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Abstract 
 
Management of fungal biofilms represents a significant challenge to oral 

healthcare. As a preventive approach, minimising adhesion between intra-oral 

devices and microorganisms would be an important step forward. Denture 

stomatitis (DS) is a multifactorial denture-associated inflammation of the oral 

mucosa where candidal biofilms are one of the contributing factors. Therefore, 

understanding candidal biofilms on dentures and finding novel strategies to 

control these biofilms are of significance. Interference with the adhesion step of 

biofilm formation is hypothetically effective strategy to control biofilms.   

 

To understand the relationship between denture candidal load, denture material 

type and C. albicans biofilm forming heterogeneity in DS, quantitative polymerase 

chain reaction (qPCR) molecular method and crystal violet (CV) assay were used. 

This study investigated two novel strategies to control C. albicans biofilms through 

interfering with adhesion: natural polyphenol curcumin (CUR) and modifying the 

topography of the denture material surface. Based on the optimised effective CUR 

concentrations, CUR adsorption to PMMA denture material was 

spectrophotometrically analysed. Based on these data, the effect of adsorbed CUR 

to PMMA and CUR pre-exposure on adhesion of C. albicans were assessed. The 

effect of CUR on Candida-Candida adhesion was investigated and the expression 

profile of selected adhesion and aggregation-associated genes was assessed using 

qPCR method. Micro/nano-fabricated polycarbonate and PMMA materials were 

replicated using injection and compression moulding techniques, respectively and 

were characterised using scanning electron microscopy (SEM). Adhesion of C. 

albicans on the micro and nano-scaled patterns was assessed using microscopic 

and qPCR molecular methods, respectively. The physical characteristics of the 

materials were assessed using theta tensiometer and a white light profiler.  

 

The data demonstrated that although C. albicans was detected in greater 

quantities in diseased individuals, it was not associated with increased biofilm 

biomass. Denture substrata were shown to influence biofilm biomass, with 

poly(methyl methacrylate) providing the most suitable environment for C. 

albicans to reside.  



III 
 

Subsequent studies showed that CUR concentrations of 50 μg/ml could prevent 

adhesion to PMMA. This effect was enhanced by the CUR pre-treatment of yeast 

cells (>90% inhibition, p < 0.001). Investigation of the biological impact of CUR 

showed that it preferentially affected immature morphological forms (yeast and 

germlings), and actively promoted aggregation of the cells. Transcriptional 

analyses showed that CUR temporally modulated adhesion and aggregation 

associated genes. Finally, PMMA denture material was replicated to show nano 

features. These topographies influenced adhesion of C. albicans, depending on 

the candidal morphological form and the shape. Nano-pit spatial arrangements 

variably affect the adhesion of C. albicans, where SQ arrangement demonstrated 

a significant anti-adhesive capacity. Differential adhesin expression was observed 

on these surfaces, which were affected by the wettability and roughness of 

surfaces tested.  

 

In summary, C. albicans is an important determinant of denture disease, so 

preventing its adhesion and biofilm formation were worthwhile objectives. This 

thesis has shown that CUR molecules and SQ nano-pit topographies reduced C. 

albicans adhesion, demonstrating that chemical and physical inhibition strategies 

are useful. The data presented in this thesis showed the high potential of the novel 

strategies to be used against C. albicans biofilms, and encourages the further 

investigation of these approaches against polymicrobial denture biofilms.   
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1.1 Introduction 

As the elderly population expands to a predicted two billion by 2050, the number 

of denture wearers will concomitantly rise. Edentulousness is an irreversible 

clinical condition that can be described as an ultimate marker of oral disease 

burden (Cunha-Cruz et al., 2007). It is also associated with socioeconomic factors, 

with higher prevalence reported in the poor and women (Bedos et al., 2003). All 

types of dentures (complete, partial and overdenture) can be associated with oral 

mucosal lesions with predisposing factors that can be physical such as chronic 

irritation, immunological such as hypersensitivity or microbiological (Jainkittivong 

et al., 2010).  

Currently, around 20% of the UK population wear removable dentures of some 

form, with 70% of UK adults older than 75 years old wearing dentures (Hannah et 

al., 2017), with many of these individuals suffering from denture stomatitis (DS), 

an inflammation of the palate (Gendreau & Loewy, 2011). Poor oral hygiene is 

frequently observed within this patient group and several factors can impact the 

onset of DS such as salivary flow, denture cleanliness, age of denture, smoking 

and diet (Martori et al., 2014b). A large proportion (>two-thirds) of individuals 

who wear removable complete dentures may suffer from DS, though most 

individuals are asymptomatic (Gendreau & Loewy, 2011). DS represents the most 

frequent oral mucous lesion in elderly individuals (Rivera et al., 2017). Denture-

oral hygiene instruction and professional guidance is required, which is more 

significant in the elderly population who could suffer from cognitive and manual 

dexterity obstacles (Zenthofer et al., 2013). Only a minority of sufferers 

experience pain, itching or burning sensation, discomfort or taste disturbance. 

Soft tissue inflammation below or above the denture, as a result of persistent 

exposure to microorganisms, is characteristic of DS (O’Donnell et al., 2017) 

A recent systematic review showed that there is no well-defined treatment 

strategy of DS because of the multi-causative nature of this inflammatory response 

(Yarborough et al., 2016). This may rationalise why research was focused on 

prevention and inhibition of denture microbial biofilms (Park et al., 2015;Tsutsumi 

et al., 2016). Nevertheless, endeavours to create antimicrobial denture materials 
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often result in a collateral damage of the mechanical properties that may fail the 

prosthesis (Paleari et al., 2011). This chapter will review the influences of 

removable prosthodontic appliances on health, focus on how various factors 

influence a move towards disease, and introduce existing and novel clinical 

management strategies.  

1.2 Evolution and importance of removable prosthodontic 
appliances 

Prosthodontic appliances have been used since ancient times right through to our 

own contemporary period. The ancient Egyptians in 2500 BC tried to replace 

missing teeth using natural teeth connected to one another by gold wires 

(Forshaw, 2009). The first endeavour to fabricate a realistic denture, including 

denture base, was in the fifteenth century in Europe using blocks of ivory or bone 

(Murray & Darvell, 1993). US president George Washington had ivory dentures 

(Ring, 2010). The use of ivory or bone as raw materials for denture fabrication 

continued until the year 1780 when it was replaced by porcelain, and latterly in 

1820 gold had been introduced to prosthodontic field as a denture base (Murray & 

Darvell, 1993). Vulcanite then superseded all the previous denture base materials 

in 1850 when Goodyear was granted a patent for mixing sulphur with natural 

rubber, then celluloid and bakelite (a phenol-formaldehyde resin) were 

introduced, though were not typical substitutes for vulcanite. After around a 

century of vulcanite reigning, in 1935 the acrylic resins, specifically the poly 

methylmethacrylate (PMMA) were introduced. Having evolved after more than 3 

decades of extensive research it had many advantages over vulcanite, including 

dimensional and colour stability, inertness, and the possibility of chemical bonding 

of artificial teeth made from the same material. Given these important 

properties, in 1946 approximately 95% of fabricated dentures were manufactured 

from PMMA, with cobalt-chromium base metal alloys playing an adjunct role in 

denture fabrication (Corrado, 1990;Murray & Darvell, 1993;Williams, 2015). 

Despite the general trend of declining tooth loss, the world-wide demographic 

change to an aging population has seen an overall net gain in the demand for 

dental prostheses (Douglass & Watson, 2002).  
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Dentures are removable prosthetic replacement of missing teeth and associated 

soft and hard tissues for complete or partially edentulous patients. Functional 

(mastication and phonetics) and aesthetic restoration, and therefore restoration 

of the somatic and psychological health, are the main advantages of denture wear, 

where oral health-related quality of life is usually enhanced after prosthodontic 

treatment (Montero et al., 2013;Swelem et al., 2014). Several studies have 

revealed a positive impact of prosthodontic treatment on the temporomandibular 

joint disorders (Goiato et al., 2010;Abdelnabi & Swelem, 2015). Moreover, 

improvement of oral functions after head and neck cancer surgery, such as 

hemimaxillectomy, can be achieved by obturator dentures that aim to close the 

defect. The obturator denture separates the oral and nasal cavities and prevents 

nasal regurgitation of food and liquids and avoid hyper-nasal speech, besides the 

facial profile support and ordinary benefits of dentures (Chen et al., 2016a). Thus, 

dentures are considered of significant importance for the general wellbeing of 

denture wearers, though are not without their disadvantages. 

1.3 Mechanopathological responses to removable 
prosthodontic appliances  

Through the last two decades, intensive research had been performed to confirm 

the link between the denture and oral, as well as systemic health (Nikawa et al., 

1998b). Poorly fitted dentures may reduce chewing and masticatory performance, 

which in turn negatively impact the general health and can deteriorate the 

nutritional status of the denture wearer (Garrett et al., 1996;Sahyoun & Krall, 

2003). Wearing a removable oral prosthesis alongside poor denture plaque 

management could influence systemic health. Although causality has not been 

well established, vigilant hygienic measures should be considered for patients with 

systemic diseases (Le Bars et al., 2015). Indeed, there is even suggestions that 

treatment of DS is able to improve endothelial function and minimise risk of 

atherosclerosis and hypertension (Osmenda et al., 2017). It has also been reported 

that denture plaque has a role in initiating unanticipated lung infections such as 

aspiration pneumonia in immunocompromised and medicated elderly population 

(Nikawa et al., 1998b). Poor oral hygiene was significantly related to nosocomial 

and aspiration pneumonia, as several serious pathogenic microbes were isolated 
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from the oral cavity of institutionalized elderly persons, especially those in 

hospital ICUs and nursing home settings (Scannapieco, 2006;Kuyama et al., 

2010;Iinuma et al., 2014). Furthermore, a systematic review indicates that teeth 

brushing after meals, a thorough cleaning of denture at least once a day, in 

addition to professional oral hygiene care once a week, are all necessary to reduce 

aspiration pneumonia and associated mortality in fragile elderly people individuals 

(van der Maarel-Wierink et al., 2013). Further studies report that life-threatening 

pneumonia was doubled in elderly denture wearers, indicating a potential 

relationship between denture wear and respiratory infections (Iinuma et al., 

2014). This is endorsed by a recent report demonstrating the abundance of several 

potential respiratory pathogens on denture surface of healthy and diseased 

individuals using a molecular approach (O'Donnell et al., 2016). Therefore, the 

denture has an inherent capacity to be a hazardous reservoir of infectious 

pathogens, that have the potential under certain circumstances to influence 

systemic health. An association between denture plaque and chronic obstructive 

pulmonary disease (COPD) has also been reported by Przybylowska et al. (2014), 

where 90% of the study patients had pathogenic pulmonary microorganisms in 

their denture plaque, with 75% of these having a yeast.  

From another systemic perspective, and given the association between Candida 

species and denture wearing (Webb et al., 1998b;Radford et al., 1999;Ramage et 

al., 2006), a positive relationship between oral Candida species and occurrence 

of oral cancer was uncovered by Alnuaimi et al. (2015). That study observed a 

highly significant oral Candida carriage rate in oral cancer subjects, which has 

been corroborated by Uittamo et al. (2009). It was reported that C. albicans is 

associated with the formation of acetaldehyde (a potent carcinogenic compound) 

via metabolism of glucose. Moreover, the carcinogenesis process and metastasis 

could be developed and progressed by the C. albicans through several 

mechanisms, such as the production of carcinogenic nitrosamines and activation 

of CD4 T-cells to produce specific interleukins that stimulate the angiogenesis of 

the tumors (Ramirez-Garcia et al., 2016). Collectively, denture wearing has more 

profound systemic implications than we may generally acknowledge. 
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Locally, the potential oral pathological response to denture wearing is 

multifactorial. Studies have shown a significant role of medication on oral health 

of denture wearers (Carr et al., 1993), a significant physical effect of denture 

surface and biomechanics on denture plaque accumulation and associated dental 

and periodontal status (Drake & Beck, 1993), the positive role of maintenance of 

a good denture hygiene (Shay, 2000), and the negative role of the inappropriate 

use of a product or a technique (Verran et al., 2014). Besides, other factors may 

complicate the denture-oral cavity relationship, such as salivary flow, dietary 

effect and microbial colonisation (Turner et al., 2008;Altarawneh et al., 

2013;Martori et al., 2014a). These contributing factors are summarised in Figure 

1.1.  

Denture biomechanics can contribute to oral disease, where poorly fitted and 

fabricated complete or partial dentures could lead to deterioration of the hard 

tissues (teeth and bone), such as exposure of the abutment teeth to excessive and 

poorly distributed forces that produce bone resorption and increased teeth 

mobility (Aydin & Tekkaya, 1992). In some cases, poorly fitted partial dentures 

may lead to root fracture of the abutment tooth (Mizuno et al., 2016). Another 

example on the local mechano-pathological response to dentures is combination 

syndrome, which is characterised by increased bone loss in the anterior region 

under the maxillary complete denture opposing a lower anterior natural teeth, 

causing a hyperplastic flabby ridge (Palmqvist et al., 2003).  

Dentures might also physically affect soft tissue (oral mucosa), and spots of 

traumatic ulcers could evolve due to high extension of the borders of denture 

flanges and occlusal instability. Additionally, hyperplastic fibrous tissue, or 

denture irritation hyperplasia, could evolve in response to chronic irritation from 

poorly fitted denture or overextended flanges (Carlsson, 1997). Burning mouth 

syndrome, which is characterised with painful burning sensation in the oral cavity 

without any obvious lesion, was positively associated with denture wearing, 

though it is of multifactorial aetiology (Svensson & Kaaber, 1995;Mukatash-Nimri 

et al., 2017).  
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Figure 1.1 The multiple contributing factors in oral health of denture 
wearers. 

 
From a microbiological point of view, denture-associated detriments might be 

more complicated and recalcitrant to therapy. This is attributed to the oral 

environment, host immunological response and associated microbiome, where the 

oral cavity represents a typical milieu for microbial colonisation (Preshaw et al., 

2011;Benso et al., 2013). Furthermore, denture material surfaces especially the 

unpolished fitting surface that is in an intimate contact with the mucosa 

exaggerate such a problem because of the inherent roughness, voids and crevices 

that could provide a shelter for the microbes and increase their capacities to shear 

forces, which can clearly observed by scanning electron microscopy (Verran & 

Maryan, 1997;Ramage et al., 2004), as shown in Figure 1.2.  
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Figure 1.2 SEM image of non-polished acrylic denture base material with and 
without yeast cells. Scale bar is 20 um.   

1.4 Denture stomatitis 

1.4.1 Signs and symptoms and classification  

DS is a chronic erythematous and oedematous inflammation of oral mucosa 

localized to areas in direct contact with the fitting surfaces of the removable 

prosthodontic appliances, although it could be detected in association with 

orthodontic appliances and obturators (Webb et al., 1998a). The denture bearing 

area of the maxillary mucosa is the typical inflammation site. Usually, it is 

asymptomatic, although it could be accompanied by swelling and bleeding of the 

mucosa, dryness, burning sensation and unpleasant taste and halitosis of the oral 

cavity. Moreover, it was reported that one to two thirds of the denture stomatitis 

patients complain discomfort in their oral cavity (Arendorf & Walker, 1987;Webb 

et al., 1998a). Newton's classification has divided its clinical manifestation into 

three types based on the grade of inflammation severity. Type I: localized 

inflammation or pinpoint hyperaemia, Type II: diffuse hyperaemia 

(erythematous), where more diffused erythema involving large part or entire 

denture covered mucosa; Type III: granular with papillary hyperplasia distributing 

over the centre of the hard palate and the alveolar ridge (Scully & Felix, 2005) 

(Figure 1.3). 
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(i)     (ii)     (iii)                          

 

Figure 1.3 Denture stomatitis clinical presentations according to Newton’s 
classification. (i) localised hypermedia: Grade I (ii), widespread erythematous 
inflammation: Grade II, (iii)Granular and papillary hyperplasia: Grade III (da 
Silva et al., 2011). 

 

1.4.2 Epidemiology and aetiology 

The epidemiological reports indicate a varied prevalence of DS among denture 

wearers ranging between 15->70% (Gendreau & Loewy, 2011). Age and gender are 

important factors in incidence of DS, where elderly people and women are more 

liable to this disease and showed higher incidence rate (Gendreau & Loewy, 2011). 

Moreover, DS is a frequent oral mucosal disorder correlated with institutionalized 

elderly people (Magalhães & Moreira, 2010), as well as those with a cognitive 

impairment due to dementia (Bramanti et al., 2015). Socioeconomic status (Evren 

et al., 2011) and levels of education (Baran & Nalcaci, 2009), also negatively 

impact prevalence rates for DS.  

DS is a multifactorial disease, initially described with three main aetiological 

factors driving its initiation: trauma, infection and allergy (Budtz-JöRgensen, 

1974). However, malnutrition, hormonal disturbances and antibiotics are also 

considered as predisposing factors (Jeganathan & Lin, 1992). Candida species, 

smoking and nocturnal wear are also correlated to DS (Barbeau et al. (2003). 

Salerno et al. (2011) attributed DS into systemic and local factors. These systemic 

factors included diabetes, deficiency of nutritional factors, kidney disease and 

xerostomia, while the local factors included trauma, saliva, pH of the oral cavity, 

the permeability of the acrylic resins, and the presence of microbial plaque. Given 
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that DS is proposed to be a type of oral candidiasis, it can therefore be influenced 

by systemic contributory factors that drive thrush, including cigarette/tobacco 

smoking, antibiotic treatment, cytotoxic/ radiotherapy, and diabetes mellitus 

(Soysa et al., 2004;Soysa & Ellepola, 2005;Soysa et al., 2006).  

Trauma from ill-fitted denture can be considered one of the causes, which is 

endorsed by research showing the using of implant supported over-dentures. The 

over-denture reduces the direct forces on the mucosa and facilitates a good 

distribution of forces, which reduces the trauma of mucosa and subsequently the 

possibility of DS occurrence (Emami et al., 2008). Moreover, poor denture fit, poor 

denture hygiene, and night-time wearing, in addition to denture surface 

imperfections and using silicon denture liners, facilitate the establishment of 

denture microbial biofilm and plaque formation (Gendreau & Loewy, 2011). 

Regular sugar consumption, low salivary pH and the presence of Candida in the 

oral cavity were also shown as risk factors and correlated with establishment of 

DS (Martori et al., 2014a). Finally, the microbiome and level of dentition in the 

oral cavity can have a significant impact on DS development and exacerbation, 

where O'Donnell et al. (2015b) showed an associated with DS in partially edentate 

patients, suggesting bacterial-fungi inter-kingdom interactions play an important 

role. Overall, the factors that drive DS are multifactorial, which makes the clinical 

management problematic. 

1.4.3 Diagnosis 

The diagnosis of DS is fundamentally based on clinical features of the palatal 

mucosa, such as direct visual observation for the presence of pin-point or diffuse 

erythematous lesions, and papillary hyperplasia that correspond to the fitting 

surface of the denture (Puryer, 2016). Optical devices have also been advocated, 

such as an erythema meter that can be used to measure the degree of erythema 

of the palatal mucosa (Cross et al., 1998;Cross et al., 2004). Any suspicious 

immunocompromising condition should be excluded, such as diabetes and HIV 

infection (Scully, 2013). Laboratory tests are also useful for confirmation, 

including haematological evaluation (full blood count and iron, folate and vitamin 

B12 screening) and histological evaluation (via obtaining biopsy), where significant 

differences in palatal epithelial thickness and haematological abnormalities are 
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reported (Jennings  & MacDonald, 1990). Microbiological and immunological 

diagnostic approaches that detect the presence of C. albicans and the antibody 

titre to its antigen are often used (Jeganathan & Lin, 1992).  

Microbiologically, direct microscopy of smears of the palate and the denture, 

culturing of palatal swabs, and use of imprint culture are all useful (Webb et al., 

1998a). Historically, smears were examined by staining with Periodic acid-Schiff 

stain for fungal yeasts detection (Davenport, 1970;Budtz-Jorgensen, 1972), and 

for culture, swabs taken from the mucosa or denture are plated onto Sabouraud’s 

agar to detect Candida (Cawson, 1965). Imprint culture can also be performed by 

using a foam pad that is pressed against the area of mucosal interest, then 

removed and pressed firmly on to the Sabouraud’s plate and incubated (Arendorf 

& Walker, 1980). The oral rinse culture is a method that involves instructing the 

patients to rinse their mouth with 10 ml of phosphate buffer saline for 1 min, 

which is collected, centrifuged and resuspended into 1ml (concentrated method) 

prior to plating on Sabouraud’s agar, is also regularly used for candida diagnostics 

(Samaranayake et al., 1986). In today’s microbiology laboratories, Candida 

chromogenic agars are used that enable quantitative and qualitative assessment 

of different species, such as C. albicans and C. glabrata (Coco et al. (2008b).  

To expedite conventional microbial diagnostics beyond the concentrated oral rinse 

methodology then the successful use of real time quantitative polymerase chain 

reaction (RT-qPCR) with a high level of sensitivity has been reported (1-10 

CFU/ml) (White et al., 2004). The use of RT-qPCR has also been recently reported 

to detect the presence of pathogenic pulmonary bacteria in dentures using this 

advanced technique (O'Donnell et al., 2016). Given the general move in clinical 

microbiology to become more molecular, then rapid and specific detection of key 

pathogenic culprits is likely, though we still need live organisms in order to 

perform sensitivity testing to inform the best chemotherapeutic intervention. 

Immunological biomarkers for candidal detection could also be additionally 

helpful, though are not widely implemented. These include radioimmunoassay and 

enzyme-linked immunosorbent assay (ELISA), which have been reported to 

recognise Candida serologically (Byadarahally Raju & Rajappa, 2011). For 
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example, significant increases of salivary anti-Candida IgA antibodies have been 

detected in in DS patients (Jeganathan et al., 1987). Other immunological 

biomarkers include elevated interleukin 2 (IL-2) (Rodriguez-Archilla et al., 1996), 

the alteration in neutrophil morphology and activity (Gasparoto et al., 2012b), 

and the modulation of other cytokines, such as IL-1β, IL-4,IL-10, IL-6, IL-12, TNF-

α, CXCL8, MCP-1(Gasparoto et al., 2012a;Pinke et al., 2016). However, at this 

stage these are largely used in a research capacity and their general utility in 

routine testing will always be limited. 

1.5 Denture plaque and the role of Candida in DS 

Microbial biofilms are associated with 65-80% of human infectious diseases (Joo & 

Otto, 2012). These are characterised by highly structured microbial communities 

that are attached to the colonised surfaces, in which the microbes communicate 

to each other through a system called quorum sensing. Furthermore, production 

of extra cellular matrix is a distinctive phenomenon of biofilms that give this 

microbial community the utmost protection against shear forces, penetration of 

antimicrobial agents and immune cells (Ramage et al., 2002b;Ramage et al., 

2009). Moreover, persister cells, a small sub-population of resilient cells, ensures 

maintenance and repopulation following chemical insult (Lewis, 2005;LaFleur et 

al., 2006). Biofilm development on dentures has been demonstrated by Ramage 

et al. (2004) and others (Sachdeo et al., 2008;Susewind et al., 2015).  

The presence of an oral prosthesis is significantly correlated with deteriorating 

oral health, specifically mucosal integrity (O'Donnell et al., 2015b), but also 

cariogenic and periodontal status (da Fonte Porto Carreiro et al., 2016). Oral 

malodour, halitosis, is also a notable consequence of denture microflora (Verran, 

2005;Nalcaci & Baran, 2008). Compositionally,  the denture microflora is 

heterogeneous and dynamic given its close proximity to other oral 

microenvironments (O'Donnell et al., 2015b), and can influence or be influenced 

by other surfaces. Indeed, Marsh et al. (1992) showed the capability of partial 

dentures to increase cariogenic bacteria within the oral cavity. Moreover, the 

prevalence of gingivitis and root caries was shown to increase with removable 

partial dentures wearing (Preshaw et al., 2011), where fungal species also 
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contribute together with bacteria in such pathologic abnormalities (Coulthwaite 

& Verran, 2007). Indeed, it has been shown that there is a synergistic relation 

between C. albicans and Streptococcus mutans in developing virulent decay-

inducing biofilms (Koo & Bowen, 2014). Angular cheilitis, another common disease 

in denture wearers, is characterized by erythematous fissures at the corners of 

the mouth that is highly associated with C. albicans and Staphylococcus aureus 

(Martori et al., 2014a). However, biofilms formed on denture surfaces often 

include Candida species, which is thought and consistently reported to be a 

principal player in denture biofilm-associated disease (Ramage et al., 2004;Taylor 

et al., 2008;Øilo & Bakken, 2015). Figure 1.4 demonstrates the growth and 

development of a C. albicans biofilm on denture and silicone substrates.  
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Figure 1.4: Schematic representation of Candida albicans biofilm formation 
on different device substrates. Schematics show biofilms formed on (a,b) PMMA 
denture strips or (c,d) silicone elastomer catheter disks. Panels a and c represent 
the substrate seen from the top, whereas panels b and d show the side view of 
biofilms formed on the PMMA strip and SE disk, respectively. ECM, extracellular 
material. This schematic was derived on the basis of data obtained from 
fluorescence and confocal microscopy analyses (Chandra et al., 2001). 
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It is suggested that Candida and bacteria are correlated with DS, where higher 

numbers of yeasts and bacteria were cultured from DS patients (Budtz-Jorgensen 

et al., 1983). Formation of the microbial biofilm is a successful survival strategy 

that different microbes can follow, and it is associated with different infectious 

diseases that may be related to indwelling medical devices (Donlan & Costerton, 

2002). Denture material has the capability, by help of oral environment, to initiate 

an inter-kingdom microbial biofilm (Cavalcanti et al., 2016). The diversity of 

bacterial and fungal species (Candida species specifically) within the oral cavity 

in health and disease is complex, and relies on the particular environment in which 

they coexist, and the physical or chemical nature of cohabitation (O'Donnell et 

al., 2015a). Maintenance of homeostasis in the oral cavity between bacteria and 

fungi is important and influenced by the host environment (Xu & Dongari-

Bagtzoglou, 2015). Therefore, dysbiosis could cause pathological consequences, 

such as that induced by antibiotics (McLean, 2014). The extensive microbiome of 

the denture fitting surface in vivo ranges from 104 to 106/cm2, thus maximising 

the significance of the denture biofilm ecosystem (Monsenego, 2000). 

Furthermore, it was demonstrated that 1 mg of the denture plaque could contain 

up to 1011 microbes (Nikawa et al., 1998a).  

Generally, accumulation of microbial denture plaque on the denture fitting 

surface is considered a significant factor in DS (Nikawa et al., 1998b). Higher 

number of Candida, the initial positive effect of antimycotics, adhesion 

capabilities to both denture surfaces and palatal mucosa and the much greater 

mass of Candida in comparison to bacteria (> 50 times) make Candida an essential 

element in DS occurrence and development. Nevertheless, the role of bacteria 

should not be underestimated (Salerno et al., 2011). It was shown that 

collaboration between the bacteria and Candida begins from the first stage of 

biofilm formation ‘adhesion’ (Busscher et al., 2010). Adherence of the Candida 

cells to surfaces is a mainstay in their virulence and ability for colonization and 

reproduction and biofilm formation. Moreover, given the biofilm formation and 

dimorphism capacities of C. albicans that could act as a scaffolding for other 

microorganisms and instigate co-aggregative coexisting habitat onto dentures 

(O’Donnell et al., 2015a) (Figure 1.5). Indeed, this is recently endorsed by Kean 

et al. (2017), where Staphylococcus aureus benefited from C. albicans in 
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formation of a biofilm via using it as a structural scaffold. Bacterial adherence to 

denture surfaces has also reported, where Streptococcus mutans and 

Staphylococcus aureus were the most isolated bacterial microorganisms from the 

upper complete denture with a rate of 53.3 and 34.4% respectively (Ribeiro et al., 

2012). Pereira-Cenci et al. (2008b) showed that Streptococcus mutans had a 

negative effect on the hyphae formation capacity in Candida, despite significant 

quantities of denture biofilm. Moreover, Streptococcus oralis adhesion to dentures 

was reported elsewhere (Charman et al., 2009), which alongside C. albicans have 

the potential to produce complex denture biofilms (Cavalcanti et al., 2016). 

 

Figure 1.5 The Candida-bacteria colonisation of denture surface.  A 
schematic drawing represents the Polymycrobial community with C. albicans in 
yeast and hyphal forms (O'Donnell et al., 2015a).  

Several studies have shown that the pathogenicity of Candida can be synergised 

by the presence of some types of bacteria within the oral cavity, such as 

Streptococcus mutans and Staphylococcus aureus (Harriott & Noverr, 2009;Diaz et 

al., 2012;Falsetta et al., 2014). This notion was supported by Cavalcanti et al. 

(2015), where up-regulation of ALS3, EAP1, HWP1 and SAP6 Candida virulence-

significant genes was reported in presence of bacteria. Another report 

demonstrated that lactic acid bacteria such as lactobacilli could induce 

filamentation in opaque cell type C. albicans (Liang et al., 2016). This is relevant 

as the presence of hyphae in the saliva or on the mucosa had a positive effect on 
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raising the load of C. albicans. Likewise, there was a statistically significant 

relation between the hyphae incidence and number of lactobacilli, so this 

bacterium appears to play an important adjunctive role in DS (Bilhan et al., 2009). 

However, Lamfon et al. (2005) did not find a significant difference in the 

quantities of the Candida, Lactobacillus, Streptococcus, Veillonella or 

Actinomyces species in mucosa and dentures swabs of DS diagnosed patients group 

and control group.  

To demonstrate the importance of Candida spp in DS, Ramage et al. (2004) used 

SEM to inspect development of candidal biofilms directly from dentures from DS 

patients. Mesh of yeast and hyphal candidal forms in an entangled biofilm was 

observed, with denture cracks and imperfections representing niches for 

attachment, and biofilm thriving. The potential contribution of non-albicans types 

of Candida in DS pathogenesis was explored by Coco et al. (2008b). Traditional 

microbiological plating method with counting of colony forming units was followed 

and revealed a significant difference between the total Candida burden of the 

advanced grades of DS (grade II & III) and the control. In the same report, the 

percentages of presence of C. albicans and C. glabrata throughout the healthy 

and diseased groups were 75 and 30% of participating patients, while the rate of 

Candida glabrata was 80% among the highest grade of Newton's DS classification, 

with significant association with C. albicans, indicating an important co-

association in DS.  

Further studies have shown that C. tropicalis was the focus of DS pathogenesis 

deterioration. This was reported in a study evaluating the prevalence of Candida 

species among DS diabetic type 2 and non-diabetic people. C. albicans showed a 

prevalence of 81% with 15% for both C. glabrata and tropicalis. C. albicans and 

tropicalis were higher in prevalence of DS group. Moreover, C. tropicalis had a 

significant predilection for the highest degree of DS inflammation (Sanita et al., 

2011). Production of enzymes may be considered an explicit liaison between 

Candida and DS. The role of secreted aspartyl proteinases (SAP protease enzymes) 

in DS development and severity was explored by Ramage et al. (2012a). 

Transcriptional quantitative PCR results showed a highly significant difference in 

all SAP genes expressions between control and diseased group. Further studies 

have shown that phospholipase production by Candida species of clinical isolates 
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was significantly related to DS and was limited to C. albicans and C. dubliniensis, 

(Marcos-Arias et al., 2011). Indeed, there are a number of studies that have shown 

that haemolytic activity, germ tube formation, induction of clot formation 

(coagulase activity) and biofilm formation of Candida spp. may all contribute to 

DS (Pereira et al., 2016), highlighting the importance of candida related virulence.  

1.6 Candida albicans virulence attributes 

C. albicans has sufficient ammunition to exhibit pathogenicity when given an 

opportunity (Ramage et al., 2009). The adaptation of C. albicans to environmental 

changes makes it a pleiotropic organism (Poulain, 2015), existing in two main 

morphological forms: round to oval yeasts, or long mycelial form hyphae (Figure 

1.6). The pathogenicity of Candida can be facilitated through many determinants 

displayed in Figure 1.7, including adhesion, dimorphism, development of biofilms, 

switching (phenotypic plasticity), metabolic flexibility (glycolysis, 

gluconeogenesis), thigmotropism (directional hyphal growth), invasion, secretion 

of proteases and rapid adaptation to pH environmental fluctuations (Mayer et al., 

2013). Moreover, a thick, protective (0.5 µm) cell wall in addition to the ability 

to fight the free radicals released by immune cells through formation of 

superoxide dismutase enzyme (Poulain, 2015). Thigmotropism can be described as 

a representative of virulent contact sensing capacity of C. albicans. The contact 

sensing definitive mechanism is still elusive, although mechanosensitive ion 

channels and integrin-like signalling could be significant potential mechanisms 

that elucidate this fundamental physio-pathogenic fungal process (Kumamoto, 

2008).  
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(i)                                       (ii)                                        (iii)   

 

Figure 1.6 The main morphological forms of C. albicans. (i) Yeast morphological 
form. (ii) Germling morphological form (iii) Hyphae morphological form. Images 
were acquired at 10,000, 4,000 and 2500 x magnifications, respectively. 

 

Highly structured biofilm formation could be the most important strategy, as it 

acts as a refuge, reservoir, scaffold and communication for microbes (Ramage et 

al., 2009). In biofilm formation, the steps of biofilm formation include adherence 

of yeasts, their proliferation, hyphal cells on the top of yeasts basal layer, 

accumulation of extracellular matrix and dispersion of yeast cells away from the 

biofilm complex (Figure 1.4), (Finkel & Mitchell, 2011). These dispersed yeasts 

can then take part in the dissemination of candidiasis in different human body 

organs (Uppuluri et al., 2010).   

The first stage in biofilm formation is adhesion, which is principally driven by the 

ALS genes (Hoyer & Cota, 2016). The proteins they encode control cell surface 

hydrophobicity and the attachment to abiotic and biotic surfaces. The Als3 protein 

plays a multifunctional and potent role in C. albicans pathogenicity. Alongside 

Hwp1 and Als1, Als3 adhesins function together to form biofilms. It also has a role 

in Candida iron acquisition via binding to ferritin. ALS3 gene is significantly 

upregulated in C. albicans hyphae and pseudohyphae, and is inhibited by an 

abundant nutrient environment. Moreover, Als3 could have a functional role in co-

aggregation with bacteria (Liu & Filler, 2011).  

Following adhesion, biofilm formation is driven by the Efg1 protein, a morphogenic 

regulator (Ramage et al., 2002a). Other key proteins include Hwp1 (hyphal wall 

protein), Als3 (agglutinin-like sequence protein), and Sap4, Sap5, Sap6 (secreted 

aspartic proteases) (Mayer et al., 2013). C. albicans can adapt to different pH, 

changing morphology depending on its environment -  pH >7 encourages the 

Candida to grow with hyphal predominance, while pH <6 induce yeast form growth 
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(Mayer et al., 2013). Related to this hyphal transition is another important C. 

albicans weapon recently discovered by Moyes et al. (2016). This hyphally 

regulated peptide toxin is called candidalysin, which has been shown to impact 

cell membranes of epithelial cells, damaging the permeability equilibrium. This 

represents a critical determinant in breaching the epithelial tissue barrier role. 

Regulation of these processes is in part driven by central regulators, that include 

BCR1 and associated transcription factors, as well as adaptive protective 

mechanisms.  Mayer et al. (2013) demonstrated that the heat shock protein 

(HSP90) gene has a role in dispersion of yeasts from the mature biofilm, increased 

biofilm antifungal resistance, and is co-regulated with a network of genes to drive 

biofilm formation. Moreover, HSP90 has a role in regulation of candidal 

filamentation (Lu et al., 2011), a pivotal aspect of C. albicans biofilms 

development. Many of these attributes are driven by the microenvironment that 

they exist within, and nutrient availability.  

In nutrient starvation, C. albicans modulates the extracellular acidity by 

alkalinizing its surrounding to trigger an autoinducing hyphal form transformation 

(Vylkova et al., 2011). This transformation could be associated with up taking of 

surrounding amines containing molecules instead of glucose, though this may be 

a strain dependant attribute.  It has recently been reported that the metabolism 

of the amino acids, such as aspartate, arginine, proline and glutamate, has been 

upregulated in C. albicans strains capable of high biofilm formation, whereas 

sucrose, starch and purine metabolism have been upregulated in low biofilm 

formers (Rajendran et al., 2016b). The absence of glucose as a main source of 

carbon may press the Candida to use an alternative source, which could increase 

their virulence. Lactate grown C. albicans has a more rigid cell wall than the 

glucose grown one, enabling it to deal more effectively with osmotic shock (Ene 

et al., 2015). Moreover, lactate grown C. albicans is less detectable by the innate 

immune cells (Ene et al., 2013). Overall, this shows that Candida has a genome 

that is well adapted to survive and persist within the oral cavity. 
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Figure 1.7 Virulence factors of C. albicans: A schematic plot.  
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1.7 Treatment strategies of DS 

A diligent sanitizing regimen, regular dentist visits, and overnight denture removal 

are mandatory to reduce the incidence of DS. Nevertheless, development of anti-

biofilm strategies to reduce the microbial adhesion could be a significant measure 

to ameliorate denture hygiene and reduce DS (Gendreau & Loewy, 2011). 

