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Abstract

This thesis presents a novel and generic visual architecture for scene understanding by
robotic interactive perception. This proposed visual architecture is fully integrated into au-
tonomous systems performing object perception and manipulation tasks. The proposed vi-
sual architecture uses interaction with the scene, in order to improve scene understanding
substantially over non-interactive models. Specifically, this thesis presents two experimen-
tal validations of an autonomous system interacting with the scene: Firstly, an autonomous
gaze control model is investigated, where the vision sensor directs its gaze to satisfy a scene
exploration task. Secondly, autonomous interactive perception is investigated, where objects
in the scene are repositioned by robotic manipulation. The proposed visual architecture for
scene understanding involving perception and manipulation tasks has four components: 1) A
reliable vision system, 2) Camera-hand eye calibration to integrate the vision system into an
autonomous robots kinematic frame chain, 3) A visual model performing perception tasks
and providing required knowledge for interaction with scene, and finally, 4) A manipulation
model which, using knowledge received from the perception model, chooses an appropriate
action (from a set of simple actions) to satisfy a manipulation task. This thesis presents con-
tributions for each of the aforementioned components. Firstly, a portable active binocular
robot vision architecture that integrates a number of visual behaviours are presented. This
active vision architecture has the ability to verge, localise, recognise and simultaneously
identify multiple target object instances. The portability and functional accuracy of the pro-
posed vision architecture is demonstrated by carrying out both qualitative and comparative
analyses using different robot hardware configurations, feature extraction techniques and
scene perspectives. Secondly, a camera and hand-eye calibration methodology for integrat-
ing an active binocular robot head within a dual-arm robot are described. For this purpose,
the forward kinematic model of the active robot head is derived and the methodology for
calibrating and integrating the robot head is described in detail. A rigid calibration method-
ology has been implemented to provide a closed-form hand-to-eye calibration chain and this
has been extended with a mechanism to allow the camera external parameters to be updated
dynamically for optimal 3D reconstruction to meet the requirements for robotic tasks such
as grasping and manipulating rigid and deformable objects. It is shown from experimental
results that the robot head achieves an overall accuracy of fewer than 0.3 millimetres while
recovering the 3D structure of a scene. In addition, a comparative study between current
RGB-D cameras and our active stereo head within two dual-arm robotic test-beds is reported
that demonstrates the accuracy and portability of our proposed methodology. Thirdly, this
thesis proposes a visual perception model for the task of category-wise objects sorting, based
on Gaussian Process (GP) classification that is capable of recognising objects categories
from point cloud data. In this approach, Fast Point Feature Histogram (FPFH) features are
extracted from point clouds to describe the local 3D shape of objects and a Bag-of-Words



coding method is used to obtain an object-level vocabulary representation. Multi-class Gaus-
sian Process classification is employed to provide a probability estimate of the identity of the
object and serves the key role of modelling perception confidence in the interactive percep-
tion cycle. The interaction stage is responsible for invoking the appropriate action skills as
required to confirm the identity of an observed object with high confidence as a result of
executing multiple perception-action cycles. The recognition accuracy of the proposed per-
ception model has been validated based on simulation input data using both Support Vector
Machine (SVM) and GP based multi-class classifiers. Results obtained during this investi-
gation demonstrate that by using a GP-based classifier, it is possible to obtain true positive
classification rates of up to 80%. Experimental validation of the above semi-autonomous
object sorting system shows that the proposed GP based interactive sorting approach outper-
forms random sorting by up to 30% when applied to scenes comprising configurations of
household objects. Finally, a fully autonomous visual architecture is presented that has been
developed to accommodate manipulation skills for an autonomous system to interact with
the scene by object manipulation. This proposed visual architecture is mainly made of two
stages: 1) A perception stage, that is a modified version of the aforementioned visual inter-
action model, 2) An interaction stage, that performs a set of ad-hoc actions relying on the
information received from the perception stage. More specifically, the interaction stage sim-
ply reasons over the information (class label and associated probabilistic confidence score)
received from perception stage to choose one of the following two actions: 1) An object class
has been identified with high confidence, so remove from the scene and place it in the des-
ignated basket/bin for that particular class. 2) An object class has been identified with less
probabilistic confidence, since from observation and inspired from the human behaviour of
inspecting doubtful objects, an action is chosen to further investigate that object in order to
confirm the objects identity by capturing more images from different views in isolation. The
perception stage then processes these views, hence multiple perception-action/interaction
cycles take place. From an application perspective, the task of autonomous category based
objects sorting is performed and the experimental design for the task is described in detail.
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Chapter 1

Introduction

This thesis presents a novel and generic visual architecture for scene understanding by

robotic interactive perception. In this proposed visual architecture, an autonomous sys-

tem interacts with the scene environment to be able to have a better understanding of what

it perceives in the scene and what action it can do to improve it. Moreover, this thesis

presents finding from investigating the effect of autonomous system interaction with scene

environment from two aspects: On one hand, the vision sensor directs its gaze for scene

exploration task, on the other hand, objects in the scene are repositioned by robotic manip-

ulation skills. For vision sensor interaction with the scene environment, a portable active

vision system performs scene exploration tasks, is devised and validated. For autonomous

robot system interacting with scene environment, a visual perception architecture is pro-

posed for scene understanding by interactive perception. This proposed visual architecture

is fully integrated into autonomous systems performing object perception and manipulation

tasks. More specifically, from the application perspective, this thesis makes refinement to

the existing autonomous objects sorting pipeline by including the procedures of recognizing,

confirmation of recognition and sorting objects. From the scientific perspective, this thesis

contributes advancement into scene understanding by robotic interaction perception over

once shot recognition without employment of rigorous supervised learning methods. In sum-

mary, this thesis advances the state-of-the-art for scene understanding by robotic interactive

perception.

1.1 Motivation and objectives

In robotic scene understanding, the existing techniques are able to perform one or some of the
following operations: learning object’s appearance, visual exploration - what and where is
the object, identification, segmentation, recognition, localization of objects and manipulation
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of objects by grasping. However, these techniques focus on one or a few aspects of the scene
understanding pipeline.

For the task of visual exploration for scene understanding, active robot vision systems have
been developed to perform actions and fulfill tasks by exploiting recovered information from
the imaged scene, such as [Ballard, 1991]. Typically, active robot vision systems are com-
prised of hard-wired, ad-hoc visual functions and the intended purpose is to have the capa-
bility of robustly exploring a scene and finding objects contained in a database of pre-trained
object examples as reported by [Chen et al., 2011] and [Collet et al., 2011]. An active binoc-
ular robot head architecture [Aragon-Camarasa and Siebert, 2009, Aragon-Camarasa et al.,
2010] is devised that is able to execute vergence, localization, recognition and simultaneous
identification of multiple target object instances in a scene, however, its lack of portability
and robustness in terms of consistent performance constrain the scope of potential appli-
cations for such vision systems. Thus, there is a need to demonstrate the portability and
functional accuracy of the reported system [Aragon-Camarasa and Siebert, 2009, Aragon-
Camarasa et al., 2010].

For objects manipulation tasks by a robot, it is important to estimate the parameters of a
lens and image sensor of an image/video camera, this process is known as camera calibra-
tion. These parameters are used to correct lens distortion, and to be able to measure the
size of an object in world units in the scene. Additionally, the vision system needs to be
integrated into the robot’s kinematic chain, essential to perform accurate manipulation tasks.
Pre-dominantly, two types of approaches are used for camera calibration: Rigid calibration
methods [Kwon et al., 2007, Neubert and Ferrier, 2002, Salvi et al., 2002] and hybrid ap-
proaches such [Mueller and Wuensche, 2016]. However, these approaches fall short in terms
of accuracy and precision performance since they attain an overall precision within 0.5cm
and 1cm [Hansen et al., 2012]. In view of the said limitations present in these approaches, a
reliable and accurate camera calibration and the hand-eye calibration is needed.

Variety of visually guided scene understanding techniques have been investigated such as
[Fitzpatrick, 2003, Gemignani et al., 2016, Gupta et al., 2015, Li, 2011]. These techniques
fall short in terms of generic visual competence and are limited to objects of specific shape
and/or color. For scene understanding by robotic interactive perception, it is important to
determine, when the object in the scene needs interaction. In this thesis, the task of scene
understanding is limited to what objects are present in a given scene, and what kind of in-
teraction is needed to achieve the objective of a task such as objects sorting according to
categories. For this purpose, the classification stage of the visual architecture needs to have
the capability of providing prediction confidence in addition to providing the class label.
This prediction confidence can form the basis to reason, whether the predictive class needs
to improve its confidence by interacting with the object or not. Gaussian Process(GP) based
multi-class classifier is better suitable for this kind of tasks than SVM like multi-class clas-
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sifier.

Often, vision techniques in uncontrolled lighting and complex environments tend to yield
low accuracy in understanding a scene without interaction or feedback. Since, understand-
ing challenging scenes, single shot recognition fail or have low success rates while manip-
ulating objects. In [Gibson, 1966], it is believed that physical interaction further augments
perceptual processing beyond what it can be achieved by invoking deliberate pose changes.
Therefore, the interaction with the scene by the vision system and/or interacting with the
objects in the scene, can significantly improve the success rate while detecting object classes
in front of a service robot. A high-level concept of interactive perception model is shown in
Fig. 1.1.

Figure 1.1: High-level concept of our interactive perception model for object sorting .

To the best of author’s knowledge, a generic visual architecture capable of carrying out the
task of scene understanding by robotic interaction in one single framework is desirable.

1.2 Thesis statement

The objective of this thesis is to advance the state-of-the-art in scene understanding by
robotic interactive perception. Inspired by the mechanisms which appear to be operating
in mammalian brains, an integrated autonomous robot system is devised following multiple
perception-manipulation cycles. This thesis reports an investigation into the proposed visual
perception architecture for scene understanding by robotic interaction from two perspectives:

1 From the perspective of a portable active vision system that can explore a scene in
detail by following the underlying principle of structuring visual perception as what
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and where systems, whose joint interaction affords the necessary visual understanding
required to conduct robotic hand-eye grasping and manipulation tasks.

2 From the perspective of interacting with the object in the scene by repositioning it,
in order to obtain new, potentially more diagnostic, views of it while performing the
scene understanding task.

This work reported in this thesis builds on, and extends, an active binocular vision system
reported by [Aragon-Camarasa and Siebert, 2009, Aragon- Camarasa et al., 2010]. Based on
human intuition the following hypothesis is proposed:

An autonomous system endowed with visual capabilities must interact with the scene in its
immediate vicinity in order to be capable of discovering what is there and what it can do with
it. This mechanism is necessary to improve the autonomous systems overall understanding
of the scene and its components. Accordingly, interaction with the scene is essential to allow
any visual architecture integrated into an autonomous system for scene understanding to be
able to resolve visually ambiguous observation situations of visual ambiguity.

The above thesis statement is further supported by the following descriptions:

• A visual perception architecture integrated with robotic manipulation skills performing
object repositioning in the scene can improve the classification accuracy compared to
non-interactive perception models.

• The base capability of the proposed visual perception architecture integrated into a
fully autonomous robotic system can be demonstrated by performing objects sorting
of household objects that requires an understanding of what (household object) is in
the scene and what it can do with it (grasp & reposition the object).

1.3 A brief overview of the proposed approach

The proposed visual architecture for scene understanding by robotic interactive perception
is two-fold: On one hand, the vision sensor interacts with the scene environment by gaze
control to achieve scene exploration task, and on the other hand, objects in the scene are
repositioned by robotic manipulation skills.

For scene exploration i.e what and where to look for, a portable active binocular robot head
architecture is devised that is capable of vergence, localisation, recognition and simultaneous
identification of multiple target object instances. The architecture of this vision system is
shown in Fig. 1.2. In order to demonstrate the portability and functional accuracy of the
proposed system, the proposed system has been validated with different - hardware, visual
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Figure 1.2: Active binocular robot vision architecture [Aragon-Camarasa and Siebert, 2009,
Aragon-Camarasa et al., 2010].

representation and view(s) of the scene. Hence, we present experiments with three different
state-of-the-art feature extraction techniques, namely SIFT [Lowe, 2004b], SURF [Bay et al.,
2008b] and KAZE [Alcantarilla et al., 2012] and, different hardware and scene settings.

This thesis also presents a methodology for the active robot head calibration and the hand-eye
calibration, and, integration of the robot head and RGB-D cameras within a robot’s kinematic
frame. A simplified hand-eye calibration method is illustrated in Fig. 1.3.

Scene understanding by robotic interactive perception in terms of repositioning the object in
the scene, a perception model is developed that is portable, invariant to 6 DOF object pose
changes and operates in real-time as depicted in Fig. 1.4.

