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Abstract 

 Functional magnetic resonance imaging (fMRI) is an important tool for understanding 

neural mechanisms underlying human brain function. Understanding how the human brain 

responds to stimuli and how different cortical regions represent the information, and if these 

representational spaces are shared across brains and critical for our understanding of how the 

brain works. Recently, multivariate pattern analysis (MVPA) has a growing importance to 

predict mental states from fMRI data and to detect the coarse and fine scale neural responses. 

However, a major limitation of MVPA is the difficulty of aligning features across brains due 

to high variability in subjects’ responses and hence MVPA has been generally used as a subject 

specific analysis. Hyperalignment, solved this problem of feature alignment across brains by 

mapping neural responses into a common model to facilitate between subject classifications. 

Another technique of growing importance in understanding brain function is real-time fMRI 

Neurofeedback, which can be used to enable individuals to alter their brain activity. It 

facilitates people’s ability to learn control of their cognitive processes like motor control and 

pain by learning to modulate their brain activation in targeted regions. 

 The aim of this PhD research is to decode and to align the motor representations of 

multi-joint arm actions based on different modalities of motor simulation, for instance Motor 

Imagery (MI) and Action Observation (AO) using functional Magnetic Resonance Imaging 

(fMRI) and to explore the feasibility of using a real-time fMRI neurofeedback to alter these 

action representations. 

 The first experimental study of this thesis was performed on able-bodied participants 

to align the neural representation of multi-joint arm actions (lift, knock and throw) during MI 

tasks in the motor cortex using hyperalignment. Results showed that hyperalignment affords a 

statistically higher between-subject classification (BSC) performance compared to anatomical 
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alignment. Also, hyperalignment is sensitive to the order in which subjects entered the 

hyperalignment algorithm to create the common model space. These results demonstrate the 

effectiveness of hyperalignment to align neural responses in motor cortex across subjects to 

enable BSC of motor imagery. 

 The second study extended the use of hyperalignment to align fronto-parietal motor 

regions by addressing the problems of localization and cortical parcellation using cortex based 

alignment. Also, representational similarity analysis (RSA) was applied to investigate the 

shared neural code between AO+MI and MI of different actions. Results of MVPA revealed 

that these actions as well as their modalities can be decoded using the subject’s native or the 

hyperaligned neural responses. Furthermore, the RSA showed that AO+MI and MI 

representations formed separate clusters but that the representational organization of action 

types within these clusters was identical. These findings suggest that the neural representations 

of AO+MI and MI are neither the same nor totally distinct but exhibit a similar structural 

geometry with respect to different types of action. Results also showed that MI dominates in 

the AO+MI condition. 

 The third study was performed on phantom limb pain (PLP) patients to explore the 

feasibility of using real-time fMRI neurofeedback to down-regulate the activity of premotor 

(PM) and anterior cingulate (ACC) cortices and whether the successful modulation will reduce 

the pain intensity. Results demonstrated that PLP patients were able to gain control and 

decrease the ACC and PM activation. Those patients reported decrease in the ongoing level of 

pain after training, but it was not statistically significant.  

 The fourth study was conducted on healthy participants to study the effectiveness of 

fMRI neurofeedback on improving motor function by targeting Supplementary Motor Cortex 

(SMA). Results showed that participants learnt to up-regulate their SMA activation using MI 
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of complex body actions as a mental strategy. In addition, behavioural changes, i.e. shortening 

of motor reaction time was found in those participants. These results suggest that fMRI 

neurofeedback can assist participants to develop greater control over motor regions involved 

in motor-skill learning and it can be translated into an improvement in motor function. 

In summary, this PhD thesis extends and validates the usefulness of hyperalignment to align 

the fronto-parietal motor regions and explores its ability to generalise across different levels of 

motor representation. Furthermore, it sheds light on the dominant role of MI in the AO+MI 

condition by examining the neural representational similarity of AO+MI and MI tasks. In 

addition, the fMRI neurofeedback studies in this thesis provide proof-of-principle of using this 

technology to reduce pain in clinical applications and to enhance motor functions in a healthy 

population, with the potential for translation into the clinical environment. 
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Chapter 1 : General Introduction 

 

 

 

1.1 Summary 

In this first chapter of the thesis, the basic concepts and terms used throughout the thesis 

are defined. The chapter introduces the neuroanatomy of the brain and motor network. It 

highlights the concept of motor cognition. This chapter also introduces the nature of MR signals 

and the properties of the haemodynamic neural response. It concludes with the themes and aims 

of the thesis. 

1.2 Neuroanatomy of the brain 

The human brain has fascinated and perplexed modern and ancient scientists throughout 

the centuries. During the last decades, researchers have developed novel techniques to better 

understand our brain functions and structures. Since this thesis focuses on the brain’s cortical 

motor network, the following section presents some general considerations about this netwrok. 

1.2.1 Brain structure 

The brain has a complex anatomy and a tiered structure, with around 100 billion nerve 

cells. The normal adult human brain weights about 1.4 Kg, which corresponds to only 2% of 

body weight, yet the energy consuming processes account for approximately 25% of total body 

glucose utilisation (Squire, 2013).  

The brain can be divided into the cerebrum, the brain stem and the cerebellum as shown 

in figure 1.1. The schematic diagram of the subdivision of the brain is illustrated in figure 1.2. 
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Figure 1.1. Main divisions of brain anatomical structure (Schünke et al., 2010). 

 

Figure 1.2. Subdivision of the brain structure (adapted from Squire, 2013). 

The most complex functions occur in the cerebrum. For instance, the hypothalamus has 

many vital roles, such as the control of conscious behaviour, emotions and instincts, and the 
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automatic control of body processes.  It screens and pre-processes all the flux of sensory 

information before sending it to the cerebral cortex. The cerebral cortex is responsible for 

conscious, sensation and cognitive activity, including language, reasoning, learning and 

memory (Carter et al., 2009). The cerebral cortex consists of two hemispheres linked together 

by the corpus callosum, which contains more than 200 million nerve fibres. The cerebellum 

complements brain functioning, for example, in terms of controlling body movement 

coordination (like balance and posture). Subconscious or autonomic regulation mechanisms 

are controlled by the brain stem. The pons is involved in learning and remembering motor 

skills.  Finally, the medulla oblongata is the centre for respiratory, cardiac and vasomotor 

monitoring and regulation (Carter et al., 2009; Snell, 2010). 

1.2.2 Cerebral Hemispheres 

The cerebrum constitutes more than three-quarters of the brain’s total volume, and is 

divided into two cerebral hemispheres (telencephalon), which include the cerebral cortex, the 

commissures, the subcortical white matter and the basal ganglia (a complex of deep grey matter 

masses). The cerebrum comprises two types of tissue, known as white and grey matter, as 

shown in figure 1.3. The grey matter (GM) consists of neuronal cell bodies and glial cells, 

axons, dendrites and synapses. In contrast, the white matter (WM) contains axons and their 

associated glial cells. Many axons are myelinated, allowing for rapid nerve impulse conduction 

and giving WM its pale appearance (Snell, 2010; Squire, 2013). The GM is distributed over 

the surface of the cerebral cortex, the basal ganglia, which includes the caudate nucleus and 

putamen (collectively called the corpus striatum), and the globus pallidus as well as the 

claustrum and amygdala. 
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Figure 1.3. Coronal section showing the GM and WM in the brain (Schünke et al., 2010). 

The surfaces of the cerebral hemispheres contain many gyri, sulci and fissures, meaning 

that more than 50% of the cortex’s area (approximately 0.8 m2) is hidden within the grooves 

(sulci and fissures).  These grooves separate the cortical regions into the frontal, parietal, 

occipital, temporal, insula and limbic lobes, as shown in figure 1.4 (Carter et al., 2009). For 

instance, the longitudinal fissure separates the cerebral hemispheres, the central sulcus (fissure 

of Rolando) divides the frontal and the parietal lobe, the parietooccipital sulcus separates the 

parietal from the occipital lobes, and the insula lies deep within the lateral sulcus.   
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Figure 1.4. Left lateral (top) and medial (bottom) views of the cerebral hemisphere, showing 

the landmarks used to divide the cortex into its main lobes (Haines and Ard, 2013). 

1.2.3 Cerebral cortex 

 The cerebral cortex is the outer layer of the cerebrum, constituting about 40% of the 

brain by weight and containing an average of 16 billion neurons (Herculano-Houzel, 2009). 

There are three types of cortices (Strominger et al., 2012): 

 Allocortex: consists of three layered cortices, mostly found in the limbic system. 

 Neocortex: frequently found in most of the cerebral hemisphere; contains six layers. 
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 Mesocortex: a form of Neocortex that connects the Allocortex and Neocortex. It 

contains three to six layers and includes regions such as the cingulate gyrus and insula 

(limbic lobe).  

1.2.4 Functional areas 

Korbinian Brodmann, in 1909, divided the cortex into functional regions based on the 

distribution of the neurons in different layers of neocortex (cytoarchitectonics).  These are 

known as Brodmann’s areas (BA) (Brodmann, 2006). More than 40 areas are distinguished on 

the lateral and medial surfaces of the brain, as shown in figure 1.5. 

 

 

Figure 1.5. Lateral (left and medial (right) surfaces of the human cerebral cortex with 

numbers indicating the areas of Brodmann (Strominger et al., 2012). 

1.2.5 Blood vessels of the head 

The brain and the body are critically dependent on an uninterrupted supply of 

oxygenated blood. Nearly 20% of the blood in the body circulates in the brain, which represents 

2% of the body weight. Brain vessels, as shown in figure 1.6, provide the means for this 

uninterrupted blood supply. The vessels’ sizes, positions and numbers vary between 

individuals. The blood transports oxygen, nutrients, and other necessary substances to keep the 

brain tissues working properly. The arteries carry oxygenated blood, with all its nutrients, and 

the veins carry the deoxygenated blood  (Snell, 2010). 
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Figure 1.6. Main vessels of the brain, showing a three dimensional view of veins and sinuses 

(left) and the major cerebral arteries (right) (Brodal, 2010). 

1.3 The organisation of the fronto-parietal motor network 

 Since this thesis focuses on the brain motor network, the following section presents a 

brief introduction to the anatomical structure of the motor system within the frontal and parietal 

lobes.  

1.3.1 Frontal lobe 

The cortical motor network contains the sensorimotor cortex and the premotor regions 

(PM), as shown in figure 1.7. The sensorimotor cortex is divided into the primary motor cortex 

(M1) or BA 4, situated anteriorly to the central sulcus in the frontal lobe, and the primary 

somatosensory cortex (SI), situated posteriorly to the central sulcus in the parietal lobe (Mayka 

et al., 2006).  
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Figure 1.7. These areas of the neocortex are involved in the control of voluntary movement. 

BA 4 and BA 6 constitute the motor cortex (adapted from Grillner, 2007). 

The M1 is organised in a somatotopical fashion (homunculus) as shown in figure 1.8, 

where the leg control area is localised medially, while the hand, face and tongue control areas 

are laterally situated. The fingers, hands, and face are represented by disproportionately large 

areas, corresponding to their involvement in tasks that require high precision and fine motor 

control (Bear et al., 2007). The M1 serves in the execution of voluntary movements through 

its direct corticospinal projections to the spinal motor neurons, which control limb, hand, foot 

and digit movements, and to the cranial nerve motor neurons which control facial movements 

(Kolb and Whishaw, 2003; Graziano, 2006). It also projects to other motor structures such as 

the basal gangalia and the red nucleus (Kolb and Whishaw, 2003). 

 

Inferior 
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Figure 1.8. A somatotopic map of the human sensorimotor cortex. This map is a cross section 

through the precentral gyrus (shown at top) representing M1 (BA 4), and the postcentral 

gyrus (shown at bottom) representing SI (BA 1, BA 2, BA 3). The neurons in each area are 

most responsive to the body parts illustrated above them (Bear et al., 2007). 

 The PM (BA 6) can be divided into two parts: the lateral premotor cortex and the mesial 

premotor cortex as shown in figure 1.7. The mesial premotor cortex can further be divided into 

the pre-supplementary motor area (pre-SMA) rostrally and the supplementary motor area 

proper (SMA proper) caudally. The lateral premotor cortex can be subdivided along the dorsal 

and ventral plane into the dorsal premotor cortex (dPM) and ventral premotor cortex (vPM) 

(Mayka et al., 2006). The areas of premotor cortex show a much coarser somatotopy, with 

multiple motor maps and greater functional complexity. It is suggested that the dPM 
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participates in the planning and preparation of movement, and that the supplementary motor 

area encodes sequences of movements (Graziano, 2006). Moreover, the dPM contributes to the 

action selection network, and the left dPM in particular plays a dominant role in action selection 

(O ’shea et al., 2007). Furthermore, the premotor cortex serves an integrative role of converging 

input from the subcortical motor (basal ganglia and cerebellum) and parietal cortex afferents, 

and it also influences movement directly through corticospinal projections and indirectly 

through projections to the primary motor cortex (Dum and Strick, 1991; Kolb and Whishaw, 

2003). Thus PM regions are connected to areas concerned with the execution of limb 

movements. In addition, the PM cortex receives projections from the dorsolateral prefrontal 

cortex, which suggests that this prefrontal region has some role in the control of limb and eye 

movements (Kolb and Whishaw, 2003). 

1.3.2 Parietal lobe 

The parietal lobe can be divided into two functional regions: the anterior region, which 

is known as SI or BA 1, BA 2 and BA 3, and the posterior region, which is referred to as the 

posterior parietal cortex (PPC).  

Similarly to M1 homunculus, SI homunculus (figure 1.8) illustrates the somatotopy of 

the primary somatosensory cortex where the representation of the hand separates that of the 

face and the head, while the genitals are mapped onto the most hidden part of S1, somewhere 

below the toes. The relative size of the cortex devoted to the mouth, tongue and fingers is 

correlated with the density of sensory input received from these body regions compared to the 

trunk, arms and legs. Size on the map is also related to the importance of the sensory input 

from that part of the body (figure 1.8). BA 3 can be subdivided into BA 3a and BA 3b as shown 

in figure 1.9. BA 3b is the primary somatosensory cortex, because it receives dense inputs from 

the thalamus, and its neurons are very responsive to somatosensory stimuli. BA 3a also receives 

a dense input from the thalamus, but this region is concerned with the sense of body position 
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rather than touch. BA 1 and BA 2 receive dense inputs from area 3b. The projection from 3b 

to area 1 sends mainly textural information, while the projection to area 2 emphasises size and 

shape (Bear et al., 2007). 

Functional imaging studies have shown that the somatosensory and primary motor 

cortices are frequently co-activated, indicating a close functional integration between these 

regions (Rowe and Siebner, 2012). 

 

Figure 1.9. Somatosensory region of the cortex located in the parietal lobe, showing the 

subdivisions of the postcentral gyrus (SI) (Bear et al., 2007). 

 The PPC includes the superior parietal lobule (SPL) (BA 5 and BA 7), the parietal 

operculum (BA 43), the submarginal gyrus (BA 40) and the angular gyrus (BA 39). Together 

the submarginal gyrus and the angular gyrus are known as the inferior parietal lobule (IPL) 
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(Kolb and Whishaw, 2003). The PPC is connected to the prefrontal cortex (BA 46), and they 

both project to the same regions of the paralimbic cortex, the temporal cortex, the hippocampus 

and various cortical regions. BA 5 receives most of its connections from SI. Its cortical outputs 

are to M1, to SMA, to PM and to BA 7. This region plays some role in guiding movements by 

providing information about limb position. While BA 7 has a heavy somatosensory input from 

SI through BA 5, it also receives inputs from M1 and PM, along with a small visual input. Its 

output connections are similar to those of BA 5, which provide some similar information to the 

motor system (Kolb and Whishaw, 2003). In general, the PPC plays an important role in the 

perception and interpretation of spatial relationships, accurate body image, and the learning of 

tasks involving coordination of the body in space. These functions involve a complex 

integration of somatosensory information with that from other sensory systems, particularly 

the visual system (Bear et al., 2007).  

1.4 Motor control 

 The central motor system is arranged as a hierarchy of three control levels, with the 

forebrain at the top and the spinal cord at the bottom. The function of each level depends 

heavily on the sensory information received. The highest level, represented by the associated 

regions of the neocortex and basal ganglia of the forebrain, is concerned with strategy: the goal 

of the movement and the movement strategy that best achieves that goal. At that level, sensory 

information generates a mental image of the body and its relationship to the environment. The 

middle level, represented by the motor cortex and cerebellum, is concerned with tactics such 

as the sequences of muscle contractions required in space and time to smoothly and accurately 

achieve the strategic goal. The tactical decisions are based on the memory of sensory 

information from past movements. The lowest level, represented by the brain stem and spinal 

cord, is concerned with execution: activation of the motor neuron and interneuron pools that 
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generate the goal-directed movement and maintain posture, muscle length, and tension by 

relying on sensory feedback (Kolb and Whishaw, 2003).  

1.5 Common Coding theory 

 The relationship between action and perception has been of interest to scientists for 

many years. Actions can be represented in terms of the perceptual effects they have on the 

environment (Hommel, 2009). It is believed that there are certain aspects of perception and 

action that share a common representational domain, such that action codes are tightly bound 

to the perceptual codes that represent the effects of those actions. In this way, actions may be 

planned in terms of their effects and, in the reverse direction, perception of effects can lead to 

the occurrence of a related action (Prinz, 1997). 

 The idea that the neural representations of actions and effects are closely related has 

implications beyond the planning and control of actions in the domain of motor cognition. For 

example, in action imagination, it has been suggested that bound neural codes can be activated 

at sub-motor threshold levels such that by imagining the perceptual effects (visual feedback) 

of an action, the motor components of that action  can be effectively rehearsed (Wong et al., 

2013; Yoxon et al., 2015). Moreover, it has been demonstrated that the perception of another’s 

actions can activate the cognitive representation of that action (van der Wel et al., 2013). This 

mechanism allows one to interpret the actions of another, and use this information to make 

decisions about the action possibility, coordinate one’s actions with another or, in a social 

context, infer intentions or desires (Blakemore and Decety, 2001). However, in all of these 

processes, motor output is activated at levels that are below the threshold for actual actions to 

emerge. Effectively, in all of these cases, perceptions or thoughts of perceptions activate 

simulations of the desired action. That is, the activation of a perceptual representation in turn 

leads to the activation of the internal components of an action, without acting on the 
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environment. This approach heavily implicates the neural simulation of action in the success 

of the motor cognitive processes described. 

1.6 Neural Simulation of Actions 

 Evidence for neural motor simulation in action imagination and perception has been 

broadly drawn from both neurophysiological and behavioural studies that have reported that 

the motor system is active in action imagination and perception. Jeannerod, (1995, 2001) 

suggested that the neural simulation of action could be the singular mechanism underlying 

various processes associated with motor cognition. In his neural simulation theory, he states 

the neural simulation of action occurs whenever there is activation of the cortical areas 

associated with movement in the absence of any voluntary action (Jeannerod, 2001). These 

simulations are involved in many tasks, ranging from the more conscious simulation in action 

imagination, to tasks that involve primarily subconscious simulation, such as the observation 

of a given action, followed by a prediction or judgement about the feasibility of the action. 

Interestingly, despite the obvious differences in the consciousness of simulation between these 

two tasks, both have been shown to elicit activation of cortical motor areas. Therefore 

Jeannerod, (2001) suggested neural simulation of action to be a unifying mechanism for such 

motor cognitive processes. Furthermore, the neural simulation of action may be an important 

mechanism for the common representation of action and perception, as proposed in the 

common coding theory. 

1.7 Magnetic Resonance Imaging 

 Magnetic resonance imaging (MRI) is a relatively new discipline in the field of applied 

sciences. A main thrust has come from the high-quality imaging of soft tissues in the human 

body and metabolic processes without radiation, as is necessary for X-ray imaging. MRI is a 
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powerful imaging tool because of its flexibility, safety and sensitivity to a broad range of tissue 

properties as well as noninvasive. 

 All MRI replies on a core set of physical concepts that were discovered by Rabi, Bloch, 

Purcell and other pioneers during the first half of the twentieth century (Huettel et al., 2008). 

MRI uses the magnetic properties of tissue to produce an image. It stems from the application 

of nuclear magnetic resonance (NMR) to radiological imaging. The word (magnetic) refers to 

the use of an assortment of magnetic fields and (resonance) refers to the need to match the radio 

frequency of an oscillating magnetic field to the precessional frequency of the spin of some 

nucleus in a tissue molecule. 

1.7.1 A Brief Overview of Nuclear Magnetic Resonance 

 The source of the resonance in an NMR experiment is that the protons and neutrons 

that constitute a nucleus possess an internsic angular momentum called spin. All protons, 

neutrons and electrons have the same angular momentum and it cannot be changed. However, 

the direction of angular momentum (axis of spin) can be changed. When protons (and neutrons) 

combine to form a nucleus, they combine in pairs with oppositely oriented spins. Therefore, 

nuclei with an even number of protons and even number of neutron such as 12C have no net 

spin because theydistributing the same amount of charge in opposite directions, while nuclei 

with odd number of protons and odd number of neutrons such as 13C do have a net spin. 

Hydrogen nucleus has a single proton and thus it has a net spin. It is far more abundant in the 

body than any other nucleus that makes it the primary focus for MRI (Buxton, 2009).  

 Consider a single proton of hydrogen atom. In regular conditions, thermal energy lets 

the proton to spin about its axis (figure 1.10A). This spin motion has two effects: first, its spin 

creates superficial electrical current, which generates a magnetic source and a torque when it 

is placed within a magnetic field. The strength of this magnetic source or maximum torque per 

unit of magnetic field is the magnetic moment (µ). Second, because the proton has an odd 
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atomic mass number, its spins results in an angular momentum (J). Due to the right-hand rule, 

both µ and J are vectors pointing in the same direction. As the nucleus spins, the changing 

magnetic field produces a magnetic moment and the moving mass results in angular momentum 

(figure 1.10B) (Huettel et al., 2009). 

 

Figure 1.10, Similarities between spinning proton (A) and spinning magnet (B): both have 

angular momentums (J) and magnetic moments (µ) (Huettel et al., 2009). 

 In absence of an external magnetic field (B0), the spin axes of the protons are oriented 

randomly and tend to cancel each other out as shown in figure 1.11A. Thus the net 

magnetization (M0), which is the sum of all magnetic moments from spins of different nuclei 

orientations, is null. To increase the M0 of the protons, a strong magnetic field is applied to 

align the axes of spin of the protons as illustrated in figure 1.11B. However, these protons gain 

a gyroscopic motion called precession as shown in figure 1.11C. Protons precess around an 

axis parallel (low-energy) or anti-parallel (high-energy) to the magnetic field with an angle 

between protons’ axes of spin and the direction of the external magnetic field (Huettel et al., 

2009). The precession frequency (known as Larmor frequency) is determine by the type of 

nucleus and it is proportional to the strength of the B0. The fundamental equation of Larmor 

frequency 𝑣0 is (Buxton, 2009): 

𝑣0 = 𝛾𝐵0                                                                                                                                                              (1.1) 

 Where 𝛾 is gyromagnetic ratio (a constant for a given type of nucleus). 𝐵0 is the 

magnetic field strength. 
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Figure 1.11. (A) In the absence of an external magnetic field, protons are aligned randomly. 

(B) When an external magnet (B0) is applied, protons are either aligned along (parallel to) or 

against (anti-parallel) to magnetic field. A net magnetization will be produced parallel to the 

main magnetic field. (C) Precession of a proton within a magnetic field (Pooley, 2005). 

1.7.2 Excitation 

The M0 of all the nuclei in a volume provides the source for the MR signal. It is 

analogous to a vector with two components: a transverse component that is perpendicular to 

the B0, and it is equal to zero because protons do not spin in phase. The second component is a 

longitudinal component that is aligned along the longitudinal field direction with a magnitude 

proportional to the difference between the number of precessions in the parallel and anti-

parallel states. Nevertheless, this generates a weak magnetization and cannot directly measured 

under the equilibrium conditions because it is many orders of magnitude weaker than B0 

(Huettel et al., 2008, Carter and Shieh, 2015). 

To measure M0, a radiofrequency (RF) pulse oscillating at Larmor frequency is applied 

to produce a magnetic field B1 perpendicular to B0. The field B1 is several orders of magnitude 

smaller than B0. Nevertheless, this causes disturbances among the low-energy nuclei (parallel 

aligned with B0) because some of them will absorb the electromagnetic energy and jump to a 

high-energy state (anti-parallel), effectively converting the longitudinal magnetization into 

transverse magnetization. This process known as excitation (Buxton, 2009). Within each 
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precessional rotation, M0 tips farther away from B0, tracing out a widening spiral as shown in 

figure 1.12. 

 These RF pulses are regularly characterized by the flip angle (α) they make. The flip 

angle can be controlled by the strength and duration of the RF pulse. This pulse is generated 

by a transmitter coil. 

 

Figure 1.12. The excitation of the M0 by applying a radiofrequency (RF) pulse. The RF pulse 

is a small oscillating field B1 perpendicular to B0 that cause M0 to tipped away from the 

longitudinal axis by a flip angle (α) (Buxton, 2009). 

1.7.3 Relaxation 

 When the RF pulses are turned off, the excitation of the nuclei stops. Some of these 

high-energy nuclei will return to low state by emitting an electromagnetic oscillation equals to 

the energy difference between these two states, so that the equilibrium can be restored. 

Eventually, the longitudinal magnetization increases to its original value, while the transversal 

magnetization decreases to zero by losing its coherence (Carter and Shieh, 2015). The emitted 

energy provides the MR signal data and it can be detected using a radiofrequency coil tuned to 

Larmor frequency. This signal detected through receiver coils does not remain stable forever 

(Huettel et al., 2008). These changes known as relaxation, and it divided into longitudinal 

relaxation and transverse relaxation. 
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1.7.3.1 Longitudinal Relaxation 

 Following the excitation, the longitudinal magnetization is zero. The magnetization 

then begins to recover back in the longitudinal axis. This is called longitudinal relaxation or T1 

relaxation. It is relatively slow; typically form a few hundred milliseconds to a few seconds. 

The recovery rate is characterized by the tissue-specific time constant T1, which corresponds 

to the time taken for the magnetization to recover to 63% of its equilibrium value as shown in 

figure 1.13 (Pooley, 2005; Huettel et al., 2008). 

 

Figure 1.13. Longitudinal (T1) relaxation. The excitation causes longitudinal magnetization to 

become zero. Once the RF pulse ceases, the longitudinal magnetization will return in a 

direction parallel to the main magnetic field by releasing energy to the surrounding 

environment. The gray box illustrates the definition of T1, which is the time that it takes the 

longitudinal magnetization to grow back to 63% of its final value (Pooley, 2005). 

1.7.3.2 Transverse Relaxation 

During the excitation, the net magnetization, which reflects the vector sum of individual 

spins, being greatest because the protons begin to precess at the same phase and frequency. 

However, over time, the spin-spin interaction causes changing in the precession frequency that 

leads spins to lose coherence and therefore an exponential decay in the MR signal that is known 

as T2 decay. Furthermore, magnetic field inhomogeneities will cause different spins to precess 

at slightly different Larmor frequency according to equation 1.1, leading to addition decay in 

T2. The combined effects of spin-spin interaction and magnetic field inhomogeneities called 
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T2
* and result in spins dephase relatively quickly (typically within a few tens of millisecond) 

and diminishing net magnetization in transverse axis as illustrated in figure 1.14. The transverse 

relaxation (T2) corresponds to the time taken for the transverse magnetization to drop to 37% 

of its initial size (Pooley, 2005; Huettel et al., 2008).  

 

Figure 1.14. Transverse (T2) relaxation. Immediately after the excitation, transverse 

magnetization is maximized; it then begins to dephase and the resultant MR signal decreases. 

The gray box illustrate Definition of T2 which is defined as the time that it takes the 

transverse magnetization to decrease to 37% of its starting value (Pooley, 2005). 

1.7.4 Image Acquisition 

MR images can be generated by dividing the acquired MR signal into components with 

different frequencies and phases in a method known as spatial encoding. This encoding relies 

on manipulating the local resonant frequency through the control of local magnetic field by 

applying magnetic field gradients to resolve spatial information in three dimensions (x, y and 

z). Therefore, in an MR scanner, there are three gradient coils in addition to the RF coils and 

the coils of the magnet (B0) itself. Each gradient coil produces a magnetic field that varies 

linearly along a particular axis (Buxton, 2009). 

Spatial localization is made in three steps: slice selection, phase encoding and frequency 

encoding, each step is related with one gradient: slice selection gradient (Gz), phase encoding 

gradient (Gy) and frequency encoding gradient (Gx).  
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In the first step (slice selection), a gradient (Gz) is turned on along the slice selection 

axis (z-axis, perpendicular to the desired slice), consequently the precession frequency of the 

protons varies linearly along the z direction. An RF pulse is simultaneously applied with a 

bandwidth that matches the range of precession frequencies in the desired slice plane. This 

causes a shift in the net magnetization of the protons in this plane. As no protons located outside 

the slice plane are excited, they will not emit a signal. Immediately after the excitation, the 

affected spins begin to undergo T1 and T2 relaxation processes (Huettel et al., 2008). 

Once a slice is selected, all excited spins contribute to the MR signal. Thus, the next 

step is to apply additional gradients that cause spins at different spatial locations to precess at 

different frequencies so that their individual contribution can be measured and identified. 

During the interval between the RF pulse and the data acquisition, a phase encoding or a 

gradient field (Gy) is applied in the vertical direction (y-axis) of the slice selected in the first 

step. While it is applied, it modifies the spin resonance frequencies, inducing dephasing, which 

persists after the gradient is interrupted. After this step, all the protons precess in the same 

frequency but each local precessing magnetization is marked with a phase offset proportional 

to its y-position. 

During a frequency-encoding step, a gradient field (Gx) is applied in the horizontal 

direction (x-axis) of the slice selected in the first step. This gradient modifies the spin resonance 

frequencies along the horizontal direction. It thus creates proton columns, which all have an 

identical Larmor frequency. This gradient is applied during the data acquisition period as 

shown in figure 1.15 (Buxton, 2009).  
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Figure 1.15. A schematic diagram of imaging pulse sequence. During the FR pulse, a Gz is 

applied (slice selection), and during the read-out of the MR signal, a Gx is applied (frequency 

encoding) and between these two encodings a Gy is applied (phase encoding) (Huettel et al., 

2008). 

1.7.5 Image Reconstruction 

 The acquired data of a given slice, which are a mix of RF signals with different 

amplitudes, frequencies and phases, are stored in the k-space (spatial frequencies) and they 

require a 2D inverse Fourier Transform to create a spatially informative image of the slice. The 

central portion of k-space describes the low-spatial-frequency components, which in image 

space is a low-resolution image. On other hand, the outer edges describe the high frequencies, 

which determine image brightness as illustrated in Figure 1.16 (Buxton, 2009). 

 

Figure 1.16. The contribution of different parts of k-space to image space (Schad, 2004). 
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1.7.6 MR pulse Sequences 

The arrangement of radiofrequency pulses and magnetic gradients used to collect the 

MR signal is known as a pulse sequence. The basic format of a pulse sequence diagram consists 

of a series of horizontal lines, each representing how a different component of the scanner 

changes over time as shown in figure 1.15. These components are essential for any imaging 

sequence and they consist of an RF excitation pulse, gradients for spatial encoding and signal 

acquisition. When performing an image acquisition (Huettel et al., 2009). 

1.7.6.1 Conventional Imaging sequences 

There are two primary types of imaging sequences, which are: 

 Spin-echo imaging 

Spin-echo (SE) sequences use a second 180o RF pulse called refocusing pulse to compensate 

for spins dephasing caused by magnetic field inhomogeneity.  The refocusing pulse is applied 

at one-half of the TE time. The SE pulse sequence can produce PD- weighting, T1-weighting, 

and T2-weighting (Pooley, 2005; Huettel et al., 2008) 

 Gradient-echo imaging 

Gradient-echo (GE) sequences use a single RF pulse of less than 90o without 180o. The smaller 

flip angle and lack of 180o RF pulse allow the TR to be much shorter which leads to fast 

imaging times. Even though there is no 180o RF pulse to produce a spin echo, gradient pulses 

can be used to dephase and rephase the signal in the transverse magnetization. In this case, T1 

and T2
* image contrast can be generated weighting (Pooley, 2005; Huettel et al., 2008). 

1.7.6.2 Fast imaging sequences 

To understand the function of the brain, fast pulse sequences have been developed to 

acquire large number of images within a short time period, at approximately the same rate as 
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the physiological change of interest. These sequences use variants of gradient-echo approaches 

and they are sensitive to T2
* contrast.  

The most common fast imaging sequence for fMRI is Echo-Planar Imaging (EPI). It 

generates a rapid series of gradient echoes to fill the k-space in a back and forth pattern as 

shown in figure 1.17. EPI requires strong gradients and rapid switching capabilities, since 

different sets of gradients must be cycled to enable the 90o turn in k-space pattern. The initial 

negative gradients pulses (Gx and Gy) move the sampling in k-space to bottom left. After that 

a repeated gradient echo produces a back and forth trajectory through k-space (Huettel et al., 

2008; Buxton, 2009).  

 

Figure 1.17. An EPI sequence (A) and its k-space trajectory (B). The black arrow in the k-

space represents the initial negative Gx and Gy gradients used to move to the bottom left of k-

space. 

1.7.7 Contrast and Weights 

Static contrasts have been widely used in MRI because of their ability to explain basic 

tissue characteristics. It can be defined as the intensity difference between two types of tissues. 

These contrasts can be derived using the fundamental concepts of T1 and T2 recovery. 

Following the excitation, the longitudinal and transverse magnetizations can be described as: 

Longitudinal magnetization (Huettel et al., 2008) 

𝑀𝑧(𝑡) = 𝑀0 (1 − 𝑒
−

𝑡
𝑇1)                                                                                                                   1.2   

Transverse magnetization 
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𝑀𝑥𝑦(𝑡) = 𝑀0𝑒
−

𝑡
𝑇2                                                                                                                                  1.3   

Where T1 and T2 are time constants shown in table 1.1 for a magnetic field strength of 

1.5T.   

When performing an image acquisition, there are two factors need to be considered. 

The first factor is the repetition time (TR) which is the time interval between two consecutive 

excitation pulses, usually expressed in seconds. Often, consecutive excitations occur at time 

intervals not long enough to make full recovery of the longitudinal magnetization. Thus, under 

such short TR, the transverse magnetization can be described as: 

𝑀𝑥𝑦(𝑡) = 𝑀0 (1 − 𝑒
−

𝑇𝑅
𝑇1 ) 𝑒

−
𝑡

𝑇2                                                                                                           1.4   

The second factor is the echo time (TE) which is the time interval between excitation 

and data acquisition, usually expressed in milliseconds. Thus, by replacing the term (t) in 

equation 1.4 with TE to give the MR signal for an image with a given TE: 

𝑀𝑥𝑦(𝑡) = 𝑀0 (1 − 𝑒
−

𝑇𝑅

𝑇1 ) 𝑒
−

𝑇𝐸

𝑇2                                                                                                         1.5     

The above equation provides the foundation for manipulating the MR signal from a 

particular tissue by controlling TR and TE. However, in MRI, the contrast between multiple 

tissue types is important and it can be expressed as the difference between the MR signals 

associated with each as described in equation 1.6 

𝐶𝐴𝐵 = 𝑀0𝐴 (1 − 𝑒
−

𝑇𝑅
𝑇1𝐴) 𝑒

−
𝑇𝐸

𝑇2𝐴 −  𝑀0𝐵 (1 − 𝑒
−

𝑇𝑅
𝑇1𝐵) 𝑒

−
𝑇𝐸

𝑇2𝐵                                                       1.6   

Where CAB is the contrast between two types of tissue (A and B), M0A and M0B are the 

net magnetization for tissue A and B, T1A and T1B are the T1 values for A and B, and T2A and 

T2B are the T2 values for A and B.  
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Table 1-1. Rough values for the time constant T1 and T2 at field strength of 1.5T (Huettel et 

al., 2008). 

