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“If living in a world using Maths as language, I want to be a rock star.”



Abstract
Living organs in human bodies continuously interact with the in vivo bio-environment, while

reshaping and rearranging their constituents, responding to external or internal stimuli through

life cycles. For instance, living tissues adjust the growth (or turnover) rates of their constituents

to develop (volumetric and mass) changes as the tissues adapt to the pathological or physi-

ological changes in bio-environment. From the perspective of biomechanics, changes in the

bio-environment will induce the growth and remodelling (G&R) process and reset the mechan-

ical environment. Consequently, the mechanical cues will feed back to G&R processes. In the

long run, the interaction between G&R and the mechanical response of living organs plays an

important role in regulating the organ formulation or pathological growth.

To understand the interaction between the mechanical response and the G&R process, an im-

portant ingredient in evaluating the involved mechanics is knowledge of the solid mechanical

properties of the soft tissues. Residual stress, resulting from G&R of soft tissues, is important in

modelling the mechanics of soft tissues, which still presents a modelling challenge for includ-

ing residual stress in cardiovascular applications. For G&R of living organs, changes of tissue

structure and volume are also important determinants for organ development. This raises aca-

demic challenges for the understanding of the evolution of material properties and mechanical

response of living tissues within a dynamic environment.

To investigate the stress states (residual strain or residual stress) of living organs, the experi-

mental results showed that the arterial slices would spring open after cutting along the radial

directions, which indicates the residual strain in organs estimated by the opening angle [23].

The residual strain, which is the elastic strain between zero-stress and no-load states, indicates

the existence of residual stress after removal of the external loads. The residual stress is consid-

ered to modulate the growth and remodelling process in living organs. The evolution of residual

stress could relieve the information about the history of growth, which could help to better the

understanding of the formation of organs and the development of diseases.

Besides the residual stress, G&R processes are regulated by other factors, while the principles

governing those mechanism are still not fully understood. Obviously, improving knowledge in

this particular field will give huge potential for the design and optimization of clinical treatments

to efficiently save more lives.

From a general mechanics perspective to investigate the G&R process in living tissues, the ques-

tions are: How does the residual stress influence the fibre remodelling and the material properties

of entire organs? How to determine the combined effects of growth (in the stressed configura-

tion) and remodelling on the fibre structure? How to develop a framework for investigating

G&R processes occurring in the stressed configuration?



For arteries, multiple layer models are developed to analytically study residual stress in living

organs. For the heart, due to its complex structure and geometry, most previous studies used the

unloaded configuration or one-cut configuration as the stress-free configuration to estimate the

stress state. However, both experimental and theoretical studies have suggested that: 1) residual

stress will significantly influence the stress distribution in the heart. 2) a simple (or single)

cut does not release all the residual stress in the heart. We build a multi-cut model and show

that multiple cuts are required to release the residual stresses in the left ventricle. Our results

show that with the 2-cut and 4-cut models (one radial cut followed by circumferential cuts),

agreement with the measured opening angles and radii can be greatly improved. This suggests

that a multi-cut model should be used to predict the residual stresses in the left ventricle, at least

in the middle wall region. We further show that tissue heterogeneity plays a significant role in

the model results, and that an inhomogeneous model with combined radial and circumferential

cuts should be used to estimate the correct order of magnitude of the residual stress in the heart.

Understanding the healing and remodelling processes induced by myocardial infarction (MI)

of the heart is important and the mechanical properties of the myocardium post-MI can be in-

dicative for effective treatments aimed at avoiding eventual heart failure. MI remodelling is a

multiscale feedback process between the mechanical loading and cellular adaptation. In this

thesis, we use an agent-based model to describe collagen remodelling by fibroblasts regulated

by chemical and mechanical cues after acute MI, and upscale into a finite element (FE) 3D left

ventricular model. This enables us to study the scar healing (collagen deposition, degradation

and reorientation) of a rat heart post-MI. Our results, in terms of collagen accumulation and

alignment, compare well to published experimental data. In addition, we show that different

shapes of the MI region can affect the collagen remodelling, and in particular, the mechanical

cue plays an important role in the healing process.

For volumetric growth, recently, when the idea of growth is applied to study the evolution of

organ formations, it’s usually assumed that growth always occurs in the natural (reference) con-

figuration. In some researches, it is assumed that the growth could release all the residual stress,

and that further growth will start from the updated but stress-free configuration. However, liv-

ing organs are actually exposed to external loading all the time, while the growth should occur

from the residually-stressed current configuration. In this thesis, A theoretical framework is de-

veloped to calculate the mechanical behaviour of soft tissue after introducing inhomogeneous

growth in a residually-stressed current configuration, which avoids assuming that the growth oc-

curs in a ‘virtual’ reference configuration. Moreover, the theoretical framework is introduced to

couple the growth and fibre remodelling process to describe the mechanical behaviour of living

tissues.
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Chapter 1

Introduction

Living organs in human bodies continuously interact with in vivo bio-environment, while reshap-

ing and rearranging their constituents under chemical, mechanical or genetic stimuli through

their life cycles. During mature periods, these processes remain in a stable and homeostatic

state. However, changes of internal or external bio-environments will disrupt the balance, and

tissues will grow and remodel in response to an insult. For example, heart diseases will stimulate

the local healing process for myocardium remodelling. Besides, physiologically, exercise may

induce healthy and reversible growth and remodelling. After adjusting the growth (or turnover)

rates of constituents for living organs, they will develop volumetric and mass tissue changes to

adapt to the pathological or physiological changes in their bio-environment. From the perspec-

tive of biomechanics, changes in the bio-environment will induce the growth and remodelling

(G&R) process, which change the material properties of living organ by changing tissue struc-

ture. Then, the mechanical environment will be reset. Consequently, the mechanical cues will

feed back to the G&R processes. In the long run, the interaction between G&R and mechan-

ical response of living organs plays an important role in regulating the organ formulation or

pathological growth.

Therefore, to understand the interaction between the mechanical response and the G&R pro-

cess, an important ingredient in evaluating the involved mechanics is knowledge of the solid

mechanical properties of the soft tissues. Residual stress, resulting from G&R of soft tissues,

is important in modelling the mechanics of soft tissues, since the stress state in the reference

configuration has a substantial effect on the subsequent response to external loads, as illustrated

by the application of nonlinear elasticity theory. Thus, an appropriately estimated residual stress

at particular time instants could provide useful information about the growth history of living

tissues. However, how best to include the important effect of residual stress in cardiovascular

applications presents a modelling challenge.

1
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For G&R of living organs, changes of tissue structure and volume are important determinants

for organ development. This raises academic challenges for the understanding of the evolution

of material properties and mechanical response of living tissues within an dynamic environment.

For instance, the fibre structure in heart myocardium is remodelled by fibroblast migration, since

individual fibres are deposited and rotated by fibroblasts. To investigate the biomechanical re-

sponse of a organ during remodelling, complex multiple-scale calculations will be involved.

Besides, since remodelling is influenced by different environment cues (like chemical or me-

chanical cues), multi-physics calculations are also involved.

In this thesis, we focus on three new developments of soft tissue modelling. Firstly, a multiple

cut model is developed to estimate residual stress in the heart, which helps to explain recent ex-

periments on residual stress. Secondly, a multiscale three-dimensional heart model is developed

for simulating the remodelling process after heart infarction. This model captures the interaction

and information exchange processes between the mechanical behaviour and the collagen tissue

remodelling guided by bio-environmental cues. Finally, a volumetric growth approach is devel-

oped for simulating the inhomogeneous growth in residually-stressed current configurations of

living tissues.

1.1 Residual Stress and Opening-cut Method

To estimate the stress state in organs, traditionally, one of the fundamental ideas is to assume

the existence of a (stress-free) reference configuration [57], which coincides with the unloaded

configuration. However, according to experimental observation [23], the unloaded configuration

is not stress free, but is residually stressed. Obviously, residual stress affects the subsequent

mechanical response of the tissues to external loads. Therefore, it is of importance to estimate

the residual stress state in tissues. The residual stress can be estimated using the so-called

opening angle method [23], in which an opening angle indicative of the extent of the residual

strain can be measured after a single radial cut on intact arterial ring (fig. 1.1). Using the open-

angle configuration as the reference configuration, the residual stress of a cylindrical artery

model can be estimated [77]. This methodology has been extended to multiple cuts by Taber

and Humphrey [78], and used in the two-layered arterial models by Holzapfel et al. [34].

Residual stress in the reference configuration is important in modelling the mechanics of soft

tissues when using nonlinear elasticity theory to determine the stress state. And omission of the

residual stress leads to significantly different total stress predictions [71].

However, work that includes residual stress in complex organs, such as the heart, remains rare.

A few existing models for the left ventricle that take account of residual stress are based on the

assumption that a simple radial cut can release all the residual stresses [90], but this assumption



Introduction 3

FIGURE 1.1: Photographs of cross sections at different locations of aorta trees after radial cuts:
the open angle is observed after a radial cut, which helps to estimate the residual strain in the

aorta wall [23].

is not supported by all experiments. For example, Omens et al. [59] showed that residual stress

in a mouse primary heart can be further released by a circumferential cut following the initial

radial cut, as illustrated in fig. 1.2. This implies that the single-cut opening angle configuration

does not correspond to the stress free configuration.

Inspired by the experiments [59], in this thesis, we develop multi-cut models in order to estimate

the residual stress distribution across the wall of an intact mature heart based on a simplified

heart model.

1.2 Coupled Agent-based and Elastic Modelling of Remodelling of
Left Ventricle Post-myocardial Infarction

Changes of micro-collagen structure and material properties are important determinants for the

bio-environment during heart healing after a myocardial infarction (MI). This is because remod-

elling (or healing) will adjust the material properties and mechanical behaviour of organs, which

process in the heart poses a complex multiscale soft tissue problem.

At the cellular level, micro-collagen structure remodelling is regulated by fibroblast cell align-

ment. Environmental cues, such as mechanical and chemical cues, have been shown to influence

cell migration. Fibroblasts regulate the collagen fibre deposition and rotation process (fig. 1.3).

Therefore, fibroblast migration, induced by environmental information, will modify the micro
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FIGURE 1.2: A typical short-axis apical segment of a mouse heart before and after cuts. [59]
The initial intact segment, shown in A, was about 2 mm thick. The same segment after a single
radial cut and a further circumferential cut are shown in B and C, respectively. In particular,
the endocardial segment has reversed its curvature, in C. Notice that the definition of opening
angle in [59] follows that in Fung, [7] which is different from that used in the present thesis.

(collagen) fibre structures locally [12]. Hence, agent-based models that account for these effects

have been developed and used to study a 2D slab model of the myocardium infarction [66].

To embed the micro fibre structure within a tissue constitutive law, a commonly used up-scaling

method is based on volumetric averaging [83] to get the constitutive parameters for soft tissues

of the LV from an agent-based model.

In this thesis, we combine an agent-based approach and a structure-based fibre-reinforced con-

stitutive law to study MI in the left ventricle for the first time. We modify the original Holzapfel–

Ogden (HO) constitutive model [35] by employing a distributed fibre model [38]. The specific

fibre distribution is determined using an agent-based model similar to that of [9, 18].

We embed the combined model within a mechanical finite element (FE) framework for a 3D

cylindrical tube and real LV model. These new models are used to predict the evolution of the

(regional) mechanical response of infarcted heart and simulate the myocardium remodelling in

terms of the fibre structure and density.
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FIGURE 1.3: Coupled agent-based model and finite-element model for a 2D slab: A) FE
elements of a 2D slab; B) fibroblast migration determined by external cues; C) fibroblasts
infiltrated the LV infarction by migrating; D a two-dimensional slab representing a tissue cut

from infarcted LV wall [59].

1.3 Volumetric Growth from a Residually-stressed (Current) Con-
figuration

Referring to G&R theories, volumetric growth is a key ingredient in organ development. Re-

cently, if the idea of growth is applied to study the evolution of organ formation, it is usually

assumed that the growth occurs in the natural (reference) configuration. For instance, in stud-

ies by Ellen Kuhl and her colleagues [25, 68], it is assumed myocardium growth occurs in a

fixed reference configuration. Avoiding (1) re-meshing of the grown heart for FE computation,

and (2) updating of the stress-free configuration to compute the mechanical response, it is com-

putationally convenient for studying the stress or growth evolution in the heart by assuming

growth from a fixed (stress-free) configuration. And a similar approach was also employed by

Kerckhoffs [46, 47].

In some studies, it is stated that they investigated the growth from the updated reference config-

uration. For instance, in Kroon [50], inhomogeneous volumetric growth was studied using 3D

simulation of heart growth. However, in this study, it assumed that the growth could release all
the residual stress, and the further growth will start from the updated but stress-free con-
figuration. Accordingly, the current stress state could be obtained by applying external loading

in the updated stress free configuration. However, in reality, the empirical evidence suggests the

existence of residual stress in living organs.
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Besides, in the study by Ben Amar [3, 26], growth is assumed to occur in the current con-

figuration along the local principal directions. This assumption leads to a simplified growth

deformation tensor as Gi = diag(g1,g2,g3). Due to the geometric symmetry, the elastic defor-

mation tensor is also diagonal, since the living body was assumed as a sphere in this research.

Thus, the ith elastic deformation (gradient) tensor Fi
e = diag(λ1,λ2,λ3).

For the consequent G&R process, the overall deformation could be stated as

Ak = Gk ·Fk
e ·Gk−1 ·Fk−1

e · · ·G1 ·F1
e ,

Ak = Fk
g ·Fk

e ·Fk−1
g ·Fk−1

e · · ·F1
g ·F1

e ,

which, due to the symmetry of the growth and deformation tensors, could be rearranged as

Ak = Gk ·Gk−1 · · ·G1
︸ ︷︷ ︸

overall growth

Fk
e ·Fk−1

e · · ·F1
e .

Here, the contributions of a simplified growth law and the elastic deformation give an equivalent

growth in the fixed reference configuration. The overall growth tensor could directly update the

stress configurations. This approach is computationally convenient and avoids considering the

residual stress due to incompatible G&R processes in living organs, which makes it possible to

compute the stress from a stress-free configuration. However, living organs are actually exposed

to complex boundary conditions all the time, while the (volumetric) growth should occur from

the residually-stressed current configuration. This thesis tries to draw a sketch of how to cal-

culate the mechanical behaviour of soft tissue after introducing inhomogeneous growth in the

residually-stressed current configuration.
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1.4 Research Aims

Major research aims include to 1) develop a multiple-cut models to estimate the residual stress

in the LV; 2) develop a multiple-scale model to investigate the evolution of tissue structure and

mechanical behaviour of the heart during G&R processes of the LV after MI:

The details of aim (1) are presented as

Referring to previous researches, the residual stress is mostly estimated by a single-cut model

based on the ‘opening-angle’ approach. However, as a result of complex G&R processes in

living organs, distributions of residual stresses are more complicated. Inspired by the experi-

ments [59], multiple models are developed to estimate the residual stress distribution across the

wall of an intact mature heart based on a simplified heart model.

The details of aim (2) are presented as

a) The fibre structure and material properties will be significantly changed in the heart after MI.

At the cell level, those changes are regulated by fibroblast migration, which can be simulated

by an agent-based model. At the tissue level, the modified material response will change the

bio-mechanical environment of the LV and feed back to the G&R processes. In this paper, a

simple cylindrical model is used to study the evolution of the mechanical behaviour of the LV,

with certain biomechanical consequences for the infarcted LV.

Besides, for more reality, a 3D left ventricle model is developed within a finite element (FE)

framework to study the G&R process for an infarcted heart within a FE LV model coupled with

an agent-based fibroblast cell model.

b) Volumetric growth of the LV is another important factor affecting the heart formation process

and function. In previous research, the growth is assumed to occur in the fixed (and residual-

stressed) configuration. However, sustained growth actually occurs in the evolving current con-

figuration. A volumetric growth approach is needed to calculate the mechanical behaviour of

soft tissue after introducing inhomogeneous growth in the residually-stressed (current) configu-

ration.

1.5 Outline of Thesis

The basic theory of nonlinear elasticity is summarized in Chapter 2. Chapter 3 provides a review

of existing contributions to research with particular focus on 1) residual stress in soft tissues and
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the opening angle method, and 2) the interactions between the G&R process and the biomechan-

ical response of living organs. Multiple-cut models are developed in Chapter 4, and are used

to estimate residual stress distribution in the LV with respect to cut-induced configurations. To

investigate the evolution of the biomechanical environment and material properties of the heart

(tissues) after MI, an agent-based model, describing the fibroblast migration, is coupled with

an elastic LV model as a cylindrical tube and FE LV model (Chapter 5). The mechanism of

MI development is explained by these models in Chapter 6. A new approach is developed to

investigate inhomogeneous volumetric growth in the stressed (current) configuration in Chapter

7. Finally, limitations, conclusions and future works are discussed in Chapter 8. intro



Chapter 2

Basic Nonlinear Elastic Deformation
Theory

In this project, the fundamental mathematical theory is ‘nonlinear elasticity’, which is suitable

for analyzing the material properties and mechanical behaviour of soft tissues. The basic con-

cepts about deformation and motions will be introduced in this section. Most of the attention

will be be paid to quasi-static problems, while the dynamic and time-dependent problems will

be only slightly touched on here.

The basic kinematics of deformation and motion will be described first. The concepts of stress

will be defined, as well as the stress equilibrium state (balance equations). The stress-deformation

relation will be given by the material constitutive laws. In this thesis, the strain energy function

(SEF), as a special form of constitutive law, is defined to describe the elastic behaviour of soft

materials. In general, the SEF can be defined in any arbitrary configuration, while the most pop-

ular way is to use the SEF referring to the natural (and stress-free) configuration. The general

form of SEF is used in this thesis. Besides, the SEF is also defined to describe soft tissues with

more than one constituent here.

2.1 Deformation and Strain

2.1.1 Observers and Frame of Reference

To mathematically describe phenomena in the real world, a framework (or set of coordinates)

is defined by the notion of an observer o. From the view of observer o, a certain event could

be recorded as (x, t), where x is position vector and t is time. If the same event is recorded

by another observer o∗, it will be named as event x∗ in new framework. And the connection

9



Basic non-linear elastic deformation theories 10

between x∗ and x is

x∗ = c(t)+Q(t)x, (2.1)

where c(t) is the distance vector, describing the observed position between two observers (c(t)=
x∗−Q(t)x); Q is a tensor, transforming the vector observed by o into vector observed by o∗. If

two observers are under rectangular Cartesian coordinates, Q is an orthogonal tensor.

Transformation of basis: Normally, different observers will select different base to mathemati-

cally record the event. Now, we consider the basis for observer o to be {ei} and {e′i} (i=1,2,3)

for the second observer (o∗). Then, the transformation tensor Q could help to express the new

basis e′i respect to ei as

e′j = Qe j, (2.2)

i.e. if {ei},
{

e′j
}

are basis for Cartesian coordinates, Qi j = e′j · ei ( j = 1,2,3).

Moreover, eq. (2.2) gives

cosθ
′
i j = e′i · e′j = Qei ·Qe j, (2.3)

where θ ′i j is the angle between e′i and e′j.

The change of the base could be expressed as

e′i⊗ e′j = Q ei⊗ e j QT . (2.4)

Assumingly here, we try to transform basis e′i back to basis ei, the expression could be similarly

obtained as

ei = QT e′i. (2.5)

FIGURE 2.1: Change of basis (2D case): left, orthonormal basis ei to orthonormal basis e′j;
right, orthonormal basis ei to oblique basis e′j.

The simplest (and most popular) case is to transform an orthonormal basis {ei} to a second

orthonormal basis {e′j}, which gives the relations as

δi j = e′i · e′j = ei · e j or I = e′i⊗ e′i = ei⊗ ei. (2.6)
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where I is the unit tensor.

Application of eqs. (2.3), (2.4) and (2.6), it gives tensor Q as an orthogonal matrix, where

I = QQT and det(Q) =±1. (2.7)

It is worth to emphasize that eq. (2.7) of tensor Q is only valid for the transformation between

two orthonormal bases. In general cases, Q is not necessarily orthonormal.

2.1.2 Configuration and Deformation Gradient

To consider the relative deformation (and motion) of a ‘body’ with continuously distributed

material, the configurations should be pre-defined. A configuration is a one-to-one mapping to

describe the places occupied by all material points of body B. If suppressing the dependence of

deformation on time t, the position of material point X could be expressed as

x = X (X), (2.8)

where X is the one-to-one mapping of position in current configuration for material point X .

Considering the deformation from configuration B0 to B1, the differential on mapping X gives

dx = FdX and F = GradX (X) = OOO⊗X (X), (2.9)

where ‘Grad’ is the gradient operation with respect to X, and F is the deformation gradient.

Differential in curvilinear coordinate: In most previous researches, the differential operations

are analyzed in Cartesian coordinate, which is computationally convenient for the derivations.

However, in general, the differential operation should be analyzed in curvilinear coordinate,

while Cartesian coordinates are special cases of curvilinear coordinates with the fixed orthonor-

mal basis.

In the reference configuration, the natural basis vectors are defined as GI =
∂X
∂X I , while the

reciprocal basis is defined as {GI(X)} such that

δ
I
J = GI(X) ·GJ(X).

The gradient operator using reference coordinates is

Grad = GJ(∂/∂XJ).
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In current configuration, the natural basis are defined as gi =
∂x
∂xi , while the reciprocal basis is

defined as {gi(x)} such that

δ
i
j = gi(x) ·g j(x).

The position vector in current configuration for material point X is expressed as

x = xigi(x) or x = xIGI, (2.10)

where the component xI is expressed as

xI = xiQi
I,

and Qi
I are the components of the tensor Q (Qi

I = gi ·GI).

Recalling the gradient operator in the current coordinates and eq. (2.9), the deformation tensor

is obtained as

F = Grad (xIGI) = OOO⊗ (xIGI) =
∂xI

∂XJ GI⊗G j + xI
∂GI

∂XJ ⊗GJ, (2.11)

Introducing the Christoffel symbols as

∂GI

∂XJ =−ΓI
JKGK and ΓK

IJ =
∂GI

∂XJ ·G
K =−GI ·

∂GK

∂XJ (2.12)

Inserting eq. (2.12) into (2.13), it yields

F =
∂xI

∂XJ GI⊗GJ− (xIΓ
I
JKGK⊗GJ). (2.13)

Eq. (2.13) is the general expression for deformation tensor from eq. (2.9). Considering the

deformation tensor is described within fixed Cartesian coordinates for current and reference

configurations, it gives the component of Christoffel symbols yields

Γ
k
i j = 0 and Q = I. (2.14)

Then,

F =
∂xi

∂X j ei⊗E j. (2.15)

where ei and E j are the orthonormal basis vectors for the current and reference configurations,

respectively.
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FIGURE 2.2: The cumulative deformation and intermediate deformations.

2.1.3 Cumulative Deformation and Polar Decomposition of Deformation Tensor

2.1.3.1 Cumulative Deformation

The general deformation path can be described as: the body deforms from a reference configu-

ration B0 to the generic configuration B2, via the intermediate configurations B1. The relations

will be shown between the cumulative deformation and intermediate deformations. Applying

eq. (2.13) in the Cartesian coordinates (fig. 2.2), The intermediate deformation gradients are





F1 =
∂x1

∂X
=

∂x1
i

∂X j
e1

i ⊗E j (B0→B1)

F2 =
∂x2

∂x1 =
∂x2

i

∂x1
j
e2

i ⊗ e1
j (B1→B2),

(2.16)

where X,x1 and x2 are the positions in B0,B1 and B2; {E j}, {e1
i } and {e2

i } are the bases for

B0,B1 and B2.

The cumulative deformation gradient is directly expressed as

F =
∂x2

∂X
=

∂x2
i

∂X j
e2

i ⊗E j. (2.17)

Applying the chain rule to rewrite eq. (2.17), it yields

Fi j =
∂x2

i

∂X j
=

∂x2
i

∂x1
k

∂x1
k

∂X j
= F2,ikF1,k j ⇒ F = F2F1. (2.18)

This relation could be extended to calculate the cumulative deformation gradients with any num-

ber of intermediate stages. The cumulative deformation gradient could be obtained as the prod-

uct of intermediate deformation gradients with sequential order (fig. 2.3):

F = Fn · · ·F j · · ·F1, (2.19)
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where F j is intermediate deformation gradient at the jth step.

FIGURE 2.3: The cumulative deformation with a series of intermediate deformations.

2.1.3.2 Polar Decomposition of Deformation Tensor

In general, we assume condition FdX 6= 0 is always satisfied, which indicates the length of non-

zero material line (dX 6= 0) will not be reduced to zero by the deformation. It indicates the

non-singularity of F as

detF > 0. (2.20)

FIGURE 2.4: The polar decompositions of the deformation gradient: up, the left polar decom-
position; down, the right polar decomposition.

For the non-singular F, the polar decomposition theorem indicates the existence of unique posi-

tive definite symmetric tensors U and V, and the orthogonal tensor R giving

F = RU = VR. (2.21)
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The deformation path F = VR could be understood as the body is rotated first with R and then

stretched along principal directions of V (fig. 2.4 (down)). The deformation path F = RU could

be understood as the body is stretched along principal directions of U and then rotated with R
(fig. 2.4 (up)). And the relation between the pure stretches U and V could be obtained from

eq. (2.21) as

V = RURT . (2.22)

2.1.4 Deformation of Volume and Surface

We introduce three incremental lines dX1, dX2 and dX3 in the reference configuration B0. The

volume of the infinitesimal parallelepiped with these lines could be expressed as

dV = dX1 · (dX2∧dX3) = det(dX1,dX2,dX3). (2.23)

After deforming, the incremental lines are labeled as dxi(= FdXi, i = 1,2,3). The volume of the

parallelepiped element in deformed configuration could be expressed as

dv = dx1 · (dx2∧dx3) = det(dx1,dx2,dx3) = det(F)dV ⇒ JdV = dv. (2.24)

The local volume ratio is defined as J = det(F). Now we introduce the infinitesimal vector

elements (dS = NdS, ds = nds) to describe the surface neighborhood around X in B0 and B1,

while N and n are the unit normal vectors to the surface. The surface vector elements could be

connected with applications of eq. (2.23) and (2.24) as

{
dV = dX ·dS
dv = dx ·ds

⇒ JdX ·dS = dx ·ds. (2.25)

Recalling eq. (2.9), eq. (2.25) is rewritten as

ds = JF−T dS. (2.26)

2.1.5 Strains and Stretch

For the information, some definitions of strain tensors are given here. The Green (or Lagrange)

strain is defined as

E =
1
2
(FT F− I), (2.27)

which is to describe the strain of body deformed from reference to deformed configurations.
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The Eulerian strain is defined as

e =
1
2
[
I− (FFT )−1] , (2.28)

which is to measure the strain from deformed to reference configurations.

Considering an arbitrary line element vector M in the reference configuration, it will deform

into element vector m in deformed configuration. The stretch of line element is written as

λ (M) =
|m|
|M| =

(m ·m)1/2

(M ·M)1/2 = (
M · (FT F)M

M ·M )1/2. (2.29)

2.2 Stress and Balance Laws

2.2.1 Conservation of Mass

In this thesis, masses of bodies are constant for observers with different velocities. Moreover,

if we don’t consider growth of the body, no new material will be added into B. Thus, the mass

function should be independent from t as

dm(B)

dt
= 0,

which is called as the ‘mass conservation’.

In arbitrary configuration Bt , the mass density function ρ(x, t) could be defined as

m(Bt) =
∫

Bt

ρ(x, t)dv.

Recalling the statement of mass conservation, the connection between density functions for

different configurations is expressed as

∫

Bt

ρ(x, t)dv =
∫

B0

ρ0(X)dV, (2.30)

where ρ0 is the density function, dV is the local volume element, both independent of time t

and in reference configuration. If dV depends on t ( ∂

∂ t dV 6= 0), it indicates ‘mass conservation’

is not satisfied and body is growing. This case will be discussed in the section of ‘Volumetric

growth’.

Considering Bt is an arbitrary configuration, it suggests the connection of density (eq. (2.24))

is also valid for any sub-domain of Bt . Then, the relation between densities can be written as

ρ = Jρ0. (2.31)
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2.2.2 Momentum Balance Equation

The momentum of body B (in current configuration) is defined as

∫

Bt

ρ(x, t)v(x, t)dv, (2.32)

where v(x, t) is the velocity (v(x, t) is expressed as Ẋ (X, t), when x = X (X, t)) and ˙(•) means

the time derivative.

If rewriting this into a Lagrangean form, it gives

∫

Bt

ρ(x, t)v(x, t)dv =
∫

B0

ρ0(X)v(X (X), t)dV. (2.33)

FIGURE 2.5: Schematic of body force and contact force: left, the body force density B and
contact force density t; right, the global coordinates and local coordinates for local surface.

The body force (such as gravity) is expressed as

∫

Bt

ρ(x, t)b(x, t)dv, (2.34)

where b is the body force density defined on the body in Bt .

Similarly, the contact force is ∫

∂Bt

t(x, t)da, (2.35)

where t is the contact force density at local surface.

Then, the balance of linear momentum is expressed in Eulerian form as (fig. 2.5)

∫

Bt

ρ(x, t)b(x, t)dv+
∫

∂Bt

t(x, t)da =
d
dt
(
∫

Bt

ρ(x, t)v(x, t)dv). (2.36)
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The application of eq. (2.33) gives

d
dt
(
∫

Bt

ρ(x, t)v(x, t)dv) =
d
dt
(
∫

B0

ρ0(X)v(X (X, t))dV

=
∫

B0

ρ0(X)
d
dt

v(X (X, t))dV

=
∫

Bt

ρ(x, t)
d
dt

vdv.

(2.37)

With help of eq. (2.37), eq. (2.36) is rewritten as

∫

t

ρ(x, t)b(x, t)dv+
∫

Bt

t(x, t)da =
d
dt
(
∫

Bt

ρ(x, t)v(x, t)dv) =
∫

Bt

ρ(x, t)
d
dt

vdv. (2.38)

2.2.3 Stress Tensors and Motions

2.2.3.1 Cauchy Stress Tensor

Cauchy′s theorem states that: the stress vector t(x) linearly dependent on the direction vector n
and there therefore exists a second-order tensor field such that

t(x) = σ(x)n, (2.39)

where σ(x) is the Cauchy stress tensor.

Applying the balance of angular momentum, it indicates that the tensor of Cauchy stress is

symmetric, i.e.

σ = σT . (2.40)

(*the proof can be found in [57].)

Applying eq. (2.39), the linear balance equation could be rewritten as

∫

Bt

ρ(x, t)b(x, t)dv+
∫

∂Bt

σn(x, t)da =
∫

Bt

ρ(x, t)
d
dt

vdv. (2.41)

This is then rewritten by applying the divergence theorem as

∫

Bt

{ρ(x, t)b(x, t)+divσT −ρ(x, t)
d
dt

v}dv = 0. (2.42)

This equation is valid for arbitrary region B1, which indicates

ρb+divσT −ρ
d
dt

v = 0. (2.43)



Basic non-linear elastic deformation theories 19

2.2.3.2 Nominal Stress and Lagrangean Balance Equation

Recalling the relation between surface elements in different configurations (eq. (2.25)), the re-

sultant contact force of body b is written as

∫

∂Bt

σnda =
∫

∂B0

JσF−T NdA,

where N is the normal vector of surface element in ∂B0.

Accordingly, the nominal stress (tensor) is defined as

S = JF−1σ. (2.44)

With the helps of eqs. (2.31), (2.37) and (2.44), the linear balance equation (2.45) is pushed back

into B0 as ∫

B0

ρ0(X)b0(X, t)dV +
∫

∂B0

ST NdA =
∫

B0

ρ0
d
dt

vdV, (2.45)

where b0 is the body force density in B0.

Application of the divergence theorem indicates

ρ0b0 +DivS−ρ0
d
dt

v = 0. (2.46)

Besides nominal and Cauchy stresses, another stress tensors are also widely used. For informa-

tion, the first and second Piola-Kirchhoff stresses are introduced here as

K = ST (first P-K stress), (2.47)

P = F−1K (second P-K stress). (2.48)

2.3 Constitutive Laws and Strain-energy Functions

2.3.1 Constitutive Laws

To analyze the motion of the body based on eqs. (2.43) or (2.46), we require to determine

the relation between stresses and motions. The constitutive law is generally used to describe the

mechanical behaviours of material, which can address the relation between stresses and motions.

In this project, only purely mechanical behavior will be focused, which implicitly indicates that

the thermodynamic variables don’t contribute to the material properties. In this thesis, only the

elastic behaviors will be discussed.
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For a simple material, the stress could be solely determined by the motion history, which gives

the constitutive relation as

σ(x, t) = G(X t ;X , t), (2.49)

where G is the function to describe the constitutive relation relation, X t(X , t) is the motion

history as

X t(X ,s) = X (X , t− s) t ≥ s ≥ 0.

Concerning the constitutive law for an elastic material, the stress state could be directly deter-

mined by the deformation relative to an arbitrary reference configuration, with the helps of the

stress state in the reference configuration. Thus, for a uniform material, the constitutive law is

independent of material particle X . Therefore, the constitutive law could be written as

σ(x, t) = G(X ;Fe,τ ) ⇒ σ(x, t) = G(Fe,τ ). (2.50)

where τ is the Cauchy stress in the reference configuration, and Fe is the elastic deformation.

Considering the mechanical behaviours are observed by a new observer o∗ (eq. (2.1)), the de-

formation gradient and Cauchy stress could be rewritten with the helps of eqs. (2.2) and (2.9)

as

F∗e = QFe, σ∗ = QσQT . (2.51)

If the stress-deformation relation is unaffected by the selection of observer, eq. (2.51) gives

σ∗ = G(F∗e ,τ ). (2.52)

Applying eqs. (2.51) and (2.52), it gives

G(QFe,τ ) = QG(Fe,τ )QT . (2.53)

2.3.2 Strain-energy Function

The scalar product of eq. (2.43) with velocity v gives

ρb ·v+divσ ·v−ρ(
d
dt
)v ·v = 0. (2.54)

This could be rearranged with the product rule of differentiation as

ρb ·v+div(σv)− tr(σΓ)−ρ(
d
dt

v) ·v = 0. (2.55)

where Γ is the velocity gradient as Γ= gradv(x, t), and ‘grad’ is gradient operation in the current

configuration with respect to x.
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With the help of the divergence theorem and conservation of mass (eq. (2.30)), the energy bal-

ance equation could be obtained from the integration of last equation as

∫

Bt

ρb ·vdv+
∫

Bt

t ·vda =
∫

Bt

tr(σΓ)dv+
d
dt

∫

Bt

1
2

ρv ·vdv. (2.56)

In the last equation, the left sides are the (body force and contact force) rates of working done

by external forces. For the right side of the equation, the term

d
dt

∫

B

1
2

ρv ·vdv

is the rate of kinetic energy. And the term

∫

B
tr(σΓ)dv.

is the rate of working of the Cauchy stress.

