

Morton, John Magnus (2018) JIT-based cost models for adaptive

parallelism. PhD thesis.

https://theses.gla.ac.uk/30753/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

https://theses.gla.ac.uk/30753/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

JIT-BASED COST MODELS FOR

ADAPTIVE PARALLELISM

JOHN MAGNUS MORTON

SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

SCHOOL OF COMPUTING SCIENCE

COLLEGE OF SCIENCE AND ENGINEERING

UNIVERSITY OF GLASGOW

AUGUST 2018

© JOHN MAGNUS MORTON

Abstract

Parallel programming is extremely challenging. Worse yet, parallel architectures evolve

quickly, and parallel programs must often be refactored for each new architecture. It is

highly desirable to provide performance portability, so programs developed on one architec-

ture can deliver good performance on other architectures. This thesis is part of the AJITPar

project that investigates a novel approach for achieving performance portability by the de-

velopment of suitable cost models to inform scheduling decisions with dynamic information

about computational and communication costs on the target architecture.

The main artifact of the AJITPar project is the Adaptive Skeleton Library (ASL) that pro-

vides a distributed-memory master-worker implementation of a set of Algorithmic Skeletons

i.e. programming patterns that abstract away the low-level intricacies of parallelism. After

JIT warm-up, ASL uses a computational cost model applied to JIT trace information from

the Pycket compiler, a tracing JIT implementation of the Racket language, to transform the

skeletons. The execution time of an ASL task is primarily determined by computation and

communication costs.

The Pycket compiler is extended to enable runtime access to JIT traces, both the sequences of

instructions and frequency of execution. Crucially for dynamic, adaption these are obtained

with minimal overhead.

A low cost, dynamic computation cost model for estimating the runtime of JIT compiled

Pycket programs, Γ, is developed and validated. This is believed to be the first such model.

The design explores the challenges of estimating execution time from JIT trace instructions

and presents three increasingly sophisticated cost models. The cost model predicts execution

time based on the PyPy JIT instructions present in compiled JIT traces. The final abstract

cost model applies weightings for 5 different classes of trace instructions and also proposes

a method for aggregating the cost models for single traces into a cost model for an entire

program. Execution time is measured, and traces generated are recorded, from a suite of

41 benchmarks. Linear regression is used to determine the weightings for the abstract cost

model from this data. The final cost model reveals that allocation operations count most for

execution time, followed by guards and numeric operations.

The suitability of Γ for predicting the effect of ASL program transformations is investigated.

The real utility of Γ is not in absolute predictions of execution times for different programs,

but in predicting the effects of applying program transformations on parallel programs. A

linear relationship between the actual computational cost for a task, and that predicted by Γ

for five benchmarks on two architectures is demonstrated.

A series of increasingly accurate low cost, dynamic cost models for estimating the communi-

cation costs of ASL programs, K, are developed and validated. Predicting the optimum task

size in ASL not only relies on computational cost predictions, but also predictions of the over-

head of communicating tasks to worker nodes and results back to the master. The design and

iterative development of a cost model which predicts the serialisation, deserialisation, and

network send times of spawning a task in ASL is presented. Linear regression of commu-

nication timings are used to determine the appropriate weighting parameters for each. K is

shown to be valid for predicting other, arbitrary data structures by demonstrating an additive

property of the model. The model K is validated by showing a linear relationship between

the combined predicted costs of the simple types in instances of aggregated data structures,

and measured communication time. This validation is performed on five benchmarks on two

platforms.

Finally, a low cost dynamic cost model, T , that predicts a good ASL task size by combining

information from the computation and communication cost models (Γand K) is developed

and validated. The key insight in the design in this model is to balance the communications

cost on the master node with the computational and communications cost on the worker

nodes. The predictive power of T is tested model using six benchmarks, and it is shown to

more accurately predict the optimal task size, reducing total program runtimes when com-

pared with the default ASL prototype.

Acknowledgements

First and foremost, I would like to thank my supervisors, Phil Trinder and Patrick Maier.

Your guidance, support and feedback have been crucial and greatly appreciated throughout

this process.

I would also like to thank Blair, Stephen and everyone else who I’ve shared Office 421 with

over the years.

Finally, I would like to thank my wife, Katie, for her love and unconditional support through-

out.

Table of Contents

1 Introduction 1

1.1 Context . 1

1.2 Thesis statement . 2

1.3 Contributions . 3

1.4 Thesis Structure . 4

1.5 Authorship . 5

1.6 Hardware Platforms . 5

2 Background 7

2.1 Parallel Architectures . 7

2.1.1 Multicore . 8

2.1.2 NUMA . 8

2.1.3 Clusters . 8

2.1.4 Other Parallel Architectures . 9

2.2 Parallel Programming . 11

2.2.1 Task Parallelism . 11

2.2.2 Data Parallelism . 13

2.3 Parallel Languages . 13

2.3.1 Criteria . 13

2.3.2 POSIX Threads . 15

2.3.3 OpenMP . 16

2.3.4 MPI . 16

2.3.5 PGAS Languages . 16

2.3.6 Programming Language Specific 17

2.4 Resource Analysis . 18

2.4.1 Parallel Resource Analysis . 20

2.5 Program Transformation . 20

2.6 Just In Time Compilation . 21

2.6.1 Compilation Units . 22

2.6.2 Existing JIT Compilers . 23

2.6.3 Parallelising JIT . 24

2.7 AJITPar Project and Adaptive Skeleton Library 24

2.7.1 ASL Prototype Implementation . 25

2.7.2 Similar Projects . 28

3 Costing JIT Traces 31

3.1 Introduction . 31

3.2 Pycket Trace Structure . 31

3.3 Language Infrastructure . 33

3.3.1 Runtime Access to Traces and Counters 33

3.3.2 An analysis of Pycket JIT instructions 35

3.4 JIT-based Cost Models . 35

3.4.1 Trace Cost Models . 36

3.4.2 Whole Program Cost Models . 37

3.4.3 Calibrating Weights for CMW . 38

3.5 Costing Transformations . 40

3.5.1 Skeleton Transforms . 41

3.5.2 Experiments . 42

3.5.3 Discussion . 46

3.6 Performance Overhead . 49

3.7 Discussion . 49

4 Communications Cost Modelling 51

4.1 Requirements of a Communication Cost Model 52

4.2 Designing a Cost Model . 52

4.2.1 Original Design . 52

4.2.2 Hardware and Software Environment 52

4.2.3 Initial Experiments . 53

4.2.4 Type-indexed Model . 58

4.2.5 Type-indexed Bidirectional Communication Model 59

4.2.6 Type-indexed Bidirectional Serialisation/Deserialisation Model . . 59

4.2.7 Deserialisation Experiments . 60

4.2.8 Discussion . 63

4.3 Validating an Additive Property of Cost Model 63

4.3.1 Experiments . 64

4.4 ASL Integration . 69

4.5 Cost Model Validation . 70

4.5.1 Benchmarks . 70

4.5.2 Hardware and Software Environment 70

4.5.3 Methodology . 71

4.5.4 Results and Analysis . 71

4.5.5 Performance Overhead . 72

4.6 Summary . 72

5 Combined Cost Modelling 75

5.1 Deriving a Combined Cost Model . 75

5.1.1 ASL Architecture . 75

5.1.2 Derivation of Combined Model 76

5.2 Determining Good Task Granularity . 78

5.2.1 Definitions . 78

5.2.2 Benchmarks . 79

5.2.3 Methodology . 80

5.2.4 Platform . 80

5.2.5 Results . 80

5.2.6 Predicting Optimal Granularities 80

5.3 Summary . 91

6 Conclusion 93

6.1 Summary . 93

6.2 Limitations . 94

6.3 Future Work . 96

6.3.1 Support for other Programming Languages 96

6.3.2 Improving Computational Cost Models 96

6.3.3 Other Applications of Cost Models 97

6.3.4 Other Approaches to JIT-based Parallelism 97

6.3.5 Adjustments to Skeleton Code . 97

6.3.6 Cost Models for Unknown Hardware Platforms 98

6.3.7 Use in Production Environment 98

6.4 Concluding Remarks . 98

A Cost Model Investigatory Work 111

A.1 Pycket Benchmark Suite Analysis . 111

A.1.1 Whole Suite Analysis . 111

A.1.2 Program-level Analysis . 111

A.1.3 Trace-level Analysis . 112

A.2 Cost Model Search . 113

A.2.1 Performance Benchmarks . 113

A.2.2 Model Accuracy . 114

A.2.3 Exhaustive Search . 114

A.2.4 Genetic Algorithm Search . 114

A.2.5 Search Results . 116

A.3 Costing Transformations . 117

B Communications Modelling 119

B.1 Constant Overhead Model . 119

B.2 FATA for Development of Communication Cost Model 121

B.3 Communications Cost Model Validation 121

C Combined Cost Model 131

C.1 Predicting Optimal Granularities . 131

List of Figures

2.1 Simple pseudo-C parallel program . 12

2.2 Diagram of the ASL runtime system. The “Trace Analyser” component is

the focus of this thesis . 26

2.3 Diagram of the ASL task graph . 27

3.1 Doubly nested loop in Racket and corresponding Pycket trace graph. 32

3.2 Trace fragment l2 to j1. 33

3.3 Most common instructions in cross-implementation Pycket benchmarks . . 36

3.4 Execution time vs cost for CMW determined using linear regression 40

3.5 AJITPar base skeletons and tunable skeletons. 43

3.6 k vs τ for Matrix multiplication benchmark 45

3.7 k vs τ for irregular chunked SumEuler benchmark 45

3.8 k vs τ for strided SumEuler benchmark 46

3.9 k vs τ for Fibonacci benchmark . 46

3.10 k vs τ for k-means benchmark . 47

3.11 k vs τ for Mandelbrot benchmark . 47

3.12 k vs τ for Mandelbrot benchmark (CMW) comparing 3 chunks 48

3.13 Costing overhead vs program execution time for a set of 28 benchmarks . . 50

4.1 Serialisation results . 54

4.2 Network send time results, Intel Xeon 2.0GHz, 1Gb Ethernet 55

4.3 Serialisation time against Data Size (separated by type) (Racket; GPG) . . . 56

4.4 Serialisation Time against Data Size (separated by type) (Pycket; GPG) . . 57

4.5 Deserialisation Time against Data Size separated by type (Racket; GPG) . . 61

4.6 Deserialisation Time against Data Size separated by type (Pycket; GPG) . . 62

4.7 Actual serialisation time vs predicted serialisation time for heterogeneous

tuples (Pycket) . 65

4.8 Actual deserialisation time vs predicted deserialisation time for heteroge-

neous tuples (Pycket) . 66

4.9 Actual serialisation time vs predicted serialisation time for heterogeneous

tuples (Racket) . 67

4.10 Actual deserialisation time vs predicted deserialisation time for heteroge-

neous tuples (Racket) . 68

4.11 Plot of predicted communications costs vs actual overheads for odd filter —

GPG platform . 71

5.1 Prime Filter Results — GPG . 81

5.2 Prime Filter Results — FATA . 82

5.3 Sum Euler Results — GPG . 83

5.4 Matrix Multiplication Results — GPG . 84

5.5 Mandelbrot Results — GPG . 85

5.6 Mandelbrot Results — FATA . 86

5.7 Odd Filter Results — GPG . 87

A.1 Most common instructions in cross-implementation Pycket benchmarks . . 112

A.2 k vs τ for Mandelbrot benchmark — FATA 117

A.3 k vs τ for SumEuler benchmark — FATA 118

A.4 k vs τ for k-means benchmark — FATA 118

B.1 Network send time results, FATA, loopback 122

B.2 Serialisation Time against Data Size separated by type (Racket; FATA) . . . 123

B.3 Serialisation Time against Data Size separated by type (Pycket; FATA) . . . 124

B.4 Deserialisation Time against Data Size separated by type (Racket; FATA) . 125

B.5 Deserialisation Time against Data Size separated by type (Pycket; FATA) . 126

B.6 Plot of predicted communications costs vs actual overheads for primes filter

— GPG platform . 126

B.7 Plot of predicted communications costs vs actual overheads for Matrix Mul-

tiplication — GPG platform . 127

B.8 Plot of predicted communications costs vs actual overheads for Sum Euler

— GPG platform . 127

B.9 Plot of predicted communications costs vs actual overheads for Sequence

Align — GPG platform . 127

B.10 Plot of predicted communications costs vs actual overheads for primes filter

— FATA platform . 128

B.11 Plot of predicted communications costs vs actual overheads for Matrix Mul-

tiplication — FATA platform . 128

B.12 Plot of predicted communications costs vs actual overheads for Sum Euler

— FATA platform . 128

B.13 Plot of predicted communications costs vs actual overheads for Sequence

Align — FATA platform . 129

B.14 Plot of predicted communications costs vs actual overheads for odd filter —

FATA platform . 129

C.1 Sequence Alignment Results — GPG . 132

C.2 Sequence Alignment Results — FATA . 133

C.3 Sum Euler Results — FATA . 134

C.4 Matrix Multiplication Results — FATA 135

C.5 Odd Filter Results — FATA . 136

List of Tables

2.1 Properties of some Parallel Programming Languages 14

3.1 JIT counters and counts for program in Figure 3.1. 34

3.2 JIT counters and trace fragment frequencies for program in Figure 3.1. . . . 34

3.3 RPython JIT Instruction Classes . 35

3.4 Benchmarks with their input and applied skeletons 44

3.5 Stable k values for each benchmark (cost model CMW) 48

4.1 Type name explanations . 53

4.2 Network Send Gradients (GPG - node to node 1Gb Ethernet) 55

4.3 Network Send Gradients (GPG - node to node 1Gb Ethernet) 55

4.4 Serialisation parameters (GPG node) . 55

4.5 Serialisation parameters (FATA node) . 56

4.6 Deserialisation parameters (GPG) . 61

4.7 Deserialisation parameters (FATA) . 62

4.8 Additive parameters . 69

4.9 Validation Benchmarks . 70

4.10 Fit Gradients of Cross-validation Plots - GPG 71

4.11 Fit Gradients of Cross-validation Plots - FATA 72

5.1 Benchmarks . 79

5.2 Best Task Granularities — GPG . 89

5.3 Best Task Granularities — FATA . 89

5.4 Total execution times by using predicted granularity for each predictor cost

model — GPG . 89

5.5 Total execution times by using predicted granularity for each predictor cost

model — FATA . 89

5.6 Comparison of best times using T as a predictor with times from default ASL

implementation — GPG . 90

5.7 Comparison of best times using T as a predictor with times from default ASL

implementation — FATA . 90

A.1 Clusters for whole benchmarks . 112

A.2 Trace fragment centroids . 113

B.1 Network Send Gradients . 120

B.2 Serialisation parameters . 120

B.3 Deserialisation parameters . 120

Glossary

AJITPar Adaptive Just-in-Time Parallelism. 14, 101

ASL Adaptive Skeleton. 14, 99

core A single processor, this term is usually used in the context of multicore, where multiple

cores are on the same chip. 14, 21, 22, 24, 25, 28

irregular parallelism parallel programs where sub-tasks are interdependent or are of dif-

ferent relative sizes. 14, 18

JIT Just-in-time. 14, 18, 99, 101, Glossary: just-in-time

just-in-time a compilation technique which compiles code immediately before it is exe-

cuted, in contrast to the traditional ahead-of-time compilation or interpretation. 14,

15, 18

PaRTE Paraphrase Refactoring Tool for Erlang. 14, 41, 42

performance portability the ability of a technique to bring performance gains on multiple

platforms or architectures. 14, 17, 18, 99

static analysis analysis of a computer program that approximates properties of the program

at execution time, but without executing it. 14

trace A record of the execution of a program. In terms of Just-in-time compilation, a trace

starts at the top of a loop body and ends when execution leaves the loop.. 14, 18

transformation the rewriting of a part of or a whole of a program. 14

1

Chapter 1

Introduction

1.1 Context

The effects of Moore’s Law[1] previously resulted in consistent increases in processor speed

and a programmer would have to make little or no changes to their program to reap the ben-

efits. Currently, Moore’s Law manifests in an increase in the number of cores on a chip [2].

This, in principle, allows for continued increase in software performance on the new ar-

chitectures, relying on software being rewritten to exploit the additional cores. Multicore

programming requires writing programs which execute sections in parallel to each other.

Multicore programming requires writing programs that execute code in parallel, and has

proved both challenging and error prone. Many different approaches have been explored to

address the issues. With a few notable exceptions, (e.g. OpenCL) most approaches target

a specific hardware architecture. In consequence, code written in most parallel paradigms

does not allow performance gains on one platform to be ported to another, or don’t scale

as well on other platforms. The problem of producing parallel software which does allow

performance improvements to scale across architectures is known as performance portabil-

ity. Once parallelism has been introduced, a further challenge is to select an appropriate task

granularity. Too small a granularity and communication overhead can dramatically reduce

performance, and too large often means that there are insufficient tasks to occupy all cores.

Just-in-time (JIT) compilation is a technology that allows interpreted languages to signifi-

cantly increase their performance, often close to the speed of machine code. JIT compilation

does not compile the entire program as it is executed, rather it compiles small parts of the

2 CHAPTER 1. INTRODUCTION

program which are executed frequently (these parts are described as “hot”). The most com-

mon compilation units are functions (or methods) and traces. Trace-based JIT compilation

uses traces as a compilation unit. A trace consists of a series of instructions which make up

the body of a loop. A complete trace contains no control-flow except at the points where

execution leaves the trace.

The research was conducted as part of the EPSRC-funded Adaptive Just-in-Time Parallelism

Project (AJITPar) [3]. AJITPar investigates whether performance portability for irregular

parallelism can be achieved by using JIT technology and dynamically transforming the pro-

gram for a particular architecture, using cost models of the traces executing on the architec-

ture. The Adaptive Skeleton library (ASL) was created to test these ideas. ASL is a library

of parallel algorithmic skeletons i.e. programming patterns that abstract away the low-level

intricacies of parallelism. Programs written using these skeletons have their parallelism op-

timised using dynamic scheduling and adaptive transformation of the code at runtime. ASL

applies information from the JIT cost models to the dynamic scheduling system after warm-

up is completed.

The main value of the cost models in ASL would be determinism i.e. for a given program with

a given input they will always produce the same cost value. This is in comparison to direct

timings, which could contain noise. This is crucial for the way the default implementation

of ASL applies the cost model (Section 2.7.1 — only three cost measurements are taken and

compared against each other. If one of these measurements suffered from random variance,

this would negatively affect any scheduling decision.

1.2 Thesis statement

This thesis asserts that it is possible to use the traces from a JIT compiler to predict the

execution time of a program and, crucially, the effect on execution time of applying program

transformations.

Additionally, the thesis will show how an effective, dynamic, type-indexed cost model for

communications overhead can be constructed to accurately model communications over-

head.

CHAPTER 1. INTRODUCTION 3

Finally, this thesis asserts that cost analysis of JIT traces combined with dynamic communi-

cations costing will allow ASL grouping and scheduling engines to automatically choose a

good task granularity for some parallel architectures. This chosen granularity will result in

significant speedup over the default ASL prototype.

1.3 Contributions

This thesis makes the following research contributions:

1. The Development and Validation of the First Dynamic Computational Cost Model for

JIT Traces, Γ. Three increasingly parameteric cost models for predicting the execution

time of JIT code are presented. Linear regression is used to parameterise the final

version CMw. The final parameter values show that memory allocation dominates

the model on one hardware platform, but the reverse is true on another. Γ is shown

to accurately predict the effect of applying program transformations. Extensions are

made to Pycket to support runtime access to trace information, and to ASL to support

the runtime application of Γ (Chapter 3) [4][5].

2. The Development and Validation of the First Dynamic, Asymmetric, Bidirectional

Type-indexed Communications Cost Model, K. The development of the communica-

tions cost model,K, is described. The final version ofK,Ktbsd, is shown to accurately

predict the cost of serialisation, deserialisation and network transmission in ASL. The

modelK is shown to have an additivity property i.e. that it can predict the costs of arbi-

trary data structures from the costs of primitive types. K’s ability to accurately predict

arbitrary data structures is validated with five benchmarks on two architctures. K is

demonstrated to meet ASL’s requirements for a useful communications cost model.

3. The Development and validation of a Unified Cost Model of JIT Computation and

Communication, T . The execution time of a whole task is determined by its exe-

cution time and its communication overhead. The communication cost K, and the

computation cost Γ are combined into a unified model T . T uses the insight that the

communication cost on the ASL master node can be balanced with the communica-

tion and computation costs on the worker nodes. Experiments are performed with six

4 CHAPTER 1. INTRODUCTION

benchmarks that show T can be used to predict a good task granularity for ASL pro-

grams. This is shown to be between 17 to 54% better than the default ASL version.

(Chapter 5).

1.4 Thesis Structure

The remainder of this thesis will be structured as follows.

• Chapter 2 provides the context of this work and details the architecture of ASL. A

survey of related work on similar approaches to the problems of parallel programming

and cost analysis follows.

• Chapter 3 describes the design and development of the first JIT-based computational

cost model. It describes three increasingly parametric abstract cost models and details

how linear regression techniques are used to parameterise them. The computational

cost models are then evaluated on their ability to accurately predict the execution time

effect of applying program transformations. The chapter also describes extensions

made to the Pycket compiler to support access to the trace information.

• Chapter 4 illustrates the development of increasingly complex abstract cost models for

modelling the communication cost of the AS system, followed by empirical deduction

of a concrete version of our final model. Finally, we validate the model and validate

that cost model instances for primitive data types can be combined to accurately predict

cost models for compound data types.

• Chapter 5 presents a new model which combines the computation and communication

cost models from detailed in Chapter 3 and Chapter 4. Finally, we show how this

model can be used to optimise parallel throughput in the AS system.

• Chapter 6 summarises the work presented in this thesis, discusses limitations of the

thesis and discusses potential avenues for future work.

CHAPTER 1. INTRODUCTION 5

1.5 Authorship

The work in this thesis has contributed to the following publications:

• J. M. Morton, P. Maier, and P. Trinder, “Jit-based cost analysis for dynamic program

transformations, ” Electronic Notes in Theoretical Computer Science, vol. 330, pp.

5–25, 2016.

I was the lead author on, and main contributor to, this paper. I implemented the tech-

nology to extract the JIT traces, designed the computational cost model and validated

its ability to cost transformations.

• P. Maier, J. M. Morton, and P. Trinder, “Jit costing adaptive skeletons for perfor-

mance portability, ” Proceedings of the 5th International Workshop on Functional

High-Performance Computing. ACM, 2016, pp. 23–30.

I was a secondary contributor to this paper. The work in this paper relies on the JIT

trace computation cost model, Γ.

1.6 Hardware Platforms

Throughout this thesis, two hardware platforms are used for experiments. The primary hard-

ware platform is a Beowulf cluster named GPG, consisting of 16 2.0 GHz Xeon servers

with 64 GB of RAM and gigabit Ethernet running Ubuntu 14.04. The secondary platform is

named FATA, a 32-core 2.6Ghz Xeon with 64GB of RAM.