 

1.7.7.1 Proton Density Imaging 

Proton-density (PD) imaging or PD-weighting provides contrast based on the sheer 

number of protons presented within a voxel, which differ in different tissue types. To maximize 

the PD-weighting, a pulse sequence with a TR value greater than T1 and a TE value less than 

T2 is used as shown in figure 1.18 (Huettel et al., 2008). When the TR is much greater than T1, 

the term (𝑒−𝑇𝑅 𝑇1⁄ ) from equation 1.6 becomes 0 and when the TE is much less than T2, the 

term (𝑒−𝑇𝐸 𝑇2⁄ ) from equation 1.6 approaches 1. The resulting equation for PD-contrast is: 

 𝐶𝐴𝐵 = 𝑀0𝐴 −  𝑀0𝐵                                                                                                                              1.7   

 

Figure 1.18. Selection of long TR value (A) and short TE value (B) for PD imaging, shown as 

vertical dashed lines on two different tissue types (red and blue). (C) A pulse sequence used 

for PD imaging. (D) The resulting brain image using a very long TR and a very short TE 

(Huettel et al., 2008).  
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1.7.7.2 T1-weighting 

The T1-werighted image provides structural contrast for anatomical images of the brain 

based on the T1 values of the tissues. T1-weighted images can be obtained by using an 

intermediate TR value that maximizes the difference in T1-contrast between different tissue 

types and a very short TE value to minimize T2 contrast (TE much less than T2) as shown in 

figure 1.19. Therefore, equation 1.6 can be rewritten as (Huettel et al., 2008): 

𝐶𝐴𝐵 = 𝑀0𝐴 (1 − 𝑒
−

𝑇𝑅
𝑇1𝐴) − 𝑀0𝐵 (1 − 𝑒

−
𝑇𝑅

𝑇1𝐵)                                                                              1.8   

In the above equation 𝐶𝐴𝐵 depends on TR but not TE and also, the proton density of the 

tissue always contribute to the contrast.  

 

Figure 1.19. Selection of an intermediate TR value (A) and a short TE value (TE) for T1-

weighting shown as vertical dashed lines on two different tissue types (red and blue), the 

green lines show the relative contrast associated with different TR and TE. (C) A spin-echo 

pulse sequence used for T1-weighted images. (D) The resulting brain image using an 

intermediate TR and a very short TE (Huettel et al., 2008). 
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1.7.7.3 T2-weighting 

The T2-weighted images have maximal signal in fluid-filled regions such as CSF and 

ventricles, which is important for many clinical application such as tumours. In T2-weighted 

images, the amount of signal loss depends on the time between excitation and data acquisition. 

T2-weighted images can be generated using a very long TR to minimize the T1-contrast (TR is 

much greater than T1) and an intermediate TE value to maximize the T2 contrast between 

different tissue types as shown in figure 1.20. Thus, the resultant formula is completely depends 

on the TE value as described below (Huettel et al., 2008): 

𝐶𝐴𝐵 = 𝑀0𝐴𝑒
−

𝑇𝐸
𝑇2𝐴 −  𝑀0𝐵𝑒

−
𝑇𝐸

𝑇2𝐵                                                                                                          1.9   

 These images can only be obtained using a spin-echo pulse sequence. This sequence 

allows for true spin-spin relaxation by introduces 180o pulse at halfway time between excitation 

and TE to reverse the loss of phase coherence caused by field inhomogeneity.  

 

Figure 1.20. Selection of a very long TR value (A) and an intermediate TE value (TE) for T2-

weighting shown as vertical dashed lines on two different tissue types (red and blue), the 

green lines show the relative contrast associated with different TR and TE. (C) Only spin-

echo pulse sequence (with 180o refocusing pulse) is used for T2-weighted images. (D) The 

resulting brain image using a very long TR and an intermediate TE (Huettel et al., 2008). 
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1.7.7.4 T2
*-weighting   

The T2
*-weighted images are sensitive to the amount of deoxygenated haemoglobin 

which changes according to the metabolic demands of active neurons and hence, it is the 

contrast basis for fMRI. Like T2- weighted images, T2
*-contrast is provided by pulse sequences 

with long TR and medium TE values. An additional requirement is that these pulse sequence 

use magnetic field gradients to generate the signal echo, instead of refocusing pulses, which 

eliminate field inhomogeneity effects (Huettel et al., 2009).  

1.8 Functional Magnetic Resonance 

 Functional Magnetic Resonance Imaging (fMRI) is one of the remarkable 

developments of MRI. It is an indirect approach to imaging brain activity, conducted at high 

spatial resolution. fMRI relies on detecting changes in the metabolic state of the brain by using 

MR signals. Since the early 1990’s, this technique has grown explosively to become an 

indispensable tool in neuroscience research (Ogawa et al., 1990).  

1.8.1 Physiological basis of neural activation and MR signal 

 fMRI does not detect neural activity, but it measures the physiological changes that are 

associated with neuronal activity. The neuronal activity induces an increase in oxygen 

consumption, and subsequently the cerebral blood flow (CBF), the blood volume (CBV) and 

the cerebral metabolic rate of oxygen (CMRO2) increase. Accordingly, the local oxygen 

extraction fraction (E) reduces, leading to an increase in O2 content of the capillaries and veins. 

Therefore, neuronal activity is expressed in terms of a relative increase in oxyhaemoglobin 

compared to deoxyhaemoglobin (Huettel et al., 2008), as explained in figure 1.21. 
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Figure 1.21. The physiological basis of the MR signal (adapted from Buxton, 2009). 

 In 1982, Thulborn and colleagues demonstrated T2
* relaxation changes in blood 

samples due to the magnetic susceptibility variations caused by the presence of paramagnetic 

deoxyhaemoglobin (Edelman, 2006). Therefore, the relative increase in oxyhaemoglobin 

concentration can be detected by MRI as a weak transient rise in the T2
* weighted signal. This 

signal change is known as a blood oxygenation level dependent (BOLD) signal. 

1.8.2 The BOLD haemodynamic response 

A changes in BOLD signal caused by neural activity is known as a haemodynamic 

response (HDR). The shape of HDR varies with the stimulus properties and the underlying 

neuronal activity.  Increasing the neuronal activity would therefore increase the HDR 

amplitude, whereas increasing the duration of neuronal activity would increase the HDR width. 

The underlying physiology of the BOLD response (shown in figure 1.22) can be summarised 

in three stages (Huettel et al., 2008): 

 Initial dip: of 1 to 2 seconds duration that has been attributed to the transient increase 

in the amount of deoxygenated haemoglobin and transient decrease in blood volume 

produced by the very rapid capillary dilatation in the voxel.  

 Peak: After a short latency, the metabolic demands due to the increased neuronal 

activity over baseline levels result in an increased inflow of oxygenated blood. In 

another words, more oxygen is supplied to the area than is extracted, resulting in a 

decrease in the concertation of deoxygenated haemoglobin. Therefore, the BOLD 
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signal increases above the baseline about 2 seconds after the onset of the neuronal 

activity, rising to a maximum value at about 5 seconds.  

 Undershoot: After the neuronal activity has discontinued, the BOLD signal decreases 

in amplitude to below the baseline level, and remains below baseline for an extended 

interval.   

 

Figure 1.22. Schematic representation of BOLD haemodynamic response. 

1.8.3 Decoding Neural Responses 

 Information is encoded in our brain as pattern of neural responses (Tong and Pratte, 

2012). This information can be gleaned from interactions with the outside world, or can be 

generated by internal processes such as thinking. One of the great challenges for cognitive 

neuroscience is to develop algorithms for decoding neural activity, and decipher this 

information. Computational algorithms for encoding information into neural activity and 

extracting information from measured activity afford us an understanding of how percepts, 

memories, thought, and knowledge are represented in patterns of brain activity. 

Conventional neuroimaging analysis methods have focused on characterising the 

relationship between cognitive tasks and brain regions, thus they are known as univariate 
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approaches. These methods look for clusters of neighbouring voxels that show a statistically 

significant response to the experimental conditions, and group analysis is typically performed 

after anatomical alignment of individual brains and sufficient spatial smoothing to overcome 

between-subject anatomical variability. Although the univariate approach reduces noise, it also 

reduces signal by neglecting the information carried by voxels with weaker (i.e. non-

significant) responses to a particular condition. In addition, the spatial smoothing blurs out fine-

grained spatial patterns that might discriminate between experimental conditions (Friston et al., 

1995b; Kriegeskorte et al., 2006). 

The past 15 years have seen significant advances in the development of methods for 

decoding human neural activity, such as multivariate pattern analysis (MVPA), 

representational similarity analysis (RSA), hyperalignment, and stimulus-model-based 

encoding and decoding. The introduction of MVPA has revolutionised fMRI research by 

changing the research question from what a region’s function is, to what information is 

represented in a region and how that information is encoded and organised (Haxby et al., 2014). 

MVPA uses machine learning methods to distinguish patterns of neural activity that are 

distributed across neurons or cortical regions and are associated with different stimuli or 

cognitive states (Haxby et al., 2014), as shown in figure 1.23.  

 

Figure 1.23. Univariate vs multivariate analysis of fMRI data (Iannetti et al., 2013). 
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1.9 Themes and Aims 

 The aim of this thesis is to decode and align the motor representation of multi-joint arm 

actions based on different modalities of motor simulation, for instance Motor Imagery (MI) 

and Action Observation (AO) using functional Magnetic Resonance Imaging (fMRI), and to 

explore the feasibility of using real-time fMRI neurofeedback to alter these action 

representations.  

In order to achieve this goal, I attempt to answer two related but distinct questions:  

 Can a multivariate pattern analysis be used to decode different representational spaces 

associated with different actions and modalities, and to construct a common 

representational space of the frontal and parietal motor regions using hyperalignment? 

This question is addressed in experimental chapters 4 and 5. 

 Can a real-time fMRI neurofeedback system be implemented for the purpose of 

manipulating cognitive processes in real-time, and thus achieve mechanistic and causal 

changes of the brain functions as well as behavioural functions? This question is 

addressed in experimental chapters 6 and 7. 

 In the first experimental chapter, the neural representations of natural multi-joint 

actions (lift, knock and throw) were examined using fMRI in the left motor region. This was 

achieved by acquiring the neural responses to brain states during motor imagery (MI) and 

action observation combined with motor imagery (AO+MI) tasks involving the three natural 

actions, and during an AO+MI task of 25 blended actions. The blended actions’ neural 

responses were used to derive hyperalignment parameters, and allow us to map subjects’ 

representational spaces of an independent MI task into a common representational space. 

Further analysis was conducted to assess the order in which participants entered the 

hyperalignment algorithm on creating a common model representational space. Finally, 
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hyperalignment was validated based on between-subject classification (BSC) of the neural 

response patterns.  

 In the second experimental chapter, the hyperalignment algorithm was extended to 

align motor and motor-related regions.  This was carried out by addressing the problems of 

localisation and cortical parcellation in extending hyperalignment to the fronto-parietal motor 

regions, using cortex based alignment prior to the hyperalignment. Further to this, the shared 

neural code between AO+MI and MI tasks of different hand actions were investigated using 

RSA. 

 The third and fourth experimental chapters focus on the use of fMRI neurofeedback to 

modulate brain activation. In the third experimental chapter, phantom limb pain patients were 

trained to use fMRI neurofeedback to down regulate the activity of premotor (PM) and anterior 

cingulate (ACC) cortices, and it was assessed whether the successful modulation reduced pain 

intensity.   

 In the fourth experimental chapter, fMRI neurofeedback was used to train healthy 

participants to up-regulate SMA activation during an MI task of complex body actions, and the 

behavioural changes (motor reaction time) caused by a successful modulation were explored. 

In summary, this thesis extends the use of hyperalignment to the fronto-parietal motor 

regions, and validates it at different levels of motor representation. Moreover, it sheds light on 

the effect of AO on MI by examining the neural representations of AO+MI and MI tasks. In 

addition, the studies in this thesis provide proof-of-principle of using fMRI neurofeedback to 

reduce pain in clinical settings, and enhance motor functions in healthy populations, with the 

potential for longer-term translation into clinical environments. 
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Chapter 2 : Literature Review 

 

 

  

Theme 1: Action simulation and common model space 

2.1  Introduction 

fMRI allows us to examine cortical structures at a high degree of spatial resolution, 

letting us explore the neurobiology of brain regions and investigate the connectivity of cortical–

subcortical networks (Koush et al., 2013). The superior spatial resolution enables MVPA to 

decode subtle differences between stimulus-evoked activity patterns, to discriminate between 

spatially overlapping populations, and to study action specificity of neural representations. 

Using this analysis technique, the patterns evoked across groups of fMRI voxels by the 

viewing, imagining or performing of specific actions can be distinguished and aligned to a 

common functional model.  

2.2  Motor Simulation 

Motor simulation can be defined as the internal representation of a motor programme 

without any overt actions (Jeannerod, 2001). It has two major modalities: motor imagery (MI), 

which is defined as imagining the execution of an action without any physical output, and 

action observation (AO) which means watching others performing actions. MI can be divided 

into two different modalities: visual imagery (VI) and kinaesthetic imagery (KI) (Guillot et al., 

2009). VI involves the self-generation of actions from a first (internal VI) or third (external VI) 

person perspective. During the first person perspective (IVI), people visualise the action as it 

would happen in real-life, and see images ‘as if through their own eyes’. During external visual 
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imagery (EVI), people imagine, like spectators, the action that somebody is performing. In 

contrast, KI includes the sensations of how it feels to perform an action, including the force 

and effort perceived during movement.  This can only be experienced with an IVI (Vogt et al., 

2013). A large body of research has examined the advantages of MI in aiding elite athletic 

performance (Williams et al., 2015), improving motor ability in healthy and clinical 

populations (for review see: Schuster et al., 2011), skill acquisition (Lotze and Halsband, 2006) 

and rehabilitation (Ietswaart et al., 2011). Similarly, AO has gained increasing attention since 

early 2000s following the discovery of the mirror neuron system (MNS) in monkeys (Gallese 

et al., 1996; Rizzolatti et al., 1996) and in humans (Fabbri-Destro and Rizzolatti, 2008). Mirror 

neurons fire both when an action is physically performed and when it is being observed. AO 

plays an important role in motor learning through imitation (Buccino et al., 2004) and has been 

used in neurorehabilitation (Buccino, 2014) and in consolidation of motor memories (Zhang et 

al., 2011).  

An activation likelihood estimation (ALE) analysis highlighted that MI and AO recruit 

motor and motor related regions which overlap extensively with one another, and overlap with 

the regions involved in motor execution (ME) (Caspers et al., 2010; Hétu et al., 2013; 

Hardwick et al., 2017). The conjunction analysis across MI, AO and ME has identified a 

consistent activation in the fronto-parietal motor network, in areas including: 

 Premotor Cortex (PM): A bilateral ventral premotor (vPM), dorsal premotor (dPM) 

and supplementary motor area (SMA) shown to be consistently involved during MI, 

AO, and ME. The PM plays important roles in the planning, preparation and execution 

of actions (Hoshi et al., 2007). Imagined and executed actions require almost the same 

amount of time to be performed, suggesting that MI also includes planning and 

preparation phases with an inhibitory execution (Guillot and Collet, 2017). vPM is 

believed to play a major role in fine motor coordination (Davare et al., 2009), while 



68 
 

dPM has a limited contribution towards movement execution (Dum and Strick, 2005), 

and therefore is proposed to play a role in action selection (Rushworth et al., 1998). 

SMA is the medial region of the PM, and it is associated with linking conditional roles 

with actions (i.e. where an action A is performed by a condition B) (Nachev et al., 

2008), and  internally initiated movements that require sequences of actions (Nachev et 

al., 2007; Hoffstaedter et al., 2013).  

 Primary Motor Cortex (M1): The involvement of M1 in action simulation is 

controversial. Caspers et al., (2010) found evidence that M1 may only be recruited 

during action observation when participants view actions with the intention to imitate 

them. Similarly, Hétu et al., (2013) found no evidence of consistent recruitment of M1 

during motor imagery, and Hardwick et al. (2017) found consistent involvement of M1 

only during ME. Jeannerod (2001) reported that M1 activation during MI and AO was 

less than during ME, suggesting that M1 may be active at a different, lower level, which 

is not sufficient to induce a local maxima (Lotze and Halsband, 2006). 

 Somatosensory Cortex: The involvement of the somatosensory cortex during MI 

reflects kinaesthetic aspects of motor imagery, while in AO, its recruitment is proposed 

to extend the mirror properties beyond the motor system (Keysers and Gazzola, 2009). 

In ME, sensory input provides critical feedback for the accuracy of the movements, 

allowing comparison between the actual and expected sensory consequences of 

movements (Muckli and Petro, 2017). 

 Parietal Cortex: The parietal cortex is an important multisensory hub involved in 

processing visuomotor information for the online control of movements, guided by a 

visual input (Block et al., 2013). In Block et al (2013), the bilateral inferior parietal 

lobule region (IPL) was consistently activated across all modalities. IPL is involved in 

various cognitive functions, such as the processing of tactile information (Klann et al., 
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2015) and storing several motor representations that are organised somatotopically 

(Cooke et al., 2003; Rozzi et al., 2008). The involvement of IPL reflects the interaction 

between the parietal and premotor cortices during visumotor control of motor functions, 

and the internal recruitment of these motor representations (Wise et al., 1997). 

 Although distinct brain structures are identifiable for AO, MI and ME individually 

(Lorey et al., 2013; Filimon et al., 2015), the ALE analysis identified that a wide network of 

regions were active during both MI and ME, including the cerebellum, basal ganglia, and mid-

cingulate cortex (Hardwick et al., 2017). The cerebellum contains multiple representations of 

the body, and Lobule VI contains body representations that are most prominent during 

movement execution (Schlerf et al., 2010). The basal ganglia are associated with response 

selection and speed of imagined and executed actions. Both MI and ME recruited regions of 

mid-cingulate cortex that are proposed to play a role in movement production. 

 While the majority of previous research has focused on MI or AO as independent 

approaches, or on the similarities and differences between these two forms of motor simulation, 

there is now an emerging body of research showing the potential advantages for MI guided by 

AO (AO+MI) (Vogt et al., 2013; Eaves et al., 2016). AO+MI involves imagining the 

physiological sensations and kinaesthetic experiences of actions (MI task), and synchronising 

these with the congruent observed action (AO task). Combining these two modalities into one 

(AO+MI) could engage more of the frontal-parietal network than is involved in ME, and give 

greater control over the content and vividness of action simulation (Holmes and Calmels, 

2008). Few studies have examined the recruited cortical brain regions during AO+MI, MI and 

AO (for review see (Eaves et al., 2016)). Macuga & Frey (2012) reported that brain regions 

recruited in AO are a subset of those involved in AO+MI, which in turn are a subset of those 

involved in imitation. Nedelko et al. (2012) and Villiger et al., (2013) also reported that AO+MI 

increased neural activity over the AO in parts of the cerebellum, inferior frontal gyrus, inferior 
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parietal cortex, SMA, vPM and left insula. Taube et al. (2015) showed that AO+MI had a 

greater neural activity in the caudal supplementary motor area (SMA), basal ganglia, and 

cerebellum compared to AO; and in the bilateral cerebellum and precuneous compared to MI. 

AO+MI has been used as a tool to improve performance in a golf putting task (Smith and 

Holmes, 2004) and a bicep curl strength test (Wright and Smith, 2017) over 6 weeks of 

intervention. Clinically, AO+MI has been used in rehabilitation programs, but it has shown a 

mixed effect. Small scale studies have targeted stroke patients with upper limb motor 

dysfunction, and these have provided promising results in terms of improvement in motor 

functions over 4 weeks intervention (Ertelt et al., 2007; Sun et al., 2016). However, Ietswaart 

et al. (2011) reported that AO+MI intervention did not enhance motor recovery of  stroke 

patients with persistent upper limb motor weakness. An interesting next step could now involve 

a more in-depth examination into the precise anatomical substrates involved in different 

AO+MI tasks, using multivariate pattern analysis (MVPA) of fMRI data. 

2.3 Multivariate Pattern Analysis 

In the last few years, there has been increasing interest in fMRI studies that have used 

multivariate pattern analysis (MVPA) to look at the pattern of neural responses across multiple 

voxels that carry information about the experimental conditions (Haxby et al., 2001; Haynes 

and Rees, 2006; Norman et al., 2006). MVPA uses machine learning techniques to classify 

patterns of neural responses associated with different stimuli or cognitive states, and it has more 

sensitivity to detect fine scale information than traditional univariate analyses.  Classification 

performance depends mainly on: 

 The number of voxels included in the analysis. The decoding performance decreases 

dramatically as the number of voxels exceeds the number of time points. Therefore, it 

is essential to select only the informative voxels involved in processing the 

experimental conditions. As a result, the MVPA approach contains a feature selection 
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step prior to the classification, in which only a subset of voxels is included (Cox and 

Savoy, 2003). 

 The Classifier (for review see (Misaki et al., 2010)). The majority of MVPA studies 

have used linear and non-linear classifiers, such as correlation-based classifiers (Haxby 

et al., 2001), neural networks without a hidden layer (Polyn. Sean M. et al., 2005), 

linear discriminant analysis (LDA) (Haynes and Rees, 2005; Mandelkow et al., 2016), 

support vector machines (SVM) (Song et al., 2011; Pilgramm et al., 2016), and 

multinomial sparse logistic regression (Shibata et al., 2011).  

 The first pioneering work on MVPA, by Haxby et al. (2001), showed that categorical 

information (faces, animals, and objects) was associated with distinct patterns of brain activity 

within the ventral temporal lobe. Subsequent studies targeting the visual regions have shown 

that MVPA can also discriminate between other cognitive states. For example Kamitani & 

Tong (2005) reported that activity patterns in early visual regions could predict which image 

of several oriented gratings was being viewed by the subject. Moreover, subsequent fMRI 

studies have reported that animate and inanimate visual objects lead to highly differentiated 

patterns of activity in the ventral temporal cortex (Kriegeskorte et al., 2008c; Naselaris et al., 

2009). Reddy et al. (2010) found that activity patterns in the ventral temporal cortex could 

predict whether participants were imagining famous faces, famous buildings, tools, or food 

items. Similar findings were documented in studies of working memory for faces, places, and 

common objects (Lewis-Peacock and Postle, 2008). MVPA not only decodes the neural 

patterns associated with cognitive tasks, but also reconstructs the presented visual images from 

the BOLD response (Miyawaki et al., 2008). Recent fMRI studies have started to use MVPA 

to investigate the neural underpinnings of phonological and language processing. Formisano et 

al. (2008) showed that activity patterns in the auditory cortex could discriminate which vowel 

sound was heard by participants who were listening to audio clips of three different speakers. 
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Likewise, Raizada et al. (2010) found that neural responses in the auditory cortex in native 

English speakers showed a better discrimination of the syllables /ra/ or /la/ than those in 

Japanese speakers, who have a difficulty differentiating between these phonemes. In terms of 

motor functions, MVPA has been used to decode the neural signatures of ME, MI and AO 

within brain regions when achieving actions jointly activated by all three modalities (Filimon 

et al., 2015). Pilgramm et al. (2016) decoded the neural activity in the frontal and parietal 

regions during imagining of right-hand simple actions (aiming, extension–flexion and 

squeezing movements), while Zabicki et al. (2016) classified imagined and executed three 

different right-hand simple actions (aiming, extension–flexion and squeezing movements). 

Thus, this leaves the question of whether multi-joint arm actions in 3D space could be decoded 

from the frontal-parietal motor regions unanswered.  

Whereas MVPA examines whether the neural patterns for different experimental 

conditions are distinguishable, Representational Similarity Analysis (RSA), which was 

proposed by Kriegeskorte and colleagues, analyses how they are related by exploring the 

geometry of stimuli representations (Kriegeskorte et al., 2008a). RSA demonstrates that the 

representations of the same stimuli in different brain regions can differ even if the MVPA 

classification accuracy is equivalent (Kriegeskorte et al., 2008c; Connolly et al., 2012). 

Furthermore, it converts the response patterns from feature (voxel) space to a set of distances 

between patterns, overcoming the problem of feature correspondence across subjects’ brains, 

and allowing comparison of the similarity between different representation structures and 

model predictions. Zabicki et al., (2016) utilised RSA to highlight that the neural 

representational structure of MI and ME are neither distinct nor exactly the same, suggesting 

that they instead exhibit a similar structural geometry with respect to different types of action. 

RSA is a powerful technique that could be applied to characterise representational geometry 

and to deepen the understanding of different motor modalities. 
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MVPA is a subject-dependent analysis that builds a new classifier for each participant’s 

brain. Therefore, any shared response similarity across participants can only be explained by 

shared coarse-grained information that can be retrieved by univariate analyses. This raises the 

question of whether we also share the same fine-scale representations.  

2.4 Common Model Representational Space 

One of the limitations of MVPA is the between-subject variance of response patterns 

caused by misaligned representational spaces across subjects (Haxby et al., 2014). The ability 

to align the representational spaces that can bring the fine-grained response patterns into 

correspondence across subjects is essential for group analysis in the MVPA framework. In 

addition, it can facilitate between-subject classification (BSC) by building a common model of 

representational space, rather than the typical subject-specific model (Kay et al., 2008; 

Naselaris et al., 2011; Nishimoto et al., 2011; Filimon et al., 2015; Pilgramm et al., 2016). It 

has been reported that the classification accuracy drops when predicting another subject’s 

responses (Haxby et al., 2011; Cox & Savoy, 2003) because of the idiosyncratic neural 

responses across subjects and the imperfections in aligning brains across subjects.  

BSC requires a spatial or functional correspondence to align fine-grained topographies 

across subjects. Anatomical alignment approaches define anatomical features either in volume 

or surface spaces to fit a template space. Talairach normalisation (Talairach and Tournoux, 

1988) performs a piecewise affine transformation to align the 3D volume of the brain to a 

template using anatomical landmarks. Surface-based alignment is an advanced method of 

anatomical alignment that matches the curvature of cortical surfaces across subjects (Frost & 

Goebel, 2012; Fischl et al., 1999). Whilst this technique establishes a spatial correspondence 

across subjects, it still does not afford BSC accuracies approaching those of Within Subject 

Classification (WSC), due to the inter-subject functional loci variability  (Caspers et al., 2006; 

Rademacher et al., 1993).  
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On the other hand, functional alignment maps the neural responses from the 3D Cartesian 

space into high-dimensional space, allowing alignment of the representational space across 

brains. Conroy et al., (2009) aligned subjects’ cortical surfaces using functional connectivity 

of surface nodes, removing the dependance for temporal correspondence. Similarly, Sabuncu 

et al., (2010) performed functional alignment of the cortex across-subjects by using a rubber-

sheet-like warping of cortical surfaces that maximised the between-subject correlation of time-

locked activity during movie viewing.  

In 2011, ten years after the first MVPA paper came out, the features correspondence 

problem was solved with a new proposed method called hyperalignment (Haxby et al., 2011), 

which functionally aligns representational spaces in the ventral temporal cortex (VT) across 

subjects and derives a common model space in VT. Information represented in the brain of all 

the subjects is similar and time-locked to the stimuli, but their representational spaces are not 

aligned. Hyperalignment has enabled the transformation of individual representational spaces 

into a high-dimensional common model space, in which each voxel is a dimension.  It requires 

regions that are functionally equivalent across subjects. Hyperalignment uses Procrustean 

transformation iteratively (Schönemann, 1966) to rotate each subject’s representational space 

to best match a reference space, and align the coarse and fine scale topographies by finding the 

optimal orthogonal transformation matrix that minimises the Euclidean distances between two 

sets of response patterns. These parameters can map the individual voxel space into a high 

dimensional common space (and vice versa). Haxby et al., (2011) tested the ability of 

hyperalignment to align fine-scale neural patterns by predicting which 18 second segment out 

of more than 1000 such segments a subject was watching. The prediction performance was 

significantly higher for the hyperaligned data (accuracy=70.6%, SEM=2.6%, chance<1%) than 

for anatomically aligned data (accuracy=32%, SEM=2.5%). Moreover, the researchers 

validated the hyperalignment by successfully performing BSC of categories in two additional 
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fMRI experiments, involving faces and objects categories in one experiment, and different 

animal species in the other, and comparing with BSC based on anatomical alignment. Since 

hyperalignment is the alignment of voxel spaces, it can be applied to data from any experiment 

that is in the same voxel grid as the one on which hyperalignment parameters were derived. 

Guntupalli et al., (2016) extended the previous work by deriving a common model space for 

the whole cortex that rotates individual brain spaces into the common representational space 

using a searchlight hyperalignment. The common model space with general validity was 

derived by measuring neural patterns of cortical activity evoked by viewing and listening to a 

complex, dynamic movie (Raiders of the Lost Ark). At the present BSC based on 

hyperalignment has only been reported for fMRI data from the visual and auditory cortices 

(Haxby et al., 2011; Guntupalli et al., 2016), and so, this raises the question of whether 

hyperalignment can align the fine-scale representation of the motor regions or not.  

Theme 2: Modulating brain activity using fMRI neurofeedback 

2.5 Introduction 

Neurofeedback can be defined as a closed loop system that allows the subject to 

voluntarily control the neural activity of a defined brain region(s), guided by visual or auditory 

feedback of the neural signal presented back to them (Birbaumer et al., 2013). Since the 1960s, 

studies have reported that subjects can learn to regulate different components of EEG spectrum 

by operant training, using the feedback information extracted from EEG signal as a reward 

(Ruiz et al., 2014). These studies have highlighted that the self-regulation learnt by 

neurofeedback training might lead to specific behavioural changes, and therefore it could be 

used as a therapeutic tool for neuronal and psychiatric disorders (Birbaumer, 2006; Marzbani 

et al., 2016). However, EEG-neurofeedback is typically limited by relatively poor spatial 

resolution and inability to access subcortical regions.  
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 The ongoing development of computer hardware and software has facilitated the rapid 

analysis of fMRI data in real time.  For this reason, fMRI neurofeedback has usually been 

chosen as the basis for the development of neurofeedback systems, providing whole brain 

coverage and high spatial resolution despite the haemodynamic response delay. It allows 

participants to modulate their brain activity based on online feedback signals presented via 

interactive tools, whilst they are still being scanned. This is unlike traditional fMRI studies 

which analyse brain activation offline, after they are evoked by a particular cognitive task. 

fMRI neurofeedback has been used for many diverse applications.  Principally, it has allowed 

us to study the relation between brain activity as an independent variable and behaviour as a 

dependent variable. It is possible that in the future, the behavioural modifications enabled by 

the self-regulation of brain regions could represent a novel therapeutic approach for 

neurological disorders. 

2.6 fMRI neurofeedback in healthy participants 

The majority of fMRI neurofeedback studies have trained healthy participants to 

modulate the activation of various brain regions, including the amygdala, insula, inferior frontal 

gyrus (IFG), anterior cingulate cortex (ACC) and sensorimotor cortex. These areas relate to 

emotion, cognition, perception and movement. Training a participant to self-regulate specific 

brain regions has allowed them to alter their brain’s functional output, leading to associated 

cognitive and behavioural changes (for review see Ruiz et al., 2014). 

The first ever fMRI neurofeedback experiment was conducted by Posse et al., (2003). It 

explored the feasibility of using this methodology to regulate amygdala activation during a 

mood self-regulation paradigm, which was aided by presentation of sad and neutral faces. All 

the participants achieved self-induced sadness (reported as a self-rating for the intensity of 

experienced sadness), and their amygdala activation levels were correlated with their self-mood 

ratings. Similarly, Weiskopf et al., (2003) successfully employed fMRI neurofeedback to up-
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regulate the BOLD signal of the ACC. However, the study did not include any behavioural 

measurement. In an early work, Caria et al., (2007) extended the use of fMRI neurofeedback 

to regulate anterior insular activity. Participants were successfully trained to up-regulate the 

BOLD signal acquired from the right anterior insula by recalling autobiographical emotional 

events. In addition, participants achieved self-regulation of the insula without the presence of 

feedback information immediately after the neurofeedback training, indicating that the learnt 

mental strategy can persist during a transfer session after training. Interestingly, two control 

groups were included in this study, neither of which managed to self-regulate the insula 

activity. In a subsequent work, Caria et al., (2010) explored the relationship between self-

regulation and emotional behaviour. Participants were presented with emotionally negative or 

neutral pictures and were asked to rate the emotional valence of these pictures. Their results 

revealed a significant increase of the BOLD signal in the left anterior insula associated with 

rating aversive pictures more negatively after self-regulation. Hamilton et al., (2011) examined 

the feasibility of using fMRI neurofeedback to down-regulate the BOLD signal of the 

subgenual anterior cingulate (sACC) cortex using positive affective strategies. Participants 

were able to modulate the sACC activity, unlike the control group who were trained with sham 

feedback.  Zotev et al., (2014) documented the first implementation of simultaneous 

multimodal fMRI and EEG neurofeedback based on a novel design for integrating fMRI and 

EEG data streams. Participants were trained using an fMRI-EEG neurofeedback system to self-

regulate simultaneously the BOLD signal in the left amygdala and frontal EEG power 

asymmetry in the high-beta band during retrieval of happy autobiographical memories. Paret 

et al., (2016) reported that the successful down-regulation of Amygdala activity by 

neurofeedback while viewing aversive pictures was associated with increased functional 

connectivity of the right amygdala with the ventromedial prefrontal cortex (vmPFC). On the 

other hand, Marxen et al., (2016) successfully demonstrated the ability of participants to utilise 
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fMRI neurofeedback to differentially alternate the BOLD signal from the bilateral amygdala 

corresponding with the prescribed regulation direction. Self-regulation was positively 

correlated with subjective arousal ratings and negatively correlated with agreeableness and 

susceptibility to anger. 

Similarly to the work carried out on emotional regions, researchers have also attempted 

to induce behavioural changes in other brain structures. Yoo et al., (2006) used fMRI 

neurofeedback to increase the BOLD signal of the auditory cortex during sound stimulation. 

The results showed that participants who received the feedback from the auditory cortex were 

able to up-regulate their activation compared to a control group. Rota et al., (2009) trained 

participants to modulate the right IFG to influence speech processing and language-related 

performance. Linguistic tests were used before and after the neurofeedback training to assess 

the behavioural impact. Participants achieved voluntary regulation of their IFG along with an 

improvement in the identification accuracy of emotional prosodic intonations.  

Along with the above mentioned brain regions, sensorimotor areas have been one of the 

most studied regions, and these have clinical implications for motor rehabilitation after central 

nervous system injury.  They might also be useful for the creation of brain–computer interfaces. 

Yoo et al., (2008) documented the long term effect of fMRI neurofeedback training to regulate 

M1 activity during a MI task with the right hand.  Participants learnt to self-regulate the BOLD 

signal of the hand motor area compared to the control group, who had difficulty in adopting a 

mental strategy to maintain the regulation. Chiew et al., (2012) trained participants to maximise 

the laterality index (LI) of M1 (the difference in activity between the contralateral and 

ipsilateral regions) during a kinaesthetic MI task. Increasing the laterality of motor related 

activity is associated with better motor outcomes, and therefore using neurofeedback to 

increase laterality may provide a potential therapy outcome for stroke patients (Ward, 2004; 

Neyedli et al., 2017) . This study reported mixed findings from neurofeedback; only half of the 
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participants were able to increase the LI value. On the other hand, Berman et al., (2012) 

reported that participants learnt to modulate their brain activity within the M1 region during a 

finger tapping task, however, they were unable to achieve self-regulation during an MI task of 

finger tapping. Johnson et al., (2012) addressed the inherent delay of the haemodynamic 

response by comparing two approaches of continuous and intermittent presentation of feedback 

information extracted from the left PM region during a MI task. The results of this study 

suggested that intermittent presentation of feedback information is more effective in self-

regulating the PM activity than continuous presentation. Similarly, Hui et al., (2014) 

investigated the changes in motor network connectivity involved in MI and ME influenced by 

fMRI neurofeedback of the right PM area. The results revealed connectivity changes in the MI 

network between the PM and posterior parietal regions, and in the ME network between the 

right cerebellum and M1/primary sensory cortex during the up-regulation of right PM activity. 

