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Dedicated to my family.

“Imagination is more important than knowledge. Knowledge is

limited. Imagination encircles the world.”

Albert Einstein



Abstract

Artificial spin ice (ASI) is a class of magnetic patterned arrays consisting of interacting

ferromagnetic nanomagnets. The nano-scale size and the elongated shape of each nano-

magnet ensure the formation of a single domain, which behaves as a ‘macrospin’ and

results in only two possible magnetisation directions along the long axis of the nano-

magnet. ASI system has the potential ability not only as a magnonic crystal because of

the microwave properties being associated with its intrinsically intricate magnetisation

topologies and inter-element interaction, but as a tool to model the microstructure of

atomic scale allowing its fundamental physics to be studied.

This thesis addresses the field-induced properties of the static and dynamic magneti-

sation in square and pinwheel ASI. Firstly, the magnetic properties of the square ASI

specimens were characterised using alternating gradient force magnetometry, Brillouin

light scattering and ferromagnetic resonance. Micromagnetic simulations were employed

to assist in understanding the experimental results. Secondly, the field-induced evolution

of the magnetisation configuration in a finite-size pinwheel ASI array was imaged using

Lorentz transmission electron microscopy.

The square structure of the square ASI lattices allows a comparison of the response

of the spin-wave modes in the two groups of magnetic elements which are orthogonally

aligned to one another. The frequency of the spin-wave mode is dependent on the direc-

tion of the applied field, either along the easy or hard axes of the nanomagnet. It has

been found that more spin-wave modes are found when the magnetic field lies along the

hard axis of the nanomagnet compared to when the field is aligned with the easy axis of

the island. This attributes to the formation of more edge modes of standing spin waves

in the former case. The experimental behaviour of the static and dynamic magnetisation
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can be well described via the micromagnetic simulations where only an individual island

is considered with an assumption that the inter-island interaction is negligible. Addition-

ally, the field direction with respect to the square ASI lattices is also responsible for the

changes in spin-wave frequencies. The results imply that the square ASI could act as a

reconfigurable microwave resonator due to its spin-wave frequency being dependent on

the changes in magnetisation configuration that were controlled by the applied field.

The dependence of the nanomagnet thickness on the static and the dynamic properties

of the square ASI was studied. The nanomagnet thickness is found to be responsible for

the coercivity and the number of observed spin-wave modes of the square ASI array.

The thicker ASI array has a larger coercive field and produces more spin-wave modes.

Micromagnetic simulations suggest that the inter-island coupling contributes weakly to

the coercivity and the spin-wave frequency of the thicker array whereas it is negligible for

a thinner array. Furthermore, fitting to ferromagnetic resonance data allows for access

to information on ferromagnetic parameters, such as gyromagnetic ratio and saturation

magnetisation.

Finally, static and dynamic magnetisation topologies in a pinwheel ASI is explored as

a function of magnetic field. The pinwheel ASI is a square ASI modified by rotating each

nanomagnet 45◦ around its central axis in the same direction. The energy spread between

the pinwheel vertices significantly decreased as the geometrical structure transforms from

the square vertices to the pinwheel vertices. The ferromagnetic magnetisation process

shows the domain growth mediated via the propagation of domain walls. Intriguingly,

some of the observed mesoscopic domain-wall topologies resemble the Néel and the cross-

tie walls seen in natural ferromagnetic films, while others mimic the configurations of

the charged walls found in the ferroelectric materials. In addition, a rotational-field

demagnetisation was carried out in order to anneal the pinwheel ASI to the ground state.

The results show that the net moment of the entire array decreases and the short-range

ground state is attained through the presence of the vortices (Type III) and antivortices

(Type IV) vertices, rather than the global Landau-like flux closure structure predicted by

Monte Carlo simulations.
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1
Thesis overview

1.1 Introduction

With the turn of the millenium came an upsurge in interest in novel artificial spin struc-

tures which emerge from geometric frustration [1]. This type of frustration is usually

referred as occurring when the constraint of the lattice topology prevents the system from

minimising all its interaction energies [2]. Consider simple square and triangular anti-

ferromagnetic spin systems, such as those shown in Figs. 1.1 (a) and (b), respectively.

These have spins sited at each corner and the systems will have minimal energy when

all spins are aligned antiparallel to all its adjacent neighbours. In the case of the square

lattice, any spin can be antiferromagnetically aligned with all its nearest neighbours and,

as a result, the energy of the system is completely minimised. On a triangular lattice,

however, once two of three spins align antiparallel to one another, the third spin is no

longer able to anti-align with both its neighbours simultaneously. Such system is said to

be frustrated.

1



2 1.1. Introduction

Figure 1.1: Schematic representations of antiferromagnetic systems where (a) total minimisa-
tion of energy is achieved and (b) geometric frustration is obtained [2]. Illustration of the ice
rule for the (c) frozen water and the (d) spin ice [3]. The lowest-energy state of a water-ice
tetrahedron has a configuration where the directions of electrostatic interactions (the dark blue
arrows) at two ends at the tetrahedron point toward to the central oxygen whereas the other
two point away from it. Equivalently, (d) the ground state of an individual spin-ice tetrahedron
also has the ‘two-in-two-out’ spin configuration.

The first evidence of frustration was uncovered in frozen water in the year of 1935 [4].

In this case, the frustration arises from the inequivalent bonding distances between oxygen

and hydrogen atoms in a frozen-water tetrahedron. A tetrahedral molecular structure

of the ground-state water ice is shown in Fig. 1.1 (c) where two hydrogen ions are

close to the central oxygen whereas the other two are sited far away. Consequently, the

electrostatic interaction of the lowest energy at this tetrahedron lattice has a ‘two-in-two-

out’ configuration, named as ‘ice rule’. A given water ice tetrahedron provides six-fold-

degenerate ground state, all obeying the so-called ‘ice rule’. This led to the discovery

of several intriguing phenomena, such as residual entropy at the lowest-energy state.

L. Pauling [4] evaluated the residual entropy S of the N number water molecules as

S = kBN/2ln(3/2), where kB is the Boltzmann constant.

Decades after the discovery of frustration in water ice, a similar behaviour was found

in rare earth materials, such as pyrochlore Dy2Ti2O7 [5, 6] and Ho2Ti2O7 [7, 8], known

as ‘spin ice’. Pyrochlore materials possess the net ferromagnetic interaction between
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nearest spins at each end tetrahedron. The spins point toward or away from the centre of

this tetrahedron due to the strong crystalline anisotropy forcing them along the <111>

axis [7, 9]. Figure 1.1 (d) shows a schematic magnetisation configuration of a single

tetrahedron in the Dy2Ti2O7 spin ice material at its lowest energy where two spins point

toward the centre while the other two direct away from it. This configuration is considered

to be analogous to the ground-state configuration of water ice so that it satisfies the

‘ice rule’. The interesting physical phenomenon found in both water ice and spin ice

materials, such as remnant entropy at the lowest state [4,5], inspired the seminal work at

the University of Pennsylvania. A synthetic ‘spin-ice’ system was proposed.

1.2 Artificial spin ice

Figure 1.2: (a) Diagram showing the ground-state magnetisation configuration of a square ASI
array. (b) Sixteen possible magnetisation topologies for a square vertex. Vertex energy increases
from the T1 to the T4 structures, the green arrow representing the maximum net moment of
the T2 vertex; the blue (red) disk indicating the presence of net negative (positive) charges.
The circle illustrates the two net charges of the T3 vertex and the filled disk represents the
four-charge T4 vertex.

In 2006, R. F. Wang et al. pioneered artificially engineering a two-dimensional fer-

romagnetic array that could be coupled to mimic the magnetic behaviour of spin ice

media [1], and therefore called it as ‘artificial spin ice (ASI)’. This ASI array was com-

posed of interacting ferromagnetic mono-domain nanomagnets arranged into the so-called

square lattice (see Fig. 1.2 (a)). Each nanomagnet has nano-scale size and elongated

shape (the in-plane dimension and the thickness of the island are 80 nm × 220 nm and

25 nm) to ensure its magnetic moment to point to one of the two possible directions

along the long axis. The unique orientation of the magnetic moments in the nanomag-

net forms a single domain, thus, acting as a ‘macrospin’. The properties of square ASI

systems are usually described in terms of the ASI vertices. The vertex is defined as four

nanomagnets meeting head on, as illustrated in Fig. 1.2 (b). All square vertices can be
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classified into four types according to their energy and referred as ‘T1’, ‘T2’, ‘T3’ and

‘T4’. Vertex energy increases from the T1 to the T4 vertices. T1 is the ground state

and has the ‘two-in-two-out’ ice-rule configurations, with no net magnetic moment and

no charge. The emergence of frustration, in this case, is due to its intrinsic magnetisa-

tion topology. In particular, the head-to-tail (or tail-to-head) magnetisation alignment

between the first nearest neighbours is energetically favourable, while the head-to-head

(or tail-to-tail) magnetisation alignment between the second nearest islands cost energy.

This lowest-state cannot satisfy all system interactions at the same time. T2 vertices also

obey the ice rule and thus have no magnetic charge, but they possess net moments. T3

vertices, ‘three-in-one-out’ magnetisation configuration, possess the net magnetic charges

which lead to an interesting novel phenomenon known as the topological defect of emer-

gent ‘monopole’. T4 vertices are the highest energy states with four net magnetic charges

and they are not often observed in experiment.

Figure 1.3: Different ASI geometries: (a) Kagome, (b) Shakti and (c) modified square.

One of promising aspects of ASI research is the capability of easily manipulating the

systems magnetic degrees of freedom. For example, magnetic moment, shape anisotropy,

inter-element interaction and array geometry can be controlled via the volume, shape,

lattice constant and position of the nanomagnet. This flexible manipulation has been

achieved due to recent advances in electron-beam lithography, a nanofabrication tech-

nique. Current studies of ASI are not only focused on fundamentally physical aspects

[1,10–13], but also on potential applications [14]. In the former case, a variety of topolog-

ical structures have been realised, such as Kagome [15–19] (Fig. 1.3 (a)), Shakti [20, 21]

(Fig. 1.3 (b)) and modified square lattice [14] (Fig. 1.3 (d)). These systems are respon-

sible for the emergence of a number of exotic properties, including a variety of multifold-

degeneracy ground states [1,13,17,22], monopole mobility [18,23,24] and magnetic charge
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ordering [15,23,25].

In addition to the geometry of ASI arrays, the composition of nanoelements has also

gained interest. For example, the magnetic soft transition metals commonly used to

fabricate ASI, such as iron, nickel and cobalt, exhibit high-frequency spin-wave resonances

in the GHz range. This spin-wave excitation is sensitive to underlying magnetisation

configurations. Therefore, the possibility of generating new functionality, namely, the

potential for ASI to behave as a reconfigurable microwave resonator, was explored by

combining the geometric and dynamic properties of ASI [26–28].

1.2.1 Athermally and thermally dynamic response of ASI

Studies of dynamic response of magnetisation in ASI usually falls into two categories:

thermal and athermal dynamics. The former is driven by temperature and the latter

is introduced by external magnetic fields at a fixed temperature. So far these studies

mainly focused on understanding how to access the ground state of ASI and utilising

it as a tunable resonator. The study of dynamics of both the micro-magnetisation (of

individual nanomagnet) and collective magnetisation (of coupled macrospins in an array)

is a crucial step to understand such thermal and athermal processes.

In such an artificially frustrated system, a great deal of work has attempted to access

the lowest-energy state via annealing protocols [1,11,12,29]. In this respect, the two most

used methods are athermal AC-field demagnetisation [1, 30–32] and thermal relaxation

demagnetisation [12,17,33–35]. The rotational-field protocol only enables the square ASI

system to approach the short-range low-energy state, with the presence of high-energy

vertices (T3 and T4), while thermal annealing allows for the achievement of the long-

range order [35]. A. Farhan at el. [12] address the potential energy landscapes of thermal-

annealing processes in three finite-size Kagome ASIs (involving one, two and three Kagome

rings). This study explicitly shows the magnetisation evolution of the macrospins of the

islands from an excited state to a lowest energy state in real time and shows that the

nature of the magnetisation configurational changes depends on the complexity (number

of the Kagome rings) of the Kagome ASI system.

A variety of magnetisation topologies in an ASI system have been proposed to have

potential as reconfigurable microwave devices [23, 27, 28, 36, 37, 37–40]. It has been pre-

dicted that the significant variation in magnetisation dynamic frequency is dependent on
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the changes of magnetisation topologies, which is, in particular, associated with the num-

ber of the topological defects consisting of ‘monopole’ and Dirac string topologies [23].

This result and other similar works [27, 36, 37] suggest the possibility of employing ASI

in reconfigurable resonator as they display the dependence of magnetic dynamics on the

underlying magnetisation configuration. It should also be mentioned that X. Zhou et

al [28] systematically explored how the static and dynamic magnetisation responses rely

on the intrinsically geometrical arrangements of nanomagnets (see the insets of Fig. 1.4).

They also reversed the structures of ASI, the nonmagnetic ASI-geometry hole embedded

in a continuous magnetic thin film, and referred to it as anti-ASI geometry (in a sim-

ilar manner to the well-studied antidot [41]). In Fig. 1.4, one can observe geometry-

and anisotropy-dependent variance in the resonance modes measured using ferromagnetic

resonance.

Figure 1.4: Ferromagnetic resonance spectra for artificial spin ice and anti-spin ice at 0◦

and 45◦ applied fields with amplitude of 1400 Oe with respect to ASI lattices. It shows how
geometries of ASI systems influence the dynamic response [28]. Copyright (2016) by the John
Wiley and Sons.

1.2.2 Mesoscopic domain and domain wall in ASI

A magnetic domain is usually referred to as the region where all magnetic moments point

in the same direction. A domain wall is a boundary separating two domains possessing the

different magnetisation orientations. Even though these are most commonly known as a

property of continuous media, the analogous formation of domains has been shown to be of
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fundamental importance when studying the magnetisation dynamics of the ASI system.

Because it is well-established that the magnetic moment of an individual nanomagnet

acted as an Ising spin, the mesocopic domain and domain wall were proposed in an attempt

to describe the evolution of ground state and excited state in such systems. Additionally,

the understanding of ‘domain’ and ‘domain wall’ allows, to a large extent, to address the

magnetisation dynamic response of ASI to the magnetic field or temperature [42,43].

Figure 1.5: (a) An example of a simulated magnetisation map using Monte Carlo simulations
which shows the domain (green region) consisting of type I vertices separated by the domain
walls that are constructed by type II and type III vertices. Random domain wall motion from
(b) to (c) which is mediated by the creation and annihilation of the type III vertices. (d)
Examples of the four categories of vertices magnetisation configurations and the symbols in the
centre represents the vertex magnetisation maps given in the (a), (b) and (c) [44]. © Deutsche
Physikalische Gesellschaft. Reproduced by permission of IOP Publishing, CC BY-NC-SA.

The formation of such domains and domain walls is described in terms of the net mo-

ments of vertices [22, 33, 44–46]. For example, one-dimensional boundaries, constructed

by excited square vertices, were observed separating domains [33] consisting of T1 ver-

tices. Monte Carlo simulations performed by Z Budrikis et al. [33] provide insights on

the formation and evolution of these mesoscope domains and domain walls. The simu-

lated magnetisation maps (Fig. 1.5 (a)) obtained at finite temperature also showed great

agreement with experimental results as shown by Morgan et al [33]. Results show that

domains are formed by the ground state vertices (type I) and domain walls are formed by

the higher energy vertices (type II and type III). The dynamics of domain walls led to the

domain growth (or shrinkage). In addition, it was found that domain wall nucleation al-

ways starts at the dislocation, which refers to array edge or a so-called defect point where

three islands meet on the square-ASI background aiming to create different frustration in
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a system [46].

1.3 A novel geometry

Figure 1.6: Artificial spin ice geometries and their neighbouring interaction: Square ice lattice
arrangements with (a) ‘open edges’ and (c) ‘closed edges’. Respective arrangements, when
the rotation angle α = 45 ◦ named ‘pinwheel’ ice, with (b) ‘lucky-knot’ edges and (d) ‘diamond
edges’. (e) Dipolar energy for nearest-neighbours (nn), next-nearest-neighbours (nnn) and third-
nearest-neighbours (3nn) as a function of rotation angle α. The lattice constant a is taken as
the distance between nnn spins. Open symbols are for favourable arranged spin pairs and closed
symbols are for unfavourable arranged spin pairs [47].Copyright (2018) by the American Physical
Society, DOI: http://dx.doi.org/10.1103/PhysRevB.98.014437.

Recently, a new type of ASI has emerged, pinwheel spin ice. This ASI can be obtained

through rotating each island of the square ASI around its central axis by 45◦ and has

‘pinwheel’-shape vertex. Figures 1.6 (a-d) show the rotation processes from square ASI

arrays with the open and closed edges to pinwheel ASI arrays. Interestingly, this simple

rotation leads to significant changes in dipolar interaction between neighbouring spin

pairs [47]. In Chapter 6, the energies and details of the pinwheel vertices will be displayed.

S. Gliga [10] found the emergence of collectively chiral rotation in a finite-size pinwheel

ASI array, which was designed to be structurally chiral, as illustrated by the white (or

black) array in Fig. 1.7. Chiral dynamics refers to the presence of a preferred sense of

rotation in the course of thermal relaxation, which exhibits that the average net moment

always rotates in a clockwise sense rather than anticlockwise sense (see Fig. 1.7). Micro-
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Figure 1.7: Schematic illustration of the evolution of the net magnetisation at an individual
‘pinwheel’ vertex in an array [10]. The collective rotation in terms of the vertex moment un-
dergoes in a unique clockwise sense from state A to B, and will continue after being subject to
a thermal treatment (heating sample by several Kelvins). In the whole experimental process,
there is a bias magnetic field with amplitude between 50 µT and 80 µT. Copyright (2017) by
the Springer Nature.

magnetic simulation explains that asymmetric stray fields at the edges of this array are

responsible for such unidirectional behaviour.

1.4 Thesis outline

This thesis aims to explore the athermal magnetisation dynamics in square and pinwheel

ASI systems. This investigation has been conducted using a combination of experiments

and simulations. The static and dynamic magnetisation behaviours of square ASI were

characterised using alternating gradient force magnetometry, Brillouin light scattering

and ferromagnetic resonance techniques. Micromagnetic simulations based on Mumax

were also employed to reproduce and understand the experimental results. Finally, the

magnetisation process of pinwheel ASI was imaged using Lorentz transmission electron

microscopy.
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In Chapter 2, the relevant physical principles of nanomagnetism are introduced. This

involves aspects of energy terms, domain walls and phenomena of magnetisation dynamics.

In Chapter 3, descriptions of the sample fabrication process and the theories of the

experimental instruments used in this thesis are provided, including alternating gradient

force magnetometry, Brillouin light scattering, ferromagnetic resonance and transmis-

sion electron microscopy. Basic concepts and performance of micromagnetic simulation

throughout this thesis are also addressed.

In Chapter 4, experimental and numerical static magnetisation properties and spin-

wave behaviour are displayed. Results show that they are strongly dependent upon the

field angle with respect to square ASI lattices. The dynamic response of magnetisation

to the shape anisotropy of individual nanomagnets is also discussed.

In Chapter 5, the dependence of static and dynamic magnetisation of square ASI

on nanomagnet thickness is examined. The nanomagnet thickness is responsible for a

substantial variation in the frequency and the number of spin-wave modes. A comparison

between experimental results and micromagnetic simulations is presented. The final part

of this chapter concentrates on the possibility of dynamic coupling due to the strength of

the magnetostatic interaction (determined by the separation between nanomagnets).

In Chapter 6, athermal dynamics in a finite-size pinwheel ASI array is explored. This

pinwheel lattice has been predicted to be a highly-degenerate system with very similar

energies for all vertex types. The formation of the mesoscopic walls were observed during

magnetisation reversal, including domain walls that analogise ferromagnetic Néel walls

and some unusual charged walls. In addition, the proprieties of such mesoscopic walls are

qualitatively and quantitatively discussed. These domain walls show dependences on the

angle of magnetic field with respect to the array.

Lastly, in Chapter 7, a summary of this thesis and relevant future work is presented.



Bibliography 11

Bibliography

[1] R F Wang, C Nisoli, R S Freitas, J Li, W McConville, B J Cooley, M S Lund,

N Samarth, C Leighton, V H Crespi, et al. Artificial ‘spin ice’ in a geometrically

frustrated lattice of nanoscale ferromagnetic islands. Nature, 439(7074):303, 2006.

[2] R Moessner and A P Ramirez. Geometrical frustration. Phys. Today, 59(2):24, 2006.

[3] C Castelnovo, R Moessner, and S L Sondhi. Spin ice, fractionalization, and topolog-

ical order. Annu. Rev. Condens. Matter Phys., 3(1):35, 2012.

[4] L Pauling. The structure and entropy of ice and of other crystals with some random-

ness of atomic arrangement. Journal of the American Chemical Society, 57(12):26804,

1935.

[5] A P Ramirez, A Hayashi, R al Cava, R Siddharthan, and B S Shastry. Zero-point

entropy in ‘spin ice’. Nature, 399(6734):333, 1999.

[6] B C den Hertog and M J P Gingras. Dipolar interactions and origin of spin ice in

ising pyrochlore magnets. Physical Review Letters, 84(15):3430, 2000.

[7] M J Harris, S T Bramwell, D F McMorrow, T Zeiske, and K W Godfrey. Geometri-

cal frustration in the ferromagnetic pyrochlore Ho2Ti2O7. Physical Review Letters,

79(13):2554, 1997.

[8] R G Melko, Byron C den Hertog, and M J P Gingras. Long-range order at low

temperatures in dipolar spin ice. Physical Review Letters, 87(6):067203, 2001.

[9] C Castelnovo, R Moessner, and S L Sondhi. Magnetic monopoles in spin ice. Nature,

451(7174):42, 2008.

[10] S Gliga, G Hrkac, C Donnelly, J Büchi, A Kleibert, J-Z Cui, A Farhan, E Kirk,

R V Chopdekar, Y Masaki, et al. Emergent dynamic chirality in a thermally driven

artificial spin ratchet. Nature Materials, 16(11):1106, 2017.

[11] J C Gartside, D M Arroo, D M Burn, V L Bemmer, A Moskalenko, L F Cohen,

and W R Branford. Realization of ground state in artificial kagome spin ice via

topological defect-driven magnetic writing. Nature Nanotechnology, 13(1):53, 2018.



12 Bibliography

[12] A Farhan, P M Derlet, A Kleibert, A Balan, R V Chopdekar, M Wyss, L Anghinolfi,

F Nolting, and L J Heyderman. Exploring hyper-cubic energy landscapes in thermally

active finite artificial spin-ice systems. Nature Physics, 9(6):375, 2013.

[13] D Shi, Z Budrikis, A Stein, S A Morley, P D Olmsted, G Burnell, and C H Marrows.

Frustration and thermalisation in an artificial magnetic quasicrystal. Nature Physics,

14:309, 2018.

[14] Y-L Wang, Z-L Xiao, A Snezhko, J Xu, L E Ocola, R Divan, J E Pearson, G W

Crabtree, and W-K Kwok. Rewritable artificial magnetic charge ice. Science,

352(6288):962, 2016.

[15] B Canals, I-A Chioar, V-D Nguyen, M Hehn, D Lacour, F Montaigne, A Locatelli,

T O Menteş, B S Burgos, and N Rougemaille. Fragmentation of magnetism in

artificial kagome dipolar spin ice. Nature Communications, 7:11446, 2016.

[16] Y Qi, T Brintlinger, and J Cumings. Direct observation of the ice rule in an artificial

kagome spin ice. Physical Review B, 77(9):094418, 2008.

[17] A Farhan, A Kleibert, P M Derlet, L Anghinolfi, A Balan, R V Chopdekar, M Wyss,

S Gliga, F Nolting, and L J Heyderman. Thermally induced magnetic relaxation in

building blocks of artificial kagome spin ice. Physical Review B, 89(21):214405, 2014.

[18] E Mengotti, L J Heyderman, A F Rodríguez, F Nolting, Remo V Hügli, and H-B

Braun. Real-space observation of emergent magnetic monopoles and associated dirac

strings in artificial kagome spin ice. Nature Physics, 7(1):68, 2011.

[19] G Möller and R Moessner. Magnetic multipole analysis of kagome and artificial

spin-ice dipolar arrays. Physical Review B, 80(14):140409, 2009.

[20] I Gilbert, G-W Chern, S Zhang, L O’Brien, B Fore, C Nisoli, and P Schiffer. Emergent

ice rule and magnetic charge screening from vertex frustration in artificial spin ice.

Nature Physics, 10(9):670–675, 2014.

[21] G-W Chern, M J Morrison, and C Nisoli. Degeneracy and criticality from emergent

frustration in artificial spin ice. Physical Review Letters, 111(17):177201, 2013.



Bibliography 13

[22] Y Perrin, B Canals, and N Rougemaille. Extensive degeneracy, coulomb phase and

magnetic monopoles in artificial square ice. Nature, 540(7633):410, 2016.

[23] S Gliga, A Kákay, R Hertel, and O G Heinonen. Spectral analysis of topological

defects in an artificial spin-ice lattice. Physical Review Letters, 110(11):117205, 2013.

[24] R C Silva, R J C Lopes, L A S Mól, W A Moura-Melo, G M Wysin, and A R

Pereira. Nambu monopoles interacting with lattice defects in a two-dimensional

artificial square spin ice. Physical Review B, 87:014414, 2013.

[25] S D Pollard, V Volkov, and Y Zhu. Propagation of magnetic charge monopoles and

dirac flux strings in an artificial spin-ice lattice. Physical Review B, 85(18):180402,

2012.

[26] J Li, X Ke, S Zhang, D Garand, C Nisoli, P Lammert, V H Crespi, and P Schif-

fer. Comparing artificial frustrated magnets by tuning the symmetry of nanoscale

permalloy arrays. Physical Review B, 81(9):092406, 2010.

[27] V S Bhat, J Sklenar, B Farmer, J Woods, J T Hastings, S J Lee, J B Ketterson,

and L E De Long. Controlled magnetic reversal in permalloy films patterned into

artificial quasicrystals. Physical Review Letters, 111(7):077201, 2013.

[28] X Zhou, G-L Chua, N Singh, and A O Adeyeye. Large area artificial spin ice and

anti-spin ice Ni80Fe20 structures: Static and dynamic behavior. Advanced Functional

Materials, 26(9):1437, 2016.

[29] Z Budrikis, J P Morgan, J Akerman, A Stein, P Politi, S Langridge, C H Marrows,

and R L Stamps. Disorder strength and field-driven ground state domain formation

in artificial spin ice: Experiment, simulation, and theory. Physical Review Letters,

109(3):037203, 2012.

[30] J H Rodrigues, L A S Mól, W A Moura-Melo, and A R Pereira. Efficient demag-

netization protocol for the artificial triangular spin ice. Applied Physics Letters,

103(2013):092403, 2013.

[31] X Ke, J Li, C Nisoli, Paul E Lammert, W McConville, R F Wang, V H Crespi, and

P Schiffer. Energy minimization and ac demagnetization in a nanomagnet array.

Physical Review Letters, 101(3):037205, 2008.



14 Bibliography

[32] R FWang, J Li, WMcConville, C Nisoli, X Ke, J W Freeland, V Rose, M Grimsditch,

P Lammert, V H Crespi, and P Schiffer. Demagnetization protocols for frustrated

interacting nanomagnet arrays. Journal of Applied Physics, 101:09J104, 2007.

[33] J P Morgan, A Stein, S Langridge, and C H Marrows. Thermal ground-state ordering

and elementary excitations in artificial magnetic square ice. Nature Physics, 7(1):75,

2011.

[34] V Kapaklis, U B Arnalds, A Harman-Clarke, E T Papaioannou, M Karimipour,

P Korelis, A Taroni, P C W Holdsworth, S T Bramwell, and B Hjörvarsson. Melting

artificial spin ice. New Journal of Physics, 14(3):035009, 2012.

[35] J M Porro, A Bedoya-Pinto, A Berger, and P Vavassori. Exploring thermally induced

states in square artificial spin-ice arrays. New Journal of Physics, 15(5):055012, 2013.

[36] V S Bhat, J Sklenar, B Farmer, J Woods, J B Ketterson, J T Hastings, and L E

De Long. Ferromagnetic resonance study of eightfold artificial ferromagnetic qua-

sicrystals. Journal of Applied Physics, 115(17):17C502, 2014.

[37] J Sklenar, V S Bhat, L E DeLong, and J B Ketterson. Broadband ferromagnetic

resonance studies on an artificial square spin-ice island array. Journal of Applied

Physics, 113(17):17B530, 2013.

[38] M B Jungfleisch, W Zhang, E Iacocca, J Sklenar, J Ding, W Jiang, S Zhang, J E

Pearson, V Novosad, J B Ketterson, et al. Dynamic response of an artificial square

spin ice. Physical Review B, 93(10):100401, 2016.

[39] I R B Ribeiro, J F Felix, L C Figueiredo, P C Morais, S O Ferreira, W A Moura-

Melo, A R Pereira, A Quindeau, and C I L de Araujo. Investigation of ferromagnetic

resonance and magnetoresistance in anti-spin ice structures. Journal of Physics:

Condensed Matter, 28(45):456002, 2016.

[40] Y Yahagi, C R Berk, B D Harteneck, S D Cabrini, and H Schmidt. Dynamic separa-

tion of nanomagnet sublattices by orientation of elliptical elements. Applied Physics

Letters, 104(16):162406, 2014.