And the energy balance equation (2.56) could also be written in Lagrangian form as

∫

B
ρ0b0 ·vdV +

∫

B
ST N ·vdA =

∫

B
tr(S

d
dt

Fe)dV +
d
dt

∫

B

1
2

ρ0v ·vdV. (2.57)

Besides, after scalar product with velocity on both sides of the Lagrangean force balance equa-

tion (eq. 2.46) the Lagrangean energy balance equation (2.57) could also be obtained by directly

using the Lagrangean divergence theorem. However, the derivation with the Eulerian form holds

a more obvious physical meaning.

Actually, the term

tr(S
d
dt

Fe) (2.58)

is the rate of the change of the elastic energy (volumetric) density. In general, given that a

function W̄ exists such that

˙̄W (Fe,τ ) = tr(SḞe), then S =
∂W̄ (Fe,τ )

∂Fe
, (2.59)

where τ is residual stress in B1.

Then, W̄ is the strain-energy function (per unit volume) with respect the configuration B1. In

general, stress exists in B1 and it will affect the mechanical behaviour of the material; therefore,

it indicates the form of strain-energy function depends on the selection of reference configuration

(fig. 2.6) and residual stress in the selected configuration.

Considering a natural configuration (B0), in which no (residual) stress exists (τ = 0), the total

elastic energy could be expressed as ∫

B0

WdV. (2.60)
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FIGURE 2.6: The strain energy function defined in an arbitrary configuration B1. B0 is the
stress-free reference configuration, B1 is the residually-stressed configuration. The elastic

deformation F2
e takes body into the current configuration B2

Assuming the elastic body deforms into B2 via the intermediate configuration B2, the relation

between deformation gradients could be given by application of eq. (2.18) as

F0
e = F2

eF1
e , (2.61)

where F0
e is the elastic deformation gradient from B0 to B2, F1

e is the deformation gradient from

B0 to B1, and F2
e is the deformation gradient from B1 to B2.

The application of elastic energy conservation gives

∫

B0

W (F0
e)dV −

∫

B0

W (F1
e)dV =

∫

B1

W̄ (F2
e ,τ )dv, (2.62)

This could be rewritten with the help of eq. (2.25) as

∫

B0

W (F0
e)dV −

∫

B0

W (F1
e)dV =

∫

B0

J1W̄ (F2
e ,τ )dV, (2.63)

where J1 = detF1
e .

Since eq. (2.63) is valid for arbitrary volumes, it gives

W̄ (F2
e ,τ ) = (J1)

−1{W (F0
e)−W (F1

e)}. (2.64)

Referring to B0, the Cauchy stress in B2 is computed as

σ = J−1
0 F0

e
∂W
∂F0

e
. (2.65)
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Referring to B1 (eq. (2.64)), the Cauchy stress in B2 is computed as

σ̄ = J−1
2 F2

e
∂W̄
∂F2

e
= J−1

2 F2
e

∂

∂F2
e
{J−1

1

[
W (F0

e)−W (F1
e)
]
}. (2.66)

Obviously, W (F1
e) and J1 are independent of F2

e , then

σ̄ = J−1
2 J−1

1 F2
e

∂

∂F2
e

[
W (F0

e)
]
. (2.67)

Application of the chain rule and eq. (2.61), then gives

σ̄ = J−1
2 J−1

1 F2
eF1

e
∂

∂F2
e

[
W (F0

e)
]
= J−1

0 F0
e

∂W
∂F0

e
= σ. (2.68)

2.3.2.1 Deformation Constraints

The elastic body sometimes will deform with local constraints, for example, the body is con-

strained to be inextensible in a certain direction. The constraint will mathematically reduce the

number of independent components of the elastic deformation tensor. For instance, a rigid rod

is assumed to be inextensible along its axial direction. The elastic deformation and energy will

be both zero along axial direction, no matter how huge the force is applied at both ends of the

rod.

We consider a deformation constraint to be defined by a scalar function

C(Fe) = 0. (2.69)

Then, the strain energy function with respect to B0 will be modified by the contribution of

constraints as

W̄ (Fe,τ ,C) = W̄ (Fe,τ )− pC(Fe), (2.70)

where p is a Lagrange multiplier.

Applying eq. (2.59), the nominal stress is given as

S =
∂W̄ (Fe,τ )

∂Fe
− p

∂C
∂Fe

, (2.71)

The application of the connection between Cauchy and nominal stresses gives

σ = J−1Fe
∂W̄ (Fe,τ )

∂Fe
− pJ−1Fe

∂C
∂Fe

, (2.72)
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Considering the constraint is incompressibility of elastic body, it indicates constant volume of

body after elastic deformation), which gives the constraints function as

J(Fe)≡ 1 ⇒C(Fe) = J−1 = 0. (2.73)

Recalling the expressions of nominal and Cauchy stresses with constraints, they could be rear-

ranged as

S =
∂W̄ (Fe,τ )

∂Fe
− p

∂ (J−1)
∂Fe

=
∂W̄ (Fe,τ )

∂Fe
− pF−1

e ,

(2.74)

and

σ = J−1Fe
∂W̄ (Fe,τ )

∂Fe
− pI, (2.75)

where ∂J
∂Fe

= JF−1
e .

2.3.2.2 Strain Energy Function with Invariants

Recalling the definitions for the SEF for arbitrary configurations in eq. (2.64), it shows that

this SEF could be directly pushed back into the SEF of (fixed) stress-free configurations, even

though stress-free configuration does not really exist for particular bodies.

Considering the SEF for a stress-free configuration, it is a scalar function with respect to the

elastic deformation. Moreover, recalling the polar decomposition of the deformation gradient,

it suggests that the scalar function should be independent of rotation of elastic body and be

objective as

W (Fe) =W (RUe) =W (Ue) = Ŵ (λ1,λ2,λ3), (2.76)

where λi is the ith principal value of Ue (eq. (2.21)).

For an isotropic material, the mechanical responses are the same for deformation along arbitrary

directions, which indicates

Ŵ (λ1,λ2,λ3) = Ŵ (λ2,λ1,λ3) = Ŵ (λ3,λ2,λ1),

Furthermore, this could be represented with the invariants of the deformation tensor as

Ŵ (λ1,λ2,λ3) = Ψ(I1, I2, I3), (2.77)
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where 



I1 = trCe = ∑λ 2
i

I2 =
1
2{(trF2

e)− trF2
e}= λ1λ2 +λ2λ3 +λ1λ3

Ie = detCe = J,

(2.78)

and Ce = FT
e Fe.

The proof is not shown here, details seeing in Ogden [57].

2.3.2.3 SEF for Mixture Materials

FIGURE 2.7: The configurations for a mixture material with constituents k1 and k2. The two
materials are assumed to cover the same volume but with different volumetric fractions.

Assuming the elastic body is mixed by two constituents k1 and k2 (fig. 2.7), states of residual

stresses are generally different for two constituents. The total elastic strain-energy with respect

to this configuration could be obtained as

∫

B
W (Fe,τ )dV +

∫

B∗
W ∗(Fe,τ

∗)dV, (2.79)

where * indicates the variable for new material, and B0 = B∪B∗.

To obtain the mechanical behaviours of the mixture with respect to configuration B0, the local

average deformation is defined to describe the overall elastic deformation for the mixture as

∫

B0

FedV =
∫

B
FedV +

∫

B∗
FedV. (2.80)
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Then, the total elastic energy for mixture material is written as

∫

B0

W0(Fe)dV =
∫

B
W (Fe,τ )dV +

∫

B∗
W ∗(Fe,τ

∗)dV. (2.81)

Applying eq. (2.80) and (2.81), the total elastic energy could be re-written as

∫

B0

W0(Fe)dV =
∫

B
{ΦW (Fe,τ )+Φ

∗W ∗(Fe,τ
∗)}dV, (2.82)

where Φ and Φ∗ are the volumetric fractions for materials (Φ+Φ∗ = 1).

Since this integration is valid for any volume, the SEF for the mixture is given as

W0(Fe) = ΦW (Fe,τ )+Φ
∗W ∗(Fe,τ

∗). (2.83)

The state of residual stress will affect the mechanical behaviors of individual constituent. In

turn, it will influence the overall mechanical behaviors of the mixture body, which indicates

the importance of the residual stress in soft tissues to determine the mechanical behaviors of

mixture body under external loading. However, in a biomaterial mixture or living organ, the

residual stress is hard to determine, due to the complexity of its formation. For instance, living

tissues are usually composed by different constituents. The growth of different constituents are

usually incompatible. In turn, the residual stress will be induced by the deformations to get

the compatible configuration for living organ. Till now, how to accurately predict and measure

residual stress is still a open challenge for the study of the mechanical behaviours of living

organs.

Besides, the residual stress could also affect the expression of the SEF for the mixture. However,

for a mixture, the stress-free configuration usually doesn’t exist, while the individual stress-free

configurations exist for each constituent. If considering the mixture material as a whole body,

the stress-deformation relation could be given by the SEF for the mixture (eq. (2.83)) and could

be pushed into any arbitrary configuration.

Furthermore, the SEF for a body is given for n constituents as

W0 = ∑Φ
iW (Fi

e,τ
i), (2.84)

where index i indicates variables for ith constituent and ∑i Φi = 1.

2.3.2.4 The SEF for a Fibre-reinforced Material

Considering the fibre-reinforced material, the fibres are embed into matrix materials, while the

interactions are ignored between fibres here. Moreover, it is assumed that fibres only contribute

to mechanical response along their axial directions. Then, the SEF for a fibre could be written
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as

Wf (F f
e ,τ f ) = Ŵf (λ f ,τ f ), (2.85)

where F f
e is elastic deformation for fibre, λ f is stretch of fibre and τ f is residual stress.

The residual stress in fibres has been studied by many researches (e.g. Taber & Humphrey [78]).

In this section, the residual stress is assumed to be zero to reduce the complexity.

Applying eq. (2.29), then

λ f = (N · (FT
e Fe)N)1/2, (2.86)

where N is the unit vector along fibre direction.

Application of eqs. (2.77), (2.80), (2.81) and (2.85), the SEF for a material reinforced by one

fibre family could be written as

W0(I1, I2, I3,λ f ) = ΦW (I1, I2, I3)+Φ
∗W ∗(λ f ). (2.87)

Fiber dispersion in fibrous tissues has been recognized as being important in the mechanical

response of the tissue. Considering the 3-dimension fibre family, the orientation density function

ϕ̂(Θ,ϒ) could be defined to satisfy the normalization condition

∫∫

Ω

ϕ̂(Θ,ϒ)dΘdϒ = 1.

where Θ and ϒ are the spherical polar angles, and Ω = {(Θ,ϒ) ∈ (0≤Θ≤ π,0≤ ϒ≤ 2π)}.

In this thesis, only the 2-dimension fibre family is used. Here, the 2-dimension orientation

density function (ϕ̂) is employed to describe the fibre structure

∫
ϕ̂(Θ)dΘ = 1. (2.88)

where Θ is the fibre angle to the vector along mean direction of fibre family.

And the volumetric fraction for fibre family along a particular direction could be obtained as

Φ f

∫
ϕ̂(Θ)dΘ, (2.89)

where Φ f is total volumetric fraction of fibres.

For a material with dispersed fibre families, the SEF could be given with the orientation density

function

W0(I1, I2, I3,λ f ) = ΦW (I1, I2, I3)+Φ f

∫
ϕ̂(Θ)W ∗(λ f )dΘ, (2.90)

where Θ is the angle between fibre and certain directions in reference configuration, ϕ̂(Θ) is the

orientation density function.

In this project, the crosslinks and interactions between fibres are ignored. It is supposed that

fibres can not take compressive loads. To exclude the mechanical contributions of compressed
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fibre, the fibre ‘switch’ is employed as

λ f (Θ)> 1.

Then, the SEF (eq. 2.90) is modified as

W0(I1, I2, I3,λ f ) = ΦW (I1, I2, I3)+Φ f

∫

Σ

ϕ̂(Θ)W ∗(λ f )dΘ, (2.91)

where Σ is the solution of fibre ‘switch’ (if λ f (Θ)> 1,Θ ∈ Σ).

FIGURE 2.8: The single-axis tension applied to a fibre-reinforced tissue with orthogonal fibre
families.

Example to test the SEF for a fibre-reinforced material

To validate the SEF for a fibre-reinforced material, an analytical solution will be shown for

mechanical behaviour of the fibre-reinforced material with simple boundary conditions.

Considering a tissue with rectangular shape defined by,

0≤ X ≤ A,0≤ Y ≤ B,0≤ Z ≤C.

The single-axial tension, along the x-axis, is applied on the incompressible and fibre reinforced

tissue (fig. 2.8). Assuming a plane-strain condition, the deformation gradient could be simply

given as Fe = diag(λ1,λ2,1). And the incompressibility (λ1λ2λ3 = 1) gives Fe = diag(λ1,
1
λ1
,1).

The force boundary condition gives

σy = 0. (2.92)

where x and y are coordinates (fig. 2.8), z is the direction othogonal to directions x and y.

A square tissue is assumed to be reinforced by two independent and orthogonal fibre families.

The orientation density function could be reduced as

ϕ̂ =





+∞, if Θ = 0;

+∞, if Θ = 90;

0, if Θ 6= 0 or 90.

(2.93)
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And 



∫ 0
−∞

ϕ̂(Θ)dΘ = 1
2 ;

∫ +∞

90 ϕ̂(Θ)dΘ = 1
2 .

(2.94)

The volumetric fractions are selected as:

{
Φ = 0.97, (matrix)

Φ f = 0.03, (fibre)
(2.95)

The HGO model is selected as the SEF for the tissue, it gives

W =
c
2
(I1−3), W ∗ =

k1

2k2
{expk2(I4−1)2−1}, (2.96)

where

I1 = tr(FT
e Fe), (2.97)

and I4 is written as

I4 = N · (FT
e Fe)N = λ

2
f ; (2.98)

c, k1 and k2 are material constants, here using c = 3kPa, k1 = 78.67kPa and k2 = 0.84.

Recalling the SEF (eq. 2.90) and the fibre orientation density function (eq. 2.94), the SEF here

is written as

W0 = Φ
c
2
(I1−3)+

Φ f

2
k1

2k2
{expk2(I4(N1)−1)2−1}+ Φ f

2
k1

2k2
{expk2(I4(N2)−1)2−1},

(2.99)

where Ni is the direction vector for ith fibre family (N1 = ex and N2 = ey).

Solution:

If compressed fibre are included, the Cauchy stress could be obtained from eq. (2.99) as

σ =− pI+(Φc)FeFT
e

+Φ f k1{(I4(N1)−1)exp(k2(I4(N1)−1)2}ex⊗ ex

+Φ f k1{(I4(N2)−1)exp(k2(I4(N2)−1)2}ey⊗ ey,

(2.100)

with the help of the definitions of deformation tensor and stress tensor (eq. (2.100)), the compo-

nents of Cauchy stress are expressed as





σx =−p+Φcλ 2
x +Φ f k1(λ

2
x −1)exp{k2(λ

2
x −1)2}

σy =−p+Φcλ 2
y +Φ f k1(λ

2
y −1)exp{k2(λ

2
y −1)2}

σz =−p+Φcλ 2
z .

(2.101)
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Recalling the boundary condition (eq. (2.92)), eq. (2.101)2 gives

σy = 0 ⇒ p = Φcλ
2
y +Φ f k1(λ

2
y −1)exp{k2(λ

2
y −1)2}. (2.102)

With the help of the deformation tensor and boundary condition (2.102), the relations are ob-

tained from eq. (2.101) for ‘λx−σx’.

With help of eq. (2.98), I4(N1) = λ 2
1 ≥ 1 and I4(N2) = λ 2

2 ≤ 1, if applying single axis tension

along x axis. Therefore, if the compressed fibres are excluded (I4(N2) = λ 2
2 ≤ 1), the SEF could

be rewritten as

W0 = Φ
c
2
(I1−3)+

Φ f

2
k1

2k2
{expk2(I4(N1)−1)2−1}. (2.103)

If the compressed fibres are excluded by fibre switch (λ f > 1), the Cauchy stress could be

obtained from eq. (2.103) as

σ =− pI+(Φc)FeFT
e

+Φ f k1{(I4(N1)−1)exp(k2(I4(N1)−1)2}ex⊗ ex,
(2.104)

which gives 



σx =−p+Φcλ 2
x +Φ f k1(λ

2
x −1)exp{k2(λ

2
x −1)2}

σy =−p+Φcλ 2
y

σz =−p+Φcλ 2
z .

(2.105)

Recalling the boundary condition (2.92), eq. (2.105)2 gives

σy = 0 ⇒ p = Φcλ
2
y . (2.106)

With the helps of the deformation tensor and boundary condition (2.106), the relations are ob-

tained from eq. (2.105) for ‘λx−σx’.

Fig. 2.9 shows the differences of mechanical behaviours between the SEF with and without the

fibre switch: the stresses, obtained from the SEF without fibre switch, are bigger. The differ-

ences are bigger with the increasing fibre stretch (λx). The results suggest that the stress predic-

tion is not accurate if the compressed fibres are not excluded. In this project, the fibre switch
will be included to describe the mechanical behaviours for fibre-reinforced materials.

2.4 Summary

In this section, the concepts of deformation and motions are explained. In general, the defor-

mation is to describe the shape change of a body respect to a certain configuration. Then, the

deformation gradient (tensor) is introduced to measure the changes of shape. From a perspective
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FIGURE 2.9: The comparison of Cauchy stresses from different SEFs: the comparison between
σx, dash line is σx obtained from SEF including the compressed fibre, solid line is σx obtained

from SEF excluding the compressed fibre.

of mechanism, the stress could induce the (relative) deformation. To solve the mechanical be-

haviours of a body, a stress-deformation relation is required. The relation between deformation

and stress is mathematically described by a constitutive law. The basic form of constitutive law

is used as the SEF in this project. Focusing the soft tissue composed with biomaterials, most

biomaterials are fibre-reinforced materials. If assuming the fibre can’t bear compressive loading,

the fibre switch will be used to exclude the compressed fibres.



Chapter 3

Literature Review: Theories of
Residual Stress in Living Organs
Estimated by the Opening-angle
Method

A basic physical description is needed to understand and predict the mechanical behaviour of

soft tissues (or organs) in circulatory physiology. Generally, referring to small-deformation and

linear theories, the moduli of elasticity and Poisson’s ratios are originally employed to describe

the material properties for soft tissues, before the well-developed theories of large deformation.

However, in order to accurately describe the complex mechanical behaviours of soft tissue, large

deformation theories were introduced by researchers (like Bergel [6] or Fung [21]). Referring to

large deformation theories, the most popular method is to use the strain energy f unction (SEF)

or energy density f unction (EDF) to describe the material properties for soft tissue, which is

based on the laws of thermodynamics and the Gibbs-Duhem entropy inequality. At least to

the author, between nonlinear and linear theories, one of biggest differences is whether the

consequent mechanical behaviour of an elastic body is influenced by the stress states in the

reference configurations.

For nonlinear theories, the (natural) stress-free configuration is implicitly important to identify

the stress–deformation relation, even though the SEF could be defined with respect to the ar-

bitrary reference configuration. In the early stages of large deformation theories, the unloaded

configuration of soft tissues were selected as the stress-free one, which fact might introduce the-

oretical errors in estimating the mechanical behaviours of soft tissues or living organs if residual

stress exists in the selected configuration. This includes why the theories of residual stresses are

important.

32
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In this section, the theories and models for estimating residual stress in organs will be summa-

rized and reviewed.

3.1 Residual Stress Estimated by an One-cut Model

Von Maltzahn [87] reported experimental measurements of the elastic properties of different

layers of bovine carotid arteries, based on the perspective of large deformation theories. In [87],

assuming the unloaded configuration to be stress-free, the linkage between deformation and

stress was obtained for an artery (with the SEF defined by Fung [21]), for a thick-wall tube

model with the cylindrical coordinates. Afterwards, comparison of the geometries of atria were

presented between experimental data and predicted results. The obvious differences suggest a

problematical selection of the stress-free configuration, though the estimates were significantly

better than results estimated by small-deformation theories (seeing Bergel [5]). As least to the

author, one of the most important error sources is the inappropriate selection of the stress-free

configuration, which fact in turn gives the inappropriate estimations of (Cauchy) stress.

To investigate the stress states (residual strain or residual stress) of living organs, Fung published

a series of papers based on observations of artery-slice-cutting experiments. In [23], a radial cut

was done on an aorta slice, and then the opening angles were measured. The experimental

results showed that the arterial slices would spring open after cutting along the radial directions,

while the opening angles varied with the locations on the aorta trees.

The residual strain, which is the elastic strain between zero-stress and no-load states, indicates

the existence of residual stress after removal of the external loads. An important influences of

the residual stress is that it affects the homeostatic stress distribution in the tissues. It contributes

a definite influence on the elastic behaviours of the tissue, since the stiffness of soft tissue varies

with the states of stress. It’s also pointed out the unsatisfactory calculations in previous re-

searches (like [87], [79] and etc.), since they were derived from states that ignore the effects of

residual stress.

The another important implication from [23] is that one radial-cut is sufficient to release all the

residual stress (fig. 3.1).

The aorta slices were further cut into smaller parts at different circumferential positions and

assembled into a whole specimen, which is to test whether the specimen could reproduce the

shapes before cutting out. The experimental observations presented a good resemblance, in-

dicating no further deformation after more radial cuts. Therefore, it was concluded that one

radial cut could deform tissue into the stress-free configuration from the intact tube configura-

tion. However, the logic behind this conclusion might be problematic. If the organ is in the
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FIGURE 3.1: Photographs of cross sections at different locations of aorta trees after cut ([23]).

stress-free configuration, any further cut will not introduce any further elastic deformation. This

logic is reasonable and rational. However, even if no further deformation occurs after the ad-

ditional cut, the organ could still be in residually-stressed configuration before the cut, while

the possible explanations could be: 1) a further cut is not sufficient to release the residual stress

from the one-cut configuration. If the residual stress distribution is symmetric and independent

of angular position, more radial cuts can not release any more residual stress. Therefore, in this

case, a radial cut does not induce elastic deformation from a residually-stressed configuration.

2) the organ went into a newly stressed configuration. For example, if the SEF is not mathemat-

ically convex.

Accurate biomechanical analysis is required to identify the stress-free configuration. The first

step is to experimentally quantify the residual strain for living organs. Before Omens [60], no

experimental measurement existed to identify the residual strain in heart tissue (myocardium).

Most peer researchers (like Huisman [42], or Yin [96]) used the unloaded configuration as the

stress-free configuration, and the results show the extraordinarily huge stress concentration at the

endocardial wall. In [60], the residual strain was measured and was used to recover a real stress-

free configuration, which could be expected to reduce the estimation of stress concentration at

the endocardial wall.

In the results of [60], the circumferential stretches were less than one at the endocaridal wall,

which indicated a compressive (residual) stress at the specified location. Therefore, this im-

portant feature could explain the huge stress concentration at the endocadial wall estimated by

the non-residual stress approach. Besides, additional deformation occurred after the second

cut, which indicates that the one-cut configuration is still a residually-stressed one for rat heart.

However, due to the obviously small magnitude of additional deformation, the stress-free con-

figuration could be represented by slices with one cut.

The radial cut and opening angle methods were applied to measure the residual strain in porcine
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and canine trachea (Han [28]). Results suggest that: (1) the opening angles were obviously

different in trachea induced by single radial cuts at different locations, especially for canine

trachea. It indicated the residual strains are not uniformly distributed in the trachea wall. (2)

The sections from anterior cuts, made by additional radial cuts, could represent the opening

angle configuration made by posterior cuts. It indicated that the additional cuts did not induce

more elastic deformation. And similar with conclusions on aorta or hearts ([28], [23], [60]), one

radial cut is sufficient to release all the residual stress. However, to the author, the statement

– one cut configuration is stress-free configuration– is not sufficiently proved due to the listed

reasons.

The residual strain could be generated by different growths ([28], [60], [23]). Then, the mea-

surements of the residual strain (by opening angle method), could relieve the information about

history of growth and heart formation. Besides the researches of residual strain in mature cardio-

vascular or heart systems, the changes of residual strain was speculated during the development

of embryonic heart ventricle [77]. In [77], the embryonic hearts were obtained from chicks at

different growth stages. The radial cuts were made to measure the residual strain in heart.

The results suggested that the opening angle decreased along with the heart formation [77]. For

the heart, the growth was faster in the outer layer of the myocardium. Besides, stress-driven

growth laws were proposed with explanations as: mechanical computation in [77] presented

that the peak stress occurred at the same location (epicardium) with highest growth rate, while

the strain peak was at endocardium; since living heart will never actually ‘know’ what are elastic

strains from the natural configuration, however, the stress in current configuration could be ‘felt’

by the heart. It supports that the growth is regulated by stress.

After (incompatible) growth, residual strain occurred in elastic body to keep the body continuous

without holes or overlaps in tissues. In [77], the stress-driven growth was proposed. Following

this idea, Rodiguez [65] introduced a continuum formulation to figure out the relation between

residual stress and stress-driven growth, with a simple tube model.

In [77], the relation between growth and stress was analyzed with a thick-wall heart model with

a simple growth tensor. For simple volumetric growth, the growth was assumed to occur in

the principal directions of the heart tube. With the diagonal growth tensor, the growth rate U̇g

(represented in matrix form) and overall growth tensor Fg were defined as

U̇g(t) =




Kx[Tzz(t)−T ∗zz] 0 0

0 Ky[Tzz(t)−T ∗zz] 0

0 0 0


⇒ Fg(t) =

∫ t

0
Udt (3.1)

where Kx, Ky are the growth rate constants, Tzz is the axial stress, T ∗zz is the criteria value.
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In [77], it was suggested to explain how the residual stress might arise with incompatible growth

and how residual stress helps to reduce the stress concentration in the ventricular wall. Mean-

while, it indicates that growth and elastic deformations are decoupled during the continuous

growth. Moreover, the commutation law between growth and elastic deformation tensors was

implicitly included in [65] as

Feg = Fe,tnFg,tnFe,tn−1Fg,tn−1Fe,tn−2Fg,tn−2 · ··
= Fe,tnFe,tn−1Fe,tn−2 · · · (Fg,tnFg,tn−1Fg,tn−2),

(3.2)

where Fe,tn , Fg,tn are the growth and elastic deformation tensors at time step tn

In this simple model with only diagonal deformation tensors, the commutation laws are suf-

ficient. However, this algorithm is problematic for the general case. For instance, for simple

shear, the commutation laws are not satisfied:

Fe =




1 λ 0

0 1 0

0 0 1


⇒ FeFg 6= FgFe. (3.3)

To better characterize the mechanical behaviours of arterial material, the constitutive framework

reference of Holzapfel, Gasser and Ogden (HGO) artery model was influenced. With the one-cut

and thick-wall model, the computations suggested some important advantages of HGO model,

compared with other models. Comparing with Delfino’s model, the HGO model gave better pre-

diction of the anisotropic mechanical behaviour in arteries. The HGO model could be applied

to more general cases than previous models (Vaishnav [82], Fung [22] and Takamizawa [79]).

For instance, those models are not always convex, then, the restrictions on material parameters

are required to avoid material instabilities, while the HGO model is convex.

The first attempt to mechanically model the residual stress and growth of developing embryo

heart was made by Taber [74]. Experiments were performed to measure the evolution of resid-

ual strain and the effects of the volume overload condition on the time course. The embryo chick

hearts were banded with nylon loops to introduce the overload condition. The results showed

the opening angles slightly decreased in the test group. However, the opening angles were sig-

nificantly lower after heart banding. With the observations of opening angle, the passive and

active zero-stress configuration could be identified (seeing stress equilibrium equation in [75]),

with both active and passive stress components.
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Olsson [58] developed a thermodynamically consistent (one-layer) model and applied it to ana-

lyze the residual stress in arteries after volumetric growth. The total strain energy, including the

growth contribution, is

Ψ =
∫

W (Fe,m)dVg =
∫

det(G)W (Fe,m)dV0, (3.4)

where V0, Vg are the volumes of the elastic body before and after growth (by tensor G).

To this author, this framework is satisfactory for simple cases, such as the one-layer tube model

with a diagonal growth tensor. However, it is not perfectly rational to be applied to more gen-

eral cases. The energy (refeq27) can be used to calculate the first Piola-Kirchhoff stress, which

indicates the stress state is unchanged before and after growth. However, if the residual stress is

induced by incompatible growth, the stress states are different before and after growth. There-

fore, the residual stress induced by growth will drive the elastic body into a new stress state,

which requires to calculate the current stress state related to the growth-updated natural config-

uration.

To investigate the effects of residual stress on the mechanical behaviours of the heart (or left

ventricle), Huiming [90] included the residual stress in a FE model for the LV by the approach

introduced by one-cut approach from Shams [71]. In [71], if the initial (or residual) stress is

given as τ , the SEF could be defined to this stressed configuration Br as

W =W (Fr,τ ), (3.5)

where Fr is the elastic deformation from Br.

Then, the Cauchy stress could be obtained for the incompressible myocardium as

σ = Fr
∂Wr

∂F
(F,τ )− pI. (3.6)

In order to refine the SEF in stressed configuration by above approach, Huiming [90] compared

the residual stress obtained by residual strains in the LV measured by Costa [10] and residual

stress computed from the opening angle method with one radial cut [1]. The results show ob-

viously different stress distributions. Moreover, this shows the residual stresses influenced the

stress distributions significantly after applying external loading, which contradicts with conclu-

sion of Guccione [27].

By reviewing previous research, it is clear that the one-cut configuration might still be a stressed

configuration, which makes the estimation of residual stress in intact heart inaccurate.
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3.2 Residual Stress Estimated by a Multiple-cut Model

The growth of living tissues will induce residual stress in organs. In general, volumetric growth

and mass growth are two key approaches for analyzing the growth and remodelling process in

living organs. These two approaches will be reviewed about these two approaches.

3.2.1 Multiple-layer Model Using the Volumetric Growth Approach

In [88], after the radial cut, the bovine aorta was separated into the inner and outer layers by an

additional circumferential cut. The opening angles were different for the layers, which indicates

that residual stress and residual strains were different. This suggests using the two-layer model

to describe the mechanical behaviours of arteries [76].

Taber [76] applied the stress-dependent finite growth method and thick-wall heart tube model

for estimating the growth of aorta, with minor modifications of the model in [65]. Rather than

the one layer model in [65], the two-layer model was employed to represent the structure of the

aorta with both media and adventitia, which idea was inspired by the experimental observation

by Vossoughi [88].

In [88], it is assumed that growth is induced by the principal stress. Then, the stress-dependent

growth laws were used as

Ġ(t) =




λ̇g1 0 0

0 λ̇g2 0

0 0 λ̇g3


⇐ λ̇gi = ∑Di jσi (3.7)

where σi is the ith principal stress, Ġ is the growth rate tensor, Di j is the growth-rate coefficient

measured from experimental data. Referring to the last equation, the growth rate will be bigger

at material points with higher principal stress.

In previous experiments, the growth in bone was induced in the direction of stress, which guided

the choice of growth law (6.73). However, skeletal muscles were observed empirically to grow in

orthogonal directions to the primary stress [76]. To investigate the growth of aorta, two hypothe-

ses were proposed for future study about the stress-driven growth laws [76]: (1) strain-driven

law: the longitudinal growth was induced by strain along the associated strain directions, while

stress induces transverse growth orthogonal to the stress directions; (2) active stress-dependent

law: the active stress could induce the transverse growth. (The listed hypotheses were widely

used to study the growth of soft tissues. This will be further discussed in next section.)

To this author, one problem might arise from the calculation of stress equilibrium in [76]. In

general, in the multiple layer model, it is always required that the radial stress is continuous at
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the interface of contacted layers, which condition was ignored in [76]. For instance, in [39], the

stress continuity, ignored by [76], was described as

(σr|r=rm)
+ = (σr|r=rm)

−, (3.8)

where rm is the radius of interface.

Recently, more experimental observations support to the non-homogeneous distribution of resid-

ual strain [63]. Later researchers have started to analytically investigate the residual stress and

opening angle in arteries with a multiple-layer model, while considering that the single-cut con-

figuration is residually stressed.

The two-layer and thick-wall tube model was employed by Taber [78]. The predicted opening

angles, produced by cuts at different locations, agreed well with experimental observations. This

supported the idea that the multiple cut model could be a good direction to analyze the residual

strain in arteries.

Compared to the heart function, the active stress in arteries is actually negligible. Taber [75] de-

veloped (passive) stress-driven laws to study the residual stress and evolution of vascular growth.

In previous experimental studies, it is supported that the growth of organs intends to restore the

wall stress and fluid shear stress into the stable states. Therefore, growth law, related with stable

stress states, is developed within the thick-wall tube model ([75]). In [75], predicted opening

angles matched well with experimental observations.

Though the non-homogeneous distributions of residual strains were accepted, early studies still

used the single cut model to estimate the stress distribution in the heart. Omens [59] made

the first attempt to experimentally measure the complex distributions of residual strain. The

rings of heart were cut from mature rats. A radial cut was first made on each heart. Then, a

circumferential cut was made to relieve another residual stress. The results show that additional

deformations were induced after the second cuts, which indicates 1) the one-cut configuration is

not the stress-free configuration; 2) the complex distribution of residual strains should be taken

into consideration for mechanical analysis of the heart tissue.

The finite element method is popular for developing a patient-specific computational model,

which is a powerful method for clinical diagnosis and treatment guidance. In analytical mod-

els, the residual stress (and opening angle) theories are accepted, while the effects of residual

stress were well explored for regulating the growth. However, FE models rarely take account of

both residual stress and growth in the study of the bio-mechanical behaviours of soft tissues or

living organs. The influence of residual stress had been numerically studied by Holzapfel [33]

on the physiological stress state of the arterial wall. In [33], the multiple layer structures of
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arteries were developed within a FE geometry, while the opening angles were used to compute

the residual stress states in arteries.

Alastrue [1] developed a patient-specific FE model to study adaptive volumetric growth, in

which the residual stress states were coupled in. Considering an arbitrary material point X in

the stress-free artery wall (with opening angle), the deformation F takes X into the compatible

configuration Br. After applying external loading at Br, the deformation Fe drives the material

point into the loaded configuration Bc, which gives the overall deformation as F = FeF0. In

other words, if starting from Br, it required to multiple the deformation with the deformation

associated with residual stress to compute the accurate mechanical response for arterial material

point. This is the basic idea how Alastrue [1] developed the FE model including residual stress

states. The deformation gradient was derivate from the cylindrical artery model with opening

angles. After applying pressure on the inner surface, Fr would be multiplied with further elastic

deformation to compute the stress states for arteries. The overall stress will be employed in

the stress-driven growth (from [73] with minor modifications) to simulate the diagonal growth

tensor. By repeating the growth-stress loop, the FE model could give the evolutions of stress

and adaptive growth with the patient-specific arterial geometry.

Ren [64] used the two-layer model to investigate the effects of growth on the stress distribu-

tion and deformation. The key features of the two-layer model and growth laws were similar

to these models in [78] or [34]: (1) the stress-driven growth laws and diagonal growth tensors

employed for each layer; (2) the active stress is generated by smooth muscle. To this author, the

key difference in [64] is the selection of the stress-free configuration. In previous studies, the

intact ring was used as the stress-free configuration, while the incompatible growth in different

layers would modify the stress-free configurations. However, in [64], the growth occurred in the

opened angle configuration as stress-free one, which will affect the stress distribution.

