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Abstract 

Dental handpieces (HP’s) are used during semi-critical and critical dental 

procedures that imply the HP must be sterile at the point of use. The aim of this 

study was to undertake a quantitative and qualitative analysis of dental HP 

contamination to inform the development of HP cleaning. Preliminary validation 

work on protein desorbtion methods and protein detection assays resulted in 

boiling in 1% sodium dodecylsulphate (SDS) and the o-phthaldialedhyde (OPA) 

assay (sensitivity 5 µg/ml) selected for further use in this study. A quantitative 

and qualitative analysis of HP microbial and protein contamination was then 

undertaken. Before decontamination, bacteria were isolated from high speed 

HP’s (n=40) (median 200 cfu, range 0-1.9x104
 CFU/instrument), low speed 

HP’s(n-40) (median 400 cfu, range 0-1x104
 CFU/instrument) and surgical HP’s 

(n=20) (median 1x103, range 0-3.7x104
 CFU/instrument). A range of oral bacteria 

were identified in addition to Staphylococcus aureus and Propionibacterium 

acnes. Protein was detected from high speed HP’s (median 1.3, range 0- 210g), 

low speed HP’s (median 15.41 µg, range 0 - 448 µg) and surgical HP’s (median 

350 µg, range 127.5– 1,936 µg) before decontamination. Serum albumin and 

salivary mucin were identified on surgical HP’s before decontamination. Calcium 

based deposits and contaminants trapped in lubricating oil were also detected 

using scanning electron microscopy (SEM) and energy dispersive x-ray analysis 

(EDX). The efficacy of detergents and a HP cleaning solution at cleaning HP 

contaminants was assessed in vitro with a standard test soil and disruption of 

biofilms with a range of cleaning efficacies noted from each cleaning solution 

tested. Alkaline detergents caused a significant biomass disruption of P. acnes 

biofilms compared to ROH2O alone. HP cleaning solution resulted in fixation of 

the biofilm and blood to the surface. The efficacy of novel HP cleaning machines 

was also assessed using a test soil based on the data generated in this study. 

Efficacy varied between devices tested with one demonstrating efficient protein 

removal in all but 1 HP location. The data presented describes a quantitative 

and qualitative assessment of common contaminants of HP’s, mainly bacteria, 

salivary mucin and serum albumin. In-vivo biofouling levels of HP’s are several 

fold lower than standard test soil formulations and consideration should be given 

to use of HP test soil based on in-vivo data to validate HP cleaning processes. 

The data generated in this thesis should aid in designing dental HP test soils and 

cleaning regimens. 
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7,8,9) (06508 lanes 10,11, 12). No bands are visible in the negative control (lane 

2) or the HP negative control (lanes 13, 14, 15). Band sizes are indicated in bp 

by the 100bp ladder (lane 1). .......................................................... 120 

Figure 5-1 Recovery of BSA from SSS’s using different cleaning solutions and 

methods. Samples from SSS’s inoculated with BSA and extracted using each 

method were separated using 4-12% Bis-Tris gels. Gel (a) was stained with 

Coomassie blue and gel (b) was stained using SYPRO® Ruby. BSA inoculated and 

dried on SSS’s was recovered by boiling and sonication in 1% (v/v) SDS (a) Both 

boiling (lanes 3, 4, 5) and sonication (lanes 7, 8, 9) in 1% (v/v) SDS recover BSA 

fractions indicated by arrows from SSS’s. No protein was visible in the negative 

control SSS eluents (lane 2 and lane 6). Lane 1 contains the protein size ladder 

for comparison with the closest size to the fraction V BSA protein indicated in 

kDa. BSA was also recovered by sonication in 1% (v/v) Decon®90 and 1% (v/v) 

SDS (b) Both 1% (v/v) Decon®90 (lanes 3,4,5) and 1% (v/v) SDS (lanes 7, 8, 9) 

recover BSA from the surface as shown by comparison to the positive control 

(lane 1). No protein is visible in the negative control disc eluents (lanes 2 and 6).

 .............................................................................................. 132 

Figure 5-2 Precipitation of BSA by different methods. Samples of precipitated 50 

µg/ml BSA solutions were separated using 4-12% Bis-Tris gels. Gel (a) and gel (b) 

were stained using silver stain and gel (c) was stained using SYPRO® Ruby.  BSA 

was precipitated using TCA and acetone (a) BSA fraction V indicated by arrows 
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was recovered by acetone precipitation (lanes 4, 5, 6) and TCA precipitation 

(lanes 8, 9. 10). No protein was observed in the negative controls (Lanes 2, 3, 7). 

Lane 1 contains the protein ladder with sizes indicated in kDa for comparison. 

BSA was also precipitated using Amicon® filtration (b) precipitated the BSA 

solutions at varying concentrations (lanes 4,5,6). No protein was observed in the 

negative controls (lane 3) An unprecipitated 50 µg/ ml BSA positive control was 

included for comparison (lane 2) and lane 1 contains the protein ladder with 

sizes indicated in kDa for size comparison. Both acetone and StrataClean™ Resin 

precipitated BSA (c). Acetone (lanes 4, 5, 6) and StrataClean™ Resin (lanes 8, 9, 

10) precipitated BSA though at varying concentrations. No protein was observed 

in the negative controls (lanes 3 and 7). A 50 µg BSA positive control was 

included for comparison (lane 2) and lane 1 contains the protein ladder with 

sizes indicated in kDa for size comparison. .......................................... 134 

Figure 5-3 Sensitivity of protein detection stains at detecting BSA. BSA of 

decreasing concentrations were loaded into a 4-12 % Bis Tris gel and stained with 

coomassie brilliant blue and sliver stain whilst decreasing concentrations of 

salivary mucin samples were loaded into a 3-8% Tris Acetate gel was used to 

determine the sensitivity of PAS staining. For coomassie blue staining (a), 

protein was observed in the 100 µg/ml sample (lane 4), 10 µg/ml sample (lane 

5), 1 µg/ml sample (lane 6). No protein was detected in the 0.1 µg/ml (lane 7), 

0.01 µg/ml (lane 8), 0.001 µg/ml (lane 9), or the 0.0001 µg/ml (lane 10). No 

protein was detected in the negative control (lane 2). Lane 1 contained the 

protein ladder for size comparison and lane 3 contained a salivary amylase 

positive control. For silver staining (b) protein is observed in the 100 µg/ml 

sample (lane 4), 10 µg/ml sample (lane 5), 1 µg/ml sample (lane 6) the 0.1 

µg/ml (lane 7), 0.01 µg/ml (lane 8), 0.001 µg/ml (lane 9), and the 0.0001 µg/ml 

(lane 10). No protein was detected in the negative control (lane 2). Lane 1 

contained the protein ladder for size comparison. For PAS staining (c), salivary 

mucin was observed at concentrations of 1 mg/ml (lane 3), 100 µg/ml (lane 4), 

10 µg/ml (lane 5). No protein was detected in the negative control (lane 2). The 

protein ladder for size comparison was included in lane 1 with sizes indicated in 

kDa .......................................................................................... 136 

Figure 5-4 Effect of lubricating oil on protein observation by SDS – PAGE. BSA 

solutions were diluted in 50% solution of lubricating oil and the eluents 

separated in a 4-12 % Bis Tris gel was stained using SYPRO® Ruby. BSA is visible 
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in solutions of 1% (v/v) SDS (lanes 8-10) and lubricating oil (lanes 4-6) and the 

positive control of a 100 µg BSA solution in ROH2O (lane 2). No protein is 

observed in the negative controls (lanes 3,7). Lane 1 contained the protein 

ladder for size comparison with sizes indicated in kDa. ............................ 137 

Figure 5-5 Sensitivity of salivary amylase detection using antibody probing. 

Decreasing concentrations of salivary amylase were added to a PVDF membrane 

and probed with rabbit anti human IgG followed be secondary probing with goat 

anti rabbit IgG antibodies conjugated with alkaline phosphatase. The membranes 

were stained with BCIP/NBT solution. Protein was detected from the 0.1, 1, 10, 

and 48 µg/ml solutions. No protein was detected on the 0.01 µg/ml solution and 

the negative control of 50 µg/ml BSA. ................................................ 139 

Figure 5-6 Sensitivity of Western blot. Decreasing concentrations of salivary 

amylase, serum albumin and saliva samples were separated using SDS PAGE, 

transferred to a PVDF membrane and probed using alkaline phosphatase 

conjugated antibodies. Salivary amylase (a) indicated with arrows was detected 

in the 40 µg/ml sample (lane 2), the 20 µg/ml sample (lane 3), the 1 µg/ml 

sample (lane 4) and the 0.1 µg/ml sample (lane 5). No salivary amylase was 

detected in the 0.01 µg/ml sample (lane 6), 0.001 µg/ml sample (lane 7), 0.0001 

µg/ml (lane 8) and the negative control of 100 µg/ml BSA (lane 10). Lane 1 

contained the protein ladder for size comparison. Serum albumin (b) indicated 

with arrows was detected in the 100 µg/ml sample (lane 4), the 10 µg/ml sample 

(lane 5), the 1µg/ml sample (lane 6) the 0.1 µg/ml sample (lane 7), and the 0.01 

µg/ml sample (lane 8). No serum albumin was detected in the 0.001 µg /ml 

sample (lane 9), 0.0001 µg/ml sample (lane 10) and the negative controls of 1% 

(v/v) SDS (lane 2) and 40 µg/ml of salivary amylase, (lane 3). The salivary mucin 

(c) antibody detected salivary mucin in a neat and a 1/10 dilution of 

unprocessed saliva (Lanes 3, 4) and a neat solution of processed saliva (Lane 7). 

No mucin was detected in the 1/100 dilution or 1/1000 dilution (Lanes 5, 6) or 

the 1/10, 1/100, 1/1000 dilution of the prepared saliva (Lanes 8, 9, 10) or the 

negative control (lane 2). ............................................................... 140 

Figure 5-7 Detection of salivary amylase from saliva samples. Unstimulated saliva 

samples were separated using SDS PAGE before transfer to a PVDF membrane 

and probing with antibodies conjugated to alkaline phosphatase. Salivary 

amylase indicated with arrows was detected in all neat saliva samples (lane 5, 7, 

9), a dilute sample (lane 8), and the 40 µg/ml positive control (lane 4). No 
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salivary amylase was detected in the 1% (v/v) SDS negative control (lane 2) and 

the 100 µg/ml BSA control (lane 3). The protein ladder was present in lane 1 

with sizes indicated in kDa for comparison. .......................................... 141 

Figure 5-8 Protein content of used, unprocessed dental forceps. A sample of the 

eluent from 4 used, unprocessed forceps was precipitated by StrataClean™ resin 

and the protein content viewed by staining with coomassie blue (a) (lanes 4 – 7). 

The proteins were compared to a protein ladder (lane 1) with sizes in kDa 

indicated. Bands representing proteins of different sizes were found on 3 forceps 

samples (Lanes 4-6) (c). A band of 66 kDa corresponding to 100 µg/ml BSA was 

observed in the positive control (lane 2) and no bands were observed in the 

negative control (lane 3). The samples were also stained with SYPRO® Ruby (b) 

and bands were observed from each of the forceps samples (lane 4-7) and the 

100 µg/ml BSA positive control (lane 3). No bands were observed in the negative 

control (Lane 2). Lane 1 contains the protein ladder with sizes indicated in kDa.

 .............................................................................................. 144 

Figure 5-9 Protein contamination of decontaminated forceps. A sample of the 

eluent from 6 decontaminated forceps was precipitated by Amicon filtration 

and the protein content viewed by staining with silver stain (a). The proteins 

were compared to a protein ladder (lane 1) with sizes in kDa indicated. Protein 

bands were evident in two forceps samples (lanes 3 and 4). No protein is found 

in an additional 3 samples (lanes 5, 6, 7). The 100 µg/ml BSA positive control 

was in lane 2 and the protein ladder in lane 1 with sizes indicated in kDa for 

comparison. A sample of the eluent from 6 decontaminated forceps was 

precipitated by StrataClean™ resin and the protein content viewed by staining 

with silver stain (b). The proteins were compared to a protein ladder (lane 1) 

with sizes in kDa indicated. No protein was evident in the forceps samples (lanes 

5, 6, 7, 8, 9, 10). No protein was found in the negative controls (lanes 3, 4). 

Protein was observed in the 100 µg/ml BSA positive control (lane 2). The bands 

from the decontaminated forceps samples were confirmed by peak analysis (c).

 .............................................................................................. 145 

Figure 5-10 Detection of serum albumin and salivary amylase in used, 

unprocessed and decontaminated forceps samples. A total of 4 used, 

unprocessed forceps samples and 3 decontaminated forceps samples were 

sampled for serum albumin using probing with antibodies conjugated with 

alkaline phosphatase. Serum albumin (a) was detected in 4 used, unprocessed 
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samples (lanes 4, 5, 6, and 7) and the 100 µg/ml BSA positive control (lane 2). 

No serum albumin was detected in decontaminated samples (limit of detection 

0.01 µg/ml) (lanes 8, 9, 10). No salivary amylase (b) was detected in 4 used, 

unprocessed samples (lanes 4, 5, 6, and 7) or the decontaminated samples (lanes 

8, 9, 10) (limit of detection 20 µg/ml). Salivary amylase was detected in the 40 

µg/ml positive control (lane 3). ........................................................ 146 

Figure 5-11 Quantitative protein analysis of dental HP parts. Internal HP parts 

were sampled for protein before and after decontamination. The turbine of the 

high speed HP, the spray channel of the low speed HP and the gear of the 

surgical HP were sampled. Before decontamination, surgical HP gears contained 

the most protein with a median of 350 µg. This was significantly (***=p<0.001) 

reduced after decontamination to a median of <5 µg. A median of 1.3 µg of 

protein was isolated from high speed turbines before decontamination and 

reduced to a median of 0 µg after decontamination. For spray channels, a 

median of 15.41 µg of protein was isolated before decontamination which was 

significantly (p<0.05) reduced to 0 µg of protein after decontamination. ....... 151 

Figure 5-12 Protein contamination of used, unprocessed HP’s. Eluents from used, 

unprocessed turbines, low speed spray channels, and surgical gears were 

precipitated together using an amicon filter and the gel stained with silver stain. 

Protein was observed in the high speed turbine samples with 3 distinct bands 

present (lane 5), (the low speed spray channel samples with 2 distinct bands 

present (lane 7), and the surgical gears where 9 distinct bands were present 

(lane 9) (a). No protein was observed in the negative controls (lane 3, 4, 6, 8). 

Lane 2 consisted of the 100 µg/ml BSA positive control and lane 1 contained the 

protein ladder with the sizes in kDa for comparison. The bands from the surgical 

gears (b) and the turbines (c) were confirmed with peak analysis. .............. 152 

Figure 5-13 PAS staining for mucopolysachharides in dental HP’s. Eluents from 

used, unprocessed turbines, low speed spray channels, and surgical gears were 

precipitated together using an amicon filter and the gel stained with PAS 

reagent. Mucopolysaccharide was detected in the surgical HP gear (lane 9) and 

the 100 µg/ml salivary mucin control (lane 2). No protein was detected in the 

negative controls (lanes, 3,4,5,6) or the high speed HP turbines (lane 7) and the 

low speed HP spray channels (lane 8). The Himark™ protein ladder was included 

for size comparison (lane 1). ........................................................... 153 
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Figure 5-14 Protein contamination of decontaminated dental HP’s. Eluents from 

decontaminated turbines, low speed spray channels, and surgical gears were 

precipitated together using an amicon filter.  Protein was observed in the 

surgical gears (lane 9) with 2 distinct bands visible (b). No protein bands were 

observed in the high speed turbines (lane 5), spray channels (lane 7) and or the 

negative controls (lane 3, 4, 6, 8). Lane 2 consisted of the BSA positive control 

and lane 1 contained the protein ladder with the sizes in kDa for comparison. 154 

Figure 5-15 Detection of salivary amylase in used, unprocessed HP samples. No 

salivary amylase (limit of detection 20 µg/ml) was detected in the high speed 

turbine samples (lane 8), the low speed spray channel samples (lane 9) and the 

surgical gear samples (lane 10), or the negative controls (lanes 2, 4, 5, 6). 

Salivary amylase was observed in the salivary amylase positive control (lane 3). 

Lane 1 contains the protein ladder with sizes in kDa indicated for size 

comparison. ............................................................................... 155 

Figure 5-16 Detection of serum albumin in used, unprocessed handpiece 

samples. Serum albumin was detected in the surgical gear samples (lane 9) and 

the 100 µg/ml serum albumin positive control (lane 4). No serum albumin was 

detected (sensitivity 0.01 µg/ml) in the negative controls (lanes 2, 3, 5, 6), the 

high speed turbine samples (lane 7), or the low speed spray channel samples 

(lane 8). Lane 1 contains the protein ladder for size comparison................. 156 

Figure 5-17 Detection of salivary mucin in used, unprocessed handpiece samples. 

Salivary mucin 5b was detected in the surgical gear samples (lane 9) and the 

saliva controls (lanes 2, 3). No salivary mucin (limit of detection 1/10 dilution of 

saliva) was detected in the negative controls (lanes 4, 6, 8), the high speed 

turbine samples (lane 5), or the low speed spray channel samples (lane 7). Lane 

1 contains the protein ladder for size comparison. ................................. 157 

Figure 6-1 SEM images of a used, unprocessed high-speed turbine. The turbine 

was imaged without prior fixation at 120x magnification (a) and 1000x (b). The 

arrows indicate potential contaminants on the surface. ........................... 170 

Figure 6-2 SEM imaging of TA-98 high speed turbine from a repair facility. The 

biological material on the turbine surface was fixed and the turbine viewed at 

15x magnification for an overview (a) and the blade was viewed at 1000x 

magnification where contamination was observed on the surface (b). 

Contamination was evident along the entire surface of the turbine blade at 

3000x magnification (c). ................................................................ 171 
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Figure 6-3 Ball bearing cage of turbine from TA-98 high-speed turbine. The ball 

bearing gear was visualised at 22x magnification after fixation of biological 

material (a). Contamination was visible on the surface of the ball bearing gear at 

1000x magnification (b). Contaminants were also viewed at 10000x magnification 

(c). .......................................................................................... 172 

Figure 6-4 SEM images of WA- 56 low speed gear from repair facility. The 

biological material on the higher gear surface was fixed and the turbine viewed 

at 22x magnification for an overview (a) and the blade was viewed at 1000 x 

magnification where contamination was observed on the hollow parts of the gear 

(b). Contamination was also evident along the entire surface of the turbine 

blade at 3000x magnification (c). ...................................................... 173 

Figure 6-5 High speed HP parts sampled using SEM and EDX analysis. Both high 

speed turbines (a, b) and caps (c, d) were sampled using SEM and EDX analysis. A 

microscopic view of the turbine is shown in (c) at 50x magnification and a 

microscopic view of the cap is shown in (d) at 41x magnification. ............... 175 

Figure 6-6 Surgical HP parts sampled using SEM and EDX analysis. Both surgical 

HP gears (a, b) and the levers (c, d) were sampled using SEM and EDX analysis. A 

microscopic view of the spring of the gear is shown in (c) at 44x magnification 

and a microscopic view of the internal part of the lever is shown in (d) at 47x 

magnification. ............................................................................ 176 

Figure 6-7 Low speed HP parts sampled using SEM and EDX analysis. Both low 

speed higher gears (a, b) and lower gears (c, d) were sampled using SEM and EDX 

analysis. A microscopic view of the gear is shown in (c) at 50x magnification and 

a microscopic view of the end of the lower gear is shown in (d) at 55x 

magnification. ............................................................................ 177 

Figure 6-8 Typical elemental analysis of HP surface contaminants by EDX 

analysis. All contaminants were broadly placed into 4 categories, organic 

contamination (a) indicated by the carbon and oxygen peaks, calcium based 

contamination (b) indicated by a calcium peak, sulphur based contamination (c) 

indicated by carbon, oxygen, and sulphur peaks and carbon based contamination 

(d) indicated by a carbon peak. Each contaminant was found on all surfaces 

scanned. ................................................................................... 178 

Figure 6-9 Typical elemental analysis of HP metallic surfaces by EDX analysis. 

Surfaces in the vicinity of contamination were analysed as controls. Metallic 

elements including chromium (a) found on the lower gear, aluminium (b) found 
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on the high speed turbine, and iron (c) found on the surgical gear and high speed 

caps. ........................................................................................ 179 

Figure 6-10 Examples of contaminants found on used, unprocessed high speed 

turbines. All contaminants previously described were found in the high speed 

turbine ball bearing cage before decontamination. Organic contamination is 

shown in (a) at 213x magnification, lubricating oil trapped contamination is 

shown in (b) at 376 x contamination, a calcium contaminant shown in (c) at 1703 

x magnification and sulphur based contamination is shown in (d) at 1700x 

magnification. ............................................................................ 180 

Figure 6-11 Examples of contaminants found on decontaminated high speed 

turbines. All contaminants previously described were found in the high speed 

turbine ball bearing cage before decontamination. Organic contamination is 

shown in (a) at 1238x magnification, lubricating oil trapped contamination is 

shown in (b) at 208 x contamination, a calcium contaminant shown in (c) at 676 

x magnification and sulphur based contamination is shown in (d) at 162x 

magnification. ............................................................................ 181 

Figure 6-12 Examples of contaminants found on used, unprocessed high speed 

caps. Organic contaminants previously described were found on the high speed 

cap before decontamination. Organic contamination is shown in (a) at 812 x 

magnification and in (b) at 1623 x magnification.................................... 182 

Figure 6-13 Examples of contaminants found on decontaminated high speed 

caps. Organic contaminants previously described were found on the high speed 

cap before decontamination. Organic contamination is shown in (a) at 201 x 

magnification and in (b) at 162 x magnification. .................................... 182 

Figure 6-14 Examples of contaminants found on used, unprocessed surgical 

gears. All contaminants previously described were found in the gear before 

decontamination. Organic contamination is shown in (a) at 206 x magnification, 

lubricating oil trapped contamination is shown in (b) at 790 x contamination, a 

calcium contaminant shown in (c) at 817 x magnification and sulphur based 

contamination is shown in (d) at 206 x magnification. ............................. 183 

Figure 6-15 Examples of contaminants found on decontaminated surgical gears. 

All contaminants previously described were found on the spring before 

decontamination. Organic contamination is shown in (a) at 83 x magnification, 

lubricating oil trapped contamination is shown in (b) at 1356 x contamination, a 
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calcium contaminant shown in (c) at 175 x magnification and sulphur based 

contamination is shown in (d) at 85 x magnification. ............................... 184 

Figure 6-16 Examples of contaminants found on used, unprocessed surgical 

levers. All contaminants previously described were found on the lever in contact 

with the gear before decontamination. Organic contamination is shown in (a) at 

181 x magnification, lubricating oil trapped contamination is shown in (b) at 726 

x contamination, a calcium contaminant shown in (c) at 175 x magnification and 

sulphur based contamination is shown in (d) at 359 x magnification. ............ 185 

Figure 6-17 Examples of contaminants found on decontaminated surgical levers. 

Contaminants previously described were found on the lever in contact with the 

gear before decontamination. Organic contamination is shown in (a) at 400 x 

magnification, sulphur based contamination is shown in (b) at 1600 x 

magnification and lubricating oil trapped contamination is shown in (c) at 400x 

magnification. No calcium based contamination was observed. .................. 186 

Figure 6-18 Examples of contaminants found on used, unprocessed low speed 

upper gears. All contaminants previously described were found in the high speed 

turbine ball bearing gear before decontamination. Organic contamination is 

shown in (a) at 1504 x magnification, lubricating oil trapped contamination is 

shown in (b) at 376 x contamination, a calcium contaminant shown in (c) at 1504 

x magnification and sulphur based contamination is shown in (d) at 188 x 

magnification. ............................................................................ 187 

Figure 6-19 Examples of contaminants found on used, unprocessed low speed 

lower gears. All contaminants previously described were found in the low speed 

lower gear before decontamination. Organic contamination is shown in (a) at 190 

x magnification, lubricating oil trapped contamination is shown in (b) at 760 x 

contamination, a calcium contaminant shown in (c) at 380 x magnification and 

sulphur based contamination is shown in (d) at 380 x magnification. ............ 188 

Figure 6-20 Examples of contaminants found on decontaminated low speed lower 

gears. All contaminants previously described were found on the low speed lower 

gear after decontamination. Organic contamination is shown in (a) at 44 x 

magnification, lubricating oil trapped contamination is shown in (b) at 190 x 

contamination, a calcium contaminant shown in (c) at 190 x magnification and 

sulphur based contamination is shown in (d) at 380 x magnification. ............ 189 

Figure 6-21 EFSCAN analysis of BSA standards on stainless steel discs. BSA of 

differing concentrations was applied to 316 stainless steel disc and analysed. 
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Each peak represents protein contamination on the surface. The data is 

representative of 6 discs of each concentration. .................................... 191 

Figure 6-22 Standard curve of BSA scanned using EFSCAN. BSA of differing 

concentrations was added to 316 stainless steel discs and scanned. An increase 

in BSA protein concentration results in a linear increase in fluorescence. Data 

shown is the mean of 6 discs ± the StEM. ............................................. 192 

Figure 6-23 EFSCAN analysis of low speed HP spray channel surfaces. Low speed 

HP spray channels (a) that were unused were sampled using EFSCAN analysis (b). 

Spray channels were also sampled after use and before decontamination (c) and 

after decontamination (d). Peaks represent protein on the surface. No peaks are 

visible in the new, unused sample. The graphs are representative of 3 spray 

channel samples. ......................................................................... 194 

Figure 6-24 EFSCAN analysis of high speed HP turbine surfaces. High speed HP 

turbines (a) that were unused were sampled using EFSCAN analysis (b). Turbines 

were also sampled after use before decontamination (c) and after 

decontamination (d). Peaks represent protein on the surface. Significantly lower 

peaks are visible in the new, unused sample. The graphs are representative of 3 

turbine samples. .......................................................................... 195 

Figure 6-25 EFSCAN analysis of high speed HP cap surfaces. High speed HP caps 

(a) were sampled unused using EFSCAN analysis (b). Caps were also sampled 

after use before decontamination (c) and after decontamination (d). Peaks 

represent protein on the surface. Significantly smaller peaks are visible in the 

new, unused sample (b). The graphs are representative of 3 cap samples. ..... 196 

Figure 7-1 Effect of cleaning time on the removal of citrated blood from a 

stainless steel surface. The effect of cleaning time on blood removal from a 

stainless steel surface was assessed by measuring the protein desorbed using the 

BCA assay. The agitation speed was kept constant at 25 20°C tilts/min and was 

assessed at ambient room temperature (22°C). An increase in cleaning time 

results in an increase in protein removal from the surface with significantly (* = 

p<0.05) more blood removal observed between 5 to 10 min. The data shown is 

the mean of results from, 3 discs from 3 experiments and the StEM. The control 

shows the initial blood protein concentration applied to the stainless steel disc.

 .............................................................................................. 210 

Figure 7-2 Effect of water temperature on the removal of citrated blood from a 

stainless steel surface The effect of ROH2O temperature on blood removal from 
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a stainless steel surface was assessed by measuring the protein desorbed using 

the BCA assay. The agitation speed was kept constant at 25 tilts/min at 20°C 

and samples were taken after 5 min. An increase in cleaning time results in an 

increase in protein removal from the surface with significantly (* = p<0.05) more 

blood removal observed between 5- 10 min. The data shown is the mean of 

results from, 3 discs from 3 experiments and the StEM. The control shows the 

initial blood protein concentration applied to the stainless steel disc ........... 213 

Figure 7-3 Effect of agitation speed on the removal of citrated blood from a 

stainless steel surface. The effect of agitation speed on blood removal from a 

stainless steel surface was assessed by measuring the protein desorbed using the 

BCA assay. Samples were taken after 5 min and assessed at ambient room 

temperature (22°C) An increase in agitation speed results in an increase in 

protein removal from the surface with significantly (* = p<0.05) more blood 

removal observed when the speed is increased from 0 to 25 tilts/min and when 

the speed is increased from 25 tilts/ min to 45 tilts/ min (***p<0.001). The data 

shown is the mean of results from, 3 discs from 3 experiments and the StEM. The 

control shows the initial blood protein concentration applied to the stainless 

steel disc. .................................................................................. 216 

Figure 7-4 Comparison of blood protein removal by cleaning solutions. The 

efficacy of cleaning solutions at removing blood removal from SSS’s after 5 min 

of cleaning was assessed by measuring the protein desorbed using the BCA assay. 

All cleaning solutions were compared to blood removal by tap H2O which is 

represented by the baseline of the graph. Samples were assessed at ambient 

room temperature (22°C) and the agitation speed was set at 25 20°C tilts/min. 

All cleaning solutions were compared to the blood protein removed by tap H2O. 

No cleaning solutions removed significantly more blood than ROH2O alone though 

HiBi® Scrub and W & H cleaning solution remove significantly (***= p<0.001) less 

protein. Haemo-sol® detergent removed the most blood protein of the cleaning 

solutions sampled. Tap H2O removed less protein than RO H2O though this was 

not significant. The data shown is the mean of results from, 3 discs from 3 

experiments and the StEM. ............................................................. 219 

Figure 7-5 Effect of detergent manufacturers suggested temperature on the 

percentage blood removal by detergents. The efficacy of detergents at blood 

removal from stainless steel surfaces after 5 min cleaning at room temperature 

(grey bars) and 50°C (white bars) with the agitation speed set to 25 20°C 
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tilts/min was assessed by measuring the protein desorbed using the BCA assay. 

Raising the solution and environmental temperature to 50 °C resulted in a 

significant increase (*= p<0.05, ** = p<0.01) in ROH2O blood removal and 

Rapidex® blood removal. Alconox® blood removal was increased but not 

significantly. No difference was observed in the case of Haemo-sol® detergent. 

The data shown is the mean of results from, 3 discs from 3 experiments and the 

StEM. The control shows the initial blood protein concentration applied to the 

stainless steel discs at each temperature. ........................................... 222 

Figure 7-6 Effect of detergent manufacturers suggested temperature on the 

percentage blood removal by detergents. The efficacy of detergents at blood 

removal from stainless steel surfaces after 5 min cleaning at room temperature 

(grey bars) and 38°C (white bars) with the agitation speed set to 25 20°C 

tilts/min was assessed by measuring the protein desorbed using the BCA assay. 

Raising the solution and environmental temperature to 38°C resulted in a 

significant increase (*** = p<0.001) in Rapizyme® blood removal. ROH2O and 

Endozime® blood removal was increased but not significantly. The data shown is 

the mean of results from 3 discs from 3 experiments and the SEM. The control 

shows the initial blood protein concentration applied to the stainless steel discs 

at each temperature. .................................................................... 224 

Figure 7-7 Total 72h P. acnes biofilm blank corrected biomass detected after 

treatment with cleaning solutions. P. acnes isolates from dental HP’s  were 

grown for 72h anaerobically in a 96 well plate to form biofilms. The biofilms 

were then exposed to cleaning solutions for 16 min and the biomass remaining 

after 3 rinses with PBS was measured using 1% crystal violet staining. Biofilms 

treated with Haemo-sol® have significantly (***= p<0.001) less biomass than RO 

H2O alone. There was no significant difference between biofilms treated with 

the PBS control and the W & H cleaning solution. Data shown is the spread of all 

P. acnes isolates .......................................................................... 229 

Figure 7-8 Total 72h S. epidermidis biofilm biomass detected after treatment 

with cleaning solutions. S. epidermidis strain RP62A was grown for 72h 

anaerobically in 96 well plates to form biofilms as a positive control for P. acnes 

biofilm formation. The biofilms were then exposed to cleaning solutions for 16 

min and the biomass remaining after 3 rinses with PBS was measured using 1% 

crystal violet staining. Biofilms treated with Haemo-sol® detergent have 

significantly (*= p<0.05) less biomass than when exposed to RO H2O alone. There 
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was no significant difference between biofilm biomass treated with the PBS 

control and the W & H cleaning alcohol. Data shown is the spread of all S. 

epidermidis experiments. ............................................................... 230 
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1.1.1 Historical Perspective 

Dentistry, the treatment of hard and soft tissues of the oral cavity, can trace its 

origins to the Neolithic era where evidence of flint tools used for drilling of 

carious teeth has been found (Bennike and Fredebo, 1985). A record of dentistry 

is evident throughout recorded human history, including the ancient Mayan and 

Egyptian civilizations. In Medieval Europe, dental barbers were the practitioners 

of dentistry, and not until the 18th century, with the writings of Pierre Fauchard, 

that dentistry became a specialised profession based on scientific principles to 

allow the advancement of knowledge and technique (Ring, 1985). In the modern 

era, dentistry is separated into eight specialities concerned with different 

aspects of dental surgery and practice: Periodontology, Orthodontics, Oral 

Surgery, Oral Pathology, Prosthodontics, Paedodontics, Dental Public Health, 

and Endodontics.  

 

1.1.2 Restorative dentistry 

Restorative dentistry is concerned with the restoration of the damaged tooth 

and encompasses a number of specialities. The best available methods for 

restorative dentistry at the turn of the century involved devitalisation of the 

tooth followed by the application of an ill fitting, unsightly silver amalgam or 

gold foil (Ring, 1985). Advancements in restoration have centred on tighter 

fitting implants that do not require an excess of cement to hold it in place; and 

the introduction of crowns and composite filling materials that provide an 

aesthetic, unnoticeable restoration of the tooth (Ring, 1985). 

 

1.1.3 Introduction and history of dental handpiece development  

An important tool that has aided the development of restorative dentistry is the 

handpiece (HP).  The HP is a small drill that is used for the removal of enamel or 

carious tissue from the tooth to allow implantation. The HP provides high speed 

rotary power through a turbine to a metal bur for tooth drilling.  Developments 

in the HP have allowed more intricate procedures to be performed with 

increased patient comfort. The history of the development of dental HP’s has 

been reviewed extensively (Dyson and Darvell, 1993a, Dyson and Darvell, 1993b) 
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and the review highlights the rationale behind HP development and the many 

developments that have led to the development of current models. The creation 

of the modern HP was not a linear process and many developments occurred 

simultaneously such as the introduction of the fluid driven and the foot driven 

HP in the late 1860’s (Dyson and Darvell, 1993a). The focus for further 

development of the HP was driven by the desire for easier control of the HP and 

the need for faster rotational speeds to increase patient comfort by reducing the 

time of operations and to take advantage of bur development (Dyson and 

Darvell, 1993a). These speeds could not be achieved by fluid or manually and 

the development of higher speed HP’s capable of speeds of 10,000 revolutions 

per minute (RPM) occurred in 1911 (Dyson and Darvell, 1993a). The top 

rotational speed of HP’s had increased to 100,000 RPM in 1956 and to 300,000 

RPM in 1958 with the invention of the Borden Air Rotor, considered to be the 

first modern high speed HP (Dyson and Darvell, 1993b).  The high speeds of 

modern HP’s create a significant level of friction on the bur and the tooth 

surface potentially causing tooth and tissue damage. The development of cooling 

systems based on the spray of water onto the surface occurred in 1956 (Dyson 

and Darvell, 1993b). This system was inside the HP which also made control of 

the HP easier for the dentist. In the modern era, HP’s can be subdivided by the 

rotary speeds of the HP and therefore the functions of the HP. 

 

With the development of HP’s, methods of sterilization have also been 

developed. One of the earliest reviews into dental HP sterilization was 

undertaken by Appleton. J in 1924, which described all methods that had been 

published and used at the time (Table 1-1). This review is of interest due to the 

number of methods highlighted that are suggested by authors in more recent 

times (Silverstone and Hill, 1999, Kolstad, 1998). 
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Table 1-1 Early methods of HP sterilization adapted from Appleton. J 1924. 

Author and 
Year 

Method 

Witthaus 

(1902) 

Hot air at 200°C 

Anderson 

(1908) 

Heating in mineral machine oil from 120 -150°C 

Marshall 

(1913) 

Removal of sleeve and sterilization by boiling. The rest of the 

instrument sterilized by placing in gasoline and storage in 95% 

alcohol. Alternative of dried formaldehyde vapours.  

Hasseltine 

(1915) 

Boiling water or 80°C in a water bath containing 0.25% NAOH. 

Excess water removed by alcohol.  

Brown (1917) Apply absolute alcohol with a cotton swab 

Ash (1918) Wiping handpiece with alcohol and sterilizing in the 

autoclave. Alternative of boiling in water with ―a little green 

soap‖.  

Schaefer 

(1918) 

Wipe before use with a cloth wet with alcohol or a dilute 

phenol solution or boiled in a soap solution 

Vallak (1918) Immerses in 10% Lysol for 15 min.  

Gadge (1919) Boiled in 1% sodium bicarbonate then placed in a test tube 

with 95% alcohol 

Appleton 

(1924) 

Immerse completely in mineral oil at 185°C for 5 min.  Wipe 

off oil with sterile towel.  
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1.1.4 Handpiece types 

HP’s can broadly be divided into high speed, low speed and surgical HP’s. The 

high speed HP revolves at speeds of 250,000 revolutions per minute (RPM) and is 

used to cut hard materials such as tooth enamel, porcelain and metal fillings 

(Kidd et al., 2003). The development of the high speed HP with a high rotational 

speed was driven by the need to take advantage of developments in cutting burs 

and to reduce discomfort during surgery that was caused by vibrations (Cherry et 

al., 1974).  

 

The modern air turbine HP can be fitted with a fibre optic light to aid visibility 

and a water line that allows the passage of water to cool the tooth surface and 

bur upon excessive heat generation (Christensen, 1999) (Figure 1-1). The high 

speed HP has less torque than the low speed HP; a consequence of the higher 

speed of rotation (Watson et al., 2000). It is for these reasons that low speed 

HPs are used for some procedures in dentistry. Low speed HPs can be subdivided 

into straight and contra angle depending on the area of access. Straight HP’s are 

typically used for trimming temporary crowns and the contra angle HP is used 

for the removal of dentine or carious dentine and the drilling of pin holes (Kidd 

et al., 2003). Low speed HPs are capable of speeds approaching that of the high 

speed HP. Surgical HPs are also designed to be straight or have a contra angle 

for different operating areas and are less complicated to disassemble to assist in 

cleaning and decontamination. Surgical HPs are used to undertake a variety of 

procedures including wisdom tooth removal, bone modelling, apical resection 

and neurosurgery. The use of any HP for cutting of the tooth surface results in 

the generation of heat and the use of an internal spray channels allow the 

passage of water from the dental unit water line and onto the bur and surface to 

allow cooling of the surface. 
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Figure 1-1 Simplified diagram of a high speed HP. The diagram displays the air 

line that provides rotary power to the turbine and the water line that provides 

water for cooling. The air drive circuit provides compressed air to drive the 

turbine. The shank of the bur is inserted into the turbine and revolves with it.  

 

1.1.5 Relationship between handpiece structure and 

contamination 

The workings of the HP, specifically the air derived rotary power and the spray 

channels for the supply of cooling water, result in contamination of the dental 

HP. Early studies showing internal contamination of the HP involved the visual 

detection of purple dye in internal sections after the operation of HP’s in a 

purple dye solution (Checchi et al., 1998, Lewis and Boe, 1992). These studies 

highlighted the principal that contaminants are internalised during HP use. This 

dye could also be released from the HP upon further use.   

 

1.1.6 Internalisation of HP contaminants 

A source of contamination of any HP that utilises air is internalisation of outside 

contaminants. When a HP is deactivated, the deceleration of the turbine and 

negative pressure causes the internalisation of any external contaminant (Figure 

1-2) 
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Figure 1-2 Internalisation of contaminants. Negative air pressure is created 

when the HP turbine is stopped which causes the internalisation of contaminants 

into the air and water circuits. Adapted from (Matsuyama et al., 1997) 

 

Internalisation of contaminants results in contamination of the air line and the 

internal components of the HP (Lewis and Boe, 1992). The contaminants 

internalised are dependent on the environment and in the oral cavity may 

include blood, bacteria, and human tissue. Several systems and devices are 

common in HPs to prevent negative pressure and can result in a reduction, but 

not full prevention, of internalised contaminants (Hu et al., 2007b) . 

 

1.1.7 Dental unit waterline contamination  

The dental unit which supplies air and water to the HP has its own water supply. 

If this is not regularly maintained it can result in the growth of pathogenic 

bacteria (Montebugnoli et al., 2004). These can take the form of planktonic cells 

and as a biofilm on the tubing of the HP and the dental water line (Whitehouse 

et al., 1991). The polysaccharide matrix of the biofilm protects the bacterial 

cells from antibiotic agents. In a dental unit, these biofilms have been found to 

contain Pseudomonas aeruginosa and Legionella pneumophila, which can result 

in morbidity and mortality upon exposure. 
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The contamination of the dental unit water line and the subsequent use of water 

in the HP can also create an aerosol containing bacteria which may cause 

infection of dentists and their assistants as well as the patients (Bennett et al., 

2000). Dental workers have been found to have antibodies against common 

contaminants of the dental unit, showing external distribution of these 

pathogens (Reinthaler et al., 1988).  

 

The characterisation of contaminants of the HP, or the ―biofouling‖, defined by 

the Biofouling journal as the protein, microbial and fungal contamination, has 

been the subject of many studies. The focus of these studies has been on the 

survival and transmission of bacteria and viruses.  

 

1.1.8 Bacterial contamination of dental handpieces 

Bacteria are detectable inside the HP structure with the contamination of air 

driven low speed HPs containing prophy angle attachments being studied by Chin 

et al. 2006. The aim of the study was to assess the survival and the movement of 

Geobacillus stearothermophilus between the prophy angle to the HP, and the HP 

to the prophy angle. The study confirmed the survival and movement of the 

spores from the prophylaxis angle to the HP motor on 20% of samples and from 

the motor to the phophylaxis angle on 40% of samples. The test spores are used 

for autoclave testing and do not represent a clinical contaminant or a clinical 

situation and for this reason the same group also assessed the presence of 

bacteria in low speed HP’s and prophy angle attachments during HP use (Herd et 

al., 2007). The authors found that, the low speed HP’s had a range of 0-6300 

colony forming units (CFU)/ml and 75% of HP’s used on 20 patients were 

contaminated. The swabbing method has been highlighted as inefficient by 

previous studies (Lipscomb et al., 2006b) and recovery rates have been found to 

be 19% (Angelotti et al., 1964). This may underestimate the contamination of 

low speed HP’s in these studies. 

 

Other studies into bacterial contamination of dental HP’s was conducted by 

flushing decontaminated HP’s and flushing HP’s that had been used on patients 

with sterile saline through the spray channel and head of the HP (Kellett and 
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Holbrook, 1980). The authors isolated a range of 0-90 CFU/ml from 

decontaminated HP’s and a range of 3.6 x103 – 29 x103 CFU/ml before 

decontamination. The organisms identified were similar to bacteria found in HP 

sprays with Staphylococci, including S. aureus, Pseudomonas spp and Bacillus 

spp all isolated. The flushing method employed in the study may not remove all 

contaminants of the HP and validation of the method would determine how 

much bacteria can be recovered by this method. 

  

Bacterial contaminants of the HP can also originate from dental unit water line 

where it can exit the HP in the form of an aerosol spray. These aerosols are 

capable of spreading contaminants throughout the dental surgery. Attempts to 

determine the contaminants in aerosols have focused on the bacterial 

contaminants (Al Maghlouth et al., 2004, Rautemaa et al., 2006, Bennett et al., 

2000). The bacterial content of aerosols has been identified as oral Streptococci, 

indicating contamination from the mouth, Staphylococci including S. aureus (Al 

Maghlouth et al., 2004), and Gram-negative Pseudomonas species that indicate 

contamination from the water line. Bennett et al. indicate an increased risk of 

respiratory problems of dental staff exposed to bacteria in the dental HP spray.  

Pathogenic bacteria including Legionella have been hypothesised to be 

transmitted by this route due to the association with dental treatment and the 

increase in Legionella antibodies in dental staff (Reinthaler et al., 1988).The 

distance of aerosol spread was assessed by Rautemma and colleagues by placing 

agar plates in different locations around dental surgeries. The study found 

positive cultures of bacteria in all the areas up to 2 metres away from the 

patient and more bacteria than is found in an empty room (Rautemaa et al., 

2006).   