Bibliography 15

[41] A Castellanos, R Wördenweber, G Ockenfuss, A V D Hart, and K Keck. Preparation

of regular arrays of antidots in YBa2Cu3O7 thin films and observation of vortex lattice

matching effects. Applied physics letters, 71(7):962–96, 1997.

[42] K Zeissler, M Chadha, E Lovell, L F Cohen, and W R Branford. Low temperature

and high field regimes of connected kagome artificial spin ice: the role of domain wall

topology. Scientific Reports, 6:30218, 2016.

[43] K Zeissler, S K Walton, S Ladak, D E Read, T Tyliszczak, L F Cohen, and W R

Branford. The non-random walk of chiral magnetic charge carriers in artificial spin

ice. Scientific reports, 3:1252, 2013.

[44] Z Budrikis, K L Livesey, J P Morgan, J Akerman, A Stein, S Langridge, C HMarrows,

and R L Stamps. Domain dynamics and fluctuations in artificial square ice at finite

temperatures. New Journal of Physics, 14(3):035014, 2012.

[45] D Levis and L F Cugliandolo. Out-of-equilibrium dynamics in the bidimensional

spin-ice model. EPL (Europhysics Letters), 97(3):30002, 2012.

[46] J Drisko, T Marsh, and J Cumings. Topological frustration of artificial spin ice.

Nature Communications, 8:14009, 2017.
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2
Physical properties of nanomagnets

2.1 Introduction

Nanomagnetism, focused on magnetic properties of nanostructured magnetic objects, has

attracted wide interest in material science in the past decades. This comes as a conse-

quence of the development of nanofabrication techniques and multidisciplinary applica-

tions of nanomagnetic systems. At present, fundamental research in nanomagnets has

been focused on thin films [1–4], multilayers [5–8], nanoparticles [9–13] and patterned ar-

rays [14–16]. These systems exhibit exotic properties arising from the competition between

energy terms due to their low dimensionality and nanoscale size. So far, potential appli-

cations of nanomagnetic structures include ultrahigh-density information storage [17–23],

biomedicine [9, 24–26], nanosensors [27–30] and catalysts [31–34] [28].

The main purpose of this thesis is to explore the dynamic response of artificial spin ice

systems to magnetic fields. These are patterned arrays of magnetic nanoelements, which

is studied using several characterisation techniques and micromagnetic simulation. The

17
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details of characterisation and simulation methods will be presented in Chapter 3. This

chapter concentrates on the physics of ferromagnetic behaviour in a magnetic medium,

free energy terms and basic concepts of domains and domain walls. It also presents the

principle of magnetisation dynamics of ferromagnets which are incorporated in Section

2.6.

2.2 Magnetism of nanostructures

Magnetic behaviour in materials is usually described in terms of magnetic moments, m.

The magnetic moment is associated with two electronic angular momenta: orbital angular

momentum (L) and intrinsic spin angular momentum (S). The orbital angular momentum

of an electron charge results from the electron motion around a proton and intrinsic spin

angular momentum arises from the electron spinning on its axis. In this approach, the

contribution from the intrinsic angular momentum of a proton is usually neglected as it

is so small compared to that of the electron. Therefore, the net moment of an atom is the

sum of the orbital angular momentum and the spin angular momentum. The average of

the magnetic moment of electrons in a material is usually described by the magnetisation

density (M), the total magnetic moment per unit volumeM = ∑
m/V (A/m), where V is

the volume of the material. Considering that a magnetic field H interacts with electrons,

the field-induced magnetisation is dependent on the electron orbital configurations [35].

Thus, this relationship between the induced magnetisation M and the applied field is

given by

M = χH (2.1)

where χ is the dimensionless magnetic susceptibility and H is the magnetic field strength

(A/m).

In most materials, electrons are paired in the orbitals and thus their opposite spin

angular momenta cancel. In this context, an external magnetic field induces the opposite

magnetisation due to the electromotive force from the orbital rotation of the electrons

according to Lenz’s law. This type of magnetic behaviour is referred to as ‘diamagnetism’

and exhibits χ < 0. Although all substances have the diamagnetic response, most are

sufficiently weak to be neglected. By contrast, those in which there are uncompensated
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moments in the electron shells possess net magnetic moments even without the applied

field. In the presence of an applied field, their net magnetic moments are forced into the

same orientation as the magnetic field. Such magnetic materials have ‘paramagnetism’

and, therefore, χ > 0. The induced magnetisation decreases to zero with the removal of

the magnetic field. This stems from the weak interaction between neighbouring electron

spins giving rise to their random directionality across the material. However, if the inter-

action between adjacent atoms is strong, all spins are parallel aligned even in the absence

of magnetic field, which results in the net moment being retained. This phenomenon

can be found in transition metal elements, for instance, iron (Fe), nickel (Ni) and cobalt

(Co) etc, and is defined as ferromagnetism. The ferromagnetic susceptibility χ exhibits

a saturation at a certain strength of the magnetic field. The magnetic object, in which

the net electrons spins are antiparallel coupled, is known as an antiferromagnet. An ad-

ditional magnetic ordering is ferrimagnetism. The spins in ferrimagnetic materials are

antiferromagnetically coupled, but the net moment is generated as the strength of mag-

netic moment of one sublattice is stronger than the other. These magnetic orders of the

ferromagnetic, antiferromagnetic and ferrimagnetic systems are schematically illustrated

in Fig. 2.1.

Figure 2.1: Schematic diagrams illustrating the magnetic orderings of (a) ferromagnetic, (b)
antiferromagnetic and (c) ferrimagnetic systems, where the black arrows represent magnetic
moments.

One of the characteristics of ferromagnetism is the existence of spontaneous magneti-

sation even at H = 0 [36, 37]. However, the spontaneous magnetisation vanishes at the

Curie temperature, above which the magnetic order becomes paramagnetic [38, 39].

2.3 Magnetic free energy terms

A total free energy in a ferromagnetic system generally results from contributions of

exchange energy, magnetostatic energy, Zeeman energy, anisotropy energy and magne-
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tostrictive energy [35]. Note that, in this context, the term ‘free’ means that thermal

fluctuations are not taken into account. An equilibrium state of magnetisation is, there-

fore, achieved by minimising the total free energy. These energy terms are discussed in

the following sections.

2.3.1 Exchange energy

One of the simplest approaches used to describe the coupling of electrons in a microscopic

spin system is that of Heisenberg. This exchange interaction is given by a Hamiltonian of

the form [40]

Ĥ =−Jij
∑
ij

~Si · ~Sj , (2.2)

where S is the spin of an electron at a site i or j, which only arises from the intrinsic

electron angular momentum as the orbital angular momentum is cancelled, and Jij de-

notes the exchange constant. The sign of J defines the nature of the spin alignment so

that if J is positive a ferromagnetic ordering is seen, while negative J gives rise to an

antiferromagnetic ordering.

In a continuum approximation, with the assumption of ignoring the discreteness of

spins at crystal lattices, Eq. 2.2 can be modified using Taylor expansion [41] and then

becomes

Eex = A
∫
V

(∇m)2d3r, (2.3)

where A is the exchange stiffness constant (J/m) and is given by A= 2JS2z/a, in which

z is the number of sites in the unit crystal cell and a is the distance separating neigh-

bouring moments. Eq. 2.3 is particularly useful when computing the exchange energy in

micromagnetic simulations (see Section 3.8).

2.3.2 Magnetostatic energy

Magnetostatic energy results from dipole interactions induced by surface magnetic charges

of a sample, as schematically displayed in Fig.2.2 (a). In this case, uniform magnetisation

M generates surface charges which act as dipole fields. This surface charge and the

net volume charge create a demagnetisation field together, Hd, pointing to the opposite
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direction of M . The internal field experienced by the sample is Hint = H−Hd, where H

is an external field. This demagnetisation (or magnetostatic) energy Ed is given by

Ed =−µ0
2

∫
V
M ·HddV, (2.4)

where µ0 is the permeability constant of free space (H/m), V is the volume of magnetic

sample and

Hd =−NM (2.5)

is the demagnetisation field, here N being a demagnetisation tensor which is dependent

on the shape of sample. It is possible to compute the demagnetisation factors of a cuboid

using the method introduced by A. Aharoni [42] (see more details in Section 5.3.3).

Figure 2.2: (a) Uniform magnetisation in a rectangular ferromagnetic object, in which the
curved lines outside the object represent the stray fields and the red (blue) pluses (minus)
represent the positive (negative) surface magnetic charges. Domain formation into (b) two
domains and (c) a closure structure in order to minimised the magnetostatic energy for elements
of same dimensions. (d) By decreasing the width of the object (a) creates a single-domain
magnetic bar.

The magnetostatic energy is mainly responsible for the formation of domains, in which

the direction of magnetisation is the same, such as the monodomain case shown in Fig.

2.2 (a). However, the demagnetisation energy is maximal here so that the total energy

of the system is not minimised. Therefore, in some cases, this single domain would be

divided into two domains whose magnetisation orientations are aligned antiparallel to one

another in order to reduce the demagnetisation energy, as shown in Fig. 2.2 (b). The

minimal demagnetisation energy can be obtained in certain cases, for instance, where a
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closure flux structure of magnetisation (also known as ‘Landau domain’) is formed, as

illustrated in Fig. 2.2 (c).

2.3.3 Zeeman energy

The Zeeman energy term describes the interaction between an external field and a sample’s

magnetisation. Applying an external field allows the magnetisation of a ferromagnetic

system to align with the field direction. In the presence of the external field, H, the

potential energy is given by

Ez =−µ0

∫
V
M ·HdV. (2.6)

2.3.4 Anisotropy energies

In a system of spins such as that described by Eq. 2.2, the magnetisation is considered to

be isotropic, that is, this expression does not illustrate any information about the ener-

getically favourable direction of magnetisation of the system. However, in real magnetic

objects, the magnetisation tends to be aligned along a particular direction. Two common

cases are crystalline anisotropy and shape anisotropy.

Crystalline anisotropy is a directional effect which induces the magnetisation to align

with a certain crystallographic axis and usually occurs in a single crystal. This anisotropy

is a result of spin-orbit coupling [43]. The crystal axis on which the magnetisation tends

to lie is called the ‘easy axis’, while the crystallographic axis which is energetically less

favourable for magnetisation to align to is termed as the ‘hard axis’. In this study,

permalloy was used, which is a polycrystalline alloy. Thus, the contribution of crystalline

anisotropy on the magnetisation is very weak.

Shape anisotropy is a result of the minimisation of demagnetisation energy due to the

shape of sample. An ellipsoid, where the demagnetising field is assumed to be spatially

uniform, is a prime example of shape anisotropy [44]. In the presence of an applied field

H, the demagnetising field along the polar axis is Ha
d =−NaM , and along the short axis

is Hb
d = −NbM , as shown in Figs. 2.3 (a) and (b), respectively. The relative distance

between two surface magnetic poles determines the value of demagnetising factors, for

this ellipsoid, Na < Nb [45]. Therefore, the easy direction of this magnetic ellipsoid is
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along the long axis where the demagnetisation energy is lower, while its hard direction is

along the short axis where the demagnetisation energy is higher.

Figure 2.3: Diagrams showing (a) easy axis and (b) hard axis of a ellipsoidal disk in the
presence of an external field H which is dependent on the demagnetising field Hd.

The anisotropy energy constrained by sample geometry is, therefore, described in

terms of the difference between energetically favourable and unfavourable states, and it

is given by [46]

Es =−µ0
2

∫
V

(Nb−Na)M2
s dV, (2.7)

where Ms is the saturation magnetisation. In this way, the shape anisotropy plays an

essential role in the formation of single-domain nanomagnet. If the size and the shape of

a nanomagnet are designed to be small enough (i.e. at the nanometer scale) and elongated,

the exchange energy will be dominant instead of the demagnetisation energy so that the

magnetic moments are forced along the same direction. This direction is usually along

the easy axis of the sample due to the shape anisotropy. Therefore, a single domain

can be structured in this nanomagnet, as sketched in Fig. 2.2 (d). Such single-domain

nanomagnets have been used as fundamental units in ASI systems which have already

been mentioned in Section 1.2.

2.4 Domain walls

As discussed previously, the multiple domains, in which the directions of the magnetisation

are different in a given magnet, are created so as to minimise the total energy of a system.
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A boundary separating two adjacent domains is defined as a domain wall. The formation

of domain wall in a ferromagnet system, however, is energetically costly. This can be due

to its magnetic moments not being parallel to each other (increasing the exchange energy)

and misaligned with the easy axis (increasing the anisotropy energy) [35].

Figure 2.4: Schematic representations of (a) Néel wall, (b) Bloch wall and (c) cross-tie wall
in a thin film. The red (blue) and yellow shadow regions indicate the position of domain and
domain wall, respectively.

Figure 2.5: Schematic diagrams of magnetic charge distribution of (a) Néel and (b) Bloch
walls, where the plus and minus signs represent positive and negative charges. The polarisation
in Néel wall forms volume charges, while in the Bloch wall leads to surface charges.

Domain walls are usually classified as 180◦ and non-180◦ walls according to the angle

of magnetisation orientation between the neighbouring domains. These two types of walls

can be further classified due to the difference in the topology of the magnetic structure.

For example, in thin films there are three main cases: Néel walls, Bloch walls and cross-tie

walls. The thickness of the film is responsible for the formation of these three walls. The

first type, Néel walls, are those which are energetically favourable in thinner samples (the

theoretical thickness < 70nm in a ferromagnetic film [47]). A Néel wall is defined as a

transition region where the magnetisation rotates by 180◦ in plane [48, 49], as shown in

Fig. 2.4 (a). The second type, Bloch walls, mainly occur in thicker samples (the calcu-

lated thickness > 100 nm [47]). For those the magnetisation rotates out of plane within

the film. Figure 2.4 (b) schematically shows the magnetisation configurations within a
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Bloch wall region [50, 51]. Finally, cross-tie walls are 90◦ wall structure separating per-

pendicular neighbouring domains and forming vortices and antivortices of magnetisation

topologies (see Fig. 2.4 (c)) [52–54]. This type of domain wall is always seen in films

with intermediate thickness (from approximately 30 nm to 90 nm in NiFe films [55]). The

magnetisation configuration of this wall is usually a consequence of multiaxial anisotropy

or an applied field perpendicular to the easy axis of an uniaxial material.

Figure 2.6: Illustrations of charged and neutral 180◦ and 90◦ domain-wall configurations in
ferroelectric materials [56]. The orientations of adjacent spontaneous polarisation determine the
charge behaviour in domain walls. (a) Head-to-head configuration carries positive bound charge
and (b) tail-to-tail configuration possesses negative bound charges. (c) Neutral walls satisfy the
condition of electrostatic compatibility. Copyright (2015) on the IOP Publishing.

These walls give rise to the interesting consequences on charge ordering. Fig. 2.5

(a) shows that Néel wall induces volume charges, while the Bloch wall in Fig. 2.5 (b)

produces surface charges. In both cases, the walls are considered to be neutral walls

due to the divergence of the polarisation is zero, that is, the spontaneous polarisation

is continuous across the walls [57]. Nevertheless, analogous charged domain walls have

been reported in multiferroic materials, such as BaTiO3 [58], PbTiO3 [59], SbSl [60] and

PbZr0.2Ti0.8O3 [61]. Figures 2.6 (a) and (b) schematically describe charged 180◦ and 90◦

wall configurations, respectively. Here, the polarisation orientation defines the sign of

electronic bond charges. A wall separating the 180◦ and 90◦ head-to-head electric polari-

sations carry positive bound charges, while the tail-to-tail arrangements lead to negative
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bound charges. In comparison with neutral walls, uncompensated charge walls are those

where the local divergence of electrostatic potentials is nontrivial [56]. However, the width

of the domain walls (could be up to tens of nanometers) in ferromagnetic film is much

greater than those in Ferromagnetic materials which have a few lattice constants [62]. This

derives from the origins of the formation of spontaneous polarization are different in fer-

romagnetic and ferroelectric objects. It has been introduced in Section 2.2 that the dipole

moment of ferromagnetism arises from the orbital and spin angular momenta, while the

dipole moments of ferroelectricity is generated due to noncentrosymmetric structure [62].

In addition, equivalent charged walls have also been observed in nanowires due to their

strong shape anisotropy [63–65]

The intrinsic magnetisation topology of the domain wall has been suggested as the

route to some novel physical phenomena. These walls and their properties have already

been recently exploited in the context of potential application in information storage

[66,67].

2.5 Hysteresis loops of single-domain nanomagnets

In previous sections, how the size and shape of magnetic structures affect the magneti-

sation configurations has been discussed. However, the influences of an external applied

field on the magnetisation of a magnetic nanostructure have not been stated. The re-

sponse of the magnetisation of a magnetic solid to an applied field can be described by a

hysteresis loop. An example of the hysteretic behaviour of a single-domain ferromagnetic

nanomagnet is given in Fig. 2.7. From Eq. 2.1 it is inferred that the relationship between

strength of the magnetisation and external field is linear for a magnetic solid, but not

always for a ferromagnet. Ferromagnets have saturation strengths of magnetisation, Ms.

This means that the increase of the magnetisation peaks at Ms and remains the same

even for a greater external applied field. As has been introduced already, ferromagnets

possess remnant magnetisation with the removal of the magnetic field known as Mr. The

magnetisation will be reversed, however, when an external field is applied in the opposite

direction. The field at which this occurs is referred to as coercive field, Hc.

Strong shape anisotropy of a single-domain nanomagnet is responsible for the field-

induced behaviours of hysteresis loops. This study was initially conducted by E. C. Stoner
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Figure 2.7: Simulated hysteresis loops of a cuboid single-domain permalloy nanomagnet at
magnetic fields of θ = 0◦, θ = 45◦ and θ = 90◦ with respect to the easy axis (indicated by the
dash line) using Mumax. The inset displays the direction of the magnetic field H with respect
to the nanomagnet. The dimension of the magnetic island is 240×80×10 nm3.

and E. P. Wohlfarth [44]. Their Stoner-Wohlfarth model predicts that the system energy

E of a single-domain particle in the presence of an applied field is described by

E =KV sin(θ−φ)2−µ0MsV H cosθ (2.8)

where K is the shape anisotropy parameter of the nanomagnet, given by K = 1
2µ0NM2

s , θ

is the magnetic field angle with respect to the long axis of the elongated nanomagnet (the

dashed vertical line in the inset of Fig. 2.7) and φ is the angle between the direction of

magnetisation and the long axis of the nanomagnet. Eq. 2.8 addresses why the easy axis

of the single-domain particle is at φ = 0,180◦ where E reaches a minimum and the hard

axis is where the magnetisation is at φ= 90◦. Figure 2.7 illustrates the hysteresis loops at

θ = 0◦,45◦,90◦ with respect to the easy axis of a single-domain nanomagnet. Comparing

them, it can be seen that the remnant magnetisation and the coercivity decrease as the

angle θ increases.
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2.6 Magnetisation dynamics

2.6.1 Ferromagnetic resonance

Dynamic magnetisation, involving precessional motion and damping, can be described by

the Landau-Lifshitz-Gilbert (LLG) equation [68],

d ~M

dt
=− γ

1 +α2 ( ~M × ~Heff ) + α

Ms
( ~M × d

~M

dt
), (2.9)

where M is the magnetisation, Ms is the saturation magnetisation, γ is a gyromagnetic

ratio, α is the dimensionless damping coefficient and Heff is an effective field. The first

term of Eq. 2.9 describes the precessional motion of a magnetisation vector M around

the Heff axis (the equilibrium state of the system). This motion is driven by a torque,

−M ×Heff , as schematically illustrated in Fig. 2.8. The second term is related to

a Gilbert dissipative relaxation which forces the magnetisation toward the direction of

Heff , in other words, approaching the equilibrium state. There is another expression of

the relaxation given by − λ
M2

s
(M×M×Heff ) [69], where λ= 1/τ is the damping constant

and τ is the inverse relaxation time τ . This describes phenomenological dissipative motion,

as displayed in Fig. 2.8. Figure 2.8 shows that the magnetisation vector follows a spiral

trajectory due to the combined effect of these two contributions. If an external driving

force is employed, the magnetisation M will experience precessional torque around and is

eventually restored to the effective field axis. The amplitude and phase of magnetisation

precession results from a combination of the amplitude of driving energy and resonant

conditions of the magnetic system.

A common interest in the area of magnetisation dynamics is the resonant precessional

frequency which depends on static and dynamic magnetic fields. For instance, consider

spins processing uniformly, as shown in Figs. 2.9 (a) and (b). Such a uniform magneti-

sation precession, known as the Kittel mode, has resonant frequency ω depending on the

magnetic field which is given by Kittel formula [70]

ω = γ
√

[Hext+ (Nz−NH)4πMs]× [Hext+ (NH,⊥−NH)4πMs], (2.10)

where Hext represents the applied field; γ is the gyromagnetic ratio, Nz is the demag-

netising factor along the z direction and NH (NH,⊥) is the demagnetising constant along
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Figure 2.8: Schematic diagram showing the torque terms, described by LLG equation, act-
ing on the magnetisation. The magnetisation precesses around the effective field axis and the
magnetisation motion dissipates aiming to align to the equilibrium Heff axis.

(perpendicular to) the orientation of applied field H. This equation can be fitted with the

results measured using ferromagnetic resonance measurements to quantitatively approx-

imate the value of γ and Ms. In this thesis, I will describe how to employ the Kittel

equation to fit with experimental data in Section 5.3. In addition to the uniform preces-

sion where all spins precess at the same frequency and phase, the magnetic excitations

are likely to precess out of phase but with the same frequency, which will be discussed in

the next section.

2.6.2 Spin waves

In real magnetic systems, magnetisation precessions are also spatially inhomogeneous so

that the changes in magnetisation are functions of time and position. These collectively

excited spins with energy above the ground state can be described by a wave propagation

process. This is illustrated in Figs. 2.9 (c) and (d), side and top views, respectively. Such

spatially periodic and time-dependent magnetisation fluctuations at finite temperature

are commonly defined as ‘spin waves’ (or magnons). Figure. 2.9 (d) shows the devia-

tions between consecutive spins forming a wave with a characteristic wavelength λ. The

wavevector k can be obtained by k = 2π/λ and its direction is parallel to the wavelength

λ.
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Figure 2.9: Comparison between spin precession of uniform modes and spin waves. (a) Lateral
and (b) top-view spins precessing in phase with wavevector k = 0. (c) Side and (d) top views
of consecutive spins that precess out of phase to form a spin wave with characteristic finite
wavelength λ and wavevector k = 2π/λ.

The orientation of the spin wave wavevector with respect to the static magnetisation

determines the propagation feature and spatial profile of the excited spin wave [71]. Two

common forms of spin wave modes are considered: Damon-Eschbach and backward volume

[72]. Damon-Eshbach mode is a configuration where the direction of the wavevector of a

spin wave is perpendicular to the static magnetisation, ~k ⊥M , as shown in Fig. 2.10 (a).

Backward volume modes have the wavevector of spin waves that is aligned parallel to the

static magnetisation, ~k ‖M(see Fig. 2.10 (b)).

The physical boundary of the sample strongly affects properties of spin waves, es-

pecially, when the dimension of the sample decreases significantly. In small-dimension

magnetic elements, the propagation effects are usually too weak or even negligible [73].

Also, due to the low dimension, only certain spin-wave modes could be confined and

observed [74].
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Figure 2.10: (a) Schematic diagrams showing the configuration of the directions of the spin-
wave wavevector with respect to the static magnetisation of a magnetic object (the grey box)
in the (a) Damon-Eschbach and (b) backward volume configurations.
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3
Sample characterisation and simulation

methods

3.1 Introduction

In this chapter, the experimental and numerical techniques are discussed, which were

used as part of this thesis to study of the magnetisation dynamics of ASI. ASI specimen

preparation using electron beam lithography will be outlined in Section 3.2. In Section

3.4, the principles of an alternating gradient force magnetometer (AGFM), employed

to measure hysteresis loops of ASI systems, are discussed. The main purpose of this

thesis is to understand the field and thickness dependence of magnetisation dynamics in

square ASI using Brillouin light scattering (BLS) and ferromagnetic resonance (FMR)

techniques. As such, these experimental set-ups will be detailed in Sections 3.5 and

3.6, respectively. Transmission electron microscopy (TEM) is another useful means to

directly visualise the magnetisation behaviour of pinwheel-type ASI. The basic structure

39
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of TEM and its use in characterising the physical structures of sample are described in

Section 3.7.1. Then, the Lorentz TEM techniques, Fresnel imaging and differential phase

contrast (DPC) imaging, will be focused on in Section 3.7.2. These methods allow us to

visualise the evolution of magnetisation reversal of pinwheel ASI. In Section 3.8, a brief

introduction to micromagnetic simulation based on Mumax package will be given, and

the computation of the energy of system and magnetisation static and dynamic behaviour

induced by external magnetic fields will be explained.

3.2 Sample fabrication

The ASI specimens studied throughout this thesis were fabricated using electron beam

(E-beam) lithography. The pinwheel sample with the ‘asymmetric’ edge in Chapter 6

was patterned by Dr. Ciaran Ferguson at the University of Glasgow. Other ASI arrays,

such as square (Chapters 4 and 5) and pinwheel (the ‘symmetric’ boundary of Chapter 6)

ASI, were made by our collaborator Dr. Sophie Morley at the University of Leeds. The

details of the ASI specimen fabrication via E-beam lithography and metallisation will be

outlined here, which are summarised from the Ref. [1, 2].

First, the substrates, such as thermally oxidised silicon for the FMR and BLS experi-

ments and silicon nitride (Si3N4) for the TEM measurements, is cleaned. A thin film of

the electron sensitive resist (ZEP520A), is applied to the clean substrate by spin coating.

The resist is subsequently exposed to a high-voltage electron beam. This is used to ‘write’

a desired ASI pattern. The positive tone resist becomes more soluble in the exposed area

due to scission of the polymer chains by electrons. The next step is the development in

which the exposed resist is dissolved away into the solution [3]. A thin layer of permalloy

(Ni80Fe20) is then deposited using electron beam evaporation. After metallisation, the

remaining resist and excess metal are lifted off using a solvent. In the end, the remaining

result is an array of permalloy islands - the ASI system. However, the lift off in the

E-beam lithography will fail if the gap between nearest neighbouring islands is too small.

For instance, this separation is equal to or less than 20 nm in pinwheel ASI with the 170

nm × 470 nm nanomagnet.
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3.3 Characteristics of permalloy

Permalloy, also referred to as Ni80Fe20, is commonly used in magnetic recording heads due

to its low coercivity, high relative permeability and small magnetocrystolline anisotropy

[4,5]. The low coercivity means that the magnetic state can be easlily varied in the pres-

ence of a small field and the high permeability can obtain high magnetisation at the small

applied field. It is well known that microstructures of the magnetic materials are respon-

sible for their magnetic properties. Most of permalloy samples have polycrystalline struc-

ture, resulting in the weak magnetocrystalline anisotropy. The weak magnetocrystalline

anisotropy is ideally suited for the study of ASI because the magnetic shape anisotropy

can be dominant to form single domain in each nanomagnet. S. Lamrani shows that

the grains size and lattice constant of the polycrystalline permalloy that is deposited on

SiNWs using electrochemical process are 14 nm and 3.53897 Å ± 0.0002 Å [6]. These

magnetic and microstructual charateristics of permalloy attract interest to be ultilised as

ASI, which is investigated for potential information storages.

3.4 Alternating gradient force magnetometer

There are a number of laboratory magnetometers which are capable of measuring the mag-

netisation of material, including superconducting quantum interference devices (SQUID);

Faraday force magnetometries; magneto-optic Kerr effect optical magnetometries and al-

ternating gradient force magnetometies (AGFM). AGFM is one of the most sensitive

instruments to detect magnetic moment, with resolution up to 10−5 A·m2 [7–9]. Thus,

this technique is very suitable as a probe of the magnetic moments of ASI arrays. For

example, each nanomagnet of the square ASI in Chapter 4 and 5 has the net moment on

the order of 10−2 A·m2.

An AGFM is ultimately based on a force measurement. Figure 3.1 displays the

schematic diagram of a vertical AGFM. A sample is mounted on the end of a quartz

fiber that is connected to a piezoelectric bimorph. The sample is magnetised by a DC

field from the magnets. Simultaneously, it experiences a vertical alternating gradient

force which is exerted due to alternating field gradients. The alternating field gradient is

created by two gradient circular coils. The alternating currents (AC) flow in the opposite

directions in this pair of coil so that the AC magnetic fields generated on their mirror
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Figure 3.1: Schematic diagram of a vertical AGFM setup designed by P.J. Flanders [10].
Copyright (1990) by the AIP Publishing.

plane, where the sample is placed in Fig. 3.1, can be cancelled, but the field gradient still

exists. The AC gradient force can be given by

~F =∇(~m ·~h), (3.1)

where m is the magnetic moment, and ~h is the AC magnetic field vector, the magnitude

of which is h0 sin(wt). Alternatively, the direction of field gradient can be controlled by

varying the positions of pairs of coils, such that the coils within a pair have opposite

currents [8, 11]. The gradient force along z direction Fz is written as,

Fz =mz
dhz
dz

. (3.2)

This alternating gradient force leads to a displacement of the quartz fibre. This de-

flection is measured by the output voltage of a piezoelectric bimorph. In order to amplify

the deflected signal, the measurement is performed at around the mechanical resonance

of this cantilever, typically, operation frequency being 100-1000Hz [8].

