific anti-IGFBP antibodies.

In the IGF-II ligand blot, there was no liigher molecular mass doublet (-40-50 kDa) typical 

of IGFBP-3 in H C ll cultures or a lower molecular mass IGFBP species at -24 kDa characteristic 

of IGFBP-4 (Boney et al., 1994), so we didn’t consider it likely that the IGFBP species could be 

either IGFBP-3 or -4. Therefore, we probed H C ll cell culture medium from undifferentiated and 

differentiated with an antiserum to IGFBP-5 or anti-IGFBP-2. Probing with IGFBP-5 antiserum 

revealed IGFBP-5 ( -  30kDa) to be a binding protein species that is present in the conditioned 

medium from undifferentiated cells and highly up-regulated in the medium from differentiated 

cells (Figure III. IB upper panel). Several smaller fragments were also detected on the anti-IGFBP- 

5 blot, which were not detected by IGF-II ligand blot analysis. These fragments were confirmed as 

proteolytic fragments of native full-length IGFBP-5 by Competitive Western analysis (data not 

shown). IGFBP-2 was also identified as a binding protein species present in undifferentiated 

conditioned medium and which was down-regulated during HCl 1 cell differentiation (Figure III.l
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bottom panel). It is important to note that no cross reactivity was seen between the anti-IGFBP-2 

and anti-IGFBP-5 antiserum. We were not able to determine the presence of either IGFBP-1 or -6  

in HCl 1 culture medium since we could not obtain appropriate antisera for these IGFBPs.

Iii.2.1.2 Time course of IGFBP-5 secretion

The secretion of IGFBP-5 by differentiated HCl 1 cells was also confinned in a time course 

experiment (Figure III. 2), where IGFBP-5 accumulated in differentiated and undifferentiated 

H C ll cultures over a 0-6 day time course. The secretion of fi-casein, a marker of differentiation, 

was analysed in parallel over the same period of time. Although accumulation of B-casein at day 6 

was decreased, IGFBP-5 secretion and B-casein accumulation demonstrated a similar pattern for up 

to 6  days of culture. Interestingly, there appeared to be some accumulation of IGFBP-5 by day 6  in 

undifferentiated HCl 1 cell culture as well as differentiated cell culture.
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Figure III.l IGFBP-2 and -5 are reciprocally regulated during the 

differentiation of H C ll cells. A. ^̂ Î-IGF-II ligand blot B. Western Blot analysis identifies 

IGFBP-5 was upregulated in differentiated cells. Conditioned medium from undifferentiated (U) or 

differentiated (D) HC11 cells was blotted with an antiserum specific for IGFBP-5 (upper panel) or 

specific for IGFBP-2 (lower panel). IGFBP-5 secretion is clearly upregulated during HCll cell 

differentiation. Conversely IGFBP-2 levels are higher in medium conditioned by undifferentiated 

HCl 1 cells and this IGFBP species is down regulated during HCl 1 cell differentiation.
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Figure III 2. Time course of IGFBP-5 secretion and p-casein synthesis by 

H C ll cells. Conditioned medium and HCll cell lysates derived from undifferentiated (U) or 

differentiated (D). HCll  cells were analysed for IGFBP-5 and p-casein respectively at 24 hr 

intervals over the time period 0-6 days.
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11 1.2.2 IGFBP mRNA expression  profile

III.2.2.1 In vivo expression of IGFBP mRNA in the mammary gland

The mRNA profile of IGF axis components in various stages of mouse mammary gland 

development was explored from late pregnancy, lactation and day 4 of involution using 

quantitative RT-PCR. Please note that with the quantitative RT-PCR experiments reported in this 

chapter, although the mRNA extraction was carried out by both A. Sorrell and M. Boutinaud, data 

acquisition and analyses with the Roche Lightcycler was carried out exclusively by M, Boutinaud 

and subsequently published in (Boutinaud et al., 2004). The mRNA profile of the IGFBPs diverged 

according to the developmental stages of mouse mammary gland (Figure III. 3). The expression of 

IGFBP-1 was extremely low at all stages. Although IGFBP-2 expression was relatively low at all 

stages, it showed a 3-fold increase at parturition, followed by a significant 6 -fold decline by 

lactation day 10 which persisted into involution (See details in Boutinaud et al., 2004). IGFBP-3 

was expressed at high levels at all stages and its expression was not significantly different at any 

stage examined. IGFBP-4 expression was also relatively high and showed only an involution- 

specific increase. IGFBP-5 was expressed at very low levels during late pregnancy and lactation, 

but displayed a diamatic 54-fold increase by involution day 2, before declining again 2-fbld by 

involution day 4. It is clear from Figure III. 3 that the levels of IGFBP-5 mRNA expression during 

involution were considerably higher than any other IGFBP at any of the developmental stages 

analysed. Finally, IGFBP-6  was expressed at significant levels during pregnancy, but declined 4- 

fold during lactation before increasing three-fold again between involution day 2 and 4.
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III.2.2.2 In vitro expression of IGFBP mRNA In HC11 cells

The in vitro expression of IGFBPs in HCl 1 cells was investigated as a parallel to the in 

vivo study of IGFBP expression profiles during mammary gland developmet. Using quantitative 

RT-PCR, we identified in vitro expression of IGFBP-1, -2, -3 and -5 in H C ll cells, whereas no 

mRNA was detected for IGFBP-4 and -6  (Figure III. 4). IGFBP-3 and -5 were the most highly 

expressed binding proteins in HCl 1 cells. DIP treatment of HCl 1 cells led to a decrease in IGFBP- 

2 and -3 expression and an increase in the expression of IGFBP-5. There was no significant effect 

on the expression of IGFBP-1 by DIP treatment.
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Figure III. 4 IGFBP mRNA expression profile in H C ll cells with or without

DIP.
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III.2.3 Hormonal con trol o f  IGFBP-2 and  - 5  in HC11 ce lls

The contribution of each components of the lactogenic hormones (D, I and P) responsible 

for the IGFBP secretion was assessed in order to examine whether the differentiation of HCl 1 cells 

could be dissociated from IGFBP-2 and -5 secretion. The expression levels of intracellular p-casein 

and secreted IGFBP-5 and -2 were scrutinized with various combinations of each lactogenic 

hormones (D, I and P) using western blot and radio immuno-assay (RIA).

Iil.2.3.1 Binary combinations of D, I, P permit IGFBP secretion to be 

dissociated from HC11 cell differentiation

Figure III.5 demonstrate that B-casein synthesis in H C ll cells required the complete 

lactogenic complement of hormones (DIP), since treatment with binary combinations of D, I and P 

did not stimulate B-casein synthesis (top panel). However, although the liighest levels of IGFBP-5 

were detected in HCl 1 culture medium with DIP, there was also a strong stimulation of IGFBP-5 

expression with binary combinations of hormones (middle panel). The western blot analysis of 

IGFBP-2 secretion in H C ll cell conditioned medium revealed strong expression of IGFBP-2 in 

H C ll conditioned medium treated with the binaiy combination of hormones IP, but not with the 

other binary combinations of DI or DP. Therefore, these results imply the dissociation between the 

differentiation of this cell line and the observed profile of IGFBP secretion.
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Figure III. 5 Hormonal regulation of p-casein, IGFBP-2 and -5 expression on 

H C ll by various combinations of D, I, P treatment. The HCl 1 cell lysate and conditioned 

medium were analysed by western blot with anti-p-casein antiserum and anti-IGFBP-2 or -5 

antiserum respectively. Western blots are representative of results repeated on five occasions.
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III.2.3.2 Radio-immuno assay (RIA)

IGFBP-2 and -5 secretion into HCll-conditioned medium with different combinations of 

lactogenic hoimone mixture was quantified more precisely by radio-immuno assay using radio 

labelled IGFBP-2 and -5.

The IGFBP-2 RIA result indicated that insulin had no effect on the secretion of this 

protein. Prolactin consistently stimulated the secretion of this binding protein, whereas 

dexamethasone was consistently inhibitory, especially in the presence of both I and P (Figure III. 

6A, DIP treatment). This indicates that the overall inhibitory effect of dexamethasone on the levels 

of IGFBP-2 secretion can override the stimulatory effects of prolactin. As shown in Figure III. 6B, 

the concentration of IGFBP-5 secreted from serum free H C ll cell culture medium was ~1 pg/ml 

and this increased by ~10-fold up to -10-12 pg/ml with DIP treatment. The level of IGFBP-5 

expression was stimulated when the HCl 1 cells were treated with binary combinations of D, I and 

P, which was consistent with the western blot results above. There was also a stimulatory effect of 

insulin or prolactin alone on IGFBP-5 levels. However, the IGFBP-5 secretion level was reduced 

significantly with dexamethasone treatment alone. It appeared to be that the effects of 

dexamethasone switched depending on whether it was used alone or in combination with P and/or 

I. On its own, dexamethasone inhibited IGFBP-5, whereas it augmented the effects of P and I 

when used in combination. This may mean that dexamethasone is necessary to prime the cells for 

differentiation, so that P and I are able to elicit their effects.

The most significant finding from the RIA results was the obseiwation that the levels of 

IGFBP-5 secretion in H C ll conditioned medium were three orders o f magnitude higher than the 

those for IGFBP-2 (pg/ml IGFBP-5 vs ng/ml IGFBP2). This explains why previous ligand blot 

analysis mainly reflected IGFBP-5, but not IGFBP-2 secretion (see Figure III.l).
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F igu re  III . 6 Q u an tifica tio n  o f IG F B P  expression  levels in  H C l l  conditioned  

m ed ium  by  specific R IA . A) IGFBP-2, B) IGFBP-5 RIA. Three experiments were performed 

with duplicate wells for each treatment and data are pooled as mean ± S.E.
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III.3 Discussion

This study demonstrated that differentiating H C ll cells using DIP treatment up-regulated 

their secretion of IGFBP-5 by up to 10-fold and that, during this process, IGFBP-2 secretion was 

down regulated. The increase of IGFBP-5 expression during differentiation has also been shown in 

Schwann cells (Cheng et al., 1999), mouse osteosarcoma cells (Schneider et ah, 2001), and mouse 

C2 myoblast cells, where IGFBP-5 is the only IGFBP produced by terminally differentiating cells 

(James et ah, 1993; Rotwein et ah, 1995). However, later work from the same group (James et ah,

1996) also showed that the over-expression of IGFBP-5 in transfected C2 myoblast cells led to an 

inhibition of cellular differentiation. This suggests a potential dual nature of IGFBP-5 action such 

that during the differentiation process it is upregulated, whereas at high levels, it acts as an 

inhibitor of differentiation. In agreement with this concept, it has been shown that typical 

augmentation of IGF actions takes place when IGFBP and IGF are approximately equimolar, but 

when IGFBP concentrations are in excess, IGF actions are inhibited (Ewton et ah, 1998). It appears 

that the apoptotic action of IGFBP-5 in the mammary gland in vivo is dependent upon the very high 

concentrations of binding protein that accumulate in the involuting gland (50 mg/1), which is 

several orders of magnitude greater than that of IGF-1 (Tonner et ah, 2002). In addition, although 

no proteolytic activity towards ^^^I-labelled IGFBP-2 or -5 was observed in medium conditioned by 

either undifferentiated or differentiated H C ll cells (data no shown), western blots of IGFBP-5 in 

H C ll conditioned medium clearly indicated immunoreactive IGFBP-5 fragments. It is possible 

that IGFBP-5 is proteolysed by an enzyme activity present on the surface of H C ll cells or by a 

protease(s) secreted by HCl 1 cells and which may be associated with the extracellular matrix.