This proposed interactive perception pipeline comprises of object segmentation, visual rep-
resentation, classification, semantic visualization and autonomous robotic manipulation. For
classification task, a multi-class Gaussian process classifier is opted for equal or better clas-
sification accuracy compared to multi-class classifier such as SVM, but also, provides with
classification confidence which plays an essential role in our proposed system.

From an application perspective, this thesis achieves the task of sorting and removing objects
from a tabletop into the object’s designated bins. After receiving point cloud from the Kinect
Xbox camera from the scene, one shot recognition takes place. A list of objects identified
in along with their respective classification confidences is maintained, such as a bottle or
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Figure 1.3: A general hand-eye calibration method is depicted. From images of a calibration
object, the corresponding camera poses Pi can be computed, providing the rigid motions of
the camera Ai . With the relative recorded robot motions Bi , the hand-eye transformation is
computed.

juice box, which can potentially be partially occluded, have been influenced by varying
lighting, background. Based on the classification label along with the object’s corresponding
classification values (i.e. confidence scores), objects are picked-and-placed into bins, each
bin designated for an object category. For objects with a classification confidence score lower
than a pre-defined threshold, this object is actively explored by manipulating and interacting
with the object. The method repeats until all objects’ classification confidence is higher than
a predefined threshold and removed from the table top into each object’s designated bin.

1.4 Contributions

The major contributions of this thesis are summarised as follows:

• A portable active binocular robot vision architecture is proposed that integrates a num-
ber of visual behaviors extending the work reported by [Aragon-Camarasa and Siebert,
2009, Aragon-Camarasa et al., 2010]. This vision architecture inherits the abilities of
vergence, localization, recognition and simultaneous identification of multiple target
object instances.
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Figure 1.4: Visual Perception Architecture for Scene Understanding by Robotic Interactive
Perception.

• A camera and hand-eye calibration methodology are described for integrating an active
binocular robot head within a dual-arm robot. For this purpose, the forward kinematic
model of our active robot head is derived and describe our methodology for calibrating
and integrating the robot head is described. This rigid calibration provides a closed-
form hand-to-eye solution. Moreover, an approach for updating dynamically camera
external parameters for optimal 3D reconstruction that are the foundation for robotic
tasks such as grasping and manipulating rigid and deformable objects. We show from
experimental results that our robot head achieves an overall sub-millimetre accuracy
of less than 0.3 millimetres while recovering the 3D structure of a scene.

• An interactive perception model based on Gaussian Process (GP) classification that
is capable of recognizing objects categories from point cloud data. As an application
for the use of the proposed approach, the task of objects sorting according to classes
is accomplished. In our approach, besides the traditional object recognition pipeline
employed, multi-class Gaussian Process classification is opted to provide a probable
estimation of the identity of the object and serves a key role in the interactive per-
ception cycle modeling perception confidence. From results, it is deduced that the
proposed GP based interactive sorting approach outperforms random sorting by up to
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30% when applied to scenes comprising configurations of household objects.

• The above proposed visual perception approach is extended and integrated with au-
tonomous manipulation skills in a dual-arm robot testbed. A fully autonomous category-
based visually-guided household object sorting system is devised.

1.4.1 Impact of this research

Work produced in this thesis has been used in parts in the following publications and project:

A Portable Active Vision System:

• Portable active bincular vision system made contributions to CloPeMa (“Clothes Per-
ception and Manipulation”, www.clopema.eu), which was a collaborative EU FP7
project involving University of Glasgow, CRTH1, CVUT2 and University of Geneva3.

Impact of Interactive Perception Model based on Gaussian Process multi-class Classifier
(Chapters 5 & 6).

• Base-line objects pick and place pipeline for work supported by InnovateUK under the
iSee - Intelligent Vision for Grasping (Project No. 102913).

1.4.2 List of publications

The work described in this thesis has been presented in the following publications:

• Aamir Khan, Gerardo Aragon-Camarasa, Li Sun, Jan Paul Siebert (2016) On the Cal-
ibration of Active Binocular and RGB-D Vision Systems for Dual-Arm Robots. IEEE
International Conference on Robotics and Biomimetics, DEC. 3 DEC. 7, 2016, Qing-
dao, China.

• Aamir Khan, Li Sun, Gerardo Aragon-Camarasa, Jan Paul Siebert (2016) Interactive
Perception based on Gaussian Process Classification for House-Hold Objects Recog-
nition & Sorting. IEEE International Conference on Robotics and Biomimetics, DEC.
3 DEC. 7, 2016, Qingdao, China

• Khan, A., Aragon-Camarasa, G., and Siebert, J. P. (2016) A Portable Active Binocu-
lar Robot Vision Architecture for Scene Exploration. In: 17th Towards Autonomous
Robotic Systems (TAROS-16), Sheffield, UK, 28-30 June 2016

1Center for Research and Technology Hellas, http://www.certh.gr/root.en.aspx
2Ceske Vysoke Uceni Technicke V Praze, https://www.cvut.cz/en?set_language=en
3Universita Degli Studi Di Genova, https://unige.it/
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• Sun, L., Aragon Camarasa, G., Khan, A., Rogers, S., and Siebert, P. (2016) A precise
method for cloth configuration parsing applied to single-arm flattening. International
Journal of Advanced Robotic Systems, 13, 70. (doi:10.5772/62513)

• Aamir Khan, Gerardo Aragon-Camarasa, Jan Paul Siebert (2017) Interactive Percep-
tion based on Gaussian Process Classification Applied to Household Object Recogni-
tion & Sorting. One Page Abstract, IROS 2017, Canada

• Aamir Khan, Gerardo Aragon-Camarasa, Jan Paul Siebert (2017) An Application of
Interactive Perception based on Gaussian Process Classification for House-Hold ob-
jects Recognition & Sorting. 2nd UK Robotic Manipulation Workshop, Imperial Col-
lege London (2017), UK

In preparation to submit journal paper:

• Khan, A., Aragon Camarasa, G., and Siebert, P. (2017/18) An Autonomous House-
hold Objects Sorting Visual Perception Architecture based on Interactive Perception,
International Journal of Advanced Robotic Systems

1.5 The structure of this thesis

The remainder of this thesis is organized as follows: Chapter 2 provides the background
and a comprehensive literature review. The background introduces the CloPeMa robot, the
stereo vision system, Baxter Robot and the literature review covers depth sensing, depth data
analysis, object recognition, and the state-of-the-art for scene understanding by robotic inter-
active perception and manipulation. Following, the achievements of this thesis are presented
in the following four chapters. Chapter 3 presents a portable active vision system for scene
exploration to investigate the effect of an active vision system for scene understanding. In
Chapter 4, the methodology for the active robot head calibration and the hand-eye calibra-
tion, and, integration of the robot head and RGB-D cameras within a robot’s kinematic frame.
In Chapter 5, an interactive perception model based on Gaussian Process-based multi-class
classifier is presented, to provide visual guidance for scene understanding by robotic interac-
tive perception, in terms of robot’s interaction with the object(s) in the scene by performing
objects’ sorting. Chapter 6 provides a fully autonomous interactive perception model to
sort household objects into their designated category based bins without human intervention.
Finally, the conclusion and future work are detailed in Chapter 7.
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Chapter 2

Background and Literature Review

This chapter presents a comprehensive review of the previously reported theories, method-

ologies, and applications relevant to the proposed research. For the development of a novel

integrated robotic framework for scene understanding by the aid of interaction requires a

wide range of research in hardware and software modalities, computer/robotic vision, and

robotic skills. Before a detailed literature review is compiled, a brief background is presented

with regard to already available existing hardware and software technologies resident at the

lab. This chapter can be grouped into the background of the research, computer/robot vi-

sion and interactive perception. The background describes different hardware and software

platforms used during the research. The background is followed by the review in the field

of computer/robot vision relevant to the proposed research. Research areas such as com-

puter/robot vision, object recognition in general and specifically, robotic object recognition

are discussed. Interactive perception review provides a supporting literature arguing the

benefits of interactive perception for a better understanding of a scene. The chapter ends

with the summary of literature review carried out during the course of the proposed re-

search, in terms of the limitation in the current state of the art and discusses, how to advance

the state-of-the-art.

The organization of this chapter is as follows: Section 2.1 details the background. Then liter-

ature review supporting the proposed research follows. Section 2.2 describes the overview of

some of the vision system used in robotic tasks. This section also discusses vision paradigms

and the literature review specific to active binocular vision systems. Review of depth sens-

ing for robot manipulation is given in section 2.4. Overview of some of the techniques used

to analyze depth data obtained from depth sensors in the context of robotic scene under-

standing is given in section 2.5. Section 2.6 provides overview of classic object recognition

pipeline and different stages constituting the pipeline. Section 2.3 details briefly the related

work in the field of camera calibration and hand-eye calibration necessary to achieve robotic

manipulations tasks. Section 2.7 provides an overview of literature supporting the use of in-
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teractive perception in the context of robotic scene understanding. The chapter ends with

summarizing the chapter by stating the limitations in the current state-of-the-art techniques

that are able to achieve the task of scene understanding by robotic interactive perception

and provides steps, for how to advance by overcoming some of the limitations which are then

discussed in detail in the following chapter in section 2.8.

2.1 Background

This section is concerned with hardware and software technologies that have been available
for research at the computer vision and autonomous systems laboratory, school of computing
science, University of Glasgow, UK. In particular, these hardware and software technologies
have been used extensively in producing the research presented in this thesis.

Overview

For the task of scene understanding by robotic interactive perception, a reliable dual-arm
robot is useful while exploring the scene with changing viewpoint from vision sensor mounted
on one of the arms and manipulating the object in the scene with another. For investigating
the benefits of interactive perception in scene understanding, it has been the motivation for
use of the dual-arm robots.

2.1.1 Yaskawa Motoman robot

Yaskawa Motoman robot or CloPeMa robot is an off-the-shelf robot that is designed for
clothes perception and manipulation. The robot is shown in Fig. 2.1 that has been acquired
via the CloPeMa (“Clothes Perception and Manipulation”, www.clopema.eu), which was
a collaborative EU FP7 project involving University of Glasgow, CRTH1, CVUT2 and Uni-
versity of Geneva3. CloPeMa project aimed at advancing the state of the art in the artificial
perception and dexterous manipulation of clothes and other textiles.

During the course of the project (from 2012.2 to 2015.2), tactile sensing, visual sensing,
and soft materials manipulation were jointly managed by a goal driven, high-level reasoning
module. For further details about some of these real-life autonomous laundering problems
are addressed in dual-arm garment folding [Stria et al., 2014], unfolding [Doumanoglou
et al., 2014a,b], dual-arm flattening [Sun et al., 2015c], interactive sorting [Sun et al., 2016a]

1Center for Research and Technology Hellas, http://www.certh.gr/root.en.aspx
2Ceske Vysoke Uceni Technicke V Praze, https://www.cvut.cz/en?set_language=en
3Universita Degli Studi Di Genova, https://unige.it/
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Figure 2.1: The Yaskawa Motoman/CloPeMa robot. 1. Stereo Head, 2. ASUS Xtion Pro, 3.
CloPeMa Gripper, 4. The Shadow Smart Grasping System, 5. Dual Arms and Turning base

and a novel gripper design [Thuy-Hong-Loan Le et al., 2013]. The robot is comprised of the
main robot body, robot head, robot grippers and other sensors, which are introduced in the
following sections.

Robot body

The main robot body is made of the industrial robotic components for welding operation
which are supplied by YASKAWA Motoman. As shown in Fig. 2.1, two MA1400 manipu-
lators are used as two robot arms. Each manipulator is of 6 DOF, 4 kg maximal load weight,
1434 mm maximal reaching distance, ±0.08 mm accuracy. They are mounted on rotatable
turning tables. The robot arms and turning table are powered and controlled by DX100
controllers.



2.1. Background 16

Robot head

The robot head comprises two Nikon DSLR cameras (D5100) that are able to capture images
of 16 megapixels through USB control. Gphoto library4 is employed to drive the capturing
under ubuntu. These are mounted on two pan and tilt units (PTU-D46) with their correspond-
ing controllers. A pre-defined baseline separates the cameras for optimal stereo capturing,
yet keeping its field of view to cover the robot workspace.

The aim for designing a robot head was to use relatively inexpensive, commercially available
component elements, to build an off-the-shelf robot vision system (binocular head) for image
sensing. The goal of this is to offset the limitation of widely-used depth sensors such as
Microsoft Kinect with respect to accuracy and resolution.