All AGFM measurements in Chapters 4 and 5 were carried out by Dr. Francesca

Casoli at the IMEM-CNR, Italy. There, a magnetometer is able to apply a magnetic field

up to 2T. For our purposes, the DC applied field was swept from -0.4 T to +0.4 T.
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3.5 Brillouin Light Scattering

Brillouin light scattering (BLS) is an effective technique to probe spin waves in a mag-

netic solid. In particular, it allows for measurements of spin-wave frequencies [12–15]

and dispersion relations [16–18]. A general BLS set-up is able to resolve the spin-wave

frequencies from 1 GHz to 150 GHz. The behaviour of spin waves in square ASI array in

this thesis was investigated via these two aspects, which have been performed by Gianluca

Gubbiotti at CNISM, Italy, and will be discussed in Chapters 4 and 5. In addition, BLS

is able to resolve spin-wave modes, including those which are not spatially uniform and

are often impossible to be detected by FMR.

Figure 3.2: Two categories of Brillouin inelastic-scattering interactions in a nanomagnet: (a)
Stokes process in which a magnon is created and (b) anti-Stokes case in which a magnon is
annihilated. The green-waveform arrow indicates the travelling direction of the incident (or
scattered) light and the red arrow represents the transferred magnon during inelastic process.

The mechanism by which spin waves (also referred as ‘magnons’) are detected in BLS

relies on the magneto-optical interaction. As introduced in Section 2.6.2, a magnon is re-

garded as a wave-like oscillation of magnetisation with certain periodicity. The dielectric

inhomogeneity arising from the discrepancy of wave velocity between magnons and pho-

tons can be regarded as a quasi-static lattice so that the incident light can be scattered.

Typically, the velocity of magnon waves range from 103 ms−1 to 104 ms−1 which is much

less than that of light 3×108 ms−1.

In general, there are two light scattering processes: elastic and inelastic scatterings.

An example of elastic scattering is Rayleigh scattering [19]. In elastic scattering, the

energy and the momentum of the incident and the scattered photons are identical. By

contrast, Raman [20] and Brillouin scattering are examples of inelastic processes. In

these cases, the energy and momentum conversion occurs between photon and magnon.



44 3.5. Brillouin Light Scattering

Brillouin scattering is the basis of BLS. This involves Stokes and anti-Stokes scattering

processes. Figure 3.2 (a) shows energy loss of the scattered light, h̄ωi− h̄ωm, so as to

create a magnon (+h̄ωm) in the Stokes case, where ωi, ωs and ωm are frequency of

incident photon, scattering photon and magnon. On the contrary, anti-Stokes scattering

involves the annihilation of a magnon, −h̄ωm, so that the energy is transferred to the

scattered photon. These two processes are depicted in Fig. 3.2. Energy and momentum

conservation in the Stokes and the anti-Stokes processes can be given by

±h̄ωm = h̄ωi− h̄ωs (3.3)

±h̄qm = h̄ki− h̄ks, (3.4)

where ki, ks and qm are the wavevector of incident light, scattering light and magnon.

Thus, the change in frequency of the scattered photon is a direct consequence of the

interaction between photon and spin-wave oscillation in a nanomagnet. This interaction

manifests itself through a variation in transverse light polarisation dependent on the

magnitude and the orientation of magnetisation due to the Lorentz force. By contrast,

the detected signal will be weak if the light wavevector is collinear to the direction of

magnetisation. In most cases, the wave vector of light is always set perpendicular to the

magnetisation, referred to as Damon-Eshbach configuration mentioned in Section 2.6.2.

In the back-scattering geometry, where a lens in Fig. 3.2 acts to focus incident beam

and collect the back-scattered beam by magnetic sample, the wavevector of spin wave,

which is related to the wavevector component of light in the plane of the specimen q‖, is

given by

q‖ = 2kisin(θi), (3.5)

where θi is the incident angle of incoming light with respect to the specimen. Eq. 3.5

shows that the wavevector of incoming light can be controlled by varying the incident

angle with respect to the specimen surface. In this manner, the spin-wave dispersion can

be detected. This dispersion relation allows us to detect the inter-island interaction. For

example, in this study (see Section 4.4.1), the almost flat dispersion curves, in which there

are no significant changes in spin-wave frequencies as a function of the wavevector of light,
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suggest that standing spin-wave modes occurs and are confined to the nanoislands rather

than collective excitations across many magnetic islands.

Figure 3.3: Schematic diagram of a BLS experimental setup [21], including back-scattering
geometry operation and tandem multipass Fabry Perot interferometer (withãĂĂthe kind per-
missions of Società Italiana di Fisica and authors).

Figure 3.3 displays a conventional BLS apparatus, comprising a solid state laser and

a tandem multipass Fabry-Perot interferometer (FPI). A 200 mW monochromatic light

beam of wavelength 532 nm from the solid state laser is focused on the sample surface. In

this case, the illuminating spot size of the laser beam was 30 µm. This means that several

hundred islands are illuminated and so the information in the BLS spectra is an average

over a large number of magnetic elements [21]. The applied magnetic field, H, is always

set perpendicular to wavevector of the light. The backscattering photon is collected and

channelled into the FPI to be analysed.

FPI is the core part of the BLS setup. It allows discrimination between the extremely

weak inelastic light signal and much stronger elastic component. A tandem multipass

FPI [22, 23] is used in order to reduce the stray light and increase the resolution in

comparison with a single FPI unit. The tandem multipass FPI used in this work had 6

passes, as shown in the box of Fig. 3.3. The light in the FPI undergoes multiple reflections

and then interferes constructively or destructively with a reference beam. This reference
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beam arises from scattered light at the beam splitter directed towards interferometer

though a mechanical shutter. This mechanical shutter is a double shutter, which acts as

an entrance of the reference beam and the scattered light but also as a screening of the

central elastic light. The reflected intensity achieves a maximum value when the reference

and scattered beams interfere constructively.

Figure 3.4: BLS spectrum of the square ASI sample at 45◦ magnetic field of 0.4 T with respect
to the square lattices, exhibiting the central reference peak and the frequency shifts of the Stokes
and the Anti-Stokes peaks. Each nanomagnet has the 240 nm × 80 nm in-plane dimension and
the 10 nm thickness.

Figure 3.4 shows a typical result of the 10 nm thick square ASI specimen at magnetic

field of 0.4 T. The central signal at the zero position is the peak of the reference beam.

The Stokes peaks have the negative frequency shift with respect to the reference peak.

On the contrary, the frequency of Anti-Stokes peaks shift towards the positive direction.

3.6 Ferromagnetic resonance

Ferromagnetic resonance (FMR) refers to uniform spin precessional motion, sometimes

called the ‘Kittel mode’, in a magnetic solid. The basic principle of ferromagnetic reso-

nance has been introduced in Section 2.6.1. Measurements of FMR in this dissertation

were performed using a vector network analyser (VNA) and a broadband coplanar waveg-

uide. FMR studies of square ASI and their dependence on angle and direction of magnetic

field with respect to the square ASI lattices are discussed in Section 5.3.
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A diagram of the VNA-FMR setup is shown in Fig. 3.5 (a). It is composed of a

two-port VAN, two coaxial cables, a power source, two inductive copper coils, a coplanar

waveguide and a PC. The VNA is connected to the two-port coplanar waveguide via

coaxial cables. The waveguide is placed between two copper coils. The copper coils are

electromagnets that produce direct current (DC) fields when current is supplied. This DC

field, H, is used to magnetise the specimen. On the waveguide, the sample surface has to

be touched with the signal line of waveguide, as illustrated in Fig. 3.5 (b). In this way,

an oscillating field hrf can penetrate the sample layer (see Fig. 3.5 (c)). All equipment

are controlled by an in-house Labview programs.

A two-port VNA is capable of generating and measuring high-frequency microwave

signals. In general, this signal is a complex quantity including magnitude and phase. The

VNA apparatus of FMR experiment is a Rohde & Schwarz ZNA40, with a frequency range

from 0.1 MHz to 40 GHz. An alternating microwave with a GHz frequency is applied from

Port 1 of the VNA to the central conductor of the waveguide, which is enclosed by two-side

ground planes. This centre signal line corresponds to the inner conductor of the coaxial

cable and the ground planes are related to the outer conductor. The waveguide has a

50 Ω characteristic impedance (Z0) which matches the coaxial cable. The alternating

microwave passing through the signal line is measured via Port 2. This oscillating current

leads to a high-frequency electromagnetic field hrf in the plane of sample, as shown in

Fig. 3.5 (c). Since the conductor has a rectangular shape, the radiofrequency magnetic

field it generates is inhomogeneous, i.e. it forms an elliptic shape [24]. The measured

specimen is biased using the static DC H produced by the Kepco power supply with the

limits of ± 10 A (± 100 V), and then subject to alternating fields, hrf . The directions of

static and oscillating fields are perpendicular so that the driving field hrf interacts with

the dynamic magnetisation of the sample as biased by the static field. A Gauss meter

(not shown in the diagram) is used to probe the strength of magnetic field in the vicinity

of specimen.

The concept of a scattering parameter was proposed as a standard quantity in mi-

crowave measurement. The scattering parameter is defined to be a coefficient of reflection

or transmission signals. Most importantly, this quantity is associated with the variation

in characteristic impedance of the signal which passes through a magnetic specimen. The

equivalent circuit is a two-wire transmission line, as depicted in Fig. 3.6. The parameter,
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Figure 3.5: (a) A schematic diagram of the whole VNA-FMR apparatuses; (b) A zoom-in top
view of configuration combined a coplanar waveguide and a specimen, which is labelled by a
dashed box in (a). (c) The oscillating current from VNA flows though the signal part along x
direction of (a) and create a high-frequency driven field (hrf ). The surface of specimen gently
touch the waveguide so as to ensure the strength of hrf acting on sample is sufficient.

ai, refers to the incoming microwave power while bi is the reflected or transmitted mi-

crowave power, where ‘i’ represents the port number of the VNA. The magnitude of input

and output microwave power in terms of total voltage Vi, current Ii and characteristic

impedance Z0i are given by [25]

ai = 1
2( Vi√

Z0i
+ Ii

√
Z0i) (3.6)

bi = 1
2( Vi√

Z0i
− Ii

√
Z0i), (3.7)

where ai is the input signal (a1, a2) holds the power and bi is the output power (b1, b2).

The relationship between them can be described in terms of scattering parameter, which

follows

bi = Sai, (3.8)

where S is the scattering matrix. Figure 3.6 shows that there are two types of measurable

quantities for a two-port waveguide: reflected and transmitted microwave signal. If a
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signal is emitted from the Port 1 (Port 2) and reflected via the Port 1 (Port 2), the

reflecting coefficient is referred to as ‘S11’ (‘S22’). Another type of scattering is the

coefficient of transmission. In this case, the input microwave signal from Port 1 (Port

2) transmits and outputs through Port 2 (Port 1). This coefficient is labelled by ‘S12’

(‘S21’). It can be summarised this using a matrix:

b1
b2

 =

S11,S12

S21,S22


a1

a2

 (3.9)

As has been previously stated, the VNA is utilised to measure magnitude and phase

of a given complex S parameter. In order to calibrate the extra mode that may be

generated from the port and the connector, a full-port calibration is essential to correct

any variations in magnitude and phase arising from the VNA ports and connecting cables.

The most common calibration method is called SOLT (short-open-load-thru). The short

circuit, open circuit and load circuit are connected in turn to each port of the VNA so that

the signal reflection is calibrated. The ‘thru’ (through) circuit calibrates the transmission

signal via connecting Port 1 and Port 2 together [26]. In our experiment, the waveguide

calibration kit for the VNA is one manufactured by R&S [25].

Figure 3.6: The diagram illustrating the definition of scattering parameters S for a two-
port waveguide. a1 and a2 are incoming microwaves signal and b1 and b2 are measured signal.
Consequently, four types of scattering parameters are available, S11, S12, S21 and S22. V and I
represent the voltage and current at each port.

In addition, it is necessary to consider external factors and their effects on FMR

measurements. These include environmental noise and mechanical vibration etc. FMR

has been found to be slightly time dependent in our measurement: that is, the position

and FWHM of the resonance peaks vary with time [25]. In this study, the transmission

scattering parameter S21 is measured, so as to illustrate the magnetisation dynamics

induced by an external field. In order to increase the signal-to-noise ratio of this S signal,

a reference scattering parameter S0
21 is also obtained at a fixed magnetic field. This fixed

field has to be higher than the maximum of the external field applied. The quantity S0
21
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is acquired at every experimental data point and is applied to normalise the measured

parameter S21, S21/S0
21. This normalised signal is able to reduce the possible influence

of time-dependent source, i.e. from VNA instability or from stress between waveguide

and sample. Furthermore, a vibration isolation system, Stabilizer Technology, is used to

minimise the vibration caused by environmental noises in the lab.

Two categories of measurements have been performed to examine the ferromagnetic

resonance of square ASI systems in this dissertation, namely, their dependences on mag-

netic field strength and field angle. Firstly, the strength of a external DC field was created

by supplying to the copper coils. The maximum magnetic field strength was ±200 mT

which corresponds to a maximum of ±2 A from the power source. This current limit is

determined by a combination of 40 Ω coil sets and the 100 V limit of the power supply.

Secondly, the field angle with respect to the square lattice was adjustable using a rota-

tional mount with angle indicator. The backside of the ASI specimen was glued to this

angle adjustor and the specimen surface was gently touched to the signal line of waveg-

uide. Given Fig. 3.7 (a) shows that the FMR absorption peak appears close to 16.5 GHz

with 0◦ magnetic field with the amplitude of 150 mT upon the square ASI. Figure 3.7 (a)

is a contour plot showing the evolution of the frequency of the FMR resonance peak as a

function of applied magnetic field. More relevant discussion about them will be detailed

in Section 5.3.

Figure 3.7: (a) FMR spectrum of the square ASI at 150 mT magnetic field of 0◦ with respect
to the square ASI lattices. The island size is 240 × 80 × 30 nm3. (b ) Contour plot of the FMR
results displaying the frequency of resonance as a function of the magnetic field sweeping from
150 mT to -150 mT.
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3.7 Transmission electron microscopy

Transmission electron microscopy (TEM) is widely utilised to characterise not only the

physical microstructures [27–31] and chemical properties [32–35] of materials, but also

their magnetic behaviour [36–44]. In this section, the operation of TEM instruments is

described and how structural imaging processes are achieved with a particular focus on

magnetic imaging is highlighted.

Optical transmission microscopy was first used to magnify images of a small object

using visible light. However, the spatial resolution of this microscope is indeed fundamen-

tally limited by the finite wavelength of the light probe. This means there is a limit to

the resolution of the image. For example, visible light with a wavelength of 500 nm can

only image the micro-structural details of 200 nm [45]. To overcome this restriction, by

means of decreasing wavelength, a better spatial resolution on principle could be achieved.

In 1925, Louis De Brogilie postulated that matter particles could behave as waves. He

put forward a theory of electron wavelength in terms of Plank constant h and electron

momentum p. This well-known de Broglie wavelength is given by

λ= h/p. (3.10)

In 1932, Knoll and Ruska built the first electron microscope based on this idea. The

relationship between wavelength, λ, of an electron and the accelerating voltage V in an

microscope is given by

λ= h√
2m0eV

, (3.11)

where m0 is the rest mass of an electron and eV is the kinetic energy of the electron.

In most common TEM operations, the accelerating voltage is often greater than 100 kV.

The electron is then moving at relativistic speeds and there is a correction to Eq. 3.11.

In particular, it is found that

λ= h√
2m0eV (1 + eV

2m0c2 )
, (3.12)

where c = 3× 108m/s is the speed of light. The accelerating voltage applied in this

work was 200 kV, the relativistic wavelength is found to be 2.51 pm using Eq. 3.12, for
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comparison, which is smaller than 2.73 pm non-relativistic wavelength [46]. The electrons

as a radiation source thus are sensitive to smaller length scales. JEOL ARM 200cF TEM

with the aberration correction at the University of Glasgow is able to achieve sub-atomic

spatial resolution, down to 0.078 nm .

3.7.1 Imaging in TEM

TEM has been proved to be a versatile tool in a variety of fields. However, the funda-

mentals operation of all commercial TEMs remains the same: magnify and image sample

down to nanoscale or smaller. Commonly, there are two main TEM modes: conventional

TEM (CTEM) and scanning TEM (STEM). In CTEM mode a fixed parallel electron

beam illuminates a broad region of the specimen, whereas in STEM mode a convergent

beam illuminates a small area and scans across the sample. Fresnel imaging is the pri-

mary characterisation method in this thesis for imaging magnetic structure (see Chapter

6). This is performed in CTEM. As a result, the discussion will be focused on image

formation in CTEM, with a brief introduction to STEM in Section 3.7.2.3.

3.7.1.1 TEM instrumentation

Figure 3.8 shows the basic setup of a TEM in a standard CTEM mode. The fundamental

structure of a TEM consists of five parts: the electron source system, the condenser

system, the objective systems, the projector system and the detector. The standard

imaging process is as follows: electrons are emitted from an electron gun and can be

accelerated by anodes. The beams are produced to illuminate the specimen with parallel

rays via the condensed lens. The transmitted and scattered electron beams from the

specimen are imaged by the objective lens to form a real-space magnified image using the

projector lens on a viewing screen or detector.

The electron gun is a source of electrons and commonly installed at the top of the

TEM. Here two types of gun are discussed: thermionic emission gun and field-emission

gun (FEG). A thermionic gun is able to produce electrons under the application of heat.

At high temperatures, electrons gain sufficient energy to overcome the work function of

the filament and are eventually emitted. Tungsten (W) or lanthanum hexaboride (LaB6)

crystals are usually used as a cathode in thermionic guns. A Welnet cylinder with a

small negative bias (approximately a few kV) converges these emanating electrons to a
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point, in essence acting as an electrostatic lens. This convergent point of electron beam

is termed as the gun cross-over and occurs between Wehnelt and an anode. The anode

is used to accelerate electrons imparting kinetic energy. The FEI Tecnai T20 TEM at

the University of Glasgow is equipped with either tungsten or LaB6 filament. Another

category of emission source is FEG. There are two types of FEG, cold FEG and the

Schottky FEG. The cold FEG works at ambient temperatures in ultra-high vacuum with

a smaller source size, while Schottky FEG is operated at elevated temperate with better

stability of the beam. A cold FEG is employed in the JEOL ARM 200cF TEM at the

University of Glasgow. A FEG makes use of an extremely fine tungsten tip as the cathode.

This tip has a radius on the order of 100 nm [47]. One significant difference of FEG in

comparison with a thermionic gun is that two sets of anodes are used, as shown in Fig.

3.8. The first anode has a positive bias field and creates a strong electron field gradient at

tip which forces electron out of the tip. The second anode acts to accelerate the electrons

to a desired speed. The combination of an extraction and an accelerating anodes also

behaves as an electrostatic lens to converge electrons to the gun crossover.

Each type of gun has both advantages and disadvantages. The LaB6 filament as the

thermionic gun has tremendous advantages in comparison with tungsten. Namely, it has

a better brightness due to higher current density, a better coherency due to smaller source

size and longer lifetime. Regarding the cold FEG applied in this study, it possesses much

higher brightness, much better spatial coherency (small beam size) and longer lifespan

(as much as 50 times) compared to thermionic gun. However, this comes at expense of

the stability of the gun emission current .

The most crucial units in a TEM are electron lenses and apertures. The combination

of a series of lenses and apertures acts to converge, diverge and screen the beam. The

electron lenses used in TEMs are electromagnetic lenses which consist of two polepieces

and copper coils around a soft-iron core. When current flows through the copper wires, a

magnetic field is created in the bore. This magnetic field is inhomogeneous along the long

axis of the lens that is perpendicular to the optic axis of TEM (see Fig. 3.8), whereas it is

axially symmetrical. An enormous advantage of such a lens is that, unlike the fixed glass

lens in a standard optical microscope, the strength of magnetic field can be controlled by

varying current. Apertures are used to remove the stray rays far from optic axis. These

stray rays reduce resolution by spherical aberration. A smaller aperture provides a better
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Figure 3.8: A simplified ray diagram of the imaging formation in a CTEM mode, where the
central dash line is the optic axis. The TEM is composed of gun column, condensed lens,
objective lens and projectors lens. The lens and electron beam path are not scaled.
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resolution, but weakens the intensity.

Inherent imperfections in the manufacturing of lenses and apertures limit the reso-

lution of TEMs. The three main factors are spherical aberration, chromatic aberration

and astigmatism. Spherical aberration is an effect caused by the rays further from the

optic axis being focused more strongly than those close to the optic axis. Thus, it refers

to a breakdown in the paraxial approximation. This leads to a converging disk instead

of a point in the Gaussian image plane, consequently, image resolution is degraded. The

radius of this disk rs is given by

rs = Csβ
3, (3.13)

where Cs is the spherical aberration coefficient of the lens. β is the maximum angle of

electron collection by an aperture. The coefficients of the spherical aberration in the

T20 and ARM TEMs are 1.2 mm and 0.5 mm, respectively. To avoid this problem, a

corrector with quadrupoles, hexapoles [48, 49] or octapoles [50] was proposed to correct

the spherically aberrated disk of the objective lens. The aberration corrector in our ARM

TEM with a combination of these three types correctors allows for the achievement of a

better resolution of rs, down to 0.075 nm.

Another intrinsic aberration, chromatic aberration, is related to the wavelength of the

electrons. This effect results from electrons with a variety of wavelengths so that the

probe is non-monochromatic. The beam cannot be converged to a point. A source which

generates monochromatic electrons plays a vital point in eliminating this aberration, such

as the use of a cold FEG in JEOL ARM TEM.

Furthermore, the third aberration from a lens is astigmatism. This arises from an

inhomogeneous magnetic field. An astigmator, therefore, is employed to minimise this

affect by applying an opposite field to counteract the asymmetry. In order to obtain

better resolution, the astigmatism of condensed lens (CL) and objective lens (OL) always

needed to be compensated during the TEM alignment via the astigmators which are

installed below the lens in our T20 and ARM TEMs.

Now three fundamental components of a TEM are described: illumination system,

objective lens and imaging system. The illumination system is composed of the electron

gun and the condenser lenses. In this system, electrons are generated and shaped to

illuminate the specimen in a parallel fashion on the specimen, as shown in Fig. 3.8.
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Condenser system is composed of C1 and C2 lenses. The C1 lens demagnifies the rays

to a point and the C2 lens allows this crossover beam to travel parallel to the specimen.

The strength of the C1 lens contributes to the spot size of beam in the plane of specimen,

while the C2 lens controls the beam brightness.

The OL, the heart of the TEM, consists of an upper OL and a lower OL. The upper

OL in practical use works as a third condenser lens, providing a more parallel beam, as it

is impossible for the C2 lens to generate perfectly parallel rays. The lower OL behaves as

an imaging lens. In our TEM, the specimen is inserted between the upper and the lower

OLs rather than placed above OLs as in some other TEMs. The strength of the magnetic

field from the OLs can be on higher than 2 T. In Lorentz TEM imaging, these OLs are

switched off to create a low field environment for the magnetic sample. In this case, a

mini OL takes the place of the function of the lower OL, which is to converge electron

beam from the object plane.

Resolution is the key function of a microscope. The role of the image system is to

magnify and image the nanostructural details of the specimen. The image system includes

the intermediate lens, the projector lens and the view screen/detector. The intermediate

and projector lens are mainly used to magnify the specimen structure and project the

image on to the fluorescent screen or detector. The fluorescent screen at the bottom of

the TEM is coated by a layer of ZnS. This layer emits visible light when an electron

strikes it. The image can be recorded by various detectors, charged-coupled device (CCD,

for bright and dark field images and diffraction pattern) in CTEM or spectrometer (for

electron energy loss spectroscopy (EELS)) in STEM. A CCD was the main detector used

in this thesis. It is sensitive to electrons that are converted to photons through the

scintillation and then an image in terms of digital signal at each pixel can be generated,

readout and amplified in this CCD chip.

For the purpose of analysing the internal nanostructure, a TEM specimen is required

to be electron-transparent. For example, specimen thickness should not exceed 100 nm for

a 200 kV electron beam. There are two approaches to fabricate the thin TEM specimens.

The TEM substrate of ASI in Chapter 6 was a silicon nitride (Si3N4) membrane (see

its schematics in Fig. 3.9), whose TEM window has only a 30 nm thickness but is still

robust [2]. The nanomagnets were patterned on top of this membrane. Additionally, a

focused ion beam (FIB) can be used to mill sections of a bulky material to be a foil.
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This allows electrons to transmit the cross section of a specimen in order to observe its

microstructure in TEM.

Figure 3.9: Schematics of the (a) front, (b) back and (c) cross-section sides of the TEM silicon
nitride membrane. This membrane is composed of the central silicon nitride membrane (TEM
window is around 30 nm thick) in the silicon supporting frame. The black squares on the
right-bottom corner are the markers for E-beam lithography.

3.7.1.2 Characterising structure

Two common operations in CTEM provide information on the nanostructure of a speci-

men: diffraction mode and image mode. The diffraction pattern (DP) provides atomic or

crystalline details of the sample. Image mode including bright field (BF) and dark field

(DF) images gives direct visualisation of the morphology of a sample, i.e. grain size, grain

boundary or defects.

Figure 3.10: Simplified diagram of the imaging formation of (a) BF, (b) DP and (c) off-axis
DF images. Their formations depend on the selection of direct beam or scattering beam by the
objective aperture at the BFP.

Assume that three parallel plane waves are incident onto a crystal plane within the

specimen at some angle, θ, and they are reflected by this plane. DP is formed when

these scattered plane waves constructively interfere. This interference satisfies the Bragg’s

condition,
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nλ= 2dsinθ, (3.14)

where n is an integer; λ is the wavelength of the electrons; d is the distance between two

crystal planes. Once the DP forms in the back focal plane (BFP), as schematically shown

in Fig. 3.10, the intermediate projector lens can magnify and project reciprocal lattice

points onto a view screen. An example of DP from silver nanoparticles is displayed in

Fig. 3.11 (b). A selected-area aperture (see Fig. 3.8) is inserted into the image plane of

the objective lens. It acts as a virtual aperture above the specimen to select a desired

region of the specimen. In this way, the desired region only contributes to the DP.

Figure 3.11: Examples of a (a) BF image and (b) corresponding DPs from silver nanoparticles
deposited on a carbon grid, which was obtained on an FEI Tecnai T20. (c) A DF image is formed
from the scattered spot marked by the yellow circle (Courtesy of Jack Brennan at University of
Glasgow).

Figure 3.10 illustrates that the DPs created at the BFP contain a bright central spot

(black rays) and some scattered spots (blue rays). These two categories of DPs can be

independently selected so as to form two basic outputs in CTEM modes. The image

formed by the central direct beam is known as BF image (see Fig. 3.10 (a)). An example

of BF image of silver nanoparticles is shown in Fig. 3.11 (a). The image arising from

scattered electrons is termed a DF image (see Fig. 3.10 (c)). A DF image of the silver

nanoparticles, constructed from the diffraction spot marked by a yellow circle of Fig.

3.11 (b), is displayed in Fig. 3.11 (c). Selection of a specific spot is achieved via the

OL aperture in the BFP. To summarise, a BF image is produced using just the direct

beam, while an off-axis DF image is formed using certain diffraction spots. DF images are

useful to understand the microstrucuture of materials with variations in thickness, mass

and crystal orientation, since a greater scattering angle can be obtain over a thicker area

or because of a higher atomic number. However, electrons further away from the optic
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axis suffer from the spherical aberration and the astigmatism. To avoid this distortion,

the scattered electron should emerge near to the optic axis. Thus, double-deflection coils

above the specimen are applied to tilt the incident beam so that the scattered electrons

now travel along the optic axis. This operation is called the centre DF imaging.

3.7.2 Magnetic imaging in TEM

In addition to characterising structure, TEMs can be exploited to extract information

on magnetic behaviours of nano-scale materials [36, 41, 51, 52]. This TEM operation of

magnetic imaging is known as Lorentz microscopy. Three of the most widely-utilised ap-

proaches in Lorentz microscopy are Fresnel imaging [39,53,54], DPC [55–57] and electron

holography [58,59].

3.7.2.1 Lorentz microscopy

Lorentz TEM measurements were carried out to image magnetic behaviour of ASI using

the FEI Tecnai T20 and the JEOL ARM 200cF TEMs at the University of Glasgow.

The strength of magnetic field created by OLs in an ordinary TEM is on the order of 2

T and the field direction is perpendicular to the plane of specimen (see Fig. 3.17 (b)).

Such a strong field not only destroys the desired magnetisation state of specimen but

also suppresses any magnetic contrasts arising from the deflection in trajectory of the

electrons, as illustrated by deflected rays of Fig. 3.12 (a). The upper and lower OLs thus

must be switched off to produce a low-field environment. Yet there still exists a remnant

field of about 100-150 Oe in the neighbourhood of the specimen. By applying an opposite

current (deguassing current) to the OL using a Magnetic Field Neutralizer device, this

residual stray field can be compensated. Consequently, magnetic fields of less than 1 Oe

near to the specimen can be achieved. Under this low-field condition, two additional mini

OLs act in place of the main OLs, and are thus responsible for imaging [52]. The JEOL

ARM 200cF instrument provides extremely high spatial resolution of about 1 nm with a

Cs corrector in the STEM mode [60].