In a subsequent work, Sousa et al., (2015) highlighted the efficacy of a single session of fMRI 

neurofeedback to up-regulate the left PM region activity during an MI task compared to a 

control group. In addition, the neurofeedback group showed increased activation in motor 

regions extending beyond the target region (left PM), including the SMA, basal ganglia and 

cerebellum. Moreover, Scharnowski et al., (2015) used fMRI neurofeedback to simultaneously  

modulate the differential BOLD signals of SMA and parahippocampal regions. The results 

indicated that the learnt self-regulation of these functionally distinct brain regions caused 

functionally specific behavioural effects (i.e. shortening of motor reaction times and specific 

interference with memory encoding). Sepulveda et al., (2016) examined the differential effect 

of feedback, explicit instructions and monetary reward while training participants to up-

regulate the SMA signal. Participants were divided into 4 groups and were trained over two 

days on one of four protocols: feedback only, feedback+explicit instruction (MI task), 

feedback+monetary reward and feedback+explicit instructions (MI task)+monetary reward. 
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The findings showed that the highest BOLD signal in SMA during the neurofeedback training 

was achieved using feedback+ monetary reward protocol, and also, the feedback protocol 

increased the BOLD signal significantly between day1 and day2.  

2.7 Clinical applications of fMRI neurofeedback 

 The reported behavioural modifications caused by fMRI neurofeedback in healthy 

participants has motivated the use of this methodology in clinical populations.  DeCharms et 

al., (2005) executed the first clinical neurofeedback study, which demonstrated the use of self-

regulation of rostral ACC to modulate the pain perception of chronic pain patients, who 

subsequently reported a decrease in their level of pain intensity after the neurofeedback 

training. Following this, Haller et al., (2010) conducted a pilot study with chronic tinnitus 

patients who were trained to decrease their auditory cortex activation. Five of six patients learnt 

to down-regulate the activation of their auditory cortex, and two of them reported a decrease 

in their tinnitus. Subramanian et al., (2011) trained patients suffering from Parkinson’s disease 

to self-regulate their SMA activity over two scanning sessions. Patients who were successfully 

trained showed an improvement in finger tapping speed and clinical ratings of motor 

symptomatology. Sitaram et al., (2012) successfully trained healthy participants and stroke 

patients to up-regulate their vPM activation using fMRI neurofeedback. To assess the effects 

of self-regulation, paired pulses of transcranial magnetic stimulation (TMS) were used to 

induce intracortical inhibition and facilitation. The results showed a reduction in intracortical 

inhibition associated with the increase in vPM signal after neurofeedback training, indicating 

a beneficial effect of self-regulation training on motor cortical output. Ruiz et al., (2013) 

showed that patients with chronic schizophrenia can learn to self-regulate the BOLD signal in 

the anterior insula by use of fMRI neurofeedback in a face emotion recognition paradigm. 

 In summary, fMRI neurofeedback studies have targeted different brain regions 

including the amygdala, anterior insula, IFG, several subdivisions of the ACC, and several 
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sensorimotor regions. The results of most of these studies have shown that if self-regulation 

learning occurs, this effect is specific for the target ROI and is not due to general arousal or 

artifactual confounds. Furthermore, recent studies have used larger groups (average=18) of 

participants, and have included one or more control groups who are trained with sham 

feedback, in order to prove that neurofeedback training is the specific factor that leads to self-

regulation and behavioural modification. These behavioural changes, in a healthy population, 

have included modulation of affective states, modifications in the evaluation of emotional 

visual stimuli, and changes in auditory attention, linguistic processing and motor performance. 

In patients, behavioural modulations have included the reduction of tinnitus, modulation of 

accuracy in recognising emotional faces, and modulation of motor performance. In addition, 

with few exceptions (DeCharms et al., 2005; Haller et al., 2010; Hamilton et al., 2011), most 

of these studies have focused in the up-regulation of brain signals, and therefore the question 

of whether subjects can voluntarily learn to decrease the activation of a particular brain area 

remains unsolved.  This is an important factor for brain disorders in which an abnormal over-

activation underlies the psychopathology. 

2.8 Learning mechanisms underlying neurofeedback training 

The underlying mechanisms of fMRI neurofeedback training that result in learned self-

regulation of brain activation are not yet clearly understood, but they are most likely to be 

multifactorial, including both bottom-up and top-down processes (Auer et al., 2016; Paret et 

al., 2016; Nicholson et al., 2017). Controlling the feedback signal evoked from contingent 

brain activation may engage multiple types of learning and brain regions (Power and Petersen, 

2013; Strehl et al., 2014).  

Behavioural changes and/or brain structural or functional alteration are the main 

outcomes of learning gained by experience. In terms of behaviour, learning can result in 

improved perceptions (Fahle, 2002), memory recall and recognition (Yonelinas, 2002), 
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anticipation/prediction and motor action (Cano-De-La-Cuerda et al., 2015; Kwasnicka et al., 

2016). Within neural structures, learning may result in enhanced (Schwartz et al., 2002) or 

attenuated sensory network activation (Grill-Spector et al., 2006), activation in learning and 

memory networks (Poldrack et al., 2001), changes to the multivariate representational space of 

brain regions (Folstein et al., 2013), changes to functional connectivity (Büchel et al., 1999), 

increased grey matter volume (Draganski et al., 2004), and changes in white matter (Zatorre et 

al., 2012). These changes in behaviour and brain structure/function are potential targets for 

fMRI neurofeedback induced by different learning mechanisms.  

One of the proposed mechanisms is association learning, which can be defined as the 

process by which an association between two stimuli or between a behaviour and a stimulus is 

learned (Sulzer et al., 2013). This learning approach consists of two paradigms: operant (trial 

and error) and classical conditioning. Operant learning theory is often used to explain 

neurofeedback learning (Birbaumer et al., 2013). In this learning form, the probability of a 

physiological response is associated with the presence of a reinforcing stimulus (feedback 

signal), with a reward for desirable behaviour and/or a punishment for undesirable behaviour. 

The reward can be provided by either feedback information (visual or auditory signal) 

(Sepulveda et al., 2016; Neyedli et al., 2017), a social affiliation (Zamorano et al., 2015)  or 

monetory gain (Bray et al., 2007a). In contrast, classical conditioning can be used to associate 

an interoceptive cue with increased brain activity during neurofeedback training, i.e. the 

participant learns by being aware of a specific association between self-generated thought 

processes and control of the feedback signal, and learns to subsequently use that learnt strategy 

for promoting self-regulation outside the scanner (Scharnowski and Weiskopf, 2015). 

One limitation of the associative learning model is that it does not take into account the 

use of explicit instruction during the neurofeedback training. Therefore, Lacroix, (1986) 

proposed a dual process theory that involves feedforward and feedback learning processes to 
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understand neurofeedback learning using explicit strategies. Feedforward processes are active, 

where the naïve participants retrieve an effective mental strategy using the provided explicit 

instructions. Repeated matching of the feedback signal with successful mental imagery 

strategies is mediated through interoceptive awareness. Through the neurofeedback training, 

the internal model improves in efficiency, is stored in implicit memory (Strehl et al., 2014) and 

may become automatic (Kober et al., 2013). Alternatively, the feedback processes are active 

when the participants do not receive explicit instructions and they have to search for a new 

mental strategy to control the feedback signal based on trial and error (Sitaram et al., 2017). 

Therefore, the dual process paradigm suggests that giving explicit instruction about the mental 

strategy that controls the selected brain region’s activation can help participants to reduce the 

time needed to construct a new strategy (Sepulveda et al., 2016). 

An important question is whether there are brain regions which guide or control 

neurofeedback learning. These putative brain regions would be commonly activated across 

multiple neurofeedback learning paradigms regardless of the targeted region, and would 

interact with the specific brain region being modulated. 

2.9 Regions involved in self-regulation regardless of the targeted areas  

In the last 15 years, fMRI neurofeedback studies have placed growing importance on 

self-regulation of neural activity in various brain regions. Because these studies have focused 

on the regulated brain regions, little is known about the target-independent regions or regions 

associated with neurofeedback training.  

Emmert et al., (2016) conducted a post-hoc analysis of data involving nine different 

target regions based on twelve fMRI neurofeedback studies from different research groups 

including 175 subjects and 899 neurofeedback runs. Data analysis involved a first level general 

linear model (GLM) to model individual neurofeedback blocks. In second level analysis, a 

fixed effect analysis (FFX-GLM) was used to combine all the runs per subject. At the third 
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level, a random effect analysis (RFX-GLM) was performed to combine all subjects of all 

studies, resulting in an overall mixed effects model. The GLM analysis identified a common 

brain network which was consistently activated during the self-regulation process, regardless 

of the targeted regions. This network includes: 

 Anterior insula cortex (AIC): is involved in interoceptive cognition and self-

awareness processes required during neurofeedback (Critchley et al., 2004). 

 Basal ganglia: are implicated in interoceptive processes (Schneider et al., 2008) and in 

motivational processes (Arsalidou et al., 2013). In addition, the basal ganglia are 

important for learning, while the dorsomedial striatum is known to be engaged in 

declarative learning, and the dorsoventral striatum is an essential region mediating 

procedural learning (Balleine and O ’doherty, 2010). 

 Temporo-parietal area: the involvement of this area could be related to integration of 

the visual feedback and feedback-related processes involving the recall of memories 

(Zimmer, 2008), as well as self-processing and multisensory integration of body-related 

information (Arzy et al., 2006) 

 Anterior cingulate cortex (ACC): the activation of the ACC might reflect 

motivational aspects of the neurofeedback, such as the rewarding effect of positive 

feedback and avoidance of negative feedback (Magno et al., 2006; Posner et al., 2007). 

 Bilateral dorsolateral and ventrolateral prefrontal cortex (dlPFC and vlPFC 

respectively): the activation of the dlPFC and vlPFC are related to the mental imagery 

used during the neurofeedback (Lotze and Halsband, 2006). The right AIC and vlPFC 

are involved in cognitive control tasks such as motor inhibition, reorienting and action 

updating using the fronto-basal-ganglia network (Posner et al., 2007; Aron et al., 2014).  
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 Visual association area including the temporo-occipital junction: Activation within 

these regions might reflect visual feedback processing and visual imagery (Zimmer, 

2008). 

 Moreover, the GLM analysis revealed some brain regions that were deactivated during 

neurofeedback, including the posterior cingulate cortex (PCC), precuneus and transverse 

temporal region. The deactivation of the transverse temporal region might reflect a shift of 

focus away from scanner noise during the task due to visual feedback (Laurienti et al., 2002). 

Examining these regions within the context of known brain networks may help to shed 

light on the underlying mechanisms involved in neurofeedback. The dlPFC and the posterior 

parietal cortex form part of a network that is activated during demanding cognitive tasks, 

involving moment-to-moment monitoring of task performance, and manipulations of working 

memory and decision making (Koechlin and Summerfield, 2007; Sridharan et al., 2008). 

Moreover, the AIC and ACC, together with the ventral striatum, are the main components of 

the saliency network which deals with competitive, context-specific stimulus selection 

(Menon, 2015). Menon and Uddin, (2010) suggested that this network coordinates task-related 

information processing by recruiting various other, more specialised networks. For 

neurofeedback, these might include reward-learning areas, recruiting the striatum (Samejima 

et al., 2005; Daniel and Pollmann, 2014), the frontal cortex (O’Doherty et al., 2003) and areas 

responsible for interoception (Lerner et al., 2009) such as parts of the AIC. The PCC and 

precuneus are parts of the default mode network that are deactivated during cognitively 

demanding tasks (Raichle and Snyder, 2007; Raichle, 2015).  

Amongst the majority of fMRI neurofeedback studies, M1 and PM have been the most 

targeted regions, however, further research needs to explore the feasibility of fMRI 

neurofeedback to regulate SMA activity (Scharnowski et al., 2015; Sepulveda et al., 2016), due 
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to the  important function role of the SMA in motor learning, planning and execution, during 

MI of complex actions (Grefkes et al., 2008; Nachev et al., 2008). 
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Chapter 3 : General Methodology 

 

 

 

3.1 Experimental design 

 fMRI experiments are conducted to test scientific hypotheses. To test a given 

hypothesis, an experiment needs to be designed to manipulate a dependent variable (BOLD 

signal) using independent variables (stimuli) (Huettel et al., 2008). These experiments must be 

performed in a controlled environment, taking into account the temporal characteristics of the 

BOLD signal and any possible confound effects. Typically, there are two types of fMRI 

studies: block and event-related design. Block design experiments are used to average neural 

responses across many trials grouped together in one block, in order to increase the SNR. In 

contrast, event-related design experiments allow us to investigate the transient changes in brain 

activity in reaction to a given stimulus (Petersen and Dubis, 2012). 

 The fundamental concept in designing an fMRI experiment is to convolve the BOLD 

response with the stimuli functions, in order to obtain the predicted fMRI response. The BOLD 

signal shown in figure 3.1 is an impulse response (IR), and this comprises a peak occurring at 

4-6s followed by an undershoot from 10-30s. The shape of this response differs between people 

and different brain regions within the same individual. In other words, IR acts as a low pass 

filter that passes the low frequencies and attenuates the high frequencies (Henson, 2006). 
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Figure 3.1. An impulse response represented by the BOLD signal. It consists of a peak at 4-6s 

followed by an undershoot from 10-30s (Henson, 2006). 

 The event related design shows one stimulus at a time, and compares the fMRI response 

with a baseline or with other responses. For stimuli which are presented every 16s and 4s, the 

convolution results with the IR are shown in figure 3.2. However, neither of the above designs 

are efficient in this case, due to the majority of the stimulus energy having been removed during 

high pass filtering. 

 

Figure 3.2. Convolving IR with a stimuli presented every 16s (top row) or every 4s (bottom 

row) (Henson, 2006). 

 In a blocked design, the stimuli of one condition are presented continuously for a period 

of time then followed by either a null block or different block of conditions. For a block of 5 
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stimuli shown every 4s alternating with 20s of null block, the predicted fMRI response is shown 

in figure 3.3. 

 

Figure 3.3. Convolving the IR with a block of 5 stimuli presented every 4s, alternating with 

20s of null block (Henson, 2006). 

 Applying the Fourier transformation to the responses shown in figure 3.3, the IR acts 

as a low pass filter in the frequency domain and passes the majority of the signal, including the 

fundamental frequency and attenuates the high frequency harmonics as shown in figure 3.4. 

The fundamental frequency corresponds to a sinusoidal frequency that best models the basic 

on-off alternation of the block design, whilst the harmonics capture the sharper edges of the 

square-wave function relative to this fundamental sinusoid. Therefore, the optimal block design 

would be to modulate the neural activity in a sinusoidal scheme with a frequency that matches 

the peak amplitude of the IR spectrum. A block design is only efficient when the block length 

is short; 15-50 seconds for task blocks and 15-50 seconds for null blocks (Henson, 2006). 

Stimulus IR Predicted MRI 

signal 
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Figure 3.4. The convolution of IR with a block of stimuli along with the predicted fMRI 

signal in time domain (top row) and in the frequency response (bottom row). IR acts as a low 

pass filter passing the low frequencies but supressing the high frequencies of the stimuli 

energy (Henson, 2006). 

3.2 fMRI data Preprocessing 

 This section covers the standard steps that are performed for most fMRI data (functional 

and anatomical scans). The preprocessing of the functional scans involves slice acquisition 

time correction, head motion correction, high-pass filter, linear drift removal and spatial 

smoothing. The processing of anatomical scans involves intensity correction and Brain 

extraction. All the data in this thesis were preprocessed using the BrainVoyager QX 2.8 

software package. 

3.2.1 Functional Data preprocessing 

 Typically, fMRI data consist of a 3D-matrix (volume) of volumetric pixels (voxels) that 

is repeatedly sampled over time. Each voxel contains a BOLD signal, which changes over time 

and represents an indirect measurement of the neural activity. An fMRI experiment might have 

Stimulus IR Predicted MRI signal 
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an image volume of 70×70×32 voxels, which is sampled every 2 seconds for a total of 5 

minutes. Prior to the statistical analysis, a series of computational operations known as a 

preprocessing are performed on the raw data to reduce artefact and noise-related components 

of fMRI data, and make it ready for further analysis. 

3.2.1.1 Slice time correction 

 fMRI data are collected in the form of slices selected by radiofrequency excitation 

pulses, followed by simultaneous data collection throughout the slice. The slices of each 

volume are selected to have equal spacing in time across one TR. This could be done by 

collecting the data either in ascending or descending slice order (for instance 1-2-3-4-5-…-31-

32). Most fMRI scans nowadays are using interleaved slice acquisition, where all the odd-

numbered slices are collected first, and then all the even-numbered ones are collected, to avoid 

cross slice excitation. The disadvantage of this technique is that the BOLD signals of 

contiguous parts of the brain are acquired at non-adjacent time points. Therefore, slice 

acquisition time correction solves this discrepancy by temporally interpolating the voxels’ time 

courses so that it is assumed they are being collected simultaneously. The most common forms 

of interpolation are linear, cubic spline or Sinc (Huettel et al., 2008).   

3.2.1.2 Motion correction 

 The most damaging and frustrating problem in fMRI data acquisition is head motion. 

For example, small sub-voxel motion may corrupt the data, and result in that subject needing 

to be excluded from the experiment. The purpose of motion correction is to realign the 

functional images to a reference image, such that every voxel will have the same coordinates 

throughout the experiment. This will improve the quality of the images and increase signal-to-

noise ratio (SNR). Rigid-body transformation parameters with three rotation parameters (x, y 

and z) and three translation parameters (roll, pitch and yaw) are calculated to realign all the 

functional images to the first image (reference image). These parameters are estimated 
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iteratively, using an optimisation algorithm to minimise the sum of the square of the differences 

between the reference image and each subsequent image  (Friston et al., 1995; Huettel et al., 

2008). The tri-linear sinc Interpolation approach is used to detect motion using linear 

interpolation, and to correct it using sinc interpolation (Huettel et al., 2008).  

3.2.1.3 High pass filter and low frequency drift 

 fMRI data can be contaminated by low frequency fluctuations caused by different 

sources varying over time. The most common sources of noise are temperature variation within 

the subject, or scanner hardware and low frequency physiological artifacts like respiration and 

heart rate. These artifacts will significantly reduce the power of statistical analysis and 

invalidate event-related averaging, which assumes stationary time courses, therefore removing 

low frequencies.  Correcting drifts is one of the most important preprocessing steps, and these 

can be removed by using a high-pass filter, performed by using GLM with Fourier basis. The 

GLM is used to estimate the presence of low frequencies in a voxel's time course. The projected 

time course from a GLM based on the predictors (in this case sines and cosines for low 

frequencies) will then be subtracted from the original data, resulting in a filtered time course 

(Huettel et al., 2008; Ashby, 2011). 

3.2.2 Anatomical Data preprocessing 

 Intensity inhomogeneities in anatomical images (T1) can substantially reduce the 

accuracy of segmentation and functional co-registration (figure 3.5A). A well-known method 

of Intensity inhomogeneities correction (IIC) is based on surface fitting approach, in which 

low-order polynomials are used to model low frequency intensity variation (known as a bias 

field, see figure 3.5B) in a subset of selected voxels belonging to the white matter. This field 

is then removed from the data, producing a homogeneous intensity image (figure 3.5C) (Vovk 

et al., 2007).  
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Figure 3.5. Intensity inhomogeneity difference before and after the IIC. (A) T1 image before 

IIC, (B) low frequency intensity variations, (C) T1 image after IIC. 

3.2.3 Co-registration 

 The differences between the functional and anatomical images are noticeable. 

Typically, the functional data have low resolution with unidentified and blurry structure (figure 

3.6A). In contrast, the anatomical images seem remarkably detailed, with clear outlines of the 

sulci and gyri, and distinct boundaries between the grey and white matter, as seen in figure 

3.6B (Huettel et al., 2008).  

 Co-registration is necessary to improve the spatial localisation of the functional images. 

The low resolution functional images are aligned to the high resolution structural images using 

a rigid body transformation (3 rotation and 3 translations).  

 

A C B 
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Figure 3.6. Comparison of functional image (A) and anatomical image (B). Structural 

landmarks that are visible in one structural image may not be distinguishable in functional 

images of the same slice. 

3.2.4 Spatial Normalisation 

 Human brains differ in size and shape. These variations extend to every identifiable 

brain region, meaning that even major landmarks like the calcarine sulcus can have different 

positions and orientations. Consequently, normalisation is used to stretch, squeeze and warp 

subjects’ anatomical images into a standard anatomical space or template like Montreal 

Neurological Institute template (MNI) (Evans et al., 1993) and Talairach space (Talairach and 

Tournoux, 1988). Normalisation allows for group level statistical analyses to be performed and 

for these to be compared across subjects and studies at specific anatomical coordinates. 

3.3 fMRI data Analysis 

 fMRI employs a BOLD signal to map the neural activity associated with different 

cognitive functions, for instance motor control, sensory processing and emotional functions 

(Kwongt et al., 1992). The BOLD signal is generated because of the haemodynamic and 

metabolic modulations associated with neural oscillations (Logothetis et al., 2001). In order to 

map the brain region(s) involved in a given cognitive function, the BOLD signal at each voxel 

B A 



95 
 

is analysed (Jezzard et al., 2003a). There are two categories of fMRI data analysis: Hypothesis-

driven analysis (or mass-univariate analysis) and data-driven analysis (or Multi-Voxel Pattern 

Analysis, MVPA). The mass-univariate analysis is a model based approach that uses the 

General Linear Model (GLM) to make statistical inferences about task-related brain regions. It 

requires prior information of the protocol and the hypothesis of the experiment to model the 

expected response. On the other hand, MVPA is a model free approach that identifies the 

unique spatial patterns of neural activity associated with different aspects of brain functions. 

3.3.1 General Linear Model 

 General Linear Model (GLM) is one of the most common statistical approaches in fMRI 

univariate analysis. It assumes that the BOLD signal of a given voxel can be modelled as a 

weighted sum of one or more independent variables along with unexplained variance or noise 

(Huettel et al., 2008). GLM analysis does not benefit from the spatial structure of the fMRI 

data, and it is performed on an individual voxel basis. All the voxels are treated independently 

and are arranged along one dimension per time point for ease of calculation. 

The GLM equation is expressed in matrix formulation as: 

𝒀 = 𝑿𝜷 + 𝝐                                                                                                                                         (3.1) 

 Where 𝒀 = [𝒚𝟏, … , 𝒚𝒏]𝑻 is a column vector containing BOLD signal of (n) time-points 

at a given voxel. X is n×d design matrix which specifies the linear model to be evaluated. 𝜷 =

[𝜷𝟏, … , 𝜷𝒅]𝑻 is a column vector of (d) model parameters. Finally, 𝝐 = [𝝐𝟏, … , 𝝐𝒏]𝑻 is the 

residual error vector. The model parameters (𝜷) can be estimated by minimising the least 

square error є2 between the actual and fitted values, which can be written as (Mahmoudi et al., 

2012): 

𝝐𝟐 = (𝒀 − 𝑿𝜷)𝑻(𝒀 − 𝑿𝜷)                                                                                                              (3.2) 

 By setting the least square error to zero, we get the estimated model parameters (�̂�) as 

shown below: 
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�̂� = (𝑿𝑻𝑿)−𝟏𝑿𝑻𝒀                                                                                                                              (3.3) 

 Obtaining a useful statistic by taking into account the level of uncertainty is an 

important step of this analysis. The solutions to the GLM equation (3.1) are the estimated model 

parameters (also known as beta-weights). Under the null hypothesis, dividing these parameters 

(or explained variance) by the residual error (unexplained variance) should follow a statistical 

distribution called the F-distribution, and their significance can be evaluated as a function of 

the available degrees of freedom (which depends on the number of time points and the number 

of regressors) (Huettel et al. 2008; Jezzard et al. 2003). 

 All fMRI studies include multiple sessions, subjects and often more than one group. To 

make a generalisation to the population from which those subjects were drawn, two approaches 

are used for intersubject analysis, which are known as fixed and random effects analyses. The 

fixed effect analysis (FFX) assumes that the experimental effect on the BOLD signal is fixed 

across all subjects. The data from all subjects are treated as coming from a single subject by 

concatenating all runs of all subjects. Therefore, the statistical inference of FFX analysis is 

restricted to the sample of subjects used in the study. In order to make an inference about the 

population from which the subjects were sampled, a random effects analysis (RFX) is used to 

assess the variability of the effects across subjects. In this analysis, subjects are considered to 

be a representative sample of a population (Huettel et al., 2008).  

3.3.2 Multi-voxel Pattern analysis 

 Over the last few years MVPA has had a growing importance in the prediction of mental 

states from fMRI data. Traditional univariate analysis blurs the neural responses by spatially 

averaging the statistically significant activation across voxels.  Therefore it detects the coarse 

scale information, thus increasing SNR but excluding voxels with non-significant activation 

that might potentially contain fine-grained information. In contrast, MVPA can detect the 

coarse and fine scale information (patterns) distributed across multiple voxels, including those 
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with weaker activation (Haxby et al., 2011). MVPA employs machine learning techniques 

including classification to find the relationship between the spatial brain activity and 

experimental conditions. It involves four steps (Norman et al., 2006): 

 fMRI data have a large number of features (voxels) compared to the number of trials 

(data-points). Therefore to avoid the curse of dimensionality, a subset of voxels is 

selected based on anatomical landmarks or functional signatures to reduce the feature 

dimensionality (Mahmoudi et al., 2012) as shown in figure 3.7(a). 

 Brain responses evoked from a given task are represented as points in a high 

dimensional space, then fMRI data are partitioned into two datasets as shown in figure 

3.7(b). 

 One dataset is used to train a classifier to find a separating boundary between different 

conditions, as shown in figure 3.7(c). 

 An independent dataset (not used in training) is used to evaluate the capability of the 

trained classifier to discriminate between different conditions: figure 3.7(d).  
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Figure 3.7. Illustration of fMRI data analysis using MVPA. (a) participants observe two 

stimuli (bottles and shoes). A feature selection approach is used to determine which voxels 

are included in the classification. (b) fMRI data are split into two datasets, a training set and a 

testing set. Each pattern is labelled according to the corresponding stimulus (bottle or shoe). 

(c) The training set is used to train a classifier that maps between patterns and stimulus and 

estimates the decision boundary in the high dimensional space (red dashed line). (d) The 

trained classifier is evaluated using an independent dataset (testing set) 
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3.3.3 Basic concept of representational space 

 Neural responses or activity patterns are distributed in space and time, and they can be 

analysed by mapping them from a subject’s native space into a neural representational space. 

This space is a high-dimensional space in which dimensions are fMRI voxels and neural 

responses are points or vectors in that space. Thus if neural responses measured with fMRI 

have 500 voxels, then the representational space has 500 dimensions.  Numerically, the neural 

responses in a representational space form a matrix in which each column is a voxel vector and 

each row is a response vector. The voxel vector represents the differential responses of that 

voxel to different conditions or stimuli. The profile of differential responses is called a tuning 

function (Haxby et al., 2014; Guntupalli et al., 2016). Figure 3.8 illustrates the concepts of 

high-dimensional space in two-dimensional space by mapping the neural responses of two 

voxels. 

 

Figure 3.8. Illustration of two-dimensional representational space mapped from the native 

volumetric space.  Neural responses (time-points) of two voxels (pattern features) are 

projected into high-dimensional space (Haxby et al., 2014). 
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3.3.4 Classification 

Classification, or decoding, is a mathematical process performed on multiple voxels to 

predict a stimulus category. In the context of fMRI, features may represent a group of voxels, 

examples may represent trials in the experimental run, and classes may represent the type of 

stimulus. Classifiers estimate the decision function that takes the values of various features 

(independent variables) as examples and predicts the class (dependent variable) of those 

examples. To obtain the decision function, fMRI data must be partitioned into a training set 

and a testing set. The classifier is trained using the training dataset. The training phase maps 

the features to the class label by assigning a weight to each feature. If more than two classes 

are present in the experimental design, the analysis can be transformed into a combination of 

multiple two-class problems (i.e., each class versus all the others), then a voting scheme is used 

to predict the winning class (Haxby et al., 2011; Misaki et al., 2010; Reddy et al., 2009). The 

classifier is then evaluted using the testing set to determine its performance in discriminating 

new responses. 

 Prior to training classifiers, fMRI data need to be transformed into examples. There are 

different ways of producing these examples, such as using either the raw data at a single TR, 

averaging raw data at multiple TRs of one task block, or using GLM estimated parameters (β-

weights or t-values) for a given experimental condition (Pereira et al., 2008) 

 Classifiers can use different algorithms to find the optimal decision boundary, such as 

Support Vector Machine, Linear Discriminant Analysis (LDA), Gaussian Naïve Bayes (GNB) 

and Artificial Neural Networks (ANN). Misaki et al., (2010) compared the classification 

performance of six different classifiers (pattern-correlation classifier, k-nearest neighbours, 

LDA, GNB, and linear and nonlinear SVM), and found that linear SVM classifiers performed 

the best in dealing with large high-dimensional datasets and their flexibility in decoding diverse 

sources of brain data. 
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 In the simplest linear form of SVMs for two classes, the goal is to estimate a decision 

boundary (a hyperplane) that separates with maximum margin a set of positive examples from 

a set of negative examples (figure 3.9). Each example is an input vector xi (i = 1, ...,N), having 

M features (i.e., xi in RM), and is associated with one of two classes yi = −1 or +1. For example, 

in fMRI research, the data vectors xi contain BOLD values at discrete time points (or averages 

of time points) during the experiment, and features could be a set of voxels extracted in each 

time point; y = −1 indicates condition A, and y = +1 indicates condition B. 

 

 

Figure 3.9. 2D space demonstration of the decision boundary of the linear SVM. (A) The 

hard margin on linearly separable examples where no training errors are permitted. (B) The 

soft margin where two training errors are introduced to make data nonlinearly separable. 

Dotted examples are called the support vectors. 

 If we assume that data are linearly separable, meaning that we can draw a line on a 

graph of the feature x(1) versus the feature x(2) separating the two classes when M = 2 and a 

hyperplane on graphs of x(1), x(2), ... , x(M) when M > 2, the SVM produces the discriminant 

function f with the largest possible margin: 

𝒇(𝒙) = 𝒘. 𝒙 + 𝒃                                                                                                                                 (3.4)                                                                                                            

A B 
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 w is the normal weight vector of the separating hyperplane, b is referred to as the bias, 

which translates the hyperplane away from the origin of the feature space, and (.) is the inner 

product: 

𝒘. 𝒙 = ∑ 𝒘(𝒋)𝒙(𝒋)

𝑴

𝒋=𝟏

                                                                                                                            (3.5) 

 SVM attempts to find the optimal hyperplane w . x + b = 0 which maximises the margin 

magnitude 2/||w||, that is, it finds w and b by solving the following primal optimisation problem 

(subject to yi (xi . w + b) ≥ 1, ∀i ∈ {1, ... ,N}): 

𝐦𝐢𝐧
𝒘,𝒃

𝟏

𝟐
‖𝒘‖𝟐                                                                                                                                       (3.6) 

 For linearly separable data (figure 3.9, A), the SVM produces a discriminant function 

with the largest possible margin, and since the decision line separates the two classes without 

error, it is referred to as the hard margin SVM. It can be shown that finding the maximal margin 

corresponds to solving an optimisation problem, which involves minimising the term 

𝟏

𝟐
‖𝒘‖𝟐 under the constraint that all exemplars are classified correctly. The term ||w|| refers to 

the norm or length of a vector, which is obtained as follows: 

‖𝒘‖ =  √𝒘. 𝒘
𝟐

                                                                                                                                    (3.7) 

 However, in practice, data are often not linearly separable. The generalised SVM, 

which is able to handle non-separable data by allowing errors, is referred to as the soft margin 

SVM (figure 3.9, B). It involves minimising the term (subject to yi (xi . w + b) – 1 + ξi ≥ 0, ∀i 

∈ {1, ... ,N}, ξi ≥ 0): 

𝐦𝐢𝐧
𝒘,𝒃,𝝃

𝟏

𝟐
‖𝒘‖𝟐 + 𝑪 ∑ 𝝃𝒊

𝑵

𝒊=𝟏

                                                                                                                    (3.8) 

 The new term on the right side sums the (potential) errors produced for exemplars for 

a given weight vector. The ξi values are called slack variables; a slack variable is 0 in the case 
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of no error. If a pattern falls within the margin or even on the right side or on the other side of 

the decision boundary (miss-classification), the slack variable for this pattern is positive. The 

cost or penalty constant C > 0 is very important, since it sets the relative importance of 

maximising the margin and, thus, generalisation performance (small C value) and minimising 

the number of classification errors (large C value). The latter case forces slack variable ξi to be 

smaller, approximating the behaviour of the hard margin (Mahmoudi et al., 2012).  

3.3.5 Feature selection and Searchlight 

 Feature selection determines which voxels will be included in the classification 

analysis. Therefore, the dimensionality of the fMRI data need to be reduced, and selection of 

only the informative voxels increases the classifier performance. There are many approaches 

to selecting informative features (voxels), like focusing on a functionally localised region 

(Haxby et al., 2001), fitting a GLM model and selecting voxels with highest statistics rank 

(Polyn. Sean M. et al., 2005), and blind signal separation methods such as Principal 

Components Analysis (PCA) and Independent Components Analysis (ICA) (McKeown et al., 

2003; Rowe and Hoffmann, 2006). 

 Among the above mentioned approaches, Kriegeskorte et al., (2006) introduced a new 

method called Searchlight as an alternative technique by which to select the most informative 

voxels, and to exclude the noisy voxels that might affect the classifier generalisation 

performance. In this approach, an MVPA is applied to classify the stimuli within a local 

neighbourhood around each voxel in the brain, and store the classification accuracy in the 

centre voxel. The neighbourhood voxels are usually defined roughly as a sphere, as shown in 

figure 3.10, i.e. voxels within a certain (Euclidean) distance from the visited centre voxel. This 

approach produces a whole brain multivariate information map which reflects the informative 

voxels in distinguishing stimuli. 
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Figure 3.10. Sphere (Searchlight) of one voxel distance from the centre voxel (green). The 

total number of voxels in this Searchlight is 7. 

3.3.6 Representational Similarity Analysis (RSA) 

 RSA is a novel data analysis method proposed by Kriegeskorte et al. (2008) to explore 

the structure in terms of distances between neural response vectors within a representational 

space, as shown in figure 3.11. It aims to connect different branches of neuroscience by 

providing a framework for comparing activity patterns in the brain that represent some 

cognitive processes. These activity patterns can come from various sources, like different 

subjects, species or modalities, such as electroencephalography (EEG) or fMRI. The central 

notion in RSA is a representational dissimilarity matrix (RDM). This matrix encodes the 

similarity structure between different activity patterns, which in turn represent different 

experimental conditions. Therefore comparing RDMs instead of activity patterns directly 

allows us to compare the representations of cognitive states not only between different subjects 

or species, but also between different modalities, and even between computational models as 

illustrated in figure 3.12.  
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 RSA consists of six steps, and can be applied to different sources of data such as single-

cell or electrode array recording, fMRI, EEG or any other modality of brain activity 

measurement (Kriegeskorte et al., 2008a; Nili et al., 2014).  The steps are as follows: 

 Estimating the activity patterns: The analysis starts by estimating the activity patterns 

for each experimental condition.  

 Measuring activity-pattern dissimilarity: In this step, the dissimilarity is calculated 

between the activity patterns associated with each pair of conditions, and together these 

values form a RDM. In this thesis, the correlation distance was used as a dissimilarity 

measure which is equal to 1-linear correlation between pattern as shown below: 

𝐂𝐨𝐫𝐫𝐞𝐥𝐚𝐭𝐢𝐨𝐧 𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐞 = 𝟏 −
∑ (𝐮𝐢 − �̅�)𝐧

𝐢=𝟏 (𝐯𝐢 − �̅�)

√∑ (𝐮𝐢 − �̅�)𝟐𝐧
𝐢=𝟏 ∑ (𝐯𝐢 − �̅�)𝟐𝐧

𝐢=𝟏

                               (3.9) 

 ui and vi are the voxel intensity values of two response vectors elicited by two 

different experimental conditions. �̅� and �̅� are the means of vectors U and V 

respectively. The RDM is a square matrix with the row and column length equalling 

the number of experimental conditions. The matrix is symmetrical around a diagonal 

of zeroes (the dissimilarity between each condition and itself is 0).  