Down regulation of IGFBP-2 during differentiation has been reported during the retinoic 

acid (RA)-induced differentiation of the human neuroblastoma cell line SK-N-BE(2) (Bemardini et 

ah, 1994), in the C2C12 mouse myoblast cell line (Ernst et ah, 1992) and in the human colon 

adenocarcinoma cell line CaCo-2 (Zhang et ah, 1995). Wliether the down regulation of IGFBP-2 

during the process of cell differentiation is an important mechanistic feature of this process remains 

unknown. However, analysis of IGFBP-2 levels in H C ll cell conditioned medium indicated that 

dexamethasone was inhibitory for IGFBP-2 secretion and that prolactin stimulated the secretion of
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this protein (Figure III. 5). Therefore, the down regulation of IGFBP-2 which is seen on 

differentiation of HCl 1 cell cultures appears predominantly to be a negative regulatory effect of 

dexamethasone, which is dominant over the stimulatory action of prolactin on IGFBP-2 levels.

The fact that substantial quantities of IGFBP-5 were secreted on day 6 of culture in 

undifferentiated H C ll cells (Figuie III.2) indicates that differentiation and IGFBP-5 secretion 

profiles can be disconnected. In addition, analysis of the contribution of each of the hormones D, I 

and P to the regulation of IGFBP-2 and-5 secretion (Figure III. 5 and 6) clearly showed that up- 

regulation of IGFBP-5 can be dissociated from the process of H C ll cell differentiation, as well as 

the levels of IGFBP-2 secretion. Although IGFBP-5 is upregulated during differentiation of cells 

induced by treatment with the DIP lactogenic hormone mix, binary combinations of these 

hormones also increased levels of IGFBP-5, but did not stimulate the synthesis of the 

differentiation marker p-casein. In addition, the ability of non-competent H C ll cells to up-regulate 

IGFBP-5 expression following DIP treatment and the continued up-regulation of IGFBP-5 levels in 

the concurrent presence of EGF during DIP-induced differentiation, supports the conclusion that 

IGFBP-5 regulation is dissociated from H C ll cell differentiation (Phillips et ah, 2003). It also 

appears that the secretion of IGFBP-2 is regulated by an inhibitory effect of dexamethasone and a 

stimulatory effect of prolactin and is not greatly affected by cell differentiation itself. Nonetheless, 

for both IGFBPs there is a clear dissociation between the process of cell differentiation and the 

regulation of IGFBP accumulation in conditioned medium.

HCl 1 cells have been used extensively as a model of mammary differentiation since they 

can be induced to differentiate sufficiently to express p-casein, a classical marker of mammary 

epithelial cells. However, it should be noted that they express p-casein at extremely low levels 

compared with the normal mammary gland and they do not synthesise other caseins 

characteristically present in milk. Thus they probably represent the earliest stages of differentiation, 

possibly limited by their inability to secrete caseins to any great extent. In spite of these limitations, 

they served as a useful comparison for the changes occurring between day 18 of pregnancy and day 

1 of lactation, which DIP treatment of HCl 1 cells attempts to mimic.
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The mRNA expression profile of IGFBPs was also demonstrated using quantitative RT- 

PCR to examine similarities and differences in IGFBP mRNA expression profiles between 

mammary gland and the HCl 1 cell line. Both HCl 1 cells and mammary tissue expressed very low 

levels of IGFBP-1, indicating that this binding protein does not play a major role in the mammary 

gland at tliis time. Although IGFBP-2 was expressed at similar levels in HCl 1 and mammary 

tissue, the expression profile of this IGFBP went in opposite directions during DIP treatment of 

H C ll cells and differentiation of the mammary gland. However, IGFBP-5 mRNA expression was 

increased during differentiation of HCl 1 cells, which is consistent with its up-regulation during the 

differentiation of epithelial cells that occurs in vivo during lactogenesis in the mammary gland. 

IGFBP-3 expression was the highest in both the mammary gland and HCl 1 cells and had the most 

consistent levels of expression during the different developmental stages in the gland. This 

suggests that in spite of the fact that IGFBP-3 is the major binding protein in serum, significant 

amount of IGFBP-3 was required in the mammary gland locally. In addition, in situ hybridisation 

work has shown that IGFBP-3 transcripts localise to epithelial cells in the mouse mammary gland 

(Wood et ah, 2000). However, although significant levels of IGFBP-3 mRNA were detected in 

HCl 1 cells by quantitative RT-PCR, secretion of IGFBP-3 protein from either undifferentiated or 

differentiated HCl 1 cells was undetectable (data not shown). There is the possibility that IGFBP-3 

is regulated at the level of translation in HCl 1 cells or that the protein is subject to proteolysis, but 

clearly this remains an important area for investigation. Interestingly, the mouse mammary 

epithelial cell line (COMMA-D/MME) has been shown to secrete IGFBP-3 (Skaar and 

Baumrucker, 1993).

In contrast to IGFBP-3, IGFBP-5 expression appealed to be highly regulated during 

mammary gland development. In situ hybridisation analysis has also shown IGFBP-5 transcripts 

are localised to epithelial cells in mouse and rat mammary glands (Rosato et ah, 2002; Tonner et ah, 

1997; Wood et ah, 2000). IGFBP-5 mRNA expression was significantly increased (54-fold) 

between day 10 of lactation and day 2 o f involution and at least an order of magnitude greater 

expression level than any of the other IGFBPs in the other developmental stages (Figure III. 3). 

This verifies the previous finding of high concentrations of IGFBP-5 in the mammaiy gland during
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involution in the rat (Tonner et al., 1997), and demonstrates that this up-regulation of IGFBP-5 

operates at either the level of transcriptional control or message stability. IGFBP-5 mRNA 

expression during differentiation of H C ll cells by DIP treatment was in agieement with western 

blot data for IGFBP-5 protein levels. Although IGFBP-5 may act to inhibit the survival effects of 

IGFs, it is important to recognise that IGFBP-5 may also induce cell death in an IGF-independent 

manner. This is supported by recent work from others, where the ability of IGFBP-5 to inhibit the 

growth of human breast cancer cells both in vitro and in vivo was shown to be via an IGF- 

independent effect of the binding protein (Butt et ah, 2003). H C ll cells did not express IGFBP-4 

or -6, whilst both were expressed in mammary tissue, suggesting the stroma as the main source.

In conclusion, we have demonstrated that the IGFBP profile in the mouse mammary 

epithelial HCl 1 cell line is independent of the state of cellular differentiation. Whether HCl 1 cells 

up-regulate IGFBP-5 secretion under conditions of apoptosis as well as during cellular 

differentiation in this in vitro model, is the subject of further investigation. As IGFBP-5 expression 

has been shown to be influenced in HCl 1 cells by DIP treatment, we concluded that this provides 

an extremely useful model in which to study the potential molecular signals responsible for the 

induction of IGFBP-5 expression in the involuting mammary gland (See Chapter IV). It is also 

clearly of interest to detennine whether IGFBP-5 is directly apoptotic on mammary epithelial cells 

in vitro as it appears to be in vivo (Tonner et al., 2000a; Tonner et al., 2002).
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Chapter IV. Regulation of IGFBP-5 in HC11 cells 

IV. 1 Introduction

Our laboratory has been studying IGFBP-5, a 252-ainino acid protein that is the most 

conserved of the six IGFBPs (James et ah, 1993). The sequence and exon-intron structure of the 

IGFBP5 gene is highly conserved in human, mouse and rat. It consists of four exons and is located 

adjacent to IGFBP-2 on chromosome I in mice (Kou et ah, 1994a; Kou et ah, 1994b) and on 

chromosome II in humans (Allander et ah, 1994). The first intron, which encompasses more than 

50% of the gene, is several kilobases in length. The promoter region has a simple structure, with a 

37-bp segment of the proximal sequence almost completely conserved in the rat and human genes, 

and which has been shown to control basal transcription (Allander et ah, 1994; Zhu et ah, 1993). 

Conserved TATAA and CAAT consensus sequences are present upstream of the transcription start 

in human (Allander et ah, 1994), mouse (Kou et ah, 1995) and rat (Zhu et ah, 1993).

H C ll cells have been used extensively as a model of mammaiy differentiation. We have 

carried out an in vitro study in these cells that parallels our previous in vivo study of IGFBP-5 

(Tonner et ah, 2002). H C ll cells undergo proliferation and differentiation similar to that observed 

in vivo during mammary gland development and can be induced to differentiate and express (3- 

casein by treatment with dexamethasone, insulin and prolactin (DIP) (Ball et ah, 1988a; Ball et ah, 

1988b). As discussed in Chapter III, we have demonstrated that DIP treatment of H C ll cells 

increased IGFBP-5 protein expression levels by up to 10-fold (Phillips et al., 2003). More recently 

we have shown that these increases in IGFBP-5 protein levels also correlated with a significant 

increase in the level of IGFBP-5 messenger RJSTA in HCl 1 cells treated with DIP (Boutinaud et ah, 

2004). Therefore, for analysis of promoter function we chose the H C ll cell line, as this could 

provide an in vitro system where IGFBP-5 expression could be quickly up-regulated.

The aim of this study is to investigate the regulation of IGFBP-5 expression in HCl 1 cells. 

To investigate the regulation of IGFBP-5 thi'ough in vitro models, we have used transient gene
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transfer studies. We used a IGFBP-5 promoter deletion series linked to the luciferase gene for the 

transfection of undifferentiated and differentiated HCl 1 cells.