6 CHAPTER 1. INTRODUCTION

7

Chapter 2

Background

This chapter introduces key concepts in the fields of parallelism, programming languages

and cost analysis. It also discusses related tools and details necessary technical background.

Section 2.1 discusses parallel hardware architectures in use today. Section 2.2 outlines var-

ious parallel programming approaches, covering a range of techniques from using POSIX

threads, to distributed Haskell. Section 2.4 discusses program cost analysis, while Sec-

tion 2.5 outlines program transformations. Finally, Section 2.7 outlines the AJITPar project

and the architecture of ASL, and compares it to other relevant work.

2.1 Parallel Architectures

Computer architecture has developed rapidly since the beginning of the transistor era. The

transistor density has increased exponentially, and previously resulted in a steady increase in

sequential performance. Physical limits have been reached in the manufacturing and thermal

performance of microprocessors and the increase in transistors is now manifested in increas-

ing number of cores in single processors[2]. This is the reason that parallel programming

is such a critical issue today. There are two general categories of parallel architectures dis-

cussed here, shared-memory — where parallelism takes place on a single local machine —

and distributed memory — where parallelism could be distributed across a network. ASL

is designed with both in mind. This section focuses on the Multicore, NUMA and Cluster

parallel hardware, as these platforms are used in the work later in this Thesis.

8 CHAPTER 2. BACKGROUND

2.1.1 Multicore

Most non-specialised processors sold today are Multicore processors, including many low-

power and embedded CPUs [6]. The contemporary multicore CPU can be classified as a

Multiple Instruction Multiple Data (MIMD) parallel processor[7]; this means that it enables

multiple different instructions to be executed in parallel on possibly different data, while

also allowing data parallelism of the form of single instructions operating on different data

elements in parallel. The standard multicore processor has a number of levels of shared

cache, as well as access to shared memory through a bus. Shared cache and shared memory

allows significantly reduced communication overhead in a parallel program. Note that access

to memory is uniform, in that access takes the same time regardless of which core access is

requested from.

2.1.2 NUMA

As the number of cores in a processor increases, a single memory bus can become increas-

ingly congested as tens or hundreds of cores are trying to access memory at the same time.

One solution to this is Non-Uniform Memory Access(NUMA) [8][9]. In NUMA, memory

access can be faster or slower depending on the locality of the memory - a core could have

its own fast local cache and have access to separate shared memory. The advantage of this

is that cores don’t have to compete to access a single memory bus and can spend less time

starved of resources. The main disadvantage with the NUMA approach is that it can be ex-

tremely costly to enforce cache coherence, the property that all caches in a multiprocessing

machine have a consistent view of memory.

2.1.3 Clusters

A way of cheaply building or scaling a parallel system is to create a cluster[10][11], where

multiple computers or processing entities are connected together, often using a network or

other high-speed interconnects. The Beowulf cluster, first described by [11], is an example

of a popular cluster architecture; Beowulf clusters consist of commodity hardware connected

together in a local area network, usually using high-speed Ethernet. The primary measure-

CHAPTER 2. BACKGROUND 9

ment platform in Chapters 3 to 5 is a Beowulf cluster of multicore machines. Parallel pro-

grams using a cluster would commonly be written using MPI [12].

The main benefits of a cluster system are cost, as a cluster can be built from cheap consumer

systems instead of a massively expensive supercomputer, and scalability, since new nodes

can be added as needed. The challenges with programming clusters are due to the lack of

shared memory and overhead of sending data over a relatively slow network.

2.1.4 Other Parallel Architectures

The following hardware platforms form an important feature of the landscape of parallelism.

However, they all require specialised tools or radical departures from mainstream general

purpose programming, and are therefore considered out of the scope of this thesis. The use

of a tracing JIT also precludes the use of many of these platforms, as a tracing JIT is not

available or even possible. There are other exotic parallel platforms that are not discussed

here, including microcore architectures such as the Adapteva Epiphany.

Graphical Processing Units

Graphical Processing Units (GPUs) are being increasingly used for parallel computation [13].

The high performance to price and performance to power consumption ratios drive the

popularity of GPUs. The availability of programming languages and frameworks such as

CUDA [14] and OpenCL [15] have simplified writing compute programs on GPUs. GPUs

can have many cores and are particularly used for data parallelism and array programming.

However, GPU programming is a completely different model of programming which in-

volves explicitly transferring data between video RAM and main memory, is not natively

supported by many mainstream programming languages, and parallelism offered by GPUs

is almost exclusively data parallelism.

Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAs) are a popular architecture for signal and image

processing. An FPGA can be programmed and reprogrammed by an end user using a Hard-

ware Description Language (HDL) after it has been manufactured, unlike traditional inte-

10 CHAPTER 2. BACKGROUND

grated circuits. This potentially allows the programmer to produce a circuit exactly appro-

priate to a particular problem and gives the possibility of massive parallelism. Unfortunately,

the required use of a HDL to program the hardware, and the non-standard architectures pro-

duced as a result, renders FPGAs unsuitable as a target for a general purpose programming

language. Compilers from high level languages such as C [16] and C++ [17] do exist, but

the circuits produced by such compilers are inferior compared to that which a experienced

hardware designer could produce in an HDL, using more circuit area and having lower clock

frequency.

Manycore Processors

Tile processors are a relatively recent innovation where a single chip contains many proces-

sors as tiles in a two-dimensional array. Examples such as the Intel Single-chip Cloud Com-

puter [18] and the Tilera TILE family [19] consist of many cores with 2D mesh networks

interconnecting them. The main advantages are highly scalable performance and low power

consumption. The Intel Xeon Phi [20] manycore processor is a relatively recent addition to

the market.

Supercomputers

Supercomputers are massive parallel computers, consisting of often tens or hundreds of thou-

sands of cores, connected by custom, high-performance interconnects [21]. The Sunway

TaihuLight MPP [22] at the time of writing, leads the TOP500 list of supercomputers [23]

with a performance of 93 TFlops, while a current commodity desktop multicore may have a

performance of around 20 GFlops, indicating the massively improved throughput available

on a Supercomputer.

These machines are often used for extremely intensive numerical computations such as

Physics simulations like lattice Quantum Chromodynamics. Programs design for super-

computers are often extremely finely hand-tuned for specific architectures and thus are not

suitable platforms for ASL

CHAPTER 2. BACKGROUND 11

2.2 Parallel Programming

Parallel programming is often considered to be challenging. This is explained by the ob-

servation that parallel programming involves the management of parallel modification of

shared state - problems arise when tasks — individual computations executed in parallel to

other tasks — have an incoherent view of the state they are supposed to share. The difficulty

in parallel programming is manifest in two areas: communication and synchronisation.

Even when communication and synchronisation problems are overcome, scheduling the

tasks to make most efficient use of the resources is still an issue - parallelising tasks is of

no benefit if it does not amortise the communication overhead, and if it does, we want to

make the most efficient use of resources, especially given the time and energy cost of long

running computations. This chapter will discuss programming language level approaches to

solving these problems.

Emerging approaches offer ways of abstracting away and minimising the amount of state

modifying code, in the case of pure functional programming; or by avoiding sharing state

at all, in the case the actor model[24], where “processes” or “actors” pass messages to each

other without sharing any explicit state. These “shared-nothing” approaches generally have

the benefits of stronger scaling than shared-state, but at the cost of higher communication

overhead. Note that these approaches are applicable to concurrency as well as parallelism.

As with other programming problems, there are a number of completely different approaches

to managing this. Essentially, there are two fundamental models for parallel programming

- Task Parallelism and Data Parallelism [9][8]. It is possible to view data parallelism as a

subset of task parallelism, as it easy to model a data parallel system using task parallelism,

perhaps using algorithmic skeletons[25].

2.2.1 Task Parallelism

One of the fundamental models of parallel programming is task-based parallelism[26], where,

rather than the same instruction being applied to separate sections of data in parallel, multiple

separate computations are executed in parallel.

Task parallelism is based around the concept of a Task - an independent computation execut-

12 CHAPTER 2. BACKGROUND

vo id parDemo () {
spawn a ;
spawn b ;
spawn c ;
d () ;
sync () ;
e () ;

}

Figure 2.1: Simple pseudo-C parallel program

ing in parallel to other tasks. These tasks could be executing on different cores on the same

processor, or entirely different machines in a cluster. The main distinguishing feature of task

parallelism is that these tasks can be completely separate computations or entirely separate

functions or programs being executed.

Nearly all mature general purpose programming languages have some support for task par-

allelism e.g. Java has a fork/join framework [27], C++ has OpenMP [28] and MPI [12]

amongst others and Haskell has GpH [29].

For a motivating example, consider the code in Figure 2.1. This code is written in hypo-

thetical C-like language with basic task parallelism. The keyword spawn spawns a given

function in parallel, while the call to sync blocks progress until the parallel tasks are com-

plete. This explicit synchronisation is typical of task parallelism.

ASL and the work in this thesis are concerned with task parallelism.

Algorithmic Skeletons

One of the biggest problems when creating task parallel software is adapting an existing se-

quential algorithms to parallelism. The Algorithmic Skeletons approach developed by [25]

aims to separate the algorithm from the code needed to parallelise it. These skeletons can be

seen as design patterns for parallelism, including such common parallel paradigms as, map,

fork/join, divide and conquer and pipelining. It is also possible to represent both data and

task parallelism with algorithmic skeletons. It is possible to build algorithmic skeletons us-

ing evaluation strategies. Well-known examples of the map skeleton - where a data set is split

into chunks and parallel tasks executed on each subset - include Google’s MapReduce [30]

and Apache’s Hadoop[31]. Intel’s Threading Building Blocks [32] is a C++ template li-

CHAPTER 2. BACKGROUND 13

brary which provides algorithmic skeletons. Parts of the work in this thesis use Algorithmic

Skeletons e.g Chapter 3.5.

2.2.2 Data Parallelism

In contrast to task parallelism, data parallelism [26] avoids distributing independent compu-

tations across Processing Elements (PEs), and instead distributes chunks of data and each PE

performs the same computation on its own chunk of data. The Single Instruction Multiple

Data (SIMD) hardware architecture [9] is an example of this, where a single instruction is

executed in parallel over multiple items of data. Often, data parallelism is implemented in

the form of arrays, matrices or vectors with special operators which perform operations over

the data structure in parallel, such as matrix multiplication or the map operation.

The main drawback of data parallelism is that it is not a convenient model for some parallel

problems. It is difficult to express a program in terms of data parallelism when the parallelism

available in the algorithm in question is tied to its control flow rather than its data.

2.3 Parallel Languages

Nearly every programming language and mainstream operating system has some support

for parallelism, and there are a plethora of software libraries and tools that support it. This

section will discuss some of the most important and well known parallel languages.

2.3.1 Criteria

There are a number of criteria that can be used to classify parallel programming tools and

languages, the most important are the explicitness of the language and whether it supports

shared or distributed memory. Table 2.1 shows an overview of how sample parallel program-

ming languages fit in to these criteria.

14 CHAPTER 2. BACKGROUND

Language Implicit/Explicit Shared/Distributed Memory Functional/Imperative

POSIX Threads Fully Explicit Shared Imperative
OpenMP Semi-Explicit Shared Imperative

MPI Fully Explicit Distributed Imperative
PGAS Semi-Explicit Shared Imperative
GPH Semi-Explicit Shared Functional

HDPH Semi-Explicit Distributed Functional
SAC Implicit Shared Functional
ASL Semi-Explicit Distributed Functional

Table 2.1: Properties of some Parallel Programming Languages

Explicit/Implicit

Some languages and tools require the programmer to manually specify every aspect of paral-

lelism such as scheduling, communication and synchronisation, while at the other extreme,

some languages and tools automatically parallelise programs. The degree to which manual

programmer intervention is required is known as explicitness and is described by [33] and

[34].

A fully explicit model requires the programmer to manually specify the scheduling of tasks

on PEs and the synchronisation and communication of these tasks too, while semi explicit

models have one or more of these aspects automated while the programmer handles the oth-

ers. Implicit models require minimal intervention from the programmer, and the compiler or

run-time attempts to parallelise and synchronise the code. Fully implicit models automate all

aspects of parallelism, and can be capable of parallelising an unmodified sequential program

without any programmer intervention.

Shared/Distributed Memory Paradigms

Many parallel programming paradigms assume access to shared memory. The main benefits

of a shared memory approach are a simple programming model and low communication

and synchronisation overhead, while scalability is often limited - synchronisation costs will

increase with the number of cores.

In contrast to shared-memory approaches, distributed-memory parallel programming models

assume that individual processing elements do not have shared access to memory. This poses

a new set of problems to the programmer attempting to build a parallel system compared

CHAPTER 2. BACKGROUND 15

to a shared memory system, as the programmer has to be concerned with vastly increased

communications costs.

Imperative/Functional Programming

Functional programming languages - e.g Haskell, ML, Lisp — differ from imperative lan-

guages in that they restrict mutable state, treat functions as first class values, and often (but

not always) have rich type systems e.g Haskell, ML. The main advantages of parallel func-

tional languages are the same as those in sequential functional languages; that the type sys-

tem or restricted mutability allows the programmer to better able to reason about the program

and thus it can be easier to safely parallelise.

2.3.2 POSIX Threads

POSIX threads (known as pthread) [35] are a standard interface for concurrent program-

ming, but can be used as an explicit, shared memory parallel programming model and is

available on nearly every mainstream operating system. It has also influenced the thread

programming model in many other languages, such as Java [36].

The fundamental unit of the pthread susbsystem is the thread. Threads can be described

as a computation executing in parallel or concurrently, and can be considered an implemen-

tation of the task abstraction discussed in Section 2.2.1. They have their own stack, but are

part of the same operating system process that spawned it. True POSIX threads are not a

language or external library feature, but are part of the operating system and the OS has

responsibility for scheduling them.

The pthread library also exposes mutual exclusion lock structures and system calls for

managing them to enable the synchronisation of threads and safe access of shared resources.

Unfortunately, these are easy to misuse and careless programming can result in deadlock or

livelock [37].

Threads are used when low-level parallelism is required and are almost a necessity when

performing I/O in C or other low-level languages. However, they may be considered too

low-level for most highly parallel systems and open the door to major, difficult to debug prob-

16 CHAPTER 2. BACKGROUND

lems. Other tools, such as OpenMP, offer higher-level, less fragile constructs and scheduling

options.

POSIX threads can be classified as a fully explicit approach, as they require the programmer

to specify communication between threads and the creation and scheduling of them.

2.3.3 OpenMP

OpenMP [28] is a semi-explicit, shared-memory library and language extension for task

parallelism. OpenMP is one of the most widely used shared-memory parallel models [38].

OpenMP provides a number of compiler pragmas which cause marked code to be executed

in parallel. It can be described as a fork/join model. A number of primitives are provided for

synchronisation of threads. Directives exist for specifying atomicity of memory access, mu-

tual exclusion and barrier synchronisation. OpenMP also allows for restrictions and control

over the sharing of data between threads, such as the private pragma which causes data

to be private to each thread. OpenMP does have some support for data parallelism, in the

form of parallel for loops. OpenMP is specified for C, C++ and FORTRAN, but bindings

or implementations exist or are planned for other languages e.g. Java [39].

2.3.4 MPI

MPI or Message Passing Interface [12] is a fully-explicit, distributed memory parallel pro-

gramming interface. The MPI interface allows programs running on different nodes to send

messages to each other in point to point and broadcast modes. MPI requires that types are

specified in messages and allows the programmer to define new cross-platform types. MPI

is very widely used in scientific computing, where it is the de-facto parallel programming

model [40].

2.3.5 PGAS Languages

A Partitioned Global Address Space (PGAS) is a semi-implicit shared memory parallel pro-

gramming model (shared memory is also supported, but is not the main focus). In a PGAS

CHAPTER 2. BACKGROUND 17

language, such as Co-Array Fortran [41] or Unified Parallel C [42], the address space is par-

titioned so that each thread has their own local partition, which they act on in parallel. An

advantage of this approach is that each local address space will be more local to the CPU,

resulting in improved performance.

2.3.6 Programming Language Specific

The following parallel languages are different from the previously described as they are

specific to particular programming language implementations, or, in the case of Single As-

signment C, are programming languages themselves.

GPH

By default, Haskell has no support for parallelism other than IOThread, which adds lightweight

thread based concurrency.

Glasgow Parallel Haskell (GPH) is a functional, semi-explicit, shared-memory parallel pro-

gramming model. It is implemented as a Haskell extension (which is now part of GHC) that

adds side-effect free task parallelism to Haskell through the par combinator, which spawns

evaluation of an expression in parallel in a purely functional manner. Unfortunately, par

alone is not enough, since lazy evaluation can stop expressions from evaluating in parallel if

they are immediately used. To fix this, seq is introduced, which forces the evaluation of an

expression in a particular order, giving the expression spawned by par a chance to evaluate

in parallel.

Building complex parallel expressions using par and seq can be tricky and if done wrong

can easily result in a sequentially evaluated expression. An alternative is to use the Par

monad[43], a monadic approach to parallelism which allows the evaluation to be expressed

in an imperative style.

HdpH

There are many different parallel Haskell implementations[44]; so far, this chapter has only

discussed shared memory approaches.

18 CHAPTER 2. BACKGROUND

HdpH[45] is a domain specific language for expressing distributed task parallelism in Haskell.

It uses a Par monad to encapsulate its operations and has a data type for representing se-

rialisable closures. Structures called IVars are used for communications between PEs and

functions exist for explicitly pushing computations to a PE or implicitly sparking a compu-

tation in parallel. Scheduling and load management is dealt with implicitly, with idle nodes

using work stealing.

SAC

Single Assignment C[46] (SAC) is a pure functional language based on C. It has support for,

and is based around, high-performance array operations. It has data-parallel operations on

arrays and matrices which are shape-polymorphic, meaning that they work independent of

the dimensionality and regularity of the arrays. It can be described as an implicitly parallel

language.

Cilk

Cilk [47], a shared memory parallel programming language, uses work stealing scheduling.

The scheduler uses an optimisation heuristic known as "work first", where tasks are spawned

repeatedly before being executed. Thus, the scheduler attempts to minimise overheads of

computation rather than other overheads.

2.4 Resource Analysis

Resource analysis, or cost modelling, is important in resource-limited systems like most

embedded systems, in hard real-time systems where timing guarantees are required, and

for directing program refactoring or transformation. This thesis seeks a dynamic resource

analysis to inform dynamic program transformations. Recently there has been significant

progress in both the theory and practice of resource analysis. Some of this progress is driven

by the TACLe EU COST action [48] and reported in the FOPARA workshops [49]. In the

context of parallel programming, resource analysis can be used to determine whether it is

CHAPTER 2. BACKGROUND 19

worth introducing parallelism e.g the cost analysis of a piece of code shows that its execution

time will not be long enough to amortise the cost of parallelising the code.

Cost analyses can build on static analysis techniques, important examples of which include

dataflow analysis [50], which analyses how values are assigned to variables and are prop-

agated through the program; control-flow analysis which analyses the order, looping and

branching of program statements/expressions; and abstract interpretation, which interprets

an abstraction of the programming language e.g. an abstract interpretation where all seman-

tics were abstracted away and the interpretation is only concerned with memory access pat-

terns.

Analysis techniques exist for a range of program resources, for example execution time [51,

52, 53], space usage [54, 55], or energy [56]. The resource of interest here is predicted exe-

cution time. For many applications, e.g. embedded and real-time software systems, the most

important performance metric is worst case execution time. Various tools [51, 57, 52] have

been built to statically estimate or measure this; an example is aiT [57] which uses a combi-

nation of control flow analysis and lower level tools, such as cache and pipelining analysis.

Cache and pipelining analysis attempts to predict the caching and processor pipelining be-

haviour of a program and is performed in aiT using abstract interpretation. Here, however,

expected, rather than worst case execution time is predicted. Moreover, precise absolute

costs are not needed: approximate relative costs should suffice to allow the transformation

engine to select between alternative code variants.

A range of analysis techniques are used to estimate the resources used by programs. High

level cost analysis can be performed on the syntactic structure of the source code of a pro-

gram, e.g. using a mathematical function of C syntactic constructs to estimate execution

time [58]. Low-level representations of code and bytecode can be used as source for static

resource analysis [59, 60, 55, 61, 62]. For example the COSTA tool [60] for Java bytecode

which allows the analysis of various resources using parameterized cost models, and the

CHAMELEON tool [61] which builds on this approach and uses it to adapt programs.

There are many other approaches in cost analysis including amortized resource analysis [63,

62], incremental resource analysis [64], and attempting to enforce resource guarantees using

proof-carrying code [62, 65] (the MOBIUS project is a prime example).

Control flow is a key element of many resource analyses [51, 57]. However, as JIT traces do

20 CHAPTER 2. BACKGROUND

not contain any control flow, these types of analysis are redundant and a far simpler approach

will suffice. This is fortunate as the static analysis must run fast as part of the warm-up phase

of the execution of the JIT compiled program.

2.4.1 Parallel Resource Analysis

There is a large body of work that applies resource analysis to parallelism [66, 59, 53], which

has produced several examples of parallel cost models. Perhaps the simplest parallel cost

model is the Parallel Random Access Machine (PRAM) [67] model of parallel computation.

This model assumes a parallel machine where processors can perform parallel operations on

shared memory, with synchronised access. Cost analyses using this model allow for basic

estimates of parallel speedup on a multicore shared memory system, but is less useful for

NUMA systems or distributed memory systems.

The LogP cost model [68] attempts to address these shortcomings by taking into account the

latency of communication between processors, the overhead of sending messages and the

minimum gap between sending them, as well as the number of processors.

Other parallel cost models include the Bulk Synchronous Processes model [69], and several

extensions to the Bird-Meerten’s formalism [70], including the work by Rangaswami [71].

2.5 Program Transformation

Static analysis and cost modelling can provide much useful information about a program,

but this information is only useful if acted upon, and static analysis is often performed with

automatic code transformation in mind. In general, the term program transformation covers

everything from translation of a source program in one language to another to low-level op-

timisations on machine code like peephole optimisations. In AJITPar, code transformations

the parameters of skeletonized code are modified based on information gathered by the cost

analysis.

[72] describes the different types of translations as high-level source-to-source translations,

synthesis - where programs are transformed into a lower level of abstraction (compilation

is an example), reverse engineering, normalisation - where a program is transformed into a

CHAPTER 2. BACKGROUND 21

syntactically simpler program in the same language, optimisation where a program is trans-

formed to increase some aspect of the performance of the program, refactoring and renova-

tion - where a program is brought up to date or fixed in some way.

Essentially, code transformation systems can be seen as a Term Rewriting System, just with

different rewrite rules and strategies. Transformation strategies described by [72] include

sequential composition of rules, speculative application, traversal over abstract syntax trees

and application strategies where context is carried and acted upon. Strategies are necessary

since applying the rewrite rules to an entire program until every part is in normal form (with

respect to the rewrite rules) may not terminate or be confluent.