However, commitment to strict sanitizing measures and appropriate cleaning 

without compromising the denture surface can be considered as a difficult target 

to attain within denture wearers (Jagger & Harrison, 1995). In a clinical study, 

denture hygiene indices statistically deteriorated after long-term follow up in 

comparison to last recall check-up. The patient sample of this study were elderly 

people who were able to clean their dentures themselves, having passed manual 

dexterity and cognitive capacity tests. This indicates the importance of the need 

for periodical professional intervention with such a group, which gives an 

indication that the status will be worse with people who need extensive care and 

unable to perform denture hygiene care themselves.   

Webb et al. (1998b) reviewed DS treatment modalities, which included 

antimicrobial, antiseptic and disinfectant measures. They concluded that there 

was not a comprehensively effective treatment per se, because of the 

multifactorial etiological nature of DS, and asserted on patient’s compliance 

playing an imperative role in DS management. Therefore, DS management require 

multiple mutually supportive factors. Ramage (2015) reviewed the denture 

cleansing chemical and mechanical procedures and their influence on oral 

microbial response and associated denture stomatitis, clarifying some of their 

drawbacks. In the same report, general guidelines for denture management from 

a microbiological angle were presented, which could be summarised by the 

following: reducing denture plaque using daily non-abrasive brushing and denture 

cleansers, annual professional cleaning, and the potential beneficial role of 

denture adhesives in increasing denture stability.  

A recent systematic review by Yarborough et al. (2016) for the DS treatment 

measures, reported the importance of antifungal treatment to the 

immunocompromised individual, while focusing on prosthesis disinfection as an 

effective strategy for healthy individuals. Multiple strategies were clinically 
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followed to reduce the pathogenic established biofilms. Furthermore, the 

recurrence of DS remains as a problem although its prevalence is unknown.   

1.7.1 Physical strategies 

Microwave irradiation could be considered as a practical strategy in DS 

management. Neppelenbroek et al. (2008) confirmed the significant impact of 

microwave disinfection in treatment of DS in contrast to miconazole, besides the 

recurrence in microwaved denture group was reduced. Microwave disinfection was 

investigated in another study, where rinsing with nystatin and microwave 

disinfection (MWD) were evaluated to treat DS. Three denture microwaving 

treatment (650w-3min) weekly was as effective as 4 times daily nystatin. 

Recurrence was reported after 3 months with approximately half of the 

participants in every treatment modality (Silva et al., 2012). Three sequential 

exposures of 60 sec had effectively disinfected maxillary dentures and reduced 

the oral candidiasis of the denture wearers, although it could affect the 

dimensional stability of the denture and it is an inappropriate disinfecting 

technique to metal containing dentures (Banting & Hill, 2001). Furthermore, 

several reports proved the detrimental effects of microwave denture disinfection 

on the physico-mechanical properties (Seo et al., 2007;Hamouda & Ahmed, 

2010;Vasconcelos et al., 2013). 

Photodynamic therapy has emerged in multiple aspects of dentistry (Konopka & 

Goslinski, 2007). As a helpful weapon to fight oral candidiasis, photosensitizer 

erythrosine illustrated excellent impact on planktonic cells, though was less 

effective against biofilms (Costa et al., 2011). Another report confirmed the 

efficacy of photodynamic approach in reducing the virulence traits of Candida 

species isolated from DS individuals (Pereira et al., 2015). In a clinical report, 

harnessing of photodynamic therapy (photosensitizer: hematoporphyrin 

derivative) to manage DS in vivo showed a positive response and it required several 

sequential sessions, although recurrence was observed (Mima et al., 2011). 

Further analysis has shown that C. albicans was less susceptible than Escherichia 

coli and Staphylococcus aureus (Demidova & Hamblin, 2005).  

Other strategies include ultrasonics, where in vitro and in vivo evidence suggests 

positive benefits from ultrasonic cleaning of acrylic denture base to removing C. 
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albicans (>80%) (Kawasaki et al., 2014). Nishi et al. (2014) showed that distilled 

water ultrasonic cleaning of dentures was not as effective as performing in the 

presence of denture cleanser. Use of ultrasonic or cleanser alone led to significant 

surviving of microorganisms in comparison to combining cleaning method.  

1.7.2 Chemical strategies 

It was demonstrated that patient responsibility for accurate denture cleanliness 

is more difficult to do than it appears. This was established by clinical and 

microbiological evidence, as treatment of DS without antifungals represented an 

unrealistic management option. Using systemic itraconazole for 2 weeks to 

manage DS, a significant myco-clinical enhancement was reported, while 50% of 

subjects have recurred with DS after 6 months (Cross et al., 2000). Martin-

Mazuelos et al. (1997) showed that fluconazole and itraconazole antifungals had 

improved the clinical status of DS, though fluconazole resistance was problematic.  

Making new dentures as an alternative way to DS management has not show 

clinical or mycological success in comparison to combined antifungal-antiseptic 

methods that use systemic fluconazole and local application of chlorhexidine to 

the fitting surface of dentures (Kulak et al., 1994). However, a meta-analysis of 

randomized clinical trials indicated the significant possibility of using alternative 

ways of managing DS rather than antifungal synthetic drugs. The alternative 

methods were enumerated as disinfectants, mouthwashes, photodynamic 

approaches, natural antimicrobials and microwave irradiation (Emami et al., 

2014). In a clinical study related to DS, the study participants were instructed to 

rinse their mouths with chlorhexidine gluconate 0.12% and to soak their dentures 

overnight in it for 24 days. The results showed a significant mycological and 

clinical improvement, but once treatment stopped, the disease recurred from 

both microbiological and clinical diagnostic angles (Kamalakshi et al., 1992). 

However, evidence of significant dental staining drawback were reported with 

using chlorhexidine (Van Strydonck et al., 2013).  

To better understand how clinical management can be improved, we can draw on 

laboratory investigations. Ramage et al. (2011) reported a significant efficacy of 

some of the over-the-counter mouthwashes in comparison to some antifungal 

drugs against developed biofilms. Caspofungin (an echinocandin drug) was as 
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effective to biofilm as to planktonic C. albicans, but it is limited by its intravenous 

delivery method. Additionally, they showed that Corsodyl mouthwash (0.2% 

chlorhexidine and 7% ethanol) exhibited ̴anti-biofilm activity to Candida. Caveats 

to these approaches can be that mouthwashes can exhibit undesirable side 

effects, such as taste problems and staining (Hong et al., 2009;Barao et al., 

2015;Sadat Sajadi et al., 2015). There are also links from oral mouthwashes to 

head and neck cancer, which still remain controversial and need further 

investigation (Conway, 2009;La Vecchia, 2009;Gandini et al., 2012;Ahrens et al., 

2014).  

In an in vitro study, 10 different disinfection procedures were used for denture 

soft liner cleaning. It was found that only sodium hypochlorite (1%), microwave 

irradiation at 850W (6min), and effervescent cleansing were effective (Buergers 

et al., 2008). Denture cleansers are a good, but not perfect strategy, for anti-

candidal biofilm approaches. Therefore, an adjunctive mechanical removal of the 

residual biofilm to prevent denture recolonization seems imperative (Jose et al., 

2010). In an in vitro study, Ramage et al (2012) have reported the anti-biofilm 

efficacy of two different sequential denture cleaning regimens. Logically, a 4 day 

sequential continuous denture cleanser chemical approach was more effective 

than a 4 day intermittent chemical/mechanical one. SEM of the day 2 showed 

regrowth of DS clinically isolated C. albicans and this was attributed to retention 

of Candida in denture material cracks or crevices and production of extracellular 

protecting matrix. This could necessitate the need for enhanced chemical and 

ultrasonic approaches to manage denture biofilms (Ramage et al., 2012c). In 

another study, concerns were raised in respect to the influence of denture 

cleanser on multi-species biofilm, where the counts of C. albicans increased 10 

times in comparison to Streptococcus mutans after 7 days sequential daily 3 min 

immersion in alkaline peroxide denture cleanser (Lucena-Ferreira et al., 2014). 

Moreover, the alkaline peroxide effervescent denture cleansers were investigated 

from the physical and mechanical point of view, and negative effects were 

reported (Peracini et al., 2010). From a disinfection point of view, 0.5% sodium 

hypochlorite has been suggested by Skupien et al. (2013) in their systematic 

review as an efficacious anticandidal disinfectant for denture liners (denture 

liners are used to reline the fitting surface of the denture). Furthermore, 
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disinfection of dentures with sodium hypochlorite soaking has promised a clinical 

anti-DS effect and reduced number of Candida CFU, but metal containing 

removable appliances represent a hurdle in respect to this method (Webb et al., 

2005). 

Given the less toxic effect of phytomedicines, phytotherapeutics such as propolis, 

Punica granatum, Melaleuca alternifolia and Vitis vinifera increasingly become 

potential rival to conventional antifungals in treatment of DS, although further 

clinical studies are needed to confirm a standard preparation (Casaroto & Lara, 

2010). Zataria multiflora 0.1% gel and miconazole 2% gel were investigated for 

their efficacy on DS subjects. The results were positive and comparable, while 

relapse was observed after 4 weeks of completing the treatment, they have 

suggested that dentures are the source of reinfection (Amanlou et al., 2006). 

Likewise, Artemisia sieberi herbal mouthwash (1%) was equivalent to nystatin in 

treatment of DS (Sefidgar et al., 2010).  

Propolis extracts (ethanolic and non-ethanolic) with antifungal and anti-

inflammatory capacities have also been suggested for DS treatment (Santos et al., 

2005;Santos et al., 2008). The anti-planktonic and anti-biofilm effect of several 

types of natural polyphenolic compounds against C. albicans were investigated by 

Shahzad et al. (2014). They suggested that affinity of the oral surfaces to adsorb 

the polyphenols and their potential saliva bioavailability may potentiate their oral 

hygiene impact. It was concluded that curcumin and pyrogallol showed promise 

against the planktonic and biofilm form cells. Other studies have investigated the 

aqueous extract of garlic, Melaleuca alternifolia (tea tree oil) and Punica 

granatum efficacy in treating DS. These studies indicated significant treating 

action (Vasconcelos et al., 2003;Catalan et al., 2008;Bakhshi et al., 2012).  
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1.8 The polyphenol curcumin 

1.8.1 The structure and biomedical significance of curcumin 

Curcumin is a polyphenolic natural compound. It was isolated from turmeric (Asian 

spice) two centuries ago. The turmeric was extracted from the rhizomes of 

Curcuma longa plant in the thirteen century (Esatbeyoglu et al., 2012). The 

curcumin (Diferuloylmethane) chemical formula is C21H20O6, International Union of 

Pure and Applied Chemistry (IUPAC) nomenclature is (1E,6E)-1,7-bis(4-hydroxy-3-

methoxyphenyl)-1,6-heptadiene-3,5-dione, and its molecular weight is 368.38. 

Curcumin consists of two phenolic O-methoxy containing groups that are 

connected by a seven carbon conjugated (alternating single and multiple bonds) 

linker consisting of an α,β-unsaturated β-diketone moiety. The B-diketone 

functionality contribute in the intramolecular H+ atom transfer which is called 

tautomerism, therefore, curcumin can be existed in two different forms enol form 

and keto form (Figure 1.8) (Priyadarsini, 2009;Priyadarsini, 2014). Curcumin’s 

physical-chemical properties can be summarised as solid, orange to yellow in 

colour, non-flammable, hydrophobic, poorly soluble at physiological pH, behaves 

as a proton donor at acidic pH where the keto form is dominated and as an 

electron donor at basic pH, where the enol form is dominated, melting 

temperature 170-175оC, light sensitive, odourless, soluble in ethanol, dimethyl 

sulfoxide and acetic acid (Esatbeyoglu et al., 2012). 
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i.  

 

 

ii. 

 

Figure 1.8 Chemical structure of curcumin. (i) Keto form, (ii) Enol form.  

Several clinical trials showed the non-toxicity, good toleration, and beneficial 

preventive and therapeutic effects of curcumin on a plethora of human diseases 

such as cancer, arthritis, cardiovascular diseases, Crohn’s disease, allergies, 

ulcerative colitis, neurodegenerative diseases, diabetes, obesity, cerebral edema 

and psoriasis among others (Gupta et al., 2013;Shehzad et al., 2013;Yang et al., 

2013;Furst & Zundorf, 2014;Panahi et al., 2017).  

Anti-oxidative and anti-inflammatory effects, besides inducing molecular targets 

such as transcription factors and enzymes could be considered as potential 

mechanisms of its multiple biological effects, although a comprehensive 

understanding is elusive so far (Mahmood et al., 2015). China, United States, 

India, Korea, Thailand, Pakistan, South Africa, Nepal and Japan have used 

curcumin as a supplement, although it is not permitted yet as a treatment (Gupta 

et al., 2012). The daily dietary consumption of curcumin was 2.7-14.8 mg in Korea 

while it has quadrupled in south Asia (Kwon, 2014).  
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In spite of its advantages, a disadvantage was frequently reported which is the 

low bioavailability, while significant scientific research has been conducted to 

reduce this drawback using nanonisation and conjugation strategies (Prasad et al., 

2014). Remarkably, it was demonstrated by Esatbeyoglu et al. (2015) that 

degradation of curcumin at 180оC could not minimise its biological beneficial 

effects because of the significant biological effects of its degradation products, 

which are ferulic acid, 4-vinyl guaiacol and vanillin. In an in vivo study, it was 

demonstrated that the efficacy of curcumin mouth rinse was higher than 

chlorhexidine mouth wash in treating oral mucositis in cancer patients treated 

with radio-chemotherapy (Patil et al., 2015). The safety of curcumin has been 

reported by several studies (Lao et al., 2006;Chandran & Goel, 2012;Shehzad et 

al., 2013;Sahebkar & Henrotin, 2016), all these studies share the support for the 

good-toleration of curcumin and absence of adverse effects even with daily high 

doses that may reach up to 6-8 g/day.  

1.8.2 The antimicrobial effect and mechanism of curcumin 

Epidemiological studies indicate the importance of the phenolic compounds in the 

prevention of many diseases that are common to western communities. 

Furthermore, the microbes could transfer the phenolic compounds into more 

efficacious antimicrobials (Cueva et al., 2010). The activity of polyphenols against 

the microbial causative agents of dental caries and periodontal disease was 

recently reviewed (Slobodnikova et al., 2016), the review authors thought the 

capability of these compounds might lead to their being introduced into practice 

soon. In an in vitro study by Rai et al. (2008), it was shown that the bacterial 

cytokinesis of Escherichia coli and Bacillus subtilis can be inhibited by curcumin 

through interfering with polymerization of FtsZ protein assembly that forms the Z 

ring constricting septum, which is very critical structure during the cytokinesis 

process. 

Periodontitis is a degenerative chronic disease of the gingiva and is highly 

correlated with bacteria such as Porphyromonas gingivalis (Slots, 1986). In an in 

vitro study conducted by Shahzad et al. (2015), curcumin was reported as the 

most potent investigated polyphenol among 48 different types. Curcumin showed 

an effective inhibition of planktonic growth of Porphyromonas gingivalis and 



Chapter 1: Introduction                                                                                                                                         
 

30 
 

Aggregatibacter actinomycetemcomitans bacteria, which are commonly 

associated with periodontitis. Besides, that study reported the high affinity of 

curcumin to hydroxyl apatite crystal coated surfaces, which might add an 

advantage for fighting periodontitis because of the dental biofilm-developing 

nature of the periodontitis-associate bacteria.  

Given that the dental caries-bacteria relationship is notorious, perhaps biofilm 

formation and the associated cariogenicity of Streptococcus mutans could be 

reduced by curcumin (Hu et al., 2013). Therefore, curcumin molecule could be a 

significant potential candidate in caries prevention. Hu et al. (2013) showed the 

inhibition of Sortase A enzyme that catalyses the tethering of some of adherence 

proteins to the cell wall by curcumin, accompanied by reduced biofilm biomass. 

This aforementioned report has confirmed a former in vitro study by Song et al. 

(2012), where a significant effect of curcumin was observed on the vitality and 

adherence of Streptococcus mutans to collagen and fibronectin human teeth 

surfaces. It is noteworthy to mention that the anti-adherence capacity of 

curcumin to the bacteria that is inferred by the Sortase A inhibiting capacity of 

curcumin was firstly reported by Park et al. (2005) in Staphylococcus aureus. 

Furthermore, a significant synergism between antibiotics and curcumin was 

concluded by an in vitro study that investigated the possibility of reducing the 

minimum inhibitory concentration (MIC) of several antibiotics on methicillin-

resistant Staphylococcus aureus (MRSA) (Mun et al., 2013). Moreover, Brown 

(2015) prioritised some of the compounds that could be repurposed for 

development of antibiotic resistance breaker strategies, where the curcumin was 

selected and preferred for its significant bi-functionality (direct antibiotic and 

anti-inflammatory effects) on both classes of bacteria (Gram positive and Gram 

negative). The mechanism of curcumin antibacterial efficacy could be explained 

by affecting bacterial cell membrane permeability, which was investigated by 

propidium iodide uptake and calcein leakage fluorescence assays (Tyagi et al., 

2015), where all the investigated Gram-positive and negative bacteria 

(Enterococcus faecalis, Staphylococcus aureus, Pseudomonas aeruginosa 

Escherichia coli) showed a significant concentration and time dependent influence 

by curcumin.    
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The prophylaxis of oral candidiasis could benefit from the potential antifungal 

activities of some natural bioactive compounds, which could be added to the oral 

health products (Rautemaa & Ramage, 2011). The antifungal capacity of 

nutraceuticals and natural phenolic extracts have been reviewed by Rodrigues et 

al. (2016), these types of extracts were considered as one of the growing novel 

armamentarium and attractive prototypes in fighting Candida infection. The 

antifungal capacity of crude Curcuma longa extracted oil was firstly reported 

against dermatophytes mold type species (Apisariyakul  et al., 1995). Another 

report showed the anti-Candida (albicans and krusei) effect of curcumin, 

especially when conjugated with glycine/alanine molecules that increased its 

bioavailability (Mishra et al., 2005).  

The proliferation of C. albicans can be inhibited by curcumin. This was confirmed 

by a study that relied on flow cytometry technology to determine the level of S-

G2-M during the cell cycle, where a decline was demonstrated in these important 

events, but that study used high curcumin concentrations (>1000 µg/ml) (Jianhua 

& Hai, 2009). In an in vitro study conducted by Martins et al. (2009), results 

suggested the potential clinical antifungal efficacy of curcumin and a significant 

antifungal role of curcumin against Candida species (except glabrata) and 

Paracoccidioides brasiliensis, while Aspergillus different species were 

invulnerable to curcumin. Furthermore, Martins et al. (2009) microscopically 

measured the number of adhered Candida cells to the buccal epithelial cells using 

different species of Candida, and they noticed a remarkable reduction with 

curcumin treated Candida cells.  

In a study that interrogated the mechanism of the curcumin anticandidal capacity 

against laboratory and clinical strains, Neelofar et al. (2011) reported the 

effective capacity of curcumin on both types of strains and identified three 

essential mechanisms which are: reduction of ATPase activity, inhibition of 

proteinase production and interference with ergosterol biosynthesis, although all 

the ergosterol targeted antifungals display upregulation of the proteinase activity. 

Notably, Sharma et al. (2010b) have shown the anti-hyphal capacity of curcumin 

to C. albicans and they related that to the up-regulation of global suppressor 

thymidine uptake 1 gene (TUP1) in response to curcumin, where the tup1 null 

mutant did not show an influence by curcumin. The antifungal mechanism of 
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curcumin was interrogated, where the level of the reactive oxygen species (ROS) 

in all the tested species of Candida was raised after curcumin treatment. 

Additionally, the oxidative stress associated genes were upregulated. 

Consequently, they correlated these perturbing cellular events to early apoptosis 

and cell growth inhibition of Candida species. Moreover, another antifungal 

mechanism was reported by the same research group, where C. albicans 

ergosterol depletion was associated with cell membrane disturbances, besides 

accumulation of the ergosterol biogenisis precursors and the generation of ROS 

(Sharma et al., 2012). The curcumin function in compromising fungal cell 

membrane equilibrium was endorsed by a different study (Lee & Lee, 2014). In 

that study, depolarisation of the membrane potential of the curcumin treated C. 

albicans was shown which was potentially attributed to electrostatic and 

hydrophobic interactions. Further, the potassium efflux of the tested cells was 

increased after curcumin treatment, which compromising the cellular homeostasis 

and leading to cell death. Another research group attributed the anti-Candida 

mechanism of curcumin to the increased intracellular acidity that resulted from 

the inhibition of the H+ efflux capability of the Candida cell suggesting the 

disturbance of functional role of the cell membrane in controlling such activities 

(Khan et al., 2012). Nevertheless, the notion of breaching the cell wall integrity 

mechanism has emerged using candidacidal concentration. This notion was 

reported by Kumar et al. (2014), who demonstrated the down-regulation of many 

cell wall integrity genes and disruption of calcinurin and mitogen activated protein 

(MAP) kinase pathways that are associated with cell wall homeostasis. Recently, 

the dual anti-fungal and anti-carcinogenic mechanism of curcumin was 

demonstrated (Chen et al., 2016b). Figure 1.9 summarises the aforementioned 

literature suggested antifungal mechanisms.  

The invasive type of fungal infection in cancer patients provokes a logical interest 

in molecules of bi-pharmacological effects such as curcumin, specifically with its 

high dose safety, besides its capacity to inhibit the efflux pump strategies that 

are frequently used by cancer cells (Chearwae et al., 2006). The light sensitivity 

feature of curcumin was used to fight the Candida species in a planktonic and 

biofilm growth modes, displaying the possibility of curcumin use in photodynamic 

therapy (Dovigo et al., 2011). All the investigated light excited-curcumin treated 



Chapter 1: Introduction                                                                                                                                         
 

33 
 

Candida species were significantly inhibited, where the colony forming units of 

the plated planktonic cells and the metabolic activity and the biofilm biomass 

were reduced of the biofilms. The former report was endorsed by murine in vivo 

study (Dovigo et al., 2013). However, a study conducted by Carmello et al. (2015) 

indicated a temporary genotoxic effect after light excitement (without curcumin), 

while a significant slowing in DNA repair was noticed with curcumin-light excited 

Candida albicans. In a supporting context of the aforementioned potential 

capacity of curcumin to augment existing conventional treatments, significant 

synergism between nystatin, amphotericin B, ketoconazole, miconazole, 

fluconazole, itraconazole, voriconazole antifungal drugs was reported by Sharma 

et al. (2010a). Similarly, fluconazole and curcumin reduced the resistance of 

clinical isolates of Candida albicans to fluconazole (Garcia-Gomes et al., 2012). 
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                     Figure 1.9 The multiple targeted antifungal mechanism of curcumin.
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1.9 Preventive antimicrobial strategies in denture 
material  

1.9.1 Chemical modification 

Polymethyl methacrylate (PMMA) is the most utilized material for denture 

fabrication, while soft liners of different chemical constituents are used to reline 

fitting surface of the denture (Sakaguchi & Powers, 2012). There were many 

experimental endeavours to modify the bulk chemical structure of polymer 

denture base materials.  

Microbial biofilm represents a major challenge for biomaterials. Incorporation of 

antimicrobials and a sustained release approach have been used to manage 

candidal biofilms. Examples are described below. A thin film polymer coating with 

high or low porosity that was incorporated with chlorhexidine (CHX), nystatin or 

amphotericin B was developed by Redding et al. (2009) to inhibit C. albicans 

biofilm. The incorporation of chlorhexidine in the coated samples proved its 

superiority in biofilm inhibition. Silver nano-particles were added to PMMA to 

investigate the adherence and biofilm formation of C. albicans, though no 

significant effect was observed in either case (Wady et al., 2012). This was 

attributed to the non-release of Ag ion. However, another study reported a 

significant reducing capacity of modified denture base material with silver nano-

particles although poor colour stability was reported as well (Nam et al., 2012), 

which was recently confirmed by different group (Li et al., 2016). In spite of the 

increased surface roughness, combined release of small amounts of F-, BO3
3-and 

Na+ ions could be sufficient to reduce the adhesion of C. albicans to denture resin 

material incorporated with glass ionomer filler (Tsutsumi et al., 2016). Salim et 

al. (2013) investigated the anti-Candida biofilm efficacy of impregnation of CHX 

or fluconazole to a poly (ethyl methacrylate)/tetrahydrofurfuryl methacrylate 

(PEM/THFM) over 28 days. The CHX anti-biofilm efficacy was apparent, where the 

biofilm biomass and the metabolic activity reduction were 75% and 84% 

respectively, while in contrast the fluconazole impregnation was 8.8% and 12.6%, 

respectively. The researchers suggested that the CHX-impregnated PEM/THFM 

polymeric drug carrier system could potentially be used as a denture liner for the 

treatment of DS. Another study investigated the incorporation of chlorhexidine 
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different salts in prevention of denture Candida biofilm. The chlorhexidine 

diacetate seemed effective due to its release to the adjacent areas in comparison 

with chlorhexidine hydrochloride which had not anti-Candida impact (Bertolini et 

al., 2014). Pusateri et al. (2009) evaluated the anti-candidal effect of pre-coated 

PMMA with 0.12% CHX gluconate, histatin-5 (His-5) or human β-defensin-3 (HBD-

3). The results showed that His-5 and CHX had an effect on biofilms, while HBD-3 

had not shown any significant effect on biofilms. Moreover, immersion coating of 

nanoparticles of CHX digluconate on dental silicones reduced proliferation of 

Candida by releasing effective concentrations (Garner et al., 2015). An anti-C. 

albicans effect of zinc oxide nano-particles incorporation as a composite or 

coating to acrylic denture base material was reported by Cierech et al. (2016). A 

successful rechargeable anti-Candida denture material was developed by (Cao et 

al., 2010;Villar et al., 2013), through copolymerization of methacrylic acid and 

diurethane dimethacrylate. The click-on click-off (recharging) miconazole 

controlled release was investigated for elongated period up to 2 months that could 

be washed off by EDTA to quench the antifungal drug. Likewise, a rechargeable 

denture material using poly(N-vinyl-2-pyrrolidinone)-grafting polymerisation was 

demonstrated by Sun et al. (2013). They reported a significant antifungal efficacy 

of controlled sustained release that persisted for weeks with chlorhexidine and 

months with miconazole. However, the antimicrobial release approach can be 

criticised for the initial burst stage that being followed by release of low 

ineffective concentrations (Huang & Brazel, 2001), besides the potential of short 

period of activity and discontinuity of release (Kitagawa et al., 2014).  

Contact killing surfaces could be more reliable and promising than antimicrobial 

releasing surfaces (van de Lagemaat et al., 2017). Chemicals such as quaternary 

ammonium and 2-tert butylaminoethyl methacrylate (TBAEMA) have been used for 

that purpose. Incorporation of 2% quaternary ammonium polymer compounds in 

heat cured acrylic resin have showed successful bacteriostatic and fungistatic 

effects but it was stated that development of resistance ,toxicity and long-term 

stability need further studies (Pesci-Bardon et al., 2006).  

However, dangerous side effects were reported on quaternary ammonium, such 

as negative effect on the reproductive system (Melin et al., 2014) and stimulation 

of respiratory and skin allergic reactions (Lipinska & Walusiak, 2014). Another 
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study investigated the impregnation of 10 and 25% of TBAEMA, which is a poly-

cationic substance with pendant amino groups acting as a contact biocide, into 

PMMA (Marra et al., 2012). An antibacterial efficacy against Streptococcus mutans 

and Staphylococcus aureus biofilms was shown. There was no significant effect on 

C. albicans biofilm formation, which was attributed to the rigid physical properties 

of the Candida cell wall that prevented the biocidal compound from replacing the 

Mg+2and Ca+2 of the cell membrane.  

Studies using modification with anionic charged surfaces were also of interest. 

The effect of copolymerization of methacrylic acid with PMMA on C. albicans 

adherence was investigated by Park et al. (2003). The resulted negatively charged 

surface showed candidal adherence inversely related to increasing the ratio of 

methacrylic acid, which support the advocates of the effect of electrostatic 

interaction on initial adherence of C. albicans. Similar results have been revealed 

with modification of the acrylic resin surface charge and characteristics (Park et 

al., 2008). Further, the absence of phosphate anions in PMMA may reduce the 

adsorption of cationic salivary antimicrobials that could minimize and control 

microbial colonization. That notion was investigated in an in vitro study, where 

PMMA has been modified by incorporation of phosphate group using mixtures of 

methyl methacrylate and methallyl phosphate as monomers. The anti-adherence 

efficacy of the new polymer to C. albicans and their capability to adsorb histatin 

5 was improved in comparison to the control group (Raj & Dentino, 2011).  

A major problem with adding antimicrobials to biomaterials is the negative impact 

on the mechanical properties, where incorporation of antimicrobial polymers to 

denture base acrylic resins may compromise its flexural strength as in using of 

tert-butylaminoethyl methacrylate (Paleari et al., 2011) or incorporating of 

apatite-coated TiO2 photocatalyst (Shibata et al., 2007). Also, phosphate 

containing monomer with an anti-Candida effect affected some of the PMMA 

physico-mechanical properties (Dhir et al., 2007). Moreover, addition of 

methacryloyloxyundecyl pyridinium bromide (MUPB) as an antimicrobial 

monomer, showed a higher fibroblasts cytotoxicity than methyl methacrylate 

(MMA) by 20 times (Regis et al., 2012). 
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These drawbacks could indicate that modification of the surface only would be 

advantageous. Bazaka et al. (2011) reported that coating and surface modification 

strategies for removable biomaterials seem to be more realistic in maintaining the 

polymer bulk properties, and might enhance the surface bio-functionality and 

biocompatibility. Graft polymerization of 2-methacryloyloxyethyl phosphoryl 

choline (MPC) on acrylic denture surfaces create a covalently bonded durable 

brushing-induced friction surface and anti-adhesive to Streptococcus mutans 

biofilm. The grafting method had confirmed its superiority to the coating with 

dipping method. Anti-adhesiveness was attributed to the lower liability for protein 

adsorption where proteins produce a scaffold for bacterial adhesion (Takahashi et 

al., 2014).  

Lazarin et al. (2013) investigated the effect of different experimental photo 

polymerized coatings containing hydrophilic monomers (2 hydroxyethyl 

methacrylate, 3-hydroxypropyl methacrylate and 2-trimethylammonium ethyl 

methacrylate chloride or zwitterionic monomer (sulfobetaine methacrylate) on 

acrylic denture material. They noticed that the increased hydrophilicity led to a 

decrease of the Candida adhesion and concluded that the physicochemical 

properties of the substrate surface dictate the formation and composition of the 

acquired pellicle that influences the biofilm development. In contrast to the 

former study, coating the PMMA with Silane-SiO2 nanocomposite film reduced the 

adherence of C. albicans though it decreased the surface energy and reduced its 

hydrophilicity (Yodmongkol et al., 2014). Hydrophobic-fumed silica treated with 

hexamethyl disilane was added to silicone soft liner, the results revealed lower 

penetration percentage of Candida with increasing the filler percentage (Rodger 

et al., 2010). 

Improved bio-functionality of biomaterials may increase the opportunity to the 

adsorption and bonding of bioactive molecules (Dang et al., 2014). Surface 

modification of PMMA beads by copolymerisation with methyl methacrylate acid 

had positively influenced on the adsorption and desorption of histatin 5 anti-

microbial peptide. It was concluded that controlled release of this from PMMA had 

reduced the adherence of C. albicans while, adsorbed histatin had not shown any 

candidacidal effect (Edgerton et al., 1995).  Following on from this, Yoshinari et 

al. (2006) used oxygen cold plasma to improve the adsorption of histatin 5 to 
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PMMA. The results showed a six times increase in the rate of adsorption of histatin 

5 with plasma treatment that reduced colonisation by Candida. Recently, the 

acrylic resin denture base was bio-functionalised by plasma initiated grafting 

polymerisation of several coating polymers (Wen et al., 2016). The adsorption of 

miconazole antifungal drug was significantly higher to the bio-functionalised 

PMMA and the biofilm formation was inhibited.  

1.9.2 Physical modification 

To the best of my knowledge there is no research article that has investigated the 

modification of the PMMA denture material surface physically using micro/nano 

fabrication approaches. Therefore, given the relative novelty of the field as a 

whole, a general view will be presented on the biomedical impact of micro/nano 

patterned surfaces on mammalian cells and the microorganisms, then a brief 

paragraph about the fabrication.   

Nano fabricated surfaces are well-studied in the electronic engineering and 

optical fields, while, in the biology and medicine fields they remain to some 

extent novel and poorly explored, although initial research of cell-substrate 

interaction displayed a response to the nano-structured materials (Anselme et al., 

2010). The surface energy of the micro-structured patterns is affected with Cassie-

Baxter model (air trapped between the microstructures) or Wenzel model (water 

trapped between the microstructures). This could be more pronounced with 

regularly nanostructured patterns presenting potential ambivalent phenomena 

(the nano-patterned surface could increase the hydrophilicity or the 

hydrophobicity of the surface) (Martines et al., 2005).    

The Interactions between micro/nanotopographies and human cells have been 

investigated in several studies. In orthopaedic/dental implant associated 

surgeries, fibroblast and osteoblast cell adhesion, differentiation and survival are 

critical (Chatakun et al., 2014). Downing et al. (2013) demonstrated the possibility 

of the biophysical microtopographies represented by highly ordered microgrooves 

replacing the biochemical molecules in reprogramming the somatic cells to 

pluripotent cells. This is a critical issue in cell-engineering and regenerative 

medicine. Furthermore, nano-patterned topographies of 100-200 nm diameter 
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nanodots effectively modulated the adherence capacity of the fibroblast cells and 

induced apoptosis like events (Pan et al., 2009).  

Biggs et al. (2007) reported a significant interaction between the nano-patterened 

substrate and the cells. They showed a reduced adherence capacity of the primary 

human osteoblast cells onto highly ordered arrays of nanopit topographies in 

comparison to the planar control substrates, but on the contrary, the controlled 

slightly disordered nano-patterned arrays displayed higher adhesion capacities. 

They suggested a compromisation of the protein adsorption in addition to the 

surface free energy changes as potential mechanisms that led to the reduction in 

the focal adhesion (cell-extra cellular matrix adhesion). While, completely 

random nanotopographies have led to an increase in the focal adhesion, which 

was evidenced by modulation of the genetic expression (Biggs et al., 2009). 

Support for regenerative therapies by controlling stem cell differentiation and cell 

fate through nanotopographical systems was reviewed by Dalby et al. (2014). They 

expected an evolution of the next generation of regenerative medicine 

biomaterials using the knowledge base about nanotopographies-cells interaction.  

Furthermore, micro/nanotopographies have been investigated for their potential 

interaction with microorganisms, although it is notable to mention the presence 

of only one (according to the best of our knowledge) research article that 

investigated the interaction between such surfaces and fungal species (Whitehead 

et al., 2005). Whitehead et al. (2005) interrogated micro and sub-micro titanium 

engineered topographies to reveal the effect of different feature diameters on 

the retention of C. albicans in addition to Staphylococcus aureus and Psuedomonas 

aeruginosa. These titanium-engineered topographies did not show differences 

with C. albicans, in opposite to the other two investigated microorganisms due to 

the disparity of the sizes of theses microbes relative to the size of the features. 

Generally, an increase in uncontrolled surface roughness could offer a shelter for 

the microorganism from cleaning shear forces and by maximising the surface area 

of attachment.  

This was elucidated by Boyd &  Verran (2002) as they demonstrated an increase 

of the adherence capacity of Staphylococcus aureus to unpolished and randomly 

abraded stainless steel surfaces. On the other hand, antifouling and self-cleaning 
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natural systems such as lotus leaf effect and shark skin that are characterised by 

characteristic hydrophobicity and distinctive topographies at micro/nano scale, 

are main drivers of interest in the interaction of micro-nano topographical 

features with microorganisms in an endeavour to control the bacterial adhesion 

and subsequent biofilm formation (Gu & Ren, 2014).  

