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Abstract

Three sets of molecular markes were used to investigate the population genetics of 

three populations of Plasmodium falciparum  from Kenya; Mwea (low transm ission), 

Tiwi (moderate transm ission) and Bondo (high transm ission). One set of markers codes 

for polymorphic antigens while the other two are microsatellite markers; one set located 

in non coding regions of the genome while the other set is located in the regions 

flanking two genes whose products aie targets of the antimalarial drug 

sulphadoxine/pyrimetham ine (SP).

A comparison of the effectiveness of antigen-coding and the unlinked 

microsatellite loci in differentiating recrudescence from reinfection revealed that both 

sets of markers are equally effective. The microsatellite loci however, revealed more 

alleles per population than the antigen-coding loci possibly due to their different 

mutation rates.

An analysis of the three populations using the neutral m icrosatellite loci revealed 

high levels of diversity, lack of linkage disequilibrium and virtually no population 

substructuring (F^r<0.008) in the Kenyan P, falciparum  populations even with the 

geographical areas being as much as 800 km apart. This indicates a lot of gene flow 

among these populations a factor that can only be explained by movement of people 

between the areas studied.

An analysis of the same samples from the three areas at the dihydrofolate 

reductase {dhfr) and dihydropteroate synthase {dhps) gene loci that code for targets of 

the antimalarial drug SP revealed high prevalence of the multiply substituted alleles 

associated with SP resistance in the three regions.

An analysis of -17  kb regions flanking both sides c/A/r reveal a strong selective 

sweep of the 108N/51I/59R triple mutation alleles associated with pyrimetham ine

1



resistance. The work presented also demonstrates that alleles of the dhfr gene, especially 

the triple mutant allele, isolated from the three different areas are closely related to one 

another and probably share a common and very recent ancestor. Most notable is the 

finding that dhfr triple mutants seeem to be imported into the country through 

immigration from elsewhere. An equivalent region flanking the dhps gene also revealed 

a strong selective sweep of the 437G/540E double mutation allele associated with 

sulphadoxine resistance in two of the three sites. However, double mutation dhps alleles 

from Mwea revealed no selection at all. While the three populations reveal no 

geographic substructuring using the results of the unlinked microsatellite loci, they 

seem to be highly structured in their drug resistance patterns. While it would be 

expected that these populations would have the same prevalence of drug resistance 

mutations (due to the apparent panm ixia), the Mwea population appears quite different 

in regard to selection for drug resistance-associted alleles. This is possibly due to the 

diet, other drug interactions or the hosts’ genetics in this area.

A simplistic model on the rate of spread of drug resistance in the three 

populations reveals that the selection for drug resistance alleles is faster in the lower 

transm ission area of Mwea (selection coefficient, s = 0.26) and slowest in Bondo (5  = 

0.10) indicating selection for drug resistant alleles is favoured by low transm ission. 

These observations have implications for malaria drug resistance surveillance programs 

due to the fact that if treatment failure spreads faster in low transm ission areas where 

almost all the population has low immunity, malaria epidemics are bound to occur 

resulting in huge morbidity and mortality.



1.0... Introduction and literature review



1.1 Introduction

Malaria is one of the most prevalent parasitic diseases of man affecting over 100 

countries with a combined population of 2.4 billion people (Breman 2001). Plasmodium  

falciparum, P. ovale, P. malariae and P. vivax are the four species of the parasite that 

cause malaria in man with the first accounting for most of the lethal infections.

The annual number of clinical cases is estimated at between 300-500 m illion per 

year, more than 90% of which occur in sub-Saharan Africa. Malaria mortality is 

estimated to be over 2 million persons per year with the principal victims being African 

children below 5 years of age (Phillips 2001; Snow et al., 2005; World Health 

Organization 2003a). The other high-risk groups for malaria include pregnant women, 

non-immune travellers, refugees and displaced persons.

The malaria parasite is transm itted by an insect vector of the genus Anopheles, 

the most important of which is Anopheles gambiae. The distribution of the disease 

mirrors that of the vector.

Within the past few decades there has been rapid emergence of P. falciparum  

malaria resistant to almost all of the available antimalarial drugs. This has added a 

further blow to the war against the disease, making the provision of malaria treatment 

and control increasingly difficult and costly. This has generally been attributed to the 

great genetic diversity of the parasite especially in countries with a wide range of 

transm ission intensities (Babiker & Walliker 1997). Infection with genotypically 

different parasites of the same species, often refen'ed to as multi-clonal infection, is also 

relatively frequent, and a positive relationship has been reported in three African 

countries between entomological inoculation rates (EIR) and number of genotypes in 

infected people (Babiker & Walliker 1997; Walliker, Babiker, & Ranford-Cartwright 

1998).



1.2 The Lifecycle of the Malaria parasite, Plasmodium falciparum

Plasmodium  spp. belong to the phylum Apicomplexa, members of which 

alternate in one or more vertebrate or invertebrate hosts. Plasmodium falciparum  

undergoes a haploid asexual replication in the human host and a brief diploid sexual 

phase in the mosquito vector (Good et al., 1988; Walliker et al., 1987; Walliker et al., 

1975).

The feeding mosquito injects sporozoites into the skin of the human host, from 

where they migrate to the liver, invade hepatocytes, and undergo asexual differentiation 

to form a hepatic schizont. Merozoites burst from the cell and invade erythrocytes. 

Multiple rounds of asexual replication, schizogony, erythrocyte lysis and merozoite 

reinvasion then take place, with blood parasite density rising exponentially with each 

round of replication. The duration of the erythrocytic cycle determines the periodicity of 

fever and gave rise to the old-fashioned names of tertian and quartian malaria. For P. 

falciparum  the cycle takes approximately 48 hours, with fever appearing every third day 

(reviewed in Good et al. 1988).

Gamétocytes of Plasmodium  spp. are formed from a subset of asexual parasites 

after one or more rounds of intraerythrocytic proliferation. It appears that a combination 

of innate genetic factors and environmental cues in the blood stream of the host triggers 

the switch from erythrocytic schizogony to gametocytogenesis (Bruce et al., 1990; 

Smith et al., 2002). All merozoites within a single schizont of P. falciparum  are 

destined either to produce further asexual stages or to develop into gametocytes (Bruce 

et al., 1990), and all of the merozoites released from one sexually comm itted schizont 

become gametocytes of the same sex (Silvestrini F et al., 2000; Smith et al., 2000).

Male and female gametocytes are taken up in the blood meal by the mosquito as 

it feeds from an infected person. Male and female gametocytes emerge from their red



blood cell hosts; undergo a process of gametogenesis, and the resultant gametes fuse to 

form the zygote (ookinete). The ookinete migrates through the midgut wall of the 

mosquito and develops into an oocyst. The first stage of meiosis is known to take place 

within the ookinete (the second stage is not clear), followed by multiple rounds of 

mitosis, to produce between 2,000-10,000 (Pringle 1965; Rosenberg & Rungsiwongse 

1991) haploid sporozoites per oocyst, which migrate to the salivary glands ready for 

reinfection into the human host during the next blood meal.

1.3 Ploidy and the Genome of P. falciparum

The paiasite in the vertebrate host is entirely haploid. Studies on inheritance of 

isoenzymes and other characters in P. chabaudi (Walliker et al., 1975) and in P. 

falciparum  (Walliker et al., 1987) have supported haploidy for the erythrocytic stages. 

Exo-erythrocytic stage haploidy was demonstrated by studies on the inheritance of 

antigens of these forms (Szarfman et aL, 1988).

Studies on DNA content have demonstrated that sporozoites, ring forms, young 

trophozoites and mature microgametes possess a similar quantity of DNA, assumed to 

be the haploid amount (Janse et al., 1986). Mature macrogametes were found to have 

approximately 50% more DNA than the haploid quantity, possibly because of 

amplification of gametocyte-specific genes.

The only diploid phase in the Plasmodium  lifecycle is the zygote (ookinete) in 

the mosquito gut. Approximately 4 times the haploid DNA quantity is synthesised 

during meiosis that takes place at this time (Janse et al., 1986). This is consistent with 

the duplication of the diploid chromosome set at the first stage of meiosis.

The nuclear genome of P. falciparum  is composed of 22.8 megabases (Mb) of 

DNA distributed among 14 chromosomes. These chromosomes range in size from 0.643 

Mb to 3.29 Mb (reviewed in (Gardner et al., 2002)). Overall the genome of P.



falciparum  is very (A+T)-rich varying from 80.6% in genes to approximately 90% in 

introns and intergenic regions (Gardner et a l ,  2002).

Approximately 5,300 protein-encoding genes have been predicted which 

suggests an average gene density in P. falciparum  of 1 gene per 4,300bp (Gardner et a l ,  

2002). Introns have been predicted in 54% of P. falciparum  genes. Excluding introns, 

the mean length of these genes is 2.3 kilobases (kb), substantially larger than in other 

organisms in which gene lengths range from 1.3kb to 1.6kb (Louis et a l,  1994).

The parasite also has two other genomes: the mitochondrial and the apicoplast 

genomes (Vaidya et a l ,  1993; Vaidya et al., 1989). The mitochondrial genome of P. 

falciparum  is a 6.0 kb tandemly repeated linear element which is uniparentally inherited 

(Creasey et a l ,  1993; Feagin 1992; Joseph et a l,  1989). There is 90% conservation of 

sequence identity among the mitochondrial genomes of P. falciparum, P. vivax, P. 

yoelii, and P. gallinaceum  (McIntosh et a l ,  1998). Detailed processes of replication and 

expression have been well characterized in the mitochondrial genes of the asexual stage 

parasite (Feagin & Drew 1995; Preiser et a l ,  1996).

Based on the malaria genome databases, about 380 proteins are predicted to 

target the mitochondrion post-translationally. These include the pyruvate dehydrogenase 

complex, the complete tricarboxylic acid cycle enzymes, many electron transport 

complexes and ATP synthase (Bender et a l ,  2003; Gardner et a l ,  2002). However, 

functional analyses of the mitochondrion and its products still remain to be elucidated 

e.g. what controls processes like gene deletion, RNA interference, transcriptomics and 

proteomics. The mitochondrion is a potential chemotherapeutic target for antimalarial 

drug development, for instance, the enzyme dihydroorotate dehydrogenase which is 

essential to parasite function (Baldwin et a l,  2002; Krungkrai 1993; Ridley 2002).



There is also evidence that the malaria parasites produce oxidative stress via the 

mitochondrial superoxide radical generation, a phenomenon that exists in mammalian 

m itochondria (Dileepan & Kennedy 1985), and is finely balanced against the parasite’s 

antioxidant enzyme activities (Kiungkiai 1991). This intracellular redox environment 

minimizes the generation of reactive oxygen species that damage nucleic acids, 

proteins, lipids and membranes and still allows essential metabolic functions.

M alaiia parasites also harbour a relict plastid, homologous to the chloroplasts of 

plants and algae, called the apicoplast. This organelle seems to be essential to parasite 

growth but its exact role is unclear. The apicoplast in malaria parasites has a 35kb 

genome that encodes only 30 proteins. Among the apicoplast’s genes include those that 

code for a set of tRNAs, rRNAs, rpoB, rpoC, tufA, and ribosomal protein (rp) genes. 

The apicoplast genome contains genes typical for plastids (ycf24 and clpC) but also 

several open reading frames of unknown function (Kohler et al., 1997; McFadden & 

Roos 1999). Translation with prokaryotic features may be present in the apicoplast; 

however, most of its proteins appear to be nucleus-encoded and imported into the 

organelle, using an import secretory pathway (Waller et al., 2000).

1.4 Generation of genetic diversity in Plasmodium falciparum

The chromosomes of P. falciparum  vary considerably in size, with most 

variation occurring in the subtelomeric regions. Chromosomal size vaiiation is also 

observed in cultures of erythrocytic parasites, but is probably due to chromosome 

breakage and healing events and not due to recombination (Scheif & Mattei 1992). The 

subtelomeric regions of the chromosomes show a striking display of conservation 

within the genome that is probably due to promiscuous inter-chromosome exchange of 

subtelomeric regions (Scherf & Mattei 1992). Subtelomeric exchanges are known to 

occur in other eukaryotes (Louis et al., 1994; Rudenko et al., 1996; van Deutekom et
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aL, 1996), but the regions involved are much smaller. Various mechanisms may 

produce these size polymorphisms in P. falciparum. Chromosome breakage and healing 

during mitotic expansion of parasite populations is one mechanism for loss of 

subtelomeric sequences and genes from P. falciparum  chromosomes (Cappai et al., 

1989; Pologe & Ravetch 1988; Scherf et a l ,  1992). Expansion of large tandemly 

repeated units within individual chromosomes has been shown to be another means of 

generating large chromosome size polymoiphisms (Triglia et a l ,  1991). Homologous 

recombination among subtelomeric repetitive elements has been postulated as a third 

mechanism of polymoiphic variation (Corcoran et a l ,  1988). Homologous 

chromosomes of different sizes readily undergo meiotic recombination after zygote 

formation to produce new size variants (Hinterberg K et a l ,  1994; Sinnis & Wellems 

1988; Walliker et a l ,  1987).

The recognition of parasite polymorphisms and their association with distinct 

properties has made considerable progress in the last few years. This is largely due to 

the advent of polymerase chain reaction (PCR)-based assays. Single nucleotide 

polymoiphisms (SNPS) and other types of polymorphisms have been analysed using 

specific digestion assays with restriction enzymes, DNA hybridisation techniques using 

specific oligonucleotides, allele specific amplification, or by sequencing of PCR 

products.

Single nucleotide polymorphisms (SNPs) contribute to most of the 

polymorphism of the parasite’s genes. Some researchers have argued that synonymous 

mutations are scarce in most of the parasite’s genes thus supporting a clonal population 

structure and a recent bottleneck (Rich et a l ,  1998; Rich et a l ,  1997), while others have 

for the existence of long-lasting polymorphisms and high levels of intraspecific 

synonymous polymorphism in P.falciparum  (Hughes & Verra, 1998). Rich and



colleagues’ arguments were based on alignment of some sequences from isolates 

obtained from multiple geographical locations (Rich et al., 2000). However, this work 

only exam ined a small proportion of genes such as M spl, which are antigen-coding and 

infact are vaccine candidates, where there are multiple sequences. Most of the loci 

exam ined by these authors (Rich et al., 1998; Rich & Ayala 1998) are housekeeping 

genes encoding metabolic enzymes, chaperone proteins and surface proteins. The 

existence of balancing selection at such loci is not expected and most are probably 

evolving neutrally. It is not expected that the pattern of coalescence at a neutral locus 

would be the same as that at a locus under balancing selection; rather, polymorphism at 

the former will be much less long-lasting than at the latter (Takahata & Nei 1990). A 

closer reexam ination of the work by Rich and colleagues (Rich et al., 1998) also reveals 

that their analysis excluded repeat sequences and the authors ened  in calculating the 

ratios of synonymous to nonsynonymous substitutions which could have led to their 

conclusions. It is also known that P. falciparum  has a strong codon bias due to the 

extraordinary AT-richness of the genome. This nucleotide content bias affects codon 

usage (Nakamura et al., 1998). The rate of synonymous substitutions in organisms with 

highly biased genomes such as P.falciparum  is less than in organisms such as humans, 

whose codon usage is less biased (Hughes & Veixa 1998). The fact that long-lasting 

polymorphisms have been maintained at certain loci of P.falciparum  but not at others is 

also strong evidence that interlocus recombination has been an important factor in the 

evolution of this species (Hughes & Verra 1998).

Non-synonymous SNPs are found at high frequencies in genes that aie under 

strong selective pressure and an excess of non-synonymous mutations is thought to 

indicate an area of the genome under diversifying selection (McDonald 1994). 

Compaiison of the frequency of the putatively neutral synonymous and the more
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frequent non-synonymous substitutions suggests that natural selection may account for 

most polymorphisms observed at functional gene loci (Escalante et at., 1998).

SNPs affecting drug resistance in P. falciparum  have been found in the 

dihydrofolate reductase-thymidylate synthase (dhfr-ts) and the dihydropteroate synthase 

(dhps) genes. Mutations in these genes are associated with resistance to pyrimetham ine 

and sulphadoxine, respectively (Cowman et al., 1988; Peterson et al., 1990; Peterson et 

al., 1988a; Wang et al., 1997a). SNPs in the chloroquine resistance transporter gene 

fPfcrt) with a modifying effect from the multidrug resistance gene 1 {Pfmdr 1) have 

been shown to be responsible for chloroquine resistance (Fidock et al., 2000a). Genes 

where polymorphism has most likely arisen through intragenic recombination and other 

mechanisms in repetitive segments are characterised by repeat motifs with length 

variability differing between strains (Jongwutiwes et al., 1993).

1.5 Genetic Analysis of P. falciparum: Complexity of infections

Both clinical and asymptomatic infections are often composed of a mixture of 

parasite strains, which were assumed to be the result of many superimposed 

independent infections, hence reflecting transmission intensity (reviewed in (Konate et 

a l,  1999; Smith et al., 1999a). Many studies have been conducted to analyse the genetic 

diversity, dynamics and population structure of P. falciparum  using different molecular 

tools, which are discussed, in later sections.

1.5.1 Multiclonality in malaria infections

P. falciparum  infections have been shown to be genetically diverse in all except 

unusual situations (such as epidemics on islands or in isolated populations), and most 

infected individuals in moderate to highly endemic transmission areas harbour more 

than one parasite clone, a condition known as multiclonality (Amot 1998). PCR-based 

techniques have shown a high prevalence of multiclonal infections (Sherman 1998).
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Diverse multiclonal infections have been found to be almost as common in regions of 

low endemicity such as eastern Sudan (Babiker et ah, 1991a; Babiker et al., 1991b; 

Bayoum i et al., 1993) as they are in areas of higher transm ission such as The Gambia 

and Tanzania (Babiker et al., 1997; Conway & McBride 1991). In other areas such as 

South America, where transmission is low, low diversity and population substructuring 

of parasites are observed (Anderson et al., 2000a).

In humans living in regions endemic for malaria, partial immunity to 

Plasmodium falciparum  is acquired as a result of natural exposure to these multiple 

infections over many years. One study in Senegal demonstrated that while most 

symptomatic and asymptomatic subjects were infected by multiple P. falciparum  

genotypes, the number of clones present in asymptomatic infections decreased at the 

age where a more efficient immune response is in place, as indicated by lower parasite 

densities and reduced clinical attack rates (Ntoumi et al., 1995). This study was 

conducted in Dielmo, an area with intense transmission and where partial immunity 

develops with age. Another study in Ndiop, a Senegalese area with low transmission 

observed different results. This study used the three polymorphic markers M spl, Msp2 

and Glurp and showed that the average number of fragments (multiplicity of infection, 

MCI) per clinical malaria sample was higher than for samples taken from asymptomatic 

infections: 1.75 for M spl, 2.15 fov Msp2 and 1.4 for Glurp compared to 1.5, 1.5, and 1.2 

for the asymptomatics, for M spl block 2, Msp2, and Glurp typing reactions, 

respectively. They also showed that in both groups, most multiple infections contained 

2-3 alleles (Zwetyenga et al., 1998).The later study was conducted in an area of low 

endemicity where clinical malaria is seen in adults as well as children, and the main 

finding was that age had no influence on either the complexity of infection or on the 

distribution of alleles (Zwetyenga et al., 1998). This observation is consistent with other
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studies that have shown a reduction w ith increasing age in the number of genotypes 

present in infected individuals from high transm ission aieas (Ntoumi et aL, 1995; Smith 

et al., 1999b) suggesting that this is a reflection of acquired immunity.

Multiple clone infections are important because they provide the possiblility of 

cross-fertilisation, which itself allows recombination. The extent of recombination 

between parasites defines population structure.

L5.2 Population structure, mating and recombination

A clonal structure of P. falciparum, where all parasites are related due to 

inbreeding, was first proposed in 1990 (Tibayrenc et al., 1990). However other authors 

(Babiker & Walliker 1997) have argued that in highly endemic areas outcrossing 

(mating between/among different parasite genotypes) occurs frequently enough to 

generate a great diversity of molecular genotypes.

In the mosquito midgut, fertilisation can occur between a male and a female 

gamete of the same genotype (self-fertilisation) or between gametes of different 

genotype (cross-fertilisation). Mating occurs in a random fashion between gametes 

present in the bloodmeal, in accordance with Hardy-Weinberg equilibrium (Ranford- 

Cartwright et al., 1993). In naturally infected mosquitoes, both crossing and selfing 

have been shown to occur (Babiker et al., 1994; Paul et al., 1995), although the ratio 

varies according to the genetic structure of the population. The population structure of 

this parasite is very diverse, showing variation in outcrossing rates from 10% in Papua 

New Guinea (Paul et al., 1995) to 60 % in Tanzania (Babiker et al., 1994).

Strong linkage disequilibrium (LD), low genetic diversity and high levels of 

geographical variation have been observed in areas of low malaria transmission while 

random association (linkage equilibrium (LE)), high genetic diversity and minimal 

geographical differentiation were observed in regions with high transmission especially
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in Africa and Papua New Guinea (Anderson et al., 2000a). The observed association 

between transm ission intensity and LD can be explained by the fact that P. falciparum  

has a m ixed mating system in which inbreeding predominates in low transm ission areas, 

while higher levels of outbreeding occur in regions with higher transmission. People are 

rarely superinfected with more than one parasite clone in low transm ission areas, and 

thus unrelated parasites rarely co-occur in the same mosquito blood meal. Mating can 

only occur between parasites in the same mosquito bloodmeal. While it is theoretically 

possible that a mosquito could take a partial bloodmeal on two or more people 

(Soremekun et al., 2004), the second bloodmeal would have to be taken very rapidly 

after the first one, as gametogenesis and fertilisation occur within 10 m inutes of the 

bloodmeal. Therefore self-fertilisation (and inbreeding) will be much more common in 

low transm ission areas. Conversely, multiple clone infections are frequent in high 

transmission areas and mosquitoes therefore often ingest unrelated parasites, leading to 

higher levels of outbreeding (and recombination) (Babiker et al., 1994; Paul et al., 

1995). The extent of parasite diversity may vary with transmission intensity, being at 

least in part generated by recombination during meiosis in the mosquito. Since every 

inoculation is preceded by sexual reproduction of parasites in the mosquito, the 

inoculation rate is predicted to reflect the rate of parasite recombination. Sexual 

reproduction, which generates new genotypes (Babiker et al., 1994; Paul et al., 1995; 

Rosenberg & Rungsiwongse 1991; Walliker et al., 1987) and novel alleles by intragenic 

recombination, (Kerr et al., 1994) is likely to play a significant role in the generation of 

parasite diversity. Recombination during meiosis however, is only able to increase 

diversity in heterozygotes, formed by crossfertilisation between different gametes. This 

is mainly found in areas of high transmission where probabilities of multiple clone 

infections and, hence mating between unlike gametes, will be more frequent. Levels of
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LD have important influences on the population biology of P. falciparum  particularly 

the rate at which recombination breaks down association between genes, which may in 

turn influence the persistence of clonal genotypes (Hastings & Wedgewood-Oppenheim 

1997; Paul et al., 1995). LD also influences the maintenance of antigenically distinct 

“strains” (Gupta et al., 1996; Hastings & Wedge wood-Oppenheim 1997), and the 

spread of drug resistance (Dye & Godfray 1993; Hastings 1997; Hastings & Mackinnon 

1998), and may also influence sex ratio (Dye & Godfray 1993; Read et al., 1992).

These studies, though few, demonstrate the high diversity of P. falciparum  

populations especially in Africa where transm ission is intense. The strong geographical 

sub-structuring in South America may be explained by multiple colonization events; 

malaria is thought to have been introduced into South America = 500 yeai's ago with the 

arrival of Europeans and that subsequent réintroduction from Africa occurred with the 

slave trade (Anderson et al., 2000a).

Regardless of the causes, the differences in genetic diversity, population 

differentiation, and LD in different locations have important consequences for our 

understanding of P. falciparum  biology (Anderson et a l, 2000b). In parasite 

populations with low microsatellite diversity, we would expect to see reduced diversity 

in antigen-encoding loci (Eeneira et a l ,  1998) and a smaller repertoire of variant 

surface antigens. Hence, under a model of genotype-specific immunity, we might expect 

effective immunity to malaria to be generated following a relatively small number of 

infective mosquito bites in low transm ission regions (Gupta & Day 1994). In areas with 

low recombination, multilocus genotypes will be maintained through multiple 

generations making it possible to track the spread of multilocus genotypes within 

communities (Anderson et a l ,  2000a). Compaiison of infection characteristics of 

multiply represented haplotypes can be used to investigate which aspects of P.
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falciparum  traits are a product of paiasite genetics rather than host factors (Anderson et 

al., 2000a; Walliker et al., 2005).

1.5.3 Choice of molecular markers

Genetic markers are powerful tools for investigating the population structure and 

epidemiology of parasites. For both these purposes the most effective markers would be 

those that are neutral, highly polymorphic and stable during the course of infection. 

However, such markers do not exist. Each genetic marker has a range over which it can 

detect genetic variation (Sunnucks 2000). For instance, if the marker is too 

polymorphic, either the required sample size to describe diversity will be too high, or 

the samples will be too different resulting in homoplasy. If the marker has little 

polymorphism, then samples will appear the same when infact they are genetically 

different. Genetic markers should also be chosen based on the question being asked and 

also their applicability for the particulai’ situation. For example, microsatellite markers 

might be good for population studies but they are not ideal for situations like 

differentiating recmdescences from reinfections (Mwangi et al., 2006).

Multiple loci are used since measures of population structure characteristically 

show high levels of variance among loci (Mcdonald 1994; Nei 1973). Selectively 

‘neutral’ loci are preferred, since the aim is to use these markers to make inferences 

about population history or transm ission of parasites between hosts. These markers are 

most likely to be found in the non-coding sequences of the DNA.

The molecular markers so far used in population genetic analyses can be 

classified as antigen-encoding genes (Abderrazak et al., 1999; Babiker et al., 1995; 

Maitland et al., 2000; Zwetyenga et ah, 1998), enzymes with electrophoretic variants 

(Abderrazak et al., 1999), and microsatellite loci (Anderson et al., 1999). G iven that 

some of the antigen genes encode proteins that are recognised by the host’s immune
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mechanism, the observed high levels of diversity have been attributed to positive or 

diversifying natural selection, an outcome of accumulation and frequent switch of 

suitable mutations, by means of which the parasite escapes the host’s immune defences 

(Anders & Saul 2000; Hughes 1991; Hughes 1992; Hughes & Hughes 1995). Evidence 

for selection comes from comparison of the ratio of synonymous to non-synonymous 

mutation rates (Escalante et al., 1998).(Felger et al., 1997; Hughes 1991; Hughes & 

Hughes 1995; Rich et al., 1997) In most organisms, synonymous nucleotide 

substitutions are usually less common than non-synonymous substitutions (Lockyer et 

al., 1989; Shi et al., 1992; Thomas et al., 1990a; Thomas et al., 1990b). Synonymous 

substitutions are likely to be neutral whereas non-synonymous substitutions may be 

functionally constrained and thus, subject to purifying natural selection (Kimura 1977; 

Ohta 1996). However, selection can also act to favour temporal diversity, and therefore 

non-synonymous mutation. For allozyme markers, natural selection may account for the 

rapid spread of a favoured genotype throughout populations, paiticularly when the 

population is large and/or the selection is strong (Rich et al., 1998). However, this 

would overtime reach saturation of the favoured genotype and the diversity would be 

lost.

Some of the markers that have been employed in epidemiological studies of P. 

falciparum  are discussed in the following sections.

1.5.3.1 Allozyme typing

Allozymes, in particular variants of parasite enzymes such as glucose phosphate 

isomerase (GPI) and lactate dehydrogenase (LDH) (Carter & M cGregor 1973) were the 

first plasmodial variant proteins to be analysed. Electrophoretic variants of these 

enzymes were observed in individual malaria patients, and were used to demonstrate the
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existence of mixed infections with differing P. falciparum  clones in individuals (Carter 

& McGregor 1973).

Allozymes however, have various disadvantages over other loci; for instance, it 

is possible that differential selection could be acting to maintain different combinations 

of Allozyme alleles in a population. This impacts on the neutrality of these markers 

(Jordan et a l ,  1997). The number of electrophoretic variants in a given population and 

therefore the resolution of these markers are quite low. The other disadvantage of 

Allozymes over other markers is that the likelihood of an amino acid change translating 

into a mobility shift is very low and this increases the frequency of different alleles 

being typed as similar.

1.5.3.2 Polymerase chain reaction and DNA polymorphism

The use of polymerase chain reaction (PCR) amplification of deoxyribonucleic acid for 

the detection of genetic polymorphism in malaria parasites has broadened our 

knowledge of the parasites’ natural genetic diversity. The main polymorphic 

Plasmodium  genes studied are those encoding merozoite surface proteins 1 and 2 

(M SPl and MSP2) and the glutamate rich protein (GLURP). The genes have been used 

to make community-based comparisons between parasites infecting different human 

populations exposed to malaria, and have also been used to determine clonal 

multiplicity in individuals.

In an analysis of the genetic characteristics of parasite populations, the PCR 

typing methodology provides the advantage of a great sensitivity and specificity, 

without the need to culture parasites, as was necessary for allozyme typing. The single 

copy genes M spl, Msp2, and Glurp show high allelic polymorphism, allowing easy 

detection of parasite diversity; alleles with similar or identical serologic properties can 

be distinguished by size polymorphism of the PCR product.
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1.5.3.2.1 Merozoite surface protein-1 (MSP-1)

The merozoite surface protein-1 (MSP-1), also known as merozoite surface 

antigen-1 (MSA-1), glycoprotein 195 (gpl95), and P190, is one of the most studied 

plasmodial antigens. It is synthesised by liver- and blood-stage schizonts (Holder & 

Freeman 1982; Szaifman et a l ,  1988) and varies in size between different parasite lines 

from 180-220kDa (McBride et a l ,  1985). The antigen is encoded by a single gene 

located on chromosome 9 (Kemp et a l ,  1987). Each haploid parasite therefore produces 

one allelic variant of this protein (Howard et a l ,  1986; McBride & Heidrich 1987). The 

extensive polymorphism of MSP-1 was originally characterized using a panel of 

monoclonal antibodies, some to polymorphic epitopes of the molecule (Holder 1988; 

Holder et a l ,  1988b; Holder et a l,  1988a; McBride et a l ,  1985). Sequencing of the 

gene from different P. falciparum  isolates has revealed the extent of the allelic 

polymorphism (Holder et a l ,  1985; Kemp et a l ,  1986; Miller et a l ,  1993; Ranford- 

Cartwright et a l ,  1991; Tanabe et a l,  1987; Holder et a l ,  1985; Kemp et a l ,  1986; 

Holder ern/., 1985).

By comparing nucleotide sequences, Tanabe and colleagues (Tanabe et a l ,  

1987) identified polymorphic domains, conserved domains, and intermediate or ‘semi

conserved domains’ based on the percentage identity of conserved nucleotide 

sequences. On this basis the gene was divided into 17 domains or blocks; 7 of which are 

variable, interspersed with five conserved and five semi-conserved blocks (Figure 1). 

Sequences are dimorphic, i.e., substitutions at given positions are either one or the other 

of any 2 residues, in most parts of the gene with the exception of a polymorphic 

tripeptide-encoding region in block 2. Sequences from the MAD20 and K1 strains serve 

as representative types for the two dimorphs (Peterson et a l ,  1988b; Tanabe et a l ,  

1987).
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The block 2 domain contains tripeptide repeats and exhibits considerable 

polymorphism. This block differs by sequence and/or by numbers of repeats in almost 

every allele investigated so far. Three basic families of block 2 have been defined 

largely on the basis of non-repetitive sequences at the ends of the repeat regions and are 

named after the isolates from which they were originally described; the MAD20“type, 

the K l-type and the R033-type (Tanabe et al., 1987). The R 033-type block 2 lacks the 

typical N-terminal repeat structure found in the other two alleles (Ceita 1990) and is 

non-polymorphic between alleles of this family.
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Figure 1: Schematic diagram of the 17 domains of the mspl gene of P.falciparum,
The open, hatched and completely Oiled regions are the conserved semi-conserved 
and variable domains respectively.

M spl alleles may be defined as unique combinations of: (a) one of three

versions of block 2 (MAD20, K1 or R 033), (b) one of four possible versions of block 4,

because recombination within this region generates MAD20/K1 and K1/MAD20

hybrids in addition to the ‘pure’ allelic types MAD20 and K1 (Conway et al., 1991;

Kaneko et al., 1996), and (c) one of two versions (MAD20 or K l) of the segment

between the variable blocks 6 and 16, that comprises about 60% of the gene.

Recombinant-type alleles have not been described in this 3’ portion of the gene

covering blocks 6 to 16 (Conway et al., 1991; Jongwutiwes et al., 1993; Kaneko et al.,

1996; Tanabe et al., 1989; Tanabe et al., 1987). Minor differences also exist between

homologous versions of the same variable block, and nucleotide substitutions (most of
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which are dimorphic) occur in semi-conserved and conserved blocks (Tanabe et a l ,  

1987).

Excluding the polymoiphism seen in block 2, most allelic diversity is thought to 

be generated by intragenic recombination, at the diploid stage in the mosquito host, 

within blocks 3, 4 and 5. Direct evidence of recombination in block 3 has been 

demonstrated following a genetic cross (Ken* et ah, 1994).

1.5.3.2.2 Merozoite surface protein-2 (MSP-2)

This antigen, also known as merozoite surface antigen-2 (MSA-2), is 

synthesised in the blood-stage schizonts and, like MSP-1, is incorporated on the 

schizont surface, and on the surface of free merozoites (Miettinen-Bauman et ah, 1988; 

Stanley et ah, 1985). MSP-2 was first defined by monoclonal antibodies (Fenton et ah, 

1989), and the size of the protein (Stanley et ah, 1985) was found to vary greatly in size 

from 35-36kDa on Western blots with protein extracted from different parasite isolates 

(Ramasamy 1987). MSP-2 is known to be one of the antigens present in immune 

complexes that form at the surface of merozoites when antibodies in immune serum 

inhibit merozoite dispersal (Thomas et ah, 1990c). The Msp2 locus has been mapped to 

a region of approximately 800 bp on chromosome 2 (Kemp et ah, 1987),

The MSP2 protein consists of conserved amino- and carboxy-terminal regions 

flanking a central variable region that is in turn composed of non-repetitive sequences 

suiTOunding a repetitive sequence (Figure 2). Compaiisons of Msp2 sequences from 

different parasite isolates revealed a similar block structure to that seen with M spl, but 

with four distinct blocks by virtue of local differences in the degree of homology 

between sequences from different strains (Thomas et a l, 1990; Smythe et a l ,  1988; 

Smythe et a l,  1990).
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FC27 ALLELE

2 X 32 mer

ICI/3D7 ALLELE

5-12 X GGSA

Figure 2: Schematic diagrams of the two main MSP2 allelic families.
Dark regions at the left and right indicate signal and anchor sequences. Open 
regions internal to these represent conserved regions, whereas grey and striped 
regions represent variable nonrepetitive and repetitive sequences, respectively.

The repetitive part of the gene exhibits marked polymoiphism (Fenton et al., 

1991; Smythe et al., 1988; Smythe et al., 1990; Thomas et al., 1990c). All of the alleles 

of Msp2 so far exam ined can be grouped into two families, defined by the non-repetitive 

region 3 (Thomas et al., 1990c). These ai'e denoted the Indochina 1-like (IC I-like) and 

FC27-like families (Figure 2).

The 5' conserved region, with 100% conservation of nucleotide sequence (region 

1), encompasses the first 129 bp from the initiation codon. The translation of this region 

includes the predicted signal peptide, which is presumably absent from the mature 

parasite protein (Smythe et al., 1990).

Region 2 is strain variable, and is characterized by the presence of tandemly 

arranged repeat sequences. It begins with a short stretch of amino acids, some of which 

are conservatively substituted within the ICI-type allele. This stretch lies immediately
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N-terminal to a glycine, serine and alanine-rich block that is present in all IC I-type 

strains, but absent from the FC27-type strains. The MSP2 sequence from parasite FC27 

contains two identical copies of a 96-bp repeat unit commencing at base 178. In 

contrast, the alleles from parasites 3D7 and ICI contain multiple copies (5 and 12, 

respectively) of a 12-bp repeat unit commencing in both genes at base 169. The repeat 

in alleles of IC I-family encodes the amino acid sequence Gly Gly Ser Ala and bears no 

apparent relationship at either the nucleotide or amino acid level to the 32-amino-acid 

repeat in FC27-type alleles (Thomas et al., 1990b).

Sequencing of a large number of Msp2 alleles from isolates drawn from various 

geographical regions has revealed hybrid alleles that do not fall into either the IC I-type 

or FC27-type families (Marshall et al. 1991). An allele (NIG60) was sequenced with an 

N-terminal region of the ICI allelic family and a C-terminal region of the FC27 allelic 

family. As the Msp2 gene is found in a single copy in the haploid genome, this allele 

was suggested to have been formed by intragenic recombination, presumably occuning 

during meiosis. The apparent crossover event occuiTed within the repetitive variable 

regions (Mai’shall et al. 1991).

1.5.3.2.3 Glutamate-Rich Protein (GLURP)

The glutamate-rich protein {glurp) gene has been used as a marker in many 

malaria studies (Borre et al., 1991). The single copy glurp gene is located on 

chromosome 10, and encodes a polypeptide of 1271 residues with a predicted molecular 

mass of 145 kDa. Rabbit anti serum against a fusion protein expressing the C-terminal 

end of the molecule detects a protein with a molecular mass of 220 kDa (Hogh et al., 

1993). The 220-kDa GLURP protein is located in the parasitophorous vacuole of liver- 

stage parasites, in erythrocytic schizonts, and on the surface of newly released 

merozoites and may facilitate merozoite invasion (Bone et al., 1991). The gene encodes
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an antigen with an am ino-terminal nonrepeat region, denoted RO (GLURP94_489). as well 

as a central repeat region (GLURP489-705) and a carboxy-terminal (GLURPvos-ins) 

repeat region (denoted R1 and R2, respectively). All 3 regions are quite polymorphic 

among isolates (Bone et al., 1991) . GLURP has not been as widely studied as the 

merozoite surface proteins but its variability, exhibited by length polymorphisms of the 

repeat regions, has been described and determined in studies on multiclonal P. 

falciparum  infections (Boudin et al., 1993; Dodoo et al., 2000; Hogh et al., 1992; 

Theisen et al., 1998).