IV.2 Results 

IV.2.1 Com parison o f  transfection  reagen ts

Gene reporter systems play an important role in the study of gene expression and 

regulation. Lipid-mediated transfection reagents can be used for simple and reproducible delivery 

of foreign DNA into mammalian cells and surpass other types of transfection reagents because they 

are easy to use, gentle to cells and provide consistent reproducible results (Ausubel et al,, 1995). 

However, among cell types, lipid-mediated transfection reagents can differ in transfection 

efficiency and proper dosage. Moreover, the amount of transfection reagent that can be used is 

limited by cytotoxic effects of either the lipid or the expressed plasmid protein. Therefore, the first 

step to achieving high transfection efficiencies was to choose the regents and to optimise the 

combination of lipid and DNA for the HCl 1 cell line.

hi this initial experiment, to find the most efficient transfection reagent and to optimise 

condition for transfection into the HCl 1 cells, the efficacy of the various transfection reagents were 

compared using the pGL3-Control vector plasmid (Promega), which contained the SV40 promoter, 

enhancer and the fire fly luciferase gene as a reporter. Tfx (Promega), SuperFect (Quiagen), 

GeneJuice (Novagen) and FuGENE 6 (Roche Applied Science) were chosen to test transfection 

efficiency in H C ll cells. Cells were harvested 48 houi's post-transfection and measured for 

transient expression of the luciferase reporter gene present in the pGL3-Control vector using the 

luciferase assay system (Promega).

As shown in Figure IV. 1, in general, the higher DNA concentration that was used, the 

more luciferase activity was produced and the greater the amount of transfection reagent tolerated 

by the cell line, the higher the transfection efficiency was achieved. The H C ll cell line seemed 

tolerant to GeneJuice and FuGene transfection reagents as detennined by the measurement of the
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luciferase activity for the various volumes used. For the highest amount (6 pi) of FuGene 

transfection reagent, the luciferase activity was nearly constant with the increasing amounts of 

DNA. Although a 2:1 ratio o f lipid to 1 pg of DNA using GeneJuice had the largest luciferase 

activity, it also had the greatest variability (see error bars). However, the GeneJuice reagent with 1 

pg of plasmid and a 3:1 ratio of GeneJuice/well cleaiiy outperformed other transfection conditions.

In summary, our comparison of transfection reagents clearly demonstrated that GeneJuice 

was the most efficient in the transfection of HCl 1 cells. Therefore, we chose to use GeneJuice for 

our further experiments. The optimal DNA concentration added to the cells was 1 pg per each well 

with 3 pi of GeneJuice Reagent.
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IV. 2.2 IGFBPS upregulation

IV.2.2.1 IGFBPS promoter-luciferase gene constructs

Mouse IGFBP-5 promoter — luciferase reporter constructs: IGFBP5-Luc2, 3, 4 and 5 were 

kindly provided from Peter Rotwein (Oregon Health & Sciences University, USA). The structure 

of the IGFBP-5 promoter deletion series linked to the luciferase reporter gene is shown in Figure 

IV.2. Briefly, these contain different fragments of the mouse IGFBP-5 5 ’ flanking DNA ranging 

from -3000 to -156 at the 5’ end: Luc2 extends to the BamHI site (-3000), Luc3 to EcoRI (-1406), 

Luc4 to PstI (-1004) and Luc5 to StuI (-156), with all constructs containing the same 3' end point 

at + 120 bp in exon 1. All of the series have been blunt end cloned into the blunted Hindlll site of 

the pGL2-basic vector (Promega) (Kou et ah, 1994a). To confirm each construct, restriction 

enzyme analysis was performed and all the constructs were sequenced by MWG BioTech.
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IV.2.2.2 IGFBP-5 luciferase reporter constructs are inducible by DIP 

treatment

The results described above in Chapter III indicate that IGFBP-5 protein and mRNA levels 

increase during H C ll cell differentiation using DIP treatment, and western blots (Phillips et ah, 

2003) and quantitative PGR results (Boutinaud et ah, 2004) confirming this have been published 

previously. Accordingly, we next sought to identify the promoter regions mediating this effect. To 

investigate hormonal induction of IGFBP-5, we transfected four different promoter deletion 

constructs (IGFBP5-Luc2, 3, 4 and 5, see Figure IV.2) into H C ll cells in the presence or absence 

of DIP (Figure IV.3).

Interestingly, luciferase activities from H C ll cells transfected with all constructs in the 

presence of DIP were clearly significantly higher than those in non-treated cells (Figure IV.3). This 

demonstrated that all foui-deletion series constructs containing between 3000 bp of 5’-flanking 

region and 120 bp of IGFBP-5 gene were inducible by DIP treatment. However we found the 

strongest activity was with the IGFBP5-Luc4 construct, a fusion plasmid containing 1004 base 

pairs of 5’flanking DNA and the initial 120 nucleotides of exon 1, in both undifferentiated (without 

DIP) and differentiated (with DIP) H C ll cells. The luciferase activity directed by IGFBP5-Luc4 

was stimulated 105-fold with DIP treatment (Figure IV.4). In contrast, the luciferase activity of the 

largest construct, IGFBP5-Luc2 (containing 3000 bp of 5’-flanking region and 120 bp of exon 1 of 

the IGFBP-5 gene) was the lowest in the presence and absence of DIP, demonstrating 

approximately a 20-fold induction upon DIP treatment.

Therefore, the deletion of 1594 bp of 5’-flanking DNA going from IGFBP-Luc2 to 

IGFBP5-Luc3 resulted in an increase in the fold-induction of luciferase activity upon DIP 

treatment from 20 to 28-fold, and a further 402 bp deletion to produce IGFBP5-Luc4 produced the 

optimum 105-fold induction. Furthermore, an additional deletion of 848 bp of 5’ sequence to 

IGFBP5-Luc5 led to a marked decrease in promoter function, demonstrating only a 30-fold 

induction upon DIP treatment.
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Figure IV.3 Analysis of promoter activity of the mouse IGFBP-5 promoter- 

luciferase deletion series constructs after transfection into H C ll cells in the presence 

and absence of DIP. H C ll cells were transiently transfected with 1 |xg of IGFBP-5 promoter 

deletion series construct per each well after 2 days of incubation with Insulin and EGF. On the 

same day of transfection, cells were cultured either with or without DIP. Cells were harvested 48 hr 

after transfection and transfection efficiencies were normalised determining the relative 

transfection efficiencies by filter hybridisation with ^^P-labelled pGL3-basic vector. Results are 

means ± S.E.M. of triplicate using duplicate preparations of plasmid DNA. The result is 

representative of studies which were conducted on at least 5 occasions.
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Figure IV.4 Fold Induction of Luciferase activity by DIP Treatment. The fold 

induction by DIP treatment was calculated by dividing the 48 hr post-transfection luciferase 

activities from the HCl 1 cells in the presence of DIP by the activities from transfected cells in the 

absence of DIP.
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IV.2.2.3 Luciferase activity comparison: pGL2- vs pGL3- control 

vector vs IGFBP5-Luc4 construct

To this point, we had used the pGL3-control vector as an efficiency of transfection and 

luciferase activity control for each transfection. Since the pGL3-control vector has its own very 

powerful promoter and enhancer, we were never able to achieve the same high levels of luciferase 

activity with IGFBP-5 promoter series. However, the pGL3-vector series is also a much more 

advanced vector system than the pGL2-vector, in which the IGFBP-5 promoter series was 

originally cloned. The backbone of the pGL2 Luciferase Reporter Vectors was re-designed for the 

pGL3 Vectors for increased expression, and contains a modified coding region for firefly {Photinus 

pyralis) luciferase that has been optimised for monitoring transcriptional activity in transfected 

eukaryotic cells. These changes were made to increase sensitivity of the Luciferase Assay System, 

facilitate the use of the vectors, and reduce unanticipated interactions between the plasmid 

backbone and cellular factors. Modifications include the substitution of C-tenninal amino acids 

which results in cytoplasmic localization of luciferase and increased signal in the Luciferase Assay 

System (See detail in Promega pGL3 Luciferase Assay System). Thus, initially we decided to 

compare the luciferase activity between pGL2- and pGL3- control vectors (Figure IV.5). IGFBP5- 

Luc4 construct, which has the highest luciferase activity among the IGFBP-5 promoter deletion 

series, was also included in this experiment. We transfected pGL2-, pGL3-control vector and 

IGFBP5-Luc4 constructs into H C ll cells using the same protocol for transfection and DIP 

treatment as was used for the IGFBP-5 promoter described above. The luciferase activity from the 

cells transiently transfected with pGL3-control vector was considerably higher than that of both the 

pGL2-control vector or IGFBP5-Luc4 (although we note that the luciferase activity from IGFBP5- 

Luc4 in the pGL-2 basic vector plasmid had a similar or even greater activity than that from the 

pGL2-control vector). Therefore, in order to optimise our transfection-luciferase studies further, 

we decided that it was worthwhile to sub-clone the IGFBP-5 promoter series into the pGL3-basic 

vector.
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Figure IV.5 Luciferase activity comparison between pGL-2, pGL-3 Control 

vectors and IGFBP5-Luc4. H C l l  cells were transiently transfected with 1 pg of pGL2-, 

pGL3- control vector (Promega) and IGFBP5-Luc4 construct. Transfections were 

performed in the presence of DIP. Cells were harvested 48 hr after transfection and 

assayed for luciferase activity. Data were normalised against the amount of plasmid DNA  

taken up by the cells. Result is mean ± S.E.M. of triplicate. The y-axis is in logarithmic 

scale.



111

IV.2.2.4 Subcloning into pGL3-basic vector

To subclone all of the IGFBP-5 promoter deletion series into the pGL3-basic vector, 

IGFBP5-Luc2, 3, 4 and 5 constructs in pGL2-basic vector were initially digested with Xhol and 

Narl restriction enzymes. The resulting Xhol and Narl fragments were then cloned into the same 

sites in the pGL3-basic vector (Promega) as described in Materials and Methods. To confirm the 

constructs in pGL3-basic vector were correct, enzyme analyses were performed.