Robot grippers

Yaskawa Motoman robot is equipped with two different types of end effectors. Details of
each of these end effectors, also referred to as grippers, are as follows:

CloPeMa Gripper Inspired by the way humans grip, the CloPeMa gripper is designed me-
chanically to imitate the human’s precision grip. In the book ‘Examination of the Hand
and Wrist’ [Tubiana et al., 1998], human grips have been categorized into power grip (digi-
topalmar grip), precision grip (thumb-finger pinch) and lateral pinch. The robot’s dexterous
manipulation of clothes is more likely to imitate the human’s precision grip. Hence, the
CloPeMa gripper is designed as two thin fingers powered by liquid-pressure and with tactile
sensors integrated on the tips.

(a) A demonstration of the
power grip.

(b) A demonstration of the
thumb-finger pinch.

(c) A demonstration of the
lateral pinch.

Figure 2.2: Three types of human grip [Sun, 2016].

The CloPeMa prototype gripper has been developed by University of Genoa (UNIGE) based
on Schunk grippers. Furthermore, the gripper has patented variable stiffness actuators for

4http://gphoto.sourceforge.net/
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adapting to different grasping and steering tasks. However, this gripper is unable to perform
grasping tasks for rigid objects.

The Shadow Smart Grasping System the Shadow Smart Grasping System5, is a grasper,
with built-in intelligence as can be seen in Fig. 2.3.

Figure 2.3: The Shadow’s Smart Grasping System.

Key features of this smart grasping system are briefly detailed. A library of different grasps,
enabling one hand to pick up many types of objects. Torque sensing on each joint, an addi-
tion ensuring the hand can make the most accurate and reliable grasp. Manufacturers claim
that it is incredibly robust and reliable, reducing the need for maintenance and repair.
Yaskawa Motoman robot recently being equipped with this type of gripper has made this
robotic testbed suitable for the proposed research of scene understanding by robotic interac-
tive perception containing rigid objects.

RGB-D sensors

The robot has been fitted with two ASUS Xtion Pro Live RGB-D cameras, that have been
installed on the robot, one on each arm, for lightweight range sensing. These are used for
depth sensing and play a pivotal role in the work reported in this thesis.

5https://www.shadowrobot.com
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2.1.2 Robot control

Figure 2.4: The working schema of Moveit.

The Yaskawa robot is fully integrated with Robot Operating System (ROS) through ROS in-
dustrial package6. In Fig. 2.4, the architecture of the robot control system is presented. The
geometric structure of the robot is defined in the Uniform Robot Description Form (URDF).
This enables the collision to be detected by robot collision models, and the transforms be-
tween robot links can be achieved by TF7. MoveIt package enables to achieve the communi-
cation between the user interface and robot controllers.

2.1.3 Stereo head calibration

Calibration of the stereo head installed on the dual-arm robot is briefly described. The stereo
head calibration has two steps: camera calibration and hand-eye calibration. For the stereo
head, Tsai’s hand-eye calibration [Tsai and Lenz, 1989] routines are used to estimate rigid
geometric transformations between camera to the chess board and chess board to the gripper.
Details on camera calibration and hand-eye calibration are discussed in details in 4

6http://wiki.ros.org/Industrial
7http://wiki.ros.org/tf
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2.1.4 Baxter robot

Baxter8 is a humanoid, anthropomorphic robot, supporting two seven degree-of-freedom
arms and state-of-the-art sensing technologies, including force, position, and torque sensing
and control at every joint, cameras in support of computer vision applications, integrated
user input and output elements such as a head-mounted display, buttons, knobs and more.
Further, the Robot components are broken down to on a component by component basis and
are briefly described.

Baxter robot body

The robot body9 is equipped with onboard CPU containing processor of the 3rd generation
Intel Core i7-3770 Processor (8MB, 3.4GHz) w/HD4000, graphics memory of 4GB, NON-
ECC, 1600MHZ DDR3 and hard drive of 128GB Solid State Drive.

Baxter arms

Baxter’s arms10 are an integral part of ”Baxter being Baxter” from the basic actuation premise
of Series Elastic Actuators (SEAs) to available control modes, to the overall safety of the sys-
tem. Baxter has two seven degree-of-freedom (DOF) arms. Seven DOF arms are desirable
as they provide a kinematic redundancy greatly improving manipulability and safety.

Baxter grippers

The Rethink Electric Gripper11 is a parallel jaw gripper meant for lifting payloads up to five
pounds. The gripper hardware has a 44mm throw and attachment points for a variety of
finger configurations. The gripper software supports a wide range of speeds and grip force
levels and is fully upgradeable through Baxter.

Baxter cameras

The Baxter Research Robot has three color cameras12; one camera is located in each arm,
and a third camera is located on the head, above the display screen. Any two cameras can
be operated at a given time; USB system limitations do not allow all three cameras to be
operated at once.

8http://sdk.rethinkrobotics.com/wiki/Baxter_Overview
9http://sdk.rethinkrobotics.com/wiki/Body

10http://sdk.rethinkrobotics.com/wiki/Arms
11http://sdk.rethinkrobotics.com/wiki/Grippers
12http://sdk.rethinkrobotics.com/wiki/Cameras
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Baxter head

The Baxter Robot head display13 is a 1024 x 600 SVGA LCD screen, capable of panning
180 and also nodding to acknowledge user input. Baxter’s head has a panning joint and a
single ”Nod” action for movement. There is one camera, one red LED ring, one green LED
ring and 12 individual yellow LEDs along with 12 sonar transducers.

Baxter RSDK

The Baxter Research Robot SDK14 provides a software interface allowing researchers of all
disciplines to develop custom applications to run on the Baxter platform. The SDK interfaces
with the Baxter Research Robot via ROS (Robot Operating System)

Figure 2.5: Research SDK Block Diagram.

13http://sdk.rethinkrobotics.com/wiki/Head
14http://sdk.rethinkrobotics.com/wiki/Baxter_Research_Robot_Software_

Developers_Kit_(SDK)
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Literature review

Rest of this chapter is organized to present literature review addressing research areas such
as computer/robot vision, object recognition in general and specifically robotic object recog-
nition is discussed.

2.2 Vision systems

In this section, a study of different robot heads, robotic vision paradigms and an active vision
system (reported in detail in chapter 3) for robotic tasks are presented.

2.2.1 Robot vision and vision paradigm

Visual Processing in many computer vision approaches is segregated into two complemen-
tary stages i.e early vision and cognitive vision. Early vision constitutes the use of image
processing algorithms to extract features from given image sequences. Development of so-
phisticated algorithms in this area has led to the design of a variety of features possessing
different invariance qualities. As a second stage, cognitive vision is the processing of high-
level visual entities to solve complex tasks such as navigation, planning, and surveillance.
The semantic gap between the visual features obtained from the early vision and high-level
concepts needed by the cognitive vision is a fundamental challenge for the vision community.

Machines which can perform predefined tasks autonomously or guided are called Robots.
Robots are equipped with a variety of sensors to achieve such tasks, such as haptic, posi-
tional, ultrasonic range sensors etc. For perception of the surrounding environment, vision is
considered to be the most powerful sensor which is responsible for acquiring and extracting
visual information from digital images of the observed world to carry out further tasks of
acting and interaction within a dynamic world according to nature of the task.
Passive and Active Vision are two paradigms that lay out the foundation for robot vision
systems. Passive vision can be termed as the measurement of visible radiation that is already
present in the scene and has been a dominant approach as exemplified in the work of Marr
[Marr et al., 1983]. Based on passive vision, several prominent approaches are reported
namely stereo [Okutomi and Kanade, 1993], structure from motion [Tomasi and Kanade,
1992], shape from shading [Horn, 1970, Horn and Brooks, 1989, L. B. Wolff and Healey],
photometric stereo [Woodham, 1980] etc.
In the robotics context, passive vision produces a pictorial view of the world which is cap-
tured either by means of a single or sequences of frames and the visual information is pro-
cessed and analyzed without orientating the sensor. Based on passive vision, Walther et al.
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[Walther et al., 2005] developed a system in order to learn visual features of the salient re-
gion based on a solely bottom-up approach for robot localization using a fixed time interval
by means of a static camera while the robot navigates a pre-defined path.
Active vision system allows the observer to obtain information when needed which is based
on the principle that the environment is dynamic and observers should be capable of engag-
ing with it [Findlay and Gilchrist, 2001]. In recent years, [Rasolzadeh et al., 2009] reports an
active vision system which is capable of finding, attending and manipulating objects where
aspects of top-down and bottom-up attention and in addition with foveated attention are uti-
lized for robotic object grasping.

2.2.2 Visual attention

Human vision is binocular and both eyes move according to vergence mechanism to focus on
a fixation point in the real world, in order to maximize the extraction of visual information
being extracted after vergence. From the perspective of perception-action cycle, eyes of an
observer could be directed to interesting locations of the perceived environment [Posner and
Cohen, 1984]. Besides the attentional spotlight metaphor, two additional independent and
hierarchical modalities of analysis have been suggested which run parallel and bidirectional
with respect to their outputs, namely pre-attentive and attentive. Pre-attentive is a covert at-
tention which operates without changing the gaze while governed by top-down(goal-driven)
and bottom-up(stimuli-driven) cueing mechanism [Chun and Wolfe, 2004]. At the attentive
stage, one object is the focal point at a given time [Chun and Wolfe, 2004] while inhibition
of return keeps the system free from visiting the same object again and again indefinitely.

2.2.3 Active binocular vision system

For the purpose of scene understanding by robotic interactive perception, the research re-
ported in this thesis considered an active vision system for scene exploration, where the
vision system directs its gaze to target salient regions and objects in the scene remain static
and are not being manipulated, details reported in chapter 3. Chapter 5 and chapter 6 inves-
tigate the effect of repositioning the objects in the scene by robotic manipulation while the
position of the vision system is constant. This section presents a review of the active vision
system as follows. In the robotic vision, active vision can potentially offer a sheer amount of
information about the robot’s environment. Should a visual task becomes ill-posed, the gaze
of a robot can be shifted to perceive the scene from a different viewpoint [Ballard, 1991], and
therefore a better understanding of the task. Current research in active robot heads has fo-
cused on the “lost and found” problem [Meger et al., 2010]. That is, a robot is commanded,
to search and locate an object in its working environment for exploration tasks [Aydemir and
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Jensfelt, 2012, Collet et al., 2011], manipulation tasks [Rasolzadeh et al., 2010, Sun et al.,
2015c] and/or navigation [Meger et al., 2010].

In an effort to replicate the nature of visual search scan paths [Wolfe and Whitney, 2015],
researchers have proposed a variety of visual search mechanisms according to the task at
hand (e.g. [Ma et al., 2011, Meger et al., 2010, Rasolzadeh et al., 2010]). These heuristic
approaches are mainly driven by the outputs of available feature extraction techniques. For
example, [Rasolzadeh et al., 2010] used depth to segment the scene according to the distance
between a targeted object and the robot as part of a visual object search heuristic. Likewise,
[Meger et al., 2010] implemented a saliency map that combines intensity, colour and depth
feature to drive attention, biased by a top-down feature detection, based on the MSER feature
extractor [Matas et al., 2002] for object recognition and navigation. [Aydemir and Jensfelt,
2012] have recently presented a strong correlation between local 3D structure and object
placement in everyday scenes. By exploiting the relationship between local 3D structure and
different object classes, the authors are able to localize and recognize complex 3D objects
without implementing specialized visual search routines. Finally, [Collet et al., 2011] have
proposed an Iterative Clustering Estimation (ICE) algorithm that combines feature clustering
along with robust pose estimation. This approach relies on creating sparse 3D models to
localize and detect multiple same-class object instances. Advancements in visual search
mechanisms have been promising in recent years of which they are not merely restricted
to the feature extraction used, and rather powered by cognition. For instance, a notable
approach proposed in [Dogar et al., 2014], looks at the problem of a robot searching for an
object by reasoning about an object and possible interactions with the object. However, this
robot vision system is limited to one single instance per object class in the scene.

The vision architecture detailed in chapter 3, advances the robot vision system described in
[Aragon-Camarasa and Siebert, 2009, Aragon-Camarasa et al., 2010]. That is, a previously
reported, an active vision system that is capable of binocular vergence, localization, recog-
nition [Aragon-Camarasa and Siebert, 2009, Aragon-Camarasa et al., 2010] and simultane-
ous identification of multiple target object instances [Aragon-Camarasa and Siebert, 2010].
This architecture was structured as a collection of ad-hoc functions in order to explore au-
tonomously a scene by operating solely with SIFT features. This system was also constrained
to the hardware and, therefore, the limitation of its portability remained an issue. Recent de-
velopments in robotic middleware (e.g. the Robot Operating System [Quigley et al., 2009])
technologies have made possible the deployment of hardware independent robotic systems.
Therefore, there is a need to develop an active binocular robot head architecture that inte-
grates visual behaviors in a parsimonious and generic robot vision architecture based on the
Robot Operating System (ROS).