1.5.2.3 Polymorphism of Noncoding Sequences

Intergenic and intronic DNA regions often contain simple sequence repeats of 

variable lengths known as satellites. These are further classified into satellites, mini- 

and micro-satellites based on the length of the repeat unit.

Satellite DNA was the first of the tandemly repeating DNA sequences to be 

discovered, and was so named by its appearance as m inor or “satellite” bands that 

separated from the “bulk” DNA upon buoyant density gradient centrifugation (Britten & 

Kohne 1968). Human satellite DNA is not transcribed, and is found in heterochromatin 

(condensed areas of chromatin consistently lacking actively expressed genes), especially 

centromeric heterochromatin (Bennett 2000). However, there is no evidence to suggest 

that these restrictions upon chromosomal localization are associated with any functional 

importance. Furthermore, because of its enormous size and restricted localization, 

satellite DNA is of no real use for either individual DNA profiling or genetic linkage 

studies (Bennett 2000).

Minisatellites are blocks of repeated core elements longer than 10 to 15 bp in 

tandem arrays. It can be subdivided into two types, the first of which is known as 

telomeric. Telomeric DNA consists of 10-15 kb of hexanucleotide repeats (mainly
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TTAGGG), added to the telomeres of all chromosomes by the enzyme telomerase. Such 

DNA is most definitely functional in that it protects the ends of chromosomes from 

degradation and provides a means for the complete replication of telomeric sequences 

(Bennett 2000). It is also thought to play a role in the pairing and orientation of 

chromosomes during cell division (Bennett 2000), The second type of minisatellite 

sequences is hypervariable minisatellite DNA, and includes those first discovered in 

1985 by Jeffreys and colleagues (Jeffreys et a l ,  1985). The basic repeat unit may vary 

in length from six to > 50 nucleotides, with the overall number of repeats at any one 

locus usually being highly polymorphic between individuals (Bennett 2000).

The molecular processes that generate vail ability at minisatellites remain 

obscure. A subset of mini satellites share a common “core” sequence, which, based on 

sequence similarity to the Chi sequence of E. coli, has led to speculation that the core 

sequence may serve as a recombination signal to promote unequal crossing over, at least 

in human minisatellites (Jeffreys et al., 1988a; Jeffreys et a t,  1985). Direct estimation 

of minisatellite mutation rates to new length alleles in human pedigrees has shown that 

paternal and maternal mutations arise with similar frequency, consistent with length 

change events being restricted to one stage of gametogenesis and possibly meiosis 

(Jeffreys et a t ,  1988b). However, new mutants have been detected in clonal tumor cell 

populations (Armour et al., 1989) and eai'ly in mouse development, indicating that 

mutation events are not restricted to the germline but can also arise in the soma (Jeffreys 

et al., 1990). It is still not clear the extent to which interallelic unequal exchange 

through meiotic or mitotic recombination is involved in generating minisatellite 

variability, or whether other processes, such as unequal exchange between sister 

chromatids and replication slippage, are the primary source of minisatellite variation 

(Jeffreys eta l., 1990).
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Minisatellite-type repeats appear to be ubiquitous in many antigen-encoding 

genes in P. falciparum, such as merozoite surface proteins (MSP-1 and MSP-2), S- 

antigen and circumsporozoite protein, and may be important in generating an immune 

response to malaria parasites (Hughes & Hughes 1995). This immune response 

generated to the repetitive regions, however, is thought to be a diversion by the parasite 

and is generally thought to be very poor at affecting the parasite. This is refened to as 

the ‘smokescreen’ hypothesis (Anders et ah, 1986). A few of these mini satellites have 

also been found in housekeeping genes, sequenced during the P. falciparum  genome 

project (Gardner et al., 1998).

Using data from 12 laboratory parasite lines together with field isolates from 

Papua New Guinea and the Democratic Republic of the Congo to analyse patterns of 

repeat structure, Anderson and colleagues observed numerous 

minisatellite/microsatellite combinations suggesting that minisatellites might be just as 

common as microsatellites in the Plasmodium  genome (Anderson et al., 2000b).

Microsatellites are defined as simple tandemly repeated DNA sequence elements 

of 2-6nucIeotides as repeat units. They were first isolated by chance by Wyman and 

White (Wyman & White 1980) from a library of random segments of human DNA. 

Microsatellites are found in greater or less abundance in the genomes of just about every 

known organism and organelle (Bennett, 2000), and are sometimes referred to as short 

tandem repeats (STR) or simple sequence repeats. To denote the type of motif being 

iterated, terms such as mono-, di-, tri- and tetranucleotide repeats are used. 

Polymorphism of microsatellites is mainly due to allelic length variation, caused by a 

difference in the number of repeat units between alleles. Microsatellites therefore 

belong to a class of sequences termed variable number of tandem repeats (VNTR), 

which refer to any tandemly repetitive DNA that can show length polymorphism
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(reviewed by Ellegren (Ellegren 2000)). PCR amplification and subsequent gel 

electrophoresis can determine the length of a distinct allele.

At present the function of microsatellite sequences is not clear. It is likely that a 

large proportion of microsatellites evolves neutrally, but in some cases, microsatellite 

variation can be associated with an altered phenotype (Chambers & MacAvoy 2000). 

The most direct evidence for the involvement of microsatellites in gene function comes 

from studies of human genetic disorders that result from trinucleotide-repeat expansion, 

in particular from the observed strong conelation between repeat length, age of onset 

and severity of disease (Rubinsztein et a l ,  1999). This is exemplified by the 

trinucleotide repeat associated diseases such as Huntington’s disease, myotonic 

dystrophy, and certain types of spinocerebellar ataxia (Brook et a l ,  1992; McDonald 

1994; OiT et a l ,  1993; Schols et a l ,  1995). The primary genetic cause seems to be the 

expansion of a trinucleotide repeat far outside of its “normal” polymorphic range 

(Debrauwere et al., 1997). Such repeats are usually inside the disease gene, wherein 

most encode runs of glutamine residues; others, which are outside, are close enough to 

disrupt its correct functioning.

Microsatellites offer several advantages as genetic markers. These include the 

fact that they are relatively easy to isolate in many species (Armour et a l,  1994; 

Schlotterer et a l ,  1991; Su & Wellems 1996), different loci can be used according to 

the level of variation, which range from very low to very high (Beaumont 1999), they 

can easily be amplified by PCR and thus can be used on a wide range of sample 

material for example blood, hair, saliva, skin and faeces, and their genetic systems are 

easily automated enabling the analysis of a large number of samples (Heyen et a l,  

1997; Luikart & England 1999). Their applications range from estimation of the spatial
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relationships between chromosome segments to the elucidation of temporal 

relationships between origins of species and genera (Chambers & MacAvoy 2000).

However microsatellites have several disadvantages. These include reports that 

for certain groups of organisms they are difficult to isolate (Beaumont & Bruford 1999), 

the tendency of Taq polymerase to add an additional dATP to PCR products, Taq 

polymerase-generated slippage products in some mono- and di-nucleotide microsatellite 

loci causing base shifts and sizing problems (Gill et ah, 1985; Ginot et ah, 1996; 

Schlotterer & Tautz 1992), the considerable technical challenges of microsatellite 

analysis of some types of samples e.g. saliva, hair or faecal material (Taberlet et al., 

1997; Taberlet & Fumagalli 1996) and the reports that data generated in different 

laboratories using different chemistries have proved difficult to amalgamate (Beaumont 

& Bruford 1999).

However the popularity of microsatellites as markers remains undiminished, 

probably because researchers are of the opinion that the advantages offered by the 

microsatellites, for example their resolving power, outweighs their disadvantages.

1.6 The Evolution of microsateiiites

Microsatellites have been estimated to mutate at rates in the order of 10'^ to 10’"̂ 

changes per locus per generation, which is relatively high compared to the rate of point 

mutations (Hancock 1999). The high rates of change mean that the microsatellites differ 

from most other types of DNA sequences in their unusual degree of polymorphism, 

making them attractive as genetic markers (Goldstein et a l ,  1999; Goldstein & 

Schlotterer 1999). The mechanisms by which microsatellites mutate are poorly 

understood but two main mechanisms have been proposed, which may act in concert.

Levinson and Gutman formulated the first model for microsatellite mutation 

about 15 years ago (Levinson & Gutman 1987). This model is based on the replication
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slippage or slipped-strand mispairing. It refers to the out-of-register alignment of the

1993;M onal e ta l ,  1991). 

o The rate and pattern of m icrosatellite mutation does not seem to differ between 

hemizygote chromosomes (e.g. the Y chromosome) and chromosome pairs 

(autosomes of diploids) (Kayser et a l ,  2000), suggesting that mutation events
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two strands following dissociation at the time when the DNA polymerase traverses the 

repetitive region. If the 3 ’ repeat unit of the nascent strand rehybridises with a

complementary repeat unit downstream along the template strand, a loop will be formed 

in the nascent strand and the new sequence will become correspondingly longer than the 

template sequence upon elongation. Conversely, if the incorrect alignment occurs 

upstream along the template strand, the new strand will become shorter than the 

template strand (Ellegren 2000).

The other mechanism for microsatellite evolution is interchromosomal exchange
: ■■

(Ellegren 2000). In theory, new-length variants at repetitive DNA sequences can form 

through interchromosomal exchange, for example, in conjunction with recombination 

(unequal crossing-over) or gene conversion. However, the accumulated evidence is in 

favour of replication slippage, and includes:

o Mutant alleles are generally non-recombinant for flanking markers, which would l |  

indicate intrahelical mutation rather than recombination (Mahtani & Willard

fi
do not require contact between homologous chromosomes (Heyer et a l ,  1997). 

o It has been demonstrated from experiments done in vitro, that microsatellite 

sequences have the intrinsic ability to undergo DNA slippage (Schlotterer &

Tautz 1992).

The mutation rates of microsatellites differ not only between species but also within 

species; that is, between loci. For most species studied, the average repeat number at



loci is directly proportional to the degree of length polymorphism indicating that long 

loci mutate more often than short loci (Weber 1990).

It has also been speculated that the flanking sequence content might affect the 

mutation rate e.g. through a simple GC content effect. Brock and colleagues showed 

that the %GC in the 100 bp region flanking the repeat sequence was positively 

associated with relative expandability of the microsatellite (Brock et al., 1999). Another 

factor proposed to affect microsatellite mutation rate is the size difference between the 

two alleles present within an individual, denoted the ‘allele span’. Amos and colleagues 

(Amos et al., 1996) suggested that microsatellite mutations were more likely to occur in 

heterozygous individuals with a larger difference between the sizes of their two alleles. 

However, this idea is not supported by the evidence for mutations representing 

intrahelical events (Ellegren 2000).

The mutation patterns of microsatellites are assumed to evolve via two models; 

stepwise mutation model (SMM) or the infinite allele model (IAM). The SMM assumes 

that length changes result from either losses or gains of one or a few repeat units 

(Valdes et al., 1993; Zhivotovsky & Feldman 1995). The SMM can be easily modelled 

and the length of repeat sequences contains infonnation on the relationships between 

alleles. Evidence in support of this model comes from direct observation of mutations in 

human pedigrees (Weber & Wong 1993), experimental yeast systems (Weirdl et al., 

1997) and in tetranucleotide repeats of swallows (Primmer et al., 1998). However, the 

problem with SMM is that it has little power to detect rare mutation events resulting in 

large changes in allele length. For instance SMM has failed to detect indels in flanking 

regions, which also play a significant role in generating length variation (Angers & 

Bernatchez 1997; Grimaldi & Crouau Roy 1997; Weber & Wong 1993).
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The lAM  model was developed to study loci that violate the SMM model (Kimura & 

Crow 1964). Under this model, a mutation involves any number of tandem repeats and 

always results in an allelic state not previously encountered in the population.

1.7 Microsatellites in malaria genetic studies

Microsatellites have been shown to be extremely widespread in P. falciparum, 

occuiTing every 2-3 kb throughout the genome (Su et al., 1999; Su & Wellems 1996). A 

total of 901 markers have now been isolated and mapped to the genome of clone 

3D7(Su et al., 1999). The most common repeat motifs seen in microsatellites have been 

those with an AT bias, which is not surprising given the extreme AT- richness of the 

parasite genome (Gardner et al., 2002). Typical repetitive sequences are (TA)n, (CA)n, 

(A or T)n, (AAT)n and (CAA)n motifs (Su & Wellems 1996).

Microsatellite maikers were first used to map a genetic cross. Su and Wellems 

(Su & Wellems 1996) described 224 microsatellite markers for P. falciparum, and used 

188 polymorphic microsatellites to map the segregation patterns in the progeny from a 

genetic cross. They also investigated the variations in allele size present in 12 laboratory 

lines, from diverse geographical locations, at all 224 loci. From the prevalence of 

nonparental alleles in 35 progeny of this genetic cross, Anderson and colleagues 

(Anderson et al., 2000a) estimated the microsatellite mutation rate for P. falciparum  to 

be 1.59 X 10" .̂ Anderson and colleagues (Anderson et al., 2000b) used data from the 

same 12 laboratory parasite lines together with field isolates from Papua New Guinea 

and the Democratic Republic of the Congo to analyse patterns of repeat structure and 

expected heterozygosity at 114 of the same microsatellite loci. They also examined the 

sequence variation at 12 tri-nucleotide repeat loci. They found that there were complex 

mutation patterns in at least five of the twelve loci in the sequencing study. While 

alleles for some loci differed in size by one or two repeats, others were found to contain
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compound repeats each of which showed length variation. Still others were found to 

have multiple sources of length variation including sequences of indels. Another finding 

from this study was the differences in allele sizes between the two populations studied. 

While alleles from Papua New Guinea were extremely conserved in size, parasite alleles 

from the Democratic Republic of Congo showed large size variations (Anderson et al., 

2000b). This was found to be as a result of various insertions, including minisatellites, 

in the microsatellite repeats of the pai'asites from Congo. In fact, some of the sequences 

observed in some loci could be best described as minisatellites containing microsatellite 

repeats. However, despite the complex repeat structures in these sequences, point 

mutations were found to be virtually absent from the flanking regions (Anderson et al., 

2000b).

These studies also suggested that the mutation rate of dinucleotide-bearing loci 

is 1.6-2.1 times faster than trinucleotides. The mean He (calculated as the proability of 

drawing two alleles of different length (for the same locus) from a population sample) 

over all loci was found to be 0.72 but was higher in di- than trinucleotide repeats. He 

was also found to be lower in seven loci that contained monomers or repeats >4 bp 

(Anderson et al., 2000b). A positive relationship was also found between the repeat 

number and He, with He reaching a plateau around 13 repeats. This suggests that loci 

with large arrays of repeats have a higher mutation rate than loci containing small an'ays 

(Anderson et a l ,  2000b) until the maximum allele length is attained.

In perhaps the most comprehensive study on P. falciparum  population genetics 

to date, Anderson and colleagues analysed the population structure in 465 infections 

from 9 locations worldwide using 12 microsatellites (Anderson et al., 2000a). This 

study revealed an array of parasite population structures in different locations.
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A study done in Senegal (Leclerc et al., 2002) also revealed high mean 

heterozygosities for both microsatellites (0.745) and antigenic (0.702) loci but the 

values were lower than those obtained by Anderson and colleagues (Anderson et a l,  

2000a) for the Africa region. This can perhaps be explained by different transm ission 

intensities between the areas from which the samples were collected. Higher 

transm ission rates would lead to higher recombination rates which would be expected to 

result in more parasites with different alleles (read higher He).

Some of the microsatellites used in the two studies that investigated parasite 

variation in field isolates (Anderson et a l ,  2000a; Leclerc et a l ,  2002) are situated in 

introns within protein coding sequences (loci denoted 2490, PfPK2, Polya, G377 and 

ARAII (Anderson et a l ,  2000b). These markers may therefore not be entirely neutral, 

since they are situated within protein-encoding genes subject to selection. Therefore, the 

values of He obtained may be lower than the true values as a result of the removal of 

genetic variation in these markers through “hitchhiking”.

Hitchhiking refers to the process by which polymorphism of sites within the 

vicinity of a positive selection (selective sweep) is reduced (Hedrick 1980). This 

phenomenon has been observed on m icrosatellite loci around some genes of P. 

falciparum, Pfcrt, (Cortese et a l ,  2002; Wootton et a l,  2002) dhfr and dhps (Nair et a l ,  

2003; Nash et a l,  2005; Roper et a l ,  2003). In one of the studies with Southeast Asian 

isolates He of the microsatellite loci around dhfr was observed to reduce from 0.80 at 

markers situated 58 kb to 0.10 in markers situated 1.2 kb from the gene (Nair et a l ,  

2003). Two studies; one with parasites isolated from worldwide locations (Wootton et 

a l,  2002) and the other on Thai and Laos isolates (Nash et a l ,  2005) made the same 

observation with markers around the Pfcrt gene. Though it is still quite difficult to 

unequivocally prove neutrality of a marker (Kreitman 1996; Rand et a l,  1994), it is
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imperative to use markers that are as neutral as possible for any conclusive arguments 

on the population structure of P. falciparum  to be made.

1,8 Drug resistance in malaria

The malaria parasite P. falciparum  has developed clinically significant 

resistance to all classes of antimalarial drugs, with the possible exception of the 

artemisinin derivatives. Drug resistance is defined as the ability of a parasite strain to 

multiply or to survive in the presence of concentrations of a drug that normally destroy 

parasites of the same species or prevent their multiplication (World Health Organization 

1973). Such resistance may be relative, yielding to increased doses of the drug that can 

be tolerated by the host (also referred to as drug tolerance); or complete, when the 

parasite withstands maximum doses tolerated by the host (outright resistance). It is 

usually demonstrated as a shift to the right of the dose-response curve, thus requiring 

higher drug concentrations to achieve the same parasite clearance (White 2004). 

Resistance emerges de novo through spontaneous mutations or gene duplications, which 

are thought to be independent of drug selection pressure. The mutated parasites have a 

selective advantage in the presence of the drug, and their frequency in the population 

will increase at a rate proportional to dmg use (Mackinnon & Hastings 1998).

A number of different mechanisms are known to give rise to drug resistance 

including alterations of drug transport and permeability, conversion of the drug to an 

altered form with lower activity, increased expression of the drug target, and alterations 

to the drug target that decrease the affinity of binding of the inhibitor (White 1992). 

Different levels of drug resistance are encountered in malaria chemotherapy. Studies 

monitoring the spread of drug resistant malaria have tended to use various tools ranging 

from the standard in vivo method involving the exam ination of a blood film for parasites 

during the study period (WHO, 1996), to the more recent, parasite genotyping.
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1.8,1 Therapeutic response and levels of drug resistance

The in vivo drug efficacy test is normally carried out following protocols 

published by the WHO (World Health Organization 2003b) and the therapeutic 

response is classified as outlined below. The first day of treatment corresponds to day 0; 

the days of follow-up are then counted from this date.

Early treatment failure (ETF):

- development of danger signs or severe malaria (see below for definition) on

day 1, day 2 or day 3.

- axillary temperature > 37.500 on day 2 with parasitaemia > that of day 0; 

axillary temperature > 37.500 on day 3 in the presence of parasitaemia;

- Parasitaemia on day 3 > 25% of the count on day 0.

Late treatment failure (LTF);

- danger signs or severe malaria in the presence of parasitaemia on any day from

day 4 to day 14, [or 21, 28 or 42 depending on the study period] without 

previously meeting any of the criteria of early treatment failure;

- axillary temperature > 37.500 in the presence of parasitaemia on any day from 

day 4 to any day within the follow-up period without previously meeting any of 

the criteria of early treatment failure.

Adequate clinical response (ACR):

- absence of parasitaemia on day 7, 14, 21, 28 or 42 irrespective of axillary 

temperature, without previously meeting any of the criteria of early or late 

treatment failure;

axillary temperature < 37.500 irrespective of the presence of parasitaemia, 

without previously meeting any of the criteria for early or late treatment failure.

35



Adequate clinical and parasitological response

absence of any malaria clinical signs and parasitaemia on any day within the 

follow-up period after treatment.

Treatment response is also classified according to the level of parasitaemia during the 

follow-up period using as a reference, the parasitaemia on day 0 (World Health 

Organization 1996).

RIII resistance: this is defined as day-3 parasite density > 75% of the day 0 

parasitaemia (Figure 3),

RII resistance: this is defined as day-3 parasitaemia equal to 25% of the day 0 density 

with the patient continuing to be parasitaemic on days 4-7 (Figure 3).

RI resistance: this is defined as day-7 parasite densities < 25% of day-0 density 

following either an initial parasite clearance on day 3 or presence of parasite density on 

day-3 at < 25% of day 0 (Figure 3).

Sensitive response: this defined as day 3 parasitaemia < 25% of that on day 0 [or 

absence of parasitaemia], a negative blood smear on day 7 and negative smears for the 

remainder of the follow-up period (Figure 3).

 RI
RII

 RIII
 detection threshold

Day post treatment

Figure 3: Graph showing parasite resistance after treatment over a 28-day period
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One explanation for the different types of resistant parasite observed is that RI 

parasites may be the result of a low proportion of resistant parasites in a m ixed 

infection. Drug treatment would kill the sensitive parasites, thereby reducing the 

resistant parasite population to a parasitaemia below that detectable by microscopy and 

possibly below the threshold for symptomatic malaria. These resistant parasites would 

continue to grow in the presence of the drug and eventually reach m icroscopically 

detectable parasitaemias (RI) or the threshold for symptomatic malaria to return (LTF) 

(Figure 3). An alternative explanation is that resistance is not an 'all-or-nothing' 

response. Some parasites could be highly resistant and their growth would be unaffected 

by the treatment; these would be classified as RIII resistant. Other parasites could show 

slightly lower resistance, such that their growth would be initially inhibited by the drug, 

but as concentrations fall they would be able to grow again; these would be RII. Finally, 

RI parasites could be resistant to the drug at a lower level still, such that growth is 

inhibited until the drug concentration drops further, although this level would still be 

able to prevent growth of parasites sensitive to the drug.

There is some correlation between clinical and parasitological response, but 

generally the rate of resistance/treatment failure is higher when measured by 

parasitaemia than by clinical response.

1.8.3 History of antimalarial drug resistance

The emergence of dmg resistance became particularly evident during the Global 

Malaria Eradication campaign launched in 1955 by WHO (Bruce-Chwatt 1956). At the 

beginning, the campaign's strategy was mainly based on DDT indoor spraying; the 

insecticidal properties of DDT would inteiTupt malaria transmission by decreasing the 

survival of potentially infected mosquitoes. However, the first reports of insecticide 

resistance (to dieldrin) in Anopheles gambiae in Nigeria prompted the Second African
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Malaria Conference held in Lagos in 1955 to stress the importance of obtaining the 

complete interruption of local transmission as quickly as possible (Bruce-Chwatt 1956). 

Therefore, the use of chemotherapeutic methods in association with residual insecticides 

was recommended whenever the rapid elimination of malaria was thought to be 

possible.

The introduction of cooking salt medicated with an antimalarial drug (mass drug 

administration (MDA)) was adopted for coverage of larger populations with 

antimalarials (Pinotti, 1953; World Health Organization 1961). It soon became clear 

that these interventions, besides the operational difficulties, could easily select for 

resistant parasites. In a few Kenyan villages, MDA with monthly pyrimethamine 

initially decreased the parasite prevalence but was followed by the emergence of 

parasites showing increased tolerance to the drug: sensitive parasites were rapidly 

replaced by resistant ones that disappeared when the administration of monthly 

pyrimethamine was stopped (Avery Jones 1958; Clyde & Shute 1954). A similar 

observation was reported from Ghana, although in this case it was explained by the 

irregular ingestion of tablets (Charles 1961; Charles et a l ,  1962).

Interventions based on the introduction of pyrimethamine-medicated salt were 

implemented, among others, in The Netherlands, New Guinea, Brazil and Cambodia 

(Eyles et a l,  1963). Usually, despite an initial decrease, parasite rates returned to pre- 

operational levels within a period of 6 months. In New Guinea, the emergence of 

pyrimethamine resistance, unsatisfactory distribution of medicated salt and 

underestimation of the salt ration were identified as major causes for the campaign 

failure (World Health Organization 1961). Better results were reported with chloroquine 

(CQ)-medicated salt from Guyana (Giglioli et a l ,  1967) and Uganda (Hall & Wilks 

1967), where parasite rates decreased. In general, the widespread use of medicated salt
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produced a wide variation of drug levels in the population because of the great variation 

in salt intake. This resulted in a very high selection pressure that induced an almost 

instantaneous P. falciparum  resistance to pyrimetham ine. CQ seemed to induce 

resistance less easily. However, the first cases of CQ-resistant strains originated from or 

near areas where CQ-medicated salt had been distributed (Payne 1988).

The first reports of confirmed P. falciparum  resistance (RI) to CQ came, almost 

simultaneously, from South America (Colombia, Brazil, Venezuela) in 1960 (Moore & 

Lanier 1961; Wemsdorfer & Payne 1991) and from South-east Asia (Thailand, 

Kampuchea) in 1961 (Hartinuta, Migasen& Boonag, 1962). By 1973, CQ resistance had 

been reported in several countries in South America (Brazil, Colombia, Guyana and 

Venezuela) and in Asia (Burma, Cambodia, Malaysia, Philippines, Thailand and 

Vietnam) but not in sub-Saharan Africa (World Health Organization 1973). In Africa, 

P. falciparum  CQ resistance was firstly reported from the eastern region, in Kenya 

(Fogh et ah, 1979) and Tanzania (Campbell et ah, 1979), in the late 1970s and it spread 

from east to west. By 1989, the distribution of CQ resistance was almost identical to 

that of P. falciparum  (Wemsdorfer & Payne 1991).

Levels of resistance have been shown to vary widely between and within countries. In 

Kenya, for example, there were major differences in CQ resistance between the North, 

where malaria transmission is low, and the West and Southeast, where transmission is 

intense. In the early 1990s, CQ resistance (positive slide on day 14 after treatment) was 

about 18% around Lake Turkana (Clarke et ah, 1996) while in Kisumu, on the shores of 

Lake Victoria, it was around 70% (R ll and R ill) (Bloland et al., 1993).

This kind of situation within one country presents a real dilemma for health 

managers needing to decide whether and with which drug to change the country's 

antimalarial drug policy. Such a change constitutes a major undertaking that can take
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several year's before being fully operational. In optimal conditions the "reaction time' 

has been estimated to be at least 2 years (Baudon 1995), Once the decision of changing 

the first-line drug is taken, there is no way back. However, it has always been difficult 

to give detailed guidelines or to establish a threshold at which a change should be 

implemented because this depends on several factors such as the cost of the drug and 

compliance.

1.8.4 Chloroquine resistance

Chloroquine (CQ) has been the mainstay of malaria treatment for well over half 

a century, but its exact mechanism of action remains controversial. Much evidence has 

pointed to the formation of a chloroquine-haem complex in the acid food vacuole of the 

parasite as being responsible for the antimalarial activity of chloroquine (Bray et al., 

1998; Chou et al., 1980). The concentration of the drug at the site of action, the acid 

food vacuole of the parasite, is thought to be essential for its activity.

It has been known for some time that there is a reduced accumulation of 

chloroquine in chloroquine-resistant parasites (Geary et al., 1986; Saliba et al., 1998). 

Most studies have indicated a reduced rate of chloroquine uptake in resistant (CQR) 

compared to sensitive (CQS) strains. Several studies have suggested that this could be 

due to an elevated vacuolar pH, leading to reduced accumulation of chloroquine (Bray 

et al., 1992a; Bray et al., 1992b). Others have suggested that this is a consequence of 

CQ being actively transported out of the digestive vacuole (DV) away from its 

presumed site of accumulation in resistant parasites (Krogstad & Schlesinger 1987). 

The efforts to understand the molecular basis of CQ resistance with the goal of 

circumventing or suppressing it have identified two genes that have been shown to play 

a role in chloroquine resistance. These have been identified as Pfcrt, coding for the
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chloroquine resistant transporter (PfCRT) (Fidock et ah, 2000a) and pfindrl, (Foote et 

a l,  1989) coding for the multidrug resistance 1 genes.

Resistance to chloroquine resembles that of multidrug resistance (mdr) seen in 

mammalian cells: there is a reduced accumulation of the drug, and resistance can be 

reversed by the presence of verapamil (Geary et a l ,  1986) (Krogstad et a l ,  1987; 

Martin et aL, 1987). Multi dmg resistance occurs when cells are exposed to one 

chemotherapeutic agent, but become resistant to a broad range of structurally unrelated 

drugs (Juliano & Ling 1976). The major protein mediating this phenotype in many 

mammalian cell-lines is the multidrug-resistance (mdr) transporter or P-glycoprotein 

(Pgh) (Gerlach et al., 1986). Gene amplification, increased noRNA expression and 

mutation of the mdr genes have all been shown to confer resistance to various drugs 

across different cell lines (Roepe et al., 1996). In many tumour cells the mdr phenotype 

has been shown to be dependent on the hydrolysis of ATP molecules, suggesting that 

Pgh may act as an energy-dependent drug efflux pump. Alternatively, it has been 

suggested that Pgh indirectly mediates substrate accumulation by regulating the plasma 

pH gradient and/or membrane potential (Roepe et al,, 1996).

Chloroquine-resistance in malaria parasites and multidrug resistance in cancer 

cell-lines share the features of reduced accumulation of the drug, and the ability to 

reverse this resistance with verapamil (Krogstad et al., 1987). Therefore P. falciparum  

sequences conesponding to homologs of the mdr transporters that mediate multidrug 

resistance in mammalian cell-lines were identified and investigated for their possible 

role in chloroquine resistance (Foote et al., 1989; Wilson et al., 1989). Two homologues 

of mdr were found in the P. falciparum  genome, and these were denoted Pfm drl and 

Pfm drl (Wilson et al., 1989).
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The pfmdr2 gene, located on chromosome 14 and present as a single-copy gene, 

encodes a 110-kDa protein with structural similarity to the heavy-metal tolerance gene, 

hm tl, of the yeast Schizosaccharomyces pombe (Riffkin et al., 1996). Pfmdr2 contains 

only 10 transmembrane domains, demonstrating 26% am ino acid homology with 

mammalian m drl, and a single nucleotide-binding site (Rubio & Cowman 1994; Zalis 

et al., 1993); a profile that is somewhat atypical for ABC transporters. Although some 

studies have reported increased transcription of pjmdr2 in chloroquine-resistant 

parasites (Ekong et a l ,  1993), other studies have demonstrated neither amplification, 

nor overexpression of pfmdr2 (Rubio & Cowman 1994; Zalis et al., 1993). To date, 

there appears to be no evidence to suggest that pjmdr2 is involved in mediating drug 

resistance in P. falciparum.

1.8.4.1 Pfmdrl and chloroquine resistance

Pfm drl is a typical member of the ABC transporter superfamily, with a 

conserved structure of two domains consisting of six predicted transmembrane 

segments, coupled to a nucleotide-binding fold. The two domains are joined together by 

a linker region. The -162  kD protein was termed Pghl (P-glycoprotein homolog 1) 

(Cowman et a l,  1991; Cowman & Karcz 1991; Higgins 1992). Pghl was subsequently 

localized to the parasite vacuole throughout the asexual cycle of the parasite, where it 

was postulated to regulate intracellular drug concentrations (Cowman et a l ,  1991). 

Sequence polymorphisms in pfm dr 1 have been identified which are associated with 

chloroquine-resistant phenotypes in vitro. One polymorphism, exemplified by the K1 

allele at codon 86, involves a single amino-acid change, N86Y, (Foote et a l ,  1990a) 

while the other, exemplified by the 7G8 allele, involves four amino acid changes, 

Y184F, S1034C, N1042D, and D1246Y, the latter three being contained in 

transmembrane domain 11 (Foote et a l ,  1990a). Moleculai' epidemiological analysis of
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these polymorphisms in a double-blind study correctly predicted the chloroquine 

resistance profile of 34 of 36 isolates (Foote et al., 1990a). Molecular epidemiological 

analysis of field isolates using rapid polymerase chain reaction and endonuclease 

restriction digestion techniques have demonstrated association of some of these 

polymorphisms with chloroquine resistance in studies from sub-Saharan Africa (Basco 

et a t ,  1995), Nigeria (Adagu et a t ,  1995a), Malaysia (Cox-Singh et a t ,  1995), Guinea- 

Bissau (Adagu et a t ,  1995b), and Thailand (Duraisingh et a t ,  2000). Studies from the 

Sudan, (Awad-el-Kariem et a t ,  1992) South America (Povoa et a t,  1998), and 

Southeast Asia (Basco et a t ,  1996; Mungthin et a t ,  1999), however, have failed to 

identify an association with these intra-allelic variations. In an attempt to establish 

linkage of chloroquine resistance to pfindr 1, a genetic cross between a chloroquine- 

sensitive central American clone (HB3), and a multidrug-resistant Southeast Asian 

clone (Dd2) was performed (Wellems et a t ,  1990). Chloroquine resistance was mapped 

as a Mendelian trait to a 36-kb locus on chromosome 7 (Wellems et a t ,  1990), which 

segregated independently of the pfindr 1 locus found on chromosome 5 (Foote et a t ,  

1989; Foote et a t,  1990a; Foote & Kemp 1989). Amplification of Pfindrl has also been 

suggested as a mechanism of resistance (Triglia et a t ,  1991). When field isolates 

are analysed, both mutation and amplification are found to be widespread in numerous 

geographical areas (Basco et a t ,  1995; Price et a t ,  1999). Together these data suggest 

that mutations in pfindrl can affect P. falciparum  parasite response to CQ, but how big 

a role it plays in clinical resistance remains uncertain.

1,8.4.2 Pfcrt and chloroquine resistance

Analysis of the progeny aiising from the HB3 x Dd2 cross mapped a single 

genetic locus, localized to a 36 kb segment on chromosome 7, that segregated with the 

inheritance of verapamil-reversible CQ resistance (CQR) (Su et a t ,  1997; Wellems et
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a l,  1991). Subsequent studies of this segment identified nine open reading frames, with 

that denoted cg2 having the closest linkage to the phenotype (Su et a l ,  1997). 

Polymorphism in cg2 was characterised by a complex series of repeat unit length 

differences and point mutations. Later studies used DNA transfection and allelic 

exchange to replace cg2 polymorphisms in CQR parasites with those sequences from 

chloroquine sensitive parasites (Fidock et a l ,  2000b) . Drug assays of the allelic all y 

modified lines showed no change in the degree of CQR. Similarly, a parasite (106/1), 

which contains the exact sequence of cg2 from CQR parasites, was found to be CQS, 

and cg2 haplotypes were found to be present within CQS parasites (Fidock et a l ,  

2000b).

Cg2 was mled out as the candidate Chloroquine resistance gene. Re-examination 

of the 36kb segment on chromosome 7 revealed a highly interrupted gene, with 13 

exons, some of which were very short. The gene now known as Plasmodium falciparum  

chloroquine resistance transporter (Pfcrt) spans 3.1 kb and encodes a 424 amino acid 

(48.6 kDa) protein (PfCRT) with 10 predicted transmembrane domains (Fidock et a l ,  

2000a). The protein was localized by immunofluorescence to the digestive vacuole 

(DV) membrane (Cooper, et a l  2002; Fidock, et a l  2000).

Transfection studies provided direct evidence of a role for PfCRT in CQ 

resistance. Coexpression of mutant forms of Pfcrt in the presence of a wild-type 

background confened a modest degree of Verapamil-reversible CQ resistance to CQ 

sensitive (CQS) parasites (Fidock et a l ,  2000a). More recently, a system was developed 

to replace the entire Pfcrt allele in a CQS parasite with Pfcrt alleles representative of 

mutant sequences prevalent in CQR parasites from Asia, Africa, South America and 

Papua New Guinea (Sidhu et a l,  2002). The resulting recombinant clones displayed 

reduced PfCRT expression as a result of the genetic modifications, but nevertheless
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demonstrated all the hallmarks of a bona fide  CQ resistance phenotype, i.e. increased 

CQ IC50 values (exceeding 100 nM), acquisition of VP-reversibility, and decreased CQ 

accumulation.

Mutations in the Pfcrt gene have been very closely associated with in vitro CQ 

resistance in culture-adapted isolates from around the world (Fidock et al., 2000a; 

Wootton et a l ,  2002). The critical mutation in CQR isolates results in a change of 

Lysine to Threonine at codon 76 (K76T). Other amino acid changes exist in flanking 

regions (72-75) with the allele present dependent on the geographical origin of the 

isolate. For CQR African and most South-east Asian strains, the resistance-linked allele 

encodes CVIET (amino acids 72-76), whereas CQS parasites have Pfcrt encoding 

CVMNK (Mehlotra et ah, 2001; Wellems & Plowe 2001). By contrast, most South 

American (and Papua New Guinea and Philippines) CQR strains encode SVMNT, 

while CQS strains have a CVMNK or related haplotype (Chen et ah, 2003; Durand et 

ah, 2001; Duirand et ah, 2004; Mehlotra et al., 2001; Nagesha et al., 2003; Wellems & 

Plowe 2001). A number of additional mutations are predicted to lie within the 

transmembrane segments. The recent discovery of additional Pfcrt mutations in 

Cambodian isolates (Lim et ah, 2003) brings the total number of variant residues to 15, 

making this quite a polymorphic gene for a non-surface molecule. It is presumed that 

many of these mutations serve to compensate for a loss of the endogenous function 

associated with the K76T variation, although some may serve to confer resistance to 

related antimalarial agents (Bray et ah, 2005).

Mutations in Pfcrt are believed to confer CQ resistance by reducing the amount 

of CQ accumulated by the parasite. The bulk of the intraparasitic CQ is believed to be 

concentrated within the digestive vacuole (DV). This, combined with the DV membrane 

location of PfCRT is consistent with the view that mutations in Pfcrt cause CQ
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resistance by reducing the drug concentration in the DV (Saliba et al., 1998). There are 

three main hypotheses on how PfCRT might exert this effect on DV CQ concentration. 