IV.2.2.5 IGFBP-5 promoter-pGL3 activity analysis in HC11 cells

The IGFBP-5 promoter deletion series construets, now cloned in the pGL3-basic luciferase 

reporter vector were transiently transfected into the H C ll cell line as described above. In the 

literature and from the studies with the IGFBP-5 promoter deletion series in the pGL2 vector above 

(Figure IV.4), there was again very little luciferase activation with the smallest construct, IGFBP5- 

Luc5 (Figure IV.6). A previous study using Hep G2 cells has shown that transfection of IGFBP5- 

Luc4 stimulated the highest level of luciferase activity (Kou et al., 1995), and our results in H C ll 

cells would agree with that. This activity went back down again with the larger members of the 

promoter series, IGFBP5-Luc3 and IGFBP5-Luc2.

Therefore, the pattern of luciferase activity for the IGFBP-5 promoter deletion series in 

either pGL-2 or pGL-3 plasmids was largely the same. Overall, this would imply that there is a 

transcriptional activation site/s between positions -1004 to -156 in the IGFBP-5 promoter to 

account for the difference between IGFBP-Luc4 and IGFBP-Lue5 and furthermore, downstream 

repressor elements between -3000 to -1004 bp to explain the activities in IGFBP-Luc2 and 

IGFBP-Luc 3 being lower than IGFBP-Luc4.
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Figure IV.6 Identification of luciferase activity in the IGFBP-5 promoter 

deletion series in the pGL-3 vector following DIP treatment of H C ll cells. HCll  cells 

were transiently transfected with 1 pg of deletion series of IGFBP-5 promoter-luciferase reporter 

gene construct. Cells were harvested 48 hr after transfection and transfection efficiencies 

determined by filter hybridisation with ^^P-labelled pGL3-basic vector. Transfections were 

performed in the presence of DIP. Results are means ± S.E.M. of triplicate experiments using 

duplicate preparations of plasmid DNA. The result is representative of studies conducted on three

occasions.
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IV.2.3 Specification  o f  R eguiatory S ite /s  P osition /s

IV.2.3.1 Construction of Luc4B/Luc4(Xhol)

In an attempt to localise the regulatory elements in the IGFBP-5 promoter responsible for 

the effects reported above, we decided to modify the IGFBP-5 promoter deletion series by making 

further deletions. We knew that the enhancer element responsible for the high activity of IGFBP5- 

Luc4 must lie between positions -1004 and -156 bp, so we set out to make a new deletion 

construct derived from IGFBP5-Luc4 (named IGFBP5-Luc4B), in which this region would 

essentially be halved. The structure of the new constiucts and the strategy for making them is 

shown in Figure IV.7. To create IGFBP5-Luc4B, site-directed mutagenesis was performed at 

position -556 on the IGFBP5-Luc4 construct using the QuickChange Site-directed system 

(Stratagene) as described in chapter II. This mutagenesis introduced a unique Xhol restriction 

enzyme site, and the intermediate construct containing this mutation was named IGFBP5- 

Luc4(XhoI). Restriction enzyme analysis confirmed the presence of the new Xhol site in the 

IGFBP5-Luc4(XhoI) constmct (Figure IV.8A).

Following this, 448 bp of sequence was deleted from the 5’ end of IGFBP5-Luc4(XhoI) by 

simply digesting with Xhol, purifying the upper plasmid band and re-ligating the Xhol site in the 

promoter to the unique Xhol site in the polylinker sequence of the plasmid. This generated 

IGFBP5-Luc4B, which now ends at position -556 bp of 5’-flanking region of IGFBP-5 promoter. 

This was confirmed by a Sad  restriction digest of IGFBP5-Luc4, IGFBP5-Luc4(XhoI) and 

IGFBP5-Luc4B, which clearly shows the smaller size of promoter region in IGFBP-Luc4B 

(Figure IV.8B).
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Figure IV.8 Restriction enzyme analyses of mutant IGFBP5-Luc4(XhoI) and 

Luc4B constructs in pGL3-basic vector. A. Xhol digests of IGFBP5-Luc4, IGFBP5- 

Luc4(XhoI) constructs. B. Sad. digests of IGFBP5-Luc4, IGFBP5-Luc4(XhoI) and Luc4B 

constructs. M represents DNA size markers (l-HindlH and (|)%174).
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IV.2.3.2 Response of lGFBP5-Luc4(Xhol) and IGFBP5-Luc4B in 

HC11 cells in the presence of DIP

The results of multiple transfection experiments are shown in Figure IV.9. The highest 

luciferase activity was found with IGFBP5-Luc4. Interestingly, we found that there was a 35% 

reduction in luciferase activity with IGFBP5-Luc4B relative to IGFBP5-Luc4, which immediately 

tells us that some enliancing activity must reside within the 448bp between positions -1004 and 

-156 in the IGFBP-5 promoter. However, the activity of IGFBP5-Luc4B was still higher than 

IGFBP5-Luc5, indicating that there must be multiple enhancer sites between positions -1004 and 

-156 and residing on either side of position -556.

More unexpectedly, we also found that there was a 22% reduction in activity with the 

IGFBP5“Luc4(XhoI) construct relative to IGFBP5-Luc4 (Figure IV.9). It is possible that the 

substitution of three base pairs at position -556 in IGFBP5-Luc4(XhoI) (ggg to etc; see Figure 

rV.l 1) has interrupted an important transcriptional binding site. Therefore, we decided to search for 

candidate transcriptional binding sites at this location using the Matlnspector Programme 

(Genomatix, Munich, Germany).
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Figure IV.9 Promoter deletion analysis of the IGFBP-5 gene. Luciferase activity 

was determined after transfection, as described in Materials and Methods. Data represent the mean 

of five to eight experiments, each in duplicate experiments using duplicate or triplicate plasmid 

DNA preparations ± standard error of the mean. Each experiment was normalised for relative 

transfection efficiencies by filter hybridisation with ^^P-labelled pGL3-basic vector and also against 

the luciferase activity of pGL3-control vector.
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IV.2.3.3 Potential regulatory elements at position -556 within the 

IGFBP5 promoter

Computer analysis using the Matlnspector programme of the primer which created the 

Xhol site in the IGFBP5-Luc4(XhoI) indicated four potential transcriptional sites, shown in Figure 

IV. 10. These were sites for Hox-1.3 (a vertebrate homeobox gene), a GC box element known as 

SPIF, a zinc finger transcriptional factor (ZBP-89) and the MYC-associated zinc finger protein 

related transcriptional factor. However, our substitutions only hit the “core” base pairs (most highly 

conserved, shown in upper case in Figure IV. 10) in the sites for the GC box and ZBP-89 which 

appears to play an important role in intestinal cell proliferation, differentiation, and oncogenesis 

through p53 (Bai et ah, 2004; Chen et ah, 2003; Merchant et ah, 1996; Remington et ah, 1997). 

Tliis transcriptional factor could act as either an activator or repressor depending upon the target 

promoter, for examples, it represses vimentin (Yamagishi et ah, 1994) whereas activates the STAT- 

1 (Bai and Merchant, 2003). Therefore, if ZBP-89 is one of the transcriptional factor interrupted by 

mutant, it would act as an activator of IGFBP-5 promoter and induce differentiation and aoptosis.
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IV.3 Discussion

In this study using transient gene transfer methods, we have carried out an initial analysis 

of the activity of the mouse IGFBP-5 gene promoter from positions -156 to -3000 in differentiated 

(DIP treated) HCl 1 cells.

We employed a series of IGFBP-5 promoter deletion constructs spanning +120 bp of exon 

1 to -3000 bp from the 5’ flanking region of the mouse IGFBP-5 gene upstream of the luciferase 

reporter gene. H C ll cells were chosen as they undergo differentiation upon treatment with the 

lactogenic hormone mixture dexamethasone, insulin and prolactin (DIP) and we have previously 

shown that this is associated with a significant increase in the levels of both IGFBP-5 protein 

(Phillips et ah, 2003) and mRNA (Boutinaud et ah, 2004).

The IGFBP5~Luc2 construct, which has the largest amount of promoter sequence (-3000 to 

+120 bp), had the lowest luciferase activity compared the other shorter promoter constructs in both 

differentiated and undifferentiated HCl 1 cells. This result agrees well with the work of others (Kou 

et ah, 1995), where they had shown a pattern of 58% activity for IGFBP-Luc2, 74% for IGFBP5- 

Luc3, 100% for IGFBP-Luc4 and 61% for IGFBP-Luc5 in human, primary liver cancer cell line. 

Hep G2. As with tliis previous study, we found that the strongest activity was with the IGFBP5- 

Luc4 construct in both undifferentiated and differentiated HCl 1 cells. The similarity of the pattern 

of activity between the different constructs in either the mammary epithelial cell line HCl 1 or the 

human primary liver cancer cell line Hep G2, suggests that the same transcriptional regulatory 

elements are active in both cell types and perhaps that these are used to control IGFBP-5 

expression in a wide variety of cell and tissue types. Moreover, the pattern of activity across the 

deletion series allows us to deduce where either inhibitory or enhancing regulatory elements must 

lie. Our work would imply that there is a repressor element/s in IGFBP5-Luc3 (-1406 to -1004), 

which when deleted in IGFBP5-Luc4 results in an increase in activity, whereas there is an enhancer 

element/s in IGFBP5-Luc4 (between -1004 and -156), which is lost when this region is deleted m 

IGFBP-Luc5, thereby resulting in the vastly reduced activity seen with this latter construct.
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In an attempt to narrow down the region containing the novel enhancer sequence/s, we 

introduced an Xhol site at position -556 and subsequently deleted -1004 to -556 of the 5 ’ flanking 

region to create the IGFBP-Luc4B construct. This new construct had a lower activity than the 

original IGFBP-Luc4, but had a considerably higher activity than IGFBP-Luc5. This strongly 

suggests that there are multiple enhancer sequences between positions -1004 to -156 in the 

IGFBP-5 promoter, and that some of these must reside on either side of position -556. To our 

surprise, when we included the intermediate construct IGFBP5-Luc4(XhoI) in these experiments, 

we found that it too had a lower activity than IGFBP-Luc4 in differentiated H C ll cells. The only 

explanation that we can offer for this result is that we may have inadvertently intenupted a 

regulatoiy transcriptional binding site when we made our 3 base pair substitutions in IGFBP- 

Luc4(XhoI). In the light of this, we decided to search for candidate transcriptional binding sites at 

this location using the Matlnspector Programme and this suggested four potential transcriptional 

sites for Hox-1.3, a GC box element known as SPIF, the zinc finger transcriptional factor (ZBP- 

89) and the MYC-associated zinc finger protein related transcriptional factor. None of these 

transcriptional factors have previously been shown to regulate the expression of IGFBP-5. In order 

to address whether they do have a regulatory role for IGFBP-5, fiiture experiments could initially 

be carried out to mutate the critical base pahs in these sites and then look at the effects of this on 

luciferase activity in differentiated H C ll cells. If this were to suggest a strong candidate 

transcription factor, more long-term studies including DNase 1 Footprinting and Gel Shift studies 

could be carried out to confirm this.