 

1.1.9 Viral contamination of dental handpieces 

The survival of pathogenic viruses in the HP has been investigated by the use of 

the detection of viral DNA (Hu et al., 2007b) and a bacteriophage model (Lewis 

et al., 1992). One study showed the contamination of high speed HPs with 

hepatitis B virus (HBV) (Hu et al., 2007b). The HP was operated on 40 HBV 

positive patients that had been split into a gingivitis group and control group. 

Different parts of the HP were sampled and viral contamination was determined 
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by the polymerase chain reaction (PCR). Viral DNA was detected in all locations 

sampled including the ports of the air and water line. HPs that were exposed to 

HBV patients with gingivitis had more isolations of viral DNA and that the use of 

an anti retraction valve had no effect on the presence of viral DNA. Human 

Immunodeficiency Virus (HIV) DNA has also been recovered from HP’s after use 

on HIV positive patients (Lewis and Boe, 1992). The presence of viral DNA may 

not indicate the presence of viral particles, but indicates that HPs used on 

infected patients can potentially result in the contamination of the HP with viral 

particles. A bacteriophage model used in the Lewis and Boe 1992 study showed 

that whole viral particles were able to survive upon internalisation inside the 

HP.  

 

1.1.10 Contamination of surgical power tools  

The evolution of the dental HP has also resulted in the invention of other 

surgical power tools (PT’s). Examples include surgical drills, ultrasonic dental 

scalers, and HP’s that function using a laser. During routine use, these 

instruments are also contaminated with biological material (Baggish et al., 1991, 

Leslie et al., 2003, Sagi et al., 2002) depending on operating site. The 

reprocessing of surgical PT’s after use is recommended by the Medical Device 

Directive 2002 and manufacturers of each device are required to provide 

validated reprocessing methods. Concerns have been raised over the 

effectiveness of decontamination procedures due to the complexity of some 

instruments and the balance struck between instrument maintenance and the 

elimination of contamination (Silverstone and Hill, 1999). It is important to know 

the location and nature of contamination in routinely used PT’s before 

decontamination processes to understand the biological and chemical challenges 

to these processes. Surgical PT’s can be broadly grouped into rotary, ultrasonic 

and laser PT’s. The contaminants and the methods used to identify them may 

also be applied to dental HP studies.  

 

1.1.11 Contamination of rotary power tools  

The presence of bacteria in the exhaust air of an orthopaedic drill was 

highlighted by Sagi et al. 2002. The results showed the presence of skin 
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organisms such as coagulase negative staphylococci (CONS) and S. aureus which 

are associated with nosocomial infections of orthopaedic surgery (Sagi et al., 

2002). Bone dust contamination during temporal bone dissection has been shown 

to contain neurological material which may indicate the potential for 

contamination with prion protein that is resistant to sterilization (Scott et al., 

2001). This may occur during any neurosurgical procedure involving bone. After 

decontamination, studies on athroscopic shavers have detected protein and DNA 

contamination though this was not identified. An evaluation by Kobayashi et al. 

using energy dispersive X-ray analysis (EDX), fourier transform infrared 

spectroscopy and Auger microscopy revealed collagen and hydroxyl proteins 

after decontamination by high pressure water flow, ultrasonic cleaning, and 

sterilization using ethylene oxide (Kobayashi et al., 2009).  

 

1.1.12 Contamination of ultrasonic power tools 

Ultrasonic PT’s are utilised in a variety of specialties including dentistry (Schlee 

et al., 2006), ophthalmology (Vargas et al., 2004), orthopaedics (Labanca et al., 

2008), and neurosurgery. Applications include the removal of calculus deposits 

from teeth (Jotikasthira et al., 1992), the destruction of tumours the cutting of 

bone and soft tissue (Schlee et al., 2006) and the treatment of cataracts in the 

eye (Vargas et al., 2004).  

 

The studies on the contamination of ultrasonic PTs have been concerned with 

contamination causing phacoemulsification endophthalmitis in patients (Leslie et 

al., 2003, Dinakaran and Kayarkar, 2002). This condition can lead to loss of sight 

of the affected eye and has been attributed to the growth of bacteria 

introduced through contaminated ocular solutions or PT’s (Eifrig et al., 2003, 

Leslie et al., 2003). A study on the contamination of 32 ultrasonic PT’s found 

bacteria, fungi, blood cells, proteinaceous material, and lens capsule fragments 

from previous operations in 12 of 38 PT’s (Leslie et al., 2003). The contaminants 

were also assessed using electron microscopy. All ultrasonic PT’s had been 

decontaminated to‖ hospital standards‖ and an automated washing system did 

not remove all contaminants. A further study on ophthalmic instrument 

contamination found debris on 3 HP’s although the debris was only identified 

visually. A study of tip contamination with lens protein found that common lens 
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proteins were not detected after cleaning processes involving rinsing with 

―irrigating solution‖ and flushing with demineralised water and 70% ethanol 

followed by flushing with air from a high pressure pistol and sterilization by 

autoclaving (Nuyts et al., 1999). Protein was detected by Coomassie blue 

staining and Western blots for the common lens proteins αA- crystallin, 

vimentin, and MP26 (Nuyts et al., 1999). The lack of protein found may be due 

to the sensitivity of the coomassie blue technique and the specificity of Western 

blot for detecting specific proteins. Use of a more sensitive protein gel stain 

such as silver stain may result in the detection of protein.  Cases of 

endophthalmitis have also been linked to the presence of P. aeruginosa that was 

present in the internal channels of a phacoemulsifier (Zaluski et al., 1999, Eifrig 

et al., 2003).  

1.1.13 Laser handpiece contamination 

Laser HP’s are utilised in the field of dermatology, ophthalmology (Fine et al., 

2002), and neurosurgery for the destruction of skin and tissue (Garden et al., 

2002). Due to contact of the HP to the operating site during a procedure, whole 

cells and cellular debris has been found adhering to laser HP’s after use (Wolf et 

al., 1991) and have been associated with the contact transmission of herpes 

simplex virus (Solomon et al., 2006). The formation of laser generated aerosols 

has been shown to transmit papillomaviruses in studies with cows (Garden et al., 

2002) and would indicate the potential of transmission of human 

papillomaviruses. HIV DNA has been found in the aerosol but showed no 

infectivity when inoculated with human cells (Garden et al., 2002, Baggish et 

al., 1991). Viable bacteria including CONS, Neisseria spp and Corynebacterium 

have also been detected in aerosols in a pilot study (Capizzi et al., 1998). 

1.2 Surface interaction of instrument contaminants 

With knowledge of the contaminants of surgical HP’s and PT’s that must be 

removed during the decontamination process, knowledge of the interactions of 

these contaminants with an instrument surface may inform decontamination 

processes that allow removal. The adsorption of protein to surfaces is dependent 

on multiple factors. 
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1.2.1 Protein adsorption onto surfaces 

Protein adsorption to surfaces is a problem in many areas from the dairy industry 

to surgical implants and medical instruments. It is possible for proteins to bind 

to any surface and the binding is an irreversible process (Van Tassel et al., 

1998).  Protein contamination of surfaces must therefore be removed through 

the reversal of these interactions by the cleaning process. Understanding the 

exact processes for protein adsorption onto surfaces can help develop the 

rationale for cleaning processes and develop alternative methods for the 

removal of protein contamination. The factors that have been determined to 

have an effect on protein adsorption to a solid surface are the protein structure, 

protein concentration, electrostatic interaction, pH of solution, hydrophobicity, 

and temperature of solution. 

 

1.2.2 The importance of protein structure 

Proteins are composed of a series of 21 amino acids linked by peptide bonds of 

which the arrangement is known as the primary structure (Creighton, 1993). 

Each amino acid can be grouped by the side chain which can be positively or 

negatively charged, polar neutral, or hydrophobic (Creighton, 1993). The 

composition of amino acids and the interactions of the side chains determine the 

secondary and tertiary protein structure and protein function. The secondary 

structure describes the number and distribution of α helices, β sheets, and turns 

that are stabilised by hydrogen bonding and the tertiary structure describes the 

spatial relationship between all the amino acids including the formation of a 

hydrophobic core and the overall shape of the protein (Creighton, 1993). 

Proteins can be broadly placed into three categories, globular, fibrous, and 

membrane (Creighton, 1993).  

 

Protein structure defines the interaction of a particular protein with other 

proteins, quaternary structure, and the interaction of proteins with surfaces.  

Protein structure can also change depending on the environment, for example an 

aqueous environment causes non-polar amino acid residues to reside in the 

interior of the protein due to the hydrophobic nature and a change in pH will 

cause a change in amino acid side chain charge and therefore change the 
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interaction of the amino acid chains (Creighton, 1993). Acidic amino residues 

have also been shown to have increased affinity to stainless steel and the 

binding of peptides can mostly be attributed to these residues (Imamura et al., 

2003). Proteins can be roughly divided into ―hard‖ and ―soft‖ proteins depending 

on the internal stability of the structure which is governed by hydrophobic 

residues (Norde and Favier, 1995). Soft proteins are more likely to denature on a 

surface than hard proteins (Kubiak-Ossowska and Mulheran). Protein molecules 

may also undergo conformational changes that allow the most efficient flat 

contact binding to the surface (Kubiak-Ossowska and Mulheran).   

 

1.2.3 The importance of protein concentration  

An increase in protein concentration results in an increase in the amount of 

protein that adsorbs onto a surface (Roach et al., 2005). When the protein is 

present at a higher concentration, the protein adsorbed at the surface is unable 

to spread if another protein molecule is present in close proximity to the surface 

(Roach et al., 2005). At higher concentrations, more protein molecules will be 

present to adsorb to the surface and therefore will stop proteins spreading over 

a surface area (Roach et al., 2005).  

1.2.4 Effect of solution pH and temperature 

Proteins are charged molecules with the net charge being determined by the 

amino acid composition (Section 1.2-2). The protein net charge is also 

dependent on the pH of the surrounding solution with the positively charged 

hydrogen ions interacting with the amino acids as the pH decreases (Creighton, 

1993). Altering the solution pH may reverse the interactions of the protein with 

the surface by causing change in both protein and surface charges. It is known 

that decreasing the pH below the isoelectric point of the metal oxide surface, 

such as that found in medical instrumentation, results in a positively charged 

surface which changes to neutral and finally a negative charge when the pH is 

above the isoelectric point (Kittaka, 1974). Therefore, an alkaline solution will, 

in most cases, result in a net charge of proteins and surfaces being negative 

which act to repel the protein from the surface (Fukuzaki et al., 1995).  
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Generally, an increase in temperature results in an increase in protein 

adsorption (Desroches et al., 2007). This effect is dependent on an increased 

rate of structural rearrangement of proteins. A heat denatured protein may have 

an increased amount of amino acid residues exposed that increase the binding to 

the surface (Arnebrant et al., 1986). This phenomenon is not observed for all 

proteins with plasma albumin showing an increase in desorption of the protein 

upon higher temperatures. For plasma albumin, an increase in temperature 

resulting in an increase in adsorption is observed when the pH is increased above 

the isoelectric point (Norde et al., 1986). 

1.2.5 Adsorption of prion proteins to stainless steel surfaces 

The only protein reported to cause disease is the prion protein that is the 

causative agent of Creutzfeldt Jacob disease (CJD) (Will et al., 1996). The prion 

protein is an abnormal form of the host prion protein (PrPC) into the abnormal 

prion protein (PrPSC). This causes alteration in the secondary structure including 

the conversion of an α helices prevalent structure to that of a β sheet structure 

found in the abnormal form (Eghiaian et al., 2004). Fear of the contamination of 

surgical instruments by prion proteins and the subsequent transmission of CJD 

drives a lot of research into protein contamination of instruments (Bernoulli et 

al., 1977). The prion protein is also resistant to steam sterilization and the 

cleaning process is therefore important to remove this protein (Kast, 1976). 

Knowledge of the interaction of the prion protein with surfaces may inform the 

development of cleaning processes. 

Prion protein is found to bind preferentially to nickel and molybdenum which are 

both prevalent in 316L medical grade stainless steel (Luhr et al., 2009). This is 

common with other proteins which have specific metal binding sites including  

human serum albumin (HSA) which has a site between two domains rich in 

aspartic acid and glutamic acid residues which allow for metal ion binding  (Bal 

et al., 1998, Clarke et al., 2007). The prion protein is known to also contain 

metal binding sites which may allow it to behave similarly to serum albumin 

(Jackson et al., 2001). An increased amount of PrPsc is found to adsorb to the 

surface with an increased drying time and an increased resistance to detergent 

removal (Secker et al.). This is common for other proteins as the removal of 
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water results in hydrophobic core amino acids moving to the outside of the 

protein which can increase the interaction with the surface.  

Whilst the effect of prion protein structure and surface dryness is clear, there 

has been no research examining the effects of electrostatic interaction, protein 

concentration, temperature and pH on adsorption. These factors have all been 

shown to have an effect on protein adsorption and research into these factors 

may further inform the removal of prion proteins from instrument surfaces.  

1.2.6 Adsorption of bacteria to a surface 

The first event in any contamination of a biomaterial is through the adsorption 

of protein to the surface (Sakiyama et al., 2004). Through this, bacteria can 

adsorb to the proteins on the surface using specific binding factors (Tegoilia and 

Cooper, 2002, Piroth et al., 2008) (Figure 1-3). Bacteria have been known to 

initially adsorb to a surface and start producing extracellular material and form 

what is known as a biofilm (Costerton et al., 1978). After initial adsorption, 

bacteria can adsorb to the actual biofilm structure using specific receptors 

(Heilmann et al., 1996)  A biofilm is defined as a microbially derived sessile 

community characterised by cells that are irreversibly attached to a substratum, 

an interface or each other (Donlan and Costerton, 2002). These biofilms can 

form on static surfaces or in a system of flowing water such as a dental unit 

waterline or dental HP. Biofilms formed under a flow system are found to be 

more rigid and harder to remove than static biofilms which has implications for 

biofilm removal inside an HP spray channel which is exposed to a high flow rate 

(Vrouwenvelder et al., 2010).  
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Figure 1-3 Adsorption of bacteria to a medical device. Initial binding is 

dependent on the presence of host proteins. Bacteria are able to bind host 

proteins using specific receptors and upon contact with a surface produce the 

biofilm ECM. Additional bacterial cells can attach to the biofilm matrix 

structure. Adopted from (Rohde et al., 2010). 
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Biofilm structure 

Biofilms are composed of individual cells, extracellular matrix (ECM), and 

extracellular spaces (Lawrence et al., 1991). The composition and amount of 

exopolymeric material compared to individual cells is dependent on the species 

of bacteria present in the biofilm including differences with Gram negative and 

Gram positive bacteria (Bridier et al., Lawrence et al., 1991). Biofilms in nature 

tend to be multispecies depending on what bacteria are present and can adsorb 

to the structure (Marsh, 1994). Studies into the structure of S. epidermidis ECM 

has shown it is composed of teichoic acids, various proteins and DNA (Heilmann 

et al., 1996, Qin et al., 2007) whilst other bacteria such as Escherichia coli have 

been shown to produce cellulose as the main constituent (Zogaj et al., 2001) and 

polysaccharides are also a common constituent of ECM (Wozniak et al., 2003). 

All structures have a dual role of providing structural support and adsorption of 

bacterial cells to the matrix and the surface (Qin et al., 2007).The ECM also 

contains extracellular channels that allow the passage of liquid and gas all 

through the biofilm structure by the formation of channels (de Beer et al., 

1994). This allows the transport of nutrients to cells and transport of waste 

products out of the biofilm allowing the survival of bacteria all through the 

structure (Robinson et al., 1984).   

 

1.3  Decontamination and maintenance of dental 

handpieces 

Invasive surgical instruments including the dental HP require decontamination 

after use to remove and inactivate the contaminants (Lewis et al., 1992). The 

decontamination of instruments requires several critical control points 

highlighted by the instrument decontamination circle (Figure 1-4).  
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Figure 1-4 Critical control points for instrument decontamination. Dental HP’s 

and other instruments require cleaning, disinfection, inspection and 

sterilization. Each critical control point is essential to the decontamination of 

surgical instruments. Sourced from Sterile Services Provision Review Group first 

report: The Glennie Framework.(NHS Scotland, 2001).  
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In addition, HP’s require additional maintenance in the form of lubrication of 

the internal parts (Hegna et al., 1978). Whilst not part of any decontamination 

process, this ensures the continued working of the HP by reducing the friction 

between gear movements. Lubrication is recommended before and after 

decontamination by different manufacturers (Weightman and Lines, 2003) and is 

undertaken in the Glasgow Dental Hospital (GDH) before sterilization (Section 

2.1.3). The efficacy of the cleaning and sterilization of dental HP’s has been 

studied in vitro using known contaminants and in vivo using routine sampling. 

1.3.1 Handpiece lubricating oil  

A contaminant which is part of routine HP maintenance is the lubricant oil. The 

gears and the metallic parts of the HP require lubrication to prolong the life of 

the HP and to reduce friction during HP use. Different manufacturers 

recommend different lubrication procedures including before and after the 

sterilization process. Lubricating oil can act as a contaminant in two ways; it has 

been reported to protect contaminants from steam sterilization, and it can act 

as a contaminant itself (Lewis and Arens, 1995, Pong et al., 2005).  

 

Lubricating oil discharge from a HP has been investigated by Pong and colleagues 

by visualising dyed red oil and comparing the weights of the HP before and after 

discharge (Pong et al., 2005). The greatest level of oil discharge was found in 

the first 5 minutes and a detectable amount of oil was being discharged after 40 

minutes(Pong et al., 2005). The discharge of HP lubricant can have an adverse 

affect on dental procedures and may, in some cases, be toxic to the patient 

(Knight et al., 1999) . Further study of this area should focus on the discharge of 

HP lubricant after a typical sterilization process. A coloured dye which levels 

could be measured using a spectrophotometer would give quantifiable levels of 

oil discharge. Weight can be a variable measurement depending on the time of 

day that it is measured and may affect the results.  
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1.3.2 Definition of terms  

The definition of each critical control point is important to determine the 

standards that must be attained for a product or process used in each 

decontamination stage. Cleaning is defined by the EN –ISO-15883-1:2006 

standard as ―removal of contamination from an item to the extent necessary for 

its further processing and its intended subsequent use‖. For the validation of 

routine instrument cleaning, visual analysis using magnification of the 

instrument is employed after cleaning to ensure that no visible soil is present on 

the surface (Lipscomb et al., 2008). For the validation of cleaning processes, the 

EN–ISO-15883:2006 requires the prior soiling of instruments with various test 

soils and no reaction with defined protein assays to class an instrument as 

―clean‖. The disinfection of any instrument requires a reduction, but not 

elimination, of microorganisms using cleaning solutions.  A disinfectant solution 

should cause a 5 log reduction of a starting culture of 1.5 – 5x108 CFU/ ml P. 

aeruginosa, S. aureus, or Enterococcus hirae and a log reduction in viral titres of 

poliovirus or adenovirus upon 60 min contact time in a suspension test. Bacteria 

are measured using culture techniques and remaining viral titres are determined 

through the measurement of cell culture infectivity with remaining viral 

particles. Sterilization is defined by the BS- EN- ISO 11737 – 1:2006 standard as a 

process that results in a probability of less than 1 in a million of a single 

―finished‖ product containing a viable organism. The validation of a sterilization 

process relies on the inactivation of G. stearothemophilus spores due to the heat 

resistant properties of the bacterium (Ren et al.). 
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1.3.3 Factors influencing cleaning efficacy and the implications of 

protein adsorption and biofilm formation on cleaning 

efficacy 

The efficacy of cleaning is determined by numerous factors detailed by the 

Sinners circle (Figure 1-5). These parameters include the temperature of the 

cleaning solution, the cleaning solution used, the amount of time that cleaning 

occurs for, the amount of mechanical energy that is used for the cleaning 

process and the water quality (Smulders et al., 2007). Altering a variable may 

have a detrimental effect on cleaning or may allow comparative cleaning even 

when other variables are changed.  

 

Figure 1-5 Adaptation of the Sinners circle detailing the effects of 4 variables 

on cleaning efficacy. Changing 1 variable can alter the need for other variables 

to create an efficacious cleaning process. A recent addition to the Sinners circle 

is the water quality. Adapted from (Smulders et al., 2007) 
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An increase in cleaning time and mechanical work results in a total increase in 

cleaning force applied to the surface. Therefore the cleaning efficacy will 

increase as a result. Increasing the temperature of a solution results in an 

increase in available energy and therefore may allow absorption energies to be 

overcome, however an increase in temperature also results in denaturation of 

proteins and may increase the rate of adsorption to the surface (Arnebrant et 

al., 1986). Exposing prion protein adsorbed to stainless steel wires to distilled 

water (H2O) at 90°C is found to remove less prion protein than distilled H2O at 

the lower temperatures of 50- 60°C (Lemmer et al., 2004). Each cleaning 

process must therefore involve a cleaning temperature that gives the ideal 

combination of increased protein removal without causing greater adsorption. 

 

At a basic level, reversing protein interactions from a surface by cleaning occurs 

through dilution of the surface in a solution (Norde, 1986). If dilution with a 

solvent alone does not result in protein removal, the cleaning process usually 

incorporates various cleaning solutions or detergents of varying compositions 

that have different pH and recommended working temperatures (Norde, 1986). 

Detergents can roughly be divided into surfactants, alkaline detergents and 

enzymatic detergents. Alkaline detergents can both denature proteins and 

reverse the adsorption of proteins to surfaces by altering surface charge. 

Enzymatic detergents rely on various protease enzymes to breakdown the 

structures of contaminants. These enzymes have higher efficacy at a specific 

temperature and pH due to possessing specific binding sites (Lawson et al., 

2007). Surfactants contain both a hydrophobic and hydrophilic parts that can 

denature proteins and disassociating protein aggregates. The choice of cleaning 

solutions is important as some have been found to fix proteinacious 

contamination to a surface such as glutaraldehyde and alcohol have been shown 

to fix proteinacious contamination such as blood to surfaces upon exposure 

(Prior et al., 2004, Kampf et al., 2004, Nakata et al., 2007). Whilst these 

cleaning solutions may be suitable for disinfecting bacteria, the solutions are not 

suitable for removing protein contamination. 

During use, multiple proteins will adsorb to any given instrument surface each 

with different structures and compositions (Tsai et al., 2011). The most 

abundant protein will be the first to bind to the surface due to the laws of mass 
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transport but upon prolonged exposure these proteins may be superseded by 

other proteins or may have interacted with other proteins to form a complex 

(Desroches et al., 2007). It is therefore hard to predict the optimum cleaning 

process that will remove every protein and even harder to predict a reaction 

that would simultaneously disrupt the multiple reactions of the protein with the 

surface. Using a detergent may also reverse adsorption by changing the surface 

charges though may also denature the protein (Sakiyama et al., 2004), and in 

combination with a higher temperature, encourage absorption to the surface 

(Norde, 1986). Using an enzymatic detergent with a neutral pH may not result in 

protein desorption though the action of the enzyme may overcome any 

disadvantage associated with a neutral solution pH.  

A study into the effect of different cleaning solutions has shown the effect of 

different chemicals and processes on the desorption of prion protein from 

stainless steel wires has highlighted the different modes of actions of cleaning 

solutions (Lemmer et al., 2004). By detecting prion protein using Western blot, it 

can be shown if a cleaning solution is removing the prion protein or denaturing 

the protein. The alkaline solutions sodium hydroxide (NaOH) and sodium 

hypochloride both denatured the protein and caused removal from the stainless 

steel surface (Lemmer et al., 2004). This effect was found to be more 

efficacious when at a concentration of 0.5M and temperature of 55°C is used 

showing the importance of combining various factors to obtain the greatest 

cleaning efficacy (Lemmer et al., 2004). A commercial alkaline cleaner also 

resulted in protein denaturation and removal (Lemmer et al., 2004). Guanidine 

thiocyanate, a protein denaturing agent (Suryaprakash and Prakash, 2000), was 

found to have no significant effect on protein denaturing or removal from the 

surface (Lemmer et al., 2004). A solution of 4M urea, used for protein 

precipitateon, also resulted in detachment but not inactivation of the protein 

(Lemmer et al., 2004). A sodium dodecyl sulphate (SDS) solution was found to 

exhibit protein denaturation and removal from the surface (Lemmer et al., 

2004). A wide variety of cleaning solutions are therefore able to detach and 

denature prion protein and other proteins through various modes of action and 

the selection of detergents should be considered depending on their uses.  

The formation of biofilms is associated with increased survivability of bacterial 

cells (Coenye et al., 2007) and decreased susceptibility to antimicrobial agents 
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due to the physical and chemical protection offered by the matrix (Campanac et 

al., 2002). The presence of biofilms on medical instrumentation presents a cross 

contamination issue due to the periodic shedding of bacterial cells and their 

retention in any complete biofilm matrix. Biofilm resistance to detergents can 

come from reaction of the cleaning agent with the structure or by the changes in 

cellular metabolism associated with biofilm growth (Campanac et al., 2002). 

Since proteins and biofilm can both be present on the surface, it is important to 

design the cleaning solution and procedure to reverse protein adsorption and 

disrupt biofilm structure.  

1.3.4 Current instrument cleaning methods 

Currently, the recommended cleaning processes for instrument, including dental 

instruments, are using a manual wash or an automated process such as a sonic 

bath or automatic washer disinfector (AWD). Manual cleaning has been called 

―the least effective method‖ by the British dental journal A12 advice sheet and 

Automatic cleaning processes are preferred due to their reproducibility and the 

ability to be validated to ensure the process is being followed consistently 

(Smith et al., 2009). For automated processes, the ultrasonic cleaner causes 

desorption of contaminants through the use of ultrasound waves passing through 

a liquid, which creates partial vacuum bubbles that collapse at high temperature 

and pressure. Since the bubbles are small in size, this only results in the removal 

of contamination. An ultrasonic cleaner is not suitable for dental HP’s due to 

damage to the ball bearing gears. The AWD creates a high pressured jet of water 

and cleaning solution of varying temperatures and times (Table 1-2). The 

combination of high temperatures, high cleaning forces and the incorporation of 

a cleaning solution combine to clean the surface of instruments. Some AWD’s 

also feature specialised attachments to ensure the internal cleaning of dental 

HP’s or other instruments with narrow lumens (Walker et al., 2010).  

Recent studies have shown that the AWD does not always result in the most 

efficacious cleaning process for all instruments when using protein 

contamination as a measurement (Vassey et al., 2011). The validation of 

cleaning processes is now considered.  
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Table 1-2 Details of washer disinfector cleaning stages 

Manufacturer Cleaning stages 

Belimed Automated 

Washer Disinfector with  

Dr Weigert Neodisher 

Mediclean Fort detergent. 

Pre wash 

7 min – 25.7 °C 

 

Wash 

15 min 51 sec – 57.7°C 

 

1st Rinse/ 2nd Rinse 

1 min 59 sec – 57.9 °C / 2 

min – 58.2 °C 

 

Thermal Rinse 

6 min 27 sec 93.2 °C 

 

Drying 

22 min 9 sec 90.9 °C 
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1.3.5 Validation of cleaning processes 

Whilst the standard requirement of cleaning is the non detection of protein using 

semi quantitative protein assays, more sensitive protein detection methods have 

recently been described in the literature (Lipscomb et al., 2006b, Baxter et al., 

2009). This has raised the issue as to how efficacious a protein assay has to be to 

declare that an instrument is clean (Lipscomb et al., 2006a). A total of 3 broad 

methods can be utilised for the inspection of instruments and the validation of 

cleaning, indirect, direct, and analytical methods. 

 

1.3.6 Indirect methods 

Indirect methods do not take a direct measurement of contamination of the 

surface and include gravimetric measurements, the weighing of surfaces before 

and after the cleaning process; ultraviolet (UV) spectroscopy that measures 

contaminants with an absorption spectra in the UV range and the use of an 

optical particle counter that can measure the size and number of particles in a 

solution that has been used to extract contamination from a surface. Other 

indirect methods involve detection of proteins by chemical reaction. 

 

1.3.7 Semi- quantitative protein assays  

The BS-EN-ISO-15883 standard recommends 3 semi - quantitative protein assays 

for the validation of reprocessing of endoscopes; the ninhydrin assay, the biuret 

assay, and the o – phthaldialdehyde (OPA) assay.  Each of these assays reacts 

with a different part of the protein structure to elicit a colour change and a 

positive reaction with one of the assays indicates a failure in the process.  

 

1.3.8 Ninhydrin assay  

The ninhydrin assay involves the reaction of a ninhydrin molecule with α amino 

acids in the protein structure to form Ruhemmans purple (Figure 1-6) (Meyer, 

1957). Ruhemanns purple can be observed visually or by measuring by 

spectrophotometry at an OD of 570nm (Lipscomb et al., 2006b).  

 



Chapter 1  28 

 

Figure 1-6 Reaction of ninhydrin molecules with amino acids forms 

Ruhemanns purple. Ninhydrin exists in equilibrium in a keto (1) and hydrated 

form (2). The Schiffs base of a reacting amine causes condensation of the central 

carbonyl in the keto form. The Schiffs base then forms a dipolar speies (6) and 

(7) by decarboxylation. The transfer of a proton then allows the formation of an 

intermediate aldimine (8). This aldimine is hydrolysed to an aldehyde and 2 – 

amino intermediate (9) which can condense with another molecule of ninhydrin 

to make Ruhemann’s purple (10) (Friedman and Williams, 1974).  
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The sensitivity of ninhydrin for protein detection has shown to be 9.25 µg 

(Lipscomb et al., 2006a) and 5 µg when analysed in solution (Baxter et al., 

2006). A ninhydin method has been utilised in a study of decontaminated 

instrument protein contamination which detected a range 0 – 1173 µg of protein 

from different instruments used for different procedures after the 

decontamination process (Baxter et al., 2006).  

 

1.3.9  Biuret and bicinchoninic acid assay 

The biuret assay involves the reduction of copper sulphate (Cu (II)) by the 

protein peptide backbone in an alkaline solution to Cu (I) to form a purple 

compound that, as with Ruhemmans purple, can be visualised or measured by 

spectrophotometry. Bicinchoninic acid (BCA) can be added to the reaction to 

chelate with Cu (I) and increase the sensitivity of the reaction of a Cu (I) – BCA 

violet coloured complex and an increase in sensitivity of detection (Smith et al., 

1985). The biuret and the BCA reaction can be sensitive to reducing agents 

(Milton and Mullen, 1992), copper chelators (Walker, 1994), and hydrogen 

peroxide (Baker, 1991). 

   

1.3.10 O-phthaldialdehyde assay  

The OPA assay is based on the reaction of OPA detergent in the presence of an 

alkaline solution and thiol compound such as mercaptoethanol with amines of 

the protein or amino acid (Roth, 1971). The product formed can be detected by 

absorbance or fluorescence at an excitation wavelength of 338 nm and emission 

wavelength of 455 nm (Zhu et al., 2009). The OPA assay is not sensitive to 

detergents or the reducing agents and metal chelators that interfere with the 

BCA assay which makes it suitable for detecting protein from locations where 

other assays are not suitable. The OPA assay has previously been used for 

surgical instrument contamination studies (Smith et al., 2005).   
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1.3.11 Direct methods  

The suitability of Ninhydrin and Biuret tests for the detection of contamination 

has come under criticism due to the lack of sensitivity (Lipscomb et al., 2006a). 

At the aforementioned sensitivities, neither assay would detect an infectious 

dose of prion protein (Lipscomb et al., 2006a). The swabbing technique has also 

been shown to have varying efficacies at removing contamination from a surface 

with as low as 19 % recovery (Angelotti et al., 1964). For these reasons, direct 

methods of detecting surface contamination have been proposed to increase 

sensitivity and to overcome the problems with sample extraction.  These would 

allow a direct measurement of contamination on a surface rather than a small 

sample or extraction. 

 

1.3.12 Direct visualisation of contamination by behaviour of water 

The properties of water on flat surfaces can be used to detect hydrophobic films 

of contamination. Water will flow over flat surfaces free of these contaminating 

films and will gather around any hydrophobic films. This technique is not 

suitable for rough or ridged surfaces. The contact angle of a water droplet 

resting on a solid surface is influence by surface contamination. A water droplet 

will have a low contact angle between the droplet and surface if the surface is 

free of organic films, coatings and contaminants and a high contact angle of 90° 

when these contaminants are present (Smulders et al., 2007).  

 

1.3.13 Direct visual examination 

The method utilised in Sterile Service Departments (SSD’s) for inspection of 

instrument cleanliness is a magnified visual examination of the instrument which 

does not detect low levels of contamination or colourless contamination 

(Lipscomb et al., 2006b). The use of black light will detect any contaminants on 

a surface that fluoresce in the presence of ultraviolet light which can detect 1 

mg/cm2 of fluorescent contaminants.  
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1.3.14 SYPRO® Ruby staining and visualisation  

SYPRO® Ruby stain is composed of an organic compound bound to ruthenium as 

a fluorophore. The stain interacts with the amino acids lysine, arginine, and 

histidine (Lopez et al., 2000) which can limit binding and detection of certain 

proteins. The bound complex is detected using epifluorescence microscopy and 

has a reported sensitivity of 85 pg/mm2 of protein (Lipscomb et al., 2006b) 

though this is based on operator observations. This method has been used to 

validate washer disinfector removal steps of prion protein (Howlin et al.) and to 

detect protein contamination on instruments that had been through a washer 

disinfector cleaning process (Lipscomb et al., 2008).  The use of SYPRO® Ruby in 

this study highlighted the inadequacy of visual analysis at detecting low 

concentrations of proteinacious material.  

 

1.3.15 Analytical methods 

Direct and indirect methods do not identify any of the contaminants of a 

surface. For the identification of surface contaminants to the atomic level, a 

number of analytical methods are employed (Table 1-3). These methods have 

been used previously to study surgical instrument contamination, examining 

contamination in the dairy industry, and for tracing contaminants in the 

electronics industry. All methods described are capable of detecting atoms at 

varying surface depths. Examples of analytical methods are now considered. 

 

  



Chapter 1  32 

Table 1-3 Examples of analytical methods used for cleaning validation. Taken 

from Handbook for Cleaning/Decontamination of Surfaces adapted from 

Smulders et al. 2007 

Technique Analysis 

Depth 

Chemical 

information 

Detection 

limit and 

resolution 

References 

X-Ray 

Photoelectron 

Spectroscopy/ 

Electron 

Spectroscopy 

2-10 nm Elemental, 

functional 

groups, 

oxidation state 

0.1 atom % 

3 µm 

(Mouhyi et 

al., 1998) 

Time of flight 

mass 

spectrometry 

1-2 nm Elemental, 

molecular, 

functional 

groups, 

isotopical 

Parts per 

million/ parts 

per billion 

100 nm 

(Boyd et 

al., 2001) 

Auger Electron 

Spectroscopy 

2-10 nm Elemental 

(oxidation 

state) 

0.1% atom 

10 nm 

(Kobayashi 

et al., 

2009) 

Fourier 

transform 

Infrared 

Spectroscopy 

0.5- 5 µm Molecular, 

functional 

groups 

1 % atom 

0.5 µm 

(Kobayashi 

et al., 

2009) 

Energy 

dispersive X ray 

analysis used 

with scanning 

electron 

microscopy 

0.5 – 5 µm Elemental 0.1-0.5 wt% 

0.5 µm 

(Baxter et 

al., 2006) 
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1.3.16 Scanning Electron Microscopy, Energy Dispersive X- Ray 

Analysis and Auger Spectroscopy 

Scanning electron microscopy (SEM) produces detailed images of a surface 

structure and contaminants. Electrons are fired at the surface structure from a 

filament through a vacuum and electromagnetic lenses are used to focus the 

electron beam to a diameter of 100 Ä. Primary and secondary electrons 

scattered from a surface are collected by an electron collector and processed by 

a photomultiplier and videoamplifier. The current reaching the electron 

collector is dependent on the number of electrons that is emitted from a point 

in the sample. This attribute allows the generation of a light and dark image 

that correlates with the topography of the sample.  For the identification of any 

contaminants viewed on a surface, SEM can be combined with EDX analysis to 

detect elements down to beryllium. Emitted electrons from the microscope 

cause ionisation of sample atoms and the ejection of an electron from the inner 

shell, when an outer shell electron fills the gap the excess energy is emitted as 

an X- ray photon and this energy can be used to characterise the atoms present. 

SEM and EDX analysis has been utilised in a study of decontaminated instrument 

contamination (Baxter et al., 2006). SEM images of reprocessed surgical 

instruments of varying surface complexity revealed visible contamination with 

EDX carbon, nitrogen, oxygen, and sulphur that indicated the presence of 

protein on the instruments. 

 

A similar method for detecting surface contamination is Auger Spectroscopy. 

This method also relies on an electron beam ejecting electrons from the surface 

contaminants inner shells. An outer shell electron fills the inner shell and causes 

the release of an Auger electron that can be used to identify the surface 

contaminants. This method has been used to detect  contaminants on 

arthroscopic shavers after decontamination (Kobayashi et al., 2009). 
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1.3.17 X-ray photoelectron spectroscopy 

X-ray photoelectron spectroscopy (XPS) provides quantitative chemical 

information of a surface by identifying the chemical composition and the 

chemical states of elements. The surface is exposed to a controlled dose of X-ray 

energy to release photoelectrons that can be used to identify elements. If any 

element is bonded to another on the surface, the peak is altered to allow a more 

complete chemical analysis. This technique has been used to measure the 

cleanability of stainless steel contaminated with starch using spray cleaning and 

mechanical cleaning (Boyd et al., 2001). 

 

1.3.18  Time of flight secondary ion mass spectrometry 

Time of flight mass spectrometry (ToF – SIMS) can detect contamination to the 

atomic level to the order of parts per million. The ToF- SIMS technique involves 

the pulsing of a primary ion gallium, gold, or a bismuth ion, onto a sample 

surface in an ultrahigh vacuum. The collision of the primary ions with the 

surface results in the emission of molecules and atoms from the sample. The 

emitted molecules are analysed using Mass Spectrometry. ToF – SIMS analysis is 

best utilised with a negative control surface to put the surface analysis into 

context.  The ToF SIMS technique has been used to examine the cleanability of 

stainless steel surfaces in the dairy industry (Boyd et al., 2001). 

 

1.3.19  Fourier transform infrared spectroscopy and Ramen 

spectroscopy 

Fourier transform infrared spectroscopy (FT –IR) and ramen spectroscopy identify 

chemical components, molecules and functional groups on a surface by 

measuring molecular vibrations. FT IR spectroscopy is based on the absorbance 

of infrared light by the sample and comparison to the absorbance profile of 

known molecules. Ramen spectroscopy is also based on the reaction of 

molecules with infrared light but involves measuring the scattering of the light 

by the molecule and the measurement of the scattering. FT-IR is known to be 

more sensitive to polar bonds and Ramen spectroscopy for nonpolar bonds. 
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These methods have previously been used to detect contamination of 

membranes in the dairy industry (Daufin et al., 1991).  

 

1.3.20 Implications of cleaning validation on defining cleanability  

Each cleaning validation process has differing sensitivities of protein or 

contamination that can be detected (Table 1-3). The European standard EN-ISO-

15883 defines clean as a negative reaction with 1 of 3 protein assays (Table 1-4) 

implying that any protein contamination of a lower concentration is acceptable. 

Further work by Lipscomb et al. (2006) indicated that the minimum sensitivities 

of the Ninhydrin assay and the BCA assay are 9.25 µg/10mm2 and 6.7 µg/10mm2 

respectively and protein contamination below this concentration would be 

acceptable. In the scientific literature, a supplement published in Zentral 

sterilization in 2008 for dental HP’s suggests a minimum protein concentration of 

200 µg/instrument which is also recommended by Murdoch et al. (2006) for 

surgical instruments as a level of acceptable cleanliness.To further put protein 

contamination into context, Lipscomb et al. (2006) state that the concentrations 

of 9.25 µg/ml of protein could be equivalent to 1014 prion infectious units and a 

concentration 1 µg of protein is equivalent to 1014 protein molecules (Baxter et 

al., 2006, Lipscomb et al., 2006a). Both processes require the desorption of 

protein from the surface before sampling, which is subject to many variables 

depending on the sensitivity of the extraction method, which may result in 

protein contamination being left on the surface (Lipscomb et al., 2006a). Due to 

these concerns, more sensitive methods have been developed for cleaning 

validation that involve direct sampling of the surface (Lipscomb et al., 2006b, 

Baxter et al., 2009). Both techniques can detect lower concentrations than the 

BS-EN-ISO -15883 standard (Table 1-4) and if these techniques were adopted as 

cleaning standards then an instrument protein concentration of over 85 pg/mm2 

or 0.5 µg/mm2  would be deemed unclean and would require further 

reprocessing or disposal. Determining a definintion of ―clean‖ that is achievable 

with current cleaning methods and be of a level to eliminate cross 

contamination risks is an important task for decontamination science.  
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Table 1-4 Cleaning validation standards described by standards and scientific 

literature 

Study or Standard Minimum definition of clean 

BS-EN-ISO -15883 part 1  

2 mg/m2 protein detected by ninhydrin 

assay 

30-50 µg/ml protein detected by BCA 

assay 

0.003 µmol sensitive amino acids 

detected by OPA assay 

Zentralsterilisation Supplement 

published Oct 2008  

200 µg/dental HP 

Lipscomb et al. 2006  

9.25 µg /10mm2   Ninhydrin 

6.7 µg/10mm2    Biuret test 

Murdoch et al. 2006 200 µg/instrument  

Baxter et al. 2009  

0.5 µg/mm2 

Lipscomb et al.  85 pg/mm2 
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1.3.21 Cleaning and disinfection of dental handpieces 

A recent survey of dental HP cleaning in UK practices has found that the 

majority of practices wiped the external part of the HP with a cloth impregnated 

with disinfectant with no internal cleaning taking place (Smith et al., 2009). 

Internal cleaning of the HP has been validated by a study of forced air purging of 

the internal components of HP’s which resulted in an increase in efficacy of 

ethylene oxide sterilization of B. subtilis spores and S. mutans bacteria (Pratt et 

al., 1999). No bacteria were isolated from HP’s that had been purged when 

compared to HP’s that were flushed with air and water from the dental unit 

alone. The study also showed that no bacteria were isolated after steam 

sterilization no matter what cleaning technique was employed. A herpes simplex 

model study was used to determine the survivability of viral particles upon 

disinfection (Epstein et al., 1995). The presence of viral particles was 

determined by examining the death of human fibroblasts upon exposure to 

samples from the HP. The study showed the retention of viruses in the HP after 

no disinfection, and external disinfection but internal disinfection of the lumens 

with glutaraldehyde resulted in no viral retention. Whilst glutaraldehyde is no 

longer appropriate for HP disinfection due to toxicity (Sagripanti and Bonifacino, 

2000), this study showed the retention and expulsion of viral particles by HP’s 

and highlighted the importance of internal disinfection in preventing cross 

infection. The herpes simplex model utilises an oral isolate which is an 

occupational dental hazard and is in the same category of germicidal resistance 

in the Spaulding system as HIV (Epstein et al., 1995) and is therefore not 

appropriate for assessing viricidal activity according to the BS-EN-ISO-14776 

standard.  

 

1.3.22 Sterilization of dental handpieces 

Any method for sterilization of the HP must be able to be performed routinely in 

a dental clinic, have a short turnaround time, will not result in patient exposure 

to toxic chemicals during HP use, not result in damage to the HP and should 

deliver a sterilization efficacy detailed by BS- EN- ISO 11737 – 1:2006 in all HP 

locations including the internal lumens. Currently, the majority of practices in 

the UK utilise steam sterilization with 89% utilising a non-vacuum instrument 
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sterilizer and 21% wrapping the HP upon sterilization (Smith et al., 2009). 