The first is that the reduced partitioning of chloroquine into the vacuole of CQR 

parasites is a consequence of alterations in the pH of the digestive vacuole (Bennett et 

ah, 2004). The second is that it is a consequence of the transport of CQ out of the DV 

(Saliba et al., 1998) while the third is a consequence of conformational changes in the 

PfCRT as a result of mutations in the Pfcrt gene (Sanchez et al., 2003). These 

hypotheses are discussed in the following sections.

1.8.4.2.1 Chloroquine resistance and pH of the digestive vacuole

One of the early hypothesis proposed that CQR parasites maintained an elevated 

pH in the digestive vacuole or DV, leading to reduced accumulation of CQ at steady 

state (Ginsburg & Stein 1991; Yayon 1985). Each molecule of CQ can associate with 

two protons, thus in theory leading to a concentration gradient across the DV membrane 

(de Duve et al., 1974; Yayon et al., 1984), it was thought that relatively small changes 

in pH should have a dramatic effect on the concentration of CQ in this organelle (Geary 

et a l,  1986).

The first reports of a comparison of pH in digestive vacuoles of CQS and CQR 

parasites suggested that CQR parasites have a more acidic DV than CQS parasites 

(Dzekunov et al., 2000; Ursos et al., 2000). However, these results were thought to be 

erroneous as they relied on measurements of fluorescence arising from acridine orange 

monomer, which was later shown to be undetectable in the DV and is, in fact, localized 

to the parasite cytoplasm (Bray et al., 2002; Wissing et al., 2002).

Roepe and colleagues (Bennett et ah, 2004) repeated their studies using the 

ratiometric dextran-tagged pH probe 5-(and 6-) carboxy-2', 7 '-dimethyl-3'-hydroxy-6 

V-ethylaminospiro [isobenzofuran-1 (3H), 9'-{9H) xanthen]-3-one (DM-NERF), which
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again showed that CQR parasite lines exhibited a more acidic pH in the DV than CQS 

parasites. CQS parasites were reported to have a DV pH of around 5.7 and this was 

found to be decreased to around 5.2 in CQR lines, including lines in which the 

endogenous wild Pfcrt allele had been replaced by alleles from CQR lines (Bennett et 

al., 2004). This study provided the first evidence of a direct link between CQ resistance- 

associated Pfcrt alleles and altered DV physiology. However, the reported differences in 

pH aie difficult to reconcile with the CQ accumulation data. According to weak base 

theory, an increase of 0.5 in the pH gradient across the DV membrane in CQR parasites 

has the potential to produce up to a 10-fold increase in the uptake of CQ into the DV of 

CQR parasites compared to CQS lines. However, what is observed when the uptake is 

measured directly is a six fold decrease in the uptake of CQ into CQR isolates, relative 

to that in CQS isolates (Bray et al., 1998; Sanchez et al., 2003; Sanchez et al., 1997).

1.8.4.2.2 Chloroquine resistance and efflux from the digestive vacuole

An alternative hypothesis for the reduced uptake of chloroquine by CQR 

parasites is that the drug is transported out of the DV, away from its presumed site of 

accumulation (Krogstad et al., 1987). Krogstad and colleagues showed that addition of 

glucose to the medium reduced the steady-state accumulation of CQ by CQR pai'asites. 

By contrast, adding glucose to suspensions of CQS parasites markedly stimulated CQ 

accumulation (Krogstad et al., 1992). These data suggest that CQS parasites have an 

energy-dependent CQ uptake mechanism (with energy being required both to maintain 

the DV proton gradient and to traffic and digest haemoglobin) and that CQR parasites 

have an energy-dependent CQ efflux mechanism.

However, these compelling data are inconsistent with some of the available 

literature. It has been shown previously that replacing glucose with its non- 

metabolizable analogue 2- deoxy-D-glucose, a procedure known to deplete the paiasite
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of ATP (Kirk et a l ,  1996), has no effect on the steady-state accumulation of CQ by 

CQR parasites (Bray et a l ,  1996), In the absence of ATP the DV HC-ATPase fails and 

the H+ gradient across the DV membrane decreases markedly (Saliba et al., 2003). 

Under these conditions there is very little possibility of active CQ efflux out of the DV. 

If CQR parasites were reliant on an active efflux process to reduce the CQ within the 

DV, then replacement of glucose with 2-deoxy-D-glucose would have been expected to 

result in a substantial increase in CQ accumulation. Other studies have shown that 

lowering the incubation temperature reduces the CQ accumulation of CQR 

parasites(Sanchez et a l,  1997). This is in contrast to the increased drug accumulation 

that might be expected at low temperature if an active efflux process were operating in 

the resistant parasites (Gottesman & Pastan 1993). These data suggest that the reduced 

CQ uptake in CQR lines that is observed upon addition of glucose (Sanchez et al.,

2003) might be unrelated to the concentration of ATP and, by implication, might not be 

caused by the active efflux of CQ from the DV.

1.8.4.2.3 The ‘Charged drug leak’ hypothesis

The mutations in Pfcrt that cause CQ resistance are associated with a loss of 

basic and hydrophobic residues (Warhurst et al., 2002). These mutations (including the 

one for K76T) are predicted to be in the barrel of the transporter on the DV side of the 

membrane, in a region of PfCRT implicated in substrate selectivity (Martin & Kirk

2004). The presence of the positively charged lysine residue at position 76 in wild- type 

PfCRT is predicted to repulse the doubly protonated form of CQ (CQ^^), and prevent its 

interaction with the transporter. The CQ resistance-conferring mutation at codon 76 

resulting in threonine (or isoleucine or asparagine; (Cooper, et a l, 2002; Fidock, et a l,

2000) removes the positive charge, possibly allowing CQ^^ to interact with PfCRT and 

exit the vacuole down the steep outward CQ^^ concentration gradient. This would result
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in a decrease in the overall CQ concentration at its site of action within the DV, and 

hence a decreased CQ sensitivity of the parasite. This ‘chai'ged drug leak’ hypothesis 

provides a plausible mechanism by which PfCRT could directly mediate CQ resistance.

This hypothesis is supported by some data obtained from earlier studies on CQ 

resistance. It was shown that CQR culture-adapted field isolates are often hypersensitive 

to the anti-influenza drug amantadine (Evans & Havlik 1993) and to the phenanthrene 

methanol, halofantrine (Nateghpour et ah, 1993). Using a stepwise selection protocol, 

CQR lines were selected for increasing levels of resistance to amantadine or 

halofantrine. Surprisingly, as the parasites became resistant to these drugs, they became 

sensitive to CQ (Nateghpour et a i ,  1993; Ritchie et aL, 1996; Ward 2002). Detailed 

examination of these parasite lines revealed that CQ accumulation and access to 

haematin were restored and the resistance-reversing effect of verapamil was lost 

(Johnson et a l ,  2004). Both the amantadine-resistant line and the halofantrine-resistant 

line exhibited novel mutations of Pfcrt including one mutation (coding for S163R) that 

was common to both drug-selected lines. Surprisingly, both lines retained the Pfcrt 

K76T-coding mutation, making these the first fully characterised examples of CQS 

parasite lines with this mutation. The novel mutation common to both lines (resulting in 

S163R) is proposed to replace a positive charge in the transporter baiTel, thereby 

compensating for the loss of positive charge associated with the K76T variation. This 

single amino acid change in PfCRT is proposed to block the leak of diprotonated CQ 

and thereby return the parasites to full CQS status, restoring access of CQ to 

ferriprotopophyrin IX and ablating verapamil synergism (Johnson et al., 2004).

The debate on the mechanism of chloroquine and how its resistance arises is still 

ongoing. Nevertheless, a combination of Pfcrt and pfm dr 1 polymorphisms together 

have been shown to result in higher levels of chloroquine resistance (Babiker et al.,
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2001). This observation is also supported by a whole genome survey which, using 

m icrosatellite markers to detect linkage disequilibrium in a range of parasites, has 

shown that Pfcrt is the major locus (Djimde et a l ,  2001; Fidock et a l ,  2000a), but the 

pfm dr 1 locus on chromosome 5 is also an important secondary mutation (Wootton et 

a l,  2002) for chloroquine resistance.

1.8.5 Antifolates

Antifolates are generally classified as type I (sulfonamides and sulfones) and 

type II (pyrimetham ine. Trimethoprim and cycloguanil, the active metabolite of 

proguanil). They mimic the essential metabolites of the malaria parasite in the folate 

pathway, and are active against all the growing stages in the liver (liver schizonts), 

erythrocytic stages in the blood (blood schizonts) and growing stages in the mosquito 

(sporogonie stages) (Sherman 1979). In Plasmodium falciparum, two genes involved in 

the pyrimidine biosynthetic pathway, dhfr and ts are contiguous and are expressed as a 

bifunctional enzyme DHFR-TS (Bzik et a l ,  1987). DHFR is the biochemical target of 

pyrimetham ine, and also of cycloguanil, the biologically active metabolite of proguanil. 

Pyrimetham ine binds to the parasite DHFR with a high affinity, inhibiting enzyme 

activity, resulting in the eventual depletion of deoxythymidine monophosphate (dTMP) 

and the disruption of DNA synthesis (Hyde 1990). The DHFR inhibition results in a 

reduction in the intracellular* pool of tetrahydrofolate cofactors, which are used in most 

cells for the de novo synthesis of pyrimidines, methionine and thymidylate and for the 

interconversion of glycine with serine. Serine is the only identified source of methyl 

groups of methionine and thymidylate. Serine hydroxymethyltransferase converts serine 

to glycine with the formation of N5-N 10-methylene tetrahydrofolate, which is then 

reduced to N-5-methyl tetrahydrofolate, the cofactor used to provide the methyl group 

that converts deoxyuridine monophosphate to the deoxythymidine monophosphate
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required for DNA synthesis. This activity is catalyzed by the enzyme thymidylate 

synthase (TS) and results in the regeneration of dihydrofolate (DHF) (Figure 4).

Differences in folate metabolism between malaria parasites and their 

mammalian and avian hosts permit the use of antifolates as antimalarial agents. The 

selective activity of pyrimetham ine has usually been attributed to higher affinity of the 

drug for Plasmodium  DHFR-TS than for human DHFR (Foote et al., 1990b; Hitchings 

1969; Peterson et al., 1990). Recent work has shed light on the differential specificity of 

the drug for parasite and human DHFR. Pyrimetham ine treatment removes the 

translational repression of the human enzyme, and more DHFR is produced to partially 

overcome the drug banier. However, in Plasmodium  DHFR-TS, mRNA binding is not 

coupled to enzyme active sites. Therefore, antifolate treatment does not relieve 

translational inhibition and the parasites do not have the ability to make fresh enzyme 

(Zhang & Rathod 2002). Other authors (Ninnalan et a l,  2004) have however, reported 

lack of discernible effect of antifolate drugs on the level of mRNA expression from the 

dhfr-ts gene. Nirmalan and colleagues (2004) showed that expression levels of DHFR- 

TS are elevated three-fold by pyrimetham ine, and up to seven-fold upon challenge by 

TS inhibitors, but not by a drug whose mechanism of action is unrelated to the folate 

pathway. They therefore concluded that the increases reflect enhanced synthesis of the 

DHFR-TS enzyme in the parasite as compared to human cells (Nirmalan et al., 2004).

Studies on the sulfonam ides and 4-aminobenzoic acid (PABA) in malaria date 

back to when the azo dye sulfachrysoidine and sulfanilamide were first used to treat 

human malarial infections and PABA was found to reverse sulfonam ide inhibition in 

Plasmodium gallinaceum  (Maier & Riley 1942).
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Figure 4: Simplified diagram of the Folate pathway indicating some the enzymes.
The numbered boxes indicate the relevant enzymes 1. Dihydropteroate synthase, 
Dihydrofolate synthase, 3. Dihydrofolate reductase, 4. Serine 
hydroxymethyltransferase, 5. Thymidylate synthase. Dashed arrows indicate 
multiple steps

The success of proguanil as an antimalarial agent in humans (Curd et aL, 1945) 

stimulated further study of pyrimidine derivatives, which resulted in the development of 

pyrimethamine (Falco et a l ,  1951). The enzyme DHPS (dihydropteroate synthase) 

(Figure 4), which is not found in mammals, is the primary target of type I antifolates. 

DHPS has been shown to be a bifunctional enzyme with 6-hydroxymethyl-7, 8-
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dihydropterin pyrophosphate (PPPK) at the N-terminus of the protein (Brooks et aL, 

1994; Triglia & Cowman 1994). Expression and purification of the enzyme from P. 

falciparum  in E. colt have shown that the activity purifies as an 83-kDa protein (Triglia 

et al., 1997). DHPS is responsible for the synthesis of 7,8-dihydropteroate from 2- 

anainO“4“hydroxy-6-hydroxymethyl-7,8- dihydropteridine pyrophosphate and (Para 

aminobenzoic acid) PABA (Figure 4). The drugs of the sulfa group are analogues of 

PABA and have been shown to be competitive inhibitors of the DHPS enzyme from the 

murine malarias P. berghei (Ferone 1973; Ferone 1977; McCullough & Maren 1974) 

and P. chabaudi (Ferone 1977; Walter & Konigk 1980), as well as in P. falciparum  

(Ferone et ah, 1970; Sirawarapom et al., 1990; Sirawaraporn et al,, 1997; Sirawaiaporn 

& Yuthavong 1984; Triglia et al., 1997; Zhang & Meshnick 1991; Zolg et al., 1989) 

Sulfones and sulfonamides (sulfa drugs) were also used as antimalarials during 

World War II, but their use declined with the advent of more effective drugs such as 

chloroquine and pyrimethamine. The ability of sulfa drugs to show potentiating effect 

with proguanil or pyrimethamine (Chulay et ah, 1984; Greenberg et ah, 1948; Rollo 

1955; Sirawaraporn & Yuthavong 1986) suggested that combinations of these two 

groups of dmgs would not only be more effective antimalarial agents but would also 

delay, if not avoid, the development of resistance. The first combination used was the 

sulfone, dapsone, which was combined with pyrimethamine (Maloprim), but clinical 

trials were not encouraging and parasite resistance developed rapidly (Peters 1985). The 

most commonly used combination is that of a sulfonamide, sulfadoxine, and 

pyrimethamine (Fansidar), which has been particularly effective in areas such as Africa 

where chloroquine resistance is now widespread (Landgraf et a l ,  1994; Peters 1985; 

W emsdorfer & Kouznetsov 1980).

53



1.8.5.2 Mechanisms of resistance to DHFR inhibitors

Eaiiy studies done with P. berghei showed that it was possible to select 

resistance rapidly to pyrimetham ine, suggesting that a single point mutation was 

involved (Bishop 1963; Diggens 1970; Diggens et al., 1970). Genetic crossing 

experiments in both P. chabaudi and P. yoelii using pyrimetham ine-sensitive and 

pyrimetham ine-resistant strains showed that the resistance phenotype segregated as a 

single gene in both cases (Knowles et al., 1981; Walliker et al., 1976; Walliker et al., 

1975). This gene was confirmed to be dhfr, when it was shown that in P. berghei strains 

increased expression of the DHFR protein (Ferone 1970) and decreased binding affinity 

of the drug to the enzyme had occumed (Diggens 1970). In the case of P. chabaudi, no 

large differences in the enzyme amounts or turnover numbers were observed between 

resistant and sensitive clones. However, a large decrease in affinity for binding of 

pyrimetham ine with the enzyme from the resistant clone, together with changes in 

kinetic and other properties, indicated that the resistance is due to genetic change 

leading to a structurally different enzyme (Sirawarapom & Yuthavong 1984).

The major mechanism of resistance to pyrimetham ine appears to be altered dmg 

binding to DHFR. Studies of the enzyme kinetics of DHFR in the rodent malaria 

parasites, P. berghei, P. vinckei, and P. chabaudi, as well as studies in P. falciparum  

demonstrated that the inhibition constant {Ki) for pyrimetham ine of the DHFR enzyme 

had increased in pyrimetham ine-resistant strains and isolates (Chen et al., 1987; Ferone 

1970; Sirawarapom & Yuthavong 1984; Walter 1986; Zolg et al., 1989). One exception 

of this work was the observation that the DHFR activity from a pyrimethamine-resistant 

P. falciparum  isolate had the same Ki as the DHFR enzyme from a sensitive isolate; 

however it was suggested that the enzyme was increased in the level of expression 30 -  

80-fold (Kan & Siddiqui 1979). Other analysis of equivalent isolates has not shown any
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altered levels of enzyme, and suggested that the DHFR enzyme was structurally altered 

(Cowman et ah, 1988; Peterson et ah, 1988a). However, these studies used crude 

extracts, making it hard to justify the assumptions of the Michaelis-Menten (MM) 

kinetics. The kinetic properties of DHFR enzymes purified from highly resistant, 

moderately -resistant and pyrimethamine-sensitive isolates of P. falciparum  have been 

compared (Zolg et ah, 1989). DHFR enzymes extracted from the moderately resistant 

and highly resistant parasites were found to bind to pyrimethamine with 15 X and 500 X 

lower affinity respectively, when compared to the enzyme of the sensitive isolate.

The cloning of the gene encoding the DHFR enzyme from P. falciparum  (Bzik 

et ah, 1987; Cowman et ah, 1988; Cowman & Lew 1989) and P. chabaudi (Cowman & 

Lew 1989) allowed a detailed analysis of alterations in this enzyme and their role in the 

mechanism of resistance. The DHFR enzyme had earlier been shown to co-purify with 

thymidylate synthase (TS) in Crithidia fasciculata (Ferone & Roland 1980) and the 

association of the DHFR and TS activities was confirmed in P. falciparum  when it was 

shown that a single open reading frame encoded both activities (Bzik et ah, 1987; 

Cowman et ah, 1988; Sirawarapom et ah, 1990), a property that is shared by most 

apicomplexan organisms (Ganett et ah, 1984; Gmmont et ah, 1986).

Analysis of the alterations in the dhfr gene of experimentally-induced 

pyrimethamine-resistant P. chabaudi and P. falciparum  strains has shown that both 

amplification and mutation of the gene can occur (Cowman & Lew 1989; Inselburg et 

ah, 1987; Tanaka et ah, 1990a; Thaithong et ah, 2001; Watanabe & Inselburg 1994; 

Cowman & Lew 1989; Inselburg et ah, 1987; Cowman & Lew 1989). Pyrimethamine 

resistance was selected for in both P. chabaudi (Cowman & Lew 1989; Cowman & 

Lew 1990) and in two independent experiments with P. falciparum  (Inselburg et ah, 

1987; Tanaka et ah, 1990b; Tanaka et ah, 1990a; Thaithong et ah, 2001) by slowly
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increasing the level of drug. In one selected line of pyrimetham ine-resistant P. 

falciparum, parasites exhibited increased expression of DHFR-TS, which correlated 

with a duplication of part of the chromosome containing the gene, which resulted in an 

increase in karyotype from 14 chromosomes to 15 chromosomes (Inselburg et ah, 1987; 

Tanaka et a l,  1990b). The selected lines of Plasmodium chabaudi, resistant to high 

levels of the pyrimetham ine, showed rearrangement and duplication of a portion of 

chromosome 7 (Cowman & Lew 1989). This chromosomal duplication resulted in an 

increase in the chromosome number from 14 to 15; two derived chromosomes (450 

kilobases and 1.1 megabases) were smaller than the original chromosome 7 (1.3 

megabases), so that essentially only a 200-kilobase region was duplicated. This region 

contained the dhfr-ts gene and the closely linked Hsp70 gene. The duplication of the 

DHFR-TS gene presumably conferred the observed drug resistance (Cowman & Lew 

1989). Cowman and Lew extended this analysis by selecting a highly pyrimethamine 

resistant line of P. chabaudi from the line that had duplicated and rearranged 

chromosome 7. This resulted in reversion back to the original parental type 

chromosome 7 but a point mutation was found to have occuiTed in the dhfr gene 

(Cowman & Lew 1990). Increased selection for high levels of pyrimethamine resistance 

resulted in the selection of parasites can’ying a mutated dhfr gene, encoding a protein 

where the amino acid at position 108 was replaced with asparagine (Cowman & Lew 

1989). The second P, falciparum  selected line was found to have amplification of the 

DHFR gene up to a copy number of 44, correlating with a lOOOX increase in minimum 

inhibitory concentration (MIC) of pyrimethamine (Thaithong et al., 2001). The 

resistance was unstable, and following withdrawal of pyrimethamine, MIC levels 

dropped over 16 months almost to that of the unselected parental line, accompanied by a 

decrease in DHFR copy number to 4. No mutations in the dhfr gene were observed.
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The mutation at codon 108 was subsequently also found in naturally occum ng 

pyrimetham ine-resistant P. falciparum  parasites collected from the naturally infected 

individuals. Peterson and colleagues exam ined the molecular basis of pyrimetham ine 

resistance in isolates and clones of Plasmodium falciparum  from geographically distant 

sources (Peterson et ah, 1988a). A genetic cross between pyrimetham ine-resistant clone 

HB3 and and pyrimetham ine-sensitive clone 3D7 showed absolute linkage of resistance 

to the point mutation (Asn-108) in dhfr (Peterson et ah, 1988a).

Peterson and colleagues exam ined the in vitro pyrimetham ine susceptibilities 

and DHFR sequences of eight additional isolates and clones from geographically distant 

locations (Peterson et aL, 1988a). All of the pyrimetham ine sensitive parasites had Thr- 

108 (ACC) or Ser-108 (AGC), whereas all of the resistant parasites exhibited the point 

mutation to Asn-108. An additional mutation to Ile-51 (AAT to ATT) was associated 

with a 4- to 8-fold increase in resistance in some lines, and a third mutation from Cys- 

59 to Arg-59 (TGT to CGT) in one clone was associated with even higher levels of 

resistance (Peterson et aL, 1988a).

Polymorphic sequences of P. falciparum dhfr were first described in the late 

1980s (Cowman et aL, 1988; Peterson et aL, 1988a; Snewin et aL, 1989), and it is now 

well established that high-level Pyrimethamine resistance results from the accumulation 

of mutations in the dhfr gene, principally at codons 108, 59 and 51, where allelic 

polymorphism gives rise to S108N, N51I and C59R (Table 1). Evidence also exists that 

parasites with additional mutations of 164 to Leu (I164L) have increased levels of 

resistance to Pyrimethamine and Cycloguanil (Cowman et aL, 1988; Peterson et aL, 

1988a). Variation at residue 16 (Ala-16 to Yal A16V) confers resistance only to 

cycloguanil and the variation is always found to be associated with S108T variation 

(Foote et aL, 1990b; Peterson et aL, 1990). Analysis of the single A16V and S108T
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variations revealed that the former is highly resistant to cycloguanil without cross 

resistance to pyrimetham ine, while the latter is susceptible to both Pyrimetham ine and 

cycloguanil, indicating that the cycloguanil resistance in the A16+SI08T must be 

attributed almost completely to the A16V mutation (Sirawaraporn et aL, 1997). 

Therefore, it is conceivable that the A16V+SI08T mutant would not have survived 

pyrimetham ine pressure, but instead must have arisen in response to cycloguanil 

selection.

Kinetic studies of the different alleic variants of DHFR have revealed that the 

A16V protein has a severely-impaired enzyme kinetic (Vmax), which could have 

significant effects on the enzyme catalytic efficiency to support DNA synthesis, 

rendering the mutant unable to survive in nature under selective drug pressure 

(Sirawaraporn et aL, 1997). The S108T enzyme shows almost unperturbed Vmax kinetics 

(Sirawaraporn et aL, 1997). The enzyme is as inhibited by both pyrimetham ine and 

cycloguanil as the wild-type enzyme, so it is very likely that the A16V+S108T mutant 

must have derived from the S108T, a variant which is rare (Reeder et aL, 1996), 

reviewed in (Hyde 2002; Hyde 2005).

The two double mutants found in nature (N51FS108N and C59R/S108N) could 

have arisen from point mutation of the S108N as they both provide a small increase in 

resistance toward pyrimethamine, which would have led to their selection (Siriwaraporn 

et aL, 1997). The N51I/S108N mutant enzyme had almost similar catalytic constant, 

kcat, to the wild-type DHFR but was about 2 to 3-fold more resistant to pyrimethamine 

than S108N. C59R/S108N had a significantly reduced kcat compared to wild-type and 

S108N DHFR, but was 5-fold more resistant to pyrimethamine than S108N.

The triple mutant N108S/N51I/C59R had a significantly reduced kcut compared 

to the wild-type DHFR, but its inhibition constant, Ki, by pyrimethamine was
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approximately 80-fold that of the wild-type DHFR (Sirawaraporn et ah, 1997). This 

would offer it a huge selective advantage over the wild-type in a pyrimetham ine 

environment. The same was observed for the quadriple mutant 

S108N/N51FC59R/I164L whose koA was almost six-fold lower than that of wild-type 

DHFR but had a Ki by pyrimethamine about 600-fold higher than that of the wild-type 

DFiFR (Sirawaraporn et a l,  1997).

The mutations appear sequentially in treated populations, with the serine- 

asparagine mutation at codon 108 appearing first, followed by asparagine- isoleucine 

(codon 51) or cysteine-arginine (codon 59), and finally isoleucine-leucine (codon 164) 

(Plowe et aL, 1998). In all parasite isolates studied to date, only the S108N mutation has 

been found to occur singly in nature. The mutations at codon 51 and 59 are always 

found to occur together with S108N (as N51I + S108N, C59R + S108N or triple 

mutant) but never singly. In fact, the enzymes from genes containing these single 

mutations were found to remain highly sensitive to both pyrimethamine and 

cycloguanil, with one (N51I) also showing significantly reduced catalytic properties 

(Sirawaraporn et aL, 1997). This has led to the suggestion that mutations either or both 

at codons 51 and 59 act predominantly by restoring the enzymatic defects that occur as a 

consequence of the original mutation at position 108 (Hastings & Donnelly 2005).

Infections with parasites carrying single (AsnlOS) or double mutations in dhfr 

(encoding Asn 108 plus either lie 51 or Arg 59) show increased parasite clearance times 

following treatment with SP than wild-type parasites (Mendez et aL, 2002; Su & 

Wellems 1996), and parasites with three or four resistance mutations are refractory to 

treatment (Plowe et aL, 1998). Some of the isolates with various combinations of 

mutations at dhfr and their levels of pyrimethamine resistance are shown in Table 1.
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Isolates

16 51 59 108 164 Level of 
Pyrimetham ine 
resistance “

3D7, SLD6, 
T9/96

A N C S I 0.025

HB3, PA2 A N C N I 1.5

FAC3, FAC8, 
ItG2F6, FCB

V N C T I 0.006

7G8, ItD12 A I C N I 12

K I, VI A N R N I 20

W2, Dd2, N Tl A I R N I 25

C sI2 A N R N L 40

V l/S , VP35 A I R N L 40

Table 1: Common laboratory isolates with their variant amino acids and IC50 to 
Pyrimethamine in vitro.
The variant conferring resistance is indicated in bold.
“The figures indicated for levels of resistance are approximate values for the 
concentration of pyrimethamine (pM) required to reduce parasitaemias by more 
than 50% relative to untreated controls (Hyde 1989).

Another polymorphism has also been observed in dhfr sequences of samples 

obtained from Bolivia, which is an insertion coding for a five-amino acid repeat after 

codon 30, termed the Bolivia repeat (Plowe et a l ,  1997). However this polymorphism 

has only been observed in Bolivia and its role in pyrimethamine resistance is not yet 

known.

1.8.5.3 Mechanisms of action and resistance to DHPS inhibitors

Comparisons of dhps alleles from lines of P. falciparum  with different IC50 

values to sulfadoxine in vitro pinpointed amino acid differences suggested to be 

important in resistance (Brooks et a l ,  1994; Triglia & Cowman 1994). There was no 

apparent amplification of the gene or increased expression of the PPPK-DHPS enzyme 

in sulfadoxine-resistant isolates.
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Polymorphisms in codons 436, 437, 581 and 613 in the dhps domain of cultured 

parasite lines have been broadly correlated with estimated levels of sulfadoxine 

resistance in vitro (e.g. (Brooks et aL, 1994; Triglia & Cowman 1994). Later studies 

revealed that polymorphism in codon 540 was also commonly observed in field samples 

(e.g. (Plowe et aL, 1997; Triglia et aL, 1997; Wang et aL, 1997a)), with some 

association to SP treatment failure. Trials in East Africa and elsewhere attested to the 

enhanced effectiveness of the SP combination (Nguyen-Dinh et aL, 1982) compared 

with monotherapy with either agent, even where pyrimethamine resistance was already 

prevalent. Sulphadoxine is never used as a single antimalarial as it is quite ineffective 

and therefore all field data is from SP treatment failures. To date, only changes in these 

five codons have been observed in a large number of field samples of diverse 

geographical origins, (e.g. (Plowe et aL, 1997; Reeder et aL, 1996). Codon 436 appears 

to be tetramorphic, with alternative alleles encoding alanine, phenylalanine, cysteine, or 

serine. S436 is usually associated with sensitivity to SP and for the purposes of this 

thesis it is considered as the wild type allele. Three alternative amino acids are encoded 

by different alleles at codon 613: serine, threonine and alanine. Codons 437, 540 and 

581 appear to be dimorphic, with codons 437 and 581 both encoding either alanine or 

glycine, while codon 540 encodes either lysine or glutamine (Table 2).

The most common polymorphism in dhps is the one coding for 437G. Of the 13 

fully characterized resistance-associated alleles described to date, 10 involve this 

polymorphism, although parasites with DHPS 437G in the absence of other changes 

appear to be rare. Alleles defined by 437G/540E and 437G/581G are common in SP 

resistant parasites from East African patients (Nzila et aL, 2000a; Plowe et aL, 1997; 

Wang et aL, 1997a). The allele encoding 437G/581G is also common overall in South- 

East Asian populations (Wang et aL, 1997a), while in areas of South America, parasites
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from patients with SP treatment failure are frequently found to have all three of these 

mutations (encoding 437G/540E/581G) (Kublin et aL, 1998; Plowe et aL, 1997).

While the mutations affecting codons 436, 437 and 540 can occur singly within 

an allele, the data so far suggest that the 581G variation is always found with 437G, and 

that the 613S/T alterations must also be coupled to changes in either residue 436 or 437, 

presumably reflecting steric constraints of the enzyme (Plowe et aL, 1998). However, 

this has not been confirmed by any kinetic data due to the difficulties of working with 

sulfadoxine in vitro.

The role of dhps mutations in sulfadoxine resistance is not certain, partly 

because in vitro assays for sulfadoxine have been done under varying folate conditions 

(Wang et aL, 1997b), and also the use of host folate by some parasite isolates 

antagonises sulfa drugs irrespective of their dhps genotype (Milhous et aL, 1985; 

Watkins et aL, 1985). Analysis of a genetic cross between two parasites differeing in 

IC50 to sulfadoxine showed direct conelation of inheritance of dhps allele and IC50 

(Wang et aL, 1997b). Consistently reproducible results showing large differences 

between the most sensitive and most resistant strains were obtained as a result of using 

an improved drug assay in the absence of folate (Triglia et aL, 1997; Wang et aL, 

1997b).
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Iso la tes/o rigm "\.^

436 437 540

3D7
(Netherlands)

Serine Glycine Lysine

Dd2
(IndoChina)

Phenylalanine Glycine Lysine

T9-96
(Thailand)

Alanine Glycine Lysine

SL/D6

(SieiTa Leone)
Phenylalanine Alanine Lysine

HB3
(Honduras)

Serine Alanine Lysine

IEC513/86 
(Brazil)

n.d. n.d. Glutamine

Table 2; DHPS variants in common laboratory isolates. 

n.d.= not determined

Another mechanism associated with folate uptake and utilisation is thought to 

have an effect on sulfadoxineresistance levels (Wang et ah, 1999). A reduction in the 

susceptibility of parasites to sulfadoxine inhibition as a result of low levels of folate 

(folate effect) was displayed in the Dd2 (mutant) clone, producing marked changes in 

IC50 values. A very small change or no change in the IC50 values was observed for the 

HB3 clone under varying folate concentrations. This difference is thought to be due to 

another gene that strongly influences resistance of a specific clone to sulfadoxine 

depending on the usage of exogenous folate.

1.8.5.4 Correlations of dhfr and dhps mutations with SP treatment response

Wang and colleagues made the first attempt to define a set of dhfr and dhps 

mutations predictive of SP treatment (Wang et ah, 1997a). Using samples for SP drug 

efficacy trials, they found that all infections that cleared totally had wild type dhfr and 

dhps sequences. Those that cleared initially but recurred, or did not clear at all earned a
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variety of dhfr and/or dhps mutations, with no clear set of mutations accounting for 

initial or no clearance (Wang et aL, 1997a).

Several studies have shown that treatment with antifolate drugs results in the 

selection of parasites with dhfr and dhps mutations. The study by Wang (Wang et aL, 

1997a) described 18 previously exam ined Tanzanian samples taken on the day of SP 

treatment and 13 that were again positive during the 28 days following treatment (Wang 

et aL, 1997a). Even with this relatively small sample size, analysis of the data shows 

that dhfr coding for 108N, and dhps coding for 437G and 58IG  were significantly more 

prevalent in the post-treatment infections (Plowe et aL, 1998), and dhfr encoding 511 

and 59R were also more common post-treatment. A second study in Tanzania found 

that SP selected for dhfr encoding 511, 59R and 108N as well as dhps encoding 436S 

(thought to be wild-type), 437G and 540K (Curtis et aL, 1998).

A study in Peru provided the first evidence of a distinct set of dhfr and dhps 

mutations that is strongly associated with in vivo SP resistance (Kublin et aL, 1998). 

The genotype dhfr coding for 511, 108N, 164L and dhps coding for 437G, 540K, 58IG  

was highly conelated with the level of in vivo resistance. This resistant genotype was 

present in seven out of eight cases (87.5%) of RIII resistance, nine out of 13 cases 

(69.2%) of RII resistance, 5 out of 13 cases (38.5%) of RI resistance, and 0/11 cases 

(0.0%) sensitive to SP treatment. The Bolivia repeat was less frequent at higher levels 

of resistance, consistent with in vitro evidence that it does not play a direct role in 

resistance to pyrimethamine (Cortese & Plowe 1998). Dhfr coding for 108N was 

present in all sensitive and resistant cases, demonstrating clearly that this mutation is 

not a suitable marker for SP resistance, despite having been used for this purpose in 

several studies (Curtis et al., 1996; Edoh et aL, 1997; Peterson et aL, 1991; Plowe et aL, 

1996). A drug-sensitive genotype consisting of DHFR Asn-108 and no other dhfr or
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dhps mutations was present in all sensitive infections, 61.5% of RI infections, 23.1% of 

RII infections and in only a single RIII infection (Cortese & Plowe 1998).

It is important to emphasize that the resistance of parasites to drugs in vitro is 

not synonymous with clinical failure of pyrimethamine-sulfadoxine treatment. This is 

especially clear in endemic areas in which semi-immune individuals compose a 

majority of the population at risk. For example, on the coast of Kenya, the triple-mutant 

allele of dhfr is observed in -90%  of the parasites but SP treatment failure rates are 

about 40%. Double-mutant alleles of dhps are also common (Nzila et aL, 2000a). Semi- 

immune patients who carry parasites with resistant genotypes very often do resolve any 

fever or other clinical manifestations. These patients aie classified as having an 

adequate clinical response to the therapy (no visible parasites or clinical manifestations 

at day 7), even though some resistant parasites might escape from the drug action, 

remain at a low level for a time and then cause a new malaria episode (Jelinek et aL, 

1998; Plowe et aL, 1998; White 1998).

The relationship of the parasite genotype to the outcome of pyrimethamine- 

sulfadoxine treatment in an individual patient is influenced by many factors; the 

genotype of the parasite is only one determinant. The complexity of the parasite 

infection and the genotype, the nutritional status and the immune response of the host, 

as well as the rates of drug metabolism, are all critical in deteimining whether a patient 

will clear the infection (Plowe et aL, 1998; White 1998). In the following section, a 

discussion is offered on the determination of ‘tm e’ drug resistance.

1,8,6 Molecular assays for determination of Hrue’ drug resistance

Until recently, our knowledge of the epidemiology of drug-resistant malaria was 

based on the collection of in vivo data from symptomatic patients to whom different 

antimalarial drugs were administered and, to a lesser extent, on in vitro dmg sensitivity
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assays. The limitations of these methods for studying drug-resistant malaria and 

elucidating molecular mechanisms of resistance to some antimalarial drugs have 

stimulated the use of a third approach based on molecular markers (Greenwood, 2002).

The standard in vivo method of testing for drug resistance involves the exam ination of a <|

blood film for parasites 14 or 28 days after an infection is diagnosed and treated, the 

detection of parasites at this time being considered an indication of treatment failure or 

recrudescence of drug resistant parasites (WHO, 1996). In high transm ission areas such 

as tropical Africa, most people are bitten by malaria-infected mosquitoes almost every 

night (Greenwood 2002). Parasites found in the peripheral blood during the follow-up 

period could therefore, represent new and possibly drug-sensitive infections, and not 

recrudescence of resistant parasites. Estimates of the frequency of drug resistance based 

on uncontrolled tests in vivo in highly endemic areas may therefore be exaggerated. In 

order to determine true drug resistance levels, it is important to differentiate between 

true recrudescence (treatment failure) and reinfection.

Moleculai* genotyping is increasingly being used to help distinguish 

recrudescence from reinfection in antimalarial drug efficacy studies. Infecting malaria 

parasites can be “fingerprinted” through polymerase chain reaction (PCR) amplification 

of polymorphic genes. The “fingerprint” patterns of isolates causing successive episodes 

of malaria can then be compared to distinguish recrudescent from newly infecting 

parasites (Babiker et al. 1994; Ohrt et al. 1997; Ranford-Cartwright et al. 1997). The
' - g

technique involves amplification by the polymerase chain reaction (PCR) of regions of 

highly polymorphic parasite genes. The likelihood of a patient being reinfected with a 

parasite containing exactly the same ‘alleles at each of 2-3 loci is very small. If the 

parasites present on follow-up are genetically identical at all loci to the parasites found |

on presentation then it is assumed that the infection has recrudesced and that persisting ii

f : : ;

,
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parasites are resistant to the drug. If the parasites are genetically different, it is assumed 

that the original parasites were cleared by the drug treatment, and the parasites present 

during the follow-up period are the result of a re-infection. The loci commonly 

employed in this work include the M spl, Msp2 and glurp (Babiker et aL, 1994; Babiker 

& Walliker 1997; Brockman et aL, 1999; Ranford-Cartwright et aL, 1997).