While the visual architecture does not make explicit use of 3D information, an explicit goal
was to determine if it could reliably maintain binocular vergence of an actuated stereo-pair
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of cameras while actively exploring a scene. This converged binocular camera configuration
supports the recovery of feature locations in 3D and also provide images for stereo-matching
for dense 3D range map extraction. This feature underpins visual competences for other
robotic applications as demonstrated in [Sun et al., 2015b] where it presented a dual-arm
robot manipulating deformable objects using the binocular system reported in chapter 3.

2.3 Camera and hand eye calibration

For camera systems under dynamic actuation, either in a monocular or stereo configuration,
researches have proposed rigid, continuous self-calibration and a combination of both. A
summary of current approaches is provided below.

Rigid calibration methods consist of estimating intrinsic and extrinsic camera parameters,
and the mechanical relationships between their actuation platforms and camera reference
frames ([Kwon et al., 2007, Neubert and Ferrier, 2002, Salvi et al., 2002]). Optimisation
routines such as bundle adjustment [Furukawa and Ponce, 2009], are applied to reduce back-
projection errors from 2D to 3D measurements and, consequently, arrive at a closed-form
and stable solution within a defined camera parameter space. However, there exist two main
limitations for rigid approaches. On the one hand, mechanical wear and tear are not consid-
ered and the solution obtained depends on the quality of the mechanical parts at the moment,
when the calibration was carried out. On the other, the distance and orientation between ac-
tuator joints have to be precisely measured. Hence, errors induced by the measuring device
and mechanical backlash during their operation are not taken into account.

Self-calibration methods of PTU camera systems have been extensively researched for the
last 20 years and is still an active research area. Nevertheless, a general and generic solu-
tion has yet to be devised. For instance, self-calibration approaches have constrained the
solution to one degree of freedom for each camera [Sapienza et al., 2013], or individual
yaw movements per camera plus a joint neck movement for the head [Dang et al., 2009].
Adding degrees of freedom, therefore, results in a lower precision of the reconstructed scene
[Brückner et al., 2014]. To overcome constraints on the kinematic structure of the systems,
hybrid approaches consist of initializing calibration parameters using rigid solutions and,
then, update intrinsic and extrinsic camera parameters while interacting with the environ-
ment. These approaches are based on particle filtering techniques to update the camera and
external orientation of the cameras with respect to a world reference frame [Mueller and
Wuensche, 2016]. As our robot also handles highly-deformable objects, these approaches
fall short in terms of accuracy and precision performance since they attain an overall preci-
sion within 0.5cm and 1cm [Hansen et al., 2012].

In order to overcome the above limitations, this thesis proposes a hybrid approach that han-
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dles dynamic content in the observed scene (detailed in Chapter 4). The approach consists
of simple yet robust techniques. It must be noted that it is not an attempt to solve the general
problem of self-calibration but provide a robust and general purpose approach to handle both
deformable and non-deformable objects. It is therefore assumed that the vision system does
not change its focus and the focal length is adjusted, aperture and shutter settings for each
camera to obtain the desired focus range.

2.4 Depth sensing for robot manipulation

From here onwards, the remaining literature review is aimed towards the investigation of
scene understanding by robotic interactive perception in terms of manipulating the object in
the scene while the vision system remains constant.

2.4.1 Stereo-Matching based binocular cameras

Before Kinect-like cameras were available, stereo-vision based depth sensing had been widely
investigated. It has been one of the goals in the community of computer vision to describe the
world that we see based on the information obtained from one or more images and to restruc-
ture its properties, such as its illumination, shape, and color distributions. Stereo vision is the
reconstruction of the three-dimensional coordinates of points for depth estimation. A stereo
vision system consists of a stereo camera, namely, two cameras placed horizontally (i.e., one
on the left and the other on the right). The stereo 3D reconstruction pipeline consists of: (1)
capturing two images simultaneously by these cameras, (2) finding correspondences between
pixels from the pair images in order to obtain disparity maps (i.e. stereo matching) and (3)
reconstructing 3D scene from the disparities maps using calibrated camera parameters of the
stereo system. The challenge lies in determining the method to best approximating the dif-
ferences between the views shown in the two images to map (i.e., plot) the correspondence
(i.e., disparity) of the environment.

Stereo vision disparity map algorithms can be classified into two categories, local or global
approaches. Local approaches are also called as area-based or window based approaches.

Local methods generate the pixel correspondences by measuring the correspondence and
similarity between image regions. A notably effective implementation is reported in [Tombari
et al., 2008]. After calculating each candidate disparity value individually, winner takes all
strategy is applied to achieve the assignment of disparity values. By averaging or summation
over a support region, the matching cost function is aggregated. As a result, the disparity
value associated with the minimum cost for each pixel is assigned to that pixel. [Mattoc-
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cia et al., 2010] reported an algorithm based on an efficient cost aggregation strategy and a
refinement to this approach has been reported in [Psota et al., 2011] and [Yang, 2012].

Global approaches formulate the stereo matching problem as the minimization of the en-
ergy function incorporating the DSI error term and a smoothness term. Belief propagation
(BP) and graph cut (GC) algorithms are best-known approaches in this category reported in
[Prez and Snchez, 2011]. Applied to their 3D telepresence systems, they developed a real-
time, high-definition algorithm by implementing two BP algorithms. The first BP instance
performs classification of the pixels into areas designated as reliable, containing occlusion
errors and texture-less to reduce the numbers of memory accesses required for these three
groups of pixels. The second BP process decreases memory traffic by generating the final
disparity map.

Based on particle filtering, [Ploumpis et al., 2015] developed an accurate stereo matching
approach, for accurate stereo matching. The proposed method consists of three parts. First,
multiple disparity maps are utilized in order to acquire a very distinctive set of features
called control landmarks. It is followed by segmentation as a grouping technique. As a
second step, to estimate the best disparity value, scan line particle filtering is applied using
the corresponding landmarks as a virtual sensor data. Finally, the computational redundancy
of particle filtering is reduced in stereo correspondence with a Markov chain model, given
previous scan line values. Using this method, high-quality disparity maps can be produced.

It is worth noting that the active binocular vision system was suitable to achieve the task
of scene exploration by actively interacting with the scene by changing its gaze to salient
regions as evident by the results discussed in the chapter 3. However, to investigate the
effect of interactive perception in terms of repositioning the object in a given scene by robotic
manipulation and due to the limitation of low-quality depth data acquired for a rigid object
being less suitable from the active binocular vision system, off the shelf Kinect-like cameras
have been used.

2.4.2 Kinect-Like cameras

The most famous off-the-shelf depth sensors are Kinect-like cameras (including Mircosoft
Kinect, Kinect one, Intel ZR300 and Asus Xtion Pro, Xtion 2), which have been widely used
in RGB-D based recognition. The sensing range of Kinect-like cameras is 0.8m to 3.5m and
sensing precision is approximately 5mm. Kinect achieves real-time depth sensing (30FPS),
but for each image frame, the quality of depth map is limited. Recently ZED15 stereo cameras
have received attention for robotics application intended for outdoor use. Afterward, for
achieving high-accuracy 3D reconstruction of static objects or indoor scenes, Kinect-fusion

15https://www.stereolabs.com/
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[Izadi et al., 2011, Newcombe et al., 2011b] is proposed by merging multiple frames from a
moving Kinect, in which the coarse-to-fine iterative closest point (ICP) algorithm is used to
map dense point clouds in order to estimate the pose of the Kinect camera. A finer approach
to incorporate a 3D model of a slow-moving object is produced in their subsequent work
with dynamic fusion [Schmidt et al., 2015].

2.4.3 Discussion

Depending on the robotic application, both Kinect-like cameras and binocular-cameras have
been widely-used in mobile robots and manipulation robots. As the performance of depth,
sensing is determined by their stereo matching algorithms, the resident C3D correlation
based algorithm [Siebert and Urquhart, 1995] is focused to be used for depth sensing of
the clothes visual perception research(poor matches at the boundaries) with an active binoc-
ular vision system. While, rigid object manipulation scenes usually are of discontinuous
depth, and hence, the depth changes drastically on the object boundaries. Hence, for the
purpose of obtaining accurate 3D information of the rigid objects (to be repositioned) in the
scene, Kinect-like cameras are suitable after a comprehensive literature investigation and
experimental observation.

2.5 Depth data analysis

Visual perception is one of the most important components of an autonomous system. In this
thesis, one of the objectives is to investigate the visual perception model that reasons and pro-
vides information for the interaction stage to interact with the scene for better understanding
over one shot recognition. For such visually-guided manipulation tasks, RGB-D data (depth
map or point cloud) is more robust than RGB data in terms of representing the shape, size,
and landmarks of objects. Hence therefore a short and relevant survey on 2.5D/3D data
techniques is provided.

2.5.1 Depth Image/Point Cloud Registration

Depth image/Point cloud registration is a task in computer and robotic vision, used to match
two or more depth images/point clouds taken, for example, at different times, from differ-
ent sensors, or from different viewpoints. This serves as an early stage in computer vision
virtually for all large systems which evaluate these data. Also, methods based on depth im-
age/point cloud registration are widely used to fuse multiple view depth maps to obtain a
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solid 3D scene/object. Basically depth map/point cloud registration techniques are used to
estimate the rigid transforms as an early stage computer vision.

Principal component analysis (PCA) is often used in classification and compression tech-
niques, to project data on a new orthonormal basis in the direction of the largest variance
[Khan and Hasan, 2011, Yambor et al., 2002]. The direction of the largest variance cor-
responds to the largest eigenvector whereas the magnitude of this variance corresponds to
eigenvalue. A rough registration can be obtained through alignment of the eigenvectors of
their covariance matrices, provided that the covariance matrix of two point clouds differs
from the identity matrix.

PCA based depth image/point cloud registration is sensitive to outliers as it does not mini-
mize the Euclidean distance between corresponding points of the datasets. However, when
point correspondences between the two point clouds are available then the minimization of
sum of the Euclidean distances between these points corresponds to a linear least-squares
problem that can be solved robustly using the singular value decomposition method [Marden
and Guivant, 2012]. However, this technique requires perfect data. [Besl and McKay, 1992]
proposed an iterative closest point (ICP) algorithm to register a scene point cloud to a model
point cloud. For the ICP algorithm, a source point cloud and a target point cloud both serve
as input. The algorithm starts with an initial registration by finding the point correspondences
between these point clouds based on the nearest neighbour approach or a more sophisticated
scheme e.g. geometrical features, color information etc.. Afterwards, at each iteration the
transform estimated from the latest registration is applied on a scene point cloud, and the
nearest point pairs are found using k-d trees [Friedman et al., 1977], and a new transform is
estimated. This procedure continues until the registration error is lower than a pre-defined
threshold. This approach works successfully provided that the rotation between the scene
and model point clouds is reasonably small. It is worth noting that the approach reported
by [Besl and McKay, 1992], is able to handle the registration problem of line segment sets,
implicit curves, parametric curves, triangle sets, implicit surfaces and parametric surfaces.

In the following research, various kinds of 2.5D/3D local descriptors [Johnson and Hebert,
1999, Lo and Siebert, 2009, Rusu et al., 2009b, Steder et al., 2010, Tang et al., 2012] are
proposed in order to acquire a better matching performance between two range images and
point clouds. More details are introduced in Section 2.6.2.

2.5.2 Visual SLAM-Based 3D reconstruction

In recent years, Simultaneous Localization and Mapping (SLAM) using only cameras, has
been actively discussed for the reasons that the sensor configuration is simple and the degree
of technical difficulties is simpler than other sensors. Since the input is visual information
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only, such techniques are specifically known as visual SLAM. These approaches can further
be grouped into monocular-SLAM and RGB-D SLAM, depending on the input data types.

First monocular visual SLAM, called MonoSLAM was reported in [Davison et al., 2007,
Davison, 2003]. It is a filter-based SLAM algorithm where the camera motion and 3D struc-
ture of an unknown environment are simultaneously estimated using an extended Kalman
filter (EKF). Visual features are used to estimate the camera frame transform, and camera
states are modeled by 13 parameters, including 3D position, quaternion, motion, linear ve-
locity and angular velocity. Limitation of this method is computational cost, that increases
in proportion to the size of an environment, which is addressed in Parallel Tracking and
Mapping (PTAM) [Klein and Murray, 2007] by splitting the tracking and the mapping into
different threads on CPU.