Inspiration by nature has frequently affected surface design engineering, 

therefore self-cleaning windows, submarine low drag and wall-climbing robots 

could be considered mimicking designs of the hydrophobic lotus leaf, dolphin 

shape and gecko feet respectively. This is termed biological mimicry, which 

describes the copying of natural designs to solve different challenges (Bixler & 

Bhushan, 2012). The finer Sharklet AF™ microtopographies that are inspired by the 

shark skin design reduced the adhesion of Ulva linza zoospores by 85%, and the 

authors suggested the wettability thermodynamics as a causative mechanism 

(Carman et al., 2006). The same microtopography (Sharklet AF™) was further 

investigated by Chung et al. (2007) using polydimethyl siloxane elastomer 

substrate. The authors reported a significant reduction in 7-21 day biofilm of 

Staphylococcus aureus in comparison to the smooth surface control. In another 

report, bacterial adhesion could be modulated by ordered micro/nano 

topographical surfaces, where Pseudomonas fluorescens early stage biofilms were 

hindered by using submicron ordered grooves (Diaz et al., 2009).  

The traditional concept of the smoother surfaces can allow less adhered bacteria 

could be endangered by Mitik-Dineva et al. (2009) study. They have reported the 

increased adherence of Pseudomonas aeruginosa, Escherichia coli and 

Staphylococcus aureus on nano-scale smoothened surfaces in comparison to the 

control surfaces. This was attributed to the increased extra cellular 

polysaccharides formation by the bacteria. Ploux et al. (2009) showed the 

opposite behaviour of human osteoblast progenitor cells to the Escherichia coli 

bacterial cells in adhesion to ridge-groove microtopography, where more 

osteoblasts and fewer bacterial cells adhered at the initial stage of incubation. 

However, a review discussed the adhesion of the human cells and bacteria to 

micro-nanotopographies, the deformity of the cytoskeleton of the bacteria in 

response to micro-nanostructures is less likely to occur in comparison to the 

eukaryotic human cells, which could hinder the targeting of mechano-stimulus 
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mechanism driven by the contact with micro-nanostructures. Besides, the surface 

chemical composition play a critical role in bacterial adhesion that may mask the 

topography effect (Anselme et al., 2010). The notion of possible interaction 

between the surface chemistry and topography was reported, when a 

mathematical model was developed by Decuzzi &  Ferrari (2010) that 

demonstrated the possibility of tailoring the surface energy and the topography 

of the biomedical surfaces to reduce bacterial adhesion to the nanotopographical 

features. A significant coherent relation between surface energy, which might be 

dictated by the surface chemical composition, and the nanotopography was 

reported.  

A silane based-fluorinated nanosilica superhydrophobic coating displayed 

antibioadhesive properties against Staphylococcus aureus and Pseudomonas 

aeruginosa (Privett et al., 2011). In contrast, a different study showed a massive 

role for the topographical shape, size and feature in reduction of bacterial 

adhesion and subsequent biofilm formation while the surface 

hydrophobicity/hydrophilicity did not demonstrate a significant impact (Perera-

Costa et al., 2014). 

Different bacteria show different behaviour towards nanostructured surfaces that 

may complicate the evolution of universal conclusion (Hsu et al., 2013). In an 

endeavour to mimic the superhydrophobic, antifouling, lotus leaf surface, a 

titanium surface was fabricated in dual scale micro-nano projecting features 

(Fadeeva et al., 2011). In that report, Staphylococcus aureus and Pseudomonas 

aeruginosa were the testing models. The first type of bacteria was capable of 

attaching to the surface while the other type was not. It was concluded that 

different bacteria behave differently on superhydrophobic surfaces. 

Cicada wings could represent a different nanofeatured antibacterial mechanism. 

As shown by Ivanova et al. (2012), Pseudomonas aeruginosa could be killed within 

minutes through a purely mechanical approach, where the cell membrane is 

ruptured due to the high pressure applied by the tapered nano pillars of the wings 

that cause stretching of the cell membrane although, the hydrophobic self-

cleaning nature of these wings did not prevent the bacteria from adhering. 

Furthermore, the cicada wings model was a logical basis for investigating the 
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bactericidal effect of TiO2 nanowire via another study. Diu et al. (2014) showed a 

significant killing of Pseudomonas aeruginosa, while Staphylococcus aureus was 

not affected. The bactericidal mechanical-stretching mechanism of cicada wing 

was confirmed, using a biophysical model and 3 different bacterial species 

(Pogodin et al., 2013). This inherent physical antibacterial strategy has been 

recently endorsed with dragonfly wings that presented a specific nanofeatured 

surface (Bhadra et al., 2015;Mainwaring et al., 2016). However, in a different 

study, a variety of submicron topographical arranged features showed higher 

affinity to bacterial adherence, where the attached bacteria used different 

mechanisms to maximise their attachment (Hsu et al., 2013).       

The generation of micro/nano master patterns and the subsequent replication 

methods will now briefly described. The fabrication technology of master patterns 

encompasses a range of methodologies which are photolithography, electron beam 

lithography, colloidal lithography, polymer demixing among others (Kearns et al., 

2011). The first and second methods present the possibility of elaboration of highly 

ordered topographies. Photolithography technology depends on developing a film 

of photosensitive layer (photoresist) on the substrate and applying a light that 

transfer through a specific patterned mask to limit the illumination to the targeted 

areas, and then an etchant is applied for removal of the photoresist and 

preparation of the pattern in a synchronising manner. The electron beam 

lithography method does not use the mask role in developing the patterns but use 

the electron beam to directly develop the pattern on the photoresist. It elaborates 

more accurate patterns but takes longer time and more expensive  (Kearns et al., 

2011). 

Moreover, the ‘soft lithography’ which is an alternative and complement to the 

photo and electron beam lithography can be used as successful way to generate 

the replicas in inexpensive and more convenient approach that facilitates the 

introduction of the micro/nano topographies to the biomedical research field. Soft 

lithography uses non-photolithography techniques (to avoid the optical diffraction 

disadvantage and the subsequent low resolution) such as self-assembly monolayer, 

microcontact printing, microtransfer molding, replica molding and embossing for 

replicating features using mostly elastomeric ‘soft’ stamps or molds (Xia & 

Whitesides, 1998).  
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The replication of polymer patterns via imprinting of the master patterns can be 

divided into 2 main non-photolithographic approaches: Hot embossing technique, 

which is simple and requires heating the polymer slightly above its glass transition 

temperature then applying a given force. The second approach is the injection 

moulding technique that is characterised by its capacity to produce larger number 

of replicates in a shorter time but it requires a more complicated equipment  (Xia 

& Whitesides, 1998;Gadegaard et al., 2006b).   
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1.10 Hypothesis & Aims 

The preceding introduction has demonstrated the importance of microorganisms 

on the denture surface. The hypothesis of this study is that C. albicans plays a 

critically important role in DS, and that new methods of controlling these 

microorganisms will lead to improved clinical management. Therefore, this PhD 

thesis aimed to undertake the following objectives: 

 To screen and assess the ability of Candida albicans to form biofilms on 

clinically relevant surfaces 

 To evaluate whether the polyphenol curcumin could be used to manage 

candidal adhesion 

 To evaluate whether physical manipulation of denture relevant substrates 

could be used to manage candidal adhesion.
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2.1 Introduction 

Tooth loss and edentulousness is related to age, and with changing population 

demographics this problem is expected to continue to rise. Generally, 

microorganisms living within biofilms are more resistant to antimicrobial agents, 

therefore prevention of biofilm formation is a priority (Ramage et al., 

2004;Ramage et al., 2009). Within the biofilm, C. albicans co-aggregates with a 

range of bacterial species forming the basis of denture plaque, which is often 

associated with other oral diseases, including root caries, gingivitis, halitosis and 

angular cheilitis (O'Donnell et al., 2015a). In severe cases, more serious systemic 

effects are reported, such as aspiration pneumonia, which is a potentially life 

threatening lung infection (van der Maarel-Wierink et al., 2013;Iinuma et al., 

2014;O'Donnell et al., 2016). In light of the local and systemic impact of denture 

wearing, investigating the ability of microbes to colonize denture surfaces, in 

particular C. albicans, is a worthwhile aim for oral health research.  

DS is a common inflammatory condition of the oral mucosa that sits adjacent and 

in direct contact with the fitting surface of a removable prosthesis. The 

prevalence of DS ranges between 15 to 70% in these patients (Gendreau & Loewy, 

2011), and is associated with multiple factors, including night-time denture 

wearing, poor oral hygiene, denture surface imperfections, denture stability, 

medications, salivary flow, smoking, poor general health, and diseases causing 

compromised immunity (Jeganathan & Lin, 1992;Rodriguez-Archilla et al., 

1996;Soysa & Ellepola, 2005;Gendreau & Loewy, 2011). In addition to these 

contributory factors, microbial infection with Candida species and other oral 

bacterial pathogens is also key to the development of DS (Gendreau & Loewy, 

2011;Salerno et al., 2011). The microorganism most pertinent to DS is C. albicans, 

a commensal opportunistic yeast capable of colonizing different surfaces. Existing 

as a biofilm on denture related surfaces C. albicans displays a number of adaptive 

resistance mechanisms, making it difficult to manage solely through 

chemotherapeutic intervention (Rautemaa & Ramage, 2011). Its capability of 

expressing a range of key virulence determinants during this sessile lifestyle, 

including morphogenetic switching (yeast to hyphae transition), the release of 

hydrolytic enzymes, and the production of protective extracellular matrix 
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components, makes this an important denture related pathogen (O’Donnell et al., 

2015b). Moreover, clinical isolate heterogeneity means that we cannot conclude 

that all strains will be equally pathogenic (Tumbarello et al., 2007;Sherry et al., 

2014;Rajendran et al., 2016a;Kean et al., 2018), thus complicating our ability to 

fully understand the basis of candidal induced DS.  

Poly (methyl methacrylate) (PMMA) is one of the most commonly used denture 

materials because of the appropriate mechanical, physical and economical 

properties. Furthermore, the ease of manipulation, despite its varied topography 

that promotes the development of microbial communities (Raj & Dentino, 

2013;Jackson et al., 2014;Susewind et al., 2015). The rigid mechanical feature of 

PMMA may cause discomfort to the underlying mucosa. Therefore, resilient soft 

liners such as silicone- and acrylic-based liners are becoming increasingly popular. 

These materials showed enhancement in the patient masticatory function and 

minimised appearance of pressure sore spots inside the oral cavity and the 

associated pain (Kimoto et al., 2007;Palla et al., 2015). However, these liners 

cannot resist microbial colonisation and could deteriorate denture hygiene even 

further (Nevzatoglu et al., 2007;Susewind et al., 2015). Attachment of Candida 

can be influenced by a number of factors, though the physicochemical nature of 

the denture substrate is important (Pereira-cenci et al., 2008a), and given the 

variety of denture related substrates available then it is not surprising we observe 

so much clinical variation. Whether this variation is biologically driven or material 

driven remains to be determined. 
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2.2 Aims 

It is hypothesised that candidal denture biofilm formation is multifactorial, 

influenced both by the surface and microorganisms, though which is the more 

dominant is unclear. Therefore, the overall aim of this chapter was to:  

1. Investigate the quantitative impact of denture candidal burden in DS patients.  

2. To assess the biofilm-forming capacity of Candida albicans clinical denture 

isolates. 

3. To investigate the impact of different denture surface materials on the 

adherence capacity and biofilm formation of different clinically isolated C. 

albicans. 

Part of the data presented in this chapter has been published in the Journal of 

Medical Microbiology: 

O’Donnell L, Alalwan H, Kean R, Calvert G, Nile C, Lappin D, Robertson D, Williams 

C, Ramage G, Sherry L. 06/02/2017. J. Med. Microbiol. 66(1):54-60 

doi:10.1099/jmm.0.000419 

Findings from this chapter have been presented at the following academic 

meetings: 

1. Postgraduate research prize seminar held in Glasgow Dental School on 27th 

of April, 2016. 

2. Oral microbiology and immunology group (OMIG) postgraduate research 

prize symposium held in the College of Clinical Dentistry at the University 

of Sheffield on 8th of Feb, 2017.  
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2.3 Materials and Methods 

2.3.1 Molecular quantification of Candida from dentures 

Denture plaque samples were collected from denture wearers attending Glasgow 

Dental Hospital (NHS Greater Glasgow & Clyde). Removable prosthodontic 

appliances from 129 patients were submitted to this study, as previously described 

(O'Donnell et al., 2015b). Written informed consents were obtained from all 

participants, with ethical approval granted by the West of Scotland Research 

Ethics Service (12/WS/0121). Every patient was examined by a dentist to 

determine the presence of DS. Patients with treatment history of antibacterial or 

antifungal drug subscription within 6 weeks before sampling were excluded. 

Eighty-one patients were categorized as healthy (no signs of oral inflammation in 

denture-foundation areas) and 48 patients were categorized as diseased. Newton's 

classification was utilised to subdivide the DS group (Newton, 1962). DS group was 

sub grouped into Grade 1 inflammation (localised hyperemia [n=24]), Grade 2 

(diffuse erythematous hyperemia[n=14]) and Grade 3 (diffuse granular 

erythematous with papillary hyperplasia[n=10]). As a general instruction, every 

patient was asked to not clean his/her dentures on the day of sample collecting.   

After removal of the denture from the patient’s oral cavity, it was placed in a 

plastic bag (Fisher Scientific, Loughborough, UK) filled with 50 ml 1x phosphate–

buffered saline (PBS [Sigma–Aldrich, Poole, UK]). Each appliance was sonicated in 

a water bath at 35 kHz (Ultrawave, Cardiff, UK) for 5 min to collect the adherent 

biofilm (Coco et al., 2008a). The denture sonicate of each sample was centrifuged 

at 3700 × g for 10 min and the pellet resuspended in 2ml of RNAse free water® 

(Qiagen, Manchester, UK), which was then frozen at -80°C to be used in further 

experiments. Dr Lindsay O’Donnell undertook this component of the study during 

her PhD thesis (O’Donnell, 2016). 

2.3.1.1 DNA extraction of clinical samples 

DNA purification to investigate Candida denture burden was performed using the 

QIAGEN QIAamp mini kit for isolation of genomic DNA (QIAGEN, Germany). Frozen 

samples were thawed from the -80°C freezer; vortexed for 30 s and 1 ml pipetted 
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into a 1.5 ml Eppendorf tube. These were then centrifuged at 10000 rpm for 10 

min. The supernatant was carefully pipetted, leaving the pellet intact. To 

disintegrate proteins and for enzymatic lysis purposes, 20 µl of proteinase K and 

180 µl of ATL Buffer (a tissue lysis buffer) was added to the pellet and vortexed. 

The mixture was incubated in a heat block (Pierce Reacti-Therm® Heating Module) 

at 55°C for 20 min. Further steps were undertaken to guarantee cell lysis, using a 

bead beater [BeadBug™ microtube homogenizer (Sigma-Aldrich, Gillingham, UK)]. 

For this, 0.25 ml of 0.5mm diameter sterile glass beads (Thistle Scientific, 

Glasgow, UK) were transferred to the lysis suspension within defined O-ring 

screwcap microtubes and 3 × 30 s disruptions were performed at maximum 

velocity (400 rpm), incubating for 10 s on ice between disruptions. Supernatants 

were pipetted and transferred into a fresh Eppendorf tube after centrifuging at 

7000 rpm for 10 min.  

Thereafter, QIAmp mini DNA extraction kit steps were followed as per the 

manufacturers protocol, beginning with the addition of 200 µl of Buffer AL (lysis 

buffer) to the sample, pulse vortexing for 15 s, and incubating in the heat block 

at 70°C for 10 min. Next, 200 µl of 100% ethanol was added and pulse vortexed 

for 15 s. This was then pipetted in to a QIAmp mini spin column and centrifuged 

at 8000 rpm for 1 min. The mini spin column was removed from its collecting tube, 

the collecting tube containing the filtrate was disposed, and the mini spin column 

was placed in a new collecting tube. Next, 500 µl of Buffer AW1 was added and 

centrifuged at 8000 rpm for 1 min. Again, the mini spin column was removed from 

its collecting tube and placed in a new collecting tube after disposal of the 

collecting tube containing the filtrate. Five hundred microlitres of buffer AW2 was 

then added and centrifuged at 14000 rpm for 4 min. The mini spin column was 

transferred into a new eppendorf. Finally, 50 µL of AE buffer was added and 

incubated for 1 min at room temperature, and centrifuged at 8000 rpm for 2 min. 

Next, the mini spin column was discarded and the filtrate containing purified DNA 

was stored in -20 ºC after assessment of the purified DNA quality and quantity by 

a NanoDrop®-1000 spectrophotometer (ThermoScientific, Loughborough, UK) prior 

to moving to the subsequent step with quantitative polymerase chain reaction 

molecular method (qPCR). 
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2.3.1.2 Culture conditions  

Laboratory stocks of the reference strain C. albicans SC5314 were maintained 

weekly on Sabouraud dextrose agar [Oxoid, Cambridge, UK] plates at 4°C. This 

strain was selected because it is genetically well characterised as it is the origin 

of strains conventionally used for molecular analysis (Fonzi & Irwin, 1993;Jones et 

al., 2004;Thewes et al., 2008). Yeast peptone dextrose (YPD) broth medium [1% 

w/v yeast extract, 2% w/v peptone, 2% w/v dextrose (Oxoid, UK)] was used for 

propagation of the yeast cells. This was performed by inoculating a loopful of C. 

albicans colonies in 10ml YPD in 50ml polyethylene tubes, and incubating 

overnight in a shaking incubator with 150 rpm at 30oC. The overnight propagated 

cells were centrifuged for 5 min at 3000 rpm and washed twice with 1 x PBS, then 

resuspended in 10 ml of 1 x PBS. 

2.3.1.3 Quantitative standard curve 

Preparation of a standard curve is an essential step for qPCR analysis from clinical 

specimens. To standardise C. albicans SC5314 cells to 1 × 108 per/mL, the yeast 

cells were counted using a Neubauer haemocytometer. Ten ml of 1 × 108 CFU/ml 

was distributed to a series of eppendorf tubes with 1 ml in each; DNA was 

extracted as described in the previous section (2.3.1.1) for each one of the 

eppendorfs. After Purified DNA was assessed for quantity and quality using a 

NanoDrop-1000 spectrophotometer. It was ten-fold serially diluted with AE buffer 

to 10-5, then stored at -20ºC.  

2.3.1.4 Quantification of Candida CFEs in denture sonicates 

A real time qPCR (RT-qPCR) approach was used to assess the dentures' candidal 

colony forming equivalents (CFEs) burden. Following extraction of DNA, 129 

denture sonicate DNA samples were distributed into MicroAmp™ Optical 96-Well 

Reaction PCR Plates (Applied biosystems, USA). Briefly, a master mixture was 

prepared according to the number of the targeted reactions by mixing 1µL of 

forward (F) and reverse (R) universal Candida species primers (10 μM), 7 µL 

Nuclease free water (Hyclone®, Utah, USA) and 10 µL Fast SYBR® Green PCR 

Master Mix (Applied Biosystems, USA). These quantities were equivalent to only 
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one targeted reaction. The 18S-rDNA primer sequences were as following: F - 

CTCGTAGTTGAACCTTGGGC and R - GGCCTGCTTTGAACACTCTA, as previously 

described (Rajendran et al., 2015). Nineteen microlitres of this mixture was 

dispensed in every target well of a 96-well reaction PCR plate. Then, 1 µL of the 

purified DNA per sample was added in duplicate. Negative control wells (no DNA 

template) were set as duplicate. A duplicate of reaction wells was allocated for 

each dilution of the ten-fold serially diluted standard curve-purified DNA, which 

was isolated as annotated in 2.3.1.3. The 96- well PCR plate containing aliquots 

was briefly centrifuged at 1000 rpm for 1 min to remove any trapped bubbles.  

A thermal cycler [StepOnePlus™ Real-Time PCR System unit (Applied biosystems, 

USA)] was used to monitor the amplification of the 18S rDNA candida specific gene 

through monitoring the fluorescence of the DNA-intercalating fluorescent dye in 

all the targeted reactions. This was performed under the following thermo-cycling 

conditions: 50°C for 2 min, 95°C for 2 min followed by amplification procedure of 

40 cycles of 95°C for 3s (denaturation) and 60°C for 30s (annealing/extension). 

The analysis of the cycle threshold (Ct) values was carried out using StepOne 

software v2.3. This was performed by generating a specific standard curve 

equation for each PCR plate and analysing the data (Ct values) accordingly. The 

number of the colony forming equivalents (CFEs) per denture was doubled to be 

meaningful for the whole sample, because the CFEs was quantified for only 1 ml 

of the finally centrifuged denture sonicate sample (2 ml), as previously annotated 

in 2.3.1 and 2.3.1.1.                                                                              

2.3.2 Standardised C. albicans biofilm assessment of denture 
isolates 

The independent detection and identification of Candida species of the denture 

sonicates was performed by Dr Lindsay O’Donnell during her PhD thesis (O’Donnell, 

2016). Briefly, 100 µl of the denture sonicate was plated on Colorex Candida agar 

(E & O labs, Bonnybridge, UK) and incubated at 30оC for 72 h. Species 

identification was performed as per the manufacturers protocol, with green 

colonies representing C. albicans, pink colonies representing C. glabrata and the 

blue colonies representing C. tropicalis. Isolates were then were further sub-

cultured on sabouraud dextrose agar for purification purposes. These denture 
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isolates were stored in Microbank vials (Pro-Lab Diagnostics) at -80оC, until further 

use. 

2.3.2.1 Biofilm formation from denture clinical isolates 

To perform this biofilm assessment experiment, 31 and 37 C. albicans clinical 

isolates were selected that were isolated from denture sonicates of healthy and 

DS patients, respectively. The C. albicans cells were propagated in YPD, washed 

twice with PBS, centrifuged and resuspended in PBS as annotated in section 

(2.3.1.2). To develop C. albicans mature biofilm, the cell count was standardised 

in RPMI-1640 medium to 1×106 CFU/ml using Neubauer haemocytometer as 

previously established for 96-well microtitre plates (Ramage et al., 2001;Pierce 

et al., 2008). Briefly, 100 µl of the standardised suspension were inoculated in the 

targeted wells of the 96-well flat-bottomed polystyrene plates (Corning 

Incorporated, NY, USA) and the microtitre plates were covered with their original 

lids and sealed with parafilm. Each isolate was tested in triplicate, and negative 

controls containing media without C. albicans were included. Microtitre plates 

were then statically incubated at 37оC for 24 h. Following growth, media were 

carefully aspirated and the resultant biofilms were washed twice with PBS to 

remove non-adherent cells from the biofilm. 

2.3.2.2 Crystal violet assay for biofilm biomass assessment 

The biomass of these biofilms was assessed using the crystal violet (CV) assay, as 

described previously by our group (Mowat et al., 2007;Sherry et al., 2014). Briefly, 

following washing, biofilms were left overnight to dry at room temperature. One 

hundred microlitre of 0.05% weight/volume CV solution was then added to each 

dried biofilm and incubated at room temperature for 10 min to allow absorption 

of the dye. Following incubation, the CV solution was discarded, and biofilms were 

carefully washed with running tap water to remove any unbound dye, and then 

100 µl of 100% ethanol was applied to destain each biofilm. The contents of every 

well were mixed thoroughly by pipetting, before 75 µl was transferred to a new 

96-well plate for spectrophotometric measurement. Biomass was then 

spectrophotometrically measured by reading absorbance at 570 nm in a microtitre 

plate reader (FluoStar Omega, BMG Labtech). All absorbance values were blank 
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corrected based upon two negative controls wells, where no biofilms were 

formed. Grouping of the isolates were based on their level of biomass distribution. 

All isolates observed below the first quartile (Q1, OD570=0.382) were classified as 

low biofilm former (LBF), and isolates with a biomass higher than the third quartile 

(Q3, OD570=1.192) were considered high biofilm former (HBF), as described 

previously (Sherry et al., 2014;Rajendran et al., 2016a). 

2.3.3 Investigation of biofilm formation upon denture materials 

Development of candidal biofilms is usually assessed using RPMI-1640 medium and 

a polystyrene plate as a substrate. The artificial nature of testing environments 

of these biofilms can be modulated to be more clinically relevant using different 

denture materials as substrates and artificial saliva (AS) as a medium. Two clinical 

isolates [n=1 LBF (GSK106) and n=1 HBF (GSK090)] and one laboratory strain 

(SC5314) were selected for observation and measurement of the initial (4 h) and 

mature (24 h) biofilm formation upon different denture materials.  

2.3.3.1 Fabrication of denture material samples 

Discs of denture prosthetic materials (12 mm ±0.2 diameter × 1 mm thickness) 

were fabricated using the lost wax technique (McCord, 2009). Discs of sheet wax 

were invested in die stone molds in prosthodontic metal flasks. After boiling out 

the wax, different denture materials were applied and processed using a 

compression molding technique using a dental hydraulic press (Kavo, Germany). 

Briefly, a die stone investing medium (Super yellow, John & Winter co. Ltd, UK), 

was poured in the lower half of the metal flask, then the wax discs were placed 

and left to set. Afterwards, a layer of a separating medium (DENTSPLY, USA) was 

applied. Then, the upper half of the flask was fitted and the second layer of die 

stone investing medium was poured. After reaching the final setting, the wax was 

eliminated with 5 min boiling water immersion and washing. Three denture 

materials were utilized to prepare the samples: heat cured 

polymethylmethacrylate PMMA (C&J De-luxe denture base polymer, Surrey, UK), 

Molloplast B® (GmbH & Co. KG, Germany) heat cured silicone-based denture soft 

liner and Ufi Gel® SC (VOCO GmbH, Germany) cold cured acrylic based denture 

soft liner. The heat cured samples were fabricated in a hot water bath (QD, UK) 
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according to the manufacturer's instruction for each material. After completion 

of the specific curing regimen for each material, the discs were deflasked and 

finished by removing the border flashes with an acrylic bur. 

In order to reflect the clinical situation where the fitting surface of the denture 

is not highly polished, no further finishing was carried out on the surface of discs. 

Each disc was visually examined and discs with visible internal or external 

imperfections were excluded. Discs were then immersed in distilled water for 7 

days to remove any remnants of residual monomer. The discs were thoroughly 

disinfected by sonication in distilled water at 35KHz- for 15 min before immersion 

in 100% ethanol for one hour. Discs were then re-sonicated as above for a further 

15 minutes before exposure to ultraviolet light (TripleRed®, NUAIRE cabinet, 

Plymouth, UK). Both sides of each disc side were exposed to 15 minutes UV light 

to complete the process (Ramage et al., 2012c). The prepared discs were then 

stored in dry sterile tubes until use.  

2.3.3.2 Preparation of artificial saliva 

Artificial saliva (AS) was prepared to be used as an incubation medium as 

previously defined (Pratten et al., 1998;Millhouse et al., 2014), this is to relatively 

simulate the oral cavity environment. AS was prepared by mixing of porcine 

stomach mucins 2.5 g, sodium chloride 3.5 g, potassium chloride 0.2 g, calcium 

chloride dihydrate CaCl2.2H2O 0.2 g (Sigma- Aldrich); and yeast extract 2.0 g, Lab 

Lemco powder 1.0 g, proteose peptone 5.0 g (Oxoid). Next, 1 litre of sterile 

distilled water was added to mix the ingredients thoroughly. The mixture was 

autoclaved at 121°C for 15 min. Following autoclaving, 1.25 mL of 40% sterile Urea 

v/v (Oxoid) was added to AS which was aliquoted into 50 mL volumes, kept out of 

the light and stored at 4°C for a maximum of two weeks. Prior to every use, it 

was vortexed to homogenise the precipitated contents. 
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2.3.3.3 Biofilm formation on different denture materials 

The selected C. albicans isolates (GSK106 and GSK090) and the laboratory strain 

SC5314 were maintained, propagated and washed as explained in 2.3.1.2 and 

2.3.1.3. Colony forming units (CFU) were standardized using a haemocytometer 

and light microscope to 1×107 CFU/ml. Discs of each denture material were 

distributed in triplicate for each C. albicans strain and denture material in 

polystyrene 24-wells plates (Corning Incorporated, NY, USA), with AS used as 

medium of incubation. One millilitre of the standardised AS-C. albicans suspension 

was dispensed in each well containing discs, then the plates were covered with 

their original lids and sealed with parafilm and incubated for 4 or 24 h at 37ºC in 

static condition. The experiment was repeated on 3 independent occasions. 

2.3.3.4 Metabolic activity quantification assay 

For in vitro candidal biofilm optimisation and characterisation purposes the XTT 

assay was used. Quantitative assessment of C. albicans adhesion and biofilm 

formation was assessed using an XTT [2, 3-bis (2-methoxy-4-nitro-5-sulfo-phenyl)-

2H-tetrazolium-5-carboxanilide]formazan salt-based metabolic reduction assay 

(Ramage et al., 2001). Briefly, XTT (Sigma-Aldrich, Dorset, UK) was prepared as a 

solution of 0.25 g/L in distilled water and placed on a magnetic stirring platform 

for 30 min and wrapped in tin foil to ensure complete darkness. To ensure sterility, 

0.22 μm filters (Cole-Parmer CA Syringe Filters, UK) were used to filter the 

solution, which was aliquoted and stored at -80oC. Prior to use, XTT solution was 

thawed and menadione (Sigma-Aldrich, Dorset, UK), prepared in acetone to 10 

mM, was added to a final concentration of 1 μM. After washing, developed biofilms 

with 1 ml of PBS, 1 mL of XTT/menadione mixed solution was aliquoted to all 

washed biofilms, including negative control wells. Blanks were included for 

background correction purposes. Plates were incubated in the dark for 3 h at 37°C. 

Then, 750 µl was pipetted and transferred to a new 24 wells plate. A colorimetric 

change in XTT reduction was measured at 492 nm in a microtitre plate reader 

(FluoStar Omega, BMG Labtech, Aylesbury, Buckinghamshire, UK).  
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2.3.3.5 Macroscopic visual inspection  

The ability of C. albicans to form biofilms on denture materials was visually 

inspected by eye through staining with crystal violet in a way analogous to dental 

plaque disclosing agents (Wu et al., 2013). Early (4h) and mature (24h) biofilms 

were developed at optimal densities of cells (107 CFU/ml) in AS at 37°C on all the 

three denture materials tested using three C. albicans strains, grown as described 

above in 2.3.3.3. Negative control (NC) discs (immersed in AS only) were also 

included. Following incubation, biofilms were washed with 1 ml of PBS and left to 

dry overnight. One ml of crystal violet stain 0.05% w/v was added to each well 

and incubated in room temperature for 10 min. Then, the discs were washed 

thoroughly by dipping five times in two Petri dishes each containing 40 ml of 

distilled water to eliminate unbound stain. Then, the discs were air-dried and 

photographic images were taken using a digital camera (Sony, Japan).      

2.3.3.6 In vitro molecular quantification 

For molecular analysis, C. albicans DNA from 4 and 24h biofilms was extracted. 

Biofilms were washed once with 1 ml of PBS gently to remove the non-adherent 

cells. Discs were picked with sterile tweezer and put in sterile bijous (Sterilin Ltd, 

Newport, UK) containing 1 ml of PBS.  Bijous were sonicated in water bath 

(Ultrawave, Cardiff, UK) for 10 min to collect the adherent cells then the 

suspension was pipetted into Eppendorf ® microtubes, which were centrifuged at 

10000 rpm for 10 min. The supernatant was pipetted carefully; leaving the pellet 

intact. Then, DNA extraction was performed as described in section 2.3.1.1.  

Quantification of the adherent colony forming equivalents by Real Time-

quantitative PCR assay was performed as described in 2.3.1.4.  
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2.3.4 Statistical analysis 

Data distribution, statistical analysis and graphics were performed using GraphPad 

Prism version 5.0 (GraphPad Software Inc., La Jolla, CA). All data were 

investigated for being normally distributed or not using D'Agostino-Pearson 

omnibus and Shapiro-Wilk tests. Level of significance with 0.05 was used as an 

accepted probability of 5% for incorrectly rejecting the null hypothesis. 

Transformation of the data, if necessary, and selection of the specific statistical 

test are described in the results sections of this chapter.  
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2.4 Results 

2.4.1 Denture carriage of Candida in health and disease 

To determine whether there was an association between denture 

carriage/colonisation of Candida spp. and DS, qPCR was employed to investigate 

levels of Candida in denture sonicates from 81 healthy and 48 diseased patients 

with DS. Data were not normally distributed and therefore log10 transformation 

was undertaken. Figure 2.1(i) demonstrates that Candida quantities were greater 

on dentures from DS patients compared to healthy denture wearers (p<0.001). 

Nevertheless, an observable overlap was shown between these two groups. 

Candidal carriage for healthy patients ranged from 2.45×102 to 5.03×107 CFEs and 

from 4.57×103 to 9.77×107 CFEs for DS patients, across the 129 dentures tested. 

When the DS patients were stratified based on Newton’s grade of inflammation, 

no significant difference between Candida carriage of healthy denture wearers 

and patients classified with Newton’s grade 1 was observed. However, significant 

differences were observed between healthy denture wearers and patients 

classified with Newton’s grade 2 (p<0.01) and Newton’s grade 3 (p<0.01) (Figure 

2.1[ii]). 
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 (i) 

   
 (ii) 

                    
               

Figure 2.1: Candida carriage in dentures in respect to DS status. (i) Candida 
cells in colony forming equivalents (CFEs) in health and diseased groups (N=129). 
Higher number was observed in diseased group samples. An unpaired t-test was 
performed to compare the independent groups, and horizontal line refer to mean. 
(ii) Candida carriage in dentures in respect to the DS grades of inflammation. One-
way ANOVA showed a high significant difference with p value of <0.0001. 
Bonferroni multiple comparison test analysed the statistical relation of healthy 
group samples with different sub groups of diseased group and between the 
different grades of inflammation themselves. Horizontal lines represent means.  
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2.4.2 Variability of denture isolates in biofilm formation  

C. albicans clinical isolates have various capabilities to form biofilms. Evaluation 

of denture candidal biofilm forming heterogeneity with respect to DS was 

investigated through assessment of the capacity of the denture C. albicans isolates 

to form biofilms. These isolates were cultured from the dentures of 31 and 37 

selected healthy and DS diseased study participants, respectively. CV assay was 

used to evaluate the biofilm-forming ability by measuring the biofilm biomass. 

Figure 2.2 shows the differential biofilm formation of these clinical isolates. The 

isolates were categorised into three classes: low, intermediate and high biofilm 

formers. Isolates with optical densities of the first quartile (Q1, OD570=0.382) were 

deemed as low biofilm formers (LBF), isolates of the third quartile (Q3, 

OD570=1.192) were deemed as high biofilm formers (HBF) and the in-between 

optical densities were considered as intermediate biofilm formers. The range of 

optical densities for healthy patients was from 0.09 to 2.81 and from 0.1 to 2.06 

for DS patients, through the 68 isolates assessed.  A high variability in the 

biomasses of healthy and DS patients was noticed, and a statistical significance 

was not observed between them (P>0.05). This confirmed the heterogeneous 

nature of C. albicans biofilm forming ability within both groups. 

                

Figure 2.2: Quantification of biofilm biomass from denture isolates. C. albicans 
isolated from dentures of healthy (n=31) and DS (n=37) patients were grown as 
biofilms for 24 hr and their biofilm biomass assessed using the crystal violet assay. 
Unpaired t-test was used to analyse the data (p>0.05). The dotted lines represent 
demarcation of LBF and HBF isolates by the lower and upper quartiles, 
respectively. 
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2.4.3 Characterisation of in-vitro C. albicans biofilms 

To observe the effect of variable conditions associated with the development of 

C. albicans biofilms, XTT and CV assays were used for quantifying the biofilm 

metabolism and biomass, respectively. Initially, early biofilms were developed on 

PMMA denture material and standard polystyrene plates using clinically relevant 

medium (AS) to determine any possible differences. Figure 2.3(i) showed that an 

inoculum of 1×107 CFU/ml resulted in a significantly greater metabolism of early 

AS-developed biofilms on PMMA denture material than 1×106 CFU/ml (p<0.01), 

1×105 CFU/ml and 1×104 CFU/ml (p<0.001). Duplication of the experiment on the 

standard polystyrene 24 well culture plates displayed a similar trend, as shown in 

Figure 2.3(ii). Therefore, prospectively further optimisation and characterisation 

experiments were performed using polystyrene 24 well plates for feasibility 

purposes.        