With better understanding of the structures of artery wall, the non-homogeneity of the wall struc-

ture is well accepted, and represented by three layers: intima, media and adventitia (fig. 3.2).

The fact that the residual strains (opening angles) were different in layers has been experimen-

tally demonstrated (Vossoughi [88], Han [29]). Rachev [63] measured the distribution of resid-

ual strains by the opening angle method for a multi-cut model. The first radial cuts were made

on the aorta slices of mature rats to introduce the opening angle. Then, the wall components

(collagen, elastin and smooth muscle) were grown chemically or thermally along the direction

from the inner wall to the outer wall or in the reverse direction. The changes of growth opening

angles were recorded to show the distribution of residual strains changing with time.
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FIGURE 3.2: Components of a healthy artery with three layers: intima (I), media (M), adven-
titia (A).

The results showed the different opening angles in different layers of artery, which conditions

also suggested the existence of non-homogeneous residual strain distributions across the lay-

ers. By releasing residual strain, the updated zero-stress configuration could be identified more

accurately, which is important for analyzing the mechanical behaviours of aortas. Another im-

portant consequence of this research is that it also suggests that one radial cut could release all

the residual stress.

The published experiments on residual stress and growth of arteries show several important fea-

tures: 1) the arteries have at least three layers (intima, media and adventitia). 2) Distributions

of residual strains are non-homogeneous, which could be demonstrated by the multiple cut ex-

periments. Therefore, the zero stress configurations were different for different layers. 3) The

incompatible natural configuration come from the complex growth processes of components of

the arterial structure such as elastin, collagen and smooth muscles. The remodelling of collagen

[73] and muscle growth [24] were experimentally measured.

By considering the listed issues, Alford [2] developed a framework with a thick-wall tube model

to investigate the remodelling and growth in arteries. In this model, the passive material proper-

ties were described for individual components (elastin, collagen and smooth muscle), while the

active stress generated by smooth muscle was also included. The remodelling of collagen and
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elastin were mathematically described, as well as the growth laws for smooth muscle. For elastin

remodelling, it was assumed that the turnover rate is negligible. For collagen remodelling, It was

assumed that the old collagen is continuously replaced by new collagen. For smooth muscle,

the growth law is used as: the transverse growth is induced by passive stress, while the circum-

ferential growth is regulated by a combination of passive tensile and shear stresses, and active

strains. To solve a mechanical equilibrium problem, the governing equations were combined

with the previous intact ring model and radial cut slice model.

Besides the circumferential residual strains (measured by opening angles), the axial residual

strain was experimentally shown along longitudinal direction of aortas by Holzapfel ([39]), with

the axial strips taken from the anterior position of human aortas. After separating the layers from

axial strips, further axial deformations occurred, which demonstrated the axial residual strain.

In previous works (like [2]), the residual stress analysis was based on the opening angle method,

which does not account for address the 3D residual stress associated with both circumferential

and axial residual strains. Holzapfel and Ogden [36] constructed the first 3D model to analyze

the residual stresses in multiple layer arteries, considering axial bending.

The key difference from 2D residual stress model was the description of the elastic deformation

for media layer, which mathematically explained the deformation from the axial bending config-

uration into the circumferential bending configuration. With the help of stress equilibrium and

continuity of radial stresses at interface (3.8), the mechanical and geometric information could

be used to give the residual stress states in aortas.

The structure of an artery with atherosclerosis experimentally was observed with 5 layers: inner

intima, necrotic layer, outer intima, media and adventitia. Vandiver [85] analytically developed

a 5-layer model to study the growth formulation of an artery with atherosclerosis and studied

the effect of growth on peak stress. In [85], the stress-free configurations were unknown, which

would be determined from the pressurized artery tube and the residually-stressed configuration

with one radial cut. For a pressurized artery tube, the stress equilibrium equation is similar to

that in [23], while the continuous a displacement and radial stresses between layers are solved

with boundary conditions.

For a residually-stressed artery with an opening angle, the zero-net axial force and bending

moment conditions were applied. Then, the zero-stress configuration was solved after growth.

By considering different growth tensors, the effects on residual stress and peak stresses were

studied [85].
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3.2.2 Multiple Layer Model with Mass Growth Approach

Karvsaj [45] employed the constrained mixture growth model [4] to develop a multiple layer

model to study pathological arterial adaption. Moreover, the opening angle, induced by the

unbalanced growth in the constituents (fig. 3.3), was also considered with a decomposition ap-

proach similar with [1].

FIGURE 3.3: Configurations of arteries from constrained mixture model: left, the loaded con-
figuration of arteries; middel, after unloading, the arteries deform into a residually-stressed
configuration; right, the radial cuts release the residual strains in arteries measured by opening

angle.

3.3 Summary

After the opening angle method was firstly introduced by Fung, the existence of residual stress

has been well-accepted. More than significantly influencing the material properties of soft tis-

sues, the residual stress is considered to modulate the growth and remodelling process in living

organs. The evolution of residual stress could relieve the information about the history of growth,

which could help to better the understanding of the formation of organs and the development of

diseases. Due to the complex growth process in living organs, the complexity of residual strain

is actually a huge challenge to further studies about the mechanical behaviour of living organs.

For arteries, the multiple layer model is developed to analytically study the mechanical response

to changes of external loading or chemical environment, while the volumetric and mass (or

constrained mixture) growth approaches were used to simulate the growth. However, the theory

is still needed to explore how to address the stress-free state.

For the heart, due to its complex structure and geometry, most previous studies used the unloaded

configuration or one-cut configuration as the stress-free configuration to estimate the stress state.

However, both experimental and theoretical studies were suggested that: 1) residual stress will

significantly influence the stress distribution in the heart. 2) simple (or single) cut does not

release the residual stress in the heart. Therefore, more work is required to address the effect of

residual stress in the heart.



Chapter 4

Literature Review: Theories of Growth
and Remodelling for Living Tissues

The interactions between living organs and the bio-environment play important roles in regulat-

ing pathological or physiological growth. In general, it has been experimentally demonstrated

that environmental factors, such as the chemical, mechanical or genetic stimuluses, could induce

growth and remodelling (G&R) processes in living organs. For instance, nutrition concentration

will be increased around the tumors, which helps to accelerate cell division and lead to the local

growth of tumors at the tissue level (chemical factors). In [76], the experiments show that the

myocardium will grow along the direction of principal tensile stress (mechanical factors). Dur-

ing the heart formation, the embryo heart will continuously and instinctively develop the heart

structure (genetic factor).

Living organs can re-shape themselves and reset the growth (or turnover) rates of their con-

stituents; in the long run, they will develop volumetric and mass changes to adapt to the patho-

logical or physiological changes in the bio-environment. G&R processes have been observed

in different patterns: For embryonic or young organs, they will continuously re-structure them-

selves to develop specified functions, like heart formation. For mature organs, they are expected

to stay in a relatively stable living state and serve as fully functional; however, pathologically, the

dynamic impact of bio-environmental changes will induce a quick remodelling process to reno-

vate the functional tissue. For instance, chronic disorder could develop maladaptive G&R, such

as the hypertrophic ventricular growth induced by systemic hypertension in the heart; physi-

ologically, body exercises will stimulate reversible growth to strengthen the functions of the

living organs. As evidence, the wall-thickness of artery is increased (in other words, eccentric

ventricular growth were observed) for animal after more body exercises, which could promote

muscle contractions.

44
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After G&R, the functions and life cycles would be modified in living organs. However, the prin-

ciples governing those mechanism are still not fully understood that could address the relation

between external stimuli and growth processes. Obviously, improving the knowledges in this

particular field will give huge potential for the design and optimization of clinical treatments

to efficiently save more lives. However, in this relatively new field, many challenges exist.

As mentioned, the stimulus could be considered as the combined effects of different sources,

including mechanical, thermal, electrical and genetic information. These stimuli will simultane-

ously contribute to the successive growth processes in living organs. In practice, this fact raises

the complexity of figuring out the contributions of individual environmental factors. Besides,

to understand growth in living organs, the theoretical framework is expected to be based on the

coupling factors from multidisciplinary, which is still a gap in the current stages of knowledge.

For the biomechanical or even the mechanical community, the key questions now are: how could

the mechanical behaviours of soft tissues be mathematically described? what is the role played

by mechanical factor in the regulation of the growth? How would the mechanical functions and

behaviours of living organs be modified after the growth? How would the mechanical informa-

tion feedback and regulate changes of bio-environment during the life cycle? How would the

mechanical information be decoupled and coupled with information from other fields to regulate

the growth in living tissues?

Recently, significant improvements have been made to build up knowledge about the mechani-

cal behaviour of soft tissues, like theories of the nonlinear elastic deformations. To answer these

questions, in early stages of researches in this field, the mechanical stimuli was exclusively ex-

tracted. If controlling other stimuluses stable and unchanged, by recording the mechanical stim-

ulus and subsequent growth, the relations could be mathematically described between growth

and mechanical information. In the coming sections, the (mainstream) academic works will be

reviewed to show the current research stage and potential directions in this field.

It should be clarified that only two key categories about growth and remodelling will be ad-

dressed in those sections: (1) the remodelling of fibre-reienforced material; (2) the volumetric

and mass growth in living organs. These are closely related with author’s research interests,

4.1 Remodelling of (Collagen) Fibre-reinforced Soft Tissues

Considering the formations of living organs, if ignoring other stimuli (like chemical factors),

mechanical environment plays an important role for the adaptation of tissues. In other words,

the structure and functionality of soft tissues will be structured and optimized to adapt external

(mechanical) working environments.
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Strain and stress are key indicators for measuring the load level in living organs. Experimental

evidence suggests strains and stresses are the mechanical factors inducing adaptations in tissues.

For instance, Huiskes [41] found that the strains could contribute to the bone growth. Taber [78]

hypothesized the stress-regulated growth in soft tissue. Later researchers studied how these

factors affect the fibre architecture.

Strain−driven f ibre remodelling

In [14], Driessen et. al. investigated the interrelations between collagen structure and mechani-

cal conditions in arteries via a strain-driven law, with an algorithm introduced in [13, 15]. After

applying abnormal loading (hypertension), the elastic deformation is obtained via the constitu-

tive laws of the artery wall. Then, the principal strains are obtain. The fibres are assumed to be

re-oriented to the directions of the principal strains in the current configuration as

dθ

dt
= k(1− ft · ep) (4.1)

where dθ/dt is the rate of reorientation from fiber direction to the positive principal strain di-

rection (ep), , ft is the fibre orientation in the current configuration at time t.

In a time incremental ∆t, with helps of rotation tensor R, the new fibre orientation is given as

ft+1 = R(∆θ ,er)ft ,

where R is the rotation tensor based on ∆θ and the normalized rotation axis er.

After the fibre rotations by strain, the fibre is pushed back into the unloaded (and natural) con-

figuration, according to

f0,t+1 =
F−1ft+1

||F−1ft+1||
, (4.2)

where F is the elastic deformation gradient from the initial reference configuration to the current

configuration, f0,t+1 is the new orientation of a fibre in updated stress-free configuration.

After the fibre architecture is updated by previous process, the loaded configuration is re-

computed with the same loading boundary conditions. Repeating this iterative process, the

final fibre architecture is obtained till the reorientation of the fibre converge to a stable stage.

Actually, ultimately, the fibre orientations will perfectly align with the directions of principal

strains, which agrees with experimental observation.

Stress−driven f ibre remodelling

The stress is considered as the driving force for fibre remodelling in some researches (for exam-

ple, in [78]). Following this hypothesis, Hariton [31] used a thick-wall tube to simulate the fibre

reorientations in an artery wall via the stress-driven approach. After applying external loading

for an artery wall, the fibre is reoriented in the current configuration by a stress-driven law.
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The new fibre orientations in remodelling-updated natural configuration could be obtained by the

push-back algorithm similar with eq. (4.2). Then, after the boundary-value problem is solved,

the fibre angles is deduced again. The final fibre structure would be obtained by repeating the

iteration till the stress field in the artery is stable. The computational results show the predicted

fibre structure also agrees with experimental observation.

The stress-driven law and algorithm were also applied to predict the fibre structures at the carotid

bifurcation by Hariton, which also gave the reasonable results comparing with experimental

data [17].

Summary

Actually, the previous stimulations mentioned in this subsection are more like the mathemat-

ical calculations to determine the optimal fibre structure when bearing the external load. The

important implications include: (1) the mechanical factors could be employed to explain the

remodelling in soft tissues. (2) it demonstrates that the living organs would optimize the fibre

structure responding to mechanical-biological environment. (3) In an artery, the fibre structures

simulated by stress-driven [31] or strain-driven [14] laws were similar and both relatively agree

with experimental data. It also suggested that the stress and strain distributions were coupled or

coaxial in arteries in some level.

4.1.1 G&R Process for Fibre-reinforced Tissues (from Cell Level to Tissue Level)

Fibre structure is the key feature for determining the mechanical behaviours of soft tissues.

In the real bio-environment, G&R processes are really complex and are usually induced by

environmental factors. In general, the fibres will be produced and removed by the fibroblasts.

Besides, the existing fibre alignments will be modulated or rotated by fibroblasts as well. Many

researchers have focused on what factors influence the activities of fibroblasts and how the

fibroblast activities regulate the fibre structure.

Due to the features of the fibre structure, different assumptions are introduced to describe the

material properties of collagen fibres: (1) the collagen fibre is considered as the ‘rope’ in the

tissue and doesn’t bear the compressive loading. For instance, Holzapfel et. al. [38], [37] used

the angular integration (AI) model to describe the mechanical behaviours of the fibre structure,

with a switch to properly exclude the influence of compressed fibres. Assuming the dispersed

fibre structure is defined by the fibre orientation density function ρ(θ), the angle range (Σ) of

stretched fibre could be determined by the fibre invariance as

I4(θ) = N · (CN)> 1⇒ θ ∈ Σ (4.3)
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where C is the right Cauchy-Green deformation tensor, Σ is the solution for the inequity I4 > 1.

For the deformation C, the compressed fibres are excluded if I4 < 1.

(2) Actually, the crosslinks between collegan fibres were experimentally observed in many re-

searches (seeing [81]). However, the crosslinks suggested the higher fibre alignment and the

interactions between fibres, while it was usually assumed that the fibre responded independently

to external loading in previous studies (like [38]). By effects of fibre connections, the entire

fibre structure could bear compressive loading, though the individual fibre might not take any

compression.

In [49], Kroon used a new SEF to describe the mechanical behaviours of the fibre structure under

compressive or tensile loading. If ignoring the crosslinks between fibres, the fibre would act like

the ’rope’ and don’t take any compressive loading. As results, the mechanical contributions of

compressed fibres should be removed ([38]). However, with helps of cross-links, the tissue will

exhibit a certain stiffness in compression direction as well. Then, the SEF is introduced as

Ψ =
kc

4a

∫
ρexp(a(I4−1)2−1) ·H(I4−1)dΩ+

kcn
4

∫
ρ(ξc− I4)

2 ·H(ξc− I4)dΩ, (4.4)

where Ω is the angle domain in which the orientation density function ρ is defined. Constants

of kcn, kc and a are material parameters, I4 is the stretch along fibre (I4 = f · (Cf)). ξc is the

stretch of matrix material along M direction (ξc = C : A and A = FM/|FM|⊗FM/|FM|); F is

the related elastic deformation tensor; H(x) is the Heaviside step function.

The SEF (eq. 4.4) includes the contributions from fibres in tension (first term) and the matrix

material with compressed fibres (second term).

Moreover, accordingly, the crosslinks and interactions between fibres could be modulated by

the fibroblasts ([62]). Kroon [49] studies the remodelling process of the fibre structure, with the

mentioned constitutive law of soft tissue (eq. 4.4). Results suggest that the fibre orientations and

alignments are key features for soft tissues.

After re-structuring the fibre structure in the current configuration, the push-back method [31]

was also employed to determine the fibre network in the reference configuration. Interestingly,

the remodelling process in [49] ignored fibre degradations. For instance, after remodelling, the

orientation density function ρ will be updated. Meanwhile, the overall mass of fibres is changed,

which is indicated by the changing mass production rate. Besides, while the volumetric fraction

of fibres was implicitly ignored in this research. However, experimentally, it is suggested that the

fibroblasts could rotate and produce the fibres [62]. Later researches explore more in this field.

Recently, experiments suggested that the activities of fibroblasts could be influenced by: (1)

chemokine (chemical) factors; (2) the existing collagen fibre structure; (3) mechanical factors.
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Living organs were exposed to the in vivo environment, bearing the loading all the time. If the

environmental factors changed (for example, the chemical field changes around the wound in

the organs), the fibre structure would be modified by the changed fibroblast activities, which in

the long run would influence the material properties of the tissues. Besides, mechanical factors

(like strain or stress) would be changed since the mechanical behaviours of the tissue would be

different. In the life cycle, the mechanical factors will be coupled with G&R processes: the re-

modelling will modify the material properties of the tissues; the mechanical factors, influenced

by the modifications of the material properties, will feedback to the remodelling process. These

steps will repeat and subsequently affect the functional activities of living organs.

Rouillard [66] developed an agent based model to study the remodelling of infarct scar tis-

sue and fibroblast behaviour in the complex environment of a healing infarct, by accounting

for environmental factors. Here, the preferential directions of fibroblasts were determined by

the combination of effects of (environmental) factors . The fibre structure will be modified by

fibroblast migration along preferred direction of fibroblast cells, with fibre depositions and ro-

tations by cells. Automatically, the material properties would be modified by assembling the

fibre structure into the SEF. Then, after re-solved the boundary problems with the new SEF,

the mechanical information would be updated, which will contribute to the subsequent fibre

remodelling process. The whole process will be repeated until the end of healing period.

The fibre structure was predicted for the infarcted heart during the healing period, which agreed

with the published experimental data in [20]. It is needed to clarify that the mechanical factors

were assumed as constants in [66].

Rouillard [67] coupled the agent-based model [66] with FE method to study the evolution of

fibre structure in the infarcted heart tissues, in which the altered material properties and me-

chanical influences were included.

In [67], the material properties were described by the modified Fung-type SEF. Then, the fea-

tures of the fibre structure could be assembled into Fung-type SEF by computing the Fung-type

coefficients. An algorithm was introduce to account for the contributions of every individual

fibre to get the coefficients.

The fibre structure will be modified by fibroblast migration in the agent-based model, which

will alter the material properties. Then, the mechanical response will be re-solved with the new

fibre structure in the FE model. By coupling the agent-based model with the FE method, the

evolution of both collagen fiber structure and regional deformation were studied in [67]. To this

author, the obvious disadvantages in [67] are: 1) the mechanical behaviours of the stretched and

compressed fibres are implicitly the same. In reality, the compressed fibres do not contribute to
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the mechanical response of the tissues to external loading. 2) 2D slices of tissues are employed

to simulate the G&R process of fibre-reinforced materials. And 3D model is not available. 3)

The geometry of living tissues are too simple. The geometry of a real organ is complex and

irregular, which makes the simulation more difficult.

4.2 Volumetric Growth of Soft Tissues

Besides the fibre remodelling in soft tissues, other important G&R effects are the mass or vol-

umetric growth of living tissues, associated with an obvious impacts on the mechanical be-

haviours. To mathematically describe the volumetric or mass growth, two popular approaches

have been developed: (1) the growth deformation tensor, similar to an elastic deformation tensor,

is used to deform the tissue into the growth-updated configuration. In general, it is assumed that

the material properties are unchanged from the initial stress-free configuration to the growth-

updated natural configuration. Then, residual stress will be induced by the elastic deformation

to make the incompatible configuration (after growth) into the intact (and compatible) tissues.

(2) soft tissues are usually composed of different constituents; for instance, the artery walls

could be decomposed into smooth muscle, collagen fibres, etc. Then, individual growth laws

were used to describe the growth for each constituent. This will give individual reference con-

figurations for each constituent. The residual stresses will come from the interactions between

constituents in the compatible configuration.

The later chapters will review the key theories and developments in these two fields. Besides,

another key question in the biomechanical field is what is the mechanical by driven factors that

induce and regulate growth in tissues: to answer that, two hypotheses were popularly used,

which were firstly proposed in [76]: (1) strain-driven law: the growth was induced by strain; (2)

stress-dependent law: the stress could induce the growth. The experimental evidences and the

applications of those growth driven laws will be reviewed in the coming chapters.

4.2.1 Volumetric Growth with Kinematic Approach

In [65], Rodriguez used the growth deformation gradient to describe the growth in soft tissues.

The growth tensor updated the tissue into a new stress-free configuration. Then, the elastic

deformation carried the tissue into a compatible configuration with an elastic deformation tensor,

causing residual stress. The overall deformation, after growth and elastic deformations, could

be expressed as

F = FeFg. (4.5)

If assuming the material properties for tissues are unchanged after growth, the Cauchy stress

could be obtained from elastic deformation (Fe) and constitutive laws of tissues.
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In work of [65], only growth along principal directions was included, which ensured the rotation

tensor Rg was I so that

Fg = RgUg = Ug = diag(λ1,λ2,λ3). (4.6)

where λi is the stretch along ith principal direction.

To further simplify the problem, a tube model was employed in [65], which gives the elastic

deformation as the diagonal tensor what is based on cylindrical coordinates as

Fe = diag(λr,λθ ,λz). (4.7)

Then, it gives convenience for calculating the updated stress-free configuration by the overall

growth tensor, from eqs. (4.8) to (4.9):

Fe,tk Fg,tk = Fg,tk Fe,tk , (4.8)

Feg = Fe,tnFg,tnFe,tn−1Fg,tn−1Fe,tn−2Fg,tn−2 · ··
= Fe,tnFe,tn−1Fe,tn−2 · ··︸ ︷︷ ︸Fg,tnFg,tn−1Fg,tn−2 · ··︸ ︷︷ ︸
= Fe,tnFe,tn−1Fe,tn−2︸ ︷︷ ︸ · · ·Fg

= FeFg,

(4.9)

where Fe,tk ,Fg,tk are the elastic and growth tensors at time step tk.

This approach was used to study growth in the left ventricle under a stress-driven law ([76].

However, the commutation laws between growth and elastic tensors are not always satisfied,

which state is shown by later researches (like [26]).

In [3], the decomposition (eq. 4.5) was borrowed to study mechanical stability in a spherical

body after one-step growth. The nominal stress-deformation relation was derived in the (non-

growth) original configuration

S = J
∂W
∂Feg

(Fe) = JF−1
g

∂W
∂Fe

.(Fe) (4.10)

In a pressurized spherical shell, the symmetric growth and elastic deformations were expressed

in spherical coordinates as

Fe = diag(Fe1,Fe2,Fe3) Fg = diag(Fg1,Fg2,Fg3). (4.11)

After applying loading, the nominal stress equilibrium is given, referring to original reference
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configuration. The mechanical information could be obtained by testing the boundary condi-

tions. The results presented different modes of bifurcation in the spherical body after growth.

The decomposition method was further explored to describe incremental growth in [26]. The

elastic body deformed into the intermediate configuration (F1 = A1G1). If the subsequent incre-

mental growth occurred in the intermediate configuration, the stress-free configurations before

and after growth could be linked by the cumulative growth tensor G(2). If the residual stress in

V2 could be released by (R2A1)
−1, where R2 is the rotation tensor from the polar decomposi-

tion of incremental growth G2 (G2 = V2R2). This process shows that the commutation law is

not always satisfied between the growth and elasticity tensors (eq. 4.13). Moreover, it suggests

that the commutation law is satisfied in cases with diagonal growth and elastic tensors, which

indicates that

Fe,tnFg,tn = Fg,tnFe,tn (4.12)

For cumulative growth, the growth could be expressed as

Feg = Fe,tnFg,tnFe,tn−1Fg,tn−1Fe,tn−2Fg,tn−2 · ·· (4.13)

Applying eq. (4.12), last equation could be rearranged as

Feg = Fe,tnFe,tn−1Fe,tn−2 · · ·Fg,tnFg,tn−1Fg,tn−2 · ··
= FeFg,

(4.14)

where

Fe = Fe,tnFe,tn−1Fe,tn−2 · · ·Fe,t1 , (4.15)

Fg = Fg,tnFg,tn−1Fg,tn−2 · · ·Fg,t1 , (4.16)

To this author, one assumption in previous derivations looks problematic. Referring to the pre-

vious explanation, the residual strain could be released by (R2A1)
−1. The elastic deformation

(A1) is from the stress-free configuration V1 to B1. However, to calculate the residual stress in

V2, the elastic deformation could be obtained from the undated stress-free configuration V (2) to

V2. Since the stress state and the reference configuration are different, the new elastic deforma-

tion A2 should depend on the boundary condition in V2 and reference configuration V2, while it

should be independent of A1. In other words,

A′2 6= R2A1, (4.17)

where A′2 is the deformation tensor from V (2) to V2.
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In previous studies ([3] and [26]), the growth is employed as a constant deformation tensor in-

dependent of external factors. However, in reality, growth is regulated by environmental factors,

like chemical, mechanical or genetic factors. If focusing on mechanics, it is necessary to answer

how the mechanical factors influence the growth. Two driven factors are proposed by Taber: (1)

strain-driven law: the longitudinal growth was induced by strain, while stress induces transverse

growth. For instance, skeletal muscles were observed to grow in the directions orthogonal to

the primary stress [76]. This strain-driven law was employed by by Taber [74] to mechanically

model the growth of a developing embryo heart.

(2) active stress-dependent law: the active stress could induce the transverse growth. For in-

stance, in [76], the stress-driven law was employed as

λ̇gr

λgr
= br(σθ −σ0), (4.18)

where br is the growth constant, λgr is the growth stretch along radial direction, σθ is the com-

ponent of Cauchy stress along circumferential direction (orthogonal to radial direction), σ0 is

the critical value.

In some works, the stress and strain driven laws are combined to study growth induced by

mechanical information, for example, Taber [76] used the growth laws as

λ̇gθ

λgθ

= bθ (σθ −σ0)−bλ (λθ −λ0),

where bθ ,bλ are the growth constants, λθg,λθ are the growth and elastic stretches along circum-

ferential direction, and σθ is the stress along circumferential direction.

Kerchkoffs [46] used the strain-driven laws to model cardiac growth during the post-natal. In

that work, the multiplicative decomposition was employed between growth and elastic deforma-

tion tensors (eq. (4.5) from [65]). Experimental evidence suggests that the growth of the heart

increased the cardiac sarcomere length and diameter. Therefore, for any growth step, the growth

tensor was defined as

Fg,i =




Fg,i,rr 0 0

0 Fg,i, f f 0

0 0 Fg,i,cc,


 (4.19)

where Fg,i, f f is the growth along (sarcomeres) fibre direction, Fg,i,cc,Fg,i,rr are the growth along

cross-fibre directions.

The strain-driven laws were defined similarly to laws in [76], as

Fg,i, f f = (b f (E f f −E f f ,set)∆t +1), (4.20)

Fg,i,cc = (b f (Ecc−Ecc,set)∆t +1), (4.21)
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Fg,i,rr = Fg,i,cc, (4.22)

where Eii is the component of Eulerian strain tensor, and Eii,set is the threshold strain.

Then, the cumulative growth could be obtained as

Fn
g =

n

∏
i=1

Fg,i. (4.23)

For the LV, the mechanical factors (such as strain) could be solved after setting boundary con-

ditions and material properties for the heart tissues in the FE method. Then, the local growth

would be induced following growth laws. After the geometric information of the LV is up-

dated by the growth, the mechanical information would be resolved and induce new growth. By

repeating this process, the long-term growth could be simulated.

However, one defect of the previous growth laws is that they might allow the ‘unbounded’

growth. For instance, in eq. (4.20), if the magnitude of fibre strain (E f f ) is significantly large,

it will induce the ‘large’ growth step. However, this is almost impossible in real living organs.

In [47], the growth laws are modified to exclude the ‘unbounded’ growth, as

Fg,i, f f =





k f f
f f f ,max∆tgrowth

1+exp(− f f (sl−sl,50))
+1, sl > 0

− f f f ,max∆tgrowth
1+exp( f f (sl+sl,50))

+1, sl < 0,
(4.24)

Fg,i,cc =





√
kcc

fcc,max∆tgrowth
1+exp(−c f (st−st,50))

+1, sl > 0√
− f f f ,max∆tgrowth

1+exp(c f (st+st,50))
+1, sl < 0,

(4.25)

where f f ,c f are growth constants, and si is the growth stimulus defined as

sl = max(E f f )−E f f ,set , sc = min(Ecc,max)−Ecc,set . (4.26)

Referring to eq. (4.25), the growth rate is actually bounded with upper limit value. For instance,

recalling eq. (4.25),

lim
sl=∞

Fg,i, f f = k f f f f f ,max∆tgrowth +1.

By applying this growth law, the heart growth was studied under pressure and volumetric over-

loads.

In [25], different growth laws were employed to study pathological and physiological growth

processes in the heart: it is assumed the driven factors are different for wall-thickening (stress-

driven) and ventricular dilation (strain-driven).
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The adaptation in an athlete’s heart gives the increased heart pressure and volume. The stress-

driven growth law for the heart is given as

Fg = υ
gI, (4.27)

where υg is the growth multiplier which is determined by

υ
g = kg(υg) ·φ g(Ṁe

)

{
kg = 1

τ
( τmax−τg

τmax−1 )
γ

φ g = tr(Me)−Me crit,
(4.28)

where τ,γ are the growth constants, Me is the the Mandel stress (Me = CePe) and Me crit is the

criteria value.

This growth law induced isotropic cardiomyocyte growth, which increased the volume and wall

thickness of the LV.

The experimental observations suggest a transversely-isotropic growth during cardiac dilation.

The strain-driven growth law was defined as

Fg = I+(υg−1)f0⊗ f0, (4.29)

where f0 is the unit vector along the (sarcomere) fibre direction in the (fixed) reference configu-

ration. φ g is the growth multiplier which is determined by

υ̇
g = kg(υg) ·φ g(Ḟe

)

{
kg = 1

τ
( τmax−τg

τmax−1 )
γ

φ g = tr(Me)−Me crit ,
(4.30)

where τ,γ are the growth constants.

This growth law induced transversely-isotropic growth which increased the volume of the LV

with constant wall thickness.

The experimental observations also suggest a transmural growth of heart muscle under pressure

overload. The stress-driven growth law was defined as

Fg = I+(υg−1)s0⊗ s0, (4.31)

where s0 is the unit vector orthotropic to the (sarcomere) fibre direction in the (fixed) reference

configuration, φ g is the growth multiplier which is determined by

υ
g = kg(υg) ·φ g(Ṁe

)

{
kg = 1

τ
( τmax−τg

τmax−1 )
γ

φ g = tr(Me)−Me crit
(4.32)

where τ,γ are the growth constants.
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This listed growth law induced the growth which increased the wall thickness of LV with con-

stant cavity size.

The smallest functional unit of a cardiac cell is a sarcomere, which structures the cardiomy-

ocyte. Responding to volume-overload, the sarcomeres would be added in series to increase the

cardiomyocyte length. If under pressure-overload, the sarcomeres would be added in parallel to

increase the myocyte cross-section. A multiscale model [48] was developed to study the cardiac

growth which are the results of sarcomere additions. The growth is similar to the growth in [25],

but at the sarcomere level [48]. Referring to the experimental observations [80], the overall

volume of the heart tissue remains constant after the heart infarction. Therefore, the isochoric

growth tensor (J(Fg) = 1) was used to describe the growth of healthy tissue as

Fg = υ
gf0⊗ f0 +

1√
υg

(I− f0⊗ f0), (4.33)

The stress-driven growth law was similar to eq. (4.32) for the healthy tissues, while the infarcted

tissues are assumed to be ingrown. The growth is simulated for the patient-specific LV.

Alternatively, Kroon [50] used a ‘updated reference’ method to determine the new stress-free

configuration and to calculate the successive mechanical behaviours of living organs after incre-

mental growth.

FIGURE 4.1: Configurations during the incremental growth: left, B0 is used as the fixed ref-
erence, the incremental growth (Fg,i) updates the virtual stress-free configuration; right, the
updated current configuration (Bg,2) is used as the stress-free one, where Cauchy stress is

small (σg ≈ 0).

In [50], the approach to determine the stress free configuration by cumulative growth is named

as the ‘fixed reference’. Here, the incremental growth is assumed to occur in the initial ‘stress-

free’ configuration, while the growth-elastic mixed deformation connects to the new compatible
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configuration. For instance, in fig. 4.1 (left), the incremental growth occurs in the loaded con-

figuration Bg,1, which simultaneously induces the elastic deformation to make the soft body

compatible. Therefore, the growth-elastic mixed deformation (Feg,2) connects two compatible

configurations Bg,1 and Bg,2. The real (or pure) incremental growth is assumed to occur in the

previous stress-free configuration and connects to the new stress-free configuration. Finally, the

new stress-free configuration could be obtained by cumulative growth F(2)
n related to the initial

configuration B0.

This ‘updated-reference’ approach links the new stress-free configuration with the stressed con-

figuration via pure incremental growth. In this approach, the internal stresses are assumed to be

fully relaxed by the growth (or turnover), or saying, the incremental growth directly connects to

the new stress-free configuration. For instance, in fig. 4.1 (right), the incremental growth occurs

in the loaded configuration Bg,1. If the growth could relax all internal stress, the new stress-free

configuration could be determined by the growth increment Fg,2.

In summary, the listed researches usually assumed the incremental growth occurs in the refer-

ence (stress-free) configuration. It is mathematically convenient to obtain the new stress free

configuration and the stress distributions after growth. For instance, the cumulative growth ten-

sor could be obtained directly from previous incremental growth (eq. (4.23)), while the stress

free configuration could be identified simultaneously by a cumulative growth tensor. However,

the growth generally occurs in the current or residually-stressed configuration. The existence of

the residual stress might inspire researchers to develop new approaches to calculate the cumula-

tive growth tensor and give different stress-free configurations.

The decomposition of growth and the elastic deformation have been been used in previous re-

searches. In most studies, pure growth is assumed to occur in a stress-free configuration, which

is mathematical convenient to determine the updated stress-free configuration. However, in

living organs, the residual stress usually exists and will influence the successive growth and re-

modelling process. Since growth occurs in the (residually) stressed configuration, the approach

to determine the updated stress-free configuration should include the effects of residual stress

on the stress states after growth. Recently, some researches started to focus on the influences of

residual stress on mechanical behaviours of soft tissues after growth. However, the understand-

ing is still relatively poor, in the perspective of nonlinear elastic theories.

4.2.2 Mass Growth

The ‘volumetric growth’ approach was used to describe the growth when the volume increases

in soft tissues; and the related works have been reviewed in the last subsection. Some researches

used the ‘mass growth’ approach to describe the growth and remodelling process in living organ.
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Baek [4] used the ‘constrained mixture model’ to study the growth of the aneurysms, which

model was initially developed by Humphrey [44]. The living organs are usually composed

of different constituents which continuously turnover during the life cycle. For an individual

constituent, the material or micro-structures are also turning over. For instance, the arteries

are composited by three key materials: smooth muscle, collagen and elastin; and the collagen

is continuously deposited and removed by fibroblast cells. Referring to nonlinear deformation

theories, the elastic states should be obtained by calculating the elastic deformation of arteries,

referring to the reference configurations of each constituent during turnover.