In terms of monocular-SLAM, the transform between the current camera frame and key-
frame is estimated, then a depth map is generated by triangulation and afterward merged
with the global map. But during the pose tracking, errors are accumulated, which is the most
difficult problem SLAM needs to resolve. For example, in Davison’s classic monocular
SLAM [Davison, 2003], the visual features are used to estimate the camera frame trans-
form, and camera states are modelled by 13 parameters, including 3D position, quaternion,
motion, linear velocity and angular velocity; Extended Kalman Filter (EKF) [Welch and
Bishop, 1995] is used to reduce the transformation noise. [Engel et al., 2014, Newcombe
et al., 2011a] are fully direct methods. In [Newcombe et al., 2011a], proposed direct track-
ing and mapping (DTAM), in which the tracking is done by comparing the input image with
synthetic-view images generated from the reconstructed map. LSD-SLAM [Engel et al.,
2014] is the state-of-the-art dense-mapping (feature-less) monocular SLAM, in which the
camera pose transform is estimated by minimizing the photometric errors among dense pix-
els and Gauss-Newton method is employed to solve this optimization problem.

SLAM-based 3D reconstruction approaches are able to offset the drawbacks appearing in
single-shot stereo vision, e.g. occlusions, while their prerequisite is that the image frames
have to be captured from distinctive views.

2.6 The object recognition pipeline

Object recognition/identification is an extremely important problem in computer vision.
Since this thesis presents object recognition pipeline for robotic interactive perception, in the
context of scene understandings, the literature review about the object recognition pipeline
is reviewed here.
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2.6.1 Image classification, object detection and object recogni-
tion

Image classification usually is the task to find one major object in an image/scene shown in
Fig. 2.6(a). Object detection is the task to localize the interested object(s) from a wider scope
shown in Fig. 2.6(b). Sliding-window (exhaustive searching) [Dalal and Triggs, 2005b] is
a classic approach for object detection, in which the small detecting window slides through
the image over different scales, and for each position and scale, the window is classified
whether it has an interesting object(s). The object recognition (identification) usually tends
to recognize multi-class objects as shown in Fig. 2.6(c), the bottles can be identified by their
brands. where the class information is ‘finer’ than that in object detection (e.g. children,
adults, cars, vans, etc.).

(a) An image of a
glass bottle.

(b) The detection/localisation of glass bottles. (c) The recognition/identification of
glass bottles.

Figure 2.6: The difference between image classification, object detection and object recog-
nition [Sun, 2016].

This thesis presents more advanced component-based object recognition or pixel-level se-
mantic scene labelling in the proposed visual architecture (details in Chapter 5 and 6). Sec-
tion 2.6.2 introduces the image classification approaches from the early-stage to the state-of-
the-art.

2.6.2 Image classification

In this section, some of the most widely used, Global and Local feature based approaches
are reviewed. Review of other components such as encoding, pooling, classification, of the
image classification pipeline is followed. For completeness, a brief overview of the recent
advances in deep learning for image classification/recognition for robotic tasks is discussed.

Global Feature-Based approach

Global features have been widely used in many object recognition systems. These features
are a very compact representation of images, making such features, attractive. Approaches
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Figure 2.7: The image classification pipeline [Sun, 2016].

for global features representing each image corresponds to a point in a high dimensional
feature space. Therefore, any standard classifier can be used. For example, Local Binary
Patterns (LBP) descriptor is generated by comparing the values between a central pixel and
its neighbors (usually 3×3 regions). These patterns can be counted into a histogram to
obtain a global representation. Multi-scale LBP descriptor achieves outstanding performance
on texture classification for small-scale datasets [Ojala et al., 2002]. Global features are
sensitive to clutter, noise, and occlusion, and are not suitable for the work presented in this
thesis.

Local Feature-based approach

Image feature extraction techniques reduces the dimensionality of the data in image and pro-
vide set of features which are used further for the desired task. A lot of research has matured
in this area over past decades. Feature extraction has enabled the vision systems to identify
different cues in a given image or sequence of images such as edges, corners, interest points,
blobs, contours, motion cues etc.

Edge and corner detectors

Variety of edge detection techniques are developed among which Prewitt and Sobel were
first developed which is based on computing the gradient to notice the changes in intensities
where occur. Marr-Hildreth Edge detector [Marr and Hildreth, 1980] records the edges in an
image by finding the Laplacian of Gaussian(LoG) and zero crossings. It has better resistance
to noise and provides good localization. This method may result in too many responses.
Canny edge detector [Canny, 1986] imposes single response constraint for each edge point
by employing non-maximum suppression and hysteresis threshold.

An interest point is an expressive texture, where the direction of the boundary of an object
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changes abruptly or the point of intersection of two or more edge segments as found by the
Harris corner detector [Harris and Stephens, 1988].

Histogram of oriented gradients (HOG)

Dalal and Triggs [Dalal and Triggs, 2005a] showed that with the use of grids of the histogram
of oriented gradients outperformed previous feature sets used for human detection. The
algorithm steps are:

• Compute centered horizontal and vertical gradients with no smoothing. Compute gradient
orientation and magnitudes.

• For a color image, pick the color channel with the highest gradient magnitude for each
pixel.

• For a 64x128 image,

• Divide the image into 16x16 blocks of 50 percent overlap. 7x15=105 blocks in total

• Each block should consist of 2x2 cells with size 8x8.

• Quantize the gradient orientation into 9 bins

• The vote is the gradient magnitude

• Interpolate votes between neighboring bin center.

• The vote can also be weighted with Gaussian to down-weight the pixels near the edges of
the block.

• Concatenate histograms (Feature dimension: 105x4x9 = 3,780)

Visualization of the HOG for two input images is shown below on the right of their respective
input image.

Figure 2.8: Visualization of the HOG for two input images

Scale Invariant Feature Transform (SIFT)
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Feature matching across different images is usually a common problem in computer vision.
If the images remain of the same scale then simple corner detection algorithms may be
enough but for images with different scales, a scale-invariant feature transform is a possible
solution reported in [Lowe, 1999] and the details and improved version in [Lowe, 2004a].
Histogram of Oriented Gradient is an optimal solution when features intended are of global
need while SIFT performs better as local features because of computing the descriptor for
localized keypoints and robust to scale and rotation variance and possibly to geometric trans-
formations. Outline of the SIFT method is shortly discussed below.

• In order for the features of an image to be scale invariant, a scale space is generated.

Figure 2.9: SIFT-Octaves

• Next step is to do the Laplacian of Gaussian (LOG) Approximation which is a repeated
process of subtracting two consecutive images in octave and results in the approxima-
tion of scale-invariant LOG.

• After approximation of LOG keypoints are found which are many of these and some of
them are removed which are along the edges or at low contrast.
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Figure 2.10: SIFT-Octaves

Figure 2.11: sift-maxima-idea

• Gradient magnitude and orientation for each key point are found to assign an orientation
to each key point which makes them rotation invariant.

Figure 2.12: sift-orientation-window

• To generate the SIFT descriptor, a 16x16 window of in-between pixels for each key point
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is split into sixteen 4x4 windows. Next, from each 4x4 window, a histogram of 8
bins is generated corresponding to 0-44 degrees, 45-89 degrees, and so on. Gradient
orientations from the 4x4 are put into these bins and finally, normalize the 128 values.

Figure 2.13: sift-fingerprint

Since the environment is dynamic and complex, visual competency needs to strengthen both
its nature of being distinctive and computationally affordable. SIFT which has already been
explained briefly above and Speeded Up Robust Features (SURF) [Bay et al., 2008a] are
based on histograms of gradients. Computations of the gradients of each pixel in the patch
cost time, though, SURF lesser than SIFT.
Binary string, encoding information of a path using only the comparison of intensity images
and the use of hamming distance as a distance measure between two binary strings make
computation very fast. Which is the rationale behind binary descriptors such as BRIEF:
Binary Robust Independent Elementary Features [Calonder et al., 2010], ORB: an efficient
alternative to SIFT or SURF and based on BRIEF [Rublee et al., 2011], BRISK: Binary
Robust Invariant Scalable Keypoints [Leutenegger et al., 2011], Freak: Fast retina keypoint
[Alahi et al., 2012].
The active binocular vision system (details in Chapter 3) has been tested with SIFT, SURF,
and KAZE Features and established that it works reasonably good with these representations,
however, SIFT and KAZE outperform SURF clearly. In robotics context, however, it is
observed that information related to the depth of the object(s) is an important cue which
needs to be addressed and as proved from various studies presented in the following sections
that having 3D based matching and pose estimation gives better results. Typically, a range
image can be termed in three types, namely a depth image, a point cloud or a polygonal
mesh. The goal of 3D object recognition, given a range image, is to correctly identify objects
present in the range image, and determine their poses i.e. position and orientation [Bariya
and Nishino, 2010]. The following 3D local descriptors can also be used to describe the local
components of 3D objects essential for 3D object recognition.

[Mokhtarian et al., 2001] used the Gaussian and mean curvatures to detect key-points. They
declared a point p as a key-point if the curvature value of a point p was larger than the



2.6. The object recognition pipeline 36

curvature values of its 1-ring neighbours (k-ring neighbours are defined as the points which
are distant from p by k edges).

[Novatnack and Nishino, 2007] presented one of the first works to exploit geometric scale
space on range image. In their approach, a surface is represented using its normals and
parametrized the surface on a 2D plane to obtain a dense and regular 2D representation.
Then by successively convolving the 2D normal map with geodesic Gaussian kernels of
increasing standard deviations to construct a scale-space of the normal field. Key-points
along their corresponding scales were detected by identifying the points in the scale-space.

[Johnson and Hebert, 1999] reported a rotational invariant function representing Spin Image
for point cloud or 3D mapping and 3D object recognition. The spin image is extracted at an
original point, and each 3D point is projected within τ, υ where τ and υ provide the projected
distance between the point and the origin on the tangent plane and the surface normal. The
tau and upsilon values are collected in uniform bins to create the ‘Spin Image ’.

In addition, [Lo and Siebert, 2009] extended the 2D SIFT [Lowe, 2004c] descriptor to a
depth map. [Steder et al., 2010] presented a sparse local function NARF (Normal Aligned
Radial Feature) on a depth map. NARF usually appears on the edges of the object where the
shape of the object surface is unstable. [Tang et al., 2012] proposed the HONV (Histogram
of Oriented Normal Vectors) descriptor by accumulating surface normal vectors in spherical
coordinates.

Point Feature Histogram (PFH) [Rusu, 2010], proposed by Rusu in 2009, is on the basis of
robust surface normal estimation via PCA and fast point cloud localisation by tree structures
[Rusu and Cousins, 2011]. As shown in Fig. 2.14(b), for each query point, its neighbours
located in a local sphere space are retrieved; then for each unrepeated pair of the points
within this sphere, the α, β, θ angular values shown in Fig 2.14(a) can be calculated from the
estimated surface normals. The final descriptor can be formed by quantifying these angular
values into three-dimensional histograms. Later on, PFH was accelerated by only connecting
query points with neighbours, as opposed to connecting every pair in the sphere. This yields
Fast Point Feature Histogram (FPFH) [Rusu et al., 2009b], shown in Fig. 2.14.

Encoding

Encoding provides higher-level representation of local descriptors extracted from the image
by transforming the local descriptors into a vocabulary-space. One of the most classic cod-
ing methods is bag-of-features or bag-of-words (BoF) in which the local feature descriptors
are treated as ‘visual words’ and unsupervised learning techniques are employed to train the
‘codebook’ (or dictionary) such as k-means, Gaussian Mixture Model (GMM) and mean-
shift. Typically during the coding procedure, each ‘word’ (local descriptor) in the image is



2.6. The object recognition pipeline 37

(a) The α, β, θ angles. (b) The Point Feature His-
togram (PFH).

(c) The Fast Point Feature His-
togram (FPFH).

Figure 2.14: The Point Feature Histogram (PFH) and Fast Feature Histogram (FPFH) fea-
tures. The red point is the query point. In PFH, the points are fully connected in the sphere,
while in FPFH, points are only connected with the query points, and features in neighbouring
spheres are grouped together.

matched to its nearest codebook entry, and a global representation is obtained by matching
each ‘word’ (local descriptor) in the image is matched to its nearest codebook entry. The
accumulation of each codebook pattern is used as global representation (this process is also
called sum-pooling [Lazebnik et al., 2006]). Vector Quantization (VQ) [Deng and Manju-
nath, 2001] follows the same process but uses filtered or vectorized image patch instead of
local descriptors. Hence VQ is more popular in texture recognition.