To date all of the regulatory sites in the IGFBP-5 promoter, which have been shown to be 

active, have fallen with in the first 71 bp downstream of the transcriptional start site and 70% of 

promoter activity was shown to reside in this region in FIepG2 cells (Kou et ah, 1995) (see 

Introduction). The important sites identified in this proximal region include an active AP-2 binding 

site (Duan and Clemmons, 1995) and a functional E-box (Ji et ah, 1999) which controls the 

regulation of IGFBP-5 by the bone morphogenetic protein, BMP-7 (Hutt et ah, 2000). The results 

presented in this chapter are important, because they demonstrate for the first time that there are 

other important regulatory elements further downstream in the IGFBP-5 promoter, which are active
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in a mammary epithelial cell line and, therefore, by inference, may be active in the mammary gland 

in vivo. Future work merits identifying these important, as yet unknown, transcription factors.
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Chapter V. Functional studies of iGFBP-5 in HC11 

ceils: Effects of iGFBP-5 on piasmin generation

V.1 Introduction

Our group has previously demonstrated that IGFBP-5 production by mammary epithelial 

cells increases dramatically during involution of the mammary gland in rodents (Tonner et ah, 

1997). More recently, as discussed earlier in Chapter III, using quantitative PCR, we have shown 

that these increases in IGFBP-5 protein level also correlated with a significant increase in the level 

of IGFBP-5 messenger RNA (25-fold) in involuting mammary gland (Boutinaud et ah, 2004). 

However, this association of IGFBP-5 and apoptosis is not found in mammaiy gland alone. 

IGFBP-5 expression has also been implicated in cell death of the prostate, thyroid gland and in 

ovarian follicles undergoing atresia (Guenette and Tenniswood, 1994; Liu et ah, 1993b; Phillips et 

ah, 1994). A causal relationship between IGFBP-5 synthesis and apoptosis in the mammary gland 

has been addressed in several studies on the effects of IGFBP-5 given exogenously in vitro to 

murine mammary epithelial cells in culture (Marshman et ah, 2003) and in vivo to mice during late 

pregnancy (Allan et ah, 2002) as well as in a transgenic model examining the effects of over

expression of IGFBP-5 using a mammary-specific promoter (Tonner et ah, 2002). In vivo 

administration of recombinant IGFBP-5 protein in late pregnancy in the mouse resulted in impaired 

mammary development and reduced invasion of the mammary fat pad (Allan et ah, 2002). At 

parturition, in IGFBP-5 transgenic mice, there were increased concentrations of the pro-apoptotic 

molecule, caspase-3, whereas the concentration of pro-survival, Bcl-2 and Bcl-xL, were 

significantly reduced. DNA content in the mammary gland of transgenic mice was decreased as 

early as day 10 of pregnancy. In lactation, both mammary gland cell number and milk synthesis 

were significantly decreased (Tonner et ah, 2002). Intriguingly these mice also exliibited increased 

concentrations of piasmin in their mammary glands. These findings suggested that a major role of 

IGFBP-5 in the mammary gland in vivo is to promote apoptosis of mammary epithelial cells
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Typically, augmentation of IGF actions takes place when IGFBP and IGF are 

approximately equimolar, hut when IGFBP concentrations are in excess, IGF actions are inliibited 

(Ewton et ah, 1998). Oui' group was able to show that during involution of the mammary gland, 

IGFBP-5 retained its high affinity for IGF-I and concentrations in milk were in excess of 50 mg/1, 

which is several orders of magnitude greater than that of IGF-I. These findings strongly suggested 

that the increased IGFBP-5 secretion during mammary involution was acting to inhibit IGF actions 

and thereby induce cell death. Oui' group has proposed that IGFBP-5 is able to prevent the action of 

IGF-I possibly by sequestering IGFs to the ECM so that the cell survival factors IGF-I and -II 

caimot trigger cell-signalling pathways, thereby allowing the cells to undergo apoptosis (See Figure 

I. 9) (Flint et al., 2003; Flint et al., 2000; Tonner et al., 2002).

Recent studies have suggested that the effects of IGFBP-3 and -5 can be both IGF- 

dependent and IGF-independent and that interactions with particular ECM components might 

influence these responses (Perks et ah, 2002a; Perks et ah, 2002b). Various observations led us to 

consider whether the extremely high concentrations of IGFBP-5 in milk from involuting mammary 

glands were present solely to inhibit IGF actions or whether they were also involved in additional, 

perhaps IGF-independent actions (Flint et al., 2000).

Involution of the mammary gland includes extensive degradation of the ECM and involves 

extracellular proteases including the plasminogen (Pgen) system and matrix metalloproteinases 

(MMPs), which are involved in degrading the ECM in the later stages of tissue remodelling (Lund 

et ah, 1996). This process is initiated by the activation of plasminogen by tissue plasminogen 

activator (tPA) and urokinase plasminogen activator (uPA) to form piasmin (Heegaard et ah, 

1997b). Piasmin plays an important role in cleaving a number of pro-enzymes, MMPs, such as 

prostromelysins and procollagenases, and thereby initiates the degradation of the ECM at the end 

of lactation when extensive tissue remodelling occurs (Matrisian, 1990). High piasmin activity has 

been observed in the mammary gland of IGFBP-5 transgenic mouse (Tomier et ah, 2002).

IGFBP-5 and PAI-1 are both present in ECM. Both proteins have been shown to bind to 

one another through the 201-218 region of C-tenninus of IGFBP-5 and to influence IGF-mediated
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cell responses (Nam et al., 1997). We were interested in examining whether IGFBP-5 is also 

involved (in an IGF-independent fashion) in the regulation of tissue remodelling via a direct 

influence upon the plasminogen system. Our group has also identified a specific interaction of 

IGFBP-5 with alpha s2-casein (ass-casein) (Tonner et al., 2000a). This milk protein has also been 

shown to bind plasminogen and its activator, tPA (Heegaard et ah, 1997b) and the physical 

apposition of these molecules suggests that IGFBP-5 may directly influence aspects of 

plasminogen activation. We postulated that this binding may inhibit the action of PAI-1, which 

would, in turn influence the activation of plasminogen and the consequent breakdown of the ECM 

that takes place during tissue remodelling. Therefore, the purpose of these studies was to examine 

the effects of IGFBP-5 as well as IGFBP-5 mutants, which are unable to bind to IGF-I or heparin, 

on piasmin generation in HCl 1 cells.

V.2 Results

V.2.1 Effects o f  IGFBP-5 on p lasm inogen  activation

Plasminogen, PAI-1, and recombinant IGFBP-5 were added to the cultures of HC-11 cells 

in serum-free conditions and after 24-48 hours of incubation, cultures were assayed for piasmin 

activity and fixed and stained with Crystal violet (See Chapter II Materials and methods).

Histological results are shown in Figure V. 1. Panel A shows a confluent monolayer of 

H C ll cells. Addition of plasminogen alone to H C ll cells resulted in cell migration and ultimately 

apoptosis of the cells indicating the conversion of plasminogen (Pgen) to piasmin by plasminogen 

activator (PA) produced by the cells (Figure V. IB). These plasmin(ogen)-induced effects were 

prevented by PAI-1, as the cells remained attached to their substratum (Figure V. 1C). However, 

the addition of IGFBP-5, to cultures containmg PAI-1 and plasminogen again induced cell 

migi'ation and ECM remodelling, indicative of the generation of piasmin (Figure V. ID). In 

contrast, the empty vector (EV) control (eluate recovered from GST-affmity purification of crude 

lysates from bacteria containing empty pGEX 6P-1 protein expression vector), failed to influence 

the actions of PAI-1 (Figure V. IE).
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That these effects due to piasmin generation was confirmed by measuring piasmin activity 

(Figure V. 2). First, as a control, in the absence of plasminogen there was no piasmin activity. 

Flowever if plasminogen was added into H C ll cultures, piasmin activity increased rapidly. With 

addition of PAI-1 to the plasminogen mixture, piasmin formation was indeed inhibited. Finally 

when IGFBP-5 was added to the mixture of plasminogen and PAI-1, it was able to reverse the 

effects of PAI-1 and resulted in increased piasmin generation, although the activity did not reach 

the level of piasmin activity achieved with plasminogen alone. This was, in part, because piasmin 

generation by IGFBP-5 needed some time to start up. After 36 hours of treatment, piasmin activity 

in the presence of IGFBP-5 eventually reached that of the plasminogen treatment (data not shown). 

Proteins expressed from the empty vector in bacteria were used as a control and failed to influence 

piasmin generation. In conclusion, IGFBP-5 was able to inhibit the action of PAI-1 on H C ll cells. 

Therefore, IGFBP-5 might be important as a co-ordinator of cell death and remodelling of ECM.
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Figure V. 2 Piasmin generation in H C ll cells treated with Pgen, PAI-1 and 

IGFBP-5. After 24 hours culture with various combinations of Pgen (4 pM), PAI-1 (800 ng/ml), 

IGFBP-5 (50 |ig/ml) and pGEX-6Pl (EV) (50 pg/ml) under serum-free condition, 50 pi of media 

was collected and mixed with 125 pi of 50 mM Tris. HCl/0.1% Tween 20 pH 7.4 and 25 pi of 

6mM VLL-pNA. The reaction mixture was dispensed into 96 wells multiplate and reading was 

taken at A405 at 15 minutes interval over 4 hours. A representative experiment is shown. Addition 

of plasminogen led to rapid generation of piasmin. Addition of PAI-1 with plasminogen completely 

prevented this. Addition of plasminogen, PAI-1 and IGFBP-5 led to increased piasmin generation. 