(i)                                                           (ii) 

 

Figure 2.3: Optimisation of C. albicans early biofilm on PMMA and polystyrene. 
XTT metabolic assay was used to assess the biofilms tested, with the experiment 
repeated in 3 independent occasions in triplicate. (i) PMMA discs were colonised 
for 4 hr with different CFU/ml concentrations using AS medium. (ii) Replication of 
the same aforementioned experiment using polystyrene as substrate. One-way 
ANOVA test displayed P value < 0.0001. Bonferroni post hoc assay was used for 
further analysis. *= P< 0.05, **= P<0.01, ***= P< 0.001. Error bars represent 
standard error of mean. 
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2.4.3.1 The effect of the inoculum density on biofilm formation 

For an initial screening purpose, first, several inoculum densities were 

investigated for any differences in mature biofilm biomass, which were developed 

on 24 well plates and using the standard RPMI-1640 medium. Data showed a 

significantly higher biomass for the inoculum density of 5×105 over 2.5×105 

(p<0.05) but not for any of the other densities investigated (Figure 2.4). These 

data indicated that CV assay is not the most appropriate to detect any differences 

among biofilms developed from different inoculum densities. Based on these data, 

metabolic activity of early and mature biofilms were interrogated for two 

inoculum densities 5×105 or 1×107 CFU/ml using the XTT assay in two media (AS & 

RPMI). These densities were selected according to the previous data shown in 

Figures 2.3 and 2.4. Figure 2.5 (i) and (iii) show the non-significant difference 

between the early (4 hr) and mature (24hr) biofilms when the 1×107 CFU/ml cell 

density was used with all strains tested in both AS and RPMI media. In contrast, 

the 5×105 CFU/mL inoculum density showed a significantly greater metabolic 

activity for all of the strains tested and in both media used (AS and RPMI) as shown 

in Figure 2.5 (ii) and (iv), respectively. Therefore, 5×105 CFU/ml inoculum density 

significantly increased the metabolic activity of the mature biofilms (24 hr) in 

comparison to their early counterparts (4 hr).  

                                                    
Figure 2.4: Effect of different inoculum densities on RPMI-developed mature 
biofilms. Biofilms of C. albicans SC5314 were grown for 24 h in RPMI media at 
varying inoculum densities. Following growth, biofilm biomass was assessed using 
the crystal violet assay. The experiment repeated in 3 independent occasions 
using triplicates. One-way ANOVA test displayed P value < 0.05. Bonferroni post 
hoc assay was used for further analysis.  * = P< 0.05, Error bars represent standard 
error of mean. 
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Figure 2.5: Optimisation of the CFU/ml concentration for development of 
candidal biofilm. XTT assay was used to assess the metabolism of the biofilms 
tested. The experiment repeated in 3 independent occasions using triplicates. (i) 
and (ii) represent the metabolic activity of AS-developed biofilms with 1×107 and 
5×105 CFUs/ml, respectively. (iii) and (iv) represent the metabolic activity of 
RPMI-developed biofilms with 1×107 and 5×105 CFUs/ml, respectively. Student’s t 
test was used for statistical analysis.  * = P< 0.05, **= P< 0.01. Error bars represent 
standard error of mean. 
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2.4.3.2 The effect of incubation medium on biofilm formation  

The comparison of AS medium to RPMI medium for biofilm development was 

statistically interrogated (student’s t test) using the data sets derived from the 

5×105 CFU/ml inoculum density. Figure 2.6 shows the higher capacity of RPMI 

medium to develop early and mature biofilms relative to AS, where significant 

differences were observed between the AS and the RPMI media for all tested 

strains at both time points. Thus, RPMI medium considerably promotes biofilm 

metabolism in comparison to the AS. 
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(i) 

  

  (ii) 

  

 (iii)  

    

Figure 2.6: Optimisation of the incubation medium for development of 
candidal biofilm. XTT assay was used to analyse the metabolism of the biofilms 
tested. (i) represents the biofilm metabolism for the reference strain SC5314, 
while (ii) and (iii) represent the biofilm metabolisms for the clinical isolates 
GSK106 and GSK090 respectively. Student t test was used to analyse the data 
statistically. * = P< 0.05, **= P< 0.01, ***= P< 0.001. Error bars represent standard 
error of mean. 
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2.4.3.3 The effect of strain variability on biofilm formation 

Interrogation of the effect of strain variability on biofilm development requires 

an alternative assay, as the XTT assay is not optimal for comparison of different 

strains due to the possible difference in the metabolic rate among different strains 

(Ramage, 2016;Azeredo et al., 2017). Therefore, the CV assay was used for 

measurement of the biofilm biomass and comparing between different strains 

using two media (AS and RPMI) and incubation periods (4 and 24 hr). The statistical 

analysis by two-way ANOVA signified the important roles of strain variability and 

incubation period as significant sources of variation in candidal biofilms. 

Bonferroni’s multiple comparison post hoc test clarified the non-significant effect 

of strain variability on 4hr early biofilms as opposed to 24 hr mature biofilms 

(Figure 2.7). Within the mature biofilms, the clinical isolate GSK106 showed a 

significant low biofilm forming capacity in comparison to the other investigated 

strains. Accordingly, strain variability was a vital source of variation in the 

development of mature biofilms but not early biofilms. 
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(i)    

 

(ii) 

 

Figure 2.7: The effect of strain variability on development of candidal biofilm. 
CV assay was used to assess the biofilm biomass of the biofilms tested. Data 
collected from 3 replicates in 3 independent occasions. The biofilm biomass in AS-
developed biofilm (i) and  biofilm biomass in RPMI-developed biofilm (ii). Two-
way Anova followed by Bonferroni multiple comparison test were used for 
statistical analysis. * = P< 0.05, **= P< 0.01, ***= P< 0.001. Error bars represent 
standard error of mean. 
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2.4.4 Impact of denture substratum type on candidal colonisation 

The influence of the denture material on candidal attachment and colonisation 

has revealed conflicting data (Verran & Maryan, 1997;Pereira-cenci et al., 

2008a;Lazarin et al., 2013). Therefore, this study aimed to evaluate colonisation 

of C. albicans on three different denture materials using a variety of 

methodologies. The effect of denture material upon the formation of C. albicans 

early and mature biofilms was investigated using three types of denture materials, 

two clinical isolates and one laboratory strain of C. albicans. 

2.4.4.1 Visual investigation 

Crystal violet staining of 4 h colonised C. albicans laboratory and clinical C. 

albicans strains did not show clear visual differences between the different 

denture materials. Although it revealed the capability of C. albicans to colonise 

the denture material surfaces irrespective of denture material (Figure 2.8). 

 

Figure 2.8: CV staining of early biofilms developed on different denture 
materials. SC5314, GSK106 and GSK090 C. albicans were colonised on the denture 
materials for 4 hr. PMMA, MOLLO and UFI stand for the denture substrata used 
polymethyl methacrylate, Molloplast® and Ufi gel®, respectively. NC represent 
negative control (no biofilms were developed). Scale bar is 1 cm.  
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2.4.4.2 Molecular quantification 

The number of the colonising C. albicans on denture materials tested were 

quantified by molecular qPCR methodology. For statistical analysis, one-way 

ANOVA and post hoc Bonferroni multiple comparison test were undertaken after 

data log10 transformation, with data is shown in figure 2.9(i). Comparison of early 

(4h) biofilms revealed no statistical significance observed among the three 

substrata tested (P>0.05). At the mature stage (24h) of biofilm formation, PMMA 

denture material revealed an increased affinity for C. albicans colonisation. A 

colonising average of 4.21×108 C. albicans CFEs for PMMA was 2.8 times and 4.1 

times greater than those of Molloplast® (P<0.05) and Ufi gel® (P<0.05), 

respectively. Expectedly, C. albicans burden was significantly higher in the mature 

biofilms than in their early counterparts in all denture materials tested: PMMA 

(P<0.001), Molloplast® (P<0.05) and Ufi gel® (P<0.001). However, there was no 

statistical significance among the tested strains on early or mature biofilms of C. 

albicans that were colonised onto different denture materials, as shown in figure 

2.9(ii) and (iii).  
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 (i) 

  
(ii) 

 
(iii) 

  
  
Figure 2.9: Effect of the investigated denture materials on the biofilm 
formation of C. albicans. (i) The early (4h) and mature (24h) biofilms were grown 
on PMMA, MOLLO and UFI denture substrata; and were assessed by molecular 
quantification. Data of three isolates were combined together and denoted by 
mean±SD. Data of 24h biofilms were compared to their 4h counterparts (# P<0.05, 
###P<0.001). Statistical significances were detected between different denture 
substrata at 24h (*P<0.05). Non-significant effect of strain variability on early (ii) 
and mature (iii) biofilms that were developed on different denture materials.  
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2.5 Discussion 

Over the last fifty years, there has been significant advances in our understanding 

of oral hygiene. Nevertheless, with an ageing population, prosthodontic treatment 

with partial or complete denture remains an inevitable option for a vast majority 

of adult society. Improvements in conventional therapy for edentulous people is 

important because the demand for full prosthodontic appliances is unlikely to 

decrease in the near future. The necessity of conventional dentures is still high 

because osseointegration-associated therapies are region-specific. Furthermore, 

these implant-associated therapies could involve a supplementary conventional 

prosthodontic treatment as an overdenture option (Carlsson & Omar, 2010). 

Moreover, dentures showed high esthetic, acceptable chewing capability, comfort 

and phonetics satisfaction in denture wearers that may exceed the patient 

expectations (Santos et al., 2015;McCunniff et al., 2017). Therefore, the necessity 

of studying biomedical associated-diseases of denture wearing is still of great 

importance. The high prevalence of DS (15-<70%) and its high recurrence makes 

its prevention a real need (Gendreau & Loewy, 2011). It has been reported that 

Candida species, specifically C. albicans, play a vital role in progression of DS and 

denture associated diseases (Webb et al., 1998a;Dagistan et al., 2009;Salerno et 

al., 2011). 

This chapter reports that the denture candidal load has a significant role in DS, in 

agreement with earlier investigations (Barbeau et al., 2003;Dagistan et al., 

2009;Salerno et al., 2011). Traditional microbiological techniques (culturing and 

staining techniques), have revealed higher quantities of Candida cells from 

dentures of the DS diseased group in comparison to those of the healthy group, 

especially dentures taken from patients diagnosed with moderate to severe grades 

of inflammation. While biofilm forming heterogeneity of C. albicans different 

strains (strain variability) did not show such a significant role in respect to DS, 

denture material appeared to have an impact on C. albicans mature biofilms.       

The biofilm forming heterogeneity phenomenon is a clear and intriguing 

observation shown among the denture C. albicans clinical isolates investigated, 

displaying a yet, uncharacterised role in DS. From a clinical view, the hypothesis 
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that biofilm forming heterogeneity of C. albicans can contribute in deciding 

morbidity and mortality levels is deserving of examination concerning the oral 

cavity (Kean et al., 2018). Our group revealed a relationship with this phenotype 

and mortality in a cohort of candidaemia patients in Scotland (Rajendran et al., 

2016a), therefore examining this in a cohort of denture patients was a reasonable 

hypothesis. Despite the fact that biofilm forming heterogeneity was observed 

utilizing in-vitro models, a relationship with patient clinical presentation was not 

observed. Failure to exhibit a connection might be clarified by the way that DS in 

immunocompetent people is milder than candidaemia from an extremely 

immunocompromised population. Nonetheless, a significant relationship between 

the denture candidal load and DS was observed, proposing a notion that the 

physical cooperation between extensive quantities of yeasts and hyphae on the 

denture surface was more vital than the phenotype per se, and this is possibly 

impacted by the various microbiota in the oral cavity as previously described 

(O'Donnell et al., 2015b). Undoubtedly, there is a growing body of evidence to 

suggest that Candida and bacteria compose polymicrobial communities, where 

various bacterial species that are communal to the oral environment can influence 

the pathogenicity of each other (Harriott & Noverr, 2009;Diaz et al., 2012;Falsetta 

et al., 2014;O'Donnell et al., 2015a), and particular oral microbes can stimulate 

the transition of C. albicans LBF into a HBF (Arzmi et al., 2016).  

Real time qPCR quantification was previously reported for quantifying fungal cells 

(Lievens et al., 2006;Willger et al., 2016). Our research group has recently used 

qPCR methodology to quantify respiratory pathogens residing on dentures 

(O'Donnell et al., 2016). Yet, according to the best of our knowledge, this is the 

first study to quantify denture-adherent Candida cells associated with DS using 

molecular methodologies. It has been observed that candidal denture biofilms are 

characterised by yeast-hyphae cellular aggregations (Ramage et al., 2004;Coco et 

al., 2008a;Bilhan et al., 2009), thus, traditional CFU counting methods could 

underestimate the real number of the denture-colonising cells. For this reason, 

qPCR offers specific advantages over conventional microbiology techniques 

(Azeredo et al., 2017).  
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Conflicting results were previously reported in the literature regarding the 

adhesion and colonisation capacity of Candida on denture liners (Pereira-cenci et 

al., 2008). Therefore, an experiment was designed to address this problem. AS 

medium was used to mimic the oral environment and prolonged incubation periods  

were not targeted because dentures are generally frequently cleaned (Soll & 

Daniels, 2016). A high inoculum density of 1×107 CFU/ml was used as previously 

defined in the literature (Verran & Maryan, 1997;Chandra' et al., 2001;Raj & 

Dentino, 2011;Marra et al., 2012;Lazarin et al., 2013;Jackson et al., 

2014;Yodmongkol et al., 2014). Moreover, this high cell density induces the 

development of a mature biofilm with less interlocking hyphae and more yeasts 

(Mayer et al., 2013). Therefore, this high cell density may facilitate the process 

of collecting the biofilm as it was reported that it is difficult to collect the hyphae 

form of C. albicans (Hoyer & Cota, 2016). The qPCR methodology was undertaken 

to prevent the negative influence of the results by clumping of the cells, as we 

have used 4 and 24hr incubation periods that considered enough to develop an 

early and mature biofilm that could facilitate this clumping. The reason for 

selecting the denture materials investigated was based on a clinical standpoint. 

PMMA is the most routinely used denture material because of its low cost and easy 

handling, despite its varied surface, which clearly impacts on microbial 

establishment and biofilm growth (Jackson et al., 2014;Susewind et al., 2015). 

Discomfort could be promoted by the close contact of PMMA denture material to 

the mucosa because of its stiffness. As a result, resilient, less rigid denture liners 

are progressively become popular. Reports suggest that denture liners improve 

patient masticatory function and decrease discomfort (Kimoto et al., 2007;Palla 

et al., 2015), yet denture liners are liable for microbial colonisation (Bulad et al., 

2004;Vural et al., 2010), and biofilm accumulation (Nevzatoglu et al., 

2007;Valentini et al., 2013). In this chapter, samples were fabricated in stone 

molds, and were not polished. This was in order to simulate the ordinary clinical 

manipulation of the intaglio surface of the dentures, which is usually not polished 

to preserve the surface details and prevent compromising denture retention. 

However, investigating linear (polished) PMMA surfaces can be suggested for 

further research because of the possible capability of C. albicans to form biofilms 

on these surfaces. 
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Data shown in this chapter revealed no statistical difference in candidal 

colonization upon various denture materials among the early in-vitro biofilms, 

which is in agreement with previous studies (Bulada et al., 2004;Pereira-Cenci et 

al., 2007;Hahnel et al., 2012). However, at a later phase of biofilm development, 

PMMA was demonstrated to be the denture material surface that is most 

susceptible to biofilm development. A conceivable explanation as to why 

increased numbers were observed on PMMA is potentially because the porosity of 

soft liners are significantly more than that of hard acrylics (Wright et al., 

1998;Pereira-cenci et al., 2008a;Øilo & Bakken, 2015). Hence, large quantities of 

microorganisms could be embedded in these porous surfaces (Taylor et al., 1998). 

Consequently, even an forceful strategy for biofilm removal such as sonication, 

may not remove all microorganisms colonising soft liner cracks and crevices. 

Therefore, traditional quantification techniques used in previous studies could 

explain the differences observed in this study (Radford et al., 1998;Bal et al., 

2008;Mutluay et al., 2010).  

The heterogeneity of clinical isolates of C. albicans has a potential role in 

complicating the clinical presentation of diseases (Sherry et al., 2014;Pereira et 

al., 2016;Rajendran et al., 2016b), besides a potential role in their adhesion 

capacity (Cannon et al., 1995). Therefore, it was important to investigate early 

and mature biofilms on denture materials using clinical isolates together with a 

commonly used reference strain. Contrary to Waters et al. (1997), the data 

displayed a non-significant impact of strain variability on early and mature 

biofilms formed on all materials investigated.  

Investigation of in vitro biofilm models is critical and consideration of the 

variables that are related to the biofilm formation is of high importance. This is 

firstly because of the association of Candida biofilm formation with DS (Ramage 

et al., 2004;Rautemaa & Ramage, 2011;Pereira et al., 2016), and secondly the 

positive link between in vitro biofilm models and their in vivo counterparts 

obtained from DS patients (Nobile & Johnson, 2015). There is clear disparity in the 

literature regarding the starting cell density inoculum used in candidal biofilm 

formation models; ranging from ~ 1×107 through 1×106 to 1×104 cells/ml (Hawser  

& Douglas, 1994;Ramage et al., 2004;Johnson et al., 2012). Consequently, 
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investigation of 1×107 and 5×105 cell densities after a brief preliminary 

optimization was performed. The highest cell density did not show significant 

biofilm development in either of the considered media for all investigated strains. 

This can be interpreted by terms of the quorum-sensing systems that are used by 

Candida in response to the density of cell population. In high cell densities, 

quorum-sensing molecules such as farnesol and tyrosol inhibit biofilm formation 

and filamentation (Ramage et al., 2002b;Albuquerque & Casadevall, 2012). The 

positive effects of RPMI-1640 medium on promoting C. albicans adhesion, biofilm 

development and antifungal susceptibility testing are well established in 

comparison to yeast nitrogen base and other media (Kucharikova et al., 2011;Soll 

& Daniels, 2016;Weerasekera et al., 2016). Therefore, RPMI-1640 medium was 

used as a standard medium for development of C. albicans biofilm. However, the 

effect of AS medium on biofilm development is still not fully established. Data 

shown in this chapter revealed RPMI as an appropriate medium to develop 

filamentous biofilms characterized with high metabolic activity. While, AS-grown 

biofilms demonstrated a less filamentous phenotype and lower metabolism, which 

could be resulted from the rich-nutrient nature of the AS. This is in line with Arzmi 

et al. (2016), although they used a low concentration of AS (25%). Moreover, 

mucins that are found in AS may suppress Candida cells during biofilm 

development (Kavanaugh et al., 2014). However, this is a controversial issue, 

because some authors reported a supportive role for the mucin in C. albicans 

adhesion (Edgerton et al., 1993;Burgers et al., 2010). Irrespective of the type of 

medium of incubation, the characterisation data shows the importance of strain 

variability in outlining the biomass of the mature biofilms, while this is not the 

case in early biofilms. In conclusion, the biofilm characterisation data presented 

herein shows the significance of a rational approach to selecting the appropriate 

cell density, medium of incubation for the development of in vitro biofilms. 

Additionally, it highlights that strain variability should be considered as it has an 

impact on mature biofilms.  
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Chapter findings 

 Molecular quantification revealed the importance of Candida denture 

burden in DS.  

 Heterogeneity in biofilm formation of the denture isolated C. albicans 

strains was observed, although no significant association with DS was 

observed. 

 Characterisation data of C. albicans in vitro biofilms showed the 

importance of a rationale in selection of the biofilm development variables.  

 The XTT assay was more sensitive than CV assay in detecting differences 

among C. albicans biofilms developed from various inoculum densities. In 

contrast to the low inoculum density and RPMI medium, high inoculum 

density and AS medium did not show significant differences between early 

and mature biofilms. Strain variability showed significant effect on biofilm 

development in mature biofilms only.   

 Early C. albicans biofilms were not influenced by denture material, 

however their mature counterparts were, with PMMA denture materials 

yielding the highest quantity of C. albicans. 

 Strain variability (3 strains levels of biofilm forming capability) did not 

significantly affect early or mature phases of C. albicans biofilm 

development on denture materials using clinically relevant medium. 
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3.1 Introduction 

Increasingly, there are fewer effective antimicrobials available to treat clinical 

infections (Thabit et al., 2015). This can be attributed to the increased prevalence 

of anti-microbial resistance, driven largely by poor antibiotic stewardship, 

combined with a gradual decrease in investment in antimicrobial development 

from the pharmaceutical industry (Renwick et al., 2016). The failure of the 

development of effective antimicrobials to keep pace with emerging bacterial 

resistance has the potential to reverse the medical, surgical and social 

advancements of the last century and place us in a pre-penicillin era. Microbial 

diseases deemed unimportant now, may pose a greater threat in the future. We 

must therefore aim to be proactive and consider novel antimicrobial strategies 

(Crofts et al., 2017).  

Nature has an abundance of possibilities, where botanically isolated 

chemotherapeutic extracts can provide benefits over purely synthetic agents due 

to their co-evolution alongside harmful microbes. Polyphenolic natural compounds 

are intriguing potential sources in this context. The macromolecular composition 

of polyphenols and the characteristic phenolic functional group or “phenolic 

moiety” are found in many plants and can be synthetically prepared (Shahzad et 

al., 2014). The polyphenol curcumin (diferuloylmethane), isolated from the 

rhizomes of the Curcuma longa plant (Mahmood et al., 2015) is one such compound 

which merits consideration. Curcumin (CUR) is the vital element of turmeric used 

in Asiatic cuisine and as a dietary supplement or food additive in the food industry. 

Turmeric contains up to 5% CUR (Esatbeyoglu et al., 2012;Kwon, 2014). Gupta et 

al. (2012) indicated the relative safety and active biological potentials of CUR, 

including inhibition of the damaging oxidation and inflammation reactions. 

Critically, CUR shows wide range antimicrobial activities (Moghadamtousi et al., 

2014), including antifungal (Martins et al., 2009;Khan et al., 2012), antibacterial 

activities (Shahzad et al., 2015;Tyagi et al., 2015), and additionally a potential 

capacity to impact biofilm and adhesion properties (Shahzad et al., 2014;Shahzad 

et al., 2015).  
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Research from the Ramage laboratory has demonstrated the capability of CUR to 

modify the attachment of periodontal microbes to the hydroxyapatite-coated 

substrates and influence biofilm development (Shahzad et al., 2015). In parallel, 

investigations on the denture pathogen C. albicans showed that CUR was highly 

effective against sessile biofilm cells (Shahzad et al., 2014). Kumar et al. (2014) 

further demonstrated that CUR could specifically affect the biosynthesis and 

permeability of the C. albicans cell wall through targeting of the calcineurin-

mediated signalling and mitogen activated protein kinase pathway.  

The globally important opportunistic pathogen C. albicans is known for its ability 

to form clinically important biofilms (Ramage et al., 2006;Uppuluri et al., 

2009;Rajendran et al., 2016c). Moreover, this property is complemented by a 

range of colonisation determinants, including adhesion and invasion proteins, such 

as agglutinin-like sequences (ALS) and secreted aspartyl proteases (SAPs), that 

encourage attachment and invasion into the host (O’Donnell et al., 2015a). The 

yeasts capacity to alter morphology and exhibit dimorphism and thigmotropic 

tendencies makes it a very well-adapted and tenacious pathogen. C. albicans has 

the capacity to form biofilms on both biotic and abiotic surfaces making this 

microorganism particularly important in oral diseases. To survive and compete in 

the oral cavity the organism possesses an array of phenotypic characteristics that 

provide physical protection from internal and external antimicrobial mechanisms 

(Ramage et al., 2014). Given that C. albicans plays a significant role in DS means 

we need to consider antimicrobial strategies that target this microorganism as a 

basic prerequisite for DS prevention. Hence, it seems plausible that CUR might 

promote oral health through counteracting or limiting the effect of C. albicans to 

denture wearers.  
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3.2 Aims 

It is hypothesised that CUR could be used to actively inhibit C. albicans biofilm 

formation on denture materials through interfering with the initial adhesion 

phases. The aim of this chapter was to assess this hypothesis using the following 

key investigations: 

1. To investigate the capacity of PMMA denture material to adsorb CUR. 

2. To investigate the impact of adsorbed CUR on adhesion of C. albicans to 

PMMA denture material.  

3. To investigate the capability of CUR pre-treated C. albicans to adhere to 

PMMA denture material and the possibility of synergistic combination with 

CUR adsorbed on to the surfaces. 

4. To investigate the influence of CUR on different morphological forms of C. 

albicans and biofilm formation. 

5. To investigate the effect of CUR on the inter-C. albicans adhesive 

interactions. 

6. To assess the response of C. albicans to CUR at the molecular level through 

investigation of the expression of selected adhesion-aggregation associated 

genes. 

7. To investigate the impact of CUR incorporation in the PMMA material on 

candidal adhesion. 
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3.3 Materials and Methods 

3.3.1 Culture conditions and standardisation 

C. albicans SC5314 laboratory strain was used for these studies. Operational stocks 

of yeast cells were prepared on fresh Sabouraud agar (Sigma-Aldrich, UK), 

cultivated for 48 h at 30°C, and maintained at 4oC as annotated in chapter 2 

(section 2.3.1.2). Using one colony, the cells were cultured in yeast-peptone-

dextrose (YPD) medium (Sigma-Aldrich) for 18 h at 30°C and 150 rpm in an orbital 

shaker. The cells were washed twice by centrifuging in sterile phosphate buffered 

saline (PBS) (Sigma-Aldrich, UK), then standardised to the required colony-forming 

unit per millilitre (CFU/ml) using a Neubauer haemocytometer. 

3.3.2 Antifungal susceptibility testing  

The two cellular modes of growth (planktonic free-floating cells and sessile biofilm 

cells) were first examined for their sensitivity to the polyphenol curcumin (CUR) 

(HPLC grade, Acros Organics, Belgium). Prior to each experiment, a standard stock 

of CUR was prepared, using a non-antimicrobial concentration of dimethyl 

sulfoxide (DMSO) as a solvent, and adjusted to <5% v/v in RPMI-1640 medium 

(Sigma-Aldrich, UK) for preparation of working concentrations (Shahzad et al., 

2015). At the commencement, standardised CLSI M-27A broth microdilution 

methodology was conducted for planktonic yeast cultures in 96 well round 

bottomed microtitre plates (Corning Incorporated, NY, USA) (CLSI-M27-A, 2008). 

Briefly, serial doubling dilutions were performed using RPMI-1640 medium after 

addition of 200 µl of CUR to the first column of the microtitre plate and 100 µl of 

medium in the next nine columns. Thereafter, 100 µl of 1×104 of standardised C. 

albicans cells were inoculated into appropriate wells. The treatment 

concentration range was (0.39 - 200µg/ml). Plates were incubated at 37oC for 24 

h. Negative (medium only) and positive controls (medium + cells only) were 

included. Clear wells with no visible growth were considered as the planktonic 

minimum inhibitory concentration (PMIC).  

For sessile susceptibility testing, pre-formed mature biofilms were treated with 

CUR using standardised sessile antifungal testing (Ramage et al., 2001;Pierce et 
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al., 2008). Briefly, 100 µl of 1×106 of standardised C. albicans cells were grown in 

96 wells flat-bottomed microtitre plates (Corning Incorporated, NY, USA) at 37oC 

for 24 h using RPMI-1640 medium. Then, biofilms were washed with PBS and 

treated with 100 µl of CUR for a further 24 h at 37oC, prepared using serial doubling 

dilutions as described above. The same treatment regimen described above was 

used, where CUR was double diluted in a fresh 96 well microtitre plate 

immediately prior to the treatment of the biofilms. Subsequently, treated biofilms 

were washed with PBS and assessed for reduction of tetrazolium to formazan using 

the XTT assay (Ramage et al., 2001) as described in chapter 2 section (2.3.3.4), 

and the optical densities measured at 492 nm using a microtitre plate reader 

(FluoStar Omega, BMG Labtech, UK). Negative (medium only) and positive 

(medium + cells only) controls were included. The anti-sessile impact was 

calculated via comparing the experimental wells data to the positive control data 

to reveal the SMIC80, i.e. where the optical density is reduced more than 80% in 

comparison to the positive control optical density. These experiments were 

repeated in 3 independent occasions with triplicate wells for each condition.  

3.3.3 Investigating the effect of CUR on C. albicans growth 
kinetics 

The growth kinetics of CUR-treated C. albicans was assessed to determine if 0.5 x 

PMIC concentration could influence the rate of 24 h growing yeasts. The cells were 

standardised to 1 × 104 CFU/ml in YPD, with 200 μl inoculated to the appropriate 

well of a 96 well round-bottomed plate. Alongside, CUR-treated cells (50 µg/ml= 

0.5 ×PMIC) were inoculated. The microtitre plate was incubated at 37°C for 24 h 

and every 1 h the absorbance was measured at 530 nm after automated shaking 

for 30 s at 100 rpm. This experiment was repeated on two independent occasions 

using six replicates. Negative controls (medium only) and (medium + CUR) were 

included for appropriate background correction of the untreated and treated cell, 

respectively. 
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3.3.4 Investigating the capacity for adsorption of CUR onto 
denture material 

The possible affinity of CUR to fabricated PMMA denture material was explored by 

measuring the quantity of the adsorbed CUR spectrophotometrically. Heat cured 

PMMA denture base material (Chaperlin and Jacobs Ltd, Surrey, UK) was used to 

produce 12 mm diameter discs using the dental compression moulding technique 

as described in chapter 2 (2.3.3.1). PMMA sections were immersed in ddH2O for 

one week to ensure removal of any residual toxic monomers. To prepare varying 

operational concentrations of CUR suspensions, stock CUR was diluted in RPMI-

1640 medium to 200, 400 and 800 µg/ml. The PMMA sections were distributed in 

the appropriate wells of 24 well plates (Costar, Corning Incorporated, USA) and 1 

ml of the CUR suspension was added. The plates were then incubated at room 

temperature for a series of time points (1, 5, 10, 30, 60, 120, 240 and 1440 min), 

covered with tin foil to prevent light exposure. After the incubation period the 

CUR suspension was removed. The PMMA sections were then transferred with 

tweezers to fresh wells and washed by gentle immersion in 1 ml of distilled water, 

then distributed to fresh well. Next, 1 ml of DMSO (100%) was added for 5 min to 

dissolve the adsorbed CUR. For quantification of the released CUR, a standard 

curve was developed by serially diluting CUR in DMSO to prepare concentrations 

ranging from 100 to 0.39 µg/ml. Based on that standard curve, the DMSO- dissolved 

CUR was measured at 436 nm using the spectrophotometer (FluoStar Omega, BMG 

Labtech) including appropriate blank correction wells. 

3.3.5 Investigating the effect of CUR adsorption on adhesion of C. 
albicans to PMMA 

Based on the previous experimental data, PMMA denture material sections were 

each immersed in 1 ml of 800 µg/ml of RPMI-CUR suspension for 10 min in order 

to obtain approximately 50 ug/ml of adsorbed CUR, then washed with ddH2O to 

eliminate the unadsorbed molecules. The CUR-adsorbed PMMA sections were 

distributed in a 24 well plate and immediately inoculated with 1 ml of 5 x 105 CFU 

C. albicans SC5314 cells, then incubated for 30 min at 37°C. Positive controls were 

included, which were initially immersed in RPMI medium only for 10 min then 

inoculated with the cells. When the incubation period was completed, the sections 
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were gently washed twice in PBS and sonicated in bijou tubes contained 1 ml of 

PBS at 35 kHz for 10 min (Ultrasonic bath, Fisher scientific, UK) to collect the 

adherent cells. These collected cells were counted using the Miles and Misra plate 

counting method (Miles et al., 1938). In brief, using PBS, ten times serial dilutions 

were performed of the collected cells (10-1 to 10-4). A twenty microlitre drop of 

each diluted suspension was plated in triplicate on SAB agar plates. Plates were 

incubated for 24-30 h at 37°C. The most clearly separated colonies in the least 

dilution were considered in counting.  

The following equation was applied to quantify the adhered cells:  

Number of colonies × dilution factor × 50 = colony forming units per cm2 PMMA 

The final cell number was then compared to a CUR untreated control. All 

experiments were performed in triplicate on 3 independent occasions. 

3.3.6 Microscopic imaging of adherent C. albicans to CUR-
adsorbed PMMA  

To examine the impact of adsorbed CUR on candidal adhesion visually, scanning 

electron microscopy (SEM) was also performed using the same experimental 

parameters that were described in the aforementioned section (3.3.5), then 

processed and imaged, as described previously (Erlandsen et al., 2004;Sherry et 

al., 2016). Briefly, C. albicans cells were grown on CUR adsorbed PMMA sections. 

These sections were washed twice with PBS, before being fixed for 20 h in 2% 

paraformaldehyde, 2% glutaraldehyde, 0.15M sodium cacodylate, and 0.15% w/v 

alcian blue, at pH 7.4, and prepared for SEM on the next day. In brief, sections 

were triple washed with 0.15M sodium cacodylate buffer, then incubated in 1% 

osmium tetroxide for 1 h. After triple washing with distilled water, 0.5% uranyl 

acetate was added and incubated for 1 h. After this, a sequential ethanol 

dehydration was followed with 30%, 50%, 70%, 90%, absolute alcohol and dried 

absolute alcohol. Later, HMDS (Hexamethyldisilazane) was added for 5 min. The 

samples were incubated in a desiccator at room temperature for 24 h. Next, the 

samples were sputter-coated with a layer of gold-palladium (15-20 nm) and 

inspected under a JEOL JSM-6400 scanning electron microscope. 

https://en.wikipedia.org/wiki/Hexamethyldisilazane
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3.3.7 Investigating the biological effect of CUR on C. albicans 
adhesion and biofilm formation 

Following CUR adsorption to PMMA denture material, which was conducted using 

same experimental parameters as described above, the PMMA discs [untreated 

and treated (PMMA- and PMMA+, respectively)] were distributed in the appropriate 

wells of 24 well plates and inoculated with 1 ml of 5 x 105 CFU C. albicans SC5314 

cells. The inoculated cells were either + 3 min CUR (50 µg/ml) pretreated or PBS 

(control) pretreated at 37°C. These discs then were incubated for 30 min at 37°C. 

Subsequently, the discs were gently washed twice with PBS. Candidal adhesion 

was then assessed and quantified using the Miles and Misra plate counting method 

as described in section (3.3.5). The levels of adhesion were expressed as a 

proportion of the control (PMMA-/C. albicans).  

In parallel, an assessment was conducted to determine whether extended CUR 

pretreatment time negatively influenced adhesion via treating cells for 3, 30 and 

90 min, then the levels of adhesion to PMMA were quantified as described above.  

CUR treatment of C. albicans cells at different growth phases was assessed to 

determine whether or not can CUR played a role in biofilm development, with the 

hypothesis that there might be dissimilarities in how yeast (Y), germlings (G) or 

hyphae (H) reacted to this molecule. Briefly, yeast cells were grown overnight, 

standardised to 1 x 106 CFU/ml in RPMI and inoculated into a 96-well microtitre 

plate as described in chapter 2 (section 2.3.2.1). Cells were then exposed to 50, 

100 or 200 ug/ml CUR at either 0 h (Y), 2 h (G) or 4 h (H) post inoculation and 

incubated for a further 24 h at 37oC. Subsequently, the developed biofilms were 

washed with PBS and the resultant biofilm assessed using an XTT metabolic 

reduction and crystal violet assays as described in chapter 2 (sections 2.3.3.4  and 

2.3.2.2, respectively). Moreover, the developed biofilms were microscopically 

evaluated using a light microscope (Model BX40F4; Olympus, Tokyo, Japan). All 

experiments were performed in duplicate on 3 independent occasions.    
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3.3.8 Investigating the aggregative effect of CUR 

With the purpose of assessing whether CUR has further effects on C. albicans 

yeasts, its impact on aggregation was assessed. SC5314 laboratory strain cells (Y) 

were standardised (1 x 106 cells) in PBS and exposed ± to 50 µg/ml of CUR (sub-

inhibitory concentration) for 90 min at 37oC in an orbital shaker (200 rpm). 

Following incubation, vortexing of the standardised inoculum was avoided in order 

to reduce any disaggregating forces. The cells were serially ten-fold diluted in PBS 

and plated onto Sabouraud agar using the Miles and Misra method (Miles et al., 

1938). Next, the plates were incubated for 24-30 h at 37oC and the colonies 

counted as annotated in section (3.3.5). In parallel, a light microscope was used 

to observe the cells and to evaluate aggregation visually. All experiments were 

performed in triplicate on 4 independent occasions. 

3.3.9 Investigating the effect of CUR on cell surface 
hydrophobicity  

Microbial adhesion to the hydrocarbon xylene was utilised to measure the cell 

surface hydrophobicity (CSH) of ± CUR exposed C. albicans (SC5314) using a 

modified version of the CSH assay (Yoshijima et al., 2010;Sherry et al., 2014). 

Cells were propagated overnight and standardised to 1.0 at OD 600 in PBS using a 

spectrophotometer and semi-micro cuvettes. 1.1 ml of the standardised cells were 

added to a 1.5 ml Eppendorf and spun for 10 min at 7000 r/min, the supernatant 

was discarded leaving the pellet intact. CUR (50 µg/ml) diluted in PBS was added 

to the pelleted samples. Control samples (cells not exposed to CUR) were 

included. Afterwards, the samples were vortexed and incubated at 37°C for 3, 30 

and 90 minutes in an agitated state (200 rpm). Next, samples were washed twice 

with 20% DMSO to remove the CUR, and controls were similarly treated. Later, 

xylene (0.275 ml) was added to form 1/5 of the final volume, and vortexed for 2 

min and left for 30 min phase separation. The lower aqueous layer was carefully 

pipetted and its optical density was measured at OD600. Negative controls (PBS 

only + xylene) were included for background correction. The optical densities 

were measured for the standardised treated and untreated samples that did not 

contain any xylene (incubated at 37°C and 150 r/m) at the specific time point and 

considered as OD before xylene overlay.  
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The following equation was applied to calculate the CSH percentage: ([OD before 

Xylene overlay- OD after Xylene overlay] / OD before Xylene overlay) × 100. The 

experiment was independently repeated six times using duplicates.      