Pooling

The task of integrating local representation into an image-level global representation (codes),
pooling is required. Sum-pooling [Lazebnik et al., 2006] and max-pooling [Yang et al.,
2009] are the two widely-used pooling methods. Sum-pooling accumulates the correspond-
ing values (value of the code) among all the codes with respect to each codebook base, while
max-pooling uses the largest value among all the codes with respect to each codebook base
as the global representation.

Classification

As a final step to conclude the image classification pipeline is “classification” − identifying
to which of a set of categories an unknown example belongs. In this section, the state-of-the-
art discriminant classification approaches are briefly reviewed. The goal is to fit the classifier
model for training data and the learned model should be able to predict unknown testing
data.

In the early literature, k-Nearest-Neighbour (kNN) [Cover and Hart, 1967] and decision tree
[Safavian and Landgrebe, 1991] are the most widely-cited discriminant algorithms. kNN
is one of the simplest, non-parametric, lazy classifier, in which a simple majority voting
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strategy is adapted to predict the unknown examples. It is still highly desirable on a range of
pattern recognition problems. Decision tree [Quinlan, 1986, Safavian and Landgrebe, 1991]
is a hierarchical tree structure classifier, A tree can be ”learned” by splitting each tree node
splits the examples into two sub-sets through thresholding the values in a specific dimension,
and the dimension for splitting is chosen by calculating the information gain. Some other
famous ensemble methods proposed are: bagging [Gregorski et al., 1994], Random Forest
[Ho, 1998], AdaBoosting [Rätsch et al., 2001].

Support Vector Machine (SVM) is a widely-cited discriminative classifier, benefiting from
max-margin, soft-boundary mechanism and kernel function. In the training procedure, the
objective function is in maximizing the margin of examples from positive and negative
classes, while the decision boundary can be ‘soft-boundary’ with tolerance for misclassified
examples. SVM also supports various kernels and compared to linear kernels, non-linear ker-
nels usually are able to enhance the classification performance but increase the complexity
of computation.

SVM classifiers are popular due to their often excellent empirical performance and their
use of kernel functions to map data into complex feature spaces in which linear classifiers
can be built. However, there are drawbacks to SVMs. In particular, SVMs do not provide
probabilistic confidences in their classifications. Although the outputs can be post-processed
into probability values [Platt, 1999] this is known to be sub-optimal for small datasets where
learning the parameters of the additional probabilistic model is biased by the high propor-
tion of training points that have outputs ±1 (the support vectors). SVMs are also inherently
binary and solving multi-class problems involves combining the outputs of several binary
SVMs. Although in some applications that can give high classification accuracy, it is not
clear how one should combine the probability values computed for each classifier into a
single distribution across the classes. For example, for bio-imaging based medical applica-
tions, the classification accruracy may not be high which involves techniques such as high-
content screening, virtual screening [Samardzhieva and Khan, 2018]. Forest-like classifiers
[Doumanoglou et al., 2014b, Willimon et al., 2013] can generate approximate probabilities
via a voting scheme, but the reliability of such estimates is limited by the number of trees
and has no formal probabilistic basis.

In light of these drawbacks of the commonly-reported classification methods, this thesis em-
ploys a multi-class Gaussian Process classification to fully model the distributions within the
object category prediction problem. Gaussian Process (GP) [Rasmussen] is a non-parametric
model for regression and classification problems. In GP regression problems, the conditional
probability of latent variables w.r.t testing examples given training examples, testing exam-
ples, latent variables w.r.t training examples is modeled as a multiple-variant Gaussian distri-
bution. For the classification problems, the key problem is to estimate the posterior of latent
variables given training data. Several inference methods such as Laplace Approximation
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[Rasmussen], Expectation Propagation [Rasmussen], are proposed to estimate this distribu-
tion. GP is also a kernel-based method since the covariance matrices are calculated by ker-
nels that determine the estimation of distribution. In essence, the posterior distribution of GP
latent variables over training examples are modeled as a multi-variant Gaussian distribution,
and the Laplace approximation is employed to estimate it. Moreover, the hyper-parameters
within the GP kernel are automatically optimized by marginal likelihood maximization. This
type of classification allows demonstrating that the confidence provided through the condi-
tional probabilities in a probabilistic classifier is a sensible halting criterion for interactive
perception.

Although, deep learning techniques haven’t been explored in producing this thesis, for com-
pleteness, a short review of such techniques are presented in the following section.

Deep Learning

Notable works such as [Jarrett et al., 2009, Krizhevsky et al., 2012, Simonyan and Zis-
serman, 2014] have used the most commonly used Convolutional Neural Network (CNN)
Architecture. For image classification task, CNN was applied to the ImageNet challenge,
which was able to classify images of more than 1000 categories trained from 1.2 million
images [Krizhevsky et al., 2012], Ciresan et. al [Ciresan et al., 2012] proposed a multiple
column deep CNN for hand-craft character recognition problems achieving substantial im-
provement. Recently, [Rana et al., 2016] proposed a dual-tree complex wavelet feature based
CNN application to classify real and reconstructed stereo 3D video for consumer valuation.

For general object classification problem, [Donahue et al., 2013, Jia et al., 2014], pre-trained
CNN is used to produce visual features.

Data-driven, Learning-based approaches such as [Kehoe et al., 2013, Viereck et al., 2017],
have provided solutions for grasping objects covering a wide range of object configurations,
shapes, and scenarios. For instance, [Levine et al., 0] devised a deep learning architecture,
which is trained to predict the probability that task-space motion of the gripper that maxi-
mizes a predicted probability of quality grasp solutions. For this purpose, the network needs
to observe the spatial relationship between the gripper and objects in the scene, and in turn,
learning hand-eye coordination. They used a cluster of robots that collectively learned suc-
cessful grasps to mitigate the need for a large dataset.

Another notable example is from [Mahler et al., 2017a,b], who have developed benchmark
datasets (i.e. Dexnet 1.0, 2.0 and 3.0) where grasping candidates are learned using annotated
datasets consisting of 150 3D models of which 1M rendered poses are extracted. Techniques
like these are good motivation for incorporating better grasping strategies into the proposed
visual architecture and in turn, can extend the effect of this architecture on a wider range of
applications.



2.7. The State-of-the-Art for scene understanding by interactive perception 40

The key difficulty of training CNN is to set the network architecture. Zeiler et al. proposed a
deconvolutional neural network [Zeiler et al., 2011] to adjust the neural network architecture
structure and tune parameters of each layer, which is able to reconstruct the input in multiple
layers by learning a sparse code of a specific image (or its feature maps) from learned filters
common to all images.

The challenge and prerequisite of deep learning are that the training requires large amounts
of data. Take CIFAR16 and ImageNet17 for example: the former has 80 million images for
100 categories and the latter has 14 million images for more than 30,000 categories. For
the specific object recognition with manipulation tasks, where the training data is collected
manually in the lab, the collection of large-scale datasets becomes extremely difficult.

2.6.3 Discussion

The proposed framework reported in this thesis for scene understanding by robotic interac-
tive perception aims to provide a general solution. All the stages of a classic object recog-
nition pipeline are employed in the proposed framework and each stage of the pipeline is
interchangeable with a solution on a need basis. However, for classification stage, this thesis
exploits the benefits of Gaussian Process (GP) based multi-class classifier. For the classifi-
cation problem, the key problem is to estimate the posterior of latent variables given training
data. Several inference methods such as Laplace Approximation [Rasmussen], Expectation
Propagation [Rasmussen], are proposed to estimate this distribution. Using the associated
probability along with the predicted class serves as a decision strategy for interaction with
an object in the scene i.e whether the confidence of a class label is high enough to regard it
as a true class or needs repositioning for further inspection if the confidence is lower than
some pre-defined threshold. More details in chapter 5 and chapter 6.

2.7 The State-of-the-Art for scene understanding by

interactive perception

[Gibson, 1979, Noe, 1979, O’Regan and No, 2001] make a compelling case that perception
in humans and animals is an active and exploratory process. Another notable report in [Held
and Hein, 1963], experimented to analyze the development of visually guided behavior in kit-
tens. Their findings are notable that this development critically depends on the opportunity to
learn the relationship between self-produced movement and concurrent visual feedback. As
discussed in section 2.2.3, [Aloimonos et al., 1988] show how challenging vision problems,

16available at: http : //groups.csail.mit.edu/vision/T inyImages/
17available at: http : //www.image− net.org
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such as shape from shading or structure from motion, are easier to solve with an active than
a passive observer. However, in the remaining of this thesis, the visual sensor is not active
i.e, the camera is fixed.

A variety of techniques for scene understanding aided by interaction, also known as interac-
tive perception techniques have been gaining attention recently. Few of the notable works in
the recent past are discussed here.

Segmentation through interaction has been proved to improve performances in [Fitzpatrick,
2003, Li, 2011, Schiebener et al.]. Another notable work in the field of interactive ob-
ject sorting/recognition systems has been reported to achieve viable levels of performance
[Gemignani et al., 2016, Gupta et al., 2015]. Their improved version in [Gupta et al., 2015],
reports an investigation on sorting objects in clutter. In particular, small objects are sorted
on a tabletop by segmenting the scene into regions: uncluttered, cluttered and pile. For the
uncluttered case, every object is picked and placed in its respective bin to clear the table.
In the cluttered case, objects are first separated and then picked and placed in bins. For the
piled scene, the pile is knocked over by the manipulator in order to decompose it so that
the objects lie directly on the table. However, this framework only works for small objects
of single and homogeneous color. similarly, in [Tho et al., 2016], a solution to fruit sorting
has been proposed. However, the number of fruit classes are limited to two and hence lacks
generalization.

[Sinapov and Stoytchev, 2013, Sinapov et al., 2014a,b] investigated the interactive perception
of object recognition by letting a robot interact with a set of objects. These objects are
characterized by different attributes, such as rigid or deformable, heavy or light, and slippery
or not. Features computed on the different sensor modalities serve as the basis to learn object
similarity. The authors from their work showed that this task is eased when the learning
process is conditioned on joint torques and the different interaction behaviors.

Motivated by the human infant development, a perceptual system is proposed by [Lyubova
et al.] to allow a robot to learn about physical entities in its surrounding workspace in two
stages. In the first stage, a human partner moves a workspace element and the robot learns
the object’s appearance of this moving element. In a second stage, the robot interacts with
the objects to learn its appearance. Although this system requires only very limited prior
knowledge, it has to have the knowledge of parts of its own body, parts of a human partner,
and what constitutes a manipulable object. [Katz and Brock, 2008] reports an interactive per-
ception approach that by focussing on object function rather than object appearance, is able
to manipulate unknown objects which possess inherent degrees of freedom, such as scissors,
pliers, but also door handles, drawers, etc., without requiring a priori model. This interactive
perception system is able to manipulate articulated objects successfully by acquiring a model
of the objects kinematic structure.
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[Gupta et al., 2015] report an investigation on sorting objects in clutter. In particular, small
objects are sorted on a tabletop by segmenting the scene into regions: uncluttered, cluttered
and pile. For the uncluttered case, every object is picked and placed in its respective bin to
clear the table. In the cluttered case, objects are first separated and then picked and placed in
bins. For the piled scene, the pile is knocked over by the manipulator in order to decompose
it so that the objects lie directly on the table. However, this framework only works for small
objects of single and homogeneous color. Similarly, in [Tho et al., 2016], a solution to fruit
sorting has been proposed. However, the number of fruit classes are limited to two and hence
lacks generalization.

[Kaipa et al., 2016] presents an interactive perception-based approach that addresses per-
ception uncertainty in order to reduce failure rates in a robotic bin-picking task. Human
intervention is required when the uncertainty in the part detection leads to perception failure.
The automated perception system provides the partial match to estimate the object’s detec-
tion confidence. Thereafter, a sensor-less fine-positioning planner is used to correct the part
placement errors.

In [Jang et al., 2017], Jang et al. considered the task of semantic robotic grasping, demon-
strating the capability of a robot to pick up an object of a user-specified class using only
monocular images. The proposed system is able to learn object detection, classification and
grasping strategy. However, this work focuses on better grasping strategies and addition-
ally, in order to achieve both successful grasping and object localization, a huge amount of
training is involved. Also for novel objects, localization of the object is in question.

Overall, current techniques compromise over general object manipulation tasks such as gen-
eral household objects under challenging real-world scenes i.e variable lighting, people walk-
ing in the background.