Program transformations are central to optimising compilers. GHC, for instance, aggres-

sively optimises Haskell code by equational rewriting [73, 74]. Transformations can also be

used for optimising for parallel performance. Algorithmic skeletons [25] – high level par-

allel abstractions or design patterns – can be tuned by code transformations to best exploit

the structure of input data or to optimise for a particular hardware architecture. Examples of

this include the PMLS compiler [75], which tunes parallel ML code by transforming skele-

tons based on offline profiling data, and the Paraphrase Project’s refactorings [76] and their

PARTE tool for refactoring parallel Erlang programs [77]. PMLS is an automatically paral-

lelising compiler for Standard ML which turns nested sequential higher-order-function calls

into parallel skeleton calls and performs code transformation based on runtime behaviour of

subparts of the program.

2.6 Just In Time Compilation

Most programming language implementations can be classified into either ‘compiled’, where

code is compiled into machine language, or ‘interpreted’, where code is executed line-by-

line or is compiled to a lower-level representation, such as a bytecode representation or even

just the abstract syntax tree, which is then executed by a virtual machine.

The key benefit of the virtual machine interpreter model was that a degree of portability could

be achieved without having to write a full static compiler for each platform. However, they

are generally slower than statically compiled machine code, due to the overhead of decoding

the bytecode or other representation and the overhead of using a virtual machine to execute

22 CHAPTER 2. BACKGROUND

the instructions.

A way of increasing performance is to dynamically compile the bytecode to machine lan-

guage at runtime, and then execute the machine code instead of the bytecode. Ideally, the

performance boost from executing machine code should offset the cost of dynamic compila-

tion. This is known as Just-in-Time or JIT[78] compilation. JIT compilers retain the portable

execution of interpreted code, while attempting to achieve the performance of native machine

code. This could be considered difficult due to the time-dependent nature of JIT compilation:

the same optimisations performed by static compilers are not feasible, and the reduced scope

of the compilation reduces the information available to an optimiser. However, the JIT com-

piler can make use of dynamic information to perform optimisations that a static compiler

cannot. ASL and the work in this thesis use the tracing JIT-compiled Pycket compiler.

2.6.1 Compilation Units

Simply compiling the entire program at runtime is obviously impractical, since it is essen-

tially the same as statically compiling the program. At the other extreme, compiling at the

level of a basic block is unlikely to result in much benefit due to the extremely limited scope

for optimisation, limited benefit for the compilation overhead and the overhead involved in

flitting between bytecode execution and native execution constantly. It is apparent that any-

one implementing a JIT compiler needs to decide on an appropriate compilation unit for the

JIT.

A popular choice is method or function JIT, where entire methods or functions are com-

piled. This allows easy interaction between native code and bytecode, as well as offering an

acceptably large compilation unit.

Another option, though not as popular, is to use a trace. A trace is a sequence of instructions

with one entry point but multiple exit points and this sequence can span many functions or

methods. Traces can be selected which are always of an acceptably large size and which are

always loops. Traces have no control flow in them (with the exception of a jump back to

the beginning of a loop) so optimisation and compilation is much simpler than functions or

methods which can contain arbitrary control flow. Lambdachine [79], LuaJIT [80] and PyPy

[81] are examples of trace-based JIT compilers.

CHAPTER 2. BACKGROUND 23

Even with a large enough compilation unit, a compiled trace or method may not be executed

enough times to amortise the compilation cost. However, if the VM knows that the method

or trace is repeatedly called then it is more likely to be worth compiling. A method or trace

which is well-used is described as hot. [82] describe the Java HotSpot compiler which detects

“hot spots” in the bytecode and schedules “hot” methods for JIT compilation.

2.6.2 Existing JIT Compilers

Java’s hotspot compiler[82] is perhaps one of the most well known JIT compilers. It uses

methods as its compilation unit.

Lambdachine [79] is an experimental trace-based Haskell JIT compiler based on LuaJIT,

which is notable as Haskell is known as a language normally statically compiled to native

code. [79] reported that performance could occasionally match the performance of the Glas-

gow Haskell Compiler.

PyPy[81], is a trace-based JIT implementation for the Python programming language, as well

as a compiler generating tool-chain - a compiler implementer can write an interpreter using

PyPy’s RPython language and the tool-chain generates a full interpreter (optionally with a

JIT). PyPy’s JIT is notable for the fact that it traces the main loop of the interpreter itself,

rather than the user program, a technique described by [81] as meta-tracing. The front-end

compiler implementer provides annotations to the JIT which specify the start points of user

program loops. When the JIT meets one of these points, recording of a trace begins; when

the interpreter reaches the same annotated point again, it finishes the recording and compiles

the trace when it gets hot enough. Performance of PyPy’s python interpreter can often meet

or exceed the performance of the reference Python interpreter.

Pycket[83], is an implementation of the Racket language (a form of Scheme) on PyPy’s

tool chain, using the PyPy meta-tracing JIT. Results showed that the implementation’s per-

formance was comparable to Racket and other scheme implementations. ASL is built on a

version of Pycket modified to support TCP/IP communication and runtime costing of JIT

traces.

24 CHAPTER 2. BACKGROUND

2.6.3 Parallelising JIT

A trace of a program can yield useful information about possible optimisations that can not be

discovered statically. Similarly, a trace can be used to glean information about dependencies

between variables which may not be possible to determine statically; analysis is also simpler

due to the lack of control flow within a trace. Furthermore, if a trace is hot, it shows that that

trace would likely benefit from being parallelised. Since a trace often forms the body of a

loop, it is possible to parallelise a trace using data parallelism techniques [84].

Sun et al. describe a parallelising compiler using traces [85]; the system described is built

on top of an actual JIT compiler and the analysis and parallelisation is done entirely online.

The system described by the authors collects the traces independently of the Jikes RVM

trace recorder that they build on, and qualifies traces into two distinct types - execution

traces which are the instructions executed, and memory traces, which are traces of memory

accesses. These memory traces are used as a means of checking for dependencies between

traces. The authors also present a cost model for determining whether parallelisation is

worthwhile, based on measuring execution time of traces and assuming that future execution

time is the same.

2.7 AJITPar Project and Adaptive Skeleton Library

The Adaptive Just-In-Time Parallelisation (AJITPar) project [3][5] aims to investigate a

novel approach to deliver portable parallel performance for programs with irregular par-

allelism across a range of architectures. The approach proposed combines declarative par-

allelism with Just In Time (JIT) compilation, dynamic scheduling, and dynamic transfor-

mation. The project aims to investigate the performance portability potential of an Adaptive

Skeletons library (ASL) based on task graphs, and an associated parallel execution framework

that dynamically schedules and adaptively transforms the task graphs.

ASL expresses common patterns of parallelism as a standard set of algorithmic skeletons [25],

with associated transformations. Dynamic transformations, in particular, rely on the ability

to dynamically compile code, which is the primary reason for basing the framework on a JIT

compiler. Moreover, a trace-based JIT compiler can estimate task granularity by dynamic

CHAPTER 2. BACKGROUND 25

profiling and/or dynamic trace cost analysis, and these can be exploited by the dynamic

scheduler. A trace-based JIT-compiled functional language was chosen as functional pro-

grams are easy to transform; dynamic compilation allows a wider range of transformations

including ones depending on runtime information; and trace-based JIT compilers build in-

termediate data structure (traces) that may be costed.

2.7.1 ASL Prototype Implementation

This section outlines some key design decisions and the current implementation status.

The current prototype executes task-parallel computations on shared- or distributed-memory

architectures using TCP-based message passing. It implements dynamic scheduling and

monitors task runtimes and communication overheads. The current system is a fairly con-

ventional distributed-memory parallel functional language implementation; a more detailed

discussion can be found in [5].

The default prototype extracts task costs using dynamic trace cost analysis based on the

model in Chapter 3.

System Architecture

A high-level overview of the system is shown in Figure 2.2. The runtime environment con-

sists of a central master and multiple workers; each being a separate OS process, possibly on

different hosts. The master runs a standard Racket VM, the workers run Pycket (this architec-

ture was chosen due to limitations of the network stack on Pycket). The master maintains the

current task graph and schedules enabled task groups to idle workers. Each worker executes

task groups, one task at a time, and returns the results to the master. Upon receiving results

the master updates the task graph, which may unblock previously blocked task groups.

The master and workers behave much like actors, i.e. they do not share state, are single

threaded and communicate by sending messages over TCP connections. In part, these design

choices are born out of the restrictions of Pycket, which does not (yet) support concurrency.

However, they also simplify the implementation of workers, which execute a simple receive-

eval-send loop. Nonetheless, there are drawbacks compared to a shared-memory design:

26 CHAPTER 2. BACKGROUND

Trace Analyser (c)

* estimate trace runtime

* transform task graph

Rewrite Engine (d)

 to improve granularity

* optimise and compile

Trace Compiler (b)

 recorded trace
* interpret code until
 compiled trace or hot loop

* exec/prof compiled trace

Execution Engine (a)

* record hot loop trace

 tasks between schedulers

* schedule ready tasks

Scheduler (e)

* maintain task graph

* balance load by moving

task graph

runtimescheduled trace
runtime

compiled trace

statistics

estimate

recorded trace

compiled trace

trace

rewritten task graph

task

Figure 2.2: Diagram of the ASL runtime system. The “Trace Analyser” component is the
focus of this thesis

• TCP-based message passing can add significant latency, particularly for large mes-

sages.

• All messages need to be serialised by the sender side and deserialised by the re-

ceiver, which can cause significant overhead for large messages. (In fact, Section 2.7.1

demonstrates that serialisation dominates the cost of message passing.)

The decision to adopt a centralised scheduler rather than distributed work stealing was taken

with transformations in mind. It is difficult for a distributed scheduler to have a global

overview of current system load and performance, as it would require for each local scheduler

to continually communicate load information to every other instance, requiring a complex

implementation and resulting in significant overhead [86]. This makes it difficult to decide

when and how to transform skeletons.

Closures, Tasks and Serialisation

In contrast to Racket, Pycket currently expects a fixed program at startup and cannot (yet)

load code dynamically. To provide the code mobility required in a distributed system, ASL

resorts to explicit closures, which are essentially static global function pointers, similar to

closures in distributed Haskell DSLs like CloudHaskell [87] and HdpH [45]. Tasks and task

groups are layered on top, linking closures to input and output futures. Thus, evaluating a

task amounts to reading its input futures, evaluating the closure and writing the result to its

output future.

CHAPTER 2. BACKGROUND 27

reduce task

boundary future

map tasks

taskgroup

unfolded parMap skeleton

unfolded parReduceChunk skeleton

interior futures

boundary futures

Figure 2.3: Diagram of the ASL task graph

Task groups (see below) and futures (results) must be serialised to byte strings that can

be transmitted over TCP sockets. Racket offers a serialisation library for this purpose but

the library does not work in Pycket. Hence ASL implements its own serialisation library,

specifically designed for fast serialisation of tree-like data structures. ASL relies on data

being acyclic; attempting to serialise cycles will likely result in the system live-locking.

Scheduling

The scheduler [5] runs entirely on the master, concurrently running one scheduling loop per

worker. This loop runs until the program terminates. Each loop picks a group of tasks (with

the task group size informed by the task grouping system), serialises it and sends it to a

worker. The loop then waits for results to be sent back.

Task Grouping

The original vision for ASL was to dynamically apply transformations to the skeleton code

itself; the current prototype does not do this: transformations are applied in the form of task

grouping. Simply put, task grouping means that rather than execute each task in parallel,

tasks are herded together into groups, and each group is scheduled, distributed and executed

in parallel.

28 CHAPTER 2. BACKGROUND

When a group is scheduled, the ASL prototype uses the cost model from Chapter 5 to cost a

small sample of the tasks in that group, the costings of which are sent back to the master node

with the task results. The grouping transformation engine feeds this information, along with

the current number of tasks in a group, into a linear regression engine. The regression engine

attempts to regress this data to an ideal task size i.e. the group size multiplied by the average

cost of a task in a group should average out to this ideal number. As program execution

proceeds, the regression engine is constantly working and the group sizes are continually

adjusted. This ideal task group granularity is preconfigured in the prototype to be 100ms.

The work in Chapter 5 is concerned with using cost modelling to improve on this ideal

granularity.

2.7.2 Similar Projects

There have been previous attempts to optimise parallel programs by refactoring or transform-

ing code. Examples include the HWSkel project [88, 89], PaRTE [90, 91, 76], SkePU [92]

and the ParaForm refactorings for parallel Haskell [93]. All of these approaches use of-

fline profiling and static transformations, and are not applied to JIT-compiled languages.

In contrast ASL explores the potential of dynamic profiling and dynamic transformation of

JIT-compiled code.

The Hera VM [94], is similar to ASL in that it uses a JIT compiled parallel language, but

has significant differences to ASL. Hera VM is a method, rather than tracing, JIT compiler.

It does not use cost models. Finally, it is specialised for the heterogeneous Cell CPU rather

than cross platform performance portability.

Paraphrase Refactoring Tool for Erlang

One of these similar approaches is described in detail and it is the most similar tool to ASL,

namely the Paraphrase Refactoring Tool for Erlang (PaRTE) PaRTE [90, 91, 76] is a tool

which aims to allow users to discover opportunities for parallelism in Erlang programs or

opportunities to improve the performance of existing parallel code. Users are presented with

options for refactorings and their associated projected performance improvements; refactor-

ings can then be performed at the touch of a button. Refactoring opportunities are discovered

CHAPTER 2. BACKGROUND 29

through a combination of static analysis and profiling. Interaction with the tool is performed

through a web interface and an Emacs plugin.

PaRTE’s static analysis consists primarily of syntactic analysis. Firstly the tool tries to iden-

tify syntactic constructs which are amenable to refactoring. The tool focuses on list com-

prehensions, certain library function calls (particularly the lists module) and constructs

similar to map. Simple dependency analysis is performed using control-flow and data-flow

analysis. Code fragments are profiled using generated input data and the resulting timing

information is plugged into cost models for each of the potential skeletons that could be in-

troduced. These cost models combine the profiling information with other information such

as the number of cores and the time to distribute and gather information in a map skele-

ton. Using this information, potential speedups are presented to the user for each possible

refactoring.

Transformations are performed using a modified version of the wrangler Erlang refactoring

tool. A set of conditional rewrite rules are used for applying skeleton refactorings based on

AST matches.

Comparison with ASL As they set out to achieve similar goals and both involve trans-

formations to enable or improve parallelism, ASL and PaRTE seem superficially similar.

However, there are a number of major and minor differences between them. The first sig-

nificant difference is that PaRTE performs analysis on high level syntax while ASL’s cost

analysis is performed on low-level intermediate representation. PaRTE also relies heavily on

offline profiling for cost analysis, plugging actual timing information into its cost models,

while AJITPar’s models calculate cost using static analysis applied to dynamic information

- the trace instructions. This is a direct result of the greatest difference between the two tools

— PaRTE’s analysis and transformations are performed offline and ahead of time, while

ASL’s are performed dynamically and in soft real time. Another difference is that PaRTE can

semi-automatically introduce parallelism to a sequential program, while AJITPar requires

that a program be written in the AJITPar parallel DSL. There are also other differences in

explicitness — PaRTE requires user intervention before refactorings are performed, while

AJITPar performs the transformations automatically at runtime.

30 CHAPTER 2. BACKGROUND

31

Chapter 3

Costing JIT Traces

3.1 Introduction

Tracing JIT compilation generates units of compilation that are easy to analyse and are

known to execute frequently. The AJITPar project investigates whether the information in

JIT traces can be used to dynamically transform programs for a specific parallel architecture.

Hence a lightweight cost model is required for JIT traces.

This chapter presents the design and implementation of a system for extracting JIT trace

information from the Pycket JIT compiler (section 3.3). Section 3.4 describes three increas-

ingly parametric cost models for Pycket traces and determines the best values for the cost

model. Section 3.5 evaluates the effectiveness of the cost models for predicting the relative

costs of transformed programs.

3.2 Pycket Trace Structure

The cost models described in this chapter are built on the particular structure of Pycket/PyPy

traces. A detailed discussion of the low-level structure of these traces follows.

A JIT trace consists of a series of instructions recorded by the interpreter, and a trace be-

comes hot if the number of jumps back to the start of the trace (or loop) is higher than a

given threshold, indicating that the trace may be executed frequently and is worth compiling.

32 CHAPTER 3. COSTING JIT TRACES

Other important concepts in Pycket traces include guards: assertions which cause execution

to leave the trace when they fail; bridges: that are traces starting at a guard that fails often

enough; and trace graphs: representing sets of traces. The nodes of a trace graph are entry

points (of loops or bridges), labels, guards, and jump instructions. The edges of a trace graph

are directed and indicate control flow. Note that control flow can diverge only at guards and

merge only at labels or entry points. A trace fragment is a part of a trace starting at a label

and ending at a jump, at a guard with a bridge attached, or at another label, with no label in

between.

The listing in Figure 3.1 shows a Racket program incrementing an accumulator in a doubly

nested loop, executing the outer loop 105 times and the inner loop 105 times for each iteration

of the outer loop, thus counting to 1010.

(d e f i n e numb1 100000)
(d e f i n e numb2 100000)

(d e f i n e (i n n e r i t e r acc)
(i f (> i t e r numb2)

acc
(i n n e r (+ i t e r 1) (+ acc 1))))

(d e f i n e (o u t e r i t e r acc)
(i f (> i t e r numb1)

acc
(o u t e r (+ i t e r 1) (i n n e r 0 acc))))

(o u t e r 0 0)

Loop Entry

l1

l2

g1

g2

g3

j1

Bridge Entry b2

l3

j2

Figure 3.1: Doubly nested loop in Racket and corresponding Pycket trace graph.

Figure 3.1 also shows the trace graph produced by Pycket. The nodes represent instructions

which are pertinent to the flow of control through the loop. In the graph, labels are repre-

sented by l nodes, g nodes represent guards and j nodes represent jump instructions. The

inner loop (which becomes hot first) corresponds to the path from l2 to j1, and the outer loop

corresponds to the bridge. The JIT compiler unrolls loops once to optimise loop invariant

code, producing the path from l1 to l2.

The trace graph is a convenient representation to read off the trace fragments. In this exam-

ple, there are the following four fragments: l1 to l2, l2 to g2, l2 to j1, and l3 to j2. Trace

CHAPTER 3. COSTING JIT TRACES 33

l a b e l (i7 , i13 , p1 , d e s c r = Targe tToken (4 3 2 1 5 3 4 1 4 4))
debug_merge_po in t (0 , 0 , ’ (l e t ([i f _ 0 (> i t e r numb2)]) . . .) ’)
g u a r d _ n o t _ i n v a l i d a t e d (d e s c r =<Guard0x10196a1e0 >) [i13 , i7 , p1]
debug_merge_po in t (0 , 0 , ’(> i t e r numb2) ’)
i 1 4 = i n t _ g t (i7 , 100000)
g u a r d _ f a l s e (i14 , d e s c r =<Guard0x10196a170 >) [i13 , i7 , p1]
debug_merge_po in t (0 , 0 , ’ (i f i f _ 0 acc . . .) ’)
debug_merge_po in t (0 , 0 , ’ (l e t ([AppRand0_0 . . .] . . .) . . .) ’)
debug_merge_po in t (0 , 0 , ’ (+ i t e r 1) ’)
i 1 5 = i n t _ a d d (i7 , 1)
debug_merge_po in t (0 , 0 , ’ (+ acc 1) ’)
i 1 6 = i n t _ a d d _ o v f (i13 , 1)
g u a r d _ n o _ o v e r f l o w (d e s c r =<Guard0x10196a100 >) [i16 , i15 , i13 , i7 , p1]
debug_merge_po in t (0 , 0 , ’ (i n n e r AppRand0_0 AppRand1_0) ’)
debug_merge_po in t (0 , 0 , ’ (l e t ([i f _ 0 (> i t e r numb2)]) . . .) ’)
jump (i15 , i16 , p1 , d e s c r = Targe tToken (4 3 2 1 5 3 4 1 4 4))

Figure 3.2: Trace fragment l2 to j1.

fragments can overlap: for instance, l2 to j1 overlaps l2 to g2.

Figure 3.2 shows a sample trace fragment, l2 to j1, corresponding to the inner loop. Besides

debug instructions, the fragment consists of 3 arithmetic-logical instructions and 3 guards

(only the second of which fails often enough to have a bridge attached).

The label at the start brings into scope 3 variables: the loop counter i7, the accumulator i13,

and a pointer p1 (which plays no role in this fragment). The jump at the end transfers control

back to the start and also copies the updated loop counter and accumulator i15 and i16 to i7

and i13, respectively.

3.3 Language Infrastructure

3.3.1 Runtime Access to Traces and Counters

This section builds on the concepts of traces, fragments and guards introduced in Section 3.2.

The RPython tool chain provides language developers with a rich set of APIs to interact with

its generic JIT engine. Among these APIs are a number of callbacks that can intercept inter-

mediate representations of a trace, either immediately after recording, or after optimisation.

In debug mode RPython can instrument traces with counters, recording how often control

34 CHAPTER 3. COSTING JIT TRACES

reaches an entry point or label. RPython provides means to inspect the values of these

counters at runtime. ASL uses this feature to derive estimates of the cost of whole loop nests

from the cost and frequency of their constituent trace fragments.

The JIT compiler counts the number of times a label is reached but we are more interested

in counting the execution of traces. Unfortunately, full traces as gathered by our system

cannot be simply counted, as guards can fail and jumps can target any label. Fortunately,

we can work out the trace fragment execution count due to the fact that there is a one-to-one

correspondence between guards and their bridges. Essentially, the frequency of a fragment

` to g is the frequency of the bridge attached to guard g. Trace fragments are the largest

discrete part of traces we can accurately count. The frequency of a fragment starting at `

and not ending in a guard is the frequency of label ` minus the frequency of all shorter trace

fragments starting at `. Tables 3.1 and 3.2 demonstrate this on the trace fragments of the

nested loop example in fig. 3.1. The first two columns show the JIT counters, the remaining

three columns show the frequency of the four trace fragments, and how they are derived

from the counters. Note that not all counters reach the values one would expect from the

loop bounds. This is because counting only starts once code has been compiled; iterations in

the warm-up phase of the JIT compiler are lost. The hotness threshold, determined from the

Pycket source code, is 131 loop iterations.

JIT counter JIT count

nl1 100,001
nl2 10,000,098,957
nb2 99,801
nl3 99,800

Table 3.1: JIT counters and counts for program in Figure 3.1.

fragment frequency expression frequency

l1 to l2 nl1 100,001
l2 to g2 nb2 99,801
l2 to j1 nl2 − nb2 9,999,999,156
l3 to j2 nl3 99,800

Table 3.2: JIT counters and trace fragment frequencies for program in Figure 3.1.