Addition of PAI-1 plus proteins from the empty vector control failed to generate piasmin. Finally, 

there was no endogenous generation of piasmin in the absence of exogenous plasminogen. This 

experiment was performed on at least 5 occasions for each treatment.
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V.2.2 Effects o f  IGFBP-5 m utan ts on p lasm in  activation

This study was performed to compare the effects of wild-type (w^) IGFBP-5 and a mutant 

(mt) IGFBP-5 (non IGF-I binder, N-TeiTu) and another that had been shown to bind poorly to 

heparin (Flep-). A mutant IGFBP-5 which had greatly reduced affinity for IGF-I (N-Term) was as 

effective as wt IGFBP-5 protein in terms of cell remodelling (Figure V. 3E),. A mutant HEP-, 

which had a greatly reduced affinity for heparin, showed only a small decrease in potency when 

compared wt IGFBP-5. Similar observations were made for C-tenn E and C-term F, two additional 

non-heparin binding mutants (results not shown).These findings were mirrored by changes in 

plasmin generation in the medium (Figure V. 4). This result indicated that the effect of IGFBP-5 on 

PAI-1 action is completely unrelated to its ability to bind to IGFs (IGF-independent function of 

IGFBP-5) or heparin. Biosensor analysis demonstrated that wt IGFBP-5 bound to PAI-1 with a Kd 

of approximately 100 nM (Figure V. 5a). However, the non-heparin binding mutant, C-term E, had 

a greatly reduced affinity for PAI-1 (Figure. 5b) whereas N-tenn had a similar affinity to wt 

IGFBP-5 (Figure 5c). Given that C-term E had little affinity for PAI-1 it seemed unlikely that it 

could antagonise the effects of PAI-1 by a direct molecular interaction. We therefore examined 

these effects of IGFBP-5 on tPA, uPA and PAI-1 activities in cell-free studies (Biosensor analysis 

was perfoimed by Dr. James Beatties and submitted in Sorrell et al.).
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Figure V. 4 Plasmin generation in H C ll cells treated with mixture of Pgen, 

PAI-1 and either wt or mt IGFBP-5. After 24 hours culture with various combination of Pgen 

(4 uM), PAI-1 (800 ng/ml), and IGFBP-5 (50 pg/ml) or N-term mt IGFBP-5 (50 pg/ml). Hep- mt 

IGFBP-5 (50 |ig/ml) under serum-free condition, 50ul of media was collected and mixed with 

125ul of Tris HCl/0.1% Tween 20 pH 7.4 and 25ul of 6mM VLL. The reaction mixture was 

dispensed into 96 wells multiplate and reading was taken at A405 at 15 minutes interval over 4 

hours. Plasmin activity was measured by OD change per hour. Plasmin generation was inhibited by 

PAI-1 but increased if wt IGFBP-5, N-term mt IGFBP-5 or HEP- mt IGFBP-5 were also added to 

the medium. Results represent mean plasmin activities from 3 culture wells. The result is 

representative of studies which were conducted on 4 occasions.
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Figure V. 5 Biosensor analysis of interactions of PAI-1 with IGFBP-5. Individual 

sensorgrams for wt IGFBP-5 (a), C-term E (b) and N-Term (c) binding to human PAI-I ligand, 

which was covalently captured, by amine coupling chemistry, to the carboxy-methyl surface of a 

CM5 biosensor chip. RU = resonance units.
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V.2.3 Effects oflGFBP-5 on tPA/uPA

There are two different plasminogen activators, the urokinase-type (uPA) and tissue-type 

(tPA), which enhance the conversion of plasminogen to plasmin. We have identified a specific 

interaction of IGFBP-5 with alpha s2-casein (asz-casein) (Tonner et al., 2000b). This milk protein 

has also been shown to bind plasminogen and one of its activators, tPA (Heegaard et ah, 1997a). 

IGFBP-5 was also present in the micellar fraction of milk which contains most of the casein. This 

study was carried out to investigate the relationship between IGFBP-5 and uPA or tPA. HCl 1 cells 

are known to express PA, thus we used a cell-free system in wliich we could control the amount 

PA, Initially, we examined the effect of tPA and uPA alone on plasmin generation.

As shown in Figure V. 6A, tPA and uPA alone acted upon plasminogen to generate 

plasmin. If PAI-1 was added to tPA/uPA and plasminogen mixture, plasmin production was 

inhibited in a dose dependent manner. Wlien IGFBP-5 was added into the tPA/PAI-1 mixture, we 

showed that IGFBP-5 was able to inhibit the effect of PAI-1 in a dose-dependent fashion. However, 

at a lower dose of PAI-1, IGFFBP-5 not only inhibited the effect of PAI-I but actually increased 

plasmin production to levels even greater than with tPA alone. Furthermore, when IGFBP-5 was 

incubated with uPA plus PAI-1, IGFBP-5 failed to inhibit the action of PAI-1 (Figure V. 6B). 

These results suggested that IGFBP-5 was acting, not by inhibiting PAI-1, but by enhancing the 

activity of tPA but not uPA. We therefore tested the effect of IGFBP-5 on uPA or tPA plus 

plasminogen in the absence of PAI-1. This confirmed our conclusion, since IGFBP-5 enhanced the 

effect of tPA on plasminogen in a dose-dependent fashion (Figure V. 7A) whereas plasmin 

generation by uPA was not enhanced by IGFBP-5 (Figure V. 7B). BSA was used as a control and 

showed no ability to enhance tPA or uPA activity.
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Figure V. 6 Effect of tPA (A)/uPA (B) and IGFBP-5 on plasmin generation.

A. tPA 200 ng/ml was incubated with 10 pi of 6mM VLL-pNA, 10 pi of 2mM 

Plasminogen, PAI-1 (High): 1000 ng/ml, PAI-1 (Medium): 500 ng/ml, PAI-1 (Low): 250 

ng/ml, with or without IGFBP-5 (25 pg/ml) in Tris HCl, 0.1% Tween 20, pH 7.4 in a 

total volume of 140 pi. Plasmin Activity was measured at A405 at 15 minutes inteiwal 

for 4 hours. Then plasmin activity was assessed by OD change per hour. Results are 

means of triplicate wells and are representative of results obtained in 3 independent 

experiments.

B. up A 115 ng/ml was incubated with 10 pi of 6mM VLL-pNA, 10 pi of 2mM 

Plasminogen, PAI-1 (H): 1000 ng/ml, PAI-1 (M): 500 ng/ml, PAI-1 (L): 250 ng/ml, with 

or without IGFBP-5 (25 pg/ml) in Tris HCl, 0.1% Tween 20, pH 7.4 in a total volume 

of 140 pi. Plasmin Activity was measured at A405 at 15 minutes interval for 4 hours. 

Then plasmin activity was assessed by OD change per hour. Results are means of 

triplicate wells and are representative of results obtained in 3 independent experiments.



139

A .

SQ 0.2

tPA + BSAtPA + IGFBP-5
alone

(L) (M) (H) (L) (M) (H)

B .
0.3 -I

E cIf)
O  0.2 H

i
0

1  0.1

s
Q .

0.0
uPA
alone

uPA + IGFBP-5

(L) (M) (H)

uPA + BSA

(L) (M) (H)



140

Figure V. 7 Effects of IGFBP-5 and tPA(A)/uPA(B) on plasmin generation.

A. tPA 50 ng/ml was incubated with 10 pi of 6mM VLL, 10 pi of 2 mM Plasminogen, 

without or with IGFBP-5(L): 12.5 pg/ml, IGFBP-5(M) 25 pg/ml, IGFBP-5(H) 50 

pg/ml or BSA(control) at the same concentrations, in Tris HCl 0.1% Tween 20, pH 7.4 

in a total volume of 140 ul. Plasmin activity was determined as OD change per hour. 

Plasmin Activity was measured at A405 at 15 minutes interval for 4 hours. Then 

plasmin activity was assessed by OD change per hour.

B. uPA 138 ng/ml was incubated with 10 pi of 6 mM VLL, 10 pi of 2 mM Plasminogen, 

without or with IGFBP-5(L): 12.5 pg/ml, IGFBP-5(M) 25 pg/ml, IGFBP-5(H) 50 

pg/ml or BSA(control) at the same concentrations, in Tris HCl 0.1% Tween 20, pH 7.4 

in a total volume of 140 pi. Plasmin activity was determined as OD change per hour, 

Plasmin Activity was measured at A405 at 15 minutes interval for 4 hours. Then 

plasmin activity was assessed by OD change per hour.
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V.2.4 Effects o f  purified IGFBP-5 on plasm in generation

Although the IGFBP-5 proteins purified by glutatliione-sepharose were relatively pure, we 

did note, in some preparations, the presence of impurities (Figure V. 8A). Western blotting with an 

anti-IGFBP-5 polyclonal antibody revealed many of the smaller molecular weight impurities to be 

fragments of IGFBP-5 (data not shown). However, concerned that these impurities might also 

include protease contamination (either of bacterial origin or the PreScission protease used to cleave 

off the GST tag) we further purified IGFBP-5, on an IGF-affmity column (Figure V.8B). This 

produced IGFBP-5 devoid o f fragments, as well as a mixture of lower molecular weight proteins 

generated from the flow-through (unbound fraction) from the IGF-affinity column. These 

preparations were investigated for their ability to enliance plasmin generation. Serum-starved HCl 1 

cells were incubated with IGFBP-5 purified from the glutathione column, IGFBP-5 (IGF-affinity 

purified) or contaminating proteins not bound by the IGF column, together with PAI-1 and 

plasminogen for 24-48 hours. As shown in Figure V. 9, plasmin activation by glutathione-purified 

IGFBP-5 once again resulted in cell death. IGFBP-5 purified by IGF-affinity chromatography also 

induced cell death although the effect was less dramatic. However, fragments from the IGF-affinity 

purification procedure also had considerable activity (Figure V. 9). This was also evident from the 

determination of plasmin activation, where quantitative analyses were possible. These suggested 

that compared with the glutathione-purified material, purified IGFBP-5 had about 25 % of the 

activity and the fragments about 50 % of the activity. The fragments thus possessed about twice the 

activity of affinity-purified IGFBP-5 on a weight basis although this would clearly be less on a 

molar basis (Figure V. 10).