There is abundant evidence that these loci are under rather strong immune 

selection. A comparison of ratios of synonymous and non-synonymous mutations in 

various genes reveals that strong selective constraints against silent variation in P. 

falciparum, a fact that has been attributed to immune selection (Escalante et aL, 1998; 

Hughes 1991; Hughes & Hughes 1995). Additional evidence that these maikers are 

under strong immune selection comes from experimental immunology studies. For 

M spl, vaccination with the recombinant protein was shown to be protective in monkeys 

(Etlinger et aL, 1991), while antibodies against it protect against clinical disease (Egan 

et al. 1996). Antibodies to MSP2 have been shown to inhibit parasite invasion of red 

blood cells (Epping et aL, 1988), and are associated with protection from clinical 

disease (A1 Yaman et aL, 1994; A1 Yaman et aL, 1995; Taylor et aL, 1998). This 

protection appears to be dependent on MSP2 genotype (A1 Yaman et aL, 1994; 

Ranford-Cartwright et aL, 1996).

Recently, after the discovery of microsatellites, some malariologists have started 

to question epidemiological data generated by the use of antigenic loci under strong 

immune selection. The argument is that selected loci might be giving a distorted view of 

population structure and transmission dynamics, since selection rather than population 

history may determine the patterns of allele distribution within populations for these 

loci (Anderson et aL, 1999; Hastings 1996; Mcdonald 1994).
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In this thesis the antigen-coding loci; M spl, Msp2 and glurp have been 

compared with five putatively neutral m icrosatellite loci in their ability to differentiate 

recrudescences from reinfections in P. falciparum  infections from Kenya.

1.9 Drug resistance and selective sweeps

When a beneficial mutation spreads through a population, flanking neutral 

mutations ‘hitchhike’, resulting in removal of genetic variation from the chromosomal 

regions surrounding the selected site (Barton 2000; Maynard Smith & Haigh 1974). The 

extent to which this happens depends on when in the history of the sample population 

the selected substitutions happen, the strength of positive selection and the amount of 

crossing over between the flanking locus and the locus at which the selected 

substitutions occur (Kaplan et aL, 1989). The spread of the favoured allele also results 

in increased linkage disequilibrium (LD) with flanking markers (Sabeti et aL, 2002; 

Tishkoff et aL, 2001) and skews in the allele frequencies observed at loci neai'by on the 

chromosome (Payseur et aL, 2002). The size of genomic regions affected is influenced 

by the strength of the selection, as well as the rates of recombination and mutation. 

There is currently great interest in using such characteristic patterns of variation to 

identify regions of the genome that are under selection (Harr et aL, 2002; K im & 

Stephan 2002; Kohn et aL, 2000; Schlotterer 2003; Vigouroux et aL, 2002; Vigouroux 

et aL, 2005).

Antimalarial drug resistance provides an excellent system for investigating the 

genomic effects of selection events in a recombining eukaryote, and the scars left in the 

Plasmodium falciparum  genome by drug selection may serve as a useful tool for 

locating drug resistance genes (Anderson et aL, 2000a; Wootton et aL, 2002). 

Fortunately the date of introduction of new antimalaiials is usually known with some 

accuracy, allowing the rate of spread of resistance to be calculated.
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Recombination and mutation rates have been estimated from a genetic cross (Mu 

et aL, 2002; Su et aL, 1999), and haplotypes can easily be constructed using haploid 

blood stage parasites. This aids in the estimation of the rates of spread of resistance 

through calculations of selection intensities driving resistance to the drugs (Wiehe,

1998).

The repeated appearance throughout global malaria endemic regions of drug- 

resistant phenotypes, determined by nonsynonymous substitutions at the Dhfr, Dhps, 

Pfcrt and other loci, is most likely due to natural selection (Roper et aL, 2004; Wootton 

et aL, 2002). Selection sweeps are known in other organisms, such as Drosophila 

melanogaster, where a single nucleotide sequence at the Sod  locus is present in about 

50% of all haplotypes throughout the world, without any silent substitutions along the 

1,500-bp sequence (Hudson et aL, 1997; Hudson 1994).

The worldwide geographical prevalence of the alleles of dhfr and dhps 

associated with SP treatment failure reflects both the duration of antifolate use and the 

level of therapeutic resistance. However, at the time the research for this thesis was 

begun, the modes by which antifolate resistance develops had not been elucidated. For 

example it was not clear whether resistance mutations could repeatedly aiise de novo or 

spread by dissemination after rare or infrequent mutation events (Cortese & Plowe 

1998; Nair et aL, 2003; Nash et aL, 2005; Pearce et aL, 2005; Roper et aL, 2003; Roper 

et aL, 2004). Molecular analysis of the chloroquine-resistance transporter (Pfcrt) gene 

have suggested that all extant CQ resistant parasites originate from only four separate 

mutational events, two of which are believed to have occuixed in South America, one in 

Southeast Asia and one in Papua New Guinea (Wellems & Plowe 2001). These mutant 

alleles are thought to have subsequently spread over large geographical 

distances (Wootton et aL, 2002). Interestingly, it appears that CQ resistance did not arise
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de novo in Africa, where most P. falciparum  mortality occurs, despite wide-scale 

deployment of the drug (Wellems & Plowe 2001). Analysis of the Pfcrt gene and 

flanking markers suggests that CQ resistant parasites in Africa are most similar to those 

in Southeast Asia, suggesting the spread of resistance from countries in this area. The 

usual explanation for resistance occurring so rarely is that CQ resistance is a complex 

trait, requiring several sequential mutations in the Pfcrt gene (Wellems & Plowe 2001) 

and, arguably, requiring mutations in other genes (Hastings 2003), perhaps such as 

pfm drl (Babiker et aL, 2001). By contrast, the genetic basis of resistance to SP is 

known in detail, and simple logic leads to the a priori expectation that SP resistance 

originates from numerous mutational events. Resistance arises extremely rapidly after 

the introduction of pyrimethamine treatment (Clyde & Shute 1957; Doumbo et aL, 

2000; Molineaux & Gramiccia 1980) and the mutations involved can be selected readily 

in the laboratory (Paget-McNicol & Saul 2001). Thus it was generally assumed that dhfr 

mutations underlying resistance evolved multiple times in nature. Since infected people 

contain 10*  ̂ to 10^  ̂ pai’asites, and key point mutations in dhfr conferring resistance to 

pyrimethamine occur at frequencies as high as 2.5 X 10'^ per parasite replication in the 

laboratory (Paget-McNicol & Saul 2001), we might expect such mutations to arise 

independently in every treated malaria patient. In this case, we would expect resistant 

dhfr alleles to be associated with different alleles at flanking microsatellite loci and to 

see little evidence for diminished variation around dhfr (Doumbo et aL, 2000). 

However, three recent publications have disproved this conjecture (Cortese et aL, 2002; 

Nair et aL, 2003; Roper et aL, 2003). Molecular analyses of the dhfr gene and flanking 

regions have shown that high level resistance to SP in South America appears to have 

spread from a single mutational event in dhfr (Cortese et aL, 2002) a pattern now known
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to have also occurred in Southeast Asia (Nair et aL, 2003) and southern Africa (Roper et 

aL, 2003).

In a study conducted using samples from Thailand/Myanmar border, Nair and 

colleagues found minimal variation in m icrosatellite markers over a 12 kb region (0.7 

cM) immediately suirounding dhfr, and variation was reduced in a region 

approximately 100 kb (6 cM) around this locus (Nair et aL, 2003). In comparison 

expected heterozygosity (Hf) at markers situated more than 58 kb from the 5’ end and 

more than 40 kb from the 3’ end of dhfr was high {He = 0.81), and these were not 

significantly different from He at 56 unlinked dinucleotide microsatellites {He= 0.80) 

sampled from chromosomes 1, 2, 3 and 12 and genotyped from the same parasite 

collection (Nair et aL, 2003).

In a study of P. falciparum  populations from 5 locations in S. America (Brazil, 

Colombia, Haiti, Peru and Venezuela), Cortese and colleagues showed that the 

mutations dhfr C50R, dhfr I164L, dhps K540E, and dhps A581G, (denoted RLEG) 

confeiTing mid- and high-level SP resistance have a common origin (Cortese et aL, 

2002). First, sequences in coding and noncoding regions within or flanking these genes 

show identical or neaily identical polymorphic patterns among South American 

parasites harboring these alleles. Second, alleles of 2 genes involved in chloroquine 

resistance that are not linked to dhfr and dhps tracked with the RLEG alleles. Either of 2 

Pfcrt alleles first identified in Brazilian parasite lines from the 1980s and subsequently 

detected in all or most Brazilian and Bolivian isolates from the 1990s were found in all 

of the P. falciparum  isolates cairying these alleles but only in a minority without the 

mutations. Pfmdrl D 1246Y also was predominant among RLEG malaiia parasites. The 

association of the RLEGs with the mutant pfm drl allele, as well as with 2 resistant Pfcrt 

alleles carrying a unique C72S consequent to mutually exclusive nucleotide

71



substitutions, suggests that the RLEGs may have spread by the selective pressures of 

both the antifolates and the 4-am inoquinolines in S. America (Cortese et aL, 2002).

In another study done in South Africa, Roper and colleagues (Roper et aL, 2003) 

showed that only a single haplotype of microsatellite loci flanking a region of 8 kb 

upstream of dhfr gene, in 43 samples, was associated with the triple dhfr mutant coding 

for 51I/59R/108N. The double mutants encoding 51I/108N and 59R/108N were found 

to be associated with one and two haplotypes respectively. This is in contrast with 8 and 

31 haplotypes associated with the single mutant coding for 108N and sensitive alleles 

respectively in the same region (Roper et al. 2003). Likewise, analysis of an 8 kb region 

flanking the dhps gene (downstream) showed that isolates with double mutations coding 

for 437G/540E were associated with just a single flanking haplotype. By contrast, the 

single mutant (coding for 436A) isolates were associated with 3 unrelated flanking 

haplotypes (Roper et aL, 2003).

The alleles with several resistance-confeiring mutations in both of these genes 

showed a high degree of conservation in the flanking sequences. In fact, a comparison 

of the flanking sequences with isolates from northern Tanzania revealed that these 

isolates had the same flanking haplotype as those found in South African isolates, 4000 

km apart. This suggests that rather than arising many times, a few mutant alleles have 

been subject to positive drug selection and have introgressed through large geographic 

regions, a fact that can only be attributed to the use of sulphadoxine/pyrimethamine in 

these areas (Roper et aL, 2003). Although single mutants seem to have arisen 

independently on multiple occasions, the fitness benefits they confer are perhaps too 

weak to overcome the associated fitness costs, and thus do not seem to be strongly 

selected for. On the rare occasions where a multiple mutant arises, it has high relative 

fitness and can spread rapidly through large geographic regions (Roper et aL, 2004).
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In parasite populations such as those in South America (Anderson et aL, 2000a; 

Cortese et aL, 2002), Southeast Asia (Anderson et aL, 2000a; Nair et aL, 2003) and 

even some parts of Africa where transmission is low (Roper et aL, 2003), self- 

fertilization events predominate, and levels of recombination are consequently much 

lower. Most of the studies that have looked at the evolution of drug resistance have 

used isolates from these areas and thus an understanding of the evolution and spread of 

drug resistance in high transmission areas, where recombination is high, is still lacking.

1.10 Rationale I for this thesis

The molecular genotyping analyses have largely used the antigen-coding loci 

encoding merozoite surface proteins 1 and 2 (M SPl and MSP2 respectively) and the 

glutamate-rich protein (GLURP). The fact that these genetic markers encode antigens 

that are under immune selection has led some malaria researchers to question the data 

generated by their use (Hughes and Hughes 1995; Anthony et aL 2000). Microsatellites, 

which have recently been discovered to be abundant in the genome of P. falciparum, are 

usually in non-coding regions of DNA, and are therefore assumed to be selectively 

neutral (Goldstein & Schlotterer 1999).

In this study we set out to compare the effectiveness of the antigenic loci markers m spl, 

msp2 and glurp with five microsatellite markers, in differentiating recrudescence from 

re-infection in field isolates from Kenya.

1.11 Rationale [[

Malaria is for the most part endemic in developing countries with limited 

budgets, and there is a need to extend the useful life of cheaper antimalarial drugs. An 

understanding of the evolution and spread of resistance will enable the effective 

monitoring of resistance patterns and inform policy changes and better interventions.

73



The studies on the evolution and spread of antimalarial drug resistance published to date 

have been conducted in areas with low malaria transmission. A more extensive study 

involving both low and high transm ission areas needs to be conducted to exam ine the 

effects of antimalarial drugs in ai'eas with varying transm ission indices, especially in 

high transm ission areas, where recombination is high. Therefore, we set out to compare 

the rates of evolution and spread of SP resistance in malaiia endemic areas of Kenya.

SP was officially introduced as the first-line antimalarial treatment in Kenya in 1997 

though it was being widely used before then by most people, especially those visiting 

private health facilities, due to the ineffectiveness of chloroquine. By the time it will be 

replaced as the official first-line antimalarial by Artemisinin/lumefantrine (Coartem® 

[Norvatis]) in 2006, treatment failure rates (from in vivo data) with SP in most endemic 

areas might be well over 60% (EANMAT data at http://www.eanmat.org).

1.12 Research objectives

1.12.1 General objective

To investigate the evolution and spread of antimalarial drug resistance in Kenya and the 

effect of drug resistance mutations on the general population of P. falciparum  in Kenya.

1.12.2 Specific objectives

i) To study the evolution of SP-resistant parasites and their spread in Kenya 

as a consequence of SP use.

ii) To compare the effectiveness of unlinked microsatellite markers with 

antigenic markers of M spl, Msp2 and glurp to differentiate between 

recrudescence and reinfection in malaria field isolates.
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iii) To compare the genotypes of malaria parasites, and their population 

structure, collected from three different locations (with varying 

geographical settings and transm ission intensities) in Kenya.

iv) To study the relationship between the spread of drug-resistance and the 

different transm ission intensities.

75



2.0 CHAPTER TWO...Materials and m ethods
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2.1 Comparing uniinked microsateiiites with antigenic loci

2.1.1 Study sites

The samples used in this study were collected from regions designated as 

sentinel sites for monitoring drug resistance established by the Kenyan M inistry of 

Health and the East African Network for Monitoring Antimalarial Treatment 

(EANMAT). The three areas represent varying geographical features and degrees of 

malaria endemicity. The studies were part of in vivo efficacy tests for antimalaiials and 

were performed according to standard guidelines (World Health Organization 1996). 

Ethical clearance for the studies was obtained from the Kenya Medical Research 

Institute and the University of Glasgow Ethical Review Committee.

The study in Mwea (n= 68 samples) was carried out between October and November 

2001. Mwea area (IS  37W) lies at an altitude of 1200m in central Kenya (Figure 5), in a 

region that is mostly reliant on agriculture by irrigation. Malaria in this area is classified 

as ‘irrigation, seasonal endemic’ (http://www.eanmat.orgk meaning that the vector 

environment is maintained by the im gation agriculture. Malaria transmission is seasonal 

and the infections prevalence is between 30-40%, (meso-endemic). The maximum 

temperature can be as high as 33°C. In this region, P. falciparum  is highly resistant to 

SP, with early treatment failure rate (ETF) of more than 35%, (EANMAT, 2003) that 

indirectly or directly impacts on the increased number of malaria illnesses and malaria- 

related deaths in this region.

Anopheles arabiensis (73%), An. pharoensis (7%) and An. funestus (3%) have 

been identified as the principal vectors of malaria in this area (Rapuoda 1995). Studies 

conducted between 1989 & 1990 showed the parasite rates among children aged 1-9 

years to be between 0.7% and 5.4% (Ijumba et al., 1990). Malaria in this area appears to 

affect both adults and children (52% of admissions were below 15 years between 1996
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and 1997) (Division of Malaria Control 1998). At the time of this study the SP 

treatment failure rate was 24%.

The studies in Tiwi (n= 60 samples) and Bondo (n= 60 samples) were carried out 

between October and December 2000. Tiwi area is located in the coastal region of 

Kenya, 4S and 39W (Figure 5), where malaria is holoendemic. It lies at an altitude of 

just 2m above sea level. Tiwi has an annual entomologie inoculation rate (EIR) of four 

infective bites per year (range 0-18) (Mbogo et aL, 1995). An annual EIR of 120 has 

been recorded for a site with the highest transmission intensity in this region (Mbogo et 

aL, 2003). This area is characterized by continuous malaria transmission with 

pronounced seasonal variation and relatively high incidence of severe disease occurring 

in time-space clusters, and patients frequently carry polyclonal isolates (Kyes et aL, 

1997). At the time of this study SP in vivo failure rate was about 30% in Tiwi. Bondo is 

located in the western zone of Kenya (Figure 5) in an area where malaiia is 

hyperendemic with very high transmission rates. It lies at ON and 34W at an altitude of 

about 1230m. At the time of this study the SP in vivo failure rate in Bondo was about 

40%. Parasite prevalence rates in these two areas are >90% especially in children less 

than five years (Division of Malaria Control 1998).

2.1.2 Patient recruitment and management

All studies were carried out using the same inclusion criteria. Patients who 

presented at the respective hospitals with symptoms suggestive of malaria had a blood 

smear undertaken and were later considered for recruitment if they fulfilled the 

following inclusion criteria: 6-59 (6-120 for Mwea) months of age; positive blood 

smears with P. falciparum  monoinfection and parasite density of between 2000- 

100,000 asexual parasites per microliter of blood; uncomplicated malaria with absence 

of symptoms of severe malaria or danger signs e.g. convulsions, excessive vomiting,
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drowsiness or inability to feed; axillary temperature of 37.5 “C and above or history of

fever in the last 48 h; absence of history of allergy to sulfa drugs; hemoglobin level of 

5g/dl or more; residence within an accessible address and agreement to return to the 

clinic for follow-up and provision of informed consent.

Clinical history was taken from the recruited patients including anti-malarial 

therapy in the last 72 h. A physical examination was earned out and the axillary 

(armpit) temperature was measured using a clinical thermometer. Fever was defined as

axillary temperature of 37.5 ° C and above.

Patients who fulfilled the inclusion criteria and agreed to participate in the study 

were treated with the standard paediatric dose of Sulfadoxine 25mg/kg and 

Pyrimethamine 1.25mg/kg (SP) as a fixed-dose combination. Patients were asked to 

return for follow-up on days 1, 3, 7 and 14 for the Bondo and Tiwi studies and on days 

1, 2, 3, 7, 14, 21 and 28 for the Mwea study. The Mwea study was extended to 28 days 

followup because of lower transmission intensity in this region (World Health 

Organization 1996).
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On each day of follow-up, thin and thick blood smears were prepared and is

examined, hemoglobin concentration in the blood was measured on days 0 and 14 and 

also day 28 for Mwea using a haemoglobinometer. On each appointed day of the 

follow-up period, and on any other day if the patient returned to the clinic with fever

exam ination. Patients who failed to return on the designated days were found and

was evaluated.
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during this period, the patient’s history was taken and they were given a physical

requested to return to the health unit by the assigned social worker/health visitor. A 

thick blood smear from a fingerprick sample was prepared and exam ined to assess 

parasitaemia. Thick smears were stained with 10% Giemsa’s stain for 10 minutes, and
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Figure 5: Map of Kenya showing the areas endemic for malaria (shaded brown) 
and the study sites

The parasite count obtained was then multiplied by a factor of 40 in order to 

obtain number of circulating parasites per microliter of blood, assuming a WBC count 

of 8000/pL of blood (World Health Organization 1991a). In the case of a positive 

smear, alternative drug treatment was provided according to the treating physician, and 

severe cases were referred to hospitals.

Approximately 2-3 drops of the fingerprick blood collected on day 0 and on the 

follow-up days was spotted on Whatman 3M filter paper, allowed to dry, and then
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packaged individually in sealed plastic bags for molecular analysis as part of this PhD. 

Project. These samples were marked with the patient identification number and the date 

of sample, and were stored with desiccant at 4°C.

All outcomes were registered on a case record form labeled with the patient’s 

study identification number.

2,1.3 DNA extraction

2.1.3.1 DNA from cultured material

DNA was extracted from in vitro cultures of laboratory lines originating from 

various geographic origins and this was used to optimize and select the microsatellite 

markers for the study. The parasite lines chosen were K1 (Thailand), R 033 (Ghana), 

7 0 8  (Brazil), HB3 (Honduras), 3D7 (The Netherlands), SL-D6 (Sierra Leone), ÎTG2F6 

(Brazil), Dd2 (Indo-China), ZIM V160 (Zimbabwe), V IS (Vietnam), FCBl 

(Colombia), lEC 513/86 (Brazil), F32 (Tanzania), K28 (Thailand), and SUD106/11, 

SUD 124/8, SUD 126/1, and SUD 128/5 (all from Sudan). The isolates had been grown in 

vitro according to the standaid methods (Trager & Jensen 1976). Culture material was 

centrifuged at 1500 x g, the supernatant removed and the red blood cell pellet used for 

DNA extraction. Each culture was at around 6% parasitaemia at the time of extraction. 3 

pL of the red cell material was used for DNA extraction. The Instagene® (Bio-Rad, UK) 

extraction kit was used to extract DNA from the pellet following the manufacturer’s 

instructions. The DNA was not quantified using a spectrophotometer since it is 

normally too impure to get an accurate reading.

2.1.3.2 DNA extraction from filter papers

DNA from the filter papers was extracted using the Chelex-100 method (Plowe 

et a l ,  1995). An approximate 4 mm^ of the blood-soaked filter paper was excised using
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a sterile scalpel blade. This was used for extraction of DNA according to the protocol 

(Plowe et ah, 1995). The extracted DNA (approx. volume 200ul) was divided into 20 pi 

aliquots to avoid repeated freeze-thaw cycles and degradation. These aliquots were 

stored at -80°C and the aliquot in immediate use was stored at -20®C.

2.1.4 Microsatellite markers

Over 900 microsatellite loci have been mapped in the genome of P. falciparum  

with at least one every 2-3 kb (Su et al., 1999). The sizes of PCR products for all of 

these loci are known for the 3D7 clone. However, there is little information on the 

population size diversity for most microsatellite mai'kers except for twelve that have 

been used for the population studies that have been carried out to date (Anderson et al., 

1999). Of these 12 markers used previously, some have been shown to be located in 

introns of genes (Anderson et al., 1999), or very close to coding regions, and were 

therefore not considered suitable for this work.

2.1.4.1 Selection of microsatellite markers

Initially, ten microsatellite loci were selected on the basis of (i) not being in 

coding sequence or very close to an open reading frame (ORE), (ii) having a PCR 

product of at least 200 bp with clone 3D7 (www.ncbi.nlm.nih.gov/Malaria/ index.html), 

and (iii) consisting of trinucleotide repeats. Microsatellites located in chromosomes 4 

and 7 were also avoided since these chromosomes are known to code for drug targets 

which might interfere with normal Mendelian inheritance of alleles through selective 

sweeps or ‘hitchhiking’. The chosen markers and their chromosomal locations are 

given in Table 3. Five of these mai'kers, C2M3, C3M85, TA48, TA17 and C14M108, 

have not been used in previous studies.
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2.1.4.2 Optimisation of amplification conditions for microsatellite loci

The initial optimisation using DNA extracted from in vitro cultures was done 

using a single round of PCR using the primers designed by Su and colleagues (Su et a l, 

1999). This is because, with the high parasitaemia present in in vitro cultures, one round 

of PCR is sufficient to generate enough PCR product to visualise on agarose gels. The 

ten microsatellites were amplified from DNA extracted from 18 laboratory-cultured 

isolates, with a wide range of geographical locations, 50% coming from East and 

Southern Africa, as described in section 2.1.3. One round of amplification (30 cycles) 

was perfoiTned for each DNA sample, using 1 pi of DNA extracted previously.

Approximately 5 p i of the PCR product were mixed with 1-2 pi of 6X loading 

dye (Promega: 0.4% orange G, 0.03% bromophenol blue, 0.03% xylene cyanol FF, 15% 

Ficoll® 400, lOmM Tris-HCl (pH 7.5) and 50mM EDTA (pH 8.0)) and analysed by 

agarose gel electrophoresis on a 3% Metaphor® agarose gel (supplier) in IX  Tris- 

borate-EDTA (TBE) buffer (prepared as one litre lOX stock with 108gm Tris base, 

55gm boric acid and 40 ml 0.5 M EDTA). Metaphor® is a high-resolution agarose that 

enables better resolution than standard agarose, allowing discrimination of PCR 

products with small size differences (4-10 bp). Although polyacrylamide gels or 

automatic sequencing machines give excellent resolution of very small differences in 

PCR product size, this benefit is outweighed by their high cost, toxicity of reagents and 

relatively low throughput. High-resolution agarose gels provide almost the same level 

of resolution for a lower cost without the need to purchase expensive equipment and 

reagents and may therefore be more suitable for use in laboratories in malaria-endemic 

countries. Stutter bands are also not seen with Metaphor agarose, whereas these can 

cause problems of interpretation on polyacrylamide gels.
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After electrophoresis, the gel was stained with Ipg/m l solution of ethidium 

bromide for 45 minutes. The DNA was visualised by ultraviolet transillumination and 

band sizes determined by comparison with a standaid 100-base pair DNA ladder 

(Promega) run at each side of the gel. The sizes were calculated using a gel 

documentation package, Labworks 3.0 Image Acquisition and Analysis Software (UVP 

Inc., Upland California, USA).

DNA from any parasite line that failed to amplify at any locus after repeating the 

amplification reaction a second time was scored as a null allele at the specific locus.

Five of the markers were chosen for the field analysis on the basis of having the widest 

range of product sizes, highest degree of polymoiphism, and lowest number of null 

alleles when tested with the 18 laboratory isolates. The loci chosen, with their repeat 

units and size of the respective 3D7 PCR product, are shown in Table 4. A 

microsatellite locus with dinucleotide repeats, C2M3 (chr2), was included for 

comparison with the trinucleotide repeat loci.

2.1.4.2.1 Basic PCR conditions

The cycling parameters for all loci were optimised to work with the same 

concentrations of PCR reagents. These were final concentrations of IX  buffer, 200 uM 

dNTPs, 100 nM of each primer and 1 unit of Taq polymerase. A PCR machine (M l 

Research) fitted with a gradient block was used to define the optimum annealing 

temperatures. The full primer sequences and PCR conditions for each of the selected 

loci are listed in (Table 4 and Table 5).

2.1.4.2.2 Design of primers and optimisation for nested PCR

Field isolates generally have lower parasite densities (normally 0.1- 3%) 

compared to those found in cultures (about 6%) and thus require two rounds of PCR to 

get adequate DNA for visualisation. Therefore a nested PCR reaction was used with the
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extra primers being designed outside the first pair using the 3D7 sequence available at 

WWW.PIasmoDB.org. The primers were designed such that the primary PCR product 

was bigger than the secondary product by at least 150 bp. This was to aid in better 

resolution in case of carry-over PCR material from the primary PCR during template 

addition.

These PCR conditions for the reactions were optimised using a few of the culture 

isolates and are shown in Table 5.

Microsatellite loci Chromosome 3D7 PCR product

C2M3 2 340

C3M85 3 270

POLYu 4 224

TA42 5 183

TA l 6 198

TA17 8 199

TA40 10 210

TA48 12 253

TA60 13 202

C14M108 14 241

Table 3: List of microsatellite loci, chromosomal location and size of the 3D7 PCR 
product

86

http://WWW.PIasmoDB.org


Marker Repeat Outer Primers (shown 5’ to 3’) Nested Primers (shown 5’ to 3’)

C2M3 TA F-CACTTATGTTATGACAAGAAC
R-GTGAAAAGGATATGCTTCC

F-AAAGTGGGATTCATCCAG
R-TCGGGGTATTATTAACATG

C3M85 TTA F-CTTAACCGTTCAGGAGAT
R-GAGTTGATAACTTGTTGGT

F-AAGGGATTGCTGCAAGGT
R-CATCAATAAAATCACTACTA

TA48 TAA F-AATCTATCGGCGTTGGTAGA
R-TGGGTTGTGTTACATGAACG

F-TTTTGATATCTCTCAATCAT
R-CTTCACGACAGAGGTGTC

TA17 TTA F-GTATCTCTTAGATGTTAG
R-CTTATGGATGTTAATGAC

F-CTGTACCTTTAGGTATCATA
R-GAAAATAAAACATTAAAACTATG

TA40 TAA F-TGGAAAATACAGCAACGGAG
R-AGCCAAATCAAAAAGGAATC

F-GGTTAATATGATCACAAAATG
R-ATTGTTGATTCATGAAATGCA

Table 4: Microsatellite markers used in the study, their repeat unit, and the 
sequences of the outer and nested primers

Marker

C2M3

C3M85

TA48

TA17

TA40

Cycling Parameters

94°C for 2 min, then 30 cycles of 94°C for 40 sec, 45"C for 40 sec and 
60“C for 1 min.

94°C for 2 min, then 30 cycles each of 94“C for 40C sec, 50°C for 1 
min and 60°C for 1 min

94°C for 2 min, then 30 cycles each of 94°C for 40 sec, 49“C for 40 sec 
and 60° C for 1 min.

94°C for 2 min then 30 cycles of 94°C for 40 sec, 50°C for 40 sec and 
60°C for 1 min.

94°C for 2 min, then 30 cycles each of 94°C for 40 sec, 47°C for 40 sec 
and 60°C for 1 min.

Table 5: Microsatellite markers chosen, and the optimised cycling conditions for 
each locus.

The same conditions were used for both primary and secondary (nested) reactions
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2.1.5 Distinguishing recrudescence from new reinfections

To distinguish genuine recrudescence of resistant parasites from new 

reinfections arising during the follow-up period, day 0 (DO, pre-treatment) and the 

positive follow-up (post treatment) isolates (R) were genotyped at three highly 

polymorphic gene loci, merozoite surface protein-1 (M spl), rnerozoite surface protein-2 

(Msp2) and the glutamate-rich protein (glurp), as described (Ranford-Cartwright et a l  

1997).

The isolates were also genotyped with the five polymorphic microsatellite loci, 

C2M3, C3M85, TA40, TA17 and TA48, as selected in section 2.1.4 above, to compare 

with the results obtained with the gene loci.

2.1.5.1 Genotyping at the Mspl, Msp2 and glurp loci

DNA extracted from patient samples at the time of admission to the study (day

0) and at the time of reappearance of parasites and/or symptoms (R) was amplified at 

the M spl, Msp2 and glurp loci using previously published conditions (Ranford- 

Cartwright et a l  1997). Two microlitres of parasite DNA was used as template in the 

primary reaction, and 3 ju-l of the primary PCR product was used as template in the 

nested reaction. Amplifications were performed using a PTC-100™ thermocycler (MJ 

Research, Inc., Waltham, MA, USA). Primer sequences and reaction conditions are 

given in Table 6.



Locus Primers Outer PCR 
parameters

Nested PCR 
parameters

M spl
01 -C AC ATG A A AGTTATC A AGA ACTTGTC 
02-GTACGTCTAATTCATTTGCACG

N1 -GCAGTATTGACAGGTT ATGG 
N2-GATTGAAAGGTATTTGAC

94°C for 3 min, 
30 cycles each of 
94°C for 25S, 
50oC for 35S 
and 68°C for 2.5 
min, then ÔŜ ’C 
for 8 min

-As for 
primary 
reaction

Msp2 52-GAGGGATGTTGCTGCTCCACAG
53-GAAGGTAATTAAAACATTGTC

S1 -GAGTAT AAGGAG A AG TATG
54-CTAGAACCATGCATATGT CC

30 cycles each of 
94°C for 25S, 
42‘’C for 60S; 
65®C for 2 min, 
then a final 
extension at 
65°C 8min

30 cycles each 
of94"Cfor 
25S, 50°C for 
60S, 70”C 60S 
then final 
extension at 
70°C 8 min

Glurp G4-ACATGCAAGTGTTGATCC
G5-GATGGTTTGGGAGTAACG

G3-TGTAGGTACCACGGGTTCTTGTGG
GLTGAATTCGAAGATGTTCACACTGAAC

94 °C, 3 min, 30 
cycles each of 94 
"C, 25S, 45°C, 
60S, 68°C, 2min; 
then final 
extension at 
72"C, 3 min

30 cycles each 
of94°C, 60S 
55°C, 2 min 
70 "C,
2min,then final 
extension 72 
”C, 3 min

Table 6: Primers and PCR cycling conditions for the antigen-coding loci

Ten microlitres of the nested PCR product were mixed with 1-2 ul of 6X loading 

dye (0.4% orange G, 0.03% bromophenol blue, 0.03% xylene cyanol FF, 15% Ficoll® 

400, lOmM Tris-HCl (pH 7.5) and 50mM EDTA (pH 8.0), Promega) and analysed by 

agarose gel electrophoresis on a 1.5% agarose gel stained with 0.5 pg/ml ethidium 

bromide in IX  Tris-borate-EDTA (TBE) buffer. Each A or day 0 (DO) isolate was run 

alongside its post treatment (R) isolate for ease of comparison. DNA was visualised by 

ultraviolet transillumination and band sizes determined by comparison with a standard 

100-base pair DNA ladder (Promega) run at each side of the gel. The sizes were 

calculated using a gel documentation package, Labworks 3.0 Image Acquisition and 

Analysis Software (UVP Inc., Upland California, USA).
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If there was no amplification for any sample, the PCR was repeated with up to 2.5 times 

the quantity of template DNA in the primary reaction. If no amplification was detected 

after this second reaction, genotyping was classified as unsuccessful.

2.1.5.2 Genotyping at microsatellite loci

Each pair of patient samples (A or DO and R) was subjected to PCR 

amplification with each of the five microsatellite loci described in section 2.1.4. As for 

the antigenic loci M spl, Msp2 and glurp, two microlitres of parasite DNA was used as 

template in the primary reaction, and 3 pi of the primary PCR product was used as 

template in the nested reaction. After amplification the PCR products were subjected to 

electrophoresis on 3% Metaphor® agarose gels (EMC Bioproducts) in 1 x TBE buffer. 

Metaphor® enables better resolution than standard agarose, allowing discrimination of 

products with small size differences (5-lObp.). The DNA was stained with 0.5 pg/ml 

ethidium bromide and visualised using UV illumination. PCR product sizes were calculated 

using Labworks 3.0 Image Acquisition and Analysis Software (UVP Inc., Upland 

California, USA) by comparison with molecular weight markers (lOObp ladder, Promega) 

run on each gel.

2.1.6 Analysis of results

2.1.6.1 Definition of recrudescence or reinfection

It was assumed that after a patient was initially treated for malaria, a subsequent 

episode was caused by either the same parasite genotype(s) present before treatment 

(recrudescence) or by parasites acquired after treatment (reinfection) or by a mixture of 

the two (recrudescence plus reinfection). An outcome was defined as recrudescence if a 

follow-up sample contained identical alleles or a subset of the alleles present in the 

admission sample. An outcome was defined as reinfection if a follow-up sample 

contained only new alleles. If a follow-up sample contained alleles present in the first
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sample in addition to new alleles, the outcome was considered as both recrudescence 

and reinfection.

2.1.6.2 Comparison of the two classes of marker

The comparison of the two sets of the results of the two sets of markers was 

done using the Cohen’s Kappa ( k )  test of agreement in the SAS/STAT software 

program version 8.2 (SAS Institute Inc. Cary, North Carolina, USA 1999- 2001).

Possible values of K are constrained to the interval 0 to 1; where K=0 means no 

agreement above that expected by chance, and k=1 means perfect agreement. A value of 

k=0.5 and above was considered indicative of significant agreement (Cohen J. 1960). I

The likelihood of the null hypothesis that K=0, i.e. no agreement above that expected by 

chance, was also calculated. Mathematically, kappa is defined as the improvement upon 

chance agreement, divided by the maximum possible improvement upon chance 

agreement: K = P(A) -  P(E)/1 - P(E) where P(A) is observed agreement and P(E) is 

agreement expected by chance. The method used to find P(E) is the same as that used in 

the chi-squared test (Fleiss et al., 1979).

2.1.6.3 Multiple clone infections

Plasmodium falciparum  isolates were characterised according to the size of the

fragment at each locus. DNA fragments were categorised into different size classes 

(bins) for the statistical analyses. DNA fragments were allocated into bins of 10 bp for 

the antigen gene loci, and 6 bp for the microsatellite loci, as described by Brockman 

(Brockman et al., 1999) and by Paul (Paul et al., 1998). The reason different bin sizes 

were used for the two sets of markers is because of the use of gels with different 

resolving powers. The multiplicity of infection (MOI) was estimated by taking the 

highest number of alleles (bands) per individual. For example, if an isolate had one 

allele at each of the loci, the MOI was taken to be one, and if the isolate had two alleles
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at two loci but three at a third, then the MOI was three. Mean MOI was calculating by 

dividing the total MOI by the number of individuals analysed.

Since malaria infections in humans are caused by the haploid stage of the 

parasite, the presence of two or more differently sized PCR products in the same sample 

using single copy markers indicates a multiple clone infection. Multiple alleles were 

scored if two or more alleles of the same locus could be distinctly observed on the gel.

2.1.7 Genetic diversity

An analysis of the genetic structure of the studied populations was conducted 

using only the alleles of the microsatellite loci. While a lot of software programs are 

freely available for population genetics data, there are very few that can be used for the 

analysis of population genetics of P. falciparum  and even these require a lot of 

reorganization of data and, most times, the exclusion of some. This is mostly due to the 

genetics of the parasite especially its haploid nature (one allele per locus per parasite), 

while most software was designed for diploid organisms, and also its multiple clone 

infections (difficult to tell which allele goes with which in multilocus genotyping). This 

analysis used some of the software that can analyse haploid data although some of the 

data had to be excluded or reorganised to fit the programs’ requirements.