Vacuum sterilizers have been recommended for HP sterilization due to the 

forced air removal stage removing air from the internal lumens to allow for 

steam penetration (Medical Devices Agency, 2006) . Vacuum sterilization also 

allows sterilization of wrapped instruments to ensure sterility continues until at 

the point of use (Weightman and Lines, 2003). Tabletop vacuum sterilizers are 

available and the use of wet heat ensures that the HP is not exposed to toxic 

chemicals.  The efficacy of vacuum steam sterilizers compared to non-vacuum 

steam sterilizers has been shown by Andersen and coworkers (1999) by 

inoculating HP’s with 3x105 G. stearothermophilus and 1.4x106 Streptococcus 

salivarius and sterilized HP’s using 4 non vacuum and 1 vacuum sterilizer. No G. 

Stearothermophilus was detected from HP’s upon sterilization using the vacuum 

sterilizer and growth was observed in HP’s sterilized with non vacuum sterilizers 

(Andersen et al., 1999). S. salivarius was detected after sterilization using a 

non- vacuum sterilizer when no cleaning and lubrication had been undertaken 

before sterilization. Cleaning with a KaVo Rotaspray II resulted in the elimination 

of S. salivarius in 4 non vacuum sterilizers and 1 vacuum sterilizer (Andersen et 

al., 1999). The study highlighted the importance of cleaning before 

decontamination and the increased efficacy of the vacuum sterilizer though this 

may have been due to the wrapping of instruments for non-vacuum sterilizers 

which would not allow steam penetration of the instruments. The efficacy of non 

vacuum sterilizers on sterilizing B. stearothermophilus inside HP’s was also 

assessed by Edwardsson et al. 1983 by inoculation of HP’s in multiple locations. 

HP’s not exposed to lubricating oil required sterilization at 134°C for 15 min to 

inactivate spores whilst HP’s exposed to lubricating oil required sterilization 

times of 20 min at 134°C. Lubricating oil containing formaldehyde reduced this 

sterilization time to 10 min at 134°C. Steam sterilization is known to have a 

detrimental effect on the HP by corrosion of the instrument and alternatives to 

steam sterilization have been sought (Angelini, 1992, Wirthlin et al., 1981).  
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1.3.23 Alternative sterilization methods for dental handpieces 

A study into sterilization of HP’s was undertaken using a synthetic compressor 

lubricating oil heated to 150°C -160°C in a deep fat fryer (Silverstone and Hill, 

1999). Oil heated to 150°C failed to sterilize G. steraothermophilus spores 

inoculated on test HP’s after 75 min of heating though oil heated to 160°C 

resulted in sterilization of the spores after 45 min heating (Silverstone and Hill, 

1999). This is significantly longer than the 3 min of sterilization currently used in 

steam sterilizers and will have an impact on the number of instruments available 

for a dental practitioner. The authors also noted the presence of oil in the HP’s 

after ―weeks‖ of use which may pose a health risk if oil enters the patient oral 

cavity. (Silverstone and Hill, 1999).  

Ethylene oxide (EtOH) at room temperature has recently been suggested as an 

alternative sterilization method for HP’s due to being less corrosive than steam 

sterilization due to the lower temperatures involved (Parker and Johnson, 1995, 

Pratt et al., 1999). EtOH was first patented as a sterilizing agent in 1937 when 

the antimicrobial properties of the gas were first noted (Gross and Dixon, 1937). 

Exposure to EtOH causes alkyation of proteins and oxidative stress to inhibit 

cellular metabolism and has been used to sterilize luminated devices that cannot 

be steam sterilized (Phillips and Kaye, 1949, Ujeyl et al., 1978). The ability of 

EtOH to sterilize HP’s has been assessed by Parker and Johnson (1995) and Pratt 

et al. (1999). Parker and Johnson (1995) found that exposure to EtOH did not 

result in the sterilization of HP’s inoculated with Streptococcus mutans. These 

HP’s included unused HP’s and HP’s that had been in clinical practice and 

significantly more S. mutans was isolated from the HP’s previously used in 

practice (Parker and Johnson, 1995). The authors state that the presence of 

protein and other contaminants may stop the penetration of gas and that it is 

not suitable for a sterilizing agent for HP’s. Pratt et al. found that EtOH only 

sterilizes HP’s if they have undergone a cleaning step with forced air purging of 

the internal lumens (Pratt et al., 1999). Sterilization by EtOH also requires 

forced air purging to ensure no gas is present in the HP and therefore requires a 

vacuum stage which increases the turnaround time for instruments. Due to 

toxicity, the EtOH device also requires trained operators and a negative pressure 
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room to stop gas leaks (Andersen, 1971). This may make it impractical for dental 

practitioners due to the expense and space issues.  

The Chemiclave is a sterilization method based on formaldehyde and alcohol 

vapours (Kolstad, 1998). The study by Kolstad in 1998 showed that this method 

was unable to sterilize B. stearothermophilus in the small lumens of both low 

and high speed HP’s and the author recommended that any dental surgery using 

a Chemiclave immediately change to a steam sterilizer(Kolstad, 1998)  
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1.4  Objectives of the study 

In the light of previous knowledge of HP contamination, continuing concerns 

over risks of cross-contamination between patients and the emergence of variant 

CJD and technological improvements in understanding of medical device 

contamination, it is timely to re-appraise the biofouling of dental HP’s after use. 

The main aim of this thesis was to collaborate with a dental HP manufacturer to 

provide a quantitative and qualitative appraisal of HP biofouling after use in 

order to develop an appropriate test soil for the development of cleaning 

processes and prototype HP cleaning devices. 

In order to achieve these aims, the work was divided into the following research 

questions: 

1. Quantitative and qualitative analysis of microbial contamination of dental 

HP parts. 

2. Quantitative and qualitative analysis of protein contamination of dental 

HP parts. 

3. Propose a dental HP specific test soil 

4. Undertake a detailed surface analysis of used HP parts. 

5. Assessment of the efficacy of cleaning chemicals 

6. Undertake assessments into the cleaning efficacy of established and 

prototype HP cleaning processes and devices.  
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2.1  General Reagents and Equipment 

2.1.1 General reagents 

All chemicals were obtained from Sigma Aldrich (Poole, Dorset UK), and all 

proteomic and molecular biology reagents were obtained from Invitrogen 

(Paisley, Strathclyde, UK), unless otherwise stated. All blood products were 

acquired from E & O laboratories (Bonnybridge UK). All microbiological media 

was obtained from Oxoid (Hampshire UK). Reverse osmosis water (ROH2O) was 

acquired from a Purelab Prima DV 34 unit (Elga water, Glasgow, Scotland). For 

cleaning validation studies sections made of 314l medical grade stainless steel 

square discs measured 10 mm by 10 mm and a thickness of 1mm were used. For 

epifluorescent scanning (EFSCAN) analysis, a sheet of 316l stainless steel was cut 

into 5mm discs and the discs were immersed in 2% (v/v) Triton X-100 detergent 

(Bio-Rad Hertfordshire, UK). Lubricating oil and cleaning solution used in this 

study was manufactured for use with the Assistina HP cleaning machine and 

were provided by W & H Dentalwerk. 

 

2.1.2 Instruments sampled in this study 

Dental and podiatry instruments sampled in this study are presented in Table 

2-1, and Figure 2-1 and Figure 2-2. Dental instruments were obtained from the 

Glasgow Dental Hospital (GDH) central sterile service department (CSSD) and the 

W&H St Albans repair facility, and all podiatry instruments were obtained from 

podiatry clinics and the central decontamination unit at Cowlairs Glasgow. All 

dental HP’s sampled were manufactured by W & H Dentalwerk (Burmoos, 

Austria) and all podiatry instruments were manufactured by Timesco Instruments 

(Edinburgh, UK). Upon reception to the CSSD after use, dental HP’s were 

transported in a sterile plastic bag to a laminar flow cabinet and sampled 

immediately. The cap of each high speed HP was removed using a specialized 

tool, and the turbine (Figure 2-1) removed from the head into a sterile universal 

tube using a sterile pipette tip. Each low speed HP was dismantled and the spray 

channel (Figure 2-1) separated from the HP using a sterile pipette tip, which was 

then placed into a sterile 25 ml centrifuge tube. Each surgical HP was manually 
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dismantled and the inner gear (Figure 2-1) removed directly into a sterile 25 ml 

centrifuge tube. For all sampling from GDH and the repair facility, a new unused 

HP of each type was subjected to the decontamination process at the GDH CSSD 

(Table 2-3), and the parts sampled as above as negative controls. Repair facility 

HP’s were processed on site at the facility under a bunsen burner to ensure 

sterility. 

 

Table 2-1 Source and details of instruments sampled in this study. 

Chapter 

reference  

Source Instruments sampled 

3,4 GDH CSSD TA-98 high speed HP’s  

WA-56 Lt low speed HP’s  

S11 surgical HP’s  

Extraction forceps  

3 St Albans repair 

facility 

TA-98 high speed HP’s 

TA-97 high speed HP’s 

Topair high speed HP’s 

WA-56 Lt low speed HP’s 

S11 surgical HP’s 

4 Podiatry clinics Pear burs  

Blacks files  

Diamond deb files  
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Figure 2-1 HP parts sampled in this study. The turbine from TA-98 high speed 

HPs (a), the spray channel from WA-56 Lt HP’s (b) and gears from S11 surgical 

HP’s (c), sampled in this study 
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Figure 2-2 Podiatry instruments sampled in this study. Pear burs (top), Blacks’ 

files (middle) and Diamond deb files (bottom), sampled in this study. 
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2.1.3 Decontamination methods used in this study 

Instruments sampled after decontamination were subjected to a 

decontamination process dependent on the source of the instruments (Table 2-2, 

Table 2-3). For the assessment of the cleaning efficacy of novel HP cleaning 

machines, a total of 4 seperate processes from 2 seperate machines were 

sampled. 
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Table 2-2 Details of podiatry instrument decontamination processes 

Cleaning process Podiatry LDU Podiatry CDU 

Equipment Hygena Ultrawave 

ultrasonic bath 

Getinge Automated 

Washer Disinfector  

Detergent Sonozyme- solution 

changed twice daily 

Dr Weigert Neodisher 

MediClean Forte 

Cleaning time/ 

temperature  

6 min/35°C Pre rinse – 4 min 38 

sec/Start 31°C End 

34.9°C 

Main wash -  7 min 20 

sec/Start 60.5°C, End 

62.8°C 

Hot water rinse – 2 

min/Start 91.4°C, End 

92.6°C 

Disinfection – 1 min 30 

sec 37 

Drying – 22 min 22 

sec/Start 82.3°C, End 

87.2°C 

Validated Tests and 

documentation 

supplied by 

manufacturer 

(Ultrawave) 

Washer disinfector by 

trust engineer to 

protocols defined in 

SHTM2030 

   

Sterilization 

Process 

  

Equipment Little sister 3 Type N 

(Non vacuum)  

Getinge Type B (Vacuum 

sterilizer)  

Method Steam sterilization  Steam sterilization 
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Table 2-3 Details of GDH CSSD decontamination process. 

Process Equipment Process 

Cleaning and 

Disinfection Process 

Belimed Automated 

Washer Disinfector with 

Dr Weigert Neodisher 

detergent. 

 

Pre wash  

7 min – 25.7 °C 

 

Wash 

15 min 51 sec – 57.7°C 

 

1st Rinse/ 2nd Rinse  

1 min 59 sec – 57.9 °C / 2 

min – 58.2 °C 

 

Thermal Rinse 

(Disinfection) 

6 min 27 sec 93.2 °C 

 

Drying 

22 min 9 sec 90.9 °C 

 

HP maintenance Assistina (W & H) 35 sec cleaning solution 

and lubricating oil 

Sterilization Belimed Vacuum 

Sterilizer 

134 °C 3 min 
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2.1.4 Cleaning solutions used in this study 

A total of 3 enzymatic, 3 alkaline detergents, an HP cleaning solution and a hand 

wash were used in this study (Table 2-4). 
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Table 2-4 Ingredients of cleaning solutions listed on MSDS sheets  

Cleaning 

solution 

Type Ingredients 

Alconox Alkaline Sodium Bicarbonate 

Sodium (C10 – C16) Alkylbenzene 
Sulfonate 

Sodium Tripolyphosphate 

Tetrasodium Pyrophosphate 

Sodium Carbonate 

Sodium Alcohol Sulphate  

Haemosol Alkaline Sodium Carbonate 

Sodium Tripolyphosphate 

Urea 

Diethanolamine 

Surfactant 

Rapdiex Alkaline Biodegradable alkyl sulphates 

Inorganic surface active agents 

Dye 

Alcohol 

Rapizyme Enzymatic Surface active agents 

Enzymes 

Dyes 

Alcohol 

Endozime Enzymatic 2- Propanol 

Enzymes 

Sonozyme Enzymatic Polyexamethylene Biguanide 
Hydrochloride 

Limonene 

N N- Didecyl-N-methyl-
poly(oxyethyl)ammonium  
propionate 

Sodium N-lauryl B-
Iminodipropionate 

Ethoxylated Isotridecanol 

Hibiscrub Handwash Chlorhexidine Diacetate Hydrate 

HP 
Cleaner 

HP 
cleaner 

N-Propanol 

Ethanol 
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2.2 Microbiological assessment 

2.2.1  Type strains used in this study 

All bacterial and fungal type strains used in this study are detailed in Table 2-5. 

These strains were used for validation and cleaning efficacy experiments. 

 

Table 2-5 Details of bacterial and fungal strains used in this study 

Bacterial or fungal strain Source or reference 

Staphylococcus epidermidis  National Collection of Type Cultures 

(NCTC) Health protection agency 

11047 

Escherichia coli  American Type Culture Collection 

(ATCC) 25922 

Enterococcus faecalis  ATCC 29212 

Staphylococcus aureus  ATCC 25923  

Pseudomonas aeruginosa  ATCC 27853 

Candida albicans  ATCC 90028 

Streptococcus mutans  NCTC 10449 

Streptococcus sanguinis  ATCC 10043 
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2.2.2 Preparation of microbiological growth media 

All media was sterilized in a vacuum sterilizer before use and before the 

addition of blood products. All media was prepared according to the 

manufacturers instructions. For the culture of bacterial strains, blood agar (BA) 

was prepared by adding Columbia blood agar base and 5% (v/v) defibrinated 

horse blood to ROH2O. Fastidious anaerobic agar (FAA) was prepared by adding 

fastidious anaerobic agar base and 5% (v/v) defibrinated horse blood to ROH2O. 

Sabouraud dextrose (SAB) agar was made by adding SAB powder to ROH2O. 

Mueller Hinton (MH) broth was prepared by dissolving MH powder in ROH2O. 

Mannitol Salt Agar (MSA) was prepared by dissolving mannitol salt powder in 

ROH2O. For the culture of fungal strains, Yeast Peptone Dextrose (YPD) broth 

was prepared by dissolving YPD powder in ROH2O and Roswell Park Memorial 

Institute (RPMI) broth was prepared by dissolving RPMI powder in ROH2O. 

Phosphate buffered saline (PBS) was made by dissolving 1 tablet (Fisher 

Scientific, Longborough, UK) in 100 ml of ROH2O.  To prepare agar plates, 20 ml 

of agar was poured into sterile Petri dishes (Sterilin, Caerphilly UK) and dried in 

a laminar flow cabinet for 30 min.  

 

2.2.3 Culture of microorganisms 

All microorganisms were maintained at -80oC in Pro-tect bacterial preservers 

(Technical Service Consultants Limited, Heywood, UK) for the duration of the 

study. For the culture of bacteria, a Pro-tect bead was streaked to produce 

single colonies on a BA plate, or SAB agar plate for C. albicans, and incubated 

overnight at 37°C, or 30°C for C. albicans. For a bacterial culture, a single 

colony was inoculated into 10 ml of MH broth in a sterile Universal tube (Sterilin, 

Caerphilly UK) and incubated overnight at 37°C at 200 RPM in a KS40001 

incubator (IKA™, Staufen Germany). For a C. albicans culture, a single colony 

was inoculated into 10 ml of YPD broth in a 25 ml sterile universal tube and 

incubated overnight at 200 RPM at 30°C in a KS40001 incubator (IKA™, Staufen 

Germany). 
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2.2.4 Instrument sampling - standard microbial culture 

Each HP part was immersed in sterile PBS and each tube was inserted into a 

Fisherbrand® 11021 sonic bath (Fisher Scientific, Loughborough UK) filled with 

ROH2O, and each part subjected to sonication for 5 min at 35 kHz. The 

instrument part was then removed and the sample retained for analysis. 

 

2.2.5 Identification of microorganisms 

2.2.5.1 Isolation of handpiece isolates 

A 100 µl turbine eluent sample and 200 µl samples of surgical gear eluent and 

spray channel eluent was plated onto 2 BA plates, 2 SAB agar plates, and 2 FAA 

agar plates using a sterile spreader. The BA and SAB agar plates were incubated 

for 72 h in 5% carbon dioxide (CO2) in a 37°C incubator (Binder,Tuttlingen 

Germany). The FAA plates were incubated anaerobically in an anaerobic cabinet 

(Don Whitley Scientific Shipley UK) at 37°C for 7 days. Colonies isolated from BA 

and SAB agar plates were subcultured onto a new BA plate and SAB agar plate, 

respectively, to make pure cultures. Colonies isolated from FAA plates were 

subcultured onto a fresh BA plate and FAA plate to identify obligate anaerobes.  

 

2.2.5.2 Gram stain of isolates 

A single colony was spread on 5 µl of sterile PBS. The colony was then fixed onto 

a glass microscope slide and the slide was coated in 0.5% (w/v) crystal violet 

solution for 1 min and the slide rinsed with tap H2O before being coated in 

Grams iodine for 1 min. The Grams iodine was rinsed with tap H2O and the slide 

then de-stained by coating in acetone (Fisher Scientific) for 2-3 sec. The acetone 

was rinsed using tap H2O and the slide coated with carbol fuschin for 1 min. The 

colony morphology was determined by viewing in a microscope (Olympus Essex, 

UK) under oil immersion at 100 x magnification. 
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2.2.5.3 Catalase testing of isolates 

Catalase testing was performed on all Gram-positive cocci using the ID Colour 

Catalase test (Biomerieux Marcy l’Etoile, France) according to manufacturers’ 

instructions. S. aureus was used as a positive control and E. faecalis was used as 

a negative control. 

 

2.2.5.4 Identification of organisms by API® strip 

Colonies that were identified as Gram positive cocci and catalase negative were 

identified using the RapidID 32 Strep API® strip (Biomerieux Marcy l’Etoile, 

France), according to manufacturers’ instructions. Colonies identified as Gram 

positive bacilli were identified using API® 50C. The results of the API® strips were 

used to identify isolates based On the API® strip biochemical profiles.   

 

2.2.5.5 Identification of organisms by mannitol salt agar and coagulase test 

Colonies identified as Gram positive cocci and catalase positive were 

subcultured onto a mannitol salt agar (MSA) plates and subjected to a 

STAPHaurex coagulase test (Oxoid Hampshire, UK). S. aureus was used as a 

positive control and S. epidermidis was used as a negative control. All colonies 

with a positive coagulase test and a positive reaction on the MSA plates were 

identified as S. aureus. All colonies with a negative coagulase test and MSA test 

were identified as coagulase negative Staphylococci (CONS). 

 

2.2.5.6 Identification of P.acnes isolates 

Colonies with pyramidal morphology were identified as P. acnes using the Rapid 

ID 32A API® strip (Biomerieux Marcy l’Etoile, France). Each P.acnes isolate was 

sent for molecular typing at Queens University Belfast (McDowell et al., 2005). 
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2.2.6 Instrument sampling – molecular detection (PCR) 

2.2.6.1 Processing of handpiece samples for DNA extraction 

HP eluents were added into 10 ml syringes (Fisher Scientific, Loughborough, UK) 

and passed through a cellulose acetate filter of 0.2 µm pore size (Fisher 

Scientific, Loughborough, UK). The filters were then inserted into a sterile 2 ml 

Micro tube (Sarstedt, Leicester UK). Each filter was then immersed in 200 µl of 

lysis buffer (20 mM Tris-Cl, 2mM sodium EDTA, 1.2% Triton X, 20 mg/ml)  and 

incubated at 37°C in a heat block (Grant instruments, Cambridge, UK) for 30 

min. After incubation, 25 µl of proteinase K and 200 µl of Buffer AL from the 

DNeasy Blood and Tissue kit (Qiagen, Crawley, United Kingdom) was added to 

each filter and incubated at 56°C in a heat block for 30 min. 

 

The eluent was removed and processed using the Gram positive DNA DNeasy 

Blood and Tissue kit extraction protocol. A total of 50 µl of AE buffer was added 

to the column membrane and incubated at ambient room temperature for 1h. 

The column was then centrifuged at 9971 g and a further 50 µl of AE buffer was 

added to the membrane. DNA concentration was then quantified using a 

NanoDrop (Labtech International UK, Ringmer, UK). A 1.5 µl volume of RNAse 

free water (Qiagen, Crawley United, Kingdom) was added to calibrate the 

machine followed by a 1.5 µl volume of AE buffer as a blank control. A 1.5 µl 

sample was then added to quantify the concentration of DNA.  

 

2.2.6.2 Selection of primers 

The 16S primers 27F (Hayashi et al., 2004) (CAGGCCTAACACATGCAAGTC) and 

1387R (Marchesi et al., 1998) (GGGCGGWGTGTACAAGGC) with annealing 

temperatures of 60°C were utilised. A basic local alignment search tool (BLAST) 

search of the sequences was performed on the NCBI website to ensure sequence 

homology with the 16S ribosome.   
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2.2.6.3 16S Polymerase Chain Reaction 

Each DNA sample was diluted to 1 ng/ml in DNAse free H2O (Sigma, Dorset UK).  

A positive control was also diluted and a negative control of DNAse free H2O was 

also processed. A 1 µl sample of DNA was added to 22.8 µl of ReddyMix™ and 0.1 

µl of each primer 27F and 1387R both at concentrations of 50 µM/µl. The 

reaction tubes were inserted into a PCR MyCycler™ (Bio-Rad Hertfordshire, UK) 

and operated for one cycle of 95°C for 2 min followed by 35 cycles of 95°C for 1 

min, 60°C for 1 min and 72°C for 1 min 30 sec and an extension cycle at 72°C for 

10 min.  

 

2.2.6.4 Agarose gel electrophoresis 

A 5 µl solution of 10 mg/ml of ethidium bromide was added to a 100 ml 2 % 

(w/v) agarose gel. Each sample was added to a well of the gel and 2 µl of 100bp 

ladder (New England Biolabs) was added for size comparison. The gel tank was 

plugged into a BioRad power pack and operated at 100v for 60 min.  The gel was 

photographed in a BioRad XR+ Gel doc using ultraviolet light. 

 

2.3 Protein quantification and analysis 

2.3.1 Quantitative protein sampling 

2.3.1.1 Bicinchoninic acid assay 

The bicinchoninic acid (BCA) reagent was prepared by adding 1 part of the BCA 

solution B (Pierce Biotechnology, Rockford USA) to 50 parts of BCA solution A 

(Pierce Biotechnology, Rockford USA). For determination of protein 

concentration, 100 µl of protein sample was added to 1 ml of the BCA reagent. 

Samples were incubated for 1h at 60oC in a water bath (Grant Instruments, 

Cambridgeshire, UK) and were then cooled to room temperature. A 300 µl 

sample was added to a Costar™ clear, flat bottomed 96 well plate and all 

samples were analysed using a Sunrise™ plate reader at OD 570. 
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2.3.1.2 Ninhydrin assay 

For the ninhydrin assay, a 500 µl sample of 2% (v/v) ninhydrin solution was added 

to 500 µl of protein sample. Samples were incubated for 10 min at 60oC, and 

were cooled to room temperature. A 300 µl sample was added to a Costar™ 

clear, flat bottomed 96 well plate and all samples were analysed using a 

Sunrise™ plate reader at OD 570 (Starcher, 2001). 

 

2.3.1.3 Ophthaldialdehyde assay 

The OPA reagent was prepared by adding 40 mg of phthaldialdehyde dissolved in 

1 ml of methanol (BDH Laboratory Supplies, Leicester, UK) to a solution of 100 

mg of mercaptoethanesulfonate dissolved in 50 ml of 0.1M pH 9.2 sodium 

tetraborate. A 20µl protein sample was added to a Costar™ dark flat bottomed 

96 well plate (Sigma, Dorset, UK) and 300 µl of OPA reagent was added to each 

sample. The samples were incubated for 3 min at ambient room temperature 

before being sampled using an Omega Fluostar plate reader (BMG Labtech, 

Aylesbury UK) at excitation wavelength 355 nm and emission wavelength 460 

nm(Zhu et al., 2009). 

 

2.3.2 Protein sample precipitation  

2.3.2.1  Precipitation of protein using acetone  

Four volumes of -20°C acetone was added to 1 volume of protein solution and 

incubated for 1 hour at -20°C. The samples were then centrifuged at 2215 g in a 

MSE Centaur 1 centrifuge (Sanyo, Loughborough, UK) for 35 min and the protein 

pellet re-suspended in 1 ml of 1% (v/v) SDS (Jiang et al., 2004).    

 

2.3.2.2  Precipitation of protein using Trichloroacetic acid  

Trichloroacetic acid (TCA) solution was made by adding 500 grams of TCA 

powder to 350 ml of ROH2O. For precipitation, 1 volume of TCA solution was 

added to 4 volumes of protein sample and incubated for 10 min at 4°C. The 

samples were centrifuged at 9971 g for 5 min and the supernatant removed. The 

protein pellet was then washed in 200 µl of ice cold acetone and centrifuged at 
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9971 g for 5 min. The pellet was washed a further two times in acetone and the 

samples were added to a heat block (Grant, Cambridge UK) at 95°C to drive off 

the remaining acetone (Jiang et al., 2004). The pellet was then resuspended in 1 

ml of 1% (v/v) SDS.  

 

2.3.2.3  Precipitation of protein using StrataCleanTM Resin 

A 10 µl aliquot of StrataClean™ resin (Agilent Technologies, Texas USA) was 

added to 1 ml of protein solution and centrifuged at 614 g for 1 min and the 

supernatant removed (Koch-Nolte et al., 1996). The resin pellet was 

resuspended in 1 ml of 1% SDS (v/v) or NuPAGE™ sample buffer. 

 

 

2.3.2.4  Precipitation of protein using an Amicon® filter 

Amicon® 15 K filter units were acquired from Fisher Scientific Longborough UK. 

Protein samples were loaded into the Amicon® filter unit and centrifuged at 

2215 g for 45 min according to manufacturers instructions. The retentate and 

the filtrate were both removed for analysis. 

 

2.3.3 Sodium dodecyl sulphate polyacrylamide gel 

electrophoresis 

Samples were mixed with an equal volume of NuPAGE™ sample buffer and 

heated for 10 min at 70°C. Each sample was then centrifuged in a MSE 

Microcentaur (Sanyo Loughborough, UK) at 9971 g for 2 min. Running buffer was 

made by diluting 20 x NuPAGE® 2-(N-morpholino) ethanesulfonic acid (MES) 

running buffer to make a 1 x solution. For the sampling of salivary mucin, 

running buffer was made by diluting 20 x NuPAGE tris-acetate buffer to make a 

1x solution. An XCell SureLock Mini-Cell™ gel case was filled with 200 ml of 

running buffer in the inner chamber and 600 ml of running buffer in the outer 

chamber. For the detection of salivary mucin, a pre-cast 3-8% NuPAGE® Novex® 

Tris Acetate gel and for all other sampling a pre-cast 4-12% NuPAGE® Novex® Bis 

Tris gel was used. Each gel was inserted into the tank and the wells washed 3 

times with running buffer. A maximum of 20 µl samples were loaded into each 
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well and 0.5 µl of BenchMark™ protein ladder was loaded for size comparison. 

The gel tank was connected to a Powerpac 300 power pack (Bio-Rad, 

Hertfordshire, UK) and operated at 200V for 35 min for Bis Tris gels and 150v for 

1 h for Tris -Acetate gels. 

 

2.3.4 Gel staining 

2.3.4.1  Staining of gel by Coomassie Blue 

Coomassie blue solution was made by dissolving 0.25 g of coomassie brilliant 

blue G- 250 powder per 100 ml of methanol: acetic acid solution comprising 500 

ml of methanol, 400 ml of ROH2O and 100 ml of glacial acetic acid (BDH 

Laboratory Supplies, Leicester UK) (Sambrook. J and Russel. W.D, 2006). For 

staining, the gel was immersed in 100 ml of coomassie brilliant blue solution on 

a rocking platform for 4 h at room temperature. The gel was then destained in a 

methanol: acetic acid solution until bands were visible (Sambrook. J and Russel. 

W.D, 2006). Gels were photographed in a XR+ Gel doc (Bio- Rad, Hertfordshire 

UK).   

  

2.3.4.2  Staining of gel by SYPRO® Ruby 

The gel was removed from the outer casing and immersed in 100 ml of SYPRO® 

ruby stain for 3 h before being destained in 100 ml of a solution of 10% (v/v) 

methanol and 7% (v/v) acetic acid in ROH2O for 1 h. The gel was viewed using an 

XR+ Gel doc using ultraviolet light (Bio- Rad, Hertfordshire, UK).  

 

2.3.4.3 Staining of gel by Silver Staining 

The gel was removed from the outer casing and stained using the Silverquest™ 

silver stain kit according to the manufacturer instructions. Gels were imaged in a 

XR+ Geldoc (Bio-Rad, Hertfordshire, UK). 
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2.3.4.4  Staining of gel by periodic acid Schiff reagent 

For periodic acid Schiff (PAS) staining, the gel was removed from the outer 

casing and immersed in 100 ml of fixative solution comprising a 40% (v/v) 

ethanol and 7% (v/v) acetic acid in ROH2O for 30 min. The solution was then 

replaced and the gel fixed overnight. The gel was then immersed in fresh 

fixative solution 4x for 30 min with fresh fixative solution each time. The gel was 

then immersed in a solution of 1% (w/v) periodic acid and 3% (v/v) acetic acid 

for 60 min before being washed 10x for 10 min in ROH2O. The gel was then 

stained with Schiff’s Reagent for 60 min in the dark. Gels were photographed in 

a XR+ Gel doc (Bio-Rad, Hertfordshire, UK). 

2.3.5 Mass spectrometry data analysis  

Each protein band was sent for mass spectrometry (MS) analysis at the Glasgow 

University Proteomics facility. The MS/MS spectra were used for interrogation of 

the human and bacterial proteome database using Mascot software 

(http://www.matrixscience.com). A protein was considered a good 

identification if 2 or more peptides had an individual ion score over 58 which 

indicates significant homology (p<0.05) to a protein listed in the database 

(Romero et al., 2010).   

2.3.6 Western blot 

Transfer buffer was prepared by dissolving 10 mM Tris base, 100 mM glycine, and 

25 ml methanol in 975 ml of ultrapure ROH2O. Blocking solution was made by 

dissolving 10% non-fat milk powder (Malvern St Albans UK) in Tris buffered saline 

(TBS) buffer (50 mM Tris- HCl, 150 mM NaCl). Wash buffer was made by 

dissolving 0.1% Tween® 20 in Tris- ethylenediaminetetraacetic acid (EDTA) -NaCl 

buffer (25 mM Tris base, 1 mM EDTA, 150 mM NaCl). A solution of 5-Bromo-4-

chloro-3-indolyl phosphate, nitro blue tetrazolium (BCIP NBT) was made by 

dissolving a SIGMAFAST™ BCIP NBT tablet in 10 ml in ultrapure H2O. 

 

Each sample was sampled by SDS PAGE (Section 2.3.3) and all gels included a 

10µl sample of MagicMark™ XP pre-stained protein ladder for size comparison. 

The gel case was opened and a piece of filter paper pre- soaked in transfer 
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buffer was then placed on top of the gel. The PVDF membrane was soaked in 

100% methanol for 30 sec and then immersed in transfer buffer for 3 min. The 

membrane was then placed on top of the gel and air bubbles removed. A piece 

of pre soaked filter paper was then placed on top of the membrane and 2 

blotting pads, soaked in transfer buffer, were placed on both sides of the 

membrane sandwich and the assembly was added to the X- cell II™ Blot Module. 

The blot module was inserted into an Xcell SureLock Mini-Cell™ and the 

membrane assembly was immersed in 200 ml of transfer buffer and the outer 

core was filled with 600 ml of ROH2O. The gel tank was connected to a power 

pack (Bio-Rad, Hertfordshire, UK) and operated at 30V for 1 h. The membrane 

was immersed in 100 ml blocking solution and incubated for 1 h on a tilting 

platform. The membrane was then inserted into a 50 ml Corning centrifuge tube 

and immersed in a 10ml solution of primary antibody diluted in wash buffer and 

1% (v/v) blocking solution. Each membrane was incubated for 1 h at 37°C in a 

hybridisation oven (Hybaid Thermo Scientific, Leicestershire, UK and washed or 

4x 5 min in wash buffer. The membranes were then inoculated with 10 ml of 

secondary antibody for 1 h in the hybridisation oven at 37°C. The membranes 

were then washed a further 4 x for 5 min in wash buffer. Each membrane was 

then immersed in 10 ml of BCIP NBT solution and incubated until the alkaline 

phosphatase representing bound antibody was visible. The membranes were 

imaged using an XR+ Gel doc (Bio- Rad, Hertfordshire UK) and the presence of 

protein bands in each lane was determined using Quantity one® gel 

interpretation software (Bio Rad version 4.6.7). 

 

2.3.7 Indirect enzyme linked immunosorbent assay 

Samples and standards for the enzyme linked immunosorbent assay (ELISA) were 

diluted in PBST. For the ELISA, a 100 µl sample of 1:1000 dilution of capture 

antibody (Pierce biotechnology Rockford USA) was added to each well of a 

Immuno 96 Microwell™ clearplates (Fisher scientific Longborough, UK) and 

incubated at 4°C overnight. The plate was then given 5x washes in PBS and 10% 

tween 20 (PBST) and incubated in blocking solution at room temperature (5% 

milk powder in PBST) for 1h. The plate was then given 5x washes in PBST and the 

samples were then added to the plates and incubated for 90 min at room 

temperature. The plate was then given 5x washes in PBST and a 100 µl sample of 
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1:1000 dilution of secondary antibody was added to the plate and incubated at 

room temperature for 90 min. The plate was then given 5x washes in PBST and a 

100 µl sample of a 1:100000 dilution of the detection antibody was added to 

each well and incubated for 90 min at room temperature. The plate was then 

given 5x washes in PBST and a 100 µl sample of tetramethylbenzidine was added 

to each well. The plate was incubated in the dark for 30 min and when a blue 

colour had developed, the reaction was stopped by 100 µl of 0.12M of HCl. The 

plate was then read in an Omega Fluostar plate reader (BMG Labtech, Aylesbury 

UK) at an absorption wavelength of 450 nm and a reference wavelength of 630 

nm. 

 

2.4 Surface analysis 

2.4.1 Surface analysis techniques 

All 316l stainless steel discs sampled were cleaned by sonication at 35kHz for 15 

min in 1% Triton X and then subjected to 15 min sonication in HPLC grade RO 

H2O (Fisher Scientific Longborough, UK) to ensure no residual contaminants were 

present. The discs were then dried in a drying cabinet at 37°C. 

2.4.1.1 Scanning electron microscopy 

For fixing, the sample was immersed in fixative, comprised of 2 % 

paraformaldehyde, 2 % gluteraldehyde, 0.15M sodium cacodylate, and 0.15 % 

alcian blue, for 22h. The fixative was then removed and replaced with 0.15M 

sodium cacodylate. The samples were then given 3 further washes in 0.15M 

sodium cacodylate buffer for 5 min per wash before immersion in a 1:1 solution 

of 1% osmium tetroxide: 0.15M sodium cacodylate for 60 min. The samples were 

then rinsed 3 times for 5 min in distilled water and immersed in 0.5 % uranyl 

acetate for 60 min in the dark. The samples were then rinsed in distilled water 

and then dehydrated by immersion 2 times for 5 min in 30% alcohol, 2 times for 

5 min in 50% alcohol, 2 times for 5 min in 70% alcohol, 2 times for 5 min in 90% 

alcohol, 4 times for 5 min in absolute alcohol and 2 times for 5 min in dried 

absolute alcohol. The samples were then immersed in hexamethyldisilazane 

(HMDS) 2x for 5 min. The samples were moved to a new 24 well plate and placed 
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in a dessicator overnight to allow the sample to dry. Each sampled to be viewed 

was sputter- coated with gold and viewed under a JEOL JSM-6400 scanning 

electron microscope at 12 x and 100 x magnification. 

 

2.4.1.2 Energy dispersive X-ray analysis 

For EDX analysis, images of parts were taken using a Philips XL30CP instrument 

operating at 20 kV. For any surface contaminants, EDX analysis was performed 

using an integrated Isis 300 X-ray analyser (Oxford instruments, Oxford, UK). 

Each contaminant was subjected to elemental analysis to a depth of 3 µm using 

an X- ray fluorimeter capable of detecting elements of atomic number greater 

than 6. 

2.4.1.3 Epifluorescent analysis 

EFSCAN analysis was undertaken at the University of Edinburgh chemistry 

department in collaboration with Dr Helen Baxter and Professor Robert Baxter. 

Each part was mounted on a computer controlled motorized x-y translation stage 

(Ocean optics, Ostfildern Germany) and each part excited at 468nm fibre optic 

diode (Richardson et al., 2004). The fluorescent signal was measured using a 

photon counting fluorescence spectrometer (Jobin-Yvon-Horiba Fluoromax-P) 

and the data analysed using the LabView program (National Instruments, Austin 

TX, USA) (Baxter et al., 2009, Richardson et al., 2004) 

 

2.5 Surface cleaning studies 

2.5.1 Optimising cleaning parameters 

2.5.1.1 Preparation of stainless steel sections 

Each stainless steel section (SSS) was immersed in 0.1M sodium hydroxide 

(NaOH) pH 9.2 and boiled at for 10 min at 100°C in a water bath (Grant 

instruments) to remove residual contaminants from the discs. The discs were 



Chapter 2  65 

then rinsed with methanol (BDH laboratories, Leicester UK) and dried in a 

laminar flow cabinet for 1 h (Imamura et al., 2003).  

  

2.5.1.2 Test Soil 

The test soil used was the Swedish test soil detailed by the BS EN ISO–15883-5: 

2006. The soil was made by adding 1 ml of 0.1M calcium chloride (CaCl2) (Difco 

Oxford UK) to 9 ml of citrated horse blood (Ransjo et al., 2001).  

2.5.1.3 Inoculation of stainless steel sections 

A total of 3 SSS’s were inoculated with 30 µl of solution of recalcified horse 

blood. SSS’s were inoculated with 30 µl of 0.1M CaCl2 for negative controls. Each 

inoculated SSS was dried for 16 h at ambient room temperature representing the 

time it can take for instruments to be reprocessed in a sterilization department 

(Plinston et al., 2007). Each disc was inserted into a separate well on a clear 24 

well plate. For each experimental run, the control comprised a protein assay for 

30 µl of citrated blood diluted in 1ml of RO H2O. The percentage removal was 

expressed as the amount recovered from the experiment wash compared to the 

protein detected in the control.  

 

2.5.2 Cleaning system  

The 24 well plate containing inoculated stainless steel discs was placed on the 

measured centre of a Grant PMR – 30 rocking platform. Each well containing a 

disc was filled with 1 ml of the appropriate cleaning solution. The experiment 

consisted of 3 discs and the experiment repeated 3 times. 

 

2.5.3 Biofilm cleaning model 

2.5.3.1 Culture of microorganisms 

A total of 20 P. acnes strains isolated from used, unprocessed s11 W &H surgical 

HPs from the Glasgow dental hospital (GDH) and 19 P. acnes isolates isolated 

from decontaminated s11 surgical HPs from the St Albans repair facility were 

revived from Protect beads (Biomerieux Marcy l’Etoile, France). A single bead 
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was plated onto FAA and incubated anaerobically for 24 h at 37°C. S. 

epidermidis strain (RP62A) was cultured onto BA and incubated overnight at 

37°C under 5 % CO2. A single colony of each P. acnes strain and the S. 

epidermidis was added to 50 ml of reinforced clostridial (RC) broth that had 

been pre-reduced by boiling for 30 min. Of the GDH isolates, a total of 13 

cultures were incubated overnight at 37°C anaerobically and 7 cultures were 

incubated overnight aerobically at 37°C. Of the repair facility isolates a total of 

11 cultures were incubated overnight at 37°C anaerobically and 8 cultures were 

incubated overnight at 37°C aerobically.  

 

2.5.3.2  Preparation of biofilms 

The OD of each culture was taken using a spectrophotometer (Fisherbrand 

Longborough, UK). Each culture was diluted in RC broth to an O.D of 0.2 

representing 1x108 CFU of bacteria. A total of 6, 300 µl samples of each isolate 

were added to separate wells of a clear Costar 96 well flat=bottomed plate 

(Sigma Aldrich, Dorset UK). Separate plates were used for each cleaning 

solution. Each plate was placed on a PMR tilting platform (Grant Instruments 

Cambridge, UK) at moderate speed (18 rpm) and incubated for 72 h 

anaerobically at 37°C or for 16 h aerobically at 37°C. RC media was added to 

each plate as a negative control. RC broth was changed every 24 h in each well 

for the 72h biofilms.  

 

2.5.3.3 Detergent treatment of biofilms 

For 72 h biofilms, a 1% (v/v) solution of Haemo-sol® detergent and undiluted W 

& H cleaning solution were sampled. For 16 h biofilms, a 1% (v/v) solution of 

Alconox®, Haemo-sol® and Rapizyme® and an undiluted W & H cleaning solution 

were sampled.  The media was removed from each well and the plate air dried 

for 20 min. Each well was washed three times in sterile phosphate buffered 

saline (PBS) and a 300 µl sample of the appropriate cleaning solution was added 

to each well and incubated at room temperature for 16 min, which is the length 

of time an instrument is exposed to detergent during some automated washing 

process. After exposure, the supernatant was removed and the wells rinsed a 

further 3 times in sterile PBS. Samples were compared to a positive, untreated 
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control and a positive control treated with PBS in place of a cleaning solution. 

The media was removed each day and cultured on FAA plates as controls.  

 

2.5.3.4 Biofilm biomass sampling  

A total of 300 µl of 1% (w/v) crystal violet solution was added to each well and 

incubated at room temperature for 10 min. The wells were rinsed 3 times by tap 

water and 300 µl of a 70 % ethanol/5 % acetone solution was added to each well. 

The plate was incubated for 15 min and the solution transferred to a fresh plate 

before being read in a plate reader (Sunrise™ Tecan) at OD570. 

 

2.5.3.5 Biofilm bacterial cell viability 

The bacterial cell viability of 16 h biofilms was measured using the alamarBlue® 

assay (Invitrogen Strathclyde, UK) according to manufacturer’s instructions. Each 

plate was incubated for 4 hours aerobically at 37°C and the plate measured in 

an Omega Flurostar plate reader at an excitation wavelength of 530 nm and 

emission wavelength of 590 nm.  

 

2.6 Data analysis 

Data was entered into Microsoft excel and all calculations were carried out using 

the excel program. All data to be converted to graphs was entered into 

GraphPad Prism 4. Statistical analysis was carried out using GraphPad Prism 4 

unless otherwise stated.  
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3 Chapter 3: Assessment of Assays for Detection 

of Protein Contamination 
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3.1 Introduction 

Invasive surgical instruments are contaminated by protein during routine use 

that may inhibit instrument sterilization (Nakata et al., 2007). Residual protein 

must therefore be removed by cleaning, the critical control stage of the 

decontamination process before sterilization can take place (Alfa et al., 2006, 

Weightman and Lines, 2003). It is for this reason that protein contamination is 

used as a measurement for the efficacy of cleaning processes, and the European 

standard ISO–EN-15883:2006 part 1 provides details on the construction of test 

devices, test soils and protein detection methods to assess the efficacy of 

washer disinfectors. The protein detection methods named in the standard are 

the ninhydrin assay, the BCA assay, and the OPA assay. Each assay binds to a 

different part of the protein structure to create different measurable products. 