 Predicting representational similarity with a range of models: RSA can compare 

model predictions to actual brain representations, which could give new insights into 

the inner workings of different brain regions. These models need to simulate some 

aspect of the information processing that is occurring in the brain during the 

experiment. Thus, the term model has a different meaning here than in GLM analysis, 

where it often refers to a statistical model that does not simulate brain information 

processing, such as the design matrix. 

 Comparing dissimilarity matrices: After calculating RDMs that encode the 

representation of different experimental conditions in either different regions or 
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models, they can be visually or quantitatively compared. For such comparisons the 

similarity of the RDMs could be measured by using 1-correlation as a measure of 

dissimilarity between RDMs. 

 Testing relatedness of two dissimilarity matrices: A statistical inference on the RDM 

correlation is performed to decide whether two RDMs are related, and whether there 

are differences in the degree of relatedness between RDMs.  

 Visualising the similarity structure of representational dissimilarity matrices by 

multi-dimensional scaling (MDS): MDS is a general purpose dimensionality 

reduction algorithm for arranging high-dimensional space into a much lower 

dimensional space (usually 2D or 3D), while at the same time trying to preserve the 

proportional distances between points (i.e. similar entities will be placed together, 

dissimilar entities apart). 

 

Figure 3.11. RSA examines the distances between response vectors in the high-dimensional 

representational space. In this example a Euclidean distance is used to measure the distance 

between vectors (Haxby et al., 2014). 
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Figure 3.12. Illustration of how RDMs facilitate the comparison of cognitive states between 

different subjects, species, modalities and regions in the brain (Kriegeskorte et al., 2008a). 

3.3.7 Hyperalignment 

 Although the neural response vectors of different subjects watching an identical 

sequence of stimuli are similar and time-locked to the stimuli, their high dimensional 

representational spaces are poorly aligned. Hyperalignment builds a common model space by 

aligning representation spaces of individuals’ brains. This common model space affords 

between-subject classification (BSC) accuracies that are equivalent to within-subject 

classification (WSC). Hyperalignment uses Procrustes transformation (Schönemann, 1966) 

iteratively to rotate a subject’s representational space and bring it into optimal alignment with 

a reference space. It finds the orthogonal transformation matrix for each subject that rotates 

that subject’s representational space into the common space as shown in figure 3.13. Iterative 

alignments of individual representational spaces update the reference space, producing a 

common representational space. 
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Figure 3.13. Schematic diagram of Hyperalignment. High-dimensional representational 

spaces of different subjects watching an identical sequence of stimuli are not aligned. 

Hyperalignment rotates individuals’ representational spaces into a common model space, 

using Procrustes transformation (Nishimoto and Nishida, 2016). 

 Hyperalignment consists of three stages: during the first stage, an arbitrary subject is 

chosen to be a reference subject. The 2nd subject’s response vectors are aligned to the reference 

subject’s vectors using Procrustean transformation, and then the 3rd subject is aligned to the 

mean response vectors of the first 2 subjects, and so on. In the second stage, each subject’s 

response vector is aligned to the mean response vectors of the first stage (intermediate common 

space), and new response vectors are computed by averaging all the subjects’ aligned (rotated) 

vectors, which would be the final common model space. During the last stage, hyperalignment 

transformation parameters are calculated for each subject to map their voxel space into the final 

common model space, as shown in figure 3.14. 
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Figure 3.14. A block diagram of the hyperalignment method used to derive a common 

representational space and transformation parameters (TM) using Procrustean transformation. 

S is the subject’s representational space, RS is the subject’s aligned (rotated) space using 

procrustean transformation, CSini is the intermediate common space, CSfinal is the final 

common space and ∑ is the average of the representational spaces. 

3.4 fMRI Neurofeedback 

 fMRI neurofeedback is a closed loop system that measures the BOLD signal, pre-

processes it in real-time, and based on this, provides feedback information to the subject to 

enable the control of brain activities, as illustrated in figure 3.15.  

3.4.1 fMRI neurofeedback system description 

 In general, most fMRI neurofeedback systems consist of the subject, signal acquisition, 

signal pre-processing, signal analysis and feedback. 

3.4.1.1  Signal acquisition 

 fMRI neurofeedback experiments were conducted using a 3 Tesla Siemens Tim Trio 

MRI scanner at CCNi with a 32-channel head coil. Whole brain images were acquired using 

an Echo-Planar Imaging (EPI) sequence. Images were reconstructed in real-time and were 
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transmitted volume by volume to the analysis computer, which hosted Turbo-BrainVoyager 

(TBV) (Brain Innovation, Maastricht, The Netherlands) via a TCP/IP protocol. 

3.4.1.2  Signal pre-processing 

 TBV was used to pre-process the acquired volumes in real-time. This includes linear 

de-trending, slice timing correction, 3D motion correction and spatial smoothing using a 

Gaussian kernel with full width at a half maximum (FWHM) of 8mm, then added to a 

cumulative GLM.  

3.4.1.3 Signal analysis 

 The average time course of selected regions of interest (ROIs) were exported to a 

custom script running on MATLAB (Mathworks Inc., Natick, MA, USA) to calculate the 

feedback signal.  

 Single-ROI fMRI neurofeedback paradigm: the feedback signal is calculated based on 

the following equation: 

𝒃𝒂𝒓 𝒉𝒆𝒊𝒈𝒉𝒕 (𝒕) = (
𝑹𝑶𝑰𝒕𝒂𝒓𝒈𝒆𝒕(𝒕) − 𝑹𝑶𝑰𝒕𝒃𝒂𝒔𝒆

𝑹𝑶𝑰𝒕𝒃𝒂𝒔𝒆

) − (
𝑹𝑶𝑰𝒓𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆(𝒕) − 𝑹𝑶𝑰𝒓𝒃𝒂𝒔𝒆

𝑹𝑶𝑰𝒓𝒃𝒂𝒔𝒆

) (3.10) 

 Where, ROItarget(t) and ROIreference(t) are the average BOLD signals of target and 

reference ROIs during the neurofeedback block at time t. ROIt_base and ROIr_base are the 

average BOLD signals of the last three volumes in the fixation block of target and reference 

ROIs, respectively. The reference ROI, used to correct for global scanning effects, 

encompassed a rectangular region covering all the voxels within an axial slice distant from 

the target region.  

 Connectivity neurofeedback paradigm: The magnitude of the feedback signal is 

estimated using a Pearson correlation as described below: 

𝒃𝒂𝒓 𝒉𝒆𝒊𝒈𝒉𝒕 (𝒕) =
∑ (𝒙𝒊 − �̅�) (𝒚𝒊 − �̅�)𝒏

𝒊=𝟏

√∑ (𝒙𝒊 − �̅�)𝟐𝒏
𝒊=𝟏 √∑ (𝒚𝒊 − �̅�)𝟐𝒏

𝒊=𝟏

                                                    (3.11) 
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 Where x, y are time courses of ROI1 and ROI2 respectively computed from a sliding 

window, 𝒙 and �̅� are the average BOLD signal within the sliding window of ROI1 and 

ROI2 respectively, and n is the duration of a window (in volumes) (Liew et al., 2016). 

3.4.1.4 Feedback signal 

 The feedback signal was presented as a fluctuating thermometer bar relative to the 

percentage change of the BOLD signal calculated using equation 3.10. An LCD projector was 

used to display the thermometer onto a rear projection screen that could be viewed through a 

mirror mounted on the head coil. The delay associated with continuous feedback depends on 

the image acquisition and processing time. Due to the recent advancements in computer 

technology, the time involved in processing one volume does not typically exceed 100ms. 

However, the BOLD signal, which is an indirect measure of the brain activity, has an inherent 

delay of about 4-6 seconds after the stimulus onset. The feedback signal was updated 

continuously (continuous feedback) every TR, though intermitted feedback has also been 

demonstrated (Johnson et al., 2012) by presenting the feedback signal at the end of each task 

block. The latter approach enables averaging of the feedback signal, and means that subjects 

do not need to consider the BOLD delay. 
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Figure 3.15. A schematic diagram of a real-time fMRI neurofeedback system. The three main 

components - signal acquisition, pre-processing and analysis -  are conducted by two different 

computers connected through a fast TCP/IP connection. 

3.4.2 fMRI neurofeedback design considerations 

 The design of the neurofeedback experiment depends on its objectives, which may 

range from demonstrating that self-regulation affects behavioural functions in healthy 

participants (Shibata et al., 2011; Sitaram et al., 2012; Scharnowski et al., 2015) to clinical 

improvements in patients (DeCharms et al., 2005; Haller et al., 2010; Ruiz et al., 2013). 

However, the majority of the fMRI neurofeedback studies utilise the same experimental 

procedure, which includes: 

3.4.2.1 Definition of the target region 

 The definition of the regions of interest depends on the behavioural changes that are 

being explored. For example, experiments that aim to modulate motor reaction time target 

activity in the motor cortex, such as the primary motor cortex (M1) (Chiew et al., 2012) and 

fMRI scanner 
MRI Console PC 

Turbo-BrainVoyager PC 
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supplementary motor cortex (Scharnowski et al., 2015). Clinically, a few such studies have 

been conducted, such as modulating pain perception by regulating the rostral anterior cingulate 

cortex (rACC) (DeCharms et al., 2005). The feedback signal may be the average BOLD signal 

of a given ROI (Blefari et al., 2015), the differential activity in two ROIs (Neyedli et al., 2017), 

connectivity between two brain networks (Megumi et al., 2015) or the output of a MVPA 

classifier (Shibata et al., 2011). ROIs can be either functionally delineated using a functional 

localiser (Berman et al., 2012; Auer et al., 2015b), or anatomically defined using brain atlas or 

macroscopic anatomical landmark (Marins et al., 2015). 

3.4.2.2 Instructions 

 One unresolved factor of the neurofeedback learning procedure is the instructions. 

There are two types of strategies for self-regulation: implicit and explicit mental strategies. 

Explicit strategies inform the subject to use a specific approach for modulating the brain 

activity, while implicit strategies provide no information and allow the subject to search for an 

effective mental approach. Explicit instructions help subjects to learn the task faster, reducing 

the expensive scanning time. However, recent studies have investigated the use of the implicit 

approach to learn self-regulation in one single session (Shibata et al., 2011; Sepulveda et al., 

2016). Another study has demonstrated the use of the implicit approach with monetary reward 

being the optimal strategy for self-regulation, compared to implicit, explicit and explicit with 

monetary reward (Sepulveda et al., 2016).   

3.4.2.3 Task design 

 Most fMRI neurofeedback studies utilise block design for the modulation task. This 

type of experimental design is efficient in increasing SNR and overcoming the inherited delay 

of BOLD responses. The block design comprises a task block (15-50 seconds) during which 

subjects are instructed to modulate the BOLD signal, followed by a rest block of similar 

duration, during which they relax and/or count numbers (Hanakawa, 2011). Usually, a single 
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run contains fewer than 10 blocks to avoid fatigue and loss of focus, and is repeated 2-10 times 

within one experimental session. The number of neurofeedback sessions varies from one single 

session (Caria et al., 2007; Blefari et al., 2015) to 12 sessions (Auer et al., 2015b). Interestingly, 

Scharnowski et al. (2012) employed a different number of sessions per subject, based on the 

individuals’ ability to achieve success of regulation.      

3.4.2.4 Transfer runs after neurofeedback training 

 The goal of neurofeedback experiments is to investigate the behavioural changes 

occurring during the neurofeedback training that remain after the training has ended, when they 

are no longer viewing the feedback information (for instance, thermometer) or are outside the 

MRI. In clinical applications, maintaining acquired skills after neurofeedback training and 

applying them to real-life situations is the ultimate goal. Transfer runs are conducted at the end 

of an experimental session (Yoo et al., 2008; Sitaram et al., 2012; Auer et al., 2015b).  

3.4.2.5 Experimental control conditions 

 Control groups have been used to prove that feedback information is necessary for self-

modulation of brain activity, compared to the effect of repetitive training using simple 

instructions. Control groups receive sham feedback derived from another participant in the 

experimental group (Zhao et al., 2013; Hui et al., 2014), randomly generated signals (Johnson 

et al., 2012) or information from another ROI functionally unrelated to the target region 

(DeCharms et al., 2005; Scharnowski et al., 2012).  

3.4.2.6 Behavioural changes due to neurofeedback training 

 The main objective of neurofeedback training is to test the behavioural effects arising 

from learning to regulate the brain activity. These effects are dependent on the function of the 

targeted ROIs. 
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Chapter 4 : Hyperalignment of motor cortical areas for action 

observation with motor imagery 

 

 

 

4.1 Abstract 

 Multivariate Pattern Analysis (MVPA) has grown in importance due to its capacity to 

use both coarse and fine scale patterns of brain activity. However, a major limitation of 

multivariate analysis is the difficulty of aligning features across brains, which makes MVPA a 

subject specific analysis. Recent work by Haxby et al., (2011) introduced a method called 

Hyperalignment that explored neural activity in ventral temporal cortex during object 

recognition and demonstrated the ability to align individual patterns of brain activity into a 

common high dimensional space to facilitate Between-Subject Classification (BSC). Here we 

examined BSC based on Hyperalignment of motor cortex during a task of motor imagery of 

three natural actions (lift, knock and throw). To achieve this we collected brain activity during 

the combined tasks of action observation and motor imagery to a parametric action space 

containing 25 stick-figure blends of the three natural actions.  From these responses we derived 

Hyperalignment transformation parameters that were used to map subjects’ representational 

spaces of the motor imagery task in the motor cortex into a common model representational 

space. Results showed that BSC of the neural response patterns based on Hyperalignment 

exceeded both BSC based on anatomical alignment as well as a standard Within Subject 

Classification (WSC) approach. We also found that results were sensitive to the order in which 

participants entered the Hyperalignment algorithm.  These results demonstrate the 
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effectiveness of Hyperalignment to align neural responses across subjects in motor cortex to 

enable BSC of motor imagery.    

4.2 Introduction 

 Multivariate Pattern Analysis (MVPA) has evolved as an effective tool in the analysis 

of fMRI data and its usefulness has been shown in its ability to decode the neural responses 

associated with a variety of different brain states, including for instance, low-level visual 

features in the early visual cortex (Kay et al., 2008), auditory stimuli in the auditory cortex 

(Formisano et al., 2008), and motor actions in sensorimotor cortex (Zabicki et al., 2016; 

Pilgramm et al., 2016; Wurm & Lingnau, 2015; Oosterhof et al., 2013; Oosterhof et al., 2012). 

A major limitation of MVPA (for review, see Haxby et al., 2014) is that it requires a subject-

dependent analysis which uses a new classifier model for each individual brain because the 

structure of neural activation varies across subjects. Accordingly, it has been shown that the 

classifier performance drops when predicting another subject’s responses (Haxby et al., 2011; 

Cox & Savoy, 2003). One possible explanation for this drop in performance of classifiers for 

Between-Subject Classification (BSC) might be idiosyncratic neural responses across subjects, 

and another possibility is that it arises from imperfections in aligning brains across subjects. 

BSC requires a spatial correspondence to align fine-scale topographies across subjects’ brains. 

Current approaches align anatomically defined features either in volume or surface spaces to 

fit a template space. Talairach normalization (Talairach & Tournoux, 1988) performs a 

piecewise affine transformation to align the 3D volume of the brain to a template using 

anatomical landmarks. Surface-based alignment is an advanced method of anatomical 

alignment that aligns the curvature of cortical surfaces across subjects (Frost & Goebel, 2012; 

Fischl et al., 1999). Whilst these techniques establish a spatial correspondence across subjects, 

they still do not afford BSC accuracies approaching those of Within Subject Classification 
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(WSC), due to inter-subject functional loci variability  (Caspers et al., 2006; Rademacher et 

al., 1993).   

 To address these issues with BSC, Haxby and colleagues (Haxby et al., 2011; Haxby et 

al., 2014; Guntupalli et al., 2016) recently developed an algorithm called Hyperalignment to 

align subjects’ representational spaces of Ventral Temporal (VT) cortex into a high-

dimensional common space. Hyperalignment parameters that map the individual voxel space 

into a high dimensional common space (and vice versa), were obtained based on brain 

responses while subjects watched a movie ('Raiders of the Lost Ark') at full length (Haxby et 

al., 2011). Hyperalignment uses Procrustean transformation iteratively (Schönemann, 1966) to 

align the coarse and fine scale topographies by finding the optimal orthogonal transformation 

matrix that minimize the Euclidean distances between two set of response patterns. Haxby et 

al. (2011) applied the resulting subject-independent classifiers to data from two category 

perception experiments and found that the classification accuracy of the BSC obtained via 

Hyperalignment of VT cortex was equivalent to that of conventional WSC, thus confirming 

the validity of the common model space across a range of stimuli. 

 We pursued two main objectives with the present study. (1) Since, at present, 

classification performance using BSC via Hyperalignment has only been documented for fMRI 

data from VT cortex, we wanted to assess whether Hyperalignment can be successfully be 

applied to motor cortical areas, namely primary motor (M1) and premotor cortices (PM). (2) 

Our second, more applied motivation was to generate a subject-independent classifier that 

could in the future be used in real-time fMRI decoded neurofeedback applications involving 

motor imagery, in order to reduce scanning and analysis time compared to employing subject-

dependent MVPA. In addition, in clinical work, subject-independent classifiers could then 

build on normal brain activity instead of a patient’s potentially abnormal one (Rana et al., 

2013). 
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 Our fMRI experiment consisted of two sessions, where the first served to obtain the 

common model space, and the second session was used to contrast WSC and BSC accuracies. 

Rather than asking participants to physically perform motor actions, we employed two well-

researched forms of motor simulation (Jeannerod, 2001; Filimon et al., 2015), namely action 

observation (AO) and motor imagery (MI). The neural substrates of motor execution, AO, and 

MI are at least partly overlapping, and both AO and MI have been shown to facilitate motor 

learning (e.g., Higuchi et al., 2012). AO and MI have also been successfully applied in motor 

rehabilitation (see Vogt et al., 2013). In addition, WSC of individual actions has already been 

demonstrated for both observed and imagined actions (Zabicki et al., 2016; Pilgramm et al., 

2016; Wurm & Lingnau, 2015; Oosterhof et al., 2013; Oosterhof et al., 2012). 

 In the first session, participants engaged in a combination of action observation and 

motor imagery ('AO+MI') of n=25 action stimuli, as to provide a base for deriving a common 

model space. Whilst AO and MI have traditionally been studied in isolation and by different 

research groups, there is now growing evidence that both forms of motor simulation can be 

used concurrently, and that AO+MI generates both enhanced behavioural effects and more 

robust neural activation patterns than AO or MI alone (for review, see Vogt et al., 2013, and 

Eaves et al., 2016). All stimuli used in Session 1 were stick figure displays that were blended, 

with varying weights, between three natural multijoint actions that anchored the space of 

blended movements (lifting, knocking, and throwing; Vangeneugden et al., 2009). This set of 

blended movements are biomechanically possible actions that sample the space between the 

anchor points and thus provide a set of movements specially adapted for study of the anchor 

points.    

 In the second fMRI session, participants engaged in pure MI of the three natural (lifting, 

knocking, and throwing) actions that formed the basis of the above blend space. We used this 

independent dataset in order to contrast the classification accuracy of the subject-independent 



119 
 

classifiers derived from the Hyperalignment with the accuracy of classifiers based on 

conventional anatomically aligned data. We have previously shown that these actions can 

indeed be decoded from the individual’s motor cortex using WSC (Al-Wasity et al., 2016). 

Specifically, in the present study we applied Hyperalignment procedures to motor cortical areas 

to pursue the following aims: 

1. To assess the effect of permutating the order in which participants were entered in the 

Hyperalignment procedure to generate a common model, in order to obtain the most 

discriminative subject-independent classifiers. 

2. Based on the above, to validate the classification accuracy of BSC derived from 

Hyperalignment with (a) that derived from anatomically aligned data, and (b) with the 

accuracy of WSC where a new classifier is tailored for each subject. 

3. To contrast the classification accuracy of two different ways of obtaining classifiers via 

Hyperalignment, (a) those obtained from a separate fMRI session (Session 1), and (b) 

those obtained within-session (Session 2) via a split-half procedure. 

4. Finally, to assess the cost in classification accuracy when the to-be-classified 

participant’s data were excluded from the dataset used for the Hyperalignment (as to 

inform future applications of decoded neurofeedback where this scenario would be the 

norm). 

4.3 Methods 

4.3.1 Participants 

 Ten right-handed individuals (age 32.5 ±7.6, 8 male) with normal or corrected to 

normal vision participated in the experiment. All subjects provided their informed consent for 

the experiment.  The study was approved by the Ethics Committee of the College of Science 

and Engineering, University of Glasgow.   
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4.3.2 Stimuli 

 Stimuli consisted of a set of 28 movies that depicted the human body as a stick figure, 

with point-lights at the major joints, performing arm actions (Vangeneugden et al., 2009). All 

movies had a duration of 2000ms with a total of 120 frames shown at 60Hz and with a 

resolution of 256×256 pixels. Three of the 28 movies were the 3 actions of lifting, knocking 

and throwing, subsequently referred to as the 'natural actions'.  The remaining 25 movies were 

2-way and 3-way blends of these 3 actions (Figure 4.1), subsequently referred to as the 'blended 

actions'. The blended actions were made using the algorithm of Kovar and Gleicher (2003), 

which preserves the constraints of biomechanical movement. They were created in a step size 

of 16.6% change of the weighting of the original actions producing 15, 2-way blended actions 

(Figure 4.1, outer triangle) and 10, 3-way blended actions (Figure 4.1, inner triangle and 

centre). 
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Figure 4.1. The stick-figures displaying the 60th frame of each action along with the blending 

weights (the percentage change of lifting, knocking and throwing respectively). 

4.3.3 Apparatus and Procedure 

 Each participant attended two different scanning sessions. The stimuli were displayed 

via a LCD projector onto a rear projection screen that was viewed through a mirror mounted 

on the head coil. Videos subtended approximately 2.6 horizontal and 8.8 vertical degrees of 

visual angle. Stimulus presentation was controlled using Presentation software 

(Neurobehavioral Systems, Inc.).  
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4.3.3.1 Session 1: Blended action stimuli 

 In Session 1, subjects were presented with the 25 movies of the blended actions and 

engaged in concurrent action observation and motor imagery (AO+MI) involving their right 

arms. The movies were presented in 10 separate runs of 320s each using a block design. Each 

run started with 20s fixation and contained 6 blocks of stimuli with 12s of inter-block interval 

(IBI). Within a block, 14 pseudorandomly chosen actions were presented with a variable inter-

stimulus interval (ISI) that ranged from 500ms to 1000ms pseudorandomly as shown in figure 

4.2 (A). As a catch trial to enforce attention, subjects performed a fixation colour change task 

by pressing a response button with their left hand when the fixation colour changed from black 

to red. All subjects observed the same sequence of the runs, blocks and trials. 

4.3.3.2 Session 2: Natural action stimuli 

 In Session 2, only the three natural action displays (lifting, throwing and knocking) 

were used.  This session comprised a pure MI task, and an action observation with motor 

imagery task (AO+MI), where the AO component in the latter task served to remind partipants 

on the details of each action (note that the data from this AO+MI condition will not be described 

in the present chapter). In both tasks, subjects were instructed to imagine moving their right 

arm.  During the pure MI condition, participants were prompted by a pacing tone that was 

presented over MRI-compatible headphones and controlled via Presentation software 

(Neurobehavioral Systems, Inc.). The auditory pacing signal consisted of beeps (100ms 

duration at 500Hz) repeated every 2s. Subjects were instructed to synchronize their MI with 

that signal. The videos were shown in a block design of 8 runs, 456s each. Each run started 

with 20s fixation at the beginning and consisted of 9 chunks, with each natural action presented 

3 times randomly. A chunk consisted of a block of AO+MI, a short IBI of 4s, and a block of 

pure MI followed by a long IBI of 12s. Each block lasted for 16s and either had 8 videos of the 

same action for the case of AO+MI or a black screen for the case of MI (figure 4.2,B). 
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Figure 4.2. (A) Experimental design of blended actions session. Each run consisted of 6 

blocks of 38s with IBI of 12s. After 20s fixation, subjects started to simultaneously perform 

action observation and motor imagery (AO+MI). In each block, 14 video trials of 2000ms 

each were presented with a variable ISI from 500-1000ms. (B) Experimental block design of 

natural actions session. Each run contained 9 chunks (gray shaded area), and there were 3 

chunks for each action. A chunk comprised an AO+MI block with 8 repetition of the same 

action video of 16s, a short IBI of 4s, a pure MI block of 16s and a long IBI of 12s. After 20s 

fixation, participants observed and imagined (AO+MI) doing an action simultaneously for 8 

times then imagined (MI) it 8 times assisted by a pacing tone. 

A 

B 
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4.3.4 Imaging protocol 

 Subjects were scanned in a 3 Tesla Siemens Tim Trio MRI scanner at the University of 

Glasgow Centre for Cognitive Neuroimaging (CCNi) with a 32-channel head coil. T1 weighted 

structural scans were acquired at the middle of each session (TR=2000ms, TE=2.52ms, 192 

sagittal slices, 1 mm3 isotropic voxels and image resolution 256×256). T2*-weighted 

functional scans were collected with an Echo-Planar Imaging (EPI) sequence (TR=2000ms, 

TE=30ms, whole brain coverage with 32 axial slices, with 0.3 mm gap, 3 mm3 isotropic voxel). 

4.3.5 fMRI data preprocessing 

 Data were preprocessed using BrainVoyager QX 2.8.4 (Brain Innovation, Maastricht, 

The Netherlands). Preprocessing involved slice scan-time correction with cubic-spline 

interpolation, 3D motion correction with Trilinear/Sinc interpolation, linear trend removal and 

high-pass filtering with a cutoff set to 2 cycles.  All the functional volumes of each session 

were aligned to a reference volume, which was the first functional volume after the anatomical 

scan. The functional data of each subject of both sessions were spatially aligned to a common 

anatomical space to establish a voxel correspondence across sessions and then normalized to 

Talairach space (Talairach and Tournoux, 1988).  

4.3.6 fMRI data analysis 

 All further fMRI data were analysed using MATLAB (version 9.0.0.341360, 

Mathworks), NeuroElf v1.0 (www.neuroelf.net) and PyMVPA 2-2.6.0 (Hanke et al., 2009; 

www.pymvpa.org).  

4.3.6.1  Voxel selection 

 A gray matter mask, derived using a Talairach brain atlas in BrainVoyager, was used 

to extract data from Brodmann areas 4 and 6 of the left hemisphere. The resultant mask had 
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1758 mm3 isotropic voxels. The time-series of activation for each voxel was normalized using 

z-score and shifted by 2 TRs (4 s) to account for the hemodynamic delay.   

4.3.6.2 Building a common model representational space using Hyperalignment 

 Brain activation patterns can be considered as vectors in a high-dimensional space in 

which each dimension is a feature (fMRI voxel). Although the space of individual subjects are 

not aligned, they are time locked to the stimuli (Haxby et al., 2011). Hyperalignment uses 

Procrustean transformation iteratively to map subjects’ representational spaces into a common 

model space by deriving transformation parameters for each subject. This process consists of 

three stages: during the first stage, an arbitrary subject is chosen to be a reference subject. The 

2nd subject’s response vectors are aligned to the reference subject’s vectors using Procrustean 

transformation and then the 3rd subject is aligned to the mean response vectors of the first 2 

subjects and so on. In the second stage, each subject’s response vector are aligned to the mean 

response vectors of the first stage (intermediate common space) and  new response vectors are 

computed by averaging all the subjects’ aligned (rotated) vectors which would be the final 

common model space. During the last stage, Hyperalignment transformation parameters are 

calculated for each subject to map their voxel space into the final common model space as 

shown in Figure 4.3. This common model space and transformation parameters were derived 

using the response vectors of all subjects during the AO+MI task of the blended actions stimuli 

session.  
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Figure 4.3.  A block diagram of the Hyperalignment method used to derive a common 

representational space and transformation parameters (TM) using Procrustean transformation. 

S is the subject’s representational space, RS is the subject’s aligned (rotated) space using 

procrustean transformation, CSini is the intermediate common spaces, CSfinal is the final 

common space and ∑ is the average of representational spaces. 

4.3.6.3 Mapping the subject’s representational space into the common model space 

 Subjects’ representational spaces of the MI task obtained during the natural actions 

session can be aligned altogether by multiplying each subject’s transformation parameters with 

the voxels’ responses as illustrated in equation 4.1.  

𝑴(𝒌×𝒏) = 𝑽(𝒌×𝒏)𝑻(𝒏×𝒏)                                                                                                                    (4.1) 

 Where M(k×n) is the mapped matrix in the common model space (k time points, n 

voxels), V(k×n) is the voxels’ responses in Talairach space and T(n×n) is the Hyperalignment 

transformation parameters. 

4.3.6.4 Multi-Voxel Pattern Analysis 

 For information decoding, a multiclass linear Support Vector Machine (SVM) 

(Hausfeld et al., 2014) implemented in PyMVPA (LIBSVM, C=-1.0) was used for the 

classification (lifting vs. knocking vs. throwing) of the brain activity during the MI task with  



127 
 

natural actions. The multiclass problem was translated into a series of binary classifications 

paired with a majority voting scheme to determine the predicted class (Haxby et al., 2011; 

Misaki et al., 2010; Reddy et al., 2009). For within subject classification (WSC), a leave-one-

run-out approach was used, which resulted in 8 fold cross-validation.  A leave-one-subject-

and-one-run-out scheme was used for between subject classification (BSC), which generated 

80 folds cross-validation across runs and subjects (Haxby et al., 2011). For each modality, data 

within similar stimulus blocks of each run were averaged to substitute the response patterns for 

that stimulus, such that 3 samples correspond to the three action stimuli per run. A SVM 

searchlight approach (Kriegeskorte et al., 2006) with a sphere radius of 3 voxels was used to 

define the network of regions that had information to decode the three stimuli, and the 

accuracies of all searchlight were mapped onto a cortical surface for visualization. WSC was 

performed by training the SVM classifier on the data from seven runs (7 runs × 3 stimuli 

samples = 21 pattern vectors) and tested on the left-out eighth run (3 pattern vectors) of each 

subject independently. For BSC, the SVM classifier was trained on the data from 1 run in 9 

subjects (1 run × 9 subjects × 3 stimuli samples = 27 pattern vectors) and tested on the left out 

run of the left out subject (1 run × 1 subjects × 3 stimuli samples =3 pattern vectors). BSC was 

performed on the data that were aligned anatomically using Talairach space and on the data 

that were mapped in the common space using Hyperalignment.  

4.3.6.5 Common model space generalization 

 The common model space was derived by averaging all the subjects’ rotated 

representational spaces during the second stages of Hyperalignment (see Figure 4.3). To test 

the generalization of this model for a new representational space that had not played any role 

in deriving it, a leave one subject out of Hyperalignment procedure was performed to create a 

common model space and then to map the left out subject to that space and derive the 

transformation parameters. BSC based on Hyperalignment was conducted by training the SVM 
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classifier on the Hyperaligned data of 9 subjects and tested using the newly mapped subject 

data. 

4.3.6.6 Common model space sensitivity 

 To compute the common model representational space a reference subject is chosen 

arbitrarily (when the number of voxels are equal across subjects) during the first stage of 

Hyperalignment and the rest of the subjects contribute by different weights (see Figure 3), To 

test the sensitivity of the common model space to the choice of reference subject and subject 

order, the subject order was shuffled 2000 times prior to calculating Hyperalignment and for 

each time a new common model space and transformation parameters were computed to map 

subjects’ activation patterns of MI task and then to predict the MI class (lift, throw or knock). 

4.4 Results 

 The results of the two fMRI recording sessions are reported.  In Session 1, 10 subjects 

performed an AO+MI task to presentation of 25 videos displaying a parametric set of action 

blends of lifting, knocking and throwing.  These data were used to compute Hyperalignment 

transformation parameters that allowed us to transform the data of individual subjects into a 

common model space. In Session 2, the same subjects performed pure MI to presentation of 3 

videos displaying the actions lifting, knocking and throwing. From these data, SVM classifiers 

were used to decode the MI conditions of each individual subject using that subject’s 

anatomically aligned data and hyperaligned data.  In the following, we first explore the 

sensitivity of the common model space to the subject order used to estimate Hyperalignment 

parameters.  Following this, we use the subject order that produced the highest performance of 

the common model space and map all the subjects’ MI data to it. Then we compare between 

WSC, BSC based on anatomical alignment and BSC based on Hyperalignment using the 

blended actions for each modality separately. Additionally, we compare between BSC based 
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on Hyperalignment derived using the 25 blended actions and the 3 natural actions. Finally, we 

examine the impact of a common model generalization on BSC.    

4.4.1 Sensitivity of the common model space to subject order  

 To assess the influence of the subject order on the common model space, 2000 

permutations of subject order were performed to derive new common model spaces and 

Hyperalignment transformation parameters using the neural responses of the 25 blended 

actions.  From this, the data of the MI task were mapped into the common model spaces and 

the distribution of BSC was estimated. Figure 4.4 presents the sorted distribution of 

classification accuracies based on Hyperalignment using a box-whisker plot with a median 

classification accuracy of 52.9% and a maximum of 67% (A), along with logarithmic scaled 

two-tailed t-test results between BSC based on Hyperalignment and Anatomical alignment (B).   
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Figure 4.4. (A) a box-whisker plot of BSC based on Hyperalignment of 2000 permutations of 

subject order showing the classificsation accuracies of different orders of subjects, (B) 

logarithmic scale of two-tailed t-test betweens BSC based on Hyperalignment and BSC based 

on Anatomical alignment, dashed line is p=0.05. 
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4.4.2 Between-Subject Classification after Hyperalignment based on brain 

response to the 25 blended actions 

 The common representational space and the Hyperalignment transformation parameters 

were derived using the neural responses of the 25 blended actions obtained while participants 

performed AO+MI. In this study, 130 voxels were selected using a Searchlight approach and 

were used as a ROI for all the subsequent analyses. BSC using Hyperalignment was performed 

using subjects’ response patterns on the MI task (lift, knock, and throw) respectively that were 

mapped into the common space using the associated Hyperalignment parameters. As a 

comparison, BSC using anatomical alignment was also performed on the subjects’ data that 

were aligned based on anatomy using Talairach space (Talairach and Tournoux, 1988). BSC 

accuracies using both Hyperalignment and anatomical alignment were relatively stable over a 

wide range of voxels sets. As an additional step, BSC values were compared to WSC in which 

an individual classifier was constructed for each subject.  

 Figure 4.5 shows the Searchlight maps of BSC based on Hyperalignment and BSC 

based on anatomical alignment. Due to Hyperalignment, the representational space of 

Searchlight spheres are well aligned with an overall accuracy above 33.3% (chance level) using 

a common model space with a peak of (47.5%) in Supplementary Motor Area as well as M1 

and dorsal PM (dPM) regions in contrast to anatomical alignment with a peak of (38.75%) in 

M1.  
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Figure 4.5. Searchlight maps of BSC based on Hyperalignment (left) and BSC based on 

anatomical alignment (right) using MI task (lifting, throwing and knocking). Hyperalignment 

transformation parameters were derived using the responses of blends action movies. 

 BSC accuracy of anatomically aligned data were (36.26%, SEM=2.5%, chance=33%). 

However, after the Hyperalignment, BSC predicted the three actions with an accuracy of 

67.08% (SEM=4.1%), and it was significantly better than the anatomical alignment (two-tailed 

t-test, p< 0.0001). On the other hand, the average WSC accuracy was less than the BSC of 

Hyperaligned data (48.3%, SEM=3.29%) as shown in figure 4.6. The confusion matrix of BSC 

based on Hyperalignment shows that the classifier identifies the individual actions as shown in 

figure 4.7, on the contrary, BSC based anatomical alignment does not show any discrimination 

among actions. 