2.1.7.1 Allele numbers and Heterozygosity

The mean number of alleles (MNA) detected in each population and the 

expected heterozygosity {He) are good indicators of the genetic polymorphism within 

the populations under study. The MNA is the average number of alleles, at all loci 

studied, observed in a population (Nei 1987a).

Generally the MNA is highly dependent on the sample size because of the 

presence of unique alleles that occur in low frequencies, which are less likely to be 

detected in small samples. In addition, the number of observed alleles tends to increase
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as sample size increases, in populations with a large effective population {Né) size (Nei 

1987b). Therefore the comparison of the MNA between populations may not be 

meaningful unless sample sizes are more or less the same (Haiti & Clark 1989; Nei 

1987b).

Since the malaria parasites studied in this case were haploid, expected 

heterozygosity {Be) for each locus is defined as the probability of drawing 2 alleles of 

different length from a population sample and is calculated as follows (Anderson et a l ,

1999):

H,=[n/(n-l)][l-S",=i

where P  is the frequency of the  ̂ ' th allele and n is the number of alleles in the 

sample.The MNA and expected heterozygosity were calculated using the program 

Microsatellite Toolkit (http://oscar.gen.tcd.ie/~sdepark/ms-toolkit/index.html) .

2.1.7,2 Linkage disequilibrium

In the study described here, allele frequencies were calculated using only the 

predominant allele present at each locus within each infection (Anderson et al., 1999). 

The predominant allele at each locus was defined as the brightest band on the gel under 

UV illumination. While this procedure results in unbiased estimation of allele 

frequencies within a population if we assume the composition of PCR products is 

representative of the composition of templates, it is not the most ideal since the most 

common parasite in an infection might not be reflected in the gametocyte numbers and 

therefore in the next generation.

The predominant allele detected at each locus was used to construct “ infection 

haplotypes” . Where blood samples contain a single parasite clone, this results in 

recovery of true parasite haplotypes. Where two or more clones are present, the 

infection haplotypes may be a composite of alleles from two or more clones. This may
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impose additional recombination on the data and bias the data against detection of LD 

although the reverse may be true where detection of LD is missed due to exclusion of 

m inor alleles.

Genotypic linkage disequilibrium was tested by the exact probability test 

performed using GENEPOP software (Raymond & Rousset 1995). The null hypothesis 

is that genotypes at one locus are independent of genotypes at the other locus. This test 

computed unbiased estimates by randomization (2,000,000 iterations) and by the 

Markov-chain method for the exact probabilities of random association for all 

contingency tables corresponding to all possible loci pairs within the combined 

populations.

The program LIAN, version 3 (Haubold & Hudson 2000), was used to compute 

the number of alleles shared between all pairwise comparisons of complete 5-locus 

haplotypes and to calculate the variance, Vd, of these pairwise differences. The sample 

vaiiance was then compared with the variance expected under linkage equilibrium, Ve. 

To investigate if the observed data differed from random expectations, the observed Vp 

was compared with the distribution of Vp values in 10,000 simulated data sets in which 

alleles at each locus were randomly reshuffled among genotypes. The index of 

association (7^) was used to measure the strength of LD. The “ classical”  Ia was defined 

as I  A = (VpfVe - I), where Ve is the mean variance of the reshuffled data sets (Brown et 

al., 1980). However, since this statistic scales with r  - 1, where r is the number of loci 

analyzed (Hudson 1994), a “ standardized” IA  statistic (Ias), calculated as Ias =(Vd/Ee-

l)/(r  - 1) was used. A measure of haplotype-wide linkage and 95% confidence limits, 

Lmc, was determined by Monte Carlo simulations.

94



2.1.7.3 Genetic differentiation of the populations

The understanding of genetic structuring or differentiation within and between 

populations is of interest to population geneticists because it reflects the number of 

alleles exchanged between populations, which influences the genetic composition of 

individuals within these populations (Balloux & Lugon-Moulin 2002; Souza e t a l., 

1992). Gene flow between populations determines the effects of selection and genetic 

drift, generates new polymorphisms and increases the local effective population size 

(Balloux & Lugon-Moulin 2002; Souza e t a l., 1992). Fst and G st are very commonly 

used to describe population differentiation (Nei 1973).

2.1.7.3.1 The fixation index, Fst

Fst is a fixation index that was developed by Wright (Wright 1921) to account 

for inbreeding within samples. Wright (Wright 1951; Wright 1965) defined Fsr as the 

relatedness between two alleles chosen at random within sub-populations relative to 

alleles sampled at random from the total population. Fsr therefore measures inbreeding 

due to the relatedness among alleles because they are found in the same sub-population. 

Fst can be defined as:

F st -  (H t -  H s)/ Hg

Where Ht is the expected total heterozygosity and Hs is the observed within- 

population heterozygosity,

Fst estimates were calculated using the programs FSTAT 2.9.3 (Goudet 2000) 

and GENEPOP (Raymond & Rousset 1995).

2.1.7.3.2 The coefficient of gene differentiation, G st

The coefficient of gene differentiation {G st) developed by Nei, (Nei 1973) is an 

extension of his genetic theory to apply to a pair of populations applied to the structured 

populations (Nei & Feldman 1972). G st can be computed directly from allele
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frequencies in terms of expected heterozygosities within and between populations. 

Unlike F st, the estimation of G st relies only on allele frequencies (Nei 1987a). This 

method offers several advantages because the number of alleles at the locus does not 

affect the value and neither do evolutionary forces such as mutation, selection and 

migration.

G s t  can be defined as:

G st = D s t /H t

Where D st is the average gene diversity between and within sub-populations and H t is 

the mean heterozygosity among the populations studied. G st estimates in this study 

were calculated using the program FSTAT (Ota 1993).

2.1.7.4 Population subdivision

The isolation by distance model of population structure was used to test for 

population subdivision. This model assumes that mobile ‘propagules’ with continuous 

geographical distribution in an undifferentiated environment distribute themselves at 

various distances from their origin (Rousset 1997). There are no discrete boundaries 

between different parts of the range and allele frequencies change gradually w ithout any 

discontinuities (Nadler 1995). The extent of population subdivision as calculated by 

isolation by distance was performed using the ISOLDE program incorporated in the 

GENEPOP software (Raymond & Rousset 1995). The subdivision analysis was done 

per population/site.

2.2 Analysis of loci linked to drug resistance

The samples taken at admission were subjected to PCR amplification of two 

genes linked to resistance of SP, which is the drug the patients were treated with. This 

section describes the analysis of the genes dhfr and dhps and the loci flanking 

approximately 8 kb on either side of each gene. The genes were analysed using dot blot

96



hybridization with oligonucleotide probes specific to different mutations previously 

linked to drug resistance (Abdel-Muhsin et al., 2002).

2.2.1 Analysis at the dhfr locus

A  700 bp fragment of dhfr was amplified from each admission sample using a fully 

nested PCR, as previously described (Plowe et a l, 1995). DNA from parasites 3D7, 

Dd2 and T994 were included as controls for each of the alleles at positions 51, 59 and 

108 of dhfr (Table 9). The outer PCR was performed with primers A M Pl and AMP2 

with the reagents and cycling parameters shown in Table 7. 2-5 ul of DNA was added as 

template to each outer PCR.

The nested PCR was prepared using the SP l and SP2 primers as shown in Table 7, 

in a final reaction volume of 30ul. 2 pi of the outer PCR product was used as the 

template. The reaction parameters of the nested PCR are outlined in Table 7.

5 pi of the PCR product was mixed w ithl pi gel loading buffer (Promega) and 

subjected to electrophoresis through a 1.5% agarose gel in IX  TBE buffer with 

0.5pg/ml ethidium bromide. A 100 bp molecular weight marker was included in the gel 

to help with product sizing. PCR products were visualised by UV transillumination.

The remaining 25pi of PCR product was stored at -20°C prior to preparation of the dot 

blot.
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PRIMERS REAGENTS
CONC.

PCR
PARAMETERS

Outer

AMPl- TTTATATTTTCTCCTTT
TTA
AMP2-
CATTTTATTATTCGTTTTCT

lOOnM of 
primers, 200 
pM  dNTPs,
1 unit Taq, 
1.5mM 
MgCla"  ̂and 
IX  PCR 
buffer

95°C for 3 min 
[92°C for 30 sec, 
45“C for 45 sec and 
72°C for45 sec] 45 
then 72°C for 3 min

Nested

SPl- ATGATGGAACAAGTCTG 
CGAC

SP2 -ACATTTTATTATTCGTTTTC

-As above-

95°C for 3 min 
[92°C for 30 sec, 
45*’C for 30 sec, 
72°C for 30 sec] 30 
then 12°C for 3 min

Table 7: PCR reagents and cycling parameters for dhfr.
The primers are shown in the 5’ to 3’ orientation. * The MgCL was included in the 
PCR buffer.

2.2.2 Analysis at the dhps locus

An 1152 bp fragment of dhps was amplified for each isolate using a fully nested 

PCR as previously described (Abdel-Muhsin et al., 2002). In addition to the field 

samples, control samples to be used in each blot were included. The parasite lines 3D7, 

Dd2, T996, SLD6, HB3 and IEC513/86 were used as controls as they have various 

combinations of mutations at the dhps locus Table 9. The outer PCR was performed 

using primers 186 and M3717 with the other PCR reagents as shown in Table5. 2 pi of 

the sample DNA were added to the premix before amplification using the cycling 

parameters shown in Table 8.

The nested PCR premix was prepared using primers 185 and 218 and the PCR reaction 

performed with the cycling parameters shown in Table 8, in a final volume of 30ul. 2-5 

ul of the outer PCR product were used as template.

Analysis of the PCR products was performed as described earlier (section 2.2.1).
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Reaction PRIMERS REAGENTS
CONC.

PCR
PARAMETERS

Primai'y

186
GTTTAATCACATGTTTGCACTTTC

M3717
CCATTCCTCATGTGTATACACAC

lOOnM each 
primer, IX  
PCR buffer, 
1.5mM 
MgCE*,
200pM dNTPs, 
1 unit of Taq

95°C for 3 min 
[92'"C for 30 sec, 
50°C for 45 sec 
and 72°C for 60 
sec] X30 then 
72”C for 3 min.

Secondary

185
TGATACCCGAATATAAGCATAATG

218
ATAATAGCTGTAGGAAGCAAT TG

-As above-

95°C, 3 min
[92°C for 30 sec, 
48°C for 30 sec 
72®C for 30 sec] 
X30 then 72°C 
for 3 min

Table 8; PCR reagents and cycling parameters for dhfr.

The primers are shown in the 5’ to 3’ orientation. * The MgCE was included in the 
PCR buffer.

Parasite Dhfr51 Dhfr59 DhfrlOS Dhps436/37
combination

Dhps540

3D7 Asn Cys Ser Ser/Gly Lys

Dd2 He Arg Asn Phe/Gly Lys

T9-94 Asn Cys Thr

T9-96 Ala/Gly Lys

SL/D6 Phe/Ala Lys

HB3 Ser/Ala Lys

IEC5I3/86 n.d. Glu

Table 9: The parasite isolates used as controls, with the amino acids present at 
specific codons in dhfr and dhps.
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2,2,3 Dot Blot Hybridization

2.2.3.1 Preparation of samples for dot blot

For each sample that gave a positive result by nested PCR, 20 pi of PCR product 

was denatured with EDTA and NaOH to final concentrations of lOmM EDTA and 

0.4M NaOH. To ensure complete dénaturation, the mixture was boiled at 100°C for 10 

minutes in a boiling waterbath. The tubes were then spun briefly in a microfuge.

The mixture was neutralised using an equal volume of 2M ammonium acetate, pH 7 and 

blotted onto Genescreen nylon membrane (New England Nuclear, Houndslow, United 

Kingdom) using a dot-blotting apparatus (Bio-Rad, Hemel Hempstead, United 

Kingdom) according to the manufacturer’s instructions. Each PCR product was loaded 

into two different wells of the dotblotter, with half of the remaining PCR product (30ul) 

being placed into each well, and the duplicates being placed in different parts of the 

blot. After DNA transfer, the membrane was rinsed in 2X SSC (0.15M sodium chloride, 

15mM Trisodium citrate) for 1 minute, denatured in 0.4M NaOH for 1 m inute and 

finally neutralized in a mixture of IM  Tris-HCl and 1.5 M NaCl, pH 8, for 30 seconds. 

To fix the PCR products on to the membrane, the blot was then exposed to ultraviolet 

light in a UV crosslinker (Stratalinker, Stratagene, Amsterdam, The Netherlands) 

according to the manufacturer’s instructions.

2.2.3.2 Oligonucleotide probe labelling and hybridisation

In order to detect the dhfr and dhps alleles associated with changes at amino acid 

positions 51, 59 and 108 by the dot-blot hybridisation technique, specific probes were 

designed and labelled with [y-^^P]-ATP (Amersham Pharmacia Biotech Inc, Little 

Chalfont, United Kingdom) (Abdel-Muhsin et at., 2002). The sequences of the probes 

and the specific hybridisation conditions aie given in Table 10 and Table 11.
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Ten picomoles (pmol) of each probe were labelled using a single Ready-To-Go 

polynucleotide kinase reaction mix (Amersham Pharmacia Biotech Inc, Little Chalfont, 

United Kingdom) containing 10 units of T4 polynucleotide kinase, 50 mM Tris-HCl, 

(pH 7.6), lOmM MgClz, 5mM DTT, O.lmM spermidine, O.lmM EDTA (pH 8.0),

0.2|u.M ATP and stabilizers in a total volume of 50 pi, to which 0.37 MBq of [y-^^P]- 

ATP was added. Each probe was incubated with the labelling m ixture at 37°C for 30 

minutes and the unincorporated [y-^^PJ-ATP was removed using M icrospin G-25 

columns (Amersham Pharmacia Biotech Inc, Little Chalfont, United Kingdom) 

according to the manufacturer’s instructions. The labelled probes were stored at -20°C 

until required.

The membrane was prehybridised with hybridisation buffer [5 X SSPE (0.15M 

NaCl, lOmM sodium phosphate, ImM  EDTA), 5 X Denhardt’s reagent, 0.5% sodium 

dodecyl sulphate (SDS), 0.02 mg/ml of sonicated salmon sperm DNA] using 0.25-0.125 

ml of hybridisation solution per cm^ of membrane. The membrane and the buffer were 

incubated in a hybridisation oven with rôtisserie (Grant Boekel HIR 12, Cambridge, 

England) for at least 30 minutes at a temperature specific for the respective probe Table 

10 and Table 11. The labelled and purified oligonucleotide probe was added to the 

hybridisation buffer (I pi probe for every 1 ml of the hybridisation buffer) and the blot 

hybridised overnight at a temperature specific for the probe used. The blot was washed 

once with 2 X SSC for 20 minutes and twice for 10 minutes in 1 X SSC/ 0.1% SDS or

0.5 X SSC/ 0.1% SDS, at the temperature specific for the respective probe (Table 10 

and Table II).

The blot was wrapped in cling film and taped into an autoradiography cassette 

complete with intensifying screens. Location markers (Glogos II markers, Stratagene, 

Amsterdam, The Netherlands) were used to allow accurate positioning of the
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autoradiograph and blot. Each blot was exposed to Kodak MXB X-ray film overnight at 

-80°C after which the X-ray film was developed using an automatic developer (X- 

OGRAPH Imaging System Compact X4). The probe was stripped from the blot with 

two washes in O.IM NaOH for 15 m inutes each at room temperature. The blot was then 

rinsed briefly in 5 X SSC, air-dried and then re- hybridised with other probes or kept at 

room temperature until required. Each blot was hybridised with each of the probes in 

Table 10 or Table 11 according to whether the PCR product was from the dhfr or dhps 

locus.

Probe Sequence (5’ to 3’) Hybridisation
temperature

Stringent washes

DHFR 108

Ser-specific
(wild-type)

AACAAGCTGCGAAAGCATTCCAA 50”C [(1XSSC/0.1%S 
DS) iOmin] X2

Asn-specific
(mutant)

AACAAACTGGGAAAACATTCCAA 54.5“C [(1XSSC/0.1%S 
DS) lOmin] X2

DHFR-51

Asn-specific
(wild-type)

ATGGAAATGTAATTCCCTAGAT 50“C [(0.5XSSC/0.1% 
SDS) lOmin] X2

lie-specific
(mutant)

ATGGAAATGTATTTCCCTAGAT 50"C [(0.5XSSC/0.1% 
SDS) 10 min] X2

DHFR-59

Cys-specific
(wild-type)

GAAATATTTTTGTGCAGTTAC 52“C [(0.5XSSC/0.1% 
SDS) 10 min] X2

Arg-specific
(mutant)

GAAATATTTTCGTGCAGTTAC 50“C [0.5XSSC/0.1%S 
DS] 10 min X2

Table 10: Dhfr variant codons with their specific oligonucleotide probes and 
hybridisation and washing conditions
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Probe Sequence (5’ to 3’) Hybridisation
temperature

Stringent washes

DHPS 436/437
Ser/Gly-specific
(mutant)

GAATCTTCTGGTCCTTTT 42.5”C [(1XSSC/0.1%SDS) 
lOmin] X2

Ala/Gly-specific
(mutant)

GAATCCGCTGGTCCTTTT 52”C [(1XSSC/0.1%SDS) 
lOmin] X2

Ser/Ala-specific
(wild-type)

GAATCCTCTGCTCCTTTT 50”C [(1XSSC/0.1%SDS) 
lOmin] X2

DHPS-540
Glu-specific
(mutant)

CAATGGATGAACTAACAA 35“C [(lXSSC/0.i%SDS) 
lOmin] X2

Lys-specific (wild- 
type)

CAATGGATAAACTAACAA 35“C [(1XSSC/0.1%SDS) 
lOmin] X2

Table 11: Dhps variant codons with their specific oligonucleotide probes and 
hybridisation and washing conditions.

The blots were scored based on the specificity of the controls. Experimental 

samples and controls were dot-blotted in duplicate to reinforce correct scoring. Blots 

that had autoradiograph results with controls showing non-specific hybridisation were 

given an extra stringent wash to ensure specificity. If this was not successful in 

removing the non-specific hybridisation, then the hybridisation and washing steps were 

re-optimised.

2.2.4 Selective sweep due to SP use

2.2.4.1 Analysis of microsatellite loci around Dhfr

The DNA samples were typed at variable microsatellite loci flanking both sides 

of the dhfr gene. The microsatellite sequences analysed are located at 0.3 kb, 4.7 kb, 7.0 

kb and 8.0 kb and 0.5 kb, 4,0 kb, 6.5 kb and 8.0 kb, downstream and upstream of the
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dhfr gene, respectively (Table 12 and Table 13). A semi-nested PCR protocol was used 

to amplify each locus using primers designed from the sequence obtained from parasite 

clone 3D7 on the PlasmoDb database (Bahl et aL, 2002) except DHFR.3F and 

DHFR.3R which were described by Su and Wellems ( 1996), and DHFR.3R* which 

was described by Roper and colleagues (Roper et aL, 2003).

The optimised primary reaction contained 2 pi template, IX  PCR buffer, 200 

pM  dNTPs, 3.0 nM MgCE, 100 nM of each primer and 0.5 units Taq polymerase. The 

secondary reaction was performed in a total volume of 20 pi made up of 3 pi of primary 

PCR product, IX  PCR buffer, 200 pM  dNTPs, 3.0 mM MgClz, 100 nM of each primer 

and 1 unit Taq polymerase. The cycling conditions are as shown in Table 14.

The PCR products were analysed using Spreadex SEL 500® gels (Elchrom 

scientific, Switzerland) by electrophoresis in IX  Tris-Acetate EDTA (TAE) buffer 

supplied with the gels by the manufacturer. The precast Spreadex® gels ai*e made of new 

types of matrices with unique properties that make it possible to get better results by 

submarine electrophoresis than by vertical or flat-bed electrophoresis using m ini gels. 

These gels are recommended for applications that require the highest resolution in a 

narrow DNA size range (Kapitanovic et aL, 2001). The gels were stained in freshly 

prepared 0.4 pg/ml ethidium bromide solution in distilled water for 35 minutes. The 

staining was carried out in a shaker away from direct light according to the

Upstream region of Dhfr Downstream Region of Dhfr

DhfrD4 

8.0 kb

DhfrD3 

7.0 kb

DhfrD2 

4.7 kb

DhfrDl 

0.3 kb
Dhfr
Gene

DhfrUl 

0.5 kb

DhfrU2 

4.0 kb

DhfrU3 

6.5 kb

DhfrU4 

8.0 kb

Table 12: A diagram showing the location of microsatellite markers selected and 
their location from the ends of the dhfr gene.
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Locus DHFR primers (shown 5’ to 3’)
DOWNSTREAM

DHFRUl F-ATTCCAACATTTTCAAGA
R-GGCATAAATATCGAAAAC
R*-TCCATCATAAAAAGGAGA

DHFRU2 R-TATACAGGACGACGTTCT 
F- CAATCTCATGTAGACAAA 
F*-TGGTTTCTGCGATGAAACG

DHFRU3 F*-GCCTTCTTATTTTAAAGGG
R-CTTCAAATATATGATGACAT
F-GAAATATGTTTACAAGGAGG

DHFRU4 R-TTCCATGCTACAGATAAAACG
F-GTTCCTGTTATTTGTTTG
F*-GACATGTCTTCACTTTTAG

UPSTREAM
DHFRDl F-ATTTTACAATTTCGGATTTTAC

R-CATTGAGATAAATAAGTGTTCA
F*-TAAAGAAGGCATAATTTTCA

DHFRD2 F-GTATTATATACATGGATCAC
R-CTATACATTTCTTTTTCA
R*-CACCTTATTTTATTTGAAGGC

DHFRD3 F-GTGATGATATACCAAGCAG
R-ATACTTATATCATCAACCT
R*-CCGTGTTATTATCTATTC

DHFRD4 F-CATACGATATATGAAGCT
R-TCATCCATACAATTCATAT
F*-AATAAGAATAAATCAGGAGG

Table 13: Microsatellite loci flanking dhfr and their primers.

The study used a seminested PCR strategy. The F and R primers were used in the 
primary PCR while the* Primer with its corresponding primer (also used in the 
primary PCR) were used in the secondary reaction.

manufacturer’s instructions. They were then destained in distilled water for 30 minutes 

before visualisation by UV transillumination. The bands were analysed for size 

variation using Labworks 3.0 Image Acquisition and Analysis Software (UVP Inc., 

Upland California, USA) by comparison with M3 DNA ladder (Elchrom scientific). 

This marker contains over 50 DNA fragments in the size range from 50 to 622 bp 

specially designed for precise estimation of the size of unknown DNA fragments on 

Spreadex® gels. These are fragments produced from the digestion of pBR322 by 

Haelll, Mspl and Hhal enzymes.
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Markers Primary reaction parameters Nested reaction parameters
DHFRUl 94°C for 2 mins, 35X [94"C for 

30S, 47°C and 65°C for 1 min], 
then 65°C for 2 mins.

94”C for 2 mins, 30X [94^C for 
30S, 47“C and 65"C for 1 min], 
then 65°C for 2 mins.

DHFRU2 94°C for 2 mins, 30X [94°C for 
30S, 48°C and 65°C for 1 min], 
then 65°C for 2 mins.

94°C for 2 mins, 30X [94°C for 
30S, 50°C and 65"C for 1 min], 
then 65“C for 2 mins.

DHFRU3 94“C for 2 mins, 35X [94°C for 
30S, 48®C and 65°C for 1 min], 
then 65°C for 2 mins.

94°C for 2 mins, 30X [94"C for 
30S, 49°C and 65"C for 1 min], 
then 65”C for 2 mins.

DHFRU4 94°C for 2 mins, 30X [94“C for 
30S, 47“C and 65°C for 1 min], 
then 65”C for 2 mins.

94"C for 2 mins, 30X [94‘’C for 
30S, 50"C and 65"C for 1 min], 
then 65°C for 2 mins.

DHFRDl 94°C for 2 mins, 35X [94°C for 
30S, 48°C and 65°C for 1 min], 
then 65°C for 2 mins.

9 4 T  for 2 mins, 30X [94“C for 
30S, 50”C and 65°C for 1 min], 
then 65"C for 2 mins.

DHFRD2 94°C for 2 mins, 35X [94“C for 
30S, 45°C and 65“C for 1 min], 
then 65°C for 2 mins.

94̂ ’C for 2 mins, 30X [94°C for 
30S, 50‘̂ C and 6 5 T  for 1 min], 
then 65®C for 2 mins.

DHFRD3 94°C for 2 mins, 30X [9 4 T  for 
30S, 46“C and 65°C for 1 min], 
then 65”C for 2 mins.

9 4 T  for 2 mins, 30X [94°C for 
30S, 48*̂ C and 65“C for 1 min], 
then 65“C for 2 mins.

DHFRD4 94"C for 2 mins, 35X [9 4 T  for 
30S, 47"C and 65°C for 1 min], 
then 65°C for 2 mins.

94°C for 2 mins, 30X [94‘̂ C for 
30S, 48"C and 65°C for 1 min], 
then 65”C for 2 mins.

Table 14: PCR parameters for the microsatellite loci flanking dhfr

2.2.4.2 Analysis of microsatellite loci around dhps

The analysed microsatellites sequences for dhps are located at 0.4 kb, 3.7 kb, 7.3 kb 

and 8.5 kb, and 0.1 kb, 3.8 kb, 6.5 kb and 8.7, upstream and downstream of the dhps 

gene, respectively (Table 15 and Table 16). The PCR mixtures were all set up as above 

described for dhfr loci and the cycling parameters are listed in Table 17.

106



Upstream region of Dhps Downstream Region of Dhps

DhfrD4 

8.5 kb

DhfrDS 

7.3 kb

DhfrD2 

3.7 kb

DhfrDl 

0.4 kb
Dhps
Gene

D hfrUl 

0.1 kb

DhfrU2 

3.8 kb

DhfrU3 

6.5 kb

DhfrU4 

8.5 kb

Table 15: A diagram showing the location of microsatellite markers selected and 
their location from the ends of the dhfr  gene.

Locus PRIMERS
DOWNSTREAM

DHPSUl F-CTTGACATATAATGAGCATG
R-ATTGTGGACAAATCACAC
R*-GGAAAGTGCAAACATGTG

DHPSU2 F-TCTATAGTATACATGGAT
R a t t t c a a a t t g t t c g t c c

F*-CAATGTCCATTGTGCATCA
DHPSU3 F-ATGTACATATTGATAACC

R-ATTGTTAATCTTCCTTAG
F*~CAATAACCTGAAAAGTGA

DHPSU4 F-GAATAAATTAATTACACACGG
R-GTAATACACATAAAACAACAG
R*-TGTACATTTAAAGATAGATG

UPSTREAM
DHPSDl F-AGTTCTTGTATAGTTTCC

R-TCTATAATCGATACCAAG
F*-CACTTTTATAGTTTAAGTTG

DHPSD2 F- CAACTTATATCTGAATGG
R-CATACAGCAAGTGCAAGAGC
F*-GATTGTAATTACTAAATGG

DHPSD3 F-CACTTAATGTAAATGGAG 
R- ATATTAAGCTTGTACATG 
F*-CACATATATATGTACGTAGT

DHPSD4 F-CATACAAAACAAAATGCG
R-AATATACAAATAGCTAAG
R*-CATATGTTTTTAAGATATAAGC

Table 16: Microsatellite loci flanking dhps and their primer sequences.
The study used a seminested PCR strategy. The F and R primers were used in the 
primary PCR while the* Primer with its corresponding primer (also used in the 
primary PCR) were used in the secondary reaction.
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Marker Primary reaction parameters Nested reaction 
parameters

D HPSU l 94°C for 2 mins, 35X [94"C for 30S, 
48°C and 65°C for 1 min], then 65°C 
for 2 mins.

94"C for 2 mins, 30X [94”C 
for 30S, 5UC and 65°C for 
1 min], then 65°C for 2 
mins.

DHPSU2 94‘’C for 2 mins, 35X [94°C for 30S, 
46T  and 6 5 T  for 1 min], then 6 5 T  
for 2 mins.

94°C for 2 mins, 30X [94"C 
for 30S, 5 r C  and 65”C for 
1 min], then 65°C for 2 
mins.

DHPSU3 94«C for 2 mins, 35X [9 4 T  for 30S, 
40®C and 65°C for 1 min], then 65°C 
for 2 mins.

94°C for 2 mins, 30X [9 4 T  
for 30S, 45 ’̂C and 65°C for 
1 min], then 65”C for 2 
mins.

DHPSU4 94 ’̂C for 2 mins, 35X [94"C for 30S, 
SO'^C and 65®C for 1 min], then 65®C 
for 2 mins.

94'^C for 2 mins, 30X [94“C 
for 30S, 48°C and 65°C for 
1 min], then 65“C for 2 
mins.

D HPSDl 94”C for 2 mins, 35X [94”C for 30S, 
48^0 and 65"’C for 1 min], then 65°C 
for 2 mins.

94‘’C for 2 mins, 30X [94'‘C 
for 30S, 47°C and 65°C for 
1 min], then 65°C for 2 
mins.

DHPSD2 9 4 T  for 2 mins, 35X [9 4 T  for 30S, 
4 T C  and 65T for 1 min], then 65”C 
for 2 mins.

94°C for 2 mins, 30X [94^C 
for 30S, 48"C and 65T for 
1 min], then 65®C for 2 
mins.

DHPSD3 94°C for 2 mins, 35X [94*̂ C for 30S, 
46”C and 65"C for 1 min], then 65°C 
for 2 mins.

94°C for 2 mins, 30X [94^'C 
for 30S, 47T  and 65°C for 
1 min], then 65“C for 2 
mins.

DHPSD4 9 4 T  for 2 mins, 35X [94“C for 30S, 
43°C and 65®C for 1 min], then 65®C 
for 2 mins.

94°C for 2 mins, 30X [94°C 
for 30S, 4 8 T  and 65°C for 
1 min], then 65°C for 2 
mins.

Table 17: PCR cycling parameters for the dhps flanking markers

2.2.5 Drug resistance selective sweep analysis

2.2.5.1 Drug resistant mutants per site

The frequencies of the drug resistant alleles at dhfr and dhps were compared 

among the three sites using F isher’s Exact statistical test. This was to determine whether 

there were any statistically significant differences in the distribution of drug resistant
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alleles among the three sites. The R X C package (downloadable free software 

rhttp://www.marksgeneticsoft ware.netl) for the analysis of contingency tables (Miller 

1997) was used for Fisher’s Exact statistical test since some of the expected values were 

less than 5.

2.2.5.2 Expected Heterozygosity

Expected heterozygosity {He) at each m icrosatellite locus was measured as 

described above (section 2.1.7.1). He was used in preference to variance in repeat 

number because P. falciparum  microsatellites frequently contain indels in the flanking 

regions or have complex repeat structure (Anderson et ah, 2000b). Hence, inference 

from number of repeats from PCR product length results in frequent errors. These errors 

are due to indels, which might not be the same size as the repeat unit or, where the 

repeat structure is made up of mixed repeat units e.g. di- and trinucleotides. This means 

that use of repeat number is difficult to ascertain in these cases.

2.2.5.3 Testing for population bottlenecks

It has been noted that allelic diversity is reduced faster than heterozygosity 

during a bottleneck. If a population has gone through a bottleneck, it is found to retain 

the excess heterozygosity (Nei et al. 1975).

To test whether the population had undergone a recent bottleneck, the presence 

of excess of heterozygosity was tested for using the software 'bottleneck’ (Cornuet & 

Luikart 1996). This softwaie carries out a W ilcoxon signed rank test comparing 

observed heterozygosity at each locus across the -16  kb region of both triple mutant 

dhfr and double mutant dhps loci. Expected values are generated under infinite allele 

(JAM) and step-wise allele models (SMM).
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2.2.S.4 Linkage disequilibrium for measuring selective sweeps

Linkage disequilibrium (LD) at a distance x from the core region was measured 

by calculating the extended haplotype homozygosity (EHH) (Sabeti et aL, 2002). EHH 

is defined as the probability that two randomly chosen chromosomes carrying the core 

haplotype of interest are identical by descent (as assayed by homozygosity at all loci) 

for the entire interval from the core region to the point x. Homozygosity was used as a 

multilocus measure of linkage disequilibrium (Sabatti & Risch 2002). Haplotype 

homozygosity (HH) measures the variation at linked sites and this is exactly what is 

affected by selection on one locus within a chromosome, an observation termed 

‘hitchhiking’. HH was evaluated for all haplotypes for wild type, single, double and 

triple mutants for dhfr and wild type, single and double mutants for dhps. This was done 

across the whole gene sequence inclusive of the flanking loci (referred to as EHH). HH 

is evaluated as:

HH = -  1/n) /  ( l  -  l /n )

with Pi being the relative haplotype frequency and n the sample size. In this way, the 

calculation corrects for sampling effects (Sabatti & Risch 2002). The variance of each 

HH [Var(HH)] was estimated according to Nei (1975).

Var(HH) = 2(« -  1) { 2(« -  2)[Ep>- { l l p l f ]  + 'Lp? -  (Z p ,")"  }

EHH thus detects the transm ission of an extended haplotype without recombination. 

This test for positive selection involves finding a core haplotype with a combination of 

high frequency and high EHH, as compared with other core haplotypes at the locus. We 

used a web-tool to calculate EHH (Mueller & Andreoli 2004) available at 

http://ihg.gsf.de/cgi-bin/mueller/webehh.pl
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2.2.S.5 Strength of selective sweep in Kenyan parasite populations

Selection coefficients (s), which measure the stability of the selected allele in a 

population, were estimated from SP efficacy studies done by the East African Network 

for Monitoring Antimalarial Treatment (EANMAT). EANMAT has been canying out 

antimalarial efficacy testing studies in the three East African countries of Kenya, 

Uganda and Tanzania since 1999 (EANMAT 2001) and the data has been compiled and 

made available on their website (www.eanmat.org). This data is grouped according to 

the recent WHO classification guidelines on treatment response (World Health 

Organization 2003b). For this analysis it was assumed that all patients who did not 

achieve an adequate clinical and parasitological response (ACPR) (negative blood 

smear with no clinical signs on day 14 or 28) was a treatment failure. This is probably 

an overestimation of treatment failures and so the calculated selection coefficients might 

be overestimates. The frequencies of resistant (p) and sensitive (q) alleles were inferred 

by assuming that the frequency of treatment failures is proportional to p  and that ^ = 1- 

p. We plotted Ixiip/q) against time in generations using an estimate of six generations 

per year (Joy et a l, 2003). The gradient of the slope, which is the rate at which drug 

sensitive alleles are replaced by drug-resistant ones, is the selection coefficient, s (Hartl 

& Dykhuizen 1981; Nair et a l,  2003).

I l l

http://www.eanmat.org


3.0 Results
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3.1 Introduction

The results section has been divided into three parts. The first part deals with 

compaiison of the results of the antigen-coding loci with those of the microsatellite loci 

in differentiating recrudescence versus reinfection. This work has already been 

published ((Mwangi et aL, 2006); Publication annexed). The second pait deals with the 

genetic diversity of P. falciparum  in Kenya, and the relationships within and between 

the Kenyan parasite populations. The third part deals with SP resistance in Kenya and 

the selective sweep driven by both pyrimetham ine and sulphadoxine treatment in the 

Kenyan malaria parasite populations.
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3.2 Recrudescence versus Reinfection

Most clinical studies of malaria drug resistance, which apply the WHO guidelines 

of assessing clinical or parasitological outcome (WHO, 2001), do not distinguish 

recrudescence of resistant parasites from re-infection by new par asite strains. The use of 

molecular genotyping to distinguish recrudescence from new infections has become 

increasingly common in antimalarial drug efficacy studies, but questions still remain 

regarding the most suitable markers to be used.

In this study, we evaluated molecular genotyping results using two types of markers 

using samples collected as part of a large national drug efficacy study. One set of 

markers was the antigenic loci {M spl, Msp2 and glurp), and the other markers were 

microsatellite loci.

The key questions addressed here are:

i. Since the antigenic gene loci are under selection, are they effective in 

differentiating recrudescence from  reinfections? This was determined by 

comparing their results with those of five putatively neutral m icrosatellite 

loci.

a. How do the two sets o f  markers compare in their ability to pick out 

multiclonal infections? This was determined by looking at the multiplicity of 

infection (MOI) values generated using the two sets of markers.

The study used 42, 44 and 47 samples of P, falciparum  from Tiwi, Hondo and 

Mwea respectively. The samples were taken from patients both before treatment began 

(denoted admission, DO or A sample), and after treatment failure (denoted R sample). 

For each locus, the PCR products from the two samples, collected before and after 

treatment, were loaded next to each other on electrophoresis gels. The presence of the
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same sized PCR products in the admission sample and its follow-up R sample was 

scored as recrudescence. If all of the PCR products in the A sample were of a different 

size to those in the R sample, this was scored as reinfection. In most cases there was a 

m ixture of the two, meaning that the individual didn’t clear the initial infection even 

after treatment, and in addition acquired infections with novel parasites (Figure 6). A 

comparison of the results obtained using both sets of markers is provided in Table 18.

3.2.1 Msplf Msp2 and glurp

Using the antigen-coding loci 40, 40 and 45 samples from Bondo, Tiwi and 

Mwea respectively were successfully typed and classified into the three groups, namely 

recrudescence, recrudescence and reinfection, or pure reinfection (Table 18).

Most of the samples were typed as containing both recrudescent and reinfecting 

genotypes (42%, 46% and 70% in Tiwi, Mwea and Bondo respectively) (Table 18).

In all three areas, there were more samples typed as pure recrudescence than there were 

pure reinfections (Fisher’s Exact, P=0.00058).
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lA IR 2A 2R 3A 3R 4A 4R 5A 5R M 6A 6R 7A 7R 8A 8R

500 bn

300 bp

Figure 6: An example of an agarose gel of TA 17 locus for various samples with 
both recrudescent and reinfecting parasites.
Adjacent lanes are loaded with the PCR product obtained from the Admission (A 
or DO) or R samples. The lane labelled M contains a lOObp ladder molecular 
weight marker (Promega). Sizes are indicated in base pairs. Sample pairs 
displaying patterns interpreted as recrudescent are 3A/3R, 5A/5R and 7A/7R. 
Sample pairs displaying patterns interpreted as reinfection are 4A/4R and 8A/8R. 
Sample pairs showing a mixture of recrudescence and reinfection are lA /lR  and 
6A/6R. The 2A sample did not amplify in this case.