The ninhydrin assay is based on the binding of a ninhydrin molecule to an α 

amino acid in a protein to produce Ruhemman’s purple which can be detected 

using spectrophotometry (Meyer, 1957). The BCA assay is based upon the 

reaction of a protein peptide backbone with copper sulphate in an alkaline 

solution (Smith et al., 1985). This process is more sensitive when bicinchoninic 

acid is added to chelate with cupric sulphate reduced by the peptide backbone 

(Smith et al., 1985). The third recommended method is the reaction of OPA 

detergent, in the presence of a fluorescent reagent such as 

mercaptoethanosulphanate, with amines in the protein known as the OPA assay 

(Roth, 1971). A fluorescence reaction is reported to be a more sensitive method 

of detection than spectrophotometry (Verjat et al., 1999).  

 

For the validation of bioanalytical assays, the Food and Drug Administration 

(FDA) has detailed experiments to ensure that the assay is able to deliver 

accurate measurements (Food and Drug Administration, 2001). These 

experiments allow recording of the sensitivity, specificity, and ability to 

accurately detect the concentration of unknown substances.  

To ensure the aforementioned assays can be used to detect instrument protein 

contamination, it is important to undertake the experiments detailed by the FDA 

guidelines to ensure the accuracy and reproducibility of results. The aim of this 

study was therefore to determine the sensitivity, specificity, and the ability to 

calculate the protein concentration of common instrument contaminants. The 
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protein assay was then assessed in an in situ study by detecting protein 

contamination from decontaminated podiatry instruments. 
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3.2 Results 

3.2.1 Sensitivity and linear range of protein assays 

For the assessment of the linear range and the sensitivity of the protein assays, a 

2 mg/ml solution of bovine serum albumin (BSA) and mucin from the bovine 

submaxillary gland (salivary mucin) were prepared by dissolving 20 mg in 10 ml 

of RO H2O. A standard curve of protein concentrations 1, 5,10,20,50,100 µg/ml 

of protein was prepared in RO H2O. A blank control of RO H2O was also included 

in standard curves. To determine the linear range of each protein assay, BSA 

concentrations of 50, 100, 250, 500, 1000, 1500, 2000, 2500 µg/ml were 

sampled. The r2 value of each graph was calculated using the GraphPad Prism 4 

linear regression calculation and the sensitivity was determined using a Kruskal -

-Wallis test of all data points in the graph. The sensitivity was determined as the 

data of the protein concentration that was significantly more than the data of 

the negative control.  

 

For all assays an increase in BSA protein concentration resulted in a 

corresponding linear increase in fluorescent units (FU’s) for the OPA assay 

(r2=0.97) (Figure 3-1), and optical density570 OD570 for the ninhydrin (r2=0.98) 

(Figure 3-2) and BCA assays (r2=0.99) (Figure 3-3). The OPA and BCA assays had a 

minimum sensitivity of 5 µg/ml BSA whilst the ninhydrin assay had a minimum 

sensitivity of 10 µg/ml.  An increase in salivary mucin concentration resulted in 

an increase in FU’s for the OPA assay (r2=0.8) (Figure 3-1) and OD570 for the BCA 

assay (r2=0.86) (Figure 3-2) and the ninhydrin assay (r2=0.97) (Figure 3-3), though 

a smaller straight line slope than was observed in BSA. The limit of detection 

was calculated as 20 µg/ml for the OPA and ninhydrin assays and 10 µg/ml for 

the BCA assay. For the BCA assay a linear relationship (r2=0.92) exists from 

concentration of 0-1000 µg/ml of protein (Figure 3-4). For the ninhydrin assay, a 

linear relationship (r2=0.96) exists to 0-500 µg/ml of protein (Figure 3-5) and the 

OPA assay has a linear relationship with BSA concentration from 0-2000 µg/ml 

(r2=0.97) (Figure 3-6). 
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Figure 3-1 BSA and salivary mucin standard curves detected by the OPA assay 

diluted in RO H2O. A 2 mg/ml solution of BSA and salivary mucin were prepared 

by dissolving 20 mg in 10 ml of RO H2O. A standard curve of protein 

concentrations 1, 5,10,20,50,100 µg/ml of protein was prepared in RO H2O. A 

blank control of RO H2O was also included in standard curves. The data shown is 

the mean of 3 readings from 3 experiments ± StEM. A BSA concentration of 5 

µg/ml resulted in significantly (p<0.05) larger values than the negative control 

and a salivary mucin concentration of 20 µg/ml resulted in significantly (p<0.01) 

larger values than the negative control. The r2 value of the slope was calculated 

as 0.97 for the BSA standard curve and 0.8 for the salivary mucin standard curve. 
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Figure 3-2 BSA and salivary mucin standard curves detected by the BCA assay 

diluted in RO H2O. A 2 mg/ml solution of BSA and salivary mucin were prepared 

by dissolving 20 mg in 10 ml of RO H2O. A standard curve of protein 

concentrations 1, 5, 10, 20, 50, 100 µg/ml of protein was prepared in RO H2O. 

The data shown is the mean of 3 readings from 3 experiments ± the StEM. A BSA 

concentration of 5 µg/ml resulted in significantly (p<0.001) larger OD570 than the 

negative control and a salivary mucin concentration of 10 µg/ml resulted in 

significantly (p<0.01) larger OD570 than the negative control. The r2 value of the 

slope was calculated as 0.99 for the BSA standard curve and 0.86 for the salivary 

mucin standard curve. 
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Figure 3-3 BSA and salivary mucin standard curves detected by the ninhydrin 

assay diluted in RO H2O. A 2 mg/ml solution of BSA and salivary mucin were 

prepared by dissolving 20 mg in 10 ml of RO H2O. A standard curve of protein 

concentrations 1, 5, 10, 20, 50 and 100 µg/ml of protein was prepared in RO 

H2O. The BSA standard curve is indicated with a black line and the salivary mucin 

standard curve is indicated with a red line. The data shown is the average of 3 

readings from 3 experiments ± the StEM. A BSA concentration of 10 µg/ml 

resulted in significantly (p<0.01) larger OD570 than the negative control and a 

salivary mucin concentration of 20 µg/ml resulted in significantly (p<0.001) 

larger OD570 than the negative control. The r2 value was calculated as 0.98 for 

the BSA standard curve and 0.97 for the salivary mucin standard curve. 
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Figure 3-4 Linear range of the BCA assay when detecting BSA. BSA 

concentrations of 50, 100, 250, 500, 1000, 1500, 2000, 2500 µg/ml were 

sampled. The data shown is the mean of 3 readings from 3 experiments ± the 

StEM. A linear relationship (r2=0.92) was calculated up to 1000 µg/ml.  
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Figure 3-5 Linear range of the ninhydrin assay when detecting BSA. BSA 

concentrations of 50, 100, 250, 500, 1000, 1500, 2000, 2500 µg/ml were 

sampled. The data shown is the mean of 3 readings from 3 experiments ± the 

StEM. A linear relationship (r2=0.96) was observed up to 500 µg/ml. 

 



Chapter 3  77 

 

Figure 3-6 Linear range of the OPA assay when detecting BSA. BSA 

concentrations of 50, 100, 250, 500, 1000, 1500, 2000, 2500 µg/ml were 

sampled. The data shown is the mean of 3 readings from 3 experiments ± the 

StEM. A linear relationship (r2=0.97) was observed up to 2500 µg/ml.  
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3.2.2 Protein concentration of unknown biological samples 

Unstimulated saliva was collected separately from 3 male volunteers. Each 

sample was centrifuged for 15 min at 9971 g in a MSE Microcentaur (Sanyo 

Loughborough, UK) and the supernatant removed. The supernatants were 

combined and mixed by vortexing. A 1/10 dilution was made in RO H2O and a 

sample taken for the ninhydrin, OPA, and BCA assay. Bovine serum, with a 

reported protein concentration of 45 – 60 mg/ml, was diluted 1/100 in RO H2O 

and samples taken for each of the assays. Defibrinated horse blood was diluted 

1/1000 in RO H2O and samples taken for each assay.   

 

Salivary protein concentration was detected as 1.8 mg/ml when sampled with 

the BCA assay and 1.3 mg/ml with the ninhydrin assay. The OPA assay detected 

the protein concentration of the saliva samples as 3.9 mg/ml (Table 3-1). For 

bovine serum, the protein concentration was detected as 53 mg/ml by the OPA 

assay, 49 mg/ml by the BCA assay and 37 mg/ml for the ninhydrin assay (Table 

3-2). For defibrinated horse blood, the OPA assay detected the protein 

concentration as 121 mg/ml, the BCA assay as 119 mg/ml and the ninhydrin 

assay as 276 mg/ml (Table 3-3). For unknown BSA concentrations, the OPA assay 

detected a 20 µg/ml solution was detected as a median of 23.07 µg/ml , a 60 

µg/ml solution was detected as 62.64 µg/ml and a 80 µg/ml solution was 

detected as 80.79 µg/ml (Table 3-4).  
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Table 3-1 Concentration of salivary protein concentration detected by each 

protein assay.  

Protein assay Median detected 

salivary protein 

concentration 

(mg/ml) 

Range detected 

salivary protein 

concentration 

(mg/ml) 

Ninhydrin  1.9 1.5 - 2.2 

BCA  1.3 1.2 – 1.4 

OPA  3.9 3.6 - 4.2 

 

The data shown is the median and the range of 3 samples from 3 experiments. 

 

 

Table 3-2 Concentration of serum albumin protein detected by each protein 

assay.  

Protein assay Median detected 

serum albumin 

protein 

concentration 

(mg/ml) 

Range detected 

salivary protein 

concentration 

(mg/ml) 

Ninhydrin  53 49 – 56 

BCA  47 44 – 50 

OPA  37 36 - 39 

The data shown is the median and range of 3 samples from 3 experiments. 
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Table 3-3 Protein concentration of defibrinated horse blood.  

Protein assay Median total blood 

concentration 

(mg/ml) 

Range total blood 

protein 

concentration 

(mg /ml) 

OPA 121 117– 123 

BCA 119 112 – 127 

Ninhydrin 276 145 – 216 

The data shown is the median and range of 3 samples from 3 experiments. 

Table 3-4 Estimated protein concentrations of 3 unknown protein samples.  

Known protein 

concentration (µg/ml) 

Median protein 

concentration detected 

(µg/ml) 

Range protein 

concentration 

(µg/ml) 

20 23.07 21.96-23.85 

60 62.64 62.26 – 64.89 

80 80.79 80.12-82.12 

 

The data shown is the median and range of 3 samples from 3 separate solutions 

made to equal protein concentrations. 
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3.2.3 Effect of handpiece lubricating oil and alcohol on protein 

detection assays 

To determine the effect of lubricating oil and alcohol, the BCA assay was 

sampled with a 100 µl sample of HP lubricating oil (W & H, St Albans, UK) and 

100 µl of HP cleaning solution (W & H, St Albans, UK). A sample of RO H2O and 

100 µg/ml of BSA were also sampled as controls. The experiment was repeated 

with the ninhydrin assay with 500 µl volumes and the OPA assay with a 20 µl 

volume of each solution. For the BCA assay and the ninhydrin assay, both W&H 

manufactured lubricating oil and cleaning solution alone resulted in OD570 values 

significantly (p<0.001) more the ROH2O negative control. For the OPA assay, no 

significant difference was found between the ROH2O negative control and the 

lubricating oil and cleaning solution.  
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3.2.4 In situ comparison of automated versus manual cleaning of 

instruments  

For assessment of the OPA assay at detecting instrument protein, a total of 378 

podiatry instruments decontaminated using an LDU and a CDU (Table 2-2) 

process were assessed for protein contamination. A total of 126 pear burs, 126 

Blacks files and 126 Diamond Deb files (Figure 2-2) were collected for the study 

after single use and randomly allocated into two groups for reprocessing. The 

first group was subjected to routine cleaning and sterilization by LDU’s (Table 

2-2) and the second group were subjected to reprocessing by the CDU at 

Cowlairs (Table 2-2). Individual Blacks and Diamond Deb files were placed in a 

sterile plastic bag (Seward, UK), whilst each Pear bur was added to a sterile 25 

ml Universal tube (Corning, UK). Residual protein was desorbed from each 

instrument by immersion in a standardised volume of 1% (v/v) SDS (Sigma UK), 

and for Pear burs only the working end was immersed. Each instrument was 

subjected to sonication at 35 kHz for 30 min in an ultrasonic bath (Thermofisher 

Fisherbrand® 11021) (Smith et al., 2005) and the protein desorbed measured 

using the OPA assay (Section 2.3.1.3) compared to a BSA standard curve (Section 

3.2.1). 

 

A total of 58/63 Pear burs, 48/63 Blacks files and 31/63 Diamond Deb files 

reprocessed by CDU contained greater than 5 µg/instrument of detectable 

protein. Protein was also detected in 62/63 Pear burs, 53/63 Black files, and 

56/63 Diamond Deb files reprocessed by LDU (Figure 3-7). Instruments 

reprocessed by the CDU (median 21 µg/instrument range <5 -5705 

µg/instrument) had significantly less residual protein than instruments 

reprocessed by the LDU (median 117 µg/instrument range <5 – 6344 

µg/instrument) when all three instruments were grouped (p<0.001 (Figure 3-7).   

 

For individual instruments, the median quantity of protein detected on Pear burs 

(Figure 3-8) reprocessed by CDU was significantly lower (median 11 

µg/instrument range <5-161.7 µg/instrument) than those by LDU (median 77 

µg/instrument, range <5–1403 µg/instrument p<0.001). The median quantity of 

protein detected on Blacks files (Figure 3-9) reprocessed by CDU (median 64.52 

µg/instrument, range <5-1113 µg/instrument) exhibited no significant difference 
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compared to protein detected on Blacks files by LDU (median 50.81 

µg/instrument, range <5-633.5 µg/instrument). The median quantity of protein 

detected on Diamond Deb files (Figure 3-10) reprocessed by CDU was 

significantly lower (median <5 µg/instrument, range <5 – 5705 µg/instrument) 

than Diamond deb files reprocessed by LDU (median 711.8 µg/instrument, range 

<5 – 6344 µg/instrument) (p<0.05). However, residual protein was still detected 

from these instruments, as the mean of these was 512 µg/instrument for CDU 

reprocessing compared to 1159 µg/instrument for LDU reprocessing, indicating 

that a small proportion of CDU samples contained elevated levels of residual 

protein.  
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Figure 3-7 Residual protein isolated from all instruments after reprocessing 

by both methods. Protein was desorbed from all instruments by immersion in 1% 

(v/v) SDS and sampled using the OPA assay.. The distribution of data was 

confirmed using a Kolmogorov Smirnov test, and data was compared using a 

Mann-Whtiney U test with the significance determined using a 2-tailed Monte 

Carlo estimation. Significantly less protein is recovered from instruments 

reprocessed using the CDU method (***= p<0.001) compared to instruments 

reprocessed using the LDU (Table 2.2). The mean of datasets is represented by a 

horizontal line. 
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Figure 3-8 Total residual protein recovered from individual Pear burs 

reprocessed by both methods. Protein was desorbed from all instruments by 

immersion in 1% (v/v) SDS and sampled using the OPA assay. The distribution of 

data was confirmed using a Kolmogorov Smirnov test, and data was compared 

using a Mann-Whtiney U test with the significance determined using a 2 tailed 

Monte Carlo estimation. Significantly less protein is recovered from instruments 

reprocessed using the CDU method (***= p<0.001) compared to instruments 

reprocessed using the LDU (Table 2.2).  The mean of datasets is represented by 

a horizontal line. 
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Figure 3-9 Total residual protein recovered from individual Blacks files 

reprocessed by both methods. Protein was desorbed from all instruments by 

immersion in 1% (v/v) SDS and sampled using the OPA assay. The distribution of 

data was confirmed using a Kolmogorov Smirnov test, and data was compared 

using a Mann-Whitney U test with the significance determined using a 2 tailed 

Monte Carlo estimation. No significant difference was found on protein 

recovered from instruments reprocessed using the CDU method and the LDU 

(Table 2.2).  The mean of datasets is represented by a horizontal line. 
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Figure 3-10 Total residual protein recovered from individual Diamond deb 

files reprocessed by both methods Protein was desorbed from all instruments 

by immersion in 1% (v/v) SDS and sampled using the OPA assay. The distribution 

of data was confirmed using a Kolmogorov Smirnov test, and data was compared 

using a Mann-Whitney U test with the significance determined using a 2-tailed 

Monte Carlo estimation. Significantly more protein was detected on instruments 

reprocessed using the LDU process (***=p<0.001) than instruments reprocessed 

using the CDU process (Table 2.2).  The mean of datasets is represented by a 

horizontal line. 

 

  



Chapter 3  88 

3.3 Discussion 

Cleaning validation of washer disinfectors rely on the detection of protein using 

the ninhydrin, the BCA and the OPA assays. This standard defines an acceptable 

cleaning level as below the detection limit of one of three assays, which are 

stated as 2 mg/m2 for the ninhydrin assay, 30 – 50 µg for BCA, and 0.003 µmol of 

OPA sensitive amino groups for the OPA assay (BS-EN-ISO-15883, 2006). The 

validation of protein assays can be accomplished using the FDA bioanalytical 

guidelines, which detailed the experiments performed in this study, i.e. 

assessing the sensitivity. The range of detection of the assays, the ability to 

detecting common dental instrument protein contamination, and the 

interference by common HP maintenance solutions that may be present during 

HP sampling (Food and Drug Administration, 2001).  

 

BSA is commonly used as protein standards to compare unknown protein samples 

(Smith et al., 2005), especially for detecting blood contamination (Doumas, 

1975) which is a common contaminant of the instruments sampled and is present 

in all test soils described by the BS-EN ISO -15883:2006.  

The BCA and the OPA assays showed a sensitivity of 5 µg/ml of protein and the 

ninhydrin assay had a sensitivity of 10 µg/ml. This was the minimum BSA 

concentration that did not result in an OD significantly greater than the negative 

control.  Based on the difference in sample volumes required for each reaction, 

the OPA assay can detect 100 ng of protein, the BCA assay can detect a 

minimum of 0.5 µg of protein and the ninhydrin assay can detect a minimum of 5 

µg of protein. The sensitivity of the BCA assay was identical to that stated by the 

manufacturer (Pierce Biotechnology, 2009) and in previous studies (Smith et al., 

1985). The ninhydrin assay has a reported sensitivity of 9.75 µg when used as a 

kit relying on swabbing and visual analysis of the swabs (Lipscomb et al., 2006a). 

This figure is similar to the sensitivity observed in this study. The OPA assay has 

a reported sensitivity of 1.2 ng of protein (Hammer and Nagel, 1986) and 3.6 

µg/ml (Verjat et al., 1999) depending on the method of protein preparation and 

the size of sample. The figure obtained by Verjat et al. (1999) was similar to 

that observed in this study.   
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The range of protein detected by each protein assay impacts the concentrations 

of protein that can be detected by each assay. The OPA assay had the longest 

linear range of 0 – 2500 µg being detected. Since this assay relies on relative 

FU’s for protein measurement, it is possible to adjust the protein standards to 

appropriate concentrations when larger protein concentrations are expected. 

The range of the BCA assay in this study was detected as 0 - 1000 µg/ml, which 

is lower than that stated by the manufacturer, 0 - 2000 µg/ml. This study 

altered the method by halving the manufacturer total recommended reagent 

which had no impact in sensitivity of the assay, but may have impacted on the 

reaction products available. The linear range of the ninhydrin assay was the 

smallest of the assays sampled. 

 

The ability of each assay to detect salivary mucin, a common salivary protein 

was also assessed (Liu et al., 1998). Each assay underestimated the 

concentration of salivary mucin shown by the change of sensitivity and line slope 

for salivary mucin standard curves. This change in sensitivity may have 

implications for detecting salivary protein contamination on instruments. 

Salivary mucin is the main constituent of mucins and undergoes post-

translational glycosylation, making any mucin resistant to proteolysis and 

therefore may also inhibit the reaction with the protein assays. The BCA and the 

ninhydrin assay can detect salivary mucin at a smaller concentration of 10 µg/ml 

than the OPA assay, which detects salivary mucin at 20 µg/ml.  

 

The ability of the protein assays to detect common instrument contaminants was 

assessed. The protein concentration of each sample was unknown for the 

purposes of the study. For the determination of protein concentration of human 

saliva, the OPA assay detects a higher level of protein concentration than the 

BCA and the ninhydrin assay. Human salivary protein concentration has been 

calculated as 1.8 mg/ml (Lamanda et al., 2007), 1.07 mg/ml (Narhi et al., 

1994), and 6.68 mg/ml (Agha-Hosseini et al., 2006). Each of the findings was 

assessed by the Bradford assay, based on the binding of Coomassie dye to the 

amine groups of the protein (Bradford, 1976).  Salivary protein concentration has 

many variables that would have an effect on salivary protein studies including 

age, sex, saliva stimulation, diet, and health. The findings from this study from 

the ninhydrin and the BCA assay are similar to those reported by Lamanda 
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(2007), although the OPA assay calculates the same salivary samples as having 

double the protein concentration. This may be due to cross reactivity with a 

salivary component and this phenomenom may lead to an over estimation of 

salivary protein concentration by the OPA assay.  

 

The ability of each assay to detect blood protein and serum protein 

concentration was assessed. Blood contamination can also be detected using the 

Kastle-Meyer test and visual contamination (Lowe et al., 2002, Zuhlsdorf and 

Martiny, 2005) though these methods do not allow quantitative measurement of 

the blood proteins. The BS-EN-ISO-15883:2006 standard relies on visual 

contamination and the detection of any blood protein using the 3 protein assays. 

The OPA and the BCA assay both detected a similar protein concentration when 

defibrinated horse blood though the ninhydrin assay estimates the blood protein 

contamination as double that of the other assays. The haemoglobin in blood is 

known to interfere with the ninhydrin assay, which may be due to the presence 

of interfering substances in the blood solution (Burzynski, 1969). The protein 

concentration of bovine serum is reported between 45 to 75 mg/ml as detected 

by the Biuret reaction by the manufacturer. All protein assays detect a protein 

concentration within these limits and the BCA and OPA assay both detect similar 

protein concentrations. For the unknown BSA concentrations only the OPA assay 

was assessed due to its sole suitability for assessing HP contamination. All the 

concentrations were detected within the 15% of the known protein 

concentration further validating the suitability of the OPA assay for HP protein 

analysis.  

 

Lubricating oil and cleaning alcohol, both essential parts of HP maintenance, 

both react when in contact with the BCA and the ninhydrin assay. This implies 

that each solution contains a chemical that cross reacts with both of the assays.  

The BCA assay will show a positive reaction in the presence of any copper 

chelating agent such as dimethyl sulfoxide (DMSO) or any agent that changes the 

pH of the BCA reagent (Smith et al., 1985). The ninhydrin assay can also react 

with aldehydes, ketones, keto acids, and monosaccharide’s (Schilling et al., 

1963), which result in a false positive reaction. The lubricating oils specific 

composition is not known, however, the material safety data sheet (MSDS) 

indicates the presence of ester oils that contain amino acids that can react with 



Chapter 3  91 

the ninhydrin assay.  The cross reaction with these products with the BCA and 

the ninhydrin assay has implications for the use of these assays to detect protein 

contamination in a HP. Lubricating oil and cleaning alcohol are part of routine 

handpiece reprocessing and the positive reactions may falsely indicate protein 

contamination.  No such cross reactivity was found with the OPA assay, 

indicating its sole suitability for assessing handpiece protein contamination.  

 

The OPA assay was subsequently used to detect protein contamination of 3 

different podiatry instruments, pear burs, Blacks files and diamond deb files 

(Figure 2-2). Each instrument has a complex surface topography and each is 

exposed to skin and protein during routine use. This makes them ideal 

instruments for the validation of the OPA assay to detect protein contamination 

from decontaminated instruments and validate 2 currently used podiatry 

decontamination processes. 

 

When all podiatry instruments were grouped, the CDU instruments were found to 

contain significantly less residual protein than an identically sized group of 

instruments reprocessed by the LDU. The reason for the difference in cleaning 

efficacies between the CDU and the LDU are multifactorial and include a more 

robust validation process for the automated washer disinfectors in use at the 

CDU. Other factors include an increased cleaning process time in the CDU (11 

min- CDU compared to 6 min - LDU), different cleaning chemistries used, the 

differences in form of energy used in cleaning processes, and different 

temperatures used during the wash stage. 

 

Similar patterns of cleaning efficacy were observed within each group of 

instruments with the exception of Blacks files, which may be due to the smaller 

ridged surface area compared to the more complex surface topography 

associated with the other instruments. This characteristic has been associated 

with increased retention of contamination by surface analysis of endodontic files 

which also have a ridged surface topography (Smith et al., 2002).  

 

If using the BS-EN-ISO-15883 standard as a threshold for cleanliness for 

reprocessed instruments, a total of 68/189 instruments reprocessed by CDU and 

19/189 instruments reprocessed by the LDU would be deemed to be clean. The 
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number of clean instruments may drop considerably if more sensitive analytical 

procedures were employed.    

 

The data reported herein highlights the superiority of the CDU process in terms 

of cleaning efficacy at reprocessing more complex instruments and shows the 

suitability of the OPA assay at detecting protein contamination isolated from 

instruments. Previous studies have focused on the efficacy of CDU reprocessing 

by assaying a range of surgical instruments containing residual protein that was 

detected after reprocessing (Murdoch et al., 2006, Smith et al., 2005). The 

protein content of different surgical instruments, including metzenbaum scissors 

and forceps, ranged from 163 to 756 µg, which is similar to that reported herein 

(Murdoch et al., 2006, Baxter et al., 2006). Similarly, a study on reprocessed 

dental endodontic files, which have a complex surface topography, showed a 

range of protein from 0.2 to 63.2 µg, similar to those levels observed on the Pear 

burs (Smith et al., 2005).  

 

In order to improve validation of instrument reprocessing from visual inspection 

and published standards, techniques with greater quantitative sensitivity have 

emerged. Examples include a fluorescent microscopy technique involving 

visualisation of protein by SYPRO ruby staining capable of detecting 85 pg of 

protein on a surface area of 1mm2 which is significantly lower than the 

sensitivity of 5 µg/instrument reported in this study (Lipscomb et al., 2006b). A 

standard for cleanliness when considering protein contamination should be 

dependent on the procedures undertaken by the instrument. The total protein 

recovered from the podiatry instruments would be equivalent to a large number 

of prion infectious units (Lipscomb et al., 2006a).  

 

Each protein assay has been assessed for its suitability at detecting common 

dental contaminants. While each has its short comings, each assay is a cheap 

method that can be reproduced in a sterile services department. The OPA 

method validated in this study requires a small protein sample, a short 

preparation time, identical sensitivity to commercial kits and has a longer linear 

range than both the BCA commercial kit and the ninhydrin solution. The 

ninhydrin and the BCA assay both failed the FDA bioanalytical standards due to 

false positive reactions of the lubricating oil and alcohol cleaning solution of the 
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dental HP. Constant work is needed to further validate and improve protein 

detection tests to ensure the validated cleaning of instruments and to determine 

cross contamination risks of all invasive surgical instruments. 

 

 



Chapter 4 

4 Chapter 4: Quantitative and Qualitative Analysis 

of Microbial Contamination of Dental 

Handpieces 
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4.1 Introduction 

During routine use, HP’s are contaminated from the external environment 

through a variety of means, including negative pressure created by the 

deceleration of the turbine when the air supply is stopped (Matsuyama et al., 

1997) and from the dental unit water line that provides cooling water to the burs 

(Atlas et al., 1995). The HP contaminants internalised may be expelled during 

subsequent re-use and may provide a cross-infection risk if decontamination 

procedures are not undertaken. The reprocessing of HP’s is challenging due to 

the complex internal structures, narrow lumens and lack of disassembly after 

use (Lewis and Boe, 1992).  

 

The oral cavity is home to a large number of bacteria which grow on the non 

shedding tooth surface in the form of a biofilm (Paster et al., 2001), and the in-

vivo contamination of dental instruments and HP’s with bacteria has been 

reported since the 1800’s and reviewed specifically for HP’s as early as 1924 

(Miller, 1891, Appleton Jr and L, 1924). Since these early studies HP’s have been 

developed with more diverse uses, and manufacturers have attempted to 

implement design features to prevent the internalisation of contamination (Hu 

et al., 2007b). New decontamination technologies such as washer disinfectors 

and vacuum sterilizers have also provided automated, reproducible cleaning, 

and sterilization for the internal HP parts (Andersen et al., 1999). Despite these 

advances, bacteria have been reported to be isolated from HP’s prior to 

decontamination in an in vivo study, conducted as recently as 2007 (Herd et al., 

2007). New techniques for the isolation and identification of bacteria have also 

been developed that increase the sensitivity of recovery and can identify 

bacteria that are non-culturable (Bjerkan et al., 2009).  

 

It is important to determine the typical microbial contamination of routinely 

used HP’s before and after the cleaning and sterilization process to understand 

the current biological and chemical challenges to these processes. Knowledge of 

the HP contaminants prior to decontamination will inform the development of 

cleaning processes and chemicals whilst any contaminants remaining after 

decontamination will inform on risk assessment and cross contamination issues.  
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The aim of this study was to undertake a quantitative and qualitative analysis of 

the bacterial contamination of the internal parts of used unprocessed and 

decontaminated air turbine, low speed, and surgical HP’s from a dental hospital 

and a HP repair facility utilising culture and culture independent techniques.  
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4.2 Results 

4.2.1 Relationship between bacterial colony forming units and 

optical density  

To determine the relationship between CFU and OD, S. epidermidis and P. 

aeruginosa type strains (Table 2-5) were cultured as detailed in section 2.2.3. 

Each culture was centrifuged at 2215g for 10 min in a MSE Centaur 1 centrifuge 

(Sanyo Loughborough, UK), the supernatant was removed and the cells 

resuspended in 10ml of sterile PBS. The OD of the resuspended culture was 

determined using a Colorimeter model 45 spectrophotometer (Fisher Scientific, 

Longborough UK) and the culture diluted to OD’s of 0.2, 0.25 and 0.3. Each OD 

sample was given 3x 1/10 serial dilutions in sterile PBS and 3 x 10 µl samples of 

each dilution were plated onto a BA plate and incubated aerobically overnight at 

37°C. 

An increase in OD resulted in an increase in CFU for S. epidermidis (Figure 4-1 

and P. aeruginosa (Figure 4-2). An OD of 0.4 was equivalent to 1x108 cfu for S. 

epidermidis and 0.2 for P. aeruginosa. 
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Figure 4-1 Relationship between S.epidermidis CFU/ml and OD. Cultures of S. 

epidermidis were diluted to appropriate OD values, diluted and cultured to 

determine the CFU/ml of each OD. An increase in OD results in an increase in 

CFU/ml.  

 

Figure 4-2 Relationship between P. aeruginosa CFU/ml and OD.  Cultures of P. 

aeruginosa were diluted to appropriate OD values, diluted and cultured to 

determine the CFU/ml of each OD. An increase in OD results in an increase in 

CFU/ml. 
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4.2.2 Minimum inhibitory concentration of handpiece lubricating 

oil and cleaning solution 

To determine the minimum inhibitory concentration (MIC) of HP lubricating oil 

and cleaning solutions, S. epidermidis, S. aureus, P. aeruginosa, S. mutans, S. 

salivarius, S. sanguinis, and C. albicans type strains (Table 2-5) were cultured as 

detailed in section 2.2.3. Each culture was centrifuged for 10 min at 2215 g in a 

MSE Centaur 1 centrifuge (Sanyo Loughborough, UK) and resuspended in 10ml of 

sterile PBS. Each microbial culture was diluted to equivalent of 1 x105 CFU/ml 

(Section 4.2.1). The C. albicans culture was given 2x 1/10 serial dilutions and 8 

µl of the 1/100 dilution was added to a hemocytometer for cell counting. The C. 

albicans culture was then diluted to a concentration of 1 x104 CFU/ml. A total of 

100µl of MH broth for sampling bacteria or RPMI broth for sampling C. albicans 

was added to each well of 4 rows and columns 2-12 of a clear flat bottomed 96 

well plate. A 100 µl sample of lubricating oil (W&H, Burmoos Austria) or cleaning 

solution (W&H, Burmoos Austria) was added to column 1 of the 96 well plate and 

given 9x 1/2 serial dilutions by adding 100 µl of the oil or alcohol to the 100 µl of 

broth in column 2 and repeating up to column 10. A 100 µl sample of bacteria or 

C. albicans was added to four rows of columns 1-10 and column 12 as a positive 

control. Each plate was incubated overnight aerobically at 37 °C and the growth 

of each well measured using a Sunrise™ plate reader (Tecan Mannedorf, 

Swtizerland) at OD670.  

 

Growth was observed for all strains when exposed to all concentrations of 

lubricating oil. Cleaning solution had an inhibitory growth effect on all strains 

tested (Table 4-1).  
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Table 4-1 MIC of HP maintenance solutions.  

Organism Lubricating oil  
MIC  

(% Solution) 

HP Cleaning Solution 
MIC  

(% Solution) 

S. epidermidis No Inhibition 6.25 

S. aureus No Inhibition 6.25 

P. aeruginosa No Inhibition 3.125 

C. albicans No Inhibition 3.125 

S. mutans No Inhbition 6.25 

Data shown is representative of 3 replicates from 3 experiments. 
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4.2.3 Sensitivity of extraction methods 

To determine the sensitivity of extraction methods S. epidermidis of 

concentrations 1x101, 1x102, 1x103, 1x104, 1x105 and 1x106 CFU/ml were 

inoculated on the surface of decontaminated SSS (Section 2.5.1.1). Sterile PBS 

was added to SSS’s as negative controls. Each SSS was dried for 2h in a laminar 

flow cabinet. A total of 3 SSS’s were sampled by swabbing and 3 SSS’s of each 

concentration sampled by sonication. For sonication, each SSS was added to a 

sterile Bijoux tube (Sterilin, Caeriphilly UK) and each tube was inserted into a 

Fisherbrand® 11021 sonic bath (Fisher Scientific, Loughborough UK) filled with 

ROH2O and sonicated for 5 min at 35 kHz (Smith et al., 2005). For swabbing, 

sterile swabs were soaked in sterile PBS and the SSS surfaces were swabbed for 5 

sec which was the length of time needed to cover the surface 3 times. Each 

swab head was then immersed in 1 ml of sterile PBS and vortexed for 5 min. The 

eluents were then given 3 x 1/10 serial dilutions and a 10 µl sample of each 

dilution was added to a BA plate and the plates incubated overnight at 37°C 

under 5% CO2 (Binder, Tuttlingen Germany). 

No growth was detected on the negative control samples. Swabbing of SSS’s 

resulted in 67% less recovery of S. epidermidis than the sonication technique 

(Table 4-2). For swabbing, no bacteria were recovered at a starting 

concentration of x104 CFU’s and for sonication no bacteria were recovered from 

a starting concentration of x102 CFU’s. 
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Table 4-2 Percentage recovery of each extraction method at recovering S. 
epidermidis.  

Extraction 
Method 

Starting 
bacterial 

concentration 
(CFU/ml) 

Bacteria 
recovered 

by 
swabbing 
(CFU/ml) 

% 
Recovery 
swabbing 

Bacteria 
recovered 

by 
sonication 
(CFU/ml) 

% 
Recovery 
sonication 

Swabbing 4.2x106 1.5x105 4.6 3.1x106 71.4 

 4.1x105 50 0.02 2.6x105 63 

 4.1x104 0 0 2.4x104 58 

 3.8x103 0 0 2.5x103 65 

 4x102 0 0 0 0 

 4x101 0 0 0 0 

 0 0 0 0 0 

Data shown is the mean of 9 samples from 3 experiments. 
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4.2.4 Microbial contamination of Glasgow Dental Hospital dental 

handpieces 

No bacteria were isolated from the negative controls. Before decontamination, 

bacteria were isolated from a total of 38/40 turbines (median 200 

CFU/instrument, range 0 – 1.9x103 CFU/instrument), 37/40 spray channels 

(median 400 CFU/instrument, range 0 – 1x103 CFU/instrument), and 18/20 

surgical gears (median 1x103 CFU/instrument, range 0 – 3.7x104 CFU/instrument) 

(Figure 4-3). The majority of organisms isolated from each location were CONS 

with oral streptococci, Staphylococcus aureus, Gram positive bacilli, 

Pseudomonas spp. and Propionibacterium acnes (Figure 4-4, Figure 4-5, Figure 

4-6, Table 4-3). ). A total of 11 P. acnes isolates from GDH HP’s were identified 

by typing (Table 4-4). After decontamination, bacteria were isolated from 5 

spray channels (median 30 CFU/instrument, range of 0 – 1.5x102 

CFU/instrument) (Figure 4-3). No bacteria were isolated from decontaminated 

turbines and surgical gears. 
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Figure 4-3 Number of bacteria isolated from each HP part. Internal HP parts 

were sampled for bacteria before and after decontamination including 

sterilization. Each part was cultured for aerobic and facultative anaerobic 

isolates. Before decontamination, surgical HP gears contained the most bacteria 

with a median of 1x103 CFU compared to a median of 200 and 400 CFU for used 

unprocessed turbines and spray channels respectively. After decontamination 

(Table 2.2), no bacteria were isolated in turbines and surgical gears whilst a 

median of 30 CFU of bacteria was isolated from decontaminated spray channels 

which was a significant reduction (**p<0.01). The mean of datasets is 

represented by a horizontal line. 
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Figure 4-4 Total number of isolates from high speed turbines. Bacteria were 

identified using diagnostic microbiology. All isolates were from used, 

unprocessed samples. The majority of bacteria isolated were CONS with a total 

of 3.8x104 isolates followed by Gram negative bacilli with a total of 7.5x103 

isolates and unidentified fungi with a total of 3.3x103 isolates from all turbines 

sampled. S. aureus, oral Streptococci and P. acnes were isolated in smaller 

numbers with a total of 5x102 S. aureus, 2x102 oral Streptococci, and 3.8x102 P. 

acnes.  
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Figure 4-5 Total number of isolates from low speed spray channels. Bacteria 

were identified using diagnostic microbiology techniques. Isolates from used, 

unprocessed handpieces are highlighted by gray bars and isolates from 

decontaminated HP’s are represented by white coloured bars. Before 

decontamination, the majority of bacteria isolated were CONS with a total of 3 

x104 CFU and unidentified fungi with a total of 3.6x103 CFU from all spray 

channels. After decontamination (Table 2.2), CONS were reduced to 1x102 CFU 

whilst no reduction in Gram negative bacilli or P. acnes was observed. 
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Figure 4-6 Total number of isolates from surgical gears. Bacteria isolated were 

identified using diagnostic microbiology techniques. All isolates were from used, 

unprocessed HP’s. The majority of bacteria isolated were coagulase negative 

staphylococci (CONS) with a total of 1.7x105 CFU followed by unidentified fungi 

with a total of 8.5x104, Streptococci with a total of 4.3x104  CFU and S. aureus 

with a total of 1.2x104 from all surgical gears sampled. Gram +ve bacilli and P. 

acnes were isolated in smaller numbers with a total, 3.5x103 Gram positive 

bacilli and 6.3x103 P. acnes.  
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Table 4-3 Isolated organisms identified from each HP part 

Handpiece part Identified organisms Number Isolated 

(CFU/instrument) 

Total Handpiece 

Isolates 

(CFU/instrument) 

High speed 

turbine 

Leuconostoc spp. 

Gamella morbillorum 

Streptococcus mutans 

Streptococcus gordonii 

Pseudomonas stutzeri 

Pseudomonas melocina 

1x102 

1x102 

1x102 

1x102 

7x103 

1x102 

 

4.7x104 

Low speed 

spray channel 

Streptococcus 

salivarius 

Streptococcus oralis 

Streptococcus mitis 

Staphylococcus aureus 

4.4x103 

 

2x102 

2x102 

4.6x103 

 

3.9x104 

Surgical gear Streptococcus 

salivarius 

Leuconostoc spp. 

Streptococcous 

sanguinis 

Streptococcus gordonii 

Streptococcus mitis 

Streptococcus oralis 

Streptococcus mutans 

5.3x102 

 

5x102 

5.1x103 

 

1.8x102 

2.2x104 

1.4x104 

1x104 

2.4x105 
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Table 4-4 Number of P.acnes types isolated from GDH dental HP’s 

P.acnes types Number of P.acnes 

types isolates. 

IA 1 

IB 10 

II 0 

 

4.2.5 Microbial contamination of repair facility dental handpieces 

A total of 24 W&H TA-98 high speed HP’s, 14 W&H TA-97, 4 W&H TopAir high 

speed HP’s, 2 W&H WA56 low speed HP’s and 2 W&H S11 surgical HP’s were 

sampled. These HP’s were sent for maintenance and repair and each included a 

certificate indicating the HP had been through a decontamination process 

though these decontamination processes were unknown.  

 

No bacteria were isolated from the negative controls. Bacteria were isolated 

from a total of 20/24 TA- 98 turbines (median 40 CFU/instrument, range 0 – 

2.9x103 CFU/instrument), 12/14 TA -97 turbines (median 140 CFU/instrument, 

range 0 – 1.9x103 CFU/instrument), 4 Topair turbines (median 50 

CFU/instrument, range 20 – 140 CFU/instrument), 2 S11 gears (median 1.7x103 

CFU/ instrument, range 150 – 3.4x103 CFU/instrument) and 2 WA 56 spray 

channels (median 270 CFU/instrument, range 40 – 500 CFU/instrument) (Figure 

4-8). The majority of organisms isolated from each HP location were CONS whilst 

Gram positive bacilli including Bacillus spp, S. aureus, P. acnes and oral 

Streptococci were also identified (Figure 4-8, Figure 4-9, Figure 4-10, Figure 

4-11, Table 4-5). A total of 12 P. acnes isolates from repair facility HP’s were 

identified by typing (Table 4-6). 
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Figure 4-7 Number of bacteria isolated from each repair facility HP part. 

Internal HP parts were sampled for aerobic and facultative anaerobic isolates. 

The turbine of high speed HPs, the spray channel of the low speed HP and the 

gear of surgical HPs were sampled. Each part was cultured for aerobic and 

facultative anaerobic isolates. A single surgical gear had the highest numbers of 

bacteria with a value of 3x104 CFU. The mean of datasets is represented by a 

horizontal line. 
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Figure 4-8 Number of Isolates from TA-98 HP’s from repair facility. Bacteria 

isolated from the high speed turbines were identified using diagnostic 

microbiology techniques. The majority of bacteria isolated were CONS with a 

total of 8.5x105 CFU isolated and Gram positive bacilli with a total of 2x104 CFU 

from all turbines sampled. Gram negative bacilli and P. acnes were isolated in 

smaller numbers with a total of 20 CFU for Gram -ve bacilli and 1x103  P. acnes 

isolated. 
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Figure 4-9 Number of Isolates from TA-97 HP’s from repair facility. Bacteria 

isolated from the high speed turbines were identified using diagnostic 

microbiology techniques. The majority of bacteria isolated were coagulase 

negative staphylococci (CONS) with a total of 5.6x104 CFU and Gram positive 

bacilli with a total of 2x104 CFU from all turbines sampled. Streptococcal spp. 

and P. acnes were isolated in smaller numbers with a total of 1.2x102 CFU for 

Streptococcal spp. and 1.6x102   P. acnes isolated.  
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Figure 4-10 Number of isolates from Topair HP’s from repair facility. Bacteria 

isolated from the high speed turbines were identified using diagnostic 

microbiology techniques. The majority of bacteria isolated were coagulase 

negative staphylococci (CONS) with a total of 4.9x104. P. acnes were isolated in 

smaller numbers with a total of 2x102 CFU. 
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Table 4-5 Isolated organisms identified from each HP part 

Handpiece 

type 

Bacteria 

identified 

Number 

Isolated (CFU) 

Total 
Handpiece 

Isolates (CFU) 

S11 – 

Surgical 

Coagulase –ve 

Staphylococci 

3.4x104 3.4x104 

WA 56 Low 

speed 

S. sanguinis 20 5x102 

High speed 

TA 98 

Bacillus firmus, 

Bacillus subtilis,  

S. aureus  

P. acnes 

40 

20 

1.2x102 

2x102 

5.2x103 

High speed 

TA 97 

Bacillus pumis 

Gamella 

morbellorium 

Streptococcus 

anginosis 

Lactococcus 

lactis 

2x103 

 

1x102 

 

1x102 

 

9.8x102 

2.7x103 
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Table 4-6 Number of P.acnes types isolated from repair facility dental HP’s 

P.acnes types Number of P.acnes 

isolates 

IA 3 

IB 8 

II 1 

 

4.2.6 16S PCR of handpiece eluents 

Samples that had been previously sampled by culture were sampled using 16S 

PCR (Section 2.2.6). DNA extracted from a swab of a feline oral cavity was used 

as a positive control. For decontaminated samples, a used, unprocessed HP 

sample was used as a positive control. Negative controls comprised ROH2O and 

HP negative control eluents for all experiments (Section 4.2.4). No DNA was 

detected in all negative controls (Table 4-7, Table 4-8, Table 4-9, Table 4-10). 