BSC based on Anatomical alignment BSC based on Hyperalignment 
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Figure 4.6. The classification accuracies (mean ±SEM) for averaged WSC, BSC based on 

Anatomical alignment and BSC based on Hyperalignment, dashed line indicates chance level 

(33%). * P ≤ 0.05, ** P ≤ 0.01 , *** P ≤ 0.001. 

 

Figure 4.7. Confusion matrices for action classification using WSC, BSC based anatomical 

alignment and BSC based on Hyperalignment. 
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4.4.3 Between-Subject Classification after Hyperalignment based on brain 

response to the natural actions 

 The common representational space and the Hyperalignment transformation parameters 

can be derived from other sources of fMRI data (Haxby et al., 2011). Thus, in addition to the 

common representational space and Hyperalignment transformation parameters based on 

neural responses of the AO+MI task on the blended actions we ran another analysis to 

investigate whether the Hyperalignment parameters derived using only the neural responses of 

the MI task on the three natural actions would afford a high BSC accuracy. The common space 

was derived using all runs but one of the subjects. Then the left out run of each subject was 

mapped into the common space using the Hyperalignment parameters obtained earlier. To 

avoid double dipping (Kriegeskorte et al., 2009), a classifier was trained on the left out runs of 

all the subjects except one and was tested on the data of the left out run in the left out subject 

and hence, the test data play no role either in training the classifier or in Hyperalignment. BSC 

accuracy after Hyperalignment based on the data of the same session was almost comparable 

to Hyperalignment based on the blended action movies (69.17%, SEM=2.42% versus 67.08%, 

SEM=4.1%) respectively.  

4.4.4 Common space model generalization 

 We conducted further analysis to study the decoding effect of aligning new subjects to 

the common model space who have not contributed to derive it. Figure 4.8 shows the BSC 

based on Hyperalignment of a common model derived using either all the subjects’ data or by 

mapping a new subject to a pre-prepared common model. The comparison demonstrates that 

both BSCs based on Hyperalignment are statistically better than BSC based on anatomical 

alignment (two-tailed t-test P≤0.0002). Thus, although engaging all the subjects’ 

representational spaces fine tunes the common model space, aligning a new subject’s 
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representational space to a pre-defined common model still shows benefit over BSC based on 

anatomical alignment. This property could prove beneficial during a paradigm using online 

fMRI classification.  

 

Figure 4.8. BSC based on Hyperalignment of a common model space derived using all the 

subjects’ data or derived using all the subject except one. Dashed line is chance level=33%. * 

P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001. 

4.5 Discussion 

 In this paper, we performed Hyperalignment to map the functional voxel spaces of the 

activity in individual subjects' motor cortex into a common model space. Hyperalignment uses 

Procrustean transformation to rotate subject’s representational axes into a common coordinate 

system in which the neural responses for the same stimuli or tasks are in optimal alignment 

across individuals. This model is a high-dimensional representational space that captures the 

fine-scale topographies and their variability across brains. Hyperalignment computes the 

transformation parameters for each subject that can be applied to map a different set of response 

vectors using the same subjects’ voxels, into a common model space. Previously, Haxby and 
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colleagues have explored the feasibility of using Hyperalignment to align fMRI data in visual 

and auditory cortices (Haxby et al., 2011; Guntupalli et al., 2016), however it is unknown 

whether the technique works to align other brain regions. Here, we used Hyperalignment to 

compute a common model representational space of the motor cortex from data obtained while 

participants performed an AO+MI task, and we validated that model by decoding the brain 

activity during MI of different arm actions.   

 The first aim of our research was to explore whether the order in which participants 

were entered into the Hyperalignment procedure mattered for the generation of a discriminative 

subject-independent classifier.  Previous reports of Hyperalignment results did not provide any 

analysis of subject order (Haxby, et al., 2011), however the Hyperalignment algorithm is 

potentially sensitive to subject order.  The inter-subject response variability to the task and 

different weights of subject’s contribution toward computing the intermediate common model 

(see Fig. 4.4) influence the Hyperalignment algorithm in its ability to rotate and align response 

vectors of the same stimulus across subjects. The results of our permutation test that shuffled 

the subjects order and computed a new common model in each iteration showed that subject 

order had a profound effect.  Why subject order had a substantial effect for our study exploring 

motor cortex is an area deserving further research.  To be effective the common model 

representational space must be capable of capturing the fine-grained representation structures 

encoded in subjects’ responses and the motor cortex might provide more inter-subject response 

variability for the representation of actions than obtained in the representation of objects in 

temporal cortex (Haxby, et al., 2011).  Another possible source of variability is in the tasks 

used as Haxby and colleagues (2011) used a natural dynamic audiovisual stimulus (e.g. 

watching a movie), while we used a set of blended movements that densely sampled a particular 

movement space and had participants perform a visuomotor task (AO+MI).  While both are 

inherently multisensory (audiovisual versus visuomotor) it could be that Haxby et al.'s 
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audiovisual task produces less response variability in temporal cortex than our AO+MI task 

produces in SMA and dorsal premotor areas.  In addition, the representation of different arm 

actions among a space of actions might be more sensitive to perturbation than the 

representation of different visual objects.   

 Based on the above, the second (and main) aim of this study was to compare the 

classification accuracy of BSC derived from Hyperalignment with BSC using anatomical 

alignment, and with the more standard WSC approach, using a separate dataset that involved a 

pure MI task. Importantly, the results demonstrated that mapping from individuals’ voxel 

spaces into a high dimensional common space affords a BSC that significantly exceeds the 

BSC based on anatomical alignment. In addition, the standard individualised WSC-based 

classification accuracy exceeded that of BSC with anatomical alignment, but also the former 

was significantly lower than BSC based on Hyperalignment (see Fig. 6). The average WSC of 

the MI task in left motor cortex was comparable to that reported in the studies by Zabicki et al. 

(2016) and Pilgramm et al. (2016). Interestingly, our paradigm involved imagining moving the 

whole right arm (complex actions) while the above two studies used simple actions that only 

engaged the fingers of the right hand. Our findings illustrate that Hyperalignment offers higher 

classification accuracies by building a common model of the motor cortex to increase the power 

of MVPA to detect the fine scale information across participants. 

 In the above validations, Hyperalignment parameters had been obtained from the 

AO+MI task in Session 1, and these were shown to be successful for the classification of the 

fMRI signal during the MI task in Session 2.  However, Hyperalignment parameters can be 

computed from any fMRI data (Haxby et al., 2011), thus it is not clear what limits there are for 

creating valid classifiers. Accordingly, our third aim was to contrast two different 

classifications based on Hyperalignment, one based on the above model, and the other using 

the fMRI signal from the MI task of all runs except one of the subjects. Indeed, our results 
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showed that both models afforded comparable levels of classification accuracy. These results 

further demonstrate the flexibility of Hyperalignment to align subjects’ representational spaces 

using different data sources. 

 Finally (aim 4), we were interested in whether Hyperalignment would be successful in 

the situation when data from a subject not used in the original Hyperalignment creation process 

was encountered.  To explore this we examined the cost in classification accuracy when a to-

be-classified participant’s data were excluded from the dataset used for the Hyperalignment 

and showed that although there was a decrease in performance, it was still better than BSC 

based on anatomical alignment.  Such a situation would arise if Hyperalignment based on one 

set of participants would be used to perform classification on data from a new subject and could 

be expected in applications like real-time decoded neurofeedback.  A new subject would 

require a mapping of their neural responses into a previously computed common model and an 

estimate of their transformation parameters based on neural responses to the original data set 

could be used to obtain the transformation parameters. The computed parameters would be 

used to transform each new subject’s data into the common model space and subsequently, 

feedback would be given by a pre-trained classifier that identifies the brain states of the new 

subject Hyperaligned data.   

 In conclusion, we introduce here a common high dimensional model of the motor cortex 

that capture the fine grained structure of brain responses during MI task of natural actions. This 

model is derived by using a Hyperalignment algorithm that rotates subjects’ representational 

spaces into one common space, affording high BSC accuracies compared to BSC based on 

anatomical landmarks. Hyperalignment can be used to align data from similar experiments into 

one common model that establishes a functional correspondence of fine-scale topographies 

across brains, enabling the use of these datasets to examine neural representations and 
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individual differences. More importantly for MVPA analysis, this common model would 

reduce the time and cost of scanning by avoiding collecting extra data to train classifiers. 

4.6 Rationale for the experimental chapters 4 and 5 

The aims of the experimental chapter 4 were to examine the feasibility of using the left 

hemisphere motor cortex (M1 and PM) as a ROI to decode the representational spaces of multi-

joint arm actions (lift, knock and throw) during MI task and also, to map subjects’ 

representational spaces of that ROI into a common model space using hyperalignment. This 

common space facilitated building a subject independent classifier that is capable to predict the 

correct class (actions) from a new subject’s data. Classification accuracies based on 

hyperaligned data were higher than those based on anatomically aligned data or within-subject 

classification. Furthermore, chapter 4 identified that the subject order entering hyperalignment 

algorithm is important to creating a robust common model representational space. This adds to 

recent literature the use of hyperalignment to align motor representational spaces across 

subjects after optimizing the subject order. In the next experimental chapter (chapter 5), these 

finding of hyperalignment were extended by mapping the fronto-parietal motor regions (12 

symmetrical ROIs in both hemispheres). These ROIs were delineated using cortex based 

alignment for a better anatomical localization prior to applying hyperalignment. In addition, 

the shared neural code evoked from AO+MI and MI tasks was evaluated using cross-modal 

classification and the similarity of different actions (lift, knock and throw) and modalities 

(AO+MI and MI) representations was examined using RSA.  
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Chapter 5 : Testing Neural Similarity of Multi-Joint Arm Actions 

during Motor Imagery and Motor Imagery with Action 

Observation using Multivariate Pattern Analysis 

 

 

 

5.1 Abstract 

Motor simulation theory proposes that motor imagery (MI) and action observation (AO) 

partially activate the same motor network, which is involved in motor execution (ME). 

Previous fMRI studies have used univariate analysis to demonstrate that combining AO and 

MI (AO+MI) elicits stronger neural activation in the ME network than MI or AO in isolation. 

However, it is unclear to what extent AO+MI and MI use the same neural code. In the present 

studies, we used multivariate pattern analysis (MVPA), hyperalignment and representational 

similarity analysis (RSA) to align and to characterise the neural representations associated with 

AO+MI and MI within the fronto-parietal motor network. During functional magnetic 

resonance imaging scanning, 10 participants concurrently observed and imagined (AO+MI) or 

imagined (MI) 3 different types of multi-joint right arm actions. The results of MVPA showed 

that the action types, along with their modality (AO+MI or MI) could be decoded at a level 

that was significantly above chance either from the participant’s representational space or from 

the common representational space derived using hyperalignment. This was also true for cross-

modality decoding. However, the classification performance of action types based on AO+MI 

or MI tasks was not statistically significant. Moreover, representational dissimilarity matrices 

of frontal-parietal motor regions showed that AO+MI and MI representations formed separate 
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clusters, but that the representational organisation of action types within these clusters was 

identical. For most ROIs, this pattern of results best fits with a model that assumes a low-to-

moderate degree of similarity between the neural patterns associated with different actions 

during AO+MI and MI tasks. Therefore, the neural representations of AO+MI and MI are 

neither the same nor totally distinct, but exhibit a similar structural geometry with respect to 

different types of action. Additionally, we can cautiously conclude that MI dominates in 

AO+MI conditions. 

5.2 Introduction 

 Over the last two decades, there has been an increased interest in the motor simulation 

theory proposed by Jeannerod (2001). This theory proposed that the acts of observing and 

imagining motor actions both activate the neural network involved in motor execution. It also 

suggested that every action involves a covert state that includes the goal of the action and its 

sensory consequences. Motor imagery (MI) and action observation (AO) are two forms of 

covert actions (Vogt et al., 2013; Filimon et al., 2015), which are simulated by individuals in 

the absence of motor output (Hanakawa et al., 2008; Blefari et al., 2015). MI is defined as a 

cognitive process in which a subject imagines performing an action in the absence of motor 

output (Hétu et al., 2013). It is a complex, internal, conscious rehearsal of visual and/or 

kinaesthetic aspects of movements (Hanakawa et al., 2008; Munzert et al., 2009; Vogt et al., 

2013). It has been suggested that MI facilitates motor skill acquisition and motor learning 

(Schuster et al., 2011), and enhances motor performance (Gentili et al., 2010) in a similar way 

to physical practice, resulting in cortical plastic changes following repetitive mental training 

(Miller et al., 2010). Clinically, MI has been used in motor rehabilitation after stroke (Malouin 

and Richards, 2013). Similarly, AO has gained increasing interest following the discovery of 

mirror neuron systems (MNS) in non-human primates (Gallese et al., 1996; Rizzolatti and 

Sinigaglia, 2010) and in the human brain (Fabbri-Destro and Rizzolatti, 2008; Oztop et al., 
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2013). Mirror neurons discharge during both the execution of goal-directed movements and the 

observation of other individuals who are performing similar movements. AO elicits an internal 

motor representation of the observed action (Rizzolatti and Sinigaglia, 2010).  It forms the basis 

of learning through imitation (Buccino et al., 2004), and has been recommended as a 

neurorehabilitation tool (Buccino, 2014). Whilst AO and MI have traditionally been studied in 

isolation and by different research groups, there is now growing evidence that both forms of 

motor simulation can be used concurrently, and that AO+MI generates both enhanced 

behavioural effects and more robust neural activation patterns than AO or MI alone (for review, 

see Vogt et al., 2013, and Eaves et al., 2016). 

 In terms of the neural substrates underlying MI and AO, they recruit motor and motor-

related regions including the supplementary motor area (SMA), the premotor cortex (PMC), 

and posterior parietal regions such as the inferior and the superior parietal lobe (IPL and SPL 

respectively), which overlap both with one another and with regions involved in motor 

execution (ME) (Caspers et al., 2010; Hétu et al., 2013). This neural overlap with ME networks 

facilitates motor learning and rehabilitation using MI and AO. Based on this, the majority of 

evidence generally advocates for MI and AO being two independent techniques that are useful 

for improving motor abilities. While the majority of previous research has focused on MI or 

AO in isolation, there is now a growing body of brain imaging studies demonstrating that 

observing an action while imagining the same action (AO+MI) evokes significantly stronger 

activation in the motor execution network compared with observing or imagining the action 

independently (Macuga and Frey, 2012; Nedelko et al., 2012; Eaves et al., 2016). Taube et al., 

(2015) reported that AO+MI had a unique neural signature and it evoked greater neural activity 

in the SMA, basal ganglia, and cerebellum compared to AO, and in the bilateral cerebellum 

and precuneus compared to MI. Other fMRI studies have reported that AO+MI increased the 

neural activity over the AO in parts of the cerebellum, inferior frontal gyrus, IPL and SMA 
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(Nedelko et al., 2012), ventral premotor cortex (PMv) and left insula (Villiger et al., 2013). 

However, all of these studies used univariate data analysis to map the overall brain activity 

changes associated with a given stimulus or cognitive task (Jezzard et al., 2003a). This form 

of traditional fMRI data analysis does not consider the distributed changes of activation 

patterns within a region of interest (ROI) which may occur in the absence of overall amplitude 

modulation. 

 In contrast to the univariate approach, a multivariate pattern analysis (MVPA) allows 

us to investigate the representational content of the neural population code (Haynes and Rees, 

2006; Mur et al., 2009; Kriegeskorte, 2011; Mahmoudi et al., 2012; Haxby et al., 2014). This 

approach detects the distributed activity patterns across multiple voxels, including those with 

weaker activation (Haxby et al., 2011), and links them to a given stimulus or experimental 

condition. Previous studies have documented the feasibility of MVPA for decoding imagined 

and/or executed hand actions from frontal and parietal regions (Pilgramm et al., 2016; Zabicki 

et al., 2016). Furthermore, Filimon et al., (2015) decoded action modalities (AO, MI and ME) 

from neural activity patterns in motor and motor related regions. Pilgram et al., (2016) provided 

evidence that patterns of activity within the primary motor, premotor and parietal (IPL and 

SPL) regions differentiate between three different types of imagined hand actions: a force 

production task, an aiming task, and an extension–flexion task, while Zabicki et al., (2016) 

demonstrated that these actions, as well as their modalities (MI or ME), can be decoded using 

the elicited neural activity pattern within the fronto-parietal motor network. 

 The MVPA is a subject dependent analysis which tailors a new classifier model for 

each subject; this is necessary because the structure of neural activation varies across different 

brains (Haxby et al., 2014). It has been documented that classification performance drops when 

predicting another subject’s responses (Haxby et al., 2011). Haxby and colleagues (Haxby et 

al., 2011; Haxby et al., 2014; Guntupalli et al., 2016) addressed this limitation by developing 
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an algorithm called hyperalignment to functionally align subjects’ representational spaces and 

to create a common high dimensional representational space of the VT cortex. Our previous 

work (chapter 4) showed that hyperalignment can be used to align subjects’ representational 

spaces in the motor cortex into a common representational model. Our results demonstrated 

that hyperalignment can align the neural responses across subjects’ motor cortices and can 

significantly improve between-subject classifications better than anatomical alignment.  

 The current study addressed the following objectives: (1) Since, at present, 

classification performance of action types has been only documented for MI and ME, we 

wanted to assess whether different types of multi-joint arm actions can be decoded from the 

neural activity pattern during pure MI and AO+MI conditions to allow a more integrative view. 

(2) Our second aim was to create a subject-independent classifier to reduce scanning and 

analysis time compared to employing subject-dependent MVPA by parcellating the motor and 

motor-related area using CBA and then aligning these regions using hyperalignment. (3) The 

third aim was to examine whether MI and AO+MI share similar neural codes by attempting 

cross-modality classification. All the aims mentioned above explored the effect of AO on MI. 

(4) Our last aim was to study the similarity between the representations of different hand 

actions during MI and AO+MI by using RSA. 

 Our fMRI experiment consisted of two sessions; the first was used to obtain the 

common model space, and the second was used to evaluate the classification accuracies. Our 

participants had either to imagine (MI) or observe and imagine (AO+MI) different multi-joint 

right arm actions: knocking, throwing and lifting, as well as blended actions  (Vangeneugden 

et al., 2009).  

 In the first session, participants engaged in an AO+MI task of n=25 blended action 

stimuli, in order to provide a base for deriving a common model space. All stimuli used in 

Session 1 were stick figure displays that were blended, with varying weights, between three 
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natural multi-joint actions that anchored the space of blended movements (lifting, knocking, 

and throwing; Vangeneugden et al., 2009). This set of blended movements are biomechanically 

possible actions that sample the space between the anchor points and thus provide a set of 

movements specially adapted for study of the anchor points.    

 In the second fMRI session, participants engaged either in AO+MI or pure MI of the 

three natural (lifting, knocking, and throwing) actions that formed the basis of the above blend 

space. We then decoded the action types (knocking vs throwing vs lifting) and the modality 

(AO+MI vs MI) based on the neural activity pattern they evoked in the motor, premotor and 

parietal cortices. Separate classifiers were trained and tested for each ROI of each subject in 

order to obtain an index of pattern discriminability. In the next step, we applied a 

hyperalignment approach (Haxby et al., 2011) to align ROIs across participants prior to the 

decoding and to generate subject-independent classifiers. Then, we classified across the 2 

modalities (MI and AO+MI) for each given action to test whether MI and the AO+MI of 

specific arm movements shared a similar neural code. Finally, we used Representation 

Similarity Analysis (RSA) (Kriegeskorte et al., 2008a) to characterise the representational 

geometry of different action types and modalities in every motor area, and compared them with 

several computational models: the action type model, the modality model, and 3 different 

mixed models (Khaligh-Razavi and Kriegeskorte, 2014). 

5.3 Methods 

5.3.1 Participants 

 Ten right-handed individuals (mean age±SD= 32.5 ±7.6, 8 male) with normal or 

corrected to normal vision participated in the experiment. All subjects provided their informed 

consent for the experiment.  The study was approved by the Ethics Committee of the College 

of Science and Engineering, University of Glasgow.  
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5.3.2 Stimuli 

The stimuli consisted of a set of 28 movies that depicted the human body as a stick figure, with 

point-lights at the major joints, performing arm actions (Vangeneugden et al., 2009). All 

movies had a duration of 2000ms, with a total of 120 frames shown at 60Hz and a resolution 

of 256×256 pixels. Three of the 28 movies were the 3 actions of lifting, knocking and throwing, 

subsequently referred to as the 'natural actions'.  The remaining 25 movies were 2-way and 3-

way blends of these 3 actions (figure 5.1), subsequently referred to as the 'blended actions'. The 

blended actions were made using an algorithm from Kovar and Gleicher (2003), which 

preserves the constraints of biomechanical movement. They were created in a step size of 

16.6% change of the weighting of the original actions, producing 15 2-way blended actions 

(figure 5.1, outer triangle) and 10 3-way blended actions (figure 5.1, inner triangle and centre). 
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Figure 5.1. The stick-figures displaying the 60th frame of each action along with the blending 

weights (the percentage change of lifting, knocking and throwing respectively). 

5.3.3 Apparatus and Procedure 

 Each participant attended two different scanning sessions. The stimuli were displayed 

via a LCD projector onto a rear projection screen that was viewed through a mirror mounted 

on the head coil. Videos subtended approximately 2.6 horizontal and 8.8 vertical degrees of 

visual angle. Stimulus presentation was controlled using Presentation software 

(Neurobehavioral Systems, Inc.). 
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5.3.3.1 Session 1: Blended action stimuli 

 In Session 1, subjects were presented with the 25 movies of the blended actions, and 

were engaged in AO+MI tasks involving their right arms. The movies were presented in 10 

separate runs of 320s each using a block design. Each run started with 20s fixation and 

contained 6 blocks of stimuli with 12s of inter-block interval (IBI). Within a block, 14 

pseudorandomly chosen actions were presented with variable interstimulus intervals (ISI) that 

ranged from 500ms to 1000ms pseudorandomly as shown in figure 5.2 (A). As a catch trial to 

enforce attention, subjects performed a fixation colour change task by pressing a response 

button with their left hand when the fixation colour changed from black to red. All subjects 

observed the same sequence of the runs, blocks and trials. 

5.3.3.2 Session 2: Natural action stimuli 

 In Session 2, only the three natural action displays (lifting, throwing and knocking) 

were used.  This session comprised a pure MI task and an AO+MI task. In both tasks, 

participants were instructed to imagine moving their right arm.  During the pure MI condition, 

they were prompted by a pacing tone that was presented over MRI-compatible headphones and 

controlled via Presentation software (Neurobehavioral Systems, Inc.). The auditory pacing 

signal consisted of beeps (100ms duration at 500Hz) repeated every 2s. Subjects were 

instructed to synchronise their MI with that signal. The videos were shown in a block design 

of 8 runs, 456s each. Each run started with 20s fixation at the beginning and consisted of 9 

chunks, with each natural action presented 3 times randomly. A chunk consisted of a block of 

AO+MI, a short IBI of 4s, and a block of pure MI followed by a long IBI of 12s. Each block 

lasted for 16s and either had 8 videos of the same action (for the case of AO+MI), or a black 

screen (for the case of MI), as shown in figure 5.2(B). A catch trial was included where subjects 

performed a fixation colour change task. 
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Figure 5.2. (A) Experimental design of blended actions session. Each run consisted of 6 

blocks of 38s with IBI of 12s. After 20s fixation, subjects started to perform the AO+MI task. 

In each block, 14 video trials of 2000ms each were presented with a variable ISI from 500-

1000ms. (B) Experimental block design of natural actions session. Each run contained 9 

chunks (gray shaded area), and there were 3 chunks for each action. A chunk comprised an 

AO+MI block with 8 repetitions of the same action video of 16s, a short IBI of 4s, a pure MI 

block of 16s and a long IBI of 12s. After 20s fixation, participants observed and imagined 

(AO+MI) doing an action simultaneously 8 times, then imagined (MI) it 8 times assisted by a 

pacing tone. 

A 

B 
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5.3.4 Imaging protocol 

 Subjects were scanned in a 3 Tesla Siemens Tim Trio MRI scanner at the University of 

Glasgow Centre for Cognitive Neuroimaging (CCNi) with a 32-channel head coil. T1 weighted 

structural scans were acquired at the middle of each session (TR=2000ms, TE=2.52ms, 192 

sagittal slices, 1 mm3 isotropic voxels and image resolution 256×256). T2*-weighted 

functional scans were collected with an Echo-Planar Imaging (EPI) sequence (TR=2000ms, 

TE=30ms, whole brain coverage with 32 axial slices, with 0.3 mm gap, 3 mm3 isotropic voxel). 

5.3.5 fMRI data processing 

 The raw data were preprocessed using BrainVoyager QX 2.8.4 (Brain Innovation, 

Maastricht, The Netherlands). The preprocessing of anatomical scans involved Intensity 

inhomogeneities correction and brain extraction. The preprocessing of functional data involved 

slice scan-time correction with cubic-spline interpolation, 3D motion correction with 

Trilinear/Sinc interpolation, linear trend removal and high-pass filtering with a cut-off set to 2 

cycles.  All the functional volumes of each session were aligned to a reference volume, which 

was the first functional volume after the anatomical scan. The functional data of each subject 

of both sessions were spatially aligned to a common anatomical space in order to establish a 

voxel correspondence across sessions, and this was then normalised to Talairach space 

(Talairach and Tournoux, 1988). 

5.3.6 fMRI data analysis 

 All further fMRI data were analysed using MATLAB (version 9.0.0.341360, 

Mathworks), NeuroElf v1.0 (www.neuroelf.net) and PyMVPA 2-2.6.0 (Hanke et al., 2009; 

www.pymvpa.org). 

5.3.6.1 Cortex based alignment 

 Cortex based alignment (CBA) aligns individuals’ brains using curvature information 

of the cortex (Fischl et al., 1999; Frost and Goebel, 2012). CBA reduces the anatomical 
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variability by matching the gyri and sulci across brains. For each subject, the anatomical scan 

was used to reconstruct the cortical surface of each hemisphere. These folded surfaces were 

inflated into spherical representations, which provides a parameterisation surface for the 

subsequent cortical alignment. The curvature information (gyri and sulci) of the folded cortices 

were maintained as a curvature map on the spherical representation. Then the curvature 

information was smoothed with respect to the surface, in order to provide spatially extended 

gradient information that drives intercortex alignment by minimising the mean squared 

differences between the curvature of a source and a target sphere, using an iterative coarse to 

fine matching procedure. Finally, alignment of an individual folded brain to BrainVoyager 

standard atlas was computed with respect to this intermediate spherical representation. 

5.3.6.2 Regions of Interest 

 Regions of Interest (ROIs) were defined based on previous findings reported in motor 

simulation literatures (Hétu et al., 2013) and delineated anatomically on an individual basis 

using a CBA approach. We parcelled six grey matter masks pre-hemisphere as shown in figure 

5.3 using BrainVoyager Talairach atlas as follows: 

 Primary motor cortex (M1) defined as the precentral gyrus or Brodmann area (BA) 4. 

 SMA defined as the region that anterior of the paracentral sulcus and superior of the 

cingulate sulcus.  

 Dorsal and ventral premotor areas (dPM and vPM) defined as the superior and inferior 

part of BA6. 

 SPL defined as a region bounded by the upper part of postcentral sulcus, intraparietal 

sulcus and parietooccipital fissure.  

 IPL defined as the supra-marginal gyrus rostrally and the angular gyrus caudally. 
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Figure 5.3 The anatomical parcellation of ROIs using CBA is shown on the inflated brain of 

one participant. LH and RH are the left and right hemisphere. 

 For each ROI, data within similar stimulus blocks of each run were averaged to 

substitute the response patterns for that stimulus, such that 6 samples correspond to the three 

action stimuli and two modalities per run. The time-series of each voxel was normalised using 

z-score and shifted by 2 TRs (4 s) to account for the haemodynamic delay. 

5.3.6.3 Aligning the subject’s representational space into a common space using 

hyperalignment 

 Brain activation patterns can be considered as vectors in a high-dimensional space in 

which each dimension is a feature (fMRI voxel). Although the space of individual subjects are 

not aligned, they are time locked to the stimuli (Haxby et al., 2011). Hyperalignment uses 

Procrustean transformation iteratively to map subjects’ representational spaces into a common 

model space by deriving transformation parameters for each subject. The common model space 

and transformation parameters were derived using the response vectors of all subjects during 

the AO+MI task of the blended actions stimuli session. Then subjects’ representational spaces 

from the AO+MI and MI tasks obtained during the natural actions session were aligned by 

dPM 

IPL 

dPM 

IPL 

RH LH 
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multiplying each subject’s transformation parameters with the voxels’ responses, as illustrated 

in equation 5.1. 

𝑴(𝒌×𝒏) = 𝑽(𝒌×𝒏)𝑻(𝒏×𝒏)                                                                                                                  (5.1) 

 M(k×n) is the mapped matrix in the common model space (k time points, n voxels), 

V(k×n) is the voxels’ responses in Talairach space, and T(n×n) is the hyperalignment 

transformation parameters. Finally, the subject order was shuffled 2000 times prior to 

hyperalignment, and for each time a new common model space and new transformation 

parameters were computed to map subjects’ activation patterns in AO+MI and MI tasks. 

5.3.6.4 Searchlight analysis 

 In this study we performed a searchlight analysis for each ROI separately, to search for 

a neural activity pattern that carried information about the content of the experimental 

conditions (Kriegeskorte et al., 2006). The searchlight approach has been successfully 

employed to decode multivariate neural activity patterns of different action types and 

modalities (Pilgramm et al., 2016; Zabicki et al., 2016). For this analysis, a searchlight sphere 

of 3 voxels was centred on each cortical grey matter voxel for each participant’s brain, and the 

classification accuracies of 8 fold cross-validation (leave one run out) were then averaged to 

give a mean accuracy score for that sphere, which was then assigned back onto the central 

voxel. This process was repeated for every voxel in the brain, resulting in an accuracy map for 

each participant. Finally, we subtracted chance level (33.3) from these maps and combined 

them using one-sample t-tests to compare the group accuracy to chance. The resultant map was 

then thresholded at p<0.05 using a cluster level threshold estimator, and mapped onto a cortical 

surface for visualisation. This analysis highlighted voxels where the local patterns of activation 

reliably discriminated across action types and modalities.  

 Furthermore, we performed an additional searchlight analysis using the hyperaligned 

data to serve as a control analysis, to examine whether the common model space of each ROI 
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carried information to discriminate between our experimental conditions for each modality 

(AO+MI or MI) separately. To run a searchlight analysis across participants, similar ROIs need 

to have the same number of voxels. Therefore, we selected the top 90% of voxels of the smallest 

ROI, based on the previous individual searchlight analysis, and masked all the participants’ 

corresponding ROIs. The searchlight of each ROI consisted of a sphere with a radius of 3 

voxels centred on each grey matter voxel for the common regions across participants. The 

classification accuracies of 10 fold cross-validation (leave one subject out) were then averaged 

and projected back onto the central voxel, yielding an accuracy map for all participants. Finally 

this map was overlaid on a cortical surface for visualisation. In both scenarios, significant 

clusters were identified anatomically based on the nearest grey matter using a Talairach 

Daemon (Lancaster et al., 2000). 

5.3.6.5 Multivariate Pattern Analysis 

 The MVPA was used to test whether MI and AO+MI of different arm actions (lift, 

knock, throw) elicit discriminable neural patterns in a given ROI which are sufficient to classify 

the experimental conditions. For this purpose, a multiclass support vector machine (SVM) 

(Hausfeld et al. 2014) implemented in PyMVPA (LIBSVM, C=-1.0) was used for decoding 

(lifting vs. knocking vs. throwing) of the brain activity during the MI and AO+MI tasks. The 

multiclass problem was translated into a series of binary classifications paired with a majority 

voting scheme to determine the predicted class (Haxby et al., 2011; Misaki et al., 2010; Reddy 

et al., 2009). For Within Subject Classification (WSC), we performed MVPA by training the 

SVM classifier on the raw data of seven runs, and tested on the left-out eighth run (leave one 

run out cross validation scheme). The procedure was repeated until each run served as a test 

run, and then we calculated the mean classification accuracy across folds. In addition, we re-

labelled all 6 conditions (3 actions by 2 modalities) according to their modality, and used a 

similar procedure to decode the neural pattern according to modality (AO+MI vs MI). 
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 For Between-Subject Classification (BSC) using the hyperaligned data, we trained the 

SVM classifier on the raw data from 1 run in 9 subjects and evaluated the left out run of the 

left out subject, using a leave-one-subject-and-one-run-out cross validation scheme. In both 

scenarios, we repeated the MVPA analysis for MI and AO+MI conditions of each ROI 

separately, and tested the statistical significance using a one-sample t-test against chance 

(33.3%). All P values were corrected for multiple ROIs using the Holm–Bonferroni method 

(Holm, 1979). A paired-sample t-test between modalities was conducted to test for a significant 

difference. In order to test for significant differences between the classification accuracies for 

AO+MI and MI, we performed a 2×6×2 (Hemisphere×ROI×modality) repeated-measures 

ANOVA. 

5.3.6.6 Cross Modality Classification 

 To evaluate the degree of shared neural patterns of different arm actions across MI and 

AO+MI, we performed a cross-modality classification. In this analysis, we attempted the same 

procedure for WSC described above, but the SVM classifier was trained with MI data and 

decoded the action types of AO+MI data and vice versa. Significant classification accuracies 

were determined by t-test as described above. 

5.3.6.7 Representational Similarity Analysis 

 We analysed the representational geometry of neural responses to our 6 experimental 

conditions (3 actions for 2 modalities) by calculating the representational dissimilarity matrix 

(RDM) (Kriegeskorte et al., 2008a). For this analysis, we used an RSA toolbox developed by 

Nili et al., (2014). We obtained the t-maps for each action of each modality using 

BrainVoyager. 

 For each ROI, we computed the pairwise correlation between all the activity patterns 

associated with conditions using correlation distance (1- Pearson linear correlation), yielding a 

6×6 RDM. RDMs were calculated separately for each run and averaged for each subject, which 
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produced 10 RDMs (one per subject) for each of the 12 ROIs. These RDMs were used to 

estimate the noise ceiling and the similarity between each subject’s RDM and model RDMs. 

Then we employed multidimensional scaling (MDS) to arrange the high-dimensional RDM 

space onto 2 dimensional space, such that the distance between them reflected the similarities 

between the response patterns.  

 We then compared the 12 ROIs RDMs against 5 model predictions to arbitrate between 

theoretical stances regarding AO+MI and MI. These models were (figure 5.4): 

 Pure modality model: This model assumes a categorical distinction between the 2 

modalities (AO+MI and MI). In this model RDM, the dissimilarities for all within-

modalities were 0 and for a cross-modality were 1. 

 Pure actions type model: This model assumes a categorical distinction between the 3 

actions (lifting, knock and throwing), regardless of the modality. The dissimilarities 

between identical action types were 0 and between different actions were 1. 

 Mixed models: 3 models were used to predict the dependency of a given neural pattern 

on modality as well as action type. In all models, the dissimilarities between different 

actions within the same modality were 0.5 and between modalities were 1. The 

dissimilarities of an identical action between modalities varied in accumulated steps of 

0.25, and they were 0.25, 0.5 and 0.75, named as M25, M50, and M75 respectively. 

These model predictions examined different degrees of similarity between neural 

patterns evoked by the AO+MI and MI of a given action. For instance, the M75 model 

assumes a low degree of similarity between neural patterns associated with a given 

action type during AO+MI and MI. 

 We compared ROIs and model RDMs using Kendall’s rank correlation coefficient τA, 

which is the proportion of pairs of values that are consistently ordered in both variables. 

Kendall’s τA is recommended when comparing models that predict tied ranks (model RDMs) 
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with models that make more detailed predictions (ROIs RDMs) (Nili et al., 2014). To assess 

the significance by which these models explain variance in a given ROI RDM, a one-sided 

Wilcoxon signed-rank analysis was used across subjects. To account for multiple testing, we 

controlled the false-discovery rate at 0.05.  