3.2.2 Microsatellites

41, 42 and 46 samples from Tiwi, Bondo and Mwea, respectively, were 

successftilly typed with the fivemicrosatellite loci. Only a few samples could not be 

fully resolved with the microsatellite markers (Table 18). As observed with the antigen- 

coding loci most samples were typed as containing both recrudescences and reinfections 

(RE+Rl) (Ranges 47.62% in Tiwi to 79.55% in Bondo).

More samples were also typed as being pure recrudescence in all the three areas 

than those typed as pure reinfections. Recrudescences ranged from 11.26% in Bondo to 

33.33% in Tiwi. Reinfections ranged from 4.54% in Bondo to 16.67% in Tiwi.
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\  SITES MWEA (n=47) TIWI (n=42) BONDO (n=44)

OUTCOlsi^K Ags M icrosats Ags Microsats Ags Microsats

Re 13
(27.65%)

10
(21.28%)

13
(30.95%)

14
(33.33%)

5
(11.36%)

5
(11.36%)

Re + RI 22
(46.81%)

32
(68.09%)

18
(42.86%)

20
(47.62%)

31
(70.45%)

35
(79.55%)

RI 10
(21.28%)

4
(8.51%)

9
(21.43%)

7
(16.67%)

4
(9.09%)

2
(4.54%)

Indeterminate 2
(4.26%)

1
(2.13%)

2
(4.76%)

1
(2.38%)

4
(9.09%)

2
(4.54%)

Table 18: A summary of the results comparing microsatellites and antigen-loci 
typing for the samples of the patients who did not clear their parasitaemia 
following SP treatment.
Each pair of samples was classified as recrudescence (RE), reinfection (RI) or both 
recrudescence plus reinfection (Re + RI). Indeterminate means samples that could 
not be resolved as either RE or RI or both. Values in parentheses indicate 
percentages, n= sample sizes, Ags= antigen-coding loci, microsats= microsatellites.

3.2.3 Microsatellite versus antigen^coding loci

We assessed the extent of the agreement between the two sets of markers using 

the Cohen’s Kappa ( k )  test of agreement in the S AS/ST AT software program version

8.2 (SAS Institute Inc. Cary, North Carolina, USA 1999- 2001). The k  values for all the 

three populations studied were higher than 0.5 (range 0.559-0.606) (Table 19). We 

obtained significant agreement between the two sets of markers for all three sites than 

what might be expected from chance alone {P<0.001 - P^O.0056) (Table 19),
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TESTS OF AGREEMENT

Antigen-coding vs. m icrosatellite loci

Mwea

kappa coeff. 0.606

95% Cl 0.391 -0.821

P < 0.0001

Bondo

kappa coeff. 0.559

95% Cl 0.233- 0.884

P 0.0056

Tiwi

kappa coeff. 0.602

95% Cl 0.388 -0.815

P <0.0001

Table 19; Results for the tests of agreement between the two marker subsets using 
the Kappa test for each collection site.
The P  value given represents the probability of obtaining the k  value by chance 
alone

3.3 Multiplicity of Infection (MOI)

All the three sites showed high levels of multiple infections, which were 

measured by counting the number of samples showing two or more distinctive alleles 

per locus (Section 2.1.6,3). The mean MOI values were calculated by dividing the total 

number of highest alleles per individual by the number of samples analysed .

The MOI values ranged from 1.56 (C2M3, Tiwi) to 6.12 (C3M85, Bondo). The 

average MOI values for the eight markers combined were 2.87, 3.61 and 3.99 for 

Mwea, Tiwi and Bondo respectively. The marker with the lowest MOI values was
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C2M3 with 1.56, 1.88 and 2.01 in Tiwi, Mwea and Bondo respectively. The marker that 

gave the highest MOI values was C3M85 with 4.42, 5.7 and 6.12 for Mwea, Tiwi and 

Bondo respectively (Figure 7).

The five microsatellite markers combined had a MOI for all sites of 3.84 

compared to that of antigen coding loci of 2.91. The average MOI for the three most 

polymorphic of the microsatellite loci was 4.69.

3 -

ivb

HMWEA

BITIWI

□ B O N D O

Figure 7: A chart showing the average multiplicities of infection (MOI) for the 
three areas studied with the two sets of markers.

Also included is the average MOI for the three areas with all the eight markers.
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3.4 Genetic diversity study

3.4.1 Introduction

The key questions to be addressed in this section are:

i. What is the extent o f  the genetic diversity o f  the Kenyan P. falciparu?n

populations? This was determined by calculating the heterozygosities and 

the mean number of alleles of the three Kenyan P. falciparum  populations 

studied.

i t  What is the level o f  association among loci in Kenyan parasite populations?

This was determined through the calculation of linkage disequilibrium 

between all possible pairs of loci.

Hi. How genetically differentiated are the Kenyan malaria populations from

each other? This was determined through the calculation of Fst and Gst.

The results of the microsatellite typing were used to analyse the population structures in 

the three areas studied. Three measures of diversity of the populations were analysed: 

the number of alleles per locus, expected heterozygosity and variance (range) in allele 

length.

3.4.2 Genetic diversity

3.4.2.1 Mean Number of Alleles (MNA)

MNA is a measure of the average number of alleles found in a population (see 

section 2.1.7.1). The MNA ranged from 12.94 in Tiwi to 15.12 in Bondo when all the 

individuals within the population were considered (Figure 8). The most polymorphic 

marker of all eight studied was the microsatellite C3M85 with a mean number of alleles 

per population of 23.1 in both Tiwi and Bondo, while the least polymorphic marker was 

C2M3 with 5.1 alleles per population.
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MEAN NUMBER OF ALLELES
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Figure 8: Average mean number of alleles per site for the two sets of markers. 
These were calculated using the dominant allele per isolate (section 2.1.7.1). Grey

bars represent the MNA for the five microsatellite loci while white bars represent

the three antigen-coding loci. The y bars show the standard error of the means.

3.4.2,2 Expected Heterozygosities (He)

The expected heterozygosities {He) were calculated for each locus for each site. 

The values of mean He (± S.d.) obtained ranged from 0.63 ± 0.006 in Mwea to 0.82± 

0.005 in Bondo. The locus with the highest He was C3M85 with 0.960 ± 0.006 in Tiwi 

while the lowest He was at locus C2M3 with 0.5 ± 0.003 in Mwea (Figure 9).
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Figure 9: Values of expected heterozygosity {He)  for the three areas using 
microsatellite loci and antigen-coding markers.
Av. H represents the average He across all loci per site

3,4.3 Multilocus Linkage Disequilibrium

The program GENEPOP was used to test for linkage disequilibrium where the 

null hypothesis is that genotypes at one locus are independent from genotypes at the 

other locus (see section 2.1.7.2 for methodology). Results of GENEPOP for all possible 

pairs of loci and their P  values are presented in Table 20.

A Monte Carlo simulation method was also used to test the significance of 

linkage disequilibrium for each locus pair for the complete data set, using the program 

LIAN version 3 (Haubold & Hudson 2000). The observed mismatch variance of the 

distance between all pairwise comparisons of complete 5-locus compaiisons, Vo, was 

0.2970. This was similar to the expected mean variance of the reshuffled data (10,000 

times), Ve, which was 0.2925, indicating lack of LD at these loci. The “standardized”
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index of association, was 0.0039 (P=0.2427). The I^a measures the strength of the 

linkage disequilibrium; in this case the value obtained is not significant suggesting there 

is no LD. Therefore for this data set, no significant linkage disequilibrium was observed 

between any of the markers used by both methods using GENEPOP and LIAN 

programs. This was expected for these populations where the high recombination driven 

by the high transm ission breaks down any linkage between unlinked loci.

Locus pair P-value

C2M3 & C3M85 0.124

C M 3& T A 40 0.728

C 2M 3& TA 17 0.961

C2M3 & TA48 0.547

C3M85 & TA40 0.914

C3M85 & TA17 0.292

C3M85 & TA48 0.211

TA 40& T A 17 0.720

TA 40& T A 48 0.468

TA 17& T A 48 0.242

Table 20: P-values for linkage disequilibrium between various locus pairs using 
GENEPOP.

3.4.4 Genetic differentiation

3.4.4,1 F s t  and G s t

Fst and Gst measures inbreeding due to the relatedness among alleles because they are 

found in the same sub-population. These were calculated according to section 2.1.7.2.
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The Fst and Gsr estimates for all five loci are presented in Table 21.

The Fst values ranged from 0.002 (TA40) to 0.211 (C2M3) with an overall Fst of

0.048. These F st are very low and indicate that there is little if any substructuring of the 

population between the three sites. The G st values are also very low which means that 

while there is a lot of diversity among individuals within the same population, there is 

less diversity among the individual populations.

H e Ho D st Gst Fst

C2M3 0.520 0.630 0.141 0.141 0.211

C3M85 0.933 0.988 0.002 0.002 0.003

TA40 0.763 0.765 0.002 0.002 0.002

TA17 0.867 0.872 0.004 0.004 0.007

TA48 0.693 0.710 0.013 0.014 0.020

OVERALL 0.757 0.793 0.0332 0.0332 0.0486±0.0093

Table 21; Population genetics parameters for the combined populations per locus 
and also the overall parameters.
He = Expected Heterozygosity; Ho = Observed Heterozygosity; Dst = Average gene 

diversity between subpopulations; G s t  ~ coefficient of gene differentiation; F s t  = 

fixation index. Values were obtained using the program ESTAT.
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3.4.5 Isolation by distance

A  graph showing the results of the test for population sub-structuring and its 

relationship to the geographic distance is presented in Figure 10.

ISOLATION BY DISTANCE

0.003 1

0.0025 -

(/>

0.0015 -

0.0005 -

6.35.7 5.9 6.1 6.2 

In  D ISTA N C E (KM)

6.6 6.76.4 6.5

Figure 10: Graph showing isolation by distance between the Kenyan malaria 
populations studied.
The distance has been transformed using natural logarithm.

The correlation coefficient, = 0.1387 (P=0.B354). The R^, which is the fit of points 

to the line, indicates that the line is not a good relationship between the points. Although 

there are only three sites to compare it emphasizes the finding that there is no 

relationship between geographic and genetic distance.
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3.4.8 Summary and conclusion

The main results and of this section are summarized here.

The high MNA and expected heterozygosities observed with the three Kenyan 

P. falciparum  populations, is indicative of the high levels of genetic diversity of malaria 

parasites in Kenya.

The results obtained using the GENEPOP and LIAN programs confirm the 

observation of no linkage disequilibrium of the 5-locus haplotypes. A ‘standai’dized’ 

(see section 2.1.7.2) measure of the strength of LD, the index of association fA  gave a 

value of 0.0039, with no significance (P= 0.2427). The simulated vatiance of distance 

measure (Vg) was similar to the observed one (Tg). This reveals a lack of LD in these 

Kenyan populations, an observation that is consistent with population data from Uganda 

and Congo (Anderson et aL, 2000a), that in regions of high transm ission, there is 

random association among loci (low LD) due to frequent recombination which breaks 

down any association between unlinked loci.

The results of the genetic differentiation {Fst and G st) show that the populations 

studied are not sub-structured (Figure 10 and Table 21) and can be said to be 

undifferentiated. This is confirmed by the test for isolation by distance that reveals a 

negligible 13% of the variation in these three parasite populations can be attributed to 

their geographical areas (Figure 10).

The results suggest that there is a lot of out crossing among these three populations. 

Since the populations are separated by up to 800 km and the range of the mosquito 

vector is very limited (up to 6km) it seems most likely that the human host, through 

migration, facilitates outcrossing between parasites from different geographical origins 

across the studied areas.
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3.5 Drug resistance and selective sweeps

3.5.1 Introduction

The key questions to be addressed in this chapter are the following;

1. What is the prevalence o f  the mutations in Pfdhfr and  Pfdhps that confer 

pyrimethamine resistance? This was determined by typing samples from 

patients who did not clear the parasites after treatment with SP, using dot blot 

hybridization.

2. Do all resistant parasites from  Kenya have the same alleles at Pfdhfr and 

Pfdhps flanking micro satellite loci?

3. Do all Kenyan Pfdhfr and Pfdhps mutants have the same evolutionary origin? 

This was determined by exam ining the haplotypes of resistant isolates compared 

to those of sensitive ones for relatedness.

4. Does the triple mutant Pfdhfr and the double mutant Pfdhps have an ancestral 

origin from  among the extant wild type Pfdhfr in Kenya?

These four questions were addressed by analysing each of the samples (with mutations 

at codons 51, 59 or 108 for dhfr and 437/540 for dhps) at microsatellite loci up and 

downstream of the resistance-associated locus. Haplotypes were then compaied between 

samples with different dhfr and dhps alleles. Samples with multiple genotypes present 

were excluded from the analysis, as it is difficult to determine which allele to associate 

with which at the respective codons.

3.5.2 Dhfr dot blot hybridization

43, 57 and 60 isolates from Tiwi, Bondo and Mwea respectively were 

successfully typed for the three codons in dhfr associated with SP drug resistance in P. 

falciparum. The samples were classified as either mutant or wild-type based on their 

respectively genotypes at codons 51, 59 and 108 based on their signals, following
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probe-specific radiolabelling, of the dot blot on an autoradiograph (Figure 11). The 

samples were further classified as having single, double or triple mutations. The results 

for the vaiious dhfr genotypes are summarised in Table 22.

3.5.2.1 Prevalence of dhfr mutations

All the samples successfully typed from the two most endemic areas, Bondo and 

Tiwi, had only the allele encoding Asn at codon 108. 20 % of the samples from Mwea 

were typed as w ild type (encoding serine) at this codon (Table 22 and Figure 12). There 

were 7%, 8% and 10% samples with mutations at codons 51 and 108, while 14%, 11% 

and 18% of the samples had mutations at codons 59 and 108 in Bondo, Tiwi and Mwea 

respectively. Samples with the triple mutation (108, 51 and 59) were found at a 

prevalence of 33%, 63% and 70% in Mwea, Tiwi and Bondo respectively (Table 22 and 

Figure 12).

Sites/ genotypes Mwea (n=60) Tiwi (n=43) Bondo (n=57)

Dhfr W ild-type 12 (20%) 0 0

Dhfr 108N 
(Single mutant)

11 (18%) 5(11% ) 9 (16%)

Dhfr 108N/51I 
(Double mutant 1)

6 (10%) 3 (8%) 4 (7%)

Dhfr 108N/59R 
(Double mutant 2)

11 (18%) 5(11% ) 8 (14%)

Dhfr 108N/51F59R 
(Triple mutant)

20 (33%) 30 (70%) 36 (63%)

Table 22: Prevalence (and percentage) of the dhfr alleles in the three study sites of 
Kenya.
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Figure 11 : An example of an autoradiograph following hybridization of a dotblot 
with a radiolabelled probe for 59R DHFR.

Amplification reactions were loaded in duplicate with the negative control and the 
positive controls 307, T996 and Dd2 loaded in wells A l, A2, A3 and A4 
respectively and then in H12, H ll, HIO and H9 respectively. Note the positive 
hybridisation with Dd2 control in wells A4 and H9.

DHFR ALLELIC HAPLOTYPE FREQUENCIES

0.9

0.7

§
5  
O  0.5
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0.3
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□ TIWI (n=43)
I BONDO (n=57) 
IMWEA(n=60)

WILD-TYPE SINGLE DOUBLE TRIPLE

Figure 12: Frequencies of the dhfr allelic haplotypes for the three study areas.
Frequency values are shown with 95% C! (bars) calculated by multinomial (3 
cases) exact method.
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3.5.3 Dhps dot blot hybridization

37, 39 and 56 samples from Bondo, Tiwi and Mwea respectively were included 

in the analysis for dhps alleles. The two codons exam ined, A437G and K540E, have 

been associated with resistance to sulphadoxine in P. falciparum  (Curtis, et al. 1998).

13%, 27% and 39% of amplified samples from Tiwi, Bondo and Mwea 

respectively had wild-type alleles at both codons typed (Table 23 and Figure 13).

Study Sites

Genotypes Bondo (n=37) Tiwi (n=39) Mwea (n=56)

Dhps 437A/540K 
(W ild-type)

10 (27%) 5 (13%) 22 (39%)

Dhps437G/540K 
(Single mutant)

19 (51%) 14 (36%) 10 (18%)

Dhps437G/540E
(Double mutant)

8 (22%) 20 (51%) 24 (43%)

Table 23: Results of dhps genotyping of samples from the three study sites.

The A437G mutation was found as a single mutant (i.e. wild-type at codon 540) in all 

the three areas, at a frequency of 18%, 36% and 51% in Mwea, Tiwi and Bondo 

respectively. No samples had the wild-type codon at 437 and a mutated codon 540.

43%, 51% and 22% of samples in Mwea, Tiwi and Bondo respectively had 

mutant codons at both position 437 and 540 (double mutants) (Figure 13).
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DHPS ALLELIC HAPLOTYPE FREQUENCIES
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□  TIWI (n=38)
■  BONDO (n=37)
■  MWEA(n=56)

WILD-TYPE SINGLE DOUBLE

Figure 13: Frequencies of the dhps alleles in the three study sites.
Frequency values are shown with 95% Cl (bars) calculated by multinomial (3

cases) exact method.

3.5.4 Comparison o f  the frequencies o f  dhfr and dhps alleles per site

The distribution o f alleles was analysed using the Fisher’s Exact test. A 

comparison o f the distribution o f the dhfr alleles revealed highly significant differences 

(P'^0.001) among the three sites (Table 22). The distribution o f the dhps alleles was also 

significantly different between sites (Fisher’s exact, P= 0.0023) (Table 23). When the 

analysis was repeated with the exclusion o f Mwea (since this where most o f the 

differences were) there were no significant differences between Bondo and Tiwi in the 

distribution o f the genotypes (Fisher’s Exact, P= 0.733 for dhfr and P= 0.0567 for 

dhps).
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Study sites

Genotypes Tiwi (n=39) Bondo (n=37) Mwea (n=56)

DhfrW/DhpsW 0 0 3

DhfrM/DhpsW 5 10 22

DhfrW/DhpsM 0 0 12

DhfrM/DhpsM 34 27 19

Table 24: Multilocus genotypes per study site.
Samples were classified into four categories; those that had no mutations in the 
two genes (WAV), those with at least one mutation in dhjr with none in dhps 
(DhfrM/DhpsW), those with no mutation in dhfr but at least one in dhps 
(DhfrW/DhpsM) and those that had at least one mutation in each gene 
(DhfrM/DhpsM)

The combined distribution of the alleles defined by all codons exam ined at both 

genes (multilocus genotype) was analysed by scoring whether samples had at least one 

mutation in dhfr and none in dhps (dhfrM/dhpsW), at least one mutation in dhps but 

none in dhfr (dhfrW/dhpsM), at least one mutation in both genes (dhfrM/dhpsM) or 

wild-type in both genes (dhfrW/dhpsW) (Table 24). An analysis using this 

classification revealed highly significant differences (Fishers Exact, F<0.0001) between 

the three sites. A comparison between Tiwi and Bondo found no significant differences 

(Fisher’s Exact, P  = 0.1557) in the distribution of substituted alleles.

A comparison between Mwea and either Tiwi or Bondo found highly significant 

differences (Fisher’s Exact, P< 0.0001; Table 24) in genotype frequencies in Mwea and 

in either of the other two sites.
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3.5.5 Microsatellite loci around Dhfr

Four microsatellite loci were identified within an 8kb region downstream, and 

four within an 8kb region downstream of dhfr on chromosome 4. Microsatellite 

DHFRUl is situated 0.3kb downstream of dhfr in the 3D7 genome. Analysis of this 

locus in the Kenyan samples revealed 24 distinguishable alleles ranging in size from 

107 -  152 bp. Analysis of microsatellite locus DHFRU2, located 4.7kb downstream of 

dhfr, revealed 22 alleles of 158 -  192 bp. Similar analysis of microsatellite DHFRU3, 

located 7.0kb downstream of dhfr, revealed 21 alleles of 170- 195 bp, and of DHFRU4, 

located 8.0kb downstream of dhfr, revealed 24 distinguishable alleles of 187-238 bp.

Upstream of dhfr, analysis of microsatellite DHFRDl (located 0.5kb) revealed 

24 alleles of 88-152 bp, DHFRD2 (located 4.0kb) had 26 alleles of 230-269 bp, 

DHFRD3 (located 6.5kb) had 28 alleles of 175-229 bp, and DHFRD4 (located S.Okb) 

had 17 alleles of 263-300 bp. The number of alleles could be an underestimation as all 

the sizes were determined following electrophoresis on Spreadex gels, where the 

minimum size difference distinguishable is 4bp.

3.5.5.1 Microsatellite haplotypes and dhfr mutations

Samples with multiple alleles at more than one of the microsatellite loci 

preclude the construction of unambiguous haplotypes. Therefore only samples with 

single alleles at the microsatellite loci were used to construct microsatellite haplotypes. 

Haplotypes were ranked according to allele size at D HFRU l, then at DHFRU2, 

DHFRU3, etc. until finally at DHFRD4 loci, and numbered 1-59 when all the three sites 

(n=160 samples) were combined. Full haplotype descriptions are provided in Appendix 

2.
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Haplotype cod es
DHFR allele Overall 

(n= 131)
Mwea (n=60) Tiwi (n=43) Bondo (n=57)

lo s s
(W ild-Type)

3, 15, 19, 
20, 22, 30, 
48, 49, 53, 
55, 58, 59

Mwea had 
each of these 
haplotypes 
each w ith n= l

None None

108N/51N/59C 1, 4, 6, 1 , 8, 6 (n=l) 2 (n=l) 1 (n=l)
(single mutant) 9, 15, 16, 17 (n=l) 4 (n=l) 4 (n=l)

17, 18, 21, 18 (n=l) 7 (n=l) 8 (n=l)
23, 24, 25, 23 (n=l) 15 (n=l) 9 (n=l)
31, 46, 
51, 52,
56, 57

47,
54,

31 (n=l) 
47 (n=l)
51 (n=l)
52 (n=l) 
54 (n=l) 
57 (n=l)

16 (n=l) 21 (n=l)
24 (n=l)
25 (n=l) 
46 (n=l) 
56 (n=l)

108N/51I/59C
(Double mutant)

10, 12, 
14

13, 12 (n=2)
13 (n=3)
14 (n=l)

10 (n=3) 12 (n=l)
13 (n=l)
14 (n=3)

108N/51N/59R 11, 26, 27, 26 (n=l) 26 (n=3) 11 (n-1)
(Double mutant) 29, 50 27 (n=2) 

29 (n=8)
27 (n=2) 27 (n=l) 

29 (n=3) 
50 (n=3)

108N/51I/59R 5, 28, 33, 33 (n=19) 35 (n=25) 5 (n=l)
(Triple mutant) 34, 35, 36, 

37, 38, 39, 
40, 41, 42, 
43,44, 45

43 (n=l) 37 (n=l)
38 (n=l)
43 (n=l)
44 (n=l)
45 (n=l)

28 (n=l) 
3 3 (n=16)
34 (n=2)
35 (n=5)
36 (n=4)
39 (n=4)
40 (n=l)
41 (n=2)

Table 25: Microsatellite haplotypes associated with different dhfr alleles per study 
site.

The major allele (with at least 50% of samples with a particular dhfr allele per site) 
is indicated in bold.

The results are shown in Table 25 and the haplotype frequencies for each allele of dhfr 

(as defined by polymorphism at codons 5 1 ,5 9  and 108) are presented in figures 14 -  

17. Overall 59 haplotypes were identified in the 160 samples from Tiwi, Mwea and
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Bondo. There were 13 distinguishable haplotypes in the samples from Tiwi, 20 from 

Bondo and 30 from Mwea.

The dhfr triple mutant encoding N51I, C59R and S108N was associated with 15 

microsatellite haplotypes (Table 25). Out of the 86 samples typed as triple mutants, 35 

samples (43.75%) had haplotype 33 (composed of alleles 133 bp/174 bp/188 bp/212 

bp/100 bp/244 bp/183 bp/283 bp at the D HFRU l, DHFRU2, DHFRU3, DHFRU4, 

D HFRDl, DHFRD2, DHFRD3, DHFRD4 respectively) while 30 samples (35.71%) had 

haplotype 35 (133 bp/174 bp/188 bp/212 bp/100 bp/244 bp/183 bp/291 bp). Haplotypes 

37, 38, 43, 44 and 45 were detected only in Tiwi at quite low frequencies (Table 25). 

Haplotypes 36, 39, 40 and 41 were detected only in Bondo in 4, 4, 1 and 2 samples 

respectively. 19 out of 20 and 16 out of 34 triple mutant samples from Mwea and Bondo 

respectively contained parasites with haplotype 33. 25 out of 30 (95%) samples from 

Tiwi contained parasites with haplotype 35 (Table 25).
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3.5.S.2 Haplotype distribution among sites

Some haplotypes were found in more than one o f the three sites while others 

were unique to one o f the sites (‘private haplotypes’). Eleven haplotypes were shared 

between the sites but only one haplotype was found to be common in the three sites 

studied: haplotype 27, which was associated with the 108N/59R double mutant (Figure 

18). The site with the highest number o f private haplotypes was Mwea with 22, while 

the site with the lowest number o f private haplotypes was Tiwi, which had 8. Bondo had 

17 private haplotypes (Figure 18).

n= 43

Bondo

Mwea 
n= 60

Figure 18: Distribution of haplotypes in the three study sites
Only 11 out of the total 59 haplotypes observed are shared between sites out of 
which only one (no. 27) is common among all three sites, n = number of haplotypes
seen.
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The two sites with the highest number of shared haplotypes were Bondo and 

Mwea with 5 shared haplotypes. Tiwi shared two and three haplotypes with Bondo and 

Mwea respectively (Figure 18).

3.5.6 Microsatellite loci around dhps

Several m icrosatellite loci were identified around dhps and eight (four on either 

side of the gene) were selected for this study. Downstream of the gene, 23 alleles with 

PCR products ranging in size from 120-165 bp were found in the 131 samples analysed 

at DHPSUl (located 0.1 kb downstream of dhps). Similarly, 19 alleles of 192- 232 bp 

were found at DHPSU2 (located 3.8kb downstream), 20 alleles of 113-170 bp at 

DHPSU3 (located 6.5kb downstream), and 22 alleles of 185-240 bp at DHPSU4 

(located 8.7kb downstream).

Upstream of the dhps gene, 20 alleles of 104-124 bp were observed in the 

samples at the D HPSDl locus (at 0.4kb), 24 alleles of 205-280 bp at DHPSD2 (at 

3.7kb), 17 alleles of 190-246 bp at DHPSD3 (at 7.3kb), and 18 alleles of 189-230 bp at 

DHPSD4 (at 8.5kb).

Haplotypes observed from all the three sites (n=131 samples) were combined for 

numbering purposes. Haplotypes were ranked according to allele size at D HPSU l, then 

at DHPSU2, DHPSU3, and finally at DHPSD4 loci. The haplotypes were then 

numbered 1-82. Most of the haplotypes (49) were associated with the samples from the 

Mwea site (Table 26).

Full haplotype descriptions are provided in Appendix 3.
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Haplotype codings
Dhps alleles Overall (n=131) Bondo

(n=37)
Tiwi 
(n= 38)

Mwea (n=56)

W ild-Type 1,25, 4 ,5 ,6 ,1 % 8, 1 (n=l), 4 (n=l) 6, 12, 18, 26, 27, 39,
12, 17, 18, 22, 2 (n=l) 6 (n=l) 46, 50, 51, 52, 53, 55,
23, 26, 27, 39, 5 (n=l) 17 (n=l) 56, 58, 67, 70, 71, 73,
46, 49, 50, 51, 7 (n=2) 59 (n=l) 74, 77, 78, 82 (n=l for
52, 53, 55, 56, 8 (n=l) 61 (n=l) each)
58, 59, 61, 67, 22 (n=l)
70, 71, 73, 74, 23 (n=l)
75, 77, 78, 82 49 (n=l)

75 (n=l)
437G/540K 3, 10, 14, 16, 3 (n=l) 3 (n=l) 14, 20, 5 0 ,5 1 , 62, 64,
Single mutant 19, 20, 21, 28, 9 (n=3) 10 (n=2) 65, 76, 79, 80 (n=l for

30, 31, 32, 33, 16 (n=l) 16 (n=l) each)
35, 36, 45, 50, 28 (n=4) 19 (n=4)
51, 62, 64, 65, 30 (n=l) 21 (n=2)
66, 76, 79, 80 31 (n=l) 32 (n=l)

35 (n=4) 33 (n=l)
36 (n=2) 36 (n=l)
66 (n=l) 66 (n=l)

437G/540E 11, 13, 15, 24, 41 (n=l) 40 (n=l) 11 ,13 ,15 , 24 (n=2).
Double 25, 29, 34, 37, 4 2 (n=5) 41 (n=3) 25, 29, 34, 37, 38, 44,
Mutant 38, 40, 41, 42, 43 (n=2) 4 2 (n=14) 47, 51 (n=2), 53, 54,

43, 44, 47, 48, 48 (n=l) 43 (n=l) 57, 60 63,68 (n=2), 69,
51, 53, 54, 57, 48 (n=l) 72, 81 (n=l for each
60, 63, 68, 69, except for those
72, 81 indicated in brackets)

Table 26: Codes for haplotypes and their prevalence in the 3 study sites

The wild-type dhps alleles (n=37) from all three sites were not found to be 

strongly associated with any particular m icrosatellite haplotype; a wide range of 

haplotypes was observed and no one haplotype predominated (Table 26 and Figure 21).

The allele of dhps encoding the 437G change (n=42) was associated with 29 

haplotypes. All the alleles with the single dhps mutation from Mwea had different 

haplotypes (Table 26 and Figure 22). In Tiwi and Bondo some haplotypes were 

observed to be more prevalent in the single mutant dhps than others (Figure 22). The 

most common haplotype found in samples from the Tiwi site with the 437G allele was 

haplotype 19 (42.86%). The two most common haplotypes associated with the 437G
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dhps mutant in Bondo were haplotype 28 (22.22%) and haplotype 35 (22.22%). These 

two haplotypes were not found in Tiwi while haplotype 13 was not found with the 

Bondo samples. Four haplotypes (3, 16, 36 and 66) were found in single mutant dhps 

alleles from both Tiwi and Bondo but in quite low frequencies (Figure 22).

The 437G/540E dhps double substituted allele in Tiwi and Bondo (n= 28) was 

associated with haplotypes 40, 41, 42, 43 and 48 (Figure 19 and Figure 23). The most 

common haplotype associated with the double mutant dhps allele was haplotype 42 with 

a frequency of 56% and 79% in Bondo and Tiwi respectively (Figure 23). There was no 

dominant haplotype associated with the double substitute dhps allele in Mwea (Figure 

23).

While there seemed to be apparent reduction in the number of haplotypes associated 

with the single and double mutant dhps samples from Bondo and Tiwi, those from 

Mwea seemed to have multiple haplotypes, all found at very low frequencies. For 

example, the 437G/540E allele found in Mwea was associated with 21 haplotypes in 24 

samples, all with frequencies <0.1. (Table 26, Figure 20, Figure 22 and Figure 23).

141



3.5.6.1 Z>/ip5-linked microsatellite haplotype sharing among the three sites

There was less sharing of haplotypes of the dhps-Xmktd microsatellites than was 

observed with the c//^-linked ones. Mwea did not share any haplotype with Bondo and 

was only found to share one haplotype with Tiwi (Figure 19). Tiwi and Bondo shared 8 

of the total haplotypes of the microsatellites flanking the dhps gene. 50% of the shared 

haplotypes between Bondo and Tiwi were those associated with the double-substituted 

dhps allele (Table 26 and Figure 19) indicating a close relationship of the double mutant 

dhps allele between the two sites.

Tiwi 
n= 38

Mwea 
n= 56

Bondo
n= 37 1, 2,3, 5, 7, 8, 9, 

16, 22, 23, 28,

Figure 19: DAp^-linked microsatellite haplotype distribution in the 3 sites.
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3.5.7 Expected Heterozygosity in the flanking microsatellites

Expected heterozygosity {He) at each m icrosatellite locus was calculated as 

explained in section 2.1.7.1. Alleles of microsatellites were categorised according to the 

variation at all three of the codons exam ined for dhfr and two codons exam ined for 

dhps. Thus, for dhfr there were four categories of alleles; wild-type, single mutants 

(108N/51N/59C), double mutants (108N/51I/59C and/or 108N/51N/59R) and triple 

mutants (108N/51N/59R). For dhps there were three categories of alleles; wild-type, 

single mutants (437G/540K) and double mutants (437G/540E). Based on these 

categories, He at the genes (both dhfr and dhps) was set at zero, as it is presumed there 

is no valuation within the gene when the same alleles aie considered. A comparison of 

the He values of the microsatellites between the wild-type and triple mutant alleles 

revealed markedly reduced variation around the dhfr alleles carrying the triple 

mutations. The reduction in variation was more pronounced upstream of the gene 

compared to the downstream region. He values were lower nearer the gene than further 

from it (Figure 24). This is in agreement with the expectations of a selective sweep 

where the regions carried over depend largely on the strength of the selective force (i.e. 

antimalarial use) and the strength of recombination. In contrast the wild-type alleles 

show almost equal variation (as measured by He) with the unlinked microsatellites. This 

is discussed further in Section 4.5. A similar scenario was observed with the dhps 

alleles where those cany ing the double mutations have reduced He at markers flanking 

the gene compared to those carrying the wild-type gene Figure 25.
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H  ̂ for Wild-type & Triple Mutant dhft alleles

i o O . 7  

o 0.6

-o-

“ 0“  Wild-Type 
-•-Tripie-Mutant

'V 0.4 - 

^ 0 . 3 -

W 0.2 -

0.1

8.0 -6.5 -4.0 -0.5 DHFR 0.3 4.7 7.0 8.0

Distance from d J i£ r  Locus (kb)

Figure 24: Microsatellites flanking dhfr resistant alleles (triple mutant) show 
reduced He compared with those flanking wild-type dhfr alleles.

All sites have been combined for this analysis. The X-axis refers to the location (in 
Kb) of the microsatellite loci used with respect to the dhfr gene. Filled dots 
represent He of microsatellite markers flanking dhfr triple mutant alleles and open 
dots represent He of microsatellites flanking wild-type dhfr alleles from the three 
study areas. Note the pronounced asymmetry of the mutant allele curve.
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H e fot Wild and Double mutant Dhps alleles fot Tiwi and
Bondo

0.9

0.5

0.4 - •O—W ild type 

-X— double m utant

0.2 -

0.1

-7.3 -3.7 6.5

Distance from dhfr locus (kb)

Figure 25: Variation ijie) at microsatellite loci flanking wild-type and double 
mutant dhps alleles in Tiwi and Bondo
The x-axis refers to the location (in kb) of the microsatellite loci used with respect 
to the dhps gene. Note the variation at the gene is set at 0.
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3.5.8 Extended Haplotype Homozygosity

To explore how linkage disequilibrium breaks down with increasing distance to 

a specified core region, haplotype homozygosity (HH) was calculated in a stepwise 

manner for each haplotype length (extended HH, EHH) according to published methods 

(Sabeti et ah, 2002). HH is calculated between a distance x  and the specified core region 

for a chromosome population caiTying a single core haplotype. Distance x  increases 

stepwise to the most outlying marker. The procedure was repeated for each core 

haplotype. If the candidate region is not at the margin of the genotyped range, linkage 

disequilibrium patterns can be estimated on both sides of each core haplotype. In other 

words, the extended HH estimates the level of haplotype splitting due to recombination 

and mutation at each distance to the core haplotype. An attractive aspect of this 

approach is that the various core haplotypes at a locus serve as internal controls for one 

another at the same chromosomal region. This is important given the variability of local 

recombination rates across genomic regions. The values of EHH range from 0 to 1 with 

a high EHH (approaching 1) indicating complete linkage disequilibrium (LD) between 

the marker and the gene and vice versa. The results of EHH are given in Figure 26and 

Figure 27.
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E X TEN D ED HAPLOTYPE HOMOZYGOSITY FOR DHFR LOCUS

1

0.9
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0.7

0.6

X
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0.4

0.3
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0.1

0
-8.0 -6.5 -4.0 -0.5 D H FR  0.3 4.7

Loci distance from d h fr  (kb)

•TRIPLES
•DOUBLE2
•WILD
•SINGLES
DOUBLEl

7.0 8.0

Figure 26: LD, measured by EHH, in dhfr wild-type and mutant parasites from 
Tiwi, Bondo and Mwea.

EHH for was set at 1. ‘Doublel’ and ‘DoubIe2’ refer to the mutants having 
51I/108N and 59R/108N mutations respectively. ‘Singles’ refer to parasites with 
the 108N mutation only. Triples refer to parasites with the dhfr allele 
51I/59R/108N.
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E H H  FOR DHPS LOCUS

X
a
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0.2

0.1
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DOUBLES
SINGLES
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Figure 27: LD, measured by EHH, for dhps wild-type and mutant parasites from 
Tiwi, Bondo.

Wild-type refer to parasites with no mutations in dhps  ̂singles are those parasites 
with the 437G while doubles are the ones with the allele 437G/540E.
EHH for dhps was set at 1.

3.5.9 Testing for population bottlenecks

It has been noted that allelic diversity is reduced faster than heterozygosity 

during a bottleneck (Nei et al. 1975). If a population has gone through a bottleneck, it is 

found to retain the excess heterozygosity.
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To test whether the population of substituted dhfr alleles had undergone a recent 

bottleneck, the presence of excess of heterozygosity was determined using the software 

"bottleneck' (Comuet and Luikart 1996). This software carries out a W ilcoxon signed 

rank test comparing observed heterozygosity at each locus across the -1 7  kb region 

flanking the triple mutant dhfr. The same analysis was repeated for double mutant dhps 

loci. These analyses were carried out using the both the site-specific and pooled data for 

dhfr, and with the exclusion of Mwea for the pooled dhps data due to the observation 

that M wea’s double mutant dhps mutants had not been selected for. Expected values are 

generated under infinite allele model (lAM) and step-wise allele model (SMM).