To further assess potential artefacts, we first examined the possibility that PreScission 

Protease was contaminating the glutathione-purified preparation and cleaving the substrate instead 

of plasmin. However, two experiments ruled out this possibility. Firstly, the activity of PreScission 

Protease was extremely low in the plasmin assay. Thus, even if the preparation had been 

contaminated with 100 % of the PreScission protease used this would still only have explained 10- 

20 % of the activity of the glutathione-purified IGFBP-5 (Figure V. 11). Secondly, the glutathione- 

purified IGFBP-5 preparation was passed through the glutathione-sepharose column for a second
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time to remove any residual PreScission protease. Tins resulted in a 20 % loss of plasmin 

generation activity but tins was also evident in samples wliich were incubated with unmodified 

sepharose or were simply diluted and incubated for the same periods time, presumably reflecting 

non-specific losses of IGFBP-5. Thus the increased plasmin activity could not be explained by 

contamination with PreScission Protease. Likewise, the low activity of empty vector preparations 

indicated that this was not some form of bacterial protease contaminating the preparations (Figure 

IV. 12).
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Figure V. 8: A. Purification of IGFBP-5 expressed as a GST-fusion protein in

E. coli. Bacterial cells were harvested and lysed (original). Insoluble material (I/S) was removed 

by centrifugation, then the supernatant (Sol) was filtered through a 0.45-pm pore size membrane 

and incubated overnight at 4 °C with 1 ml (packed volume) washed glutathione-Sepharose. The 

suspension was decanted into a disposable plastic column and unbound material allowed to flow 

through (F/T), then the glutathione-Sepharose was washed with 10 ml PBS (Wl). The column was 

sealed, and the glutathione-Sepharose was resuspended in 2 ml cleavage buffer containing 160 U 

PreScission protease. After 4 hour at room temperature with hourly resuspension, the column was 

reopened, and the cleaved IGFBP-5 was recovered in the eluate (E/L). Samples were resolved on 

NuPAGE 10 % Bis.Tris gel. The eluted material (E/L) contained a major band at the appropriate 

molecular wieght for mtact IGFBP-5 (indicated by arrowhead) along with smaller molecular wt 

fragments and some high molecular wt contaminants. B. IGF-affinity purification. Samples were 

resolved on NuPAGE 12 % Bis.Tris gel. Subsequent purification of this material (GST) on an IGF- 

I affinity column produced an unbound fraction (F/T) containing contaminating proteins and a 

bound fraction which was eluted (w^BP5) and contained essentially pure intact IGFBP-5.
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Figure V. 10 Enhancement of tPA activity by IGFBP-5 purified by glutathione 

sepharose, IGFBP-5 further purified by IGF-affinity chromatography or low 

molecular weight contaminants. Results are means of triplicate wells.



9

o
T

CM 00 cq CM o

s =

O
CD
0_
0_

4

o  o  o  o  
(ÂiiAuoB u j iu s e id )  90frQ O

+

i l
CL t 
+ 1

(0
ss

g: 8:

H



a

If)

O

£  I

>

PL

a  pL,



150

120

100

EM
3Q.
2

Start GST-column Sepharose dilution EV

Figure V. 12 tPA activation potency of C-term F IGFBP-5/Empty vector (EV).

The glutathione-purified IGFBP-5 C-term F mt IGFBP-5, non heparin binding mutant, (start) 

preparation was passed through the glutathione-sepharose column (GST-column) for a second time 

to remove any residual PreScission protease or incubated with unmodified sepharose (Sepharose) 

or simply diluted with buffer (dilution) for the same periods of time. Relative tPA activtion was 

measured by plasmin activation against start material.
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V.2.5 Purification o f  fragm ents

Plasmin activation was compared between GST-purified, IGF affinity purified and wt 

IGFBP-5 purified by Reverse Phase-High Performance Liquid Chromatography (RP-HPLC) 

(Figure V. 13). Plasmin activation from all IGFBP-5 preparations increased in a dose-dependent 

manner. GST-purified IGFBP-5 had greater plasmin activity than either IGF-purified or RP-HPLC 

purified intact IGFBP-5. However, IGF-affinity purified and RP-HPLC purified IGFBP-5 had 

almost identical plasmin activity. Intact IGFBP-5 from either IGF-affinity purification or RP- 

HPLC purification had approximately 50% of the activity of GST-purified IGFBP-5 and we 

therefore concluded that the rest of activity was present in the fragments of IGFBP-5.

Figure V. 14A shows the RP-HPLC elution profiles of the GST-purified recombinant C- 

term E IGFBP-5 mutant. Most of the intact IGFBP-5 was present in fractions 35-37 (Figure V. 

14B). We then investigated the plasmin activation on each fraction. Figure V. 15 shows the 

plasmin activity of each fraction. Fraction 43 had the greatest plasmin activity among the fractions, 

even greater than GST-purified IGFBP-5, whereas all other fractions had less activity than GST- 

purified material. Fraction 43 had twice as much activity as GST-purified IGFBP-5, whereas intact 

IGFBP-5 had half the activity of GST-purified IGFBP-5. SDS-PAGE analysis showed the 

candidate proteins, potentially responsible for enhancing tPA activity (Figure V.16). However, 

fraction 43 had at least 7 distinct bands.

___



a

I

d
CO
d a CM

d

C/D
o□

.S'

I
5

I
I

I
a
u01
I
ÉO
B3
’ox;

I
3
CL

£

1 1 
W Bi I 
^  t

(j M/QO)M!A!;ob  ujUJSBid

3

£

e
M
m

Ü

i
oL
QC
uo

t
&

CL

I
£
■S



153

2581651

E 193623 -  c
o
N
Ç)
g  129082 -

a

I< 64541-

0 5 10 15 20 2 5 35 40 45 50 5530 6 0

Time (min)

Figure V. 14A RP-HPLC chromatogram of GST-purified C-term E IGFBP-5 mutant.
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Figure V. 14B SDS-PAGE analysis of RP-HPLC fractions. Intact C-term EIGFBP-5 is 

indicated with an arrow.
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Figure V. 15 Plasmin activity in various fractions derived from RP-HPLC.

Plasmin activity from each fraction of RP-HPLC procedure. Relative activity was measured against 

GST-affinity purified C-term E IGFBP-5. Intact IGFBP-5 was collected from fraction 35 to 37. No 

plasmin activity was present in the other fractions (31-35, 45, 46).
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Figure V. 16 Further SDS-PAGE analysis of RP-HPLC-purified C-term E 

IGFBP-5 mutant. Samples were resolved on NuPAGE 12 % Bis.Tris gel and coomassie blue 

stained. Each lane has equal quantity of protein. (1 pg/lane).
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V.3 Discussion

Our group has previously shown a large increase in the production of IGFBP-5 by the 

mammary gland during involution and proposed that IGFBP-5 exerts an apoptotic effect by 

abolishing the survival effects of IGF-I (Tonner et al., 1997). The theory that IGFBP-5 is involved 

in apoptosis of the mammary gland during involution has been supported by more recent studies, 

involving transgenic animals expressing IGFBP-5 in the mammary gland (Tonner et al., 2002) as 

well as exogenous treatment with IGFBP-5 both in vivo (Allan et ah, 2002) and in vitro (Marsliman 

et ah, 2003). The IGFBP-5 over-expressing transgenic mouse model also exlhbited increased 

generation of plasmin in the mammary gland and, since a specific interaction between IGFBP-5 

and PAI-1 had been described (Nam et ah, 1997) we examined whether IGFBP-5 could activate the 

plasmin system by binding to and influencing the actions of PAI-I. Utilising an epithelial cell line, 

H C ll, we were able to show plasmin generation directly by determination of its activity in the 

conditioned medium. We also demonstrated that PAI-I could effectively inhibit plasmin generation 

in this system and that IGFBP-5 could prevent these effects of PAI-1. This clearly suggested that 

the physical interaction of IGFBP-5 with PAI-1 described by (Nam et ah, 1997), seiwed to inliibit 

the actions of PAI-1.

Furthermore we showed that an IGFBP-5 mutant, which was unable to bind to IGF-I was 

also able to overcome the effects of PAI-1. Therefore, this effect was IGF-independent. In addition, 

mutants which had poor binding to heparin showed inhibitory effects on PAJ-I. This was somewhat 

surprising given that PAI-1 has been described to interact with IGFBP-5 via its heparin-binding 

domain (amino acids 201-218) (Nam et ah, 1997). Our group has examined IGFBP-5 interactions 

with PAI-1 using Biosensor analysis and showed that IGFBP-5 did bind to PAI-1 whereas a mutant 

(C-term B) which bound heparin veiy weakly, showed greatly compromised binding to PAI-1 (See 

Figure V. 5), supporting the earlier finding of Clemmons and co-workers (Nam et ah, 1997). It was 

thus puzzling that a mutant with limited ability to bind to PAI-1 could nevertheless prevent its 

effects on plasmin generation. However we were able to show that IGFBP-5 activated plasminogen 

independently of PAI-1, presumably specifically enhancing the activity of tPA directly, since it was 

unable to influence the effects of uPA and had no intrinsic plasminogen-cleaving activity itself.



157

Tills also implies that the interaction of IGFBP-5 with tPA lies outwlth the basic residues of the 

heparin binding domain of IGFBP-5 and presumably outwith the major IGF-binding residues 

(G203, Q209) present in the N-terminus of IGFBP-5, since N-term was able to enhance tPA 

activity to a similar extent as wt IGFBP-5. However direct binding of tPA and IGFBP-5 remains to 

be confirmed by Biosensor analysis.

Although we have excluded the possibility that these effects originated from any 

contamination of either PreScission Protease or bacterial protease (see Figure V. 10 and 11), 

fragments from the IGF-affinity purification also induced cell death. Furthermore, the fragments 

possessed about twice the activity of IGF-affinity purified IGFBP-5 on a weight basis. We also 

showed that intact IGFBP-5 from either IGF-affinity purification or RP-HPLC purification had 

approximately 30 % of the activity of GST-affinity purified IGFBP-5 and therefore concluded that 

the remainder of activity comes from fragments of IGFBP-5. These fragments were shown to be 

IGFBP-5 related protein, since we could identify them with IGFBP-5 western blotting, since the 

GST tag is attached to the N-terminus, any fragments purified on the glutathione column would be 

anticipated to be c-terminally tmncated. Therefore we could argue that the N-terminal region of 

IGFBP-5 is important for plasmin activation, although the IGF-I binding site has shown to be not 

important for this activation. Therefore tliis led us to investigate the origin of the plasmin activation 

effect. I examined the plasmin activation of each fraction and discovered that fr action 43 had twice 

as much activity as GST-purified IGFBP-5, whereas intact IGFBP-5 had half the activity of GST- 

purified IGFBP-5. Therefore it is possible that the effect of IGFBP-5 on the plasmin system also 

originates from fragments in this fraction. However, SDS-PAGE analysis showed the fraction 

potentially responsible for enhancing tPA activity had at least 7 distinct bands (Figure IV. 15). 

Time did not permit me to pursue this preliminary data any further and all that can be concluded is 

that there appear to be fragments with similar activity to intact IGFBP-5 on a molar basis and 

identification of such molecules might provide a useful therapeutic agent.