3.3.10 Assessing the molecular impact of CUR on adhesion and 
biofilm formation 

Y and H morphological forms of C. albicans SC5314 cells were prepared via an 

initial inoculum of 1 x 108 and 5 x 105 CFU/ml in RPMI-1640 medium, respectively. 

For H cells, these were colonised on PMMA denture material sections within 24 

wells plates for 4 h. Both Y and H cells were then exposed ± CUR (50ug/ml) in 

RPMI for 3, 30 and 90 min and incubated at 37°C. After incubation, cells were 

either centrifuged (for Y cells) or sonicated (for H cells) in a 35 kHz for 10 min 

(Ultrasonic bath, Fisher scientific, UK) to harvest the cells. The harvested cells 

were then washed by centrifugation and RNA was extracted from these cells.   

RNA extraction was performed using a combined mechanical disruption (0.5mm 

glass beads) and chemical TRIzol™ method (Invitrogen, Paisley, UK). The extracted 

RNA was further treated to remove any residual DNA, and then were processed for 

production of complementary DNA, which are quantitatively analysed for the 

expression profile of targeted genes using qPCR. This multiple procedure is 

described in detail in the following sub-sections:  

3.3.10.1 Extraction of total RNA 

The first step in RNA extraction was the addition of 1 ml of TRIzol™ solution 

(Invitrogen, Paisley, UK), which is a monophasic solution of phenol and guanidine 

isothiocyanate, to the pelleted candidal cells (Y and H). The mixture was vortexed 

for 30 seconds, then transferred to screw cap microcentrifuge tubes containing 

0.25 ml of 0.5mm diameter sterile glass beads (Thistle Scientific, Glasgow, UK) to 

facilitate disruption of the cell wall, using a Bead beater [BeadBug™ microtube 

homogenizer (Sigma-Aldrich, Gillingham, UK)]. Three cycles of bead beating were 

performed, each cycle lasted for 30 seconds at maximum velocity (400 rpm), the 

tubes were kept on ice in-between the cycles.  
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Next, 100 µl of 1-bromo-3-chloropropane was added and vortexed for 30 seconds, 

then left for 3 minutes. The next step was to centrifuge at 13,000 rpm for 15 min 

at 4°C (Heraeus centrifuge) to isolate an upper aqueous clear layer. This layer 

was transferred to a sterile RNase-free microtube, and 500 μl of absolute 

isopropanol was added in order to precipitate the RNA. The tubes were then 

inverted 30-40 times, and placed at -20°C overnight to increase RNA precipitation.  

The next day, sedimentation of RNA was implemented by centrifuging for 10 min 

at 13,000 rpm at 4°C. The supernatant was discarded, and the remaining pellet 

washed with 800 µL of ice cold 70% ethanol to be centrifuged for 10 min at 6500 

rpm at 4°C. Ethanol was carefully pipetted, and samples were air dried for 20-30 

min. The final step was RNA resuspension in 20 µL of RNase free distilled water 

and incubation at 65°C in a heat block (Techne, Staffordshire, UK) for 5 min to 

facilitate RNA recovery. 

3.3.10.2 DNA digestion by DNase 

RNase-free DNase kit (QIAGEN GmbH, Germany) was used to eliminate residual 

genomic DNA. One and half µl of DNase was added to every RNA sample and 

incubated at room temperature for 30 minutes, then incubated at 75°C in a heat 

block (Techne, Staffordshire, UK) for 10 min to inactivate the DNase enzyme. 

Finally, the RNA samples were stored at -80°C. 

3.3.10.3 Synthesis of complementary DNA (cDNA) 

RNA concentration and purity was measured by NanoDrop™ ND-1000 

spectrophotometer (Labtech International, East Sussex, UK) to standardise RNA 

quantity reverse transcripted to cDNA. cDNA synthesis was performed using High-

Capacity RNA-to-cDNA™ reverse transcription (RT) (Applied Biosystems, UK). The 

mastermix was prepared by mixing 2 µL of RT Buffer, 2 µL of RT Random Primers, 

0.8 µL of dNTP Mix, 4.2 µL RNase free distilled water and 1 µL of MultiScribe® 

Reverse Transcriptase enzyme. Ten microliters of mastermix was added to 10 µL 

of RNA-distilled water standardised solution to obtain a final volume of 20 µL in 

200 µL dome-capped PCR microtubes (Abgene, ThermoFisher, Surrey, UK).  
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Solutions were prepared containing 500 and 50 ng of the purified RNA from the 

yeasts and hyphae samples, respectively. NRT (No Reverse transcriptase) samples 

were included to monitor the efficacy of the Reverse transcriptase enzyme. Next, 

the samples were placed in a Thermo-cycler (Bio-Rad, Hertfordshire, UK). The 

cycle program consisted of 10 min at 25°C, 120 min at 37°C, 5 min at 85°C and a 

final hold stage at 4°C. cDNA was then stored at -20°C until used in subsequent 

PCR assays. 

3.3.10.4 Primers used 

Oligonucleotide primer synthesis was conducted by (Invitrogen, Paisley, UK). The 

primers were designed against the ALS1, ALS3, ALS5 (agglutanin-like sequence 1, 

3 and 5), EAP1 (epithelial adhesion protein 1) and AAF1 (adhesion and aggregation 

factor 1) genes. The primers were synthesised to match the sequences taken from 

peer-reviewed papers. Except, AAF1 which was designed by the Oral Sciences 

Research Group in Glasgow Dental Hospital and School. The primers are listed in 

Table 3.1. 
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Table 3.1: Primers used for real time qPCR transcriptional analysis of Candida 

albicans 

Gene Sequence (5’ to 3’) Reference 

ALS1 F - TTCTCATGAATCAGCATCCACAA (Nailis et al., 2009) 

 R - CAGAATTTTCACCCATACTTGGTTTC  

ALS3 F - CAACTTGGGTTATTGAAACAAAAACA (Nailis et al., 2009) 

 R - AGAAACAGAAACCCAAGAACAACCT  

ALS5 F - CTGCCGGTTATCGTCCATTTA (Green et al., 2005) 

 R - ATTGATACTGGTTATTATCTGAGGGAGAAA  

EAP1 F - ACCACCACCGGGTATACAAA (Sherry et al., 2014) 

 R - GCCATCACATTTGGTGACAG  

AAF1 F - CTGCCCTTGTTGGTACATCT This study 

 R - TGGGATAGTTGGTGGAGGAG  

ACT1 F - AAGAATTGATTTGGCTGGTAGAGA (Ricardo et al., 2009) 

 R - TGGCAGAAGATTGAGAAGAAGTTT  

 

3.3.10.5 Gene expression assessment and analysis utilising real time PCR 

Fast SYBR® Green PCR Master Mix (Applied biosystems, USA), intercalating, 

fluorescent dye was harnessed to perform  RT-q PCR, using the same procedure 

and thermo-cycler program annotated in chapter 2 (2.3.1.4). Each parameter was 

analysed in duplicate using the StepOnePlus™ Real-Time PCR System unit (Applied 

biosystems, USA)] and StepOne software v2.3. The primers listed in Table 3.1 were 

used and 1 µl of synthesised cDNA was added instead of genomic DNA. No cDNA 

template and no reverse transcriptase controls were included.  

ACT1 housekeeping gene was selected for normalisation; all the generated Ct 

values of the interrogated genes were relative to the Ct values of that standard 

housekeeping gene. 2−ΔΔCt arithmetical method (Percentage of expression= 2−ΔCt, 

where ΔCt= Ct of targeted gene – Ct of ACT1 housekeeping gene) was undertaken, 

to quantify the relative expression (Livak & Schmittgen, 2001). A heatmap was 

created for the differential expression of genes (log2) over the period of 3 to 90 
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min from the untreated control compared to CUR exposed cells.  Maps and clusters 

were generated in R with the use of heatmap.2 function from the gplots package. 

Dr Ranjith Rajendran supported these analysis.  

3.3.11 Investigating the effect of CUR incorporation on adhesion 

The capacity of CUR-incorporated PMMA denture material to reduce adhesion of 

C. albicans was explored. Prior to fabrication of PMMA discs, stock CUR was mixed 

with the monomer to obtain a standardised solution of 200 µg/ml. Then, the discs 

were fabricated as annotated in chapter2 (2.3.3.1). Control discs were included 

taking into consideration the CUR dissolvent (DMSO) concentration. All discs were 

appropriately distributed into a 24 well plate. C. albicans SC5314 was propagated 

and standardised in RPMI-1640 medium. One ml of 5 × 105 cells were inoculated 

and statically incubated for 30 min at 37°C. After the incubation, the sections 

were washed in PBS, sonicated to collect the adherent cells and the collected 

cells were counted using the Miles and Misra plate counting method (Miles et al., 

1938) as annotated in section (3.3.5). Three replicates were used and the 

experiments were repeated on five independent occasions. In parallel, the release 

of CUR from the fabricated discs was investigated via immersion of the targeted 

discs in DMSO solvent for 24 h and measuring released CUR spectrophotometrically 

as annotated in section (3.3.4).  

3.3.12 Statistical Analysis 

As we were unable to ascertain that the data conformed to a Gaussian distribution 

data analysis was performed on non-parametric data using either a Mann-Whitney 

test or a Kruskal-Wallis test with Dunn’s multiple comparison post-test. All 

independent data points were presented, with error bars representing the median 

with interquartile range. Where proportional data were presented, analysis was 

performed on the original data sets. All statistics and figures were produced using 

GraphPad Prism v.5 (GraphPad Software Inc., La Jolla, CA). 
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3.4 Results 

3.4.1 CUR can be adsorbed onto denture material up to effective 
concentrations 

Initially, the potential inhibitive capacity of CUR to planktonic and biofilm C. 

albicans cells was tested to establish biologically active working concentrations 

appropriate for use in downstream analyses. The planktonic minimum inhibitory 

concentration (PMIC) was 100 µg/ml of CUR, while the sessile (biofilm) minimum 

inhibitory concentration that produced an ≥80% reduced metabolic activity 

(SMIC80) was 200 µg/ml, representing a significant reduction in the biofilm’s 

activity and/or viability. Furthermore, the growth kinetics of 0.5 x PMIC CUR-

treated C. albicans was investigated. Figure 3.1 shows that the start of 

exponential phase of CUR-treated cells was delayed for a period of 4 h compared 

to the untreated control (6h v 10h). Both sets of cells reached the stationary phase 

at the same time (20 h), with approximately same cellular quantity. Statistical 

analysis did not show any difference (p>0.05), which could clarify that the 

selected concentration of CUR did not influence growth of C. albicans and 

subsequently did not interfere with the results of the next adhesion investigations. 

According to these data, it was important to evaluate whether these effective 

concentrations of CUR could be adsorbed to PMMA denture material to interfere 

with C. albicans adhesion. Therefore, the PMMA samples were immersed in 200, 

400 and 800 µg/ml CUR for different time periods and the adsorbed concentrations 

were measured using an elution method in conjunction with an optimised standard 

curve. Figure 3.2(i) displays the visible light absorption spectrum of the CUR in 

DMSO. This figure shows the absorbability of CUR at 436 nm at ≤100 µg/ml 

concentrations. The kinetics of adsorption for each concentration is presented in 

figure 3.2(ii). PMMA had the capacity to adsorb biologically effective CUR 

concentrations and immersion in 800 µg/ml CUR solution for 90 min was required 

to achieve adsorbed concentrations with anti-biofilm activity (200 µg/ml). 

Nonetheless, 50 µg/ml and 100 µg/ml concentrations were adsorbed from this 

initial concentration when immersed for 10 and 30 min. The lower concentration 

CUR solution (400 µg/ml) was able to attain 50 µg/ml and PMIC levels, though this 

approximately required 90 and 240 min immersion. Finally, the lowest 
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concentration CUR solution (200 µg/ml) did not show the capability to achieve any 

antimicrobial level concentrations, even after 24 h adsorption. Consequently, 

using of 800 µg/ml of CUR in adsorption experiment appeared biologically 

effective and efficient.  

 

Figure 3.1: Growth kinetics of half PMIC CUR-treated C. albicans. The blue 
and the red dotted lines represent tangents to the start points of exponential 
and the stationary phases, respectively. Mann-Whitney statistical test was used 
to analyse the data. 
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(i) 

                     

(ii)   

 

Figure 3.2: The adsorption capacity of CUR onto PMMA denture material. (i) 
Visible light spectrophotometric analysis of CUR in DMSO using a range of CUR 
concentrations, where the vertical line that contacts the peaks represents the 
absorption wavelength. (ii) Time and concentration dependent adsorption of CUR 
to PMMA (blue dotted line) at 0.5 x PMIC (50 µg/ml), PMIC (100 µg/ml) and SMIC80 
(200 µg/ml).    
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3.4.2 CUR adsorption reduces Candida albicans adhesion  

Based on the data in the previous section, the focus was on immersion samples in 

800 µg/ml of CUR for 10 min, which achieved 50 µg/ml on the surface of the PMMA 

for downstream analysis. Selection of a 0.5 x PMIC concentration was aimed to 

ensure exposure of the cells to a non-inhibitory concentration.  

Next, the adherence capability of C. albicans SC5314 to PMMA denture material 

for 30 min was evaluated, where surfaces adsorbed with CUR (50 µg/ml) were 

compared to an unadsorbed control [Figure 3.3(i)]. A three-fold significant 

reduction in adhesion of C. albicans was observed (p<0.004), where the median 

number of adherent cells were reduced from approximately 1.56 x 105 to 4.8 x 104 

cells/cm2 with interquartile ranges of 1.5-1.75 x 105 and 4-5.9 x 104, respectively. 

Besides, SEM analysis showed a visible decline of adherent yeasts cells on the 

PMMA surfaces [Figure 3. 3(ii)]. 
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(i) 

  
 
(ii) 
 

 

Figure 3.3: The impact of CUR adsorption to PMMA on Candida albicans 
adhesion. (i) C. albicans anti-adhesive capacity of approximately 50 μg/ml 
adsorbed CUR onto PMMA (+CUR) compared to non-adsorbed control surfaces, 
where a Mann-Whitney test was performed on data from nine independent 
experiments (n=9). All independent data points are presented, with error bars 
representing the median with interquartile range (**= p < 0.01). (ii) SEM 
micrographs of 30 min adherent C. albicans cells onto CUR adsorbed (+CUR) and 
non-adsorbed (control) PMMA surfaces. Scale bar is 20 µm. 

Given that CUR adsorption showed capacity for a direct anti-adhesive effect, we 

explored the possibility that combining a short exposure to CUR with that of CUR 

adsorbed to PMMA would result in a synergistic increase in overall activity and 

prevent adhesion and colonization. C. albicans was exposed to CUR 50 µg/ml for 

3 min (CA + CUR) then compared to both PMMA adsorbed with CUR (PMMA + CUR) 

or a combination of CUR exposed C. albicans and CUR adsorbed PMMA (PMMA CA 
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+ CUR). Figure 3.4 shows that the adhesion was reduced by 27% only with the 

short, direct exposure of C. albicans alone, which was lower than CUR adsorption 

alone (70% reduction), where a significant difference (p<0.05) was observed 

between these reductions. Moreover, when both the cell and surface were co-

exposed to CUR a significant reduction of 93% (p<0.001) was observed. 

 

  

Figure 3.4: The impact of single and dual-treatment of CUR on C. albicans 
adhesion. A synergistic anti-adhesive capacity of (PMMA CA +CUR) was observed, 
where short pre-exposure of cells to CUR (CA +CUR) with PMMA adsorbed CUR 
(PMMA +CUR) were combined. The statistical analysis was performed using a 
Kruskal-Wallis test with Dunn’s multiple comparison post-test performed on the 
data from nine independent experiments. The percentages shown relative to the 
control. All independent data points (n=9) are presented, with error bars 
representing the median with interquartile range (* p < 0.05, ** p < 0.01, *** p < 
0.001). 

3.4.3 CUR inhibits biofilm formation and enhances Candida 
albicans aggregation 

The data above displayed a positive anti-adhesive impact to C. albicans with 

respect to the adsorption of CUR to PMMA surfaces, and displayed that a brief CUR 

pre-exposure (3 min) resulted in diminished adhesion of C. albicans, proposing 

that sub-inhibitory concentrations can provoke some biological activity. To further 

investigate this, the CUR pre-exposure time on C. albicans was extended. It was 

shown that increasing the pre-exposure time from 3 to 30 and 90 min, 
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respectively, significantly improved anti-adhesion (p>0.01). However, between 30 

to 90 min there were no significant enhancements in anti-adhesive capabilities 

(Figure 3.5).  

 

Figure 3.5: Impact of longer-term CUR pre-exposure on candidal adhesion. C. 

albicans SC5314 was pre-exposed to 0.5 x PMIC sub-inhibitory concentration of 

CUR (50 μg/ml) for 3, 30 and 90 min and adhesion to PMMA was evaluated in 

triplicate in 3 independent experiments. The percentages shown are relative to 

their respective controls. All independent data points are presented, with error 

bars representing the median with interquartile range (* p < 0.05, ** p < 0.01). 

Next, the longer-term impact of CUR and response of the different morphological 

forms of C. albicans to CUR and how this could impact biofilm formation was 

investigated. To achieve this aim, yeast cells (Y = 0 min), germlings (G = 120 min) 

and hyphae (H = 240 min) were prepared prior to CUR exposure at 50, 100 and 200 

µg/ml, which were then incubated for 24 h to develop biofilms. The developed 

biofilms were assessed using metabolic and biomass data [Figures 3.6(i) and (ii)]. 

The resultant metabolic and biomass data mostly showed similar patterns, where 

at lower sub-inhibitory concentrations (50 µg/ml) and PMIC levels (100 µg/ml) the 

anti-candidal properties moderately impacted the overall biofilm metabolism and 

biomass with a lesser effect on the latter. At SMIC levels (200 µg/ml) a significant 

drop in biofilm metabolism was observed for Y and G of approximately >90% of the 

control (p<0.01), though H cells were least impacted (p<0.05).  



Chapter 3: The anti-adhesive activity of curcumin on Candida albicans 

102 
 

That considerable anti-biofilm effect of SMIC concentration on metabolism was 

less noticeable on biofilm biomass, with statistically significant 85% to 54% 

reduction in Y and G (p<0.05), respectively, dropping to an insignificant 11% 

reduction in H cells. The inhibited biofilms were microscopically examined, where 

the light microscope images showed an anti-biofilm impact on all biofilms 

investigated in a concentration and morphological form dependent manner (Figure 

3.7).      
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(i) 

 

(ii) 

 

 

Figure 3.6: The impact of CUR on C. albicans biofilm formation. Three 

morphological forms of C. albicans SC5314 (Y = yeast; G = germlings; H = hyphae) 

were exposed to CUR at different concentrations 50,100 and 200 μg/ml, and after 

24 h the resultant biofilm formation assessed through metabolic (i) and biomass 

(ii) analytical assays. Data represents six independent experiments, Kruskal-Wallis 

test with Dunn’s multiple comparison post-test were used for statistical analysis.  
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Figure 3.7: The impact of CUR on C. albicans biofilm architecture. Light 

microscope images of biofilms tested, which show a reduction in the biofilm 

mycelial quantity and density in a concentration and morphological form 

dependent manner, images acquired at 250 X magnification. Scale bar 18 µm. (Y 

= yeast; G = germlings; H = hyphae)   
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To assess whether CUR induces aggregation through alteration of the cell wall 

surface a plate counting based approach was performed. To quantify aggregation 

it was hypothesized that sub-MIC levels would lower the resultant CFU compared 

to its respective control, where each aggregate would produce only one CFU and 

reduce the overall homogeneity of the suspension. Indeed, a significant drop in 

CFU counts was demonstrated in the CUR group (p<0.01) [Figure 3.8(i)], which was 

additionally confirmed microscopically [Figure 3.8(ii)].  

(i) 

 

 
(ii) 

 

Figure 3.8: The impact of CUR on aggregation of C. albicans. (i) Aggregation of 

C. albicans SC5314 treated with (50 ug/ml) was evaluated by total viable cell 

counts, analysed using a Mann-Whitney test on triplicate data from 4 independent 

experiments, All independent data points are presented, with error bars 

representing the median with interquartile range (* p < 0.05). Additionally, 

validation of the phenotype by light microscopy (400 X magnification) was 

performed (ii), where aggregation possibility was observed. Scale bar is 17 µm.  
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3.4.4 CUR reduces cell surface hydrophobicity of Candida 
albicans 

Given the potential positive relationship between the microbial CSH and its 

adhesive capability (Wang et al., 2015), this was tested for CUR with respect to 

C. albicans using the aqueous-hydrocarbon biphasic partitioning assay. The 

resultant data showed an overall significant reduction in the CSH of CUR exposed 

C. albicans at all time-points investigated, with 13, 51 and 37% reduction (Figure 

3.9). Additionally, 30 min of CUR exposure showed a statistically significant 

difference compared to 3 min (p< 0.05). These data suggested reduction of C. 

albicans CSH as a potential biological mechanism of CUR antiadhesive capability.      

 

Figure 3.9: The impact of CUR on cell surface hydrophobicity of C. albicans.   

Kruskal-Wallis test with Dunn’s multiple comparison post-test were used for 

statistical analysis. All independent data points are presented, with error bars 

representing the median with interquartile range (* p < 0.05, ** p < 0.01). Red 

asterisks represent the significant difference between each unexposed control 

and its Cur exposed at the relevant time point.    
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3.4.5 CUR affects the temporal expression of Candida albicans 
adhesins 

The data above suggested that CUR induced biological effects on C. albicans, most 

considerably on preventing biofilm development, influencing aggregation and 

reducing CSH. Therefore, the aim was to investigate a panel of related genes 

through transcriptional analysis. To perform this, Y and H cells at 3, 30 and 90 min 

post CUR exposure were prepared. Graphical and visual representation of the data 

obtained were featured in bar charts (Figure 3.10) and heat map analysis with 

hierarchical clustering (Figure 3.11). 

It was shown that that Y cells (Figures 3.10i, ii & iii) exposed to CUR showed 

temporal changes in gene expression, most notably the progressive down-

regulation of the most potent adhesion-related gene ALS3 that became 

statistically significant after 90 min of CUR exposure. Whereas ALS1, which was 

related to ALS3 as the hierarchical clustering illustrated, showed a variable 

modulation in response to CUR, where it was significantly down-regulated at 3 min 

(p< 0.01) and then up-regulated at 30 and 90 min, though it was significant at 30 

min only. However, the clustered aggregative and flocculation genes AAF1, EAP1, 

and ALS5 transcripts were all significantly up-regulated (p< 0.05-0.01) in a time-

dependent manner.  

The clustering of expression for the H cells (Figures 3.10iv, v & vi) was similar to 

that of Y cells, and the patterns showed moderate similarity. More specifically, 

ALS3 gene expression was significantly down-regulated (p<0.05) at 30 and 90 min 

time points though it was non-significantly up-regulated at 3 min. Whereas, ALS1 

showed non-significant up-regulation up to 30 min and down-regulation at 90 min. 

ALS5, EAP1 and AAF1 were considerably upregulated with AAF1 showing the 

highest levels of expression at 30 min in comparison to the control, and 

reciprocally ALS3 being the most down-regulated. The heat map clustering (figure 

3.11) showed the relative contrast between the main two gene clusters in 

response to CUR exposure, where the expression of ALS5 and ALS3 genes were 

clear examples. Levels of differential expression were consistently higher in the 

Y than H cells.     
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        (i)                                                                 (ii)                                                            (iii) 

 

 

 

 
 
 
 
 
 
 
      (iv)                                                                 (v)                                                              (vi) 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.10: Transcriptional expression of CUR-treated C. albicans. Y cells (i, ii & iii) were prepared and exposed to CUR for 3, 30 and 90 
min, respectively. The same was also performed to the H cells (iv, v & vi). Expression of ALS1, ALS3, ALS5, EAP1 and AAF1 were then assessed 
using qPCR and relative gene expression assessed the ACT1 housekeeping gene. An unpaired t test was used (*p < 0.05, **p < 0.01), where a 
natural log transformation was performed on the data. Error bars represent standard error of mean. 

ALS1 ALS3 ALS5 EAP1 AAF1

100

101

102

103

104

Control

CUR**

*

**

Genes

%
 e

x
p

re
s

s
io

n
 r

e
la

ti
v

e
 t

o
 A

C
T

1

ALS1 ALS3 ALS5 EAP1 AAF1

100

101

102

103

104

Control

CUR

** **

**

**

Genes

%
  
e

x
p

re
s

s
io

n
 r

e
la

ti
v

e
 t

o
 A

C
T

1

ALS1 ALS3 ALS5 EAP1 AAF1

100

101

102

103

104

Control

CUR

**

** *

**

Genes

%
 e

x
p

re
s

s
io

n
 r

e
la

ti
v

e
 t

o
 A

C
T

1

ALS1 ALS3 ALS5 EAP1 AAF1

100

101

102

103

104

PC

CUR

Genes

%
 e

x
p

re
s

s
io

n
 r

e
la

ti
v

e
 t

o
 A

C
T

1

ALS1 ALS3 ALS5 EAP1 AAF1

100

101

102

103

104

PC

CUR

*

*

Genes

%
 e

x
p

re
s

s
io

n
 r

e
la

ti
v

e
 t

o
 A

C
T

1

ALS1 ALS3 ALS5 EAP1 AAF1

100

101

102

103

104

PC

CUR

*

*

*

Genes

%
 e

x
p

re
s

s
io

n
 r

e
la

ti
v

e
 t

o
 A

C
T

1



Chapter 3: The anti-adhesive activity of curcumin on Candida albicans 

109 
 

 

(i)                                                     (ii) 

  
Figure 3.11 Visual transcriptional analysis of CUR treated C. albicans. (i) Y and 
(ii) H cells. Heatmap and clustering was performed for the differential expression 
of genes (log2). 
 
 

3.4.6 PMMA-incorporated CUR does not inhibit Candida albicans 
adhesion  

Based on the previous data, adhesion of C. albicans was reduced when freely 

adsorbed CUR was permitted to physically adsorb to the already cured (completely 

polymerized) PMMA surface. Therefore, it was hypothesized that incorporation of 

CUR within PMMA may provide longer sustained release of bioactive 

concentrations. The effect of incorporation of CUR into the uncured PMMA was 

tested by adding CUR to the monomer (200 µg/ml) before mixing it with the 

powder, and candidal adhesion (30 min) tested using Miles and Mirsa plate 

counting methodology. Figure 3.12 shows the non-significant difference in the 

number of the counted CFU between the CUR-incorporated and control (p>0.05). 

Thus, incorporation of CUR during fabrication of PMMA denture material did not 

show the predicted impact on C. albicans adhesion. To investigate why this was 

not the case, CUR release from the processed CUR-incorporated PMMA was 

spectrophotometrically assessed. No CUR release was observed, suggesting 

covalent chemical interaction between CUR and PMMA monomers that could 

restrict CUR solubility and release.    
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Figure 3.12: The non-effective role of CUR incorporated to PMMA on Candida 
albicans adhesion. C. albicans anti-adhesive capacity incorporated CUR to PMMA 
(CUR-incorporated) compared to non-incorporated control surfaces, and a Mann-
Whitney test was performed on data from 5 independent occasions, where 3 
surfaces were used as replicates and an average was considered (p>0.05). The 
averaged independent data are presented, with error bars representing the 
median with interquartile range. 
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3.5 Discussion 

The potent biological activities of the polyphenol CUR has enabled some 

researchers to describe it as a modern biological regulator (Esatbeyoglu et al., 

2012). The data presented in this chapter display the possibility for use of CUR 

within the perspective of oral health for denture wearers. It has been shown that 

CUR can adsorb to denture substrates and reduce C. albicans adhesion, rather 

than actively kill or inhibit the microorganisms. Remarkably, exposure of C. 

albicans to CUR elicited cellular aggregation, an effect that also reduced its 

adhesion capacity, besides the decline in the cell surface hydrophobicity. 

Transcriptional analyses revealed that the key ALS3 adhesin [the most important 

‘king’ of the ALS family as illustrated by Hoyer et al. (2008)] was negatively 

impacted, whereas genes associated with aggregation were positively impacted. 

Collectively, the  data shown reveal that CUR has the potential to be used in 

denture care as a means of preventing C. albicans  biofilms and subsequently 

denture-induced stomatitis (O'Donnell et al., 2015a). 

Initially, the aim was to evaluate and confirm CUR antimicrobial  capabilities. 

These data are in general agreement with others (Martins et al., 2009;Sharma et 

al., 2010b;Khan et al., 2012), displaying that concentrations around 100 µg/ml 

are necessary to inhibit cellular growth. Besides, 200 µg/ml demonstrated a 

considerable anti-biofilm activity (Shahzad et al., 2014). For further confirmation, 

0.5 x PMIC concentration (50 µg/ml) showed no impact on the cellular growth 

kinetics (Neelofar et al., 2011). Any discrepancies noted might be attributed to 

the protocols used for the broth microdilution method, variability of strains used, 

variability of CUR source and purity and proportions of curcuminiods involved.  

Considering the principal interest of this research was in preventing C. albicans, 

rather than actively inhibiting and killing C. albicans, then the focus was on using 

a lower sub-inhibitory concentration (half PMIC) of 50 ug/ml. This was motivated 

by the hypothesis that CUR could be clinically used as a supplement, or as part of 

a nutritional regimen, where, the concentration of CUR could be maintained 

through salivation along with adsorbing on to the oral tissues and the related 

prostheses. 
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The results presented herein indicate that approximately 6% of the CUR provided 

can be adsorbed to the prosthesis surface within 10 min. Theoretically, polyphenol 

CUR might be directly and indirectly delivered to the oral cavity. The direct 

method would be during ingestion, and indirectly when it is absorbed by the 

digestive system and becomes bioavailable to bodily fluids, i.e. blood and saliva. 

Indeed, literature showed that polyphenols have high affinity for the salivary 

proteins, especially the proline-rich proteins and histatins (Bennick, 2002;Soares 

et al., 2011). The daily CUR consumption is very variable across cultures, for 

example, in Nepal and India daily consumption of CUR can reach up to 100 mg 

(Shahzad et al., 2015), and in South Korea this may only reach 15 mg (Kwon, 2014), 

whereas, in the United Kingdom, according to the European Food Safety Authority, 

it may reach up to 0.9 to 3.3 mg/kg of the body weight daily, which is equivalent 

to 60-230 mg/day (EFSA, 2010). Therefore, providing an anti-candidal 

concentration just through nutritional approach is not without challenges, though 

the potential of achieving an anti-adhesive concentration is a more conceivable 

goal. Indeed, it was possible to show that 50 µg/ml could be adsorbed onto PMMA, 

the polymer most commonly used to construct denture prostheses, within a 

relatively short time. The resultant adsorption optimisation process showed that 

the optimised CUR-adsorbed PMMA reduced C. albicans adhesion by up to 70%, 

which was further improved to 93% with a short CUR pre-exposure of C. albicans. 

This combination revealed that CUR has dual functionality, through surface 

adsorption and directly against C. albicans producing a synergistic-like effect. 

For further understanding of the biological function of the sub-inhibitory CUR 

effect, a series of studies were undertaken to define its impact on the kinetics of 

adhesion, whilst also evaluating how its influence on the dissimilar morphological 

forms of C. albicans. The Ramage laboratory have formerly shown that other 

natural molecules, such as tea tree oil (TTO) derivatives and carbohydrate-derived 

fulvic acid (CHD-FA) affect C. albicans colonisation and growth depending on the 

stage of biofilm development (Ramage et al., 2012b;Sherry et al., 2012). 

Therefore, it was reasoned that CUR may also act on C. albicans in a similar 

manner. It was shown that prolonged exposure (30 and 90 min) of C. albicans yeast 

cells considerably minimised its adhesive capability onto PMMA, signifying that 

CUR was capable of modifying its adhesive capability in some manner, which was 
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further investigated through observing cells grown to different phases of 

morphological development, namely yeast, germling and hyphae cells. It was 

hypothesised that the morphological phase of C. albicans at which the cells were 

treated with CUR could influence overall development and integrity of the biofilm. 

Indeed, it was shown that all treated morphological forms exhibited reduced 

general biofilm formation, though only the inhibitory concentrations, specifically 

200 µg/ml, reduced the yeast and germling cells developed biofilms in a 

significant way in comparison to the sub-inhibitory concentration. However, 

hyphae cells were not influenced in a concentration dependent manner, 

suggesting that the efficacy of CUR was more apparent against immature 

morphological phases. Remarkably, though the biofilms were generally reduced 

compared to control levels, there were still significant biofilms remaining, 

indicating once more the advantage of early preventative intervention. A key 

limitation of this interpretation is the sample sizes used during these analyses 

(Vaux, 2012). Indeed, it raises questions whether the statistical analyses are 

valuable, which is why individual data points are presented. Nonetheless, when 

the data is examined in its entirety there are indicative trends that CUR 

demonstrates positive biological influences, though further research is required 

to confirm these data.  

The anti-oxidative and hydrophobic capacities of the polyphenol CUR molecules 

(Priyadarsini, 2013;Mirzaei et al., 2017) might give an explanation why it 

preferentially adsorbs to PMMA and the C. albicans cell wall. It was hypothesised 

that the hydrophobic nature of the CUR molecule might initiate an aggregation 

process of the coated C. albicans with one another. This notion could be of 

importance within the context of oral delivery with the saliva, specifically if the 

possibility of creating complexes of cells that reduce their interaction with the 

denture surface was considered, which also may minimise the opportunity for 

individual cells to adhere and be shielded inside denture surface crevices and 

imperfections. Indeed, this was verified both quantitatively and visually, which 

could also explain why a synergistic inhibition of adhesion at sub-inhibitory 

concentrations was observed. 
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Further mechanistic causes of microbial aggregation might result from failure of 

daughter cells separation, as in Candida auris (Borman et al., 2016). The 

possibility of this to occur in response to CUR in this study is low because PBS was 

used as a non-nourishing medium although the phenomenon might occur when 

CUR- exposed C. albicans tested in nourishing media. The other potential cause is 

an increase of the cell surface hydrophobicity (CSH). Therefore, the CSH of CUR-

exposed (50 µg/ml) C. albicans was tested over different periods of exposure. 

In parallel, the effect of sub-inhibitory concentration of CUR on reducing the CSH 

of C. albicans was demonstrated. Several expressed proteins participate in CSH 

modulation (Bujdáková et al., 2013). The CSH experiment helped to achieve two 

objectives in a single action. It suggested a potential mechanism for the anti-

adhesive effect of sub inhibitory concentration of CUR, and also these experiments 

supported the notion of coating of the cells with CUR, because the CSH experiment 

was modified by washing the cells with diluted DMSO to remove the proposed 

coating CUR. This data comes in line with several studies that confirmed the 

positive association between CSH and adhesion to surfaces (Krasowska & Sigler, 

2014;Ellepola et al., 2016;Wang et al., 2017b), though some reports did not 

confirm this relationship (Bujdáková et al., 2013;Silva-Dias et al., 2015) and 

others presented a complicated role for CSH in adhesion (Hoyer & Cota, 2016). 

We can suggest that the decrease of C. albicans CSH in response to CUR exposure 

is an evasion endeavor from these cells to distance themselves from the organic 

hydrophobic molecules, which resembles a mechanism observed in hydrophilic 

microorganisms that protect themselves from attachment of organic molecules 

(Krasowska & Sigler, 2014). 

An inherent range of genetic and morphological properties of C. albicans provide 

it with enhanced capacity for  colonisation and biofilm formation (Blankenship & 

Mitchell, 2006). Finding strategic approaches to controlling these properties offers 

potential for innovative anti-candidal treatments. Mechanistically, it was 

intriguing to understand how CUR elicited C. albicans specific effects. A previous 

study has demonstrated that CUR has the capability to modulate the global 

repressor of filamentation TUP1 (Sharma et al., 2010b). Indeed, Ramage’s 

research group showed that HWP1, which is a key hyphal wall associated element, 
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was down-regulated when a focused study on mature biofilms was conducted 

(Shahzad et al., 2014). To this end, a transcriptional approach was employed to 

assess genes involved in adhesion and aggregation. CUR downregulated the ALS3 

gene in both yeast and hyphae cells; ALS3 has a well-established and key role in 

C. albicans adhesion, and plays a pivotal role in biofilm formation and invasion 

(Zhao et al., 2004;Nobile & Mitchell, 2005;Hoyer et al., 2008;Liu & Filler, 2011). 