CHAPTER 3. COSTING JIT TRACES 35

Class Example Instructions

debug debug_merge_point
numeric int_add_ovf
guards guard_true
alloc new_with_vtable
array arraylen_gc
object getfield_gc

Table 3.3: RPython JIT Instruction Classes

3.3.2 An analysis of Pycket JIT instructions

It is useful to classify the RPython JIT instructions into different sets, conceptually. Ignoring

debug instructions (debug is the name of this set), the set of all instructions is named all.

The set all can then be divided into two theoretical sets: high cost instructions (high) e.g.

memory allocation, and low cost instructions (low) e.g. numerical instructions.

These two sets can be further decomposed into five intuitive sets. The classes are object

read and write instructions object, guards guards, numerical instructions numeric, memory

allocation instructions alloc and array instructions array. These classes are described in

Table 3.3. Jump instructions are ignored, since there is only ever one in a trace. External

calls are excluded as foreign function code is not represented within the trace, and thus

cannot be costed.

A histogram of JIT operations, taken from traces generated by all the cross-implementation

benchmarks [95] and shown in Figure 3.3, shows that overall these traces are also dominated

by instructions from the guards, objects and numeric classes.

3.4 JIT-based Cost Models

The traces produced by Pycket during JIT compilation provide excellent information for

cost analysis. The linear control flow makes traces easy to analyse, and the fact that traces

are only generated for sufficiently “hot” code focuses cost analysis on the most frequently

executed code paths. In this section, we define several cost models based on trace information

collected from Pycket.

36 CHAPTER 3. COSTING JIT TRACES

Figure 3.3: Most common instructions in cross-implementation Pycket benchmarks

3.4.1 Trace Cost Models

Let Tr be an arbitrary trace of length n, that is, Tr = op1 . . . opn is a sequence of instructions

opi. A trace cost model γ is a function mapping Tr to its predicted trace cost γ(Tr), where

γ(Tr) is a dimensionless number, (ideally) proportional to the time to execute Tr. Since the

runtime of Tr may depend on the hardware architecture, the trace cost model is specific to a

particular architecture.

Null Cost Model (CM0)

The simplest possible trace cost model assigns the same cost to each trace, regardless of its

length and the instructions contained. The purpose of this null cost model, which is formally

defined by Equation (3.1), is to serve as a baseline to compare the accuracy of other cost mod-

els against. Using this model to calculate the cost for whole programs (Section 3.4.2) can be

considered roughly equivalent to using a loop counting control-flow analysis for estimating

the execution time of a program. Note that the null cost model is architecture independent.

γ(Tr) = 1 (3.1)

Counting Cost Model (CMC)

A slightly more sophisticated trace cost model declares the cost of a trace to be its length,

counting the number of instructions (ignoring debug instructions, which are not executed at

CHAPTER 3. COSTING JIT TRACES 37

runtime). This counting cost model is defined by Equation (3.2) and is architecture indepen-

dent.

γ(Tr) =
n∑

i=1

0, if opi ∈ debug

1, otherwise
(3.2)

Weighted Cost Model (CMW)

Certain types of instructions are likely to have greater execution time, for example memory

accesses may be orders of magnitude slower than register accesses. A more intricate cost

model can be obtained by applying a weighting factor to each of the instruction classes

described in Section 3.3.2. Equation (3.3) shows the definition of this weighted cost model,

parameterised by abstract weights a, b, c, d and e.

γ(Tr) =
n∑

i=1



0, if opi ∈ debug

a, if opi ∈ array

b, if opi ∈ numeric

c, if opi ∈ alloc

d, if opi ∈ guard

e, if opi ∈ object

(3.3)

The accuracy of the model depends on the concrete weights, and their choice depends on

the actual architecture. Section 3.4.3 demonstrates how to obtain concrete weights for a

reasonably accurate model.

3.4.2 Whole Program Cost Models

Let P be a program. During an execution of P , the JIT compiler generates m distinct trace

fragments Trj and m associated trace counters nj .

Given a (null, counting or weighted) trace cost model γ, the (null, counting or weighted) cost

Γ(P) of P is defined by summing up the cost of all traces, each weighted by their execution

38 CHAPTER 3. COSTING JIT TRACES

frequency; see Equation (3.4) for a formal definition.

Γ(P) =
m∑
j=1

nj γ(Trj) (3.4)

Note that Γ is not a predictive cost model, as its definition relies on traces and trace counters,

and the latter are only available after the execution of a program. However, Γ can still be

useful for predicting the cost of transformations, as demonstrated in Section 3.5.

3.4.3 Calibrating Weights for CMW

To use the abstract weighted cost model CMW (Section 3.4.1), it is necessary to find con-

crete values for the weight parameters a, . . . , e in Equation (3.3). Ideally, program cost Γ(P)

is proportional to program runtime t(P). That is, ideally there exists k > 0 such that Equa-

tion (3.5) holds for all programs P .

Γ(P) = k t(P) (3.5)

Given sufficiently many programs and sufficiently varied program inputs, we can use Equa-

tion (3.5) to calibrate the weights of CMW for a given architecture by linear regression, as

detailed later in this section.

Benchmarks

For the purpose of calibrating weights we use 41 programs from the standard Pycket bench-

mark suite pycket-bench [96] and the Racket Programming Languages Benchmark Game

suite [97]. The programs used are a subset of the full suite of 121 as programs that result

in failing benchmark runs or which contain calls to foreign functions are omitted. Foreign

function calls are removed as it is unlikely that any two foreign function calls are doing the

same thing or take the same time.

For each program, we record the execution time, averaging over 10 runs. All traces and the

values of all trace counters are recorded; since all benchmarks are deterministic traces and

trace counters do not vary between runs.

CHAPTER 3. COSTING JIT TRACES 39

The Pycket version used for these experiments is revision e56ba66d71 of the trace-analysis

branch of our custom fork [98], built with Racket version 6.1 and revision 79009 of the

RPython toolchain. The experiments are run on a 2.0 GHz Xeon server with 64 GB of RAM

running Ubuntu 14.04.

Linear Regression

Picking an arbitrary value for k, e.g. k = 1, we derive the following relation from Equations

(3.5) and (3.4).

t(Pl) = Γ(Pl) + εl =

ml∑
j=1

nlj γ(Trlj) + εl (3.6)

Pl is the lth benchmark program, generating ml traces Trlj and trace counters nlj , t(Pl) is the

observed average runtime of Pl, and εl is the error term. Equation (3.6) becomes a model for

linear regression by expanding γ according to its definition (3.3), which turns the right-hand

side into an expression linear in the five unknown weights a, . . . , e.

Weights are implicitly constrained to be non-negative, as negative weights would suggest that

corresponding instructions take negative time to execute, which is physically impossible. To

honour the non-negativity constraint, weights are estimated by non-negative least squares

linear regression.

γ(Tr) =
k∑

i=1



4.884× 10−4, if opi ∈ numeric

4.797× 10−3, if opi ∈ alloc

4.623× 10−4, if opi ∈ guard

0, otherwise

(3.7)

γ(Tr) =
k∑

i=1



2.987× 10−4, if opi ∈ numeric

1.574× 10−4, if opi ∈ array

4.122× 10−4, if opi ∈ object

2.919× 10−4, if opi ∈ guard

0, otherwise

(3.8)

40 CHAPTER 3. COSTING JIT TRACES

Figure 3.4: Execution time vs cost for CMW determined using linear regression

Equation (3.7) shows the resulting weighted cost model for the GPG cluster node, while

Equation (3.8) shows the same for the FATA machine. Equation (3.7) only attributes non-

zero cost to allocation, numeric instructions and guards, implying that object and array access

instructions have negligible cost. However, Equation (3.8) attributes zero cost to allocation,

and broadly similar costs to the other, non-debug instructions. We suspect that the difference

between the two architectures is due to improved memory bandwidth on the FATA node.

The regression fit for the cost model in Equation (3.7) is shown in Figure 3.4. The fit is

obviously linear but rather coarse, indicating that CMW is not a very accurate model. The

square of the residual (R2) value for this fit is 0.29.

There is one egregious outlier (the trav2 benchmark – a tree traversal program) with no

obvious explanation. The benchmark does have larger trace outputs than others — 5.5 MB

compared to an average of 1.7 MB, but this is not enough to account for the discrepancy.

The time spent tracing doesn’t account for this outlier either: other benchmarks spend much

greater time tracing and compiling as a proportion of execution time without producing such

divergence. We note that linear regression fits for CMC and CM0 are visibly worse than the

fit for CMW , which implies that their accuracy is lower than CMW .

3.5 Costing Transformations

The main purpose of a cost model in the AJITPar project is to enable the selection and pa-

rameterisation of appropriate dynamic transformations. This section describes the transfor-

CHAPTER 3. COSTING JIT TRACES 41

mations and explores how accurately the cost models predict the execution time of programs

before and after transformation.

3.5.1 Skeleton Transforms

In AJITPar parallel programs are expressed by composing algorithmic skeletons [25] from

an Adaptive Skeletons (AS) library [99].

Adaptive skeletons are based on a standard set of algorithmic skeletons for specifying task-

based parallelism within Racket. The AS framework expands skeletons to task graphs and

schedules tasks to workers; expansion and scheduling happen at runtime to support tasks

with irregular granularity. The AS framework piggy-backs on Pycket to analyse the cost

of tasks as they are executed. The cost information is used both to guide the dynamic task

scheduler as well as a skeleton transformation engine. The latter adapts the task granularity

of the running program to suit the current architecture by rewriting skeletons according to a

standard set of equations [99].

A number of different skeleton types are used in ASL. The basic types of skeletons are par-

allel map, parallel reduce and divide and conquer. The actual versions of the skeletons in

AJITPar are tuneable, in that they are parameterised with a number that specifies the gran-

ularity of the parallelism in some way. The definitions of some of these tuneable skeletons,

parMapChunk, parMapStride and parDivconqThresh, are shown in Figure 3.5,

specified in a Haskell-style pseudocode1. Code which uses these skeletons can be trans-

formed by modifying the first argument which serves as a tuning parameter; we will use τ to

denote this tuning parameter.

A notable abscence is the pipeline skeleton, which allows other skeletons to be composed

together in such a way that the second skeleton can begin parallel compuation before the first

has completed i.e. a pair of parallel maps pipelined so that the second map stars work on the

first element of the result vector of the first map while the first map is still computing. Due to

the lack of full worker to worker communication without synchronising with a central master,

a pipeline skeleton is currently not feasible in ASL. ASL currently lacks full worker to worker

communication. Implementing the pipeline skeleton in such a system would require all

1Extended with a primitive spawn, where expressions of the form spawn f x create a new task computing
the function application f x.

42 CHAPTER 3. COSTING JIT TRACES

workers to synchronise with the master, the overhead of which would wipe out any parallel

performance gain. As such, the pipeline skeleton is not currently feasible in ASL.

The ASL system aims to transform skeletons such that the resulting tasks are of optimal

granularity, i.e. execute in the range of 10-100ms. This target task granularity is based on

previous scaling experiments of ASL infrastructure [100]. An optimal task granularity should

result in optimal parallel scaling.

To this end, the system monitors the runtime of tasks and computes their cost as they com-

plete, following Equation (3.4). If the system sees too many tasks fall outwith the optimal

granularity range, it will attempt to transform the skeleton that generated the tasks. In the

simplest case this is done by changing the tuning parameter τ as follows.

Let t0 and γ0 be the observed average runtime and cost of tasks generated by the skeleton’s

current tuning parameter τ0. The system computes k = t0/γ0 and picks a target granularity

t1 (in the range 10 to 100 milliseconds) and corresponding target cost γ1 = t1/k. Then the

system picks the new tuning parameter τ1 such that the cost ratio γ1/γ0 and the tuning ratio

τ1/τ0 are related by the skeleton’s cost derivative.

The cost derivative is the rate of change of cost γ with respect to the change in the tuning

parameter τ . For example, the cost derivative for the parMapChunk skeleton is the constant

function 1 because doubling the chunk size τ doubles the cost of tasks. In contrast, the

derivative for parMapStride is the function 1/x because doubling the stride width τ halves

the cost of individual tasks. In general, the cost derivative is specific to the skeleton but

independent of benchmark application and architecture.

Underlying this method of tuning τ is the assumption that the time/cost ratio k is independent

of τ . The rest of this section will empirically demonstrate that this is indeed the case as long

as task granularity is not too small.

3.5.2 Experiments

The suitability of the cost models for predicting the effect of applying transforms on execu-

tion time is evaluated. A cost model will be considered sufficiently accurate if the ratio k of

execution time to predicted cost is constant across different τ values for each program.

CHAPTER 3. COSTING JIT TRACES 43

−− map s k e l e t o n s
parMap : : (a → b) → [a] → [b]
parMap f [] = []
parMap f (x : xs) = spawn f x : parMap f xs

parMapChunk : : I n t → (a → b) → [a] → [b]
parMapChunk k f xs = concat $ parMap (map f) $ chunk k xs

parMapStride : : I n t → (a → b) → [a] → [b]
parMapStride k f xs = concat $ t r a n s p o s e $ parMap (map f)

$ t r a n s p o s e $ chunk k xs

−− d i v i d e and conquer s k e l e t o n s
parDivconq : : (a → [a]) → ([b] → b) → (a → b) → a → b
parDivconq d i v comb conq x =

c a s e d i v x of
[] → spawn conq x
ys → spawn comb (map (parDivconq d i v comb conq) ys)

parDivconqThresh : : (a → Bool) → (a → [a]) → ([b] → b)
→ (a → b) → a → b

parDivconqThresh t h r e s h d i v comb conq x
= i f t h r e s h x

t h e n spawn (divconq d i v comb conq) x
e l s e c a s e d i v x o f

[] → spawn conq x
ys → comb (map (parDivconqThresh p d i v comb conq) ys)

−− s i g n a t u r e s o f a u x i l i a r y f u n c t i o n s
chunk : : I n t → [a] → [[a]]
map : : (a → b) → [a] → [b]
concat : : [[a]] → [a]
divconq : : (a → [a]) → ([b] → b) → (a → b) → a → b
t r a n s p o s e : : [[a]] → [[a]]

Figure 3.5: AJITPar base skeletons and tunable skeletons.

44 CHAPTER 3. COSTING JIT TRACES

Benchmark Input Skeleton(s)
Matrix multiplication 1000x1000 matrices parMapChunk
SumEuler [1 . . . 4000] parMapChunk; parMapStride
Fibonacci 42 parDivconqThresh
k-means sample data parMapChunk
Mandelbrot 6000x6000 parMapChunk

Table 3.4: Benchmarks with their input and applied skeletons

Benchmarks and transforms

The benchmarks used in these experiments are shown in Table 3.4, and the sources of the

benchmarks are available at [101]. For most benchmarks it is obvious what tasks compute,

e.g. in the case of matrix multiplication a chunk of rows of the result matrix. k-means is

a special case, its tasks do not compute a clustering but classify a chunk of the input data

according to the current centroids; this is the parallel part of each iteration of the standard

cluster refinement algorithm. The input data for k-means consists of 1024000 data points of

dimension 1024, to be grouped into 5 clusters. The experiments are carried out on the same

hardware and software platforms as in Section 3.4.3.

Experimental Design

The benchmarks represent the sequential code executed by a worker during the execution

of a single task. Each benchmark is run with a variety of different values for the tuning

parameter τ . For example, Fibonacci is run with threshold values of 15, 16, 17, 18, 21, 24,

27, 30, etc. Since Pycket does not yet support snapshots of the trace counter file, each run is

performed twice; once with warmup code only and then again with the warmup code and the

task that is to be measured. The difference in trace counters between the two runs accurately

reflects to the trace counters of the task2.

Mandelbrot and SumEuler are irregular benchmarks, that is, work is distributed non-uniformly,

making some tasks harder than others. To investigate the accuracy of the cost model in the

presence of irregular parallelism, we repeat the Mandelbrot and chunked SumEuler experi-

ments with different chunks.

2Unless the JIT was not warmed up sufficiently.

CHAPTER 3. COSTING JIT TRACES 45

Results

The graphs of time/cost ratio k against tunable paramater τ for each benchmark and cost

model can be found in Figures 3.6 and 3.11. The rightmost point on each graph represents

the τ equivalent to one worker, and thus the untransformed version of that code; moving

rightwards along the x-axis corresponds to increasingly coarse-grained tasks.

Figure 3.12 shows the plot of k (for cost model CMW) against τ for each of three different

chunks of Mandelbrot, showing how irregularity affects the prediction. Table 3.5 shows the

stable values of time/cost ratio k to which the benchmarks converge; the table also shows the

range of values that k can take and a “minimum” task granularity (Section 3.5.3).

Figure 3.6: k vs τ for Matrix multiplication benchmark

Figure 3.7: k vs τ for irregular chunked SumEuler benchmark

46 CHAPTER 3. COSTING JIT TRACES

Figure 3.8: k vs τ for strided SumEuler benchmark

Figure 3.9: k vs τ for Fibonacci benchmark

3.5.3 Discussion

The overall shape of graphs in Figures 3.6 and 3.11 is the same for all benchmarks and cost

models: The time/cost ratio k starts out high (on the left) and falls at first as task granularity

increases, then stabilises. The value of k the graphs stabilise at depends on the benchmark

and on the cost model; for CMW the stable k values are listed in Table 3.5. By design of

CMW these values cluster around 1 though none of them is particularly close to 1, indicating

that CMW is not particularly accurate for any of the benchmarks, over- or under-estimating

the actual execution time by a factor of 2 to 7. This is expected given the coarseness of

the fit of CMW shown in the previous section (Figure 3.4). Similar graphs are produced

by running the same benchmarks on the FATA platform, with CMW parameterised for that

platform. These figures can be found in Appendix A.3

One difference between the graphs is the range over which k varies as task granularity in-

CHAPTER 3. COSTING JIT TRACES 47

Figure 3.10: k vs τ for k-means benchmark

Figure 3.11: k vs τ for Mandelbrot benchmark

creases; this range is listed in Table 3.5. For the SumEuler benchmarks, and to a lesser

extent for Fibonacci, this range is large. This correlates with very low granularities (on the

order of tens of microseconds) for the smallest tasks. Once the granularity crosses a certain

threshold, around 100 to 300 µs as listed in Table 3.5, the value of k stabilises. This suggests

that the cost models are particularly inaccurate for small tasks, possibly due to the fact that

smaller tasks run through fewer traces, but do become more accurate as task size increases.

In particular, the cost models are reasonably accurate for tasks in the target granularity range

of 10 to 100 milliseconds.

For matrix multiplication and Mandelbrot the range of k listed in Table 3.5 is small. For k-

means the range would also be small (around 0.3) if the unusually high k for the smallest task

granularity were disregarded as an outlier.3 This correlates with minimum task granularities

3The experiment data suggest this outlier is caused by insufficient JIT warmup though we do not yet under-
stand why.

48 CHAPTER 3. COSTING JIT TRACES

Figure 3.12: k vs τ for Mandelbrot benchmark (CMW) comparing 3 chunks

Benchmark stable k range of k minṫask granularity for stable k

Matrix Multiplication 0.579 0.201 < 11400 µs
Strided SumEuler 6.87 1450 306 µs
Chunked SumEuler 4.31 1460 129 µs
Fibonacci 0.542 1.55 294 µs
k-means 0.535 0.847 < 12100 µs
Mandelbrot 0.251 0.0187 < 117000 µs

Table 3.5: Stable k values for each benchmark (cost model CMW)

that are quite high (10 to 120 milliseconds); in fact, these granularities are already in the

target range. Thus, for these benchmarks the cost models are reasonably accurate over the

whole range of the tuning parameter τ .

Another source of inaccuracy for cost prediction, besides ultra-low task granularity, is irreg-

ularity. The chunked SumEuler and Mandelbrot benchmarks do exhibit irregular parallelism.

In the case of SumEuler, chunks at the lower end of the interval give rise to smaller tasks

than chunks at the upper end, and in the case of Mandelbrot, chunks at the top and bottom

of the image produce smaller tasks than chunks in the middle. The graphs in Figures 3.7

and 3.11 show plots of k for chunks in the middle of the interval or image rather than the

average over all chunks, in an attempt to account for the effect of irregularity. Figure 3.12

contrasts the time/cost ratio k of a chunk at the top of the image (Chunk 0) with two chunks

in the middle. The k for Chunk 0 is markedly different from the other two and not stable,

though the graphs do converge as granularity increases, which correlates with the fact that

irregularity decreases as chunk size increases. We note that while the moderate irregularity

CHAPTER 3. COSTING JIT TRACES 49

of Mandelbrot causes some loss of accuracy, it is not too bad: the ratio between the most

extreme k of Chunk 0 and the stable value of k for Mandelbrot is less than a factor of 3. In

contrast, the ratio between task runtimes for Chunk 0 and average task runtimes for Man-

delbrot is a factor of more than 10. Thus, the cost models are somewhat able to smooth the

inaccuracies in prediction that are caused by irregular task sizes.

Finally, on the evidence presented here, it does look like all three cost models are equally

well suited to predicting the cost of transformations. While this is the case for simple trans-

formations that only change the value of a single tuning parameter τ , this need no longer

be the case when trying to cost a chain of two transformations. In future work, we aim to

systematically predict the cost of chains of transformations of skeleton expressions com-

prising multiple skeletons, e.g. a parallel map followed by a parallel reduce. It is expected

that in these cases there will be a bigger difference between the set of traces pre- and post-

transformation than currently seen. Hence the actual content of the traces should matter

more, and cost model CMW to beat the other two on accuracy of prediction.

3.6 Performance Overhead

The performance overhead of applying Γ at runtime was measured between 0.25% and 18%

for the set of Racket Programming Languages Benchmark Game benchmarks. The level of

overhead depends on the specific program being run, but generally decreases with increased

program execution time, as shown in Figure 3.13. This is unsurprising as a longer execution

time will amortise the cost of running the cost model.

3.7 Discussion

This chapter has discussed the design and implementation of a system for extracting JIT

trace information from the Pycket JIT compiler (Section 3.3). Three lightweight cost models

for JIT traces, ranging from the extremely simple loop counting model CM0 to the rela-

tively simple instruction counting model CMC to the architecture-specific weighted model

CMW , have been defined. To automatically determine appropriate weights for CMW , linear

regression over the Pycket benchmark suite has been performed on two different hardware

50 CHAPTER 3. COSTING JIT TRACES

Figure 3.13: Costing overhead vs program execution time for a set of 28 benchmarks

platforms (Section 3.4). All three cost models have been used to compare the relative cost of

tasks generated by six skeleton-based benchmarks pre- and post-transformation, where the

skeleton transformations are induced by changing a skeleton-specific tuning parameter. The

effect of these transformations on task runtime can be predicted accurately using the cost

models, once the task granularity rises above a threshold (Section 3.5).