Lorentz microscopy makes use of the interaction between the motion of electrons and

the magnetic induction they encounter. Assume electrons travelling along the z direction

though a thin magnetic film in Fig. 3.12 (a). They experience the deflections produced

by Lorentz force arising from the magnetic induction B. The expression of Lorentz force
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F acting on a electron is described by

~F =−e(~v× ~B). (3.15)

where e is the magnitude of electron charge and ~v represents the velocity vector of electron.

Generally, TEM image contrast is generated when the electron beams are scattered

by specimens. Both amplitude and phase of the scattered electron can be varied and

contribute to the image contrast. In particular, DP, BF and DF images are formed

by variation of the electron wavefunction in amplitude, while the formation of Lorentz

images is associated with the phase. There are two approaches to understanding the

beam deflection due to the magnetic induction of samples. They rely on the classical and

quantum perspectives.

In the classical regime, the deflection angle, β, on passing through a uniform film of

thickness, t, can be described approximately by [36]

β = eBsλt

h
, (3.16)

where e is the electron charge, Bs = µ0Ms is the saturation induction, λ is the electron

wavelength, and h is Planck’s constant. For example, in our experiment, the deflection

angle is on the order of 6.5 µrad for a 10 nm thick permalloy nanomagnet whilst the

electron energy is 200 kV. This deflection angle is much smaller than that arising from

Bragg diffraction typically, about 10−2 mrad [61].

The above classical description provides a qualitative explanation about phenomenon

of the Lorentz force, but it cannot produce the accurate magnetic induction. Therefore, a

quantum mechanical description is proposed as it is related to interference phenomenon.

This gives a quantitative insight into magnetic induction. The electron wave has a phase

shift when it passes through the specimen because of the Aharonov-Bohm effect [62].

This phase shift is produced between two electron beams. These two beams start from

the same point and end to same point through different paths. The phase shift is then

given by [62]

φm = e

h̄

∮ +∞

−∞
A ·dl, (3.17)

where A is the magnetic vector potential and l is the integral path. Indeed
∮
Aḋl describes
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the magnetic flux through the cross-section area of magnet, as presented in Fig. 3.12 (b).

Thus, based on the Stokes theorem Eq. 3.17 also can be written as

φm = e

h̄

∫
B ·dS, (3.18)

where S is the surface area (the xz plane) of the sample which the magnetic induction

B is perpendicular to. For the sake of simplicity, the magnetic induction is spatially

homogeneous, B = Bs, and the thickness t is constant (along z direction). As a result,

the phase shift φm becomes

φm = e

h̄
t
∫
B ·dx= eBstx

h̄
. (3.19)

Compared with Eq. 3.16, the quantitative description of the Eq. 3.19 differential

phase ∇φm is similar to the expression of the classical deflection angle β. The relationship

between the phase difference and the deflected angle is found to be

φm = 2πβx
λ

. (3.20)

If calculated the differential phase difference of Eq. 3.20 along the x axis, it follows

∇φm = 2πβ
λ
. (3.21)

Eq. 3.21 reveals that the differential phase difference is proportional to the deflected

angle β which is associated to the magnetic induction. Therefore, the quantum mechanical

expression allows for the image simulation and calculation. Figure 3.12 (b) presents the

profiles of electrostatic phase (φe), phase difference (φm), differential phase difference

(∇φm) (for differential phase contrast) and Laplacian phase difference (∇2φm). Intensity

of the Fresnel image, which will be introduced later, makes use of the Laplacian phase

difference (∇2φm) to characterise the magnetic information.

3.7.2.2 Fresnel Imaging

Fresnel imaging is a rapid way to observe the magnetic domain wall by means of changing

the imaging lens with certain defocus length 4f . This imaging approach is conducted

in CTEM mode. The schematic diagrams of this image formation are illustrated in Fig.
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Figure 3.12: (a) Schematic diagram of the Fresnel contrast formation from a single-domain
nanomagnet. The bright and dark magnetic contrast are created along the two sides of one
island that allows us to identify direction of the magnetisation. (b) The top diagram shows the
vector potential surround the nanomagnet. The bottom diagram is the theoretical profile of the
electromagnetic phase (φe), magnetostatic phase shift (φm), differential magnetic phase shift
(∇φm) and Laplacian magnetic phase shift (∇2φm) across the the nanomagnet along x axis.

3.12 (a) and Fig. 3.13. The principle of Fresnel imaging takes advantage of the deflection

of electrons due to the magnetic induction. This results in converging/diverging beams

interference and forms the brighter/darker contrast on the grey region as the indication

of the domain wall. This uniform grey area represents where the domain is. Increasing

the 4f generates an increment in the contrast. Assuming the 4f is low, the imaging

intensity (I) of the Fresnel images is linearly associated to the Laplacian of magnetic

phase shift [63]:

I = 1−4fλ2π ∇
2φm. (3.22)

In practice, the 4f , however, must be efficiently large to form the magnetic contrast,

resulting in the intensity becoming non-linear with the Laplacian of magnetic phase dif-

ference [36]. Thus, the quantitative analysis of the magnetic induction based on the Fres-

nel images is not rigorous. An alternative approach of Lorentz TEM, DPC (see Section
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Figure 3.13: Schematic illustration of the Fresnel contrast imaging to reveal the position of
two 180◦ domain walls. White or dark contrast in the image arises from the deflection of electron
beam because of the Lorentz force and β is the deflection angle.

3.7.2.3), is capable of the quantitative interpretation.

Increasing defocus nevertheless comes at the expense of image resolution. A suitable

defocus should be selected so as to image the magnetisation whilst retaining the structural

information of the specimen. The resolution of the Fresnel image is able to achieve about

a few nanometers [64]. This imaging mode in principle is implemented in a free-field

environment. However, for cases, where a small field is required to act as an external

field to magnetise the specimen, a small current therefore can be applied to the OLs.

Combined with tilting the sample, this allows for the introduction of the in-plane magnetic

field (detailed in Section 3.7.2.4). Most importantly, Fresnel phase contrast is taken at

an under-focus or over-focus position (that is at a defocus distance 4f above or below

the image plane). Empirical analysis of our Lorentz TEM measurements suggests that

the formation of image contrasts of the single domain of a nanomagnet at underfocus is

more noticeable than at overfocus.

As has been introduced in Chapter 1.2, each magnetic island of ASI is assumed to

be a single domain. Therefore, the intensity contrast generated by the moment of each

island is formed at the two sides of imaging island and a uniform grey region in the

middle corresponds to the domain, which is schematically described in Fig. 3.12 (a). An

example of the Fresnel image of an ASI array is presented in Fig. 3.14 (a). The single-



64 3.7. Transmission electron microscopy

Figure 3.14: (a) Fresnel image of a square ASI array at 45◦ applied field H with the amplitude
of 845 Oe with respect to the nanomagnets. The volume of each nanomagnet is 190× 60× 6
nm3 and the centre-to-centre distance between nearest islands is 335 nm. (b) Average profile
(marked by a yellow box) integrating 20 scanning lines illustrates the intensity difference at the
two sides of the nanomagnet as a result of single domain behaviour.

domain nature of each island gives rise to a dark and a less dark edges along the long axis.

Figure 3.14 (b) shows the intensity difference between these two edges. In addition, the

magnetisation direction can be identified using Eq. 3.15 and the position of the darker

edge. Compared with other Lorentz imaging techniques (for instance the DPC), Fresnel

imaging is beneficial at field- or temperature-driven magnetisation dynamics as it has

faster acquisition time. This dissertation mainly concentrates on field-induced studies.

Apart from the magnetic phase φm, there is also another phase shift due to the elec-

trostatic effects, φe. Thus intensity of the image, I, is associated to the contributions of

magnetic and electron phases. How to extract simplified magnetic information by Fresnel

imaging is detailed in section 3.7.2.4.

3.7.2.3 Differential phase contrast (DPC)

Differential phase contrast (DPC) imaging is able to quantitatively analyse the magnetic

induction of thin samples and is performed in STEM mode. Unlike the parallel beam

illuminating a specimen in CTEM, the electron beam in STEM is converged to a fine

point on the surface of the specimen, as shown in Fig. 3.15. A set of scan coils are

used to focus the beam, and then this converging beam acts as a probe which is rastered

across the sample. The beam is deflected through an angle of β due to the magnetic

induction, and is projected onto an 8-segment detector by the descan coils. Figure 3.15
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Figure 3.15: Ray diagram of the DPC in an STEM mode. The electron beam is converged
through scan coils to focus on and raster scan the surface of a specimen. Scanning beam is
deflected by an angle of β by the Lorentz force arising from in-plane magnetic induction of
specimen. This deflection on a segment quadrant leads to a shift from the centre of detector.
Difference of signals between two opposite quadrants, e.g. EXT1-EXT3 or EXT0-EXT2, reveals
the magnetic induction associated to beam deflection. The inset is the top-view schematic of
the segment detector consisting of the internal (INT) and the external (EXT) parts, showing
how the probe beam is shifted on the detector.

shows that this projected disc shifts position due to the local magnetic induction that it

experiences from the nanomagnet. The 8-segment detector consists of 4 internal and 4

external parts, as shown in the inset of Fig. 3.15. DPC image is achieved by subtracting

the signals of diagonally opposite quadrants, i.e. EXT1-EXT3 or EXT0-EXT2, where

‘EXT’ represents the external segment. The advantage of calculating the signal difference

in the external region is to improve the sensitivity of the shift detection [65]. On the

other hand, by summing the intensities over the 4 quadrants which contain an internal

and external parts, a bright field image can be acquired.

DPC has a better spatial resolution (approximately 1 nm) compared with Fresnel

imaging. However, the resolution of DPC imaging is limited by the radius of the probe

(as DPC is fundamentally a scanning mode) and the aberration correction. The dimension

of specimen and strength of magnetic induction is relative to quality of the DPC image.
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The larger sample and stronger magnetic induction enable to achieve the better contrast

for the DPC image. Figure 3.16 shows DPC images of a small ASI array. Figures 3.16

(a) and (b) respectively present the two distinct integrated magnetic induction; one for

each of the vertical and horizontal directions. The information on magnetic state is not

obvious from these two images as there is also a contribution from electrostatic phase. An

approach to extract the magnetic information provided by the Fresnel and DPC images

is proposed in the next section.

Figure 3.16: Examples of the DPC images show magnetic domains of a small part of ASI
array where each nanomagnet possesses 190×60×6 nm3 dimension. The direction of integral
magnetic induction B are indicated by a black double arrow. Differential phase distribution
from two different subtractions of signal: (a) EXT1-EXT3 and (b) EXT0-EXT2.

3.7.2.4 In-situ TEM and extracting magnetic information

An in-plane magnetic field can be introduced by tilting the specimen rod around its

central axis. Figure 3.17 depicts the process of such a In-situ operation. This is useful

for visualising reversal processes and magnetisation dynamics. The in-plane field is a

component of an external field generated from the OLs. The direction and the strength

of in-plane magnetic field are controlled by the titled angle α. This in-plane component

of the fixed field, H‖, in terms of objective-lens field and tilted angle is computed via

H‖ =H× sin(α), (3.23)

where H is the magnetic field from the OL and α is the angle of specimen with respect

to the horizontal direction. The maximum angle α is imposed by the design of the TEM

rod. In this work, the range of possible angle is ±25◦. Even at full tilt, the sample still

experience a significant out-of-plane magnetic field. This should act to magnetise the
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sample out of plane. However, it has a weak influence on ASI nanomagnets as they have

strong in-plane magnetisation restrained by the two-dimensional nanomagnet due to the

shape anisotropy.

Figure 3.17: Tilting sample around the tilting axis to In-situ introduce the in- and out-plane
magnetic field from the objective lens to the plane of specimen. Schematics describe three cases
to apply a in-plane field: (a) negative field at negative tilting angle −α, (b) zero field at α= 0◦

and (c) positive field at +α.

In-situ TEM measurement in our work has two possibilities. The first is to capture

magnetisation dynamics as a function of field whilst tilting the specimen holder. A com-

bination of video recording and a MatLab-controlled tilting GUI that automatically tilts

the TEM rod was developed at the University of Glasgow [2]. The advantage of this

operation is that the acquisition of the magnetic state of the sample at each field step

is stable in the tilting process. The relevant image processing and experimental results

about field-driven magnetisation dynamics of pinwheel ASI are discussed in Section 6.3.

The other method is to tilt the rod by a certain angle α to magnetise sample and

subsequently tilt it back to 0◦ to acquire image. The schematic diagram of this operation

is displayed in Fig. 3.18. This procedure allows for the extraction of pure magnetic

information. The intensity of the Fresnel image contains information not only on the

Laplacian of the magnetic phase difference (∇2φm) and also on the electrostatic phase

shift (∇2φe) that is associated with the specimen thickness and mass. Therefore, the total

intensity I of a TEM image arises from two contributions, I = Ie(∇2φe)+Im(∇2φm). The

electrostatic phase also varies with the tilted angle as the scattering process of the beam

alters correspondingly. It is however identical at the same tilting position. Moreover,

when the magnetic field decreases to zero the remanence of each nanomagnet only slightly
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changes due to its ferromagnetic property. By acquiring an image always at α= 0◦, one can

therefore ensure that the variation in image contrast only arises from the magnetisation

change whilst the Ie remain unchanged. Assumem reverses, the total intensities of images

A and B in Fig. 3.18 are given by

IA = Ie− Im (3.24)

IB = Ie+ Im, (3.25)

Figure 3.18: Illustration of separating magnetic and electrostatic contrasts using two Fresnel
images of an ASI array that possess opposite magnetisation states and are fully saturated.
Examples of two Fresnel images where nanomagnets are completely magnetised by the magnetic
fields of (a) -845 Oe and (c) 845 Oe prior to acquisition at α= 0, their corresponding intensity
profiles integrating 20 lines are in (b) and (d). Processing results show images of two magnetic
states created by magnetic field of (e, f)-845 Oe and (i, j) 845 Oe. The consequence of extracting
(g) electrostatic-related contrast and (h) its averaging intensity profile. The dimension of each
nanomagnet is 190× 60× 6 nm3 and the centre-to-centre separation between second nearest
nanomagnets is 335 nm.

where the magnetic states of ASI specimen is opposite and respectively magnetised by

saturation fields of -845 Oe (A) and +845 Oe (B), as illustrated in Figs. 3.18 (a) and (c).
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Electrostatic intensity and magnetic intensity are obtained using −Im = (IA− IB)/2 and

Ie = (IA+ IB)/2. The images associated with just the magnetic and electrostatic phases

are shown in Figs. 3.18 (e), (g) and (I). The integral scanning profiles in Figs. 3.18 (f)

and (h) reveal the behaviour of the magnetic and electrostatic phases along the short

axis of one island (labelled by the yellow box). The same amplitudes of intensities at two

sides of islands imply the contrast change in Figs. 3.18 (a) and (c) just results from the

variation in magnetic state of nanomagnet. Figures 3.18 (f) and (J) is in the absence of

uniform grey region between two darker and brighter edges, as schematically illustrated in

Fig. 3.12, which should indicates the domain region. This is ascribed to a narrow width

of the nanomagnet and undefocus image mode. As a result, Fresnel imaging is technique

limited by specimen size.

Using the same imaging process, the magnetic contrast from DPC can be extracted

as well. However, the magnetic intensity Im of the DPC image is associated with the

differential phase difference (∇φm) rather than the Laplatian phase shift (∇2φm) of the

Fresnel image. Figures. 3.19 (a) and (b) show the raw DPC images of square ASI lattices

from net difference of Ext1-Ext3 orthogonal parts, which is respectively experienced two

opposite-direction fields with strength of 845 Oe, are displayed in. The images only con-

taining magnetic information are shown in Figs. 3.19 (d) and (e). Figures 3.19 (d) and (e)

not only enable magnetisation distribution to be visualised in comparison with the raw

images, but also the end states of island and the stray field surround island could be even

imaged. It is obvious that DPC imaging with a high resolution provides greater magnetic

details about individual nanomagnet. On the other hand, the long acquisition time im-

poses restriction on the use of DPC imaging for dynamical measurement. Compared with

Fresnel images, DPC requires a greater accuracy of position alignment at α = 0◦ where

the image is taken after the specimen is magnetised by the magnetic field. The result

of magnetisation extraction using two edge-misaligned DPC image are instanced in Figs.

3.19 (c) and (f).

3.8 Micromagnetic simulations

Micromagnetic simulation is a ubiquitous tool in nanomagnetism to predict static and dy-

namic magnetisation and provides interpretation to relevant experiments [66–70]. To date,
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Figure 3.19: DPC images of part of a square ASI array with net difference between quadrants
1 and 3 magnetised by (a) 845 Oe and (b) -845 Oe magnetic fields prior to acquisition. Each
magnetic island normally has a 190× 60× 6nm3 volume, and the lattice constant in an array
is 350 nm. Subtracting the electrostatic contrast provides information on magnetic induction
of each nanomagnet and stray field surround it at applied fields of (d) 845 Oe and (e) -845 Oe.
The magnetic field is at the 45◦ with respect to a square lattice. However, the weak magnetic
induction due to its small volume of ASI nanomagnet can lead to a (f) unobvious contrast for
(c) the other subarray as a extremely good alignment is needed between two DPC images for
image processing.

a variety of open-source and commercial packages have been created, such as OOMMF [71]

and NMag [72] and GpMagnet [73] etc. The open-source program Mumax [74] was used

to implement all numerical computations throughout this dissertation. Chapter 4 and

Chapter 5 include the equilibrium configurations, hysteresis loops and magnetisation dy-

namics of a square ASI found through numerical simulations. In addition, the ground

state energy of pinwheel ASI system is examined in Chapter 6.

Mumax is a GPU accelerated code. This is in contrast to the widely-applicable

OOMMF that is a CPU-based micromagnetic solver instead. The GPU-based Mumax is

capable of the speedup of computation compared to the OOMMF [73,75], which suits the

huge numerical evaluation of magnetization dynamics in this study. Mumax computes
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the time- and space-dynamics of magnetisation distribution using a finite-difference dis-

cretization approach. This involves dividing the simulation universe into a collection of

cuboidal cells, whose dimensions are on the order of a few nanometers. An alternative

method is to use finite-element discretization, where a grid is formed by a large number

of discretization elements with different arbitrary-shaped volumetric mesh cells. The fi-

nite difference method is simple to compute the magnetization as the sizes of cells are

constant. On the contrary, the primary disadvantage of this approach is that it does not

accurately handle the curved structure. This can lead to “staircasing” - in effect in intro-

ducing spurious local anisotropy at the curved sections, as shown in the inset of Fig. 3.20.

The problem can be solved by using smaller cell sizes or finite element discretization.

Figure 3.20: Example showing the “staircase” effect (the inset) of round edge of the simulation
nanomagnet in a grid box.

In the simulation, the time-evolution magnetisation m(x,y,z, t) is described by the

LLG equation, given by Eq. 2.9. This equation describes the precessional motion of

a magnetisation vector m around Heff and a dissipative relaxation. This forces the

magnetisation to spiral in toward the direction of Heff , approaching equilibrium state.

The effective field that the magnetisation, m, experiences the functional derivative of the

energy density with respect to the magnetisation m [73]

Heff =− 1
γMs

δε

δm
. (3.26)

where Heff is a result of the contribution from the external field (Bext), the magne-

tostatic field (Bdemag), the exchange field (Bexch), the magneto-crystalline anisotropy

field (Banis), the Dzyaloshinskii-Moriya exchange field (Bdm) and thermal field (Btherm).
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The equilibrium (or ground state) where the total energy Etot approaches a minimum,

Etot(m) =
∫
V ε(m)d3r and V is the volume of a grid cell.

In a simulation, one of characteristic lengths, exchange length lex, is necessary to

consider. lex follows

lex =
√

2Aex
µ0M2

s
, (3.27)

where Aex is the exchange constant and µ0 is magnetic permeability in free space [76]. This

exchange length is to determine the magnetostatic interaction is dominant in comparison

with the anisotropy. The size of each cell usually is set to be smaller than the lex, especially

in soft material. For instance, assign the typical material parameters of the Permalloy

(Ms = 800 kA/m and Aex = 10−11 J/m) into the Eq. 3.27, the exchange length of the

permalloy is lex = 5nm. A grid with the 2.4 nm × 2.4 nm in-plane cell size was used in

the simulation of Chapters 4 and 5 which is less than the theoretical exchange length of

5 nm.

Mumax allows for an incorporation of periodic boundary condition (PBC). This en-

ables the magnetisation to wrap around at the edges of grid box in the periodic condition.

The PBC can remove the discontinuity of exchange energy at the boundary surface as

exchange energy is related to the gradient of magnetisation (see Eq. 3.28), and the dis-

continuity of demagnetisation field as well. In addition, this approach is advantageous as

it allows for the simulation of a small section of an array rather than the whole sample.

This results in less time consuming and computationally demanding. An example will be

given in Fig. 3.23.

3.8.1 Potential Energy terms and static magnetisation

Considering the case of ASI, the contribution of the total energy Etot principally arises

from the Zeeman energy εext, the magnetostatic energy εdemag and the exchange εexch. The

total energy is quantitatively computed by Etot =
∫
v(εext+εdemag+εexch)d3r. Substituting

the expression of each energy term, as already introduced in Section 2.3, the equation of

total energy is written as

Etot =
∫
V

[−miBext−
1
2miBdemag +Aex(∇mi)2]d3r, (3.28)
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where mi is the uniform magnetisation in the ith cell such that the corresponing mag-

netostatic field in cell i is Bdemag = −MsNi, Ni being the demagnetisation tensor. The

material parameters, including the saturation magnetisation Ms, exchange constant Aex,

the damping coefficient α and the gyromagnetic ratio γ (α and γ are associated with

the set of evaluation of dynamic response in Section 3.8.2), determines the behaviour of

material of the simulation model. For example, in this thesis, the Ms and Aex of the

permalloy ASI nanomagnet are set as the standard values 8×105 Am−1 and 10−11 Jm−1,

respectively. Additionally, the initial magnetization state in a micromagnetic simulation

is essential. In this thesis, the random initial magnetisation state was employed when

evaluating the hysteresis loop and the magnetisation dynamic response, yet the specific

initial state of the magnetic moment of each nanomagnet must to be set so as to compute

the static energy. Final output of the energy is an average value. All micromagnetic

simulations throughout this dissertation were performed at absolute zero temperature for

the computational efficiency. An example to evaluate of system energy is provided in

Fig. 3.21. The simulations are used to estimate the approximately magnetostatic cou-

pling interaction of the system so that the exchange energy Eex is set to be zero (without

relaxing in the simulation). The Etot of states E+ and E− are identical, approximately

1.44×10−17 J.

Figure 3.21: The static magnetisation configurations of a 5-element array showing two different
orientations of magnetisation for the central element: state E+ and its reversed state E−. The
colour represents the magnetisation direction labelled by black arrows. The grey region is
free space. The dimension of each nanomagnet is 470× 170× 10 nm3 and the centre-to-centre
separation between second nearest islands is 360 nm.

The equilibrium state satisfies m×Heff = 0 [73], which is the condition of zero torque.

This should give the magnetisation state when a local energy is minimal. A normalised

static magnetisation and a spatially discrete magnetisation can both be obtained in Mu-
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max. The evolution of the mean magnetisation against the external field allows us to plot

a hysteresis loop, as shown in Figs. 4.3 and 5.1. A spatial-dependent magnetisation is

utilised to plot spatial profile in the sample by using FFT (see Fig. 4.7).

3.8.2 Micromagnetic dynamic response

Micromagnetic simulations also provide an approach to reproduce the dynamical be-

haviour of magnetic materials. In order to obtain the oscillating strength of magnetisation,

an AC field pulse is performed. In Fig.3.22 (a), a schematic of simulation to obtain time-

varying magnetisation is presented, where an individual nanomagnet is magnetised by

an static external field Hext and is driven simultaneously by an low-amplitude oscillating

field Hz. The aim of this simulation is to reproduce the spin-wave modes measured using

BLS, as presented in Chapters 4 and 5. Two categories of excitation pulses were applied:

time-varying uniform and nonuniform pulse.

In the first case, the field pulse created by a sinc function (sampling function) follows

hz(t) = h0
sin(4ω(t− t0))

(4ω(t− t0)) = sinc(4(t− t0)), (3.29)

where h0 is the amplitude of the field pulse, 4ω is the bandwidth of the field pulse and t0
is the offset time. Figure 3.22 (b) displays this time-varying sinc pulse. The strength and

orientation of the field pulse vary as the running time changes, and this field is uniform

over the entire space of the simulation box. The bulk mode with wavevector k = 0 is

effectively excited using such a pulse. The corresponding response of z component is

plotted in Fig. 3.22 (c), showing a driven oscillation motion decaying as a function of

time. The resonance of uniform modes can be obtained by performing the FFT of the

time-domain mz, as illustrated in Fig. 3.22 (d).

Although the uniform pulse is able to provide some information about dynamic mag-

netisation, a field pulse that varies with time and space is required to excite other spin-

wave modes (k 6= 0). This allows for study of the dispersion relation (frequency vs. k) [77].

This pulse can be given by

hz = hz(t)×
sin(4k(r− r0))

(4k(r− r0)) = hz(t)× sinc(4k(r− r0)), (3.30)

where 4k is the bandwidth of possible spatial frequencies that can be excited, r(x,y,z)
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Figure 3.22: (a) Schematic configuration of a simulation model where a single nanomagnet
(240 × 80 × 10 nm3) is centred in the simulation box. This island is magnetised by an applied
field Hext of 0.2 T in the direction of y and a time-vary excitation field hz that is perpendicular
to Hext along the z direction. The simulation is based on a 3D mesh grid in which T and L
represents the length and thickness of each cell. (b) The amplitude of exciting field pulse hz as
a function of running time t. (c) The response of mz to hz versus time. The insets of (b) and
(c) zoom in the details of the hz and mz during the time period from 3.9 s to 4.5 s. (d) The
resonance peaks obtained by FFT of mz(t).

indicates the direction of wavevector and r0 is the spatial offset with respect to the centre

of a simulation box. Figure 3.23 (b) presents the spatial distribution of a nonuniform field,

hz = hz(t)×sinc(4k(y−y0)), in a simulation grid whose wavevector is along y direction.

This excitation allows for excitation of Demon-Eshbach mode observed in BLS, where the

wavevector of spin wave mode is normal to an applied field. The magnitude of the pulse

is highest at the centre and it decays when the field is far away from the centre. This

uniform field pulse is able to excite resonance modes when a single element is centred in

the simulation grid (see Fig. 3.22). This is the case where the use of independent-island

model is considered in Chapters 4 and 5. For the case of an array (see Fig. 3.23 (a)),

this pulse is, nevertheless, infeasible to excite all their possible modes. Specifically, Fig.

3.23 (c) shows that only islands located near to the central position of the grid, where

the strongest amplitude of the pulse occurs, can be significantly excited. The result of
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the resonance spectrum (not shown here) is identical as Fig. 3.22 (d). This suggests that

all simulated resonance modes arise from the horizontal island, while the modes from the

vertical island are not excited due to the weak amplitude.

In order to avoid islands in an array to experience the inhomogenous amplitude of

the nonuniform field pulse, n number multiple nonuniform pulses could be applied si-

multaneously just at the locations of all islands. The multiples can be given by hz =∑i
0 sinc(4k(y− yi0))n0)) where i represents the number of islands and yi0 represents the

spatial shift of the island i with respect to the centre of simulation grid. However, the

superposition of the i number of field pulses with the k along y (or x) axis does not work

in the Mumax. The results show that only one valid pulse is able to be applied in the

simulation. In this context, an approach with multiple circularly nonuniform pulses is fur-

ther developed. This field pulse follows hz = hz(t)sinc(4k(x−x0))sinc(4k(y−y0)) and,

thus their wavevectors are along circular symmetry. Figure 3.23 (d) displays the spatial

distributions of those pulses, a local driven field being produced on each nanomagnet (its

location being (x0,y0)). By using this approach, all islands can experience the equivalent

driven field and the field pulse can be flexibly shifted. The resonance peaks of all islands

(see Fig. 3.23 (e)) can be obtained via the FFT calculation of mz(t). Compared to the

3.22 (d), Fig. 3.23 (f) shows that the more spin-wave modes from all islands (including

horizontal and vertical islands) can be obtained. Therefore, this method is useful for the

case of an ASI array. More discussion of the results is presented in Fig. 5.12.
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Figure 3.23: (a) A diagram displays the geometry of a part of ASI array, in which PBC
is performed to create a two-times larger array. The dimension of each island is the same
as that in Fig. 3.22. (b) Snapshot of the spatial distribution of a nonuniform pulse hz with
the wavevector along y axis and its corresponding (c) mz response, only the spin wave mode
localised at centre of simulation is strongly excited. The gray colour represents the nonmagnetic
region in the simulations. (d) Snapshot of circularly spatial distribution with a number of local
exciting pulses which enable to excite each island and the responses of mz for each nanomagnet.
(f) The resonance peaks obtained via excitation of the local field pulses and is a result of the
superposition of peaks from horizontal and vertical islands, respectively (see Fig. 5.12).
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4
Spin-wave excitations introduced by a

magnetic field in a square artificial spin ice

4.1 Introduction

In this chapter, how information on magnetic configurations of square ASI can be obtained

through light scattering from microwave excitations is discussed. Previous investigations

of spin wave modes in rectangular islands elements have been performed for arrays in

which the magnetisation of all islands are orientated in the same direction [1, 2]. Our

general findings are that all features observed in BLS experiment can be described by

the modes associated with individual elements in the square ASI. The elements lie along

the two sides of a square array, as shown in the Fig. 4.1 (a), and the frequencies of

modes depend upon whether the magnetisation of individual elements are aligned by the

applied field along easy or hard directions of the elements. It is found that, depending on

the direction of the applied field, the frequency evolution exhibits complex and peculiar
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features. Mode softening and ‘bell’ shape in frequency vs magnetic field (H) have been

observed in coincidence with the magnetisation reversal for H applied along the ASI edge.