The down- regulation of such an important gene results in a reduction in cellular 

adhesive capacity. However, the ALS1 gene was variably modulated by CUR and 

its transcriptional data did not steadily come in a line with the adhesion data. 

Indeed, it was reported that ALS1 has less impact on adhesion than ALS3 and 

complicated interrelationships among ALS family members have been observed 

(Zhao et al., 2004). Nevertheless, both genes have been shown to have significant 

functions in early biofilm events (Nailis et al., 2009;Fox et al., 2015).  

There is controversy about the role of the ALS5 gene in initial biofilm formation 

and adhesion of C. albicans (Hoyer et al., 2008). ALS5 has a less well-defined 

function within the ALS family, and even though defined as an adhesin, 

functionally it appears to have amyloid characteristics and the capability to 

enhance aggregation (Rauceo et al., 2004;Garcia et al., 2011). This aggregation-

driving role might explain why it is up-regulated following exposure of the C. 

albicans cells to CUR and this corresponds to the observed phenotype in this study. 

Furthermore, the expression of AAF1 was also up-regulated by CUR in both 

morphological forms tested, which is a gene highly associated with flocculation 

and aggregation (Fu et al., 1998). It was interesting that AAF1 appears to have an 

insignificant adhesive function (Rieg et al., 1999), subsequently further supports 

the developing concept of the phenotypes and anti-adhesive capacities detected 

next to exposure to CUR.  

Surprisingly, EAP1 gene expression manifested comparable trends to ALS5, 

although this gene expresses a protein recognised to improve adhesive properties 

and biofilm formation (Li et al., 2007;Fox et al., 2015). It was expected that we 

would see a similar level of down-regulation to that of ALS3. This unexpected data 

suggests that EAP1, whereas displaying these adhesion driving capacities, might 

have supplementary functions in cellular aggregation, nevertheless this 
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necessitates further research. Collectively, these molecular data reveal the 

capacity of sub-inhibitory concentrations of CUR to elicit the expression of 

biological properties that could be beneficial in reducing colonisation of C. 

albicans. 

Finally, it was intriguing to investigate the possibility of CUR-incorporated denture 

material to induce effective anti-adhesive capability. CUR-incorporated polymer 

conjugates have previously shown beneficial biological activity (Yoncheva et al., 

2015;Requejo-Aguilar et al., 2016), where water-soluble polymers were 

considered to facilitate the delivery of the drugs. Hence, it was not surprising that 

incorporation of CUR inside the water-insoluble PMMA denture material during 

fabrication did not demonstrate the potential anti-adhesive capacity. 

Furthermore, this also could be attributed to the very low solubility of CUR in 

water (Esatbeyoglu et al., 2012), and the potential chemistry between the CUR 

molecules and PMMA polymer, where CUR may be bound within the PMMA. Indeed, 

submersion of the incorporated PMMA in DMSO solvents for 24 h showed absolutely 

no CUR release, which further supports our explanation.    

While it is true that existing advice on denture cleaning will largely allow patients 

to maintain oral health these do not appear to be being followed consistently 

leading to a high prevalence in disease. This study explores the opportunities to 

circumvent to a certain extent the poor compliance with existing denture hygiene 

measures enhancing the effectiveness of existing approaches through dietary 

intake of biologically significant polyphenols such as CUR. Not only is CUR active 

against C. albicans, but against other pathogens of the oral cavity such as 

periodontopathic bacteria (Shahzad et al., 2015). Taking into consideration the 

high diversity of the microbiome and mycobiome of denture wearers (O'Donnell et 

al., 2015b), then the wide-spectrum of activity shown means that CUR has the 

potential to be beneficial in areas of oral health beyond denture health. The 

identified biological activity of CUR would support further investigation and 

development of a CUR based solution as a denture soak. Such a solution could 

have the potential to effectively manage adhesion of these pathogenic biofilm 

related microorganisms. It is also possible that CUR could be used in conjunction 

with other effective strategies for example photoactivation. There is a potential 
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to promote the CUR antimicrobial activity induced via photoactivation (Cieplik et 

al., 2015), which may yield both a dual preventative and decontaminative 

strategy. Indeed, clinical research has previously demonstrated an additive 

advantage to photodynamic therapy (PDT) alone (Pereira et al., 2015), as well as 

in conjunction with CUR in the context of oral healthcare measures (Leite et al., 

2014). The mechanistic philosophy of PDT works through locally acting light-

activated photo-antimicrobial particles that generate excessive quantities of 

highly reactive oxygen species (ROS). The dramatic increase of ROS has a damaging 

effect on the targeted site of action (Wainwright et al., 2017). For this reason, 

PDT could provide an additional advantage in improving the low concentrations of 

orally supplied natural antimicrobials, where it might be light-activated bi-daily 

or more frequently.  

Nevertheless, establishment and maintenance of activatable concentrations that 

exert an anti-adhesive influence might represent a hurdle. Consideration must be 

given to the route of delivery of these active particles. Another potential way to 

use this molecule would be to partner with nanotechnological strategies, such as 

the formation of nanosized CUR, which has previously been demonstrated to 

enhance the biological activity and cellular response (Gopal et al., 2016), and 

would optimise our capability to deliver biologically active concentrations. 

Another hurdle is in the potential discoloration of the dental prosthesis and 

related oral tissues due to the yellowish colour of CUR, though some CUR 

analogous or derivatives such as the tetrahydrocurcumin have overcome this 

chemical property (Aggarwal et al., 2014). 
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Chapter findings 

1. CUR can be adsorbed to PMMA denture material up to effective 

concentrations in a time and concentration dependant manner. 

2. Adsorption of CUR to PMMA reduces C. albicans adhesion.  

3. CUR has the biological activity to reduce the adhesion of the pre-exposed 

C. albicans.  

4. Combination of adsorption of CUR to PMMA with pre-exposure of C. 

albicans to CUR provides a synergistic antiadhesive-like effect. 

5. CUR inhibits the metabolic and biomass of C. albicans biofilms in a 

morphological form, concentration and time point dependent manner. 

6. CUR induces C. albicans aggregation. 

7. CUR reduces the CSH of C. albicans.   

8. CUR modulates adhesion and aggregation associated genes within a 

relatively short time. 

9. Incorporation of CUR inside PMMA denture material does not induce 

biological activity.
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4.1 Introduction 

Current anti-biofilm strategies for dental biomaterials, such as coating and 

sustained release of antimicrobial molecules, remain under-developed and 

unexploited (Øilo & Bakken, 2015). Scientists have recognised that surface 

modification is an effective strategy to fight microbial biofilms, though chemical 

alteration using polyethylene glycol brush-like surfaces, and incorporation of 

antimicrobial compounds such as antibiotics, silver ions, cationic peptides and 

quaternary ammonium, whilst transiently effective, eventually lose efficacy 

(Perera-Costa et al., 2014). Moreover, the functional chemical moieties of the 

surface can be masked by the microbial secretions and adsorbed host proteins 

(Perera-Costa et al., 2014), and there is also the potential for associated 

cytotoxicity (Wang et al., 2017a). Therefore, developing anti-fouling mechanisms 

through a physical alteration appears promising, as this would negate some of 

these negative consequences of chemical modification. 

The commensal C. albicans has the capacity to switch morphology and become a 

versatile opportunistic pathogen through its capacity to produce hyphae and a 

range of adapted virulence factors (Nobile & Johnson, 2015). The adhesion 

capacity of C. albicans to biotic and abiotic surfaces represents a key step in a 

key virulent attribute, i.e. biofilm formation (Fox et al., 2015). Interference with 

C. albicans adhesion and biofilm formation through a natural chemotherapeutic 

approach was presented in the previous chapter (Chapter 3). Chemical 

modification of the denture material surface has been reported elsewhere (Park 

et al., 2008), which involve changing the chemical properties of the polymer 

surface. Physico-chemical modification of plastic polymers is also reported with 

plasma modification through bombarding the surface with a beam of gas in a 

plasma status to modify the surface roughness, wettability and adhesion 

properties (Ozdemir et al., 1999). More specifically, plasma physico-chemical 

treatment for denture polymers was also reported, which was designed to increase 

the surface free energy and minimise the microbial adhesion (Zamperini et al., 

2013;Qian et al., 2016). However, there is lack of information within the literature 

regarding purely physical modification approaches of denture material surface 
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that is devoid of any chemical processing. Thus, focussing on this area of research 

seems appropriate and timely.   

The problem that exists with denture substrates is that the increase of 

uncontrolled surface roughness offers shelter and protection for microorganisms 

from the host salivary dynamics and mastication, as well as adjunct cleaning shear 

forces.  Moreover, uncontrolled surface topography enhances the surface area of 

attachment to support further microbial retention (Charman et al., 2009). This 

was elucidated by Boyd and Verran, as they demonstrated the increase of the 

adherence capacity of Staphylococcus aureus to unpolished and randomly abraded 

stainless steel surfaces (Boyd & Verran, 2002). On the other hand, antifouling and 

self-cleaning natural systems such as lotus leaf effect and shark skin, which are 

characterised by characteristic hydrophobicity and distinctive well organised 

topographies at micro/nano scale are main drivers in the interest of the 

interaction of micro-nano-topographical features with microorganisms and 

subsequent biofilm formation (Gu & Ren, 2014). Therefore, controlled surface 

topographies may provide a positive benefit for these clinical problems.  

Nano-fabricated surfaces are firmly established in the electronic engineering and 

optical studies, while in the biology and clinical fields this remains a poorly 

explored area of research (Anselme et al., 2010). Pioneer research endeavours on 

cell- nano-structured substrate (Dalby et al., 2002;Teixeira et al., 2003) and 

microorganism- nano-structured substrate (Diaz et al., 2007;Ploux et al., 2009) 

interactions reported the induction of a biological response to the nano-structured 

materials, suggesting that similar approaches could have potential antimicrobial 

effects on nano-structured denture surfaces. During the last decade, several 

studies have investigated the biomedical interaction of the biomimetic and 

bioinspired micro-nano patterned topographies with the bacteria that showed 

promising antifouling results (Ploux et al., 2009;Crawford et al., 2012;Diu et al., 

2014;Gu & Ren, 2014;Perera-Costa et al., 2014). However, conflicting results have 

also been observed with microbial attachment to engineered surfaces (Hsu et al., 

2013). To date, at the time of writing this thesis, only one study investigated 

adhesion of a fungal species with micrometre and sub-micrometre dimensionally 

patterned surfaces (Whitehead et al., 2005). Here, titanium-coated surfaces were 
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used that did not show any significant differences between the regularly 

distributed micrometre and non-regularly distributed sub-micrometre featured 

surfaces on the retention of C. albicans. This chapter aimed to take this one step 

further and investigate the interaction between micro/nano topographies and C. 

albicans. 
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4.2 Aims 

The general objective of this chapter is to explore the possibility of development 

of an engineered patterned denture material surface that could enhance the anti-

adhesive capacity of C. albicans colonisation. Therefore, it was important to 

explore the possibility of the most widely used denture material (PMMA polymer) 

to replicate topographies of micro-, sub-micro and nano-scale features.  

The specific objectives are as follows: 

1. To investigate the capacity of PMMA denture material to replicate micro-, 

submicro- and nano-scale features. 

2. To investigate the adhesion of C. albicans on engineered surfaces of micro 

and sub-micro features of different forms. 

3. To investigate the adhesion of C. albicans on nano-scale featured 

surfaces. 

4. To evaluate the molecular response of C. albicans to the engineered 

surfaces. 

5. To evaluate the wettability of the engineered surfaces and the surface 

roughness of the non-patterned polymers. 

6. To assess the efficacy of combining the engineered-patterned surface 

with CUR adsorption on the adhesion and biofilm formation of C. albicans. 
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Some of the shown data in this chapter has been published in “Nanomedicine: 

Nanotechnology, Biology and Medicine” journal.  

Hasanain Alalwan, Christopher J. Nile, Ranjith Rajendran, Robert McKerlie, Paul 

Reynolds, Nikolaj Gadegaard, Gordon Ramage. Volume 14, Issue 3, April 2018, 

Pages 1045-1049. 

Findings from this chapter have been presented at the following academic 

meetings:  

1. Oral presentation for OMIG Postgraduate Research Prize Symposium in 

College of Clinical Dentistry in University of Sheffield on 8th of Feb, 2017.  

2. Poster presentation in the annual conference of the British Society of 

Prosthodontics (BSSPD) in London on 6th April, 2017. 
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4.3 Materials and methods  

4.3.1 Replication of micro/nano-featured materials 

The polymer surfaces that were used and colonised with C. albicans in this study 

were engineered topographies of thermoplastic polycarbonate and PMMA denture 

materials. Production of the master patterns and micro- and the nano-fabricated 

polycarbonate topographies was performed by Dr Paul Reynolds in collaboration 

with Professor Nikolaj Gadegaard lab, Biomedical Engineering, School of 

Engineering, University of Glasgow.  

4.3.1.1 Replication of micro/nano-featured polycarbonate material 

Generally, the process consists of three sequential steps: Patterning (pattern 

generation), die fabrication and replication. The injection molding technique was 

the replication method of choice for polycarbonate polymers, because of the high 

temperature required for melting the polycarbonate, the capacity of introducing 

of very small sub 10 nm features and the successful high throughput production. 

For pattern generation, electron beam lithography was used to prepare the metal 

patterned master substrates (Gadegaard et al., 2003b). In brief, silicon substrates 

were coated with PMMA and exposed in an electron beam lithography tool (Vistec 

VB6 UHRWF). After development, the substrates were electroplated to form nickel 

shims that were made of a nickel vanadium alloy (7% vanadium) (Gadegaard et 

al., 2003a). These shims were used as die for replication with injection moulding 

(Victory 28, Engel GmbH) of polycarbonate (Makrolon OD2015) substrates after 

melting it at 280°C (Reynolds et al., 2012).  

All the materials tested for C. albicans colonisation were sterilised by immersion 

in 70% ethanol for 5 min, left over night to dry in the hood in an oblique position 

(Johansson et al., 2002), then exposed to UV light for 5 min per aspect (ULTRA-

LUM UVC-508).    
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4.3.1.2 Investigating the replicability of micro/sub-micro-featured PMMA 
denture material 

Initially the feasibility of using PMMA denture material in the replication of micro-

scale features was evaluated. A photo lithographically fabricated master silicon 

wafer (Figure 4.1) was supplied by the Professor Nikolaj Gadegaard lab 

(Biomedical Engineering, School of Engineering, University of Glasgow) to enable 

an initial screening of the possibility of generating micro features in a heat cure-

high viscosity dough of PMMA denture material. The silicon master wafer had 0.04 

cm2 micro-patterned surface area of micro-patterned pits, therefore it will 

produce micro pillars on replication. Powder/liquid ratio of heat cure PMMA 

denture material (C&J De-luxe denture base polymer, Surrey, UK) was mixed and 

left at room temperature to reach the dough stage as annotated in manufacturer 

instructions. The silicon wafer was placed on a glass slide and a small dough of 

the PMMA was applied over it, sandwiched with another glass slide, and pressed 

with thumb pressure until the engraved micro- imprinted pattern of the master 

was clearly shown through the material. Then the material was cured in a water 

bath following to the manufacturer instructions.   

                    

Figure 4.1: Silicon master wafer including micro-fabricated patterns. Scale bar 

is 2 mm.  
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4.3.1.3 Replication of micro/nano-featured PMMA denture material 

Alternatively, the traditional dental compression moulding technique using dental 

flasks and dental hydraulic press was used. A polydimethyl siloxane resilient pad 

was fabricated in customised manner for the fragile silicon wafer and was placed 

underneath the master silicon wafer to avoid the risk of its fracture because the 

resilient pad will absorb and evenly distribute the applied forces. Subsequently, 

because of the fragility of the silicon master pattern, metal master patterns were 

used. The inherent nature of the metal for non-breakability cancelled the need 

for a resilient pad underneath the master pattern. Therefore, a nickel shim was 

moulded directly in die stone material. The micro-patterned nickel shim has a 

micro-patterned surface area of 0.25 cm2 (0.5×0.5 cm) of micro-pillars, therefore, 

it will produce micro-pits when replicated. After moulding the nickel shim in the 

lower half of the dental flask, a polythene sheet was placed over the lower half 

of the flask covering the nickel shim so as to separate it from the moulding wax. 

Then, to provide a universal thickness for the replicated PMMA, 2 mm thickness of 

the moulding wax was applied upon the pattern and the upper half was articulated 

with the lower half for completing the mould. The die stone was poured into the 

upper half and left to set at room temperature for 1 h. Then, the two halves of 

the flask were separated and the wax was removed using boiling water. An 

alginate separating medium was applied to the set die stone moulds and left to 

dry for 30 min. At that moment, the die stone mould containing the nickel shim 

was ready for the replication process.  

The PMMA denture material dough was prepared as described above and directly 

placed upon the nickel shim and pressed using a dental hydraulic press with 1250 

psi for 5 min (Consani et al., 2002). Then, the flask was immersed in a water bath 

for curing according to the manufacturer instructions. After completing the curing 

cycle, the flask was bench cooled for 3 h, and then the cured replicated specimen 

was deflasked and edges finished using acrylic burs. For PMMA denture material 

replication of nano-patterns, the same aforementioned procedure was followed 

as illustrated in Figure 4.2. The surface area of the nano-patterned area was 1 

cm2 (1×1 cm) of nano-pillars.  
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After completing the replication process, the nickel shim was directly placed in 

absolute isopropanol and cleaned using overnight 50°C hot acetone, then 

sonicated at 35 kHz for 5 min (Ultrasonic bath, Fisher scientific, UK), transferred 

to absolute isopropanol and sonicated for further 5 min. Then, the nickel shim was 

kept in fresh isopropanol until next use. Before every use, it was removed from 

the isopropanol and left at the bench to dry for 30 min. All the work was 

performed in the laboratory hood.                 

 

Figure 4.2: Replication of micro/nano-patterns on PMMA denture material. The 

process was performed using dental flask compression molding technique. Scale 

bar is 1 cm. 
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4.3.2 Candida albicans adhesion on the micro-pillar patterns 

Polycarbonate micro-patterned pillars of 0.04 cm2 of three different dimensions 

(2, 1 and 0.5 µm in diameter) and two different arrangement forms (square form 

(SQ) and near square (NSQ) form of arrangements) were challenged for adhesion 

of C. albicans (Figure 4.3). Before the adhesion experiment, these polycarbonate 

sections were characterised by scanning electron microscopy and the sections 

were prepared and coated with a layer of gold-palladium (15 nm). C. albicans 

SC5314 was propagated in yeast-peptone-dextrose (YPD) medium (Sigma-Aldrich) 

for 18 h at 30°C in an orbital shaker at 150 rpm. The cells were washed by 

centrifugation in sterile phosphate buffered saline (PBS, Sigma-Aldrich, UK) and 

standardised to an inoculum density of 1×104 CFU/ml in RPMI-1640 medium 

(Sigma-Aldrich, UK). A duplicate of sections of every form of arrangement were 

distributed in petri dishes and 1.5 ml of the C. albicans-medium suspension was 

dispensed upon the section. The inoculated cells were allowed to adhere to the 

targeted sections and incubated for 30 and 90 min at 37оC statically. This 

incubation period was sufficient to obtain yeast (Y) and germling (G) C. albicans 

morphological forms  

 

Figure 4.3: Polycarbonate replicated micro-patterns. Every square represents 

different dimention. The blank area is demarcated at a microsopic scale to 

represent the control flat area. Scale bar is 2 mm. 
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After completing the incubation period, the medium-cells suspensions were 

aspirated and the sections were washed twice with 1.5 ml of PBS to remove any 

planktonic non-adherent cells. Then, the sections were left to dry at room 

temperature for 6 h and stained with 1.5 ml of crystal violet dye (0.05% v/v) for 

10 min at room temperature. Afterwards, the dye was removed, and to remove 

any unbound stain the sections were comprehensively washed ten times through 

five consecutive immersions in two Petri dishes each containing 40 ml of distilled 

water. Then, the sections were air-dried for 30 min and examined under a light 

microscope at 400 x magnification for counting the total number of adherent cells 

in every targeted area. Counting was performed in 16 fields of view and repeated 

twice where an average was considered. The experiment was repeated on four 

independent occasions. 

4.3.3 Candida albicans adhesion on the micro-pit patterns 

PMMA denture material with micro-pit patterns were replicated using the dental 

compression moulding technique as described in section 4.3.1.3. The replicated 

sample dimensions were 5×5×2 mm. Two forms of micro-pit inter-distance were 

used (short and long micro-pits inter-distance). The replicated samples were 

characterised by scanning electron microscopy (SEM) and the pit diameter was 

0.63 µm±0.02, the inter-pit distances were 0.3 and 0.8 µm±0.02 and the depth 

was 1.3 µm±0.02. C. albicans were propagated as annotated in the previous 

section and standardised to 1×106 CFU/ml in RPMI-1640 medium. Control (flat 

surface) PMMA denture material were involved. The sections were distributed in 

24 well plate and 1 ml of the cells-medium suspension was dispensed and 

statistically incubated for 30 and 90 min to allow adherence of the C. albicans and 

to obtain yeast (Y) and germling (G) morphological forms. Then, the incubated 

suspensions were pipetted and the sections were washed twice by gentle dipping 

in fresh 1 ml of PBS. Subsequently, the C. albicans containing samples were 

prepared for scanning electron microscopy imaging as annotated in chapter 3 ( 

section 3.3.6). After completing the gold-palladium coating procedure, every 

sample was imaged at 500 x magnification in four random fields of view.  
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The experiment was duplicated on two independent occasions. For counting the 

number of the adhered cells, the acquired images were processed and analysed 

by ImageJ 1.51h software (National Institutes of Health, USA). 

4.3.4 Candida albicans adhesion on the nano-pit patterns 

At the beginning, polycarbonate nano-pit patterned samples of 22×22×2 mm 

dimensions were challenged for C. albicans adhesion (Figure 4.4). Three different 

arrangement forms of nano-pit arrays were tested. These arrays were square (SQ), 

near square (NSQ50) and hexagonal (HEX). The pits were of 120 nm diameter, 100 

nm depth and 300 nm pitch (pit centre to pit centre) with an offset of ±50 nm for 

the NSQ50 topography. The nano-pit topographies were characterised with SEM. 

The cells were propagated and standardised in RPMI-1640 medium as annotated 

in the previous section. The sections were distributed in 35 mm diameter petri 

dishes (Thermo Fisher scientific, USA). Four ml of the standardised cell-medium 

suspension was aliquoted. Control (flat surface) specimens were involved.  

  

Figure 4.4: Polycarbonate nano-pit patterned sections. The sections were 
manufactured using injection moulding machine. The bevel up surface was the 
surface of interest (nano-patterned and tested). The nano patterned sections are 
completely identical to the non-patterned (flat) sections when they were 
macroscopically examined (vision with unaided eye). Scale bar is 1 cm.   
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The inoculated cells were allowed to adhere to the targeted sections and 

incubated for 30 and 90 min at 37оC in static position. These sections were then 

washed with PBS and retained cells removed through sonication at 35 kHz for 10 

min (Ultrasonic bath, Fisher scientific, UK), followed by 15 sec vortex.  

DNA and RNA were extracted using a combination of mechanical (disruption with 

0.5mm glass beads) and chemical methods [(QIAGEN QIAamp mini kit for isolation 

of genomic DNA (QIAGEN, Germany)] and (TRIzolTM, Invitrogen, Paisley, UK for 

isolation of RNA) as described in chapter 2 (2.3.1.1) and chapter 3 (3.3.10.1), 

respectively. The adherent cells were quantified using qPCR through amplification 

of the Candida-specific 18S DNA as described in chapter 2 (2.3.1.4). The 

expression of specific C. albicans adhesion genes (ALS1, ALS3 and EAP1) was also 

investigated at each experimental parameter using real-time qPCR as described 

in chapter 3 (3.3.10.5). The gene expression data were analysed and processed 

via 2-ΔΔCT method (Livak & Schmittgen, 2001). Generation of maps and clusters was 

through R programming language with the use of heatmap 0.2 function from the 

gplots package. The experiment was repeated at least in four independent 

occasions using two sample replicates.  

After assessment of the results, the SQ form of arrangement was selected for 

replication into PMMA denture material. Therefore, nano-pit replicated PMMA 

specimens were fabricated as described in section (4.3.1.3). The dimensions of 

the replicated nano-imprinted PMMA were 10×10×2 mm. Flat surfaces PMMA were 

fabricated as described in chapter 2 (2.3.3.1) and used as controls. The samples 

were distributed into 24 well plate and 1 ml of the standardised cell-medium 

suspension was aliquoted. The same incubation parameters were used; 30 and 90 

min. Then, DNA and RNA of the C. albicans were extracted to evaluate the 

adhesion capacity and related molecular response of the adherent cells. Two 

replicates were used in this experiment and it was repeated, at least, in three 

independent occasions. 
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4.3.5 Development of biofilms on the SQ nano-pit pattern 

SQ nano-pit polycarbonate were challenged for development of C. albicans 

biofilms using RPMI-1640 medium. Measurement of biofilm metabolism and 

biomass were considered for evaluation of the biofilms developed. The cells were 

propagated and standardised as described in chapter 2 (2.3.2.1). The substrates 

were distributed in 35 mm petri dishes and 5 ml of the cell-medium suspensions 

were inoculated. Flat surfaces were involved as control. These petri dishes were 

incubated for 4 and 24 h at 37оC in static position. Then, the substrates were 

washed twice with 5 ml of PBS and placed in fresh 35mm petri dishes for adding 5 

ml of the XTT solution. And the XTT assay was performed as described in chapter 

2 (2.3.3.4). The same biofilm formation procedure was repeated for CV assay, 

which was performed as described in chapter 2 (2.3.2.2).   

4.3.6 Measurement of surface properties of the materials tested 

Both of the materials tested (polycarbonate and PMMA denture material) were 

examined for their surface roughness and wettability. Non-contact 3D optical 

profiling was performed for the flat sections of both materials using Contour GT-

X 3D optical profiler microscope (Bruker, UK), which is based on white light 

interferometry, to measure the surface roughness metrological property. Five 

samples were interrogated and average values were obtained from two 

measurements. The images were corrected to a line-wise plane and the average 

surface roughness (Ra), which is the most popular parameter typically tested (Choi 

et al., 2014), was calculated from 180×180 µm acquired images via Vision 64TM 

analysis software.  

For wettability evaluation purposes the measurement of static water contact 

angle (WCA) was conducted for the patterned and flat sections using a Theta 

optical tensiometer (Biolin Scientific, Stockholm, Sweden). At room temperature, 

a drop of 3 µl water was dispensed on the surface of the section on a vibration-

free stage through an automated flat tipped needle, as illustrated in Figure 4.5. 

The WCA was calculated by averaging the measurement of 12 WCA/sec within 30 

sec for the right and left sides of the drop. The experiment was performed for 4 

different samples with at least 3 measurements.  
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Figure 4.5: Tensiometer device loaded with sample.  

4.3.7 Candidal colonisation on CUR-adsorbed nano surfaces 

It was a subsequent aim to interrogate the effect of combining the nano scale 

modified surface with CUR adsorption of sub-inhibitory concentration on the 

adherence and biofilm formation of C. albicans. Polycarbonate nano-pit patterned 

sections of the SQ form of arrangement were used and flat surfaces were used as 

controls.  

In the adherence experiment, C. albicans were propagated and standardised to 

1×106 CFU/ml in PBS. Samples were distributed in 35 mm petri dishes and five ml 

of CUR (800 µg/ml and diluted with RPMI-1640 medium) was allowed to adsorb to 

the nano patterned and flat surfaces for 10 min at room temperature and covered 

with aluminium foil to prevent light exposure to mimic what was conducted in 

chapter 3 (3.3.4). Control samples were considered that were immersed in RPMI 

medium only. After completing the adsorption time, the sections tested were 

gently dipped in five ml of distilled water to remove the non-adsorbed molecules 

and transferred to fresh petri dishes. Then, five ml of standardised C. albicans- 

PBS suspensions were added to all targeted sections [control flat without CUR (F-

), control SQ nano pattern without CUR (SQ-), Flat with CUR (F+) and SQ nano 

pattern with CUR (SQ+)] and incubated for 30 min at 37 °C static situation.  
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Next, the incubated cellular suspension was removed, and the sections were 

washed twice by gentle dipping in five ml of PBS to remove the non-adherent 

cells. Afterwards, the cells were collected from the sections through sonication in 

15 ml of PBS for 10 min at 35 kHz and vortex for 15 sec. The collected cells were 

counted using the Miles and Misra plate counting method, as described in chapter 

3 (3.3.5) (Miles et al., 1938).  In this experiment, three surface replicates were 

considered and the work repeated in four independent occasions.   

In the remainder of the experiment, biofilm formation was targeted. C. albicans 

were standardised to 1×106 CFU/ml in RPMI-1640 medium. Same aforementioned 

parameters were undertaken and the C. albicans loaded samples were incubated 

for 24 h at 37°C in static station. The developed biofilms were washed twice in 

five ml of PBS and transferred to fresh 35 mm petri dishes. The developed biofilms 

were evaluated from their metabolic activity and biomass themes using XTT 

metabolic and CV staining assays, respectively. These assays were previously 

annotated in chapter 2 (2.3.3.4) and chapter 2 (2.3.2.2), respectively.  In these 

assays, 5 ml of the assay’s reagent was used and only one ml was 

spectrophotometrically measured in fresh 24 well plate using plate reader 

(FluoStar Omega, BMG Labtech, UK). This experiment was independently repeated 

three times using three replicates.  

4.3.8 Adsorption of CUR to SQ nano-pit topographies 

To test the effect of the SQ nano-pit surfaces on the capacity of CUR adsorption, 

SQ nano-pit polycarbonate specimens were used in comparison to flat specimens. 

The CUR adsorption parameters used in the previous section were used. The 

adsorbed CUR was measured as explained in chapter 3 (3.3.4). The experiment 

was replicated using three specimens and repeated in three independent 

occasions.  
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4.3.9 Statistical analysis 

GraphPad prism 5 was used to analyse data and generate associated figures. Any 

non-normally distributed data were analysed with non-parametric statistical tests 

and further were Log10 transformed and then analysed with parametric statistical 

tests, if any disagreement between them it will be reported. Proportional data 

were natural log transformed, then analysed. Tests used will be individually 

reported in the appropriate results sections.    
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4.4 Results 

The adhesion capacity of C. albicans to engineered topographies was investigated, 

using micro-scale to nano-scale featured surfaces that can influence the size of 

the C. albicans yeast form. Therefore, two micrometre diameter feature and four 

micrometre pitch area (the area between the features) were selected and used 

as maximum dimensions.  

4.4.1 Adhesion of C. albicans to micro-patterned topographies 

At the outset, there was a tendency to explore the feasibility of using the most 

commonly used denture material (PMMA) to replicate features of micron scale. 

The importance of this investigation originates from the inherent high viscosity 

(dough stage) of the polymer during the replication that may impede the 

replication process. It was not possible to use the same injection-moulding 

machine used for polycarbonate replication to replicate the PMMA denture 

material patterned substrates, because of the PMMA being supplied in a 

powder/liquid form and the high viscosity of the resultant mixture. For this 

reason, other ways of replication were attempted. Two ways were undertaken, 

thumb embossing and conventional dental compression moulding technique. The 

capacity for replication was examined through scanning electron microscopy 

(Figure 4.6). Using of the dental compression moulding technique showed a well 

replicated topography, in contrast to the thumb embossing technique. The 

replication of features including the base and top was clearly affected. For this 

reason, the dental compression moulding technique was undertaken. 
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(i)                                                         (ii)     

  

Figure 4.6: Optimisation of the micro-scale replicability of PMMA denture 

material. SEM micrographs of micro-pillar replicated topography using thumb 

embossing technique (i) and dental compression technique (ii). Scale bar is 1 µm 

and images acquired at 10000 and 25000 x magnifications.  

First, it was important to analyse the factors that could influence the adhesion of 

C. albicans to the micron and submicron patterned topographies. The adhered 

cells were visually quantified using light or scanning electron microscopy by direct 

counting or through images, respectively. Thirty min incubation was sufficient to 

ensure adherence of Y form C. albicans, while adhesion of 90 min in RPMI-1640 

medium stimulated C. albicans cells to the G morphological form (Figure 1.6- 

Chapter 1). 
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SEM characterisation of the micro-pillar topographies showed the successful 

replication and the spatial arrangement of features (Figure 4.7). The adhesion 

percentage (in comparison to the flat topographies) of the Y and G morphological 

forms to the micro-pillar polycarbonate topographies showed opposing results, as 

shown in Figure 4.8. Adhesion of the Y cells to the patterned micro-pillars was 

approximately 4-6 times (374-645%) and significantly (p<0.01) greater than that 

of the non-patterned flat surfaces. However, G cells showed a non-significant 

reduced adhesion capability (66-85%) to these surfaces. These opposing results 

between Y and G cells were statistically significant (p<0.0001).  

In both morphological forms of C. albicans, non-significant differences were 

observed between the two arrangement forms tested (SQ and NSQ). Similarly, the 

different feature sizes (0.5, 1 and 2 µm) did not show statistical differences, 

though there was a trend for more adhesion capacity on surfaces of larger features 

and inter-feature pitches, which was clear in adhesion of yeasts to the SQ 

arrangement.   

 

Figure 4.7: Characterisation of polycarbonate replicated micro-pillars. The 

upper panel of SEM micrographs represents the near square (NSQ) form of 

arrangement and the lower panel represents the square (SQ) form of arrangement. 

Scale bar is 5 µm and the magnification used was 5000 X. 
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 (i) 

 

 

(ii) 

 

Figure 4.8: Adhesion of C. albicans to micro-pillar topographies. (i) Adhesion 

data of Y form cells. (ii) Adhesion data of G form cells. Topographies used were 

of different arrangement forms and different feature size. Data obtained from 

eight surfaces (2 samples in 4 independent occasions). Mann-Whitney test was 

used to compare patterned and non-patterned surfaces and unpaired t test was 

used after natural log transformation of proportions to analyse different 

arrangement forms and feature dimensions. Error bars represent standard error 

of mean. 
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Given the high levels of adhesion of the yeast cells to micro-pillar patterns, then 

future analysis was stopped, and studies diverted to sub-micron pit features. Two 

different pit-inter-distances were investigated. The topographies were 

successfully replicated in PMMA denture material as described in section 4.3.1.3, 

and characterised via scanning electron microscopy as illustrated in Figure 4.9. 

(i)                                                         (ii) 

 

Figure 4.9: Characterisation of PMMA denture material micro-pit patterns. SEM 

micrographs of micro-pit replicated topography. Pit diameter is 0.63 µm and depth 

is 1.3 µm. (i) Inter-pit distance (the shortest straight line between two horizontally 

adjacent pits) is 0.8 µm±0.02 (ii) 0.3 µm±0.02. Scale bar is 1 µm and images 

acquired at 10000 and 25000 x magnifications. 

 

 

  



Chapter 4: The effect of micro and nano-patterned surfaces 
 

142 
  

Similar C. albicans morphological forms (Y and G) were allowed to adhere to the 

micro-pit replicated surfaces and SEM micrographs were acquired as shown in 

Figure 4.10(i) representative images. Dimensions of the analysed images were 225 

x 165 µm. In Figure 4.11(ii), the percentages of Y form adherence onto sub-micron 

pit topography relative to non-patterned (flat) surfaces (128%) showed a clear 

drop in comparison to that of the sub-micron pillar topography shown in Figure 

4.8. This reflected the relative inherent anti-adherent capacity of pit form 

topography in comparison to the pillar form. An interesting observation from 

Figure 4.10(ii) was the decrease of the percentage of Y adherence from 128% to 

86% in respect of the two different pit-inter-distance topographies, with a 

reduction of yeast form adhesion to closely located pits. However, it was not 

statistically significant (p=0.077). Furthermore, both of the sub-micron pit 

topographies showed slight anti-adherence capacity to the G morphological form, 

with 83-84% adhesion relative to the flat topographies. Collectively, these data 

suggested using pit-patterned topographies of smaller dimensions.  
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(i) 

                  A                                      B                                        C 

   
                   D                                    E                                          F 

   
 

 

(ii) 

 
Figure 4.10: Adhesion of C. albicans to micro-pit PMMA denture material. (i) 

SEM micrographs of adhered Y (upper panel) and G (lower panel) forms on flat 

(A,D), 0.8 µm inter-pit distance (B,E) and 0.3 µm inter-pit distance topographies 

(C,F). Scale bar is 50 µm and magnification used is 500 x. (ii) Adhesion to the 

micro-pits relative to that of the flat unpatterned PMMA. Data obtained from 8 

values (4 values in 2 independent occasions). Unpaired t test was used to compare 

patterned and non-patterned surfaces and natural log transformation of 

proportions was performed to compare different morphologies and pit inter-

distances. Error bars represent standard error of mean. 
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4.4.2 Adhesion of C. albicans to nano-pit patterned topographies 

Based on the previous data, pit-patterned topographies with sub-micro dimensions 

could potentially have anti-adhesive properties. This component of the study 

focussed on the impact of surface nano-pit topographies on adhesion of ovoid Y 

and hyphal G cells. These nanotopographies were initially characterised by SEM 

(Figure 4.11).  