We have demonstrated that even the simplest, architecture-independent cost model described

in this paper allows us to accurately predict the effect of simple transformations on task

runtime.

51

Chapter 4

Communications Cost Modelling

ASL needs to make decisions about scheduling tasks and transforming task graphs to improve

parallel performance. It is speculated that performance can be improved if, in addition to

measuring the computation cost as in the previous chapter, ASL measures the communication

cost, i.e. the costs of serialising, deserialising and transmitting the data encoded in tasks. As

the cost model is intended to be executed during program warm up, it must be very cheap to

execute, and hence is a simple linear model.

This chapter describes the development of increasingly detailed abstract cost models for

communication overhead. These abstract models are parameterised by applying linear re-

gression to performance measurements of serialisation, deserialisation and network trans-

mission of Racket and Pycket data types. The final cost model is validated and along with

its additive property i.e that cost model instances for primitive data types can be combined

to accurately predict cost models for compound data types.

The work described in this chapter is believed to constitute the first dynamic recursive type-

driven cost model for serialisation, deserialisation and network communication.

This chapter is structured as follows. Section 4.1 outlines the requirements of a communica-

tions cost model for ASL. Section 4.2 describes the design and development of the communi-

cations cost model K, and the derivation of weightings for simple, known types. Section 4.3

discusses an additivity property of a typed communications cost model, and describes the

validation of this property for K. Section 4.4 details the integration of K into ASL. Finally,

Section 4.5 outlines the cross validation of K.

52 CHAPTER 4. COMMUNICATIONS COST MODELLING

4.1 Requirements of a Communication Cost Model

A communications model for ASL must meet a number of requirements to be useful. First,

since it must be applied dynamically, the model must be simple. The model must also ac-

count for the ASL architecture. Second, the model must account for the fact that the master

and worker nodes use different language platforms - Racket and Pycket. The model must

also account for the different communication patterns on both the master and worker. Fi-

nally, the model must be able to account for arbitrary data structures. It is not possible to

predict in advance what types a user may use.

4.2 Designing a Cost Model

This section describes the design and development of the communications cost model K.

Note the figures in this section refer to those on the GPG platform only; those for FATA can

be found in Appendix B.2

4.2.1 Original Design

Initially, it was speculated that the communication cost, Knaive, would be determined by

network communication and serialisation. Both these properties were modelled on the size

of the serialised data in bytes, l. This definition of the cost model is given in equation 4.1.

The other symbols are defined as follows: n is a weighting factor for the network com-

munications, s is a weighting factor for serialization/deserialisation is some constant. Note

that a term for a constant overhead was originally considered for inclusion in this and later

equations. Please see Appendix B.1 for a discussion of this.

Knaive = l(n+ s) (4.1)

4.2.2 Hardware and Software Environment

The benchmarks are run on the same hardware and software platforms as in Chapter 3 GPG, a

Beowulf cluster of 16 2.0GHz Intel Xeon servers with 64 GB of RAM running Ubuntu 14.04;

CHAPTER 4. COMMUNICATIONS COST MODELLING 53

Type Description

bstr byte string
flmatrix vector of flvectors

float float
flvector floating point vector

int integer
list linked-list

string string
vecbytes vector of bytes
vecstring vector of strings

vector fixed length array of ints
vector2 vector of vectors of ints

Table 4.1: Type name explanations

and FATA a 32-core 2.6Ghz Xeon server with 64GB of RAM. Revision d45e79919f of

branch runtime_trace_analysis of an ASLPycket fork [98] is used as the Pycket

platform and Racket 6.5 as the Racket platform. Branch comms of ASL was used.

4.2.3 Initial Experiments

A pair of simple experiments attempted to calibrate the model i.e. to determine values for n

and s from Equation (4.1).

The experiment measures serialisation time for the different data types in Table 4.1 by se-

rialising each data type 5 times and calculating the average time to serialise that data type.

This is repeated 2000 times for each data type, with a varying random input parameter which

determines the size/shape of the data structure.

The network send time experiment measures the time taken for a worker node to send byte-

strings of random sizes to a netcat node in listen mode. This is repeated 200 times, with

a different random sized byte-string each time. In both cases, linear regression is used to

identify the parameter values. The sample sizes chosen differ between the serialisation and

network send time experiments in order to enable the experiments to complete in practical

time. The experiments are repeated for both Racket and Pycket workers. In the case of

the GPG platform, transmission is between two nodes over gigabit Ethernet. On the FATA

platform, the transmission is on a single node using the loopback interface.

54 CHAPTER 4. COMMUNICATIONS COST MODELLING

Figure 4.1: Serialisation results

Results

The results for serialisation are found in Figure 4.1, and the results for network communica-

tion are seen in Figure 4.2.

Figure 4.1 shows clear multimodal distribution for both Racket and Pycket as there are sev-

eral different lines extending from a single point. This makes it impossible to calculate a

weighting, as there is no linear relation. Separating the data by the data type shows a set

of obvious linear relationship, suggesting that there is a type dependency in the cost model.

Figures 4.3 and 4.4 contain an example selection of the graphs: three examples showing lin-

ear behaviour, and one showing the two phase behaviour (the remaining graphs can be found

in Appendix B). The two-phase behaviour for strings in Racket is probably because larger

strings change memory allocation performance.

The values for the gradients and y-intercepts for the serialisation costs of each data type for

each architecture can be found in Tables 4.4 and 4.5. The gradients of these fits are used

as the parameter values in the cost model for serialisation. The values for each system are

generally of the same order of magnitude.

Figure 4.2 shows clear linear relationships between the network send time and the size in

bytes of the data structure being sent. Tables 4.2 and 4.3 present the gradients for the net-

work communications graphs for each architecture. These values are generally an order of

CHAPTER 4. COMMUNICATIONS COST MODELLING 55

Figure 4.2: Network send time results, Intel Xeon 2.0GHz, 1Gb Ethernet

Worker Gradient (ms/byte)

Racket 9.6897× 10−7

Pycket 6.0258× 10−7

Table 4.2: Network Send Gradients (GPG - node to node 1Gb Ethernet)

Worker Gradient (ms/byte)

Racket 2.6812× 10−7

Pycket 5.4321× 10−7

Table 4.3: Network Send Gradients (GPG - node to node 1Gb Ethernet)

Type Gradient (racket) (ms/byte) Gradient (pycket) (ms/byte)

bstr 1.6225× 10−6 1.9898× 10−6

flmatrix 1.8194× 10−5 6.2774× 10−6

flvector 1.7494× 10−5 6.2076× 10−6

list 4.6706× 10−5 1.5795× 10−5

string 4.7687× 10−5 4.7224× 10−6

vecbytes 1.7206× 10−6 2.0796× 10−6

vecstring 4.7920× 10−5 4.7379× 10−6

vector 2.4959× 10−5 5.8001× 10−6

vector2 2.5349× 10−5 5.7468× 10−6

Table 4.4: Serialisation parameters (GPG node)

56 CHAPTER 4. COMMUNICATIONS COST MODELLING

Figure 4.3: Serialisation time against Data Size (separated by type) (Racket; GPG)

Type Gradient (racket) (ms/byte) Gradient (pycket) (ms/byte)

bstr 2.3484× 10−6 2.2438× 10−6

flmatrix 3.2836× 10−5 8.6881× 10−6

flvector 1.4561× 10−5 6.0715× 10−6

list 3.5171× 10−5 1.2415× 10−5

string 3.8189× 10−5 4.7601× 10−6

vecbytes 9.6551× 10−5 4.9820× 10−5

vecstring 0.0002 5.5505× 10−5

vector 1.9805× 10−5 8.0888× 10−6

vector2 0.0001 6.8407× 10−5

Table 4.5: Serialisation parameters (FATA node)

CHAPTER 4. COMMUNICATIONS COST MODELLING 57

Figure 4.4: Serialisation Time against Data Size (separated by type) (Pycket; GPG)

58 CHAPTER 4. COMMUNICATIONS COST MODELLING

magnitude smaller than the corresponding values for serialisation.

Discussion

The results in section 4.2.3 expose some deficiencies inKnaive. The multimodal distributions

in Figure 4.1 show that a single value for s cannot be used as a predictor for a model. How-

ever, Figures 4.3 and 4.4 show that if we separate serialisation time by type, linear models

for a type-parameterised s can be produced. It is noted that serialisation is significantly more

costly than network transmission. The network transmission cost on the FATA node is less

than on the GPG node, but not by as much as expected.

4.2.4 Type-indexed Model

Extending Knaive to account for types solves some of its problems. In equation 4.2, the cost

model function Ktyped now has a parameter x (instances of this model exist for Racket and

Pycket). The symbol x represents the data structure being serialised/transmitted and is of

type t. The serialisation cost s is now parameterised in terms of t, and the values of s for

different t can be found in equation 4.3. Formerly the scalar length of the data in bytes, l

is now a function which returns the size of x in bytes. The values for s for each t for the

GPG and FATA architectures are found in Tables 4.4 and 4.5 respectively. These values are

obtained from the experiments performed in Section 4.2.3, by separating the results by type.

GPG and FATA produce broadly similar parameter values, but those produced on FATA are

generally more costly.

Ktyped(x :: t) = l(x)(n+ s(t)) (4.2)

s(t) =



0.312× 10−5 if t = numeric

5× 10−4 if t = list

...

...

etc.

(4.3)

CHAPTER 4. COMMUNICATIONS COST MODELLING 59

4.2.5 Type-indexed Bidirectional Communication Model

Ktyped (Equation 4.2) is more refined than Knaive, but does not account for two-way commu-

nication —the Racket master node sending task data to the Pycket workers, and the Pycket

workers send the results of those tasks back to the Racket master (Section 2.7.1).

A new model, Kbidirectional, takes into account that the task data is serialised on the racket

master and then transmitted. The return value is serialised on pycket and then transmitted.

The user program could return any data type so the equation needs to be parameterised in

terms of the data structure sent, x, and received, y.

Kbidirectional(x :: t, y :: u) = Kr(x) +Kp(y) (4.4)

Kr(x :: t) = l(x)(nr + sr(t)) (4.5)

Kp(x :: t) = l(x)(np + sp(t)) (4.6)

Kbidirectional, is defined as the sum of the Racket cost of sending x, Kr(x), and the Pycket

cost of receiving y, Kp(y).

Kr(x) and Kp(y) are defined in Equations (4.5) and (4.6) respectively. In equation 4.5,

for racket, nr is the network send parameter value and sr is the serialisation weighting. In

equation 4.6, for pycket, np is the network send parameter value and sp is the serialisation

weighting. A full model of the communication cost is beginning to come together.

4.2.6 Type-indexed Bidirectional Serialisation/Deserialisation Model

Kbidirectional includes the time taken to serialise a data structure and send it, but so far it

fails to say anything about what happens to the serialised data structure when it reaches

the other end of the transmission. A serialised message must be deserialised on the other

end of the communication channel. In ASL, deserialisation uses distinct algorithms from

deserialisation, and have differing performance (this is borne out by the differences between

results in Tables 4.4 and 4.6).

60 CHAPTER 4. COMMUNICATIONS COST MODELLING

To incorporate the different serialisation and deserialisation costsKtbsd (tbsd - Type-indexed

Bidirectional Serialisation/Deserialisation), the s term is replaced with the term sdwhich in-

clude the deserialisation costs, Equations (4.8) and (4.9) for Racket and Pycket respectively.

Each serialisation/deserialisation term is then expanded to be the sum of the appropriate seri-

alisation and deserialisation weightings; the expansion for the Racket master node is shown

in Equation (4.10) and the dual for the Pycket worker is shown in Equation (4.11).

4.2.7 Deserialisation Experiments

These experiments intend to parameterise values for Equations (4.10) and (4.11). Similarly

to Section 4.2.3, measurement of the deserialisation time and linear regression are used to

determine the weightings and overheads.

Methodology

This experiment measures deserialisation time for different serialised data types by deseri-

alising the binary representation of each data type 5 times and calculating the average time

to deserialise that data type. This is repeated 1000 times for each data type, with a varying

random input parameter to determine the size/shape of the data structure.

Results Again, the results show that the deserialisation time is linearly proportional to

the size of the structure to be deserialised in bytes. A selection of results from the twelve

tested types are shown in Figures 4.5 and 4.6, showing obvious linear behaviour and some

non-linear exceptions. Memory allocation behaviour is suspected to be responsible for the

non-linear or multi-phase behaviour. Tables 4.6 and 4.7 contains the parameter values for

each architecture. Again, the GPG and FATA platforms produce broadly similar parameters,

but deserialisation on FATA is generally more costly.

Ktbsd(x :: t) = Kr(x) +Kp(x) (4.7)

Kr(x :: t) = l(x)(nr + sdr(t)) (4.8)

CHAPTER 4. COMMUNICATIONS COST MODELLING 61

Figure 4.5: Deserialisation Time against Data Size separated by type (Racket; GPG)

Type Gradient (Racket) (ms/byte) Gradient (Pycket) (ms/byte)

bstr 1.4517× 10−6 3.7799× 10−7

flmatrix 1.1487× 10−5 3.9492× 10−6

flvector 1.0878× 10−5 3.8078× 10−6

list 5.8485× 10−5 4.1530× 10−5

string 6.7701× 10−6 1.4029× 10−6

vecbytes 1.6326× 10−6 8.5128× 10−7

vecstring 1.0073× 10−5 1.7119× 10−6

vector 2.4100× 10−5 1.0725× 10−5

vector2 1.5310× 10−5 1.0288× 10−5

Table 4.6: Deserialisation parameters (GPG)

62 CHAPTER 4. COMMUNICATIONS COST MODELLING

Figure 4.6: Deserialisation Time against Data Size separated by type (Pycket; GPG)

Type Gradient (Racket) (ms/byte) Gradient (Pycket) (ms/byte)

bstr 9.4100× 10−7 5.2340× 10−7

flmatrix 1.2263× 10−5 3.7345× 10−6

flvector 8.9018× 10−6 3.2911× 10−6

list 4.6259× 10−5 3.1729× 10−5

string 4.2442× 10−6 8.4670× 10−7

vecbytes 4.5160× 10−5 1.5891× 10−5

vecstring 7.9376× 10−5 2.1175× 10−5

vector 1.1266× 10−5 8.6151× 10−6

vector2 5.6672× 10−5 2.6268× 10−5

Table 4.7: Deserialisation parameters (FATA)

CHAPTER 4. COMMUNICATIONS COST MODELLING 63

Kp(x :: t) = l(x)(nr + sdp(t)) (4.9)

sdr(t) = sr(t) + dp(t) (4.10)

sdp(t) = sp(t) + dr(t) (4.11)

4.2.8 Discussion

The results in Section 4.2.7 show that generally, the (de)serialisation times of the primitive

types are linear with respect to their data size and thus suitable for calibrating the model

Ktbsd. It is noted that (de)serialisation dominates the model, begin an order of magnitude

more costly than network transmission. Ktbsd meets two of the requirements specified in

Section 4.1 in that it accounts for both Racket and Pycket and it accounts for the different

communications patterns on the master and worker nodes. The GPG and FATA platforms

produce broadly similar parameters, but deserialisation on FATA is generally more costly.

4.3 Validating an Additive Property of Cost Model

The cost modelKtbsd has inferred weightings for 11 simple data types, but it is possible - even

likely - that the data that will be seen in a live system will consist of aggregations of these

simple data types or aggregations of those aggregations. It is unfeasible to enumerate each

likely possible combination of data types and test them as in section 4.2.3 and section 4.2.7.

However, this is unnecessary if the cost model is additive, i.e the communication cost of an

aggregate data type of another type is equal to the sum of the costs of the other type, with a

weighting factor varying depending on the type of the containing type.

The required additive property is illustrated in Equation (4.12) , where the (de)serialisation

cost s of an aggregate type t containing types of u is defined as a weighting factor a multi-

plied by the sum of (de)serialisation costs s of each u. Note that this example has a homoge-

neous aggregate type - every structure contained in t is of type u. Heterogeneous aggregate

64 CHAPTER 4. COMMUNICATIONS COST MODELLING

types, where the member types are not all the same, are also supported in the ASL system,

and Equation (4.12) must also hold in this situation for K to be useful.

s(t(u)) = a(t)

len(t)∑
n=0

s(u) (4.12)

4.3.1 Experiments

To investigate this additive property we experiment with homogeneous and heterogeneous

aggregate types, comparing the actual time taken to serialise the aggregate data structure with

the cost predicted by Equation (4.12). When plotting the actual time against the predicted, if

a linear relationship exists, the additive property can be said to hold, and the gradient of this

linear model will be the parameter a for that type.

Note that these experiments refer to the GPG platform only.

Heterogeneous Additive Types

A vector containing different data structures of random sizes is repeatedly (de)serialised and

the time taken to do so recorded.

The results for racket can be found in Figures 4.9 and 4.10 and those for pycket can be found

in Figures 4.7 and 4.8. Clear linear relationships can be seen for both serialisation and dese-

rialisation, strongly suggesting that the additive property holds for vectors of heterogeneous

types.

Homogeneous Additive Types

This experiment is conducted similarly to that in section 4.3.1, except that the data structures

tested exclusively consist of increasingly nested vectors of integers and increasingly nested

lists of integers both up to a maximum dimension of 5 considered in addition to vectors.

The results show a linear relationships between the predicted cost and the actual serialisation

time, strengthening the conclusion that the additive property holds for both vectors and lists

of heterogeneous types.

CHAPTER 4. COMMUNICATIONS COST MODELLING 65

Figure 4.7: Actual serialisation time vs predicted serialisation time for heterogeneous tuples
(Pycket)

66 CHAPTER 4. COMMUNICATIONS COST MODELLING

Figure 4.8: Actual deserialisation time vs predicted deserialisation time for heterogeneous
tuples (Pycket)

CHAPTER 4. COMMUNICATIONS COST MODELLING 67

Figure 4.9: Actual serialisation time vs predicted serialisation time for heterogeneous tuples
(Racket)

68 CHAPTER 4. COMMUNICATIONS COST MODELLING

Figure 4.10: Actual deserialisation time vs predicted deserialisation time for heterogeneous
tuples (Racket)

CHAPTER 4. COMMUNICATIONS COST MODELLING 69

Type Gradient
(racket)

Intercept
(racket)

Gradient (py-
cket)

Intercept (py-
cket)

‘string’ ‘list’ 1.4527 −2.8272 1.6359 −0.6187
‘string’ ‘list’
‘vector1’
‘flvector’

1.0771 −2.4532 1.2957 0.0626

‘string’ ‘list’
‘vector1’
‘flvector’ ‘bstr’
‘bstr’ ‘string’
‘vector1’

0.9001 −1.9354 1.1193 0.3294

‘string’ ‘list’
‘vector1’
‘flvector’ ‘bstr’
‘bstr’ ‘string’
‘vector1’ ‘list’
‘flvector’

1.0724 −6.0817 1.2278 0.2874

Table 4.8: Additive parameters

4.4 ASL Integration

The cost model is implemented to minimise any overhead from its calculation. The existing

ASL serialisation and deserialisation code is modified so that it stores information about the

type and size of the data which has been (de)serialised. (De)serialising composite types such

as lists or vectors results in the types and sizes of all the constituents being stored also. The

cost is calculated by using the type information to lookup the weightings in a hash table,

and multiplying the weighting by the size of the data structure. For aggregate, the cost is

calculated from recursive sum of the costs of the constituents.

After a completed send or receive of data, a comms-send or comms-recv event is gen-

erated, with the cost of the send or receive as its value. A function total-comms-cost

retrieves all the comms-send and comms-recv events and sums them, giving the total

comms cost up to that point in the execution of the ASL program.

70 CHAPTER 4. COMMUNICATIONS COST MODELLING

Table 4.9: Validation Benchmarks

Benchmark

Primes
Sum Euler

Matrix Multiplication
Odd

Sequence Alignment

4.5 Cost Model Validation

This section describes the cross-validation of the parameterised cost model, implemented

in ASL against real-world programs. It is hypothesised that the predicted communication

cost will be directly proportional to the measured communications overhead and that this

relationship will be a one-to-one correspondence. This will show that the model satisfies the

requirement of costing arbitrary types (Section 4.1).

4.5.1 Benchmarks

The benchmarks used in the validation are shown in Table 4.9. These benchmarks were

chosen to provide a range of different communication patterns i.e Sum Euler has very little

data communication, while Matrix Multiplication sends and receives significant volumes of

data.

4.5.2 Hardware and Software Environment

The benchmarks are run on GPGcluster, consisting of 16 2.0 GHz Xeon servers with 64

GB of RAM running Ubuntu 14.04. Each benchmark uses 4 nodes of the cluster. The

FATA machine — a 2.6GHz Xeon server with 64GB of RAM — is also used to validate

the model. Revision d45e79919f of branch runtime_trace_analysis of the ASL

Pycket fork [98] are used.

CHAPTER 4. COMMUNICATIONS COST MODELLING 71

Figure 4.11: Plot of predicted communications costs vs actual overheads for odd filter —
GPG platform

Table 4.10: Fit Gradients of Cross-validation Plots - GPG

Benchmark Gradient
Odd 0.9402103590702535

Primes 97.23471323528817
matmul 4.676577511527445

euler 0.28252062453154586
seq 0.6026394666104261

4.5.3 Methodology

Each benchmark is run repeatedly with randomly generated inputs. The ASL runtime is mod-

ified to set the task granularity as small as possible - this minimises any adaptive behaviour

which may cause variation in communications patterns. After each benchmark run, the pre-

dicted total communication cost and measured total overhead are recorded. The measured

overhead is calculated by subtracting the execution time on each worker node from the total

execution of the parallel program.

4.5.4 Results and Analysis

Figure 4.11 shows a clear linear relationship between the predicted communications cost and

the measured communications overhead for the odd filter benchmark. The remaining figures

can be found in Appendix B.3, all show the same linear relationship.

The gradients of the fits of each plot for each platform can be found in Tables 4.10 and 4.11.

The gradients show some variation between benchmarks, but are all generally close together.

72 CHAPTER 4. COMMUNICATIONS COST MODELLING

Table 4.11: Fit Gradients of Cross-validation Plots - FATA

Benchmark Gradient

odd 0.4434298124236402
primes 0.4002519269231327
matmul 0.025140523138066674

euler 0.03846057406226092
seq 0.1215564168981652

Both GPG and FATA produce similar distributions of gradients, but the model on FATA

seems to produce worse underestimations The variation could be the result of errors in the

original training of the model or minor inaccuracies in the calculation of aggregate types.

The data (de)serialised is generally in nested lists.

These results suggest that the communications cost model is an accurate predictor of com-

munications overhead in the ASL system in real-world parallel programs.

4.5.5 Performance Overhead

The implementation of K in ASL is deeply intertwined with the serialisation and deserial-

isation algorithms. On Racket, K adds an overhead of 9.7% to (de)serialisation, with an

overhead of 18.8% on Pycket. The performance overheads quoted above are strictly the ex-

tra time required to compute K compared to (de)serialisation alone. Integrating K does not

affect performance of other parts of an ASL program.