For used, unprocessed samples, culture positive surgical HP eluents, all samples 

contained 16S DNA (Figure 4-11, Table 4-7). For decontaminated turbines, all 

culture negative samples contained 16S DNA Table 4-8, Figure 4-11). For 

decontaminated spray channels, both culture positive and culture negative 

samples all contained 16S DNA (Table 4-9). For decontaminated surgical gears, 

culture negative samples all contained 16S DNA (Table 4-10). 
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Table 4-7 Number of bacteria isolated from used,unprocessed samples using 

culture techniques and DNA concentration extracted from samples. 

HP serial 

number 

Blood agar 

CFU/instrument 

FAA agar 

CFU/instrument 

Concentration 

DNA isolated 

(ng /ml) 

16S DNA 

(+/-) 

Negative 

Control 

(DNAse free 

H2O) 

0 0 0 - 

Positive 

Control  

(Oral swab)  

Not Sampled Not Sampled 224 + 

06508 175 2.2x103 31.57 + 

06374 1.4x103 875 53.78 + 

18007 1x103 3 x103 82.3 + 

18008 525 175 81 + 

06372 1.9x103 7.5x103 107 + 

   

 

 



Chapter 4  117 

 

 

 

Table 4-8 Number of bacteria isolated from decontaminated turbine samples 

using culture techniques and DNA concentration extracted from samples. 

HP Serial 

number 

Blood agar 

CFU/instrument 

FAA agar 

CFU/instrument 

DNA 

isolated 

(ng/ml) 

16S DNA 

(+/-) 

Positive 

Control 

1x103 3 x103 82.3 + 

Negative 

Control 

(DNAse 

free H2O) 

Not Sampled Not Sampled 0 - 

Turbine 

Control 

0 0 0.03 - 

24643 0 0 2 + 

07862 0 0 1.9 + 

56960 0 0 2.8 + 

19340 0 0 2.1 + 

41517 0 0 2.3 + 

56867 0 0 1.8 + 

09234 0 0 4.1 + 

54995 0 0 1.7 + 

09639 0 0 1 + 

57013 0 0 1.1 + 
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Table 4-9 Number of bacteria isolated from decontaminated spray channel 

samples using culture techniques and DNA concentration extracted from 

samples. 

HP Serial 

number 

Blood agar 

CFU/instrument 

FAA agar 

CFU/instrument 

DNA 

isolated 

(ng/ml) 

16S DNA 

(+/-) 

HP 

Positive 

Control 

1x103 3 x103 82.3 + 

Negative 

Control 

(ROH2O) 

Not Sampled Not Sampled 0 - 

Spray 

Channel 

Control 

0 0 0.2 - 

53708 0 0 2 + 

12385 0 0 1.9 + 

05564 420 0 2.8 + 

24613 0 0 2.1 + 

57825 0 0 2.3 + 

19359 240 0 1.8 + 

21555 1560 600 4.1 + 

03850 120 0 1.7 + 

57828 60 0 1 + 

58333 0 0 1.3 + 
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Table 4-10 Number of bacteria isolated from decontaminated surgical gear 

samples using culture techniques and DNA concentration extracted from 

samples. 

Serial 

number 

Blood agar 

CFU/instrument 

FAA agar 

CFU/instrument 

DNA isolated 

(ng/ml) 

16S DNA 

(+/-) 

Positive 

Control 

1x103 3 x103 82.3 + 

Negative 

Control 

(ROH2O) 

Not Sampled Not Sampled 0 - 

Surgical 

control 

0 0 0.03 - 

06365 0 0 2.1 + 

18010 0 0 0.7 + 

18008 0 0 1.8 + 

06390 0 0 2.6 + 

06500 0 0 1 + 
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Figure 4-11 16S PCR of used, unprocessed HP’s. Eluents from surgical HP’s 

before (a) and after the GDH decontamination process (b) (Table 2-3 Details of 

GDH CSSD decontamination process. were sampled for the presence of 16S 

DNA. A single band representing the presence of 16S DNA is observed in the 

positive control (lane 3) and each HP sample dilution (06372 lanes 4,5,6) (06374 

lanes 7,8,9) (06508 lanes 10,11, 12). No bands are visible in the negative control 

(lane 2) or the HP negative control (lanes 13, 14, 15). Band sizes are indicated in 

bp by the 100bp ladder (lane 1).  
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4.3 Discussion 

Dental HP’s can be used to undertake invasive procedures and although it is the 

bur of the HP that is in direct contact with pulpal, gingival and alveolar bone; 

the contaminants are internalised into the HP structure (Lewis et al., 1992). If 

decontamination procedures are not carried out for internal areas, these 

contaminants may be released during subsequent reuse in the form of an aerosol 

that may come into contact with patients or healthcare professionals (Rautemaa 

et al., 2006). It is for these reasons that the Centres for Disease Control (CDC) 

recommend cleaning and heat sterilization of the HP after every patient as 

―desirable‖ (CDC - Guidelines for infection control in dental healthcare settings 

2003).  

To partly justify this recommendation, it is important to determine the common 

contaminants of HP’s during routine use. Bacteria are common contaminants of 

medical and dental instrumentation and are capable of causing disease if 

instruments are not sterilized (Chin et al., 2006). The ability to form a 

protective biofilm matrix is associated with increased survivability (Donlan and 

Costerton, 2002), resistance to decontamination procedures (Stewart et al., 

2001) and is of concern when instrument decontamination is considered. 

Bacteria have been previously isolated from HP turbines, spray channels before 

and after decontamination processes (Kellett and Holbrook, 1980) and gears of 

low speed handpieces during routine use (Herd et al., 2007).  

To access internal HP parts, dismantling is required which may be difficult 

without specialist training and tools. Some parts are also challenging to access 

without damage to the HP and ensure no contamination during sampling. 

Previous studies have therefore relied on the application of swabbing of easily 

accessible gears (Herd et al., 2007) or flushing sterile solution through an intact 

HP to remove internal bacteria (Kellett and Holbrook, 1980). The sensitivity of 

both methods was not stated though the swabbing technique has a variation of 

reported sensitivities from 19% (Angelotti et al., 1964) to 87% (Buttner et al., 

2001) for spore recovery.  
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This study utilised a sonication method which has been previously used for 

desorption of bacteria from hip joints (Tunney et al., 1998), catheters (Gorman 

et al., 1994), and stents (Keane et al., 1994). Validation work undertaken in this 

study has shown that sonication represents an increase in sensitivity when 

compared to swabbing methods used in previous studies (Bjerkan et al., 2009, 

Herd et al., 2007). This is also reflected in the increased number and species of 

bacteria isolated from each location when compared to previous studies with 

Chin et al. (2006) isolating a median of 547 CFU and Kellet et al. (1980) isolating 

a median of 1.1x103 cfu /HP from the spray channel and the turbine by rinsing. 

Whilst the sonication method can only sample the entire part rather than 

targeting specific areas of the surface, the sonication method represents an 

improvement in sensitivity and therefore more realistic numbers and species of 

bacterial contamination of dental HP parts. The removal of bacteria from the 

narrow lumened spray channel by sonication may not be as efficient as the 

removal from a flat, open surface. Previous studies have utilised flushing of the 

lumen with a sterile saline solution (Kellett and Holbrook, 1980)) and the 

insertion of floss directly into the channels (Martiny and Simonis, 2009). The 

sensitivity and reproducibility of these methods was not validated in the studies 

and sampling of lumens may still present a difficulty. 

Dental HP’s from the GDH were sampled before and after decontamination. 

Validation experiments indicated that lubricating oil, present before and after 

decontamination, did not affect the growth of a range of common HP 

contaminants. Cleaning solution, used before the sterilization process, affects 

the viability of microorganisms as would be expected due to the presence of 

alcohol in the solution.  

Before decontamination, HP’s were acquired after transport to the CSSD which 

was not undertaken in aseptic conditions until transport to the laboratory. This 

study was concerned with the challenge to the HP before decontamination 

including any environmental bacteria. Sampling of the negative control HP’s 

indicated that no bacteria isolated could be attributed to the passage through 

the CSSD facility or by experimental processing. In the repair facility, aseptic 

techniques were used due to the lack of a laminar flow cabinet. Negative 

controls performed during sampling also indicate that processing using this 

method resulted in no contamination from the environment.  
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All HP’s sampled were selected to be the latest models available at the GDH to 

partly standardise the age of the HP’s. Modern HP’s also have design features 

such as the hygienic head system to prevent contamination entering the HP 

head. Despite the presence of these systems, bacteria were still isolated from 

each HP location sampled. Before decontamination, the majority of bacteria 

isolated from each GDH HP were CONS which are associated with the oral cavity 

and the environment (Jackson et al., 1999). These may cause opportunistic 

infections and have previously been isolated from endodontic lesions (Niazi et 

al., 2010). Viridians Streptococci including S. mutans, S. oralis and S. sanguinis 

are associated with the oral cavity and dental caries (Hintao et al., 2007). The 

identified Pseudomonas spp., P. stutzeri and P. mendocina have been previously 

isolated from contaminated dental unit waterlines (Singh et al., 2003) and 

associated with opportunistic infections (Noble and Overman, 1994, Zaluski et 

al., 1999). 

P. acnes has been associated from the oral cavity and human skin (McDowell et 

al., 2005) where it can cause infections such as acne (Burkhart and Burkhart, 

2006) or inflammatory disease in the body if it is present in the bloodstream 

(Bayston et al., 2007a). P. acnes have also been associated with prosthetic hip 

joint infections and endocarditis (Tunney et al., 1998, Vanagt et al., 2004). P. 

acnes has also been isolated from endodontic lesions along with CONS (Niazi et 

al., 2010), which has implications for the spread of dental infections. The 

majority of P.acnes isolates from the repair facility and the GDH HP’s were type 

I which is consistent with types previously isolated from dental infections such as 

periodontitis (McDowell et al., 2005). The first differences between P. acnes 

types were first characterised by differences in agglutination tests and 

differences in cell wall sugars (Johnson and Cummins, 1972). Molecular typing of 

the recA gene in isolates has further differentiated the isolates further into type 

IA and type IB.It is hypothesised that different P. acnes types produce different 

virulence factors with type IB strains associated with a greater expression of co 

haemolytic cyclic adenosine monophosphate factor associated with haemolytic 

activity (Valanne et al., 2005). A further study into the protein expression by P. 

acnes types revealed only 2 proteins that are distinct for type I isolates, a 

conserved hypothetical protein with homology to a Corynebacterium protein, an 

unidentified protease, and a hypothetical protein specific to P. acnes (Holland et 
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al., 2010). Whilst it is not clear if expression of these proteins results in greater 

virulence, all P. acnes isolates produce proteins associated with tissue 

destruction and inflammation (Holland et al., 2010). The surgical HP gear had 

the most abundant number of microorganisms of the parts sampled which might 

be due to the larger surface area of the gear and the fact that the surgical HP is 

used to undertake more invasive procedures and therefore be exposed to more 

microorganisms. It is interesting to speculate that the source of nosocomial 

P.acnes and CONS causing endodontic infections could be incomplete 

decontamination of dental HP’s.  

After decontamination, Gram-negative bacilli were the predominant bacteria 

isolated from low speed spray channels, and P. acnes were also isolated along 

with a smaller number of CONS. This flora selected out by the decontamination 

process might be due to the change in environment brought about by 

decontamination, may have been flora particular to the HP’s sampled or may 

have come from the HP lubricating oil if microorganisms are able to survive upon 

exposure. Lubricating oil may not allow steam penetration of the HP and has 

been shown to inhibit steam sterilization (Lewis and Boe, 1992). Whilst the spray 

channel is not often required for routine low speed HP use and the number of 

bacteria isolated were significantly reduced; the presence of bacteria indicate 

the lack of a sterile instrument. The bacteria isolated are capable of causing 

opportunistic disease and may contribute to cross infection between patients 

and represent a marker of a failure in the decontamination process. This finding 

requires further investigation including sampling of the environment or the 

lubricating oil and a larger number of HP’s to determine if this is a false positive 

or an indicator of a deficiency in the decontamination process. 

The repair facility HP’s had significantly more CONS than the GDH HP’s. HP’s 

sent for repair were sourced from both hospitals and dental practice and it was 

not clear how HP’s from each location correlated with the results due to the 

need for anonymity. Whilst each HP sent for repair came with documentation 

stating that each device has been through a decontamination process, this could 

not be verified and decontamination process may vary depending on the HP 

source (Smith et al., 2009) Further studies into HP’s used and decontaminated in 

dental practices may present different results to that found with GDH HP’s that 

are decontaminated by the current best practices for instrument 
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decontamination (Smith et al., 2009). The bacterial species isolated whilst being 

similar to the GDH isolates, also contained more Bacillus spp., less Streptococcal 

spp. and L. lactus that is associated with dental caries (Marchant et al., 2001). 

The number of bacteria isolated clearly indicates a failure of decontamination 

processes. All HP’s were not in working condition and any blockages may inhibit 

routine cleaning processes or steam sterilization. The findings highlight the need 

for routine HP maintenance to prevent the proliferation of bacteria.  

The findings presented herein are similar to the only previous study to identify 

HP microbial contamination with CONS, oral Streptococci, Pseudomonas spp and 

Bacillus spp among the microorganisms isolated (Kellett and Holbrook, 1980). 

The CONS isolates in this study were not identified beyond the species level and 

consisted of any Gram positive cocci that were also catalase positive and 

coagulase negative. Therefore CONS isolates represented a number of different 

species though all with similar resistance to the decontamination process and 

characteristics of survival in the environment. Fungi were also only identified to 

species level before decontamination. The detection of no bacteria does not 

mean that an HP is free of microorganisms and therefore sterile. The survey for 

microorganisms may have been limited by the isolation methods used for culture 

of organisms. The BA plates were found to grow mostly CONS, and FAA incubated 

anaerobically that oral Streptococci and other organisms such as P. acnes were 

observed. The use of other media may have allowed for the growth of other 

microorganisms that are outcompeted by the fast growing Staphylococci. The 

oral cavity is also home to fastidious or non culturable bacteria which would be 

missed when culture techniques alone are employed (Hamlet, 2010). It is for this 

reason that 16S PCR was employed that detects DNA sequences specific for 

bacteria. For the GDH isolates, 16S PCR confirmed the presence of bacterial DNA 

in culture positive samples for validation of the method which was also be 

applied to culture negative samples. All decontaminated HP samples, including 

culture negative samples, were positive for 16S DNA. The presence of 16S DNA 

does not indicate viable bacteria and the use of real time PCR for specific 

organisms will allow the measurement of gene expression and therefore the 

viability of any targeted organisms (Hamlet, 2010). 

The study did not attempt to identify viral DNA. The PCR techniques have also 

been utilised previously to identify viral DNA from dental HP’s after operation on 
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patients infected with HIV (Lewis and Boe, 1992) and hepatitis B (Hu et al., 

2007b). Again, the detection of viral DNA does not indicate the presence of 

infectious viruses and the detection of viral DNA could be combined with cell 

culture studies to measure infectivity of cells and therefore indicate the survival 

of viruses (Epstein et al., 1995).  

The results before HP reprocessing can inform development of HP 

decontamination processes and can result in test soils comparable to in vivo 

biofouling for HP reprocessing technologies. Of the current test soils accepted by 

the European standard BS ISO/TS, only the German and American test soil 

contains a bacterial challenge. The German test soil utilizes a culture of 1011 

CFU/ml suspension of Enterococcus faecium and the American test soil contains 

Bacillus atrophaeus spores. A test soil specific for dental HP’s could be designed 

with knowledge of the bacterial species and counts detailed in this study and 

provide a test challenge closer to that found in vivo for any new cleaning 

technologies.  

In conclusion, dental HP’s are contaminated with environmental and oral 

bacteria before and after decontamination in hospital and repair facilities. The 

presence of bacteria in HP’s after decontamination procedures is a concern and 

routine decontamination procedures of dental HP’s may not be adequate if the 

aim is to deliver a sterile instrument at the point of use. Further studies utilising 

culture independent techniques would allow a more complete picture of HP 

microbial contamination and further detail the cross infection risk to patients 

and healthcare professionals. 
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5 Chapter 5: Quantitative and Qualitative Analysis 

of Protein Contamination of Dental Instruments 
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5.1 Introduction 

The decontamination processes of invasive medical instruments are under 

constant review as new challenges to instrument reprocessing emerge 

(Sehulster, 2004). Research into decontamination processes has recently 

incorporated research into protein contamination of instruments (Lipscomb et 

al., 2006b), rather than focusing on the presence or absence of bacteria alone 

(Lewis et al., 1992). Protein contamination can increase the dissolution of metal 

ions by complexing metal ions with proteins which causes corrosion of 

instrument stainless steel (Williams et al., 1988, Kocijan et al., 2003).  In 

addition, residual protein conditioning film may promote the adhesion of 

bacteria through specific adhesion receptors, such as fibronectin binding protein 

found in Staphylococcus aureus (Piroth et al., 2008). Protein can also inhibit the 

sterilization process if not removed during instrument cleaning (Parker and 

Johnson, 1995). 

 

The emergence of the heat and chemical resistant prion protein, the causative 

agent of CJD, has highlighted the importance of research into protein 

contamination of medical instruments. Protein contamination must be removed 

by the cleaning stage of the instrument reprocessing cycle (Lipscomb et al., 

2007), as the subsequent disinfection and sterilization stages may fix protein 

contamination onto the surface (Nakata et al., 2007). It is for this reason that 

protein contamination is used as a marker for cleanliness of instruments and for 

the validation of cleaning procedures and technologies. The European standard 

BS-EN-ISO-15883 part 1 details protein assays for the detection of protein and a 

failure of cleaning is indicated by a positive reaction with one of the assays. 

Concerns have recently been raised as to the sensitivity of these protein tests 

and how sensitive a test for protein cleanliness should be (Lipscomb et al., 

2006a).  

 

A method of answering this question would be to undertake a qualitative analysis 

of typical instrument protein contamination.  Whilst quantitative data provides 

some insight into instrument contamination levels, a qualitative analysis would 

put this information into context by identifying common contaminants that must 

be removed by the cleaning process and inform of any cross contamination risk 
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derived from protein contamination. There is currently a lack of published 

literature on qualitative analysis of instrument protein contamination. 

 

A qualitative analysis is possible by desorption of protein from the instrument 

followed by precipitation of the sample to allow viewing of the proteins by SDS 

PAGE. The SDS–PAGE method allows the separation of protein by size to allow 

identification by MS or Western blotting.  

 

This study aimed to undertake validation work to develop a method that would 

allow the extraction, precipitation and detection of protein from instrument 

surfaces before employing these techniques to undertake a quantitative and 

qualitative analysis of protein contamination of dental extraction forceps and 

dental HP’s. 
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5.2 Results 

5.2.1 Validation of protein extraction methods 

To assess the sensitivity of 1% (v/v) SDS solution, 1% (v/v) Decon® 90 (Decon® 

Laboratories, Hove, UK) and a 0.1M NaOH solution (Fisher scientific, 

Loughborough UK) at removing BSA from a SSS, a total of 9 prepared SSS’s 

(Section 2.5.1.1) were inoculated with a 10 µl solution of 100 µg of BSA. These 

were placed in a clear flat bottomed Costar™ 24 well plate and air dried for 16 h 

at room temperature of 22°C representing the length of time instruments can be 

left for central reprocessing (Plinston et al., 2007). Prepared SSS’s were 

incolulated with 10 µl of ROH2O as controls. All SSS’s were inserted into sterile 

Bijoux tubes (Sterilin, Caeriphilly UK). SSS’s inoculated with protein and a 

negative control were immersed in 1 ml of 1% (v/v) SDS solution, 1 ml of 1% 

(v/v) Decon™ 90 or 0.1M NaOH 0.1 pH 9.2. The remaining SSS’s and negative 

control  were immersed in Decon™ 90 solution (Smith et al., 2005). Bijoux tubes 

containing 1% (v/v) Decon™ 90 and 1% (v/v) SDS were inserted into a 

Fisherbrand® 11021 sonic bath (Fisher Scientific, Loughborough UK) filled with 

ROH2O and sonicated for 30 min at 35 kHz (Smith et al., 2005). Tubes containing 

0.1M NaOH and 1% (v/v) SDS was immersed in a water bath (Grant Instruments, 

Cambridge UK) containing ROH2O and boiled for 10 min at 100°C (Imamura et 

al., 2003). Each eluent was sampled for protein using the OPA assay (Section 

2.3.1.3) and SDS- PAGE (Section 2.3.3). 

 

No protein was isolated from the negative controls (n=3). Boiling in 1% (v/v) SDS 

resulted in more protein recovery than 1% (v/v) Decon, 0.1M NaOH and 

sonication in 1% (v/v) SDS ( 

 

 

Table 5-1). Boiling in 0.1M NaOH resulted in the least protein recovery of all 

methods sampled.  BSA recovery from the stainless steel surface by boiling and 

sonication in 1% (v/v) SDS and sonication in 1% Decon was visualised by SDS-PAGE 

with BSA being visible in all samples (Figure 5-1).  
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Table 5-1 Efficacy of protein extraction techniques and detergents.  

Detergent Extraction Process Median protein 

recovery (µg/ml) 

Range of 

protein 

recovery 

(µg/ml) 

1 % (v/v) SDS Sonication 80 63.7 – 94.9 

 Boiling 87 82 – 94 

1 % (v/v) 

Decon®90 

Sonication 57 22.8 – 77.8 

0.1M NaOH Boiling 53 50 – 66.5 

The data shown is the median of three experiments. 

 

 

  



Chapter 5  132 

 

Figure 5-1 Recovery of BSA from SSS’s using different cleaning solutions and 

methods. Samples from SSS’s inoculated with BSA and extracted using each 

method were separated using 4-12% Bis-Tris gels. Gel (a) was stained with 

Coomassie blue and gel (b) was stained using SYPRO® Ruby. BSA inoculated and 

dried on SSS’s was recovered by boiling and sonication in 1% (v/v) SDS (a) Both 

boiling (lanes 3, 4, 5) and sonication (lanes 7, 8, 9) in 1% (v/v) SDS recover BSA 

fractions indicated by arrows from SSS’s. No protein was visible in the negative 

control SSS eluents (lane 2 and lane 6). Lane 1 contains the protein size ladder 

for comparison with the closest size to the fraction V BSA protein indicated in 

kDa. BSA was also recovered by sonication in 1% (v/v) Decon®90 and 1% (v/v) 

SDS (b) Both 1% (v/v) Decon®90 (lanes 3,4,5) and 1% (v/v) SDS (lanes 7, 8, 9) 

recover BSA from the surface as shown by comparison to the positive control 

(lane 1). No protein is visible in the negative control disc eluents (lanes 2 and 6). 
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5.2.2 Validation of protein precipitation methods 

To assess the protein recovery of each precipitation method (Section 2.3.2.1, 

Section 2.3.2.2, Section 2.3.2.3, Section 2.3.2.4), a total of 3 x 2 ml 50 µg/ml 

solutions of BSA in 1% (v/v) SDS were sampled for each precipitation method 

representing the sample volume that HP turbines are immersed (Section 2.2.4). 

A 2ml solution of 1% (v/v) SDS was also prepared as a negative control. The 

solutions were each precipitated and protein sampled using the OPA assay 

(Section 2.3.1.3) and SDS PAGE (Section 2.3.3).  

 

The Amicon® Filter method resulted in the recovery of the most median protein 

of all the methods sampled and the TCA method recovered the least median 

protein (Table 5-2). The precipitation of BSA by acetone, TCA, StrataClean™ 

resin and Amicon® filtration were visualised using SDS–PAGE (Figure 5-2).  

Table 5-2 Recovery of protein by each precipitation method.  

Precipitation method Median protein recovered 

(µg/ml) 

Range protein 

recovered (µg/ml) 

Acetone 15.1 8.6 – 24 

TCA 13 10 – 15 

StrataClean® Resin 23.9 19.5 – 24.2 

Amicon® Filter 30.1 29.8- 31.8 

Data shown is the median of 3 experiments. 
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Figure 5-2 Precipitation of BSA by different methods. Samples of precipitated 

50 µg/ml BSA solutions were separated using 4-12% Bis-Tris gels. Gel (a) and gel 

(b) were stained using silver stain and gel (c) was stained using SYPRO® Ruby.  

BSA was precipitated using TCA and acetone (a) BSA fraction V indicated by 

arrows was recovered by acetone precipitation (lanes 4, 5, 6) and TCA 

precipitation (lanes 8, 9. 10). No protein was observed in the negative controls 

(Lanes 2, 3, 7). Lane 1 contains the protein ladder with sizes indicated in kDa for 

comparison. BSA was also precipitated using Amicon® filtration (b) precipitated 

the BSA solutions at varying concentrations (lanes 4,5,6). No protein was 

observed in the negative controls (lane 3) An unprecipitated 50 µg/ ml BSA 

positive control was included for comparison (lane 2) and lane 1 contains the 

protein ladder with sizes indicated in kDa for size comparison. Both acetone and 

StrataClean™ Resin precipitated BSA (c). Acetone (lanes 4, 5, 6) and 

StrataClean™ Resin (lanes 8, 9, 10) precipitated BSA though at varying 

concentrations. No protein was observed in the negative controls (lanes 3 and 

7). A 50 µg BSA positive control was included for comparison (lane 2) and lane 1 

contains the protein ladder with sizes indicated in kDa for size comparison.  
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5.2.3 Sensitivity of SDS-PAGE staining  

To determine the sensitivity of each protein staining technique (Section 2.3.4.1, 

Section 2.3.4.3, Section 2.3.4.4),BSA was diluted serial ten fold from 10-5 to 100 

µg/ml in 1% (v/v) SDS and a 20 µl sample of each concentration was processed 

for SDS PAGE (Section 2.3.3). To determine the sensitivity of PAS staining, 

salivary mucin was also diluted serial ten fold from 10-5 to 100 µg/ml. Each gel 

was stained with Coomassie blue staining (Section 2.3.4.1), silver stain (Section 

2.3.4.3) and PAS staining (Section 2.3.4.4) to determine the sensitivities of both 

staining methods. Sensitivity was determined using Quantity One® software (Bio-

Rad version 4.6.7) to determine the presence of contrast peaks indicating the 

presence of protein bands.  

 

Coomassie blue staining sensitivity for detecting salivary amylase was calculated 

as 0.2 µg of protein (Figure 5-3 [a]).  Silver staining had a sensitivity of 0.02 ng 

of BSA (Figure 5-3 [b]). Periodic acid Schiff reagent stained a total of 0.2 µg of 

salivary mucin protein (Figure 5-3 [c]).  
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Figure 5-3 Sensitivity of protein detection stains at detecting BSA. BSA of 

decreasing concentrations were loaded into a 4-12 % Bis Tris gel and stained with 

coomassie brilliant blue and sliver stain whilst decreasing concentrations of 

salivary mucin samples were loaded into a 3-8% Tris Acetate gel was used to 

determine the sensitivity of PAS staining. For coomassie blue staining (a), 

protein was observed in the 100 µg/ml sample (lane 4), 10 µg/ml sample (lane 

5), 1 µg/ml sample (lane 6). No protein was detected in the 0.1 µg/ml (lane 7), 

0.01 µg/ml (lane 8), 0.001 µg/ml (lane 9), or the 0.0001 µg/ml (lane 10). No 

protein was detected in the negative control (lane 2). Lane 1 contained the 

protein ladder for size comparison and lane 3 contained a salivary amylase 

positive control. For silver staining (b) protein is observed in the 100 µg/ml 

sample (lane 4), 10 µg/ml sample (lane 5), 1 µg/ml sample (lane 6) the 0.1 

µg/ml (lane 7), 0.01 µg/ml (lane 8), 0.001 µg/ml (lane 9), and the 0.0001 µg/ml 

(lane 10). No protein was detected in the negative control (lane 2). Lane 1 

contained the protein ladder for size comparison. For PAS staining (c), salivary 

mucin was observed at concentrations of 1 mg/ml (lane 3), 100 µg/ml (lane 4), 

10 µg/ml (lane 5). No protein was detected in the negative control (lane 2). The 

protein ladder for size comparison was included in lane 1 with sizes indicated in 

kDa 
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5.2.4 Effect of handpiece lubricating oil on SDS- PAGE 

To determine the effect of HP lubricating oil has on SDS-PAGE, a total of 3 BSA 

solutions were diluted to a concentration of 100 µg/ml in 1% (v/v) SDS alone or 

in a 1:1 solution of lubricating oil and 1% (v/v) SDS. Each solution was sampled 

for SDS PAGE (Section 2.3.3) and stained with SYPRO® ruby stain (2.3.4.2).   

BSA was detected in the 1:1 lubricating oil 1 % (v/v) SDS solutions and the 1% 

(v/v) SDS solutions (Figure 5-4).  

 

Figure 5-4 Effect of lubricating oil on protein observation by SDS – PAGE. BSA 

solutions were diluted in 50% solution of lubricating oil and the eluents 

separated in a 4-12 % Bis Tris gel was stained using SYPRO® Ruby. BSA is visible 

in solutions of 1% (v/v) SDS (lanes 8-10) and lubricating oil (lanes 4-6) and the 

positive control of a 100 µg BSA solution in ROH2O (lane 2). No protein is 

observed in the negative controls (lanes 3,7). Lane 1 contained the protein 

ladder for size comparison with sizes indicated in kDa. 
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5.2.5 Sensitivity of Antibody Staining and Western Blot 

To determine the sensitivity of antibody probing and determine the most 

sensitive antibody concentration, salivary amylase was 10 fold serially diluted in 

1% (v/v) SDS to concentrations of 0.01, 0.1, 1, 10, and 48 µg/ml and a 10 µl 

sample of each concentration was added to a polyvinylidene fluoride (PVDF) 

membrane and dried for 2h at room temperature The strips were also inoculated 

with a 10 µl sample of 50 µg/ml of BSA as a negative control. Serum albumin was 

10 fold serially diluted in 1% (v/v) SDS to concentrations of 0.01, 0.1, 1 and 100 

µg/ml and a 20 µl sample of each concentration was added to a PVDF 

membrane. The strip was also inoculated with 20 µg sample of salivary amylase 

as a negative control. The strip was probed with antibodies and developed using 

BCIP/NBT solution (Section 2.3.6). To determine the sensitivity of the Western 

blot technique, samples of salivary amylase were diluted to concentrations of 

10-4 to 20 and 40 µg/ml, human serum albumin was 10 fold serially diluted from 

a concentration of 10-4 to 100 µg/ml and for the sensitivity of the salivary mucin 

Western blot, unstimulated saliva was processed as in Section 3.2.2 and was 

diluted 10-4, unprocessed saliva was also diluted 10-4 with all dilutions sampled.  

 

A minimum protein amount of 0.002 µg of salivary amylase (Figure 5-5) and 

0.0002 µg of serum albumin was detected using antibody probing and alkaline 

phosphatise staining. The total salivary amylase detected was 0.02 µg (Figure 5-6 

[a]) and a total of 0.002 µg (Figure 5-6 [b]) of serum albumin was detected by 

Western blot. A minimum of a 1/10 dilution of unprocessed saliva and the 

undiluted processed saliva was also detected (Figure 5-6 [c]). 
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Figure 5-5 Sensitivity of salivary amylase detection using antibody probing. 

Decreasing concentrations of salivary amylase were added to a PVDF membrane 

and probed with rabbit anti human IgG followed be secondary probing with goat 

anti rabbit IgG antibodies conjugated with alkaline phosphatase. The membranes 

were stained with BCIP/NBT solution. Protein was detected from the 0.1, 1, 10, 

and 48 µg/ml solutions. No protein was detected on the 0.01 µg/ml solution and 

the negative control of 50 µg/ml BSA.  
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Figure 5-6 Sensitivity of Western blot. Decreasing concentrations of salivary 

amylase, serum albumin and saliva samples were separated using SDS PAGE, 

transferred to a PVDF membrane and probed using alkaline phosphatase 

conjugated antibodies. Salivary amylase (a) indicated with arrows was detected 

in the 40 µg/ml sample (lane 2), the 20 µg/ml sample (lane 3), the 1 µg/ml 

sample (lane 4) and the 0.1 µg/ml sample (lane 5). No salivary amylase was 

detected in the 0.01 µg/ml sample (lane 6), 0.001 µg/ml sample (lane 7), 0.0001 

µg/ml (lane 8) and the negative control of 100 µg/ml BSA (lane 10). Lane 1 

contained the protein ladder for size comparison. Serum albumin (b) indicated 

with arrows was detected in the 100 µg/ml sample (lane 4), the 10 µg/ml sample 

(lane 5), the 1µg/ml sample (lane 6) the 0.1 µg/ml sample (lane 7), and the 0.01 

µg/ml sample (lane 8). No serum albumin was detected in the 0.001 µg /ml 

sample (lane 9), 0.0001 µg/ml sample (lane 10) and the negative controls of 1% 

(v/v) SDS (lane 2) and 40 µg/ml of salivary amylase, (lane 3). The salivary mucin 

(c) antibody detected salivary mucin in a neat and a 1/10 dilution of 

unprocessed saliva (Lanes 3, 4) and a neat solution of processed saliva (Lane 7). 

No mucin was detected in the 1/100 dilution or 1/1000 dilution (Lanes 5, 6) or 

the 1/10, 1/100, 1/1000 dilution of the prepared saliva (Lanes 8, 9, 10) or the 

negative control (lane 2). 
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5.2.6 Detection of salivary amylase from saliva samples 

A 5 ml solution of unstimulated saliva was collected from 3 human male 

volunteers separately. Each sample was centrifuged for 15 min at 9971 g and the 

supernatant removed. Each sample was given a 1:10 dilution and samples 

sampled using SDS-PAGE (Section 2.3.3). The salivary samples were then probed 

for the presence of salivary amylase using Western blot (Section 2.3.6). 

 

Salivary amylase was detected from 3 saliva samples and 1 dilute saliva sample 

(Figure 5-7).  

 

Figure 5-7 Detection of salivary amylase from saliva samples. Unstimulated 

saliva samples were separated using SDS PAGE before transfer to a PVDF 

membrane and probing with antibodies conjugated to alkaline phosphatase. 

Salivary amylase indicated with arrows was detected in all neat saliva samples 

(lane 5, 7, 9), a dilute sample (lane 8), and the 40 µg/ml positive control (lane 

4). No salivary amylase was detected in the 1% (v/v) SDS negative control (lane 

2) and the 100 µg/ml BSA control (lane 3). The protein ladder was present in 

lane 1 with sizes indicated in kDa for comparison.   
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5.2.7 Protein contamination of dental forceps 

A total of 10 used and unprocessed extraction forceps and 30 decontaminated 

extraction forceps were provided by the CSSD department of the GDH. Forceps 

were transported in a sterile specimen bag to the laboratory for sampling. 

The working end of each set of forceps was inserted into a 50 ml centrifuge tube 

containing 5 ml of 1% (v/v) SDS. Each tube was added to a boiling water bath 

(Grant instruments, Cambridge UK) and boiled for 10 min. A 20 µl sample was 

taken for quantitative analysis using the OPA assay (Section 2.3.1.3) A total of 20 

samples were added together and precipitated using an Amicon® filter (Section 

2.3.2.4). A further 10 samples were individually precipitated using StrataClean™ 

resin (Section 2.3.2.3). Precipitated samples were sampled using SDS-PAGE 

(Section 2.3.3). Gels were stained with silver stain (Section 2.3.4.3) and 

Coomassie blue (Section 2.3.4.1). The presence of protein bands was confirmed 

using a peak analysis by Quantity one® software (Bio-Rad version 4.6.7). Protein 

bands stained with Coomassie blue were sent for analysis by MS at the Glasgow 

University proteomics facility (Section 2.3.5). Samples were also analysed for 

the presence of salivary amylase and serum albumin by Western blot (Section 

2.3.6). 

Protein was isolated from all used unprocessed forceps (median 603 µg, range 39 

– 2761 µg) and 16 decontaminated forceps (median 17, range 0 – 82) (Table 5-3). 

Significantly (p<0.05) more protein was recovered from unprocessed forceps 

than decontaminated forceps. For the qualitative analysis, a total of 13 protein 

bands representing different sized proteins were observed in all used, 

unprocessed samples (Figure 5-8 [a] ) and 19 bands were observed when the 

samples were stained with SYPRO Ruby (Figure 5-8 [b], Figure 5-8 [c]). A total of 

2 protein bands were observed in decontaminated forceps samples when gels are 

stained with silver stain (Figure 5-9 [a], Figure 5-9 [c]) and no protein was 

observed in 5 decontaminated (Table 2-3) forceps samples precipitated with 

StrataClean™ Resin (Figure 5-9 [b]). A total of 17 proteins were identified using 

MS (Table 5-4). Serum albumin was identified in all used, unprocessed samples 

(Figure 5-10 [a]) and salivary amylase was not detected in any samples (limit of 
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detection 20 µg/ml) (Figure 5-10 [b]). No protein could be identified from 

decontaminated samples.  

 

Table 5-3 Protein isolated from used, unprocessed and decontaminated 
forceps samples. 

Forceps Median protein 

concentration/ 

device (µg) 

Range protein 

concentration 

(µg/device) 

Decontaminated (n = 30) 16.83 0 – 81.95 

Unprocessed (n = 10) 603 38.5 – 2760.5 
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Figure 5-8 Protein content of used, unprocessed dental forceps. A sample of 

the eluent from 4 used, unprocessed forceps was precipitated by StrataClean™ 

resin and the protein content viewed by staining with coomassie blue (a) (lanes 4 

– 7). The proteins were compared to a protein ladder (lane 1) with sizes in kDa 

indicated. Bands representing proteins of different sizes were found on 3 forceps 

samples (Lanes 4-6) (c). A band of 66 kDa corresponding to 100 µg/ml BSA was 

observed in the positive control (lane 2) and no bands were observed in the 

negative control (lane 3). The samples were also stained with SYPRO® Ruby (b) 

and bands were observed from each of the forceps samples (lane 4-7) and the 

100 µg/ml BSA positive control (lane 3). No bands were observed in the negative 

control (Lane 2). Lane 1 contains the protein ladder with sizes indicated in kDa. 
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Figure 5-9 Protein contamination of decontaminated forceps. A sample of the 

eluent from 6 decontaminated forceps was precipitated by Amicon filtration 

and the protein content viewed by staining with silver stain (a). The proteins 

were compared to a protein ladder (lane 1) with sizes in kDa indicated. Protein 

bands were evident in two forceps samples (lanes 3 and 4). No protein is found 

in an additional 3 samples (lanes 5, 6, 7). The 100 µg/ml BSA positive control 

was in lane 2 and the protein ladder in lane 1 with sizes indicated in kDa for 

comparison. A sample of the eluent from 6 decontaminated forceps was 

precipitated by StrataClean™ resin and the protein content viewed by staining 

with silver stain (b). The proteins were compared to a protein ladder (lane 1) 

with sizes in kDa indicated. No protein was evident in the forceps samples (lanes 

5, 6, 7, 8, 9, 10). No protein was found in the negative controls (lanes 3, 4). 

Protein was observed in the 100 µg/ml BSA positive control (lane 2). The bands 

from the decontaminated forceps samples were confirmed by peak analysis (c).  
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Figure 5-10 Detection of serum albumin and salivary amylase in used, 

unprocessed and decontaminated forceps samples. A total of 4 used, 

unprocessed forceps samples and 3 decontaminated forceps samples were 

sampled for serum albumin using probing with antibodies conjugated with 

alkaline phosphatase. Serum albumin (a) was detected in 4 used, unprocessed 

samples (lanes 4, 5, 6, and 7) and the 100 µg/ml BSA positive control (lane 2). 

No serum albumin was detected in decontaminated samples (limit of detection 

0.01 µg/ml) (lanes 8, 9, 10). No salivary amylase (b) was detected in 4 used, 

unprocessed samples (lanes 4, 5, 6, and 7) or the decontaminated samples (lanes 

8, 9, 10) (limit of detection 20 µg/ml). Salivary amylase was detected in the 40 

µg/ml positive control (lane 3).  
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Table 5-4 Protein identified from used, unprocessed dental forceps 

Protein recovered Peptide size (kDa) 

α- globin 11 

Haemoglobin α 1-2 hybrid 11.5 

Haemoglobin chain A  15 

β – globin 15.2 

Unnamed protein product (Homo sapiens) 

(x2) 

15.8 – 69 

Haemoglobin β chain 15.8 

Haemoglobin δ 15.8 

Haemoglobin chain B 18 

Immunoglobulin heavy chain 18.2 

Immunoglobulin light chain 23.2 

Carbonic anhydrase 28 

Pasteurella multocida OMPH / hypothetical 

protein PM0786 

36 (peptide 14.6)/ 38 

(peptide 12) 

Cytokeratin 62 

Serum albumin 67 

Serum albumin precursor 69 

Serotransferrin 77 

Transferrin 80 
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5.2.8 Protein contamination of dental handpieces 

A total of 30 W&H TA-98 high speed HP’s, 30 W&H WA-56 low speed HP’s, and 25 

W&H S11 surgical HP’s were provided by the GDH CSSD department before 

decontamination (Table 2-3). In addition, a total of 20 W&H TA-98 high speed 

HP’s, 20 W&H WA-56 low speed HP’s and 10 W&H S11 surgical were provided 

after decontamination (Table 2-3). Each HP was processed as detailed in Section 

2.1.2. Each HP turbine was immersed in 2 ml of 1% (v/v) SDS, each spray channel 

was immersed in 8 ml of 1% (v/v) SDS and each surgical gear was immersed in 15 

ml of 1% (v/v) SDS. Each tube was added to a boiling water bath (Grant 

instruments, Cambridge, UK) and boiled for 10 min. A 20 µl sample was taken for 

quantitative analysis using the OPA assay (Section 2.3.1.3). For used unprocessed 

HP’s the eluents of 20 high speed turbines, 20 low speed spray channels and 15 

surgical gears were added together and precipitated using Amicon® filters 

(Section 2.3.2.4). The retentate of each HP part was kept for analysis. For 

decontaminated HP’s, the eluents from 20 high speed turbines, 20 low speed 

spray channels and 10 surgical gears were precipitated using Amicon® filters 

(Section 2.3.2.4). Precipitated samples were sampled using SDS-PAGE (Section 

2.3.3). Gels were stained with silver stain (Section 2.3.4.3) and Coomassie blue 

(Section 2.3.4.1). The presence of protein bands was confirmed using a peak 

analysis by Quantity One® software (Bio-Rad version 4.6.7). Protein bands 

stained with Coomassie blue were sent for analysis by MS at the Glasgow 

University proteomics facility (Section 2.3.5). Samples were also analysed for 

the presence of salivary amylase and serum albumin by Western blot (Section 

2.3.6). 