 

 

   

Figure 4.11: Characterisation of polycarbonate nano-pit patterns. Scanning 

electron micrographs of polycarbonate nano-pit showed the arrangement forms 

tested. Pit diameter is 120 nm and depth is 100 nm. Scale bar is 2 µm. SQ, NSQ 

and HEX stand for square, near square and hexagonal arrangement forms, 

respectively. The magnification used is 20000 x. 
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Assessment of these two morphologies adhering to SQ, NSQ and HEX nano-pits on 

polycarbonate was quantified using qPCR. The three arrangement forms tested of 

the nanotopographies showed different adhesive properties of C. albicans. NSQ 

nanotopography showed a significant increase in the adhesion capacity relative to 

the other nanotopographies tested, especially in Y morphology form (Figure 4.12 

i). However, the highly ordered SQ arrangement showed an contrasting 

observation, where it was shown that SQ arrangement significantly reduced 

adhesion (relative to flat surfaces) of both Y cells (p=0.038), with ~48% reduction 

in adhesion, and G cells (p=0.020), with approximately̴ 64% reduction adhesion as 

illustrated in Figure 4.12 i and ii, respectively.  Unpaired t test were used for 

statistical analysis and any non-parametric data were Log10 transformed prior to 

analysis, which were preceded by one-way ANOVA that showed significant 

differences (p<0.01). For further analysis, non-parametric data were analysed by 

Mann Whitney test. 

  

NSQ and HEX had no significant anti-adhesion properties for either cellular 

morphology in comparison to the flat, where NSQ showed the highest adhesion 

capability for C. albicans among the surfaces tested. Figure 4.13 shows a 

microscopic observation of the adhered yeasts on flat and SQ pattern, where the 

cells (and even the substrate surface) seemed covered with cell wall adhesins in 

relatively higher abundance in flat topography. 
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(i) 

 
(ii) 

 

Figure 4.12: Quantification of adhered C. albicans to polycarbonate 

nanotopographies. Quantification of adherent colony forming equivalents (CFEs) 

of Y (i), where (n=8) and G (ii), where (n=10). The horizontal line represents mean 

and error bar represents standard error of mean. Data were analysed by unpaired 

t test, * and ** represent (p<0.05) and (p<0.01), respectively. 
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(i)                                                               (ii) 

 

  
 

Figure 4.13: Adhered yeasts on SQ nanotopography. SEM micrographs of Y cells 

on flat (i) and SQ pattern (ii). Scale bar is 2 µm and magnification used is 6000 x. 

 

In parallel, expression profiles of key adhesion genes (ALS1, ALS3 and EAP1) were 

assessed by real-time qPCR and presented as heat-map relative to the 

housekeeping gene ACT1 (Figure 4.14). Here, it was shown that all 3 adhesion 

genes were down-regulated in the polycarbonate nanotopographies in comparison 

to the flat topographies in both Y and G cells, but notably for the SQ arrangement 

ALS1 was significantly down-regulated with (p=0.043) and (p=0.036) in Y and G 

cells, respectively.  
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Figure 4.14: Visual transcriptional analysis of adhered C. albicans to 

polycarbonate nanotopographies. Heat map transcriptional data of selected 

adhesion genes (ALS1, ALS3 and EAP1) of Y and G cells, where gene expression 

data are represented in Log2 colour key values. Unpaired t test was used after 

natural log transformation of the data. * represent (p<0.05). 

 

Based on these data, nanoimprinted (SQ form arrangement) PMMA denture 

material was developed using the dental compression moulding. The validity of 

this approach for replication of pits at a nano-scale was investigated by scanning 

electron microscopy (Figure 4.15), where the presence of imprinted nanopits were 

observed regularly spaced. As with polycarbonate surfaces, we demonstrated a 

significant reduction of adherence of both Y (p=0.025) and G (p=0.001) cells on 

PMMA with approximately 35 and 55% reduction in adhesion, respectively, using 

same abovementioned statistical tests (Figure 4.16 i& ii). Analysis of the adhesion 

expression profiles showed no difference between the control and SQ PMMA 

surface (Figure 4.17). 
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Figure 4.15. Characterisation of nanoimprinted PMMA denture material. SEM 

micrograph of replicated SQ nano-pit topography (scale bar is 200 nm) and 

magnification used was 50000 and 100000 x.  

 

(i)                                                  (ii) 

     
 

Figure 4.16. Quantification of adhered C. albicans to PMMA denture material 

nanotopographies. Quantification of adherent colony forming equivalents (CFEs) 

of Y (ii) and G (ii). Data obtained from four independent occasions (n=8). The 

horizontal line at mean and error bar represents standard error of mean). Data 

were analysed by unpaired t test, * and ** represent (p<0.05) and (p<0.01), 

respectively. 
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Figure 4.17: Visual transcriptional analysis of adhered C. albicans to PMMA 

denture material nanotopographies. Heat map transcriptional data of selected 

adhesion genes (ALS1, ALS3 and EAP1) of Y and G cells, where gene expression 

data are represented in Log2 colour key values. Unpaired t test was used after 

natural log transformation of the data. 

 

4.4.3 Evaluation of surface roughness and wettability properties  

The physical surface properties of the two materials (polycarbonate and PMMA) 

tested were explored with regard to surface roughness and wettability. A 

statistical difference of high significance (p<0.001) was detected between the 

surface roughness average of flat polycarbonate (Ra 4.1 nm) and that of the flat 

PMMA denture material (Ra 1549 nm) (Figure 4.18). The surface roughness of the 

patterned material was not measured because the depth of the nano-pits was 

already identified. On the other hand, when the water contact angle (WCA) was 

evaluated for the nanopit SQ replicated imprints a significant difference was 

observed in the patterned topographies relative to the flat (p<0.05), and a higher 

WCA was observed in the polycarbonate material relative to the PMMA denture 

material in both flat and patterned topographies (p<0.01) (Figure4.19).  
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Figure 4.18: Surface roughness of flat surfaces of materials tested. Surface 

roughness average was measured with Contour GT-X 3D microscope and the 

micrograph images with scale bar of 50 µm. Data were analysed by unpaired t 

test, *** represents p< 0.001. 

 

 

        

Figure 4.19: Wettability of the flat and nanopatterned materials tested. 

Static WCA of all investigated materials (error bar shows the standard error of 

mean), Images acquired at the 30th second by the tensiometer camera. Data 

were analysed by unpaired t test, *, ** and *** represent p<0.05, p<0.01 and p< 

0.001, respectively. 
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4.4.4 Biofilm formation onto SQ nano-pit topographies 

Biofilm formation on SQ nanotopographies were evaluated for metabolic activity 

and biofilm biomass outlooks using XTT and CV assays, respectively. Initial (4 h) 

and mature (24 h) C. albicans biofilms were tested. In both assays and in both 

biofilms developed, there were no significant differences (Figures 4.20, 4.21), 

which clarified the incapability of nanotopographies to prevent C. albicans from 

developing an interlocking hyphal recalcitrant net. This may instigate the 

necessity for exploration of the effect of CUR combination with nanotopographies 

on adhesion and biofilm formation.     

 

 

Figure 4.20: Evaluation of metabolic activity of C. albicans biofilms on SQ 

nanotopographies. Early and mature biofilms were analysed with XTT assay. Data 

were statistically analysed using unpaired t test. Error bars represent standard 

error of mean. 

 

Figure 4.21: Evaluation of biomass of C. albicans biofilms on SQ 

nanotopographies. Early and mature biofilms were analysed with CV assay. Data 

were statistically analysed using unpaired t test. Error bars represent standard 

error of mean. 
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4.4.5 Combination of CUR and SQ nanotopographies 

A potential synergistic effect of combining adsorption of sub inhibitory 

concentration of CUR with polycarbonate SQ nanotopographies on C. albicans 

adhesion and biofilm formation was assessed using colony counting method and 

biofilm metabolic activity and biomass assessment assays. Figure 4.22 shows a 

highly significant effect (p<0.001) of the CUR adsorption on reduction of adhesion 

(89-90%) and biofilm formation (73-77% metabolic activity) and (85-86% biomass) 

in both flat (F+CUR) and SQ (SQ+CUR) surfaces, respectively. However, a non-

significant (p>0.05) impact was observed for combining the adsorbed CUR with 

nanotopographies over the CUR adsorbed flat topographies that might indicate the 

absence of synergism between CUR and nanotopographies. 

Next, when the impact of nanotopographies on capacity of CUR adsorption was 

assessed, a non-significant difference was observed (p>0.05), though adsorption 

to nanotopographies (33.1 µg/ml) was slightly lower than that to flat topographies 

(36.7 µg/ml) (Figure 4.23).  
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  (i)                                       (ii)                                    (iii) 

 

 
Figure 4.22: Effect of combining SQ nanotopographies with CUR on C. albicans 

colonisation. (i) Reduction in adhesion. Reduction in biofilm metabolic activity 

(ii) and biomass (iii). F+CUR and SQ+CUR represent reduction in C. albicans 

colonisation of CUR-adsorbed flat relative to CUR-free flat surfaces and CUR-

adsorbed nanotopographies relative to CUR-free nanotopographies, respectively. 

Error bars represent standard error of mean and *** asterisks represents p<0.001. 

 

 

 

  

Figure 4.23: Adsorption of CUR to SQ nanotopography. The concentration of 

adsorbed CUR (µg/ml) was measured spectrophotometrically. Unpaired t test was 

used to analyse the data statistically (p>0.05). Error bars represent standard error 

of mean.  

 

 



Chapter 4: The effect of micro and nano-patterned surfaces 
 

155 
  

4.5 Discussion 

Adherence of fungi and consequent biofilm formation is an important clinical 

problem (Rajendran et al., 2016a), though these properties can also be exploited 

for novel therapeutic targets of fungi. Fungal attachment to biotic and abiotic 

surfaces can trigger a physicochemical interaction, and this contact sensing 

interaction can be ascribed to fungal-specific mechanisms permitting C. albicans 

to respond to different topographies in discriminative ways (Kumamoto, 2008). 

One promising approach is to reduce the available contact area to the C. albicans 

attachment through engineering of the surfaces. The “attachment point” theory 

(Hoipkemeier-Wilson et al., 2004;Kearns et al., 2011) might provide a support for 

explanation of the mechanical impact of the topographies tested on the capability 

of C. albicans adhesion. This theory assumes a stronger adherence of the 

microorganism if it is smaller than the topography feature and vice versa. 

Therefore, the aim of this chapter was to allow C. albicans adherence to 

topographies with relatively smaller features. Here, it was shown for the first time 

the ability to replicate sub-micro/nano-scale features using compression moulding 

technique on PMMA denture material to reduce candidal adhesion.  

According to this study, for C. albicans Y form, micro-pillar and micro-pit 

topographies increased the adhesion capacity, though it was slight for the latter. 

A trend of higher adhesion percentages was observed onto the larger features of 

the highly ordered pillars only, which could be attributed to the consistent 

increase in the dimensions of the pitches (inter-pillar space). These pitches could 

offer shelter for the Y form cells.  

For G form, the adhesion capacity was slightly decreased. In detail, the micro-

pillar data disagree with studies performed on Staphylococcus epidermidis/aureus 

that showed reduction in adhesion with micron and sub-micron pillars (Xu & 

Siedlecki, 2012a;Xu & Siedlecki, 2014), which could be attributed to the 

difference in the adhesion methodology used or kind of the microorganism, but 

particularly, the massive difference in size and mass between bacteria and yeast 

(Salerno et al., 2011).  
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The difference between the adhesion capacity of oval-shaped yeasts on micro-

scale pillar and pit topographies can be explained by understanding these two 

topographies using simple geometric and arithmetic analysis. As an analogy, the 

inter-pillar field works in a manner similar to an egg box, where the area of the 

inter-pillar field is four times larger in terms of surface area compared to pit 

topography. Thus, pit featured topography has superior anti-adhesive potential 

relative to pillar topography, which was endorsed with the data presented above, 

suggesting the importance of spatial arrangement.  

Cell morphology also plays an important role, as hyphal-shaped germling cells 

adhered to both micro-scale pillar and pit topographies with slightly reduced 

capacities. This may be in line with Whitehead &  Verran (2006) and Perera-Costa 

et al. (2014), where they revealed the importance of shape and even the size of 

bacteria on retention on micro and sub-microtopographies. It is noteworthy to 

mention that G form has more adhesion capacity than Y form due to over-

expression of some cell wall adhesins that support adherence and biofilm integrity 

(Nobile & Mitchell, 2005).  

Nevertheless, microtopographies of maximum 2 µm features reduced their 

adhesion relative to that on flat indicating the importance of microorganism 

dimensions and shape on adhesion to engineered topographies. It was also shown 

that smaller feature dimensions and pit form topographies showed lower adhesion 

capacities relative to their larger and micro-pillar counterparts, which was the 

main driver for exploring smaller dimension materials. The highly order arrays of 

nanopits with a SQ form arrangement that were replicated on two different 

substrates showed the capacity to significantly reduce the adhesion of the 

pathogenic yeast C. albicans in both Y and G morphological forms. The disparity 

in the data presented in this chapter and that reported by Whitehead et al (2005), 

may simply be because of an order of scale from micro- to nano-topographies 

(Whitehead et al., 2005).  
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An explanation for the anti-adhesive capacity of nanopits may be related to fluid 

dynamics, where air entrapment in the pit features may cause the surge in the 

hydrophobicity of the nanoimprinted topographies relative to their flat 

counterparts (Martines et al., 2005), and given the dynamic lower resistance of 

fluid flow on hydrophobic surfaces (low fluid drag) (Rothstein, 2010). Accordingly, 

the nanoimprinted topographies might permit for larger removal of adherent C. 

albicans due to the lower resistance to fluids flow. This explanation coincides with 

the Whitehead &  Verran (2006) concept about the role of hydrophobic surfaces 

in reduction of bacterial adhesion.  

Furthermore, a recent study showed the anti-adhesive capacity to C. albicans of 

PMMA denture material coated with trimethylsilane hydrophobic film that 

increased the surface energy (Liu et al., 2017). Moreover, the anti-adhesive 

capacity of nano-pit surfaces was not influenced by the wettability differences of 

the polycarbonate and PMMA denture material surfaces tested, where both 

nanoimprinted polymer types showed an anti-adhesive capability. This is in 

agreement with Perera-Costa et al. (2014) study that showed an anti-adhesive 

capacity of spatially organised micro engineered surfaces relative to flat surfaces 

on bacterial adhesion regardless of the surfaces hydrophilicity/ hydrophobicity of 

the microtopographies. Therefore, the trapped air in the nano-pits increased the 

hydrophobicity of the surface and it is one of the probable mechanisms for the 

antiadhesive capacity. While, we can suggest that the primary antiadhesive 

mechanism of the nano-pits is the physical mechanism where less surface area 

available for the adhesins to attach. 

When the data of gene expression were analysed, interesting observations have 

confirmed the substrate differential impact on the expression of key adhesins. 

This may propose that the biology-related physical characteristics of the SQ nano-

pit topographies were sufficient to challenge bio-molecular interactions between 

C. albicans morphological types, their adhesins, and the topography. The absence 

of total resemblance observed in gene expression profiles between both substrates 

tested might be clarified by the fact that Y and G cells are hydrophilic and 

hydrophobic, respectively (Rodrigues et al., 1999), and from our data that PMMA 

and polycarbonate are hydrophilic and hydrophobic relative to each other, 
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respectively. Therefore, in a selective manner, induction of stress and differential 

induction of adhesins might be attributed to these physicochemical interactions 

(Fox et al., 2015). Indeed, Krasowska &  Sigler (2014) emphasised that 

hydrophobic microorganisms favourably adhere to hydrophobic substrates and the 

hydrophilic microorganisms adhere to hydrophilic substrates.  

We could not explain the differences among the different nano-pit spatial 

arrangements tested using the gene expression data, though the highly ordered 

SQ and HEX arrangements showed relatively similar results. Nevertheless, several 

studies showed the potential inherent anti-adhesive capacity of nano-pit 

substrates to in-vitro mammalian cells adhesion formation (Martines et al., 

2004;Biggs et al., 2007;Biggs et al., 2009).  

The SQ nanotopography was tested against harsh biofilm environments 

characterised with a dense interlocking network of candidal hyphae. These 

nanotopographies did not show significant anti-biofilm capability, that may be 

caused by the entangling filamental nature of the biofilms tested and the static 

environments that permit the candidal cells to adhere, settle, and form a cohesive 

community for a sufficient time prior to submitting to dislodging challenges. This 

stimulated investigation of the dual effect of combination the adsorbed CUR 

molecules with nano-surfaces. Additionally, given the proposed relative increase 

in the available surface area within nanotopographies for CUR adsorption that may 

suggest a synergistic effect. However, a nanotopography-CUR adsorption 

synergistic effect was not observed. The absence of a topography effect could be 

attributed to the larger effect of CUR that may preclude quantification of the 

topography effect. Besides, the adsorbed molecules may reduced the topography 

anti-adhesive influence. Furthermore, the nanotopographies did not adsorbed 

larger quantities of CUR as expected, which might be ascribed to the molecule 

size of the CUR used.  

Non-patterned PMMA denture material showed high Ra, while the Ra of the 

nanopatterned PMMA was not measured because of the specific nanofabrication 

technique used in this study and the known depth of the nano-pits, nevertheless, 

it can be suggested to measure the Ra of nano-pit topographies in further studies. 
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Translationally, fabricating topography with SQ nanoimprinted pits onto PMMA 

denture material has its advantages over unpatterned surfaces, whose associated 

large surface roughness becomes negligible when nanoimprinted, taking into 

consideration the fabrication method of the fitting surface of the denture that is 

characterised by a non-polished surface. Instead, crucial biophysical 

characteristics are induced through the SQ pit nanotopography, where adhesion 

of C. albicans is significantly decreased. CUR adsorption has a substantial effect 

on candidal colonisation as shown in the last chapter. Indeed, the adsorption of 

CUR onto nanotopographies may add an advantage, especially if nanonisation 

technologies is considered, where nano-scale CUR molecules are harnessed. 

Regarding denture production, this has a potential value where the denture 

stomatitis affecting millions of denture wearing individuals globally. Overcoming 

the obstacles to manufacturer these will prove challenging, yet the potential 

impact to oral health is enormous. 

Chapter findings 

  PMMA denture material can replicate sub-micro and nano features.  

 Adhesion of C. albicans to micro and sub-micro featured topographies 

depends on the candidal morphological form and the shape of the features. 

 C. albicans variably respond to the spatial arrangement of nano-pit 

topographies, where SQ arrangement showed an anti-adhesive capacity for 

both candidal morphological forms tested.    

 Hyphal candidal biofilms were not affected by the SQ nanotopography. 

 The Molecular response to nanotopographies is complex and can be 

affected by the hydrophobicity/hydrophilicity and surfaces roughness of 

surfaces tested. 
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  Nano-pit surfaces showed higher water contact angle. Flat PMMA tested 

showed a rougher surface and lower water contact angle than their 

polycarbonate counterpart. 

 Combination of natural antimicrobials with surface topography through 

adsorption of CUR to SQ nanotopographies did not significantly enhance the 

anti-adhesive and anti-biofilm capability. Similarly, SQ nanotopographies 

did not improve the CUR adsorption capacity to the surfaces.  
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5.1 Introduction 

Removable dentures are beneficial prosthetic devices, which improve dental 

aesthetics and function although they can be detrimental and associated with oral 

and systemic diseases. PMMA denture materials have many beneficial features, 

such as good mechanical and physical properties and a relatively low production 

cost yet they are highly susceptible to accumulation of microbial biofilms 

(Sivakumar et al., 2014).  

Denture stomatitis is a multifactorial disease that affects more than half of all 

denture wearers who form a considerable percentage of the population due to the 

fact that one-fifth (20%) of the UK population have removable dentures (Hannah 

et al., 2017) and given increases in life expectancy, this percentage is likely to 

rise. Indeed, the World Health Organisation predict that the percentage of people 

over 60 years old will approximately double from 11.7 in 2013 to 21.1% in 2050 

(UN, 2013). Control of prosthesis associated biofilms is an essential strategy in the 

management of DS (Yarborough et al., 2016). Candida species, and especially C. 

albicans, has been identified as a pivotal microbial contributing factor in DS 

(Gendreau & Loewy, 2011). Candidal denture carriage in health and disease has 

previously been investigated using traditional microbiological methods (Barbeau 

et al., 2003;Coco et al., 2008b;Dagistan et al., 2009;Salerno et al., 2011). In this 

study, a molecular-based qPCR was employed to obtain data and quantify 

adherent cells. Furthermore, given the heterogeneity (strain variability) of C. 

albicans biofilm formation, it was uncertain whether this property is associated 

with DS (Kean et al., 2018).  

Reports have shown that dentures are a potential reservoir for pathogenic 

respiratory bacteria that cause pneumonia and are associated with a high 

mortality rate (Przybylowska et al., 2014;O'Donnell et al., 2016). In polymicrobial 

environments, such as the oral cavity, C. albicans acts as a scaffold and via cell-

cell communication can modify pathogenicity of either cell (Kean et al., 2017). 

Therefore, discovering innovative strategies to control adhesion and biofilm 

formation of C. albicans is a worthwhile goal.  
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The development of novel therapeutic strategies that could augment the current 

strategies used in prevention and treating DS could improve the clinical 

management of denture-associated diseases.  

5.2 Candidal denture biofilm and DS: Impacts of quantity 
and heterogeneity   

Many studies have reported the association between Candida and DS, though, 

often denture carriage importance was not the specific focus. This study for the 

first time according to our knowledge reports the use of a molecular quantitative 

method (Real-time qPCR) to quantify the denture adherent candida cells, though 

previous studies used this molecular method to quantify bacteria in dental-related 

research (Blome et al., 2008;Kim et al., 2013;O'Donnell et al., 2016). Here we 

confirm the significance of the candidal load on dentures in DS, though our data 

showed several dentures of healthy and diseased patients shared approximately 

similar candidal carriage quantities. These data, alongside the recently reported 

concepts of C. albicans biofilm formation heterogeneity (strain variability) 

associated with increasing resistance, pathogenicity and mortality (Sherry et al., 

2014;Rajendran et al., 2016a), have driven this research to investigate the 

potential association between biofilm formation heterogeneity and DS.  

The data described in this thesis did not demonstrate an active role for C. albicans 

biofilm forming heterogeneity in DS, which could be attributed to the relatively 

mild nature of DS in comparison to the systemic candedemia, which is often 

associated with immunocompromised patients, rather than the immunocompetent 

patient cohort examined in this study. Figure 5.1 summarises the obtained data 

regarding the candidal denture load, DS and biofilm formation heterogeneity. 
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Figure 5.1: Schematic representation of the relationship of candidal denture 
load, denture stomatitis and C. albicans heterogeneity. Higher candidal load is 
associated with denture stomatitis. However, C. albicans biofilm formation 
heterogeneity does not represent a key determinant, where both HBF and LBF are 
observed similarly in isolates from DS and healthy participants. HBF and LBF 
represent high and low biofilm formers. 

Challenges in the development of a globally standardised in vitro candidal biofilm 

model are numerous due to the adaptability of C. albicans to various 

environmental conditions (Soll & Daniels, 2016), therefore experiments to 

optimise and characterise biofilms were first undertaken in this thesis. This 

research mainly concentrated on the use of RPMI-1640 as a well-established 

medium to test the heterogeneity of biofilm formation and to develop recalcitrant 

biofilms. RPMI-1640 is capable of inducing different candidal morphological forms 

and subsequently it will offer the capability to investigate adhesion capacities of 

these various forms. However, this research also demonstrates that artificial 

saliva has the possibility of being used to recreate clinically relevant conditions in 

future studies.        

Given that candidal carriage was found to be significant in DS, the question 

remained whether denture material has an impact on the early and mature stages 

of biofilm formation? There is little reliable evidence to show whether the denture 

material has an impact on early and mature biofilm formation (Pereira-Cenci et 

al., 2008b). Therefore, a qPCR based methodology was used alongside 

representative clinical isolates with defined biofilm formation heterogenic 

capabilities. For all isolates, PMMA showed a greater capacity than soft liners 

tested to induce the formation of mature biofilms, but not early stage biofilms, 
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suggesting that the adhesion stage of biofilm formation is not influenced by 

denture material, though only limited number and type of denture base materials 

were tested. For this reason, studying the adhesion of C. albicans using 

representative denture related strains may provide a more clinically relevant 

approach to studying the capability of C. albicans to colonise denture surfaces.       

5.3 Why CUR could be a promising polyphenol for denture 
wearers? 

As of 2015, over 125 clinical trials were registered with the US National Institutes 

of Health investigating CUR biological activity (Ahmad et al., 2017), which 

indicates the intriguing nature of this molecule in modern research. Cancer, 

Alzheimer and cardiovascular malfunction are destructive age-related diseases 

(Bennett & Leurgans, 2010). Given its potential anti-cancerous, anti-Alzheimer 

and beneficial cardiovascular-related CUR is a rational target for geriatric-related 

research (Hamaguchi et al., 2010;Marchiani et al., 2014;Hu et al., 2015;Venigalla 

et al., 2016;Yao et al., 2016;Sun et al., 2017;Larasati et al., 2018;Reddy et al., 

2018). Indeed, most denture wearers are classified as being within the older 

population, thus introducing CUR to oral healthcare and denture-related research 

seems interesting on multiple levels.  

Given the reported broad-spectrum antimicrobial effect of CUR (Moghadamtousi 

et al., 2014;Vaughn et al., 2017), one focus of this thesis was to investigate the 

potential interaction between CUR and one of the most common opportunistic 

microorganisms related to denture-associated diseases, i.e. C. albicans. The 

overarching hypothesis was that CUR could be used in a clinical context to manage 

and minimise the attachment of the organism and impact on downstream denture 

plaque development. The studies presented in this thesis showed that CUR 

effectively inhibited C. albicans in both modes of growth (planktonic and biofilm) 

in a concentration dependent manner. Nonetheless, biofilms showed signs of 

surviving even in the presence of high CUR concentrations, suggesting that CUR 

could be better employed in prevention rather than treatment of established 

denture biofilms.  
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Data presented in this thesis showed the affinity of CUR to adsorb to denture 

material polymers, and these adsorbed sub-inhibitory concentrations showed an 

anti-adherent impact on C. albicans. This impact was augmented by CUR pre-

exposure to create a significant synergistic-like effect (Figure 5.2i). Therefore, 

using CUR in denture care soaks or direct oral consumption of CUR either as a 

dietary supplement, or through normal daily ingestion, may allow CUR to adsorb 

on to the denture material and exert its biological effect. The affinity of CUR to 

PMMA denture material could be driven by the hydrophobic interaction theory, 

where the hydrophobic substance is attracted to the hydrophobic surface of the 

denture in water-based biological environments (Israelachvili & Pashley, 1984). 

Furthermore, given the bonding affinity between salivary proteins/peptides and 

polyphenols, specifically proteins rich in the amino acid proline (Charlton et al., 

2002), the opportunity of interaction between the denture material and adsorbed 

CUR could be enhanced in natural (oral) environments due to deposition of the 

bonded complexes upon the denture material.  

The dimorphic capacity of C. albicans is an important virulence factor expressed 

by this opportunistic microorganism and interrogating CUR capacity against the 

different forms appeared intriguing. Data presented in this thesis showed a 

greater effect on the immature form (yeast) in comparison to the mature form 

(hyphae). Mechanistically, the biological effects of CUR are many and complex 

(Zhou et al., 2011). Amongst others, CUR acts as an iron chelating agent and this 

suggests that CUR has the potential to act as a divalent cation chelator such as 

ethylene diamine tetraacetic acid (EDTA) (Jiao et al., 2006). The inhibitory effect 

of EDTA on a C. albicans biofilms was demonstrated through inhibition of 

filamentation and depletion of metal ions that are important to candidal biofilms 

integrity (Ramage et al., 2007).        

CUR has the capacity to modulate various molecular targets through alteration of 

gene expression and signalling pathways or by direct interaction with biological 

molecules (Shishodia, 2013). Indeed, CUR modulated some of the key adhesion 

and aggregation-associated genes in both yeast and hyphae morphological forms 

of C. albicans. The ALS3 gene, which is involved in adhesion, dimorphism, invasion 

(Liu & Filler, 2011) and aggregation with bacteria (Peters et al., 2012;Bamford et 
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al., 2015;O'Donnell et al., 2015a), was down-regulated in the presence of CUR. 

This suggests a possible vital role for CUR in interfering with biofilm formation and 

therefore pathogenicity crucial for in vivo polymicrobial biofilm formation. 

However, ALS5 and AAF1 are aggregation associated genes that showed a 

considerable up-regulation. This coincides with the observed quantified 

aggregation that was elicited in response to CUR. ALS1 gene expression was also 

affected, but the data was found to be inconclusive and varied depending on 

length of exposure to CUR. These data indicate the high adaptability of C. albicans 

to external modulating molecules. Previously, ALS5 and ALS1 have been shown to 

play a role in aggregation of C. albicans cells to themselves and to other bacteria 

(Klotz et al., 2007). Therefore, the data here in could suggest a compensatory 

function to the down-regulated powerful ALS3. Unexpectedly, Eap1, which has an 

adhesin function and is regulated by hyphal inducing EFG1 gene (Li & Palecek, 

2003) showed a considerable up-regulation suggesting a noticeable cell-cell 

aggregation role (Li & Palecek, 2008) or potential compensatory regulative role 

due to the down-regulation of important hyphal inducing genes.  

CUR molecules that coat the exposed cells may act as glue that keep the cells 

aggregated in a direct way and this direct physical aggregation could drive gene 

expression targets to elicit an indirect biological aggregation. Overall, CUR could 

contribute to cell-cell aggregation and less to cell-substrate adhesion, but this 

requires further studies to confirm (Figure 5.2).  

CUR has been reported to have anti-amyloid effects through producing non-

effective amyloid aggregates with less density and toxicity. Mechanistically, CUR 

can bind to the amyloid beta monomers or penetrate the amyloid beta 

polymerised sheets leading to weaker amyloid aggregates (Gupta et al., 2011;Rao 

et al., 2015;Reddy et al., 2018). Given the amyloid-like clustering of the ALS 

adhesins on the cell wall (Lipke et al., 2012) occurrence of these potential 

physico-biological events in the interaction between C. albicans and CUR is 

possible. Moreover, the amyloidogenic domain sequence that exists in several 

members of the ALS gene family (Garcia et al., 2011) suggests the possibility of 

formation of weak aggregates due to the potential conformational changes in the 

expressed proteins. These weak cellular aggregates reduce the capability of C. 
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albicans to withstand shear stresses. This notion could explain why the cellular 

aggregates did not outweigh the anti-adherence capacity. Additionally, the 

relative hydrophobicity of CUR could prevent formation of the amyloid-like ALS 

clusters on the cell wall by acting as a macromolecular crowder (Latshaw & Hall, 

2015). The inability to form these macromolecular adhesin clusters could reduce 

cell wall hydrophobicity, which indeed, was observed in the data shown in this 

thesis.      

 

Figure 5.2: Impact of CUR on C. albicans. (i) Adsorption of CUR to PMMA reduces 
the number of adhered cells, elicits aggregation, reduces filamentation and 
induces a synergistic effect from the pre-treatment of the cells with sub-inhibitory 
concentrations. (ii) The expressed molecular response to CUR treatment. 

Modification of denture acrylics with active and antimicrobial macromolecules is 

an important field for research but it is essential that researchers are mindful of 

the risks of unwanted sequelae (Sivakumar et al., 2014). In spite of the expected 

colour alteration and the potential weakening effect on the mechanical properties 

of PMMA, it was interesting to investigate the opportunity of modifying the PMMA 

denture material with a safe and active molecule through creating simple CUR-

incorporated PMMA to determine the subsequent effect on C. albicans adhesion. 
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The data showed no effect on the adhesion capacity. Investigation of CUR release 

from the polymerised PMMA in the appropriate solvent showed lack of detectable 

CUR release, suggest that there is a strong chemical bonding between CUR and 

PMMA. Nonetheless, using colourless curcuminoid analogues or derivatives and 

using conjugate chemistry needs further investigation (Tang et al., 2010;Requejo-

Aguilar et al., 2016).  In the context of the reported safety and multiple beneficial 

effects of CUR, designing clinical trials for DS-related research that include CUR 

as main component of a mouth wash, food supplement or denture soak are rational 

suggestions.                        

5.4 Micro and nanopatterned surfaces: the quest for 
antifouling denture surface 

In the development of a new generation of biomedical materials, researchers must 

give consideration to the topography of surface as vital interactions take place 

with the biological environment at that interface (Li et al., 2014). Biomedical 

material surfaces with a micro- and nano- fabricated surface have shown promise 

in a range of beneficial areas (Ploux et al., 2009;Kearns et al., 2011), such as 

antimicrobial properties (Xu & Siedlecki, 2012b) and the capacity to control stem 

cell adhesion and fate, which contributes to the evolution of the next generation 

of regenerative therapy (Dalby et al., 2014). This significant impact on cellular 

behaviour has boosted the potential of fabrication of denture material surfaces to 

control the microbial fouling process. Micro- and nano-patterned denture surfaces 

could interfere with colonisation of C. albicans on dentures.  

To this end, several micro- and nano-patterned surfaces were investigated in a 

rational manner, where the focus was on the first crucial stage of microbial biofilm 

formation ‘adhesion’. The main morphological forms of C. albicans within the 

adhesion stage (yeast and germling) were tested because these forms have 

different shapes (ovoid and hyphal-like) and dimensions that could influence the 

interaction between cells and surface topography. In addition to the already 

successfully used injection moulding technique to replicate micro- and nano-scale 

features in polycarbonates (Reynolds et al., 2012), data presented in this thesis 

showed the capacity of dental compression moulding to replicate micro, sub-micro 
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and nano-scale features in a heat cured PMMA denture. These data have paved 

the way to interrogate the adherence of C. albicans to these replicated 

topographies.  

Review of the literature showed the potential antimicrobial properties of pillar 

shaped micro, sub-micro and nano-features (Ma et al., 2011;Ivanova et al., 

2012;Xu & Siedlecki, 2012b;Xu & Siedlecki, 2014). Therefore, it was interesting to 

investigate adhesion to micro and sub-micro pillar topographies. In contrast to the 

literature, the data showed a considerable increase in the adhesion capability of 

the yeast morphological form to the micron and sub-micron pillars. This may be 

explained by differences in feature dimensions, material types, microorganisms 

and methodologies used. Nevertheless, germling forms of C. albicans showed a 

reduced adhesion capability. The form and dimensions of the adhered cells could 

be a potential explanation for this difference.  

The data described above indirectly suggested that using the opposite of pillar 

topography, the ‘pit form’, may have more beneficial effects. Indeed, pit form 

microtopography displayed an anti-adhesive capability indicating an influential 

impact for this geometric form of patterned topography on adhesion of C. 

albicans. In light of the potential relative anti-adherent nature of pit 

microtopographies to C. albicans, nano-pit topographies in various arrangements 

were investigated, where the highly ordered arrangement forms, especially the 

SQ form, manifested anti-adhesive capability to both yeast and germling 

morphological forms in both denture materials (polycarbonate and PMMA denture 

material).  

The gene expression profile of adherent cells on the nano-polycarbonate surfaces 

showed a down-regulation in the genes investigated, though such down-regulation 

was not observed in PMMA suggesting a greater role for physical mechanism in 

candidal adhesion. Investigation of the surface properties of the materials tested 

helped to understand the molecular response of the C. albicans and the 

differences observed between the materials, where relative 

hydrophobicity/hydrophilicity of the material and the adherent cells may elicit 

different stresses and interactions (Figure 5.3). PMMA denture material, which 
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was fabricated in a way that is relevant to prosthodontic clinical practice, showed 

high roughness average. Therefore, imprinting of the denture surface material 

with 100 nm depth pits appeared to be relatively negligible to the surface 

roughness effect, and theoretically produces PMMA denture surface with lower 

surface roughness that reduces the adhesion potential.  