4.6 Summary

The specifications outlined in Section 4.1, require a complex model. The final version of

the cost model K, Ktbsd, satisfies these requirements. Ktbsd accounts for the use of both

Racket and Pycket, including (de)serialisation and network transmission parameter values

for both platforms. It accounts for the master-worker architecture defined in Section 2.7.1 by

including parameter values for both serialisation and deserialisation. The additive property

demonstrated in Section 4.3 and the validation in Section 4.5 show that K meets the need to

cost arbitrary data types.

CHAPTER 4. COMMUNICATIONS COST MODELLING 73

It is noted with interest that the calibration for K is dominated by (de)serialisation. It is be-

lieved that K constitutes the first runtime, dynamic cost model for serialisation and network

communication.

74 CHAPTER 4. COMMUNICATIONS COST MODELLING

75

Chapter 5

Combined Cost Modelling

Chapter 3 and Chapter 4 present computation (Γ) and communication (K) cost models,

which have been shown to accurately model those respective program costs. This chapter

presents a new model, T , that unifies Γ and K.

Since any parallel ASL program will have computation and communication components, it

is necessary to combine the two cost models.

This chapter’s hypothesis is that such a combined model can more accurately predict a good

task size than the default ASL implementation or by using Γ alone. Note: the result is more

general than for ASL. It may apply to other platforms.

This chapter presents a theoretical derivation of a unified cost model from the two previous

cost models Γ and K, and theorises about how that unified model may be used to predict the

optimal task granularity. Finally, the ability of the model to choose good task group sizes for

real programs is demonstrated.

5.1 Deriving a Combined Cost Model

5.1.1 ASL Architecture

A full description of the ASL architecture is given in Section 2.7. The key aspects of the

ASL architecture that must be accounted for by the combined model are reprised below.

The basic architecture of ASL is a master/slave architecture. The master node runs on the

76 CHAPTER 5. COMBINED COST MODELLING

Racket virtual machine. The master node interprets the ASL program and builds a task graph

from the skeleton structure. This task graph is an acyclic, directed bipartite graph, where

the vertices are alternately tasks and futures and the edges are dependencies between them.

A task graph is evaluated by applying the function in the task to its input future, until no

unevaluated tasks remain. Tasks are generally not distributed individually to the worker

nodes; connected sub-graphs of the task graph are grouped together into task groups. Task

groups are distributed to available workers by the scheduler and the master node then waits

for the result to be sent back to it. The worker node sends the result future back to the master

along with statistical information, including the Γ cost of the tasks in the task group.

The AS scheduler attempts to produce task groups of a predetermined ‘ideal’ size. The

scheduler feeds the returned Γ costs of tasks into a linear regression engine and uses the

result to choose the optimal number of tasks for a task group.

5.1.2 Derivation of Combined Model

The cost models Γ (Section 3.4.2, Equation (3.4)) and K (Section 4.2.7, Equation (4.7))

must be integrated into a unified model for the ASL system while taking into account the

architecture described in Section 5.1.1. This model is denoted with the symbol T .

This model is based on the following assumptions:

1. No task work is ever executed on the master node. If work was performed on the

master node, it would be invisible to ASL’s costing. This assumption is always true, as

the architecture of ASL schedules all work on the worker nodes.

2. The overhead caused by the JIT compiler for (de)serialisation is minimal. The (de)serialisation

algorithms will be have to be warmed up on the Pycket worker nodes. However, since

the same instance of Pycket is run on a single worker for the entire lifetime of the ASL

program, this overhead will be amortised quickly.

3. Non-ASL network traffic is minimal. Other network traffic could interfere with ASL

network transmission.

4. The network is never saturated. This has not been observed when developing the

CHAPTER 5. COMBINED COST MODELLING 77

network cost model K, but if it occurred, it could cause K to underpredict the trans-

mission cost.

The development of the model starts with very simple abstractions and then adds compli-

cations. In the following equations, n and p refer to the number of groups and processors

respectively. The symbol t denotes a single task, and g an average task group. φ represents a

whole program.

In the simplest case there is a single sequential task t and only computation cost need be

accounted for.

T (φ) = Γ(t) (5.1)

Equation (5.1) describes the model for a purely sequential program. Since there is only one

task, there is only one task group, which constitutes the entire program i.e. φ = g = t. With

this model sequential ASL programs can be costed.

Equation (5.2) introduces parallelism, parameterised by n and p. In Equation (5.2), T is

defined as the computational cost of an average task group in φ, Γ(g), multiplied by the

number of groups, n, divided by the number of processors, p. In the remaining equations,

Γ(g) is always the average cost.

T (φ) =
n

p
Γ(g) (5.2)

Tm(φ) = nKm(g) (5.3)

Tw(φ) =
n

p
(Γ(g) +Kw(g)) (5.4)

Introducing communication into the model, there are now two components — the total cost

on the master node (Equation (5.3)) and the total cost on the worker nodes (Equation (5.4)).

In Equation (5.3), the total cost T on the master node is equal to the number of task groups n

multiplied by the communications cost on the master for a task groupKm(g) — based on the

observation that serialisation and deserialisation of tasks on the master happens sequentially.

78 CHAPTER 5. COMBINED COST MODELLING

In Equation (5.4), the total cost Tw on the worker nodes is defined as the ratio of task groups

n to processors p, multiplied by the sum of the computational cost of the task group Γ(g)

and the worker node component of the communications cost Kw(g).

The total cost of the entire system is defined in Equation (5.5) as the maximum of the com-

munication on the master node (Equation (5.3)) and the computation communication costs

on the worker (Equation (5.4)).

T (φ) = max(Tm(p), Tw(p)) (5.5)

The final, expanded version of the model is shown in Equation (5.6). Here, Km and Kw are

the communication costs for the master and worker, respectively. They are defined in terms

of the equations in Section 4.2.

T (φ) = max(nKm(g),
n

p
(Γ(g) +Kw(g))) (5.6)

5.2 Determining Good Task Granularity

In this section, the combined model defined in Section 5.1 is used to determine a good task

granularity for a given parallel program.

5.2.1 Definitions

O is defined as a function that returns the optimal task granularity for a given input cost

function. The simplest example would be O(t), where t is the parallel execution time. O(t)

returns the task group granularity which produces the minimal value of t over a range of

task granularities. Other defined functions are O(T) and its components O(Tm) and O(Tw);

defined in terms of T , Tm and Tw (Equations (5.3), (5.4) and (5.6) respectively).

These definitions will be used throughout the remainder of this section.

CHAPTER 5. COMBINED COST MODELLING 79

Table 5.1: Benchmarks

Benchmark name Short Name

Prime Filter primes
Mandelbrot mandel
Sum Euler sumeuler

Batch Sequence Alignment seq
Odd Filter odd

Matrix Multiplication matmul

5.2.2 Benchmarks

The benchmarks in this section (listed in Table 5.1) have been chosen to produce a range of

communication and computation patterns. All these benchmarks are implemented as parallel

programs using the AS library. AS reads an environment variable $GRAN that tells the sched-

uler to attempt to schedule groups that have an average execution time equal to the value of

$GRAN in milliseconds.

Prime Filter uses the par-filter skeleton to apply a probabilistic primality test algorithm. In

this case, a list of 1,000,000 candidate numbers, beginning at 100,000 are used as the input

values. The Miller-Rabin primality test is used.

Mandelbrot is the classic Mandelbrot set problem. The benchmark consists of a square

Mandelbrot set calculated in parallel, with the par-map skeleton applied to each row.

Sum Euler applies Euler’s totient function over a list of integers and sums the results. This

benchmark applies the totient function using par-map on each integer in the input list. The

results are then summed using the seq-reduce skeleton.

Batch Sequence Alignment uses the Smith-Waterman algorithm to find the best alignments

of a random input string against random test strings using the par-map skeleton.

Odd Filter is a simple benchmark originally developed to test the par-filter skeleton. It

simply uses par-filter to return all the odd numbers from a list of input integers.

Matrix Multiplication uses par-map to multiply two matrices together. Parallelism is

achieved by splitting one matrix into rows and applying par-map on each row.

80 CHAPTER 5. COMBINED COST MODELLING

5.2.3 Methodology

Each benchmark is executed for increasing values of $GRAN. The particular range of $GRAN

values varies for each benchmark - values are chosen to cover the smallest possible task size

for a given problem, and the largest practical task size, given the constraints of the computing

resource used. The number of discrete values of $GRAN ranges from 138 to 1200. The

execution time for the benchmark, the number of task groups, the number of tasks per group,

Γ, Kw and Km are all recorded for each benchmark run.

5.2.4 Platform

The benchmarks are run on GPG, consisting of 16 2.0 GHz Xeon servers with 64 GB of

RAM and gigabit Ethernet running Ubuntu 14.04; and FATA, consiting of a 32-core 2.6Ghz

Xeon with 64GB of RAM. Each benchmark uses 16 Pycket workers, one on each node

of the cluster. Revision d45e79919f of branch runtime_trace_analysis of the

Pycket fork [98] is used.

5.2.5 Results

A sample of the results are shown in Figures 5.1 through 5.7. Each figure shows results for

a single benchmark for the indicated architecture, and shows a plot of execution time versus

task granularity, and plots of Tm, Tw and T versus task granularity. The remaining graphs

can be found in Appendix C.1.

5.2.6 Predicting Optimal Granularities

Looking at Figures 5.1 to 5.7, for nearly every benchmark there is a point where the total

execution time is minimised with respect to task granularity. There is also a phase change

point on the plots of Tm, Tw and T where the rate of decrease of each cost function declines

rapidly, and the graph levels out, and these points appear to correspond with the minima in

the plots of execution time against task granularity.

For each plot of execution time, there is generally an initial sharp fall in execution time with

increasing task granularity, then a levelling off followed by a gradual increase in execution

CHAPTER 5. COMBINED COST MODELLING 81

Figure 5.1: Prime Filter Results — GPG

82 CHAPTER 5. COMBINED COST MODELLING

Figure 5.2: Prime Filter Results — FATA

CHAPTER 5. COMBINED COST MODELLING 83

Figure 5.3: Sum Euler Results — GPG

84 CHAPTER 5. COMBINED COST MODELLING

Figure 5.4: Matrix Multiplication Results — GPG

CHAPTER 5. COMBINED COST MODELLING 85

Figure 5.5: Mandelbrot Results — GPG

86 CHAPTER 5. COMBINED COST MODELLING

Figure 5.6: Mandelbrot Results — FATA

CHAPTER 5. COMBINED COST MODELLING 87

Figure 5.7: Odd Filter Results — GPG

88 CHAPTER 5. COMBINED COST MODELLING

time. It can then be deduced that the optimal task granularity (O(t)) is when the measured

runtime is at a minimum.

Correspondingly, in the plots of Tm, Tw and T there is an initial sharp fall in the respective

value of Tm, Tw or T with respect to task granularity, followed by a levelling off. However,

there is no corresponding later increase in these plots. This is not of concern, as the first

point where the gradient of the plot is flat corresponds with the O(t) point from the plot of t

vs granularity.

There is little observable difference between the results seen from the GPG and FATA plat-

forms.

There are a few exceptions to these observed trends. Figure 5.5 shows a “banding” the plots

of t, Tw and T . Since this banding is not visible in the plot of Tm, it is most likely the result of

computation behaviour — the range of possible values for Γ is perhaps too high for a given

task size to make a reasonable prediction (this is possibly to be excepted with calculating the

Mandelbrot set). The range of execution times on this graph is very tight and the execution

time values are noisy. It may be that changing granularity affects some programs less than

others.

The SumEuler results in Figure 5.3 show a similar pattern to the Mandelbrot results. Again,

the values for t and Γ are very noisy.

Figure 5.4 doesn’t deviate much from the general case, except that its initial fall-off in t, Tm,

Tw and T is much less dramatic.

Figure 5.7 shows an unusual graph for t, showing a second and third drop off after the

first. Given the simplicity of this benchmark along with its constant communication and

computation patterns, this behaviour is most likely a result of network interference, or I/O

patterns.

The Mandelbrot, SumEuler and Odd filter observations are also seen in the FATA results.

Tables 5.2 and 5.3 contain values for O(t), O(Tm), O(Tw) and O(T) — the best task group

granularity for the respective cost function — for each benchmark, along with the corre-

sponding execution time at that predicted granularity, for the GPG and FATA platforms.

The values for O(t) are determined by reading the minimum values of t off the graph, while

O(Tm),O(Tw) andO(T) are determined by visual inspection of the graphs. The correspond-

CHAPTER 5. COMBINED COST MODELLING 89

Benchmark O(t) O(Tm) O(Tw) O(T) O(Γ) O(K)

primes 10.52 7 4 7 N/A 7
seq 9.61 8 5 8 36 8

sumeuler N/A 150 N/A N/A N/A 150
matmul N/A 10 5 5 N/A 10
mandel 54.0 50 N/A N/A N/A 50

odd 0.51 0.5 0.5 0.5 N/A 0.5

Table 5.2: Best Task Granularities — GPG

Benchmark O(t) O(Tm) O(Tw) O(T) O(Γ) O(K)

primes 8.67 4 4 4 N/A 4
seq 17.42 20 19 20 N/A 20

sumeuler 100 150 N/A N/A N/A 150
matmul N/A 10 9 9 N/A 10
mandel 47.0 25 N/A N/A N/A 25

odd 0.61 0.6 0.6 0.6 0 0.6

Table 5.3: Best Task Granularities — FATA

t at optimal granularity ASL
Benchmark t Tm Tw T Γ K

primes 30.46 32.07 32.55 32.07 N/A 32.07
seq 2.72 3.04 3.26 3.04 3.34 3.04

sumeuler 16.36 17.04 N/A N/A N/A 17.04
matmul 20.11 20.53 20.54 20.54 N/A 20.53
mandel N/A 5.07 N/A N/A N/A 5.07

odd 4.67 5.41 5.41 5.41 N/A 5.41

Table 5.4: Total execution times by using predicted granularity for each predictor cost model
— GPG

t at optimal granularity ASL
Benchmark t Tm Tw T Γ K

primes 3.02 3.67 3.67 3.67 N/A 3.67
seq 2.83 2.93 2.96 2.93 3.34 2.93

sumeuler 15.52 16.01 N/A N/A N/A 16.01
matmul 15.01 15.38 15.39 15.39 N/A 15.38
mandel 3.95 4.83 N/A N/A N/A 4.82

odd 4.95 5.85 5.85 5.85 5.75 5.85

Table 5.5: Total execution times by using predicted granularity for each predictor cost model
— FATA

90 CHAPTER 5. COMBINED COST MODELLING

Benchmark t (T) t (default) speedup

primes 32.07 38.28 19.3%
seq 5.14 3.34 53.9%

sumeuler N/A N/A N/A
matmul 20.54 26.18 27.4%
mandel N/A 6.38 N/A

odd 5.41 6.36 17.6%

Table 5.6: Comparison of best times using T as a predictor with times from default ASL
implementation — GPG

Benchmark t (T) t (default) speedup

primes 3.67 34.83 849.04%
seq 2.93 4.73 61.4%

sumeuler N/A N/A N/A
matmul 15.39 18.07 17.4%
mandel N/A 5.87 N/A

odd 5.85 5.44 -7.5%

Table 5.7: Comparison of best times using T as a predictor with times from default ASL
implementation — FATA

ing values for t at each predicted granularity are found in Tables 5.4 and 5.5. These values

are calculated by interpolating the plot of t vs task group granularity data into a smoothing

spline, and evaluating the spline function for the granularity read off the respective plot.

This table and the graphs in Section 5.2.5 show that the predictions of optimal task gran-

ularity from the combined model O(T) and its components O(Tm) and O(Tw) produce a

reasonable approximation of actual optimal task granularity read off from the graphs of t. It

is interesting that in most cases, Tm is the best predictor of the best task group size, and also

usually dominates the combined model T . This suggests that communications overhead is

dominating these particular benchmarks.

Tables 5.6 and 5.7 compares the execution time at the predicted granularity using T with the

actual execution time of the same program using the default configuration of ASL (the times

for the default configuration are an average of 10 runs). The use of T produces speedups of

17.6 to 53.9% compared with the default version on GPG, and speedups from -7.5 to 849%

on FATA1. For the benchmarks that could not be compared, using Tm as a predictor would

have resulted in a similar speedup.

1The speedup for primes is so extreme that it must be the result of some experimental error.

CHAPTER 5. COMBINED COST MODELLING 91

It is interesting to note that generally, the predicted granularities on both FATA and GPG are

similar, even with radically different parameter values for their cost models.

5.3 Summary

This chapter provides a motivation for and theoretical derivation of a combined computation

and communication model (Section 5.1). The combined cost model T has been shown exper-

imentally to make reasonable predictions of optimal task granularity, resulting in speedups of

up to 54% on GPG (Section 5.2.5). Tm, however, seems to make more consistently reliable

predictions, producing similar or identical task group granularities and speedups. These ob-

servations are seen on two different architectures. This suggests that master-side communi-

cation dominates, and it may be possible to ignore the computational cost entirely. However,

the benchmarks used in this chapter are not exhaustive by any means, so the prudent course

of action would be to use T to make predictions. The results in this chapter have shown a

degree of performance portability can be achieved on different architectures.

92 CHAPTER 5. COMBINED COST MODELLING

93

Chapter 6

Conclusion

This chapter summarises and concludes this thesis. Section 6.1 summarises the research.

Section 6.2 then outlines the limitations of the work, and Section 6.3 outlines potential di-

rections for future work. Section 6.4 presents some concluding remarks.

6.1 Summary

Parallel programming is extremely challenging, and the problem of performance portabil-

ity complicates it further. This work described in this thesis helps ease these problems by

supporting the Adaptive Skeleton library (ASL) in adjusting task size implicitly, without any

user intervention, other than selecting an architecture.

Achieving this required the development of the first JIT-based cost model, Γ, and a dynamic

communications cost model Γ. These were combined into the unified cost model, T , that

allows the prediction of good group sizes in ASL.

This research has been reported in Resource Aware Computing 2016 and Functional High

Performance Computing 2016, and the primary research contributions are as follows.

The Development and Validation of the First Dynamic Computational Cost

Model for JIT Traces Chapter 3 describes the design and implementation of a system

for extracting JIT trace information from the Pycket JIT compiler. Three computational

94 CHAPTER 6. CONCLUSION

cost models for JIT traces, ranging from very simple CM0 to the parametric CMw (Equa-

tions (3.1) to (3.3)) are defined. A regression analysis over 41 programs from the Pycket

benchmark suite to automatically tune the architecture-specific cost model parameters for

two architctures (Equations (3.7) and (3.8)). While Γ may not provide accurate absolute

performance predictions (Figure 3.4), it is shown that the tuned cost model can be used to

accurately predict the relative execution times of transformed programs using six bench-

marks (Table 3.5). This model is integrated into the ASL system, and is applied to samples

of ASL tasks after JIT warm-up.

The development and validation of communications cost models for AS Chap-

ter 4 illustrates the development of the dynamic communications cost model, K, for the ASL

system.

Equations (4.1) to (4.11) describe increasingly complex abstract cost models for modelling

the communication cost, with the determined weightings shown in Tables 4.4 and 4.7.

Finally, it is shown that cost model instances for primitive data types can be combined to

accurately predict cost models for compound data types (figs. 4.7 and 4.9 and table 4.8).

Section 4.5 describes the cross validation of K on the benchmarks in table 4.9.

A unified cost model of jit computation and communication Chapter 5 develops

a model, T (eq. (5.6)), that combines the cost models created in Chapter 3 and Chapter 4 —

Γ and K.

Section 5.2.1 describes a theoretical method for predicting optimal group size using T and

an experimental validation of this approach. The results in table 5.2 and fig. 5.1 show that T

can be used to choose the correct ASL group size.

6.2 Limitations

The work described in this thesis is limited in a number of ways. There are also limitations

of ASL itself that affect the work described here.

In Chapter 3, the computational cost model, Γ, does not make good absolute predictions of

execution time between different benchmarks. While not strictly necessary, a cost model

CHAPTER 6. CONCLUSION 95

which accurately made such predictions would be more useful outwith the context of this

thesis or ASL. Related to this limitation, the regression model used to parameterise Γ has

been tested only with the parameters described; it is possible that a simpler model, or one

which grouped instructions in a different manner, could be more accurate.

Γ has been parameterised on two different hardware platforms. Testing on more platforms

would allow stronger claims on performance portability.

Pycket was chosen as the language platform for this work and ASL early on in the life of

the Adaptive Just-in-Time Parallelism (AJITPar) project, as it was one of the only reason-

ably mature trace-based JIT functional programming languages, and the original vision of

AJITPar involved using this for equational rewriting transforms. Ultimately, these types of

transforms were not used, so a more mainstream, mature tracing JIT language could have

been chosen. This would have increased the usefulness of this work. Similarly, Pycket — al-

though a relatively performant programming language — is not used in scientific computing,

and similar languages, such as python, that are used in scientific computing, make heavy use

of native code. If the work described here was to be seriously used in this domain, it would

need to have some way of modelling calls to native code.

The results in Chapter 5 are based on a limited number of parallel benchmarks; adding extra

benchmarks would add more credence to the results.

The network send/receive components ofK were determined with the assumptions that there

was minimal other activity on the network, and that the network never became congested.

This limits the usefulness of the model in environments where there is other network activity

or situations where the worker nodes send large results back to the master at exactly the same

time.

Both models Γ and K used linear regression constrained through the origin. This was nec-

essary as the unconstrained regression often resulted in negative y-intercepts. That type of

result is nonsensical in this context, as it suggests an overhead which confers a speedup,

or a negative time at an x of zero. However, this will inevitably affect the accuracy of the

regression somewhat.

The determination of the optimal group sizes in Section 5.2.5 is carried out by manual in-

spection. This introduces the risk of both manual error and unconscious bias.

96 CHAPTER 6. CONCLUSION

6.3 Future Work

The work detailed in this thesis addresses the problem of automatically determining the

optimal group size in ASL, and also provides two novel cost models for computation and

communication. This opens up possible avenues for future research, both in novel extensions

to the work, and in addressing the limitations discussed in Section 6.2. This section outlines

several of these potential future directions.

6.3.1 Support for other Programming Languages

As discussed in Section 6.2, the choice of Pycket as the language platform limits this thesis.

Porting the work described here to a more mainstream platform, would create many more

potential users. The obvious choice as a target language would be PyPy. First, this would

allow much of the engineering described in this thesis to be reused. Second, PyPy is mostly

compatible with Python, allowing a vast number of programs to potentially use the system.

Third, porting ASL to a more mature platform such as PyPy would avoid the awkward imple-

mentation issue of having the master and worker nodes be entirely different language virtual

machines. This would allow a number of improvements, including work stealing scheduling

and warmup of tasks on the master nodes. Finally, porting to PyPy would allow access to the

SciPy libraries [102], a popular library for scientific computing and data analysis in Python.