 The amount of variance explained by a model RDM is limited by the variability across 

subjects. Thus, an estimation of the noise ceiling is needed to indicate how much variance of 

ROIs RDMs was expected to be explainable by a model RDM (given the noise level). The 

noise ceiling consists of upper and lower edges corresponding to upper and lower bound 

estimates on the group-average correlation with the RDM predicted by the unknown true 

model. The average of all subject RDMs can be used as an estimate of the true model RDM. 

The average correlation of this average RDM provides the upper bound. We estimated the 

lower bound by employing a leave-one-subject-out approach. We computed and averaged each 

single-subject RDMs correlation with the average of the other subjects’ RDMs. A model RDM 

is assumed to capture the true dissimilarity structure of a given ROI RDM when its correlation 

reaches the lower bound of the ceiling. 
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Figure 5.4. RDM of different model predictions that assume different similarities of action 

pattern based on action type and modality. The first RDM shows a modality based model that 

assumes equal neural patterns for each action within a similar modality. The second RDM is 

an action type based model that assumes similar neural responses for a given action across 

modalities. The remaining 3 mixed models assume variable dependency between modality 

and action type, and the dissimilarity of action types were varied as: 0.25(M25), 0.5(M50) 

and 0.75(M75) respectively. All the mixed models assume a dissimilarity of 0.5 between 

different action types within one modality, and a dissimilarity of 1 between different action 

types between two modalities. AO+MI: Action observation and motor imagery, MI: motor 

imagery, L: Lift, K: Knock and T: Throw. 

5.4 Results 

 The results of the two fMRI sessions are reported.  In Session 1, 10 subjects performed 

an AO+MI task to presentation of 25 videos which displayed a parametric set of action blends 

of lifting, knocking and throwing. These data were used to compute hyperalignment 

transformation parameters that allowed us to transform the data of individual subjects into a 

common model space. In Session 2, the same subjects performed AO+MI and MI to 

presentation of 3 videos which displayed the actions lifting, knocking and throwing. From these 

data, SVM classifiers were used to decode the action types during the AO+MI and MI 

conditions, by using individual subject data and hyperaligned data. In order to do this, we first 

explored the subject order that produced the highest performance of the common model space, 

and mapped all the subjects’ AO+MI and MI data onto it. Second, we used searchlight to 

explore the voxels that carried information about the content of the actions using the individual 
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data and the hyperaligned data. Then, we compared WSC and BSC based on hyperalignment 

for each modality separately. Finally, we examined the similarity of the neural codes between 

AO+MI and MI of different arm actions, using RSA. 

5.4.1 Aligning subjects’ representational spaces using hyperalignment 

 To obtain the optimal common model space, 2000 permutations of subject order were 

performed for each ROI, in order to derive new common model spaces and hyperalignment 

transformation parameters using the neural responses of the 25 blended actions.  From this, the 

data from the AO+MI and MI tasks of each ROI were mapped onto the common model spaces 

using the associated hyperalignment parameters, and they were then prepared for the 

subsequent analyses. 

5.4.2 Searchlight analysis 

 We applied a searchlight approach to examine whether and where neural patterns 

carried information about the action types and modalities. The searchlight analysis based on 

individuals’ data revealed that actions during AO+MI condition could be decoded accurately 

from activity patterns within the left vPM as well as the bilateral M1 and SPL, however, no 

significant clusters were found in the dPM, SMA or IPL. In addition, the searchlight analysis 

showed significant clusters in the left M1 and SPL for MI condition, but no significant clusters 

survived in the right hemisphere, as shown in figure 5.5 and table 5.1.  
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Figure 5.5. Results of the searchlight analysis using individuals’ data, showing brain regions 

where action types could be decoded from the neural pattern evoked during the AO+MI 

condition (A) and MI condition (B). The colour scale indicates searchlight decoding 

performance at group level (all t>2.82; thresholded using a cluster level threshold estimator at 

p<0.05). 

 

 

 

 

 

 

RH LH 

A) AO+MI 

RH LH 

B) MI 



161 
 

Table 5-1. Cluster coordinates with above chance (33.3%) decoding of action types in 

AO+MI and MI conditions. P<0.05, whole brain Bonferroni correction on cluster level. 

Modality ROI 
Left/ 

Right 

Talairach 

Coordinates t-value 
Cluster size 

(voxels) 
x y z 

AO+MI 

vPM L -48 2 31 9.04 3397 

M1 L -12 -7 48 6.08 8416 

R 15 -10 61 6.28 6441 

SPL L -18 -58 49 6.88 16061 

R 15 -61 55 5.55 7161 

MI 
M1 L -30 -10 49 6.71 6540 

SPL L -24 -46 52 7.24 10455 

 

 In addition to the previous analysis, we applied a searchlight approach to the 

hyperaligned data to explore which regions of the brain exhibited common fine-grained neural 

patterns, after mapping individuals’ representational spaces onto a common model space. This 

analysis confirmed that action types could be distinguished from the activity patterns evoked 

under MI and AO+MI conditions in bilateral SMA, dPM, vPM, M1, IPL and SPL as shown in 

figure 5.6 and table 5.2. 
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Figure 5.6. Results of searchlight analysis using the hyperaligned data, revealing brain 

regions with common fine-grained structure from which action types could be decoded 

during the AO+MI condition (A) and MI condition (B). The colour scale indicates searchlight 

decoding accuracy. 
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Table 5-2. Clusters coordinates with above chance (33.3%) decoding of action types in 

AO+MI and MI conditions using the hyperaligned data.  

Modality ROI 
Left/ 

Right 

Talairach 

Coordinates Accuracy 
Cluster size 

(voxels) 
x y z 

AO+MI 

SMA 
L 0 5 53 43.3 2269 

R 3 8 52 37.9 483 

dPM 

L -33 3 40 43.3 4269 

R 
29 20 46 40.4 1598 

27 8 52 40.8 1859 

vPM 
L -50 11 7 48.7 4654 

R 61 8 19 47.5 3990 

M1 

L -18 -9 64 49.5 9429 

R 
21 -1 60 42.5 3767 

33 -15 55 39.9 649 

IPL 

L 
-36 -46 45 38.3 1033 

-48 -61 31 45.4 2663 

R 
42 -44 34 46.2 4510 

33 -73 28 38.7 1013 

SPL 
L -52 -28 55 52.9 15896 

R 3 -64 47 39.1 341 

MI 

SMA 
L -9 9 58 42.9 1690 

R 9 24 61 38.7 426 

dPM 
L -30 3 64 48.3 10596 

R 15 14 54 42.9 3240 

vPM 
L -52 2 22 45.8 2793 

R 48 12 46 42.5 877 

M1 
L 

0 -22 67 40.4 488 

-39 -16 46 43.7 3910 

R 12 2 65 45.4 8010 

IPL 

L -32 -49 43 41.6 3342 

R 
48 -62 22 40.4 840 

40 -55 43 38.3 770 

SPL 

L 

-12 -48 55 40.4 827 

-48 -35 58 42.9 2772 

-54 -32 40 42.9 496 

R 
39 -37 52 44.1 739 

9 -55 45 43.7 1529 

 

5.4.3 MVPA results 

In order to examine whether the neural pattern within a given ROI carried information 

about the action types during either the AO+MI or MI conditions, we compared the decoding 

accuracy of WSC, in which a new classifier was tailored for each subject, for each ROI 

separately against chance level (33.3%) for both modalities. For AO+MI (see figure 5.7), the 
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type of action could be decoded at a level significantly above chance in the bilateral SMA, 

dPM, vPM, M1, IPL and SPL. In addition, the imagined action could be classified at a level of 

accuracy that was significantly above chance in the bilateral dPM, vPM, M1, IPL, and SPL as 

well as in the left SMA. No significant classification was found in the right SMA. Action 

modality (AO+MI vs MI) could be decoded at a level of accuracy that was significantly above 

chance from every ROI as shown in figure 5.8. All p values were derived from one-sample t-

tests and were corrected for multiple testing using the Holm–Bonferroni approach. The 

repeated measures ANOVA revealed a significant main effect of ROI (F(5,45)=6.792, 

p<0.00008), but no main effect of hemisphere (F(1,9)=2.73, p<0.13), modality(F(1,9)=2.6, 

p<0.14), hemisphere×modality interaction (F(1,9)=0.007, p<0.937), ROI×modality interaction 

(F(5,45)=0.229, p<0.948), hemisphere×ROI interaction (F(5,45)=0.861, p<0.514) or 

hemisphere×ROI×modality interaction (F(5,45)=0.572, p<0.721). 

 

Figure 5.7. Decoding accuracy of action types (lift vs knock vs throw) using individuals’ data 

during MI and AO+MI. Bars indicate the mean accuracy (% correct) with which the type of 

action could be decoded in a given ROI. Left and right figures represent the left and right 

hemispheres respectively. The dashed line represents chance level. M1: primary motor 

cortex, SMA, supplementary motor area, dPM: dorsal premotor area, vPM: ventral premotor 

area, IPL: inferior parietal lobule, SPL: spurious parietal lobule. SEM: standard error mean. 

LH, RH: left and right hemispheres. Ϯ: p<0.05, *: p<0.01, **: p<0.001, ***: p<0.0001, ****: 

p<0.00001. 
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Figure 5.8. Mean decoding accuracy of modality type (AO+MI vs MI). Bars indicate the 

mean accuracy (% correct) with which the type of modality could be decoded in a given ROI. 

Error bars are standard error mean. The dashed line represents chance level (50%). *: 

p<0.0001. M1: primary motor cortex, SMA, supplementary motor area, dPM: dorsal 

premotor area, vPM: ventral premotor area, IPL: inferior parietal lobule, SPL: spurious 

parietal lobule. SEM: standard error mean. LH, RH: left and right hemispheres. 

 The BSC analysis using the hyperaligned data revealed that the type of action could be 

classified at a level of accuracy that was significantly above chance from all the ROIs, 

regardless of the modality. figure 5.9 shows the classification accuracies of both modalities 

after mapping the participants’ representation spaces from each ROI onto a common 

representational model. The repeated measure ANOVA showed no significant main or 

interaction effects of hemisphere (F(1,7)=0.289, p<0.6), ROI (F(5,35)=1.74, p<0.151), 

modality (F(1,7)=0.343, p<0.577), hemisphere×ROI interaction (F(5,35)=0.21, p<0.956), 

hemisphere×modality interaction (F(1,7)=0.026, p<0.877), ROI×modality interaction 

(F(5,35)=0.676, p<0.645), or hemisphere×ROI×modality interaction (F(5,35)=0.28, p<0.921). 
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Figure 5.9. Decoding accuracy of action types (lift vs knock vs throw) using hyperaligned 

data during both modalities (MI and AO+MI). Bars indicate the mean accuracy (% correct) 

with which the type of actions could be decoded in a given ROI using BSC. Left and right 

figures represent left and right hemispheres respectively. The dashed line represents the 

chance level. M1: primary motor cortex, SMA, supplementary motor area, dPM: dorsal 

premotor area, vPM: ventral premotor area, IPL: inferior parietal lobule, SPL: spurious 

parietal lobule. SEM: standard error mean. LH, RH: left and right hemispheres. *: p<0.01, 

**: p<0.001, ***: p<0.0001, ****: p<0.00001. 

5.4.4 Cross modality classification 

 Classifications of MI patterns with a classifier trained on AO+MI data and vice versa 

showed significant accuracies in some of our ROIs. The actions during the AO+MI condition 

could be (significantly) accurately decoded with a classifier trained on MI patterns in right IPL 

and bilateral M1, dPM and SPL. Significantly accurate classification of MI actions using a 

classifier trained on AO+MI data was found in the left vPM, right dPM as well as bilateral M1, 

IPL and SPL. All p values were estimated using one-sample t-tests, corrected for multiple ROIs 

using the Holm–Bonferroni method as shown in figure 5.10. The repeated measures ANOVA 

showed no significant main or interaction effects of hemisphere (F(1,9)=0.197, p<0.66), ROI 

(F(5,45)=0.63, p<0.67), classifier (F(1,9)=1.37, p<0.27), hemisphere×ROI interaction 

(F(5,45)=0.19, p<0.96), hemisphere×classifier interaction (F(1,9)=0.37, p<0.55), 

ROI×classifier interaction (F(5,45)=0.6, p<0.69) or hemisphere×ROI×classifier interaction 

(F(5,45)=0.778, p<0.57). 
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Figure 5.10. Cross-modality classification of action types (lift vs knock vs throw). Bars 

indicate the mean accuracy (% correct) with which the type of actions could be decoded in a 

given ROI using a classifier trained on MI and tested on AO+MI (MI>AO+MI) and vice 

versa (AO+MI>MI). The left and right figures represent left and right hemispheres 

respectively. The dashed line represents chance level. M1: primary motor cortex, SMA, 

supplementary motor area, dPM: dorsal premotor area, vPM: ventral premotor area, IPL: 

inferior parietal lobule, SPL: spurious parietal lobule. SEM: standard error mean. LH, RH: 

left and right hemispheres. Ϯ: p<0.05, *: p<0.01, **: p<0.001, ***: p<0.0001. 

5.4.5 Representational Similarity Analysis 

 In order to compute the RDMs of each ROI, we compared the neural responses 

associated with each pair of conditions using correlation distance (1- Pearson linear 

correlation). RDM is a symmetric matrix which contains widths and heights corresponding to 

the number of conditions (6×6) and a diagonal of zeros. The brain RDMs were calculated for 

each run separately and averaged for each subject as shown in figure 5.11.  
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Figure 5.11. Mean RDMs (averaged across subjects) of neural responses associated with 6 

experimental conditions (L: lift, K: knock and T: throw, in two modalities: AO+MI and MI) 

for every ROI. 

 Next, we computed the correlation between brain and model RDMs, as shown in figure 

5.12. This figure illustrates how well the 5 model predictions explain the response pattern 

dissimilarities seen in the brain RDMs of several ROIs. The MDS plot (figure 5.13) provides 

an intuitive overview of the relationship between the brain and model RDMs. The action type 

model did not correlate significantly with any ROI RDMs (Kendall τA, mean=-0.031), 

however the modality and the 3 mixed model correlated significantly with each ROI RDM 

(mean Kendall τA correlation for modality, M25, M50 and M75 were 0.3, 0.188, 0.269 and 

0.35 respectively). The majority of brain RDMs were best explained by 4 RDMs models. The 

M75 model provided the best fit for data in all brain RDMs, while the action type model best 

explained the data in right dPM and left SMA. These two models assume that the correlation 

between AO+MI and MI for a given action type is relatively low compared to correlations due 

to shared modality. Therefore, for the majority of ROIs, the pattern similarity was primarily 

driven by the modality rather than the action type.  
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Figure 5.12. Correlation matrix across all brain and model RDMs. Each entry compares two 

RDMs by Kendall’s τA. The matrix is symmetrical across a diagonal line of ones. 
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Figure 5.13. MDS plot of the relationship across ROI and model RDMs. Each point 

represents an RDM and the distances between the points represent the dissimilarity (1- τA 

correlation). The left hemisphere, right hemisphere and model RDMs are shown by the red, 

blue and green points respectively. 

 For the next step, we performed statistical inference to test the relatedness between 

brain and model RDMs, as listed in table 5.3.  The correlation of fitted model predictions for 

the majority of the ROIs reached the noise ceiling, indicating that they explained the brain 

ROIs RDMs adequately, given the variability of the subject data. For instance, the mixed model 

M75 was able to significantly explain the data in the left M1 as well as the SMA, dPM, vPM 

and IPL of both hemispheres. The M50 and M25 model predictions reached the ceiling in the 

left SMA, left dPM (only for M50 model) and right dPM. In contrast, the modality model 

reached the ceiling in the right dPM, left vPM and right IPL. All the mixed models reached the 

ceiling in the left SMA and right dPM.  
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Table 5-3. RDM correlations using Kendall’s τA between brain regions and all model 

predictions. Significant correlations are indicated by asterisks (ns = not significant: *P < 

0.05; **P < 0.01; ***P < 0.001). Lower and upper bounds of the noise ceiling are included in 

brackets. Bold numbers represent correlations within the ceiling. 

 

 

 

 

 

 

 

 

 

5.5 Discussion 

 This study explored whether complex arm actions are accompanied by action-specific 

activation patterns within the premotor, primary motor and parietal cortices. Participants either 

imagined (MI) or concurrently observed and imagined (AO+MI) doing three different arm 

actions (Lifting, Knocking and Throwing). We used MVPA to investigate how the human brain 

represents different hand-related actions during AO+MI and MI conditions, based on the 

evoked fine-grained patterns. Additionally, we explored the functional organisation of AO+MI 

and MI in different brain regions.  

 Our first aim was to explore whether the multi-joint arm actions evoked distinguishable 

neural patterns within the frontal and parietal motor regions. Unlike univariate analyses that 

have shown broad overlapping of activations for imagining different hand actions in premotor 

and posterior parietal cortices (Lorey et al., 2014), MVPA facilitates the identification of brain 

regions for which activation patterns differentiate between types of hand actions, even when 

ROI 
Left or 

Right 
Ceiling 

Correlation to model predictions 

Modality Action M25 M50 M75 

SMA 
LH [0.176 0.318] 0.175* 0.044ns 0.190*** 0.219** 0.248** 

RH [0.237 0.341] 0.227** 0.010ns 0.187** 0.236*** 0.286** 

dPM 
LH [0.187 0.303] 0.179* 0.019ns 0.170** 0.198** 0.227** 

RH [0.075 0.251] 0.135* 0.059ns 0.190** 0.194** 0.198** 

vPM 
LH [0.229 0.381] 0.230** -0.013ns 0.160* 0.217** 0.274** 

RH [0.346 0.448] 0.310*** -0.036ns 0.192** 0.274*** 0.356*** 

M1 
LH [0.472 0.522] 0.324** 0.004ns 0.248** 0.328*** 0.408*** 

RH [0.394 0.472] 0.322*** 0ns 0.236** 0.322*** 0.408*** 

SPL 
LH [0.534 0.600] 0.459*** -0.124ns 0.187*** 0.335*** 0.484*** 

RH [0.513 0.604] 0.472*** -0.137ns 0.177*** 0.335*** 0.493*** 

IPL 
LH [0.387 0.470] 0.368** -0.084ns 0.168** 0.284** 0.400** 

RH [0.384 0.488] 0.398** -0.114ns 0.147* 0.284** 0.421** 
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the overall amplitude of BOLD signal across voxels of these areas does not differ. Thus a given 

action information would be represented by differences in the fine-grained activation patterns 

that are blurred and indistinguishable in univariate analyses. The Searchlight analysis (Section 

3.2), which was based on individual subjects’ data, revealed a spatially distributed network, 

from which action types could be reliably decoded for all the participants, within the left vPM 

and bilateral M1 and SPL in the AO+MI condition and the left M1 and SPL in the MI condition. 

This network spans from the frontal to the parietal motor regions. Within the frontal regions, 

discrimination of action occurred through analysis of activation patterns in the vPM and M1. 

The vPM plays an important role in fine motor coordination and shapes hand actions in 

grasping tasks (Davare et al., 2009). It has been assumed that the overlapping between the 

observation and execution of actions is due to mirror neurons, which were initially found in the 

macaque ventral premotor area F5 for observation and execution of hand or mouth goal-

directed movements (Fabbri-Destro and Rizzolatti, 2008; Rizzolatti and Sinigaglia, 2010; 

Oztop et al., 2013). Mirror neurons discharge both during the observation and execution of 

actions, and there is evidence of a similar system in the human brain (Rizzolatti & Sinigaglia 

2010; Gazzola & Keysers 2009). It has been suggested that mirror neurons play an important 

role in many aspects of social cognition, including understanding observed actions and 

imitation (Rizzolatti et al., 2001). The recruitment of M1 in action simulation suggests an 

intention to imitated the observed actions (Jeannerod, 2001; Caspers et al., 2010), while Hetu 

et al., (2013) found no evidence of consistent involvement of M1 during MI. Similarly, the 

bilateral SPL plays a significant role in coding spatial aspects of movements (Vandenberghe et 

al., 2001) and in enhancing short-term learning during observation (Ossmy and Mukamel, 

2016). Based on the Searchlight map, different numbers of voxels per ROI were selected for 

subsequent analyses. Our MVPA results showed that for AO+MI, the type of actions could be 

decoded at a level of accuracy that was significantly above chance from every ROI. For MI, 



173 
 

these actions could be classified significantly accurately in the bilateral dPM, vPM, M1, IPL, 

SPL as well as left SMA. The highest classification accuracies for decoding action types and 

modality were found in the M1 and SPL of both hemispheres. These results replicate previous 

research showing that the pattern of activity within motor and motor related regions 

differentiates between different types of actions (Pilgramm et al., 2016; Zabicki et al., 2016) 

and between action modalities (Filimon et al., 2015). This demonstrates that the frontal and 

parietal regions represent the content and modality of actions. 

 The second aim of this study was to functionally align the representational spaces of all 

participants into a common representational model, using hyperalignment to better localise the 

distributed motor network and enhance the classification accuracy. Importantly, our results 

illustrated that mapping from brain space into a common space affords a reliable region shared 

across participants that their classification performance exceeds the WSC. The Searchlight, 

based on the hyperaligned subject data, demonstrated that these actions could be decoded 

significantly accurately from all the motor and motor-related regions, giving a higher 

classification performance for M1, vPM and SPL. Our findings highlight the role of 

hyperalignment in building common representational spaces of the frontal-parietal motor 

regions, which then increases the power of MVPA to detect fine-grained information across 

participants. In the above validation, we estimated the hyperalignment parameters using the 

AO+MI data from the first session of AO+MI data, and applied them to the AO+MI and MI 

data from the second session. 

 Our third aim was to measure the neural pattern consistency between modalities.  The 

results demonstrated that cross-modality classification using MI as a training set succeeded in 

the left IPL as well as the bilateral M1, dPM and SPL. Using AO+MI as a training set, the cross 

classification succeeded in the left vPM, right dPM and bilateral M1, IPL and SPL. This 

suggests that there is some similarity between AO+MI and MI induced neural patterns for 
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specific hand actions in broad areas of the human motor system. More specifically, our results 

showed a significantly higher cross-modal classification accuracy when the classifier was 

trained on MI data and tested on AO+MI data than in the reverse case. These findings are in 

line with previous results that suggest some degree of consistency between the neural codes of 

different action simulations, such as MI and ME (Oosterhof et al., 2012b; Zabicki et al., 2016). 

This can be explained by considering which information a classifier uses when it is trained on 

a series of neural patterns. If the pattern for AO+MI actions is relatively strong (due to visual 

input) compared to MI and cross-modal patterns, then training a classifier on AO+MI actions 

causes the decision boundary of the classifier to be based mainly on patterns evoked by these 

aspects of action that do not generalise to MI actions. Hence the classification accuracies of 

these MI actions will be relatively low. On the other hand, training a classifier on MI actions 

will cause the decision boundary to be based on a mixture of MI and cross-modal information, 

and generalisation to AO+MI actions will be relatively high (Oosterhof et al., 2012b). 

 In contrast to MVPA classification, which detects the distinctions between neural 

responses associated with different experimental conditions, the fourth aim of this study was 

to examine the similarity structure of neural responses evoked by AO+MI and MI of different 

actions by comparing them to models predicting how the brain regions encode the modality, 

the action type or the mix dependency of both (Kriegeskorte et al., 2008a; Rothlein and Rapp, 

2014; Guntupalli et al., 2016). We calculated RDMs in motor and motor related regions by 

using pairwise correlation distance between neural responses induced by simultaneously 

observing and imagining (AO+MI) or imagining (MI) 1 of 3 distinct multi-joint arm actions. 

With respect to the representational geometry of different actions during AO+MI and MI tasks, 

we found that the RDMs of premotor, primary and parietal cortices were correlated with each 

other, forming two distinct clusters in the frontal and parietal regions. The posterior parietal 

cortex (PPC), which includes IPL and SPL, showed greater similarity between the neural 
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responses evoked by a given action of AO+MI and MI, assuming a common code within these 

regions. A large number of studies have reported the role of PPC in understanding other's 

actions based on MNS, the processing of action related information, encoding of the goal of 

movement, storing the action representations, and movement intention (Culham and Valyear, 

2006; Tunik et al., 2007; Desmurget et al., 2009; Oztop et al., 2013; Aflalo et al., 2015). In 

addition, we tested different model predictions and we found that the mixed model (M75) 

explained perfectly the neural organisation in most ROIs (except for left vPM and bilateral 

SPL), indicating that the action representations have both common and distinct components 

across modalities. Subsequently, based on the modality and mixed model predictions, most of 

the ROIs have a low to moderate similarity between the neural responses associated with 

AO+MI and MI tasks. However, M1 was showed to have a higher degree of functional 

equivalence between modalities, suggesting its sensitivity in encoding goal-related motor 

programmes for a given action rather than focussing on the modality of it (Cavallo et al., 2013).   

 In conclusion, the results suggest that imagined (MI) or observed and imagined 

(AO+MI) multi-joint arm actions (knocking, lifting and throwing) elicit distinct neural 

responses that can be decoded from the frontal and parietal motor regions. Thus these regions 

represent the content and the modality of actions using the same effector (Filimon et al., 2015; 

Pilgramm et al., 2016; Zabicki et al., 2016). The cross classifications reveal that AO+MI and 

MI evoke neural patterns that have some degree of consistency. Hyperalignment creates a 

common model for each motor region that captures the fine grained structure of brain responses 

during AO+MI and MI tasks with different actions. Additionally, AO+MI and MI share a 

similar representational geometry for different actions in motor and motor related areas, 

indicating that the representations of these modalities are neither equivalent nor distinct.  



176 
 

Chapter 6 : Single ROI-fMRI Neurofeedback Treatment of 

Phantom Limb Pain 

 

 

 

6.1 Abstract 

fMRI neurofeedback can be used to enable participants to modulate their brain activation 

via a feedback signal measured from a targeted region(s). This approach might provide control 

over the neurophysiological mechanisms that mediate behaviour and cognition and could 

potentially provide a different route for treating disease. Control over the endogenous pain 

modulatory system is a particularly important target because it could enable a unique 

mechanism for clinical control over pain. In this study, we demonstrated that using fMRI 

neurofeedback to guide training, patients with phantom limb pain (PLP) were able to learn to 

down-regulate activation in the rostral anterior cingulate cortex (rACC) and premotor cortex 

(PM), regions were involved in pain perception and regulation. Control experiments showed 

that this effect was not observed after similar training conducted using signal derived from a 

different brain region (auditory cortex). PLP patients who successfully trained to control 

activation in rACC and PM reported decreases in the ongoing level of pain after training, but 

it was not significant. These findings show that patients can gain voluntary control over 

activation in a specific brain region given appropriate training, that voluntary control over 

activation in rACC and PM lead to control over pain perception. 
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6.2 Introduction 

 Phantom limb pain (PLP) is a type of Central Neuropathic Pain (CNP) (Jensen et al. 

2011), having prevalence of 80% in amputees (Floor 2002) and patients with arm paralysis due 

to Brachial Plexus Injury (BPI) (Finnerup et al. 2011). Similar to non-painful phantom limb 

sensation, PLP is generated in the brain rather than in the body. It is believed that the intensity 

of pain is proportional to the degree of cortical reorganization following amputation or BPI 

(Floor 2002, Weeks et al. 2010). Pharmacological treatments of this type of pain have limited 

efficiency and are often accompanied with side effects (Dworkin et al. 2007). There are 

numerous non-pharmacological treatments of PLP (Floor et al. 2002, Weeks et al. 2010) such 

as cognitive behavioural therapy, mindfulness, hypnosis, mirror therapy or repetitive 

Transcranial Magnetic Stimulation (rTMS). Mirror therapy is a well-documented type of 

therapy for phantom pain (Ramachandran and Altschuler 2009), though its neurological 

mechanism has not been sufficiently explored.  

 A relation between the motor cortex and more general CNP, has been demonstrated in 

other patient groups, such as patients with Spinal Cord Injury (Gustin et al. 2010). These 

patients have bilateral impairment of their limbs and cannot benefit from mirror therapy. 

Preliminary results showed that in spinal cord injured patients, EEG based neurofeedback from 

the motor cortex significantly reduces pain (Vuckovic et al. 2012). A recent study showed that 

neuro-stimulation therapies based on rTMS also target primary motor cortex (M1) to reduce 

CNP (Hosomi et al. 2013). 

 fMRI Neurofeedback, a technique that aims to enable voluntary control of brain 

activity, is used as an intervention in several conditions, including pain, ADHD, depression 

and phobias (DeCharms et al., 2005, Moriyama et al., 2012, Linden et al., 2012, Zilverstand et 

al., 2015, respectively). The approach involves measuring the brain activity and visually 

feeding it back to the participant in real-time (Ruiz et al., 2013). The resulting readout is used 
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to enhance the ability of participants to either up- or downregulate activity levels in a specific 

brain region using cognitive strategies. Furthermore, it is hoped that the learned techniques can 

be used by participants outside of the scanner, inducing beneficial behavioural changes in these 

individuals (Paret et al., 2014). 

 fMRI neurofeedback, for treatment of pain has been demonstrated on a mixed group of 

patients with chronic pain (deCharms et al. 2005) and on a healthy population with induced 

pain (Emmert et al., 2014). The Region of Interest (ROI) for neurofeedback modulation was 

rostral Anterior Cingulate Cortex (rACC), involved in the general chronic pain matrix (Garcia-

Larrea and Peyron 2013). Given that most therapies for PLP and in general CNP are based on 

modulation of the M1, it is questionable if fMRI neurofeedback provided from that ROI would 

be as effective as fMRI neurofeedback provided from the rACC. In previous studies, subjects 

were able to regulate both the activity of the sensory-motor cortex (de Charms et al. 2004) and 

of the rACC (deCharms et al. 2005) but only the latter was related to chronic pain (deCharms 

et al. 2005). In contrast to EEG neurofeedback which requires multiple sessions in order to 

teach patients to regulate their brain waves, using fMRI neurofeedback it is possible to train 

patients to regulate their brain activity within a single daily session (deCharms 2005). 

 The aim of this study is to investigate whether phantom limb pain patients can, using 

fMRI neurofeedback, learn to modulate the brain activity and to compare between two 

neurofeedback protocols, one based on down-regulation of rACC and the other based on down-

regulation of premotor region (PM). 

6.3 Methods 

6.3.1 Participants 

 Three male PLP patients with normal or correct to normal vision participated (mean 

age±SD=57±1). Two of them were right hand amputees and one was a left hand amputee as 
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shown in figure 6.1. This study was approved by the ethics committee of the NHS of Great 

Glasgow and Clyde. All participants provided their informed consent for the experiment. 

 

Figure 6.1. Body part of the three patients who participated in this study, red regions showing 

the painful phantom area. 

6.3.2 Imaging parameters and fMRI Neurofeedback platform 

 The study was performed on a 3T Siemens Tim Trio MRI scanner at the University of 

Glasgow Centre for Cognitive Neuroimaging (CCNi) with a 32-channel head coil. T1 weighted 

structural scans were acquired at the beginning of the experiment (TR=2000ms, TE=2.52ms, 

192 sagittal slices, 1 mm3 isotropic voxels and image resolution 256×256). T2*-weighted 

functional scans were collected with an Echo-Planar Imaging (EPI) sequence (TR=2000ms, 

TE=30ms, whole brain coverage with 32 axial slices, with 0.3 mm gap, 3 mm3 isotropic voxel). 

 The Neurofeedback system used Turbo-BrainVoyager (TBV) (Brain Innovation, 

Maastricht, The Netherlands) and a custom script running on presentation software called 

BrainStim to visualize the feedback signal as a thermometer with a fluctuating red bar 

indicating increasing and decreasing levels of activity in the target ROI. An LCD projector 

displayed the thermometer onto a rear projection screen that was viewable through a mirror 

mounted on the head coil. 

Right Left 

First patient Second patient Third patient 
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6.3.3 Experimental procedure 

 Before testing, all participants were given an information sheet detailing the study and 

were asked to fill out three questionnaires: Brief Pain Inventory (Short Form) (Cleeland and 

Ryan, 1994), Neuropathic Pain Symptom Inventory (Bouhassira et al., 2004) and 7 Point 

Guy/Farrar Patient Global Impression of Change (Hurst and Bolton, 2004).  Participants were 

also required to fill out a consent form before starting the first scanning session. 

 All patients underwent two scanning sessions, each carried out on a separate day and 

lasting about 1 hour. Session One consisted of one anatomical scan, one functional localiser to 

identify PM as a target ROI, four neurofeedback runs during which patients received true 

feedback from their localised ROIs and four sham feedback runs during which they received 

sham feedback from the Superior Temporal Gyrus (Broadmann area 22). The second session 

comprised four neurofeedback runs during which they received feedback from rACC followed 

by four sham feedback runs. The third patient received eight neurofeedback runs in each 

session instead of the sham feedback. This was based on observation in the first two patients 

that 4 training sessions were not enough to learn the task. 

6.3.3.1 Questionnaires 

 Brief Pain Inventory (short form) (BPI) assesses the extent to which pain interferes with 

daily activities on a scale from 0 to 10 (0 pain has not interfered, 10 pain completely interfered). 

Patients rated the degree that pain interfered with general activity such as general activity, 

mood, relations with other people, sleep and enjoyment of life.  

 Neuropathic Pain Symptom Inventory (NPSI) evaluates the different symptoms and 

dimensions of neuropathic pain. This questionnaire consists of the 10 common symptoms 

described by neuropathic patients (burning, pressure, squeezing, electric shocks, stabbing; pain 

evoked by brushing, pressure, or cold; tingling, pins and needles). 
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 Patient Global Impression of Change (PGIC) addresses the change in the severity of a 

patient's illness over a particular time interval following treatment. 

6.3.3.2 Regions of Interest localisations 

 The neurofeedback training of the first session started with a functional localiser run to 

delineate the PM-ROI, from which participants received the feedback signal. The functional 

localiser run lasted about 7 minutes and consisted of 9 blocks (30seconds) of imagining moving 

the amputee limb interleaved by 10 blocks (16 seconds) of rest. Instructions were displayed to 

the participants to either “Rest” or “Imagine”. The functional data were pre-processed and 

analysed online using TBV, before an accumulative General Linear Model (GLM) was applied 

to the data. The PM-ROI was selected from the active voxels (threshold of t > 5.0) within a 

rectangle anterior to the precentral sulcus. The ROIs were defined in each participant’s native 

space and subsequently used for the neurofeedback training runs to derive the neurofeedback 

signal. For further analysis, we normalized these ROIs into Talariach space, as illustrated in 

table 6.1 and identified based on the nearest Gray matter using a Talairach Daemon (Lancaster 

et al., 2000). The targeted ROI of Session Two was based on rACC coordinates reported in 

DeCharms study (DeCharms et al., 2005). 

Table 6-1. Subject specific PM-ROI localised using a function run during a motor imagery 

task of the amputee limb. LH=Left Hemisphere, RH=Right Hemisphere, BA=Broadmann 

Area. 

Subject 

No. 

Anatomical area Talairach 

coordinates: (x,y,z) 

No. of 

voxels 

1 LH, Precentral Gyrus, BA6 -30, -10, 61 1135 

2 RH, Precentral Gyrus, BA4 33, -16, 52 908 

3 LH, Precentral Gyrus, BA6 -28, -14, 55 1252 
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6.3.3.3 fMRI Neurofeedback training 

 The two fMRI neurofeedback sessions included 16 runs in total, each lasting for 430 

seconds and consisting of nine downregulation blocks (each with a duration of  30 seconds) 

interleaved by 10 blocks (16 seconds) of rest as shown in figure 6.2. Participants were 

instructed to downregulate their targeted ROI by decreasing the height of the thermometer bar 

during the task block and relaxing during the rest blocks. 

 

Figure 6.2. fMRI Neurofeedback training paradigm. Duration of 430s and consisting of nine 

neurofeedback blocks alternating with 10 fixation (rest) blocks. 

6.3.4 Online data analysis 

 Real time fMRI data analysis and neurofeedback presentation was performed using 

TBV software and BrainStim. The scanner transmitted the acquired fMRI data volume by 

volume to the analysis computer that hosted TBV, through a fast network connection. 