For H at 45◦ with respect the ASI edge, the frequency monotonically evolves as a function

of the applied field. Micromagnetic simulation was employed to identify the excitations

measured in the independent elements.

In this study, square ASI specimen was fabricated by Dr. Sophie Morley at the Uni-

versity of Leeds. Hysteresis loops were measured by Francesca Casoli using AGFM in the

Institute of Materials for Electronics and Magnetism (IMEM) of Italy. The BLS measure-

ment was performed by Gianluca Gubbiotti of CNISM Italy. I operated all micromagnetic

simulations in this chapter, plotted the spin-wave dispersions and analysed all data.

4.2 Sample preparation

The square ASI specimen were prepared by collaborators at the University of Leeds.

The square ASI lattices (Ni80Fe20) were patterned on an oxidised silicon substrate by

electron beam lithography. A mask with the square lattice array shape was written and

developed by the 100 kV electron beam on the positive resist. The NiFe was electron-beam

evaporated and then the unpatterned NiFe film and mask were removed. The square ASI

consists of the islands of intended 240 nm × 80 nm in size and 10 nm thickness, with

a 450 nm lattice constant, as displayed in Fig. 4.1. Correspondingly, the corner-to-

corner distance between the first nearest neighbouring islands is approximately 92 nm, as

sketched in Fig. 4.1 (b). The measured in-plane dimension of one island in Fig. 4.1 is

approximately 245.6 nm × 79.5 nm. The dimensions of most islands are consistent.

Figure 4.1: (a) A SEM of part of square ASI array formed by islands with the 240 nm × 80 nm
lateral size and the 10 nm thickness. The lattice constant (sketched by the yellow line) is 450 nm.
(b) Schematic indicating the 92 nm corner-to-corner distance between nearest nanomagnets.
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4.3 Static magnetisation of the square ASI

4.3.1 AGFM hysteresis

Hysteresis loops of the square ASI were measured using AGFM. The magnetic field was

applied along directions that make angles of 0◦ and 45◦ with the axes of the ASI square

lattices, with values between +5 kOe to -5 kOe. The experimental hysteresis loops are

shown by the black solid lines in Figs. 4.2 (a) and (b). In Fig. 4.2 (a), the magnetic field

is aligned along a horizontal edge of the square array (0◦), and in Fig. 4.2 (b) the field is

aligned along a diagonal (45◦) direction with respect to a square lattice.

Figure 4.2: Hysteresis loops of the AGFM measurements at (a) 0◦ and (c) 45◦ applied field
with respect to an ASI lattice. The insets indicate the field direction with respect to a square
ASI lattice.

The hysteresis loop measured at the 0◦ applied field H shows that the reduction of

magnetisation starts from approximately 4 kOe field. Two significant steps are observed

to occur during the magnetisation process, which are marked by the ranges from ‘a’ to‘b’

and from ‘c’ to ‘d’, respectively. With the field aligned diagonally with the ASI lattice,

there are still two steps on one branch, highlighted by the ‘e’ ,‘f’,‘g’ and ‘h’ letters. The

first step is from ‘e’ to ‘f’ and second one ranges from ‘g’ to ‘h’. Furthermore, when the

field is at 0◦ orientation, the islands require a somewhat larger external field to switch

their magnetic moment compared with the 45◦ case. Fig. 4.2 shows the coercive field is

± 373 Oe at 0◦ field, while ± 332 Oe at the 45◦ field with respect to ASI lattice.
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4.3.2 Simulated hysteresis

In order to understand the features arising from element interactions, the results of mi-

cromagnetic simulations of hysteresis for single elements are also shown in Figs.4.3 (a)

and (b) for comparison. The simulations were done for isolated elements representing

separately the horizontal and vertical islands constituting the array. The saturation mag-

netisation Ms and exchange constant A of Permalloy material were taken as 800 kA/m

and 10−11 J/m [3], respectively. A grid with 10 nm thickness and 2.4 nm × 2.4 nm lateral

size of cell was used, which is less than the exchange length l =
√

2A/µ0M2
s = 5nm [4].

The details of such simulations have been discussed in Section 3.8.

In the simulations, magnetic field was set to be slightly misaligned from the horizontal

by 1◦ and the diagonal by 2◦ (misaligned 1◦ cannot introduce the significant difference

between two groups of islands) due to the imperfection in experiment and avoiding the

possible artefacts associated with unstable states. These states could appear with the field

aligned in highly symmetric configurations, for instance, a closure magnetisation structure

when the magnetic field is perfectly perpendicular to the hard axis of the island. Hysteresis

loops of elements were calculated for the field aligned parallel to: the horizontal axis H1;

the vertical axis H89 (see Fig. 4.3 (a)); and the diagonal axes H43 and H−47 (see Fig.

4.3 (b)). Note that the subscript of symbol ‘H’ presents the simulated field angle with

respect the long axis of an individual nanomagnet. These configurations are sketched

in the insets of Fig. 4.3 for clarity. Therefore, in the simulation the ASI elements with

respect to the orientation of field are denoted as H1, H89, H43 and H−47. The hysteresis

loops, in which the normalised magnetic moments are mean values over moments of all

simulating grid cells, are shown in Fig. 4.3 (c) and (d) by the green lines. This average

value can indicate the resulting magnetisation from the two groups of cases (H1 and H89

/H43 and H−47) without the inter-island interaction.

First consider the hysteresis with the field applied along a horizontal edge direction

shown in Figs.4.3 (a) and (c). Going from positive field to negative, it shows that general

features of the measured hysteresis are visible in the averaged simulation results (shown

by the green lines). There is a change in slope beginning at 1 kOe, followed by sharp

drops at 0 kOe (marked ‘a’ in Fig. 4.2 (a)) and 0.7 kOe (marked ‘c’ in Fig. 4.2 (a))

fields. To examine possible interaction effects, the simulated hysteresis for a five-by-five

array of elements is also shown with a blue dotted curve at 0◦ field, as shown in Fig.
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Figure 4.3: The simulated hysteresis loops of the independent magnetic elements at applied
field of (a) 0◦ and (b) 45◦. The comparison between the AFGM results and the average of
simulated results at the (c) 0◦and (d) 45◦ field with respect to the vertex of the square ASI.
The left-top inserts show the direction of magnetic field with respect to a simulated individual
island (in (a) and (b)) and a measured square ASI lattice (in (c) and (d)). The right-bottom
insert of (c) represents the simulated ASI array.

4.3 (c). The simulated array follows the average curve exactly, suggesting that finite

size effects that are associated with the reversal of elements at the edges in the array do

not seem to play an important effect. It is also noted that the measured curve shows a

decrease between 3 kOe and 1 kOe that is not visible in the simulations. This may be

associated with imperfections of the elements. There is also disagreement between the

coercive fields determined by measurement and simulation. In part, this may result from

nucleation sites generated by irregularly shaped islands as opposed to the ideally identical

shape of ASI island in the micromagnetic calculation [5]. Another possibility is that the

temperature in simulation is absolute zero Kelvin, while measurements were performed

at room temperature.

The analysis of the hysteresis for the field applied along a diagonal orientation is
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shown in Figs. 4.3 (b) and (d). The agreement of the coercive field between measured

and simulated curves is better in this case compared to that at 0◦ field. However, the

magnetisation in the AGFM measurement is also smaller than that in the calculated loop

at a given field probably due to the imperfect shapes of fabricated sample. The analysis

of the hysteresis for the field applied along a diagonal orientation is shown in Figs. 4.3 (b)

and (d). The agreement of the coercive field between measured and simulated curves is

better in this case compared to that at 0◦ field. However, the magnetisation in the AGFM

measurement is also smaller than that in the calculated loop at a given field probably due

to the imperfect shapes of fabricated sample.

4.3.3 Static magnetisation configuration

Figure 4.4: Ground-state magnetisation configurations of the isolated island at (a) 0◦ and (d)
45◦ applied field. The inset is colour code indicating the direction of magnetisation.

The static magnetisation configurations are also calculated in order to show the spatial

magnetisation distribution of independent island at different magnitudes and angles of the

magnetic field. The reversal of magnetisation within individual elements is predicted to

occur differently for the horizontal (H1) and vertical elements (H89) in the ASI lattices
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with respect to the field H. It was found that the end orientation and bulk moment

switch respectively contribute to the two steps in the Fig. 4.2. Static magnetisation

configurations are shown in Fig. 4.4 (a) where the magnetisation direction is mapped for

H1 and H89 elements using the inserted colour coding of Fig. 4.4. The magnetisation

configurations are shown for positions on the hysteresis loops ‘a’, ‘b’, ‘c’ and ‘d’, which is

indicated in Fig. 4.2 (a). In general, these two groups of the elements reverse through an

‘S’ magnetisation configuration with an unsaturated field. The drop at ‘a’ corresponds

to rotation of the ends of hard axis elements H89 (shown by the blue circles), and the

plummet at ‘c’ corresponds to the reversal of the magnetic moment in the easy axis island

H1.

For the 45◦ case, the two elements reverse in the same manner and there is good

agreement at coercive fields. The ground state magnetisation states at the ‘e’, ‘f’, ‘g’ and

‘h’ positions of the loop are also presented, as displayed by Fig. 4.4 (b). Again, all islands

reverse through ‘S’ magnetisation states.

For application of the field along a diagonal direction it appears possible to describe the

magnetisation processes observed for the square ASI in terms of the reversal of individual

non-interacting element. The situation is different for hysteresis with the field aligned

along a horizontal edge. The general features observed in the hysteresis are qualitatively

similar to what one would predict from an ensemble of non-interacting elements, but

there are significant quantitative differences apparent in the unsaturated region. It is in

this field region precisely that effects of inter-element interactions are most apparent as

they modify locally the fields driving element reversals. Measurements of spin waves are

presented in the next section, which are able to provide additional information about local

effective fields.

4.4 Spin-wave excitations in square ASI

Spin wave excitations in the ASI array can be characterised by the BLS technique. BLS

can detect spin wave modes at the low field range that are not visible using ferromagnetic

resonance spectrum (FMR results will be detailed in Section 5.3). The BLS measurement

was performed in order to investigate the spin-wave properties of such ASI array, two

types of BLS measurement were performed to probe wavevector (presented in Section
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4.4.1) and field dependence (in Section 4.4.2).

4.4.1 Spin wave dispersion

The spin wave dispersion is first measured, i.e. the evolution of frequency as a function of

the wavevector (q‖). In this case, the applied field was fixed at 3 kOe along directions at

0◦ and 45◦ with respect to the ASI lattices. The angle of incident light θ varied from 0◦ to

60◦ corresponding to in-plane wavenumber q‖ from 0 to 2×107 m−1, where q‖ = 2k sin(θ)

and k is the wavevector of light. Two scattering geometries were studied: the Damon-

Eshbach (DE) mode for spin waves with wavevector k perpendicular to the external field

H; and the Backward (BA) mode configuration for spin waves with wavevector parallel

to the applied field.

Figure 4.5: Sequence of BLS spectra measured at different incidence angles θ with the external
field of 3 kOe at (a) 0◦ and (b) 45◦ upon the ASI lattices. The wavevector of the incident light
is perpendicular to the field orientation in Damon-Eshbach configuration. Spin-wave frequency
on the Stokes side as a function of the in-plane wavenumber at a 3 kOe (c) parallel field and
(d) diagonal field. Dots are experimental data and lines are guides for the eyes [6]. [Published
under CC BY 3.0 licence.]
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The dispersion of spin waves was measured to indicate the possible inter-island dy-

namic coupling and propagation of collective spin waves through the array. Panels (a)

and (b) of Fig. 4.5 are shown for the two different magnetic field orientations. Spectra

are recorded in the DE configuration for a 3 kOe magnetic field aligned at 0◦ and 45◦

angle with respect to the horizontal-group elements of the ASI lattices. When the field is

applied at 45◦, there are two well-defined peaks in the spectra, while for 0◦ up to seven

peaks are visible in two different frequency ranges with the larger in-plane wavevector.

Frequencies measured for wavenumbers between 0 and 2× 10−7 m−1 are shown in Fig.

4.5 (c) and (d) with the field applied along an array edge and diagonal orientation. In

Fig. 4.5 (c), the dispersion curve is almost flat, displaying no significant variation in

frequency as a function of wavenumber. This means the inter-island coupling is negligible

in ASI system with this spacing. Another possibility as to why the square ASI would not

produce bands with the DE geometry is because that edge modes would be excited for

elements parallel to the applied field.

Figs. 4.6 (a) and (b) show the BLS spectra of the BA scattering geometry as a function

of the incident angle of light θ for the different field orientations. In this case, only two

modes are clearly visible with the diagonal magnetic field and four spin wave modes appear

while applying a horizontal field with respect to one family of ASI islands. Compared

with the DE modes, the modes are closer together in frequency for the 45◦ orientation and

spread apart by several GHz for the 0◦ case. In terms of the dispersion, Fig. 4.6 (c) and (d)

shows that all modes at both parallel field and diagonal field have no significant dispersion.

This is because that the dispersion curve of magnons is approximated as the parabola

based on the relation of h̄ω = Dq2
‖, where D is the spin wave stiffness constant [7, 8].

Thus, the BLS results excludes the magnonic dynamic inter-island coupling effects in this

square ASI system.

In recent work, E. Iacocca et al. [9] have calculated theoretically the magnonic band

structure of square ASI array, and have shown that the frequency variations of band struc-

ture are of the order of 10−1 GHz for the ASI model which has the similar lattice constant

(395 nm) with this measured sample. This reveals that the inter-element coupling domi-

nated by dipolar interaction in ASI array is very weak, but it still reveals the dispersion

behaviour. However, this is below the resolution ability of BLS technique, namely 0.2 -

0.4 GHz. Therefore, it can be asserted that the dynamic inter-element coupling is not
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Figure 4.6: Sequence of BLS spectra measured at different incidence angles θ with the external
field of 3 kOe applied at (a) 0◦ and (b) 45◦ with respect to the ASI lattices. The wavevector of
the incident light parallels to the applied field in backward configuration. Spin-wave frequency
on the Stokes side as a function of the in-plane wavenumber at a 3 kOe (c) horizontal field and
(d) diagonal field with respect to the ASI lattice. Dot is experimental result and line is a guide
for the eyes [6]. [Published under CC BY 3.0 licence.].

measurable by BLS.
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4.4.2 Measured spin-wave eigenmodes

Now the angle of incidence of the illuminating laser is fixed at θ = 20◦. The external field

H was varied from - 4 kOe to + 4 kOe and applied along the 0◦ and 45◦ orientations

with respect to ASI lattices.

Figure 4.7: (a) Frequencies of the spin-wave eigenmodes as a function of applied field parallel
aligned with one group of ASI islands. Dashed lines are the cut-off points between saturated
and unsaturated regions of the hard-axis magnetization. (b) Spatial profiles of the eigenmodes
at different field strengths for the H1 (upper panel) and H89 (lower panel) orientations, with
frequency increasing from left to right. The label of the spin-wave mode in (a) mainly indicate
the experimental mode marked by the arrow [6]. [Published under CC BY 3.0 licence.]

The field-induced frequencies are obtained in the DE scattering configuration and

presented in Fig. 4.7 (a) and Fig. 4.8 (a). In Fig. 4.7 (a), the measured frequencies are
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shown by square symbols, and the magnetic field is oriented along the 0◦ direction. Several

distinct modes are identified from the spectra, and each exhibits different behaviour for

fields in the region of hysteresis between +4 and −4 kOe. The frequencies were recorded

from spectra obtained by decreasing the field from positive to negative saturation, thereby

following the upper branch of the magnetisation loop shown in Fig. 4.2 (a). Outside this

region the behaviour of the frequencies is roughly linear with field, as one expects for

saturated elements.

At magnetic field of approximately ±1.5 kOe, several modes appear to merge with

others or disappear entirely. The two lowest frequency modes have minima near the

coercive fields. At zero field, mode crossings appear in two higher frequency modes.

These modes in the horizontal islands appear to be softening at negative applied fields.

Except for the mode crossings, the behaviour of the mode frequencies for the vertical

islands with applied field are symmetrical so that minima again appear for the lowest

frequency modes at around ±1.3 kOe field marked by two black dashed lines, and there is

a linear increase of frequencies for fields outside the hysteresis region. However, the more

complex behaviour of magnetic excitation were observed under the unsaturated field.

Figure 4.8: (a) Frequencies of the spin-wave modes vs applied field H with 45◦ angle with
respect to the islands. (b) Spatial profiles of mz component magnetisation dynamics at (upper
panel) 43◦ and (lower panel) −47◦ field angles [6]. [Published under CC BY 3.0 licence.].

BLS spectra for the case when the external field is aligned diagonally along 45◦ with

respect to both ASI lattices are shown in Fig. 4.8. Hysteresis appears in the modes as

a gap at about -0.37 kOe, corresponding to reversal of the magnetisation. Unlike the

foregoing case with the 0◦ field, in this symmetrical configuration, the modes appear the
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same for all islands and the two observed spin wave mode. The frequency of spin-wave

modes have almost linear relationship with the applied field.

4.4.3 Simulated spatial profiles

An analysis of the mode structure was performed using micromagnetic simulations. Using

the same parameters as before, the dynamics was simulated using Mumax3 following the

approach of Vansteenkiste et al. [10]. The field configuration is shown in Figs. 4.3 (b) and

(d), and again only single elements are considered. The dimensionless damping parameter

was set as 0.02 [11, 12], and gyromagnetic ratio γ = 2.8 GHz/kOe was used which was

determined from a separate ferromagnetic resonance (FMR) measurement (which will be

detailed in the next section of FMR measurement) and fitted by a Kittel function [13].

An external field is applied as before, and varied from +4 kOe to -4 kOe.

The frequencies were calculated in the following way. At each field step after relaxation

to a steady state configuration a field pulse He = I0 × sin(t)
t ×

sin(4ky)
(4ky) is applied and

orientated along the z axis. This gives rise to torques on each componentmx,my andmz in

each micromagnetic discretization cell, and their responses are recorded every picosecond.

Frequencies and intensities of spin-wave modes are then calculated using a discrete Fourier

transform (in the time and space) of the magnetisation component, mz for each cell [14].

The frequencies calculated in this way are shown in Fig. 4.7 (a) by the solid lines

for H1 horizontal elements (for which the applied field is collinear) and the dotted blue

lines for the H89 vertical elements (for which the applied field is perpendicular to the

element axes). Taken together, these simulations describe well the measured frequencies.

The small discrepancies may be due in part to the effects of edge roughness [15]. The

saturation field can be quite large on the order of several hundred Oe.

To identify which of the confined modes are responsible for the spectra, the spatial

profile of the magnetisation dynamics mz was calculated, and examples are shown in Fig.

4.7 (b). For the analysis which follows, the same classification protocol is used as in [16].

The modes are classified into four categories: backward (m-BA), Damon-Eshbach (m-

DE), edge (m-EM) and fundamental (F). In this classification, the integer m indicates

the number of nodal lines. The BA mode is a mode with a nodal line perpendicular to

the magnetisation. Nodal lines parallel to the magnetisation are called m-DE. The edge

modes, m-EM, are localised at the ends of the islands and normally have a small intensity
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in the BLS spectrum. The fundamental F is the Kittel uniform resonance (m= 0). This

mode typically has the largest intensity.

The modes associated with the horizontal elements are labelled in Fig. 4.7 (a) as

1−EM1 and F1, representing respectively the EM and fundamental modes. These mode

profiles remain unchanged in intensity for magnetic fields between 3 kOe to 1 kOe. The

F1 appears to soften for fields more negative than −50 kOe, consistent with reversal of

the magnetisation of the horizontal element. It is noted that the calculated 1−EM1

mode have two minima in the unsaturated region. This corresponds to curling of the edge

magnetisation. Note also the difference in amplitude of the F mode for the 1 and 3 kOe

fields.

Modes for the vertical elements are labelled 7−EM89 + 2−DE89, 6−E89M +F89,

5−EM89, 3−EM89 and 1−EM89 in Fig. 4.7(a). The corresponding spatial profiles

shown in the bottom of Fig. 4.7(b). The 1−EM89 mode is type EM, and possesses the

lowest frequency. In the 5−EM89 and 3−EM89 mode, the standing wave also emerges.

Hybridisation is more apparent in the higher frequency modes, a mix of a F mode and a

6-EM mode and a mix with the 7-EM and 2-DE modes. As for the horizontal elements,

there is significant dependence of the mode amplitudes on field as seen by comparing the

profiles for 2 and 3 kOe. Furthermore, the frequency of the EM mode is smallest at 1.5

kOe as the magnetisation begins to saturate perpendicular to the element axis [17].

The spatial profiles of the independent island at a 45◦ field have two spin wave modes,

which are F mode and EM mode, as displayed in Fig. 4.8 (b). There are subtle changes

in the position of the amplitudes for the EM mode when the field is reversed from 3 to 1

kOe. Likewise, the shape of the F mode amplitude changes slightly as the field is reduced,

and an edge mode contribution just visible at the corners disappears.

4.5 Discussion and conclusions

This chapter shows the static magnetic properties and spin-wave mode with two distinct

orientations (0◦ and 45◦) of field upon the square ASI lattice using the AGFM and BLS

techniques. The micromagnetic simulations help us to understand the magnetisation

reversal and dynamics of the isolated magnetic element. The square ASI geometry allows

for comparisons of response of modes in elements with orthogonal alignment field direction.
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The configuration in which the magnetic field is perpendicular to one set of elements (the

‘vertical’ elements in our geometry) reveals complex spectra due to the presence of many

types of edge modes. The main features of the modes can be well described as arising

from independent elements aligned parallel and perpendicular to the applied field. There

is no significant evidence of interactions between elements associated with magnetisation

dynamics. For magnetic elements in the saturated field, the shifts associated with the

dynamic inter-element dipolar coupling could not be detected and would, in any case,

be much smaller from possible contributions of edge defects or other imperfections of the

magnetic elements in addition to the static shifts described above. Nevertheless, this ASI

may act as a reconfigurable microwave resonator and that the exact spectrum observed

depends on the microconfiguration of elements in the array.
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5
Role of nanomagnet thickness in

magnetisation dynamics of artificial square

ice

5.1 Introduction

The spin wave properties of rectangular magnetic islands have been investigated individu-

ally and in a variety of array geometries [1–4]. Many types of spin-wave eigenmodes have

been identified in the GHz frequency range whose character is partially determined by

the long-range dynamic dipolar interaction. Some works have appeared recently in which

the ferromagnetic resonance and spin waves were measured in magnetic-element arrays

with different ASI geometries, such as square, penrose and kagome [5–12]. The work of Y.

Yahagi et al. [13] reveals two spin-wave eigenmodes responding to the two magnetisation

orientations of two sub-lattices of an elliptic-disk array which align collinear or orthogonal

105
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to the magnetic field. By way of contrast, the studies in chapter 4 show that a rich spec-

trum of standing spin-wave eigenmodes can be detected with BLS. These eigenmodes can

be used to identify details of the magnetisation processes which occur during magnetic

reversal and hysteresis that cannot be resolved using FMR or magnetometry.

In addition, the static and dynamic magnetisation of the 10 nm thick artificial square

spin ice is discussed from Chapter 4. In this square array, the inter-island interaction is

so weak as to be negligible in the measurements and simulations. Here another square

ASI specimen is studied, which has the same intended in-plane dimension of 240 nm ×

80 nm (the measured dimension being 252 nm × 86 nm) but with the thickness of 30 nm.

The centre-to-centre separation between the second nearest islands is as before at 450

nm. Equivalently, the corner-to-corner distance, d, between the first nearest neighbouring

islands is approximate 92 nm. In principle, the thicker magnetic array should produce

the stronger stray field due to the large magnetic moment of each island.

In this chapter, a comparative investigation of the static and dynamic behaviour in the

two patterned square array of 10 nm and 30 nm thicknesses is undertaken. The measure-

ments of spin wave frequencies on square ASI structure in the GHz range were obtained

using FMR and BLS. Spin waves in magnetic element geometries possess a stationary

character [14] and dipolar stray fields associated with eigenmodes localised to the element

edges extend outside elements [3], decaying with distance into the region between ele-

ments [15]. Emphasis has been given to the presence of soft magnetic eigenmodes which

accompany the magnetisation reorientation and switching of islands [16, 17]. The case of

the easy axis aligned parallel and orthogonal to the applied field direction is presented

here. Substantial changes in the frequencies and number of detected spin wave modes are

found as the thickness varies. The frequencies of those spin waves localised to element

edges are observed to evolve non-monotonically with magnetic field and soften at certain

critical fields. These critical fields enable us to extract information about the magneti-

sation reversal of individual islands within the array. Finally, the effect of separation

between islands is discussed and possibilities for dynamic coupling through the overlap of

collective edge modes as a function of island separation are examined.

In this chapter, two square ASI specimens were prepared by Dr. Sophie Morley at the

University of Leeds. Hysteresis loops were measured by Francesca Casoli using AGFM

in the Institute of Materials for Electronics and Magnetism (IMEM) of Italy. The BLS
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measurement was performed by Gianluca Gubbiotti of CNISM Italy. Dr. Francisco J T

Gonçalves and myself conducted the FMR meaurement. I operated all micromagnetic

simulations and analysed all the data.

5.2 Thickness-dependent hysteresis

5.2.1 Experimental and simulated hysteresis loop

The measured results of AGFM for the 10 nm and 30 nm thick magnetic elements are

shown in Fig. 5.1 by the black lines. As a bulk technique, AGFM probes the magnetic

moment of the entire array. Therefore, the measured magnetisation is an average of the

magnetisation components associated with different element orientations with respect to

the applied field. There is a step visible at around zero field for the thiner magnetic

elements, whereas it is not visible for the thicker magnetic islands. In addition, the

experimental coercive field of the 10 nm thick array (≈ 365 Oe (±5)) is smaller than that

of the 30 nm thick one (≈ 553 Oe (±5)), as listed in Table 5.1.

Figure 5.1: The measured AGFM (black line) and simulated (dark yellow and blue dotted
lines) normalised hysteresis loops of the (a) 10 nm and (b) 30 nm thick ASI specimen. The dark
yellow line represents the mean value of magnetic moment of independently horizontal (MH1)
and vertical (MH89) island, and blue dotted line indicates the magnetisation of the 4×4 units
ASI array in which each unit consists of four islands. Insets show the SEM images (top left) of
the two studied ASI specimens and the schematic of simulated 4×4 unit array (bottom right).

To understand the thickness-dependent behaviour of static magnetisation of ASI, mi-

cromagnetic simulation were performed using MuMax. The magnetic parameters used

and details in this simulation can be found in Section 3.8.2 and Section 4.3.2. Simulations
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Table 5.1: Comparison of the coercive fields, Hc, of the 10 nm and 30 nm thick magnetic
islands between AGFM experiment and micromagnetic simulations of isolated elements and an
4×4 array [18]. [Published under the CC BY 4.0 licence]

Thickness AGFM Hc Isolated-island mean Hc 4×4 units array Hc

(nm) (Oe) (Oe) (Oe)
10 365(±5) 537 (±66) 497 (±81)
30 553(±5) 1023 (±67) 806 (±76)

were initially performed by assuming infinite spacing between elements so that hysteresis

is an average of magnetisation from elements aligned parallel and perpendicular to the

applied field, as presented in Fig. 5.1 by dark yellow line. This mean value is able to

tell us the resulting magnetisation of interaction-free square ASI. Although this approx-

imation cannot well describe the hysteresis loop measured for the 30 nm thick element

(see Fig. 5.1 (b)), it matches well with that for the 10 nm thick array in Fig. 5.1 (a).

Likewise, Table 5.1 illustrates that the coercivity difference of 10 nm thickness between

experimental value and simulated average is four times less than that of 30 nm thick sam-

ple. This suggests a possible stronger inter-element coupling for the thicker array. To test

this, simulations for a 4×4 units ASI array were calculated, in which one unit consists of

four elements, and results are displayed by blue dotted lines in Fig. 5.1. Though the sim-

ulated coercivity of 10 nm thick ASI array almost agrees with that of the interaction-free

case, a better agreement of the coercivity of 30 nm thick element between simulation and

experiment is visible if the deviation (in Table 5.1) is taken into account. Note that the

calculated hysteresis loop of 10 nm thick array is slightly different from that in Fig. 4.2 as

the different shapes of the ASI array is used in the simulation. However, the experimental

curve of the thicker array appears smoother than those of the simulated loops, which show

two evident and sharp steps in the vicinity of zero and coercive field. The reason may

be the contribution of the edge/volume disorders [19], which results in a distribution of

switching fields which means an initial switch of an island's magnetisation can happen at

a field lower than the average coercivity and then be propagated through the array due

to interactions [20, 21]. This disorder is not accounted for in the simulations where the

independently vertical (horizontal) island or all vertical (horizontal) islands of the array

reverse simultaneously which is responsible for the sharp step near the zero field (coercive

field).
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5.2.2 Static field interaction

The static field interaction using micromagnetic simulations is also estimated. The energy

difference4E =E−−E+ of the central element shown in Fig. 5.2 (a) was calculated using

two orientations: one aligned parallel to the static field produced by the neighbours (E+),

and one for the reversed orientation (E−). The corresponding static field magnitude

is Hs = −4E/(MsV ) where V is the volume of island. Note that there are sixteen

possibilities of magnetisation configurations for the array in Fig. 5.2 (a), but here only

present the case in which the central element experiences the largest static field. The static

field, Hs, as a function of island thickness for the corner-to-corner separation between

nearest neighbours from 1 nm to 141 nm is shown in Fig. 5.2 (b). The largest static field

of the central element produced by the neighbours is about 80 Oe for the 10 nm thick array

and 240 Oe for the 30 nm thick array. The strength of the static field roughly decreases

by a factor of 10 as d changes between 1 nm and 141 nm. In addition, from Fig. 5.2

(b) one can see that the magnetostatic dipolar field from the neighbouring nanomagnet

primarily affect the magnetisation localised at the corners of the central island.