This would require extending Γ to account for the native libraries included in SciPy. ASciPY

was a proposed project to investigate applying the techniques of ASL to SciPy.

6.3.2 Improving Computational Cost Models

The computational cost model, Γ, makes accurate predictions of the effect on execution time

of applying code transformations to a program. It is limited in how well it predicts execution

time between programs. There is scope for potentially improving the absolute accuracy

of Γ. First, training Γ on a larger set of benchmarks could improve accuracy. Second,

reclassifying the JIT instructions, or creating additional more fine-grained instruction classes

could increase accuracy, although this runs the risk of over-fitting to the training set.

CHAPTER 6. CONCLUSION 97

The original model itself and the previously suggested improvements all assume linear in-

dependence between instructions i.e that the presence of one instruction does not affect the

execution time of another. However, this is not necessarily always true; caching, pipeline ef-

fects or speculative execution could all result in interdependence between instructions. There

are well known techniques for modelling these effects in code, and these could be applied to

Γ.

6.3.3 Other Applications of Cost Models

The cost models developed for this thesis have potential to be useful in other contexts. Γ

could be usefully be applied in the Pycket or PyPy compilers by tweaking the hotness thresh-

old — the point at which the interpreter decides that a loop should be JIT compiled. As it

stands, the PyPy/Pycket JIT compiles loops after a fixed number of iterations. Modifying

this fixed number based on the cost of a loop measured using Γ could perhaps result in better

performance. The same techniques could also be used on other platforms.

6.3.4 Other Approaches to JIT-based Parallelism

The work described in this thesis is one approach to applying JIT technology to parallelism,

in this case using JIT traces to alter the degree of parallelism. It would be interesting to see

an attempt to use trace-based JIT technology to safely identify possible parallelism or even

automatically dynamically parallelise code. This could be achieved by analysing the access

patterns in a JIT trace to identify dependencies between loop iterations, potentially allowing

the loop to be split into parallel tasks.

6.3.5 Adjustments to Skeleton Code

The work described in Chapter 5 allows the optimisation of parallelism by adjusting the

group size at the scheduler level. However, some programs may be hand-optimised by the

user e.g using a parallel map with very large tasks, to minimise communication overhead.

In such cases there is little that group size adjustment can achieve. There may be scope for

98 CHAPTER 6. CONCLUSION

using the techniques in Chapter 5 to inform the user that their hand optimisation may not be

optimal.

6.3.6 Cost Models for Unknown Hardware Platforms

Γ has only been parameterised for two hardware platforms, and the radical differences in

those sets of parameters shows the effect moving from one hardware platform to another can

have. It is not practical to train the models for every possible hardware platform or network

environment; however, it may be possible to develop a toolkit that would allow a user to

automatically train the cost models for their particular platform.

It would be interesting to train the cost model and evaluate the system on radically different

hardware, such as a true supercomputer, or a cloud-based cluster made up of virtual servers.

These would both have radically different communication and execution time cost environ-

ments, and hence Γ and K cost models. It would be particularly interesting to see how the

network environment on a virtualised cluster could be modelled — this would require exten-

sions to the cost models as a virtualised cluster will likely violate some of the assumptions

in Section 5.1.2. It would also be interesting to apply this work to a low-power cluster, e.g. a

Raspberry Pi cluster. In addition to work on the cost model, extra work would be needed to

ensure that Pycket and the ASL system both work on an ARM processor.

6.3.7 Use in Production Environment

Although the work described in this thesis has been tested experimentally, the benchmarks

used have all been small and simple. It would be of great value to apply ASL and the tech-

niques in Chapter 5 to a production environment with long-running, complex parallel code.

This would provide useful validation, as well as illuminating any unexpected issues.

6.4 Concluding Remarks

The work in this thesis addresses the challenges of parallel performance portability for JIT-

compiled languages. It contributes lightweight computation (Γ) and communication (K)

CHAPTER 6. CONCLUSION 99

cost models, and explores how they can be combined to improve task granularity in the ASL

system.

The work shows that this dynamic, cost-model driven approach using JIT technology has

promise, and that there are significant opportunities arising for future research.

100 CHAPTER 6. CONCLUSION

101

Bibliography

[1] R. R. Schaller, “Moore’s law: past, present and future,” Spectrum, IEEE, vol. 34,

no. 6, pp. 52–59, 1997.

[2] D. Geer, “Chip makers turn to multicore processors,” Computer, vol. 38, no. 5, pp.

11–13, 2005.

[3] “AJITPar project,” http://www.dcs.gla.ac.uk/~pmaier/AJITPar/, 2014, accessed:

2014-11-13.

[4] J. M. Morton, P. Maier, and P. Trinder, “Jit-based cost analysis for dynamic program

transformations,” Electronic Notes in Theoretical Computer Science, vol. 330, pp. 5–

25, 2016.

[5] P. Maier, J. M. Morton, and P. Trinder, “Jit costing adaptive skeletons for performance

portability,” in Proceedings of the 5th International Workshop on Functional High-

Performance Computing. ACM, 2016, pp. 23–30.

[6] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A.

Patterson, W. L. Plishker, J. Shalf, S. W. Williams et al., “The landscape of parallel

computing research: A view from berkeley,” Technical Report UCB/EECS-2006-183,

EECS Department, University of California, Berkeley, Tech. Rep., 2006.

[7] M. Flynn, “Some computer organizations and their effectiveness,” Computers, IEEE

Transactions on, vol. 100, no. 9, pp. 948–960, 1972.

[8] G. V. Wilson, Practical Parallel Programming, 1st ed., ser. Scientific and Engineering

Computation Series. The MIT Press, 1995.

http://www.dcs.gla.ac.uk/~ pmaier/AJITPar/

102 BIBLIOGRAPHY

[9] A. Grama, A. Gupta, G. Larypis, and V. Kumar, Introduction to Parallel Computing,

2nd ed. Pearson Addison Wesley, 2003.

[10] A. Barak and O. La’adan, “The mosix multicomputer operating system for

high performance cluster computing,” Future Generation Computer Systems,

vol. 13, no. 4–5, pp. 361 – 372, 1998, hPCN ’97. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0167739X9700037X

[11] D. Ridge, D. Becker, P. Merkey, and T. Sterling, “Beowulf: harnessing the power

of parallelism in a pile-of-pcs,” in Aerospace Conference, 1997. Proceedings., IEEE,

vol. 2. IEEE, 1997, pp. 79–91.

[12] D. W. Walker and J. J. Dongarra, “Mpi: a standard message passing interface,” Super-

computer, vol. 12, pp. 56–68, 1996.

[13] J. Nickolls and W. J. Dally, “The GPU computing era,” IEEE micro, vol. 30, no. 2, pp.

56–69, 2010.

[14] M. Garland, S. Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton, E. Phillips,

Y. Zhang, and V. Volkov, “Parallel computing in cuda,” IEEE micro, vol. 28, no. 4, pp.

13–27, 2008.

[15] K. O. W. Group et al., “The OpenCL specification,” version, vol. 1, no. 29, p. 8, 2008.

[16] T. Maruyama and T. Hoshino, “A c to hdl compiler for pipeline processing on fp-

gas,” in Field-Programmable Custom Computing Machines, 2000 IEEE Symposium

on. IEEE, 2000, pp. 101–110.

[17] C. Iseli and E. Sanchez, “A c++ compiler for fpga custom execution units synthesis,”

in FPGAs for Custom Computing Machines, 1995. Proceedings. IEEE Symposium on.

IEEE, 1995, pp. 173–179.

[18] R. F. van der Wijngaart, T. G. Mattson, and W. Haas, “Light-weight

communications on intel’s single-chip cloud computer processor,” SIGOPS

Oper. Syst. Rev., vol. 45, no. 1, pp. 73–83, Feb. 2011. [Online]. Available:

http://doi.acm.org/10.1145/1945023.1945033

http://www.sciencedirect.com/science/article/pii/S0167739X9700037X
http://doi.acm.org/10.1145/1945023.1945033

BIBLIOGRAPHY 103

[19] R. Schooler, “Tile processors: Many-core for embedded and cloud computing,” in

Workshop on High Performance Embedded Computing, 2010.

[20] G. Chrysos, “Intel® xeon phi™ coprocessor-the architecture,” Intel Whitepaper, vol.

176, 2014.

[21] C. Severance and K. Dowd, “High performance computing,” 1998.

[22] “Sunway mpp,” https://www.top500.org/site/50623, accessed 30th January, 2018.

[23] “Top500 list november 2017,” https://www.top500.org/lists/2017/11/.

[24] C. Hewitt, “Viewing control structures as patterns of passing messages,” Artificial

intelligence, vol. 8, no. 3, pp. 323–364, 1977.

[25] M. I. Cole, Algorithmic skeletons: structured management of parallel computation.

Pitman London, 1989.

[26] J. Subhlok, J. M. Stichnoth, D. R. O’Hallaron, and T. Gross, “Exploiting task

and data parallelism on a multicomputer,” in Proceedings of the Fourth ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming, ser.

PPOPP ’93. New York, NY, USA: ACM, 1993, pp. 13–22. [Online]. Available:

http://doi.acm.org/10.1145/155332.155334

[27] “Java fork/join,” https://docs.oracle.com/javase/tutorial/essential/concurrency/

forkjoin.html, accessed 30th January, 2018.

[28] D. Clark, “Openmp: A parallel standard for the masses,” Concurrency, IEEE, vol. 6,

no. 1, pp. 10–12, 1998.

[29] K. Hammond, “Glasgow parallel haskell (gph),” in Encyclopedia of Parallel Comput-

ing. Springer, 2011, pp. 768–779.

[30] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large clusters,”

Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[31] T. White, Hadoop: the definitive guide: the definitive guide. " O’Reilly Media, Inc.",

2009.

https://www.top500.org/site/50623
https://www.top500.org/lists/2017/11/
http://doi.acm.org/10.1145/155332.155334
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

104 BIBLIOGRAPHY

[32] C. Pheatt, “Intel® threading building blocks,” Journal of Computing Sciences in Col-

leges, vol. 23, no. 4, pp. 298–298, 2008.

[33] D. B. Skillicorn and D. Talia, “Models and languages for parallel computation,” ACM

Computing Surveys (CSUR), vol. 30, no. 2, pp. 123–169, 1998.

[34] H. Kasim, V. March, R. Zhang, and S. See, “Survey on parallel programming model,”

in Network and Parallel Computing. Springer, 2008, pp. 266–275.

[35] I. P. A. S. Committee et al., “Ieee std 1003.1 c-1995, threads extensions,” 1995.

[36] S. Oaks and H. Wong, Java threads. O’Reilly Media, Inc., 2004.

[37] A. Ho, S. Smith, and S. Hand, “On deadlock, livelock, and forward progress,” Tech-

nical Report, University of Cambridge, Computer Laboratory (May 2005), 2005.

[38] A. Tousimojarad and W. Vanderbauwhede, “Comparison of three popular parallel pro-

gramming models on the intel xeon phi,” in European Conference on Parallel Process-

ing. Springer, 2014, pp. 314–325.

[39] M. Klemm, M. Bezold, R. Veldema, and M. Philippsen, “Jamp: an implementation of

openmp for a Java dsm,” Concurrency and Computation: Practice and Experience,

vol. 19, no. 18, pp. 2333–2352, 2007.

[40] W. L. George, J. G. Hagedorn, and J. E. Devaney, “Impi: making mpi interoperable,”

Journal of Research of the National Institute of Standards and Technology, vol. 105,

no. 3, p. 343, 2000.

[41] R. W. Numrich and J. Reid, “Co-array fortran for parallel programming,” in ACM

Sigplan Fortran Forum, vol. 17, no. 2. ACM, 1998, pp. 1–31.

[42] T. El-Ghazawi and L. Smith, “Upc: unified parallel c,” in Proceedings of the 2006

ACM/IEEE conference on Supercomputing. ACM, 2006, p. 27.

[43] S. Marlow, R. Newton, and S. Peyton Jones, “A monad for deterministic parallelism,”

ACM SIGPLAN Notices, vol. 46, no. 12, pp. 71–82, 2011.

[44] P. W. Trinder, H.-W. Loidl, and R. F. Pointon, “Parallel and distributed Haskells,”

Journal of Functional Programming, vol. 12, no. 5, pp. 469–510, 2002.

BIBLIOGRAPHY 105

[45] P. Maier, R. Stewart, and P. Trinder, “Reliable scalable symbolic computation:

The design of SymGridPar2,” in Proceedings of the 28th Annual ACM Symposium

on Applied Computing, ser. SAC ’13. New York, NY, USA: ACM, 2013, pp.

1674–1681. [Online]. Available: http://doi.acm.org/10.1145/2480362.2480677

[46] S.-B. Schlz, “Single assignment c: efficient support for high-level array operations in

a functional setting,” Journal of Functional Programming, vol. 13, no. 6, pp. 1005–

1059, 2003.

[47] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation of the cilk-5

multithreaded language,” ACM Sigplan Notices, vol. 33, no. 5, pp. 212–223, 1998.

[48] “Timing analyis on code-level (TACLe),” http://www.tacle.eu, accessed: 2016-1-11.

[49] U. Dal Lago and R. Peña, Foundational and Practical Aspects of Resource Analysis:

Third International Workshop, FOPARA 2013, Bertinoro, Italy, August 29-31, 2013,

Revised Selected Papers. Springer, 2014, vol. 8552.

[50] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers - Principles, Techniques,

& Tools, 2nd ed. Pearson Addison Wesley, 2007.

[51] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti et al., “The worst-case execution-

time problem - overview of methods and survey of tools,” ACM Transactions on Em-

bedded Computing Systems (TECS), vol. 7, no. 3, p. 36, 2008.

[52] J. Abella, D. Hardy, I. Puaut, E. Quinones, and F. J. Cazorla, “On the comparison of

deterministic and probabilistic WCET estimation techniques,” in Real-Time Systems

(ECRTS), 2014 26th Euromicro Conference on. IEEE, 2014, pp. 266–275.

[53] V. Rodrigues, B. Akesson, M. Florido, S. M. de Sousa, J. P. Pedroso, and P. Vascon-

celos, “Certifying execution time in multicores,” Science of Computer Programming,

vol. 111, pp. 505–534, 2015.

[54] D. Spoonhower, G. E. Blelloch, R. Harper, and P. B. Gibbons, “Space profiling for

parallel functional programs,” ACM Sigplan Notices, vol. 43, no. 9, pp. 253–264,

2008.

http://doi.acm.org/10.1145/2480362.2480677
http://www.tacle.eu

106 BIBLIOGRAPHY

[55] R. W. Kersten, B. E. Gastel, O. Shkaravska, M. Montenegro, and M. C. Eekelen,

“ResAna: a resource analysis toolset for (real-time) JAVA,” Concurrency and Com-

putation: Practice and Experience, vol. 26, no. 14, pp. 2432–2455, 2014.

[56] S. Hao, D. Li, W. G. Halfond, and R. Govindan, “Estimating mobile application en-

ergy consumption using program analysis,” in Software Engineering (ICSE), 2013

35th International Conference on. IEEE, 2013, pp. 92–101.

[57] C. Ferdinand and R. Heckmann, “ait: Worst-case execution time prediction by static

program analysis,” in Building the Information Society. Springer, 2004, pp. 377–383.

[58] C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto, “Source-level execution time

estimation of C programs,” in Proceedings of the ninth international symposium on

Hardware/software codesign. ACM, 2001, pp. 98–103.

[59] E. Albert, P. Arenas, J. Correas, S. Genaim, M. Gómez-Zamalloa, E. Martin-Martin,

G. Puebla, and G. Román-Díez, “Resource analysis: From sequential to concurrent

and distributed programs,” FM 2015: Formal Methods, pp. 3–17, 2015.

[60] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini, “Cost analysis of object-

oriented bytecode programs,” Theoretical Computer Science, vol. 413, no. 1, pp. 142–

159, 2012.

[61] M. Autili, P. Di Benedetto, and P. Inverardi, “A hybrid approach for resource-based

comparison of adaptable Java applications,” Science of Computer Programming,

vol. 78, no. 8, pp. 987–1009, 2013.

[62] D. Aspinall, R. Atkey, K. MacKenzie, and D. Sannella, “Symbolic and analytic tech-

niques for resource analysis of Java bytecode,” in Trustworthy Global Computing.

Springer, 2010, pp. 1–22.

[63] M. Hofmann, “Automatic amortized analysis,” in Proceedings of the 17th Interna-

tional Symposium on Principles and Practice of Declarative Programming. ACM,

2015, pp. 5–5.

BIBLIOGRAPHY 107

[64] E. Albert, J. Correas, G. Puebla, and G. Román-Díez, “Incremental resource usage

analysis,” in Proceedings of the ACM SIGPLAN 2012 workshop on Partial evaluation

and program manipulation. ACM, 2012, pp. 25–34.

[65] G. Barthe, P. Crégut, B. Grégoire, T. Jensen, and D. Pichardie, “The MOBIUS

proof carrying code infrastructure,” in Formal Methods for Components and Objects.

Springer, 2008, pp. 1–24.

[66] P. W. Trinder, M. I. Cole, K. Hammond, H.-W. Loidl, and G. J. Michaelson, “Resource

analyses for parallel and distributed coordination,” Concurrency and Computation:

Practice and Experience, vol. 25, no. 3, pp. 309–348, 2013.

[67] S. Fortune and J. Wyllie, “Parallelism in random access machines,” in Proceedings

of the tenth annual ACM symposium on Theory of computing. ACM, 1978, pp.

114–118.

[68] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian,

and T. Von Eicken, “Logp: Towards a realistic model of parallel computation,” in ACM

Sigplan Notices, vol. 28, no. 7. ACM, 1993, pp. 1–12.

[69] L. G. Valiant, “A bridging model for parallel computation,” Communications of the

ACM, vol. 33, no. 8, pp. 103–111, 1990.

[70] D. B. Skillicorn and W. Cai, “A cost calculus for parallel functional programming,”

Journal of Parallel and Distributed Computing, vol. 28, no. 1, pp. 65–83, 1995.

[71] R. Rangaswami, “A cost analysis for a higher-order parallel programming model,”

1996.

[72] E. Visser, “A survey of rewriting strategies in program transformation systems,” Elec-

tronic Notes in Theoretical Computer Science, vol. 57, pp. 109–143, 2001.

[73] S. L. P. Jones, “Compiling Haskell by program transformation: A report from the

trenches,” in Programming Languages and Systems - ESOP’96. Springer, 1996, pp.

18–44.

[74] S. P. Jones, A. Tolmach, and T. Hoare, “Playing by the rules: rewriting as a practical

optimisation technique in GHC,” in Haskell workshop, vol. 1, 2001, pp. 203–233.

108 BIBLIOGRAPHY

[75] N. Scaife, S. Horiguchi, G. Michaelson, and P. Bristow, “A parallel SML compiler

based on algorithmic skeletons,” Journal of Functional Programming, vol. 15, no. 04,

pp. 615–650, 2005.

[76] C. Brown, M. Danelutto, K. Hammond, P. Kilpatrick, and A. Elliott, “Cost-directed

refactoring for parallel Erlang programs,” International Journal of Parallel Program-

ming, vol. 42, no. 4, pp. 564–582, 2014.

[77] I. Bozó, V. Fordós, Z. Horvath, M. Tóth, D. Horpácsi, T. Kozsik, J. Köszegi, A. Bar-

well, C. Brown, and K. Hammond, “Discovering parallel pattern candidates in Er-

lang,” in Proceedings of the Thirteenth ACM SIGPLAN workshop on Erlang. ACM,

2014, pp. 13–23.

[78] J. Aycock, “A brief history of just-in-time,” ACM Computing Surveys (CSUR), vol. 35,

no. 2, pp. 97–113, 2003.

[79] T. Schilling, “Trace-based just-in-time compilation for lazy functional programming

languages,” Ph.D. dissertation, University of Kent, April 2013.

[80] M. Pall, “The luajit project,” 2008.

[81] C. F. Bolz, A. Cuni, M. Fijalkowski, and A. Rigo, “Tracing the meta-level: PyPy’s

tracing JIT compiler,” in Proceedings of the 4th workshop on the Implementation,

Compilation, Optimization of Object-Oriented Languages and Programming Systems.

ACM, 2009, pp. 18–25.

[82] T. Kotzmann, C. Wimmer, H. Mössenböck, T. Rodriguez, K. Russell, and D. Cox,

“Design of the Java HotSpot™ client compiler for Java 6,” ACM Transactions on

Architecture and Code Optimization (TACO), vol. 5, no. 1, p. 7, 2008.

[83] C. F. Bolz, T. Pape, J. Siek, and S. Tobin-Hochstadt, “Meta-tracing makes a fast

Racket,” 2014.

[84] B. J. Bradel and T. S. Abdelrahman, “The potential of trace-level parallelism

in Java programs,” in Proceedings of the 5th international symposium on

Principles and practice of programming in Java - PPPJ ’07. New York,

BIBLIOGRAPHY 109

New York, USA: ACM Press, Sep. 2007, p. 167. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1294325.1294348

[85] Y. Sun and W. Zhang, “On-line Trace Based Automatic Parallelization of

Java Programs on Multicore Platforms,” Journal of Computing Science and

Engineering, vol. 6, no. 2, pp. 105–118, Jun. 2012. [Online]. Available:

http://koreascience.or.kr/journal/view.jsp?kj=E1EIKI&py=2012&vnc=v6n2&sp=105

[86] H. G. Rotithor, “Taxonomy of dynamic task scheduling schemes in distributed com-

puting systems,” IEE Proceedings-Computers and Digital Techniques, vol. 141, no. 1,

pp. 1–10, 1994.

[87] J. Epstein, A. P. Black, and S. Peyton-Jones, “Towards Haskell in the cloud,” in ACM

SIGPLAN Notices, vol. 46, no. 12. ACM, 2011, pp. 118–129.

[88] K. A. Armih and M. K. Aswad, “A skeleton-based programming framework for het-

erogeneous parallel architecture,” 2015.

[89] K. A. Armih, “Armih phd thesis,” Ph.D. dissertation, 2015.

[90] I. Bozó, V. Fordós, Z. Horvath, M. Tóth, D. Horpácsi, T. Kozsik, J. Köszegi, A. Bar-

well, C. Brown, and K. Hammond, “Discovering parallel pattern candidates in erlang,”

in Proceedings of the Thirteenth ACM SIGPLAN workshop on Erlang. ACM, 2014,

pp. 13–23.

[91] I. Bozó, V. Fordós, D. Horpácsi, Z. Horváth, T. Kozsik, J. Köszegi, and M. Tóth,

“Refactorings to enable parallelization.” in Trends in Functional Programming.

Springer, 2014, pp. 104–121.

[92] J. Enmyren and C. W. Kessler, “SkePU: a multi-backend skeleton programming li-

brary for multi-GPU systems,” in Proceedings of the fourth international workshop

on High-level parallel programming and applications. ACM, 2010, pp. 5–14.