It was found that under both JAM and SMM there was no significant excess of 

expected heterozygosity for the triple mutant dhfr isolates from all three areas 

(W ilcoxon test one tail P=0.99 [lAM] and f = 1.000 [SMM]) indicating that the 

population had not recently undergone a reduction in size (Table 27).

The same result was observed when analysing samples with the double mutant dhps 

allele from Bondo and Tiwi, excluding Mwea (W ilcoxon test one tail f =0.22 [lAM] 

and f =0.34 [SMM]) (Table 28).
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3.5,10 Modeling for selective sweep in Kenyan parasite populations

A very basic model was employed to investigate the rate at which drug- 

resistance alleles replace drug-sensitive ones in areas of Kenya with different 

endemicity of P. falciparum, under drug pressure with SP. This model was also used to 

determine rate of selection using SP data collected over the years in the three areas. This 

model is described in section 2.2.5.5. For the coefficient to be significant the fit of the 

points (R^) has to be >0.80 (Hartl & Dykhuizen 1981). The results are presented in 

Figure 28, Figure 29 and Figure 30.
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Tiwi

y = 0.217 7 x -436.64 
= 0.8254- 0.2 -

-0.4 -

- 0.6  -

“ 1.6

- 1.8
1998 2000 20042002

Year

Figure 28; Estimation of selection coefficient {s) driving SP resistance in Tiwi. 

p is the frequency of resistant alleles inferred from treatment failure rate data,

and q (=l-p) is the inferred frequency of sensitive alleles. The x-axis shows the

generation number (assuming six generations per year (Joy et a t, 2003). The slope

gives an estimate ofa = 0.2177.
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Bondo

- 0.1

y= 0.1047x-210.34  
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Figure 29: Estimation of selection coefficient (s) driving SP resistance in Bondo. 
p  is the frequency of resistant alleles inferred from treatment failure rate data, and

q (=!"/?) is the inferred frequency of sensitive alleles. The x-axis shows the

generation number (assuming six generations per year). The slope gives an

estimate of s = 0.1047,
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Mwea

y = 0 .264x-529,08 
R̂  = 0.8783
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Figure 30: Estimation of selection coefficient (s) driving SP resistance in Mwea.

P is the frequency of resistant alleles inferred from treatment failure rate data, and 

q (-1-p) is the inferred frequency of sensitive alleles. The x-axis shows the 

generation number (assuming six generations per year). The slope gives an 

estimate of s = 0.264.
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4.1 Recrudescence versus reinfection

In this study two different sets of genetic markers used to distinguish 

recrudescences from reinfections were compared: five putatively neutral m icrosatellites 

and three antigen coding loci that are thought to be under strong natural selection 

(Hughes 1992;Hughes & Hughes 1995;Conway 1997;Escalante et al. 1998). The 

antigen-coding loci were found to be as effective as m icrosatellites in differentiating 

recrudescence from reinfection, despite the fact that antigen-coding loci are likely to be 

under strong selection pressure while the microsatellite loci are presumably not (Table 

19).

More alleles were observed at the microsatellite loci than at the antigen-coding 

loci in the populations studied (Figure 8 and Figure 9). There are three possible 

nonexclusive hypotheses for this; a) that the microsatellites are more polymorphic than 

the antigen loci; b) that selection within partially immune hosts removes certain 

parasites from infections on the basis of their antigens, whereas there is no selection 

based on m icrosatellite alleles (since they are non-coding); c) that microsatellite loci are 

unstable.

An assumption of the second hypothesis is that these parasite populations are 

recombining frequently. Therefore, there is a m ixture of all m icrosatellite/antigen allele 

combinations, and when immunity removes a subset of parasites based on a particular 

antigen, all the microsatellites are still represented in combination with the non-selected 

antigen alleles.

Microsatellite loci could behave in an unstable manner for two reasons. 

Recombination may occur in vitro (during PCR); recombination, or chimera formation, 

has been shown to occur between related template sequences present in a single PCR 

amplification (Judo et al. 1998). This phenomenon has also been observed in P.
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4.0 DISCUSSION AND SUMMARY

158



falciparum  especially for the antigen gene M spl (Tanabe et al. 2002), although this was 

over a much longer distance with long stretches of homologous DNA. The PCR used in 

this study for the antigen-coding loci are much shorter and do not contain long stretches 

of homologous DNA thus there are reduced chances of recombination. Loci may also be 

unstable in vivo within an asexual infection or during meiosis in the mosquito. The 

number of repeats within a m icrosatellite locus may change during an infection, 

possibly during mitotic replication, giving rise to parasites genetically identical at all 

loci except that particular' m icrosatellite, although this does not appear to be the case in 

this study, as there were no parasites observed with multiple bands at only one 

microsatellite locus.

Genetic markers should be chosen based on the research question being asked 

(Sunnucks 2000). Each genetic marker has a range over which it can usefully detect 

genetic variation (Thompson et al. 1998). If the marker is too polymorphic, either the 

required sample size to describe diversity will be too high, or the samples will be too 

different resulting in homoplasy. If the marker has little polymorphism, as we have seen 

with C2M3 (Figure 7 and Figure 9), it might misrepresent some differences between the 

samples, and more so in a field setting.

We still do not know much about evolution of microsatellites and even their 

neutrality and hence data from their use should be treated with caution especially when 

that data is meant to inform policy change. From the results of this work it is clear that 

microsatellites might be the better markers for population analysis but more work 

remains to be done to justify their application as markers for monitoring dmg efficacy 

in malaria.

Another potential problem with microsatellites is the issue of null alleles, which 

was noted with some of the microsatellites used in this study, where they failed to
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amplify DNA from some samples, including laboratory isolates, despite repeated 

attempts. This is often caused by polymotphism in the primer recognition sequences in 

non-coding DNA. Since non-coding DNA is usually under less constraint because it 

does not encode proteins, mutations that occur have a greater chance of remaining 

within the population. This is in contrast with antigen loci where primers are in coding 

regions within blocks of sequences with 90% conservation of nucleotides in well 

studied genes where many allele sequences are available (Miller et al., 1993).

4.2 MOI and transmission intensities

Is there a relationship between the numbers of clones per infection (MOI) and 

the transm ission rate of malaiia? In the study presented in this thesis, the MOI values 

seem to increase with increased levels of EIR (Figure 7), although it is hard to be certain 

of this trend, as there are only three sites to compare.

One fact that emerges in this study is that the average MOI values with both sets 

of markers do not reflect the intensity of transm ission. This is because the transm ission 

intensities of, for instance Bondo are over 1000 infective bites per person annually 

compared to Mwea where the rate is about 100 but the difference in mean MOI levels in 

the two areas is just one (Figure 7). This finding is in broad agreement with previous 

work, which indicated that increasing entomological inoculation rates (EIRs) were 

associated with progressively smaller increases in the average number of clones per host 

(MOI) (Arnot 1998).

The transm ission rate of malaria is measured in entomological inoculation rate 

(EIR), which is a product of the proportion of mosquitoes containing sporozoites (the 

sporozoite rate) and the human biting rate. The human biting rate is usually estimated 

from the landing rate on collectors (Burkot & Graves 1995). EIR is also a fairly crude 

estimate, and infection rates will vary in time, especially in areas with seasonal
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rains/changes in mosquito density. However, our estimates of strain diversity may have 

underestimated the true probability of two infections having the same genotype due to 

clustering of parasite strains in time and space, as well as the frequency of infections 

containing multiple strains.

Another inherent limitation of genotyping is the assumption that parasite strains 

detected in pretreatment samples reflect the complete population of infecting parasites. 

It is possible that strains circulating at low parasite density, or sequestered at the time of 

sampling, are not detected in pretreatment samples but could emerge to cause treatment 

failure, leading to the misclassification of a recrudescence as a new infection. Even if 

this was the case, the average number of clones detected in the patients under study in 

the two higher transm ission areas of Bondo and Tiwi do not approach the potential 

number of input clones implied by the high EIRs of the two areas. The same 

observation was made in a study of infection complexity in Thailand (Paul et al., 1998), 

but can be explained by some nonexclusive hypotheses.

Measurements of clone multiplicities are affected by the sensitivity and kinetics 

of PCR. The rapid DNA extraction methods used for the large numbers of small blood 

samples generated by field studies are known to limit the sensitivity of the method 

(Bottius et a l ,  1996; Roper et al., 1996). Ordinary PCR methods might fail to detect 

parasite clones with fewer than 5 m illion circulating parasites (genomes) per individual 

infection (equivalent to 1 parasite/ pi of blood).

PCR-derived estimates of the number of clones per individual can also be biased 

when alleles originating from different genomes are present in a sample in unequal 

concentrations (Amot 1998). If one sequence dominates in the reaction mixture (>90%), 

it will tend to obscure minority sequences, which will fail to be amplified due to the 

stochastic nature of sampling in the early reaction cycles (Ranford-Cartwright et a l.
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2002). This problem will be compounded if the same primers are amplifying two or 

more different sequences of unequal length, since the PCR is known to amplify 

preferentially smaller, more rapidly synthesized sequences (Lukyanov et a l ,  1997). 

Underestimation of the true MOI values through such biases has been noted as a 

possible cause of the tendency for PCR to detect fewer genetically complex infections 

during clinical episodes than during asymptomatic infections (Roper et ah, 1998). This 

observation could also be an artefact due to fast-growing ‘dominant’ populations of 

parasites overgrowing ‘resident’ clones during the clinical attack, and not necessarily an 

indication that clinical infections actually contain fewer clones than asymptomatic 

infections (Contamin et ah, 1996; Mercereau-Puijalon 1996).

Parasite sequestration is also a factor that contributes to the low MOI values 

observed. The parasite population in an individual has been shown to vary on a day-to- 

day basis in asymptomatically infected children in Tanzania (Famert et al., 1997), 

presumably due to synchronicity of parasite populations of a particular genotype.

The origin of the genetic diversity itself could also play a part in the 

observations recorded. It is generally considered that the presence of genetically distinct 

parasite clones in patient infections results from one of two routes. The first is where the 

patient is inoculated with mixed genotype sporozoites derived from mosquitoes 

containing at least one hybrid oocyst. In hybrid oocysts, sporogony m itotically amplifies 

the meiotic products of a transiently diploid zygote/ookinete derived from the fusion of 

genetically different gametes (Ranford-Cartwright et ah, 1993). The second is simply 

superinfection with novel clones from inoculations from different infectious 

mosquitoes. This assumption that all genetic diversity originates from either meiotic 

recombination or superinfection has been queried by other authors (Dmilhe et a l ,  

1998), who suggest that mitotic recombination may also play a role. The results of the
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study presented in this thesis, that there is wide diversity of parasites even within 

populations with low transm ission, suggest that mitotic recombination, or other 

mechanisms leading to a change in length of repetitive regions of DNA, during the 

various multiplication cycles in the vertebrate host (Amot & Gull 1998) might 

contribute to the observed parasite diversity.

On the other hand, the observations may have nothing to do with experimental 

biases and may be a true picture of the MOI. If so then the lack of correlation between 

MOI and EIR could be explained by:(i) a high proportion of sporozoite inoculations 

either fail to initiate, or to complete successfully, intrahepatocytic development and thus 

do not mature into erythrocytic infections; (ii) most sporozoite inoculations successfully 

invade hepatocytes and complete exo-erythrocytic schizogony but result in short-lived, 

and usually low level, erythrocytic infections (de Roode et al., 2004).

The possibility of sporozoites not completing the intrahepatocytic schizogony 

would be of interest for vaccine development against exo-erythrocytic stages (Frevert et 

al., 1998), because it suggests some form of pre-erythrocytic stage immunity as a major 

component of natural immunity capable of preventing a high proportion of the 

genotypes inoculated as sporozoites from developing into bloodstream infections (Amot 

1998).

However, if the average number of clones is controlled by the immune response 

to erythrocytic stage antigens (e.g. M SPl, MSP2 and GLURP, and especially PfEM Pl), 

the establishment of new clones would require them to have novel variants of these 

protective antigens not recognised by the existing host immunity. If the parasite 

population ‘m ix’ of such polymorphic antigens were finite, increasing the infection 

pressure would expose the host to more antigenic variants and ultimately make it more 

difficult for new parasite clones to establish (Amot 1998). This translates into a scenario
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where older individuals, particularly in high transm ission areas, harbour lower average 

MOI than children. Interestingly such a scenario has been observed in a holoendemic 

area in Senegal (Ntoumi et a l,  1995), but not in a hypoendemic aiea in Sudan (Roper et 

a l ,  1998).

Natural immunity to malaria remains poorly understood. Various models 

involving eventual acquisition of long-teim immunity have been advanced. The most 

populai' seems to be the premunition hypothesis. This proposes that protection from 

clinical disease operates largely via a blockade against superinfection maintained by 

established chronic infections composed of numerous clones. Alternative models 

involving the acquisition of immunity to diverse variable antigens (Gupta & Day 1994; 

Hviid 1998), immunity to relatively conserved parasite antigens (Druilhe & Perignon 

1997), or mechanisms dependent on age and immunological maturity (Baird et a l ,  

1991; Ntoumi et a l ,  1995) have also been proposed. This study seems to reinforce the 

findings of others in Africa that showed most individuals harbour more than one 

parasite clone. It also seems to reinforce the fact that in African malaria endemic 

situations, the average MOIs are quite high (<2 clones per individual per infection) and 

this reflects the rates of transmission.

4.3 Genetic Diversity

In this study, microsatellite markers have been used to study the population 

structure of P. falciparum  from geographical areas with varying transm ission dynam ics 

in Kenya. The data obtained seem to agree with others (Anderson et a l, 2000) that have 

suggested very high diversity levels of P. falciparum  in African populations (Figure 9). 

Lack of LD was also observed in physically unlinked markers suggesting high levels of 

recombination in these areas (Table 20). The study areas are as far apart as 800 km but 

there seems to be no population genetic subdivision between the sites {Fst = 0.008
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(excluding C2M3) Table 21), and no correlation with distance between the sites (Figure

10) suggesting that the Kenyan P. falciparum  populations studied are in effective 

panm ixia

W ith a maximum flying range of approximately 6 km, it is unlikely that the 

mosquito vector is responsible for this observed panm ixia, and it can only be attributed 

to the human host through migration and inter-regional travel. A closer look at the areas 

under the study reveals a lot of human movement especially between Bondo and Tiwi. 

Tiwi is located on the South Coast of Kenya, an area that is quite popular with tourism. 

This means there is frequent movement of people from upcountry to this area in search 

of jobs and business opportunities. The immigrants noimally leave their families 

upcountry thus necessitating frequent travel back home. This perhaps explains the 

parasite gene flow and the almost indistinguishable parasite populations among these 

three areas.

A striking observation from the microsatellite analyses is that while the 

trinucleotide loci showed high levels of variation and low levels of diversity between 

subpopulations {Gst = 0.006) (Figure 9 and Table 21), the dinucleotide marker C2M3 

revealed low levels of variation with higher levels of G st {G st = 0.141) (Table 21). 

Studies of P. falciparum  suggest that dinucleotide repeat microsatellites evolve up to 

twice as fast as trinucleotide repeats (Anderson et a l  2000b), which would be expected 

to translate into more variation for the dinucleotides. However, the dinucleotide repeat 

locus C2M3 revealed lower levels of variation (heterozygosity) and diversity (as 

measured by G$t) than the trinucleotide repeats (Figure 9 and Table 21). This 

contradictory observation could be explained by the fact that the locus C2M3 is not a 

peifect microsatellite. In the 3D7 clone, C2M3 has two repeat runs; (TA)is and (TA )%4 

with an insert of about 90bp in between. This insert contains various combinations of
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bases including mono- and trinucleotide repeats, but is not a pure repetitive sequence. 

Although no C2M3 alleles were sequenced, it is possible that the non-repetitive middle 

sequence has affected the mutation/slippage rate and hence the variation at this locus.

4.3.1 Genetic differentiation and drug resistance

The Fst IGst values are indicators of population differentiation. The lower the 

values, the more closely related are the parasite populations under consideration. The 

results of the study presented in this thesis reveal that the three Kenyan parasite 

populations are almost indistinguishable with very low levels of differentiation {Fst < 

0.008). In fact, the Kenyan parasite populations act as a single large gene pool. This 

finding is very important when considering drug resistance.

It would be expected that with the low differentiation of the Kenyan malaria 

parasite populations, drug resistance would spread quite fast once it has evolved or been 

introduced, since there seems to be a high gene flow between the geographically 

separated populations. This is consistent with the proposal that in populations with low 

Fst, newly arising resistance alleles will spread more rapidly than in populations with 

higher Fst- However, other factors will also determine the spread of these alleles within 

a population and these include the relative fitness of the alleles in the drug environment, 

transm ission intensity, and recombination.

4.4 Drug resistance

Mutations in the parasite genes Pfdhfr and Pfdhps genes are associated with SP 

treatment failure, although their relative contribution to SP clinical treatment failure is 

not completely understood (Nash et al., 2005; Roper et a l ,  2003; Roper et a l ,  2004). In 

the three Kenyan sites studied, SP treatment failure rates varied between 30% and 40 %, 

and this was reflected in the absence of wild-type alleles of Pfdhfr in two of the sites 

studied, Tiwi and Bondo. Wild-type alleles of both genes were seen in the third site.
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Mwea, where SP treatment failure rates are lower (between 18 and 25%), The variation 

in the rates of treatment failure was reflected in the differences between the prevalence 

and combinations of mutations in the two genes studied. Mwea had the lowest 

percentage of triple mutant dhfr alleles (33%) thus reflecting the low treatment failure 

rates (TFR) in vivo while Tiwi, with the higher TFR, had 70% of the analysed samples 

having the triple mutant dhfr allele (Table 22). Bondo with the highest TFR had 63% 

prevalence of the triple mutant dhfr (Table 22), which is slightly lower than Tiwi (which 

has a slightly lower TFR than Bondo). Again the same pattern was observed with dhps 

alleles. Mwea had a prevalence of the double mutant dhps at 43%, Bondo had 22% 

while Tiwi had the highest with 51%. This difference is probably because the analysis 

excluded the multiple clone infections and, as can be expected most of these were from 

Bondo thus biasing the sample.

All of the parasites from Bondo and Tiwi with single and double mutant dhps 

alleles had the triple mutant dhfr allele, suggesting that in these two ai'eas, dhps mutants 

occur against a background of dhfr mutations. However, in the Mwea site 12 isolates 

with the dhps A437G single mutation were found to have a wild-type dhfr allele (Table

24). It is commonly thought that dhps mutations arise against a background of dhfr 

mutant alleles (Plowe et al,, 1996), implying that resistance to SP requires the presence 

of mutations in dhfr. Field studies in Africa have clearly shown association of the dhfr 

triple mutant with increased likelihood of treatment failure following SP treatment 

(Nzila et al., 2000b; Omai* et al., 2001a) and the odds ratio (OR) is usually slightly 

higher when mutations at dhps are included. However it has not been possible to obtain 

OR for dhps mutations alone because they are usually found only in association with 

substituted dhfr alleles.
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A few recent studies have reported parasites with dhps mutant alleles with no 

corresponding mutations in their dhfr genes. In a recent study in Uganda, which is very 

close to our Bondo site, Sendagire and colleagues observed very high levels of the dhps 

mutants at codons 437 and 540 (89% and 74.6% respectively), compared to the most 

prevalent (63.6%) dhfr mutation at codon 108 (Sendagire et ah, 2005). One parasite 

sample out of 113 described was identified with wildtype Dhfr coupled with a single 

mutant (437G) dhps, and two samples had wildtype dhfr with double mutant dhps. One 

hypothesis for this observation is that SP is not the only drug driving the selection of 

dhps mutant alleles (see section 4.9).

While the Fst levels are quite low among the three sites (Table 21), signifying 

adequate gene flow among them, the prevalence of dhfr alleles and also the TFR do not 

support this. For instance, the observation of w ild-type dhfr in Mwea but none in the 

other two sites and also the unequal distribution of the triple substituted dhfr and double 

substituted dhps alleles (Table 22 and Table 23). While the prevalence of alleles in 

Bondo and Tiwi show no significant differences (Fisher’s Exact, P= 0.733 for dhfr and 

P -  0.0567 for dhps), there are highly significant differences in allele prevalence 

between Mwea and the other two sites (Fisher’s exact, P<0.001 for dhfr and P<0.002 

for dhps). In an apparently panm ictic population it is expected that all the alleles would 

be equally distributed which is not the case in this data. A hypothesis for this is that 

panm ixia was established long before the introduction of the selection pressure in all the 

three populations. However sometime later the population in Mwea m ight have drifted 

apart from the other two with no apparent loss of the diversity in the noncoding DNA 

regions leading to the apparent panm ixia being observed. However, the introduction of 

SP in these now separate populations selects for drug resistant parasites at different rates 

leading to the differences being observed.
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In Kenya, SP was introduced as a first-line treatment in 1997. This means the 

useful therapeutic life for SP in Kenya has only been approximately four years although 

it was still available in private healthcare before its introduction as the first-line therapy 

for uncomplicated malaria in Kenya. At the outset, the long elimination half-life of SP 

was considered to be advantageous, since a single-dose cleared parasites, and prevented 

re-infection for a period of approximately 50 days. This relatively long period allowed 

patients to recover from the sequelae of malaiia infection, particularly anaemia 

(W instanley et al., 1992).

However, the long half-life of SP also appears to have had a detrimental effect: 

the rapid selection of resistance. SP is a long acting drug and will persist at sub- 

therapeutic concentrations for more than a month (Nzila et al., 2000b; W instanley et al., 

1992). Sub-therapeutic levels of drug may or may not clear fully sensitive parasites 

[depending on whether the level is higher than the minimum inhibitory concentration 

(MIC) (most therapeutic drug levels are higher than the MIC)], but not highly resistant 

ones, therefore exerting pressure for resistance. This selective pressure eventually 

eliminates the alleles conveying drug sensitivity in parasite populations, and leads to the 

fixation of drug resistant alleles. For SP in Kenya the selection appears to have taken 

about 4 years, as demonstrated by this study. In Asia and Southern Africa, the time 

taken for resistance alleles to spread to fixation was shown to be approximately 6 years 

(Nair et ah, 2003; White 1992), which is approximately 36 Plasmodium  generations 

assuming an estimate of six generations per year (Joy et ah, 2003).

As drug resistance spreads, it leaves genomic signatures that can be used to trace 

its evolution and introgression through a population. These signatures appear in the 

form of hitchhiking of genom ic sequences flanking the drug resistance-conferring loci.
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For SP resistance, the important loci are thought to be the Pfdhfr and Pfdhps genes 

(Nair et a l,  2003).

4.5 Evidence of selective sweep of resistant alleles

Microsatellite loci spanning a region approximately 17kb (both up and 

downstream) around the dhfr and dhps loci were used to construct haplotypes of 

parasites present in patients in three Kenyan sites.

The haplotype analysis provides evidence suggestive of selection around both 

dhfr and dhps loci in two of the sites, Bondo and Tiwi (Figure 17, Figure 23, Figure 24, 

Figure 25, Figure 26 and Figure 27). For the Mwea site evidence for selection was only 

observed on dhfr but not in dhps (Figure 17, Figure 20 and Figure 23). Although 

parasites bearing the wild-type dhfr were absent in Bondo and Tiwi, both wild-type and 

mutant dhfr and dhps alleles were found amongst the samples collected from Mwea. 

Hence, it was possible to compare patterns of m icrosatellite variation flanking both 

classes of alleles (Figure 24, Figure 25 and Figure 26). These data provide strong 

evidence of selection for the mutant dhfr allele, especially the triple mutant, in the three 

areas studied (Figure 17 and Figure 24). The results also suggest a strong selective 

pressure on the double mutant dhps in Bondo and Tiwi.

Markers flanking the triple mutant dhfr and the double mutant dhps alleles show 

an almost complete lack of diversity in Bondo and Tiwi (Figure 26 and Figure 27). The 

linkage disequilibrium (LD), as measured by EHH, across this -17kb haplotype is also 

very elevated with skewed allele frequency distributions relative to the markers flanking 

the wild-type and single mutant alleles (Figure 26 and Figure 27). While these paiasite 

isolates show a complete lack of LD w ith the unlinked markers in chromosomes 2, 3, 5,
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8 and 10, they show elevated LD with the markers flanking the two genes. This is 

suggestive of very strong selection of the dhfr and dhps loci.

Allele distributions also provide additional evidence for a recent selection of the 

resistant alleles. Microsatellites flanking the triple mutant dhfr showed three 

predominant allelic haplotypes varying by a single locus in the outeimost region of the 

sequence and occasional rare variants, indicative of a recent bottleneck (Comuet & 

Luikart 1996). This is in contrast with haplotypes flanking wild-type dhfr alleles, which 

showed a w ider variation of allele frequency distribution (Figure 24). Looking at the 

number of alleles observed at each locus, m icrosatellite He of haplotypes cany ing 

mutant dhfr alleles was significantly lower than expectation, assuming both infinite 

alleles (lAM) and stepwise mutation models (SMM) of microsatellite mutation 

(W ilcoxon test, P  <0.0039 [IAM]; P< 0.0020 [SMM]). In comparison, chromosomes 

carrying wild-type dhfr alleles showed no significant deviation from equilibrium 

expectations (W ilcoxon test, P < 0.056 [JAM]; P< 0.74 [SMM]). These findings 

suggest that triple mutant dhfr alleles have arisen on relatively few occasions, as 

evidenced by little variation in flanking markers. Different haplotypes are predominant 

in the three populations studied, which might indicate independent derivation of these 

mutants, or could indicate evolution w ithin the parasites in a particular area.

4.6 Origin of the mutant dhfr alleles

Analysis of the eight-locus microsatellite haplotype flanking triple mutant dhfr 

alleles provides strong evidence for a single or very limited origin of these alleles. Of 

the 86 isolates bearing the mutant dhfr alleles, 65 had either one of two eight-locus 

allelic haplotypes that differed at only one of the eight markers. Exclusion of the 

DHFRD4 outer locus (8.0 Kb upstream of dhfr) from the analysis showed that the 65/84 

isolates had a single seven-locus haplotype. O f the remaining 21, 13 differed at only
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two of the eight markers while the other 8 differed at a single locus but with different 

allelic combinations (Table 25). None of the isolates bearing the triple mutant dhfr 

allele differed at more than three of the eight markers. This variation was also only 

observed in the downstream region flanking the dhfr gene. Most of the 86 isolates 

bearing the triple dhfr mutant examined, showed very similar four-locus haplotype at 

the markers in the downstream region of the gene (see discussion on asymmetry on 

page 174 and Figure 24).

Compaiisons of microsatellite haplotype frequency distributions (Figure 14, 

Figure 15, Figure 16 and Figure 17) reveals that neither the haplotypes associated with 

the double mutant dhfr or those of the triple mutant dhfr alleles could be found 

associated with either the wild-type or single mutant haplotypes. Although the single 

mutants theoretically preceded the double and definitely the triple mutants, the extant 

single mutant allele haplotypes do not seem to be ancestral, on the basis of flanking 

markers, to either of the more substituted haplotypes. This finding is in agreement with 

the results of previous studies that have suggested that African dhfr double and triple 

mutants are possibly imported from elsewhere (Roper et al., 2003). It would also be in 

agreement with theoretical predictions that new resistance mutations are rare and even 

constrain the rate at which the parasite population can adapt to drug (Anderson & Roper 

2005; Hastings 2004; Hastings & Watkins 2005). However, a number of other triple 

mutant haplotypes were found to be present in the three areas but at very low 

frequencies, which would suggest that they are quite rare in the population. These rarer 

triple mutant haplotypes could have arisen through background mutation and have been 

selected by drug pressure. Single mutant alleles (coding for 108N) had unrelated 

flanking sequences, suggesting that they did arise independently and on multiple genetic 

backgrounds, although it is possible that the selection on them is too weak for the
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flanking sequences to be carried through. Although single mutations seem to have 

arisen independently on multiple occasions, the fitness benefits they confer aie perhaps 

too weak to overcome the associated fitness costs, and they do not seem to be strongly 

selected for at the population level. If, as has been postulated, there are additional 

compensatory mutations (Wang et al., 2004) elsewhere in the genome (Schrag et al., 

1997), required to limit the deleterious effects of mutations in dhfr, then we might 

expect that the S108N single mutant might not have developed these compensatory 

mutations to enable it overcome the fitness cost associated with the dhfr mutations even 

with the dmg pressure working to its advantage. Using this argument, the single mutant 

alleles seem unlikely to spread throughout the population or to persist long enough to 

accumulate more mutations. In contrast, when a multiple mutant allele arises, through 

successive selection and recombination of drug tolerant alleles, it has high relative 

fitness and can spread rapidly throughout large geographic regions (Roper et ah, 2003).

Due to time limitations, it was not possible to type samples from other areas such as 

Southeast Asia and Southern Africa to determine the possible geographical origin of the 

multiple mutant alleles observed in this study (assuming that the alleles spread into 

Kenya from other areas, rather than arising there). However, it is possible that their 

origin is in Southeast Asia, since another study has shown that Tanzanian (which 

borders Kenya to the south and is very close to one of the sites of this study) multiple 

mutants have a shared origin in Asia (Roper et a l ,  2004).

4.7 The selective sweep ‘valley’

The valley of reduced variation around the triple mutant dhfr alleles appears to 

be asymmetrical (Figure 24). This is in contrast with the symmetrical valley of reduced 

variation around the double mutant dhps alleles in Tiwi and Bondo (Figure 27) and also 

with what has been suggested by simulation studies (Kim & Stephan 2002). The valley
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of reduced variation around dhfr in other populations has been shown to extend to as 

much as 100 kb away from the gene (Nair et al., 2003) but the slopes of the valley on 

both sides of the gene do not appear to be symmetrical. The region of reduced diversity 

extends much more downstream than upstream with the dip being naiTower on the 

upstream side of the gene (Figure 24). Pearce and colleagues (Pearce et al., 2005) have 

hypothesized three explanations for this asymmetry;

i) Differing rates of recombination on either side of dhfr,

ii) Stochastic noise,

iii) Existence of a resistance enhancing or resistance-compensating gene 

downstream of dhfr.

It has been shown that varying distribution of crossover events, differing 

substantially from their genome average can reflect recombination hotspots as well as 

other genome features e.g. proximity to centromeres and telomeres (Barnes et al., 1995; 

Symington et al., 1991; Szankasi et al., 1988). Even certain nucleotide substitutions 

have been shown to create recombination hotspots (Ponticelli et al., 1988). The 

downstream region of dhfr does not appear to be refractory to recombination (for 

example, due to proximity to a centromere), since the samples with the wild-type dhfr 

still show high diversity (Figure 14 and Figure 24).

Asymmetry may also be caused by the stochastic nature of recombination events 

during short phases of intense selection. K im and Stephan used a model of genetic 

variation along a recombining chromosome to show that in a population where the time 

to fixation is short, e.g. when effective population {Ne) is small; the selective sweep 

could be asymmetrical around the selected site (Kim & Stephan 2002). The short period 

in which fixation is reached reduces the amount of time for recombination events to 

occur resulting in stochastic noise (Pearce et al., 2005). This fits with the scenario
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observed in Southeast Asia where fixation of resistance took only six years. In Africa 

where fixation of the triple mutant is yet to be achieved, it is not easy to explain. 

However, intense selection pressure may result in rapid epidemic expansions (Maynard 

Smith et a l ,  1993) of resistant parasites through introgression in local populations and 

as such this would lead to asymmetry (Pearce et a l,  2005). This hypothesis however 

assumes that asymmetry is random and therefore has appeared on the same side of dhfr 

in East and Southern Africa as it has in SE Asia by chance alone (Nair et a l ,  2003; 

Pearce et a l ,  2005).

There is some experimental evidence to support the third explanation. Wang and 

colleagues analysed a genetic cross between parasite lines HB3 and Dd2; in this cross 

the two parents differ in sensitivity to sulfadoxine (Wang et a l ,  2004). They identified a 

segregating modifier of sulfadoxine resistance, which they termed the ‘folate effect’. A 

48.6 kb region of chromosome 4 was found to be in complete linkage with the folate 

effect phenotype. It is tempting to speculate that a resistance-enhancing or fitness- 

compensating gene, such as the one proposed for folate salvage in the upstream region 

of the resistant dhfr allele, could explain the reduced variation observed in flanking 

m icrosatellite markers upstream dhfr. The existence of this ‘folate gene’ is yet to be 

proved (Pearce et a l ,  2005). However, if such an adaptation gene exists, we would 

expect it to be very close to the dhfr gene to prevent their linkage from being w iped out 

by recombination.

Nash and colleagues have observed the same phenomenon of asymmetry in an 

analysis of selective sweep of pfcrt on SE Asian isolates (Nash et a l ,  2005). Given 

these observations with two genes with different sources of selective pressure, the most 

probable cause of the asymmetry is heterogeneity in recombination rates on the two 

sides of dhfr.
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4.8 Drug resistance and selection on Pfdhps

In Tiwi and Bondo, the results of the analysis of microsatellites flanking the 

dhps gene reveal a similar pattern to that of the markers flanking dhfr, with a limited 

number of haplotypes flanking the double mutant {dhps A437G/K540E). A very 

different picture emerges with the isolates from Mwea. While the isolates bearing the 

double mutant dhps allele (A437G, K540E) from Bondo and Tiwi reveal signatures of 

selection (Figure 23, Figure 25 and Figure 27), the isolates with double mutant alleles 

from Mwea do not exhibit these signatures of selection (Figure 20 and Figure 23). 

When isolates {n =132) from all sites are analysed together for their allelic haplotypes, a 

total of 82 haplotypes are generated. When the Mwea isolates ai'e excluded only 31 

haplotypes are generated for the isolates from Bondo and Tiwi {n = 75). Dhps double 

mutants from Mwea are therefore present on a much larger genetic background, with no 

clear predominance of any one haplotype (Figure 20 and Figure 23). The distribution of 

m icrosatellite haplotypes around the single single (A437G) and double mutant dhps 

alleles from Mwea reveals a wide distribution of these alleles across all haplotypes. 

There are a large number of different haplotypes for each allele of dhps (wild-type, 

single, double), with no evidence of a reduction in haplotype diversity associated with 

increasing substitution at the dhps locus.

4.9 Lack of selective sweep around dhps in Mwea

Our observations in Mwea with regard to the distribution of drug resistance 

alleles require some explanation (Figure 20 and Figure 23). The uniform distribution of 

haplotypes associated with the wild-type, single and double mutant dhps alleles are 

significantly different findings to those observed in the other two sites in this study, and 

those reported elsewhere in the literature.
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The lack of a selective sweep on dhps in Mwea is also puzzling given the fact 

that the same isolates show a strong selective sweep around dhfr (Figure 17). One 

possible explanation for this observation is that SP is not the selective force driving the 

evolution of dhps mutation in P. falciparum, at least not in Mwea, and possibly not at 

all. Two other possible factors may also be responsible: antibiotic dmg use and diet.

Various antibiotics are known to affect the folic acid synthesis and some such as 

cotrimoxazole have even shown potential as antimalaiials (Omar et ah, 2001b; Saliba & 

Kirk 1998). These antibiotics, coupled with the widespread practice for self-medication, 

m ight have pushed the evolution of dhps in P. falciparum  in Mwea, perhaps even before 

the introduction of SP as an antimalarial. Cotrimoxazole is commonly used to treat 

acute respiratory tract infections (ARIs) especially pneumonia and its use is widespread 

in East Africa because of its lower cost (World Health Organization 1991b).

It has been shown that even in the presence of a biosynthetic synthesis for 

PABA, malaria parasites require exogenous dietary PABA for survival (Greene 1999; 

Ricska et ah, 2003; van Doorne et aL, 1998). As has been discussed previously, PABA 

and folate are competitive inhibitors of sulfadoxine (Peters 1997), so it is possible that 

in patients with high dietary folate/PABA, sulfadoxine will have no inhibitory effect on 

the parasite. Investigations of the dietary patterns of the inhabitants of Mwea reveal that 

most of their diet is composed of rice and/or maize taken with vegetables, as the 

farm ing in this area is rice irrigation. Leafy greens such as turnip greens (diet folate 

equivalent = 65 pg), orange juice (70 pg), peas (105 pg), beans (90 pg), and many other 

types of fmits and vegetables are rich sources of folate. The diet in Mwea is very low in 

animal proteins (Bwibo & Neumann 2003), suggesting that the source of protein is 

likely to be legumes, which are high in folates. This is in contrast to the diet of the 

populations of Tiwi and Bondo, whose diet is mainly fish and maize meal as they live
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very close to fishing areas. The vegetable intake in these other ai’eas is also poor as the 

soil is not suitable for horticulture.

It is possible therefore that parasites infecting the Mwea population encounter 

higher levels of physiological folate/PABA than those of Tiwi and Bondo, and that this 

removes the effectiveness of sulfadoxine in the combination drug SP. Mutations in dhps 

would therefore confer no selective advantage to parasites, and the gene would therefore 

not undergo a selective sweep. Further studies comparing PABA and folate levels 

between the three populations would be required to investigate this hypothesis further.

4.10 Transmission intensity and drug resistance

The areas in which this study was carried out have relative higher transm ission 

indices than the other areas of Southeast Asia and Southern Africa in which similar 

studies have been carried out. What is the link between transm ission and antimalarial 

drug resistance?

There are cuiTently two schools of thought concerning the link between transm ission 

intensity and evolution of drug resistance both of which are discussed below.