Intriguingly, our group has shown that IGFBP-5 binds to casein micelles and interacts 

exclusively with as2-casein on ligand blots (Tonner et al., 2000b). It has been proposed that casein 

micelles thus provide a matrix for plasmin generation in milk and that this seiwes to prevent
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formation of casein (milk) clotting. Although IGFBP-5 may play a role in maintaining potency of 

mammary ducts, the PA content of rodent mammary gland is also correlated with involution and 

thus plasminogen activation is also considered to be involved in the later stages of tissue 

remodelling (Ossowski et ah, 1979). In rodents an increase in PA production and a decrease in 

PAI-1 activity are correlated with the destmction of the basement membrane and loss of the 

secretory cells during mammary gland involution (Busso et ah, 1989; Ossowski et ah, 1979; 

Talhouk et ah, 1992). Thus IGFBP-5 plays a dual role in mammary gland remodelling during the 

involutionary process. Firstly, it sequesters IGF-I and induces cell death and secondly it activates 

tPA and thus induces the proteolytic cascades, including activation of MMPs, involved in the 

second stage of tissue remodelling in the mammary gland. In summary, we were unable to show 

any direct effect of IGFBP-5 on PAI-1 activity in IGF-independent way. Rather, the ability of 

IGFBP-5 to counteract the effects of PAI-1 appeared to be indirect, due to activation of tPA but not 

uPA. This does not rule out the possibility that IGFBP-5 can influence other actions of PAI-1 such 

as its ability to modulate cell migiation involving a plasmin-independent process (Andreasen et ah, 

2000; Imai et ah, 2000).
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Chapter VI. General discussion

The primary aim of this study was to establish an in vitro cellulai' model that was relevant 

to the adult mammary gland and which could be used to test the regulation of IGFBP-5 expression 

and the function of the binding protein on cell death/survival and tissue remodelling.

We selected the mouse mammary epithelial cell line, H C ll, which has been used 

extensively as a model of mammary differentiation. We have already noted that, although these 

cells can be induced to differentiate sufficiently to express p-casein, they express this at extremely 

low levels and do not express other caseins, and are, therefore, probably representative of the 

earliest stages of differentiation. Nevertheless, we considered H C ll cells to provide a useful 

comparison for the changes occumng between day 18 of pregnancy and day 1 of lactation, which 

DIP treatment attempts to mimic. Initially, it was veiy important to characterise the expression of 

the IGFBP profiles in these cells as this had not been done previously. Our main findings were that 

differentiating H C ll cells using DIP treatment up-regulated their secretion of IGFBP-5 protein by 

up to 10-fold and that, during this process, IGFBP-2 secretion was down-regulated. Although we 

were not able to identify a proteolytic activity towards IGFBP-5 or -2 in medium conditioned by 

either undifferentiated or differentiated HCl 1 cells, we did observe IGFBP-5 fragments on Western 

blots of H C ll conditioned medium, possibly suggesting that any proteolytic activity was ECM or 

cell surface associated.

However, despite considerable evidence from the literature that changes in the expression 

of both IGFBP-5 and -2 are associated with differentiation in a wide variety of cell types, with the 

former being up-regulated and the latter down-regulated, our more detailed analysis of the 

individual or pair-wise effects of the hormones D, I or P on the expression of these two genes 

clearly indicates that both IGFBP-5 and -2 expression can be dissociated from H C ll cell 

differentiation. For example, pair-wise combinations of D, I or P could induce IGFBP-5 expression 

without having any effect on p-casein levels, whereas dexamethasone alone was inhibitory for 

IGFBP-2 secretion, while prolactin actually stimulated the secretion of this protein. Furthermore,
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the fact that substantial quantities of IGFBP-5 were secreted on day 6 of culture in undifferentiated 

H C ll cells further indicates that differentiation and IGFBP-5 secretion profiles can be 

disconnected. Although we have elearly demonstrated that the IGFBP-5 expression profile in HCl 1 

cells is independent of the state of cellular differentiation, we are still veiy interested to know 

whether these cells up-regulate IGFBP-5 secretion under conditions o f apoptosis and this is the 

subject of further investigation within our group.

We have also addressed the important question as to whether the epithelial H C ll cells 

provide an accurate model for the different developmental stages in the adult mammary gland with 

respect to the mRNA expression pattern of other members of the IGF axis. Our group has carried 

out extensive quantitative RT-PCR analyses to examine this and our findings are presented earlier 

in this thesis and in (Boutinaud et al., 2004). In general, we found parallels and differences between 

our in vitro studies and those occumng in vivo. In agieement were the low levels of expression of 

IGF-1, IGF-II and IGFBP-1 in both systems, which is to be expected, as the IGFs are derived from 

the mammaiy stroma and IGFBP-1 has not been shown to be expressed in either the stroma or 

epithelium of the gland. Also in agreement was the moderate level of expression of IGFBP-2 in 

both H C ll cells and mammary tissue, whereas IGFBP-3 and -5 were expressed at orders of 

magnitude liigher in HCl 1 cells than that in the differentiating mammary gland. However, the most 

intriguing differences were that the expression profile of IGFBP-2 went in opposite directions 

during DIP treatment of H C ll cells and differentiation of the mammary gland and that although 

mRNA for IGFBP-4 and -6 was undetectable in HCl 1 cells, there were significant levels of both 

during involution of the gland and during late pregnancy for IGFBP-6. As a consequence, we 

believe that the differential regulation of IGFBP-2 between H C ll cells and the mammary gland 

and the site of expression of IGFBP-4 and -6 in the gland are important areas for future 

investigation. Based on the above we considered HCl 1 cells to be a useful in vitro model for some, 

but not all, of the components of the IGF axis.

An example where HCl 1 cells could prove to be an extremely good in vitro model for the 

induction of IGFBP-5 expression observed in the involuting mammaiy gland, is the significant up-
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regulation of IGFBP-5 expression that occurs upon DIP treatment of these cells. We hoped that this 

would allow us to potentially identify the important transcriptional regulators responsible for an 

induction of IGFBP-5 gene expression in mammary epithelial cells. We employed transient 

transfection of HCl 1 cells with a series of IGFBP-5 promoter deletion constructs spamiing +120 bp 

of exon 1 to -3000 bp from the 5’ flanking region of the mouse IGFBP-5 gene upstream of the 

luciferase reporter gene. Our initial experiments agree veiy well with those of others in Hep G2 

cells, where the construct with the largest stretch of promoter sequence had the lowest luciferase 

activity, while the region spanning positions -1004 to -156 resulted in the greatest activity. This 

suggests that the same transcriptional regulatory elements could be active in both HCl 1 and Hep 

G2 cells, and may even be used to control IGFBP-5 expression in a wide variety of cell and tissue 

types.

The studies presented in my thesis have shown that there is an enhancer element(s) 

between positions -1004 to -156 in the IGFBP-5 promoter that results in significant induction of 

gene expression in H C ll cells. In an attempt to identify the region containing tills novel 

enhancer(s), we used site-directed mutagenesis and restriction enzyme digestion to reduce the 

region under examination to positions -556 to -156. This produced a complex result, which can 

best be explained by multiple regulatoiy elements lying on either side of the -556 position. 

However, we were most surprised to discover that mutagenesis alone, without subsequent deletion, 

also resulted in a lower luciferase activity in our assays. The only explanation that we can offer for 

this result is that we may have inadvertently interrupted a regulatoiy transcriptional binding site 

when we made our base pair substitutions and a computer search of this site identified potential 

transcriptional sites for Hox-1.3, a GC box factor known as SPIF, the zinc finger transcriptional 

factor (ZBP-89) and the MYC-associated zinc finger protein related transcriptional factor. 

However, none of these transcriptional factors have previously been shown to regulate the 

expression of IGFBP-5.

Irrespective o f whether the above four transcription factors aie involved in IGFBP-5 

regulation or not, these findings are very significant, because, to date, all of the active regulatory
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sites in the IGFBP-5 promoter have fallen within the first 71 bp downstream of the transcriptional 

start site (described in detail in Chapter I). This means that we have shown that there is a region 

much further downstream in the IGFBP-5 promoter, which contains a completely novel regulatoiy 

element(s) for directing IGFBP-5 expression in H C ll cells, and which may, therefore, by 

inference, may be active in the mammaiy gland in vivo. We believe that this finding strongly merits 

further investigation.

Finally, with respect to in vitro functional studies of IGFBP-5, we were able to examine 

the role of IGFBP-5 in modulation of plasmin generation. Our interest in a possible role for 

IGFBP-5 in plasmin generation came from publications arising several laboratories undertaking 

research in this area. Firstly, our own group had demonstrated that plasmin generation was 

increased in the mammary glands of transgenic mice over-expressing IGFBP-5. Coupled with the 

fact that we had shown that IGFBP-5 binds to as2-casein whilst others had shown that this milk 

protein also binds tPA and plasminogen, the evidence became even more compelling. Finally, the 

obseiwations of Clemmons group in the US, which identified a physical interaction between 

IGFBP-5 and PAI-1, provided us with the stimulus to pursue the biological relevance of this 

interaction. Given that IGFBP-5 increased plasmin generation, we began with the hypothesis that, 

if IGFBP-5 binds to PAI-1 then it seiwes to inhibit PAI-1 activity.

We took advantage o f our in vitro culture of HCl 1 cells because they made sufficient 

concentrations of endogenous plasminogen activators to induce major morphological changes in 

overnight cultures and they were able to generate significant amounts of plasmin, capable of being 

used in a quantitative, biological assay for PAI-1. These studies quickly established that IGFBP-5 

could indeed prevent the effects of PAI-1 and thereby induce increased plasmin generation in vitro. 

However, our simple hypothesis appeared to be not so simple when we demonstrated that a mutant 

form of IGFBP-5, which did not bind to heparin, was still biologically active in preventing the 

effects of PAI-1. This was unexpected since PAI-1 has been described as interacting with IGFBP-5 

through its heparin-binding domain. Indeed, using Biosensor analysis we were able to show that 

whilst wt IGFBP-5 bound to PAI-1 the mutant which did not bind to heparin also did not bind to 

PAI-1. We therefore had to identify an alternative explanation for our results and were able to
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conclude, and demonstrate, that IGFBP-5 was actually enliancing the effect of tPA but not uPA. 

tPA is classically associated with generation of plasmin in solution whereas uPA, bound to the uPA 

receptor, is involved with generation of plasmin at the surface of cells. tPA is thus considered an 

important protease activator in biological fluids such as blood and is indeed used as a “clot-buster”. 

Our data therefore suggests that IGFBP-5 may play a role in modulating the important process of 

blood coagulation and this effect is thus worthy of future studies in systems of relevance to 

cardiovascular biology.
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