In the constrained mixture model, the reference (natural) configurations are different for old and

new material even for the same constituents. In [4], it is only turnover (growth and remodelling)

of collagen fibres in arteries is considered and the turnovers of elastin and muscle are ignored.

The newly-produced collagen (kth constituent of arteries) could be assembled into the loaded

configuration (Kτ ) of artery from its own stress-free configuration K k
n (τ) at time t. If the

prestretch of new collagen was defined as a constant Gk(τ), the total elastic deformation here is

Fk
n(τ)(t) = F(t)F−1(τ)Gk(τ), (4.34)

where F(t), F(τ) are the deformation tensors connected with subsequent configurations at time

t and τ from a universal reference configuration.

The total mass for individual constituent k was changed due to the local production and removal

of material, as

Mk(t) = Mk(0)Qk(t)+
∫ t

mk(τ)qk(t− τ)dτ, (4.35)

where Qk(t) and qk(t) are the survival rates of constituents, mk is the rate of production, Mk is

the initial mass for constituent k. It is assumed that the density is constant for each individual

constituent, which means the mass changes of the constituents are proportional to the volumetric

changes.

The overall strain energy per unit volume could be obtained by

wk(t) =
Mk(0)

ρk Qk(t)W k(Ft)+
∫ t mk(τ)

ρk q(t− τ)W k(Fk
n(τ))dτ. (4.36)

Then, the total strain energy per reference volume could be expressed

W (t) = ∑
k

wk(t). (4.37)

Then, Cauchy stress could be obtained from the SEF related with time-dependent mass fractions

of the constituents. After solving the stress states for the boundary value problem with the helps
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of the SEF (eq. 4.37), the collagen production could be obtain via a stress-driven G&R as

mk(t) = M(t)(Kg(σ
k(t)−1)+mk

h), (4.38)

where Kg is the growth parameter, mk
h is the homeostatic value of mass for constituent k, M(t) is

the total mass at time t.

In [4], this approach was employed to study a developing aneurysm, in which the changed con-

stituent is collagen only.

As mentioned, the artery wall is composed of three key constituents: smooth muscle, collagen

and elastin. In [2], the constrained mixture model is used to analysis the growth and remod-

elling in an artery wall, while G&R processes occurred in all the key constituents. For elastin,

the experimental observations [11] suggests the turnovers of elastic are negligible. Then, the

additional stretch λ is assumed as 1 after turnover (no growth or remodelling). For collagen,

the stress-driven turning over is similar to that in [4] (eq. (4.38)). For smooth muscle, the used

growth laws indicates 1) the stress-driven growth of muscle along the radial direction, and 2) the

circumferential growth is induced by both strain and stress factors. By assembling the growth

laws into the SEF of an artery wall (eq. (4.37)), the SEF is obtained to describe the mechanical

behaviours of the artery under the framework of constrained mixture growth approach. In [2],

the stress state could be obtained to solve the boundary problems for a thick-wall artery tube

model. Coupling with the constrained mixture growth for artery constituents, the growth and

remodelling process is simulated for artery.

In previous researches from the Humphrey group ([4], [2]), the loads on living organs were

used as static and constant forces applied on the inner surface of the artery wall. Actually, the

loading and boundary conditions are dynamic and more complex than the constant loads, which

are induced by the interactions between the fluid (blood) and solid (artery walls) during life

cycle. By coupling the constrained mixture model with the fluid-solid interaction model, the

fluid-solid-growth is developed to study the cardiovascular growth and remodelling during the

cardiac cycle.

Applying the traction and stress continuity conditions at the fluid-solid interface, stress equi-

librium equations are solved for both the fluid and solid domains. Then, combined with the

constrained mixture model, the growth and remodelling process could be computed for the car-

diovascular vessel under fluid-solid-interaction conditions.

Most previous researches used the constrained mixture model, in which the studied cases are

relatively too simple in some sense: for example, using the thick-wall tube model describing

the mechanical behaviors of artery. However, from that clinical view, the problems are more
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complex and challenging, which includes the hypodynamic or irregular geometry of the heart

and the boundary conditions. Valentin [84] implemented the constrained mixture model into a

FE model to simulate the growth and remodelling of an artery with a multilayer structure.

The evolution of the mechanical behaviours and growth in different artery layers were simu-

lated, which is a more-general tool to analyze the complex boundary problem associated with

patient-specific geometries ([4, 43]).

Watton [92, 94] also employed different configurations to describe the growth and remodelling

in different constituents of living organs. In [94], the artery wall is assumed to be composed of

two constituents: extracellular matrix (ECM) and collagen. For ECM, the degradation of elastin

is fitted from experimental data.

For collagen: 1) all collagen fibres will be deposited into the recruitment configuration with

different recruitment stretches. Recruitment stretch, firstly introduced in [93], is to describe the

onset stretch of recruitment of fibres to bear loads. 2) the strain-driven growth law of collagen

could be also obtained from experimental data as

dmC

dt
= (ξ1mC +ξ2|

dmE

dt
|)(EC−EC

AT ) (4.39)

where ξi is the remodelling constant.

By coupling the remodelling-growth laws and the SEF, the evolution of remodelling and the

mechanical behaviours are obtained by solving the boundary problem for the thick-wall artery

model. However, to author, the remodelling-growth framework is only suitable for limited cases,

and is not satisfactory for solving general problems. For instance, it is assumed all collagen fi-

bres are deposited in the fixed recruitment configuration. However, the fibres, deposited by

fibroblast cells, are usually produced in the current configuration, while cells don’t ‘know’ the

recruitment configuration. Besides, from the mechanical perspective, the SEF used in [94] is

defined for per volume for artery tissues (eq. (4.40)). Then, the sum of weights from the con-

stituents (collagen and ECM) should be one, which guarantees the SEF for tissues is always

defined for unit volume as

mC +mE ≡ 1.

However, the volumetric fractions of constituents are independently regulated by their own

remodelling-growth laws. If mC + mE 6= 1, the SEF might not give the proper stress-strain

relation. Moreover, other limitations are also included in that framework.

The different formulations of artery wall were experimentally observed ([69]): for an individ-

ual constituent, the material density remains constant during life, which is named as ‘constant
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individual density’ (CID). If the material density is changing, it is called ‘adaptive individual

density’ (AID). Eriksson [16] modified the remodelling-growth laws (eq. 4.39) and the SEF

with the material density factors to describe the mechanical behaviours of an artery and applied

them in the FE method. The SEF is modified as

Ψ = ρ̂eΨ̂
E + ρ̂CΨ̂

C, (4.40)

where ρ̂e, ρ̂C are density factors for elastin and collagen.

If the density ρξ is constant for constituent ξ (CID), the density factor at time τ is expressed as

ρ̂ξ (τ) =
ρξ (τ)

ρξ (τ0)
=

v̂ξ (τ)

v̂(τ)
(4.41)

where v̂ξ (τ) is the volumetric factor of constituent ξ , v̂(τ) is the volumetric fraction of tissue.

If the density ρξ is adaptive for constituent ξ (AID), the density factor at time τ is expressed as

ρ̂ξ (τ) =
ρξ (τ)

ρξ (τ0)
= ρ̂ξ 0(τ)

v̂ξ (τ)

v̂(τ)
, (4.42)

where ρ̂ξ (τ) is the individual (unnormalized) density.

Combining with the growth laws of collagen and elastin, the SEF is obtained for artery tissues

during the remodelling-growth process. This framework is assembled into the FE method to

simulate the evolution of the artery structure during the life cycle with different growth patterns

(CID or AID).

Volokh [86] used a phenomenological theory of tissue growth and develop a toy-like model to

describe tumor growth. In [86], the growth is explained as: considering a regular initial tissue,

the new tissue elementary components (cells, molecules) are supplied, which is seen as a result

of injection. And it could be constructed physically into a model of tissue growth. In this model,

the stress-strain relation is redefined as

P = F(∂W/∂E− (ρ−ρ0)η), (4.43)

where W is the SEF for non-growing tissue, P is the first Piola-Kirchohoff stress, η is the grown

moduli tensor, which is related to the tissue growth and independent from mechanical factors.

This growth law is obviously different from other researches ([2], [4]). In [86], the tumor is

simulated as a multi-layer spheroid. The simulation of tumor growth agreed with in vitro exper-

imental observation.
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4.3 Summary and Theoretical Gaps

Understanding of G&R is obviously improved in previous researches. The fibre remodelling

is simulated with different regulators. It is analytically demonstrated that the fibre structure is

optimized to bear the external loading. However, the limitations are also obvious in those works.

To this author, the most important problem is: in real living tissues, the fibre turnover usually

includes two key processes: the fibre deposition and re-orientation. In most of researches, the

remodelling is decoupled from volumetric growth. Then, if the fibre is deposited in the current

configuration, the push-back method is employed to obtain the fibre structure in the stress free

configuration, i.e.

f′0 = F−1
e f,

where f′0, f are fibre vectors in stress free and loaded configurations.

However, if the tissues experience both turnover of the fibres and volumetric growth, the method

is more complex to obtain the fibre structure in the stress-free configuration. In general, if the

fibre rotation and volumetric growth occur in the current configuration, the fibre structure should

be carried into the grown configuration according to

f′ = Gf,

where f′, f are the fibre vectors in loaded and grown configurations.

After the previous step, assuming the updated stress-free configuration could be obtained by

fully releasing the residual stress, the fibre vector is updated as

f′0 = F−1
τ f,

where f′0 is the fibre vector in the updated stress-free configuration, and Fτ is the elastic defor-

mation tensor connecting the updated stress-free and residually-stress configurations.

The coupled remodelling and volumetric model for the fibre structure is really needed for
determining the evolution of the fibre structure and the material properties.

Another theoretical gap is: For the volumetric growth, currently, it is assumed that the growth

occurs in the stress-free or unloaded configuration, which is computationally convenient. How-

ever, in real organs, the stress is always existing which condition requires to assuming the growth

occurs in the stressed configuration. Then, the material properties will obviously differ from the

tissue with growth in stress-free configuration. In some works, the importance of investigating

the growth in stressed configuration is addressed. However, in those researches, the framework

is not given to properly compute the growth. It is important for investigating the influence of
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growth on the mechanical behaviours, which is fundamental for really understanding the mech-

anisms of G&R in living organs.

From a general perspective mechanics to investigate the G&R process in living tissues, the ques-

tions are: How does the residual stress influence the fibre remodelling and the material properties

of entire organs? How to determine the combined effects of growth (in the stressed configura-

tion) and remodelling on the fibre structure? How to develop a framework for investigating

G&R processes occurring in the stressed configuration?



Chapter 5

Residual Stress from Multi-cut
Opening Angle Models of the Left
Ventricle

5.1 Introduction

Living tissues in the heart continuously interact with the external bio-environment, reshape and

rearrange their constituents under chemical, mechanical or genetic stimuli during their life cy-

cles. In the mature period, these processes remain in a homeostatic state. However, heart dis-

eases will disrupt the balance, and the tissues will grow and remodel in response to an insult.

Physiologically, exercise may also induce healthy and reversible growth and remodelling. An

important ingredient in evaluating the mechanics involved in the cardiovascular system is knowl-

edge of the solid mechanical properties of the soft tissues involved, including the components

of the heart (such as the left ventricle). A particular aspect is that the soft tissues possess resid-

ual stress in vivo, so that when the external loading is removed, residual stresses remain in the

material. However, residual stresses, which are generally considered to result from growth and

remodelling, are imprecisely characterized (experimentally) at present, and how best to include

the important effect of residual stress in cardiovascular applications therefore presents a mod-

elling challenge.

Over the last century [40], various hypotheses on the growth and remodelling response to me-

chanical loading have been put forward, with particular success in arteries. Traditionally, one of

the fundamental ideas is to assume the existence of a (stress-free) reference configuration [57],

which coincides with the unloaded configuration. In the present context, however, the unloaded

configuration is not stress free, but is residually stressed. The residual stress can be estimated

using the so-called opening angle method [8, 52], in which an opening angle indicative of the

64
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extent of the residual stress can be measured after a single radial cut of an unloaded arterial ring.

Using the opened configuration as the reference configuration, the residual stress of a cylindrical

artery model can be estimated[8, 77]. This methodology has been extended to multiple cuts by

Taber and Humphrey [78], and used in the two-layered arterial models by Holzapfel et al. [34].

Residual stress is important in modelling the mechanics of soft tissues for a number of reasons:

(a) in nonlinear elasticity theory the stress state in the reference configuration has a substantial

effect on the subsequent response to the loads, and omission of the residual stress leads to

significantly different total stress predictions [55], for example, the stress distribution in mice

heart is simulated under hear pressure [90]. The estimation of maximal principal stress increased

about 40% after introducing the residual stress; (b) in biological tissues, the residual stress is

a result of growth [54]; (c) while the detailed process of local growth is difficult to measure,

residual stress, on the other hand, may be estimated from experiments, as demonstrated by the

opening angle measurement. Thus, a properly estimated residual stress at particular time instants

could provide useful information about the growth history of living tissues.

However, work that includes residual stress in complex organs, such as the heart, remains rare.

A few existing models for the left ventricle that take account of residual stress are based on the

assumption that a simple radial cut can release all the residual stresses [90], but this assumption

is not supported by all experiments. For example, Omens et al. [59] showed that residual stress

in a mouse primary heart can be further released by a circumferential cut following the initial

radial cut, as illustrated in fig. 5.1. This implies that the single cut opening angle configuration

does not correspond to the stress-free configuration.

Inspired by the experiments [59], in this chapter, we develop multi-cut models in order to esti-

mate the residual stress distribution across the wall of an intact mature heart based on a simplified

heart model.

5.2 Methodology

For the material model of incompressible heart tissues, we use a reduced version of the invariant-

based constitutive law for the myocardium developed by Holzapfel and Ogden [35], subse-

quently referred to as the HO model, namely

Ψ = Ψm +Ψf, (5.1)

where

Ψm =
a
2b
{exp[b(I1−3)]−1}, Ψf =

af

2bf
{exp[bf(I4−1)2]−1}, (5.2)
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FIGURE 5.1: A typical short-axis apical segment of a mouse heart before and after cuts [59].
The initial intact segment, shown in A, was about 2 mm thick. The same segment after a single
radial cut and a further circumferential cut is shown in B and C, respectively. In particular, the
endocardial segment has reversed its curvature, in C. Notice that the definition of opening angle

in [59] follows that in Fung, [8] which is different from that is used in the present paper.

a,b,af,bf are material constants, and

I1 = trC, I4 = f0 · (Cf0), (5.3)

I1 and I4 being the invariants corresponding to the matrix and fibre structure of the myocardium,

I the identity tensor, C = FTF, F the deformation gradient tensor, f0 a unit vector along the

fibre direction in the stress-free reference configuration. In this paper, the heart is consid-

ered as thick–wall cylindrical tube, while the coordinate bases {er,eθ ,ez} are corresponding

to local radial, circumferential and longitudinal directions. Then, collagen fibres distributed

in local ‘circumferential–longitudinal’ plane, described by fibre vector f0 with components

(0,cosγ,sinγ). γ is the angle between the fibre and circumferential directions. The fibre ‘switch’

is not considered in this chapter, since the fibres are always extended after applying pressure on
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the internal wall of LV.

The Cauchy stress tensor is then

σ =−pI+2
∂Ψm

∂ I1
B+2

∂Ψf

∂ I4
f⊗ f, (5.4)

where B = FFT is the left Cauchy–Green deformation tensor, and f = F · f0 is the stretched

fibre vector in the deformed configuration. Note that we only employ one family of fibres since

only circumferential and axial tests on mice primary hearts were reported in [59]. Based on

the experimental observation of the fibre structure of the heart, in [90], it was assumed that

the fibre orientation rotates linearly across the transmural (radial) direction in the intact-heart

configuration (i.e. B3 in fig. 5.2) from −π/3 at the endocardial surface to π/3 at the epicardial

surface, the angle γ is measured relative to the circumferential direction in the (eθ ,ez) plane.

The pre-image of the deformed fibre vector f in the reference configuration is

f0 =
F−1f
|F−1f| . (5.5)

5.2.1 1-Cut Model

For simplicity, we model the left ventricle (LV) as an incompressible single-layered cylindrical

tube. We use different models based on a different number of cuts and assume that the residual

stress in the unloaded tube can be released by either a single (radial) cut or multiple cuts (a radial

cut followed by one or three circumferential cuts). We also assume that all the cut segments

retain their cylindrical configurations, each with its own opening angle.

For the single cut model, this approach has been well described [34], but is briefly summarized

here for completeness. Let the geometry of the right-hand panel in fig. 5.2 represent a stress-free

configuration B2, which can be described by cylindrical polar coordinates {R,Θ,Z} as

R(i) 6 R6 R(o),
α2

2
6Θ6 (2π− α2

2
), 06 Z 6 L, (5.6)

where R(i), R(o), and L denote the inner and outer radii, and the tube length, respectively, and α2

is the opening angle.

The isochoric deformation from B2 to the intact configuration B3 is then expressed as

x = rer + zez. (5.7)
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Material incompressibility gives

r =

√√√√R2−R(i)2

kλ
(3)
z

+ r(i)2
, θ = k(Θ−α2/2), z = λ

(3)
z Z, (5.8)

where r(i) is the inner radius in the configuration B3, λ
(3)
z = l/L is the constant axial stretch,

where l is the cylinder length in B3, while k = 2π/(2π−α2) is a measure of the opening angle

in B2. The outer radius in B3 is

r(o) =

√√√√R(o)2−R(i)2

kλ
(3)
z

+ r(i)2
. (5.9)

angle in B2. The outer radius in B3 is

r(o) =

√
R(o)2 −R(i)2

kλ
(3)
z

+ r(i)2
. (8)

(a) (b)

B3 B2

F(3)
α2

Figure 2: 1-cut model: cylindrical model of the LV after a single radial cut of the intact

unloaded configuration B3 into a stress-free sector B2.

The corresponding deformation gradient (from B2 to the intact ring configuration B3),

denoted F(3), is given by

F(3) = λ
(3)
1 er ⊗ ER + λ

(3)
2 eθ ⊗ EΘ + λ(3)

z ez ⊗ EZ , (9)

where

λ
(3)
1 =

R

rkλ
(3)
z

, λ
(3)
2 =

kr

R
(10)

and {ER,EΘ,EZ} are cylindrical polar axes in B2. It follows that the invariants I1 and I4

(with the superscript (3) omitted temporarily for simplicity) are given by

I1 = λ2
1 + λ2

2 + λ2
z, I4 = λ2

2 cos2 γ + λ2
z sin2 γ, (11)

where the components of f0 and f are (0, cos γ, sin γ)T and (0, λ2 cos γ, λz sin γ)T, respectively,82

and γ is the angle defining the fibre orientation with respect to the circumferential direction83

in B2.84

6

FIGURE 5.2: 1-cut model: cylindrical model of the LV after a single radial cut of the intact
unloaded configuration B3 into a stress-free sector B2.

The corresponding deformation gradient (from B2 to the intact ring configuration B3), denoted

F(3), is given by

F(3) = λ
(3)
1 er⊗ER +λ

(3)
2 eθ ⊗EΘ +λ

(3)
z ez⊗EZ, (5.10)

where

λ
(3)
1 =

R

rkλ
(3)
z

, λ
(3)
2 =

kr
R

(5.11)

the superscript (i = 1,2,3) indicates the variable related to the target configuration Bi and

{ER,EΘ,EZ} are cylindrical polar axes in B2.

It follows that the invariants I1 and I4 (with the superscript (3) omitted temporarily for simplicity)

are given by

I1 = λ
2
1 +λ

2
2 +λ

2
z , I4 = λ

2
2 cos2

γ +λ
2
z sin2

γ, (5.12)

where the components of f0 and f are (0,cosγ,sinγ)T and (0,λ2 cosγ,λz sinγ)T, respectively,

and γ is the angle defining the fibre orientation with respect to the circumferential direction in
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B2.

The components of the Cauchy stress tensor in B3 are then

σrr = −p+2
∂Ψm

∂ I1
λ

2
1 , (5.13)

σθθ = −p+2
∂Ψm

∂ I1
λ

2
2 +2

∂Ψf

∂ I4
λ

2
2 cos2

γ, (5.14)

σzz = −p+2
∂Ψm

∂ I1
λ

2
z +2

∂Ψf

∂ I4
λ

2
z sin2

γ, (5.15)

σθz = 2
∂Ψf

∂ I4
λ2λz sinγ cosγ, (5.16)

σrθ = 2
∂Ψf

∂ I4
(0∗λ2 cosγ) = 0, (5.17)

σrz = 2
∂Ψf

∂ I4
(0∗λz sinγ) = 0. (5.18)

The stress components σrr and σθθ in B3 satisfy the equilibrium equation O ·σ = 0, which, for

the considered geometry, reduces to

dσrr

dr
+

σrr−σθθ

r
= 0, (5.19)

while the zero-traction boundary conditions are σrr = 0 for r = r(i),r(o). Strictly σ is not a

residual stress since the presence of the components σzz and σθz requires appropriate non-zero

boundary conditions.

On integration and use of the latter boundary conditions equation (5.19) gives

∫ r(o)

r(i)

σθθ −σrr

r
dr = 0, (5.20)

which, on substitution from eqs. (5.13) and (5.14), can be used to obtain r(i) in B3 (and r(o)

from eq. (5.9)) when the initial radii R(i) and R(o) and k and γ are known. Hence all the Cauchy

stress components can be obtained explicitly.

The axial force N in the deformed configuration B3 can then be calculated as [34]

N = 2π

∫ r(o)

r(i)
σzzrdr = π

∫ r(o)

r(i)
(2σzz−σrr−σθθ )rdr. (5.21)

5.2.2 2-Cut Model

Now we have a new starting point, with B1 stress free, but B2 is not now stress free, so going

from B2 to B3 is different from the 1-cut case. In particular, a different constitutive equation

would be required that takes account of the stress in B2, unless the constitutive law is based
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(a) (b) (c)

B3 B2 B1

F(3) F(2)

α2 α
(2)
1 α

(1)
1

outerouter

inner
inner

Figure 3: The 2-cut model: (a) cylindrical model of the LV as the intact ring in B3, (b) after

a radial cut to B2, and (c) followed by a circumferential cut to B1. Notice that the inner

segment in B1 has a negative curvature, as in [14]. The red curve, at the mid-wall radius

R̄ = (R(i) +R(o))/2 in (b), separates the inner and outer sectors which become the separate

inner and outer sectors in B1 after the circumferential cut.

2-Cut Model95

In the 2-cut model, following a radial cut, a circumferential cut is performed around the

mid-wall in B2 at radius R̄ = (R(i) +R(o))/2. It is assumed now that residual stress remains

after the radial cut but is removed after the circumferential cut and that no axial deformation

is associated with the second cut. The resulting stress-free configuration B1 is depicted in

Fig. 3. We note, in particular, that following the circumferential cut the inner segment has a

negative curvature. The geometry in B1 is described in terms of cylindrical polar coordinates

{R,Θ, Z}, with subscripts 1 and 2 corresponding to the inner and outer sectors, respectively.

Thus,

R
(i)
1 6 R1 6 R

(o)
1 , −(π − α

(1)
1

2
) 6 Θ1 6 π − α

(1)
1

2
, 0 6 Z1 6 L, (19)

R
(i)
2 6 R2 6 R

(o)
2 ,

α
(2)
1

2
6 Θ2 6 2π − α

(2)
1

2
, 0 6 Z2 6 L, (20)

where R
(i)
j , R

(o)
j , α

(j)
1 , j = 1, 2, and L denote the inner and outer radii, the opening angles,96

and the tube length in B1. In B2, R
(i)
1 and R

(i)
2 both become R̄, while R

(o)
1 and R

(o)
2 translate97
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FIGURE 5.3: The 2-cut model: (a) cylindrical model of the LV as the intact ring in B3, (b)
after a radial cut to B2, and (c) followed by a circumferential cut to B1. Notice that the inner
segment in B1 has a negative curvature, as in [59]. The red curve, at the mid-wall radius
R̄ = (R(i) +R(o))/2 in (b), separates the inner and outer sectors which become the separate

inner and outer sectors in B1 after the circumferential cut.

on B1. In the 2-cut model, following a radial cut, a circumferential cut is performed around

the mid-wall in B2 at radius R̄ = (R(i)+R(o))/2. It is assumed now that residual stress remains

after the radial cut but is removed after the circumferential cut and that no axial deformation is

associated with the second cut. The resulting stress-free configuration B1 is depicted in fig. 5.3.

We note, in particular, that following the circumferential cut the inner segment has a negative

curvature. The geometry in B1 is described in terms of cylindrical polar coordinates {R,Θ,Z},
with subscripts 1 and 2 corresponding to the inner and outer sectors, respectively. Thus,

R(i)
1 6 R1 6 R(o)

1 , −(π− α
(1)
1
2

)6Θ1 6 π− α
(1)
1
2

, 06 Z1 6 L, (5.22)

R(i)
2 6 R2 6 R(o)

2 ,
α
(2)
1
2
6Θ2 6 2π− α

(2)
1
2

, 06 Z2 6 L, (5.23)

where R(i)
j , R(o)

j , α
( j)
1 , j = 1,2, and L denote the inner and outer radii, the opening angles, and

the tube length in B1. In B2, R(i)
1 and R(i)

2 both become R̄, while R(o)
1 and R(o)

2 translate to R(i)

and R(o), respectively, the opening angle is α2 and the axial length l.

For each segment, the isochoric deformation from B1 to B2 can be written as

X = RER +ZEZ, (5.24)

with

R =

√√√√R(i)
1

2
−R2

1

k1λ
(21)
z

+ R̄2, Θ = π− k1Θ1, Z = λ
(21)
z Z1 (5.25)

R =

√√√√R2
2−R(i)

2
2

k2λ
(22)
z

+ R̄2, Θ = k2(Θ2−π)+π, Z = λ
(22)
z Z2 (5.26)

for the inner and outer sectors, respectively, where λ
(2 j)
z is taken to be 1 for both segments and

k j = (2π−α2)/(2π−α
( j)
1 ), j = 1,2. Note that the negative curvature of the inner segment in B1
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depicted in fig. 5.3 is captured by the expression for R in (5.25), and that structural compatibility

is ensured since the two expressions for R match at R̄.

As indicated in fig. 5.3 the deformation gradient from B1 to B2 is denoted F(2), which is short-

hand notation for the two separate deformation gradients from the two sectors in B1 to B2.

These are denoted F(2 j), j = 1,2, and given by

F(2 j) = λ
(2 j)
1 er⊗ER +λ

(2 j)
2 eθ ⊗EΘ +λ

(2 j)
z ez⊗EZ, (5.27)

where

λ
(2 j)
1 =

R j

k jRλ
(2 j)
z

, λ
(2 j)
2 =

k jR
R j

, λ
(2 j)
z = 1.14, j = 1,2. (5.28)

Similarly to the 1-cut model, and with the same notation for the stress components, the equilib-

rium equation in B2 yields

dσrr

dr
+

σrr−σθθ

r
= 0,

∫ R(o)

R(i)

σθθ −σrr

r
dr = 0. (5.29)

Equation (5.29)1 can be rearranged as

σθθ =
d
dr

(rσrr), (5.30)

from which it follows, on use of the zero-traction boundary conditions on R(i) and R(o), that

∫ R(o)

R(i)
σθθ dr = 0, (5.31)

i.e. the mean value of σθθ is zero.

It’s assumed that is there is no bending moment on the faces Θ = α2/2 and Θ = 2π−α2/2 in

B2, which yields
∫ R(o)

R(i)
σθθ rdr = 0. (5.32)

Substitution of σθθ from (5.30) into this equation followed by integration by parts and a further

application of the zero-traction boundary conditions leads to

∫ R(o)

R(i)
σrrrdr = 0. (5.33)

Equations (5.29)2, (5.31) and (5.33) are solved with equations (5.25) and (5.26) to obtain the

radius R(i), and the angle α2 of the segment in B2. In B2, the radial traction σrr is continuous

across interface r̄, since the deformation gradient, Lagrangian multiplier p and the other stress
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components are continuous. The continuity of hoop stress yields

(σθθ |r=r̄)
+ = (σθθ |r=r̄)

−, (5.34)

where r̄ are the radial positions of the interfaces (r̄ = r(o)+r(i)
2 ).

The stress continuity will help to exclude the redundant solutions of R(i) and the angle α2 from

equations (5.29)2 and (5.33).

Once R(i), R(o) and α2 are obtained, the 1-cut approach is used to estimate the residual stress of

the intact-ring configuration.

It’s worthy to emphasize that asymmetry in local fibre structure leads to the non-zero torsion

boundary condition in B2, which yields

∫ R(o)

R(i)
σθzdr 6= 0.

However, actually, comparing with σrr or σθθ , the shear component at cross-section of the

tube is ignorably small. Then, the mechanical contributions of shear stress are assumed to be

ignorable to stress equilibrium and the shape changing of cylindrical geometry of heart tube.

And this assumption will also be mathematically applied in our 4-cut model later.

Essentially, this is equivalent to calculating the deformation gradient from B1 to B3 by mul-

tiplication as F(3)F(2), where F(3) is given by eq. (5.10) and F(2) is either F(21) or F(22) and

determined from eq. (5.27).

An expression for the axial load N is obtained from a formula similar to that in eq. (5.21).

It suggests that ’infinite cuts’ are efficient to release all residual stress in living organs, since

residual stress is induced by the complex (inhomogeneous) growth. Therefore, 4-cut model may

give better estimations for residual stress.

The mechanical behaviors of LV are calculated with the single fibre family. According to the

discussion about the effect of shear stress on the mechanical response of LV tube, it shows that

the geometric shape doesn’t change much by the shear stress. Therefore, the effects of shear

stress are really ignorable, while the values of shear stresses are really small.

The stress distributions in 1-cut configuration are obtained from both stress and deformation

continuity conditions. And it shows that stress continuity is almost equivalent with deformation

continuity in multiple-cut model.

The computation results explain experimental observation by Fung [23]. In the residually

stressed configuration of an artery, the subsequent radial cuts don’t introduce any more elas-

tic deformations. Moreover, no solid evidence supports that the 1-cut configuration is the stress
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free configuration for living organs. More cuts are needed to release the residual stress and

address the stress-free configuration for living organs [36].

5.2.3 4-Cut Model

The effect of two further circumferential cuts, one in each of the two separated segments, is now

considered in order to assess if there is any significant change in the resulting calculated residual

stress compared with that obtained with a single circumferential cut, although this is not a test

that has been carried out experimentally. For definiteness we consider taking a circumferential

cut along the mid-wall of each of the two sectors of the 2-cut model, leading to the four separate

sectors depicted in fig. 5.4. We assume that the resulting configuration B0 is stress-free with no

further reversal of the curvature.

Each of the four sectors in B0 is described in terms of cylindrical polar coordinates {ρ,φ ,ζ}
according to

ρ
(i)
1 6 ρ 6 ρ

(o)
1 , −(π− α

(1)
0
2

)6 φ 6 π− α
(1)
0
2

, 06 ζ 6 L (inner I), (5.35)

ρ
(i)
2 6 ρ 6 ρ

(o)
2 , −(π− α

(2)
0
2

)6 φ 6 π− α
(2)
0
2

, 06 ζ 6 L (inner II), (5.36)

ρ
(i)
3 6 ρ 6 ρ

(o)
3 ,

α
(3)
0
2
6 φ 6 (2π− α

(3)
0
2

), 06 ζ 6 L (outer I), (5.37)

ρ
(i)
4 6 ρ 6 ρ

(o)
4 ,

α
(4)
0
2
6 φ 6 (2π− α

(4)
0
2

), 06 ζ 6 L (outer II), (5.38)

where ρ
(i)
n , ρ

(o)
n , α

(n)
0 , n= 1,2,3,4, and L are the internal radii, the external radii, opening angles,

and the lengths of the four segments in B0, and I and II refer to fig. 5.4.

B0

α
(4)
0

α
(3)
0

α
(2)
0 α

(1)
0

outer II

outer I inner II

inner I

Figure 4: The stress-free configuration B0 consisting of the four sectors obtained by circum-

ferential cuts of the two sectors in B1.

mation gradients from B1 to B2 which also have to be continuous, and the deformation137

gradient in B3 likewise has to be continuous. The consequences of these constraints now138

need to be evaluated.139

The deformations from the four sectors in B0 to the two sectors in B1 are described by

R1 =

√√√√ρ2 − ρ(i)
1

2

k11λ
(11)
z

+ R̄2
1, Θ1 = k11φ, Z1 = λ(11)

z ζ, (inner I), (35)

R1 =

√√√√ρ2 − ρ(o)
2

2

k12λ
(12)
z

+ R̄2
1, Θ1 = k12φ, Z1 = λ(12)

z ζ, (inner II), (36)

R2 =

√√√√ρ2 − ρ(o)
3

2

k23λ
(23)
z

+ R̄2
2, Θ2 = k23(φ− π) + π, Z2 = λ(23)

z ζ, (outer I), (37)

R2 =

√√√√ρ2 − ρ(i)
4

2

k24λ
(24)
z

+ R̄2
2, Θ2 = k24(φ− π) + π, Z2 = λ(24)

z ζ, (outer II), (38)

where

k1n = (2π − α(1)
1 )/(2π − α(n)

0 ), n = 1, 2, k2n = (2π − α(2)
1 )/(2π − α(n)

0 ), n = 3, 4,

λ
(1n)
1 =

R1

ρk1nλ
(1n)
z

, λ
(1n)
2 =

k1nρ

R1

, n = 1, 2,

12

FIGURE 5.4: The stress-free configuration B0 consisting of the four sectors obtained by cir-
cumferential cuts of the two sectors in B1.

In B1, the geometries of the two segments are described in terms of polar coordinates R,Θ,Z,

with indices 1 and 2, as in (5.22) and (5.23). Next, in B2, R(i), R(o), α2, l denote the internal and

external radii, the opening angle and the length of the single sector according to (5.25)–(5.26).
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The deformations from the four sectors in B0 to the two sectors in B1 are described by

R1 =

√√√√ρ2−ρ
(i)
1

2

k11λ
(11)
z

+ R̄2
1, Θ1 = k11φ , Z1 = λ

(11)
z ζ , (inner I), (5.39)

R1 =

√√√√ρ2−ρ
(o)
2

2

k12λ
(12)
z

+ R̄2
1, Θ1 = k12φ , Z1 = λ

(12)
z ζ , (inner II), (5.40)

R2 =

√√√√ρ2−ρ
(o)
3

2

k23λ
(23)
z

+ R̄2
2, Θ2 = k23(φ −π)+π, Z2 = λ

(23)
z ζ , (outer I), (5.41)

R2 =

√√√√ρ2−ρ
(i)
4

2

k24λ
(24)
z

+ R̄2
2, Θ2 = k24(φ −π)+π, Z2 = λ

(24)
z ζ , (outer II), (5.42)

where

k1n = (2π−α
(1)
1 )/(2π−α

(n)
0 ), n = 1,2, k2n = (2π−α

(2)
1 )/(2π−α

(n)
0 ), n = 3,4,

λ
(1n)
1 =

R1

ρk1nλ
(1n)
z

, λ
(1n)
2 =

k1nρ

R1
, n = 1,2,

and

λ
(2n)
1 =

R2

ρk2nλ
(2n)
z

, λ
(2n)
2 =

k2nρ

R2
, n = 3,4.