2.8 Discussion

In this section, a summary of limitations of the state-of-the-art for scene understanding by
robotic interactive perception is described and how to advance it. In Section 2.8.1, the lim-
itations of the state-of-the-art are depicted from four aspects: limitation in Active binocular
vision systems, in Camera Calibration, and in Hand-Eye Calibration, in Visually Guided
robotic systems for service tasks such as House Hold Object Sorting System and in Robotic
Interactive Perception for Scene understanding. Then these limitations are summarised in
Section 2.8.2, and Section 2.8.3 presents how this thesis advances these limitations.
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2.8.1 limitations of the state-of-the-art for scene understanding
by robotic interactive perception

Limitations in active binocular vision systems

As stated in section 2.2.3, an active vision system is reported in [Aragon-Camarasa and
Siebert, 2009, Aragon-Camarasa et al., 2010], that is capable of binocular vergence, local-
isation, recognition [Aragon-Camarasa and Siebert, 2009, Aragon-Camarasa et al., 2010]
and simultaneous identification of multiple target object instances [Aragon-Camarasa and
Siebert, 2010]. This architecture is structured as a collection of ad-hoc functions in order
to explore autonomously a scene by operating solely with SIFT features. Moreover, this
system is constrained to hardware and, therefore, the limitation of its portability remained
an issue. Recent developments in robotic middleware (e.g. the Robot Operating System
[Quigley et al., 2009]) technologies have made possible the deployment of hardware inde-
pendent robotic systems. Thus, there is a need to develop an active binocular robot head
architecture that integrates visual behaviors in a parsimonious and generic robot vision ar-
chitecture.

Limitations in camera calibration and Hand-Eye calibration

From investigation in section 2.3, rigid calibration methods consist of estimating intrinsic
and extrinsic camera parameters, and the mechanical relationships between their actuation
platforms and camera reference frames ([Kwon et al., 2007, Neubert and Ferrier, 2002, Salvi
et al., 2002]). The approach proposed in [Furukawa and Ponce, 2009] suffers from mechan-
ical wear and tear and the solution obtained depends on the quality of the mechanical parts
at the moment the calibration was carried out. In addition, the distance and orientation be-
tween actuator joints have to be precisely measured. Hence, errors induced by the measuring
device and mechanical backlash during their operation are not taken into account.

Furthermore, for PTU camera systems, self-calibration method capable of a general and
generic solution has yet to be devised. Moreover, hybrid approaches lime [Mueller and
Wuensche, 2016] fall short in terms of accuracy and precision performance since they attain
an overall precision within 0.5cm and 1cm [Hansen et al., 2012].

Limitations in visually guided household object sorting system

From investigation carried in section 2.7, the approaches such as [Katz and Brock, 2008,
Lyubova et al.], [Gupta et al., 2015, Kaipa et al., 2016] are limited in their ability to deal
with general object manipulation tasks such as an autonomous sorting system involving in-
teraction for general household objects. The perception stage devised for such cases need
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to provide additional information (e.g. probabilistic confidence measure) along with recog-
nition information for further reasoning, essential for the interaction stage as to what can
be done to the object in question, to improve on its recognition accuracy. Also for service
robot to be widely accessible, it requires portable services programmed into them. Hence,
portability and time sensitivity is essential but challenging.

Limitations in robotic interactive perception for scene understanding

Additionally, from section 2.7, it can be deduced that in robotic context, a scene can be stud-
ied and understood in more detail by visually guided object recognition systems when the
perception stage is backed by an action stage. An action stage could involve an interaction
of the active vision system with the scene or manipulate the object(s) in the scene e.g. repo-
sition the object such that view of the object is not occluded and simple from clutter after
interaction with it. Although, scene understanding for robotics has been explored by inter-
active perception with the use of active vision systems evident from the literature in 2.2.3.
However, scene understanding by robotic interactive perception in terms of object manipu-
lation investigations have been limited in their generality. In addition, a general framework
for scene understanding by robotic interactive perception is needed where the observer and
the object observed could be manipulated to simplify the scene and understand it thoroughly
which would extend its use to numerous applications. More specifically, investigating to
capture the right pose of an object in the scene can be advantageous both for recognition
tasks and additionally, learning task for object appearances.

2.8.2 Summary

Overall, from the literature review, the conclusion can be stated as, that the current state-of-
the-art in scene understanding by robotic interactive perception usually focuses on simple
and/or controlled scene rather than the basis of understanding generic scene configurations.
The key limitations can be summarized as:

• Existing methods including [Aragon-Camarasa and Siebert, 2009, Aragon-Camarasa
et al., 2010] made contributions to eliminate the limitations discussed in section 2.2.3
and extended the scope of potential applications. However, for time sensitive and
platform agnosticism robotic applications, the portability and platform agnosticism of
the active vision system remains a challenge.

• A generic solution has yet to be devised as rigid and hybrid approaches such as [Mueller
and Wuensche, 2016] fall short in terms of accuracy and precision performance since
they attain an overall precision within 0.5cm and 1cm [Hansen et al., 2012].
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• In predominantly reported scene understanding recognition pipelines by robotic inter-
active perception, the classifiers e.g. SVM, RF, kNN are non-probabilistic discrimina-
tive classifiers and cannot provide the confidence of prediction which discussed in 2.7,
can play a key role in providing the information needed for reasoning whether or not
an object needs to be investigated more.

• The majority of the reported scene understanding in robotic context are limited over
general object manipulation tasks such as an autonomous sorting system involving in-
teraction for general household objects. Some of these robotic systems do not have ma-
nipulation solutions followed by perception-manipulation cycles. As a consequence,
the robot is unlikely to be able to recover the identity of the object from ill-posed
configurations.

2.8.3 How to advance

Corresponding to these limitations, this thesis provides the following solutions to advance
the state-of-the-art:

• This thesis validates the portability of an active binocular vision system with a func-
tional accuracy of system reported in [Aragon-Camarasa and Siebert, 2009, Aragon-
Camarasa et al., 2010] and a cross-platform, time-sensitive and resilient active vision
system of environment changes for the task of scene exploration is developed.

• In this thesis, a camera and hand-eye calibration methodology for integrating an active
binocular robot head within a dual-arm robot are described. In addition, a comparative
study between current RGB-D cameras and our active stereo head within two dual-
arm robotic testbeds is reported that demonstrates the accuracy and portability of our
proposed methodology.

• A semi-autonomous visual perception model by interaction with the scene, for an ap-
plication of objects sorting based on Gaussian Process (GP) classification is devised.
The proposed model is capable of recognizing objects categories from point cloud
data. Gaussian Process multi-class classification is adapted for predicting the category
of unknown object in the scene and additionally provides with predictive probability.
This thesis provides the first example of research to adapt non-parametric multi-class
probabilistic classification (via Gaussian Processes) to the household object recogni-
tion problem by performing objects sorting task. The predictive probabilities generated
by GP are adapted into a novel interactive sorting pipeline which leads to substantial
improvements in the recognition performance.
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• A complete autonomous visual perception architecture applied to the task of object
sorting based on Gaussian Process (GP) classification is proposed, that is capable of
recognizing objects categories from point cloud data. Interactive perception consists
of two main stages: a perception stage and an interactive stage working in a loop,
following multiple perception-action cycles. Where the output of the perception stage
is fed into the interaction stage, and the feed may be received back from the interaction
stage on a requirement, if the object needs further inspection to confirm the category
of the object, to accomplish the task of accurate sorting of household objects placed
on a table top. The perception stage is responsible for object detection/segmentation,
object recognition, classification and the interaction stage verifies object class labels
by interacting with the object, removing the object from the table top and dropping it
in the bin designated for each class.
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Chapter 3

A Portable Active Binocular Robot
Vision Architecture for Scene
Exploration

This chapter presents a portable active binocular robot vision architecture that puts together

a number of visual behaviors. This active vision architecture has the abilities of vergence,

localization, recognition and simultaneous identification of same-class object instances. The

portability and functional accuracy of the vision architecture is demonstrated by carrying

out a qualitative and comparative analysis under different hardware robotic settings, feature

extraction techniques and viewpoints.

3.1 Introduction

Active robot vision systems are dynamic observers to perform actions and fulfill tasks by ex-
ploiting recovered information from the imaged scene [Ballard, 1991]. Active robot vision
systems are mainly comprised of hard-wired, ad-hoc visual functions and the intended pur-
pose is to have the capability of robustly exploring a scene and finding objects contained in a
database of pre-trained object examples [Chen et al., 2011, Collet et al., 2011]. However, cur-
rent systems are confined either by limitation in their visual capabilities and/or their software
modules are crafted according to the robot’s specific geometric configuration and hardware
components. These limitations, in turn, constrain the scope of potential applications for such
vision systems.

A portable active binocular robot head architecture is devised that is able to execute ver-

gence, localization, recognition and simultaneous identification of same-class object in-

stances. Here the focus is on the development of a portable architecture while preserving
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visual behaviors previously reported in [Aragon-Camarasa and Siebert, 2009, Aragon-Ca-
marasa et al., 2010]. The Sensor Fusion Effects (SFX) architecture [Murphy and Mali, 1997]
has been chosen as the foundation for the portable robot head (Fig. 3.1). It must be pointed
out that this robot architecture is not an attempt to model the mammalian visual pathway

itself, but it is a functional system that robustly carries out the specific high-level task of au-

tonomous scene exploration. To demonstrate the portability and functional accuracy of the
proposed system, experiments have been conducted considering three important variables
for any active scene exploration tasks, namely; the hardware used, visual representation and
view(s) of the scene. Hence, this chapter presents experiments with three different state-of-
the-art feature extraction techniques, namely SIFT [Lowe, 2004b], SURF [Bay et al., 2008b]
and KAZE [Alcantarilla et al., 2012] and, different hardware and scene settings.

Figure 3.1: Active binocular robot vision architecture [Aragon-Camarasa and Siebert, 2009,
Aragon-Camarasa et al., 2010].

This chapter is organized as follows: Section 3.1 presents a brief overview of the active
vision systems and the portable active vision system devised in the course of this thesis.
Section 3.2 explains the motivation and objectives. Section 3.3 and 3.4 presents the robot
vision architecture devised. Finally, details of the experimental validation of the system and
concluding remarks of this chapter are given in Section 3.5 and Section 3.6 respectively.
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3.2 Motivation and objectives

Visual behaviours previously reported in [Aragon-Camarasa and Siebert, 2009, Aragon-Ca-
marasa et al., 2010] made contributions to eliminate the limitations discussed in 3.1 and
extended the scope of potential applications. However, for time sensitive and platform ag-
nostic robotic applications, the portability of the active vision system remained a challenge.
Also, to increase the impact of an active vision system, there is a need to integrate the system
from a platform dependent to a cross-platform vision system i.e integration of the existing
system into Robot Operating System (ROS).

The objective of this chapter is to validate the functional accuracy of system reported in
[Aragon-Camarasa and Siebert, 2009, Aragon-Camarasa et al., 2010] and develop an active
vision system, that is cross-platform, time-sensitive and resilient to environmental changes,
for the task of scene exploration.

3.3 Robot vision architecture

As stated before, the active vision system is based on the hybrid deliberative/reactive Sensor

Fusion Effector architecture (SFX, Murphy and Mali [1997]). Specifically, the SFX archi-
tecture, as implemented, relates how deliberative and reactive modules are interconnected
with sensor and actuator functions. Visual behaviors in this architecture implement the con-
figuration of the visual streams in the mid-level of the SFX architecture. This arrangement
exploits sensed visual information in order to explore the environment without further rea-
soning (i.e. the mid-layer senses and acts accordingly) while the deliberative layer manages
visual behaviors and, consequently, orchestrates the required set of commands to carry out a
high-level visual task; for instance, manipulation/interaction tasks Sun et al. [2015b].

Specifically, Fig. 3.1 shows this architecture. The processing levels are classified in terms
of their functionality (i.e. low-level, mid-level and high-level). The corresponding low-level
and mid-level functions consist of simple yet effective behaviors that sub-serve upper-level
goals, whilst the high-level functions relate to the intelligence, deliberation, and reasoning
(out of the scope in this thesis).

High-level functions (as observed in Fig. 3.1) specify visual tasks and goals. This layer
is cast as scripted meta-behaviors (Section 4.5) that orchestrate the sequential activation of
visual behaviors in order to fulfill the task of autonomous visual object exploration.