Protein contamination was isolated from 17/30 high-speed turbines, 22/30 of 

low speed spray channels, and 20/20 of surgical S11 gears (Table 5-5, Figure 

5.11). Before decontamination, the surgical gear contained significantly (p 

<0.001) more protein than the high speed turbines and low speed spray 

channels. No significant difference was observed between protein isolated from 

low speed spray channels and high speed turbines. After decontamination (Table 

2-3), protein was significantly (p<0.001) reduced in surgical gears and spray 

channels (p<0.05) (Table 5-6, Figure 5-11). After precipitation of samples, 

protein and mucopolysaccharide bands were observed in each used unprocessed 
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instruments (Figure 5-12[a][b][c],Figure 5-13) and decontamined surgical gears, 

(Figure 5-14 [a][b][c]).For Western blot analysis,salivary amylase was not 

detected in any used, unprocessed and decontaminated sample (limit of 

detection 20 µg/ml) (Figure 5-15). Serum albumin and salivary mucin 5b was 

identified in the used, unprocessed surgical HP gears but not in the high speed 

turbines or low speed spray channels (Figure 5-16, Figure 5-17). An ELISA was 

conducted on all HP samples using a rabbit anti- human salivary amylase 

antibody as the capture antibody, a sheep anti-human salivary amylase antibody 

as the secondary antibody and a goat anti-rabbit IgG antibody conjugated with 

horseradish peroxidise was used as the detection antibody. Salivary amylase was 

detected in all used, unprocessed samples (Table 5-7) and no salivary amylase 

was detected in decontaminated samples (Table 5-7). A total of 11 proteins 

were identified by MS (Table 5-8). 
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Table 5-5 Protein contamination of used, unprocessed HP’s.  

Handpiece part Median protein 

concentration 

(µg/device) 

Range protein 

concentration 

(µg/device) 

Precipitated 

concentration 

(µg/ml) 

High speed 

turbine (n = 30) 

1.3 <5 – 210 45.6 

Low speed spray 

channel (n = 30) 

15.41 <5– 55.4 31.8 

Surgical gear 

(n=25) 

350 127.5 – 1936 194.8 

Precipitated samples consisted of 20 high speed turbines eluents, 20 low speed 

spray channel eluents, and 15 surgical gear eluents. 

Table 5-6 Protein contamination of decontaminated HP’s.  

Handpiece 

Part 

Median 

protein 

concentration 

(µg/device) 

Mean protein 

concentration 

(µg/device) 

Range protein 

concentration 

(µg/device) 

Precipitated 

concentration 

(µg/ml) 

High speed 

turbine (n = 

20) 

0 6.4 <5– 18 0.96 

Low speed 

spray 

channel (n = 

20) 

0 11.1 <5 – 103 10.6 

Surgical 

gear (n=10) 

0 3.2 <5 – 64.5 51 

Precipitated samples consisted of 20 high speed turbines eluents, 20 low  speed 

spray channel eluents, and 15 surgical gear eluents. 
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Figure 5-11 Quantitative protein analysis of dental HP parts. Internal HP parts 

were sampled for protein before and after decontamination. The turbine of the 

high speed HP, the spray channel of the low speed HP and the gear of the 

surgical HP were sampled. Before decontamination, surgical HP gears contained 

the most protein with a median of 350 µg. This was significantly (***=p<0.001) 

reduced after decontamination to a median of <5 µg. A median of 1.3 µg of 

protein was isolated from high speed turbines before decontamination and 

reduced to a median of 0 µg after decontamination. For spray channels, a 

median of 15.41 µg of protein was isolated before decontamination which was 

significantly (p<0.05) reduced to 0 µg of protein after decontamination. 
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Figure 5-12 Protein contamination of used, unprocessed HP’s. Eluents from 

used, unprocessed turbines, low speed spray channels, and surgical gears were 

precipitated together using an amicon filter and the gel stained with silver stain. 

Protein was observed in the high speed turbine samples with 3 distinct bands 

present (lane 5), (the low speed spray channel samples with 2 distinct bands 

present (lane 7), and the surgical gears where 9 distinct bands were present 

(lane 9) (a). No protein was observed in the negative controls (lane 3, 4, 6, 8). 

Lane 2 consisted of the 100 µg/ml BSA positive control and lane 1 contained the 

protein ladder with the sizes in kDa for comparison. The bands from the surgical 

gears (b) and the turbines (c) were confirmed with peak analysis.  
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Figure 5-13 PAS staining for mucopolysachharides in dental HP’s. Eluents from 

used, unprocessed turbines, low speed spray channels, and surgical gears were 

precipitated together using an amicon filter and the gel stained with PAS 

reagent. Mucopolysaccharide was detected in the surgical HP gear (lane 9) and 

the 100 µg/ml salivary mucin control (lane 2). No protein was detected in the 

negative controls (lanes, 3,4,5,6) or the high speed HP turbines (lane 7) and the 

low speed HP spray channels (lane 8). The Himark™ protein ladder was included 

for size comparison (lane 1).   
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Figure 5-14 Protein contamination of decontaminated dental HP’s. Eluents 

from decontaminated turbines, low speed spray channels, and surgical gears 

were precipitated together using an amicon filter.  Protein was observed in the 

surgical gears (lane 9) with 2 distinct bands visible (b). No protein bands were 

observed in the high speed turbines (lane 5), spray channels (lane 7) and or the 

negative controls (lane 3, 4, 6, 8). Lane 2 consisted of the BSA positive control 

and lane 1 contained the protein ladder with the sizes in kDa for comparison.  
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Figure 5-15 Detection of salivary amylase in used, unprocessed HP samples. 

No salivary amylase (limit of detection 20 µg/ml) was detected in the high speed 

turbine samples (lane 8), the low speed spray channel samples (lane 9) and the 

surgical gear samples (lane 10), or the negative controls (lanes 2, 4, 5, 6). 

Salivary amylase was observed in the salivary amylase positive control (lane 3). 

Lane 1 contains the protein ladder with sizes in kDa indicated for size 

comparison.   
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Figure 5-16 Detection of serum albumin in used, unprocessed handpiece 

samples. Serum albumin was detected in the surgical gear samples (lane 9) and 

the 100 µg/ml serum albumin positive control (lane 4). No serum albumin was 

detected (sensitivity 0.01 µg/ml) in the negative controls (lanes 2, 3, 5, 6), the 

high speed turbine samples (lane 7), or the low speed spray channel samples 

(lane 8). Lane 1 contains the protein ladder for size comparison.   
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Figure 5-17 Detection of salivary mucin in used, unprocessed handpiece 

samples. Salivary mucin 5b was detected in the surgical gear samples (lane 9) 

and the saliva controls (lanes 2, 3). No salivary mucin (limit of detection 1/10 

dilution of saliva) was detected in the negative controls (lanes 4, 6, 8), the high 

speed turbine samples (lane 5), or the low speed spray channel samples (lane 7). 

Lane 1 contains the protein ladder for size comparison. 

  

Table 5-7 Salivary amylase concentration detected using ELISA in precipitated 

used, unprocessed and decontaminated HP samples. 

Sample State Salivary amylase 

concentration detected 

(µg / ml) 

Turbine Used, unprocessed 1.8 

 Decontaminated 0 

Spray Used, unprocessed 2.9 

 Decontaminated 0 

Surgical Used unprocessed 6.1 

 Decontaminated 0 
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Table 5-8 Proteins identified from used, unprocessed surgical handpiece 

samples. 

Protein recovered Peptide size (kDa) 

50S Ribosomal protein 11.5 

Alpha globin 13.5 

Haemoglobin chain D 15.8  

Haemoglobin subunit beta 15.8 

Haemoglobin subunit ε 15.8 

Haemoglobin beta chain 15.8 

Haemoglobin beta 15.8 

Haemoglobin chain B 18 

Serum albumin 67 

Hypothetical protein (Homo sapiens) 69 

Conserved hypothetical protein 

Paracoccidiodes brasilineus  

119 
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5.3 Discussion 

A qualitative analysis of instrument protein contamination is essential to 

determine cross infection risks and to help inform the development of cleaning 

processes and chemicals. This study presents validation work on the extraction 

and sampling of protein contamination and utilises a method for the qualitative 

analysis of instrument protein contamination. This study has added advantage 

over previous investigations that have sacrificed instruments during protein 

extraction (Baxter et al., 2006). In contrast, this study involved taking HP’s 

directly from the GDH supply chain, thus minimising cost and unnecessary waste. 

Previous work into the analysis of instrument residual protein contamination has 

been mostly limited to quantitative studies (Smith et al., 2005, Murdoch et al., 

2006, Baxter et al., 2006, Vassey et al., 2011) . Studies are concerned with the 

validation and monitoring of cleaning processes as protein is used as a marker of 

cleanliness. Smith et al. (2005) studied the protein contamination of endodontic 

files decontaminated in dental practice using different methods for cleaning. 

Cleaning files using manual washing alone resulted in a median of 4.9 µg of 

protein present, and cleaning with a manual wash and ultrasonic bath resulted in 

a median of 5.6 µg of protein present (Smith et al., 2005). For dental 

instruments, a survey of the efficacy of washer disinfectors and ultrasonic baths 

on cleaning various dental instruments found protein on instruments before and 

after the decontamination process with a median of 5.75 µg of protein isolated 

after cleaning using a washer disinfector (Vassey et al., 2011). A study by 

Murdoch et al. (2006) on the protein contamination of hospital decontaminated 

instrument trays showed that 17% of instruments sampled had protein 

concentrations above an arbitrary cut off value of 200 µg with one instrument 

containing 45 mg of protein. A similar study on instrument trays was carried out 

by Baxter et al. (2006) whom isolated a median of 267 µg/instrument from 5 

instrument trays containing a total of 120 instruments.  

These studies all state in their conclusions that the presence of protein may 

constitute a cross contamination risk (Smith et al., 2005, Baxter et al., 2006). 

The only protein that is capable of causing disease is the prion protein, the 

causative agent of CJD (Arakawa et al., 1991) and all the aforementioned studies 
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mention CJD as the driving force behind the measurement of protein 

contamination (Smith et al., 2005). Whilst a quantitative analysis of protein 

contamination can give an indication of contamination, it is impossible to put 

these protein concentrations into context without a qualitative analysis of 

protein contamination.  

Studies into qualitative analysis of instrument protein have been conducted on 

ophthalmic phacoemulsification tips (Nuyts et al., 1999) and orthodontic bands 

(Benson and Douglas, 2007). Nuyts et al. (1999) utilised Coomassie blue for 

general staining and Western Blot for specific lens proteins to validate cleaning 

procedures. No lens proteins were detected even if no cleaning procedure was 

applied (Nuyts et al., 1999). Whilst the sensitivity of detection was calculated as 

48 ng, the sensitivity of the extraction method was not stated and this may be 

the reason for the lack of protein isolated. A study into the presence of serum 

albumin and salivary protein on orthodontic bands found that each protein was 

found on 50% of bands after cleaning (Benson and Douglas, 2007). This study 

used ELISA though no quantitative data was measured (Benson and Douglas, 

2007). The application of some of the aforementioned methods, in conjunction 

with quantitative analysis (Chapter 3), can build a complete picture of 

instrument protein contamination.  

For all validation work a total of 3 proteins were used for the validation of 

coomassie blue and silver staining. BSA was used as a model protein representing 

serum albumin, the most abundant protein in blood which is a common 

contaminant of the instruments sampled (Desroches et al., 2007), salivary 

amylase as the most abundant protein in human saliva (Hu et al., 2007a), and 

salivary mucin has a glycosylated structure containing mostly sugars that is 

abundant in the oral cavity (Liu et al., 1998). Only salivary mucin was used for 

the validation of PAS staining as this method stains sugars which are not 

abundant on BSA and salivary amylase proteins (Ramasubbu et al., 1996, Sugio et 

al., 1999). To determine the sensitivity of salivary mucin Western blotting, 

human saliva was used due to the unavailability of purified human salivary mucin 

protein.  
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For protein desorption, the solutions and processes used were initially selected 

for their use in previous studies (Smith et al., 2005), recommendations by BS—EN 

ISO-15883 part 1, and for the lack of corrosive properties. Some protein removal 

solutions may also denature the protein and not allow visualisation of proteins 

by SDS PAGE. The protein not recovered may remain on the surface or may be 

due to protein denaturation not allowing measurement. The most efficacious 

method for protein recovery sampled, through measurement of the OPA assay, 

was boiling in 1% (v/v) SDS validated by SDS PAGE and the OPA assay. SDS is an 

anionoic surfactant that is recommended by the BS-EN-ISO-15883 part 1 for 

desorption of protein from a test piece surface. SDS denatures the secondary 

and tertiary structure of proteins forming the proteins into rod shapes (Weber 

and Kuter, 1971). A molecule of SDS can associate with the peptide backbone of 

the protein and applies a negative charge, the strength of which is based on the 

protein size (Weber and Osborn, 1969). The boiling of the SDS solution increases 

binding to the protein molecule, which may account for the increase in removal 

when compared to sonication. A solution of 0.1M NaOH was sampled due to its 

application for the inactivation of prion proteins (Bauman et al., 2006). A 

solution of NaOH is an alkaline solution that causes hydrolysis of the proteins and 

reverses the interaction of the protein adsorbed to the stainless steel surface 

(Bauman et al., 2006, Desroches et al., 2007). This occurs through the alteration 

of the electrostatic charge of the protein residues and reduces the electrostatic 

attraction of the surface (Sakiyama et al., 2004). A solution of 0.1M NaOH was 

found to cause corrosion of HP turbines showing the unsuitability for HP 

sampling. Decon®90 is also an alkaline detergent with a pH of 10.4 which has 

been used for the desorption of protein in previous instrument contamination 

studies (Smith et al., 2005). The Decon®90 detergent may have a similar mode 

of action to the sodium hydroxide though the exact composition of the detergent 

is unknown. The quantitative data was combined with SDS-PAGE to visualise the 

protein recovered as the OPA assay relies on the reaction with primary amines, a 

denatured protein may still cause a positive reaction if parts of the structure of 

are still intact (Roth, 1971). Each gel showed that BSA fraction V was isolated 

with each cleaning solution though 0.1M NaOH was not sampled using SDS-PAGE 

due to the aforementioned corrosion of turbines.  
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Staining of gels was undertaken by coomassie blue, Silverquest® silver stain, and 

SYPRO® Ruby staining representing an organic dye, a silver stain and a 

fluorescent stain. The sulfonic groups of Coomassie blue dye binds to the protein 

molecule by electrostatic and hydrophobic binding to basic amino acids such as 

lysine, arginine and histidine residues in the protein (Compton and Jones, 1985, 

Congdon et al., 1993). Coomassie blue stain has a reported sensitivity of 0.5 µg 

of protein (Candiano et al., 2004) which is comparable to the 0.2 µg of protein 

found in the validation work. Whilst the insensitivity of Coomassie blue staining 

may result in an incomplete picture of the protein contamination, the reversible 

interactions allow compatibility for further downstream protein identification 

mass spectrometry (Candiano et al., 2004). Use of the Silverquest® silver stain 

results in an increased sensitivity of protein detection to less than 0.02 ng of 

protein which is comparable to previous results (Rabilloud, 1992). The staining is 

due to the reaction of silver ions to metallic silver by the protein molecule in 

the presence of formaldehyde. The silver staining kit uses less formaldehyde 

than other silver staining techniques to enable MS compatibility though the low 

concentration of proteins did not allow identification of silver stained bands by 

mass spectrometry. SYPRO ruby is a ruthenium based fluorescent stain that has 

reported sensitivities comparable to silver staining. The stain binds to lysine, 

arginine, and histidine residues and can be visualised using ultraviolet light 

(Lopez et al., 2000), though this is not the optimum method for visualisation. 

Precipitation of samples was necessary due to the comparatively large sample 

volumes and smaller protein concentrations compared to classical proteomic 

studies and other elements in the sample such as lubricating oil or metallic 

fragments that may affect the purity of the sample (Aguilar et al., 1999). Initial 

work with non-precipitated HP samples did not reveal any protein bands despite 

positive reactions with the OPA assay. The efficacy of each method was assessed 

using a volume of protein solution used for immersion of a high-speed turbine 

and a protein concentration based on a value that has been isolated from used, 

unprocessed HP’s. A total of 4 precipitation methods were assessed each with 

different mechanisms. Amicon® ultra centrifugal filters were found to recover 

the most protein of the methods sampled. Previous studies into the efficiency of 

the protein precipitation methods have shown that precipitation with TCA 

precipitation recovering 24% of protein and acetone precipitation recovering 69% 
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of rat brain protein (Fic et al., 2010). Whilst the TCA precipitation efficiency 

was similar to the value in this study, the acetone precipitation recovery was 

more than was recovered in this study. This may be due to the increased starting 

protein concentration or the increased number of proteins in the samples as 

each precipitation technique has different effects on different proteins (Zellner 

et al., 2005). For ultracentrifugation methods, the filters trap proteins with a 

size larger than 15 kDa in a filter in a smaller volume of solution, StrataClean™ 

resin acts through direct interaction of the resin with protein hydroxyl groups 

whilst acetone precipitation causes aggregation of proteins through dehydration 

of any water molecules (Simpson and Beynon, 2009) and TCA exposure results in 

the unfolding of the protein through disruption of the electrostatic interactions 

by the trichloroactetate ions (Sivaraman et al., 1997). Filtration was the only 

method sampled that does not result in protein binding or modification of 

protein structure for downstream identification by mass spectrometry and 

coupled with the comparatively high rate of recovery was ideal for processing of 

HP samples (Jiang et al., 2004, Simpson and Beynon, 2009). 

Dental extraction forceps were used as a model instrument to test the 

quantitative and qualitative methods for measuring protein contamination due 

to many factors. The forceps are directly exposed to blood and saliva 

contamination during routine use which indicate that more protein will be 

present than the dental HP, and the working end of forceps contains a rough 

surface structure that may trap protein and inhibit removal by cleaning 

processes (Smith et al., 2005). The forceps also have direct access to 

contamination and do not require dismantling. Previous studies have detected 

residual protein on decontaminated forceps with a median of 17 µg/instrument 

and a range of 0 – 213 µg/instrument (Murdoch et al., 2006). Work by Vassey et 

al. (2011) into used, unprocessed and decontaminated dental instruments from 

dental practices found a median of 462 µg which was reduced to 27 µg of protein 

upon cleaning using an AWD (Vassey et al., 2011). These values are comparable 

to those found in this study. These studies did not attempt to identify these 

proteins using qualitative analysis. In this study, a total of 16 protein 

contaminants of used, unprocessed dental extraction forceps were identified 

using mass spectrometry and serum albumin was detected using Western blot. 

The majority of identified proteins were associated with human blood or saliva 
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including serum albumin, carbonic anhydrase and haemoglobin chains and 

proteins from P. multocida which indicate the presence of bacteria (Rose and 

Mathai, 1977, Hortin, 2006, Hu et al., 2007a). Western blot, with a sensitivity of 

0.02 µg of amylase protein, did not detect salivary amylase from forceps samples 

before or after decontamination. Studies have shown that whilst amylase is the 

most abundant protein in saliva (Hu et al., 2007a), it is present at 

concentrations of 20 µg/ml of saliva (Sivakumar et al., 2009). This is lower than 

the positive control of the sample used which was 40 µg/ml from a purified 

solution and the amount of saliva coated on forceps may contain a lower level of 

amylase than the limit of detection of the assay. Use of more sensitive 

chemoluminescence Western blot detection methods may allow the detection of 

lower concentrations of amylase due to the increased sensitivity of detection 

associated with this method compared to alkaline phosphatase (Falk and Elliott, 

1985). The ELISA method has previously been utilised to detect salivary amylase 

from orthodontic bands and is more sensitive than the Western blot method 

which may indicate that amylase could be detected using these methods (Benson 

and Douglas, 2007). Protein was detected in two decontaminated forceps 

samples without visible blood contamination when silver stain was applied but 

the low concentration did not allow identification by mass spectrometry. 

Comparison to the protein bands found in used, unprocessed samples show the 

proteins in the size range are carbonic anhydrase and the outer membrane 

proteins of P. multocida, though it is not possible to conclude that these are the 

remaining proteins without further tests.  

This was the first study to examine residual protein contamination of dental HP’s 

where prior research has primarily focused on microbial contamination (Herd et 

al., 2007, Kellett and Holbrook, 1980). The complexity of the internal HP 

structure has focused attention on the efficacy of the HP cleaning process and 

the ability to remove protein from internal locations associated with microbial 

contamination. Residual protein was detected in each HP part with the largest 

amount of protein being isolated from the surgical HP gear, which has the 

largest surface area and is used for more invasive procedures. The lowest 

amount of protein was isolated from turbines, which have the smallest surface 

area. Protein contamination was also evident in SDS PAGE gels after sample 

pooling though protein could only be detected from turbines and spray channels 
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when silver stain is applied. In common with the extraction forceps, the surgical 

HP gears contained several bands representing different sized blood proteins of 

detectable concentration with serum albumin being detected in this sample by 

Western blot. Serum albumin was also detected using MS in addition to 8 blood 

proteins, a fungal protein and a ribosomal protein. No salivary amylase was 

detected in any sample using Western blot though the ELISA reaction showed the 

presence of a small concentration of salivary amylase in all used, unprocessed 

samples.  

In conclusion, the methods highlighted can be utilised to undertake a 

quantitative and qualitative analysis of instrument protein contamination and fill 

a large gap in instrument contamination knowledge. The main weakness of the 

qualitative analysis, mainly the inability to identify small concentrations of 

protein, must be overcome as any contaminants left after decontamination may 

present a cross infection risk. The precipitation of more instrument eluent to 

increase the concentration of common contaminants or the application of more 

sensitive proteomic identification techniques may overcome these shortcomings. 

The technique relies on the desorption of protein from the surface and is only as 

sensitive to how much can be removed from the surface. This work should be 

combined with surface analysis of instruments to construct a complete picture of 

instrument contamination before and after the decontamination process. The 

methods in combination can also validate different instrument cleaning 

processes and highlight any improvements that need to be made in processes or 

cleaning solutions if certain proteins remain after decontamination.  
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6 Chapter 6: Surface Analysis of Dental Handpiece 

Parts. 
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6.1 Introduction 

The inspection stage of the instrument decontamination process is essential to 

detect any failures of the cleaning process which is visible soil that will not be 

removed by subsequent sterilization and may also inhibit the sterilization 

process (Amaha and Sakaguchi, 1954, Lipscomb et al., 2008) . The current 

method utilised routinely in SSD’s relies on a visual inspection to ensure that the 

instrument is not damaged and to detect any contaminants that are visible to 

sight including haemoglobin in blood (Lipscomb et al., 2008). Previous research 

into instrument contamination has also utilised visual analysis by illumination 

and magnification and also relied on desorption of contamination from the 

surface through the application of surface swabbing or flushing of the instrument 

for the removal of contaminants from the instrument surface for analysis (Smith 

et al., 2005, Herd et al., 2007). These visual and desorption methods are also 

recommended by the European standard BS-EN-ISO-15883 part 1 to validate the 

efficacy of cleaning processes. Concerns have been raised at the sensitivity and 

limits of detection of both methods (Lipscomb et al., 2006b, Baxter et al., 

2006), and of the contamination that remains on the surface of the instrument 

during sampling that would not be detected. The contaminants observed will 

also depend on the analysis being performed on the instrument samples whilst 

other residual contamination may get overlooked.  

In the previous chapters of this study, identification of contaminants has relied 

on desorption of the contaminants from the surface. This has a calculated 

efficacy of 67% of bacteria removed (Chapter 4) and 87% of protein (Chapter 5). 

The remaining contaminants on the surface require analysis to build a complete 

picture of instrument contamination. Surface analysis techniques are 

increasingly being utilised to provide a microscopic view of instrument surfaces 

(Baxter et al., 2006). These techniques can visualise bacterial cells and other 

tissue debris whilst methods also exist that allow for the identification of these 

contaminants at the elemental level (Lipscomb et al., 2006b). Other techniques 

allow for a quantitative analysis of any biological material present on the 

surface without the need for the removal of contamination (Baxter et al., 2006), 

or the treatment of the instrument with any chemicals that may cause damage 

to sampled instruments.  
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The aim of this study was to undertake a detailed surface analysis of dental HP 

parts before and after decontamination procedures to detect contamination on 

the surface. This study aimed to provide a detailed visualisation of the surface 

to detect contaminants invisible to routine visual analysis and to undertake a 

quantitative analysis of protein contamination without relying on the desorption 

of protein surface.  
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6.2 Results 

6.2.1 Scanning electron microscopy 

A high speed turbine was analysed for surface contamination using scanning 

electron microscopy without prior fixation. Additionally, a high-speed turbine 

and low-speed upper gear from St Albans repair facility underwent sample 

fixation for biological material before analysis (Section 2.4.1.1).  

 

The SEM analysis without prior fixative showed contamination on the turbine 

blade (Figure 6-1 [a] [b]). A turbine from a WA- 56 high speed HP (Figure 6-2 [a]) 

and an upper gear of a WA – 56 low speed HP (Figure 6-3[a]) were subjected to 

sample fixation (Section 2.4.1.1) to allow the detection of biological material 

using the SEM. Contamination, including bacteria was present on the blade of 

the high speed turbine (Figure 6-2 [b][c]) and the ball bearing gear (Figure 6-3 

[a],[b],[c]). Contamination was also visible on the low speed gear (Figure 6-4 

[a], [b],[c]). 
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Figure 6-1 SEM images of a used, unprocessed high-speed turbine. The turbine 

was imaged without prior fixation at 120x magnification (a) and 1000x (b). The 

arrows indicate potential contaminants on the surface. 
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Figure 6-2 SEM imaging of TA-98 high speed turbine from a repair facility. 

The biological material on the turbine surface was fixed and the turbine viewed 

at 15x magnification for an overview (a) and the blade was viewed at 1000x 

magnification where contamination was observed on the surface (b). 

Contamination was evident along the entire surface of the turbine blade at 

3000x magnification (c).  
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Figure 6-3 Ball bearing cage of turbine from TA-98 high-speed turbine. The 

ball bearing gear was visualised at 22x magnification after fixation of biological 

material (a). Contamination was visible on the surface of the ball bearing gear at 

1000x magnification (b). Contaminants were also viewed at 10000x magnification 

(c). 
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Figure 6-4 SEM images of WA- 56 low speed gear from repair facility. The 

biological material on the higher gear surface was fixed and the turbine viewed 

at 22x magnification for an overview (a) and the blade was viewed at 1000 x 

magnification where contamination was observed on the hollow parts of the gear 

(b). Contamination was also evident along the entire surface of the turbine 

blade at 3000x magnification (c).  
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6.2.2 Scanning electron microscopy and energy dispersive x ray 

analysis  

A total of 3 used unprocessed and 3 decontaminated (Table 2.2) high speed 

turbines, 1 used unprocessed and 1 decontaminated high speed caps, 1 used 

unprocessed surgical gear and 1 decontaminated surgical gear, 1 used 

unprocessed surgical lever and 1 decontaminated surgical lever, and 1 repair 

facility high gear and 1 used, unprocessed high gear were analysed. Parts from 

unused HP’s that had been through a decontamination process were sampled as 

negative controls. 

For the high speed HP’s, contamination was detected on the high speed turbines 

(Figure 6-5 [a] [b]), and the used, unprocessed and decontaminated high speed 

caps (Figure 6-5 [c],[d]). For surgical HP’s, contamination was detected on gears 

(Figure 6-6 [a],[b],[c],[d]), and used, unprocessed levers (Figure 6-6 [c],[d]). For 

low speed HPs, contamination was detected on used, unprocessed higher gears 

(Figure 6-7 [a],[b]) and used, unprocessed and decontaminated lower gears 

(Figure 6-7 [c],[d]). 

 

Contamination was subdivided into organic contamination indicated by dominant 

carbon and oxygen peaks (Figure 6-8 [a]), calcium deposits indicated by 

dominant calcium, oxygen and carbon peaks (Figure 6-8 [b]), sulphur organic 

contamination indicated by dominant carbon, oxygen and sulphur peaks (Figure 

6-8 [c]) and lubricating oil trapped contaminants indicated by a carbon based 

peak with visible contaminants in contact (Figure 6-8 [d]). Analysis of non-

contaminated surfaces adjacent to contamination revealed metallic elements 

with different composition to each contaminant (Figure 6-9). All contaminant 

groups were detected on high speed turbines before and after decontamination 

(Figure 6-10 [a],[b],[c],[d], Figure 6-11[a],[b],[c],[d])); surgical gears before and 

after decontamination (Figure 6-14 [a],[b],[c],[d], Figure 6-15 [a],[b],[c],[d]); 

surgical levers before decontamination (Figure 6-16 [a],[b],[c],[d]); low speed 

upper gears before decontamination (Figure 6-18 [a],[b],[c],[d]) and low speed 

upper gears before and after decontamination (Figure 6-19 [a],[b],[c],[d],Figure 

6-20 [a],[b],[c],[d]).). Only organic contamination was found on high speed caps 

before and after decontamination (Figure 6-12 [a],[b], Figure 6-13[a],[b]) and 
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only organic contamination, lubricating oil trapped contaminants and sulphur 

based contaminants were found on decontaminated surgical levers (Figure 6-17 

[a],[b],[c]). 

 

 

 

Figure 6-5 High speed HP parts sampled using SEM and EDX analysis. Both high 

speed turbines (a, b) and caps (c, d) were sampled using SEM and EDX analysis. A 

microscopic view of the turbine is shown in (c) at 50x magnification and a 

microscopic view of the cap is shown in (d) at 41x magnification.  
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Figure 6-6 Surgical HP parts sampled using SEM and EDX analysis. Both surgical 

HP gears (a, b) and the levers (c, d) were sampled using SEM and EDX analysis. A 

microscopic view of the spring of the gear is shown in (c) at 44x magnification 

and a microscopic view of the internal part of the lever is shown in (d) at 47x 

magnification. 
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Figure 6-7 Low speed HP parts sampled using SEM and EDX analysis. Both low 

speed higher gears (a, b) and lower gears (c, d) were sampled using SEM and EDX 

analysis. A microscopic view of the gear is shown in (c) at 50x magnification and 

a microscopic view of the end of the lower gear is shown in (d) at 55x 

magnification. 
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Figure 6-8 Typical elemental analysis of HP surface contaminants by EDX 

analysis. All contaminants were broadly placed into 4 categories, organic 

contamination (a) indicated by the carbon and oxygen peaks, calcium based 

contamination (b) indicated by a calcium peak, sulphur based contamination (c) 

indicated by carbon, oxygen, and sulphur peaks and carbon based contamination 

(d) indicated by a carbon peak. Each contaminant was found on all surfaces 

scanned.  
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Figure 6-9 Typical elemental analysis of HP metallic surfaces by EDX analysis. 

Surfaces in the vicinity of contamination were analysed as controls. Metallic 

elements including chromium (a) found on the lower gear, aluminium (b) found 

on the high speed turbine, and iron (c) found on the surgical gear and high speed 

caps.  
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Figure 6-10 Examples of contaminants found on used, unprocessed high 

speed turbines. All contaminants previously described were found in the high 

speed turbine ball bearing cage before decontamination. Organic contamination 

is shown in (a) at 213x magnification, lubricating oil trapped contamination is 

shown in (b) at 376 x contamination, a calcium contaminant shown in (c) at 1703 

x magnification and sulphur based contamination is shown in (d) at 1700x 

magnification.  
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Figure 6-11 Examples of contaminants found on decontaminated high speed 

turbines. All contaminants previously described were found in the high speed 

turbine ball bearing cage before decontamination. Organic contamination is 

shown in (a) at 1238x magnification, lubricating oil trapped contamination is 

shown in (b) at 208 x contamination, a calcium contaminant shown in (c) at 676 

x magnification and sulphur based contamination is shown in (d) at 162x 

magnification.  
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Figure 6-12 Examples of contaminants found on used, unprocessed high 

speed caps. Organic contaminants previously described were found on the high 

speed cap before decontamination. Organic contamination is shown in (a) at 812 

x magnification and in (b) at 1623 x magnification.  

 

 

Figure 6-13 Examples of contaminants found on decontaminated high speed 

caps. Organic contaminants previously described were found on the high speed 

cap before decontamination. Organic contamination is shown in (a) at 201 x 

magnification and in (b) at 162 x magnification.  
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Figure 6-14 Examples of contaminants found on used, unprocessed surgical 

gears. All contaminants previously described were found in the gear before 

decontamination. Organic contamination is shown in (a) at 206 x magnification, 

lubricating oil trapped contamination is shown in (b) at 790 x contamination, a 

calcium contaminant shown in (c) at 817 x magnification and sulphur based 

contamination is shown in (d) at 206 x magnification.  
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Figure 6-15 Examples of contaminants found on decontaminated surgical 

gears. All contaminants previously described were found on the spring before 

decontamination. Organic contamination is shown in (a) at 83 x magnification, 

lubricating oil trapped contamination is shown in (b) at 1356 x contamination, a 

calcium contaminant shown in (c) at 175 x magnification and sulphur based 

contamination is shown in (d) at 85 x magnification.  
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Figure 6-16 Examples of contaminants found on used, unprocessed surgical 

levers. All contaminants previously described were found on the lever in contact 

with the gear before decontamination. Organic contamination is shown in (a) at 

181 x magnification, lubricating oil trapped contamination is shown in (b) at 726 

x contamination, a calcium contaminant shown in (c) at 175 x magnification and 

sulphur based contamination is shown in (d) at 359 x magnification.  
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Figure 6-17 Examples of contaminants found on decontaminated surgical 

levers. Contaminants previously described were found on the lever in contact 

with the gear before decontamination. Organic contamination is shown in (a) at 

400 x magnification, sulphur based contamination is shown in (b) at 1600 x 

magnification and lubricating oil trapped contamination is shown in (c) at 400x 

magnification. No calcium based contamination was observed.  
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Figure 6-18 Examples of contaminants found on used, unprocessed low speed 

upper gears. All contaminants previously described were found in the high speed 

turbine ball bearing gear before decontamination. Organic contamination is 

shown in (a) at 1504 x magnification, lubricating oil trapped contamination is 

shown in (b) at 376 x contamination, a calcium contaminant shown in (c) at 1504 

x magnification and sulphur based contamination is shown in (d) at 188 x 

magnification. 
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Figure 6-19 Examples of contaminants found on used, unprocessed low speed 

lower gears. All contaminants previously described were found in the low speed 

lower gear before decontamination. Organic contamination is shown in (a) at 190 

x magnification, lubricating oil trapped contamination is shown in (b) at 760 x 

contamination, a calcium contaminant shown in (c) at 380 x magnification and 

sulphur based contamination is shown in (d) at 380 x magnification. 
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Figure 6-20 Examples of contaminants found on decontaminated low speed 

lower gears. All contaminants previously described were found on the low speed 

lower gear after decontamination. Organic contamination is shown in (a) at 44 x 

magnification, lubricating oil trapped contamination is shown in (b) at 190 x 

contamination, a calcium contaminant shown in (c) at 190 x magnification and 

sulphur based contamination is shown in (d) at 380 x magnification. 
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6.2.3 Epifluorescent scanning analysis  

For quantitiative analysis of the EFSCAN samples, a 10 µl sample of BSA at 

concentrations 2, 1, 0.75, 0.5 mg of BSA were added to prepared SSS’s (Section 

2.1). The SSS’s were dried at ambient room temperature overnight before 

sampling using EFSCAN analysis (Section 2.4.1.3). The sum of the fluorescent 

peaks was added together to get the value associated with that protein 

concentration for comparison to unknown samples.  

For high speed turbines and caps, a total of 3 used unprocessed, 3 

decontaminated at the GDH and 3 from the repair facility were analysed. 

Decontaminated and unused parts were sampled for negative controls. 

Additionally, a total of 3 used, unprocessed and 3 decontaminated low speed 

spray channels and higher gears were sampled. 

An increase in BSA concentration results in a linear increase in fluorescent units 

(Figure 6-21, Figure 6-22). Protein was detected on high speed HP turbines 

(Figure 6-24 [a]) before and after decontamination () (Figure 6-24 [c],[d], Table 

6-1,), high seed HP caps(Figure 6-25 [a]) before and after decontamination 

(Figure 6-25 [c], [d], Table 6-1)and low speed HP spray channels (Figure 6-23 

[b]) before and after decontamination (Figure 6-23 [c], [d],Table 6-1). For all 

parts sampled, no significant reduction in protein was observed for all 

instruments after decontamination (Table 6-1). EFSCAN analysis of unused 

surfaces did not detect protein significantly greater than the negative control 

(Figure 6-24 [b], Figure 6-25[b], Figure 6-23[b]).  
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Figure 6-21 EFSCAN analysis of BSA standards on stainless steel discs. BSA of 

differing concentrations was applied to 316 stainless steel disc and analysed. 

Each peak represents protein contamination on the surface. The data is 

representative of 6 discs of each concentration. 
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Figure 6-22 Standard curve of BSA scanned using EFSCAN. BSA of differing 

concentrations was added to 316 stainless steel discs and scanned. An increase 

in BSA protein concentration results in a linear increase in fluorescence. Data 

shown is the mean of 6 discs ± the StEM.  
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Table 6-1 Protein detected on HP parts using EFSCAN analysis. The table also 

contains protein previously isolated from HP parts using the method described in 

section 5.2.25 for comparison. 

Handpiece Part Median Protein 
Concentration 

detected  
(µg/part) 

Range Protein 
Concentration 

detected 
(µg/part) 

Median Protein 
Previously 

Detected by SDS 
extraction and 

the OPA assay (µg 
/ part) 

High Speed 
Turbine Used, 
unprocessed  

10.17 (n=3) 7.7 – 13.56 1.3 (n=20) 

High Speed 
Turbine 
Decontaminated  

15.75 (n=3) 13.2 – 20.54 0 (n=20) 

High Speed 
Turbines Repair 
Facility  

10.43 (n=3) 5.7 – 18.01 3.4 (n=20) 

High Speed Caps 
Used, unprocessed  

5.2 (n=3) 4.2 – 9.6 Not previously 
sampled 

High Speed Caps 
Decontaminated  

6.2 (n=3) 2.6 – 6.6 Not previously 
sampled 

High Speed Caps 
New  

0 (n=1) 0 – 0 Not previously 
sampled 

Spray channels 
Used, unprocessed 

8.7 (n=3) 4.6 – 11.94 15.41 (n=20) 

Spray channels, 
Decontaminated 

2.9 (n=3) 2.3 – 10 0 (n=20) 

Spray channels, 
new 

0 (n=3) 0 – 0 0 (n=20) 
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Figure 6-23 EFSCAN analysis of low speed HP spray channel surfaces. Low 

speed HP spray channels (a) that were unused were sampled using EFSCAN 

analysis (b). Spray channels were also sampled after use and before 

decontamination (c) and after decontamination (d). Peaks represent protein on 

the surface. No peaks are visible in the new, unused sample. The graphs are 

representative of 3 spray channel samples.  
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Figure 6-24 EFSCAN analysis of high speed HP turbine surfaces. High speed HP 

turbines (a) that were unused were sampled using EFSCAN analysis (b). Turbines 

were also sampled after use before decontamination (c) and after 

decontamination (d). Peaks represent protein on the surface. Significantly lower 

peaks are visible in the new, unused sample. The graphs are representative of 3 

turbine samples. 
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Figure 6-25 EFSCAN analysis of high speed HP cap surfaces. High speed HP 

caps (a) were sampled unused using EFSCAN analysis (b). Caps were also sampled 

after use before decontamination (c) and after decontamination (d). Peaks 

represent protein on the surface. Significantly smaller peaks are visible in the 

new, unused sample (b). The graphs are representative of 3 cap samples. 
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6.2.4 Discussion 

Methods to determine the efficacy of the cleaning process are under constant 

validation and review as the cleaning step increases in importance and with 

increasing concern of the sensitivity of current detection methods (Baxter et al., 

2006, Lipscomb et al., 2006a). Surface analysis methods provide an accurate 

representation of the cleanliness of the surface rather than relying on a visual 

analysis or desorbing contamination from the instrument surface both of which 

may have limited sensitivity (Lipscomb et al., 2006b).  

To complement the previous work determining the contamination of dental HP 

parts (Chapter 5, Chapter 6), surface analysis techniques were undertaken to 

overcome several shortcomings with the previously used methods. These are the 

characterisation of contaminants that cannot be removed, the identification of 

additional contaminants that were not previously sampled and to determine the 

specific locations of contaminants. Surface analysis was also conducted on HP 

parts that had not been previously sampled. The high speed HP cap has been 

found to be contaminated through negative pressure along with the turbine and 

the air and water lines (Matsuyama et al., 1997). The high speed HP caps had 

not previously been sampled as the caps were impossible to immerse without 

contacting the outer end of the cap which may be exposed to environmental 

contamination not associated with HP use. Surface analysis techniques allowed 

sampling of the inside of the cap and therefore only contamination through HP 

use would be visualised. For these reasons, the bottom of the surgical HP lever, 

which is in contact with the surgical HP gear during use, was also sampled using 

surface analysis. The survey of HP’s was also extended to locations not 

previously associated with HP contamination including the higher and lower gear 

of the low speed HP.  

SEM analysis can provide images of the surface to a resolution that can identify 

individual bacteria. Without prior fixation of the instrument part, contamination 

is difficult to characterise as visibility of SEM samples is reliant on the sample 

being conductive to the electron beam (Anderson, 1951). Fixation requires 

exposure of the instrument part including sodium cacodylate and glutaraldehyde 

which means that the HP part must be sacrificed to view biological material. A 
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turbine and a higher gear from the repair facility were found to have 

contamination on the surface. The source of the turbines and gears was unknown 

and therefore the routine HP decontamination process used was not known. All 

HP’s sent to the repair facility came with documentation indicating that a 

decontamination process had been undertaken before sending and upon receipt 

had been sterilized using a vacuum sterilizer. Contamination was noted along 

the surface of the high speed turbine blade and the ballbearing gear cases. This 

contamination cannot be quantified or identified and fixation may alter the 

structure of contaminants.  Whilst most of the contaminants examined in detail 

were the size and morphology of bacilli and cocci bacteria, the smaller 

contamination coating the surface of the turbine may be proteinacious in 

nature. The fact that contamination was located in all areas of the HP turbine 

shows the importance of a cleaning process that can clean the turbine blades 

but also access the ball bearing gears which are in direct contact with the inner 

structure of the HP head. Contamination was also located on the low speed 

higher gear despite there being no similar negative pressure due to the low 

speed HP being powered by electricity. No study has repeated the experiment of 

Lewis et al. (1992) visualising the entry of blue oil into the internal low speed HP 

parts (Lewis and Boe, 1992) but studies have shown both the in vitro and in vivo 

contamination of low speed HP’s therefore showing the movement of 

contamination into the internal areas of the low speed HP (Chin et al., 2006, 

Herd et al., 2007). Contamination was found on the smooth surface and the 

complex ridged parts indicating that surface structure does not affect the 

adsorption of contamination. 

To overcome the problem of contaminant identification, EDX analysis was used 

to identify the elemental contaminants of gross contamination. Only elements 

with more outer electrons than carbon can be detected due to the movement of 

electrons from the outer shell to the inner shell of the atom after the removal of 

inner shell electrons by the electron beam. Movement of the electron causes an 

emission of X-rays, which is specific for each atom and can therefore identify 

each atom in a sample. Contaminants were found on every surface sampled 

including HP parts that had been through the GDH decontamination process 

(Section 2.1.14, Table 2.2) and the pattern of contamination was similar to 

previous instrument studies using EDX to measure instrument contamination with 
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contamination existing as small pockets (Baxter et al., 2006). The main 

difference for HP contamination compared to previous studies was the presence 

of lubricating oil which was spread over much of the surfaces. Lubricating oil is 

part of routine HP maintenance and controversy exists for the ability of the 

lubricating oil to trap contaminants and to inhibit the sterilization process (Lewis 

and Boe, 1992) (Edwardsson et al., 1983). Whilst this method cannot completely 

identify contaminants, the presence of certain elements such as carbon, sulphur 

and oxygen may indicate the presence of organic contamination such as proteins 

(Baxter et al., 2006). It is impossible to use the data of the number of 

contaminants on each surface to undertake a quantitative measurement of 

protein. Whilst spots of organic contamination are present on all surfaces, it is 

unclear if this represents a failure of cleaning processes according to BS-EN-ISO-

15883 part 1 or if the contaminants present a cross contamination risk. The SEM 

and EDX method is useful for showing the location of contaminants on the 

surfaces and may inform development of HP’s if there are particular locations on 

the surface that are more contaminated than others. This was noted for the high 

speed HP where more contaminants were present on the ball bearing gear than 

the turbine blade and the surgical gear where the entire spring was covered in 

contamination. 