The deformation gradients from B0 in fig. 5.4 to B1 in fig. 5.3 are

F(1n) = λ
(1n)
1 ER⊗ eρ +λ

(1n)
2 EΘ⊗ eφ +λ

(1n)
z EZ⊗ eζ , n = 1,2, (5.43)

F(1n) = λ
(2n)
1 ER⊗ eρ +λ

(2n)
2 EΘ⊗ eφ +λ

(2n)
z EZ⊗ eζ , n = 3,4. (5.44)

In B1, the radial direction for each of the two segments yields

∫ R(o)
j

R(i)
j

σΘΘ−σRR

R
dR = 0, j = 1,2. (5.45)

The radial traction σRR should be continuous across each interface R̄ j, j = 1,2, and hence, since

the deformation gradient is continuous, p is continuous and the other stress components are also

continuous. The continuity of hoop stress yields

(σΘΘ|R=Rk)
+ = (σΘΘ|R=Rk)

−, k = 1,2, (5.46)

where Rk are the radial positions of the interfaces (Rk =
R(o)

j +R(i)
j+1

2 , j = 1,2)
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TABLE 5.1: Transformation of the radii between configurations.

B0 B1 B2 B3

ρ
(i)
1 → R̄1

ρ
(o)
1 → R(o)

1 → R(i) → r(i)

ρ
(i)
2 → R(i)

1 → 1
2(R

(i)+R(o))

ρ
(o)
2 → R̄1

ρ
(i)
3 → R(i)

2 → 1
2(R

(i)+R(o))

ρ
(o)
3 → R̄2

ρ
(i)
4 → R̄2

ρ
(o)
4 → R(o)

2 → R(o) → r(o)

Also, similarly to the 2-cut model,

∫ R(o)
j

R(i)
j

σΘΘRdR =
∫ R(o)

j

R(i)
j

σRRRdR = 0, j = 1,2. (5.47)

The corresponding deformation gradient from B1 to B2 is F0→2 = F(2)F(1) (Table 5.1), and the

governing equations for the single sector are

∫ R(o)

R(i)

σθθ −σrr

r
dr = 0,

∫ R(o)

R(i)
σθθ rdr =

∫ R(o)

R(i)
σrrrdr = 0, (5.48)

as in eqs. (5.29)2, (5.32) and (5.2.2).

This model consists of 8 independent equations (5.45)–(5.48), and eight unknown geometrical

parameters in B0: ρ
(i)
n ,α

(n)
0 , n = 1,2,3,4. The required external axial force are then calculated

by means of the formulas (5.21).

Once we obtain all the details in B0, we estimate the residual stress components σrr and σθθ

in the intact-ring configuration B3, with the total deformation gradient F0→3 = F(3)F(2)F(1)

(Table 5.1).

5.3 Results

5.3.1 Modelling Parameters

The reference configuration changes with the different models, so we need to define the parame-

ters according to the specific model we use. For B2 of the 1-cut model, we assume that the axial

stretch has the constant value λ
(3)
z = 1.14, and R(i) = 2.06, R(o) = 3.20 α2 = 65◦ are estimated

from the experiments [59].
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TABLE 5.2: Measured geometrical input for the 4-cut model, estimated from [59].

configuration B1 configuration B2

R(i)
1 = 5.28 1

2(R
(i)+R(o))

R(o)
1 = 6.29 R(i) = 2.06

α
(1)
1 = 268◦ α2 = 65◦

R(i)
2 = 1.97 1

2(R
(i)+R(o))

R(o)
2 = 3.04 R(o) = 3.20

α
(2)
1 = 180◦ α2 = 65◦

For the 2-cut model, in addition to the parameters used in the 1-cut model, we use additional

measurements in B1 of the 2-cut model [59]: R(i)
1 = 5.28, R(i)

2 = 1.97, α
(1)
1 = 268◦ and α

(2)
1 =

180◦, and that there is same axial stretch in the transformation from B1 to B2, i.e. λ
(2 j)
z = 1.14,

j=1,2.

For the 4-cut model, in addition to the parameters used in the 2-cut model, we need more ge-

ometrical information in B1, which is again estimated from the measurements [59] as listed in

Table 6.2. We also assume that λ
(1n)
z = 1 from B0 to B1, i.e. no axial deformation after the first

circumferential cuts.

Initially, we consider a homogeneous myocardium model, for which the material parameters of

the HO constitutive law (5.1) and (5.2) are fitted to the data of mice [61]. This gives a= 2.21kPa,

b = 1.8, af = 3.96 kPa and bf = 3.45 (fig. 5.5).

FIGURE 5.5: Fit of parameters of the HO model (5.1) to the experimental data (squares;
from [61]) for the loading curves: The axial loading curve along fibre direction (blue); the

axial loading curve along cross-fibre direction (red).

However, the dramatic difference in the maximum hoop stress between the single cut and mul-

tiple cuts models raises concerns over the rationale of the homogeneous models we adopted.

Novak et al. [56] showed that canine myocardium is heterogeneous and the material properties

are strongly location dependent. We also consider an inhomogeneous myocardium model, and

fit the data from [56] with the HO strain energy function (5.1) and (5.2).
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The parameters are spatially dependent, as shown in fig. 5.6. Since our model is for mice, and

there are no experimental data on the heterogeneous properties of the mice myocardium, we

take the spatial variation of the canine data, but keep the mean values of the mice data from our

fitted parameters, and implement these into our models.

FIGURE 5.6: The heterogeneous material parameters fitted to canine data from [56] (black
solid lines). The red dashed lines indicate the constants used for the homogeneous models, and

the red solid lines are for the heterogeneous mice model.

5.3.2 Results for the Homogeneous Myocardium Model

The geometry of the intact ring predicted by the three different models is summarized in Ta-

ble 6.3, and compared with the measured data in [59].

TABLE 5.3: Computed intact ring from the homogeneous models, compared to measure-
ments [59].

Measurements (mm) 1-cut model 2-cut model 4-cut model
r(i) = 0.388 0.557 0.482 0.403
r(o) = 2.13 2.167 2.148 2.133

r(o)− r(i) = 1.742 1.61 1.667 1.73
Difference in thickness 8.2% 4.74 % 0.7%

It is clear that the agreement of the estimated radius and thickness of the unloaded configuration

gets better as the number of cuts increases. Although in principle the true zero-stress configu-

ration requires infinite cuts, Table 6.3 suggests that 2 or 4 cuts provides a good approximation

of the zero-stressed configuration, given that the measured geometry is not exactly circular as

assumed by the models.
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The components of the residual stress distribution in the unloaded configuration B3, from the

different models are shown in fig. 5.7. Although the overall distributions are similar in all these

models, there is marked difference in the magnitudes of the residual (hoop) stress. In particular,

the maximum σθθ is 2.58 kPa, 207.5 kPa, and 214.9kPa, respectively, for the single cut, 2-cut,

and 4-cut models. In other words, ratio of the maximum hoop stresses over the single cut is

about 80 times for the 2-cut model, and 83.3 times for the 4-cut model. We also notice that

the 4-cut model gives much smoother stress distribution. However, the 2-cut model leads to

a similar magnitude of the maximum hoop stress as the 4-cut model. This suggests that the

significant rise in the residual stress is due to the negative curvature at the first circumferential

cut.

5.3.3 Results for the Heterogeneous Myocardium Model

The geometry of the intact ring from the heterogeneous myocardium model is computed and

compared with the experiments, as shown in Table 5.4. This model provides much better agree-

ment with experimental observations. The agreements of the 2-cut and 4-cut models are excel-

lent, using either the homogeneous or the heterogeneous materials, with an error of less than

2%.

TABLE 5.4: Computed intact ring from the heterogeneous models, compared to measure-
ments [59].

Measurements (mm) 1-cut model 2-cut model 4-cut model
r(i) = 0.388 0.517 0.403 0.39
r(o) = 2.13 2.157 2.113 2.13

r(o)− r(i) = 1.742 1.64 1.73 1.74
Difference in thickness 5.8% 0.7% 0.011%

The corresponding stress distributions are plotted in fig. 5.8, which shows that the maximum

σθθ is 5.52 kPa, 218.5 kPa, and 230.9kPa, respectively, for the single cut, 2-cut, and 4-cut

models. The ratio of the maximum hoop stresses over the single cut is reduced significantly in

the heterogenous model, about 39 times for the 2-cut model, and 41.6 times for the 4-cut model.

5.4 Discussion

The issue of multiple cuts has been studied before. In particular, Fung suggested that one radial

cut might be sufficient to release all the residual stress. This was supported his experiments

which showed that after two or more radial cuts, no obvious deformation occurs from the one-

radial-cut configuration of the arteries [23]. Using our models we can show, however, that

multiple radial cuts indeed do not release more residual stress, since due to the symmetry of the
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FIGURE 5.7: Distribution of the residual stress components in the intact ring from (a) single
cut, (b) 2-cut, and (c) 4-cut models based on homogenous material assumption.
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FIGURE 5.8: Distribution of the residual stress components from (a) single cut, (b) 2-cut, and
(c) 4-cut models based on heterogeneous myocardium assumption.

considered geometry, once a radial cut is made, no further elastic deformation can occur after

more radial cuts.

In other words, the deformation gradient in each of our models is independent of the azimuthal

angle and the solutions are also independent of this angle. However, this does not indicate that

the one-cut configuration is a stress-free one. To further release residual stress circumferential

cuts following a radial cut are necessary.

The fact that our 2-cut and 4-cut models predict a much higher (40 times!) hoop stress is surpris-

ing, but is not unexpected given the large negative curvature revealed by the experiments [59].

However, the significant stress underestimate of the radial cut model does not just occur in the

heart models. In the residual stress modelling of arteries, by treating the artery wall as three

separate layers (intima, media and adventitia), and measuring the opening angles for each of the

three layers, Holzapfel and Ogden [36] have essentially developed a 3-cut model (one radial cut

followed by two circumferential cuts, in this case separating the layers with different properties).

Their model is also heterogeneous, as different material parameters are used for different layers.

The residual stress distribution across the wall from the arterial model is shown in fig. 5.9 for

both the 3-cut and 1-cut models, all other parameters being the same. The maximum values of
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the hoop stress in different layers of the 3-cut model are listed in Table 5.5. Table 5.5 shows that

the ratio of the hoop stress in the different layers ranges from 24 to 50 times. This is similar to

that for the mouse hearts.

FIGURE 5.9: Residual stress distributions through the intima, media and adventitia of the artery
wall as functions of the radial coordinate r, (a) without layer separation, and (b) the original

result with layer separations from [36].

TABLE 5.5: Residual stress in the arteries computed using single-cut and original HO
model [36]

Max hoop stress (kPa) single-cut for HO model original HO model [36] Ratio of the stresses
Adventitia 0.57 15.08 26.45

Media 0.47 23.74 50.51
intima -0.97 -23.20 23.91

5.4.1 Effect of Shear Stress

As mention in section ’1-cut model’, we assume LV and all the cut segments remain their cylin-

drical configuration before and after cutting. Furthermore, the geometric symmetry indicates

that the distribution of (Cauchy) stress is also symmetric to the z-axis. And stress distribution is

independent from angle position as

Qσ(θ)QT = σ(θ +α) (5.49)

where Q describes a rotation about the axis of tube about the angle α .

Further, last equation gives

σrθ = 0,
∂σrr

∂θ
= 0,

∂σθθ

∂θ
= 0.

And the stress is obviously independent from z as

σ(z) = σ(z+ z0) (5.50)
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where z0 is an arbitrary constant and 0≤ z+ z0 ≤ l).

Further, last equation gives

∂σzr

∂ z
= 0,

∂σzθ

∂ z
= 0,

∂σzz

∂ z
= 0.

Stress equilibrium equation (O ·σ=0) under cylindrical coordinates {r,θ ,z}, it gives





∂σrr
∂ r + 1

r
∂σθr
∂θ

+ ∂σzr
∂ z + 1

r (σrr−σθθ ) = 0
∂σrθ

∂ r + 1
r

∂σθθ

∂θ
+ ∂σzθ

∂ z + 1
r (σrθ +σθr) = 0

∂σrz
∂ r + 1

r
∂σθz
∂θ

+ ∂σzz
∂ z + 1

r (σrz) = 0.

(5.51)

FIGURE 5.10: The change of shape of heart tube with shear stress σxy.

Combining (5.49) and (5.50), (5.51) gives (5.19), while the rest equations will be satisfied au-

tomatically. Obviously, if the geometry of heart is not symmetric to z-axis, the stress will not

be symmetric to z-axis, which will cancel (5.49) and (5.50) and change the expression for stress

equilibrium equation. Moreover, if the shear stress is non-zero, the overall geometry of heart

will not remain cylindrical. For instance, if shear stress σxy is non-zero, it indicates the cylindri-

cal tube deforming into a elliptic cylinder. Due to the antisymmetry to z-axis, the stress is not

independent from angle position θ in intact-tube configuration

∂σ

∂θ
6= 0. (5.52)

Then, the first stress equilibrium equation in eq. (5.51) is replaced by

∂σrr

∂ r
+

1
r

∂σθr

∂θ
+

1
r
(σrr−σθθ ) = 0. (5.53)

It indicates that the existence of shear stress could change the shape of heart tube and change

the expression for the stress equilibrium equation. Therefore, our calculation will be different

with multiple-cut model with existence of shear stress.
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Recalling expression of the Cauchy stress (5.4), the term f⊗ f could be obtained with help of

fibre vector f = (0,λ2 cosγ,λz sinγ)T as




0 0 0

0 λ 2
θ

cos2θ λθ λzcosθsinθ

0 λθ λzcosθsinθ λ 2
z sin2

θ


 . (5.54)

Then, it indicates the shear stress σθz is not zero, and this fact might change the shape of intact

heart tube.

FIGURE 5.11: The heart tube model with two symmetric fibre families: the dash line indicates
new fibres with fibre angle (−γ) to circumferential direction eθ .

Moreover, if we introduce another fibre family (f′= (0,λ2 cos(−γ),λz sin(−γ))T), which is sym-

metric to the existing fibre family. Then, the shear stress will be canceled (details will be shown

later). And the stress equilibrium equation (6.43) could be satisfied.

So how mechanical behaviors of intact heart model will be influenced by the shear stress induced

by the single family? What’s the difference between mechanical responses from tissues with a

fibre family and tissues with symmetric fibre families in the multiple-cut models?

If assuming the material properties are same for two fibre families, the SEF could be given by

modifying HO model (5.1) as

Ψ = Ψm +Ψf1 +Ψf2 (5.55)

where

Ψm =
a
2b
{exp[b(I1−3)]−1}, Ψf1 =

af

2bf
{exp[bf(I4−1)2]−1}, Ψf2 =

af

2bf
{exp[bf(I6−1)2]−1},

(5.56)

a,b,af,bf are material constants, and

I1 = trC, I4 = f0 · (Cf0), I6 = f′0 · (Cf′0), (5.57)

f′0 is the unit fiber vector for new fibre family (f = (0,cos(−γ),sin(−γ))T).
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The Cauchy stress tensor is then

σ =−pI+2
∂Ψm

∂ I1
B+2

∂Ψf1

∂ I4
f⊗ f+2

∂Ψf2

∂ I4
f′⊗ f′, (5.58)

Recalling (5.10), the invariants I1, I4 and I6 are given by

I1 = λ
2
1 +λ

2
2 +λ

2
z , I4 = λ

2
2 cos2

γ +λ
2
z sin2

γ, I6 = λ
2
2 cos2(−γ)+λ

2
z sin2(−γ), (5.59)

where the components of f and f′ are (0,λ2 cosγ,λz sinγ)T and (0,λ2 cos(−γ),λ3 sin(−γ))T,

respectively). The components of the Cauchy stress tensor in B3 are then

σrr = −p+2
∂Ψm

∂ I1
λ

2
1 , (5.60)

σθθ = −p+2
∂Ψm

∂ I1
λ

2
2 +4

∂Ψf

∂ I4
λ

2
2 cos2

γ, (5.61)

σzz = −p+2
∂Ψm

∂ I1
λ

2
z +4

∂Ψf

∂ I4
λ

2
z sin2

γ, (5.62)

σθz = 2
∂Ψf

∂ I4
λ2λz sinγ cosγ +2

∂Ψf

∂ I4
λ2λz sin(−γ)cos(−γ) = 0. (5.63)

1-cut model with symmetric fibre families The shear stress is zero and independent from angle

position θ , it indicates the validations of (5.49) and (5.50). Therefore, with help of zero-traction

boundary condition, the stress equilibrium equation is obtained from (5.51) as

∂σrr

∂ r
+

1
r
(σrr−σθθ ) = 0 ⇒

∫ r(o)

r(i)

σθθ −σrr

r
dr = 0. (5.64)

On substitution from (5.61) and (5.62), (5.64) can be used to obtain r(i) in B3 (and r(o) from

(5.8)) when the initial radii R(i) and R(o) and k and γ are known. Hence all the Cauchy stress

components can be obtained explicitly.

1-cut model with one fibre family To test the effect of shear stress on the heart tube model, we

still assume LV and all the cut segments remain their cylindrical configurations, and then the

shear stress will be determined via stress equilibrium. This calculation will show magnitude of

shear stress and implicate the possible change of shape from a cylindrical model.

If LV and all the cut segments remain their cylindrical configurations, the components of Cauchy

stress is obtained as (5.13) to (5.16). Obviously, (5.49) and (5.49) are satisfied, which indicates

the stress equilibrium equation could be written as eq. (6.44). On substitution from ((5.13)) and

((5.14)), (5.8) can be used to obtain r(i) in B3 (and r(o) from (5.8)) when the initial radii R(i) and

R(o) and k and γ are known. Hence all the Cauchy stress components can be obtained explicitly.

2-cut model with symmetric fibre families Similarly to the 1-cut model, and with the same no-

tation for the stress components for tissues with symmetric fibre families (5.61 - 5.63), the the
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equilibrium equation in B2 yields as eq. (5.292). Moreover, the zero-moment condition gives

(5.32). Then, ((5.29)2), ((5.32)) and ((5.33)) are solved with equations (5.25) and (5.26) to ob-

tain the radius R(i), and the angle α2 of the segment in B2. Once R(i), R(o) and α2 are obtained,

the 1-cut approach is used to estimate the residual stress of the intact-ring configuration.

2-cut model with a single fibre family The solution method is shown in section ‘2-cut model’.

Briefly, the stress equilibrium equation and zero-moment boundary condition are solved to give

the radius R(i), and the angle α2 of the segment in B2. Then, the 1-cut approach is used to

estimate the residual stress of the intact-ring configuration.

5.4.1.1 Results to Compare the Solutions for Tissues with One and Symmetric Fibre Fam-
ilies

Comparison between results from tissues with one and symmetric fibre families (1-cut model)

The geometric informations are used same as the information for 1-cut model, as well as the

selection of values for material parameters, such as a,b (seeing in ‘Modeling parameters’ sec-

tion). fig. 5.12 shows the radius and residual stresses in intact-ring configuration B3 estimated

from tissue with symmetric fibre families and single fibre family. The estimated radius of the

intact heart tubes are 0.502 mm from tissues from symmetric fibres, while it’s 0.557 mm from

tissues with single fibre (4.5% of difference). The material is stiffer for tissues with symmetric

families, while gives the bigger values of stress components. However, it shows the closely

similar shapes of curves for principal stresses. More important, the values of shear stress (σθz)

are obviously smaller than the other stresses. The maximum absolute value of shear stresses

is about 0.74 kPa, comparing 3 kPa for circumferential stress (σθθ ) and 4.9 kPa for axis stress

(σzz) (fig. 5.12, right). It’s concluded that: 1) the geometric sizes are almost same for estima-

tions from tissues with symmetric families or single family. 2) the shapes and trends of curves

are closely similar from tissues with symmetric families or single family. 3) the shear stress is

canceled in estimated results from tissues with symmetric families, while the values of shear

stresses are really smaller than principal stresses. According to this evidence, it suggests that:

1) the geometric shape doesn’t change much by the shear stress, 2) the effects of shear stress
are really ignorable, while the values of shear stresses are really small.

Comparison between results from tissues with one and symmetric fibre families (2-cut model)

The geometric informations are used same as the information for 2-cut model, as well as the se-

lection of values for material parameters, such as a,b (seeing in ‘Modeling parameters’ section).

Recalling the comparison between estimated geometric and mechanical information estimated

from 1-cut mode, similar phenomena are observed. fig. 5.13 shows the radius and residual

stresses in intact-ring configuration B3 estimated from tissue with symmetric fibre families and

single fibre family. The estimated radii are close from tissues from symmetric fibres (0.482
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FIGURE 5.12: Distribution of residual stresses components form: left, the symmetric fibre
families; right, the single family

mm) or from tissues with single fibre (0.480 mm). Principal stress components are estimated

bigger from tissues with symmetric fibre due to the higher stiffness. Again, the closely similar

shapes of curves for principal stresses are observed. The relative values of shear stresses are

even smaller than one from 1-cut model. The maximum absolute value of shear stresses is about

3.5 kPa, comparing 207 kPa for circumferential stress (fig. 5.13, right). It’s concluded that: 1)

the geometric sizes are almost same for estimations from tissues with symmetric families or

single family. 2) the shapes and trends of curves are closely similar from tissues with symmetric

families or single family. 3) the shear stress is canceled in estimated results from tissues with

symmetric families, while the relative values of shear stresses are even smaller than principal

stresses. According to this evidence, it suggests that: 1) the geometric shape doesn’t change

much by the shear stress, 2) the effects of shear stress are really ignorable, while the values

of shear stresses are really small.

FIGURE 5.13: Distribution of residual stresses components form: left, the symmetric fibre
families; right, the single family.
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5.4.2 Deformation Continuity and Stress Continuity

As mentioned in ‘2-cut model’ section, the deformation continuity leads to the stress continuity

(5.34) in 1-cut configuration (B2). In this sectoin, it will explain the relation between the stress

continuity and deformation continuity conditions.

FIGURE 5.14: Two contacted material points at the interface of B2. A is the material point xA,
while B is the material point xB

Considering two contacted material points (P1(xA) and P2(xB)) at the interface of B2 (fig. 5.14),

while P1(xA) is point in outer layer and P2(xB) is the point in inner layer. As a intact slice from

heart, the deformation should be continuous as well as elastic energy across the interface, which

gives {
F(2)

A = F(2)
B

WA(F
(2)
A ) =WB(F

(2)
B )

while rA = rB. (5.65)

Recalling (5.4), the Cauchy stresses from point A and B are





σA = J−1
A F(2)

A
∂WA

∂F(2)
A

− pAI

σB = J−1
B F(2)

B
∂WB

∂F(2)
B

− pBI.
(5.66)

The expressions of SEF (5.1) indicates WA or WB are monotonic increasing along with the in-

creasing of deformation gradient, which gives the one-to-one mapping between stress and de-

formation. With the help of deformation continuity (5.65), this stress-deformation relation gives

the stress continuity as 



pA = pB
∂WA

∂F(2)
B

= ∂WB

∂F(2)
B

⇒ σθθ(A) = σθθ(B). (5.67)
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It concludes that the stress continuity is equivalent with the deformation continuity in ‘2-cut’

model. To validate this conclusion, the results will be shown for the residual stress distributions

obtained from deformation and stress continuity.

Results from the 2cut model with stress continuity

Recalling ‘2cut’ model, Equations (5.29)2, (5.31) and (5.33) are solved with equations (5.25)

and (5.26) to obtain the radius R(i), and the angle α2 of the segment in B2. The stress continuity

will help to exclude the redundant solutions of R(i) and the angle α2 from Equations (5.29)2 and

(5.33). Hence all the Cauchy stress components can be obtained explicitly in B2 with R(i) and

α2 (fig. 5.15, left).

Results from the 2cut model with deformation continuity

Similar with previous solution, Equations (5.29)2, (5.31) and (5.33) are solved with equations

(5.25) and (5.26) to obtain the radius R(i), and the angle α2 of the segment in B2. Here, deforma-

tion continuity, rather than stress continuity, will help to exclude the redundant solutions of R(i)

and the angle α2 from Equations (5.29)2 and (5.33). Hence all the Cauchy stress components

can be obtained explicitly in B2 with R(i) and α2 (fig. 5.15, right).

FIGURE 5.15: The residual stress distributions in B2: left, the solution from stress continuity;
right, the solution from deformation continuity.

The results show that the residual stress distribution obtained from stress continuity is almost

same for the one obtained from the deformation continuity. Or saying, in multiple-cut model,

residual stresses estimated with stress continuity (as boundary condition) is similar to the
ones estimated with deformation continuity..

5.4.3 Subsequent Elastic Deformation after Radial Cut on 1 cut Configuration

As mentioned in ‘Literature review of residual stress theories’, Fung [23] firstly introduces the

’opening angle‘ method to estimate the residual stress in living organs based on the observations

of artery slice cutting experiments. In experiments, the radial cut was done on aorta slice,
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then, the slices will spring open. It suggests that the intact organs are the residually-stressed

configurations and the residual stress will affect the mechanical behaviors of organs.

FIGURE 5.16: No observable deformations occur after additional radial cuts [23].

Moreover, the aorta slices were radially cut into smaller parts at different circumferential posi-

tions and assembled back into a whole specimen (fig. 5.16), which is to test whether the spec-

imen could reproduce the pre-cut shape [23]. The experimental observations presented a good

resemblance. Since on elastic deformation occurs after more radial cuts, it’s concluded that one

radial cut could help tissue to deform into the stress. Referring to configurations defined in our

models (fig. 5.2), this suggestion indicates that 1-cut configuration (B2) is stress-free as

τ = 0. (5.68)

where τ is the residual stress in B2.

However, in our multiple-cut model, it’s assumed that the 1-cut configuration (B2) is residually

stressed configuration as

τ 6= 0. (5.69)

This contradiction will be explained in this section. And it will give answers to following ques-

tions as: is the 1-cut configuration residually-stressed configuration? what’s elastic deformation

occurring from the residually stressed configuration? If no elastic deformation occurs after

cutting tissues from a certain configuration, is this the sufficient condition to address that this

configuration is stress free?

Mechanical response of the heart slice after subsequent radial cuts

As defined in 2cut model section, the geometry of the right-hand panel in fig. 5.2 represent a

1-cut configuration B2, which can be described by cylindrical polar coordinates {R,Θ,Z} as

(5.75). The slices are assumed to remain their cylindrical configurations. Therefore, due to

symmetry in geometries, it indicates the stress distributions are also symmetric to z-axis and

independent from angle position Θ.
∂σ0

∂Θ
= 0, (5.70)

where σ0 is the Cauchy stress in B2.

The configuration is at stress equilibrium state (O ·σ = 0), which yields balance equation (5.29)

with help of (5.70). Since no load is applied on this configuration, the distributions of Cauchy
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stress components should satisfy the boundary conditions as:

zero-circumferential-stress boundary condition gives

∫ r(o)

r(i)
σ0θθ dr = 0, (5.71)

Zero-bending-moment on the surfaces of cross-section yields

∫ r(o)

r(i)
σ0θθ rdr = 0. (5.72)

Zero-traction boundary conditions leads to

∫ r(o)

r(i)
σ0rrrdr = 0. (5.73)

where σ0i j is the component of σ0.

As mentioned in 2-cut section, only zero-bending-moment equation is independent control equa-

tion.

FIGURE 5.17: Radial cut on 1-cut configuration: a radial cut at of 1-cut configuration B2. The
slice will deform into new configuration B′2.

Assuming one more radial cut is made on 1cut slice, the new slices are assumed to remain

cylindrical configurations. To investigate the mechanical behavior of one of two slices, the

configuration (fig. 5.17) of target slice before cutting could be represented as

r(i) 6 r 6 r(o),
α2

2
6 θ 6 (β +

α2

2
), 06 z6 l, (5.74)

where β is the angle position for cutting.

Let the geometry of the right-hand panel in fig. 5.17 represent the new configuration B′2 of target

slice, which can be described by cylindrical polar coordinates {r̄, θ̄ , z̄} as

r̄(i) 6 r̄ 6 r̄(o),
ᾱ2

2
6 θ̄ 6 (2π− ᾱ2

2
), 06 z̄6 l̄, (5.75)
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where R(i), R(o), and L denote the inner and outer radii, and the tube length, respectively, and α2

is the opening angle.

To study stress distribution in B′2, symmetry in geometry indicates the stress distributions are

also symmetric to z-axis and independent from angle position θ̄ .

∂ σ̄0

∂ θ̄
= 0 (5.76)

where σ̄0 is the Cauchy stress in B′2.

Stress equilibrium state (O · σ̄0 = 0) yields balance equation (5.29) with help of (5.76).

∫ r̄(o)

r̄(i)

σθ̄ θ̄ −σr̄r̄

r̄
dr̄ = 0, (5.77)

Similarly with previous stress state, zero load condition is applied on B′2, the distributions of

Cauchy stress components should satisfy the boundary conditions as:

zero-circumferential-stress boundary condition gives

∫ r̄(o)

r̄(i)
σ̄0θθ dr̄ = 0, (5.78)

Zero-bending-moment on the surfaces of cross-section yields

∫ r̄(o)

r̄(i)
σ̄0θθ r̄dr̄ = 0. (5.79)

Zero-traction boundary conditions leads to

∫ r̄(o)

r̄(i)
σ̄0rr r̄dr̄ = 0. (5.80)

where σ̄0i j is the component of σ̄0.

The stress distribution could be obtained by solving (5.79) and (equ745). The stress equilib-

rium (5.29) and boundary conditions (5.72-5.73) in B2 hold the same expressions with stress

equilibrium (5.29) and boundary conditions (5.78-5.80) in B′2. Therefore, obviously, the stress

distribution in B2 is same as one in B′2, which gives

σ̄0 = σ0. (5.81)

The stress energy function, respect to B2, is defined as

Ψ̄ = Ψ̄(F̄,σ0), (5.82)
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where F̄ is elastic deformation gradient from B2 to B′2.

Recalling (5.4), Cauchy stress in B′2 is given as

σ̄0 = J−1F̄
∂ Ψ̄(F̄,σ0)

∂ F̄
− pI. (5.83)

Since the defined SEF gives the one-to-one mapping between stress and strain, recalling (5.81),

it gives

F̄ = I. (5.84)

Therefore, no elastic deformation occurs after more radial cuts at 1-cut configuration. More-

over, obviously, this phenomenon is independent from the cutting position. In other words, it

gives that no elastic deformation occurs after cutting at an arbitrary angle position. And this

conclusion could explain the experimental observation by Fung [23]. In the residually stressed

configuration of artery, the subsequent radial cuts don’t introduce any more elastic deformations.

Moreover, no solid evidence supports that the 1-cut configuration is the stress free configuration

for living organs. More cuts are needed to release the residual stress and address the stress-free

configuration for living organs.

If referring the non-linear elastic deformation theories to determine the stress-free configuration,

it’s safe to conclude that: if the body is at the stress-free configuration, the cuts on body will

not introduce the elastic deformation and the cut slices could perfectly reassembled back to the

previous configuration, but not vice versa; if no elastic deformation occurs after some cuts on

the body, the initial configuration is not necessary to be the stress-free one.

5.5 Conclusion

Based on experimental observations, it shows that a single radial cut does not release all residual

stress. We have developed multiple cuts models to estimate the residual stress distributions in a

mouse LV model. Our results show that both radial cuts and circumferential cuts are required

to release the residual stresses in the left ventricle. Remarkably, using radial cuts alone leads to

significantly underestimated residual stress, which will be around 40 times greater if estimated

properly. We show that similar findings apply to arteries [36].

Comparing the stress distritubtions in intact rings, it shows stresses estimated by 4-cut model are

smoother than by 2-cut model. In real heart, the stresses should smoothly distribute for intact

heart, which indicates 4-cut model is more reasonable. Moreover, as mentioned in previous

researches, it suggests ‘infinite cuts’ are efficient to release all residual stress in living organs,

since residual stress is induced by the complex (inhomogeneous) growth. Therefore, 4-cut model

may give better estimations for residual stress.
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The mechanical behaviors of LV are calculated with the single fibre family. According to the

discussion about effect of shear stress on the mechanical response of LV tube, it shows that the

geometric shape doesn’t change much by the shear stress. Therefore, the effects of shear stress

are really ignorable, while the values of shear stresses are really small.

The stress distributions in 1cut configuration are obtained from both stress and deformation

continuity conditions. And it shows that stress continuity is almost equivalent with deformation

continuity in multiple-cut model.

The computation results explain experimental observation by Fung [23]. In the residually

stressed configuration of artery, the subsequent radial cuts don’t introduce any more elastic de-

formations. Moreover, no solid evidence supports that the 1-cut configuration is the stress free

configuration for living organs. More cuts are needed to release the residual stress and address

the stress-free configuration for living organs.

Moreover, magnitude of hoop stress is estimated to be larger than the order of active tension

(200 kPa from this work V S 100 kPa for normal active tension for human heart). It might

be explained by: 1) the selection of the material properties. The constitutive parameters are

fitted from the experiments on rice [61], while the opening angles are obtained from the exper-

iments [59]. Considering the diversity of mechanical behaviors of soft tissues, the constitutive

parameters might be different between two mentioned works, even though these are the closest

data according to author’s best knowledge. With lower values for constitutive parameters, the

magnitudes of hoop stress will be significantly lower. For instance, if af is used as value of

2.00kPa in equation (5.2) (rather than 3.96kPa from parameter fitting), the max hoop stress is

reduced to 114 kPa (53% lower than estimation from previous results). 2) the time effects on the

opening angle; as mentioned in [30], the opening angle will be enlarged under the viscoelasticity

effects of (in vitro) artery tissues after the arterial samples are separated from the living organs.

In experiments [59], the opening angles after circumferential cuts are not immediately measured

after heart harvesting, which might introduce the enlarged opening angle. This fact (enlarged

opening angle) leads to the overestimated residual stresses.

This work gives a new direction to estimate the residual stress in LV by using the multiple cut

model. As shown in previous experiments (like [59]), single cut can release all the residual

stress in LV, since further deformations are observed after more cuts. By simply estimating

the residual with one-cut model, the residual stress will be significantly underestimated. To

increase the accuracy of the residual stress estimations. More experimental data are needed to

describe the material properties of in vitro tissues. Besides, the constitutive law, involving the

viscoelasticity in soft tissues, could be employed to estimate the residual stress in living organs.



Chapter 6

A Coupled Agent-based and
Hyperelastic Modelling of the Left
Ventricle Post Myocardial Infarction

6.1 Introduction

Myocardial infarction (MI), commonly known as a heart attack, occurs when blood flow de-

creases or stops to a part of the heart, causing damage to the heart muscle. The healing process

in the heart poses a complex multiscale soft tissue problem, invovling cardiac growth and remod-

elling (G&R). Cellular growth is often considered to be the cause for residual stress [72]. The

myocardial stress and constitutive properties are the two key factors in myocardial G&R [91].