4,10.1 Low transmission increases drug resistance

In the mid-1990s it was proposed that parasite inbreeding could elevate 

multigenic drug resistance by preventing the breakdown and dilution of drug-resistant 

haplotypes that occur through genetic recombination (Schm idt 1995). Inbreeding is 

thought to be more frequent when transm ission is low, as this is predicted to lessen the 

likelihood of mixed infections comprising organisms carrying resistant and sensitive 

alleles (Curtis & Otoo 1986). The proponents of this hypothesis also argue that most 

infections in low-transm ission areas are in nonimmune people who become 

symptomatic and are then treated with the drug. The increased proportion of infections
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treated results in the selective advantage of the mutation being larger in areas of low 

transm ission than that in areas of high transm ission, so resistance mutations are more 

likely to survive and spread in such areas (Hastings 2004). Perusal of the survival 

probabilities suggest that, even if this was not the case, most origins of drug resistance 

might occur in areas of low transm ission because the differences in survival 

probabilities caused by their differing selective advantages will probably greatly 

outweigh any differences in their rate of input. For example, Nair and colleagues 

estimated the selective advantage of dhfr resistance mutations to be 10% in Southeast 

Asia, giving them an 18% chance of survival assuming a Poisson distribution, falling to 

2% under a more realistic assumption of highly heterogeneous malaria transm ission 

(Nair et aL, 2003). Similarly, Roper and colleagues calculated the selective advantage of 

the dhfr triple mutation in Southern Africa to be 5%, giving it a chance of survival of 

between 9% and 10%, depending on degree of transm ission heterogeneity (Roper et aL,

2003). Both studies (Roper et al., 2003) were carried out in areas of low transm ission 

where most infections are symptomatic, hence inducing the patient to seek treatment 

(Nair et al., 2003).

By contrast, many infections in areas of higher transm ission in Africa are 

asymptomatic and more likely to remain untreated (Ntoumi et al., 1995). This could 

substantially reduce selective advantage and hence the probability of a new mutation 

surviving (Hastings 2004). The ability of mutations to survive can therefore vary 

substantially depending on local epidemiology, which determines the selective 

advantage of the mutation and the degree of heterogeneity in the transm ission of the 

mutation.
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4.10.2 Low transmission decreases drug resistance

It has been proposed by theoretical argument (Hastings & Mackinnon 1998) and 

in a review paper (Molyneux et al., 1999) that low transm ission can decrease multigenic 

drug resistance. More direct field evidence has recently emerged in Zimbabwe, during a 

comprehensive vector control programme. In Zimbabwe, which lies on the southern 

fringes of malaria endemicity in Africa, transm ission is markedly seasonal and 

epidemic, and asymptomatic carriage is rare (Taylor & Mutambu 1986). Annual house 

spraying was selectively instituted (during 1995-1999) in one of two mesoendemic sites 

that both used chloroquine as first line treatment and had similar starting levels of 

chloroquine resistance. In the sprayed region during 4 years when annual spraying was 

used, the chloroquine failure rate decreased such that the odds of drug failure became 

four-fold lower than before spraying was instituted (Mharakurwa 2004). The odds of 

drug failure did not significantly change in the unsprayed site. After the selective 

spraying was stopped in 1999, drug failure odds for the sprayed area had increased four

fold by 2003, back to the original level (Mharakurwa 2004). During the 1998-1999 

transm ission seasons, a cross-sectional assessment of parasite genotypes in the Pfm drl 

and Pfcrt showed higher likelihood for mixed infections, containing both mutated and 

wild-type variants at one or more loci, in the sprayed aiea. This was in spite of lower 

transm ission in the sprayed area (Mharakurwa 2004). Thus reduced transm ission, due to 

vector control, or environmental factors such as high altitude, appears to delay the 

escalation of dmg resistance.

4.10.3 Transmission and rate of selection for resistance in Kenya

The three areas under study in this thesis have varying transm ission intensities. 

Bondo is holoendemic and transm ission is perennial, Tiwi is hyperendemic and 

transm ission is perennial with seasonal variations, while Mwea is hypoendemic and the

181



selective advantage of 0.26 (meaning theoretically resistant parasites can replace the 

entire population in only 4 years). The resistant parasite population in Bondo has only a 

0.10 selective advantage (theoretically it would take 10 years to replace the entire 

parasite population in Bondo) (Figure 28 and Figure 29). Selection in Mwea would 

appear to be the strongest, followed by that in Tiwi, while it would be slowest in Bondo 

(Figure 28, Figure 29 and Figure 30).

Taken together, these findings suggest that the high transm ission rates in Bondo, 

resulting into high recombination rates, break down the triple mutant haplotype thus 

taking a long time for it to introgress through the population; this explanation is 

supported by the higher variation seen in the loci flanking regions of triple mutant dhfr 

alleles.

An upshot of this finding is that during the initial stages of evolution and spread 

of drug resistance, the human population at highest risk would be that living in low 

transm ission areas. This is because even with their higher clinical cases with sensitive 

malaria parasites (due to their low immunity) they have the added risk of getting drug 

resistant parasites which would lead to epidemics and eventually higher morbidities and 

mortalities. This emphasizes the need for surveillance programs especially after the 

introduction of new antimalaria treatment regimens.
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transm ission is seasonal. From the arguments in section 4.10.1, drug resistance would 

be expected to evolve and spread fastest in Mwea while it would be slowest in Bondo. 

The mutant forms of dhfr associated with SP treatment failure were higher in Tiwi and 

Bondo compared to Mwea. For example, the triple mutant allele was found in 63% and 

70% of samples in Tiwi and Bondo respectively, but in only 33% of samples from 

Mwea (Table 22), and Mwea was the only site where wild-type dhfr alleles were 

detected. For dhps, wildtype alleles were seen in 13% and 27% of samples from Tiwi 

and Bondo respectively, and 39% of those from Mwea. Currently SP treatment failure 

rates in the three sites have been estimated to be between 20-60%. Data from previous 

studies reveal that SP treatment failure rate in Kilifi (an area including the Tiwi site) 

was 20% in 1998. Most of these persistent parasites carried the triple-mutant allele of 

dhfr with or without mutations in dhps (Nzila et a l, 2000). These failure rates were 

shown to have increased to about 30% in 1998 (Nzila et a l, 1998). This trend has now 

been confirmed by the results of this study, which reveal that in Tiwi SP failure rates 

were as high as 40% in 2000 when this study was carried out. This trend is expected to 

be the same in the other two sites with Mwea having lower rates and Bondo with higher 

rates consistent with the transm ission intensities.

Exam ination of the eight-locus haplotypes reveals that most of the variation in 

the triple mutant dhfr alleles was found in the isolates from Bondo (Figure 17 and Table

25), with only 15 out of 36 isolates bearing the triple dhfr allele having the same 

identical haplotype. This contrasts with Mwea, where 19 out of the twenty isolates 

bearing the triple dhfr mutant had a single eight-locus haplotype. In Tiwi, 25 out of the 

30 isolates bearing the triple dhfr allele had the same eight-locus haplotype.

Finally the estimated selection coefficients for SP resistant mutants (section 

3.5.9) suggest that the resistant parasite population in Mwea (lowest transm ission) has a
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4.11 SUMMARY

The work presented in this thesis has demonstrated that microsatellite markers 

perforai no better than antigenic markers in distinguishing genuine recrudescence of 

resistant parasites from reinfections during the follow-up period of in vivo drug efficacy 

trials.

Data have been presented showing that populations of parasites from three areas 

of Kenya, separated by more than 800 km, are genetically closely related such that there 

is apparent panm ixia. This has implications for the spread of drug resistance within the 

country; resistant parasites arising spontaneously, or moving into an area from outside 

of the country, have a high likelihood of spreading rapidly to all areas of Kenya.

The work presented also demonstrates that alleles of the dhfr gene, especially 

the triple mutant allele, isolated from the three different areas are closely related to one 

another and probably share a common and very recent ancestor. There is strong 

evidence for a selective sweep around dhfr in the Kenya P. falciparum  population. The 

same situation has occuiTed for dhps alleles (both the single and more especially the 

double mutant) in two of the sites studied. However at a third study site there was no 

evidence for selection at the dhps locus. Mai'kers flanking the gene showed high and 

similar diversity around wild-type and mutant alleles with multiple haplotypes present. 

This finding suggests that in this region, sulfadoxine is not driving selection of mutant 

dhps alleles, and, that factors such as diet or sulfa-antibiotic use may be affecting the 

efficacy of the sulfadoxine component of SP.

These findings have implications for the spread of antimalarial drug resistance in 

Kenya. SP resistant parasites appear to arise by immigration from other areas rather than 

by spontaneous emergence, as has been reported for other areas of Africa with lower
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intensities of transm ission. The strength of selection appears to be lower in areas of high 

transm ission, suggesting a more rapid increase in treatment failure in areas of lower 

transm ission. Since individuals living in regions of low transm ission develop paitial 

immunity more slowly, they are even more at risk because drug resistant levels will rise 

more quickly, and treatment failure rates will be higher due to higher parasite resistance 

as well as lower immunity. Malaria control programmes therefore should take great care 

to assess treatment failure rates/resistance in low transm ission areas, since there is the 

potential for epidemics with high morbidity and mortality.
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APPENDIX 1
Allele sizes (in base pairs) for all individuals studied across the five unlinked loci 
(0= nonamplification)
Sample ID C2M3 C3M85 TA40 TA17 TA48
BO ND O .l 265 292 222 276 288
B 0 N D 0 .2 300 336 308 256 279
B 0 N D 0 .3 306 289 233 254 275
B 0 N D 0 .4 325 350 233 289 288
B 0 N D 0 .5 319 296 239 327 275
B 0 N D 0 .6 313 336 265 313 288
B 0 N D 0 .7 299 353 289 302 296
B 0 N D 0 .8 325 309 300 274 283
B 0 N D 0 .9 313 335 323 252 283
BONDO.IO 275 329 221 244 292
BO ND O .l 1 280 332 308 294 318
B 0N D 0.12 260 306 229 323 335
B 0N D 0.13 295 269 221 228 271
B 0N D 0.14 290 215 207 300 335
B 0N D 0.15 275 290 243 250 276
B 0N D 0.16 252 254 207 211 252
B 0N D 0.17 274 233 207 167 281
B 0N D 0.18 260 296 196 331 295
B 0N D 0.19 279 243 226 256 262
BONDO.20 274 354 189 256 267
B 0N D 0.21 307 289 237 233 271
B 0N D 0.22 300 299 222 272 306
B 0N D 0.23 320 234 235 228 295
B 0N D 0.24 264 263 222 324 285
B 0N D 0.25 305 293 198 338 280
B 0N D 0.26 332 343 210 260 290
B 0N D 0.27 342 322 190 265 312
B 0N D 0.28 300 215 226 331 289
B 0N D 0.29 268 278 190 245 285
BONDO.30 276 332 214 300 225
B 0N D 0.31 305 363 204 313 265
B 0N D 0.32 256 222 215 183 322
B 0N D 0.33 0 273 0 200 0
B 0N D 0.34 288 298 242 228 301
B 0N D 0.35 311 269 188 217 272
B 0N D 0.36 260 231 227 244 268
B 0N D 0.37 279 289 212 233 312
B 0N D 0.38 232 299 220 336 332
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Sample ID C2M3 C3M85 TA40 TA17 TA48
B 0N D 0.39 248 342 206 244 265
BONDO.40 232 292 216 228 232
B 0N D 0.41 228 285 208 244 280
B 0N D 0.42 248 275 186 213 285
B 0N D 0.43 300 290 185 200 268
B 0N D 0.44 265 345 196 198 323
B 0N D 0.45 248 218 195 207 288
B 0N D 0.46 268 322 200 213 300
B 0N D 0.47 232 318 204 183 265
B 0N D 0.48 311 335 215 192 285
B 0N D 0.49 284 222 250 184 289
BONDO.50 256 299 235 192 295
B 0N D 0.51 305 318 213 210 322
B 0N D 0.52 260 314 225 220 272
B 0N D 0.53 264 298 190 194 232
B 0N D 0.54 244 325 185 207 290
B 0N D 0.55 264 275 210 213 300
B 0N D 0.56 279 0 225 213 322
B 0N D 0.57 288 311 234 227 265
B 0N D 0.58 248 243 213 227 290
B 0N D 0.59 232 265 189 200 306
BONDO.60 272 292 236 220 344
TIWI.l 321 335 206 217 293
TIWI.2 311 330 213 230 303
TIWL3 286 297 188 215 340
TIWL4 257 289 213 270 330
TIWL5 282 312 229 259 310
TIWL6 276 262 213 233 280
TIWL7 300 330 210 226 293
TIWL8 300 267 185 230 247
TIWI.9 286 287 178 225 310
TIWI.IO 306 344 226 189 290
TIWI. 11 313 290 200 200 323
TIWI.12 300 285 163 248 320
TIWI.13 258 293 173 256 0
TIWI.14 283 315 190 220 308
TIWI.15 296 285 200 252 331
TIWI.16 296 320 213 244 280
TIWI. 17 265 332 237 252 287
TIWI.18 293 266 216 199 310
TIWI. 19 252 267 220 197 340
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Sample ID C2M3 C3M8S TA40 TA17 TA48
TIWI.20 312 307 200 197 320
TIWI.21 296 258 211 212 287
TIWI.22 254 289 227 204 260
TIWL23 311 319 188 190 300
TIWI.24 306 296 230 193 267
TIWI.25 252 285 230 190 273
TIWI.26 248 357 170 211 304
TIWI.27 291 349 181 233 260
TIWI.28 252 321 236 207 280
TIWI.29 291 345 218 215 297
TIWL30 248 322 178 189 280
TIWI.31 287 298 202 195 287
TIWL32 289 324 191 230 293
TIWI.33 311 294 221 254 297
TIWI.34 305 255 214 190 280
TIWI.35 300 300 178 220 290
TIWL36 286 268 212 187 279
TIWI.37 294 306 233 199 267
TIWL38 312 292 190 195 293
TIWL39 333 288 239 239 280
TIWI.40 321 338 228 258 254
TIWL41 252 273 182 265 287
TIWI.42 265 332 258 235 260
TIWI.43 257 271 189 217 343
TIW1.44 265 252 240 256 290
TIWI.45 321 328 223 212 267
TIWI.46 326 277 203 248 300
TIWL47 289 299 217 239 289
TIWL48 312 305 234 223 290
TIWL49 325 289 211 202 254
TIWI.50 291 269 219 234 310
TIWI.51 316 327 225 226 293
TIWL52 353 270 231 230 340
TIWL53 296 290 226 218 293
TIWI.54 274 313 217 248 289
TIWL55 280 305 213 225 267
TIWI.56 300 311 209 220 290
TIWL57 235 288 224 199 254
TIWI.58 288 268 203 203 310
TIWL59 252 273 210 200 343
TIWI.60 296 275 192 241 287
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Sample ID C2M3 C3M85 TA40 T A Î7 TA48
MWEA.l 262 267 207 254 308
MWEA.2 296 311 186 195 293
MWEA.3 265 300 207 224 342
MWEA.4 305 267 194 198 325
MWEA.5 237 255 241 238 286
MWEA.6 296 324 230 215 293
MWEA.7 254 311 214 200 250
MWEA.8 260 290 207 272 286
MWEA.9 329 300 197 261 248
MWEA. 10 273 289 192 229 267
MWEA.l 1 265 353 175 214 273
MWEA. 12 262 324 200 187 267
MWEA. 13 327 295 216 187 273
MWEA.14 305 339 212 224 267
MWEA. 15 257 281 212 200 273
MWEA.16 318 300 208 203 270
MWEA. 18 323 329 224 207 325
MWEA. 19 282 318 190 188 286
MWEA.20 309 311 207 220 293
MWEA.21 308 282 216 210 252
MWEA.22 298 329 212 248 270
MWEA.23 330 277 207 271 320
MWEA.24 282 319 192 248 273
MWEA.25 254 284 197 187 286
MWEA.26 309 342 197 192 270
MWEA.27 264 294 223 187 262
MWEA.28 296 300 229 207 243
MWEA.29 309 364 163 230 293
MWEA.30 296 329 207 248 271
MWEA.31 265 290 212 212 300
MWEA.32 231 306 176 232 276
MWEA.33 309 355 187 188 286
MWEA.34 235 322 191 283 250
MWEA.35 303 266 172 219 284
MWEA.36 318 277 188 192 270
MWEA.37 327 256 190 212 349
MWEA.38 283 286 218 226 281
MWEA.39 234 281 207 191 340
MWEA.40 303 302 212 245 323
MWEA.41 300 286 228 212 278
MWEA.42 299 288 192 218 247
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Sample ID C2M3 C3M85 TA40 TA17 TA48
MWEA.43 266 265 176 248 287
MWEA.44 296 280 206 188 293
MWEA.45 279 311 189 215 296
MWEA.46 264 308 213 272 310
MWEA.47 285 306 209 225 350
MWEA.48 316 324 220 244 320
MWEA.49 320 356 200 230 254
MWEA.50 266 334 213 245 296
MWEA.51 274 289 254 262 286
MWEA.52 310 306 202 204 309
MWEA.53 282 323 229 256 250
MWEA.54 262 318 252 238 267
MWEA.55 242 342 176 197 276
MWEA.56 265 322 210 207 287
MWEA.57 242 271 198 238 343
MWEA.58 237 300 229 188 330
MWEA.59 260 290 193 220 310
MWEA.60 258 346 234 197 271
MWEA.61 332 295 193 215 343
MWEA.62 324 283 218 232 296
MWEA.63 262 319 213 257 270
MWEA.64 273 281 239 200 262
MWEA.65 318 342 183 212 276
MWEA.66 310 312 232 228 282
MWEA.67 265 290 175 254 308
MWEA. 6 8 309 282 194 232 250
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APPENDIX 2
Dhfr-linked microsatellite haplotypes arranged hy sorting isolates according to 
their DhfrUl allele sizes (in hase pairs). Values in parentheses indicate whether the 
double mutant has the secondary mutation at either the 51 or 59 codons.

Sample ID DhftUl DhfrU2 DhffU3 DhfrU4 DhftDl DhfrD2 DhfrD3 DhffD4 Mutations HaplQtyi
B 0N D 0.54 107 158 174 200 120 235 180 263 1 1
TIWI.20 107 167 178 202 116 279 200 300 1 2
MWEA.61 110 181 210 219 92 276 218 294 0 3
B 0N D 0.49 111 162 178 235 122 240 185 266 1 4
B 0N D 0.17 111 174 188 212 100 244 183 283 3 5
MWEA.2 111 178 170 212 100 247 178 283 1 6
TIWI.38 111 180 191 238 108 251 200 298 1 7
BONDO.20 111 189 170 224 116 238 190 296 1 8 .
B 0N D 0.46 115 158 210 187 118 260 176 300 1 9
TIWI.l 115 169 183 206 97 269 205 288 2 # ^ 10
TIWI.17 115 169 183 206 97 269 205 288 2 ^ ^ 10
TIWI.60 115 169 183 206 97 269 205 288 2 ^ ^ 10
B 0N D 0.38 115 169 183 224 97 252 205 279 2(59) 11 '
B 0N D 0.53 115 169 183 224 97 269 192 275 2 ^ ^ 12
MWEA.29 115 169 183 224 97 269 192 294 2(51) 12
MWEA.34 115 169 183 224 97 269 192 294 2 ^ ^ 12
B 0N D 0.44 115 169 183 229 97 252 192 279 2 ^ ^ 13
B 0N D 0.47 115 169 183 229 97 252 192 279 2 ^ ^ 13
MWEA.22 115 169 183 229 97 252 192 279 2 ^ ^ 13
MWEA.l 1 115 169 183 229 97 252 192 279 2 ^ ^ 13
B 0N D 0.45 115 169 183 229 97 252 192 279 2 ^ ^ 13
MWEA.23 115 169 183 229 97 252 192 279 2 ^ ^ 13
MWEA.26 115 169 183 229 97 252 192 294 2 ^ ^ 14
TIWI.45 117 176 182 200 124 260 196 285 1 15
MWEA.47 117 176 182 200 124 260 196 285 0 15
TIWI.55 118 177 175 210 127 267 200 286 1 16
MWEA.24 118 192 167 171 109 266 211 289 1 17
MWEA.66 119 162 170 216 122 255 229 289 1 18
MWEA.33 119 190 199 212 122 245 178 283 0 19
MWEA.48 121 160 168 219 119 234 209 283 0 20
BONDO.40 122 192 183 187 115 256 179 290 1 21
MWEA.15 122 200 175 212 152 248 215 289 0 22
MWEA.35 125 166 211 198 119 252 202 278 1 23
B 0N D 0.35 126 160 174 218 90 231 176 275 1 24
B0N D 0.41 126 167 183 224 120 248 213 295 1 25
TIWI.43 126 169 183 206 97 252 192 288 2(59) 26
TIWI.9 126 169 183 206 97 252 192 288 2(59) 26
TIWI.8 126 169 183 206 97 252 192 288 2(59) 26
MWEA.62 126 169 183 229 97 252 192 288 2(59) 26
TIWI.49 126 184 183 229 97 252 218 296 2(59) 27
TIWI.35 126 184 183 229 97 252 218 296 2(59) 27
BONDO.50 126 184 183 229 97 252 218 296 2(59) 27
MWEA.6 126 184 183 229 97 252 218 296 2(59) 27
MWEA.28 126 184 183 229 97 252 218 296 2(59) 27
B 0N D 0.58 126 184 188 224 100 244 205 283 3 28
MWEA.l 126 184 195 224 97 252 205 279 2(59) 29
B 0N D 0.48 126 184 195 224 97 252 205 279 2(59) 29
BONDO.l 1 126 184 195 224 97 252 205 279 2(59) 29
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Sample ID DhftUl DhfrU2 DhftU3 DhftU4 DhftDl DhftD2 DhftD3 DhftD4 Mutations Haplotyj
B 0N D 0.51 126 184 195 224 97 252 205 279 2(59) 29
MWEA.14 126 184 195 224 97 252 205 279 2(59) 29
MWEA.49 126 184 195 224 97 252 205 279 2(59) 29
MWEA.50 126 184 195 224 97 252 205 279 2(59) 29
MWEA.51 126 184 195 224 97 252 205 279 2(59) 29
MWEA.55 126 184 195 224 97 252 205 279 2(59) 29
MWEA.57 126 184 195 224 97 252 205 279 2(59) 29
MWEA.68 126 184 195 229 97 252 205 279 2(59) 29
MWEA.40 127 181 170 180 96 272 216 294 0 30
MWEA.39 129 179 178 178 122 244 180 289 1 31
TIWI.24 133 174 183 212 100 244 183 291 3 35
BONDO.l 133 174 188 212 100 244 183 283 3 33
B 0N D 0.2 133 174 188 212 100 244 183 283 3 33
B 0N D 0.3 133 174 188 212 100 244 183 291 3 35
B 0N D 0.7 133 174 188 212 100 244 183 291 3 35
B 0N D 0.8 133 174 188 212 100 244 197 291 3 36
BONDO.IO 133 174 188 212 100 244 197 291 3 36
B 0N D 0.13 133 174 188 212 100 244 183 283 3 33
B 0N D 0.14 133 174 188 212 100 244 183 283 3 33
B 0N D 0.15 133 174 188 212 100 244 183 283 3 33
B 0N D 0.18 133 174 188 212 100 244 183 291 3 35
B 0N D 0.22 133 174 188 212 100 244 197 291 3 36
B 0N D 0.24 133 174 188 212 100 244 183 283 3 33
B 0N D 0.26 133 174 188 212 100 244 183 283 3 33
B 0N D 0.33 133 174 188 212 100 244 183 283 3 33
B 0N D 0.34 133 174 188 212 100 244 183 283 3 33 '
TIWI.3 133 174 188 212 100 244 183 291 3 35
TIWI.4 133 174 188 212 100 244 183 291 3 35
TIWI.7 133 174 188 212 100 244 183 291 3 35
TIWI.IO 133 174 188 212 100 244 183 291 3 35
TIWI.15 133 174 188 212 100 244 183 291 3 35
TIWI.18 133 174 188 212 100 244 183 291 3 35
TIWI.l 9 133 174 188 212 100 244 183 291 3 35 ,
TIWI.21 133 174 188 212 100 244 183 291 3 35
TIWI.22 133 174 188 212 100 244 183 291 3 35
TIWI.23 133 174 188 212 100 244 183 291 3 35
TIWI.25 133 174 188 212 100 244 183 291 3 35
TIWI.28 133 174 188 212 100 244 183 291 3 35
TIWI.30 133 174 188 212 100 244 183 291 3 35
TIWI.31 133 174 188 212 100 244 183 291 3 35
TIWI.34 133 174 188 212 100 244 183 291 3 35
TIWI.36 133 174 188 212 100 244 200 291 3 37
TIWI.41 133 174 188 212 100 244 183 291 3 35
TIWI.46 133 174 188 212 100 244 183 291 3 35
TIWI.47 133 174 188 212 100 244 183 291 3 35
TIWI.48 133 174 188 212 100 244 183 291 3 35
TIWI.52 133 174 188 212 100 244 183 291 3 35 ■
TIWI.53 133 174 188 212 100 244 183 291 3 35 ,
TIWI.58 133 174 188 212 100 244 183 291 3 35
TIWI.59 133 174 188 212 100 244 183 291 3 35
MWEA.8 133 174 188 212 100 244 183 278 3 33
MWEA.IO 133 174 188 212 100 244 183 289 3 33
MWEA.12 133 174 188 212 100 244 183 283 3 33
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Sample ID DhftUl DhftU2 DhftU3 DhftU4 DhftDl DhftD2 DhftD3 DhfrD4 Mutations Haplotyi
MWEA.27 133 174 188 212 100 244 183 283 3 33
MWEA.31 133 174 188 212 100 244 183 283 3 33
MWEA.37 133 174 188 212 100 244 183 283 3 33
MWEA.41 133 174 188 212 100 244 183 283 3 33
MWEA.42 133 174 188 212 100 244 183 283 3 33
MWEA.43 133 174 188 212 100 244 183 283 3 33
MWEA.44 133 174 188 212 100 244 183 283 3 33
MWEA.45 133 174 188 212 100 244 183 283 3 33
MWEA.54 133 174 188 212 100 244 183 283 3 33
MWEA.59 133 174 188 212 100 244 183 283 3 33
MWEA.60 133 174 188 212 100 244 183 283 3 33
MWEA.63 133 174 188 212 100 244 183 283 3 33
MWEA.64 133 174 188 212 100 244 183 283 3 33
MWEA.65 133 174 188 212 100 244 183 283 3 33
MWEA.67 133 174 188 212 100 244 183 283 3 33
TIWI.33 133 174 188 212 100 247 183 291 3 38
B 0N D 0.4 133 174 188 212 100 269 205 283 3 40
B 0N D 0.5 133 174 188 212 100 269 183 291 3 39
B 0N D 0.12 133 174 188 212 100 269 183 291 3 39
B 0N D 0.16 133 174 188 212 100 269 197 291 3 41
B 0N D 0.21 133 174 188 212 100 269 183 291 3 39
B 0N D 0.43 133 174 188 212 100 269 183 291 3 39
B 0N D 0.39 133 174 188 212 106 244 183 283 3 34
B 0N D 0.37 133 174 188 212 106 269 183 283 3 41
MWEA.5 133 174 188 212 113 244 183 283 3 42
TIWI.57 133 174 188 212 115 244 183 291 3 43
TIWI.27 133 174 188 212 121 244 183 291 3 44
TIWI.54 133 174 188 215 100 244 183 291 3 45
B 0N D 0.25 133 174 188 212 100 244 183 291 3 35
B 0N D 0.27 133 174 188 212 100 244 197 291 3 36
B 0N D 0.28 133 174 188 212 100 244 183 283 3 33
B 0N D 0.56 133 174 188 212 100 244 183 291 3 35
TIWI.56 133 174 188 212 100 244 183 291 3 35
B 0N D 0.29 133 174 188 212 100 244 183 283 3 33
BONDO.30 133 174 188 212 100 244 183 283 3 33
B 0N D 0.31 133 174 188 212 100 244 183 283 3 33
B 0N D 0.32 133 174 188 212 100 244 183 283 3 33
B 0N D 0.57 133 174 188 212 100 244 183 283 3 33
BONDO.60 133 174 188 212 100 244 183 283 3 33
B 0N D 0.59 133 174 188 212 106 244 183 283 3 34
MWEA.25 133 174 188 212 100 244 183 283 3 33
B 0N D 0.52 136 177 171 220 116 250 178 271 1 46
MWEA.36 137 158 198 187 126 245 218 283 1 47
MWEA.38 138 166 162 210 118 266 186 283 0 48
MWEA.56 139 189 176 237 117 248 189 294 0 49
B 0N D 0.19 141 169 183 224 111 269 192 275 2(59) 50
B 0N D 0.9 141 169 183 224 111 269 192 275 2(59) 50
B 0N D 0.36 141 164 183 224 111 269 192 275 2(59) 50
MWEA.46 141 188 182 175 88 230 223 289 1 51
MWEA.l 7 146 183 201 178 134 230 229 283 1 52
MWEA.53 147 166 174 243 109 249 187 289 0 53
MWEA.21 148 179 204 196 127 257 226 278 1 54
MWEA.13 151 189 190 212 113 250 209 294 0 55
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Sample ID DhfrUl DhftU2 DhftU3 DhftU4 DhftDl DhftD2 DhftD3 DhftD4 Mutations Haplotyj
B 0N D 0.55 152 162 170 220 90 238 175 271 1 56
MWEA.58 154 179 170 253 116 266 195 300 1 57
MWEA.52 158 181 170 216 111 233 198 278 0 58
MWEA.9 160 185 180 220 113 253 187 294 0 59 ■'
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APPENDIX 3
Dhps-linked microsatellite haplotypes arranged in their allele sizes based on the 
DhpsUl allele.
Sample ID DhpsUl DhpsU2 DhpsU3 DhpsU4 D hpsDl DhpsD2 DhpsD3 DhpsD4 Mutations Haplotype
B 0N D 0.46 120 232 154 193 106 271 236 205 0 1
B 0N D 0.49 122 196 136 199 109 280 246 200 0 2
B 0N D 0.39 124 221 150 194 112 253 218 229 1 3
TIWI.6 124 221 150 194 112 253 218 229 1 3
TIWI.46 124 222 154 189 114 279 226 208 0 4
B 0N D 0.42 127 196 154 197 119 279 227 204 0 5
MWEA.4 129 194 149 200 117 243 210 196 0 6
TIWI.56 129 194 149 200 106 243 210 196 0 6
B 0N D 0.12 130 205 136 189 106 268 231 208 0 7
B 0N D 0.41 130 205 136 189 106 268 231 208 0 7
BONDO.40 132 206 136 192 112 260 246 230 0 8
B 0N D 0.24 133 204 140 194 112 253 218 212 1 9
B 0N D 0.48 133 204 140 194 112 253 218 212 1 9
B 0N D 0.9 133 204 140 194 112 253 218 212 1 9
TIWI.24 133 212 163 188 112 265 218 225 1 10
TIWI.57 133 212 163 188 112 265 218 225 1 10
MWEA.46 136 198 125 218 119 268 218 208 2 11
MWEA.36 136 205 113 188 115 268 215 213 0 12
MWEA.32 136 210 125 213 111 246 210 208 2 13
MWEA.64 136 212 125 220 114 224 200 189 1 14
MWEA.9 139 200 130 233 108 219 210 200 2 15
B 0N D 0.21 139 200 160 188 112 253 235 208 1 16
TIWI.38 139 200 160 188 112 253 235 208 1 16
TIWI.21 139 210 141 196 114 271 220 218 0 17
MWEA.43 139 210 160 207 112 238 215 224 0 18
TIWI.35 139 212 163 188 112 253 218 208 1 19
TIWI.41 139 212 163 188 112 253 218 208 1 19
TIWI.55 139 212 163 188 112 253 218 208 1 19
TIWI.58 139 212 163 188 112 253 218 208 1 19
MWEA.54 139 224 125 213 117 238 210 218 1 20
TIWI.60 139 224 150 194 112 271 224 229 1 21
TIWI.9 139 224 163 188 112 253 235 213 1 21
B 0N D 0.37 140 196 133 195 110 250 226 225 0 22
B 0N D 0.56 140 200 154 198 116 266 210 210 0 23
MWEA.28 140 210 125 220 121 265 215 217 2 24
MWEA.48 140 210 125 220 121 265 215 217 2 24
MWEA.44 141 210 125 220 104 265 215 217 2 25
MWEA.52 143 192 147 220 111 253 190 229 0 26
MWEA.58 143 196 125 213 119 253 200 229 0 27
BONDO.l 143 204 130 194 112 265 218 212 1 28
BONDO.l 1 143 204 130 194 112 265 218 212 1 28
BONDO. 14 143 204 130 194 112 265 218 212 1 28
B 0N D 0.52 143 204 130 194 112 265 218 212 1 28
MWEA.40 143 208 141 227 109 246 238 217 2 29
BONDO.60 143 208 147 198 112 253 235 216 1 30
B 0N D 0.44 143 210 135 188 112 265 218 224 1 31
TIWI.1 143 212 140 194 112 265 218 204 1 32
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TIWI.13 143 212 150 188 112 271 224 213 1 33
MWEA.66 143 216 146 207 115 257 215 200 2 34
BONDO.l 9 143 224 140 194 112 253 218 229 1 35
B 0N D 0.2 143 224 140 194 112 253 218 229 1 35
B 0N D 0.38 143 224 140 194 112 253 218 229 1 35
B 0N D 0.59 143 224 140 194 112 253 218 229 1 35
B 0N D 0.27 143 224 150 188 112 265 218 213 1 36
B 0N D 0.43 143 224 150 188 112 265 218 213 1 36
TIWI.52 143 224 150 188 112 265 218 213 1 36
MWEA.68 145 208 119 213 116 253 224 229 2 37
MWEA.33 148 200 125 213 124 224 210 217 2 38
MWEA.42 148 200 138 198 116 210 210 217 0 39
TIWI.54 148 200 138 200 119 276 212 213 2 40
B 0N D 0.26 148 200 140 200 119 276 212 224 2 41
TIWI.23 148 200 140 200 119 276 212 224 2 41
TIWI.27 148 200 140 200 119 276 212 224 2 41
B 0N D 0.22 148 200 160 200 119 276 212 213 2 42
B 0N D 0.28 148 200 160 200 119 276 212 208 2 43
BONDO.30 148 200 160 200 119 276 212 208 2 43
B 0N D 0.31 148 200 160 200 119 276 212 213 2 42
B 0N D 0.45 148 200 160 200 119 276 212 213 2 42
BONDO.50 148 200 160 200 119 276 212 213 2 42
B 0N D 0.57 148 200 160 200 119 276 212 213 2 42
TIWI.l 1 148 200 160 200 119 276 212 213 2 42
TIWI.18 148 200 160 200 119 276 212 213 2 42
TIWI. 19 148 200 160 200 119 276 212 213 2 42
TIWI.22 148 200 160 200 119 276 212 213 2 42
TIWI.25 148 200 160 200 119 276 212 213 2 42
TIWI.28 148 200 160 200 119 276 212 213 2 42
TIWI.29 148 200 160 200 119 276 212 213 2 42
TIWI.3 148 200 160 200 119 276 212 208 2 43
TIWI.30 148 200 160 200 119 276 212 213 2 42
TIWI.4 148 200 160 200 119 276 212 213 2 42
TIWI.40 148 200 160 200 119 276 212 213 2 42
TIWI.48 148 200 160 200 119 276 212 213 2 42
TIWI.5 148 200 160 200 119 276 212 213 2 42
TIWI.53 148 200 160 200 119 276 212 213 2 42
TIWI.59 148 200 160 200 119 276 212 213 2 42
MWEA.50 148 204 138 213 119 261 200 196 2 44
B 0N D 0.15 148 206 130 194 112 265 218 229 1 45
MWEA.2 148 210 130 213 119 219 210 197 0 46
MWEA.3 148 216 113 220 115 238 215 200 2 47
B 0N D 0.58 148 216 138 200 108 276 218 213 2 48
TIWI.34 148 216 138 200 108 276 218 213 2 48
B0N D 0.51 150 193 150 185 117 268 220 224 0 49
MWEA.55 150 196 125 198 104 229 210 200 0 50
MWEA.67 150 196 125 198 119 229 210 200 1 50
MWEA.ll 152 200 125 213 113 224 210 200 0 51
MWEA.29 152 200 125 213 105 224 210 200 2 51
MWEA.45 152 200 125 213 112 224 210 200 1 51
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Sample ID DhpsUl DhpsU2 DhpsU3 DhpsU4 D hpsDl DhpsD2 DhpsD3 DhpsD4 Mutations Haplotype
MWEA.65 152 200 125 213 118 224 210 200 2 51
MWEA.27 152 200 143 220 120 243 210 205 0 52
MWEA.56 152 204 119 233 113 238 224 196 0 53
MWEA.62 152 204 119 233 109 238 224 196 2 53
MWEA. 19 152 210 141 207 109 267 218 200 2 54
MWEA.47 152 216 125 224 112 229 210 229 0 55
MWEA.41 152 216 135 233 116 219 215 200 0 56
MWEA.22 152 232 125 207 114 253 215 200 2 57
MWEA.34 155 192 125 220 117 243 210 200 0 58
TIWI.15 155 196 156 194 117 272 224 225 0 59
MWEA.17 155 200 125 213 106 205 210 200 2 60
TIWI.IO 155 200 170 198 112 250 224 229 0 61
MWEA.l 155 210 133 213 108 229 210 197 1 62
MWEA.37 155 224 146 207 108 253 206 229 2 63
MWEA.31 157 206 125 240 116 253 190 229 1 64
MWEA.20 157 210 125 213 106 210 224 208 1 65
B 0N D 0.33 157 220 160 194 112 265 218 224 1 66
TIWI.49 157 220 160 194 112 265 218 224 1 66
MWEA.13 158 200 113 240 118 243 210 200 0 67
MWEA.23 158 200 119 227 114 229 190 196 2 68
MWEA.26 158 200 119 227 114 229 190 196 2 68
MWEA.8 158 200 130 220 107 243 215 197 2 69
MWEA.25 158 200 141 213 120 261 210 200 0 70
MWEA.14 158 210 133 213 120 210 210 205 0 71
MWEA.5 158 216 130 220 120 219 210 193 2 72
MWEA.51 158 216 160 207 122 246 210 218 0 73
MWEA.7 160 210 130 220 122 219 210 200 0 74
B 0N D 0.55 160 222 138 187 118 258 218 218 0 75
MWEA.57 160 224 141 220 118 205 215 217 1 76
MWEA.24 163 200 125 233 108 246 210 189 0 77
MWEA.60 163 210 125 207 106 246 200 224 0 78
MWEA.30 165 192 125 240 110 266 215 210 1 79
MWEA.12 165 210 125 213 113 219 215 197 1 80
MWEA.35 165 216 125 209 109 219 200 196 2 81
MWEA.38 165 220 113 220 117 205 200 217 0 82
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