Figure 5.2: (a) Distribution of the largest average stray field of the 30 nm thick ASI array
where d is the corner-to-corner separation between the nearest islands and the colour code
disk represents the orientations of magnetisation in the element and the demagnetisation out
of the elements. (b) The largest static field Hs acting on the central element in (a) from the
neighbouring elements as a function of island thickness for the corner-to-corner separation d
from 1 nm to 141 nm [18]. [Published under the CC BY 4.0 licence].
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5.3 Ferromagnetic resonance (FMR)

The dynamic response of the 10 nm thick square ASI using BLS has been discussed in

Chapter 4.4.2. A broadband ferromagnetic resonance spectroscopy was also performed to

detect the dynamic magnetisation behaviour of two ASI arrays of different thicknesses.

The dependence of the dynamic response on the thickness and field angle are explored

using the VNA-FMR technique.

5.3.1 Thickness-introduced ferromagnetic resonance

Figure 5.3: FMR absorption spectra of the (a) 10 nm and (b) 30 nm thick square ASIs at 1
mT (0.5 mT), 52 mT (50 mT), 100 mT and 150 mT 0◦ fields with respect to ASI lattices.

Figure 5.3 shows the FMR absorption spectra of 10 nm and 30 nm thick magnetic

elements at 0◦ external fields of in the vicinity of 0 mT, 50 mT, 100 mT and 150 mT with

respect the ASI array. The response of FMR signal to the square ASI of 10 nm thickness

is obviously weak. This is a result of the small volume and hence the magnetic moment of

the 10 nm thick island is weak so that the amplitude of absorption peaks are so small, as

shown in Fig. 5.3 (a). One main peak can be clearly identified in most of spectra except

that obtained under around zero external field. This resonance mode is the fundamental

mode (or Kittel mode) from the ASI islands Ih whose easy axis is aligned with the applied

field (see the inset of Fig. 5.4), which is referred to as Fh. Furthermore, the frequency of

this mode increases as the strength of applied magnetic field increases. The fundamental

mode is named as Fv when the hard axis of the nanomagnet is aligned with the magnetic

field.
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By contrast, the amplitude of the absorption peak for the 30 nm thick specimen is

comparatively large, as presented in Fig. 5.3 (b). In the measured frequency range, two

resonance peaks (Fh and Fv) are observed for the 50 mT and 100 mT fields, while only one

peak (Fh) distinguished from the spectra under the field of 0 mT and 150 mT. For the case

in which only a single peak is observed, the signal-to-noise ratio of Fv peak is probably

too weak to be identified or the frequency of the resonance peak is perhaps outside the

measured range. In Fig. 5.3 (b), the Fh mode occurs at a relatively higher frequency

compared with Fv mode. The two resonance modes exhibit different field dependences.

As the field strength increases, the frequency of mode Fh also increases. The frequency

mode Fv decreases while the amplitude of field increases. It should be also noted that there

is a very broad peak measured at the frequency of 9 GHz. However, this mode is not the

resonances from the magnetic island as it is independent on the magnetic field, remaining

unchanged with varying the field. This mode may arise from resonance generated in the

experimental set-up [22].

Figure 5.4: Contour plots of the normalised ∆S21, indicating the measured ferromagnetic
resonance of the square ASI of (a) 10 nm and (b) 30 nm thicknesses. (c) The schematic of the
orientation of the external field with respect to the ASI array, in which two groups of magnetic
islands, Ih and Iv, are marked in light blue and red.

To understand the relationship between the FMR resonance mode and the magnetic

field, a field swept from + 150 mT to - 150 mT aligning the (1,0) direction was applied

along the ASI sample. Shown in Fig. 5.4 are interesting plots of FMR response as a

function of field and frequency for the 10 nm and 30 nm thick square ASI. In Fig. 5.4

(a), the FMR plots for 10 nm thick nanomagnet has poor contrast FMR signal and high

background, while the contrast of 30 thick nanomagnet in Fig. 5.4 (b) is much better

presentably due to the larger magnetic moment of each element. The Fh mode for both
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thicknesses exhibits a linear dependence on the magnetic field. The larger magnetic

moment of the thicker sample also leads to a higher frequency of the resonance mode Fh
than that of the thinner one. The Fv mode nevertheless shows a different dependence on

the magnetic field. As the field decreases, the Fh mode shifts to lower frequency, whereas

Fv mode shifts to the higher frequency. The easy direction is along the long axis of each

nanomagnet and hard direction is along the short axis in the plane. The Fh mode behaves

like the easy-direction Kittel mode from the Ih islands in an array, the easy axis of which

is aligned along the field. The Fv mode is the hard-axis Kittel mode localised to the

magnetic islands Iv, whose hard axis is magnetised by the field.

Due to the limit for field strength in our FMR set up, the maximum available magnetic

field is about ±160mT . Fig. 5.1 suggests that such a maximum is not sufficient to saturate

the thicker array. Furthermore, a nonmonotonic resonance (Fv) is observed within a

small field region which is too weak to be resolved clearly from the FMR measurements.

Therefore, the BLS measurement on the same sample have been carried out, as discussed

in Chapter 4. Fig. 5.5 shows a good agreement between the FMR and BLS results.

However, BLS has the advantage that it can resolve spin-wave modes confined to the

magnetic elements. A more detailed and comparative study of the thickness-dependent

magnetisation dynamics using BLS will be presented and discussed in Section 5.4.2.

Figure 5.5: Comparison of the magnetisation dynamic modes dependent on magnetic field
between the ferromagnetic resonance (colour contour shading) and the BLS (blue points) mea-
surements.

5.3.2 Angular independence of FMR

FMR is frequently utilised to evaluate the anisotropy response of resonance mode in a

magnetic material [10, 23–26]. In this investigation, FMR measurements were performed
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to study of the influence shape anisotropy of the 30 nm thick ASI nanomagnets on mag-

netisation dynamics. The azimuthal angles (θ) of applied field was varied from 0◦ to 360◦

with respect to the y axis, as depicted in Fig. 5.6 (e).

Figure 5.6: Angular-dependent FMR spectra at the (a) 150 mT, (b) 100 mT, (c) 50 mT and
(d) 0 mT external fields. The red and blue arrows point out the Fh and Fv modes, respectively.
(e) Schematic indicating the orientation of magnetic field with respect to the square ASI lattices.

Figure 5.6 demonstrates the angular field dependence of FMR at various strengths

of external field. The red arrows indicate the resonance peaks of the Fh mode and the

blue arrows label the Fv resonance. Our FMR data can be qualitatively interpreted to

understand the angular-dependence behaviour of square ASI. In Fig. 5.6 (a), at the field

of 150 mT, the Fh mode gradually shifts to lower frequency (from ∼ 16 GHz to ∼ 15

GHz) when the applied angle increases from 0◦ to 45◦. However, the frequency of the

Fh mode increases from ∼ 15 GHz back to ∼ 16 GHz as the field angle is varied from

45◦ to 90◦. It is found that the low-frequency mode Fv behaves oppositely to that of

the high-frequency mode Fh. Thus, the frequency of the low-frequency mode increases as

the field angle increases betweem θ = 0◦ and θ = 45◦, while it decreases from 45◦ to 90◦.

This suggests that the behaviour of the resonance mode is related to the angle between
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the applied field and the shape anisotropic axis of the islands. It is also noticed that the

strength of the applied field contributes to the frequency difference between the Fh and Fv
modes. Figs.5.6 (a-c) show a smaller frequency separation with a weak-amplitude field.

In addition, only one resonance peak can be identified when the magnetic field decreases

to 0 mT. Interestingly, in Fig. 5.6, a significant peak is seen between the region between

16 GHz and 17 GHz. This peak appears in all panels of Fig. 5.6. However, this is not

the absorption peak so that it is not from the ferromagnetic resonance. The behaviour of

this peak is independent on the field strength but slightly dependent on the field angle.

Thereby, this mode might be generated from mechanical vibrations between the sample

and coplanar waveguide in the experiment.

Figure 5.7: Contour plots of the ferromagnetic resonances of the 30 nm thick artificial square
spin ice with the applied field H at the azimuthal angles (θ) of (a) 0◦, (b) 22.5◦, (c) 45◦, (d)
50◦, (e) 90◦ and (f) 180◦ to y axis.

Figure 5.7 presents the FMR resonances as the external field sweeps from + 150 mT to

- 150 mT and at the various field angles between 0◦ and 180◦ to the ASI array (or y axis).

There are two visible FMR resonances and each exhibits a different field dependence. One

is linearly dependent, while the other is not, as shown in the panels of the Fig. 5.7 (a),

(e) and (g). Two FMR resonances were obtained from the Ih and Iv nanomagnets. The

resonance depends linearly on the field strength at the field angle an are shown for 22.5◦,

45◦ and 50◦.
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5.3.3 Gyromagnetic ratio

In addition to the configuration anisotropy, FMR measurments also allow for the quantita-

tive extraction of the magnetic parameters of saturation magnetisation and gyromagnetic

ratio. The magnetisation dynamics measured in the FMR measurement obeys a Kittel

equation which is given by [27]

ω = γ
√

[H+ (Nz−NH)4πMs]× [H+ (NH,⊥−NH)4πMs], (5.1)

where ω is the frequency of the FMR mode; H represents the applied field; γ is the gy-

romagnetic ratio; Nz is the demagnetising factor along the z direction for nanomagnet

thickness; NH (NH,⊥) is the demagnetising constant along (perpendicular to) the orienta-

tion of applied field H ; Ms is the saturation magnetisation. The two groups of islands, Ih
and Iv, have two different configurations with respect to the 0◦ field, as displayed in Fig.

5.8. Figure 5.8 (a) indicates that the easy direction (along the long axis) of nanomagnet is

along by the field whereas the Fig. 5.8 (b) shows the configuration of hard direction (along

the short axis) along the field. Correspondingly, the Kittel function of the Ih islands can

be rearranged into

ω = γ
√

[H+ (Nz−Ny)4πMs][H+ (Nx−Ny)4πMs]. (5.2)

where the Nx, Ny and Nz are demagnetising factors along the x, y and z axis in Fig. 5.8.

In the same way, the Kittel resonance of the Iv island against applied field H is explained

by

ω = γ
√

[H+ (Nz−Nx)4πMs][H+ (Ny−Nx)4πMs], (5.3)

The demagnetisation factors of a cuboid are able to be estimated using the method

introduced by A. Aharoni [28]. In particular, the freely available calculator of the demag-

netisation factor could be made use of, published on the “magpar” webpage [28,29]. Our

approximation of the demagnetisation factors of the cubic island with the 10 nm and 30

nm thicknesses are displayed in Table.5.2.

The BLS data to present the Kittel mode (Fh mode) was fitted using Eq. 5.3. This

mode was identified from a number of BLS modes based on its overlap with FMR results,
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Figure 5.8: Configurations of the applied field H aligning to the (a) easy and (b) hard directions
of a nanomagnet. Given dimension of each element (h = 10 (30) nm, w = 80 nm and l = 240
nm) allows us to calculate the demagnetising factors Nx, Ny and Nz.

Table 5.2: Comparison of the fitting magnetic parameters: demagnetising factors (Nx, Ny and
Nz, saturation magnetisation (Ms) and gyromagnetic ratio (γ) between 10 nm and 30 nm thick
nanomagnet deriving from Kittel equation.

Thickness Nx Ny Nz Ms γ

(nm) (A/m) (GHz/kOe)
10 0.04 0.13 0.83 7.79×104 (±0.09×104) 2.77 (±0.01)
30 0.08 0.27 0.65 7.93×104 (±0.01×104) 2.77 (±0.01)

as shown in Fig. 5.5. The BLS value is used to fit rather than the FMR figure as

the maximum field in the FMR measurement is inefficient to saturate both Ih and Iv

nanomagnets, while that in BLS is. The fitting results of Ms and γ extracted from the

sample of 10 nm thickness are 7.79×104(±0.09×104) A/m and 2.77 (±0.01) GHz/kOe.

The fitting value of 30 nm thick ASI are 7.93× 104(±0.01× 104) A/m and 2.77 (±0.01)

GHz/kOe. The fits for both Ih and Iv cases are plotted in Fig. 5.9. Figure 5.9 shows that

the Kittel mode from the easy-direction island Ih agrees well with the experimental BLS

value. The numerical Kittel mode of the hard-axis nanomagnet Iv is in good agreement

with the BLS experiment for the field larger than 2.2 kOe (saturation field).

Given gyromagnetic ratio (≈ 2.8 GHz/kOe) of permalloy material is same as that has

been obtained in another publication [30] using the Kittel equation. This value could be

used as a parameter for Mumax simulation. However, the fitting saturation magnetisation

Ms is less than one order of magnitude than the standard Ms, 8×105 A/m [31–33] and

led to a lower-frequency simulated resonance in comparison to measured BLS modes.

Therefore, the standard one was applied in all simulations and has produced a good

agreement with the experiment (Fig. 5.11).
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Figure 5.9: Comparison of resonance frequency for the (a) 10 nm and (b) 30 nm thick ASI
between BLS value (red squares) and fitting lines using the Kittel function with 0◦ field in which
the blue line arises from the Ih (Fig. 5.8 (a)) whose easy direction is aligned along the field, and
black line from Iv (Fig. 5.8 (b)) the field laying to its hard axis.

5.4 Thickness dependence of spin-wave excitation

5.4.1 Spin wave spectra

Dynamical coupling between the islands can be measured by the spin wave frequency

dispersion, which is spin wave frequency as function of the wavevector of the laser on the

plane of sample, as shown in Section 4.4.1. This was studied in both the Damon-Eshbach

and Backward Volume magnetostatic configurations when the applied field is horizontal

(x-direction) with respect to the ASI principal axis.

Figure 5.10: BLS spectra of the (a) 10 nm and (b) 30 nm thick ASI arrays at the external
field of 4 kOe. The incidence angle of the laser light upon the sample is 20◦ [18]. [Published
under the CC BY 4.0 licence].

Examples of measured BLS spectra under a 4 kOe field are shown in Fig. 5.10. Well-
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defined, narrow BLS peaks were observed in the spectra obtained from the 10 nm thick

ASI-like array (see Fig. 5.10 (a)) with a clear frequency separation of larger than 3 GHz

between two families of eigenmodes. Contrarily, the peaks obtained in the spectra from

30 nm thick array (see Fig. 5.10 (b)) are broad and more closely spaced in frequency.

This suggests that the nanomagnet thickness strongly affects on the number of observable

spin-wave modes.

5.4.2 Spin-wave eigenmode and spatial profile

Figure 5.11 plots the frequencies of the BLS peaks (as displayed in Fig. 5.10) as a

function magnetic field which sweeps from +4 kOe to −4 kOe. The experimental data

are illustrated by red square symbols. Above the coercive field, indicated by the vertical

blue dash-dotted lines, the dependence of the frequencies on field is linear. Below the

coercive field, mode softening occurs as magnetisation of individual elements within the

array reverse. It is found that the spin-wave modes exhibit a more complex behaviour

below the saturated field.

An analysis of the mode structure using micromagnetic simulations was performed as

described in Section 4.4.3. The elements are treated as independent elements in order to

calculate a non-interacting reference for comparison. As discussed in the Section 5.2.1,

the agreement of the static results with the interaction-free simulations and a magnetic

array simulation that considers the possible dynamic inter-island interaction, suggest that

the ASI array of 10 nm thickness possesses negligible dynamic inter-element interaction.

The field dependence of spin-wave modes in a 2× 2 units array with the 30 nm thick

nanomagnet was also computed, showing the influence of the static field of neighbouring

elements on the spin wave excitations, as presented in Fig. 5.12 (a). All spin-wave

resonances excited from this array with a 3 kOe field are overlapped with the superposition

of spin wave resonances excited from isolated islands (Ih and Iv) with less than 0.35 GHz

frequency discrepancy, as shown in Fig. 5.12 (b). Therefore, using the independent-island

model not only allows us to advantageously distinguish the contributions from the vertical

and horizontal sublattices, but also is able to describe the spin wave behaviour of this

square ASI array.

In Fig. 5.11, qualitative agreement is obtained between experiment and simulations

for both element thicknesses using the same magnetic parameters, but differing only in
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Figure 5.11: Frequencies of spin-wave eigenmodes as a function of magnetic field H, applied
along the x-direction for the (a) 10 nm and (b) 30 nm thick islands in square ASI. The red
squares are BLS experimental results; black solid and blue dotted lines indicate the simulation
results for horizontally and vertically isolated islands with respect to the field, correspondingly.
The blue and black dash dotted lines indicate the switching fields of the horizontal and vertical
islands, respectively. Labels indicate the spatial characters of the eigenmodes. The spatial
profile of eigenmodes will be imaged in the Fig. 5.13.

the element thickness. The 10 nm thick array shows a better agreement with experimen-

tal frequencies than those in 30 nm thick array. As noted in regards to the hysteresis

simulations, the static field that is produced from its neighbouring elements is neglected.

This leads to a coercivity that is too large because it does not take into account the differ-

ent static field environment that elements at an array edge experience. In addition, edge

imperfection on elements are not included in the model. Kohli et al. show that this can

also cause differences in the coercivity compared to simulated ‘ideal’ islands [34]. In this

regards, the evidence of stronger interaction coupling in the 30 nm thick sample may ap-

pear as a reduced coercivity compared to the simulated hysteresis loop. Also, the reduced

coercivity field means that the lowest frequencies associated with softening at magnetic
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Figure 5.12: (a) Comparison of the frequencies of the spin wave modes of the 30 nm thick
elements as a function of magnetic field between BLS results (yellow squares) and the simulation
of a 2× 2 units (12 elements) array. The intensity of the spin-wave modes is displayed by the
colour contour shadings where dark shading indicates the maximum intensity and the light yellow
to while colours signify the minimum intensity. (b) Line scan of the simulated spin wave mode
intensity at the applied field of +3 kOe indicated by the vertically black line in (a). Intensities
associated with modes on the horizontal and vertical islands are also indicated. The resonance
intensity is calculated as the square of the time Fourier transformed calculation of the simulated
mz component [18]. [Published under the CC BY 4.0 licence].

transitions will shift to lower fields with an increase in frequency due to an stronger in-

ternal field. From the simulation data of isolated elements shown in Fig. 5.11 (b), it can

be estimated that as a shift in field by an amount approximately equal to 0.5 kOe would

increase the frequencies of the spin waves in the linear regime by approximately 2 GHz.

Regarding the frequency evolution of magnetic eigenmodes as a function of the ex-

ternal magnetic field, it is notable that, starting from +4 kOe and decreasing the field

towards negative saturation, some of the eigenmodes are characterised by an almost lin-

ear behaviour (the black solid lines) with field while for some others there are frequency

minima (the blue dotted lines). For fields between the minima the frequency of these
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Figure 5.13: Spatial profiles of the out-of-plane mz component of the dynamic magnetisation
of the (a) 10 nm and (b) 30 nm thick isolated element magnetised by the magnetic field H of 3
kOe [18]. [Published under the CC BY 4.0 licence].

eigenmodes are characterised by a “bell” shape [35] and the lowest frequencies at small

field are due to destabilising of the vertical element before reversal. The spin wave fre-

quency, however, shows high field softening (the minima of the blue curves in Figs.5.11)

and also a low field softening (the minima in the black curves in Figs. 5.11), which are

respectively indicated by vertically blue and black dash dotted lines. This means that it

is possible to access, through spin wave softening, to the separate reversal events of the

field parallel (Ih) and field perpendicular (Iv) elements. In particular, by inspection of

the simulated magnetisation curves, one can assert that the frequency minima of the Iv
element measured for the lowest frequency eigenmodes are at ± 2.1 kOe (1.2 kOe) for the

30 nm (10 nm) thick array, are related to the saturation of the islands aligned perpendic-

ular to the applied field while other minima correspond to reorientation of magnetisation

in islands aligned collinear to field H. By way of contrast, hysteresis measurements reflect

the sum of the two component orientations of sub-lattices with respect to the field. This

alone however is unable to distinguish between these separate reversals.

Figs. 5.13 shows the calculated intensity profiles of the spin wave excitations of the

independently horizontal and vertical islands, Ih and Iv. The eigenmodes are labelled
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according to the scheme proposed by Zivieri et al. [31] where “F” indicates a fundamental

resonance localised in the central portion of the islands oriented horizontally (Fh) or

vertically (Fv) with respect to the applied field direction,H; “EM” indicates an edge mode;

“DE” designates the Damon-Eshbach mode with nodal planes parallel to the direction of

the applied magnetic field.

EM eigenmodes are highly susceptible to surface and edge specific local anisotropy

and exchange fields that can strongly affect their frequency. Examples of these eigen-

modes are shown in Figs.5.13. There are some discrepancies between the measured and

calculated EM frequency in the Fig. 5.11. This can be ascribed to the non-ideal shape

of the elements, edge roughness, and consequent reduced edge magnetisation and surface

anisotropy on the edge surface which lead to a smaller effective demagnetisation field

along the edges [36].

5.5 Internal field induced by the thickness

It is especially interesting to notice that the Fh and FV eigenmodes in the 30 nm thick

island have a smaller spatial extent than the same mode in the 10 nm thick island, as

shown in Fig. 5.13. This is connected to the spatial profile of the internal magnetic

field. The internal magnetic field defined as the sum of the Zeeman (H) and static

demagnetising (Hd) fields, Hint = H +Hd, due to magnetic free charges arising at the

edges of the magnetic elements, has been calculated using micromagnetic simulation, as

discussed in Chapter 4. Figure 5.14 display that, for the thinner array, Hint is flatter in

the central portion of the elements and more homogeneous. It is noticed that Hint for

the 30 nm thick ASI array is always smaller than that of the 10 nm thick array and this

difference is responsible for the frequency shift of eigenmodes with the same spatial profile

as observed in Fig. 5.13. Finally, the spatial extent of the F mode (see Fig. 5.14) when H

is applied along the x-direction is larger than when H is aligned parallel to the y-direction.

This reflects the inhomogeneity region of Hint for the two magnetic field orientations with

respect to the independent island.



5.6. Discussion of dynamic interaction 123

Figure 5.14: Thickness-dependence spatial profiles (a) x and (b) y of the internal field calcu-
lated along the central section of the element (the dotted line) for a external field H = 3.0 kOe
applied along the arrow direction.

5.6 Discussion of dynamic interaction

Now, the possibility of dynamic field interaction between islands of the ASI array is

discussed. Firstly, the spin wave dispersions for different field orientations have been

measured, as described in the Section 4.4.1. No appreciable modification of the frequencies

has been detected which suggests that these two arrays do not support a measurable

magnon band width, and therefore spin waves are confined in each magnetic island other

than propagation within the patterned array. Instead the array behaves as a collection

of elements which are affected only by the weak static field from the neighbours. This

is consistent with the mode profiles calculated in Fig.5.13. In a dense array of magnetic

elements, the low frequency edge mode may couple elements via a stray dynamic dipole

field. The strength of this coupling would determine the width of the magnonic band [37].

However, the fundamental mode is very much localised within an element, and the stray

dynamic fields produced between elements is very small.

Here, a question of whether one can in principle design a square ice array that behaves

as a magnonic crystal could be posed. The simplest case with two magnetic elements

was studied by micromagnetic simulation. Figure 5.15 (a) displays the simulated spin-

wave frequencies of two elements of 30 nm thickness as a function of the corner-to-corner

distance between them. An applied field of 3 kOe is parallel to the horizontal island.

The frequencies of the two lowest-frequency modes (1-EM and 3-EM) will rise within the

range of 1 GHz as d decreases to 1 nm. This change in frequency is due to an increased

static inter-element coupling field, as shown in the Fig. 5.2 (b). In Fig. (b) the spatial
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Figure 5.15: (a) Frequencies of spin-wave modes of 30 nm thick two-element array as a function
of corner-to-corner separation d between the nearest neighbours. (b) Spatial profiles of the out-
plane mz component of the two elements with 1 nm, 14 nm and 92 nm separation. Note that
the line is a guide to the eyes and the d is not scaled in the profile map [18]. [Published under
the CC BY 4.0 licence].

profile of spin wave modes for 1 nm, 14 nm and 92 nm island separation of Fig. 5.15 (a)

show that there is no overlap between the two EM modes even when the islands nearly

touch each other. Note that the Fv mode, which has negligible overlap between islands,

is independent of d.

5.7 Conclusions

In this chapter, the spin wave excitations of artificial square spin ice is discussed and

the frequencies obtained from 10 nm and 30 nm thick nanomagnets with a corner-to-

corner separation between nearest neighbouring island of 92 nm are compared. Softening

observed in the edge mode spectra as a function of applied magnetic field can be identified

with reversal of different orientations of magnetic islands. This allows us to use spin

wave spectra to differentiate reversals of those elements with axes parallel to the applied

magnetic field from elements with axes perpendicular to the applied field.

There is some evidence for observable static field interactions between 30 nm thick

elements. This evidence is determined by the coercive fields of experiment and simulated

array which are substantially less than those expected of isolated elements. The inter-

element interactions may reduce the array coercivity by assisting reversal of elements at

the array edges and corners through cooperative effects that can lead to reduced coer-

civity of the entire array. This interaction may also contribute weakly to the spin wave
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frequencies.

Lastly, it is noted that most of the spin wave excitations observed in two ASI arrays

of 10 nm and 30 nm thicknesses belong to the class of edge-localised eigenmodes. This

means that their measurement provides at least in principle information about the effects

of nanomagnet element that determine the frequency of spin wave eigenmodes confined to

individual elements. This square ASI system primarily supports the standing spin wave.
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6
Ferromagnetism and domain-wall topologies

in an artificial pinwheel spin ice

6.1 Introduction

In Chapters 4 and 5, the effect of magnetisation configuration on spin wave response

of square ASI using BLS and FMR is discussed, noting the roles of field strength, field

direction and nanomagnet thickness. However, the nonlinearly complex magnetic be-

haviour in the presence of a nonsaturating field is not been fully understood yet since

it is computationally infeasible to predict the magnetisation reversal of an array with

a great many islands (≈ 4000 × 4000 islands in this square ASI) using micromagnetic

simulations. This problem can be solved by using a number of cutting-edge techniques to

image in-situ changes of magnetisation state within individual nanomagnet in real time

with varying temperature and field strength. Up to now, a number of imaging techniques

have been utilised, such as Magnetic Force Microscopy (MFM) [1–10], Photo-Emission

131
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Electron Microscopy (PEEM) [11–16] and Transmission X-ray Microscopy (TXM) [17].

In our study, Lorentz Transmission Electron Microscopy (LTEM) was employed to probe

the magnetisation state of each permalloy island. This allows us to continuously image

and track the magnetic state of a finite-size (1250 nanomagnets) ASI array over an whole

sweeping field. Most importantly, the magnetisation changes under a switching field can

be observed.

The study of magnetic configurations in ASI geometries has inspired exploration of

exotic properties to be explored [4,9,10,12,18,19]. For example, the square and Kagome

ASIs exhibit some peculiar behaviours: residual entropy [20], monopole-like excitations

[18,21,22] and reconfigurable magnetic resonance [23–25]. In addition, other geometries of

ASI were also proposed as a way to study the new frustrations, for instance Shakti [9,26],

Penrose [27–29] and a modified square [8], resulting in novel multifold degenerate ground

states and magnetic charge ordering. Here, a “pinwheel” geometry is proposed, created

by rotating each island in square ASI 45◦ around its central axis, as depicted in Fig. 6.1.

In this chapter, the nature of such a structure is explored, which possesses smaller

energy spreads between vertices than those of square ASI so that it is highly degenerate.

The angular dependence of the field-driven magnetisation process in pinwheel ASI is also

studied using LTEM. The results show ferromagnetic domain growth and domain-wall

propagation at certain applied field orientation with respect to the ASI array. Mesoscopic

wall configurations in analogy with typical 180◦ and 90◦ ferromagnetic Néel wall observed

in continuous films appear during magnetisation reversal. The unusual charged domain

walls are also observed, where the charge ordering is dependent on the magnetisation

alignments of the neighbouring domains. At the end, an AC field-induced demagnetisation

protocol will be described as a method to anneal experimentally the pinwheel ASI system

to its ground state.

The contributions from other collaborators and myself to this work are: Dr. Ciaran

Ferguson fabricated the pinwheel ASI with the asymmetric boundary in the James Watt

Nanofabrication Centre at the University of Glasgow and Dr. Sophie Morley prepared

the pinwheel ASI with the symmetric boundary at the University of Leeds; Dr. Gary

Paterson and myself operated the Lorentz TEM measurements and analysed the TEM

data together; Dr. Ciaran Ferguson and myself carried out the demagnetisating ASI

experiment. I analysed the all data of the demagnetisation measurements.
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6.2 Pinwheel artificial spin ice

It is well established that square ASI has an antiferromagnetic ground state [10, 13] and,

for a single vertex, it possesses four types of well-defined energy levels [2,30]. The vertex

is defined as a point at which four nearest islands meet on (Figs. 6.1 (a) and (c)). The

energy of square vertex increases from the lowest energy state (T1), with the ‘two-in-two-

out’ topology obeying ‘ice rules’, to the highest-energy ‘four-in (four-out)’ configuration

(T4) [1], as shown in Fig. 6.2.