There are typically two types of G&R modelling approaches at the continuum level. One is

the volumetric growth (the density remains unchanged) following the G&R, and the other is the

density growth (volume remains unchanged). In the volumetric approach, G&R can be modelled

using the growth tensor first introduced by Rödriguez et al. [65]. For example, Göketepe et al.

[25] developed a multi-scale framework to study myocardial growth via alignment of myocytes

and parallel additional of sarcomere units. Their model was extended to study the mechanical ef-

fects on remodelling patterns of left ventricle (LV) after certain surgical procedures. Kerckhoffs

et al. [47] developed a strain-driven growth laws to explain how the grown cardiac myocytes

increased the fibre and cross-fibre strains . Density growth, on the other hand, focuses on chang-

ing the constitutive properties of myocaridum in healthy remote and infarcted cardiac tissues,

the latter being characterised with stiffer constitutive properties, simulating the replacement of

fibrosis by collagen fibres. For example, in a study, the stiffness in the infarct zone is increased

significantly compared to functional myocardium in a patient-specific infarcted LV model.

94
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There are very few combined volumetric and density growth models for G&R, particularly for

the heart. Eriksson et al. [16] developed a framework to study the G&R process of fibre-

reinforced arteries, while the evolution of constitutive properties was simulated via a density-

and-volumetric growth approach for a mixture of constituents. However, the remodelling of

the fibre structure was not included. Indeed, it is not clear how the collagen fibre structure is

modified during the post-MI healing process, and how the macro-mechanical response of the

infarcted LV changes post-MI.

Recent developments in soft tissue modelling in parallel with advances in experimental tech-

niques have enabled us to predict mechanical states at, and obtain images of, the small scales

relevant to biology. For example, the structure-based fibre-reinforced Holzapfel–Ogden model

(HO) [35] for myocardium was developed based on simple shear experiments, and has catalysed

much of the recent activities in soft tissue modelling.

At the cellular level, collagen deposition and remodelling are regulated by fibroblast cell align-

ment. Environmental cues, such as mechanical and chemical cues, have been shown to influence

cell migration and regulate the micro-fibre structures [12]. Recently, agent-based models that

account for these effects have been developed and used to study a two-dimensional slab model

of the myocardium infarction [18, 66]. However, the extension of this approach to a three-

dimensional LV model has not been reported.

In this paper, we combine the agent-based approach by [18, 66] with a structure-based fibre-

reinforced constitutive law to study MI healing in a three-dimensional left ventricular model

for the first time. To account for the necessarily dispersed fibre structure post-MI, we mod-

ify the original Holzapfel–Ogden (HO) constitutive law [35] by employing a distributed fibre

model [37]. The specific fibre distribution is determined using an agent-based model similar

to that of [18]. We then incorporate the agent-based model within a finite element (FE) LV

model. This new multiscale model is used to simulate the myocardium remodelling in terms of

the collagen fibre structure and density. To account for the micro-fibre structure in the tissue

constitutive laws, a commonly used up-scaling method is based on volumetric averaging [83].

However, since these micro-fibres in the soft tissue do not support compression, a switch is re-

quired to exclude the compressed fibres. For dispersed fibre structure, however, such a ‘switch’

is often applied inappropriately due to the volumetric averaging [37]. In our model, we describe

the fibre structure using angular integration over a local coordinate system, which allows an

analytical expression of the fibre on-off switch to be implemented in the constitutive model.
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6.2 Methodology

6.2.1 Geometry of LV Model

An idealized half ellipsoid geometry (with 28mm of the long aixs, 5mm of internal radius for

base surface and 10mm of external radius for base surface) is used to construct FE model for a rat

LV, with 2100 hexahedral elements and 2375 nodes (fig. 6.1). The global Cartesian coordinates

(X ,Y,Z) are used to describe the material point in the undeformed reference configuration, with

the basis denoted as {EX ,EY ,EZ}.

FIGURE 6.1: (a) The LV geometry with 28mm long axis, internal radius of 5mm and exter-
nal radius of 10mm at the base, and a block cut from the LV wall. The basis vectors at the
reference configuration are (c0, l0, n0) for local coordinates, where c0, l0, and n0 are the local
circumferential, longitudinal and transmural unit vectors. The basis vectors at the reference
configuration are (X, Y, Z) for global Cartesian coordinates, with origin O at the LV apex. (b)
The fibre structure through the thickness of the LV wall. (c) Five longitudinal–circumferential

sections through the wall thickness. Collagen fibres lie in the c0–l0 plane.

Myocardium is considered to be a fibre-reinforced material mostly composed of collagen fibres

and myocytes [35]. A local coordinate system with the circumferential, longitudinal, and trans-

mural basis (c0, l0, n0), is introduced to describe the layered fibre structure within the ventricular

wall, as shown in fig. 6.1. Note that

c0 = EZ×n0/(||EZ×n0||), l0 = n0× c0/(||n0× c0||). (6.1)

The myofibre architecture is generally described by a ‘fibre-sheet-normal’ system (f, s, n) [89]

in the current configuration. Here, we assume that the fibre direction f always lies in the c− l
plane, the sheet direction is transmural, and the sheet-normal n = f× s, where c and l are the
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current circumferential and longitudinal directions: c = Fc0/(||Fc0||), l = Fl0/(||Fl0||), and F is

the deformation gradient.

6.2.2 Agent-based Model

6.2.2.1 Chemokine Concentration

Fibroblast cells adjust the micro-structure of heart tissue, including the density and orientation

of the collagen fibre bundles, which determine the material properties of infacted tissues. The

collagen fibres are aligned along the myocytes in healthy tissues. Following an acute MI, sudden

changes of the chemokine concentration and mechanical environment in and around the infarct

area activate the fibroblasts, which will remodel the micro-collagen structure of heart tissues by

changing the collagen orientations and its volumetric fraction thorough deposition and degrada-

tion. Subsequently, the material properties and mechanical behaviors are modified at the tissue

level. In this study, we extend the 2D agent-basedmodel developed in [18], to 3D, to describe the

collagen remodelling post-MI. The modified 3D agent-based model is explained in the coming

section.

We assume a circular myocardial infarction with its centre at Xc. The static chemokine concen-

tration at point X, representing the milieu of cytokines and chemokine surroundings, is described

by a chemical diffusion equation as:

Dc∇
2C(X) =





kc,degC(X)− kc,gen, X ∈Ωb

kc,degC(X), X /∈Ωb

(6.2)

where Ωb is the infarct region, Dc is the diffusion coefficient, C is the chemokine concentration

equation, and kc,gen, kc,deg are the chemokine generation and degradation rates, respectively.

The boundary condition for the chemokine concentration equation is

C(X) = 0, if ||X−Xc|| → ∞, (6.3)

Experimental data suggest that the infarct-induced chemical concentration reduces rapidly from

the infarct area, and drops to nearly zero away from the infarct centre. Hence, In practice,

we choose C(X) = 0, when ||X−Xc|| is ten times of the infarct zone in order to approximate

diffusion into an infinite space, following [66]. The continuity of the chemokine field requires

that

(C|X∈Ωb)
+ = (C|X∈Ωb)

−, (
∂C
∂X

)+|X∈Ωb
= (

∂C
∂X

)−|X∈Ωb
(6.4)

For a spherical infarct zone of radius r0, (6.2) has an analytical solution,



C(r) =





a1exp(a2r)−a1exp(−a2r)
r +a0, r ≤ r0

a3exp(−a2r)
r , r > r0

(6.5)

where a0 = kc,gen/kc,deg, a1 =−a0(r0+1/a2)
2exp(a2r0)

, a2 =
√

kc,deg/Dc and a3 =
1
2(r0−1/a2)exp(a2r0)−

a1.

The fibroblast activation parameters, including cell migration speed, collagen degradation rate,

collagen deposition rate and collagen reorientation rate, all are modulated by the local chemokine

concentration C(r). To compute the activation parameters in the agent based model, the local

fibroblast activation parameters are assumed to vary linearly with C as

Pi(X) = (
Pi,max−Pi,min

Cmax−Cmin
) [C(X)−Cmin]+Pi,min (6.6)

where Pi is the ith rate parameter, Pi,max and Pi,min are the maximum and minimum rates, and

Cmax, Cmin are the maximum and minimum chemokine concentrations.

6.2.2.2 Fibroblast Migrations Regulated by Environmental Cues

According to the experimental observations in [18], the infarct area is stretched only into lon-

gitudinal and circumferential directions and developed the scar tissues with collagen fibres. In

this thesis, it’s assumed that the new collagen fibres are disposed in the c-l plane, along with

the fibroblast migrations regulated by local environmental cues. These include the chemical,

mechanical, persistent and structural cues ([12], [18], [66]. We further assume the fibroblasts

are rigid discs with radius Rcell , and there is no interaction between fibroblasts [66].

Chemical Cues

We define chemokine vector as the production of chemokine concentration and the outward

normal vector at the fibroblast boundary. The chemical cue vcis obtained from

vc =
1

2π

∫
π

−π

C(r)n(θ)dθ , (6.7)

where n(θ) is the unit outward normal vector of the cell boundary in the current configuration,

r is the distance at the boundary of a fibroblast cell to the infarction centre Xc.



Mechanical Cues

The mechanical cue vm is defined as

vm =
1

2π

∫
π

−π

εn(ξ )n(θ) dθ (6.8)

where εn = n ·Dn is the normal strain, and

D =
1
2
(I−F−T F−1),

is the Eulerian strain tensor, F is the deformation gradient, ξ is the material point at the cell

boundary, and I is the identify matrix.

Structural Cues

The structural cue vs is defined as

vs =

∫
N(θ)f(θ) dθ∫

N(θ)dθ
, (6.9)

where N(θ) is the number of collagen fibres along angle θ , f(θ) is the unit vector along θ in the

current configuration, f = Ff0/||Ff0|| and f0 = cos(θ)c0 + sin(θ)l0.

Persistence Cue

The persistent cue vp, is defined as the fibroblast cell migration velocity

vp = Scell(X)u(Θ), (6.10)

where Θ is the angle of fibroblast migration at time t, Scell is the value of the fibroblast migration

speed, and u(Θ) is the unit vector along Θ in the current configuration, u = Fu0/||Fu0|| and

u0 = cosΘ c0 + sinΘ l0.

The fibroblast position at time t is tracked from

x(t) =
∫ t

t0
vpdt. (6.11)



Resultant Cue

The fibroblast resultant cue ρ is a weighted and normalised sum of all the cues (6.7 – 6.10),

ρ=
∑ci

η +∑ ||ci||
, ci =

Wi

Mi
vi, (6.12)

where vi is the ith cue vector, ci is the ith normalized and weighted cue vector, Mi and Wi are

ith scaling and weighting factors, and η is the persistent tuning factor, which is constant fitted

from experimental observations [66]. The orientation of ρ provides the mean fibre angle Θ̄. We

assume that the fibroblasts obey a Von mises distribution,

ϕVM(Θ|Θ̄,σ) =
eσcos(Θ−Θ̄)

I0(σ)
, σ

2 =−2ln||ρ||,σ2 =−2ln||ρ||, (6.13)

where I0 is the Bessel function of the first kind of order zero.

FIGURE 6.2: A) The resultant cue that represents the mean fibroblast direction is computed
from a weighted combination of all cues; B) the von Mises distribution of the fibroblast orien-

tation.

6.2.2.3 Remodeling of the Collagen Fibre Structure

The collagen structure of healthy tissue is described by the quantity of collagen fibres (N0
tot) and

the fibre angles. And the statistical feature of fibre angles can be described by a fibre orientation

density function (ϕ0). Then, during the healing process of infarction, more collagen fibres will

be deposed by fibroblast cells, while the fibre angles are also updated. The numerical strategy is

explained in this section how to mathematically describe the evolution the statistical features of

fibre family at the arbitrary material point in infarction region.

The local collagen fibre distribution in the current configuration are remodelled by fibroblasts in

the following way.



1. Deposition and degradation: The total collagen fibre number at time t is

Ntot =
∫

π/2

−π/2
N(θ)dθ . (6.14)

The rate of change of the number of collagen fibres along θ direction N(θ) is determined

from
∂N(θ)

∂ t
= kcf,gen(C)βπR2

cellδ (Θ−θ)− kcf,deg(C)N(θ), (6.15)

where β is the maximum collagen fibre number per area, Rcell is the radius of the fibrob-

last cell, δ is the delta function indicating the new fibre is aligned with the fibroblast

migration orientation, kcf,gen and kcf,deg, estimated from (6.6), are the rates of generation

and degradation of collagen fibres, respectively.

2. Rotation: The angle of a collagen fibre changes according to

dθ

dt
=

{
kcf,rot(C)||sin(Θ−θ)||, Θ−θ ∈ (0, π

2 )∪ (π, 3π

2 )∪ (2π, 5π

2 )

−kcf,rot(C)||sin(Θ−θ)||, Θ−θ ∈ (π

2 ,π)∪ (−π

2 ,0)∪ (3π

2 ,2π)
, (6.16)

where kcf,rot is the rate of rotation estimated from eq. (6.6).

Since the material properties are the same about f and −f, we only need to consider the values

of θ ∈ (−π/2,π/2). To achieve this, the following transformation is used:





θ ⇐ θ , θ ∈ (−π

2 ,
π

2 ),

θ ⇐ θ −π, θ < π

2 ,

θ ⇐ θ +π, θ <−π

2 .

(6.17)

The deformed and remodelled fibre structure needs to be pushed back to the reference configu-

ration ([31]),

f0(θ) =
F−1f(θ)
||F−1f(θ)|| . (6.18)

where F is the deformation gradient and f0 is the fibre vector in the reference configuration.

6.2.2.4 Upscaling the Fibre Structure from the Fibre Level to the Tissue Level

The updated volumetric fraction Φcf is

Φcf =
Ntot

N0
tot

Φcf0 , (6.19)

where Φcf0 and and N0
tot are the volumetric fraction and numbers of the fibres at the reference

configuration.



The fibre orientation density function, when pushed back to the reference configuration, is esti-

mated from

ϕ(θ) = π
N(θ)

Ntot
. (6.20)

6.2.3 Constitutive Laws for Myocardium

6.2.3.1 Modified HO Model with Fibre Orientation Density Function

For the remote healthy myocardium (r(X)> r0), we use the standard HO model [35], i.e.

Ψ = Ψm +Ψcf, (6.21)

where

Ψm =
a
2b
{exp [b(I1−3]−1} , Ψcf =

acf

2bcf

{
exp
[
bcf(I4(θ)−1)2]−1

}
, (6.22)

in which a,b acf, bcf are material parameters, and I1, I4 are the invariants of the right Cauchy–

Green tensor ~C = ~FT~F ,

I1 = ~C : I, I4 = u0(θ) ·Cu0(θ), (6.23)

Here ‘:’ denotes a double contraction, and u0(θ) = cosθ c0 + sinθ l0.

To describe the mechanical behavior of the infarcted tissue (r(X) ≤ r0), we modify the HO

model as

Ψ = Φm,tΨm +Φcf,tΨcf, (6.24)

where Φm,t(= 1−Φcf,y) is the volume fraction of the ground matrix, Ψm is the same as in (6.22)

but Ψcf is changed to

Ψcf =
1
π

acf

2bcf

∫

Σ

{
exp
[
bcf(I4(θ)−1)2]−1

}
ϕt(θ) dθ . (6.25)

Notice that the integration in (6.25) is over a domain Σ in which the fibres are in tension, not

(−π/2,π/2). This is because collagen fibres bear load only when they are stretched. We will

address this point in Section 2.3.2.

A rule-based myocardium fibre generation algorithm is adopted to describe the local mean fibre

angle. We first calculate the normalized distance parameter d for an arbitrary material point X
as

d =
dendo

dendo +depi
, (6.26)



FIGURE 6.3: The shadowed areas show the range of Σ of stretched collagen fibres within
−π

2 < θ < π

2 for selected scenarios (dash line denotes I4 = 1): (a) case 1, C23 > 0; (b) case 2,
C33−1 > 0,∆≤ 0; (c) case 2, C33−1 > 0,∆ > 0; (d) case 2, C33−1 < 0,∆ > 0.

where dendo, depi are the distances from X to the endocardial and epicardial surfaces. Then, the

local mean fibre angle θ̄0 at X is defined as

θ̄0 = θmax(1−2d),

where θmax = π/3, since it has been observed that the mean angle of fibres in a healthy left

ventricle rotates transmurally across the heart wall from π/3 at the endocardial surface to −π/3

at the epicardial surface [51].

6.2.3.2 Exclusion of the Compressed Fibres

To exclude the compressed fibres, we choose Σ in eq. (6.25) so that

I4 > 1, or (C22−1)cos2
θ +2C23 sinθ cosθ +(C33−1)sin2

θ > 0, (6.27)

where Ci j are the Cartesian components of C. Eq. (6.27) gives the range of Σ for the stretched

collagen fibres in the following two cases.

• Case 1: C33 = 1,

Σ =





(θ1,
π

2 ), C23 > 0

(−π

2 ,θ1), C23 < 0

(−π

2 ,
π

2 ), C23 = 0, C22 > 1

∅, C23 = 0, C22 < 1

(6.28)

where θ1 = arctan 1−C22
2C23

.



• Case 2:

Σ =





(−π

2 ,
π

2 ), C33−1 > 0, ∆≤ 0,

(−π

2 ,θ2) ∪ (θ3,
π

2 ), C33−1 > 0, ∆ > 0

(θ2,θ3), C33−1 < 0, ∆ > 0

∅, C33−1 < 0, ∆ < 0

(6.29)

where ∆ = (2C23)
2−4(C33−1)(C22−1), and θ2 and θ3 are the roots of (6.27).

The Cauchy stress is then

σ =−pI+F
∂Ψ

∂ I1

∂ I1

∂F
+F

∂Ψ

∂ I4

∂ I4

∂F

=−pI+Φm,t a exp[b(I1−3)]B

+
1
π

Φcf

∫

Σ

2acf(I4−1)exp[bcf(I4−1)2]ϕ(θ)u(θ)⊗u(θ)dθ ,

(6.30)

where B = FFT is the left Cauchy-Green deformation tensor.

6.2.3.3 Change of Basis from Cartesian to Local Coordinates

In numerical simulation, the Cartesian coordinates are usually employed to describe the de-

formation of material point X, which indicates that the deformation tensor F is defined with

Cartesian base {ei}. However, the fibre family is described by a local coordinate system (c0, l0.

In order to exclude the compressed fibres, it is convenient to transform the description of fibre

orientation between the global Cartesian coordinates and the local polar coordinates, namely,

x∗ = Qx, (6.31)

where * indicates the corresponding variable in the local coordinate, and Q is the rotation tensor

(Q = f⊗ e1 + c⊗ e2 + l⊗ e3).

Then the local deformation gradient and right Cauchy–Green tensor are given as

F∗ = QF, C∗ = Q · (FT F)QT . (6.32)

TABLE 6.1: fitted material parameters for myocardium from [61, 66].

Initial volumetric fractions Φm,t0 = 0.97 Φcf,t0 = 0.03
Initial concentration parameter σ0 = 9.10

matrix parameters a = 2.28 kPa b = 1.8
Collagen parameters acf = 132.0 kPa bcf = 3.45



6.2.4 Coupled Agent-based and FE Model

The LV diastolic dynamics is simulated using a coupled agent-based and FE LV model. We

assume that mechanical cues are based on end-diastolic state and the remodelling only occurs in

the MI region. The computational flowchart is shown in fig. 6.4.

Coupling of the agent-based model and finite element method is operated entirely within the

FORTRAN coding environment. The agent-based model enabled one-to-one mapping of the

predicted collagen fiber structure and transported the statistical description of fibre structure into

to constitutive parameters for each finite element; then the finite element model could inform

remodeling in corresponding element with mechanical states and feedback information to agent-

based model.

Overall, the cycle of coupled model ran as follows.

• Simulate end-diastolic mechanical states (heart pressure) of the FE model of left ventricle;

with helps of the constitutive laws of heart tissues eq. (6.24), the mechanical information,

including the stress and strain distributions, will be obtained from the LV FE model after

applying boundary conditions.

• Compute mechanical guidance and updated resultant cues for individual fibroblast and im-

port the deformation tensors into agent-based model for FE simulation. The mechanical

cue for individual cell will be calculated via eq. (6.8). Then, the resultant cue will be up-

dated via eq. (6.7) – eq. (6.13), which will guide the movements of single cell (eq. (6.11)).

At the edges of infarction, the movements of cells are random, while the effects of envi-

ronmental cues is ignorable to guide the cell moving towards the infarction center. In this

thesis, the cell quantity is constant in the infarction region during the healing process. It

can be explained as: the cell movement is random at the boundary of infarct. Then, it is

assumed that one new cell will move into infarction region across the boundary, when the

tracked cell is moving out. Besides, since the feature of collagen fibre structure, such as

depositions and degradations of fibres, are stable for healthy tissues. We ignore the fibre

modelling for healthy tissue and assume the material parameters are constant.

• Compute the fibre depositions, degradations and rotations. After the cell migration, the

collagen fibre family will be modified by the traced cell at the particular material points.

The total fibre number will be changed (eq. (6.15)), while the fibre angles will be updated

(eq. (6.16) – eq. (6.18)).

• Compute new constitutive parameters. In this paper, the variable constitutive parame-

ters are volumetric fractions for matrix material (Φm,t) and collagen fibres (Φcf,t), and

the fibre orientation density function ϕt . For healthy tissues, the constitutive parameters

are constant as Φcf0 , Φm0 and ϕ0. And for infarcted tissues, the constitutive parameters



are updated via agent-based model (eq. (6.19) and eq. (6.20)), with helps of the updated

statistical feature of fibre family from last step.

• Transport new constitutive parameters into constitutive law of heart tissues for each indi-

vidual FE element defined by FE method.

• Repeat the entire sequence for next time step till the end of heart healing period.

FIGURE 6.4: Flowchart of the coupled agent-based and FE LV model.

6.3 Results

6.3.1 MI Healing Case Studies and Parameters

To validate the model, we follow the experimental study of the infarcted LV of rats by Fonovsky

et. al [20], in which cyroinfarctions were created by sewing sonomicrometer crystals into tissues

of the epicardial surface of rats’ ventricles. After weeks of healing, the hearts were harvested

to study the collagen structures at the surface of infarcted zones. We select two cases from

[20] to simulate. In the first case, a circular MI is induced in the mid-ventricular anterior wall,



as shown in fig. 6.5(a); In the second case 2, an elliptical MI (eccentricity ≈ 0.8) is at mid-

ventricular anterior wall, as shown in fig. 6.5(b). According to [66], a fibroblast cell is assumed

to cover volume of 25X25X25 µm3. The number of cells in each FM element of infarcted re-

gion is determined by the ratio of cell-covered volume to the volume of the FE element. The

model time step bigger than 0.5h can reproduce the cell migration data measured in [12]. In this

thesis, the maxim time step is employed as 0.5h in order to gain the computational efficiency,

by reducing the quantity of time steps in agent-based model to simulate the fibroblast migration.

FIGURE 6.5: The FE models of (a) a transmural circular cryoinfarct with r0 ≈ 5.5mm and
Xc = (10.12,2.82,0.81), and (b) a transmural elliptical cryoinfarct (with long axix ≈ 15mm,

short axis ≈ 5mm and Xc = (10.12,2.82,0.81), in the anterior wall.

We model the healing process for six weeks when the mature scare is formed and the ventricular

filling pressure incrased [20]. Hence, a linearly-increasing end-diastolic pressure profile is

assumed, with values of 12 mmHg at time 0 to 18 mmHg at 6 weeks. The LV base is constrained

in the longitudinal direction, but free movements in radial and circumferential directions are

allowed. The model parameters are listed in II, following [20].

6.3.2 Evolution of the Fibre Structure Post-MI

The simulated collagen accumulations for both the circular and elliptical MI shapes in the infarct

centre at 0, 1, 2, and 5 weeks post-MI are shown in fig. 6.6. The volume fraction increases from

3% to around 28%. This agrees well with the measured data [18]. We note there is very little

difference between the different MI shapes.

The distribution of the collagen fibres at different weeks post-MI is shown in fig.(6.7). At the five

weeks post-MI, the simulated result is also compared with the corresponding measurement [18].

Given the large error bars in the measurements, there is a reasonable agreement in terms of the

overall distribution and the maximum collagen fibre fraction predicted.



TABLE 6.2: Parameter values related to fibroblast dynamics and collagen remodelling.

Fibroblast dynamics
Radius of fibroblast cell Rcell 5 µm

maximum collagen fibre number per volume β 14000 µm−3

chemokine diffusion coefficient Dc 1.6 µm2s−1

chemokine degradation rate kc,deg 0.001 s−1

chemokine generation rate kc,gen 0.01 nms−1

persistence tuning factor η 0.175
Persistence cue weight factor Wp 0.333
Structural cue weight factor Ws 0.167

Mechanical cue weight factor Wm 0.167
Chemical cue weight factor Wc 0.167

Collagen remodelling
Quiescent (min) activated (max)

Collagen degradation rate coefficient kcf,deg 2.4E-4 2.5E-3 h−1

Collagen generation rate coefficient kcf,gen 7.5E-4 7.3E-2 %volume· h−1

chemokine fibre rotation generation rate kcf,rot 5 5 deg· h−1

time step ∆ t 0.5 h

FIGURE 6.6: Comparison of estimated infarct collagen volumetric evolutions with the mea-
surements: the collagen volumetric fractions of infarcted tissues are calculated through the
remodelling processes of collagen fibre families via eq. 6.19. Then, the volume average of
collagen fibre fractions among all infarcted tissues is employed to describe the evolutions of
the collagen fraction. The simulated results (blue for Circular MI and red for Elliptical MI) are
compared with evolutions of experimentally-measured collagen fractions in [18] (black dots

with error bars).

Fig. 6.8(a) shows that for both MI shapes, the mean collagen angle at 20% of the distance from

the epicardium to endocardium surfaces decreases significantly at the fifth week (from the initial

45o to 22.5o for the circular MI, and to 10o for the elliptic MI.

As the anisotropy in collagen fibre structure is a critical determinant for the pump function of

LV ([20], [66]), we use the kurtosis of collagen fibre structure to describe the anisotropy level,

which is defined as

Kurt(θ) =
E
[
(θ − θ̄)4

]

E
[
(θ − θ̄)2

]2 , (6.33)

where E(•) is the expectation of •, and θ̄ is the mean fibre angle. A smaller value of kurtosis

indicates a lower level of anisotropy. fig 6.8(b) shows that the anisotropy level at the infarcted

region decreases in the beginning, but eventually reaches a plateau. It is interesting to see that



FIGURE 6.7: The evolution of collagen fibre structure for a circular MI: (a) – (e) 0–5 weeks;
(f) the overlap of estimated fibre structure with the experimental measurements 5 weeks post-

MI [18])

although the fibre volume fraction is similar in both the circular and elliptical MI shapes, the

distribution of the fibres is quite different. The evolution of the fibre structure following the

elliptical MI is faster than that of the circular MI. The isotropic level of fibre structure, in terms

of the kurtosis, decreases from the initial valuve of 3.38 to 3.29 for the circular MI, and to 3.21

for the elliptical MI. In general, the elliptical MI causes greater changes in terms of mean fibre

and kurtosis over the healing time. However, in both cases, the volumetric fraction increased

to a stable level of around 28% (fig. 6.6) at the fifth week. The decreased anisotropy of the

fibre distribution over time is better shown in fig. 6.9, where the local fibre structure near the

epicardial surface at different weeks post-MI. Note to make the fibre structure visible, we have

averaged the mean values of fibres over much smaller local pockets.

6.3.3 Evolution of the Stress and Strain Level Post-MI

The first principle stress distribution for the circular MI at different time post-MI is shown

in fig. 6.10, where the infarcted region is indicated by an arrow. It is evident that the stress

distribution is greatly influenced by the evolution of the local collagen fibre structure. The stress

increases at the endocardial surface and gradually smears out towards the epicardial surface. The

local stress level around the MI region is caused by collagen accumulation and re-orientation,

but the overall stress also increases due to the increased end-diastolic pressure.



FIGURE 6.8: (a) The mean angle changes during the circular MI, (b) the kurtosis of the fibre
structure.

FIGURE 6.9: The evolution of collagen structure at the epicardial surface of the circular in-
farcted zone: The red arrow is the mean angel of overall fibre structure, while the blue arrows

are the mean values of fibres of much smaller local pockets of size.

The involution of the stress level with time is shown in fig. 6.11, the corresponding mean stress

values at the infart centre are also listed in Table III. During the healing process, the circum-

ferential stiffness is reinforced by the newly deposited collagen fibres. Hence, the maximum

circumferential stresses increases dramatically from 4.3 kPa to 15.1 kPa. The local longitudinal

stress has not changed much (from 0.78 kPa to 0.76 kPa at 5 weeks). This is because most of the

collagen fibre remodelling happens in the circumferential direction. The elavated circumferen-

tial stress level around the MI region can lead to further adverse remodelling in the heart, such



as myocyte apoptosis.

The stress distribution for the elliptical MI is similar to that of the circular MI, but the absolute

stress levels are slightly different as shown in Table III.

FIGURE 6.10: Evolution of the first principle stress distribution for the circular MI; its location
is indicated by the arrow. The bottom right is a 3D plot at 5 weeks post-MI.

FIGURE 6.11: The evolution of (a) radial stress; (b) circumferential stress; and (c) longitudinal
stress, for the circular MI.

Fomovsky et al. [20] also measured the evolution of strain during the healing process in the

epicardial surface of the infarcted region. They found that the circumferential strain in the

infarct region continuously decreases with an average decrease of 65%, and an average decrease

of 13% for the longitudinal strain at six weeks. Our simulation results give similar trends as



TABLE 6.3: Comparison of the mean stress at the infarct centre post-MI

Circumferential stress (kPa) longitudinal stress (kPa)
Cicular MI Elliptical MI Cicular MI Elliptical MI

0 week 4.3 4.5 0.78 0.78
1 week 5 5.8 0.82 0.80
2 weeks 10.2 8.8 1.17 0.84
3 weeks 13.7 13.7 0.91 0.61
5 weeks 15.1 16.3 0.76 0.49

shown in fig. 6.12 for both MI shapes. For example, in the case of the circular MI, the strain

shows an average decrease of 49% in the circumferential strain (0.03 ± 0.01 at 0 weeks, 0.04

± 0.024 at 1 weeks, 0.042 ± 0.01 at 3 weeks, 0.03 ± 0.02 at 4 weeks, and 0.022 ± 0.02 at 5

weeks), and an average decrease of 35% in the longitudinal strain at 5 weeks.

FIGURE 6.12: Strain evolutions over time. (a): preferential accumulation in the circumferential
direction reduced strain anisotropy. The predicted strain trends agreed reasonably with the

experimentally measured strains 6 weeks after cryoinfarction [18].

The evolution of the strains at endocardial surface of the elliptical MI is similar compared to the

circular MI (fig. 6.12). Both circumferential and longitudinal strains decrease to the homeostatic

state after healing process, with 31% decrease in the circumferential strain, 43% decrease in the

longitudinal strain.

6.3.4 Influence of the Mechanical Cue

We now isolate the effect of the mechanical cue by switching it on and off. The mechanical

cue was suggested to be the most important factor of regulating the collagen alignment [66].

fig. 6.13 shows the distribution of the collagen fibres with and without the mechanical cue. The

collagen alignment in the infarcted region decreases more quickly when the mechanical cue is

switched off. In addition, the mean angle of fibre structure does not change much during the



healing process; it remains more or less unchanged. When the mechanical cue is on, there is

much better agreement with the experiments in terms of the fibre distribution and mean angle.

FIGURE 6.13: Fibre structure at 5 weeks post-MI, with (red solid) and without (red dashed)
the mechanical cue. The measured data are also shown as dashed line with error bars

6.4 Discussion

Our model is the first to couple an agent-based model with a realistic 3D LV model with local

MI and is a significant extention of the previous study based on a 2D FE slab [67]. In par-

ticular, a modified HO consititutive law is employed to simulate the mechanical behaviour for

myocardium post-MI, where fibre dispersion due to wound healing needs to be accounted for.

To exclude the effects of the compressed fibres, an analytical fibre switch is implemented in this

FE LV model.

The challenge of developing a multiscale model for the evolutions of collagen fibre structure and

mechanical states of infarcted LV is the involvement of many material parameters. In this study,

our parameters are pooled from published cryoinfarction measurements [18] and the predictions

from our model showed good quantitative agreement. The only parameter not based on the

measurements is the persistance tuning factor η (Table II). To see how much effect this has,

we also ran the model with the value of η increased. Our results (not shown) suggest that

an increased η leads to a greater standard derivation σ , reducing the randomness of the new

fibroblast angles through (6.13). The fibre structure reaches the steady state faster, and matured

at around 4 weeks if η is doubled, which is one week earlier than using the default value of η .

The final fibre structures, however, are very similar.

Environmental cues, such as the chemical, the mechanical and the persistence cues, play im-

portant roles on regulating collagen fibre structures during MI healing. Our results show a poor



agreement with measurements if the mechanical cue is switched off. McDougall et al. sug-

gested that the distribution of the chemical gradient established by the chemokines generated

around dermal wound, determines patterns of local collagen alignment [53]. In our simulations,

different chemokine distributions are realised through the MI shapes; the chemokine field is

mostly flat inside the infarction, but with a sudden drop near the infarct border. The influences

of chemical gradient are greater in the region near infarcted border. Therefore, the mean angle

and kurtosis of the fibre distribution for different infarct shapes are different. Our simulations

are also supported by the observations in [66].

Finally, we mention the limitations of this study. Firstly, the transmural fibroblast migration

is not considered. Secondly, our model only consider the diastolic dynamics without active

contraction. Therefore the mechanical cue is simplified. Furthermore, no transient chemokine

concentration is included. Finally, we understand that myocardial infarction in the human heart

may have different biological processes and parameters compared to cryoinfarction in the rat

heart. Estimation of these parameters for paticent-specific human hearts post-MI, therefore,

remains a daunting task.

6.5 Conclusion

We have developed a multiscale MI model by coupling an agent-based model for collagen re-

modelling to a three-dimensional LV model in diastole. To describe the remodelled material

properties of myocardium in the infarted region, a collagen fibre tension-compression ‘switch’

is incorporated in the FE LV model for the first time. The time-dependent model also captures

the interaction and information exchange processes between the mechanical behaviour and col-

lagen tissue remodelling guided by various external cues. The model results show the similar

trends in collagen cumulation and collagen alignment during the infarct healing for five weeks.

The shapes and the locations of infarctions could affect the local collagen accumulation and the

LV dynamics. For example, the mean angle of fibre structure decreases from about 45o to 22.5o

at near the endocardial surface for the circle infarction, but decreases less in the elliptic infarc-

tion. Stresses are affected for both the circle and the ellipse infarctions. The reduction of the

circumferential strains at five weeks post-MI agrees well with the experimental observations.

With further development, we expect that this multiscale approach could provide useful insights

in clinical practices for MI patient management.