A method that can combine surface analysis with quantitative data is through 

the EFSCAN analysis. By scanning BSA standards dried onto stainless steel 

surfaces, a standard curve can be constructed similar to that used for 

quantitative protein assays (Chapter 3). Whilst a linear relationship between 

protein concentration and FU’s was observed, the EFSCAN method was not 

assessed for sensitivity, specificity, and the ability to calculate the protein 

concentration of common instrument contaminants as detailed by the FDA 

bioanalytical standards (Chapter 3). The results of new, unused, decontaminated 

HP parts showed a reaction with the HP surface including lubricating oil that was 

not significantly larger than the negative control which partly validates the 

EFSCAN method for use on HP’s.    

The sensitivity of the EFSCAN analysis was calculated as 5 µg of BSA protein. The 

sensitivity of the technique can be improved by the addition of fluorecsin 

isothiocyanate to the proteins on the surface which bonds to the thiol groups of 

proteins to give a stronger fluorescent signal (Baxter et al., 2009). This process 
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was not undertaken with dental HP’s to avoid any issue with toxicity upon the 

return of the HP to the GDH population. 

Despite being less sensitive than the OPA assay (Chapter 3), more protein was 

observed on each HP part than the median protein isolated from separate parts 

sampled using the methods detailed in chapter 6 though the protein 

concentration isolated for high speed HP turbines and low speed HP spray 

channels was within the range of protein isolated in chapter 6. This may be due 

to the protein that is remaining on the surface that is unable to be desorbed 

using the methods detailed in chapter 6 and this may indicate that dental HP 

parts contain more residual protein contamination than had been previously 

estimated. Each turbine and spray channel was only scanned on one side due to 

the contamination of the instrument part that may occur from placement on the 

taped surface, the protein concentration on each instrument part may therefore 

be underestimated. The reading for the spray channels represent the surface of 

the spray channel rather than the inside of the narrow lumens and lumens would 

have to be cut open and sacrificed if the internal contamination was to be 

characterised. There was little difference in protein contamination of 

instrument parts that had been subjected to a decontamination process though 

it was unknown what the starting protein concentration of each instrument was 

before decontamination. 

EFSCAN and EDX analysis has previously been utilised to undertake a quantitative 

analysis of instrument contamination of ophthalmic micro forceps and stainless 

steel curved artery forceps before and after decontamination using gas-plasma 

treatment (Baxter et al., 2009). The starting protein concentration of 

ophthalmic micro forceps was calculated as 1.8 µg or a total of 13.1 FU’s and a 

total of 30.2 FU’s were found on curved artery forceps. These FU’s were reduced 

to 0.030 FU’s for ophthalmic micro forceps and 0.017 FU’s upon gas plasma 

decontamination and indicated a removal of over 99% of bound protein from the 

surface (Baxter et al., 2009). A similar sudy detailing the passage of a dental HP 

through a decontamination process would allow the measurement of the efficacy 

of HP decontamination technologies. This would allow a comparison of 

instrument surfaces allowing knowledge of the initial contamination and the 

calculation of how much protein has been removed from the surface as well as 

visualisation of areas that retain more contamination.  
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Previous studies using surface analysis to characterise decontamination on a 

surface have involved visualisation using a number of methods including 

episcopic differential interference contrast/epifluorescence microscopy and 

SYPRO® Ruby analysis (Lipscomb et al., 2006c), Auger spectroscopy (Kobayashi 

et al., 2009), Ramen spectroscopy, FT-IR spectroscopy (Kobayashi et al., 2009), 

and ToF- SIMS (Boyd et al., 2001). These contamination studies incorporate 

surgical instruments and the validation of cleaning processes in other industries 

such as the dairy industry (Daufin et al., 1991) and the electronics industry 

(Martin et al., 1999).  

 

Most of the methods highlighted above rely on the bombardment of a sample 

with an excitation agent and reading the specific reaction of any contaminants 

upon excitation. Auger spectroscopy, like EDX analysis, relies upon an electron 

beam to knock out an inner shell electron which causes the movement of 

electrons from an outer shell and the emission of an auger electron that is 

specific to each atom (Hofmann, 1979). Ramen and FT-IR spectroscopy rely on 

the reaction with infrared light with Ramen spectroscopy measuring the 

scattering of infrared light by the surface and FT-IR spectroscopy measuring the 

emission of light upon stimulation of the surface with infrared light (Wallach et 

al., 1970, Becker and Farrar, 1972) . ToF -SIMS relies on the bombardment of the 

surface with an ion in an ultrahigh vacuum. This causes the scattering of 

secondary ions of atoms on the surface. These ions can then be analysed using 

mass spectrometry by calculating the time for the ions to reach the detector. 

This ―time of flight‖ is compared to the known ―time of flight‖ of atoms 

(Fitzgerald and Smith, 1995). Epifluorescence microscopy relies on the detection 

of SYPRO® Ruby stain which interacts with the amino acids lysine, arginine, and 

histidine to allow for the visualisation of proteins on the surface with an 

estimated sensitivity of 85 pg/mm2 of protein (Lipscomb et al., 2006b, Lopez et 

al., 2000).  

 

A study into the protein contamination of instruments detected with SYPRO 

Ruby® after cleaning with an AWD (Lipscomb et al., 2006c). A contamination 

scale was devised with the maximum protein detected being more than 4.2 µg of 

protein down to a scale of 0-42 ng of protein based on operator visualisation 

(Lipscomb et al., 2006c). All instruments sampled, tissue forceps, scissors, towel 
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clips, needle holders, haemostats, were found to have contamination indexes 

between 3-4 indicating that the protein observed on the surface was between 

0.42 to 4.2 µg which the authors indicated showed a ―poor‖ standard of cleaning 

(Lipscomb et al., 2006c). Contamination of artheroscopic blades decontaminated 

using high pressure water flow, ultrasonic cleaning and sterilized using ethylene 

oxide was measured using FT-IR and Auger spectroscopy (Kobayashi et al., 2009). 

The study found contaminants including collagen, proteins, hydrocarbons, 

calcium carbonate, hydroxyapetite, esters, and fatty acids (Kobayashi et al., 

2009). Whilst it is clear that contaminants remain on the surface after 

decontamination, the authors state that the impact of these contaminants on 

infection control requires further study (Kobayashi et al., 2009). The study also 

highlighted the more detailed identification of contaminants through FT –IR 

spectroscopy compared to EDX analysis as only an elemental analysis was 

possible using EDX (Kobayashi et al., 2009).  

 

Though the ToF SIMS technique has not been used for surgical instrument 

contamination, the technique has been previously used to determine the 

cleanability of stainless steel contaminated with milk powder using a brush or a 

spray cleaning technique (Boyd et al., 2001). The spray cleaning technique was 

less efficacious at removing fatty acids than the brush technique though the 

spray technique resulted in an increase in surface protein removal (Boyd et al., 

2001). This study shows the potential application of the ToF-SIMS technique to 

instrument contamination.  

 

These sensitive surface analysis techniques can be used for the validation of 

cleaning processes. By sampling an instrument before and after decontamination 

at specific sites where contamination is noted, the ability of the cleaning 

process to remove these contaminants can be assessed. The definition of ―clean‖ 

may require readjustment as the increase in sensitivity of detection afforded by 

these techniques allows for the detection of smaller concentrations of protein 

and the cross contamination risk would have to be assessed. A combination of 

quantitative surface analysis methods such as EFSCAN and qualitative methods 

allowing for identification of these contaminants may help in this decision. 
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In conclusion, contamination was detected in HP parts before and after 

decontamination processes. A study into the cleanability of HP’s using 

documented processes should be considered to note the effect the cleaning 

process has on HP contamination. There exists a variety of surface analysis 

techniques to provide a microscopic view and detailed identification of 

instrument surface contaminants. In conjunction with previously described 

techniques to desorb contamination from the surface (Chapter 4, Chapter 5), it 

is possible to build a complete picture of instrument surface contamination. 

Whilst it is possible to examine groups of used, unprocessed and decontaminated 

instruments, the techniques are best used as part of validation of cleaning 

processes to put contamination into context and to identify areas where 

contamination remains to help inform development of instrument design or the 

cleaning process (Baxter et al., 2009). Qualitative data can also help put 

contaminants into context by determining any cross contamination risk or the 

study. The increased sensitivity of the techniques may result in more ―failures‖ 

of the cleaning process and defining an acceptable standard when considering 

sensitive surface analysis techniques should depend on the nature of the 

contaminant (Lipscomb et al., 2006c).  
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7 Chapter 7: Assesment of handpiece cleaning 

processes, chemicals and equipment. 
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7.1 Introduction 

The cleaning stage of the instrument decontamination process is used to remove 

inorganic and organic debris that may inhibit the subsequent disinfection and 

sterilization processes. These contaminants can be as diverse as proteins and 

complex bacterial biofilms. From the previous work in this study, it is clear that 

HP’s are contaminated with bacteria and protein associated with blood 

contamination (Chapter 4, Chapter 5).  

 

The first stage of biofouling of medical instrumentation is the adsorption of 

protein on the surface (Desroches et al., 2007). Bacteria can then adsorb to the 

surface using specific receptors for human proteins such as fibrinogen (Tegoilia 

and Cooper, 2002). When bacterial cells adsorb to a surface, cells can form a 

matrix consisting of polysaccharides, protein nucleic acids and amphiphilic 

compounds known as a biofilm (Costerton et al., 1978). The biofilm structure 

provides a physical and chemical barrier for the bacterial cells against 

antimicrobial agents and can also inhibit sterilization processes (Campanac et 

al., 2002, Gibson et al., 1999). A biofilm also allows the retention and shedding 

of bacterial cells if untreated. Cleaning solutions allow disruption of the biofilm 

structure and removal of adsorbed protein (Gibson et al., 1999).  

 

The parameters that affect cleaning efficacy are summarised in the Sinners 

circle, and these include the temperature of the cleaning solution, the cleaning 

solution used, the amount of time that cleaning occurs for, and the amount of 

mechanical energy that is used for the cleaning process (Smulders et al., 2007). 

Changing a variable may have a detrimental impact on cleaning outcomes or may 

result in more efficacious cleaning. 

 

Whilst most variables can only increase or decrease, changing the cleaning 

solution and the water quality may have multiple affects on the cleaning 

process. Detergents often have complex and unknown formulations and have 

different active compounds. Concerns have been raised over the effect of 

certain cleaning solutions on contaminant removal with some studies 

demonstrating the fixing of blood and protein to surfaces (Prior et al., 2004, 

Nakata et al., 2007). The water quality may also affect the cleaning process with 
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dissolved solids and the hardness of the water having an effect on cleaning 

efficacy. The parameters of water are dependent on the water source and may 

impact on the efficacy of cleaning at different locations.  

 

Previous work into cleaning efficacy has utilised either the in vivo process or 

involved the development of models based on various cleaning parameters. For 

some complex models, it is difficult to determine what effect the cleaning 

solution is having on cleaning efficacy (Alfa et al., 2006). A simpler cleaning 

model can measure the direct effects of the detergent on the surface to justify 

the expense of including them in a cleaning process.  

 

For washer disinfector cleaning validation, the European standard BS- EN- ISO–

15883 parts 1-5 provide details on the construction of test devices and the 

application of test soils to assess the efficacy of the washing processes. The test 

soil applied is dependent on the instruments or materials to be reprocessed and 

vary from defibrinated horse blood to complex formulations containing flour, 

blood and bacteria (Zuhlsdorf and Martiny, 2005). The efficacy of the cleaning 

process is measured using of 1 of 3 protein assays after desorption of residual 

protein from the test pieces or instruments.  

 

The aim of this chapter was to first develop and utilise simple in-vitro cleaning 

models to study the effect of alteration of cleaning parameters on the efficacy 

of blood removal from a stainless steel surface including the sampling of 

cleaning solutions recommended by the dental clinical effectiveness program. 

These detergents were then assessed for the ability to disrupt biofilms formed 

by dental HP isolates in vitro. The cleaning efficacy of novel HP cleaning 

machines was also assessed through the application of a protein based test soil 

on 3 different HP’s that was based on typical HP protein contaminants (Chapter 

5).  
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7.2 Results 

7.2.1 Water quality and detergent properties 

Tap water was obtained from the Glasgow Dental Hospital on the day of the 

experiment. The water and detergent qualities were measured using a PCSTestr 

35 (Eutech instruments Nijkerk Holland). The pH, conductivity, salinity and total 

dissolved solids of each water sample were determined (Table 7-1). A total of 3 

alkaline detergents, 3 enzymatic detergents, a handwash and a dental HP 

cleaning solution were sampled in the experiment along with 0.1M NaOH (Table 

7-2).  

Table 7-1 Properties of H2O used in the study 

H2O source pH 

Conductivity 

(µS) 

Salinity 

(ppm) 

Total dissolved 

solids (ppm) 

Tap (n=3) 6.41 63.7 35.6 46.2 

Reverse 

Osmosis(n=3) 5.49 2.3 12.5 3.6 
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Table 7-2 Parameters of sampled detergents 

Detergent Manual 

Ultra 

Sonic AWD Dosage 

Temp 

Specified pH  

Alconox® Yes Yes No 

10g 

detergent/1l 

H2O 

H2O = cold, 

warm or hot 9.5 

Endozime® 

AW+® Yes Yes Yes 

34ml 

detergent/8l 

H2O H2O = warm 7.13 

Haemo-

sol® Yes Yes No 

20g 

detergent/ 

5l H2O 

H2O = warm 

(50˚C) 10.5 

HiBi® 

Scrub N/A N/A N/A N/A N/A 5 

Rapidex® N/A N/A N/A 

1 sachet 

(28g) 

detergent 

H2O = 50˚C 

(20˚C-70˚C 

acceptable) 11 

Rapizyme® Yes Yes Yes 

10ml 

detergent/ 

5l H2O H20 = 38˚C 7.24 

Sonozyme® No Yes No 

1 sachet 

(25ml)/ 8l 

H2O N/A 5.5 

0.1M NaOH N/A N/A N/A N/A N/A 9.3 

N/A Denotes no instructions for use in machines or in cleaning processes.  
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7.2.2 Effect of cleaning time on blood removal from stainless 

steel discs 

The effect of agitation time on blood removal was assessed by setting the 

rocking platform to a moderate speed of 25, 20° tilts/min and 100 µl samples 

were taken at 1, 5, 10, 15, and 20 min. Samples were also taken of negative 

control discs at each time point. The experiment consisted of 3 discs and the 

experiment repeated 3 times. For statistical analysis, data was compared using a 

one way analysis of variance (ANOVA). 

 

A median total protein concentration of 3.2 mg was added to each disc. An 

increase in time resulted in an increase in blood removal (Figure 7-1,Table 7-3 

Blood removal from a stainless steel surface with time). A median of 201 µg of 

protein was isolated after 1 min of agitation, 528 µg after 5 min agitation, 1963 

µg after 10 min agitation, 2681 µg after 15 min agitation and 3211 µg after 20 

min agitation.  Significantly (p<0.05) more blood is removed between 5 and 10 

min though no significant difference is observed between the other time points. 

Over 90 % of blood protein is removed after 20 min of cleaning. No protein was 

isolated from the negative control discs.   
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Figure 7-1 Effect of cleaning time on the removal of citrated blood from a 

stainless steel surface. The effect of cleaning time on blood removal from a 

stainless steel surface was assessed by measuring the protein desorbed using the 

BCA assay. The agitation speed was kept constant at 25 20°C tilts/min and was 

assessed at ambient room temperature (22°C). An increase in cleaning time 

results in an increase in protein removal from the surface with significantly (* = 

p<0.05) more blood removal observed between 5 to 10 min. The data shown is 

the mean of results from, 3 discs from 3 experiments and the StEM. The control 

shows the initial blood protein concentration applied to the stainless steel disc. 
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Table 7-3 Blood removal from a stainless steel surface with time  

Time (min) 

Mean % Blood 

removed 

Median Blood 

Protein 

Removed (µg) 

Range Blood 

Protein 

Removed (µg) 

1 13 201 0 – 1044 

5 26 528 362.4 – 1875 

10 55 1963 1032 – 2676 

15 80 2681 1976 – 3348 

20 94 3211 2593 – 3411 

Positive control  3235 3190 – 3421 

Negative control  <5 <5 
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7.2.3 Effect of reverse osmosis water temperature on the removal 

of blood from a stainless steel disc 

For the effect of ROH2O temperature on blood removal, the tilting platform was 

set to 25, 20°tilts/min and each well containing a disc was inoculated with 1 ml 

of RO H2O at the temperatures of 22°C, 38°C and 50°C. The tilting platform was 

inserted into a KS40001 incubator (IKA®, Staufen Germany) at the appropriate 

temperature and a 100 µl sample was taken after 5 min. Samples were also 

taken of negative control discs for each temperature. The experiment consisted 

of 3 discs for each temperature of water sampled. For statistical analysis, data 

was compared using a one way ANOVA.  

 

A median of 4.2 mg of protein was added to each stainless steel disc. An 

increase in ROH2O temperature results in an increase in blood removal (Figure 

7-2,Table 7-4). A median of 1638 µg (range 915 – 1904 µg) of protein was 

removed after 5 min when the ROH2O temperature was 22°C , 2155 µg (range 

1387 – 2996 µg) of protein was removed at a temperature of 37°C and a median 

of 2656 µg (range 1328 – 3778) was removed at a temperature of 50°C 

Significantly (p<0.01) more blood is removed when the RO H2O temperature is 

raised from 22°C to 50°C (Figure 7-2,Table 7-4). No significant difference was 

noted when the RO H2O temperature was raised from 22°C to 38°C. No protein 

was isolated from the negative controls.  
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Figure 7-2 Effect of water temperature on the removal of citrated blood from 

a stainless steel surface The effect of ROH2O temperature on blood removal 

from a stainless steel surface was assessed by measuring the protein desorbed 

using the BCA assay. The agitation speed was kept constant at 25 tilts/min at 

20°C and samples were taken after 5 min. An increase in cleaning time results in 

an increase in protein removal from the surface with significantly (* = p<0.05) 

more blood removal observed between 5- 10 min. The data shown is the mean of 

results from, 3 discs from 3 experiments and the StEM. The control shows the 

initial blood protein concentration applied to the stainless steel disc 
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Table 7-4 Effect of ROH2O temperature on the percentage of blood removal 

RO H2O 

Temperature 

Mean % Blood 

Removed 

Median Blood 

Protein 

Removed (µg) 

Range Blood 

Protein 

Removed (µg) 

22˚C 35 1638 915- 1904 

37˚C 50 2155 1387 – 2996 

50˚C 60 2656 1328 – 3778 

Positive Control  4029 4029 – 4309 

Negative Control  <5 <5 
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7.2.4 Effect of agitation speed on the removal of blood from a 

stainless steel disc 

Each well containing a disc was immersed in 1 ml of RO H2O. To assess the effect 

of agitation speed, the rocking platform was set at 0, 25, and 45, 20° tilts/min 

and 100 µl samples were taken at 5 min. Samples were also taken of negative 

control discs for each agitation speed. The experiment consisted of 3 discs for 

every agitation speed sampled and the experiment repeated 3 times. For 

statistical analysis, data was compared using a one way ANOVA.  

 

A median of 3.1 mg of protein was added to each stainless steel disc. An 

increase in agitation speed results in an increase in blood removal (Figure 7-3, 

 

 

Table 7-5). A median of 374 µg (range 80 – 765 µg) of protein was removed when 

no agitation speed was applied, a median of 1158 µg (range 628.5- 1567 µg) was 

removed when a 25 tilts/min agitation speed was applied and a median of 2448 

µg (range 1508 – 2818 µg). Increasing the agitation speed to 25 tilts/min results 

in significantly (p<0.05) more blood removal than when no agitation speed was 

applied and significantly (p<0.001) more blood is removed when the agitation 

speed is increased from 25 tilts/min to 45 tilts/min. No protein was isolated 

from the negative controls.  
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Figure 7-3 Effect of agitation speed on the removal of citrated blood from a 

stainless steel surface. The effect of agitation speed on blood removal from a 

stainless steel surface was assessed by measuring the protein desorbed using the 

BCA assay. Samples were taken after 5 min and assessed at ambient room 

temperature (22°C) An increase in agitation speed results in an increase in 

protein removal from the surface with significantly (* = p<0.05) more blood 

removal observed when the speed is increased from 0 to 25 tilts/min and when 

the speed is increased from 25 tilts/ min to 45 tilts/ min (***p<0.001). The data 

shown is the mean of results from, 3 discs from 3 experiments and the StEM. The 

control shows the initial blood protein concentration applied to the stainless 

steel disc. 
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Table 7-5 Effect of agitation speed on the percentage and median blood 

removal from a stainless steel surface.  

Agitation 

Speed 

Mean % Blood 

Protein 

Removed 

Median Blood 

Protein 

Removed (µg) 

Range Blood 

Protein 

Removed (µg) 

0 13 374 80 – 765 

25 36 1158 628 – 1567 

45 73 2448 1508 – 2818 
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7.2.5 Efficacy of blood removal by detergents at room 

temperature 

Each sampled detergent was diluted according to manufacturer’s instructions in 

RO H2O and the cleaning parameters were set at a room temperature solution of 

22 OC with the tilting platform set to 25, 20° tilts/min and a 100 µl sample taken 

after 5 min. Detergents were also assessed at the manufacturers recommended 

temperatures and compared to RO H2O at the same temperatures. For statistical 

analysis, the protein removed by each detergent was compared to the protein 

removed by tap H2O  using a one way ANOVA.  

A median of 3.7 mg of blood protein was added to each stainless steel disc. The 

total blood protein removed by 9 cleaning solutions was compared with total 

blood protein removal by tap H2O alone (Figure 7-4). For each experiment, 

ROH2O removal of blood was also assessed at the same time. No solutions 

removed significantly more blood than the ROH2O control which removed a 

median of 1421 µg of protein (range 516- 1901 µg) including 0.1M NaOH which 

removed a median of 1691 µg (range 1170 – 2183 µg).  Of all the cleaning 

solutions sampled, Haemo-sol® removed the most blood protein with a median 

of 2070 µg (range 1314 – 3624 µg) removed (Figure 7-5). HiBi Scrub® removed 

significantly (p<0.001) less blood protein with a median of 0 µg (range 0 – 641 

µg) than ROH2O (Figure 7-5). For the alkaline detergents, Alconox® removed the 

least amount of blood protein of the detergents with a median of 927 µg (range 

137 – 1730 µg) and Rapidex® removed a median of 1585 µg (range 1020 – 2405) 

of blood protein (Figure 7-5). Of the enzymatic detergents, Sonozyme® removed 

the most blood protein with a median of 1907 µg (range 1248 – 2754) Rapizyme® 

removed a median of 975 µg (range 245 – 2816 µg) of blood protein and 

Endozime® detergent removed a median of 1421 µg (range 694 – 1984 µg). Tap 

H2O removed less blood protein than ROH2O with a median of 1356 µg (range 845 

– 2176) removed. 
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Figure 7-4 Comparison of blood protein removal by cleaning solutions. The 

efficacy of cleaning solutions at removing blood removal from SSS’s after 5 min 

of cleaning was assessed by measuring the protein desorbed using the BCA assay. 

All cleaning solutions were compared to blood removal by tap H2O which is 

represented by the baseline of the graph. Samples were assessed at ambient 

room temperature (22°C) and the agitation speed was set at 25 20°C tilts/min. 

All cleaning solutions were compared to the blood protein removed by tap H2O. 

No cleaning solutions removed significantly more blood than ROH2O alone though 

HiBi® Scrub and W & H cleaning solution remove significantly (***= p<0.001) less 

protein. Haemo-sol® detergent removed the most blood protein of the cleaning 

solutions sampled. Tap H2O removed less protein than RO H2O though this was 

not significant. The data shown is the mean of results from, 3 discs from 3 

experiments and the StEM.  
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Efficacy of detergents at blood removal at manufacturers 

recommended temperature 

Each sampled detergent was diluted according to manufacturer’s instructions in 

RO H2O and the tilting platform set to 25, 20° tilts/min and a 100 µl sample 

taken after 5 min. Detergents were also assessed at the manufacturers 

recommended temperatures and compared to RO H2O at the same temperatures. 

For statistical analysis, the protein removed by each detergent at manufacturers 

recommended temperature was compared to protein removed by detergents at 

room temperature using a one way ANOVA. 

 

A median of 3.1 mg of protein was applied to each stainless steel disc at 22°C 

and 50°C. When the environmental and the ROH2O temperature was increased to 

50°C, ROH2O removed a median of 2761 µg (range 2296 – 3000 µg) blood protein 

compared to a median of 1380 µg (range 0 – 1901 µg) blood protein at 22°C. 

Alconox® detergent removed a median of 1817 µg (range 798 – 2296 µg) blood 

protein compared to a median of 927 µg (range 137 – 1731 µg) of blood protein 

at 22°C. Haemo-sol® detergent removed a median of 2401 µg (range 1622 – 2776 

µg) blood protein compared to a median of 2070 µg (range 1314 – 3024 µg) of 

blood protein at 22°C (Figure 7-5,Table 7-6). Rapidex® detergent removed a 

median of 2476 µg (range 1428 – 3375 µg) blood protein compared to a median of 

1585 µg (range 1020 – 2405 µg) of blood protein at 22°C (Figure 7-5,Table 7-6). 

Rapidex® detergent removed significantly (p<0.05) more blood protein at 50°C 

than at 22°C (Figure 7-5,Table 7-6). A significant (p < 0.01) increase in 

percentage blood removal also occurred in ROH2O alone when the temperature 

was increased (Figure 7-5,Table 7-6). Alconox® and Haemo-sol® removed more 

blood protein at 50°C compared to 22°C though no significant difference was 

noted (Figure 7-5,Table 7-6). No protein was isolated from the negative controls.  

 

When the environmental and solution temperature was raised to 38°C, RO H2O 

removed a median of 2155 µg (range 1387 – 2996 µg) of blood protein compared 

to a median of 1380 µg (range <5 – 1901 µg) (Figure 7-6,Table 7-7). Endozime® 

detergent removed a median of 1893 µg (range 798 – 2296 µg) blood protein 

compared to a median of 1421 µg (range 137 – 1731 µg) of blood protein at 22°C 

(Figure 7-6,Table 7-7). Rapizyme® detergent removed a median of 2311 µg 
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(range 1879 – 3050 µg) blood protein compared to a median of 975 µg (range 245 

– 2581 µg) of blood protein at 22°C (Figure 7-6, Table 7.12). Endozime® removed 

significantly (p<0.001) more blood protein at 38°C than 22°C (Figure 7-6,Table 

7-7). No significant difference in percentage blood removal was noted between 

Rapizyme® and RO H2O at both temperatures (Figure 7-6,Table 7-7).  
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Figure 7-5 Effect of detergent manufacturers suggested temperature on the 

percentage blood removal by detergents. The efficacy of detergents at blood 

removal from stainless steel surfaces after 5 min cleaning at room temperature 

(grey bars) and 50°C (white bars) with the agitation speed set to 25 20°C 

tilts/min was assessed by measuring the protein desorbed using the BCA assay. 

Raising the solution and environmental temperature to 50 °C resulted in a 

significant increase (*= p<0.05, ** = p<0.01) in ROH2O blood removal and 

Rapidex® blood removal. Alconox® blood removal was increased but not 

significantly. No difference was observed in the case of Haemo-sol® detergent. 

The data shown is the mean of results from, 3 discs from 3 experiments and the 

StEM. The control shows the initial blood protein concentration applied to the 

stainless steel discs at each temperature.  

. 
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Table 7-6 Mean percentage and protein removed by each detergent at 22°C 

and 50°C 

Cleaning Solution 

Mean % Blood 

removed 

Median Blood 

Protein 

Removed (µg) 

Range Blood 

Protein 

Removed (µg) 

RO H2O 22°C 36 1380 <5 – 1901 

RO H2O 50°C 87 2761 2296 – 3000 

Alconox®  22°C 33 927 137 – 1731 

Alconox® 50°C 58 1817 799 – 2296 

Haemo-sol® 22°C 71 2070 1314 – 3624 

Haemo-sol® 50°C 71 2401 1622 – 2776 

Rapidex® 22°C 53 1585 1020 – 2405 

Rapidex® 50°C 82 2476 1428 – 3375 

Positive Control 22°C  3104 3023 -3157 

Positive Control 50°C  3180 2970 – 3284 

Negative Control 22°C   <5 <5 

Negative Control 50°C  <5 <5 

 



Chapter 7  224 

 

Figure 7-6 Effect of detergent manufacturers suggested temperature on the 

percentage blood removal by detergents. The efficacy of detergents at blood 

removal from stainless steel surfaces after 5 min cleaning at room temperature 

(grey bars) and 38°C (white bars) with the agitation speed set to 25 20°C 

tilts/min was assessed by measuring the protein desorbed using the BCA assay. 

Raising the solution and environmental temperature to 38°C resulted in a 

significant increase (*** = p<0.001) in Rapizyme® blood removal. ROH2O and 

Endozime® blood removal was increased but not significantly. The data shown is 

the mean of results from 3 discs from 3 experiments and the SEM. The control 

shows the initial blood protein concentration applied to the stainless steel discs 

at each temperature. 
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Table 7-7 Mean percentage and protein removed by each detergent at 22°C 

and 38°C 

Cleaning Solution 

Mean % 

Blood 

removed 

Median Blood 

Protein 

Removed 

(µg) 

Range Blood 

Protein 

Removed 

(µg) 

RO H2O 22°C 36 1380 <5 – 1901 

RO H2O 38°C 79 2155 1378 – 2996 

Endozime® 22°C 45 1421 137 – 1731 

Endozime® 38°C 58 1893 798 – 2296 

Rapizyme® 22°C 37 975 245 – 2581 

Rapizyme® 38°C  75 2311 1879 – 3050 

Positive Control 22°C  3104 3023 -3157 

Positive Control 50°C  3161 3063 – 3551 

Negative Control 22°C   <5 <5 

Negative Control 50°C  <5 <5 
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7.2.6 Efficacy of detergents at P. acnes biofilm removal  

A total of 20 P. acnes isoates including 1 1A types, 10 1B types isolated from 

GDH HP’s (Section 4.2.4) and 19 P. acnes isolates including 3 IA types, 8 1B types 

and 1 II type isolated from HP’s from the St Albans repair facility (Section 4.2.5) 

were resurrected from Pro-tect beads. A single bead was plated onto FAA agar 

and incubated anaerobically for 24 h at 37°C. Staphylococcus epidermidis strain 

was cultured onto blood agar and incubated overnight at 37 °C under 5% CO2. A 

single colony of each P. acnes strain and the S. epidermidis was added to 50 ml 

of reinforced clostridial (RC) broth that had been pre-reduced by boiling for 30 

min. Of the GDH isolates, a total of 13 cultures were incubated overnight at 

37°C anaerobically and 7 cultures were incubated overnight aerobically at 37°C. 

Of the repair facility isolates a total of 11 cultures were incubated overnight at 

37°C anaerobically and 8 cultures were incubated overnight at 37°C aerobically.  

 

The optical density (OD460) of each culture was taken using a spectrophotometer 

(Fisherbrand). Each culture was diluted in RC broth to an O.D of 0.2 representing 

1x108 cfu of bacteria. A total of 6, 300 µl samples of each isolate were added to 

separate wells of a clear Costar 96 well flat bottomed plate (Sigma Aldrich 

Dorset UK). Separate plates were used for each cleaning solution. Each plate was 

placed on a PMR tilting platform (Grant Instruments Cambridge, UK) at moderate 

speed (18 RPM) and incubated for 72 h anaerobically at 37°C or for 16h 

aerobically at 37°C. RC media was added to each plate as a negative control. RC 

broth was changed every 24h in each well for the 72h biofilms.  

 

For 72h biofilms, a 1% (v/v) solution of Haemo-sol® detergent and undiluted W & 

H cleaning solution were sampled. For 16h biofilms, a 1% (v/v) solution of 

Alconox®, Haemo-sol® and Rapizyme® and an undiluted W & H cleaning solution 

were samped.  The media was removed from each well PBS and a 300 µl sample 

of the appropriate cleaning solution was added to each well and incubated at 

room temperature for 16 min which is the length of time an instrument is 

exposed to detergent during some automated washing process (Section 2.1.3). 

After exposure, the supernatant was removed and the wells rinsed a further 3 

times in sterile PBS. Samples were compared to a positive, untreated control 
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and a positive control treated with PBS in place of a cleaning solution. The 

media was removed each day and cultured on FAA plates as controls. 

 

For biomass sampling, a total of 300 µl of 1% (w/v) crystal violet solution was 

added to each well and incubated at room temperature for 10 min. The wells 

were rinsed 3 times by tap water and 300 µl of a 70 % ethanol/ 5 % acetone 

solution was added to each well. The plate was incubated for 15 min and the 

solution transferred to a fresh plate before being read in a plate reader 

(Sunrise™ Tecan) at OD570. The bacterial cell viability of 16h biofilms was 

measured using the alamarBlue® assay (Invitrogen Paisley UK) according to 

manufacturer instructions. Each plate was incubated for 4 hours aerobically at 

37 °C and the plate measured in an omega flurostar plate reader at an 

excitation wavelength of 530 nm and emission wavelength of 590 nm.  

 

A total of 23/28 P. acnes isolates sampled were formed biofilms under 72h 

anaerobic conditions and a total of 13/15 isolates sampled formed biofilms 

under 16h aerobic conditions with the biomass resulting in a crystal violet OD570 

reading significantly greater than the negative control (Holmberg et al., 2009). 

After growth for 72 h and upon exposure to cleaning solutions, Haemo-sol® 

detergent significantly (p <0.001) reduced the P. acnes biofilm biomass to a 

median of 0.6 (range 0.4 – 1.2) compared to exposure to RO H2O where the 

biomass was a median of 0.9 (range 0.4 – 1.6) (Figure 7-7). Exposure to W &H 

cleaning solution resulted in a biomass median of 0.9 (range 0.5 – 1.507) (Figure 

7-7). After 72h growth of the S. epidermidis RP62A strain the biofilm biomass 

was calculated as a median OD570 of 1.1 (range 0.5 – 2) after exposure to PBS 

when the data from all experiments was combined (n=18) (Figure 7-8). Haemo-

sol® significantly (p<0.05) reduced the biomass to a median OD570 of 0.4 (range 

0.2 -1.6) compared to exposure to ROH2O which upon exposure reduced the 

biomass to a median of 0.78 (range 0.4 – 1.8) (Figure 7-8). No significant 

reduction of biomass was observed upon exposure to W & H cleaning solution 

with a median of 1.1 (range 0.4 – 1.9) observed (Figure 7-8).   

 

After 16h growth, the biomass of the P. acnes isolates was a median of 0.9 

(range 0.4 – 1.6) (Figure 7-9). This was significantly reduced by Alconox®, 

Haemo-sol® and Rapizyme® (p<0.001) compared to exposure to RO H2O alone 
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which reduced the biomass to a median of OD570 0.5 (range 0.1 – 1.7) (Figure 

7-9). Upon exposure tocleaning solutions, Alconox® reduced the biofilm biomass 

to a median OD570 of 0.2 (range 0.008 – 1.447), Haemo-sol® reduced the biomass 

to a median OD570 of 0.3 (range 0.02 -1.5) and Rapizyme® reduced the biomass 

to a median OD570 of 0.2 (range 0.02 – 0.8) (Figure 7-9). W & H cleaning solution 

did not result in a significant reduction of biofilm biomass with exposure 

resulting in a median OD570 of 1.0 (range 0.3 – 1.7) (Figure 7-9).  

 

After 16h growth, the untreated S. epidermidis biomass from all experiments 

was calculated as a median OD570 of 1.3 (range 0.8 – 1.5) (Figure 7-10). This was 

reduced, though not significantly to a median OD570 of 1.179 (range 1.0 – 1.3) 

when exposed to the ROH2O control (Figure 7-10). Exposure of the biofilm to 

Haemo-sol® detergent resulted in a significant (p <0.05) reduction in the biofilm 

biomass to a median OD570 to 0.3 (range 0 – 0.9) (Figure 7-10). Exposure to 

Alconox® (median OD570 0.3, range 0 – 1.264) and Rapizyme detergent (median 

OD570 0.5, range 0.1 – 1.2) resulted in a reduction in biomass though this was not 

significant (Figure 7.11). W & H cleaning solution (median OD570 0.89, range 0.4 – 

1.3) did not result in a reduction of biofilm biomass (Figure 7-10).  

 

The cell viability of untreated and treated P. acnes and S. epidermidis biofilms 

grown after 16h was assessed by measurement of the FU’s caused by the 

reduction of alamarBlue®  by live bacteria. For P. acnes biofilms, exposure to 

ROH2O resulted in a non significant decrease in alamarBlue® reduction (median 

101892 FU, range 39149 – 203732 FU) compared to the untreated control 

(median 231628 FU, range 149029 – 259453 FU) (Figure 7-11). Exposure to 

Alconox® (median 8818 FU, range 4308 – 44651), Haemo-sol® (median 10599 FU, 

range 4293 -42039 FU) and W&H cleaning solution (median 9288FU, range 4430 – 

41558 FU) resulted in a significant (p<0.001) decrease in alamarBlue® reduction 

by biofilms (Figure 7-11). Exposure to Rapizyme® (median 17390 FU, range 4602 

– 125952) also resulted in a significant (p<0.05) decrease in alamarBlue® 

reduction (Figure 7-11). All detergents decreased the alamarBlue® reduction to 

negative control levels (Figure 7-11).   

 

For S. epidermidis biofilms, exposure to ROH2O resulted in no change in 

alamarBlue® reduction (median120175 FU, range 106797 – 141772 FU) compared 
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to the untreated control (median 107990 FU, range 104838– 149006 FU) (Figure 

7-12). Exposure to Alconox® (median 5028 FU, range 4892 – 9411), Haemo-sol® 

(median 4777 FU, range 4617 - 7133 FU), Rapizyme® (median 7284 FU, range 

4889 – 35345) and W&H cleaning solution (median 4948 FU, range 4686– 5412 FU) 

resulted in a significant (p<0.001) decrease in alamarBlue® reduction by biofilms 

(Figure 7-12). All detergents decreased the alamarBlue® reduction to negative 

control levels.   

 

 

 

Figure 7-7 Total P. acnes biofilm biomass after treatment of cleaning 

solutions. P. acnes isolates from dental HP’s  were grown for 72h anaerobically 

in a 96 well plate to form biofilms. The biofilms were then exposed to cleaning 

solutions for 16 min and the biomass remaining after 3 rinses with PBS was 

measured using 1% crystal violet staining. Biofilms treated with Haemo-sol® have 

significantly (***= p<0.001) less biomass than RO H2O alone. There was no 

significant difference between biofilms treated with the PBS control and the W 

& H cleaning solution. Data shown is the spread of all P. acnes isolates 
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Figure 7-8 Total 72h S. epidermidis biofilm biomass detected after treatment 

with cleaning solutions. S. epidermidis strain RP62A was grown for 72h 

anaerobically in 96 well plates to form biofilms as a positive control for P. acnes 

biofilm formation. The biofilms were then exposed to cleaning solutions for 16 

min and the biomass remaining after 3 rinses with PBS was measured using 1% 

crystal violet staining. Biofilms treated with Haemo-sol® detergent have 

significantly (*= p<0.05) less biomass than when exposed to RO H2O alone. There 

was no significant difference between biofilm biomass treated with the PBS 

control and the W & H cleaning alcohol. Data shown is the spread of all S. 

epidermidis experiments.  
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Figure 7-9 Total 16h P.acnes biofilm biomass detected after treatment with 

cleaning solutions P. acnes isolates from dental HPs were grown for 16h 

aerobically in a 96 well plate to form biofilms. The biofilms were then exposed 

to cleaning solutions for 16 min and the biomass remaining after 3 rinses with 

PBS was measured using 1% crystal violet staining. Biofilms treated with 

Alconox®, Haemo-sol® and Rapizyme® have significantly (***= p<0.001) less 

biomass than exposure to ROH2O alone. There was no significant difference 

between biofilms treated with the ROH2O control and the W & H cleaner. Data 

shown is the spread of all P. acnes isolates. 
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Figure 7-10 Total 16h S. epidermidis biofilm biomass detected after 

treatment with cleaning solutions.  S. epidermidis strain RP62A was grown for 

16h aerobically in 96 well plates to form biofilms as a positive control for P. 

acnes biofilm formation. The biofilms were then exposed to cleaning solutions 

for 16 min and the biomass remaining after 3 rinses with PBS was measured using 

1% crystal violet staining. Biofilms treated with Haemo-sol® detergent have 

significantly (*= p<0.05) less biomass than when exposed to RO H2O alone. There 

was no significant difference between biofilms treated with the RO H2O control 

and biofilms treated with Alconox®, Rapizyme® and the W & H cleaner. Data 

shown is the spread of all S. epidermidis experiments. 
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Figure 7-11 Bacterial cell viability of 16h biofilms formed by P. acnes isolates 

treated with cleaning solutions. Biofilms formed by P. acnes isolates from 

dental handpieces were tested for bacterial cell viability after exposure to the 

cleaning solutions and after 3 rinses with PBS by measuring alamarblue® 

reduction. Biofilms treated with Alconox®, Haemo-sol® and W & H cleaner have 

significantly (***= p<0.001) less viability than exposure to RO H2O alone. 

Treatment with Rapizyme® also results in a significant (* = p<0.05) reduction in 

cell viability. All detergents reduced cell viability to negative control levels. 