Figure 6.1: Schematic of the modification from (a, c) square ASI into (b, d) pinwheel ASI
through rotating each element around its centre by 45◦. The label ‘NN1’ indicates the interac-
tions between the first nearest neighbours (red dashed line), and ‘NN2’ represents the interaction
between the second nearest neighbours (blue dash line). Diagrams (b) and (d) compare two pin-
wheel structure with opposite chiralities.

Figure 6.2: The four possible vertex magnetisation topologies, referred to as ‘T1’, ‘T2’, ‘T3’
and ‘T4’. The vertex energy of square vertex increases from T1 to T4 [2]. The number in the
bracket represents all possibilities of the degenerate of each vertex configuration.

A patterned square-lattice array has a ground state configuration of antiferromagnetic

ordering created by tiling two degenerate T1 vertices. This gives rise to an antiferro-

magnetic moment arrangement. It is interesting to ask if a geometry of ASI, where the
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interisland coupling leads to a ferromagnetic ground state, could be designed? By rotating

each individual island of square ASI through 45◦, as depicted by Fig. 6.1 (a), drives one

end of island ends points toward the middle part of its nearest neighbour, which forms a

‘pinwheel’ geometry (see Fig. 6.1 (b) or (c)). In such a structure, the interaction arising

from the neighbouring islands (NN1 and NN2) is modified. For the sake of simplification

the interactions of a single pinwheel vertex is examined in the next section.

6.2.1 A nearly-degenerate system

How does the interaction vary as the arrangement of magnetic island changes? To address

this problem, the vertex energies for square and pinwheel ASI were computed using Monte

Carlo (MC) method on the basis of the dipole-dipole interaction model [13,18,31]. All MC

results in this chapter have been acquired by our collaborator Fabio S. Nascimento at the

Federal University of Viçosa, Brazil. The MC columns of Table 6.3 show the normalised

vertex energy calculated by Edip/D, where Edip is total dipolar energy given by

Edip = µ0
4π

∑
i 6=j

[ ~µi · ~µj
r3
ij

− 3(~µi ·~rij)(~µi ·~rij)
r5
ij

], (6.1)

where ~µi ( ~µj) is the magnetic moment within each nanomagnet and rij is the distance

between two macrospins, i and j; D = µ0µ2/(4πa3) is the dipolar constant that is the

energy between the nearest islands with the separation of a between magnetic islands.

Energy increases from T1 to T4 for a square vertex. However, in a single pinwheel vertex

the order of energy level is modified such that the T2 configuration is lowest state and the

T1 (T4) becomes highest state. Meanwhile, the energy differences between vertices decline

sharply. As we know, the dipolar-dipolar interaction is a long-range force. However, the

separation between the magnetic islands in our pinwheel ASI specimen (which is 420 nm

between nearest islands) are not in the “far-field”.

To make a comparison, the vertex energy is also evaluated using micromagnetic simula-

tion (MS) approach based on the Mumax package. This not only takes the magnetostatic

energy into account but also the exchange energy. The dimension of the pinwheel vertex

is 470 × 170 × 10 nm3 and the separation between nearest islands is 420 nm. The numer-

ical vertex energy of MS similarly suggests that there are four distinct energy landscapes

in both square and pinwheel ASI, as displayed in the MS columns of Table 6.1. The
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Table 6.1: Comparison of the vertex energies and energy difference, ∆E ( = Ehighest - Elowest),
between square and pinwheel ASI using MC and MS methods where Edip is the total dipolar
energy and D = µ0µ

2/(4πa3); µ is the magnetic moment of each nanomagnet and a is the
separation between islands.

Geometry Square ASI Pinwheel ASI
Simulation Method MC (Edip/D) MS (eV) MC (Edip/D) MS (eV)

ET1 -13 163 1 198
ET2 -4 167 -1 199
ET3 0 180 0 198
ET4 21 220 1 197
∆E 33 57 2 2

energy spread in the square vertices (from 163 eV to 220 eV) is much greater than that in

pinwheel ASI (from 197 eV to 199 eV). However, the MS simulation predicts that T4 is

the ground state for a single pinwheel vertex rather than T2. The energy levels are found

to change when slightly varying the parameters of the MS simulation , i.e. island shape,

cell size and lattice constant etc. Thus, it is difficult to confirm the ground state of a

real pinwheel vertex as a result of the relatively small energy difference. Additionally, the

energy difference (∆E) between the highest (Ehighest) and lowest (Elowest) levels reduces

by a factor of around 29 times compared to the square ASI. The pinwheel structure is

therefore a nearly degenerated system. Note that the labelling of pinwheel vertex energy

level here is consistent with that of the square vertex. However, the nomenclature of

pinwheel vertex will be changed (see Fig. 6.3) according to its energy levels in the rest of

this chapter which will be discussed in Section 6.2.2.

Note that if one calculates the vertex energy without relaxation in the micromagnetic

simulation, the energy levels agree with the MC calculation, in particular, the levels are or-

dered as ET2 <ET3 <ET1 = ET4. The lack of exchange energy in the free-relaxation calcu-

lation forces the moment of each nanomagnet to behave exactly as a macrospin. Hence, its

vertex energies are similar to those of MC simulation. However, for the pinwheel-geometry

case the simplest dipolar energy is no longer dominant since the dipolar interaction be-

tween the nearest neighbours NN1 approaches zero. Moreover, the end states of island

has been theoretically proven to play an essential role in inter-island coupling [32,33]. The

stadium-shape magnetic islands have the onion magnetisation configuration after relaxing

in the simulation. The relaxation process thus gives a more accurate picture of the energy

landscape.
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6.2.2 Pinwheel vertex classification

The study of pinwheel ASI in this chapter is focused on the field-induced behaviour of

the mesoscopic ‘domain’ and ‘domain wall’ in terms of vertex net moment. The details of

the pinwheel vertex will be detailed in this section. Figure 6.3 (a) illustrates the sixteen

possible vertex magnetisation topologies. They can be categorised into four types based

on their dipolar energy levels, named as ‘Type I’, ‘Type II’, ‘Type III’, ‘Type IV’. Unlike

square ASI, a pinwheel ASI array can exist as two sets of interleaved vertices with opposite

chiralities. An equivalent group of pinwheel vertex topologies is displayed in Fig. 6.3 (b).

Figure 6.3: (a) The sixteen possible vertex configurations, consisting of four nearest nanomag-
nets, classified by means of vertex net moment, which decreases from Type I to Type III (Type
IV), where the small black arrow in the grey nanomagnet indicates the magnetisation direction
of nanomagnet; the larger arrows represent the direction of vertex net moment; the red, blue
disks and cross represent the zero-moment vertex. (b) The matching set of configurations for
vertices of opposite chirality. From Type I to Type IV the dipolar energy increase (see MC
results of the pinwheel vertex in Table 6.1) whereas the net moment decreases from M to 0.
(c) Net charge of each vertex is determined by the dipole charges (blue and red points at the
both ends of island) of the magnetic element using dumbbell model, where ‘+/-’ shows the two
positive/negative net charges, ‘⊕/	’ (corresponding to the vertices marked by red/blue disk)
for four positive/negative net charges and circle (corresponding to the vertices marked by cross)
for neutral vertex.

The vertex net moment is determined by the moment of nanomagnet (m) which is
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plotted in Figs. 6.3 (a) and (b). The vertex net charge is calculated by summing the four

dipolar magnetic charges which meet up at the central point of pinwheel vertex using the

dumbbell model [34]. To be specific, in Type I vertex, the moment of one nanomagnet

is aligned parallel with its second-nearest moment. This category of vertex has four

degenerate states with the zero magnetic charge and the largest net moment, M. When

one of the four magnetic moments flips it will be changed into Type II vertex, leading

to one pair of the NN2 neighbours aligned antiparallel, while the other moment pair

still in the parallel alignment. Type II vertex possesses a smaller net moment(
√

2/2M)

and two net magnetic charge ±2q (marked by ‘+/-’ symbol). The full charged (±4q,

labelled by ‘⊕/	’) vertex, Type III, has no moment as the antiparallel pair moments are

cancelled with each other. In the same manner, the Type IV vertex has neither moment

nor magnetic charge.

It should be emphasised again that the energy landscapes from the MC and MS

simulation differ for the pinwheel vertex. This is presumably associated with two facts:

the small spacing between islands at which the magnetic dipole-dipole interaction is not

dominant and the inhomogeneous distribution of surface charge at both ends of each

nanomagnet does matter. If one increases the separation between islands, the same energy

landscape could be attainable which is governed by the dipolar coupling.

6.3 Sample realisation and magnetisation character-

isation

The pinwheel ASI specimens were fabricated by Ciaran Ferguson at the University of

Glasgow and Sophie A Morley at the University of Leeds. A 10 nm thick Ni80Fe20 film

was fashioned into pinwheel geometry on an electron-transparent silicon nitride (Si3N4)

membrane using electron-beam lithography and lift-off metalisation. An example of an

in-focus bright-field TEM image is displayed in Fig. 6.4 (a). The lateral dimension of the

10nm thick magnetic nanomagnet under study is 470×170 nm, and the centre-to-centre

separation between nearest neighbouring islands is 420 nm. A whole ASI array is formed

by two interleaved 25× 25 islands subarrays. A subarray (or sublattice) is a group of

islands whose long axes are parallel aligned with one another in this pinwheel lattice. In

this in-focus image, the darker contrast appearing on the island surface are the coated
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carbon. This carbon layer is able to keep the metallic islands from charging during TEM

imaging.

Figure 6.4: (a) In-focus TEM image showing part of pinwheel ASI array. The length and
width of each nanomagnet are 470 nm × 170 nm, nearest islands separated by 420 nm. Fresnel
images of the same region, magnetised by 0◦ magnetic fields of +271 Oe (b) and -271 Oe (c),
in which the small yellow arrows indicate the magnetic moment identified from the magnetic
contrast using Lorentz force, and the large blue (red) arrow displays the direction of vertex
magnetisation.

All experimental results in this chapter are from Fresnel imaging. As has already

been introduced in Section 3.7.2.2, in Fresnel imaging, the Lorentz force deflection of

the electron-beam by the magnetic induction produced in each island creates a darker

edge along one side of the long axis, from which the direction of magnetisation can be

inferred [35,36]. Fresnel imaging examples of the pinwheel lattices having opposite states

are shown in Figs. 6.4 (b) and (c), where the small and large arrows indicate the magneti-

sation orientations of each nanomagnet and vertex, respectively. In this section, how to

numerically extract the magnetic state of each nanomagnet by processing Fresnel image

will be discussed. This process can be realised using cross correlations and convolutions,

which can be implemented in any programming language, eg. ‘MatLab’ and ‘Python’

etc. This approach has been extensively applied to the pattern recognition in many-body

systems, such as our any patterned arrays with repetitive feature.

Figures 6.5 (b) exhibits an averaged profile over 10 scanning lines across the short axis

of one nanomagnet of Fig. 6.5 (a). This profile shows the intensity difference between

the sides A and B of islands, here the side A reveals the lower intensity than side B.

As discussed, this difference is a consequence of the deflection of the electron beam by

a single-domain state in the nanomagnet. Ordinarily, electrostatic contrast should not

be negligible when the specimen is tilted to a high angle (eg. ±25◦). At the high tilted

angle, the significant electrostatic contrast attributes to the different paths that electrons
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Figure 6.5: (a) A Fresnel image showing magnetic contrast. This contrast arises from the
deflection of electron beam by the single-domain field of nanomagnet, in which the letters ‘A’
and ‘B’ represent the two long-axis sides. (b) The averaged profile of 10 scan lines across the
short axis of one nanomagnet (marked by the yellow box in (a)) compares the intensity difference
between the ‘A’ and ‘B’ edges and the red dash line is the selected threshold criterion. (c) A
binary thresholding image of the pinwheel ASI lattices to segment magnetic feature of each
nanomagnet from a gray-scale Fresnel image and the inset is a zoom-in fundamental element
exhibiting magnetic contrast.

pass through at edges of the tiled sample. For instance, a darker fringe could be produced

along the right (left)-side edge due to the longer cross section on the right (left) edge

compared to that on the left (right) edge whilst tilting the thin film in Fig. 3.17 (a)

((c)). However, in our case this effect does not influence the long-axis magnetic contrast

of islands if the field is at the low field angle θ (defined in Fig. 6.7 (i)) with respect to

the ASI array. The reason is that in the measurement the pinwheel ASI array was tiled

around x axis (see Fig. 6.7 (i)) thereby the electrostatic phase merely contributes to the

direction aligned with x axis, that is, the short axis of island when θ = 0◦, as depicted

in Fig. 6.7 (i). Beside, the magnetic field from the objective lens is fixed and only the

specimen can be tilted in the sample holder in order to vary the field angle θ upon the
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sample. Thus, only if the sample is rotated to 45◦, at which the long axes of one subarray

will be aligned to the x axis, the electrostatic phase would strongly affect the magnetic

edge contrast. From the above, since the contrast difference between the two sides reveals

its magnetic behaviour, the image process is able to take advantage of it to extract the

magnetic information.

There are two key steps in the LTEM imaging process: extracting magnetic feature of

nanomagnet and identify its magnetisation state.

In the first instance, the magnetic contrast can be segmented by applying a threshold

criterion. All pixels below thresholding intensity are given the value of 0; all above

threshold can then be grouped together and assigned the value of 1. This threshold is

determined by the intensity difference between two long axes of one nanomagnet. For

example, the red dash line of Fig. 6.5 (b) indicates the threshold intensity that is chosen.

Figure 6.5 (c) shows a binary image of an entire array after thresholding.

The second step is to identify the magnetic state of each island and find its relative

location in an array. The provided inset in Fig. 6.5 illustrates a perfect diagram of binary

magnetic contrast for a single nanomagnet and its magnetic moment is able to be attained

by application of the Lorentz force. As a result, this ideal referencing pattern is treated

as a fundamental element and used to identify the magnetisation state of every island

in an array. The top-left insets of Figs. 6.6 (a) and (b) display two possible reference

patterns representing two distinct magnetisation orientations for one sublattice. These

binary reference units are used to cross-correlate with every island in the thresholding

array of Fig. 6.5 (c). In doing so, the magnetic-contrast state of each island in this

subarray can be recognised. The colour-scale Figs. 6.6 (a) and (b) present the results of

cross correlation with these two references. They are two location maps and shows the all

coordinates of the corresponding reference pattern in its subarray. The lattice positions

of these two maps are complementary. By finding all coordinates of the relative locations

of these four types of reference patterns in the whole array, four matrices are obtained.

Each matrix executes a convolution with its corresponding arrow so as to add this arrow

to all locations. An example of nanomagnet magnetisation distribution is shown in Fig.

6.6 (c). Furthermore, Fig. 6.6 (d) is the net vertex moment map of Fig. 6.6 (c) in which

the addition of each category of net moment label is implemented via the convolution

method as well.
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Figure 6.6: (a) (b)The cross-correlation results of the entire ASI array with two possible
magnetic-contrast reference pattern (inset at the top-left corner) shows the positions of the
corresponding the reference Fresnel patterns. Additionally, there are another two possible
magnetic-contrast patterns for the other subarray presented on the right side. The arrow in
the magnetic-contrast pattern indicate the direction of magnetic moment in the island. The
examples of magnetisation maps about the (c) nanomagnet moments and (d) vertex moments
are plotted by the convolution between their relative arrows and the coordinates of their corre-
sponding maximum of the cross-correlation peaks.

This image analysis routine is developed by the collaboration with Gary Paterson and

myself at University of Glasgow and it plays an essential role in this chapter. All results

and interpretations in this thesis are based on this approach, namely, hysteresis loops,

domain patterns, mesoscopic domain wall configurations and demagnetisation results.

6.4 Hysteretic property and domain growth

Once the magnetisation state of each nanomagnet is obtained, the hysteresis loops and

domain configurations can be plotted. Note that these analyses, in some sense, resemble

a pseudo-Ising like approach. In this section, the LTEM results of hysteresis and domain

patterns induced by the field angle will be discussed.
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6.4.1 Angular-dependent hysteresis

In the experiments, the in-plane component of the magnetic field was varied by tilting

the sample between ±25◦ and ∓25◦ in the 700 Oe magnetic field of the objective lens,

Hobj , while a 10 fps video was recorded by CCD camera to track the evolution of the

magnetisation. The videos were then processed to extract the magnetisation of each

island. On account of the single-domain state of the island, acting as a macrospin, its

magnetic moment, m, is assigned to be ‘±1’. The net moment of the array aligned with

the direction of field is given by

M‖H =M1× cos(45 + θ) +M2× cos(45− θ) (6.2)

where θ is the angle between the applied field and the y axis (see Fig. 6.7 (i)), and total

moment of each subarrays is computed by M1 = ∑625
i=1m(1) and M2 = ∑625

i=1m(2) in which

m(1)(m(2)) =±1 is the moments of each islands in two subarrays and i is the total number

of nanomagnets. The normalised magnetisation parallel to field H is plotted, which is

given by M‖H/MS where MS is the maximum of the magnetisation component along the

field direction, against the magnetic field at the angle ranging from −6◦ to 90◦, as shown

in Fig. 6.7.

Our LTEM result suggests that such pinwheel ASI exhibits the ferromagnetic be-

haviour. The first of these is the existence of a square hysteresis (also referred to as

‘M-H’) loop at applied field angles of −6◦, 0◦, 45◦ and 90◦ to the vertical edge (y axis) of

the array, as shown in Figs.6.7 (a), (b), (e) and (h). Note that a somewhat similar M-H

loop is obtained in square ASI when the field is aligned at 45◦ to the square edge [37],

because the component of the applied field along the easy-axis of islands of each orien-

tation is the same, as it is in the pinwheel ASI at 0◦. The square-shape magnetisation

curves illustrates that the jump in the magnetisation takes place due to the simultaneous

reversals of both subarrays.

With the applied field increasing from 0◦ to 15◦ (or from 45◦ to 75◦), the down branch

of M-H curve, the field sweeping from positive to negative saturation, is no longer smooth.

Instead, a smaller step occurs when the field strength larger than the coercive field.

However, the up branch has no second small step, as shown in Fig. 6.7 (c) (or Fig. 6.7

(g)).
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Figure 6.7: Normalised magnetisation curves of the pinwheel ASI magnetised at the external
field of (a) −6◦, (b) 0◦, (c) 15◦, (d) 30◦, (e) 45◦, (f) 60◦, (g) 75◦ and (h) 90◦ with respect to the
vertical edge of ASI array (y axis), M representing the magnetisation aligned to the magnetic
field H. (i) The coordinate axes and the field direction with respect to the array are shown in
the bottom right. For simplicity, the full array is not shown here; only those islands forming the
four corners.

As the angle θ of the applied field increases from 15◦ to 45◦ (or from 75◦ to 90◦), the

easy axis of one subarray is closely aligned with the direction of the magnetic field, while

the hard axis of the other becomes aligned along the field. In this situation, the different

field components act on the two sublattices. Those islands whose easy axes are more

aligned with the field will reverse first at a smaller field to produce the first step on each

branch. Conversely, those islands with hard axes aligned with the field flip for a larger

field. Therefore, one subarray switches before the other during a reversal. This gives

rise to two-step hysteresis loop. Examples of this behaviour are displayed in Figs.6.7 (d)

and (f) at the applied field angles of 30◦ and 60◦. The hard-axis sublattice at a 30◦ field
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requires a greater field (≈ 250 Oe) to switch its moment than that at the 15◦ field (≈ 190

Oe). As a result, a more distinct two-step magnetisation curve is generated. Interestingly,

it was found that hysteresis loops are asymmetric, in other words, there are two steps on

the down branch while only one switch occurs on the up branch (see Figs.6.7 (c), (d), (f)

and (g)). This difference might be associated with the two possible causes: the first is

the possible movement of sample in the TEM rod whilst tilting it to a certain angle; the

second is due to the variation and precision in magnetisation configuration between field

sweeps.

In short, the simultaneous reversal of both subarray produce a ‘square’ shape hysteresis

loop, whereas the difference in the switching field of two sublattices generates the two-

step hysteretic loop. It follows that there must exist some critical field angle at which the

hysteresis loop switches from square shape to staircase type. This puzzle will be addressed

in Section 6.6.2.

6.4.2 Domain nucleation and reversal regimes

By Fresnel imaging, the magnetisation of each nanomagnet at all points of the M-H curve

can be mapped, allowing examination of the evolution of magnetisation of the net array

state during a reversal. Fig. 6.8 shows some snapshots of the field-driven evolution of the

mesoscopic domain configurations in the vicinity of the coercive field. Each row contains

snapshots at the same field angles but at various field strengths. Two representative

magnetisation processes are compared, which are exhibited and explored at the field

angle of −6◦, 0◦ and 30◦. Here a mesoscopic ‘domain’ is defined as a region in which

the net moments of the pinwheel vertices point in the same direction. This region is

formed by the polarised moments of the Type I vertices. The Type I vertex possesses the

largest net moment and zero net charge, which is predicted to be lowest state from the

MC calculation.

At low angles of applied field, the reversal starts through a small number of nucleation

points, typically located at the edge of the array where the energy is lower, and the growth

of new reversed domain occurs mediated by the domain wall propagating perpendicularly

to the direction of the field, as shown in Figs.6.8 (a) and (b). Note that the reversal at

low angles mimics that observed in the continuous ferromagnets [38], and is somewhat

more coherent than that at -6◦ than at 0◦.
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Figure 6.8: Field-induced domain growth and domain wall patterns in an entire ASI array with
the applied field of −6◦ (a), 0◦ (b) and 30◦ (c) on the up loop from positive to negative saturation
(contrariwise, referred to as ‘down’ loop). The arrows in the colour code on the left side indicate
the directions of the net moments of the vertices that are formed by four magnetic elements.
The large arrows in the images represent the magnetisation orientation of the domains and its
thickness of arrow indicate the strength of domain net moment. Further information on the net
moment and magnetic charge for all possible domain and domain wall vertex configurations can
be found in Figs.6.3 (a) and (b).

Magnetisation reversal at higher angles of applied field (see Fig. 6.8 (c)) is governed by

an alternative mechanism. The easy-axis islands are more likely to reverse first since they

couple most efficiently through their stray field to nearest-neighbour islands of the same

subarray lying collinear with their easy axis. As these islands do not couple strongly

to those in adjacent diagonal lines, reversal of the entire array occurs through many

nucleation points, creating a more disordered reversal with scattered stripe domains. This

reversal regime is termed as ‘incoherent’. When one subarray completely switches at -187

Oe magnetic field in Fig. 6.8 (c), the net magnetisation lies perpendicularly to the previous

domain state. The switch process then repeats for the other subarray, to complete the

reversal. In this type of reversal regime the net moment direction of a reversed domain is

always normal to the unreversed region and eventually aligned with the magnetic field.
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6.5 Effect of the edge geometries on array anisotropy

Not shown in the M-H loop of Fig. 6.7 is the component of net magnetisation perpendicu-

lar to the applied field. Although this component is small at low angles of applied field, it

is not negligible and does show an interesting dependence on the applied field angle. This

can be more easily seen if both x- and y-components of the net magnetisation present in

a polar coordinate. This plot can allow for tracing out the locus of points that go through

the loops, as displayed in Figs.6.9 (a-d). In a polar coordinate, the radial-component

magnetisation Mr is Mr =
√
M2
x +M2

y , and angular coordinate β is β = tan−1(My/Mx),

where Mx and My are x and y component of the total magnetisation, respectively. Such

a graph is able to reveal the orientation and magnitude of the total net moment of ASI

array at each field point. It also indicates how Mr and β coordinate with field angle.

At angles of applied field which is far away from 0◦, for instance 30◦, the plot of

Fig. 6.9 (d), a great difference of the applied field angle to two subarrays, which lead to

field aligning one sublattice’s easy axis and the other’s hard axis, results in one subarray

to completely reverse before the other one begins. Because of the nanomagnet shape

anisotropy leading to a single domain, the island moment has two possible directions

along its long axis. As a result, the net magnetisation is constrained to change along

45◦ lines from, say, pointing north to west and then, when the second subarray reverses,

pointing west to south, and so on. Thus, the polar hysteresis loops at high angles of

applied field appears as a rotated square.

As the field angle decreases, the spacing between two polar loops narrows (see Fig. 6.9

(a-c)). When the applied field is aligned with the easy anisotropy axes of the arrays, the

two branches of the loop will completely overlap. The manifestation being the overlapping

lines to and from 90◦ and 270◦. Interestingly, this occurs at a non-zero applied field angle,

for our sample approximately −6◦ with respect to the array edge, as presented in Figs.6.9

(c). It is found that, following the field sweeping path of Fig. 6.7, from positive to

negative saturation and then going back to the original position, the reversal of the net

moment rotates in the clockwise sense at the field angle of -13 ◦ (see Fig. 6.9 (a)), which

is misaligned toward the left side from the easy axis of -6 ◦. On the contrary, if the

pinwheel lattices are magnetised by a field misaligned toward the right side from this easy

anisotropy axis, such as 0 ◦, the magnetisation will rotate in an anticlockwise sense in

Figs.6.9 (c) and (d).
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Figure 6.9: Net moment reversal of the entire array with an asymmetric boundary in Fig.
6.7 is transferred into a polar coordinates, with the field aligned at the angle of (a) −13◦ , (b)
−6◦, (c) 0◦ and (d) 30◦ with respect to ASI array. The ‘down’ (dH/dt<0) and ‘up’ branches
are indicated by the colour (red and black) and the arrows represent magnetisation changing
directions. The circle are experimental data and the lines are applied to guide the eyes. (e)
The gap ∆Mx (separation between up and down loops) at My = 0 as a function of the field
angle θ for the asymmetric-boundary arrays. The red point represents experimental ∆Mx. In
addition, the black line is the fitting results with ∆Mx by orthogonal distance regression, grey
dash line shows the small deviation between measurement and calculation. Most importantly,
the field angle at which the ∆Mx is zero is predicted to approximately be −5.7◦ (±1.4◦) with
the asymmetric boundary.

As a measure of the angle between the applied field and array easy anisotropy axes,

the width of the hysteresis loop when My = 0 as a function the field angle can be plot-

ted, shown in Fig. 6.9 (e). Fitting a straight line to this data yields an easy axis of

−5.7◦(±1.4◦)) to the vertical line of array edge, the cross point of black solid and grey

dash lines.

This peculiar finding is proposed to be a result of the asymmetric array boundary

geometry of the ASI array. The ‘asymmetric’ boundary is shown in Figs.6.10 (a) and

(c) and manifest different four array corners. Indeed, Fig. 6.10 (c) shows that there are

four islands forming the two different top-left and bottom-right corners, whereas only two

islands are at the top-right and bottom-left corners. Furthermore, the shadowed regions

in Fig. 6.10 depict the relative arrangement of two subarrays in a whole array. For the
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Figure 6.10: In-focus TEM images of the pinwheel ASI with (a) the “asymmetric” and (b)
“symmetric” array boundaries. The zoom-in schematics of the four corners for the (c) asym-
metric and (d) symmetric boundary are depicted, in which the light blue and orange shadows
indicate the two subarray edges and also present how they are relatively arranged in an entire
array (marked by black frame) to form the asymmetric or symmetric boundary.

entire array, this asymmetric boundary shift the easy axis by -6◦ from 0◦ axis what one

might expect for.

So as to prove our conjecture, experimentally, an alternative pinwheel ASI specimen

with a symmetric boundary was lithographically fabricated. The in-focus TEM image

of such an array is displayed in Fig. 6.10 (b) and shows the array edge geometry. A

zoomed image of Fig. 6.10 (d) displays four identical corners composed of two islands. In

addition, these two subarrays are arranged symmetrically to form such symmetric edge.

Note that the ‘symmetric’ array each subarray has 25 × 26 islands (or 26 × 25 islands),

while there are 25 × 25 nanomagnets in the asymmetric case.

Performing a similar measurement on this symmetric-edge pinwheel array, i.e. varying

the field angle from -9◦ to 8◦, the net moment can be plotted in Fig. 6.11. The overlap

of reversal lines is found to occur at on the order of magnitude -0.4◦. The gap ∆Mx

of the polar loop at the My = 0 versus the field angle θ is plotted in Fig. 6.11 (e). In

the same manner, by fitting the measured data using orthogonal distance regression, the

array anisotropy axis is estimated to be aligned with the axis of 0.7◦ (±0.4◦). Like the

pinwheel array with asymmetric boundary, the symmetric-edge array also exhibits the

same behaviour of the rotation of the net moment. A negative misaligned field allows the

total net moment of array to rotate clockwise. By contrast, the reversal of net moment
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Figure 6.11: The plot of net moment orientation of the entire array with the symmetric
boundary in polar coordinates at field angle of −9◦ (a), −6◦ (b), −0.4◦ (c) and −8◦ (d) with
respect to the array. (e) The gap ∆Mx at My = 0 as a function of the field angle θ for
the symmetric-boundary arrays. The field angle at which the ∆Mx is zero is predicted to
approximately be 0.7◦ (±0.4◦) with the symmetric boundary.

is in the anticlockwise sense when the field angle is positive.