6.6 Appendix I: Coupled Agent-based and Cylindrical Modelling
of LV Post Myocardial Infarction

6.6.1 Introduction

As mentioned in this chapter, at the cellular level, collagen deposition and remodelling are

regulated by fibroblast cell alignment. Environmental cues, such as the mechanical and chem-

ical cues, have been shown to influence cell migration and regulate the (collagen) fibre struc-

tures [12].

The agent-based models that accounting for these effects have been developed. Here, a 2D

slab model of the myocardium infarction [67] is developed to study the trends of remodelling

processess after MI.

6.6.2 Methodology

6.6.3 Geometry of LV (Cylindrical Tube Model)

A geometry of LV is constructed as an idealised cylindrical tube. This geometry will be used to

simulate the mechanical responses of mice LV with regional cyroinfarction at the end-distolate..

Along tube wall, 50 nodes are seeded. The cylindrical coordinates (R,Γ,Z) are used to describe

the material point in this undeformed geometry, with basis as {Er,EΓ,EZ}.

FIGURE 6.14: Depiction to cylindrical model of LV. the dashed area is the cross-section of
infarction region with nodes.

The LV is constructed by the fibre-reinforced tissues, which is composed with collagen fibre and

myocyte sheet ([35]). As orthotropic material, the (local) fibre direction is assumed to be tangent

to LV surface, while the myocyte sheet construction is orthogonal to fibre structure. Therefore,

the fibre structure is location-dependent. At an arbitrary material point X, the fibres structure

are assumed to be in the local ‘EΓ−EZ’ plane in undeformed LV as the (nature) reference

configuration.



The infarction is developed respect to the infarction center zone, which is defined as

Ro ≥ R≥ Ri, 2π ≥ Γ≥ 0, L≥ Z ≥ 0

where Ri and Ro are the outer and inner radius of LV cylindrical tube.

6.6.3.1 Agent-based Model

6.6.3.2 MI Healing and Chemokine Concentration

The general form of chemokine concentration is given in eq. (6.2), as well as the boundary

conditions in eqs. (6.3) and (6.4). In this simplified model, the chemokine concentration is

assumed to only depend on the distance along z-axis from the infarct center. Therefore, the

chemokine concentration could be rewritten in cylindrical coordinates {R,Γ,Z} as

Dc52 Ĉ(Z) =





kc,degĈ(Z)− kc,gen Z < Z0,

kc,degĈ(Z) Z ≥ Z0,
(6.34)

where Ĉ(Z) is the concentration equation in cylindrical coordinate (Ĉ(Z) =C(X−Xc)), Z0 is at

the infarct boundary.

The boundary conditions (eqs. (6.3) and (6.4)) are rewritten as





(dC
dZ |Z=Z0

)+ = (dC
dZ |Z=Z0

)− if Z = Z0,

C |Z=Z0)
+ = (C |Z=Z0)

− if Z = Z0,

C = 0 if Z = ∞,

dC
dZ = 0, at Z = 0.

(6.35)

The chemokine equation could be obtained from eq. (6.34) and (6.35) as (fig. 6.15)

Ĉ(Z) = a1exp(a2Z)+a1exp(−a2Z)+a0 Z < Z0, (6.36)

where a0 =
kc,gen
kc,deg

, a2 =
√

kc,deg
Dc

, a1 =− a0
2exp(a2Z0)

6.6.3.3 Fibroblast Movement Regulated by Environmental Cues

The fibroblast migrations respond to local environmental cues [19]. Here, the fibroblasts are

modelled as rigid discs. The environmental cues for individual cell are defined as: The fi-

broblast migration are regulated by internal and external environmental cues, such as chemical,

mechanical, persistent and structural cues ([12], [19], [66]).



FIGURE 6.15: Depiction to analytical solution of Chemokine concentration: solid line is the
Chemokine concentration in the infarction region, while dash line is the one out of infarction.

The chemokine cue is to measure the direction with greatest chemokine concenteration. The

indicator of chemokine vector is the production of chemokine concentration and unit outward

normal vector at the cell boundary. The distance to infarction could be expressed for the point

at boundary of cell (Zb
cell(θ)) as

Zb
cell(θ) = Zcell + sin(θ)Rcell, (6.37)

where θ is angle to circumferential direction EΓ, Zcell is the Z position of target cell and Rcell is

radius of cell.

To obtain the local chemical cues, chemokine vector is integrated over the cell boundary in

‘EΓ−EZ’ plane as:

vc =
1

2π

∫
π

−π

Ĉ(Zb
cell)n(θ)dθ , (6.38)

where vc is chemical guidance cue vector, n is unit outward normal vector from cell surface θ .

The mechanical vector and persistent vector are given in eqs. (6.8) and (6.10).

The fibre structural vector can be calculated similar with eq. (6.9), while u is unit fiber orienta-

tional vector as

u(θ) = cos(θ)EΓ + sin(θ)EZ.

The preferred direction of individual fibroblast is estimated by resultant cue ρ eq. (6.12), current

fibroblast orientation is statistically selected from Von mises distribution eq. (6.13), where Θ is



the angle of a single fibroblast cell, Θ̄ is the mean angle of the fibroblast resultant vector ρ in

local ‘EΓ−EZ’.

In this reduced agent-based model, the movement of fibroblast is ignored, while it only considers

the rotation of fibroblast in ‘EΓ−EZ’ plain.

Remodeling of Fibre Structure by Fibroblast Cell
After the fibroblast orientation is statistically determined from eq. (6.13), the structure of the

collagen fibres is updated, represented by eqs. (6.15) and (6.16).

6.6.3.4 Upscaling the Fibre Structure from Fibre Level to Tissue Level

In the tissue level, the fibre structure can be described by the fibre volumetric fraction (Φcf) and

fibre orientation density function (ϕt(θ)) at time t, which parameters are updated by eqs. (6.19)

and (6.20).

6.6.4 Basic Kinematics of Tube Model

Consider LV of heart as an incompressible thick-walled cylindrical tube subjected to external

loads. Then, in cylindrical polar coordinates R,Γ,Z, the geometry of heart tube is defined by

Ro ≥ R≥ Ri, 2π ≥ Γ≥ 0, L≥ Z ≥ 0

where L is the length of tube.

After applying external loads (heart pressure), in term of (r,γ,z), the geometry of current con-

figuration is given by

ro ≥ r ≥ ri, 2π ≥ γ ≥ 0, l ≥ z≥ 0

where ri, ro and l are inner, outer radii and length of deformed tube, respectively.

The isochoric deformation from the undeformed configuration to current configuration is written

as

x = rer + zez, (6.39)

Material incompressibility gives

r =

√
R2−R2

i
λz

+ r2
i , γ = Γ, z = λzZ, (6.40)

where λz = l/L is the constant axial stretch.



The deformation gradient, denoted as F, is given by

F =
∂x
∂X

= λ1er⊗ER +λ2eγ ⊗EΓ +λzez⊗EZ, (6.41)

where

λ1 =
R

rλz
, λ2 =

r
R

(6.42)

For the tube model, the equilibrium equation5σ = 0 is reduced to

dσrr

dr
+

σrr−σγγ

r
= 0, (6.43)

With help of pressure boundary condition (P =−σrr|r=ri), on integration equation (6.43) gives

P =
∫ ro

ri

σγγ −σrr

r
dr. (6.44)

This equation will be used to determine the mechanical response of LV to heart pressure, with

help of constitutive laws for passive heart tissues.

6.6.5 Constitutive Laws for LV Tissues

6.6.5.1 Modified HO Model with Fibre Orientation Density Function

The modified HO model is used to describe the constitutive law for heart tissues (eqs. (6.24) -

(6.25)).

For the healthy myocardium, the fibre dispersion could be experimentally fitted with a Von mises

distribution [38, 70] or a wrapped normal distribution [66]. In this paper, we use the π-periodic

Von mises distribution to describe the fibre orientation density function ϕ0 for healthy tissue.

ϕ0(θ) =
eσ0cos(θ−θ̄)

I0(σ0)

where σ0 is the initial concentration parameter, fitted from experimental observation [66], θ̄ is

the mean angle of collagen fibre structure. I0(σ0) is the modified Bessel’s function of first kind

of order zero [70] as

I0(σ0) =
1
π

∫
π

0
exp(σ cosθ)dθ .

The in vitro experimental measurement shows the mean angle of fibre rotates transmurally

across the heart wall from π/3 at the endocardial surface to −π/3 at the epicardial surface.

Here, the myocardium fibre generation algorithm ( [89, 95]) is adopted to simulate the local



fibre mean angle. For an arbitrary material point X of heart tube, the normalized thickness

parameter d could be determined by two intramural distances as

d =
RX −Ri

Ro−Ri
(6.45)

The local mean angle of fibre structure could be simulated as

θ̄ = θmax(1−2d)

where θmax is the maximum fibre angle on the endocardial surface, as π

3 in this paper.

6.6.5.2 Fibre Switch to Exclude the Compressed Fibre

In the computation of mechanical behavior of myocardium, the undeformed fibre structure is

assumed to distribute in the ‘EΓ−EZ’ plane. The compressed collagen fibres should be exclued

from the mechanical contributions, which requires It requires to solving the inequation of fibre

invariance

I4 > 1 (6.46)

where I4 is the fibre invariant; with unit basis {ER,EΓ,EZ}, the right Cauchy–Green tensor

(C = FT F) is given with help of eq. (6.41) as

C = λ
2
1 ER⊗ER +λ

2
2 EΓ⊗EΓ +λ

2
z EZ⊗EZ. (6.47)

Substituting eq. (6.47) into eq. (6.46), it gives

I4 = λ
2
2 cos2

θ +λ
2
z sin2

θ > 1, (6.48)

By solving inequality (6.46), the solution is given as:

Case 1:

if λ2 > 1, θ ∈ Σ = (−π

2 ,
π

2 ).

Case 2:

if λ2 < 1,

θ ∈ Σ = (

√
arctan

1−λ 2
2

λ 2
z −1

,
π

2
)∪ (−π

2
,−
√

arctan
1−λ 2

2
λ 2

z −1
). (6.49)

Then, the angel range Σ will be used to describe the stretched collagen fibres in (6.50)



FIGURE 6.16: Depiction of the angel range of stretched fibres: Within the fibre angle range
−π

2 < θ < π

2 , the shaded regions are computed from eq. (6.48).

The SEF of fibre structure Ψcf,t at the associated point could be rewritten with help of solution

for eq. (6.46) as (fig. 6.17)

Ψcf,t = Φcf
1
π

acf

2bcf

∫

Σ

[
exp( bcf(I4(θ)−1)2−1)

]
ϕt(θ) dθ , (6.50)

where Σ is the solution of angle domain by inequation (6.46).

Recalling eq. (6.24), for the incompressible myocardium, the Cauchy stress yields as eq. (6.30).

Combining eqs. (6.44) and (6.27),the mechanical response of LV will be determined to the given

heart pressure.

6.6.5.3 Coupled Agent-based and Tube Model

Coupling of the agent-based model and LV tube model is operated entirely within the MATLAB

coding environment. The agent-based model enables one-to-one mapping to regulate local col-

lagen fiber structure by individual cell and transported the statistical description of fibre structure

into to constitutive parameters; then the heart tube model uses the new constitutive parameters

to determine the mechanical behaviors of LV tube. Overall, the cycle of coupled model runs as

follows.

• For infarcted tissues, import the deformation tensors into agent-based model to determine

the mechincal cues for fibroblast cells. Compute Other evironmental guidance and up-

dated resultant cues for individual fibroblast.



FIGURE 6.17: Depiction of the angel range of stretched fibres in local fibre angle space
(EΓ−EZ plane). Within the half circle −π

2 < θ < π

2 , the shaded regions are computed from
eq. (6.46). The blew figure depicts the associated fibre density function for the fractions of

extended collagen fibres.

• Compute the cell rotation and the fibre structure remodeling process for individual fibrob-

last, with help of resultant cues from the last step.

• Compute new constitutive parameters. In this paper, the variable constitutive parameters

are volumetric fractions for matrix material (Φm,t) and collagen fibres (Φcf), and the fibre

orientation density function ϕt .

• Simulate end-diastolic mechanical states of left ventricle after transporting new constitu-

tive parameters into constitutive law of heart tissues.

• if the healing process doesn’t stop, go back the simulation.

• repeat the entire sequence.



6.6.5.4 MI Healing Case Studies

The evolutions of fibre structure and mechanical behaviors of LV have been experimentally in-

vestigated by Holmes [20]. In [20], the Cyroinfarctions are created by sewing sonomicrometer

crystals into tissues of the epicardial surface of rats’ LV. Then, after weeks, the hearts are har-

vested to study the local strain and the fibre structures of infarcted tissues, which information

are collected from the tissues at surface of infarction zone.

In this chapter, it will simulate the remodeling processes of infarcted LV. The constant end-

diastole pressure 1.6 (Kpa) is applied on the inner surface. After running the coupled model,

the evolutions of collagen volumetric fraction, strains, and stress are simulated over 6 weeks

after infarction. To show the influences of the healing process at different location from LV

infarction, it investigates the evolutions of stresses and fibre structure for tissues from different

locations (fig. 6.19), with different infarction level: (1) the center of infarction, this position is

at the center of infarction under highest chemokine effects (Z = 0); (2) middle of the infarction,

this position is at the middle of infarction center to the infarction edge (Z = L
2 ); (3) edge of

infarction, this is the remote region for infarction (Z = L).

6.6.6 Results

After introducing a regional infarction to the coupled agent-based and elastic tube model, the

change of the collagen structure and mechanical behaviors of LV are simulated.

6.6.6.1 Results for Tissues at Center of Infarction Region

The impacts of infarction occur 3 days after the coronary ligation, while the healing process

of heart will start simultaneously with same lag. In this paper, the lengths of collagen fibres

are assumed to be constant and stable. Then, the volumetric fraction evolution in infarct my-

ocardium tissue could be directly estimated by the quantitative changes of the total collagen

numbers (eq. (6.19)). The value ranges of collagen deposition (kcf,deg) and generation (kcf,gen)

rates (table 6.2) are fitted from the published experimental data ([12]) by Holmes [66]. The col-

lagen accumulations are measured at 1, 2, 3, 6 weeks after coronary ligation [18] (from 0.028

to around 0.3), which match well with our calculation (fig. 6.18). Along with the changes of

the fibre structure, the mean angle of fibre is also changed. At the epi surface, the mean angle

decreases from 60o at 0 week to 20o at six weeks (fig. 6.18b).

The fibre structure is also measured by the collagen fraction for fibre angles. As shown in

fig. 6.19, the anisotropic level of fibre structure is decreased, with the decreasing fibre angle



FIGURE 6.18: Estimated infarct collagen volumetric and mean angle evolution at epi sur-
face of infarction heart (Center): Left, the collagen volumetric accumulations are measured by
Fomevsky [18] (black dots with error bars), comparing with the estimation by coupled model

(blue line); Right, the changes of mean angle during healing process

concentration. The results suggest that the fibre structure will be more isotropic at the infarc-

tion, which phenomenon is also experimentally observed [66].

FIGURE 6.19: The evolution of collagen fibre structure: (a) – (e) 0–5 weeks.

At the infarct zone, collagen accumulation caused stiffening of the infarct area. However,

the matrix material is volumetrically replaced by the collagen fibres. In contrast to the fibre-

reinforcement along fibre directions, the stiffness is negligibly decreased along transmural di-

rection. The stress distributions suggest that the radial stress doesn’t change too much during the

development of infarction at the infarction center (fig. 6.20a). The max circumferential stresses

(σγγ ) are continuously increased (3.8 Kpa at 0 week to 5.3 Kpa at 6 weeks at endo surface,

fig. 6.20b ). The local longitudinal stress (σzz) is decreased (2.3 Kpa at 0 week to 0.4 Kpa at 6

weeks at the endo surface fig. 6.20c ). Obviously, the concentration of first principal stress, as



the combination of σzz and σγγ , is increasing at endo sure during healing process.

FIGURE 6.20: The evolution of stress: a) radial stress; b) circumferential stress; c) longitudinal
stress

6.6.6.2 Results for Tissues at Middle of Infarction Region

The collagen accumulations have similar trends with previous case, but increasing much slower.

The volumetric fraction is increase from 0.03 at 0 weeks to 0.22 at 6 weeks (fig. 6.21a). Along

with the changes of the fibre structure, the mean angle of fibre is also decreased less in this case.

At the epi surface, the mean angle decreases from 60o at 0 week to 25o at six weeks (fig. 6.21b).



FIGURE 6.21: Estimated infarct collagen volumetric and mean angle evolution at epi surface
of infarction heart (middle): Left, the collagen volumetric accumulations; Right, the changes

of mean angles.

The fibre structure is also measured by the collagen fraction for fibre angles. As shown in

fig. 6.22, the anisotropic level of fibre structure is also decreased less than previous case.

FIGURE 6.22: The evolution of collagen fibre structure: (a) – (e) 0–6 weeks.

Comparing with previous case, the changes of stress distribution are reduced. The max circum-

ferential stresses (σγγ ) are increased less than this stress in previous case. The concentration of

first principal stress is also smaller (not shown).

6.6.6.3 Results for Tissues at Edge of Infarction Region

The collagen accumulations are relatively constant, with slightly increase. The volumetric frac-

tion is increase from 0.03 at 0 weeks to 0.031 at 6 weeks. Along with the changes of the fibre

structure, the mean angle of fibre is also relatively constant. At the epi surface, the mean angle



decreases from 61o at 0 week to 58o at six weeks.

At the edge of infarct zone, the stiffness is negligibly increased. The evolutions of stress dis-

tributions suggest that the stress doesn’t change too much during the development of infarction

at this location. The max circumferential stresses (σγγ ) are decreased (5.7 Kpa at 0 week to 5.6

Kpa at 6 weeks). The local longitudinal stress (σzz) is slightly increased (1.2 Kpa at 0 week

to 1.8 Kpa at 6 weeks). Obviously, the first principal stress is almost constant during healing

process.

6.6.7 Changes of the Geometry of LV Tube During Healing Process

FIGURE 6.23: Estimated infarct collagen volumetric and mean angle evolution at epi surface
of infarction heart (edge): Left, the collagen volumetric accumulations; Right, the changes of

mean angles

Due to the remodeling of fibre structure regulated by the fibroblast cells after infarction, the local

mechanical response of heart tissues will be significantly influenced. Moreover, comparing to

the healthy tissues, the changes of material properties will be more obvious for tissues at the

infarction center, where the chemokine concentrations are higher with stronger healing effects.

The healing process will generate the activations of fibroblast, resulting more fibres produced

by cells. In turn, the collagen fraction will be higher at the position where the cell activations

are stronger. It indicates the material will be stiffer at the center of infarction and the stiffness

will decrease along the direction from center to the edge of infarction, since the cell activation

and healing process is highest at the MI center.

In the loaded LV configuration, the radii are smaller in the center and increases to the normal

level at the edge of infarction, with a homogeneous heart pressure at inner surface. Again, this

result suggests the deformation will be decreased at the infarction due to the collagen depositions

at the infraction region (fig. 6.19).



FIGURE 6.24: The evolution of collagen fibre structure: (a) – (e) 0–5 weeks.

FIGURE 6.25: Geometric changes of infarted LV during the healing prcess: left, deciption of
the infarction position; Right, the radii changes of the LV tube.



6.6.8 Summary

A multiscale model, by coupling an agent-based model with a simplified left ventricle tube,

is developed. To simulate the appropriate material properties for myocardium, a fibre tension-

compression ’switch’ is employed as well. The time-dependent model also captures the inter-

action and information exchange process between mechanical behaviour and collagen tissue

remodelling guided by various external cues. The predicted results show the collagen cumula-

tions differ with the location in infraction region. By studying locations of infarctions, it shows

the location affects the mechanical behaviors of total LV and the fibre structure.

For fibre structure, the observed fibre changes decrease along distance to infarction center during

MI process. The fibre volumetric fraction increases from 0.03 to around 0.3 at the infarction

center, while it only increases from 0.03 to 0.031. For mean angle of fibre structure, it decreases

from about 60o 20o at endosurface at infarction center, while only small change of mean angle is

shown for fibre structure at infarction edge. Therefore, the trends of evolutions of fibre structures

are significantly influenced by the distance to infraction center.

For stress state, in this simplified tube model, the trends of stress distributions are similar during

MI process at different heart locations. However, the stress concentration is obviously changes.

At infarction center, the stress concentration is obviously increased at endosurface during MI,

while it’s almost constant for stress evolution at infarction center. Moreover, the higher fi-

bre fraction indicates tissues are stiffer at infarction center, which gives the smaller radius of

heart tube. During MI process, after applying passive heart pressure, the shape of heart tube is

changed, while the radius of cylinder is reduced along LV axis.



6.7 Appendix II: Tangent Stiffness

If we want to solve the LV dynamics, the tangent stiffness (4th order) matrix C is needed in

FEAP software. We start from the moduli matrix C for the second Piola-Krirchoff stress P at the

reference configuration, then push forwards the moduli matrix C into the current configuration.

if C = 2
∂P
∂C

then C= J−1FFFFC , (6.51)

or Ci jkl = J−1FiIFjJFkKFlLCIJKL.

The myocardial constitutive law consists of the matrix Ψ̄m(C̄), collagen fibre Ψ̄cf(Ī4) and pure

volumetric penalty Ψv(J) to ensure the material incompressibility, that is

Ψ = Ψv(J)+ Ψ̄m(C̄)+ Ψ̄cf(Ī4), (6.52)

in which Ψ̄ is a purely isochoric contribution. The volumetric penalty term is

Ψv =
k
2
(J−1)2,

the term for the matrix material is

Ψ̄m = Φm,t
a
2b

[exp b(Ī1−3)−1] ,

and the term of the collagen structure is:

Ψ̄cf,t = Φcf,t
1
π

acf

2bcf

∫ [
exp bcf(Ī4(θ)−1)2−1

]
ϕt(θ) dθ ,

in which Ī1(= C̄ : I) is the modified first invariance, Ī4(= fT
0 ·C̄f0) is the modified fibre invariance.

The second Piola-Krirchoff stress is

P = 2
∂Ψ

∂C
= 2

∂ (Ψv(J)+ Ψ̄m(C̄)+ Ψ̄cf(C̄))

∂C
,

then the stiffness matrix in eq. (6.51) becomes

C = 2
∂P
∂C

= 4(
∂ 2Ψv

∂C2 +
∂ 2Ψ̄m

∂C2 +
∂ 2Ψ̄cf

∂C2 ). (6.53)



Finally the Cauchy stress is expressed as

σ = k(J−1)I+Φm,t a exp[b(Ī1−3)]devb̄

+
1
π

Φcf,t

∫

Σ

2af(Ī4−1)exp[bf(Ī4−1)2]ϕt(θ) dev(f⊗ f)dθ ,
(6.54)

in which the operator dev(•) is

dev(•) = (•)− 1
3
[(•) : I]I

The tangent moduli C can be deduced for each individual contributions, respectively.

6.7.1 Second Order Derivation for Penalty Function

6.7.1.1 First Order Derivation ( ∂Ψv
∂C )

By definition, it gives
∂Ψv

∂C
=

∂Ψv

∂J
∂J
∂C

=
k
2
(J2− J)C−1, (6.55)

where ∂J
∂C = 1

2 JC−1.

6.7.1.2 Second Order Derivation ( ∂ 2Ψv
∂C2 )

With help of eq. (6.55), it gives

∂ 2Ψv

∂C2 =
(∂ k

2(J
2− J)C−1)

∂C

=
k
4

{
(2J2− J) ·C−1⊗C−1− (J2− J) · (C−1

(IK)⊗C−1
(JL)+C−1

(IL)⊗C−1
(JK))

}
,

(6.56)

where the orders of subscripts are ’IJKL’ for a normal 4th order tensor, for example, C−1
(IL)⊗

C−1
(JK) =C−1

IL C−1
JK EI⊗EL⊗EJ⊗EK .

6.7.2 Second Order Derivation for SEF of Matrix

6.7.2.1 First Order Derivation ( ∂ Ψ̄m
∂C )

By Ψ̄m, it gives

∂ Ψ̄m

∂C
= Φm,t

a
2

exp(b(Ī1−3))
∂ Ī1

∂C
= Φm,t

a
2

exp(b(Ī1−3))
[
−1

3
Ī1C−1 + J−2/3I

]
, (6.57)

where ∂ Ī1
∂C =−1

3 Ī1C−1 + J−2/3I.



6.7.2.2 Second order derivation ( ∂ 2Ψ̄m
∂C2 )

With help of eq. (6.57), we have

∂ 2Ψ̄m

∂C2 = Φm,t
∂
{a

2 exp(b(Ī1−3))
[
−1

3 Ī1C−1 + J−2/3I
]}

∂C

= Φm,t
aγ

2
(b
[
−1

3
Ī1C−1 + J−2/3I

]
⊗
[
−1

3
Ī1C−1 + J−2/3I

]

− 1
3

C−1⊗ (−1
3

Ī1C−1 + J−2/3I)+
1
6

Ī1(C−1
(IK)⊗C−1

(JL)+C−1
(IL)⊗C−1

(JK))

− 1
3

J−2/3I⊗C−1),

(6.58)

where γ = exp(b(Ī1−3)).

6.7.3 Second Order Derivation for SEF of Collagen Structure

6.7.3.1 First Order Derivation ∂ Ψ̄cf
∂C

By Ψ̄ f , it gives

∂ Ψ̄ f

∂C
=

Φcf,t

π

∫
ϕ Ω

′(Ī4) ·
∂ Ī4

∂C
dθ =

Φcf,t

π

∫
ϕΩ
′(Ī4)

[
−1

3
Ī4C−1 + J−2/3f0⊗ f0

]
dθ , (6.59)

where ∂ Ī4
∂C = −1

3 Ī4C−1 + J−2/3f0⊗ f0, and Ω(Ī4) =
acf

2bcf
exp (bcf(Ī4− 1)2− 1), Ω′(Ī4) =

∂Ω

∂ Ī4
=

acf(Ī4−1)(exp bcf(Ī4−1)2)

6.7.3.2 Second Order Derivation ( ∂ 2Ψ̄cf
∂C2 )

With the help of eq. (6.59), it gives

∂ 2Ψ̄cf

∂C2 =
∂ (

Φcf,t
π

∫
ϕΩ′(Ī4)

[
−1

3 Ī4C−1 + J−2/3f0⊗ f0
]

dθ)

∂C

=
Φcf,t

π

∫
ϕΩ
′′
[
−1

3
Ī4C−1 + J−2/3f0⊗ f0

]
⊗
[
−1

3
Ī4C−1 + J−2/3f0⊗ f0

]
dθ

+
Φcf,t

π

∫
ϕΩ
′ (−1

3
C−1⊗ (−1

3
Ī4C−1 + J−2/3f0⊗ f0)+

1
6

Ī4(C−1
(IK)⊗C−1

(JL)+C−1
(IL)⊗C−1

(JK))

− 1
3

J−2/3(f0⊗ f0)⊗C−1) dθ ,

(6.60)

where Ω′′(Ī4) = acf(exp bcf(Ī4−1)2)(1+2bcf(Ī4−1)2)



6.7.4 Tangent moduli C

With helps of eq. (6.56), (6.58) and (6.60), the tangent moduli is

C= J−1FFFF · · · ·C = 4J−1FFFF · · · ·(∂ 2Ψv

∂C2 +
∂ 2Ψ̄m

∂C2 +
∂ 2Ψ̄ f

∂C2 )

= k
{
(2J−1)I− (J−1)(I(ik jl)+ I(il jk))

}

+Φm,t
2aγ

J
(b
[
−1

3
Ī1I+ b̄

]
⊗
[
−1

3
Ī1I+ b̄

]

− 1
3

I⊗ (−1
3

Ī1I+ b̄)+
1
6

Ī1(I(ik jl)+ I(il jk))

− 1
3
(b̄⊗ I))

+Φcf,t
4

Jπ

∫
ϕΩ
′′
[
−1

3
Ī4I+ J−2/3f⊗ f

]
⊗
[
−1

3
Ī4I+ J−2/3f⊗ f

]
dθ

−Φcf,t
4

3Jπ

∫
ϕΩ
′ (I⊗ (−1

3
Ī4I+ J−2/3f⊗ f)− 1

2
Ī4(I(ik jl)+ I(il jk))

+ J−2/3(f⊗ f)⊗ I) dθ ,

(6.61)

where I is the forth order unit tensor rooting all its feet in current configuration.



Volumetric Growth from a
Residually-stressed (Current)
Configuration

In general, ‘growth’ is mentioned about changes in volume and material properties of soft tis-

sues. In this report, to distinguish the volume changes and changes of material properties (es-

pecially for fibre-reinforced material), the term ‘(volumetric) growth’ is used to describe the

changes of volume and mass in tissues, while (fibre) remodelling is to describe the changes of

material properties by changing the micro-fibre structure.

Recently, if the idea of growth is applied to study the evolution of organ formations, it’s usu-

ally assumed that growth always occurs in the natural (reference) configuration. For instance,

referring to studies by Kuhl [25], it’s assumed the growth occurs in some fixed reference config-

urations. With this assumption, it’s convenient to calculate the new stress states of tissue after

growth for the following reasons: 1) in general, the shape or geometry of organ will be changed

after volumetric growth. However, if it is assumed that growth occurs in a fixed reference con-

figuration, the elastic deformation tensor can be obtained directly from the decomposition of

the overall deformation tensor. For instance, referred to the initial reference configuration, the

overall deformation tensor F is decomposed as

F = FeFg,

where Fg is the growth tensor referred to the initial fixed configuration, and Fe is the pure elastic

deformation tensor referred to the growth-updated configuration.

The elasticity tensor could be directly determined by the overall deformation and growth tensors.

To compute the current stress state, the stress can be computed from the pure elastic deforma-

tion. Therefore, assuming that growth occurs in the reference configuration, it’s not necessary to

update the geometry of tissues after growth to compute the stress state, since the elastic tensor

(referred to the growth-updated configuration) can be obtained for the deformation and growth

tensors directly. (2) Besides, as mentioned, in general, it is required to determine the natural
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(stress-free) configuration for a tissue to compute the stress state after tissue growth. However,

assuming growth occurs in the fixed reference configuration, the natural configuration is implic-

itly given with the help of the growth tensor. Therefore, it is really convenient to study the stress

or growth evolution of heart with this assumption. And a similar approach is also employed by

Kerckhoffs [46, 47].

Actually, in some studies, it’s stated that they investigated the growth evolution of organs from

the updated reference configuration after each incremental growth step. For instance, inho-

mogeneous volumetric growth is studied within a 3D simulation on heart growth (Kroon [50],

fig. 6.26). However, in this study, it is assumed that the growth could release all the residual
stress, and that further growth will start from the updated but stress-free configuration.

According to this assumption, the updated natural configurations can be determined directly by

cumulative incremental growth (or growth history), which approach leads to a similar method

to calculate the mechanical behaviours of organs as in Kuhl’s approach [25].

FIGURE 6.26: Updated stress free configuration after growth: Here, the, initial growth step
occurs in a stress-free configuration (B0). Then, the elastic deformation Fe,1 assembles the
body into the compatible but residually-stress configuration Bg,1. Then, the residual stress is
released by consequent growth step Fg,2. Then, elastic deformation Bg,2 assembles the tissue
into current configuration Bg,2. Therefore, the current stress state is only determined by the

last elastic deformation tensor Fe,2

Furthermore, in some researches, growth is assumed to occur in the current configuration [3,

26]. However, the growth and mechanical behaviours of organs are mathematically simplified

into really special cases. For instance, in [26], the geometry of an elastic body is idealized as

a sphere, and the growth only occurs along principal directions, and the growth tensor Gi has

matrix representation

Gi =




g1 0 0

0 g2 0

0 0 g3


 ,



and with the homogeneous pressure acting on the external surface of the spherical body, the

elastic deformation could be described by the diagonal tensor as

Fi
e =




λ1 0 0

0 λ2 0

0 0 λ3


 .

Then after a sequence of k steps growth, the overall deformation could be stated as

Ak = Gk ·Fk
e ·Gk−1 ·Fk−1

e · · ·G1 ·F1
e ,

and due to diagonal form of growth and deformation tensors, it could be re-arranged as

Ak = Gk ·Gk−1 · · ·G1Fk
e ·Fk−1

e · · ·F1
e .

Similarly with Kuhl’s approach [25], it is computationally convenient to update the reference

configuration by using the cumulative growth tensor in the last equation for the targeted elastic

body and to compute the mechanical behaviours of the body from a new natural configuration.

However, living organs are actually exposed to external loading all the time, while the growth

should occur from the residually-stressed current configuration. In this section, we try to draw

a sketch on 1) how to obtain the constitutive laws of soft tissue after introducing the inhomoge-

neous growth in the residually-stressed current configuration, 2) how to couple the growth and

(fibre) remodelling processes to identify new mechanical behaviours of soft tissue.

6.8 Constitutive laws for Living Organs with Volumetric Growth

In this section, it’s assumed that pure growth doesn’t induce any elastic deformation (H1).

In other words, the mechanical properties do not change after growth.

Besides, it’s also assumed that the incremental growth is determined by external environ-
mental cues, which are independent of the subsequent elastic behaviours of tissues. (H2)

6.8.1 Growth from a Natural Configuration

As an easy start, it’s assumed that pure growth, which is pre-determined by a given growth law,

occurs in the natural (stress-free) configuration. Then the local growth tensor deforms the elastic

body into an incompatible and stress-free configuration B2. After applying loading, the living

organ eventually deforms into a stressed and compatible configuration B3 (fig. 6.27).



FIGURE 6.27: Growth from the stress-free configuration: It’s assumed incremental growth step
(Fg) deforms the tissues from the (incompatible) natural configuration B1 into the updated (and
incompatible) configuration B2. Then, the elastic deformation Fe assembles the tissues into the

compatible configuration B3.

With help of H1, the overall elastic energy from B1 to B3 could be expressed as

W1 = JgW2, (6.62)

where W1 is the elastic strain energy from B1 to B3 (W1 =W1(A)), W2 is the elastic strain energy

from B2 to B3 (W2 =W1(Fe)), and Jg is the determinant of the growth tensor Fg.

To calculate the Cauchy stress From B2, actually, only pure elastic behaviour is involved (no

growth) and the Cauchy stress is expressed as

σ = J−1
e Fe

∂W2

∂Fe
. (6.63)

From B1, with help of eq. (6.62), the Cauchy stress could be expressed as

σ = J−1
A A

∂W1

∂A
= J−1

A A
∂ (JgW2)

∂A
= J−1

A JgA(
∂Fe

∂A
:

∂W2

∂Fe
) = J−1

e Fe
∂W2

∂Fe
, (6.64)

where A = FeFg.

It’s worth to emphasize that the growth tensor is determined by certain growth laws (related to

external environmental cues), which indicates that the pure growth tensor is independent of the

elastic deformation tensor,
∂Fg

∂Fe
= 0.



6.8.2 Growth from a Residually-stressed Configuration

Here, the more general case is raised to discuss the effects of updating the reference configura-

tion by new growth steps. The elastic body is initially in the residually-stressed and compatible

configuration B2. It’s assumed the state of residual stress is known and the associated elastic

deformation is Fτ (fig. 6.28).