Functional data were pre-processed in real time, which included linear de-trending, slice timing 

correction, 3D motion correction and spatial smoothing using a Gaussian kernel with full width 

at a half maximum (FWHM) of 8mm.  

 The feedback signal consisted of a thermometer with a continuously updated red 

column height at each TR (1 TR=2000ms), based on the following equation: 

+ 

+ 

+ 

16 s 

16 s 

16 s 

30 s 

30 s 
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𝒃𝒂𝒓 𝒉𝒆𝒊𝒈𝒉𝒕 (𝒕) = (
𝑹𝑶𝑰 (𝒕) − 𝑹𝑶𝑰𝒃𝒂𝒔𝒆

𝑹𝑶𝑰𝒃𝒂𝒔𝒆
)                                                                               (6.1) 

 Where ROI (t) is the average ROI Blood Oxygen Level Dependent (BOLD) signals of 

the PM-ROI or ACC-ROI and during the neurofeedback block at time t. ROIbase is the average 

BOLD signals of the last three volumes in the fixation block.  

6.3.5 Offline data analysis 

 The raw data were pre-processed offline using BrainVoyager QX 2.8.4 (Brain 

Innovation, Maastricht, The Netherlands). The first two volumes of each run were discarded to 

account for T1 equilibration effects. The pre-processing of the remaining functional data 

involved slice timing correction with cubic-spline interpolation, 3D motion correction with 

Trilinear/Sinc interpolation, linear trend removal, high-pass filtering with a cut-off set to 3 

cycles and spatial smoothing with 4mm full-width at half-maximum (FWHM) isotropic 

Gaussian kernel. All functional images of each subject were aligned to the first functional 

volume after the anatomical scan and spatially normalized to Talairach space to enable group 

analysis across participants (Talairach & Tournoux, 1988). 

 First level analyses involved a general linear model (GLM) to analyse each participant 

individually, with one predictor ‘feedback’ for the neurofeedback runs convolved with a 

standard hemodynamic response function and covariates derived from six head motion 

parameters (Johnston et al., 2010; Dijk et al., 2012).  

6.3.5.1 Region of Interest analysis 

 To examine the Neurofeedback training success, Beta values were estimated using a 

ROI-GLM analysis for each Neurofeedback run of each ROI (rACC and PM) and were used 

as an indicator for the neurofeedback success. A linear regression of the average beta weights 

over neurofeedback runs was used to examine the downregulation over runs as an index of self-

learning.  
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6.3.5.2 Whole brain analysis 

 A whole brain second level Fixed Effect Analysis (FFX-GLM) was conducted for the 

neurofeedback runs of each ROI separately contrasting feedback vs. rest (for each ROI 

separately, p<0.05 with cluster-level thresholding of 702 mm3 for rACC, 810 mm3 for PM  

6.4 Results 

6.4.1 Questionnaires 

 All the questionnaires were understood and completed by the patients. They reported 

their pain intensity and nature as listed in table 6.2. 

Table 6-2. Pain intensity and symptoms feeling using BPI questionnaire before and after the 

fMRI neurofeedback training of each patients rated in a scale from 0 (no pain) to 10 (pain as 

bad as you can imagine) 

Patient 1 2 3 

Pain during the last 24 hours 

before the experiment 

At its worst 6 5 8 

At its least 4 4 5 

Pain interference with 

General activity 6 5 6 

Mood 4 4 7 

Relation with others 3 4 3 

Sleep 1 8 7 

Enjoyment of life 2 5 6 

Pain symptoms during the last 

24 before the experiment feel 

like: 

Burning 5 5 8 

Squeezing 4 6 8 

Pressure 5 6 8 

Electrical shock 5 7 8 

Stabbing 5 3 8 

Needles 4 5 8 

Tingling 4 7 8 

Pain before the fMRI neurofeedback experiment 
PM 5 6 8 

ACC 5 5 8 

Pain after the fMRI neurofeedback experiment 
PM 

ACC 

4 4 9 

4 4 8 

 



185 
 

6.4.2 ROI analysis 

All the patients underwent two neurofeedback session over two different days. Two 

patients completed 4 neurofeedback runs for rACC, four neurofeedback runs for PM and 8 

sham feedback runs from the left auditory cortex (-51, 2, -4). The third patient completed eight 

neurofeedback runs for each ROI. During the neurofeedback training, they learnt to decrease 

the feedback signal acquired from either PM or rACC. The average beta weights in rACC and 

PM estimated during neurofeedback training is shown in figure 6.3. 

 The linear regression highlighted a gradual downregulation but not significant in the 

mean PM and rACC activities across neurofeedback runs to indicate a learning effect (y = -

0.09x + 0.41, t = -3.46, p < 0.07; y = -0.05x + 0.11, t = -1.34, p < 0.3 for PM and rACC 

respectively).  

 

Figure 6.3. Estimated beta-weights for PM and rACC regions (mean±SEM). (A) Average 

beta-weights of two patients during the 4 neurofeedback runs and 4 sham feedback runs. (B) 

Beta-weights of the third patient for 8 neurofeedback runs. 
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6.4.3 Whole brain analysis 

 Whole brain FFX-GLM analysis was performed for both ROIs to investigate whether 

any brain regions, other than the identified PM or rACC, were activated during the 

neurofeedback training. The active regions of PM and rACC are listed in table 6.3 and 

illustrated in figure 6.4. The individual patient’s regions are showing in Appendix A. 

 

Figure 6.4. FFX-GLM analysis showed brain activations for (A) PM ROI; (B) rACC ROI (C) 

sham group. These activations are significant at p<0.00001 uncorrected. 

 

 

Z=-11 Z=13 Z=36 Z=49 Z=60 

R L 

Z=-8 Z=13 Z=31 Z=38 Z=46 

(A) 

(B) 

Z=-11 Z=0 Z=16 Z=31 Z=42 Z=65 

(C) 
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Table 6-3. Brain clusters activated during the neurofeedback for both ROIs and sham. x,y,z 

are the Talairach coordinates, LH and RH= Left and right hemisphere. BA= Brodmann area. 

 

 

 

 

 

ROI Cortical Area x y z t Size (mm3) 

PM 

RH, Inferior Parietal Lobule, BA40 36 -40 43 11.13 9673 

RH, Precuneus, BA7 14 -70 52 7.86 392 

RH, Fusiform Gyrus, BA37 42 -55 -11 7.24 1026 

RH, Middle Occipital Gyrus, BA19 33 -76 13 9.81 2605 

LH, Superior Frontal Gyrus, BA6 -15 -5 64 14.84 23837 

LH, Precuneus, BA7 -21 -77 46 10.32 677 

LH, Precuneus, BA7 -24 -61 37 6.65 609 

LH, Inferior Frontal Gyrus, BA9 -51 5 32 7.30 7722 

LH, Inferior Parietal Lobule, BA40 -60 -35 40 8.88 652 

rACC 

RH, Postcentral Gyrus, BA2 54 -19 31 6.70 925 

RH, Inferior Frontal Gyrus, BA44 57 14 13 9.51 2468 

RH, Middle Frontal Gyrus, BA6 33 -7 46 8.63 1694 

RH, Inferior Parietal Lobule, BA40 33 -37 40 6.75 589 

RH, Cuneus, BA30 30 -76 10 7.90 1290 

RH, Sub-lobar 12 11 -8 11.27 15437 

LH, Middle Frontal Gyrus, BA6 -27 -7 46 9.20 2050 

LH, Inferior Frontal Gyrus, BA46 -33 32 13 7.03 938 

LH, Supramarginal Gyrus, BA40 -36 -40 37 6.91 1054 

LH, Inferior Parietal Lobule, BA40 -60 -28 31 6.89 579 

Sham 

RH,  Inferior Temporal Gyrus, BA20 54 -10 -27 7.93 1324 

RH,  Fusiform Gyrus, BA37 42 -55 -11 10.32 1286 

RH,  Inferior Parietal Lobule, BA40 36 -40 40 16.17 49530 

RH,  Thalamus, Pulvinar 18 -28 16 7.93 848 

RH,  Medial Frontal Gyrus, BA32 6 11 43 9.73 730 

LH,  Middle Frontal Gyrus, BA11 -24 41 -12 9.81 14778 

LH,  Superior Parietal Lobule, BA7 -24 -61 43 13.29 11624 

LH,  Precuneus, BA31 -27 -73 16 9.57 1180 

LH,  Middle Occipital Gyrus, BA18 -33 -88 -2 8.95 1660 

LH,  Fusiform Gyrus, BA19 -39 -64 -8 7 542 

LH,  Precentral Gyrus, BA6 -51 -7 31 15.76 16272 

(C) 
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6.5 Discussion 

 In the current study we investigated the effectiveness of fMRI neurofeedback in 

phantom pain regulation using two different target regions rACC and PM. The feedback signal 

represented the activity in either PM or rACC during the neurofeedback training and in the 

auditory cortex during the sham feedback. Current evidence suggests that there is a link 

between chronic pain and motor cortex reorganization but the causality remains unclear and 

hence PM was chosen as a targeted region (Mercier and Le´onard, 2001). The rACC was 

selected as a targeted region for this study because of its likely involvement in pain regulation 

and pain perception (Rainville, 2002; DeCharms et al., 2005) despite its role in emotional 

processing, attention and executive functions (Allman et al. 2001; Davis et al. 2000). Brain 

imaging studies have found a complex network cerebral structures named the pain matrix 

associated with the different dimensions of pain, including the primary and secondary 

somatosensory, insular, anterior cingulate cortex, prefrontal cortices, and thalamus (Peyron et 

al., 2000). 

During the neurofeedback training, patients showed an increase in their ability to down-

regulate the PM and rACC activity between the first and last neurofeedback run while they 

showed an increase activation during the sham feedback (for only two patients). The beta 

weights of neurofeedback runs did not consistently decrease, which may reflect the search for 

an effective strategy and the gradual skills learning for self-regulation. These findings are in 

line with previous neurofeedback studies, which show similar effects of down-regulation 

(DeCharms et al., 2005; Emmert et al., 2014).   

At the behavioural level, the neurofeedback training of both ROIs indicates a slight 

decrease in pain intensity. However, the difference was not statistically significant (paired-

sample t-test, p<0.25). Regardless of the absence in pain modulation, we found effects of 

changes in brain activity for both ROIs.  
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 The whole brain analysis showed a widespread brain activation that is involved in 

neurofeedback training other than the targets ROIs. These activation included bilateral SMA, 

bilateral PM, bilateral Inferior Frontal Lobule (IPL), bilateral Precuneus, left inferior frontal 

gyrus, right fusiform gyrus and right middle occipital gyrus for PM-ROI and bilateral 

orbitofrontal cortex (OFC), bilateral PM, bilateral inferior frontal gyrus, bilateral IPL, right 

cuneus and right postcentral gyrus for rACC-ROI. The functionality of these regions are as 

listed below: 

 SMA is involved in motor planning and control (Nachev et al. 2008; Grefkes et al. 

2008). Indeed, the increase in the left SMA activation, supporting previous findings of 

practice-related activation increase regardless of the trained hand (for review see: 

(Halsband & Lange, 2006). 

 The PM area plays an important role in planning, preparation and selection of 

movements (for review see: (Hétu et al. 2013; Bestmann et al. 2008; Hoshi et al. 2007). 

 The IPL activation could be related to the integration of visuomotor information 

(Halsband & Lange 2006), or the internal recruitment of the stored motor 

representations (Cooke et al. 2003).  

 The Precuneus is a prominent node within the default mode network (DMN) that 

associated with self-relevance and self-perception, in addition to attentional, cognitive, 

and affective processes (Xavier Castellanos et al., 2008) with widespread connections 

to brainstem, limbic structures, thalamic and prefrontal regions that are all important to 

homeostasis and affective equilibrium (Raichle et al., 2000; Cavanna and Trimble, 

2006). 

 The OFC is involved in decision making, controlling and adapting reward-related and 

punishment-related behaviour and in decoding and representing some primary 



190 
 

reinforcers such as pleasant touch, painful touch, taste, smell and more abstract 

reinforcers such as winning or losing money (Rolls, 2004). 

In line with the previous findings (DeCharms et al., 2005; Emmert et al., 2014), we showed 

that patients gained control over the feedback signal derived from either PM (session one) or 

rACC (session two) by building an effective strategy, which led to decrease in the targeted 

ROIs activity. On the other hand, they lost their ability to modulate their brain activity during 

the sham feedback derived from the auditory cortex.  

6.6 Limitations 

 This study investigates the feasibility of using two targeted regions for fMRI 

Neurofeedback in pain modulation. It clearly indicates that PM and rACC could serve as pain 

neurofeedback regions for future neurofeedback experiments. The current limitations should 

be considered when designing similar fMRI neurofeedback experiments: 

 A low number of PLP patients due to difficulties in recruitment, including with issues 

in their mobility and its effect on entering the scanner and staying still. 

 The study aimed to assess the effect of fMRI neurofeedback on pain rating, however 

due to a low number of patients, we could not find a significant behavioural effect thus 

further studies with a larger population are needed.  

 The sham runs came immediately after the neurofeedback runs, which might bias the 

modulation due to the transfer effect of the neurofeedback. It’s recommended to recruit 

a separate control group. 

 

6.7 Rationale for the experimental chapters 6 and 7 

In the experimental chapter 6, phantom limb pain patients were trained to use the fMRI 

neurofeedback system to modulate the level of neuronal activity in circumscribed brain regions. 
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Two neurofeedback paradigms were examined in two different session (over two days), one 

was based on down-regulation of rACC and the other was based on down-regulation of PM. 

Those patients received a true feedback and a sham feedback in each session. In the next 

experiment chapter (chapter 7), the lack of the experimental paradigm, the number of 

participants, the targeted region, the sham feedback and the behavioural effects were addressed.  

fMRI neurofeedback system was applied to train healthy participants to up-regulate their SMA 

activation while they were instructed to imagined doing complex body actions. A motor 

reaction time was measured before and after the neurofeedback training to assess the changes 

caused by a successful modulation.   
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Chapter 7 : Up-regulation of Supplementary Motor Area 

activation with fMRI Neurofeedback improves motor 

reaction time 

 

 

 

7.1 Abstract 

 fMRI Neurofeedback (NF) is a potential tool to study the relationship between 

behaviour and brain activity. It enables people to self-regulate their brain signal and can alter 

the functional connectivity between brain regions. Here, we applied fMRI NF to train healthy 

participants to increase activity in their supplementary motor area (SMA) during a Motor 

Imagery (MI) task of complex body movements while they received a continuous feedback 

signal. This signal represented the activity of individually localized SMA in the NF group and 

a pre-recorded signal in the control group. In the NF group, but not in control group, results 

showed an increase in left SMA activation, as well as other regions including Cingulate Gyrus 

and Premotor area. Consistent with this a psychophysiological interaction (PPI) the analysis 

revealed changes for the NF group in functional connectivity between the SMA and other 

cortical and subcortical regions before and after the NF training.  In addition, we found 

behavioural changes, i.e. shortening of motor reaction time in the NF group.  These results 

suggest that NF can assist participants to develop greater control over motor and motor-related 

regions involved in motor skill learning.  The results contribute to a better understanding of the 

underlying mechanisms of SMA NF based on MI with a direct implication for rehabilitation of 

motor dysfunctions. 
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7.2 Introduction 

 Motor Imagery (MI) is a form of motor simulation (Vogt et al., 2013; Filimon et al., 

2015), visualised by the individual, without any overt movement (Blefari et al., 2015) and both 

MI and motor execution (ME) are thought to share similar neural networks (Jeannerod, 2001). 

Further examination of this topic using an activation likelihood estimation (ALE) analysis 

highlights that MI activates a large number of primary and secondary motor areas in both 

hemispheres including supplementary motor area (SMA), inferior frontal gyri (IFG), precentral 

gyrus (PcG), middle frontal gyrus (MfG), anterior insula, inferior/superior parietal lobule 

(IPL/SPL), putamen, thalamus, and cerebellum (Hétu et al., 2013). MI plays an important role 

in motor learning tasks (Schuster et al., 2011), as well as improving motor performance of 

various tasks over different time periods (Gentili et al., 2010). There is overlap in brain areas 

related to MI and motor learning as revealed by an ALE analysis of motor skills learning that 

suggest significant roles for dPM, SMA, somatosensory cortex, SPL, thalamus, putamen and 

the cerebellum (Hardwick et al., 2013). 

 NF is a closed loop system that can measure a participant’s brain activity and present it 

back to them as either a visual or an auditory feedback signal. The feedback signal facilitates 

the participant’s ability to modulate their own brain activity with the aim of improving function. 

Previous results using Electroencephalography (EEG) based NF has shown that healthy 

participants and patients can be trained to alter their scalp electrical activity in a wide range of 

applications such as improving cognitive functions using MI (Scherer et al. 2015; for review 

see: Marzbani et al. 2016). However, limitations of EEG-NF include low spatial resolution and 

difficulty in providing feedback from subcortical brain areas. An alternative method of NF that 

addresses these limitations is provided by functional Magnetic Resonance Imaging (fMRI), 

which measures Blood Oxygen Level Dependent (BOLD) levels, and has enabled feedback 

signals from brain activity of deeper brain structures and with higher spatial resolution. 
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 Several fMRI NF studies have demonstrated that participants can be trained to regulate 

the activity of different brain regions, such as regions responsible for emotions (anterior insula 

and amygdala (Caria et al., 2010; Zotev et al., 2011; Veit et al., 2012)), the auditory cortex 

(Haller et al., 2010), language areas (Rota et al., 2009) and the visual cortex (Scharnowski et 

al., 2012). These studies have reported behavioural changes following NF training, such as 

changes in emotional state and pain sensation (DeCharms et al., 2005), reduction of tinnitus 

symptoms (Haller et al., 2010), improvement of prosody identification and enhancement of 

visual sensitivity for target detection (Scharnowski et al., 2012). Furthermore, several other NF 

studies have examined motor and motor-associated cortices, focussing on how exercises such 

as ME (Berman et al., 2012; Neyedli et al., 2017) and MI  (Yoo et al., 2008; Scharnowski et 

al., 2015; Auer et al. 2015) can lead to an enhancement in motor performance. Clinically, 

sensorimotor-targeted regions can be used in motor rehabilitation related to stroke and 

neurological disorders (DeCharms et al., 2005; Subramanian et al., 2011b; Sitaram et al., 2012; 

Linden and Turner, 2016). 

 The impact of NF on functional connectivity between brain regions provides a 

physiological measure for fMRI-NF training (Weiskopf et al., 2007; Caria et al., 2012) and a 

number of real-time fMRI studies have shown that NF based MI training can alter the 

functional connectivity between target regions and other brain regions compared with sham 

feedback or no feedback (Marins et al., 2015; Xie et al., 2015). However, the mechanisms by 

which fMRI-NF based MI affects functional connectivity and could result in improvements in 

motor performance, is unclear. 

 In the context of modulating motor cortex activity, fMRI-NF studies have reported the 

use of different motor regions to derive a feedback signal such as premotor area (PMA) 

(Sitaram et al., 2012; Zhao et al., 2013; Hui et al., 2014; Marins et al., 2015), primary motor 

cortex (M1) (Yoo et al., 2008; Berman et al., 2012; Chiew et al., 2012; Blefari et al., 2015; 
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Neyedli et al., 2017) and SMA (Hampson et al., 2011; Scharnowski et al., 2015; Sepulveda et 

al., 2016). However, fMRI-NF studies targeting SMA have revealed mixed findings, for 

instance Scharnowski et al (2015) and Sepulveda et al (2016) found that participants were able 

to increase their SMA activity during the NF training, but Hampson et al. (2011) did not find 

a significant increase in SMA activity. Lack of a significant effect might be due to the limited 

number of runs used. In addition, the two studies showing positive results used a small number 

of participants and did not include a control group and this makes their results difficult to 

interpret.   

 The present work aims to investigate: 1) Whether healthy participants are able to 

increase the activation levels in their SMA, which is involved in motor learning, planning and 

execution, during MI of complex actions, whilst receiving a visual feedback signal. 2) Does 

successful fMRI NF of SMA translate to changes in behavioural measures. 3) Whether any 

brain regions, other than the SMA, were activated during the MI guided by NF. 4) Whether 

successful up-regulation can result in connectivity changes beyond SMA. In contrast to 

previous fMRI-NF studies which showed no learning effect (Hampson et al. 2011) and small 

sample size without control group (Scharnowski et al., 2015; Sepulveda et al., 2016), 

participants were split into two groups: a NF group, which received  real feedback, and a control 

group, which received sham feedback. All the participants underwent a Go/No-Go task to 

measure their motor reaction time before and after the NF training. If participants are able to 

successfully and selectively modulate SMA activity while performing an MI task, post-training 

tests should indicate faster reaction times for the NF group than the control group.   
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7.3 Methods and material 

7.3.1 Participants 

 Twenty healthy participants with normal or corrected-to normal vision were recruited. 

Seventeen of them were right-handed and one was ambidextrous with a laterality index of 33.3 

according to the Edinburgh Inventory (Oldfield, 1971). All participants were randomly split 

into two groups (single blind study): Ten participants in the NF group (five males, mean age: 

26.1±5.1 years), who received true feedback, and ten in the control group (seven males, mean 

age: 23.2±2.6 years), who received sham feedback. The participants’ abilities to perform motor 

imagery (MI) tasks were matched using the Vividness of Movement Imagery Questionnaires-

2 (VMIQ-2) (Callow and Roberts, 2010) to reduce inhomogeneity between the experimental 

and control groups on their ability to perform motor imagery. Both groups where 

demographically matched in terms of age, education and handedness as shown in Table 7.1. 

The ethics committees of the College of Science and Engineering, University of Glasgow 

approved this study. All participants provided their informed consent for the experiment. 

Table 7-1. Demographic features for participants in the NF and control groups 

 NF Group 

(Mean±SD) 

Control Group 

(Mean±SD) 

p-value (two 

tailed t-test) 

Age (years) 26.1±5.1 23.2±2.6 0.175 

Education (years) 17.2±2.3 16.6±2 0.621 

Handedness 81.4±15.7 74.3±23.7 0.490 

MI 

vividness 

Third person perspective 21.6±10.1 18.6±4.8 0.462 

First person perspective 18.5±4.2 18.1±4.3 0.839 

 

7.3.2 Imaging parameters and fMRI neurofeedback platform 

 The study was performed on a 3T Siemens Tim Trio MRI scanner at the University of 

Glasgow Centre for Cognitive Neuroimaging (CCNi) with a 32-channel head coil. T1 weighted 

structural scans were acquired at the beginning of the experiment (TR=2000ms, TE=2.52ms, 
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192 sagittal slices, 1 mm3 isotropic voxels and image resolution 256×256). T2*-weighted 

functional scans were collected with an Echo-Planar Imaging (EPI) sequence (TR=2000ms, 

TE=30ms, whole brain coverage with 32 axial slices, 0.3 mm gap and 3 mm3 isotropic voxel). 

 The NF system used Turbo-BrainVoyager (Brain Innovation, Maastricht, The 

Netherlands) and a custom script running on MATLAB (Mathworks Inc., Natick, MA, USA) 

to visualize the feedback signal as a thermometer. An LCD projector displayed the 

thermometer onto a rear projection screen that could be viewed through a mirror mounted on 

the head coil. 

7.3.3 Experimental procedure 

 All participants underwent the same procedure, which consisted of: a questionnaire 

interview outside the scanner, a pre-scan behavioural test, a localizer run, fMRI NF training 

(true feedback for the NF group and sham feedback for the control group) and a post-scan 

behavioural test.  

7.3.3.1 Behavioural test 

 The Go/No-go task measures Reaction Time (RT) and reflects interaction between the 

underlying inhibitory and activational components of motor control. Participants completed 

250 trials of this task before and after the NF training session, once for each hand. They were 

instructed to press the space bar on the keyboard using their index finger as quickly and 

accurately as possible when a go-trial was displayed, but inhibit their response when a no-go 

trial was presented. The task was run under Inquisit 5 software (a software to create a wide 

range of psychological and experimental paradigms). Each trial consisted of a fixation point 

(+) presented for 800ms, followed by a blank white screen for 500ms, followed by a rectangular 

cue (horizontal 2.5×7.5cm, or vertical 7.5×2.5cm) displayed for one of the five intervals (100, 

200, 300, 400, 500ms) to avoid the expectation confound. Finally, go and no-go targets were 
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coloured green and blue respectively and were presented for 1000ms, unless a response 

occurred (Fillmore et al., 2006). Figure 1 shows the different in reaction time before (pre) and 

after (post) the fMRI NF traning for both group and hands. A 2×2×2 (hand×group×pre/post) 

mixed effect analysis of variance (ANOVA) was performed to analyse between and within 

group effects. A paired-sample t-test was used as a post-hoc test to compare between the pre-

post experiment reaction time of each group and hand separately. 

7.3.3.2 Functional localizer 

 The NF training session started with a functional localiser run, to identify the 

Supplementary Motor Area (SMA), from which the participant received the feedback signal. 

The localiser lasted for about 5 minutes and consisted of 7 fixation blocks (16s) interleaved by 

6 blocks of bimanual index finger-tapping (30s). Written instructions were given to the 

participants to either “Rest” or “Tap”. The functional data were pre-processed and analysed 

online with an accumulative General Linear Model (GLM) embedded in Turbo-BrainVoyager. 

The SMA-ROI was delineated from the active voxels (threshold of t > 5.0) within a rectangle, 

anterior to the precentral sulcus and superior to the cingulate sulcus, as shown in figure 7.1. 

The ROIs were defined in each participant’s native space and subsequently used for the NF 

training runs to derive the NF signal. For further analysis, we normalized these ROIs into 

Talairach space, as illustrated in table 7.2 and identified them based on the nearest Gray matter 

using a Talairach Daemon (Lancaster et al., 2000). 

 

Figure 7.1. Overlap of individual SMA-ROI for the 20 participants of both groups. The 

subject specific SMA-ROIs were identified prior to the NF training using a functional 

localiser run during an index finger tapping task. 

1 

2
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Table 7-2. Subject specific SMA-ROI in Talairach space 

 
Subject 

no. 
Anatomical area 

Talairach coordinates No. of 

voxels x y z 
N

F
 g

ro
u

p
 

1 LH, Medial Frontal Gyrus -6 -7 52 1163 

2 LH, Medial Frontal Gyrus -6 -19 58 702 

3 LH, Medial Frontal Gyrus -3 -10 52 1754 

4 RH, Medial Frontal Gyrus 6 -10 58 1333 

5 LH, Medial Frontal Gyrus -4 -14 48 1463 

6 LH, Medial Frontal Gyrus 0 -7 49 1520 

7 LH, Paracentral Lobule -9 -25 52 2984 

8 RH, Medial Frontal Gyrus 9 -10 47 1730 

9 RH, Medial Frontal Gyrus 3 -10 52 2569 

10 RH. Medial Frontal Gyrus 9 -13 52 1186 

C
o
n

tr
o

l 
g

ro
u

p
 

11 RH, Medial Frontal Gyrus 2 -11 51 1683 

12 LH, Medial Frontal Gyrus -10 -8 48 1520 

13 LH, Medial Frontal Gyrus -7 -17 51 1539 

14 LH, Medial Frontal Gyrus -4 -5 57 1344 

15 LH, Cingulate Gyrus -10 -11 45 1408 

16 LH, Medial Frontal Gyrus -7 -5 57 2086 

17 LH, Medial Frontal Gyrus -4 -8 57 1792 

18 RH, Cingulate Gyrus 8 -2 48 2072 

19 RH, Medial Frontal Gyrus 8 -8 54 1848 

20 LH, Medial Frontal Gyrus -4 -10 49 1268 

 

7.3.3.3 fMRI neurofeedback 

 All the participants took part in seven 430s NF training runs, where they were instructed 

to upregulate their targeted ROI by doing an MI task of complex body actions. Each NF training 

run consisted of nine 30s blocks of NF interleaved with ten 16s fixation blocks as shown in 

figure 7.2. During the NF blocks, participants saw a thermometer, and were instructed to 

increase its level by imagining doing complex actions. During the fixation blocks, participants 

looked at a fixation cross, and were instructed to relax and count numbers “1,2,3…” to keep 

their baseline signal low. Counting down, and other more complex mathematical operations 

have been shown to activate motor related networks (Hanakawa, 2011; Berman et al., 2012).  

 The control group was presented with sham feedback that presented a randomly chosen 

pre-recorded brain signal from a participants in the experimental group (Chiew et al., 2012; 

Hui et al., 2014).   
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Figure 7.2. fMRI NF training paradigm of one run. A run lasted for 430s and consisted of 

nine 30s NF blocks alternating with ten 16s fixation (rest) blocks. 

7.3.4  Online data analysis 

 Real time fMRI data analysis and NF presentation was performed using Turbo-

BrainVoyager software and MATLAB. The scanner transmitted the acquired fMRI data 

volume by volume to the analysis computer that hosted Turbo-BrainVoyager through a 

network connection. Functional data were pre-processed in real time, which included linear de-

trending, slice timing correction, 3D motion correction and spatial smoothing using a Gaussian 

kernel with full width at half maximum (FWHM) of 8mm, then added to a cumulative general 

linear model (GLM).  

 The feedback signal consisted of a thermometer with a continuously updated red 

column height at each TR (1 TR=2000ms), based on the following equation 7.1: 

𝒃𝒂𝒓 𝒉𝒆𝒊𝒈𝒉𝒕 (𝒕) = (
𝑹𝑶𝑰𝑺𝑴𝑨(𝒕) − 𝑹𝑶𝑰𝑺𝑴𝑨𝒃𝒂𝒔𝒆

𝑹𝑶𝑰𝑺𝑴𝑨𝒃𝒂𝒔𝒆

) − (
𝑹𝑶𝑰𝒓𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆(𝒕) − 𝑹𝑶𝑰𝒓𝒃𝒂𝒔𝒆

𝑹𝑶𝑰𝒓𝒃𝒂𝒔𝒆

)     (7.1) 

  Where ROISMA(t) and ROIreference(t) are the average BOLD signals of the SMA-ROI and 

a reference ROI during the NF block at time t. ROISMA_base and ROIr_base are the average BOLD 

+ 

+ 
 

+ 
 

16 s 

16 s 

16 s 

30 s 

30 s 
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signals of the last three volumes in the fixation block of SMA-ROI and reference ROI, 

respectively. The reference ROI, used to correct for global scanning effects, encompassed a 

rectangular region covering all the voxels within an axial slice (z=10) distant from the motor 

network, and showed no activation when the localizer run was analysed.  

7.3.5 Offline data analyses 

 The raw data were pre-processed offline using BrainVoyager QX 2.8.4 (Brain 

Innovation, Maastricht, The Netherlands). The first two volumes of each run were discarded to 

allow for T1 equilibration effects. The pre-processing of the remaining functional data involved 

slice scan-time correction with cubic-spline interpolation, 3D motion correction with 

Trilinear/Sinc interpolation, linear trend removal, high-pass filtering with a cut-off set to 3 

cycles and spatial smoothing with 4mm full-width at half-maximum (FWHM) isotropic 

Gaussian kernel. All functional images of each subject were aligned to the first functional 

volume after the anatomical scan and spatially normalized to Talairach space to enable group 

analysis across participants (Talairach & Tournoux, 1988). 

 In the first level analysis, all the pre-processed functional data of each subject were 

analysed using a General Linear Model (GLM) with two predictors (tapping and rest for the 

localiser, feedback and rest for NF), convolved with a hemodynamic response function and 

covariates derived from six head motion parameters (Johnston et al., 2010; Dijk et al., 2012), 

an estimate of the white matter signal (Jo et al., 2010; Zilverstand et al., 2015) and the 

ventricular signal (Birn et al., 2009; Zilverstand et al., 2015) for modelling physiological 

artefacts (e.g. respiration and cardiac effects) and scanner instability. Group data were 

evaluated based on a second level random effect analysis general linear model (RFX-GLM). 

The obtained statistical maps were corrected for multiple comparisons using cluster-level 

thresholding (Goebel et al., 2006). In this method, the uncorrected voxel-level threshold was 

set at p<0.01, and then the thresholded maps were submitted to a whole-brain correction 
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criterion based on the estimate of the map's spatial smoothness and on an iterative procedure 

(Monte Carlo simulation) for estimating cluster-level false-positive rates. After 1000 iterations, 

the minimum cluster-size that produced a cluster-level false positive rate (alpha) of 5% was 

applied to threshold the statistical maps. 

7.3.5.1 Region of Interest analysis 

 To examine the NF training success, beta weights were estimated using a ROI-GLM 

analysis for each NF run of each subject’s ROI, (identified by the functional localiser presented 

in table 7.2) and were used as an indicator for the NF success. A 2×2 mixed effect analysis of 

variance (ANOVA) was performed to analyse between and within group effects. A paired t-

test was used as a post-hoc test to compare the beta weights of the first and the last runs in each 

group. Furthermore, a linear regression of the average beta weights over NF runs was used to 

examine the upregulation over runs as an index of self-learning. In addition, an event-related 

average time course was computed for the last and first NF runs. 

7.3.5.2 Whole-brain analysis 

 To verify the SMA selection during the online NF experiment, a whole brain RFX-

GLM analysis was performed for the localizer runs. The contrast tapping vs. rest was computed 

and a threshold was set at p<0.01 uncorrected, with cluster-level thresholding of 899 mm3. 

 A whole brain second level RFX-GLM analysis was conducted for the NF runs 

contrasting feedback vs. rest (for each group separately, p<0.01 uncorrected, with cluster-level 

thresholding of 981 mm3 for the NF group and 1139 mm3 for the Control group). A two sample 

t-test was performed to contrast NF vs control for a group comparison, thresholding at p<0.01 

uncorrected with cluster-level thresholding of 432 mm3.  
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7.3.5.3 Psychophysiological interaction (PPI) analysis 

 To examine the degree of interaction between the SMA and other brain regions during 

self-regulation, a PPI analysis was applied. PPI is a functional connectivity analysis that 

explores the functional coupling between the seed region (SMA) to other brain areas (physical 

variable) modulated by the experimental context, such as MI (psychological variable) (Friston 

et al., 1997). The results of PPI can be interpreted as estimates of task-specific functional 

connectivity between the seed and target regions. For the PPI analysis, a GLM was set up with 

the psychological regressor (experimental condition convolved with the canonical 

hemodynamic response), physiological regressor (SMA time-course) and a regressor for their 

interactions. Head motion correction parameters were included in the GLM model as nuisance 

predictors. These analyses were performed for each NF run of both groups. The group 

connectivity was assessed with a two-sample t-test (NF feedback group vs control group) at a 

cluster threshold of p<0.03 (945 mm3).  

7.4 Results 

7.4.1  Behavioural results 

Figure 7.3 shows the difference in reaction time of the two groups before and after the 

NF training for both hands. The repeated measures ANOVA test of the reaction time 

showed a significant effect of hand×pre/post interaction (F(1,9)=8.85, p=0.016), but neither 

main effects of hand (F(1,9)=0.06, p=0.81), group F(1,9)=0.89, p=0.36), pre/post 

experiment F(1,9)=1.07, p=0.326) nor interaction effects hand×group interaction 

(F(1,9)=2.65, p=0.13), group×pre/post interaction (F(1,9)=0.1, p=0.75), 

hand×group×pre/post interaction (F(1,9)=4.04, p=0.07). Paired-sample t-tests between pre-

post experiment reaction time of both group for one hand revealed a significant effect of 

NF training in the right hand of the NF group (t(9)=3.106, p=0.013) compared to the control 
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group (t(9)=0.535, p=0.606). There was no significant effect for the left hand for both 

groups (t(9)= 0.471, p=0.648 and t(9)=0.353, p=0.732 for NF and control group 

respectively). 

 

Figure 7.3. Reaction time (ms) difference before and after the self-regulation of both hands 

for the two groups. Errors bar represent the standard mean error (SEM). * p<0.05. 