[93] C. Brown, H.-W. Loidl, and K. Hammond, “Paraforming: forming parallel haskell

programs using novel refactoring techniques,” in International Symposium on Trends

in Functional Programming. Springer Berlin Heidelberg, 2011, pp. 82–97.

http://dl.acm.org/citation.cfm?id=1294325.1294348
http://koreascience.or.kr/journal/view.jsp?kj=E1EIKI&py=2012&vnc=v6n2&sp=105

110 BIBLIOGRAPHY

[94] R. McIlroy and J. Sventek, “Hera-JVM: a runtime system for heterogeneous multi-

core architectures,” in ACM Sigplan Notices, vol. 45, no. 10. ACM, 2010, pp. 205–

222.

[95] “pycket-bench,” https://github.com/krono/pycket-bench, 2015, accessed: 2015-03-31.

[96] T. Pape, “Benchmarking pycket against some Schemes,” https://github.com/krono/

pycket-bench, accessed: 2016-01-09.

[97] “Computer languages benchmark game,” http://benchmarksgame.alioth.debian.org/,

accessed: 2016-01-09.

[98] J. M. Morton, “Pycket fork,” https://github.com/magnusmorton/pycket, accessed:

2016-01-09.

[99] P. Maier, J. M. Morton, and P. Trinder, “Towards an adaptive framework for perfor-

mance portability,” in Pre-proceedings of IFL 2015, Koblenz, Germany, 2015.

[100] ——, “Towards an adaptive skeleton framework for performance portability,”

December 2015, technical Report number TR-2016-001. [Online]. Available:

http://eprints.gla.ac.uk/120235/

[101] J. M. Morton, “Trace analysis utilities,” https://github.com/magnusmorton/

trace-analysis, accessed 2016-01-09.

[102] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific tools

for Python,” 2001–, [Online; accessed 24th January 2018]. [Online]. Available:

http://www.scipy.org/

[103] M. J. Crawley, Statistics: an introduction using R. West Sussex, England: John

Wiley & Sons, 2014.

[104] S. Russell and P. Norvig, Artificial intelligence: a modern approach. Upper Saddle

River: Prentice Hall, 1995.

https://github.com/krono/pycket-bench
https://github.com/krono/pycket-bench
https://github.com/krono/pycket-bench
http://benchmarksgame.alioth.debian.org/
https://github.com/magnusmorton/pycket
http://eprints.gla.ac.uk/120235/
https://github.com/magnusmorton/trace-analysis
https://github.com/magnusmorton/trace-analysis
http://www.scipy.org/

111

Appendix A

Cost Model Investigatory Work

Some of the work in Chapter 3 was driven by speculative experiments, or approaches which

were superseded. This appendix details that work.

A.1 Pycket Benchmark Suite Analysis

We must understand the nature and classifications of the types of traces seen in the aver-

age Pycket program. To do so, we will analyse the JIT instructions found in the Pycket

benchmark suite.

A.1.1 Whole Suite Analysis

A histogram of JIT operations, taken from traces generated by all the cross-implementation

benchmarks and shown in Figure 3.3, shows that overall these traces are also dominated by

“high-cost” instructions.

A.1.2 Program-level Analysis

Individual programs in the Pycket benchmarks suite show quite varying instruction distribu-

tions compared to that shown in Figure 3.3, though they are still dominated by guards and

object operations. Using k-means analysis, these programs can be divided into two clusters:

112 CHAPTER A. COST MODEL INVESTIGATORY WORK

Figure A.1: Most common instructions in cross-implementation Pycket benchmarks

Cluster 1 Cluster 2
ack, array1,fib, boyer, cpstak, ctak,

fibc, pnpoly, sum, dderiv, deriv, destruc,
sumloop, trav2, fibfp, diviter, divrec, lattice,

sumfp, nboyer, perm9, primes,
puzzle, sboyer, tak,

takl

Table A.1: Clusters for whole benchmarks

numeric and non-numeric. The numeric programs still have a significant proportion of object

operations. In Table A.1 Cluster 1 contains nearly all numerical benchmarks.

A.1.3 Trace-level Analysis

Looking at the 32013 individual trace fragments in the Pycket benchmark suite, a lot more

variation is seen compared to the variation between the whole program histograms. k-means

clustering shows 3 distinct clusters, the centroids of which are shown in Table A.2.

Traces in cluster 1 outnumber both 2 and 3 combined and are again dominated by object

instructions and guards. From the centroid of cluster 2 we can see that the proportion of

allocation instructions is much higher; this could correspond to the “cleaning up” portion

CHAPTER A. COST MODEL INVESTIGATORY WORK 113

Cluster count object (%) array (%) numeric (%) alloc (%) guards (&) jumps (%)
1 17946 38 0.15 0.69 5.6 51 4.0
2 9934 59 0.12 0.51 19 16 4.8
3 4133 22 4.8 11 1.6 54 6.8

Table A.2: Trace fragment centroids

of a trace where previously unboxed primitives are boxed again or possibly cons functions

calls. Cluster 3 contains a higher proportion of array and numerical instructions.

A.2 Cost Model Search

This section describes previous attempts at attempting to determining the weights for the

cost model CMW . These approaches were necessary given the performance restrictions of

checking each proposed model at the time.

To use the abstract weighted cost model CMW (section 3.4.1), it is necessary to find values

for each of the five weight parameters in equation 3.3. Rather than simply guess at appropri-

ate values, we can systematically search the parameter space for an optimal solution. To do

this a set of benchmarks are required, along with a search approach and a means of checking

the accuracy of the cost model.

A.2.1 Performance Benchmarks

Using the cross-implementation benchmark suite from pycket-bench (section A.1), with the

addition of the Racket Programming Languages Benchmark Game[97] benchmarks, the ex-

ecution times and trace logs for each benchmark are recorded. The execution times are the

average of 10 runs.

The platform is an Ubuntu 15.04 system with an Intel Core i5-3570 quad-core 3.40 GHz pro-

cessor and 16GB of RAM. The Pycket version is revision 5d97bc3f of the trace-analysis

branch of our custom fork[98], built with Racket version 6.1 and revision 72b01aec157 of

PyPy. A slightly modified version of pycket-bench is used.

114 CHAPTER A. COST MODEL INVESTIGATORY WORK

A.2.2 Model Accuracy

By applying a instance of a cost model to the trace output from the benchmark runs, the exe-

cution time for each benchmark can be plotted against the cost for that benchmark calculated

using equation 3.4.The accuracy of the cost model is calculated by applying linear regression

to the plot to obtain a linear best fit. The value of r2, or the coefficient of determination[103],

is used as an estimate of model accuracy; the higher the value the better the fit, and therefore

the more accurate the cost model. The linear regression calculation is implemented using the

SciPy library to enable automation.

A.2.3 Exhaustive Search

An exhaustive search of a part of the weight parameter space can be carried out by systemat-

ically varying the weights in equation 3.3. Representing the weights as a vector 〈a, b, c, d, e〉,

the search covers all integral vectors between 〈0, 0, 0, 0, 0〉 and 〈10, 10, 10, 10, 10〉. On termi-

nation, the search returns the weight vector for the most accurate cost model (i.e. the model

with the highest r2 coefficient) in the given parameter space.

A.2.4 Genetic Algorithm Search

Unfortunately, the search space of the exhaustive search grows very quickly with the size of

the bounds on the weight parameter space. While a bound of 10 is still feasible, exhaustively

searching a paramter space to a bound of 100 is no longer possible. Fortunately metaheuristic

search methods allow large search spaces to be covered relatively quickly.

Genetic Algorithms(GA) [104] are a set of meta-heuristics applied to search problems which

attempt to mimic natural selection. Rather than exhaustively search the problem space, ge-

netic algorithms attempt to evolve an optimal solution from an initial population. Genetic

algorithms use a fitness function to evaluate the quality of a solution. The search process

consists of a number of generations, in which the entire population is evaluated according

to the fitness function and the fittest surviving to the next generation or being selected to

reproduce and generate children for the next generation. Reproduction involves selecting

any number of solutions from the population and combining them to produce a new solution

CHAPTER A. COST MODEL INVESTIGATORY WORK 115

which contains aspects of its “parents”. Random mutation is added to increase the diversity

of the population. The search can be run for a fixed number of generations, until a sufficiently

optimal solution is found, or until the population converges.

Genetic Algorithms are chosen as our metaheuristic as the coefficient of determiniation r2 of

linear regression is a useful fitness function, and the vector components map well to the idea

of a “chromosome”. Details of the search procedure are as follows.

• The population is a set of 40 weight parameter vectors 〈a, b, c, d, e〉. The first genera-

tion is completely random; subsequent generations are produced by selection, crossover

and mutation, as described below.

• The fitness function is simply the r2 value from the linear regression of the bench-

mark execution times against the benchmark costs (according to the cost model beign

evaluated).

• Each new generation contains the fittest vector from the previous generation. Other

vectors in each generation are created by

1. selecting two parent vectors from the previous generation by “tournament selec-

tion” (where the fittest of two randomly chosen vectors survives to become a

parent),

2. producing a child vector by crossing over the parent vectors component-wise at

random, and

3. randomly mutating components of the child vector at a rate of 10%.

• The search terminates at 30,000 generations, returning the weight vector for the most

accurate model found so far.

Subsampling

Many of the benchmarks in the benchmark suite are intended to test specific Scheme lan-

guage features or JIT performance, and some benchmarks perform markedly different from

the majority when analysed with the null and counting cost models CM0 and CMC . This

raises the possibility that the benchmark suite contains outliers that will weaken the linear

116 CHAPTER A. COST MODEL INVESTIGATORY WORK

regression of any possible weighted cost model. We use random sub-sampling whereby 8

randomly selected benchmarks are removed from each search, in order to account for the

possibility of outliers in the benchmark suite. The best cost model reported is the best model

found for any of 125 tested benchmark samples.

A.2.5 Search Results

Exhaustive Search

The cost model found by exhaustive search is displayed in equation A.1.

γ =
n∑

i=0


0, if xi ∈ array ∪ guard ∪ debug ∪ object

1, if xi ∈ numeric

10, if xi ∈ alloc

(A.1)

Genetic Algorithm Search

The cost model found by Genetic Algorithm search and subsampling is described in equa-

tion A.2.

γ =
n∑

i=0



0, if xi ∈ debug

34, if xi ∈ array

590, if xi ∈ numeric

9937, if xi ∈ alloc

14, if xi ∈ guard

211, if xi ∈ object

(A.2) γ =
n∑

i=0



0, if xi ∈ debug

2.43, if xi ∈ array

42.1, if xi ∈ numeric

709.8, if xi ∈ alloc

1.00, if xi ∈ guard

15.1, if xi ∈ object

(A.3)

The benchmark sample excluded the benchmarks ack, divrec, fib, fibfp, heapsort, lattice, tak,

and trav2.

CHAPTER A. COST MODEL INVESTIGATORY WORK 117

Figure A.2: k vs τ for Mandelbrot benchmark — FATA

The normalised version of this cost model, where the smallest non-zero weight is one, is

shown in equation A.3. This is similar to the cost model found with using exhaustive search;

the ratio between the allocation and numeric weighting is 16.84 in equation A.2 and 10 in

equation A.1.

The cost model in Equation A.3 suggests that allocation instructions are the greatest con-

tributor to program execution time followed by numeric instructions. The relatively high

weighting of the numerical instructions in this model is interesting, as numerical computa-

tion is expected to take significantly less time than the reads and writes seen in object oper-

ations; however, the fact that numeric types are required to be boxed and unboxed, resulting

in allocations and object reads and writes could account for this weighting.

The results described here are broadly in line with those detailed in Section 3.4.

A.3 Costing Transformations

This section contains graphs corresponding to those in Section 3.5.1, but for the FATA ma-

chine. Figures A.2 to A.4 represent the Mandelbrot, SumEuler and k-means benchmarks,

respectively.

118 CHAPTER A. COST MODEL INVESTIGATORY WORK

Figure A.3: k vs τ for SumEuler benchmark — FATA

Figure A.4: k vs τ for k-means benchmark — FATA

119

Appendix B

Communications Modelling

This appendix contains details of superseded early experiments for the development of the

communications cost model K in Chapter 4.

B.1 Constant Overhead Model

The original final definition for K, Ktbsd is shown in Equations (B.1) and (B.7). This defini-

tion originally had a constant overhead term in the equation.

The original parameter values for this equation (the gradients of fits for (de)serialisation and

network graphs) are found in Tables B.1 and B.3

Unfortunately, many of the values for the intercept (the constant overhead term) were non-

sensical — some were many orders of magnitude greater than the parameter value; others

were negative.

The solution is to constrain the linear regression through the origin, producing the results

shown in Chapter 4. This makes conceptual sense: a communications cost model should

predict a cost of zero when serialising or sending nothing.

The decision to constrain regression through the origin is justified by the results of the vali-

dation in Section 4.5.

Ktbsd(x :: t) = Kr(x) +Kp(x) (B.1)

120 CHAPTER B. COMMUNICATIONS MODELLING

Worker Gradient (ms/byte) Intercept (ms)

Racket 9.6907× 10−7 −6.1533× 10−4

Pycket 6.0045× 10−7 1.4075× 10−2

Table B.1: Network Send Gradients

Type Gradient
(racket)
(ms/byte)

Intercept
(racket) (ms)

Gradient
(pycket)
(ms/byte)

Intercept (py-
cket) (ms)

bstr 1.2367× 10−6 0.0064 1.7615× 10−6 0.0142
flmatrix 1.8157× 10−5 0.2172 6.4511× 10−6 0.5431
float N/A 0.0164 0.0009 0.0083
flvector 1.8667× 10−5 0.2047 6.3731× 10−6 0.1607
int N/A N/A 0.0006 N/A
list 2.1906× 10−5 0.1852 8.0571× 10−6 0.1846
string 7.2733× 10−5 −0.0588 4.4195× 10−6 0.1145
vecbytes 1.1743× 10−6 0.3441 2.0331× 10−6 0.2974
vecstring 4.7208× 10−5 0.3643 4.5363× 10−6 0.3712
vector1 2.5946× 10−5 0.1930 9.0523× 10−6 0.2250
vector2 2.5632× 10−5 0.4515 6.0556× 10−6 0.4790

Table B.2: Serialisation parameters

Type Gradient
(racket)
(ms/byte)

Intercept
(racket) (ms)

Gradient
(pycket)
(ms/byte)

Intercept (py-
cket) (ms)

bstr 2.5506× 10−5 −0.0626 1.1498× 10−7 0.0086
flmatrix 1.1872× 10−5 −0.1852 4.0411× 10−6 0.3627
float N/A N/A N/A N/
flvector 1.0047× 10−5 0.0430 3.6638× 10−6 0.0813
int N/A 0.0011 N/A N/A
list 1.5609× 10−5 0.0237 1.7283× 10−5 0.0044
string 1.7734× 10−6 0.1403 1.3424× 10−6 0.0083
vecbytes 1.1661× 10−6 0.0283 3.4553× 10−7 0.1505
vecstring 7.4416× 10−6 −0.1677 1.4151× 10−6 0.1223
vector1 1.2883× 10−5 0.0350 1.0599× 10−5 0.1363
vector2 1.4444× 10−5 −0.0308 1.0355× 10−5 0.2020

Table B.3: Deserialisation parameters

CHAPTER B. COMMUNICATIONS MODELLING 121

Kr(x :: t) = l(x)(nr + sdr(t)) + on,r + osd,r(t) (B.2)

Kp(x :: t) = l(x)(nr + sdp(t)) + on,p + osd,p(t) (B.3)

sdr(t) = sr(t) + dp(t) (B.4)

sdp(t) = sp(t) + dr(t) (B.5)

osd,r(t) = os, r(t) + od, p(t) (B.6)

osd,p(t) = os, p(t) + od, r(t) (B.7)

B.2 FATA for Development of Communication Cost

Model

This section includes the corresponding FATA graphs for Section 4.2

B.3 Communications Cost Model Validation

This section contains the remaining graphs for the validation of the cost model K for Sec-

tion 4.5.

122 CHAPTER B. COMMUNICATIONS MODELLING

Figure B.1: Network send time results, FATA, loopback

CHAPTER B. COMMUNICATIONS MODELLING 123

Figure B.2: Serialisation Time against Data Size separated by type (Racket; FATA)

124 CHAPTER B. COMMUNICATIONS MODELLING

Figure B.3: Serialisation Time against Data Size separated by type (Pycket; FATA)

CHAPTER B. COMMUNICATIONS MODELLING 125

Figure B.4: Deserialisation Time against Data Size separated by type (Racket; FATA)

126 CHAPTER B. COMMUNICATIONS MODELLING

Figure B.5: Deserialisation Time against Data Size separated by type (Pycket; FATA)

Figure B.6: Plot of predicted communications costs vs actual overheads for primes filter —
GPG platform

CHAPTER B. COMMUNICATIONS MODELLING 127

Figure B.7: Plot of predicted communications costs vs actual overheads for Matrix Multipli-
cation — GPG platform

Figure B.8: Plot of predicted communications costs vs actual overheads for Sum Euler —
GPG platform

Figure B.9: Plot of predicted communications costs vs actual overheads for Sequence Align
— GPG platform

128 CHAPTER B. COMMUNICATIONS MODELLING

Figure B.10: Plot of predicted communications costs vs actual overheads for primes filter —
FATA platform

Figure B.11: Plot of predicted communications costs vs actual overheads for Matrix Multi-
plication — FATA platform

Figure B.12: Plot of predicted communications costs vs actual overheads for Sum Euler —
FATA platform

CHAPTER B. COMMUNICATIONS MODELLING 129

Figure B.13: Plot of predicted communications costs vs actual overheads for Sequence Align
— FATA platform

Figure B.14: Plot of predicted communications costs vs actual overheads for odd filter —
FATA platform

130 CHAPTER B. COMMUNICATIONS MODELLING

131

Appendix C

Combined Cost Model

Chapter 5 contains a sample of the plots of time and various cost predictors against task

group granularity. For space reasons the remaining plots are presented in this appendix.

Figure C.1 is the only remaining GPG plot; Figures C.2 and C.5 contain the plots for the

FATA platform.

C.1 Predicting Optimal Granularities

132 CHAPTER C. COMBINED COST MODEL

Figure C.1: Sequence Alignment Results — GPG

CHAPTER C. COMBINED COST MODEL 133

Figure C.2: Sequence Alignment Results — FATA

134 CHAPTER C. COMBINED COST MODEL

Figure C.3: Sum Euler Results — FATA

CHAPTER C. COMBINED COST MODEL 135

Figure C.4: Matrix Multiplication Results — FATA

136 CHAPTER C. COMBINED COST MODEL

Figure C.5: Odd Filter Results — FATA

	1 Introduction
	1.1 Context
	1.2 Thesis statement
	1.3 Contributions
	1.4 Thesis Structure
	1.5 Authorship
	1.6 Hardware Platforms

	2 Background
	2.1 Parallel Architectures
	2.1.1 Multicore
	2.1.2 NUMA
	2.1.3 Clusters
	2.1.4 Other Parallel Architectures

	2.2 Parallel Programming
	2.2.1 Task Parallelism
	2.2.2 Data Parallelism

	2.3 Parallel Languages
	2.3.1 Criteria
	2.3.2 POSIX Threads
	2.3.3 OpenMP
	2.3.4 MPI
	2.3.5 PGAS Languages
	2.3.6 Programming Language Specific

	2.4 Resource Analysis
	2.4.1 Parallel Resource Analysis

	2.5 Program Transformation
	2.6 Just In Time Compilation
	2.6.1 Compilation Units
	2.6.2 Existing JIT Compilers
	2.6.3 Parallelising JIT

	2.7 AJITPar Project and Adaptive Skeleton Library
	2.7.1 ASL Prototype Implementation
	2.7.2 Similar Projects

	3 Costing JIT Traces
	3.1 Introduction
	3.2 Pycket Trace Structure
	3.3 Language Infrastructure
	3.3.1 Runtime Access to Traces and Counters
	3.3.2 An analysis of Pycket JIT instructions

	3.4 JIT-based Cost Models
	3.4.1 Trace Cost Models
	3.4.2 Whole Program Cost Models
	3.4.3 Calibrating Weights for CMW

	3.5 Costing Transformations
	3.5.1 Skeleton Transforms
	3.5.2 Experiments
	3.5.3 Discussion

	3.6 Performance Overhead
	3.7 Discussion

	4 Communications Cost Modelling
	4.1 Requirements of a Communication Cost Model
	4.2 Designing a Cost Model
	4.2.1 Original Design
	4.2.2 Hardware and Software Environment
	4.2.3 Initial Experiments
	4.2.4 Type-indexed Model
	4.2.5 Type-indexed Bidirectional Communication Model
	4.2.6 Type-indexed Bidirectional Serialisation/Deserialisation Model
	4.2.7 Deserialisation Experiments
	4.2.8 Discussion

	4.3 Validating an Additive Property of Cost Model
	4.3.1 Experiments

	4.4 ASL Integration
	4.5 Cost Model Validation
	4.5.1 Benchmarks
	4.5.2 Hardware and Software Environment
	4.5.3 Methodology
	4.5.4 Results and Analysis
	4.5.5 Performance Overhead

	4.6 Summary

	5 Combined Cost Modelling
	5.1 Deriving a Combined Cost Model
	5.1.1 ASL Architecture
	5.1.2 Derivation of Combined Model

	5.2 Determining Good Task Granularity
	5.2.1 Definitions
	5.2.2 Benchmarks
	5.2.3 Methodology
	5.2.4 Platform
	5.2.5 Results
	5.2.6 Predicting Optimal Granularities

	5.3 Summary

	6 Conclusion
	6.1 Summary
	6.2 Limitations
	6.3 Future Work
	6.3.1 Support for other Programming Languages
	6.3.2 Improving Computational Cost Models
	6.3.3 Other Applications of Cost Models
	6.3.4 Other Approaches to JIT-based Parallelism
	6.3.5 Adjustments to Skeleton Code
	6.3.6 Cost Models for Unknown Hardware Platforms
	6.3.7 Use in Production Environment

	6.4 Concluding Remarks

	A Cost Model Investigatory Work
	A.1 Pycket Benchmark Suite Analysis
	A.1.1 Whole Suite Analysis
	A.1.2 Program-level Analysis
	A.1.3 Trace-level Analysis

	A.2 Cost Model Search
	A.2.1 Performance Benchmarks
	A.2.2 Model Accuracy
	A.2.3 Exhaustive Search
	A.2.4 Genetic Algorithm Search
	A.2.5 Search Results

	A.3 Costing Transformations

	B Communications Modelling
	B.1 Constant Overhead Model
	B.2 FATA for Development of Communication Cost Model
	B.3 Communications Cost Model Validation

	C Combined Cost Model
	C.1 Predicting Optimal Granularities