Data shown is the spread of all P. acnes isolates. 
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Figure 7-12 Bacterial cell viability of 16h biofilms formed by S. epidermidis 

RP62A treated with cleaning solutions. Biofilms formed by S. epidermidis were 

tested for bacterial cell viability after exposure to the cleaning solutionsand 

after 3 rinses with PBS by measuring alamarblue® reduction. Biofilms treated 

with Alconox®, Haemo-sol®, Rapizyme® and W & H cleaner have significantly 

(***= p<0.001) less viability than exposure to RO H2O alone. All detergents 

reduced cell viability to negative control levels. Data shown is the spread of all 

S. epidermidis experiments. 
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7.2.7 Efficacy of in vivo handpiece cleaning processes 

For the validation of the HP cleaners, A total of 7 WA- 99 contra angle HP’s, 7 TA 

– 98 high speed HP’s, and 7 WS-75 surgical HP’s were sampled for each cleaning 

process. Of these, 3 of each HP were used as positive controls defined as a 

soiled HP that had not been subjected to cleaning and 1 of each HP was used as 

a negative control defined as an unsoiled handpiece put through each cleaning 

process. The HP test soil was based on the Swedish test soil detailed in BS 

ISO/TS consisting of citrated horse blood recalcified with O.1M CaCl2 by adding a 

total of 100 µl of CaCl2 was added to 900 µl of citrated blood(Zuhlsdorf et al., 

2002). The blood protein concentration was based on the maximum protein 

concentration found on each handpiece part during the handpiece study 

(Chapter 5). Each dilution was performed in a solution of 400 µg/ml of salivary 

mucin representing the estimated physiological concentration in human saliva 

(Rayment et al., 2000). For the high speed TA- 98 HP’s and the contra-angle WA 

– 99 HP’S, the blade of the turbine and the internal surface of the push button 

were inoculated with 20 µl of test soil equivalent to 20 µg of blood protein 

diluted in salivary mucin and each spray channel was contaminated by 10 µl of 

test soil in each tube equivalent to 40 µg of blood protein diluted in salivary 

mucin. The outer sleeve was contaminated with 50 µl of test soil.  Additionally 

the middle gear of the WA-99 HP’s was contaminated with 20 µl of test soil 

equivalent to 20 µg of blood protein diluted in salivary mucin. For the WS – 75 

HP’s, the turbine and the middle gear was contaminated with 20 µl of test soil 

equivalent to 60 µg of blood protein diluted in salivary mucin and the outer 

sleeve was contaminated with 50 µl of test soil equivalent to 150 µg of blood 

protein diluted in salivary mucin.  HP’s were then dried at ambient room 

temperature of 25°C for 15 min prior to cleaning with process 2 and for 60 min 

prior to cleaning by process 1. After cleaning, each HP part was aseptically 

dismantled and each component was added to a centrifuge tube and immersed 

in a measured volume of 1% (v/v) SDS. Each tube was added to a boiling water 

bath and boiled for 10 min at 100°C. For spray channel sampling, each lumen 

was rinsed once with 1 ml of boiling 1 % (v/v) SDS for a total sample volume of 2 

ml. Each sample was measured using the OPA assay with comparison to a BSA 

standard curve.   
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No protein was detected from the negative control parts. For the reprocessed 

HP’s, residual protein was isolated from a turbine (21.88 µg) and spray channels 

(54.5 µg) of 1 TA-98 HP (Table 7-8), the head gear of a WA-99 HP (76.4 µg) the 

outer sleeve of a WA-99 HP (2.29 µg) (Table 7-9), and outer sleeves of 3 WS-75 

HP’s and the middle gear of a WS-75 HP (median 370.4 range 321.4 – 387.6) 

(Table 7-10). No protein was detected from 2 TA -98 HP’s and 2 WA-99 HP’s 

(Table 7-8,Table 7-9). For the HP’s reprocessed using process 1-1, protein was 

isolated from all WS-75 HP’s (Table 7-10). Protein was isolated from the 3 

turbines (median 36.9 µg range 29.37 – 42.31 µg), the 2 middle gears (median 

59.8 µg, range <5 – 89.66 µg), and 2 outer sleeves (median 126.3 µg, range <5 – 

339.8 µg) of the WS -75 HP’s (Table 7-10). For the HP’s reprocessed using 

process 1-2, protein was isolated from the turbine (91 µg) and the middle gear 

(2.3 µg) of 1 WS- 75 HP (Table 7-10). When HP’s were reprocessed using process 

1-3, protein was isolated from the headgear of 1 TA-98 HP (110.7 µg) (Table 

7-8). No protein was isolated from the TA-98 HP’s and WA-99 HP’s reprocessed 

with process 1-1 and 1-2 and no protein was isolated from WS-75 HP’s 

reprocessed with process 1-3 (Table 7-8, Table 7-9,Table 7-10). 
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Table 7-8 Protein isolated from TA-98 HP’s before and after cleaning. 

HP Part 

(n=3) 

Median 

Protein 

before 

reprocessi

ng (µg / 

part) 

Process 1 -1 

Median 

Protein 

concentratio

n (µg / part) 

Process 1-2 

Median 

Protein 

concentrati

on (µg / 

part) 

Process 1-3 

Median 

Protein 

concentrati

on (µg / 

part) 

Process 2 

Median 

Protein 

concentrati

on (µg / 

part) 

TA-98 

Turbine 

and Head 

gear 

141.8 

(Range 

117.8 – 

193.5) 

<5 <5 <5 

(Range <5 – 

110.6) 

<5 

(Range <5 – 

21.88) 

TA-98 

Spray 

channel 

107.3 

(Range 

77.62 – 

135.9) 

<5 <5 <5 <5 

TA-98 

Outer 

Sleeve 

216.1 

(Range 

130.9 – 

326) 

<5 <5 <5 

 

<5 

(Range <5 – 

54.53) 
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Table 7-9 Protein isolated from WA-99 HP’s before and after cleaning. 

HP Part 

(n=3) 

Median Protein 

before 

reprocessing 

(µg / part) 

Process 1-1 

Median 

Protein 

concentrati

on (µg / 

part) 

Process 1-2 

Median 

Protein 

concentrati

on (µg / 

part) 

Process 1-3 

Median 

Protein 

concentrati

on (µg / 

part) 

Process 2  

Median 

Protein 

concentrati

on (µg / 

part) 

WA-99 
Turbine 
and 
Head 
gear 

192.7 

Range (138.9 – 
237.3) 

<5 <5 <5 <5 

(Range <5-
76.15 

 WA-99 
Middle 
Gear 

147.4 

Range (101.5-
198.2) 

<5 <5 <5 <5 

 WA-99 
Spray 
channel 

164.9 

Range (114.8 – 
298.2) 

<5 <5 <5 <5 

WA-99 
Outer 
Sleeve 

122.5 

Range (101.2-
183.5) 

<5 <5 <5 

 

<5 

(Range 0 – 
2.290) 
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Table 7-10 Protein contamination of WS-75 HP’s before and after cleaning 

HP Part 

(n=3) 

Median 

Protein before 

reprocessing 

(µg / part) 

Process 1-1 

Median 

Protein 

concentrati

on (µg / 

part) 

Process 1-2 

Median 

Protein 

concentrati

on (µg / 

part) 

Process 1-3 

Median 

Protein 

concentrati

on (µg / 

part) 

Process 2 

Median 

Protein 

concentrati

on (µg / 

part) 

WS- 75 

Turbine 

and 

Head 

gear 

370.8 

Range (187.3-

589.2) 

36.91 

(Range 29.37 

-42.31) 

<5 

(Range <5 – 

91.07) 

<5 <5 

 

WS-75 

Middle 

Gear 

355.6 

Range(117.8 – 

567.4) 

59.8 

(Range <5- 

89.66) 

<5 

(Range <5-

2.297) 

<5 <5 

(Range <5- 

335.7) 

WS-75 

Outer 

Sleeve 

488.4 

Range(403.9 – 

600) 

126.3 

(Range <5 -

339.8) 

<5 <5 

 

370.4 

(Range 321.4 

– 387.6) 
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7.3 Discussion 

The cleaning of dental HP’s, like other surgical instruments, is necessary to 

allow the removal of organic soil and protein contamination that may not be 

removed or may inhibit the sterilization process (Lipscomb et al., 2007). These 

include blood contamination and the bacterial biofilm. For dental HP’s, serum 

albumin was detected in used, unprocessed HP samples which is the most 

abundant protein in blood (Desroches et al., 2007) (Chapter 5). This finding, 

along with visible blood on the HP’s, indicates that blood is a typical 

contaminant of HP’s before reprocessing. The current decontamination method 

used in the GDH first uses cleaning in an AWD followed by the Assistina cleaning 

machine (Table 2-3). The Assistina utilises an alcohol based cleaning solution and 

alcohol has been shown to fix any blood and protein to surfaces (Prior et al., 

2004). To represent blood contamination, the Swedish test soil recommended by 

BS-ISO/TS for washer disinfector validation was used (Michels, 2008).  

 

Bacteria growing on a surface are known to form a biofilm matrix to allow 

adsorption and increased survivability of bacterial cells (Coenye et al., 2007). 

The physical biofilm barrier is composed of proteins, DNA, and various structures 

that may inhibit sterilization of the bacterial cells and therefore disruption of 

the biofilm structure is carried out by the cleaning stage of the instrument 

decontamination process (Mah and O'Toole, 2001, Das et al., 2009). In dental 

HP’s the majority of bacteria isolated were CONS and P. acnes, and these were 

isolated from various locations especially from the surgical HP (Chapter 4). 

Therefore, an in vitro system was utilised to measure the disruption of biofilms 

of P. acnes isolates and an S. epidermidis type strain known for the ability to 

form biofilms and to represent the CONS (Buckingham-Meyer et al., 2007, 

Polonio et al., 2001).  

 

For the validation of in vivo cleaning processes, new HP cleaning machines were 

evaluated for cleaning efficacy. A total of 4 processes were sampled and 

compared to aid in product development. Process 1 has several cleaning stages 

lasting over 1 min with water being used as a cleaning solvent and a disinfection 

stage where detergent is introduced and process 2 involves a forced air 

containing detergent and lubricating oil lasting 4 seconds through the spray 
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channel and out of the head before the application of detergent onto the sleeve 

of the HP for external cleaning.  

For in vitro cleaning validation, the effect of the four cleaning parameters 

described by the Sinners circle, cleaning time, temperature, force and cleaning 

solutions on the removal of blood protein were assessed. This utilised an in vitro 

tilting platform to provide an adjustable, reproducible cleaning force (Prior et 

al., 2004). There is currently no European standard to test for cleaning efficacy 

which meant this experiment was based on some of the instructions of BS-EN-

ISO-15883 1-6 to test cleaning efficacy. The test soil was selected to represent a 

typical instrument contaminant as opposed to a harder to remove test soils 

(Desbuquois et al., 2010). The blood was left on the surface for 16h to represent 

the longest time it can take for an instrument to begin a decontamination cycle 

(Prior et al., 2004). Previous studies have shown the effects of drying time on 

cleanability of surfaces with a longer drying time representing a greater 

challenge for cleanability (Lipscomb et al., 2007). Blood protein removal was 

measured using the BCA assay, recommended by BS-EN–ISO-15883 part 1 to 

determine the protein concentration in solution. Knowing the blood protein 

concentration removed allows numerical and statistical comparison of blood 

removal. Previous studies have utilised the ninhydrin assay for the measurement 

of blood protein removal though this was to indicate the presence of protein 

rather than a quantitative measurement (Nakata et al., 2007). A thermostable 

adenylate kinase (tAK) has also been utilised for a quantitative analysis into the 

efficacy of washer disinfectors by measuring the enzyme removal on stainless 

steel (Hesp et al., 2010). Whilst this enzyme is represented as a model for prion 

protein with similar structure and behaviour, it does not represent the multiple 

proteins that are adsorbing to a surface in vivo (Hesp et al., 2010).  

 

An increase in time and an increase in agitation speed result in an increase in 

blood protein removal and both represented an increase on the total cleaning 

force applied. An increase in the temperature of the cleaning solution results in 

an increase in the blood removal from the surface. The temperatures sampled 

represented ambient room temperature and elevated temperatures 

recommended by the detergent manufacturer’s instructions (Table 7.1). In 

previous studies, a higher temperature of cleaning solution causes protein 
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denaturing and fixation to the surface (Crutwell, 2008, Desroches and Omanovic, 

2008). These fixing effects in the case of the blood are observed at 

temperatures of 75 OC and this effect is found not to occur at temperatures 

closer to 60 OC (Crutwell, 2008).  

 

The previous results from the studies of the 3 cleaning parameters were used to 

assess the efficacy of detergents recommended by the Scottish dental clinical 

effectiveness programme and additional detergents used in LDU’s (Table 7.1). 

For further comparison, HiBi® Scrub, a chlorohexidine based antimicrobial hand 

wash and an example of a solution that is used in some surgeries for instrument 

cleaning was sampled along with 0.1M NaOH and W & H HP cleaning solution 

(Smith et al., 2009). NaOH has been recommended for reprocessing of 

instruments contaminated with the prion protein and W & H cleaning solution is 

alcohol based and currently used to process HP’s (Kasermann and Kempf, 2003) 

(Table 2.2). The sampling time of 5 min and the agitation speed selected 

represent sub maximum levels of blood removal to allow comparison. The 

efficacy of each detergent at removing blood protein was first assessed at room 

temperature of 22oC followed by the detergent manufacturers recommended 

temperatures if provided (Table 7-2). If a recommended temperature was not 

provided, a temperature was selected based on the instructions available for 

other detergents. For blood removal at room temperature, Haemo-sol® 

detergent removed the most blood though no cleaning solutions removed 

significantly more blood than the ROH2O controls. Both HiBi® Scrub and the W & 

H cleaning solution removed significantly less blood highlighting the inadequacy 

of these products as instrument cleaners. Whilst there was variation of the mean 

percentage blood removal of the ROH2O controls between experiments, the 

values were not statistically significant and changes in efficacy may have been 

due to variations in starting blood protein concentration. 

 

To explain the action of detergents, the addition of an alkaline solution has been 

shown to reverse the interactions of serum albumin, the most abundant protein 

in blood, with a stainless steel surface by reversing the charge of the oxide layer 

that spontaneously forms on stainless steel (Sakiyama et al., 2004). Acidic 

solution has been shown to promote adsorption of serum albumin and may 

account for the low blood removal by the acidic HiBi® Scrub (Sakiyama et al., 
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2004). Chlorohexidine, the main constituent of HiBi® Scrub has also been shown 

to precipitate the blood protein and not allow subsequent cleaning (Nakata et 

al., 2007). The addition of H2O with a near neutral pH will also reduce 

adherence of BSA and change the conformation of surface bound proteins by 

internalising hydrophobic residues and increasing the surface area of bound 

proteins (Sakiyama et al., 2004).  

 

It is not clear if the differences in detergent efficacy are due to the composition 

of the detergent due to the lack of information available from manufacturers. 

Treatment with alkaline detergents resulted in more blood protein removal than 

0.1M NaOH showing that just having an alkaline solution alone cannot account 

for the cleanability shown. The detergents may also have different buffering 

capacities to ensure a stable pH compared to 0.1M NaOH alone.  Previous studies 

have shown detergents are less effective at cleaning blood than water alone 

(Zuhlsdorf et al., 2002) and that detergents can fix blood to surfaces (Nakata et 

al., 2007).  A study into the effect of detergents on blood showed the alteration 

of blood protein by fixation to the surface or the formation of precipitated 

protein (Nakata et al., 2007). Exposure to some detergents resulted in no 

protein removal upon subsequent treatment with an enzymatic detergent though 

blood was removed when no prior detergent immersion had taken place (Nakata 

et al., 2007). Cleaning using a washer disinfector removed all blood and this was 

attributed to the action of the water jets (Nakata et al., 2007). Knowledge of 

the ingredients of detergents may inform the development of detergents that 

can remove blood and protein contamination and improve the efficacy of the 

cleaning process. 

 

The HP isolates that were studied were P. acnes isolated from S11 surgical HP’s 

before decontamination and S11 surgical and TA-98 high speed HP’s sent for 

repair (Chapter 4). Since not all P. acnes isolates had been type identified at the 

time of writing, no comparison was made between the type isolates and the 

ability to grow biofilms. The HP’s for repair included documentation certificates 

indicating that they had been through a decontamination process though this 

could not be independently verified. A S. epidermidis strain was also sampled as 

a control and a representative of CONS isolated from dental HP’s (Chapter 4). P. 

acnes is associated with the oral cavity and human skin where it can cause 
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benign inflammatory infections such as acne (Burkhart and Burkhart, 2007). P. 

acnes has been associated with bloodstream infections, the contamination of 

surgical implants and has been isolated from endodontic lesions (Ramage et al., 

2003). If HP’s used to treat these lesions were contaminated with P. acnes, the 

dental HP may act as a source of cross infection.  

 

Currently, there are no reports on the detergent or other cleaning solution 

efficacy of removing P. acnes biofilms. Previous studies have focused on the 

efficacy of antimicrobials due to the growth of P. acnes on internal prosthetic 

hip joints and bone cement (Ramage et al., 2003). These studies have found that 

bacteria were more resistant to antibiotics due to the structure and the slow 

metabolic growth of bacteria which may not take up the antibiotic (Ramage et 

al., 2003). Similar mechanisms are evident for detergent resistance with P. 

aeruginosa biofilms resisting quarternary compounds by virtue of the ECM 

substrate and S. aureus hypothesised to resist through metabolic changes 

(Campanac et al., 2002). Further resistance mechanisms involve the 

hydrophilicity of the ECM surfaces, which may stop interaction of compounds 

with the ECM, and the inability of hydrophobic substances to pass through water 

channels (Campanac et al., 2002).  

 

The aim of this study was to measure first the ability for P. acnes isolates to 

form biofilms under optimum and worst case scenario HP reprocessing conditions 

(Prior et al., 2004) before measuring the efficacy of detergents at disrupting the 

biofilm structure to allow the removal by subsequent rinses. This represents the 

disinfection and rinsing stages of the decontamination process. Biofilms were 

exposed to detergents for the same time as the disinfection stage of the 

decontamination cycle of the washer disinfector used in the Glasgow Dental 

School CSSD department (Table 2.2) and is the amount of time that 

contaminants would be exposed to detergents 

 

When P. acnes and S. epidermidis isolates were grown under worst case 

instrument reprocessing conditions of 16h under aerobic conditions, all 

detergents sampled aside from the W & H cleaning solution resulted in a 

significant reduction in biofilm biomass when compared to RO H2O alone. Again, 

the alkaline detergents Haemo-sol® and Alconox® were able to significantly 
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remove more biomass than RO H2O alone as well as the enzymatic detergent 

which acts by digesting large organic molecules into water soluble dispersible 

fragments but is specific depending on the enzymatic target (Lequette et al., 

2010). The W & H cleaning solution again failed to remove any of the biofilm 

material which further highlights the unsuitability of the W & H cleaning solution 

as a disinfectant. 

 

Whilst each detergent was effective in disrupting the biofilm to allow 

subsequent removal, the W & H cleaning solution did not result in any change in 

biofilm biomass after rinsing, showing the fixing of the biofilm structure to the 

surface. This cleaning solution contains alcohol and this result is consistent with 

previous studies that have shown protein fixation when alcohol is applied (Prior 

et al., 2004). Haemo-sol® is an alkaline detergent and shows significant removal 

of the biofilm structure. The hydrated structure of the biofilm is known to allow 

small molecules such as alkaline detergents to move freely through the structure 

which will allow disruption which may denature the biofilm proteins or reverse 

the interactions of these proteins with the surface (Stewart et al., 2001).  

 

The W & H cleaning solution reduced the bacterial cell viability to negative 

control levels which shows the penetration through the biofilm structure as the 

W &H cleaning solution does not remove the biofilm structure. Whilst the 

alkaline detergents also reduced the cell viability, the effect of the biofilm 

structure removal cannot be ruled out. The enzymatic detergent reduced cell 

viability but not to the same levels as the other detergents. This might be due to 

the neutral environment that the enzymatic detergent presents which will not 

result in P. acnes cell death.  

 

Previous work on the efficacy of biofilm removal by cleaning solutions has 

studied the removal of S. aureus and P. aeruginosa with results showing 

increased removal by alkaline and acidic detergents and no difference in biofilm 

removal when a neutral detergent is applied. Whilst this is comparable to the 

results from this study, the actual cleaning was undertaken at high pressure and 

this may itself remove the biofilm without the application of detergent (Gibson 

et al., 1999).   
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Whilst the in vitro biofilm model has shown the efficacy of detergents at 

removing biofilms made by HP isolates, the model is not a complete biofilm 

model when in reference to dental HP’s. The plastic of the plates does not 

represent the stainless steel handpiece surface which may have a different 

interaction with the biofilm proteins and their removal by detergents. The 

temperature to which the bacteria are exposed to in dental HP’s is variable with 

heating coming during operation and cooling mediated by the dental unit 

waterline and may affect the growth of cells and the composition of biofilms. A 

surgical instrument biofilm may contain a number of different species which may 

explain the P. acnes isolates that were unable to form biofilms in the in vitro 

model. 

 

For in vivo validation of HP cleaning, a novel test soil was applied based on 

previous findings (Chapter 6). The test soil comprised citrated horse blood with 

calcium chloride diluted in salivary mucin. Calcium chloride causes the citrated 

blood to coagulate and is similar to the behaviour of blood contamination in vivo 

(Crutwell, 2008). The addition of salivary mucin adds a protein associated with 

the oral cavity. Mucins are glycosylated proteins that are present on all mucosal 

surfaces and saliva (Rayment et al., 2000). The glycosylated structure gives 

them a viscous consistency that makes the test soil harder to remove (Rayment 

et al., 2000). The blood protein concentration was based on HP residual protein 

levels quantified (Chapter 5) 

The test soil was applied to areas that protein was isolated from (Chapter 5). A 

number of internal parts and the external sleeve were inoculated to test the 

efficacy of each cleaning process at cleaning both internally and externally. The 

test soil was allowed to dry for 15 min for reprocessing using the future Assistina 

and 60 min before process 1 reprocessing to represent manufacturers 

instructions. The time of drying will have an impact on the adsorption of protein 

to the surface and therefore the cleanability of the instruments. Longer drying 

times have been found to make protein harder to remove during cleaning and 

therefore the shorter drying time used for future Assistina challenging may have 

resulted in a test soil that is easier to remove (Lipscomb et al., 2007).   

A total of 3 different cleaning processes based on process 1 were sampled using 

the system. These were not defined and it is therefore not possible to speculate 
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on the differences between each process. Process 1-1 removed all protein 

inoculated on TA -98 and WA-99 HP’s from all parts to limits below the 

sensitivity of the assay which would pass the BS-EN-ISO 15883 part 1-6 standards. 

For the WS -75 HP’s, protein is found on all locations due to the increased 

protein concentration of the test soil. Similar findings were observed with 

process 1-2 with the protein reduced to limits below the sensitivity of the assay 

on the TA -98 and WA -99 HP parts. Protein was only isolated from 1 WS -75 HP 

which is an improvement on process 1-1. Process 1-3 removed protein to below 

the limits of the detection of the assay on all handpieces aside from 1 TA 98 HP 

and represents the most efficacious cleaning process of all tested.  

Process 2 was found to remove all protein from all spray channels sampled but 

not the turbines of all TA -98 and WA-99 handpieces. This may be due to the 

location of the turbine as the last part to be contacted by the spray. There is 

also potential for contamination to be washed out the spray channels to settle 

on the turbine and cap if not rinsed thoroughly. The presence of residual protein 

on the outer sleeve also shows shortcomings in external cleaning. The surgical 

WS-75 HPs still had 75 % of the initial soil on the outer sleeves showing very little 

removal by process 2. The increase in test soil protein concentration and 

therefore the increasing challenge could not be removed by the future Assistina 

process. 

The results suggest that process 1 is more effective at removing protein and 

mucin deposits than process 2. This can be explained using the Sinners circle 

which defines the key parameters of cleaning and their effects on the cleaning 

process. These parameters are time, cleaning chemicals, cleaning force, and 

temperature. Considering these factors, process 1 has a longer cleaning process, 

a greater cleaning force and a higher temperature than process 2 and therefore 

should present in theory a superior cleaning process. The cleaning chemicals are 

demineralised water for process 1 and detergent for process 2. Whilst no 

information is available on the composition of the detergent, the detergent may 

also fix blood protein to the surface.   

The procedure employed to test the cleaning efficacy represents a more 

meaningful cleaning challenge due to the test soil based on typical HP 

contaminants. The total blood protein was lower than estimated due to an 
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inability to determine the initial concentration of blood protein. The salivary 

mucin diluent increased the protein concentration close to the mean levels 

previously isolated (Chapter 5). The components represent common HP 

contaminants but does not represent a complete picture of these contaminants. 

Bacteria are found before the decontamination process and any test soil may 

also contain a microbial element to make the test soil more realistic and harder 

to remove. 

No single standard yet exists for ―acceptable‖ protein levels on reprocessed 

instruments. The BS EN ISO–15883 part 1 defines an acceptable level as below 

the detection limit of one of three protein assays which are stated as 2 mg/m2 

for the Ninhydrin assay, 30 – 50 µg for the bicinchoninic acid assay, and 0.003 

µmol of OPA sensitive amino groups for the OPA assay. Work undertaken by 

Lipscomb and colleagues (2006) also determined the threshold of sensitivity for 

similar reagents to be equivalent to 9.25 µg/ 10mm2for Ninhydrin and 6.7 µg/ 

10mm2 for the Biuret test (Lipscomb et al., 2006a). If this was to be regarded as 

a threshold for cleanliness then both cleaning processes would fail this 

validation. A protein concentration of 200 µg/HP has also been suggested in the 

Zentral Steril 2008 Suppl Oct 16 as an upper limit threshold for cleanliness 

though this represents a greater protein concentration than was found in the HP 

research project and does not represent a realistic cleaning challenge.  

 

It was not possible to undertake statistical analysis of the data due to the small 

sample size and number of replicates. Whilst this pilot study gives some idea of 

the efficacy of each cleaning process, firmer conclusions could be made by 

sampling more HP’s.     

These studies have described in vitro and in vivo systems to test the efficacy of 

cleaning solutions at removing common HP contaminants. These methods can be 

applied to the cleaning validation of other surgical instruments if the 

contaminants are known and can be isolated. For HP’s, the study has also 

highlighted the unsuitability of an alcohol based HP cleaner which fixes the 

blood and biofilm and in the case of the biofilm, prevents subsequent removal. 

Whilst ROH2O was as efficacious as detergents at removing blood protein, 

alkaline detergents such as Haemo-sol® resulted in biofilm structure removal 

and a reduction in bacterial cell viability. Due to the nature of P. acnes and the 
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abundance in HPs, any HP decontamination process should include P. acnes 

biofilm control measures. Further work is needed to characterise the 

multispecies biofilms containing other bacteria isolated from dental handpieces 

and methods of disrupting this biofilm to allow for HP decontamination.  

For in vivo cleaning validation, all processes sampled were able to remove 

protein from internal and external HP parts to varying degrees. Process 1-3 

resulted in the most HP parts with no detectable protein. An increased sample 

size for the same method will provide more robust conclusions and fully 

determine the efficacy of the machines at cleaning dental HP’s.  
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8 Chapter 8: Discussion 
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8.1 Introduction 

As early as 1924, Dental HP’s were recognised as an infection control problem 

(Appleton Jr and L, 1924). This was before HP’s derived rotary power by 

compressed air, had internal cooling systems based on the high pressure spray of 

water and before the HP had a more complex internal structure involving 

fibreoptic lights and other gears. After a public health scare in 1990 when 

patients were infected with HIV after dental treatment (Lewis et al., 1992), 

more focus was placed on decontamination procedures in dental clinics including 

the use of steam sterilizers and it was around this time dental HP’s were 

referred to as ―the weak link of infection control‖ when it was clear that 

contamination was able to enter the internal areas of the HP during use (Lewis 

et al., 1992). The source of HP contamination is from the oral cavity and the 

dental unit water line (Abel et al., 1971, Lewis et al., 1992). These 

contaminants can subsequently be released into patients when the compressed 

air and cooling water is operated again (Lewis and Boe, 1992). It is clear that 

despite advances in HP technology that aim to stop contamination entering such 

as anti retraction valves (Ozawa et al., Hu et al., 2007b), contamination is still 

able to enter the HP which has a more complex internal structure than in the 

past (Herd et al., 2007) therefore both the external and internal structures must 

be decontaminated after use.  

The last published study into HP contamination in vivo was sampling low speed 

HP’s for bacteria in 2007 (Herd et al., 2007). Therefore, contamination of HP’s 

still occurs in more recent times.  

8.2 Implications of findings 

The aim of this study was to characterise the contamination of dental HP’s 

before and after decontamination processes. To this end, the study 

characterised bacteria and protein contaminants before undertaking a detailed 

surface analysis of HP surfaces.  
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8.2.1 Impact of research 

Though the dental HP has been shown to be contaminated with bacteria in the 

past, this study has found larger numbers of bacteria on each location and a 

larger number of species was also isolated than in previous studies by using a 

more sensitive extraction technique (Kellett and Holbrook, 1980, Dreyer and 

Hauman, 2001) (Chapter 4). This has increased the knowledge of the typical 

microbial contaminants and shown the advantages of sonication for the sampling 

of instrument contamination (Kellett and Holbrook, 1980, Dreyer and Hauman, 

2001).  

The most important finding in this study was the characterisation of protein 

contamination of dental HP’s. This is so far the only study on HP’s to apply 

quantitative analysis of HP parts by using the OPA assay that is recommended by 

BS-EN–ISO-15883 part 1 and used in previous instrument contamination studies 

(Smith et al., 2005, Vassey et al.). The method selected for desorption of 

protein was also based on BS-EN-ISO-15883 part 1 which recommends flushing of 

instruments with 1% (v/v) SDS. The method of extraction was changed to boiling 

of the sample to provide increased extraction efficiency and to allow 

reproducibility of the method. It was also essential to pick a method that will 

allow the protein to be visualised by SDS-PAGE with sacrifices made in protein 

extraction efficiency compared to previous studies (Baxter et al., 2006). Protein 

was found on all HP parts that had previously been shown to be contaminated by 

bacteria mainly the turbine (Kellett and Holbrook, 1980) and the spray channel 

(Dreyer and Hauman, 2001). Though the surgical HP inner gear has not previously 

been sampled in previous studies, it was assumed that this would be 

contaminated during use. The qualitative assessment of HP protein using SDS-

PAGE was possible with the surgical gears upon precipitation of the samples. The 

main shortcoming with this method is that analysis is reliant on what 

contamination can be removed from the surface. To overcome this, a detailed 

surface analysis of HP surfaces using SEM, EDX analysis and a novel EFSCAN 

technique (Chapter 6). Contamination was detected on every surface sampled, 

including decontaminated surfaces. SEM and EDX analysis revealed additional 

contaminants including calcium based residue and contamination trapped in 

lubricating oil. Lubricating oil has been shown to inhibit sterilization of 
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contaminants by not allowing steam penetration (Lewis et al., 1992, Hegna et 

al., 1978). The EFSCAN analysis detected more median protein than had been 

isolated when contamination was desorbed from the surface (Chapter 5).  

8.2.2 Handpiece contamination – test soil development and 

implications for cleaning process 

Validation of washer disinfectors by the BS-EN-ISO-15883 part 1 requires the 

removal of a specific test soil by each cleaning process. A total of 7 test soils 

have been deemed suitable for testing cleaning of surgical instruments including 

rigid endoscopes all of which have different ingredients and numbers of 

ingredients. The soils can range from blood with clotting factors, such as in the 

case of the Swedish and Austrian test soil, to a multi-ingredient soil such as the 

German test soil containing semolina, butter, sugar, milk powder, and a 

suspension of E. faecium (Table 8-1). Though some studies have shown the 

reproducibility of the process in laboratory environments (Zuhlsdorf and Martiny, 

2005), it is clear that the more complex a test soil, the harder it will be to 

remove and a machine unable to remove the German test soil may still be 

deemed suitable if it removes the less complex Austrian or Swedish test soil 

(Desbuquois et al., 2010).  

Decontamination standards often require a process that can remove and sterilize 

the most difficult to remove soils and the most heat tolerant organisms. The 

times and temperatures of sterilization processes are based on the killing of a G. 

stearothermophilus spores that has greater heat resistance than microorganisms 

encountered in the medical environment. If a cleaning process can remove a 

formulation that represents more challenge than would be encountered during 

routine use and the process can sterilize G. stearothermophilus spores then the 

decontamination process will also clean and sterilize any challenge encountered 

routinely. There have previously been calls for test soils that are specifically 

designed for each instrument based on the highest concentration of 

contaminants found in vivo (Alfa et al., 1999). To illustrate this debate, a recent 

study of the cleanability of dental HP’s contaminated with the Edinburgh test 

soil found that washer disinfectors were unable to clear the test soil from HP 

turbines (Walker et al., 2010). Whilst legally this would imply that the washer 
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disinfector used would be unsuitable for HP cleaning, the Edinburgh test soil may 

contains an estimated 3.1 g of protein that is significantly larger concentration 

than would be found in any HP sampled in this study. The use of a test soil that 

contained similar protein concentrations to that found in vivo (turbines 210 µg, 

spray channel 448 µg, surgical gear 1936 µg) may have resulted in the machine 

removing protein below the limit of detection and therefore would be suitable 

for routine cleaning of HP’s.  

If a test soil for HP’s was to be developed, qualitative analysis showing the 

presence of serum albumin and salivary mucin give an estimate of the 

constituents. Serum albumin is the most abundant protein in blood and plasma 

(Desroches et al., 2007) and that combined with the mass spectrometry analysis 

of used, unprocessed surgical HP’s indicates that an HP test soil will consist of 

blood. Salivary mucins are glycosylated proteins and a major constituent of 

human saliva (Hu et al., 2007a) indicating that a blood and saliva combination 

would make an appropriate test soil (Table 8-1)though the initial concentrations 

of protein added would be dependent on the applied location. Identification of 

the other proteins present in the HP eluent showed mainly blood constituents 

that further justifies the inclusion of blood in the test soil.  

Some test soils including the German and the American also have a microbial 

constituent. This study indicates that the majority of bacteria from all locations 

were CONS (turbine 4x104 CFU, spray channel 3x104 CFU, surgical gear 1.7x105 

CFU) and a representative CONS would be suitable for incorporation into the test 

soil. Any test soil containing bacteria requires a 5 log reduction from a total 

starting concentration of 1x108 CFU, which is how much bacteria would be 

present in a high speed and low speed HP test soil. The surgical gear has less 

total bacteria and a 5 log reduction would remove all the bacteria which may 

mean this minimum cleaning efficacy would require alteration. Surface analysis 

of dental HP’s revealed contaminants immersed in lubricating oil (Chapter 7). 

The addition of lubricating oil to instruments has long been thought to inhibit 

sterilization of bacteria and removal of contaminants (Edwardsson et al., 1983). 

The addition of lubricating oil to the test soil may provide a greater challenge 

for contaminant removal though the object of the decontamination process is 

not to remove lubricating oil.  
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Knowledge of the HP contaminants allowed the development of in vitro models 

to test the cleaning efficacy of cleaning solutions (Chapter 7). For blood 

removal, no detergent based cleaning solution removed more blood than ROH2O 

alone though alkaline and enzymatic detergents were able to reduce the biomass 

of biofilms made by HP isolates. A solution manufactured specifically for HP 

cleaning fixed the blood and the biofilm structure to the surface and its use 

should be discontinued and replaced with an alkaline detergent which combined 

significant biofilm biomass removal with blood removal comparable to ROH2O 

alone. These tests can also be adapted to test the cleaning efficacy of other 

contaminants or test the efficacy of other cleaning solutions.   

Table 8-1 Details of test soils for validation of surgical instrument cleaning 

and proposal for new dental HP test soil. Taken from BS-ISO/TS part 5 

Country Constituents of test soil 

Austrian Heparinized sheep blood coagulated with protamine 

German test soils  Sheep blood, E. faecium 

 Egg yolk, E. faecium 

 Semolina, butter, sugar, milk powder, E. faecium 

Germany II Tetramethylbenzidine 

hydrogen peroxide solution 

bovine haemoglobin 

Netherlands Bovine serum albumin fraction 5 

porcine gastric mucin tye 3 

bovine fibrinogen fraction 1 

bovine thrombin  

Sweden Citrated cattle blood coagulated with calcium chloride 

United Kingdom Defibrinated horse blood/sheep blood, egg yolk, 
dehydrated hog mucin 

Unites States of 
America 

Protein/organic soil (user preference), B. atrophaeus 
endospores 

Albumin, haemoglobin, fibrinogen, thrombin 

Proposed dental 
HP test soil 

Coagulase negative Staphylococci, P. acnes biofilms,  

Citrated blood with CaCl2 (Turbine concentration 200 µg, 
Spray channel concentration 400 µg, Surgical HP 
concentration (2000 µg). Salivary mucin. 
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8.2.3 Handpiece contamination – cross contamination risks 

Very little bacteria and protein were isolated from HP’s after decontamination 

using the GDH method (Section 5.2-10). No bacteria were isolated from turbines 

and surgical gears after decontamination using our extraction method (Chapter 

5). Despite surgical gears having significantly more bacteria than turbines and 

spray channels before decontamination, surgical HP’s are designed for simple 

disassembly to allow access of the inner gear for cleaning due to the invasive 

procedures carried out by the surgical HP. Bacteria were found in significantly 

smaller numbers in spray channels after decontamination. The bacteria 

identified were P. acnes, CONS and Gram negative bacilli which are associated 

with opportunistic infections of the oral cavity though these are not fatal 

(Jackson et al., 1999, Fujii et al., 2009, Aragone et al., 1992). The bacteria were 

not present in large numbers but the fact that bacteria are present indicates a 

failure of the GDH sterilization process and requires further investigation 

involving a larger sample size.  

Refering to the BS-EN-ISO-15883 part 1 standard where a positive reaction with 

the OPA assay indicates a failure of the decontamination process, a total of 7 

turbines, 5 spray channels and 1 surgical gear would fail this cleaning validation. 

The sensitivity of the OPA assay was calculated as 5 µg/ml of protein (Chapter 3) 

and opinion differs as to the cross contamination risk associated with protein 

cotamination (Lipscomb et al., 2006a). A protein based contaminant known to 

cause disease is the prion protein that causes Creutzfeldt- Jakob disease (CJD) 

which is a fatal neurodegenerative disease (Glatzel et al., 2003) whilst most 

protein contamination will only be benign. The prion protein is resistant to 

steam sterilization (Taylor and McConnell, 1988) and certain chemical 

inactivation methods (Mould et al., 1965). The risk of direct CJD transmission 

through dental procedures is rated as low according to recent department of 

health guidelines (Department of Health, 2007) with an estimated risk 

assessment and a study of oral and brain human tissue of CJD victims showed 

that only the brain and trigeminal ganglion contained any detectable prion 

protein (Head et al., 2003). No prion potein was detected in the alveolar nerve, 
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dental pulp, gingiva, salivary gland or tongue that are more likely to be 

contacted during dental surgery (Head et al., 2003). An animal model has shown 

the transmission of prion protein through intradental injection of the left incisor 

(Ingrosso et al., 1999). This represents a worst case scenario that shows that 

transmission through this oral route is possible. This current study did not 

attempt to identify the prion protein from HP samples but the presence of 

internalised blood protein indicating blood protein may be of concern due to the 

transmission of prion protein through blood transfusion (Flanagan and Barbara, 

1996), (Llewelyn et al., 2004).  

Surface analysis using SEM and EDX analysis reveals microscopic contamination 

on surfaces that had been through decontamination processes (Chapter 7). The 

impact of this contamination is unclear due to the limited identification of these 

contaminants. One issue highlighted was the presence of contaminants 

surrounded by lubricating oil which may have implications for the use of 

lubricating oil before decontamination as it may trap contaminants and prevent 

their removal. The use of lubricating oil should ideally follow the 

decontamination process to allow contaminants to be removed.  

8.2.4 Limitations of the study  

The survey of HP contaminants using desorption (Chapter 4, Chapter 5) was 

based on a few key HP parts such as the turbine that had been shown to be 

susceptible to contamination in previous studies (Lewis and Boe, 1992). It is 

conceivable that contamination may travel to other parts of the HP and be 

missed by the survey, such as the internal gear of low speed HP’s(Chin et al., 

2006). These additional inner parts and gears would have no direct contact with 

the patient even upon the passage of water or compressed air though an 

argument can be made that the entire HP must be sterile to assure a sterile 

instrument. The access of these parts would also require specialist dismantling 

of the HP that would cause it to cease to function or require extensive repair. 

Whilst swabbing of these parts could isolate bacteria and protein the current 

study preferred an approach with increased sensitivity as opposed to swabbing 

which has varying efficacies (Lipscomb et al., 2006a). Therefore a complete 

picture of HP contamination was not possible in this survey.  
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The HP’s sampled had to return to the general circulation of the GDH and 

therefore could not be sacrificed for access to parts or to apply a more sensitive 

protein removal technique or to utilise certain surface analysis techniques 

involving chemical fixation of samples. Whilst this represented a cost saving for 

the study the fact that contaminants may be missed cannot be ignored. Ideally, 

a number of HP’s would be sacrificed to allow a more complete analysis 

involving acid stripping or fixation of the instrument for visualisation of organic 

contamination on a surface using SEM. The high cost of HP’s is a major obstacle 

to any studies of this nature and an alternative would be to sacrifice certain HP 

parts.  

The bacteria isolated from HP’s did not incorporate or identify any non 

culturable bacteria either due to their fastidious nature or the inability to grow 

on the media selected. A larger selection of media and application of 16S PCR 

sequencing will allow identification of additional isolates. 

Protein isolated from 20 precipitated samples of turbines and spray channels 

before decontamination was at too low a concentration to be identified by the 

MS method (Chapter 6). Precipitation methods will inevitably result in a loss of 

some protein (Chapter 6) though were essential for this study due to the large 

sample volumes. The precipitation of more samples of turbines and spray 

channels may allow for a higher concentration of protein that is able to be 

identified by mass spectrometry. With the data available for the development of 

an HP test soil, it is assumed that turbines and spray channels are exposed to 

similar contaminants to the surgical gear albeit at lower protein concentrations.  

8.3 Future work 

Future work leading on from this research can be applied to study the 

contamination and decontamination of both HP’s and other instruments. Dental 

practitioners, whom may have varied decontamination processes (Smith et al., 

2009), provide the majority of dental services in the UK and the contaminants 

encountered may provide a more realistic contamination for a test soil. This 

would also inform on the optimum methods for the decontamination of dental 

HP’s that can be applied to a dental practice setting that may not have the 
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resources and space to set up a decontamination facility that exits in a larger 

hospital.  

 

A gap in this study was the sampling for viruses which are capable of being 

internalised and survive inside the HP (Epstein et al., 1995). Some blood borne 

viruses are capable of causing fatal disease if patient exposure occurs. For HP’s 

in vivo, HIV and HBV DNA has been isolated after treatment of infected patients 

(Hu et al., 2007b, Lewis and Boe, 1992). The DNA does not indicate if the virus is 

viable and capable of causing disease. HP studies using PCR to highlight the 

presence of DNA coupled with cell culture infectivity studies would identify the 

potential viral contaminants as well as indicating the presence of viable viruses 

(Epstein et al., 1995). 

 

There exists a lack of validated data justifying the use of AWD’s for the cleaning 

of dental HP’s which are recommended for routine decontamination. Whilst 

WD’s are recommended as the gold standard for cleaning and is used in central 

decontamination facilities (Smith et al., 2009), recent studies have shown that 

they do not always result in an increase in protein removal when compared to 

ultrasonic baths or other methods of cleaning (Vassey et al., 2011). Therefore to 

justify guidelines for HP’s, the efficacy of WD’s should be measured much as the 

vacuum sterilizer has been validated through scientific study (Andersen et al., 

1999). The surface analysis techniques detailed in this study can allow for the 

sensitive validation of decontamination processes (Baxter et al., 2009). By 

discovering and highlighting areas of the instrument that are contaminated 

during use, the subsequent surface analysis of the same locations after cleaning 

would show if the contaminants have been removed or if the cleaning process 

would require redesign to access certain areas.  

The presence of CONS and P. acnes isolates in decontaminated HP’s requires 

further investigation to determine the cross contamination risk. Both CONS and 

P.acnes have been isolated from endodontic pockets and are therefore 

associated with dental infections (Niazi et al., 2010). The link between dental 

HP’s and infections can be proven by isolating bacteria from both the HP and any 

dental infection and sequencing any identical species recovered. This would 
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confirm an origin of dental infections as inadequately decontaminated dental 

HP’s.  

 

The HP is a mechanical tool that has a complex internal structure and requires 

lubrication to prolong the life of the HP and it is clear that both the structure 

and the lubricating oil are inhibiting decontamination processes. Whilst the cross 

contamination risk is still a long way from being fully explored, the design of 

future HP’s should take decontamination into account. Recently, single use HP’s 

have been developed to overcome the issues associated with decontamination of 

dental HP’s.Whilst single use HP’s would eliminate the cross contamination risk 

and the need for the development of decontamination processes; the cheap 

material used in the construction may not allow it to undertake some processes. 

The single use HP may also be associated with increased costs and increased 

waste that would be generated may make a single use HP currently unworkable. 

An alternative to single use HP’s can be a fundamental change in HP design. This 

would require collaboration between researchers, HP manufacturers, engineers 

and perhaps manufacturers of other surgical PT’s to inform development of an 

HP that can deliver an instrument of equal performance, provide cooling of the 

tooth surface, have as little moving parts as possible be easily dissasembled and 

include ceramic ball bearings to reduce or eliminate the need for lubrication. 

With this additional work, the dental HP may lose the unenviable title of the 

―weak link of infection control‖.  
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