7.4.2 ROI analysis 

 Each participant completed 7 NF runs in one session, during which, most of them learnt 

to increase the brain activity acquired from their functionally localised SMA regions. They 

reported imagining punching or boxing. The average beta weights in the SMA estimated during 

each run of the NF and control group is showed in figure 7.4. The repeated measures ANOVA 

test of the beta weights showed a significant effect of group (F(1,9)=40.7, p<0.0001), however 

neither run (F(6,54)=0.158, p=0.98) or the interaction of group with run (F(6,54)=1.33, 

p=0.256) showed significant effects. Paired t-test revealed a significant increase in SMA 

activity from the first to the last run (t(9)=-1.83, p<0.04) in the NF group but the control group 

showed no significant change (t(9)= 0.88, p<0.2). 
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 Moreover, a linear regression highlighted a gradual increase in the mean SMA activity 

across runs in the NF group indicating a learning effect (y = 0.062x + 0.252, t = 3.95, p < 0.01). 

The control group did not show such learning progress (y = -0.074x - 0.035,  t= -1.56, p = 0.17). 

 Additionally, figure 7.5 shows the averaged time course of BOLD signal during the NF 

blocks of both groups. This figure plots the first and the last runs for both groups and shows an 

increase in SMA activity for the NF group.  

 

Figure 7.4. The mean beta weights of NF and control groups across NF runs. The beta 

weights were used as an indicator the success of the self-regulation. 
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Figure 7.5. Average BOLD signal change of target SMA regions of NF and control groups 

comparing the first and last runs. NF training helped to increase the SMA activity of the NF 

group (blue lines) compared to the control group where it decreased it (orange lines). Error 

bars are standard error of the mean. Dashed lines represent the task block. 

7.4.3 Whole brain analysis 

7.4.3.1 Functional localiser 

 A whole brain random effects GLM analysis of the functional localiser runs showed 

widespread activation spanning over bilateral M1 and S1, left Superior Frontal Gyrus, right 

Lentiform Nucleus, bilateral thalamus, left Lingual Gyrus and Culmen (cerebellum) as shown 

in figure 7.6. However, results did not show a significant activation in SMA. The axial overlay 

map of figure 7.6 illustrates that the activation was mostly associated with motor and motor 

related areas. Moreover, left Lingual Gyrus was activated possibly due to its role for 

identification and recognition of words. 
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Figure 7.6. Results of the analysis of all the functional localizer runs of both groups overlaid 

on axial slices. The map was theresholded at P<0.01 (cluster size>899mm3) 

7.4.3.2 NF runs 

 A whole brain random effects GLM analysis was performed for both NF and control 

groups to investigate whether any brain regions, other than the individually identified SMA, 

were activated during the MI guided by the NF. The active regions of NF and control groups 

are listed in table 7.3 and illustrated in figure 7.7. NF training resulted in a significant increase 

in the targeted SMA activation in the NF group compared to the control group. Furthermore, 

additional activations were found in the bilateral Lentiform Nucleus, left Motor Cortex and left 

Supramarginal Gyrus for the NF group and in the bilateral Basal Ganglia, bilateral Middle 

Frontal Gyrus and Inferior Parietal Lobule for the control group. 

Z= 4 

Z= 23 Z= 50 

Z= -11 Z= -2 
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Figure 7.7. Results of the analysis of NF runs shown for the (A) NF group and (B) control 

group. These activations are significant at p<0.01 (cluster size> 981mm3 and >1139 mm3 

respectively). 

Table 7-3. Clusters of brain activation during the NF for NF and control groups. (Note: x,y,z 

are the Talairach coordinated, LH= Left hemisphere. RH= right hemisphere.) 

 

B: Control group 

Z= 13 Z= 46 Z= 22 Z= 4 

A: NF group 

Z= 10 Z= 55 Z= 36 

R L 

A 

P 
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 To assess whether SMA activation in the NF group was significantly different from 

activation in the control group. A two sample t-test was performed to contrast the RFX-GLM 

maps of both groups. The NF group showed higher activations in clusters located in the left 

motor and cingulate regions (BA6 and BA24 respectively) compared to the control group that 

showed higher activations in the left Claustrum, bilateral Middle/Superior Frontal Gyrus (BA8) 

and right Angular Gyrus as illustrated in Figure 7.8 and listed in Table 7.4. 

 

Figure 7.8. A contrast map between the RFX-GLM of NF and control groups. Red/yellow 

colour represents significant actions in the NF group while the blue/green colour indicates 

higher activation in the control group. The map was thresholded at P<0.01 (cluster 

size>432mm3). 

Table 7-4. Comparison of brain activations between NF and control groups. (Note: x,y,z are 

the Talairach coordinated, LH= Left hemisphere. RH= right hemisphere. BA= Brodmann 

area.) 

 

 

Z= 13 Z= 31 Z= 46 Z= 55 

R L 

A 

P 
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7.4.3.3 PPI analysis 

 To further explore how NF learning might be modulating activity throughout the brain 

a PPI analysis was conducted using the individually identified SMA regions as seed ROIs. PPI 

analysis showed a significant connectivity (p<0.03) between SMA and Cingulate cortex 

(BA24) and Caudate Head for the NF group. For the control group, the interaction was between 

SMA and bilateral Lingual Gyrus (BA18), left Declive and left Fusiform Gyrus (BA37). Group 

PPI comparison revealed a strong correlation between the SMA and left Thalamus and Putamen 

in the NF groups (yellow-red clusters), as well as between the SMA and bilateral 

Inferior/Middle Temporal Gyrus and left Precuneus (BA7) in the Control group (blue-green 

clusters) as shown in figure 7.9 and table 7.5. 

 

Figure 7.9. Significant differences using PPI contrast between NF and control groups at 

P<0.03 (cluster size>945mm3). 

Table 7-5. Comparison of PPI activations between NF and control groups. x,y,z are the 

Talairach coordinated, LH= Left hemisphere. RH= right hemisphere. BA= Brodmann area. 

 

Z=1 Z=11 Z=48 
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7.5 Discussion 

 In this study we demonstrated that healthy volunteers could learn, in a single session, 

to increase the activity in their functionally localised SMA regions, during a MI task of 

complex body actions whilst receiving a continuous feedback signal (displayed as a 

thermometer bar height). This feedback signal represented the activity of individually localized 

SMA regions in the NF group and a pre-recorded signal in the control group. The estimated 

beta weights, as well as the average BOLD signal (Figures 4 and 5, respectively), of the SMA 

increased with the number of runs, indicating a learning effect. These findings are similar to 

previous studies (Banca et al. 2015; Scharnowski et al. 2015; Blefari et al. 2015) which 

indicated that one single session of NF training is enough to accomplish training.  The results 

also showed that successful modulation of SMA activity of the NF group led to improved motor 

performance in the motor reaction task (figure 7.3).   

 Participants in both groups had an equal capability to perform MI as measured by the 

VMIQ-2 questionnaire. Those in the NF group who received feedback information from their 

SMA regions could use the feedback signal to increase their ROI activation as shown in Figure 

4. In contrast to the NF group, the control group received a pre-recorded feedback signal that 

did not match the changes in their brain activity, therefore preventing them from finding an 

effective strategy to control their brain activity and a subsequent decrease in SMA activity. The 

beta weights of the NF group did not consistently increase, which may reflect the search for an 

effective strategy and the gradual skills learning for self-regulation. Participants reported the 

use of different MI strategies during the NF training, including first-person perspective MI of 

punching or boxing. The debriefing of the participants after the NF experiment showed that 

most of them initially struggled to identify the best imagery strategy.  Common documented 

strategies in NF studies of MI include clenching and pitching (Blefari et al. 2015; Chiew et al. 

2012; Yoo et al. 2008).  Relating this to ME studies of sequential finger movements (Neyedli 
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et al. 2017; Berman et al. 2012) indicate that both these types of motor activity have been 

shown to activate common cortical regions such as SMA, bilateral PMA, M1, posterior parietal 

lobe (PPL) and the cerebellum (Hanakawa et al., 2008; Hétu et al., 2013; Sharma and Baron, 

2013). The shared neural substrate between MI and ME support the feasibility of NF training 

using MI to enhance motor performance.  

 The Go/No-go task showed a decrease in reaction time of both groups (figure 7.3).  

Importantly the reaction time of the NF group was significantly lower after the NF training. 

This finding further supports that the MI training guided by true NF is more effective in 

improving motor performance than any effect of sham feedback. This task involved planning 

and initiation of movements during the Go task and inhibition of inappropriate actions during 

No-go. All of these mechanisms are mediated by the SMA (Nachev et al. 2008). The SMA has 

direct connections to the corticospinal tract, precentral gyrus (M1), and ventrolateral thalamus 

(Arai et al. 2012; Nachev et al. 2008; Johansen-Berg et al. 2004) and it has been shown that 

modulating SMA activity can increase the cortical excitability of M1 (Arai et al. 2012; Shirota 

et al. 2012) thus increasing the SMA activity will lead to reduced motor reaction times. 

 The whole-brain analysis revealed widespread brain activation in the NF group other 

than the targeted area (SMA). These activations included for the NF group the left SMA, left 

PMA, left IPL and bilateral basal ganglia and for the control group, the bilateral PMA, left IPL 

and bilateral basal ganglia. The SMA is involved in motor planning and control (Grefkes et al., 

2008; Nachev et al., 2008). Indeed, the NF group showed an increase in the left SMA 

activation, consistent with previous findings of left hemisphere dominance in practice-related 

activation increase regardless of the trained hand (Halsband & Lange, 2006). The PMA plays 

an important role in planning and preparation of movements (Hoshi et al., 2007; Hétu et al., 

2013). Our results of activation in the left PM highlight the dominant role of this area in 

movement selection (Bestmann et al., 2008) while the right PM activation are consistent with 
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spatial processing during the early stage of motor learning (Halsband and Lange, 2006). The 

IPL activation could be related to the integration of visuomotor information (Halsband and 

Lange, 2006), or the internal recruitment of stored motor representations (Cooke et al., 2003). 

Particularly, the left IPL is suggested to be involved in the storing/retrieval of motor plans (Van 

Elk, 2014) and visually guided motor tasks (Torres et al., 2010). Further, the basal ganglia is 

involved in motor processes and cognitive functions, such as learning based on the assessment 

of outcomes (Arsalidou et al., 2013). Interestingly, the putamen is thought to be essential in 

the learning of novel complex motor actions and less important in well trained movements 

(Ceballos-Baumann, 2003), hence the pattern of basal ganglia activation observed in the NF 

group supports the neural efficiency hypothesis (Dayan and Cohen, 2011), which suggests that 

a task can be carried out using fewer neural substrates, as fast learning proceeds (Poldrack, 

2000). Importantly, in contrast to the NF group, the control group showed widespread 

activation in the basal ganglia due presumably to subjects attempting to discover the best MI 

task using trial-and-error strategies. This pattern of activation highlighted the engagement of 

basal ganglia with executive functions (e.g. planning), that activate the head and body the of 

right caudate along with working-memory processes (e.g. maintain and manipulate 

information) that activate the bilateral putamen, and reward processes that activate anterior 

parts of bilateral caudate head (Arsalidou et al., 2013). Comparison of brain activation between 

the NF and the control groups revealed significantly higher activations in the left SMA, left 

PMA and left cingulate gyrus of the NF group, further supporting our hypothesis that the NF 

group would be able to increase the activation of SMA during NF training.  

 The PPI comparison showed an increase in functional coupling during the NF training 

between the SMA and other brain regions. Our results demonstrated an enhancement in 

functional connectivity between the SMA and the thalamus and putamen in the NF group. 

These two regions play an important role in relaying and selecting motor output (Arsalidou et 
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al. 2013; Sommer, 2003) which supports motor skill learning (Dayan and Cohen, 2011). On 

the contrary, the control group showed a positive correlation between the SMA and left 

Precuneus during the NF training, which might be explained by a high demand on spatial 

information input from the Precuneus to the motor region. Finally, the positive coupling 

between the SMA and bilateral fusiform gyrus in the control group might be associated with 

forming a visual memory of the motor procedure, particularly with the upper limbs of the body 

(Olsson et al., 2008).  

 In-line with the previous studies of fMRI NF (Bray et al., 2007b; Chiew et al., 2012; 

Sitaram et al., 2012; Zhao et al., 2013; Scharnowski et al., 2015), we demonstrated that the use 

of a MI task during real-time fMRI NF is effective in up-regulating activity in the motor related 

regions and can improve motor performance. Our study presents the first controlled study that 

highlights the feasibility of increasing SMA activation during one session. Clinically, learning 

control over the SMA could be used to treat Tourette’s syndrome where SMA activity is linked 

to motor tics ( Hampson et al. 2011; Bohlhalter et al. 2006) and Parkinson’s Disease where the 

SMA activity is reduced by perfoming motor tasks (Munzert et al., 2009; Subramanian et al., 

2016) 
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Chapter 8 : General Discussion 

 

 

 

8.1 General summary 

 The experimental studies in this thesis have examined the decoding of the motor 

representations of different multi-joint arm actions during either pure motor imagery or motor 

imagery guided by active observation of the same action. The thesis also presents a functional 

algorithm that aligns neural representation spaces across participants. Further to this, it 

investigated the development of a neurofeedback system, implemented with fMRI, targeting 

brain activations in different brain regions for the purposes of altering perception.  

 In this general discussion, I will review the key findings and the implications of the 

experimental chapters, and relate them to the aims of this thesis. The experimental studies can 

be considered in the context of the decoding and aligning of motor representational spaces 

(Chapters 4 and 5) and the use of fMRI neurofeedback training to modulate pain perception 

(Chapter 6) and enhance motor reaction time (Chapter 7). 

8.1.1 Common model of motor representation 

 I started with the aim of finding a functional alignment that can align local 

representational spaces in the motor domain across participants into common model 

representational space. Hyperalignment, a novel method of functional alignment, has been 

shown to successfully align the representational spaces across participants in the ventral 

temporal cortex (Haxby et al., 2011). Extending hyperalignment to other cortical regions 

requires predefined ROIs that are functionally equivalent across participants, and the extent of 
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the spatial distribution of each dimension in the common representational space is only limited 

by the size of the ROI. Successful hyperalignment that aligns the cortical systems requires a 

rich sampling of neural responses across the entire cortex. It involves activating as many 

sensory, perceptual, cognitive, and social systems as possible. In chapter 4, I collected cortical 

responses to a set of blended movements that densely sampled a particular movement space 

while participants performed a visuomotor task (AO+MI). From these responses, I derived 

transformation parameters for the hyperalignment. I validated the hyperalignment derived from 

the blended actions to map an independent motor imagery study by aligning the 

representational spaces of the motor cortex into a common model representational space. I 

explored whether the order in which participants were entered into the hyperalignment 

procedure mattered in generating a common model space that produces the most discriminative 

subject-independent classifier. Our results showed that the hyperalignment algorithm is 

potentially sensitive to subject order, due to the inter-subject response variability and different 

weights of subjects’ contributions toward computing the intermediate common model (figure 

4.3). I also performed between-subject classification (BSC) based on hyperalignment and 

anatomical alignment, as well as within-subject classification analyses to decode action types 

(lift vs knock vs throw). Between-subject classification after hyperalignment performed better 

than between-subject classification based on anatomical alignment (figure 4.6). These results 

demonstrated the general validity of the hyperalignment transformations derived from the 

blended actions data. Furthermore, the results suggest that a classifier trained on a set of 

subjects can predict categorical information in a new subject, at least as well as a classifier that 

was trained on that test subject’s own data. I then derived the hyperalignment parameters from 

the motor imagery study. Our results revealed that both hyperalignment models afford 

comparable levels of classification performance. These findings demonstrate the feasibility of 

deriving hyperalignment parameters using different data resources. Finally, I explored the cost 
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in classification accuracy when a to-be-classified participant’s data were excluded from the 

dataset used for deriving hyperalignment parameters. The BSC performance based on 

hyperalignment decreased, but it was still better than BSC based on anatomical alignment 

(figure 4.8). This would be relevant if hyperalignment based on one set of participants was 

used to perform classification on data from a new subject, and could be used in applications 

like real-time decoded neurofeedback. 

8.1.2 Multivariate pattern analysis of MI vs AO+MI 

 The main aims of Chapter 5 were to extend hyperalignment to map the representational 

spaces in the motor and motor related regions across participants, and also to demonstrate the 

similarity of neural code between MI and AO+MI of different hand actions. I re-analysed the 

data of the first experiment to examine whether multi-joint arm actions during different 

modalities (MI and AO+MI) elicited unique fine-grained activation patterns, and if they could 

be decoded from the fronto-parietal motor regions. Our results showed that the type of actions 

could be decoded significantly accurately during MI and AO+MI tasks, with a highest 

classification performance in M1 and SPL of both hemispheres. These results replicate 

previous research showing that patterns of activity within motor and motor related regions can 

differentiate between different types of actions (Pilgramm et al., 2016; Zabicki et al., 2016) 

and between action modalities (Filimon et al., 2015). This also demonstrates that the frontal 

and parietal regions represent the content and modality of actions. I then applied 

hyperalignment to better localise the distributed motor network and enhance the classification 

accuracy. I validated the hyperalignment derived from the AO+MI task of blended actions to 

map the independent MI and AO+MI data of multi-joint arm actions. Hyperalignment was 

successful in building common representational spaces of the frontal-parietal motor regions 

that increased the power of MVPA to detect fine-grained information across participants 

(figures 5.6 and 5.9). I also examined the consistency of the neural code between AO+MI and 
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MI by attempting cross-modality classification. Our findings suggested a common neural code, 

with AO+MI and MI induced neural patterns for specific hand actions in broad areas of the 

human motor system (figure AOMI_MI 10). Furthermore, I explored the similarity in structure 

of neural responses elicited by AO+MI and MI of different arm actions. A representational 

similarity analysis (RSA) was used to estimate the correlation distance between the neural 

responses of AO+MI and MI of lifting, knocking and throwing actions to form a 

representational dissimilarity matrix (RDM). I compared the RDMs of the fronto-parietal 

motor regions to models predicting how the brain regions encode the modality, the actions type 

or the mix dependency of both. I found that motor regions were correlated with each other and 

formed two distinct clusters in the frontal and parietal cortex (figure 5.12), emphasising the 

role of premotor and motor regions in simulating and selecting the action parameters, and the 

posterior parietal cortex in processing action related information. In addition, I tested different 

model predictions and found that mixed models explained the neural geometry in most fronto-

parietal regions, indicating that the action representations had both common and distinct 

components across modalities (figure 5. 13).   

8.1.3 Neurofeedback 

 During neurofeedback, the BOLD signal is processed and displayed in real-time to the 

participant in order to enable self-regulation of brain activity. Research using fMRI 

neurofeedback has shown that it is possible to self-regulate the activity in brain regions or 

networks, and that this regulation can impact behavioural variables. Most of the early research 

has focused on healthy subjects, in order to understand the neural substrates and possibilities 

of neurofeedback. The aim of these studies was to demonstrate the general feasibility and to 

show a significant regulation effect. In recent years, the focus has shifted towards clinical 

applications.  
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 In the second part of this thesis, an fMRI neurofeedback system was established to 

examine the modulation of brain activity in healthy and clinical populations, and also to test if 

fMRI neurofeedback training altered the functions of the targeted brain regions as a 

consequence.  

 In chapter 6, I examined the feasibility of training phantom limb pain patients to 

modulate their brain activity by the means of fMRI neurofeedback. I compared two 

neurofeedback paradigms, one based on down-regulation of the rACC and the other based on 

down-regulation of the premotor region (PM). The behavioural changes revealed a slight 

decrease in the phantom pain intensity due to the neurofeedback self-regulation. However, 

comparing the last to the first fMRI neurofeedback run, patients down-regulated their PM and 

rACC activity in one session whilst they showed an increase in these targeted regions’ activities 

during the sham feedback (signal derived from the auditory cortex) (figure 6.3). During the 

neurofeedback training, patients gained control over the feedback signal derived from either 

PM or rACC by building an effective strategy, which led to decrease in the targeted ROIs 

activity. On the other hand, they lost their ability to modulate their brain activity during the 

sham feedback derived from the auditory cortex. These findings are in line with previous 

neurofeedback studies, which show similar effects of down-regulation (DeCharms et al. 2005; 

Emmert et al. 2014). 

 Chapter 7 demonstrated that healthy participants can use fMRI neurofeedback to 

module the activity of the SMA, which is involved in motor learning, planning and execution, 

during MI tasks involving complex body actions. Participants in the neurofeedback group 

received a continuous feedback signal as a fluctuating thermometer bar representing the 

percentage change of SMA activity, while the sham group received a pre-recorded feedback 

signal. The estimated beta weights showed a progressive increase of SMA activity in the 

neurofeedback group compared to the control group (figure 7.4 and 7.5). These findings are in 
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line with previous studies indicating that participants can learn to self-regulate their brain 

activity (Banca et al. 2015; Scharnowski et al. 2015; Blefari et al. 2015). The successful 

modulation of SMA activity in the neurofeedback group improved the motor performance by 

significantly reducing motor reaction time. This finding supports the idea that the MI training 

guided by true feedback is more effective in improving motor performance than any effect of 

sham feedback. The whole brain GLM analysis of the neurofeedback group revealed 

widespread cortical activation in the motor and motor related regions (including the SMA, PM, 

IPL and basal ganglia) that play an important role in planning, selecting, learning and 

preparation of movements. In contrast, the control group showed consistent activation in the 

basal ganglia, likely due to participants attempting to discover the best MI task using operant 

conditioning. With regards to understanding the mechanism underlying neurofeedback 

training, I ran a functional connectivity analysis focusing on the targeted region (SMA), which 

provided an opportunity to investigate the direction of information flow. The results indicated 

an enhancement in functional connectivity between the SMA and the thalamus and putamen 

(regions responsible for motor skill learning) in the neurofeedback group, while the control 

group showed a positive coupling between the SMA and precuneus and fusiform gyrus, which 

might be associated with a high demand on spatial and visual memory processing.  

8.2 Implications 

8.2.1  Shared neural representation 

 Previous fMRI studies have shown that action types and modalities can be decoded 

from the evoked neural responses (Filimon et al., 2015; Pilgramm et al., 2016; Zabicki et al., 

2016) by tailoring a new classifier for each subject. Using hyperalignment, I showed that the 

fine-scale neural representations of motor regions were also shared across subjects. After 

hyperalignment, I could successfully perform between-subject classification more accurately 

than anatomical alignment from the fronto-parietal motor regions. This suggests not only that 
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the neural representations of motor components are shared across subjects, but also that 

hyperalignment aligns by rotating these representations across subjects. 

8.2.2  Representational Similarity Analysis 

 RSA addresses the problem of comparing neural representations of stimuli in different 

subjects (or systems) without aligning the underlying features. It achieves this by comparing 

the geometry of the representational spaces across subjects (Kriegeskorte et al., 2008b). A key 

difference between RSA and our approach is that one can only compare neural representations 

of stimulus sets that were presented to all the subjects using RSA. Using hyperalignment, once 

the subjects are hyperaligned using a common stimuli set (the blended actions), I can compare 

neural representations of different stimuli presented to different sets of subjects across different 

studies in the common model space. There is a time cost to running the common stimuli set to 

derive the hyperalignment parameters, but that opens up the possibility of comparing the neural 

representations of any new stimulus set we can think of in the future, in a new set of subjects. 

If movie presentation is not feasible due to time constraints, one can still perform 

hyperalignment within the experiment.  

8.2.3  Localisation of information 

 Our earlier version of the hyperalignment algorithm (chapter 4) constrained information 

localisation within the shared ROI (left hemisphere motor cortex). Despite the individual 

variability in neural responses, information at a cortical location (a voxel) in the template 

subject’s ROI is a weighted sum of all voxels within that ROI of another subject. I used a cortex 

based alignment (chapter 5) to parcellate the ROIs, thereby implicitly constraining the 

information at a cortical location in the template brain, taking into the account the anatomical 

variability across subjects. I then applied Searchlight to localise and to select the informative 

voxels within the predefined ROIs to eliminate the contribution of noisy voxels.  
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8.2.4  Procrustean transformation 

 Previous functional alignment methods have used function-based activation along with 

the anatomical features to align brains across subjects (Sabuncu et al., 2010; Conroy et al., 

2013). Most of these methods estimate an optimal warping in either 3 or 2 dimensional space 

that aligns functional topographies across subjects with minimal anatomical distortion. 

However, they were also shown to be inappropriate in terms of the accuracy of between-subject 

classification of face & object categories in VT (Conroy et al., 2013). Hyperalignment uses 

Procrustean transformation (Schönemann, 1966) to align voxels across subjects in a high-

dimensional space defined by these voxels in a ROI. It does not take into account topological 

information or the location of these voxels within a ROI. Each dimension in the common model 

space is a weighted sum of voxels within a cortical volume. Procrustean alignment is a linear 

regression with an orthogonality constraint on the transformation matrix. Information 

measured in an fMRI voxel is an aggregate of neural signals measured through BOLD across 

space and time (Kriegeskorte et al., 2009). In addition, there is no evidence that 3 mm3 voxels 

are the basic units of neural computation. Therefore, by aligning a weighted sum of voxels in 

a neighbourhood across subjects, I attempt to align the underlying distributed functional neural 

signatures that are shared across subjects. The orthogonality constraint for the transformation 

matrix separates the Procrustean alignment from a general linear regression. The orthogonality 

of the transformations restricts the transformation to a rigid rotation in space, so that preserves 

the similarity structure (representation geometry) of the data, which has been shown to be 

shared across subjects and species, and has been argued to be an important aspect of cognition 

and cortical representation (Kriegeskorte et al., 2008b). 

8.2.5  Functional brain atlas 

 Correspondence across subjects is critical for generalising any neuroimaging finding 

from study sample to population. Historically, anatomical features have provided such 



223 
 

correspondence and served well for univariate analyses. A standard group analysis pipeline 

using GLM is dependent on such correspondence (Beckmann et al., 2003). Brain atlases 

created using Talairach and MNI templates have been of great help in comparing and 

aggregating results from various studies, and in providing valuable insights through the meta-

analyses which is made possible by such atlases (Yarkoni et al., 2011). Multivariate pattern 

analyses, which treat each voxel's signal as an independent measure, have been successful in 

extracting information that univariate analyses failed to do (Haxby et al., 2001; Cox and Savoy, 

2003; Haynes and Rees, 2005; Kay et al., 2008; Miyawaki et al., 2008), but they lose 

correspondence of information patterns across subjects. Therefore, I cannot easily compare two 

studies using MVPA beyond the coarse spatial scale of ROIs. The hyperalignment algorithm 

addresses this issue by providing a method to functionally align subjects into a common model 

that preserves fine-grained information in local representational spaces. Information patterns 

from two different studies can be aggregated and compared in this common space, opening the 

possibility of building a functional atlas of brain activation patterns from a multitude of 

neuroimaging studies. Each activation pattern becomes a vector in this high dimensional space 

of features. Since these features are common across subjects and experiments, I can perform 

group analyses and metal-analyses comparing activation patterns from different studies. By 

inverting the mapping from a subject's voxel space to a common model space, I can map any 

vector in this functional atlas back onto that subject's brain as voxel activations.  

8.2.6  Individual differences 

 I have evaluated the common model spaces derived using hyperalignment in the context 

of decoding of information representation across subjects. But there is meaningful variability 

of anatomy and function across individuals and groups (Mueller et al., 2013). In our 

experimental design, the motor cortex provides more subject neural response variability for the 

representation of actions than the representation of objects in the VT cortex (Haxby et al., 
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2011). Therefore, the representation of different movements amongst a space of actions might 

be more sensitive to perturbation than the representation of different visual objects. 

8.2.7 What is different in patients compared to healthy volunteers? 

 It is important to take into account the different characteristics of patient groups in 

comparison to young, healthy participants. It is known that many cognitive abilities including 

working and long-term memory, as well as processing speed, decline starting from the 20s 

(Park et al., 2002; Park and Reuter-Lorenz, 2009). Therefore, it might be useful to test the 

neurofeedback paradigm in older healthy adults as a first step toward clinical applications. 

Furthermore, the disease may impose certain specific restrictions on patients. For example, 

chronic pain patients or tinnitus patients with hyperacusis may not tolerate the MRI 

environment as well as healthy participants. Similarly, phantom limb pain patients might 

require special experimental arrangements due to having mobility problems. Moreover, it 

should be taken into consideration that while patient groups are a very specific population 

subgroup, they may be a better representation of the general public in terms of ethnical and 

educational diversity than typically healthy participants who are often recruited in a 

research/academic environment and therefore show a bias towards participants with higher 

education. In this sense, patient studies may give a more realistic estimate of the effect of 

neurofeedback within the general population.  

8.2.8 With or without strategy? 

 It is still unclear whether it is better to provide subjects with an initial strategy or not. 

However, if subjects are to be informed about an initial strategy and about the purpose of the 

experiment, it would most likely be advantageous to inform them as comprehensively as 

possible, including a clear definition of the aims and objectives of the neurofeedback training 

(Lotte et al., 2013). In addition, a pre-training session that allows the subject to gain some 

experience with either the feedback system or train in possible mental strategies outside the 
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scanner may be beneficial, along with a practical demonstration of the setup (Lotte et al., 2013). 

However, if a strategy is provided to the subjects, it is also unclear which strategy is best. It 

will certainly depend on the regulated region, but even with the same regulation tasks the best 

strategy may vary between subjects (Nan et al., 2012).  

8.2.9 Is it possible to modulate target regions that are included in the 

neurofeedback network? 

 Many fMRI neurofeedback studies used target regions that include the networks 

involved in self-regulation. Emmert et al., (2016) reported that the anterior insula and the 

anterior cingulate cortex are consistently activated during self-regulation in fMRI 

neurofeedback, independently of the targeted regions. This raises the question of whether these 

areas are really up-regulated by neurofeedback training, or merely activated by the cognitive 

effort of trying to regulate. However, just because similar regions are active, this does not mean 

that the underlying neural processing is exactly the same. Recent studies that have looked at 

activation patterns that are shared, and those that distinguish between physical and emotional 

pain, have found some response patterns that were unique for physical pain within the right 

anterior insula (Corradi-Dell ’Acqua et al., 2016). Similarly, successful self-regulation of the 

insula or anterior cingulate may show a different activation pattern than attempted self-

regulation (e.g. with sham feedback). Future studies should therefore look at the specific effect 

of self-regulation, controlling for cognitive processes during neurofeedback training. In this 

context, it is important to look at studies that also attempt down-regulation of targeted regions 

as they might need to counteract the activation of the neurofeedback network. Down-regulation 

of the anterior cingulate has previously been attempted in a pain study with healthy subjects 

and chronic pain patients (DeCharms et al., 2005). It seems that they did succeed in down-

regulation, however the data only show the difference between up-regulation and down-

regulation conditions, which might have increased due to better up-regulation. Other pain 
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regulation studies later confirmed that down-regulation of the rostral anterior cingulate cortex 

is possible (Emmert et al., 2014; Rance et al., 2014).  

8.2.10 Shaping neural representations using neurofeedback 

 An emerging implication of my work (chapter 7) as well as of others is that fMRI 

neurofeedback training, using mental imagery related to the specific functional processing of 

brain regions, may enable the shaping of neural representations without the conscious 

awareness of participants (Bray et al., 2007a). This neurofeedback-driven instrumental 

conditioning could be applied in the sensorimotor cortex, or in perceptual regions. 

Neurofeedback training employs mental imagery as a surrogate for engaging neural processes 

that enable a broader repertoire of responses within the targeted regions, which may have 

multiple or similar overlapping neural representations (Winawer et al., 2010). Chapter 7 has 

demonstrated the use of motor imagery to enhance motor execution, as they both share the 

same motor cortical regions. 

 An exploratory opportunity afforded by neurofeedback-guided shaping of neural 

representations would be to prepare specific regions of cortex prior to fitting a neural 

prosthesis, which could be physical, cognitive or psychological. On the basis of this, if motor 

cortex activity could be manipulated so specifically, it may then be possible to train activity in 

a precise region of the motor cortex prior to fitting a prosthesis. For example, fMRI 

neurofeedback training of the activation in the hand area motor region (knob region along the 

precentral sulcus (Yousry et al., 1997)) (Berman et al., 2012; Neyedli et al., 2017) could be 

performed prior to fitting a prosthetic hand. This would preferentially and pre-emptively 

engage necessary neural processes, which could then be further selectively trained and pruned 

through prosthetic hand use, and neurofeedback. An analogous sensory prosthesis can also be 

imagined, such as training activation in auditory brain regions prior to fitting a hearing aid.   
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8.3 Limitations 

Successful functional alignment requires rich sampling of neural responses across the 

entire cortex. It involves activating as many sensory, perceptual, cognitive, and social systems 

as possible. Engaging these systems in isolation is a daunting task that involves an indefinite 

amount of stimulation and scanning. However, our everyday experience engages most of these 

systems simultaneously. Haxby et al. (2011) used movie viewing to mimic this experience and 

it has been shown to engage most of these systems reliably and across most of the cortex. 

Therefore, the common model space derived from the movie data generalised over the category 

perception experiments, and they found that the classification performance of the BSC obtained 

via hyperalignment of VT cortex was equivalent to that of WSC and higher than BSC based 

on anatomical alignment, thus confirming the validity of the common model space across a 

range of stimuli and experiments. In our study, I used blends of three natural actions (lift, knock 

and throw) to sample the neural responses of the motor cortex during AO+MI tasks. The 

AO+MI condition has been proven to evoke a stronger neural activation in the motor regions 

than MI or AO in isolation. The common model space derived from the blended action data 

might be limited only to the upper limbs (as the blended actions movie only showed multi-joint 

arm actions) and cannot be generalised to different motor studies due to the limited number of 

actions.  

 The fMRI neurofeedback experiment of phantom limb pain (PLP) provides the first 

study on PLP patients. However, this study is hampered by a low number of phantom limb pain 

patients, due to difficulties in recruitment, including their mobility limitation and its effect on 

entering the fMRI scanner and staying still during data collection. This problem affects the 

significance of the results. It is also not recommended to recruit a separate control group which 

received sham feedback; it is better to use the same experimental group as a control, but this 

might then bias the modulation due to the transfer effect. 
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8.4 Suggestion for Future works 

 Repeating the experiment in chapter 4 using a large number of daily actions to obtain 

a rich sample of neural responses using the AO+MI condition. These neural 

responses can be used to derive a common model space of the motor regions, and can 

facilitate between-subject classifications. This common model space could be 

generalised over different studies and stimuli. 

 Combining hyperalignment and neurofeedback in a novel type of decoded 

neurofeedback that enables individuals to modify the spatial neural pattern in a 

specific brain region to mimic the desired brain states of others. In this scenario, the 

feedback signal provided to the participants would show how much the currently 

evoked activity pattern is similar to the desired pattern, by using a subject 

independent classifier. This classifier enables individuals to match their neural 

activation pattern to a predefined pattern collected based on the activity of other 

participants and aligned to a common model space using hyperalignment. 

 Adding a second control group to the experiment in chapter 7. The task of this control 

group will be to imagine doing complex actions without receiving any feedback 

(neither true nor sham). This experimental condition will help to investigate the effect 

of motor imagery without feedback on enhancing motor functions. Furthermore it 

will shed the light on effectiveness of fMRI neurofeedback on speeding up the motor 

learning processes. 
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Appendix A  

A.1 Individual beta weights 

The estimated beta values of each patient during real feedback from the motor area in 

session one (blue graph), real feedback from the ACC in session two (orange graph) and sham 

feedback (light blue and light orange). 
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Figure A.1. Patients estimated beta weights of PM and ACC regions during the real and sham 

feedback. The blue line represents session one targeted PM-ROI and orange line represent 

session two targeted ACC-ROI. The light colour lines indicate the sham feedback during the 

corresponding session. 
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A.2 GLM analysis of each patient during the fMRI neurofeedback. 

 

1- Patient-1:  

 

Figure A.2. The FFX-GLM map of the first patient of PM and ACC sessions. 
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2- Patient-2: 

 

Figure A.3. The FFX-GLM map of the second patient of PM and ACC sessions 
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3- Patient-3: 

 

Figure A.4. The FFX-GLM map of the third patient of PM and ACC sessions 
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