If the pure growth occurs in the residually-stressed configuration B2, the elastic body deforms

into the incompatible configuration B3. After applying loading, the elastic body eventually

deforms into a stressed and compatible configuration B4. If considering pure growth, the equiv-

alent growth tensor F′g updates the natural configuration from B0 to B1, which approach also

indicates the equivalent elastic deformation for residual stress F′τ (the method will be explained

later to capture F′g and F′τ from Fg and Fτ ).

FIGURE 6.28: Growth from the Residually-stressed Configuration: B1 is the natural but in-
compatible configuration. The elastic deformation tensor Fτ takes the tissue into the compatible
and residually-stress configuration B2. The pure growth occurs in B2 with tensor Fg, carrying
tissue into the incompatible configuration B3. The subsequent elastic deformation Fe deforms
tissue into the compatible configuration B4. The equivalent growth F′g connects the initial (B0)

and growth-updated (B1) natural configurations.

With help of H1, the elastic energy (W2) from B2 to B4 could be expressed as

W2 = JgW3, (6.65)

where W3 is the elastic energy from B3 to B4

Similarly with eq. (6.62), the elastic energy (W3) from B3 to B4 could be obtained by

W3 = (J′τ)
−1(W1(F)−W1(F′τ)), (6.66)

where W1 is the elastic energy from B1, F = Fe ·F′τ .

On inserting eq. (6.66) into eq. (6.65), it gives

W2 = Jg(J′τ)
−1(W1(F)−W1(F′τ)) (6.67)



Two methods are employed here to compute the Cauchy stress in B4:

(1) From B1,

σ = J−1
F F

∂W1

∂F
(6.68)

(2) From B2, with help of eq. (6.67), the Cauchy stress is given as

σ = J−1
A A

∂W2

∂A
= J−1

A A
∂
[
JgJ′−1

τ (W1(F)−W1(F′τ))
]

∂A

= J−1
A A

∂
[
JgJ′−1

τ (W1(F))
]

∂A
− J−1

A A
∂
[
JgJ′−1

τ (W1(F′τ))
]

∂A

= J−1
F A{( ∂F

∂A
) : (

∂W1(F)
∂F

)}= J−1
F F

∂W1

∂F

(6.69)

where A = FeFg, F = FeF′τ .

The simplified Cauchy stresses give the same expressions as in eq. (6.68) and (6.69), which

indicates that the new SEF (eq. (6.67)) is appropriate.

Then, the only undefined terms are the equivalent growth F′g and elastic deformation F′τ . To

determine F′g, the polar decomposition of Fτ is needed:

Fτ = VτRτ . (6.70)

Here, it is considered that an arbitrary material point of elastic body is rotated with tensor Rτ ,

then, the rotated configuration BR is deformed into B1 by tensor Vτ . For pure growth, the

growth tensor could be decomposed as

Fg = RgUg. (6.71)

Growth tensor Fg is with respect to B1. However, if considering the effect of growth in changing

the shape of initial body, it could give an equivalent growth occurs before elastic deformation,

by rotating the growth tensor back into the initial configuration B0 with the tensor Rτ the de-

composition of Fg could help to raise the form of F′g, with help of eq. (6.71), as

Fg = RgUg ⇒ F′g = R−1
τ RgUg(R−1

τ )T . (6.72)

And with rotations between orthogonal coordinates (RT
τ Rτ = I), eq. (6.72) could be re-written

as

F′g = RT
τ RgUgRτ . (6.73)

The deformation path (B0→B1→B3) is equivalent to path (B0→B2→B3), so that

FgFτ = F′τF′g (6.74)



and hence

F′τ = FgFτ(F′g)
−1 (6.75)

Example (2D growth) A living body is deformed with the elastic deformation tensor Fe from

initial configuration B0 (fig. 6.29). Considering here, the material point is firstly rotated by Re

and then stretched by Ve as

Fe = VeRe.

If the initial basis vectors (e1,e2) of coordinates are rotated to new ones (e′1,e′2) with rotation

angle π

3 , then the matrix form of the rotation tensor is given as

Re =

[
cos π

3 sin π

3

−sin π

3 cos π

3

]
.

where component Rei j = e′i · e j.

Assuming the body is stretched into B3 with Ve as

Ve = I+(λe−1)e′1⊗ e′1.

then, the body grows along the e′2 direction in BV as

Fg = I+(λg−1)e′2⊗ e′2.

Fgi = λg f f̂⊗ f̂+λgsŝ⊗ ŝ+λgnn̂⊗ n̂

What’s the equivalent growth for this living body?

Solution Obviously, if skipping the elastic deformation, equivalently saying, the living body

grows along the e2 direction with growth tensor from B0 as

F′g = I+(λg−1)e2⊗ e2 =

[
1 0

0 λg

]
.

giving the updated stress-free configuration B1.

Recalling eq. (6.73), the equivalent growth tensor is given as

F′g = RT
e FgRe = I+(λg−1)e2⊗ e2

Comparing last two equations describing the equivalent growths, it shows a good validation for

algorithm from eq. (6.71) to (6.73).



FIGURE 6.29: Description of growth path for example: the rectangular tissue is rotated with
Re from B0. Then, tissues are stretched with Ve. The growth then occurs and takes tissues
into configuration B3. The equivalent growth Fg updates the initial natural configuration to
updated configuration B1; then the equivalent elastic deformation takes tissues into current

configuration B3

In summary, the previous definition of SEF (eq. (6.62) and (6.67)), indicating the updated nat-

ural configuration after growth, is computationally convenient for calculating the mechanical

behaviours of an elastic body. The major benefits are

1) Under this framework, the growth could be rationally assumed to occur from the residually-
stressed configuration.
2) The natural configuration is updated after each incremental growth.
3) Differing from Humphrey’s ‘constrained mixture models’ [83], no new material point is
mathematically introduced after growth.
4) By including the growth deformation tensor into the SEF, growth deformation will be
automatically included when computing any further elastic behaviours. This is therefore
convenient for avoiding remeshing of the elastic body for using the FE method to simulate
the evolution of the mechanical behaviours for living tissues after growth.

6.9 (Fibre) Remodelling

In the following section, we will define the remodelling process focusing on evolution of fibre

structures in tissues.



As mentioned in Holmes’ work [66], the remodelling of the fibre structure is regulated by fi-

broblasts. Fibres are deposited and rotated by fibroblasts, which change the overall micro-fibre

structure. We make a further step and assume that the fibres are deposited and rotated in the

current and loaded configuration. This indicates that the fibre structure should be ‘pushed-back’

into the stress-free configuration to calculate the mechanical behaviours of tissues after the fibre

remodelling process. For instance, if the SEF for fibre-reinforced tissue is employed as

Ψ = Φm
a
2b

[exp b(I1−3)−1]+Φcf
1
π

a1

2b1

∫ [
exp b1(I4(θ)−1)2−1

]
ϕ(θ , t) dθ , (6.76)

then the 2 fibre structure is mainly described by the fibre volumetric fraction Φcf and the fibre

orientation density function ϕ(θ). Then after a remodelling incremental step in the tissue (i.e.

from agent based model [66]), the fibroblasts deposit new collagen fibres along the cell direction,

while they rotate the existing fibres with a certain angle in the current and loaded configuration.

The fibre directions will be ‘pushed-back’ into the reference configuration, which will give the

updated fibre orientation density function ϕ(θ)t by accounting for the new angles of each fibre.

FIGURE 6.30: Example of the updated collagen fibre structure by fibroblast remodelling. A)
the initial reference configuration. In this configuration, the fibre structure is presented by the
solid lines. B) the fibre modulation by fibroblasts in current configuration, after applying exter-
nal loading, the fibre structures are updated by the elastic deformation (F) (dash lines). Then,
the fibre remodelling processes are induced in this configuration. Then, the fibre structures
are regulated by the fibroblast migration (red lines) C) the updated reference configuration and
fibre structure via a ‘push-back’ algorithm: after releasing the external loading, the body will
deform into the updated configuration (C) with deformation tensor (F−1). Then, the ‘push-

back’ algorithm is used to calculate the fibre structure from configuration B.

To simplify the problem, we assume that all collagen fibres have the same length. Then, the

fibre volumetric fraction is given as

Φcf,t =
Ncf,t

Ncf,t0
Φcf,t0 (6.77)

where Ncf,t0 and Φcf,t0 are the initial overall fibre number and volumetric fraction at time t0, Ncf,t

and Φcf,t are the initial overall fibre number and volumetric fraction at time t



For each individual fibre, the fibre angle in the updated configuration C is obtained by ‘push-

back’ as

ft =
F−1f?

||F−1f?|| , (6.78)

where F is the elastic deformation gradient from the reference configuration (A) and intermedi-

ate configuration (B), f and f? are the fibre vectors in the updated reference configuration and in

the intermediate configuration after fibre remodelling.

The fibre orientation density function will be determined by accounting for each individual fibre

angle.

However, if interacting with the mechanism of fibre remodelling growth, it’s more complex to

determine the fibre angles and the orientation density function in the reference configuration. In

the following section, the approach will be discussed in detail in order to explain the ‘push-back’

method with different G&R processes.

In summary, if the fibre remodelling also occurs in the current and loaded configuration, the

updated natural configuration should be determined by ‘pushing-back’ the fibre structure into

the reference configuration.

6.10 Coupling the Volumetric Growth and Fibre Remodelling

As mentioned in the last two sections, the volumetric growth and fibre remodelling both occur

in the current and loaded configuration. However, a simple combination of the two processes is

not a rational way to determine the updated configuration. Different ways of coupling growth

and remodelling (G&R) processes will be considered to determine the fibre structure of tissues.

6.10.1 Quick Remodelling vs Slow Growth

In this section, the case will be discussed about how to couple the remodelling and volumetric

growth for living tissues to give an updated SEF if the speed of fibre remodelling is obviously

faster than volumetric growth. For instance, for local heart infarction, the volume or shape of

heart is relatively constant, while the fibre structure clearly changes [25]. In this section, it’s

assumed that the volume and shape aren’t changed during G&R, which gives

Fg ≡ I.

Actually, if the volumetric growth is ignorable in each G&R loop, the fibre structure is the only

determinant to update the natural configuration and SEF for soft tissues. In other words, for the

modified HGO model (6.76), the changed fibre volumetric fraction Φcf and the changed fibre



orientation density function ϕ(θ , t) are the parameters to describe the new SEF related with the

updated natural configuration after G&R process. For details of this process, we refer to the last

section.

6.10.2 Quick Growth vs Slow Remodelling

In this section, the case will be discussed about coupling the remodelling and volumetric growth

for living tissues to give an updated SEF if the speed of volumetric growth is obviously faster

than fibre remodelling. Here, we assume the fibre structure is not actively modulated by fibrob-

lasts but responds passively to the volumetric growth of the matrix tissue.

FIGURE 6.31: Quick growth vs slow remodelling: the fibre orientation is modified by the
growth. B0 is the natural (but incompatible) configuration, Fτ is the elastic deformation con-
necting the natural (B0) and residually-stress configurations (B2) . Incremental growth step
Fg carries body into B3. The updated natural configuration B1 is obtained by the equivalent
elastic deformation tensor F′τ between B1 and B3. Then, the new fibre angle in B1 can be

obtained by ‘push-forwards’ old fibre angle from B0 with equivalent growth tensor F′g.

The growth of the matrix material is induced for the elastic body from the loaded configuration.

If the total number of fibres is constant during growth, the fibre volumetric fraction is updated

as

Φcf =
Φcf,t0

Jg
, (6.79)

where Jg is the determinant of the growth tensor Fg, Φcf,t0 is the initial fibre volumetric fraction.

And due to the growing deformation, the fibre angles in the initial natural configuration B0

should be ‘pushed-forward’ into the updated natural configuration B1 (fig. 6.31) as

f1 =
F′gf0

||F′gf0||
, (6.80)

where f1, f0 are the fibre vectors in B1 and B0.

Moreover, as mentioned in Section 1.2, the SEF is calculated after the volumetric growth from



the residually-stressed configuration. By coupling with the fibre remodelling, the volumetric

fraction and the fibre orientation density function are updated (by eq. (6.79), (6.80) and (6.15))

as well.

6.10.3 Quick Growth vs Quick Remodelling

In this section, the growth and remodelling are assumed to take place with similar speeds, i.e.

the growth and remodelling processes occur simultaneously from the loaded configuration. This

idea is quite similar to the assumption of the mixture of ‘constant individual density (CID)’

and ‘adaptive individual density (AID)’ by Watton et al. [16]. Besides, here, we also assume

the incremental growth step occurs after the incremental fibre remodelling step. And we try to

include this G&R process under the coupled G&R framework to describe the evolution of the

mechanical behaviours of living tissues.

It’s assumed that the volumetric growth and fibre remodelling occur in the loaded configura-

tion B2 (regulated by different but given G&R laws fig. 6.31). If the overall fibre number is

increased to Ncf,t from the initial value Ncf,t0 by active fibre remodelling (as for the agent-based

model [66]), the updated fibre remodelling fraction is

Φcf,t =
Φcf,t0

Jg

Ncf,t

Ncf,t0
, (6.81)

where Ncf,t is the updated fibre number at time t.

For the individual fibre, the unit fibre vector (f2) is updated by the fibre remodelling process,

(i.e. modified by the fibroblast migration), in intermediate configurations B2 in fig. 6.28, while

the updated fibre vector is given as f?2.

Then, the fibre should be ‘pushed-back’ into the updated reference configuration (B1 in fig. 6.28),

which gives

f1 =
(F′τ)−1Fgf?2
||(F′τ)−1Fgf?2||

, (6.82)

where F′τ is the elastic deformation tensor defined in eq. (6.67).

To determine the updated SEF after both fibre remodelling and volumetric growth, the general

form of the SEF could be expressed as eq. (6.67) (indicating a volumetric growth from the

loaded configuration), but the updated fibre volumetric fraction in eq. (6.81) and fibre orientation

density function should be inserted into the SEF to describe the fibre remodelling in the current

configuration.



6.11 Tangent Modulus of the Updated SEF for FE Simulation

The theoritical frame is introduced to include the volumetric growth to calculate the mechanical

behaviours in living tissues. In practice, the FE model will be emloyed to simulate the growth-

mechanic responses of patient-specified organs, while the complex geometry of organs can be

implemented. In FE simulations, the tangent modulus is required to compute the Cauchy stress.

However, the newly-defined SEF in eq. (6.67), involving the growth tensor, leads to new form

of the tangent modulus. In this section, the derivation will be explored for it.

Generally, to obtain the tangent modulus, the referential tensor of elasticities will be figured

out with the help of the second Piola-Kirchhoff stress tensor; then, the referential tensor will be

pushed forwards into current configuration as the tangent modulus or ‘spatial tensor of elastici-

ties’ (Holzapfel [32]):

P = 2
∂W
∂C

⇒ C= 2
∂P
∂C
⇒ c(4) = J−1FFFF · · · ·C, (6.83)

where c(4) is the 4th-order spatial tensor of elasticities, FFFF · · ··C is given as FIiFJ jFKkFMmCi jkm

for index form.

The second Piola-Krichhoff stress in B2 for the SEF is

P = 2
∂W2

∂CA
= 2

∂
[
Jg(J′τ)

−1(W1(F)−W1(F′τ))
]

∂CA
= 2Jg(J′τ)

−1 ∂W1(F)
∂CA

, (6.84)

where A = FeFg, F = FeF′τ (fig. 6.28) and CA = AT A.

If the chain rule is applied on the last equation, it yields

(P)IJ = 2Jg(J′τ)
−1 ∂W1(F)

∂CA

= 2Jg(J′τ)
−1(

∂W1(F)
∂CF

)KL ·
∂ (CF)KL

(∂Ce)MN
· ∂ (Ce)MN

∂ (CA)IJ
,

(6.85)

where Ce = FT
e Fe, CF = FT F.

Also,

∂ (CF)KL

(∂Ce)MN
=

[
∂ (F′τ)T CeF′τ

]
KL

(∂Ce)MN
=

∂ (F′τ)T
kK(Ce)kl(F′τ)lL

(∂Ce)MN

=
1
2
(F′τ)

T
kK (δkMδlN +δkNδlM) (F′τ)lL

=
1
2
[
(F′τ)MK(F′τ)NL +(F′τ)NK(F′τ)ML

]
,

(6.86)

where ∂CIJ
∂CKL

= 1
2(δIKδJL +δILδJK).



Similarly,

∂ (Ce)MN

(∂CA)IJ
=

1
2
[
(F−1

g )IM(F−1
g )JN +(F−1

g )JM(F−1
g )IN

]
, (6.87)

where Ce = (F−1
g )T CAF−1

g .

Inserting eq. (6.86) and (6.87) into eq. (6.85) gives

P = Jg(J′τ)
−1A(6)(

∂W1

∂CF
)KL, (6.88)

where A(6) = 1
2 [(F

′
τ)MK(F′τ)NL +(F′τ)NK(F′τ)ML]

[
(F−1

g )IM(F−1
g )JN +(F−1

g )JM(F−1
g )IN

]
.

Then, referential tensor of elasticities is

C= 2
∂ (P)IJ

(∂CA)PQ
= 2

∂ (P)IJ

(∂CF)RT
· ∂ (CF)RT

(∂CA)PQ

= 2Jg(J′τ)
−1A(6)

( ∂W1
∂CF

)KL

∂ (CF)RT
· ∂ (CF)RT

(∂Ce)XY
· ∂ (Ce)XY

(∂CA)PQ

= Jg(J′τ)
−1A(6) ∂W1

∂ (CF)KL∂ (CF)RT
B(6),

(6.89)

where B(6) = 1
2 [(F

′
τ)XR(F′τ)Y T +(F′τ)Y R(F′τ)XT ]

[
(F−1

g )PX(F−1
g )QY +(F−1

g )QX(F−1
g )PY

]
.

Then, the tangent modulus or spatial tensor o f elasticities is obtained as

c(4) = J−1
A AAAA · · · ·C

= J−1
A Jg(J′τ)

−1AiIA jJApPAqQA(6) ∂W1

∂ (CF)KL∂ (CF)RT
B(6)

= J−1
F (Fe)iU(Fg)UI(Fe) jV (Fg)V J(Fe)pA(Fg)AP(Fe)qB(Fg)BQA(6) ∂W1

∂ (CF)KL∂ (CF)RT
B(6).

(6.90)

By arranging last equation, it gives

c(4) = J−1
F (Fe)iU(Fe) jV (Fe)pA(Fe)qB(Fg)UI(Fg)V J(Fg)AP(Fg)BQG(8)R(8) ∂W1

∂ (CF)KL∂ (CF)RT
,

(6.91)

where G(8)= 1
2

[
(F−1

g )IM(F−1
g )JN +(F−1

g )JM(F−1
g )IN

][
(F−1

g )PX(F−1
g )QY +(F−1

g )QX(F−1
g )PY

]
, and

R(8) = 1
2 [(F

′
τ)MK(F′τ)NL +(F′τ)NK(F′τ)ML] [(F′τ)XR(F′τ)Y T +(F′τ)Y R(F′τ)XT ] .

To the simply last equation, it gives

(Fg)UI(Fg)V J(Fg)AP(Fg)BQG(8) =
1
2
(δUMδV N +δV MδUL)(δAX δBY +δAY δBX). (6.92)



Then, use of eq. (6.92) and R(8) gives

(Fg)UI(Fg)V J(Fg)AP(Fg)BQG(8)R(8) =
[
(F′τ)UK(F′τ)V L +(F′τ)V K(F′τ)UL

]

∗
[
(F′τ)AR(F′τ)BT +(F′τ)AT (F′τ)BR

]
.

(6.93)

Inserting eq. (6.93) into eq. (6.91) yields

c(4) =J−1
F (Fe)iU(Fe) jV (Fe)pA(Fe)qB
[
(F′τ)UK(F′τ)V L +(F′τ)V K(F′τ)UL

]

[
(F′τ)AR(F′τ)BT +(F′τ)AT (F′τ)BR

] ∂W1

∂ (CF)KL∂ (CF)RT
.

(6.94)

Since F = FeF′τ , eq. (6.94) gives

c(4) = J−1
F [(F)iK(F) jL +(F)iL(F) jK ]

[(F)pR(F)qT +(F)pT (F)qR]
∂W1

∂ (CF)KL∂ (CF)RT
.

(6.95)

And due to the symmetry in the 4th order tensor ∂W1
∂ (CF )KL∂ (CF )RT

, eq. (6.95) yields

c(4) = J−1
F 4FiKF jLFpRFqT

∂W1

∂ (CF)KL∂ (CF)RT
. (6.96)

Actually, referring to B1 in fig. 6.28, spatial tensor o f elasticities in B4 could be also derived

as

c(4) = J−1
F 4FiKF jLFpRFqT

∂W1

∂ (CF)KL∂ (CF)RT
. (6.97)

6.12 Summary

In previous researches, to calculate the mechanical behaviours of living organs, it’s usually

assumed that growth occurs in the natural (reference) configuration. Or it is assumed that the

growth could release all the residual stress, and that further growth will start from the updated

but stress-free configuration.

In this work, a theoretical framework is developed to calculate the mechanical behaviours of soft

tissue after introducing inhomogeneous growth in a residually-stressed current configuration.

Under this framework, the growth could be rationally assumed to occur from the residually-

stressed configuration, which avoids to assume the growth occurs in a ‘virtual’ reference con-

figuration in many previous researches. Moreover, growth deformation will be automatically

included when computing any further elastic behaviours by the SEF related to growth-updated



configurations. The theoretical framework is introduced to couple the growth and fibre remod-

elling process to describe the mechanical behaviours of living tissues.



Conclusion and Future Work

6.13 Limitations

The discussions for the calculation results haven been presented in previous chapters. Some

limitations will be discussed here.

6.13.1 Multiple Cut Model to Estimate the Residual Stress in LV

In Chapter 5, to develop the heart tube model, all the geometrical information is obtained from

the experiments from Omens’ work [59], including the geometry of heart tube and opening

angles for heart slices after cuts. However, the experimental data are limited, for instance, the

geometry of the heart in our model is measured from one photograph of a typical short-axis

apical slice of a mouse heart [59]. More experiments are needed to improve the measurement

for the geometry of hearts.

Considering the geometric changes after cutting, it is assumed that the heart tube will deform

into the new circular cylindrical configuration after multiple cuts. However, due to the impact

of shear stress, the heart might not maintain a cylindrical configuration after cutting, which will

change the expression of the deformation tensor (like eq. (5.10)) in our work. Besides, the

residual stress is induced by the complex growth processes during the life of heart. Previous

work shows that the 3d residual stress distribution should be considered [36] to estimate the

mechanical behaviour of living tissues, which leads to 3d residual strain. In our work, only

circumferential and radial residual strains (2d distribution of residual strain) are considered,

which are measurable by radial opening cuts.

A single fibre family is employed to describe the fibre structure of heart. The dispersed fibre

families are experimentally observed, which are also used in our later works. The mechanical

behaviour of heart tissues will be different with dispersed fibre families, whose effect is not

included in this work.
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Some revious research suggests that infinite cuts are needed to release all the residual stress in

living tissues. In our model, we developed a 4-cut model rather than a model with more cuts, due

to lack of sufficient experimental data. Further experimental evidence is needed to demonstrate

whether 4-cut is sufficient to release most of the residual stress in the heart.

6.13.2 Coupled Agent-based and FE Model for MI after Infarction

In our work, an idealized half ellipsoid geometry is used to construct FE model for a rat LV.

However, in reality, the geometry of LV is much more complex. With the real (and complex)

geometry of LV, the mechanical behaviours might be different, which might lead to different

mechanical cues and then induce the different migration processes of fibroblast.

The chemokine concentration is assumed to static during the healing process of MI as

∂C
∂ t

= 0.

In practice, the chemokine concentration responds to the bio-environment of the LV and changes

with time; for instance, the nutrition concentration is changed with the healing process. With the

time-varied chemokine concentration, the chemokine cue is different from the one in our model,

which gives the different patterns of fibroblast migration. It affects the remodelling process of

MI in LV.

In our model, the fibroblast is assumed to be a rigid sphere, passively responding to external

cues. However, the real fibroblast is deformable, which also contributes to the mechanical be-

haviours of heart tissues. In our future work, the deformation of fibroblasts will be included, as

well as its mechanical contribution for heart functions.

In general, during the heart healing, the remodelling and growth coincidently occur to regu-

late the heart function. In our coupled model, the (volumetric) growth is ignored, while only

the fibre remodelling is investigated. However, the overall mechanical behaviour is affected by

the (volumetric) growth of tissues. For instance, the fibre structure is modified by (volumetric)

growth (discussed in Chapter 7), which will change the material properties of infarcted tissues.

As a result, the mechanical cues will be influenced by growth, which changes the fibre remod-

elling. For a global view, the interaction between remodelling and growth should be considered

to predict the heart function during healing process.



6.14 Conclusion

This thesis focuses on the interactions between mechanical behaviour and G&R processes for

living organs. According to nonlinear elastic theories, residual stress, induced by complex G&R

processes, is of importance to affect the subsequent mechanical responses of soft tissues to

external loading. Here, a multiple cut model is developed to estimate residual stress induced by

G&R processes in the heart, which helps to explain recent experiments on residual stress.

To simulate the G&R process during MI, a multiscale algorithm is employed to couple (organ-

level) three-dimensional heart models with (cell level) agent-based models. Our models capture

interactions and information exchange processes between mechanical behaviour and collagen

tissue remodelling guided by bio-environmental cues.

In addition, a volumetric growth approach is developed to simulate the inhomogeneous growth

in the residually-stressed current configuration for a living organ, which will be embedded into

simulations of the heart G&R process.

In Chaper 5, multiple-cut models are developed to estimate the residual stress distributions in

the LVs of mice, inspired by experimental observation by [59]. They show that both radial and

circumferential cuts are required to release the residual stresses. Remarkably, the results suggest

that using radial cuts alone leads to significantly underestimated residual stress. As mentioned

in previous researches, it suggests many cuts are needed to release all residual stress in living

organs, since residual stress is induced by the complex (inhomogeneous) growth. Accordingly,

our 4-cut model may give better estimations for residual stress than the 2-cut model. This con-

clusion is also supported by the estimated residual stress distributions. As shown in Chapter 5,

stress distributions are smoother when estimated by the 4-cut model, but with a similar magni-

tude to the 2-cut model. The stress states estimated by the 4-cut model are more reasonable for

living organs.

The computational results also explain experimental observation by Fung [3] who concluded that

a single cut can release all residual stress in the residually stressed configuration of an artery,

since the subsequent radial cuts don’t introduce any more elastic deformations. Our models sup-

port that the 1-cut configuration is not the stress free configuration for living organs. More cuts

are needed to release the residual stress and address the stress-free configuration for the heart

during MI healing.

In Chapter 6, a multiscale model is developed by coupling an agent-based model with a three-

dimensional left ventricle model. To simulate the appropriate material properties for myocardium,

a proper fibre tension-compression ‘switch’ is developed in constitutive laws of LV tissues. The



time-dependent model captures the interaction and information exchange process between me-

chanical behaviour and collagen tissue remodelling guided by various external cues. The sim-

ulations show shapes and the locations of infarctions could affect the mechanical behaviour of

total LV and the local collagen cumulation.

For fibre structure, the mean angle of fibre structure decreases near the endosurface for a cir-

cular infarction while it decreases less for the elliptical infarction. At the infarction centre,

the anisotropy of the fibre structure for a circular infarction, reflected by kurtosis of the fibre

structure, increases more.

For stress states, in the FE model, the overall stress distributions are significantly changed dur-

ing MI processes for the heart with circular or elliptical infarctions. The stress concentrations

are obviously in the infarcted regions. For strain, the evolution of strain fits with the experimen-

tal observations for both infarctions. However, strains decrease more for tissues with elliptical

infarctions.

A theoretical framework is developed to calculate the mechanical behaviours of soft tissue af-

ter introducing inhomogeneous growth in a residually-stressed current configuration. Under this

framework, the growth could be rationally assumed to occur from the residually-stressed config-

uration, which avoids to assume the growth occurs in a ‘virtual’ reference configuration in many

previous researches. Moreover, growth deformation will be automatically included when com-

puting any further elastic behaviours by the SEF related to growth-updated configurations. For

this sake, it gives the convenience to avoid remeshing the elastic body under FE computational

framework.

6.15 Future Work

For the multiple-cut model in Chapter 4, the tissues are assumed to be composed with matrix

material and a single fibre family. However, according to experiments by [70], the fibre ori-

entation is dispersed, while the fibre structure could be considered as dispersed fibre families.

Therefore, the constitutive laws for tissues could be modified with a fibre orientation density

function for the tissues with dispersed fibre families. For instance, the constitutive law (HO

model) in Chapter 3 is employed as

Ψ = Ψm +Ψf, (6.98)

where

Ψm =
a
2b
{exp[b(I1−3)]−1}, Ψf =

af

2bf
{exp[bf(I4−1)2]−1}, (6.99)



a,b,af,bf are material constants, and

I1 = tr(C), I4 = f0 · (Cf0), (6.100)

I1 and I4 being the invariants corresponding to the matrix and fibre structure of the myocardium.

And considering the 2d dispersed fibre families, the SEF for fibre Ψf is rewritten as

Ψf =
1
π

af

2bf

∫ [
exp bf(I4(Θ)−1)2−1

]
ϕ(Θ) dΘ, (6.101)

where af,bf are the material parameters for fibres, ϕ(θ) is the fibre orientation density function

and Θ is the angle to a specified orientation.

This SEF can give a better estimation for the stress-strain relation for heart tissues. Besides, as

mentioned in Chapter 5, the shear stress will be introduced if the SEF is only including a single

fibre family. With dispersed (and symmetric) fibre families, the distribution of shear stresses

will be symmetry as the fibre structure, while the effects by shear stress will be further reduced

due to symmetry of fibre structure (the example can be found at section 5.4.1).

In Chapter 5, according to experimental observations by Omens, we assumed 2 or 4 cuts can

release the residual stress in LV tube. However, if experimental data are available for opening

angle measurements with even more cuts, the residual stress can be estimated by multiple-cut

models, which can improve the residual stress estimation. Besides, it can prove the validation

on questions whether the 4-cut model gives reasonable estimations for the residual stress, even

though the 4-cut model has advantages compared with previous single cut models.

The approaches for fibre remodel (Chapter 6) and volumetric growth (Chapter 7) are both pre-

sented in our researches. Furthermore, our academic ambition is to develop a framework to

investigate the heart remodelling and growth of the heart by coupling the remodelling of fibre

structure and volumetric growth through a multiscale model.

As mentioned in Chapters 6 and 7, the volumetric growth and fibre remodelling both occur in

the current and loaded configurations. However, the simple combination of the two processes

is not a rational way to determine the updated reference configuration and mechanical response

of tissues. The different ways of coupling G&R processes will be considered to determine the

mechanical behaviour of the fibre-reinforced tissues during G&R processes.
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[25] GÖKTEPE, S., ABILEZ, O. J., AND KUHL, E. A generic approach towards finite growth

with examples of athlete’s heart, cardiac dilation, and cardiac wall thickening. Journal of

the Mechanics and Physics of Solids 58, 10 (2010), 1661–1680.

[26] GORIELY, A., AND AMAR, M. B. On the definition and modeling of incremental, cumu-

lative, and continuous growth laws in morphoelasticity. Biomechanics and Modeling in

Mechanobiology 6, 5 (2007), 289–296.

[27] GUCCIONE, J. M., MOONLY, S. M., WALLACE, A. W., AND RATCLIFFE, M. B. Resid-

ual stress produced by ventricular volume reduction surgery has little effect on ventricular

function and mechanics: a finite element model study. The Journal of thoracic and car-

diovascular surgery 122, 3 (2001), 592–599.

[28] HAN, H., AND FUNG, Y. Residual strains in porcine and canine trachea. Journal of

biomechanics 24, 5 (1991), 307311–309315.

[29] HAN, H.-C., AND FUNG, Y.-C. Longitudinal strain of canine and porcine aortas. Journal

of biomechanics 28, 5 (1995), 637–641.

[30] HAN, H.-C., ZHAO, L., HUANG, M., HOU, L.-S., HUANG, Y.-T., AND KUANG, Z.-B.

Postsurgical changes of the opening angle of canine autogenous vein graft. Journal of

biomechanical engineering 120, 2 (1998), 211–216.

[31] HARITON, I., GASSER, T., HOLZAPFEL, G., ET AL. Stress-driven collagen fiber re-

modeling in arterial walls. Biomechanics and modeling in mechanobiology 6, 3 (2007),

163–175.

[32] HOLZAPFEL, A. G. Nonlinear solid mechanics ii.

[33] HOLZAPFEL, G. A., AND GASSER, T. C. Computational stress-deformation analysis of

arterial walls including high-pressure response. International journal of cardiology 116, 1

(2007), 78–85.



[34] HOLZAPFEL, G. A., GASSER, T. C., AND OGDEN, R. W. A new constitutive frame-

work for arterial wall mechanics and a comparative study of material models. Journal of

elasticity and the physical science of solids 61, 1-3 (2000), 1–48.

[35] HOLZAPFEL, G. A., AND OGDEN, R. W. Constitutive modelling of passive myocardium:

a structurally based framework for material characterization. Philosophical Transactions

of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 367,

1902 (2009), 3445–3475.

[36] HOLZAPFEL, G. A., AND OGDEN, R. W. Modelling the layer-specific three-dimensional

residual stresses in arteries, with an application to the human aorta. Journal of the Royal

Society Interface (2009), rsif20090357.

[37] HOLZAPFEL, G. A., AND OGDEN, R. W. On the tension–compression switch in soft

fibrous solids. European Journal of Mechanics-A/Solids 49 (2015), 561–569.

[38] HOLZAPFEL, G. A., AND OGDEN, R. W. On fiber dispersion models: Exclusion of

compressed fibers and spurious model comparisons. Journal of Elasticity (2016), 1–20.

[39] HOLZAPFEL, G. A., SOMMER, G., AUER, M., REGITNIG, P., AND OGDEN, R. W.

Layer-specific 3d residual deformations of human aortas with non-atherosclerotic intimal

thickening. Annals of biomedical engineering 35, 4 (2007), 530–545.

[40] HSU, F.-H. The influences of mechanical loads on the form of a growing elastic body.

Journal of biomechanics 1, 4 (1968), 303–311.

[41] HUISKES, R., RUIMERMAN, R., VAN LENTHE, G. H., AND JANSSEN, J. D. Effects of

mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405,

6787 (2000), 704–706.

[42] HUISMAN, R., SIPKEMA, P., WESTERHOF, N., AND ELZINGA, G. Comparison of mod-

els used to calculate left ventricular wall force. Medical and Biological Engineering and

Computing 18, 2 (1980), 133–144.

[43] HUMPHREY, J., AND HOLZAPFEL, G. A. Mechanics, mechanobiology, and modeling of

human abdominal aorta and aneurysms. Journal of biomechanics 45, 5 (2012), 805–814.

[44] HUMPHREY, J., AND RAJAGOPAL, K. A constrained mixture model for growth and re-

modeling of soft tissues. Mathematical models and methods in applied sciences 12, 03

(2002), 407–430.
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