6.6 Mesoscopic domain wall topologies

In the domain configurations of Fig. 6.8, some transition regions within a boundary

between two adjacent mesoscopic domains were observed. These transitions are defined

as the ‘domain walls’. In this section some interesting behaviours of different mesoscopic

domain-wall topologies taking placing in the pinwheel ASI will be presented and discussed.

6.6.1 Domain wall category and characteristics

Figure 6.3 shows the examples of mesoscopic domain wall in our pinwheel ASI. Each wall

consists of the arrangements of Type II, III and IV vertices. Considering all possible

magnetisation arrangements, there are seven classes of domain walls. Their schematic are

provided in columns of Figs. 6.12 (a-g), where the top row shows one possible magnetisa-

tion configuration for each nanomagnet; the middle row represents the magnetisation for

each pinwheel vertex; the bottom row displays the vertex charge. Note that the charge of
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the vertex is determined using the dumbbell model [34], as explained in Fig. 6.3 (c). The

symbol of ‘+/-’ represents the Type II vertex with two positive/negative magnetic net

charges; ‘⊕’ indicates the Type III vertices possessing four positive charges, and a black

circle represents the uncharged Type IV vertices. The wall which contains four negative

charges is labelled by ‘	’ in Fig. 6.13.

Each class of domain wall has other possibilities of arrangement of magnetisation

configurations. The number of all possible wall topologies is indicated in the third row of

Table 6.2 and other possible configurations are given in Fig. 6.13. These seven domain

walls can be categorised into 180◦ or 90◦ domain walls by the angle between magnetisation

orientations of the adjacent domains. All walls can be further categorised by the alignment

of the adjacent domains (either antiparallel, head to head (HH), tail to tail (TT), head-to-

tail (HT) and vice versa) and by the net charge and moment of their constituent vertices,

as summarised in the remaining rows of Table 6.2.

Figure 6.12: Schematic examples of the possible 180◦ DW configurations in the pinwheel
ASI containing four categories of domain wall (DW): ‘180N’ (a), ‘180NC’ (b), ‘180ND’ (c) and
‘180X’ (d). e-g Schematics of possible 90◦ DW configurations consisting of three types: ‘90T’
(e), ‘90N’ (f) and ‘90L’ (g). The smaller arrows of the configuration at the top, framed by the
black solid box, represent the magnetic moments of the ASI elements and wall boundaries are
highlighted by the yellow. The larger arrows in the middle and bottom row images indicate
the vertex moments of the domains and walls. Type II and Type III vertices carry net charges
but no moment, in contrast, the uncharged Type I has a net moment. The bottom images (the
dotted frames) shows the net-charge distributions of the DWs, where the ‘+/-’ signs reveal the
net magnetic charges of Type II vertices with ±2q, the ‘⊕/	’symbols indicate the charged Type
III vertices with ±4q and the open black circles represents the zero-charge Type IV vertices.
The net charge of each vertex is determined by the dipole magnetic charges of the island using
dumbbell model (see Fig. 6.2.1 c).



6.6. Mesoscopic domain wall topologies 151

All walls are denoted in the pinwheel ASI by the angle between adjacent domains

followed by the minimum number (one or two) of letters denoting the wall type. For the

180◦ walls (Figs.6.12 (a-d)), the walls call Néel (‘N’), charged Néel (‘NC’), diagonal Néel

(‘ND’) and cross-tie wall (‘X’). In the “Néel” wall, the net vertex moments exhibit a Néel-

like rotation as one passes through the wall. In this sense, the 180N walls are analogues

of a classical Néel wall [39, 40]. Like a classic Néel wall, the 180N wall is uncharged.

The 180X wall resemble a cross-tie wall [41] formed by alternating Type III and Type

IV vertices, which always appears in pairs. To the best of our knowledge, the remaining

180NC and 180ND walls are analogues of the charged wall in ferroelectric materials [42]

and ferromagnetic nanowires [43]. By inspection of the configurations of the 180ND and

180X walls, it can be seen that the latter can be converted to the former by reversal of

one line of a subarray thereby retaining the net charge, albeit redistributed over twice the

width, and creating a net moment.

Figure 6.13: Schematic examples of possible 180◦ DW configurations, with negative charged
domain wall, in the pinwheel ASI containing four categories: ‘180N’ DW (a), ‘180NC’ DW
(b), ‘180ND’ DW (c) and ‘180X’ DW (d). (e-g) Schematics of possible 90◦ DW configurations
consisting of three types: ‘90T’ DW (e), ‘90N’ DW (f) and ‘90L’ DW (g).

90◦ walls (Figs. 6.12 e-g) separate magnetic domains in which the magnetisation di-

rections are at right angles. These walls also exhibit Néel-rotation behaviour. These are

denoted as ‘90T’, ‘90N’ and ‘90L’, where the letters ‘T’ and ‘L’ represents the magneti-

sation alignment of the adjacent domains. As before, the 90N wall is analogous to a

classical Néel wall and possesses no net charge. As for 180◦ wall, the charged 90◦ Néel

walls is produced due to the energetically unfavourable head-to-head (see Fig. 6.12g) or
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Table 6.2: A summary of domain wall features regarding to magnetic moment and charge, in
which ‘HH’, ‘TT’, ‘HT’ and ‘TH’ are short for ‘head-to-head’, ‘tail-to-tail’, ‘head-to-tail’ and
‘tail-to-tail’, and wall ‘Unit’ defined in Section6.6.2

tail-to-tail (see Fig. 6.13g) alignment.

At the level of individual islands, the main difference between the formations of 180◦

and 90◦ walls arises from the distinct moment reversals of the two subarrays, as illustrated

by the top row images of Figs.6.12 (a-g). When one goes through the domain wall of a 180◦,

the spins in both lattices reverse simultaneously, whereas for a 90◦ wall, only one subarray

flips. This fact can be used to map the transition between the ferromagnetic magnetisation

of pinwheel ASI at low angles of applied field to the other regime of incoherent reversal

with higher angles of applied field. As one subarray becomes more aligned with the field,

the other nevertheless is perpendicular to the field, one expects a transition from 180◦ to

90◦ walls.

The charge ordering of walls (see the “Unit net moment” row in Table 6.2) is found

that it is dependent on the magnetisation orientation of the adjacent domains. The

bottom panels of Fig. 6.12 a-g present the charge distribution of vertices within the wall

boundary. Neutral walls occur in both 180N and 90N walls. The magnetisation states

of their neighbouring domains are energetically favourable states with the antiparallel

and head-to-tail alignment. Both walls resemble the behaviour of the magnetic charge in

the 180◦ or 90◦ Néel walls of continuous film. Moreover, 180NC, 180ND, 180X, 90T are

charged walls which carry the net magnetic charges. The occurrence of charged walls is

always in the case in which the adjacent domains meet head on (tail on). As is well known,

the head-to-head (tail-to-tail) alignment is energetically unfavourable. It is found that

the positive (negative)-charge wall is created within the boundary with the neighbouring

domains aligned head-to-head (tail-to-tail), as shown in the bottom row of Fig. 6.12 (Fig.

6.13). This peculiar property of specific charge ordering in pinwheel ASI is a direct result

of the high anisotropy within a system of discrete magnetisation.
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6.6.2 Role of domain wall

Seven types of domain-wall topologies were observed experimentally. The population of

the domain wall with the field angle is able to be quantitatively analysed by counting the

corresponding domain wall unit statistics. Only the number of vertices to create these

domain walls that are Type II, Type III and Type IV is counted. In this way all the

reversed regions would also be included, some of which however do not belong to the

mesoscopic domain wall defined here. Additionally, by counting the pinwheel vertex it is

unlikely to distinguish the population of seven categories of walls. For example, the both

180N and 90N walls are composed of Type III vertices. Therefore, instead of using vertex,

the ‘domain-wall unit’, the smallest cluster of spins, is proposed and utilised as unit from

which to count. Figure 6.14 displays one example of possible wall units, this cluster of

macrospins forming the neighbouring domains and domain wall. Such a method allows

us to obtain unique statistic population related to the specific wall type. Note that the

180ND, 90N, 90T and 90L units are weighted twice the amount of other units as not only

treat these cluster as the domain wall in which there are at least two units but also the

two adjacent units could reduce the likelihood of misidentification of the wall.

Figure 6.14: Examples of domain wall units in terms of (a) nanomagnet and (b) vertex
magnetisation topologies for the different magnetisation configurations. Other possible DW
units exist but, for brevity, are not shown here. The 180ND, 90N, 90T and 90L units are
weighted twice the amount of other units.

The domain wall populations were first calculated by counting the number times a

domain wall ‘unit’ at each applied field strength, and then summing across all applied

field strengths to obtain the total for each full M-H loop in Fig. 6.7. Figure 6.15 shows

the normalised populations of all 180◦ and 90◦ domain walls as a function of applied field

angle between -8◦ and 90◦. Normalised domain-wall populations are given by means of the

summing the populations of 180◦ (90◦) wall at each angle point divided by the maximum
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population of 180◦ (90◦) among all field angle points. The max population in both 180◦

and 90◦ walls is not used as the population of 90N wall always have a relatively large

domain-wall population which stems from its formation only requires two macrospins to

reverse. Thus, a low fraction of 180◦ wall population would be obtained, but this would

not significantly reflect and compare the changes of two types of wall topologies. Figure

6.15 reveals that the domain wall populations switch from being exclusively dominated

by 180◦ walls to 90◦ walls for incoherent magnetisation processes, as indicated by the

shaded background. In other words, the 180◦ wall is dominant at the low-angle field, but

is suppressed at high field angle.

Figure 6.15: Normalised population of 180◦ and 90◦ DWs as a function of field angle θ from ≈
12◦ to 90◦, showing the critical angles of ≈ 16◦ and ≈ 73◦ marking the transition between the two
magnetisation processes; ferromagnetic (green background) and incoherent (yellow background).

Crossover points between the two regimes take place at approximately 16◦ and 73◦, and

is a measure of the easy axis of the pinwheel-lattice array. Interestingly, both curves are

almost centred at 45◦ but have a cycle of larger than 90◦ (see Fig. 6.15 ), consistent with

the easy anisotropy axes being misaligned to the array axes. As presented in Section 6.4,

two types of hysteresis loops were observed, square and two-step curves, which depend on

the field angle. There exists a critical angle separating two regimes. This graph suggests

that such transition is likely to occur in the vicinity of these crossover points.

The histogram of the summed population of the seven categories of walls is plotted

at the same applied field angles used in the polar hysteresis plots of -13◦, -6◦, 0◦ and

30◦ in Fig. 6.16 (a-d) in order to illustrate how the wall populations evolves as the field

angle changes. At -6◦ field, the apparent anisotropy axis of the array, the antiparallel

Néel wall (180N) and the cross-tie (180X) walls dominate all others, as one would expect
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Figure 6.16: (a-d) Domain wall population histograms for the seven domain wall classes
discussed in the main text, at the indicated applied field angles of -13◦, -6◦, 0◦ and 30◦ matching
those used in the polar magnetisation loops. The number above each column indicates the
amount of domain wall units.

of domain propagation perpendicular to the applied field as occurs in a ferromagnet. By

30◦, while all 180◦ walls are excluded and there is a mix of 90T, 90N, and 90L walls,

in decreasing numbers. These relative populations may be indicative of the domain wall

energies. At -13◦ and 0◦ field angle the population distribution has a similarly matched

number between 180◦ and 90◦.

Furthermore, if one compares the two wall topologies in panels (a) of Figs. 6.12 and

Figs.6.13, they show that two possible wall states, pointing in opposite directions, which

results from the opposite magnetisation states of macrospins in the same column. The

180N wall should in principle have four possible topologies, as indicated in Fig. 6.17. It

is likely to see all of them in a experiment during a magnetisation reversal. All of them

were observed in the experiment. For example, the image of mesoscopic domain patterns

in Fig. 6.8 (b) at the field angle of 0◦ shows different 180N wall configurations.

What determines which type of 180N wall froms during a reversal? The wall popula-

tion of these four types of 180N walls is computed via counting their corresponding wall

units, and then the population fraction is estimated compared to the total population

of 180N. The field angle was set at 0◦ and to ensure the accuracy of the experimental

results, the measurements were repeated four times, most importantly, at different times.

The resulting population fractions are listed in Table 6.3 and they are in agreement in

four experiments. The 180N I is always the dominant wall configuration. The 180N IV is

the second largest population, except for the second measurement, in which the amount

of 180N III become a little bit more (>1%). The structure of 180N II is absent for the 0◦
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Figure 6.17: Four possible examples of the 180N wall topologies, referred to as ‘I’, ‘II’, ‘III’ and
‘IV’. The images from the top to bottom are magnetisation configurations of the nanomagnet,
the net moment and the schematic description.

Table 6.3: The comparison of the population fraction among four types of 180N wall configu-
rations at the 0◦ magnetic field in the four times repeated measurements.

Measurements 180N I 180N II 180N III 180N IV
1st 66% 1% 1% 31%
2nd 89% 0 6% 5%
3rd 58% 0 13% 29%
4th 61% 0 9% 29%

field during the measurements. By inspection of the walls of 180N I and IV, they have a

same feature, the net moment always discretely rotate from the north to south, in other

words, the magnetisation direction of wall points to the adjacent domain whose moment

direction is downward. This unique direction of the rotation of the Néel wall could suggest

that this 180N wall formation mimics somehow the chiral-wall behaviour [44].

Three factors could be considered to cause this results: the misaligned field, artefacts

of sample fabrication and the chirality of array. Firstly, the effect from the misaligned field

can be excluded as the same energetic preference of 180N wall occurred with the -6◦ field.

Secondly, this could suggest that in this case the formation of 180N wall configuration

appears a preference. Thirdly, the areas of nanomagnets have been calculated in a part of

array (about 170 islands for each subarray) and results are almost the same thereby this

preference is not relative to the factor of imperfection of fabrication. Finally, as mentioned

in Figs. 6.1 and 6.3, there are two categories of pinwheel vertex presenting two opposite

chiralities structure. Meanwhile, Figures 6.10 (a) and (c) show the rotating direction of

nanomagnets of our present pinwheel ASI specimen in the anticlockwise sense, as depicted
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in Figs. 6.1 (c) and (d). This problem could be tested by a measure of the sample having

the opposite chirality and this will be the further work.

6.7 Demagnetisation protocol for the pinwheel ASI

It has proven impossible to realise a global ground state consisting of twofold ‘two-in-two-

out’ vertices in square ASI using field-driven demagnetisation. Up to now a number of

demagnetisation protocols have been conducted and aimed to attain the ground state of

artificial spin ice. They can be basically classified into two methods: athermal (AC-field

rotation) demagnetisation [2,5,45–48] and thermal demagnetisation [13,16,49] protocols.

The rotational field-induced demagnetisation create the local ground state, i.e. a pre-

ponderance of two lowest-energy vertices but mixed in other higher energy vertices [2].

On the contrary, the long-range ground state of artificial spin ice is achievable through

thermal demagnetisation, where driven-temperature increases above the blocking temper-

atures, and then decreases to room temperature at a constant cooling rate [49]. It is also

possible to create a long-range ground state at room temperature for thin spin-ice arrays

over relatively long relaxation time (a few hours) [13].

In the demagnetisation protocol carried out here, a rotational-field demagnetisation

approach was employed. This protocol was performed instead of the thermal relaxation

as the pinwheel ASI specimen is too thick to anneal at room temperature or attainable

temperature range in our TEM holder (from −170◦C to 250◦C). The demagnetising

result reveals a short-range ground state obtained using the AC demagnetising protocol.

6.7.1 Experimental set-up

The pinwheel ASI specimen, the same one used in Section 6.3, is subjected to a demag-

netisation process by an assembly of the sample-rotation platform and an AC magnetic

field that varies its magnitude and direction as a function of time. This experiment set-up

is shown in Fig. 6.18. In addition, another demagnetisation protocol has been examined

in which the sample is held still and an AC magnetic field was applied. Nevertheless, the

demagnetising effect is not good as the observed magnetisation of array is similar to that

before demagnetising.

The pinwheel ASI specimen was initially saturated by an applied field. It was then
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Figure 6.18: The diagram of experimental set-up for the AC field demagnetisation protocol
with the (a) clockwise (R1) and (b) anticlockwise sample rotation. (c) The variation of AC field
as function of the time. The inset is a zoom-in graph to explicitly show the ac field patterns.

placed on a rotational platform of micro step motor (see Figs.6.18 (a) and (b)) at a 12

rpm rotational speed, actuated by a microcontroller, ‘Arduino’. Meanwhile, they were

rotated within an AC magnetic field which was induced by a time-varying current in

copper coils and could also be controlled by a LabView script. This applied field started

from larger saturation field (≈370 Oe) and its strength decreased exponentially over time

and, ultimately, to 0 Oe field, as emphasised in the inset of Fig. 6.18 (c). The key

step is that the pinwheel ASI were magnetised in the neighbourhood of coercive field

for a relatively long time. The final state after demagnetisation was imaged in TEM in

which the stray field from the objective was set to approximately 0 Oe. Note that two

rotational directions, in the clockwise (D1) and anticlockwise (D2) senses, were performed

in the measurement so as to test how the rotational orientation influences on the geometry

pinwheel ASI vertex which has two potentially chiral shapes.
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6.7.2 Demagnetisation results

Figure 6.19 displays the magnetisation configurations of each nanomagnet (a-c) and vertex

(d-f) of an entire array before and after the D1/D2 demagnetising processes. Prior to

demagnetisation, the pinwheel ASI array was fully saturated with the polarised states, as

shown in panels of Fig. 6.19 (a) and (d). After undergoing the protocol, the multidomains,

separated by mesoscopic domain walls, are formed with various magnetisation directions.

There are also the increasing number of Type III and Type IV vertices (red and blue

disks) in Figs. 6.19 (e) and (f). The D1 and D2 demagnetisation protocols, differing only

in the rotational orientations of the sample, gives rise to different domain patterns.

Figure 6.19: The magnetisation configurations of the (a-c) nanomagnets and (d-f) vertices
(a, d) before and after (b, e) D1 and (c, f) D2 demagnetisation protocols. The colour codes
represents the magnetisation directions of the colour arrows.

Moreover, the fractional population of vertices are also computed and plotted by a bar

chart in Fig. 6.20. Before the demagnetising the polarised ASI array is formed by just

Type I vertex. The D1 demagnetisation protocol attains to anneal the sample and lead

to an increase in other types of pinwheel vertices: 51% vertices Type I, 35% Type II, 7%

Type III and 7% Type IV. Undergoing the D2 protocol the demagnetised consequence

is constituted by 43% Type I, 42% Type II, 8% Type III and 7% Type IV. Somewhat

interestingly, the populations of Type I and Type II are nearly equivalent, and a similar
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pattern for Type III and Type IV vertices as well. In fact, this trend is also observed

in Section 6.4.2 and shown in Fig. 6.12 d, that is the Type III and Type IV vertices

always appear in pair to tilt 180X wall so that implies the similar fractional populations.

Additionally, the chirality of the vertex has not been observed in these demagnetisation

experiments. The fractional populations of four categories of Type III vertice are almost

consistent, approximately 2% over all vertex population.

Figure 6.20: Comparison of histogram of vertex population fraction through the before, after
D1 and D2 demagnetisation protocols.

As predicted by Monte Carlo simulation (in Section 6.2.1), the long-range ground

state of pinwheel array should be tilted by the lowest-energy Type I vertices. The fur-

ther Monte Carlo simulation indeed suggests a global flux “closure” structure occurring

in a square-shape array, where four categories of Type II topologies forming the four

head-to-tail aligned domains so that the total energy is minimised via the reduction of

surface charges [50]. This behaviour is analogous to the emergence of the ground state

in continuous ferromagnetic materials, for instance, a rectangular Permalloy film [51].

Though this demagnetising protocol does not lead to a ‘global’ flux closure structure, the

number of the vortex (Type III) and antivortex (Type IV) indeed equally grow. These

‘local’ defects are responsible for the formation of domain-wall boundaries to separate

the random fourfold domains. Responding to the rotational field demagnetisation, the

pinwheel ASI lattice generate a short-range ground state, a mix existence of four distinct

vertex typologies, which may account for the somewhat near-degenerate vertex energy

landscape and nonequilibrium dynamics in a frustrated system.
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6.8 Conclusions

To sum up, in this chapter, a simple modification of a square ASI by rotating each island

45◦ around its centre is able create a system with the nearly-degenerated energy levels.

This geometry behaves as a synthetic ferromagnet through the domain nucleation and

growth mediated by domain wall propagation. Domain wall topologies, such as Néel and

cross-tie walls, were observed resembling those seen in natural ferromagnetic film. In

addition, new domain walls also exist in this artificial patterned system. These walls

emerge with well-defined charge ordering. Interestingly, the easy axes of the array appear

to be misaligned with the array geometry. This is speculated as a result of array boundary

effect. So far there are no results published which show the observation of a detailed

magnetisation structure within the Néel wall. This synthetic patterned array nevertheless

is able to indicate a distinct magnetisation arrangement within the wall. Furthermore, a

method has been developed to quantitatively analyse the magnetic contrast from Fresnel

images. Finally, a demagnetisation protocol was conducted using a rotational external

magnetic field and the short-range ground state was achieved.
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7
Summary and outlook

7.1 Summary

ASI systems not only act as potential reconfigurable microwave resonator (in which the

magnetisation dynamics can be governed by the underlying magnetisation configura-

tion [1]) due to their complex magnetisation configurations being controlled by magnetic

fields or temperature, but they also provide macropsins analogous of certain microscopic

structures in atomic systems allowing insight into fundamental physics (i.e., mimics the

geometrical frustration of the spin ice materials). This thesis investigates the static and

dynamic magnetisation responses of the square and pinwheel ASIs to magnetic fields

through experiments and simulations. The static magnetisation properties of square ASI

was probed via alternating gradient force magnetometry. The magnetic behaviour of

resonant dynamics in square ASI was characterised using Brillouin light scattering and

ferromagnetic resonance methods. Micromagnetic simulations using Mumax package were

carried out to aid interpretation of the magnetic properties. Finally, Lorentz transmission
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electron microscopy was used to visualise magnetic structure of pinwheel ASI induced by

an external field.

The field-dependent property of spin-wave excitations was initially explored in a square

ASI array consisting of the 10 nm thick 240 × 80 nm2 nanomagnets with a 450 nm centre-

to-centre separation between the second nearest neighbours. The square ASI provides a

way to compare the response of standing spin wave modes in two groups of elements,

which are orthogonally aligned to one another, under the same magnetic field. It has

been found that the frequency of spin-wave modes of an element is dependent upon

whether the magnetisation lies along the easy or hard directions of the elements. When

a saturating magnetic field is applied at 0◦ with respect to the square ASI lattices, the

nanomagnet whose hard axis is aligned with the field appears more complex spin-wave

modes than those whose easy axes lie with the field. This is due to the formation of more

edge modes in the former. The main features of resonant dynamic modes can be well

described as arising from an individual nanomagnet in a simulation, where interaction

from neighbouring nanomagnets is not considered. This is the evidence to demonstrate

that, at a saturation state of the ASI array, the inter-island interaction between those

nanomagnets is not sufficiently strong to shift the spin-wave frequency. Furthermore,

the field angle with respect to the ASI lattice was found to create significant variance in

standing spin-wave frequency spectrum. This suggests that square ASI could be possible

to act as a reconfigurable microwave resonator.

In principle the inter-island interaction is a key requirement to create a tunable

magnonic crystal [1]). To strengthen the interaction, a 30 nm thick square ASI array of

the same in-plane dimension was examined to compare to the 10 nm thick sample. These

thicker nanomagnet possess larger local magnetic moment and generate stronger stray

field, increasing the coupling between nanomagnets. BLS experiment and simulations

demonstrate that the coercivity and dynamic response of the ASI array can be tailored

through changes in nanomagnet thickness. In particular, the 30 nm thick elements show

the evidence for stronger static field interactions. The inter-element interaction was found

to reduce the coercivity of entire array by the cooperative effects assisting the reversal

of elements at the array edges. A comparison between BLS experiments and simulations

suggests this interaction may also contribute weakly to the spin-wave spectra as the agree-

ment is not as good as the 10 nm thick specimen. Most of the standing spin wave modes
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arise from the pinning excitations at the island edge. Softening observed in edge mode

spectra as a function of applied magnetic field can be identified with reversal of different

orientations of magnetic islands. This allows us to distinguish reversals of elements with

axes parallel and perpendicular to the applied magnetic field.

Lastly, it has been experimentally demonstrated that a square ASI can be tuned to

a ‘pinwheel’ ASI behaving as a ‘synthetic ferromagnet’, where one can observe a ferro-

magnetic magnetisation process mediated by the domain-wall-like configurations. This

modified square ASI is named ‘pinwheel ASI’. The transformation of the geometry leads

to a dramatic change in the energy landscape, showing that the maximum energy spread

between vertex configurations of pinwheel lattice sharply reduced by a factor of 29 times

in comparison with that of square lattice. This system is said to be nearly degenerate.

An interesting finding in such a system is the presence of domain-wall-like magnetisa-

tion topologies. Some of these mesoscopic domain walls topologies, such as 180N, 90N

and 180X walls, resemble the magnetic structure Néel and cross-tie walls seen in natural

ferromagnetic film, whereas others mimic the configuration of charged walls found in fer-

roelectric materials. These charged walls have the well-defined charge ordering and the

Néel rotation over the discrete moments. Intriguingly, the easy axes of this ASI array

appears to be misaligned with the array geometry.

Monte Carlo simulations suggest that the ground state of an pinwheel array possesses

“closure” structures [2]. However, by employing AC-field demagnetisation experiment,

results show that the final state of the pinwheel array approaches a short-range ordering,

a mixture of four types of vertex topologies, due to the intrinsic nature of a nearly-

degenerated energy landscape and nonequilibrium dynamics in a frustrated system.

7.2 Future work

Building upon the results in this thesis, a number of research projects are currently or

will be carried out. Five preliminary and prospective directions are described below.

Although the magnetisation dynamics of square ASI systems can be controlled by the

orientation of magnetic field with respect to the lattices, such square ASI systems have

weak effect of inter-island interaction on the magnetisation dynamics. For the purpose

of creation of magnonic crystal, ways to enhance the dipole stray field arising from each
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nanomagnet should be considered. Currently, the vast majority of ASI samples were

patterned on an oxidised silicon substrate so that the stray fields of the nanomagnets

primarily permeate their surrounding air and silicon. As is well known, the factors that

determine the strength of the stray field in an ASI system are the magnetic moment of

nanomagnet, the lattice constant and the magnetic permeability of surrounding materi-

als. The influences of the magnetic moment and the lattice constant have been explored

experimentally and numerically. However, the magnetic dynamics in our square ASI lat-

tices is not significant in the measurement. Here the question of what if the magnetic

permeability is increased in an ASI array can be posed? To attain this attempt, one ap-

proach is to pattern ASI array on a magnetic layer with high magnetic permeability, such

as Yttrium iron garnet (YIG) [3]. Another approach is to form the islands in FeAl film by

low dose FIB irradiation which transforms the paramagnetic film to ferromagnetic in the

irradiated regions without milling it. By varying the dose in and between the islands, the

coupling could be varied between different arrays and even across a single array. Another

advantage of this approach is that the magnetisation can be more easily imaged, since

the mean inner-potential is approximately unchanged by irradiation and, because of this,

the edge states of each island can be more easily observed in TEM.

An interesting prediction in pinwheel ASI is a ferromagnetic ground state with the

structures of the closure (in a square-shape array) or Landau (in a rectangular-shape

array) domains [2]. The AC field demagnetisation protocol developed here did not produce

a long-range closure ground state in the pinwheel ASI, a square-shape array , but obtained

a short-range magnetisation structure instead. Another possible method to attain the

ground state is to thermally anneal the system [4–6]. One feasible way is to investigate

the temperature-induced magnetisation dynamics using in-situ imaging in our state-of-

the-art Lorentz TEM at the University of Glasgow.

The dynamic behaviour of the mesoscopic domain wall also is of interest. For example,

open questions include what the velocities of these domain walls are and how stable they

are. To solve the problem of measuring time-dependent dynamics, Medipix3 [8], a direct

electron detector developed at the University of Glasgow, can be performed to image

the propagation of domain wall. This Medipix3 detector can offer a sustainability of

acquisition on the order of millisecond. Thus, it allows us to image time-dependent

magnetisation dynamics of ASI system with much greater time resolution in comparison
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Figure 7.1: Possible schematics to realise hybrid ASI sample that consists of the square and
pinwheel ASI arrays. The interface separating two structures is localised along (a) diagonal and
(b) vertical directions. (c) The units of square and pinwheel lattices [7].

to the conventional CCD detector.

Intriguingly, it was found that the pinwheel ASI specimen studied in Chapter 6

emerged the time-dependent behaviour when the magnetic field is in the vicinity of the

coercive field. Specifically, the macrospin in some nanomagnets were observed to flip

during a time period at a fixed field. The Medipix3 provides a possibility to study this

thermally relaxing phenomenon of the pinwheel ASI.

Finally, a hybrid ASI, constructed by an antiferromagnetic square ASI array and a

ferromagnetic pinwheel ASI array (see Fig. 7.1), is proposed [7]. This system presents

a possible way to investigate exchange anisotropy. This is a result of the interaction

between antiferromagnetic and ferromagnetic orders. The exchange interaction leads to

a displacement of the hysteresis loop along the field axis. This phenomenon has been

observed in magnetic materials, consisting of the ferromagnetic fine cobalt particle and

the antiferromagnetic cobaltous oxide, below its Néel temperature [9].

With this programme of future work, artificial spin ice is certainly no frozen field of

science!
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