These data force us to consider the clinical feasibility of producing dentures with 

nanoimprinted features. Production of nanoimprinted polymer extra-thin sheets 

and the possibility of using them as a denture surface lining could be a promising 

suggestion. Indeed, production of nanoimprinted polymer sheets is interesting and 

reveals significant implications (Gadegaard et al., 2006a). Another potential 

suggested idea is harnessing of direct nanoimprinting, where it was proven as a 

successful method to generate nanoimprinted topographies, even using much 

harder metal surfaces whether planar or curved (Greer et al., 2013).   
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 (i)   

  

 

(ii) 

    

 

Figure 5.3: Schematic representation of adhesion of yeast and hyphae cells on 
relatively hydrophobic and hydrophilic surfaces. A simplification of our notion 
of the interactive adhesion between the surfaces and C. albicans morphological 
forms, and how this could shape the expression of adhesins in flat (i) and 
nanoimprinted surfaces (ii). Yellow circles represent adhesins. 
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5.5 Combining nanotopography with adsorbing CUR 

Given the anti-adhesive capability that was separately observed against C. 

albicans from CUR adsorbed and nanoimprinted surfaces, it was intriguing to 

combine these different anti-adhesive strategies in an endeavour to obtain a 

synergistic-like effect. Indeed, this idea has been inspired by nature, where anti-

fouling surfaces manifest both chemical and physical properties (Magin et al., 

2010). For instance, shark skin and lotus leaves harness the combination of surface 

topography and surface chemicals to synergise their anti-fouling effect (Sun et 

al., 2005;Ma et al., 2011;Bixler & Bhushan, 2012). A research group from China 

reported the potential biological diverse benefits of combining patterned 

topographies with chemically modified polymers and the possibility of obtaining 

optimal results (Li et al., 2014). Therefore, CUR was adsorbed onto SQ nano-pit 

topographies, and adhesion and biofilm formation was investigated. Anti-adhesive 

or anti-biofilm synergism was not observed, and the CUR effect may control the 

combination data. The nanotopographies showed a trend of reduced adsorption of 

CUR, which may explain this observation. Furthermore, the concealed role of the 

nanotopography might be attributed to the size and accumulation of adsorbed 

CUR molecules that may reduce the topography effect suggesting using nano-sized 

CUR particles as a promising strategy.   

5.6 Future work 

The structure of this thesis was focused on the interaction between DS and 

candidal biofilms on denture material, besides interrogation of novel strategies to 

control these tenacious biofilms. The studies presented herein potentially show 

that reducing denture candidal carriage through nature-inspired concepts of 

combining physical or chemical approaches could reduce the likelihood of patients 

developing DS. Accordingly, further investigation and development of these 

strategies will increase their efficacy to reduce microbial biofilms and this will 

form the basis of future work. It would be interesting to investigate the nano-pits 

of SQ arrangement of different dimensions such as smaller diameter or smaller 

pitches (pit centre to pit centre). Another suggestion is to design and investigate 

SQ nano-pits of extreme hydrophilic and hydrophobic nature.  
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Taking the research into different dimensions could reveal a promising field of 

research, such as challenging the strategies used in this research with relevant 

bacterial biofilms (Streptococcus mutans, Staphylococcus aureus) and more 

intricate polymicrobial biofilms to investigate the potential possibility of CUR 

molecules and highly ordered nano-pit topographies to control diverse biofilms. 

Indeed, Ramage’s lab has a previous experience with similar diverse Harnessing 

polymicrobial biofilms (Sherry et al., 2013;Millhouse et al., 2014;Sherry et al., 

2016) and this lab showed the potential antibacterial efficacy of CUR against 

periodontal pathogens (Shahzad et al., 2015). Furthermore, several reports 

showed the potential antibacterial capacity of submicron and nanopatterned 

topographies against polymicrobial biofilms (Ploux et al., 2009;Xu & Siedlecki, 

2012b). Thus, investigation of polymicrobial biofilms is a worthwhile future 

exercise.  

CUR sensitivity to light can be utilised to increase its efficacy (photodynamic 

therapy) and to reduce its staining effect. Given the safety of CUR, there is an 

opportunity to design a clinical trial to investigate the preventive effect of CUR 

on the adhesion of C. albican and the possible incidence of DS in healthy denture 

wearers using various ways of delivery to the oral cavity.    

The use of nano-sized modified CUR, conjugated CUR, CUR modified through 

liposomes or polymeric micelles could amplify the biological efficacy and enhance 

the low oral bioavailability that are observed in clinical trials using free non-

modified CUR. Indeed, a recent study showed the effectivity of functionalising the 

fitting surface of the PMMA denture with polycaprolactone microspheres 

containing Amphotericin-B for anti-candidal therapy using a 3D printing (fused 

filament fabrication) technique (Nagrath et al., 2018). In addition, using CUR 

analogues or derivatives characterised with colourless or neutral colours and 

investigating their biological activity on adhesion and biofilm formation of C. 

albicans on denture materials is also worthy of future investigation. If this strategy 

reveals promising results there will be a chance to integrate these analogues or 

derivatives in the denture materials through incorporation of conjugates or 

coating strategies, where the resultant denture material could be nanoimprinted 

to maximise the beneficial anti-biofouling impact.  



Chapter 5: Final discussion 

175 
  

Finally, in light of increasingly emerging multi drug-resistant candida pathogens, 

even against the potent echinochandins (Arendrup & Patterson, 2017;Xiao et al., 

2018) the search for new preventative strategies takes on even greater 

importance. Failure to prevent unnecessary use of antifungals and reduce 

investments in searching for new antifungals are critical issues that enhance the 

growth of resistant pathogens. Accordingly, focusing on development of 

preventive strategies is important. Using host-derived molecules for instance, 

acetylcholine (Rajendran et al., 2015) alongside micronutrients to control these 

complex biofilms as an alternative to traditional antimicrobials appears to be a 

potential strategy. 

Thesis findings 

 The multifactorial nature of DS cannot conceal the impact of denture 

candidal carriage that shows superior significance relative to the candidal 

heterogeneity, thus reducing that carriage is a worthwhile target. 

 Nature inspired strategies of combining safe, natural, chemical molecules 

with nanofabrication physical approaches to control microbial biofilms are 

intriguing and worth further interrogative work. Using CUR molecules with 

sub-inhibitory concentration and SQ arrangement form of nano-pit 

topographies reduced adhesion of C. albicans to PMMA denture material. 

However, adsorbing CUR to the nano-pit topographies did not show 

significant synergistic-like effect.  

 The obtained data from the strategies used showed antifouling capability 

against C. albicans biofilms and encourage investigation against more 

complicated polymicrobial biofilms.  
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The use of natural compounds as an alternative source of antimicrobials has become a

necessity given the growing concern over global antimicrobial resistance. Polyphenols,

found in various edible plants, offers one potential solution to this. We aimed to

investigate the possibility of using curcumin within the context of oral health as a way

of inhibiting and preventing the harmful development of Candida albicans biofilms. We

undertook a series of adsorption experiments with varying concentrations of curcumin,

showing that 50 µg/ml could prevent adhesion. This effect could be further synergized

by the curcumin pre-treatment of yeast cells to obtain significantly greater inhibition

(>90%, p < 0.001). Investigation of the biological impact of curcumin showed that it

preferentially affected immature morphological forms (yeast and germlings), and actively

promoted aggregation of the cells. Transcriptional analyses showed that key adhesins

were down-regulated (ALS1 and ALS3), whereas aggregation related genes (ALS5 and

AAF1) were up-regulated. Collectively, these data demonstrated that curcumin elicits

anti-adhesive effects and that induces transcription of genes integrally involved in the

processes related to biofilm formation. Curcumin and associated polyphenols therefore

have the capacity to be developed for use in oral healthcare to augment existing

preventative strategies for candidal biofilms on the denture surface.

Keywords: Curcumin, polyphenol, Candida albicans, adhesion, adsorption

INTRODUCTION

Increasingly there are fewer antimicrobial options available to treat life-threatening infections, due
largely to therapeutic mismanagement actively driving resistance, coupled with disinvestment in
antimicrobial drug development from the pharmaceutical industry. The antimicrobial resistance
debate suggests an imminent return to an era of uncertainty and limited therapeutic options,
suggesting that we should stop our wavering and tackle this threat head on.

Naturally derived chemotherapeutic agents are an attractive option, particularly those
botanically derived molecules, which offer advantages over synthetic derivatives due to their
natural evolution and diminished likelihood of resistance. An interesting active plant extract
worth consideration is the polyphenol curcumin (diferuloylmethane), extracted from the
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rhizomes of the Curcuma longa plant (Mahmood et al., 2015). It
is the active ingredient of turmeric and copiously used in Asia as
a food additive or dietary supplement, though it forms typically
<5% composition (Esatbeyoglu et al., 2012; Kwon, 2014).
Curcumin (CUR) shows safe and effective biological activities
such as anti-inflammatory, antioxidant, anti-proliferation, with
potential efficacy against many human diseases as suggested by
animal studies (Gupta et al., 2012). Importantly, CUR displays
broad-spectrum antimicrobial properties (Moghadamtousi et al.,
2014), including antibacterial (Shahzad et al., 2015; Tyagi et al.,
2015) and antifungal properties (Martins et al., 2009; Khan et al.,
2012), as well as the ability to influence adhesive and biofilm
properties (Shahzad et al., 2014, 2015).

Studies by our group have shown that CUR has the
capacity to alter the adhesion of key periodontal pathogens, and
impact overall biofilm formation (Shahzad et al., 2015). Parallel
studies on the primary denture pathogen Candida albicans
demonstrated that CUR exhibited anti-biofilm properties at high
concentrations, as well as antifungal activity against planktonic
and biofilm cells (Shahzad et al., 2014). It is thought that these
elevated concentrations directly impact cell wall permeability
through signaling of the MAP kinase and calcineurin-mediated
signaling, pathways which maintains cell wall integrity (Kumar
et al., 2014). C. albicans is a major global opportunistic
pathogen, armed with recognized virulence determinants that
include colonization factors (adhesins, hyphae and thigmotropic
properties), as well as the release of invasins, such as hydrolytic
proteins that facilitate invasion into the host (O’Donnell et al.,
2015c). The ability to adhere to both biological and inert
substrates and form biofilms makes this organism of particular
interest in the context of oral disease (O’Donnell et al., 2016).
Biofilm etiology in this environment is a primary mechanism
of persistence and survival in the oral cavity, providing physical
protection from endogenous and exogenous antimicrobial
factors (Ramage et al., 2014). Most significantly, C. albicans
prominent role in inducing inflammation to cause denture
induced stomatitis means we have a keen interest in developing
ways to manipulate and interfere with biofilm development,
as this is critical in preventing this disease. Therefore, this
study aimed to investigate whether CUR could be used through
direct interaction with materials and the yeast C. albicans to
interfere with early adhesion events on a clinically relevant
substrate.

MATERIALS AND METHODS

Culture Conditions and Standardization
The laboratory based C. albicans SC5314 was used in this study
(O’Donnell et al., 2016). Yeast cells were cultivated as working
stocks on fresh Sabouraud agar (Sigma-Aldrich, UK) for 48 h at
30◦C and maintained at 4◦C. One unique colony was used to
grow the cells in yeast-peptone-dextrose (YPD) medium (Sigma-
Aldrich) for 18 h at 30◦C and 150 rpm orbital shaker. The
cells were washed twice by centrifuging in sterile phosphate
buffered saline (PBS; Sigma-Aldrich, UK) and standardized using
a Neubauer haemocytometer.

Antifungal Susceptibility Testing
Planktonic and sessile cells were first investigated for their
susceptibility to the polyphenol CUR (HPLC grade, Acros
Organics, Belgium). Stock CUR was prepared immediately
preceding the experiment using an non-antimicrobial
concentration of dimethyl sulfoxide (DMSO) as a solvent
and adjusted to <5% v/v in RPMI-1640 medium (Sigma-
Aldrich, UK; Shahzad et al., 2015). Standardized CLSI M-27A
broth microdilution methodology was initially undertaken for
planktonic yeast cultures in 96 well round bottomed microtitre
plates (CLSI-M27-A, 2008). Clear wells with no visible growth
were considered as the minimum inhibitory concentration
(MIC). For sessile susceptibility testing, pre-formed 24 h biofilms
were challenged with CUR using standardized sessile antifungal
testing (Ramage et al., 2001; Pierce et al., 2008). Reduction of
tetrazolium to formazan through an XTT assay was used, and
the optical densities quantified at 492 nm using a microtitre
plate reader (FluoStar Omega, BMG Labtech, UK). Negative
and positive controls were included, and the experimental wells
data were compared to the positive control data to reveal the
SMIC80, where the optical density is reduced more than 80%
in comparison to the positive control optical density, reflecting
significant bioactivity against the biofilm. These procedures were
repeated in three independent occasions where three replicates
have been considered.

Investigating the Effect of CUR Adsorption
on Adhesion
The potential capability of CUR to be adsorbed to denture
material was investigated. Heat cure poly methyl methacrylate
(PMMA) denture base material (Chaperlin and Jacobs Ltd,
Surrey, UK) was used to fabricate 12mm diameter discs using
the dental compression molding technique. These discs were
immersed in ddH2O for 7 days to ensure excess toxic monomers
were removed. CUR was diluted in RPMI-1640 medium to
200, 400, and 800 µg/ml. Discs were distributed in 24 wells
plates (Costar, Corning Incorporated, USA) and 1ml of the
CUR suspension was added. The plates were incubated at
room temperature for a series of time points (1, 5, 10, 30,
60, 120, 240, and 1,440 min). Next, discs were transferred
to fresh wells and washed with 1ml of distilled water and
then 1ml of DMSO was added to dissolve the adsorbed CUR.
To quantify the released CUR, a standard curve (0.39–100
µg/ml serially double diluted) was developed and measured
at 436 nm using the spectrophotometer. Based on these data,
PMMA discs were immersed in 1 ml of 800 µg/ml of CUR
for 10 min (equivalent to 50 µg/ml) then washed with PBS
to remove the unabsorbed molecules. These treated discs were
inoculated with 1ml of 5 × 105 CFU of C. albicans SC5314
cells and incubated for 30 min at 37◦C. Following the initial
adhesion, cells were washed in PBS and the adherent cells
removed by sonication at 35 kHz for 10min (Ultrasonic bath,
Fisher scientific, UK), and enumerated using the Miles and
Misra plate counting method (Miles et al., 1938). The final cell
number was expressed per cm2 PMMA, which was compared
to a CUR negative control. All experiments were performed
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with three independent sections on three independent occasions.
Scanning electron microscopy (SEM) was also performed using
the same experimental parameters, then processed and imaged,
as described previously by our group. Briefly, biofilms were
grown on ThermanoxTM coverslips or hydrogel cellulose matrix
and treated, as previously described. Biofilms were washed twice
with PBS, before being fixed in 2% para-formaldehyde, 2%
glutaraldehyde, 0.15M sodium cacodylate, and 0.15% w/v alcian
blue, at pH 7.4, and prepared for SEM as previously described
(Erlandsen et al., 2004). The specimens were sputter-coated with
gold and viewed under a JEOL JSM-6400 scanning electron
microscope.

Investigating the Biological Effect of CUR
on Adhesion and Biofilm Formation
Discs were adsorbed with CUR as described above, then the discs
(untreated and treated) were inoculated with either 1 ml of 5 ×

105 CFU + 3min CUR (50 µg/ml) or PBS (negative control)
treated C. albicans SC5314 cells, and incubated for 30min at
37◦C. Adhesion of C. albicans was then assessed and quantified
as described in the previous section, with the levels of adhesion
expressed as a proportion of the negative control (PMMA-/C.
albicans-). In parallel we then assessed whether longer CUR
exposure time negatively impacted adhesion by treating cells for
3, 30, and 90min, and the levels of adhesion to PMMAquantified.
Finally, we assessed whether or not CUR exposure to C. albicans
cells at different growth phases played a role, with the hypothesis
that there may be differences in how yeast (Y), germlings (G), or
hyphae (H) responded to this molecule. Briefly, cells were grown
overnight, standardized to 1× 106 CFU in RPMI and inoculated
into a 96-well microtitre plate. Cells were then exposed to 50, 100,
or 200 µg/ml CUR at either 0 h (Y), 2 h (G), or 4 h (H) post-
inoculation and incubated for a further 24 h at 37◦C. Thereafter,
the cells were washed in PBS and the resultant biofilm quantified
using an XTT metabolic reduction assay. All experiments were
performed in duplicate on three independent occasions.

Investigating the Aggregative Effect of
CUR
In order to assess whether CUR has additional effects on the
physicality of these yeasts, we assessed its impact on aggregation.
C. albicans SC5314 cells (Y) were standardized (1 × 106 cells)
in PBS and exposed ± to subinhibitory concentrations of CUR
(50 µg/ml) for 90 min at 37◦C under constant agitation (200
rpm). Following incubation the cells were serially 10 diluted in
PBS diluent and plated onto Sabouraud agar using the Miles and
Misra methodology. The plates were then incubated overnight
at 37◦C and the colonies enumerated. In parallel, cells were
examined under a light microscope to evaluate aggregation
visually. All experiments were performed in triplicate on three
independent occasions.

Investigating the Molecular Effect of CUR
on Adhesion and Biofilm Formation
Preparation of Y and H cells was performed using an initial
inoculum of 1 × 108 cells and 5 × 105 cells of C. albicans

SC5314 in RPMI, respectively. For H cells these were incubated
on PMMA sections within 24 wells plates for 4 h. Both Y
and H cells were then treated ± CUR (50 µg/ml) in RPMI
for 3, 30, and 90min, after which they were prepared for
RNA extraction. Cells were either centrifuged or sonicated in
a 35 kHz for 10min (Ultrasonic bath, Fisher scientific, UK) to
harvest the cells. These were then washed by centrifugation
prior to RNA extraction using a combinedmechanical disruption
(0.5mm glass beads) and chemical TRIzolTM method (Invitrogen,
Paisley, UK). After DNase treatment (Qiagen, Crawley, UK) and
purification (RNeasy MinElute clean up kit, Qiagen, Crawley,
UK), cDNA was synthesized using a High Capacity RNA to
cDNA kit (Life Technologies, Paisley, UK), and quantitative PCR
performed using a SYBR R© GreenERTM assay (Life Technologies
Ltd, Paisley, UK). The primers used for quantitative PCR were
ALS1, ALS3, ALS5 (agglutanin-like sequence 1, 3, and 5),
EAP1 (epithelial adhesion protein 1), and AAF1 (adhesion and
aggregation factor 1). Each parameter was analyzed in duplicate
using MxProP Quantitative PCR machine and MxProP 3000
software (Stratagene, Amsterdam,Netherlands). Gene expression
was normalized to the housekeeping gene ACT1 according
to 2−11CT method (Livak and Schmittgen, 2001). Table 1

summarizes all the primer details used in this study. A heatmap
was created for the differential expression of genes (log2) over the
period of 3–90min from the untreated control compared to CUR
exposed cells. Maps and clusters were generated in R with the use
of heatmap 0.2 function from the gplots package. All experimnets
were performed in triplicate on three independent occasions.

Statistical Analysis
As we were unable to ascertain that the data conformed
to a Gaussian distribution data analysis was performed on
non-parametric data using either a Mann–Whitney test or a
Kruskal–Wallis test with Dunn’s multiple comparison post-
test. All independant data points are presented, with error
bars representing the median with interquartile range. Where

TABLE 1 | Primers used for real time qPCR transcriptional analysis of

Candida albicans.

Gene Sequence (5′–3′) References

ALS1 F—TTCTCATGAATCAGCATCCACAA Nailis et al., 2009

R—CAGAATTTTCACCCATACTTGGTTTC

ALS3 F—CAACTTGGGTTATTGAAACAAAAACA Nailis et al., 2009

R—AGAAACAGAAACCCAAGAACAACCT

ALS5 F—CTGCCGGTTATCGTCCATTTA Green et al.,

2005

R—ATTGATACTGGTTATTATCTGAGGGAGAAA

EAP1 F—ACCACCACCGGGTATACAAA Sherry et al.,

2014

R—GCCATCACATTTGGTGACAG

AAF1 F—CTGCCCTTGTTGGTACATCT This study

R—TGGGATAGTTGGTGGAGGAG

ACT1 F—AAGAATTGATTTGGCTGGTAGAGA Ricardo et al.,

2009

R—TGGCAGAAGATTGAGAAGAAGTTT
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proportional data is presented, analysis was performed on the
original data sets. All statistics and figures were produced using
GraphPad Prism v.5 (GraphPad Software Inc., La Jolla, CA).

RESULTS

Curcumin Adsorption Reduces Candida
albicans Adhesion
First, we tested the potential of CUR to inhibit and kill
planktonic and biofilm cells to establish biologically active
working concentrations suitable for use in downstream analyses.
The planktonic MIC (PMIC) was shown to be 100 µg/ml of CUR
for SC5314 and two other clinical strains tested (data not shown),
whereas the sessile (biofilm) MIC that caused an 80% reduced
metabolic activity (SMIC80) was ≥ 200 µg/ml, demonstrating
that the biofilm’s activity and/or viabilty are significantly reduced.

Based on these data we wanted to evaluate whether these
levels of CUR could be adsorbed to PMMA material to prevent
C. albicans adhesion. We therefore adsorbed 200, 400, and 800
µg/ml of CUR to PMMA sections over different time periods

and quantified these adsorbed concentrations using an elution
method alongside an optimized standard curve. Figure 1A

illustrates the kinetics of adsorption for each concentration.
It was shown that 800 µg/ml CUR was required to achieve
concentrations with anti-biofilm activity (200 µg/ml), though 90
min adsorption was required to achieve this. Nevertheless, after
10 and 30min adsorption, 50 and 100µg/ml concentrations were
achieved from this initial concentration, respectively. The lower
concentration of 400 µg/ml was able to achieve PMIC levels,
though this took∼90min adsorption. Finally, 200µg/ml was not
able to achieve any antimicrobial level concentrations, even after
24 h adsorption. Based on these data we focussed on adsorption
of 800 µg/ml for 10min, which was able to achieve 50 µg/ml
on the surface of the PMMA for downstream analysis. Next, we
evaluated the capacity of C. albicans to attach to PMMA for 30
min adsorbed with CUR (50 µg/ml) and compared a control
(Figure 1B). Here we showed a significant three-fold reduction in
adhesion of C. albicanswas observed (p< 0.004). When analyzed
by SEM the visible reduction of yeasts cells can be shown on the
PMMA surfaces (Figure 1C).

FIGURE 1 | The impact of CUR adsorption to PMMA and its impact on Candida albicans SC5314 adhesion. (A) Time and concentration dependant

adsorption of CUR to PMMA (blue dotted line) at half the MIC (50 µg/ml), MIC (100 µg/ml), and SMIC80 200 µg/ml. (B) C. albicans inhibitory capability of 50 µg/ml

adsorbed CUR onto PMMA compared to untreated control and a Mann–Whitney test was performed on data from nine independent experiments. (C) SEM images of

30min adherent C. albicans cells onto CUR adsorbed (+CUR) and non-adsorbed PMMA control. (D) Single and dual-treatment of CUR on C. albicans adhesion,

which were analyzed using a Kruskal–Wallis test with Dunn’s multiple comparison post-test performed on data from nine independent experiments. All independant

data points are presented, with error bars representing the median with interquartile range (*p < 0.05, **p < 0.01, ***p < 0.001).
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Given that CUR was shown to elicit antimicrobial effects, both
planktonically and to a lesser extent against sessile biofilms cells,
and that adsorption appeared to influence adhesive capacity, we
decided to investigate whether combining an early direct effect
on C. albicans with that of adsorption to PMMAwould synergize
CUR activity in prevention of adhesion and colonization. C.
albicans was treated for 3min ± CUR 50 µg/ml (CA + CUR),
which was compared to both PMMA adsorbed with CUR
(PMMA + CUR), or a combination of CUR treated C. albicans
and CUR adsorbed PMMA (PMMA CA + CUR). Figure 1D
demonstrates that the direct treatment of C. albicans alone only
inhibited 30min adhesion by 27%, which was significantly lower
thanCUR adsorption alone (70%, p< 0.05). However, combining
the effect on C. albicans with adsorbed CUR resulted in a
significant reduction than adsorption alone of 93% (p < 0.001),
thus improving the anti-adhesive capacity of C. albicans.

Curcumin Prevents Biofilm Formation and
Promotes Candida albicans Aggregation
Our data above showed a positive anti-candidal effect with
respect to surface adsorption, but also showed that a brief CUR
pre-exposure (3min) resulted in reduces adhesion of C. albicans,

suggesting sub-inhibitory concentrations elicited some biological
activity. We therefore sought to further investigate this effect
on C. albicans by extending the CUR pre-exposure time. We
were able to show that extending the time from 3 to 30 and
90min significantly enhanced anti-adhesion (p > 0.01). Though,
between 30 and 90min there were no significant improvements
in anti-adhesion properties (Figure 2A).

In order to understand the longer term effects of CUR
treatment on C. albicans and how this could impact biofilm
formation, we prepared yeast cells (Y = 0 min), germlings (G =

120 min) and hyphae (H = 240 min) prior to CUR exposure at
50, 100, and 200 µg/ml, which were then allowed to develop for
biofilm for 24 h (Figure 2B). The resultant data showed that at
lower sub-inhibitory concentrations (50 µg/ml) and PMIC levels
(100 µg/ml) the anti-biofilm effects moderately impacted the
overall biofilm metabolism, though at SMIC levels (200 µg/ml)
a significant reduction in biofilm formation was observed for Y
and G to approximately >90% of the control (p < 0.01), though
H cells were least impacted (p < 0.05).

Next, we sought to determine whether CUR exhibited any
additional effects on C. albicans. The premise of the experiment
was to assess whether CUR induced aggregation through

FIGURE 2 | The impact of CUR on C. albicans adhesion, biofilm formation, and aggregation. (A) C. albicans was pre-treatment with sub-inhibitory

concentration of CUR (50 µg/ml) for 3, 30, and 90min and adhesion to PMMA assessed on data from triplicate data from three independent experiments. (B)

Different morphological forms of C. albicans (Y, yeast; G, germlings; H, hyphae) were pre-treated with CUR at 50, 100, and 200 µg/ml, and the resultant biofilm

formation assessed metabolically after 24 h. Data represents six independent experiments, which was analyzed using a Kruskal–Wallis test with Dunn’s multiple

comparison post-test. (C) Aggregation of C. albicans exposed to CUR (50 µg/ml) was assessed by total viable cell counts, analyzed using a Mann–Whitney test on

triplicate data from four independent experiments, and the phenotype validated by light microscopy (400 × magnification). All independent data points are presented,

with error bars representing the median with interquartile range (*p < 0.05, **p < 0.01, ***p < 0.001).
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alteration of the cell wall surface. We reasoned that using a
plate counting based approach of cells treated at sub-inhibitory
concentrations, then if aggregation occurred then the CFUwould
be lower than the respective control as each aggregate would
result in only one CFU due to a heterogeneous population of cells.
Indeed, we demonstrated a significant reduction in cell counts in
the CUR group (p < 0.01), which was further confirmed through
light microscopy observations (Figure 2C).

Curcumin Affects the Temporal Expression
of Candida albicans Adhesins
Our data above suggest that CUR elicits biological effects on
C. albicans, most significantly on preventing biofilm formation
and impacting aggregation. We therefore aimed to assess a panel
of associated genes through transcriptional analysis. To do this
we focussed on Y and H cells at 3, 30, and 90min post CUR
exposure. Visual representation of these patterns was illustrated
using heatmap analysis and hierarchical clustering (Figure 3; raw
CT data profiles are presented in Supplementary Figure 1). We
demonstrated that Y cells treated with CUR showed temporal
changes in gene expression, most notably the down-regulation
of the adhesin ALS3, and minimal impact on its related ALS1.
Whereas, the clustered aggregative and flocculation genes AAF1,
EAP1, and ALS5 transcripts were all up-regulated in a time
dependant manner. Similar patterns and clustering of expression
were also observed for the H cells, with AAF1 showing the
highest levels of expression at 30min compared to the control,
and reciprocally ALS3 being the most down-regulated. Overall
though the levels of differential expression were consistently
lower in the H cells (Figure 3B) than Y cells (Figure 3A).

DISCUSSION

CUR is a polyphenol with potent biological effects, and has been
described as a modern biological regulator (Esatbeyoglu et al.,

2012). The data presented herein demonstrate the potential for
its use within the context of oral health for denture wearers.
We have shown that CUR has the capacity to adsorb to denture
relevant substrates and to inhibit C. albicans adhesion, rather
than actively kill or inhibit the microorganisms. Interestingly, C.
albicans exposed to CUR induced cellular aggregation, and effect
that also reduced its adhesion capacity. Transcriptional analyses
revealed that key adhesins were negatively impacted whereas
genes associated with aggregation were positively impacted.
Collectively, these data demonstrate that CUR has the potential
to be used in denture care as a means of preventing denture-
induced stomatitis, a disease associated with C. albicans biofilms
(O’Donnell et al., 2015a).

Initially, we wanted to evaluate and confirm the antimicrobial
properties of CUR. Our data is in general agreement with others,
showing that concentrations around 100 µg/ml are required
to inhibit cellular growth (Martins et al., 2009; Sharma et al.,
2010; Khan et al., 2012), and 200 µg/ml to elicit any anti-
biofilm activity (Shahzad et al., 2014). Any deviations can
be accounted for in terms of variability of CUR source and
purity, ratios of curcuminiods involved, and protocols used for
broth microdilution method and the strains used. Given that
our primary interest was in preventing C. albicans opposed
to actively inhibiting and killing C. albicans then we focussed
on lower sub-inhibitory concentrations of 50 µg/ml. This was
driven through the translational possibility that CUR could be
taken as part of a diet or supplement, so could be maintained
within saliva as well as adsorbing to hard tissues and prostheses
in the oral cavity. Here, we showed that ∼6% of the CUR
provided adsorped to the surface within 10min. Conceptually,
CUR could be delivered directly during ingestion, and then
back through the blood into saliva indirectly. In Nepal and
India for example, daily CUR consumption can reach up to
100mg in Nepal and India (Shahzad et al., 2015), whereas
in South Korea this may only reach 15mg (Kwon, 2014).

FIGURE 3 | Transcriptional analysis of CUR treated C. albicans. (A) Y and (B) H cells were prepared and exposed ± CUR for 3, 30, and 90 min. Expression of

ALS1, ALS3, ALS5, EAP1, and AAF1 were then assessed using qPCR and relative gene expression assessed the ACT1 housekeeping gene. A heatmap and

clustering was created for the differential expression of genes (log2).
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So delivering an antimicrobial concentration solely through
a diet is not without challenges, though reaching an anti-
adhesive concentration is possible. To this end we were able
to demonstrate that 50 µg/ml could be readily adsorbed onto
PMMA, the polymer used to construct denture prostheses.
The optimized PMMA adsorbed with CUR was shown to
reduce C. albicans adhesion by up to 70%, which was further
reduced by 93% when a 3 min pre-treated C. albicans were
inoculated on the optimized CUR adsorbed PMMA denture
material. This synergized effect demonstrated that CUR has dual
functionality, through surface adsorption and directly against C.
albicans.

To further understand the biological basis of the sub-
inhibitory CUR effect, we undertook a series of experiments
to determine its effects on the kinetics of adhesion, whilst
also evaluating how its impact on different morphological
forms of C. albicans. We have previously shown that other
natural compounds, such as tea tree oil (TTO) derivatives and
carbohydrate-derived fulvic acid (CHD-FA) affect C. albicans
development depending on the stage of biofilm growth (Ramage
et al., 2012; Sherry et al., 2012), therefore we reasoned that
CUR could also interact with C. albicans in a similar manner.
We were able to show that prolonged exposure (30min) of C.
albicans yeast cells significantly reduced its adhesive capacity
onto PMMA, suggesting that CURwas able tomodify its adhesive
capacity in some way. We further investigated this through
looking at cells grown to different stages of morphological
maturation, namely Y, G, and H cells. We hypothesized that
depending on the stage of growth that the cells were exposed
to CUR then this may affect overall biofilm development.
Indeed, we showed that all morphological forms displayed
reduced overall biofilm formation, though only the 200 µg/ml
significantly reduced the Y and G cells in comparison to the
other concentrations. H cells were not affected in a concentration
dependant manner, suggesting that CUR was more effective
against immature morphological forms. Interestingly, although
biofilm formation was generally inhibited compared to control
levels, there was still significant biofilm remaining, again
suggesting early preventative intervention was most beneficial.
The major limitation of this interpretation is the sample sizes
used during these analyses (Vaux, 2012). Indeed, it begs the
question whether the statistical analyses are worthwhile, hence
why individual data-points are presented. Nevertheless, when
we look at the data in its entirety, there are certainly trends
suggestive that CUR exhibits positive biological effects, though
further studies are required to confirm our observations.

CUR is a polyphenol with both antioxidant and hydrophobic
properties (Priyadarsini, 2013; Mirzaei et al., 2017), which may
explain why it preferentially adsorbs to PMMA and the cell
wall of C. albicans. We hypothesized that the hydrophobic
nature of the molecule could drive the coated C. albicans
cells to aggregate with one another, and if we consider this
within the context oral delivery within saliva then there is the
possibility of creating complexes of cells that minimize their
interaction with the denture surface. Indeed, we were able to
demonstrate this both quantitatively and visually, which may
explain why we observe synergized inhibition of adhesion at

sub-inhibitory concentrations. C. albicans possesses a range of
morphological and genetic attributes suited to colonization and
biofilm formation (Blankenship and Mitchell, 2006). Finding
ways of impacting these offers possibilities for novel anti-candidal
therapeutics. Mechanistically, we were intrigued to understand
how CUR induced C. albicans specific effects. Previous studies
have shown that CUR has the ability to modulate of global
repressor of filamentation TUP1 (Sharma et al., 2010). Indeed,
our own focussed studies onmature biofilms showed that HWP1,
a key hyphal wall associated element, was down-regulated
(Shahzad et al., 2014). To this end we employed a transcriptional
approach to assess genes implicated in adhesion and aggregation.
CUR appeared to down-regulate the ALS agglutanins (ALS1 and
ALS3), in both Y and H cells, suggesting it minimized their
adhesive capacity. Both genes have been shown to be important
in early biofilm events (Nailis et al., 2009; Fox et al., 2015). Of
these ALS3 appeared to the most affected in these cells, which
encodes the protein with a superior adhesive role and pivotal
role in biofilm formation (Zhao et al., 2004; Nobile and Mitchell,
2005; Hoyer et al., 2008). ALS5 is a less well-defined member of
this family, and although defined as an adhesin, functionally it
appears to have amyloid properties and the capacity to improve
aggregation (Rauceo et al., 2004; Garcia et al., 2011). This may
explain why it is up-regulated following CUR treatment and this
fits with the phenotype we observe. Moreover, AAF1 was also
up-regulated by CUR in both Y and H cells, which is a gene
highly related to the aggregation and flocculation (Fu et al., 1998).
Interestingly it appears to have a minimal role in adhesion (Rieg
et al., 1999), so further supports the notion of the phenotypes and
anti-adhesive properties observed following induction by CUR.
EAP1 showed similar trends to ALS5, though this encodes a
protein known to enhance adhesion and biofilm formation (Li
et al., 2007; Fox et al., 2015). This data is somewhat surprising, as
we would have expected a similar level of down-regulation to that
of ALS3. This suggests that EAP1, while exhibiting these adhesive
properties, may have supplementary roles in cell-cell adhesion,
though this requires further investigation. Collectively, these data
demonstrate that CUR has the capacity at low concentrations
to induce meaningful biological effects beneficial to minimizing
candidal colonization.

In summary, given the strict denture hygiene regimen of
brushing and cleansing required by an aging denture wearing
global population, then this research provides opportunities to
augment existing oral health strategies through dietary intake
of important polyphenols like CUR. Not only is CUR effective
against C. albicans, but also other oral pathogens (Shahzad et al.,
2015). Given that the microbiome and mycobiome of denture
wearers is highly diverse (O’Donnell et al., 2015b), then the
broad-spectrum profile increases the overall appeal of this oral
healthcare strategy. Indeed, there is merit to consider using a
CUR based solution as a denture soak that has the potential to
act and minimize further adhesion of these pathogenic biofilm
related microorganisms, which with the enhanced antimicrobial
activity induced through photactivation (Cieplik et al., 2015),
may provide both a dual decontamination and preventative
strategy. Indeed, clinical studies have already shown an additional
benefit to photodynamic therapy (PDT) alone (Pereira et al.,
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2015), as well as alongside CUR in the context of oral
health (Leite et al., 2014). Mechanistically PTD works through
locally acting light-activated photoantimicrobials molecules that
produce highly reactive oxygen species, which are harmful to
the site of action (Wainwright et al., 2017). This approach could
therefore provide an augmentative benefit in enhancing lower
concentrations of orally delivered antimicrobials, which could be
light-activated bi-daily or more frequently. The hurdles will be
in establishing and maintaining activatable concentrations that
continue to exert an anti-adhesive effect. Careful consideration
on the delivery of these molecules is required, and partnering up
with nanotechnological approaches seems an obvious avenue of
investigation, such as the creation of nanosized curcumin, which
has already been shown to improve cellular interaction (Gopal
et al., 2016), and would optimize our ability to deliver biologically
relevant concentrations.
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