Low-level and mid-level (Figures 3.1 and 3.2) integrate a number of primitive and abstract

behaviours. On the one hand, primitive behaviors comprise monolithic methods that only
serve a single purpose; i.e. they are simple stimulus-response mappings that transform a
collection of sensed information into data structures. On the other hand, abstract behaviors
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Figure 3.2: Internal representation of visual behaviours (Fig. 3.1). White boxes denote
abstract behaviours, whereas grey boxes represent primitive behaviours [Aragon-Camarasa
and Siebert, 2009, Aragon-Camarasa et al., 2010].

comprise a collection of primitive or other abstract behaviors. Fig. 3.2 illustrates the mid-
level processing architecture that comprises pre-attentive, attentive, inhibition of return and
binocular vergence visual behaviours previously reported in [Aragon-Camarasa and Siebert,
2009, Aragon-Camarasa et al., 2010] and for completeness, this thesis details these in the
following sections. Sensor and motor behaviors are decoupled from the mid- and high-level
layers. This configuration allows us to maintain visual behaviors that are not constrained to
the chosen feature extraction technique and hardware components.

To achieve generic and preserve a modular arrangement within the architecture, an egocentric
coordinate system is devised which are not related to the real-world units of the observed
environment. The egocentric coordinate map is defined as a relative pixel-based map where
the frame of reference is established with respect to a “home” position of the robot head.

Mid-level processing architecture that comprises pre-attentive, attentive, inhibition of return

and binocular vergence visual behaviours are detailed in following sections, but first, binoc-
ular vergence is briefly described.
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3.3.1 Binocular vergence

The vergence behavior is presented in Aragon-Camarasa et al. [2010], which has modeled
different vergence modes based on the hierarchical paradigm and it is defined as Global

non-selective vergence and Attentive, selective vergence. The implemented vergence behav-
ior is a closed-loop function based on extracting and matching local features (in our case
SIFT) from each of the stereo-pair images captured and result in calculating disparity values.
These values are classified in a histogram and the highest peak of the distribution cues the
most dense/compact feature cluster and this highest peak is then used to estimate the actuator
movement required to rotate the gaze angle of each camera to centre this peak at zero dis-
parity within a capture-verge loop and the loop halts when the highest peak has been shifted
close to zero disparity. Further implementation details can be found in Aragon-Camarasa
et al. [2010].

3.3.2 Pre-attentive

In the vision architecture, the pre-attentive behavior is divided into three different visual
processing behaviors.

Multiple same class object instance detection

As scenes may contain both same-class known and unknown objects (i.e. objects may be
self-occluded and occluded by other different-class objects), the implementation of a “Mul-

tiple Same-Class Object Instance” (MSCOI) detector affords the ability to localize multiple
same class object instances pre-attentively in order to generate object hypotheses within the
observed field of view.

Hypotheses generation

In order to provide a single set of new object hypotheses (HPnew) when multiple same-class
object instances are in the scene, the pre-attentive behavior must be able to locate correspon-
dences between the object instances found in HL and HR. The working assumption is that
both cameras are currently verged on, and they roughly observe, the same portion of the
scene (within a disparity tolerance. This assumption is independent of the particular type of
vergence behavior that is currently active. Hence, an object hypothesis is considered to be
the same in terms of its spatial location in both observed images if it belongs to the same ob-
ject class (HI , and the Euclidean distance between the camera fixation coordinates located
on each camera image plane is close to zero. The egocentric pixel map stores the absolute
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coordinate position of the observed object instance fixation point with respect to the recorded
home position of the robotic system. Thus, it is not necessary to create and store this map in
working memory explicitly. This egocentric map further maintains a record of all fixations
in the scene that is later employed in the “inhibition of return” behavior.

Saliency detection

As the cameras are only driven to look at objects or salient locations, salient locations are
only registered if they appear in the field of view of the dominant eye (the left camera) when
the cameras are either targeting an object or salient location. Salient locations are those
SIFT feature locations in the dominant camera (left camera in our system) that do not match
with any feature in the current view and exhibit a saliency score above a threshold value.
The heuristic formulation of the saliency score is based on the degree of visual eccentricity
at which observed salient items are located in the current view, in order to bias the system
towards peripheral cues. The output of the “salient feature detection” behavior,

3.3.3 Attentive

According to the attentional “spotlight”, the critical assumption adopted in this report for
the visual search heuristic is that those putative object and salient locations that appear in the
field of view of both cameras in the binocular configuration should be attended. An overview
of the algorithmic implementation is depicted in Fig. 3.3.

The attentive behavior employs the information provided by the pre-attentive and inhibition
of return behaviors to direct the attentional spotlight, to perform recognition decisions and to
bring the cameras into convergence. As shown in Fig. 3.3, the attentive mechanism operates
under the following three cases (each case is enumerated in Fig. 3.3 accordingly):

1. If HP is not empty, the object hypothesis with the highest confidence score is then
targeted, verged on (selective vergence) and verified.

2. IfHP is empty butHS is not, the cameras are targeted and verged on the salient feature
with the highest score (selective vergence).

3. If HP and HS are empty, the cameras are maintained in convergence under the non-
selective vergence case without a pre-selected target.

The third point is a special case; this occurs: (a) when the scene has been fully explored, or
(b) when the robot vision system is initializing. It must be noted that camera actuation is only
invoked while targeting object hypotheses or salient locations that contribute to the overall
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Figure 3.3: Flow diagram of the implemented attentive behaviour while executing a visual
task. The three operational cases are marked accordingly [Aragon-Camarasa and Siebert,
2009, Aragon-Camarasa et al., 2010].

execution of the visual task, therefore motor control signals are explicitly commanded by the
vergence behaviors in our architecture. As observed in Fig. 3.2(b), the non-selective ver-

gence and selective vergence behaviour modes are integrated within the attentive behaviour.

Saccadic targeting

The saccadic targeting (denoted as “Where to look next?” in Fig. 3.2(b)) consists of two
behavioural modes: object based attention (HP ) and salient based attention (HS). As dis-
cussed in the previous section, the attentive behaviour prioritises HP as the most important
visual information to be observed.

Object verification

This behavior is solely concerned with corroborating the attended object hypothesis. As
the system is capable of localizing multiple same-class object instances, the object attended
could be close to or occluded by, another instance of the same class. The bounding box
coordinates are thus employed (BL and BR to segment the region of interest symbolically

in the current view and only those features inside both segmented regions are matched in
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order to verify the identity of the object. The system is thereby biased to consider only the
object of interest since possible false positive matches of other same-class instances in the
current view are excluded. Fig. 3.4 illustrates a segmented region of interest while the robot
investigates a “juice box” object.

Figure 3.4: Demonstration of the selective vergence case and segmented region of interest
while verifying an object [Aragon-Camarasa and Siebert, 2009, Aragon-Camarasa et al.,
2010].

3.3.4 Inhibition of return

While exploring a scene, the binocular robot head might have detected other object hy-
potheses during previous pre-attentive cycles. The inhibition of Return (IOR) behavior must
therefore determine whether detected object instances are: identified objects that have been

attended and verified, HA ; or, previous pre-attentively localised objects that have not been

attended yet,HPnew .

Following each saccade, to inhibit multiple instances of each object class of the visual search
task, the Inhibition of Return (IOR) behavior determines whether detected instances have
been either: identified objects, attended and verified, HA; or pre-attentively localized ob-
jects (the set of putative objects of previous saccades,HP , that have not been attended yet).

A confidence ellipsoid test is used to define this behaviour, where the critical assumption
hypothesis is that an object in HP

new is inhibited if and only if its fixation coordinate, yL

(represented by points inside the drawn ellipse in 3.5), falls inside the region confidence
interval of either an attended object (HA) or an object hypothesis (HP ) in the dominant eye
(left camera). Fig. 3.5 depicts an example of the inhibition process between HP

new and HA.
Although, the inhibition process between HA

new and HP is described (current and previous
putative objects). However, the exact steps are also valid while inhibiting between HP and
HA. Thus, the algorithmic steps of this behavior are explicitly modeled in the spatiotemporal
pixel map domain by means of the statistical confidence ellipse test as follows (this test is
only applied when the object belongs to the same object class):
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Figure 3.5: Example of the inhibition of return behaviour applied to HPnew and HP . X and
Y axes depict the egocentric map of the system described and these are expressed in pixel
units with respect to the home position of the cameras [Aragon-Camarasa and Siebert, 2009,
Aragon-Camarasa et al., 2010].

y = (YLi )Pnew − (YLj )P (3.1)

Kij = yC−1yT : Ii = Ij∀ILi ∈ HP
new (3.2)

where Kij is a confidence factor determined by the X 2 distribution of the ith and jth object
elements in HP

new and HP ; and, C, the covariance matrix between bounding boxes (BL) of
ith and jth object elements inHP

new andHP ; p and q denote the population size ofHP
new and

HP , respectively. The null hypothesis is defined as the probability that the ith object inHP
new

appears in the interior ellipsoid of jth attended object (defined by the Equation 3.2) is equal
to PX 2(K, d). Each result of the null hypothesis is thereby stored in an array, G = [gij]

pq
i=1,j=1

as follows:

G =

1 1− PX 2([Kij]
pq
i=1,j=1, d) > 0.1

0 Otherwise
(3.3)

where PX 2 is the probability of the X 2 distribution; 0.1, the 90% of the significance level of
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being the null hypothesis true; and d, the degrees of freedom which in this case is 2 as the
visual coordinates are in the two-dimensional image plane. Thereafter, G is then reduced to
a column vector in order to determine the inhibited object of the ith element inHP

new, hence;

g′i = [gi1]
p
i=1 ∨ . . . ∨ [giq]

p
i=1 (3.4)

In case, a pre-attentively observed object in the current saccade might be detected with a
higher confidence value than the one from previous pre-attentive cycles; therefore, the new
object hypothesis presenting the highest confidence replaces the previous hypothesis. This
special case is only valid while inhibiting objects in HP

new and HP . This is a useful utility,
by allowing the system to correct detections and to suppress visual object information that
might not contribute to the overall visual search task.

The final result of inhibited sets thus consist of appending to HP
new and HS

new in HP
new and

HS , respectively. Therefore,HP andHS are the output of this behavior.

3.4 Visual search task definition

The high-level layer is defined as a macro-script that specifies the visual search task, controls,
and schedules behavioral resources in lower layers (ref. Aragon-Camarasa et al. [2010]),
and monitors the progress of the task. It is worth noted here, that, a pre-attentive-inhibition

of return-attentive cycle is defined, in order to allow the active vision system to perform
autonomous scene exploration (Table 4.2). That is, the robot acts according to the sensed
visual information and reports recognized object classes stored in a database.

3.5 Experimental validation

In this section, experimental validation on portability and functional accuracy of the portable
active binocular vision system is discussed in detail.

3.5.1 Robot head hardware and software interface

These experiments are designed to validate the portability of the active robot vision archi-
tecture in two different scene settings, hardware components, and different visual features
extraction techniques. The first active binocular robot head (Fig. 3.6) comprise two Prosil-

ica cameras (GC2450C and GC2450; colour and mono, respectively) at 5 Megapixels of
resolution fitted with Gigabit Ethernet interfaces and 4 high-accuracy stepper-motors and
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Table 3.1: Pseudo-code of macro script in Fig. 3.1 and 3.2.

Inputs: None

Outputs: List of objects recognised and attended to.

1: Generate database
2: Verge cameras and extract features from the image pair

(binocular arrangement)
3: Obtain pre-attentive object and salient hypotheses
4: Set the saccade number to 1
5: Loop until possible object or salient hypotheses are not
empty

or no. of saccades is less than a user-defined number
6: Select an object from the possible obj. hypotheses that
has

the maximum recognition score (see Aragon-Camarasa
et al. [2010])
7: Verge and attend (attentive behaviour) to the selected
object and return features

from both cameras after verging and the lists of the
remaining object and salient hypotheses

8: Update pre-attentive object and salient hypotheses
9: Inhibit (inhibition of return) new pre-attentively found

objects w.r.t previous possible object and salient hyps
10: Saccade no. increments 1

11: Report objects stored

motor-controllers (Physik Instrumente). The robot vision architecture is arranged as follows
for the latter robot head. Low-level components, namely, image acquisition and motor con-
trol modules (Fig. 3.1); are interfaced to a Pentium 4 computer with 2 GB in RAM running
under Windows XP and MATLAB R2008a. Whilst, image feature extraction, mid-level and
high-level components (Fig. 3.1) are interfaced to a 4-core Intel Xeon (model E5502) with
a CPU clock speed of 2 GHz, with 24 GB in RAM running under Windows 7 and MAT-
LAB R2009b. Both computers are interconnected through the local network by means of a
collection of network socket functions for MATLAB1.

The second active binocular robot head (Fig. ) consists of two Nikon DSLR cameras
(D5100) at 16 Megapixels of resolution. Cameras are mounted on two pan and tilt units
(PTU-D46) with their corresponding controllers. This robot head is mounted on a dual-
arm robot with anthropomorphic features. Low-level functions where implemented as ROS
nodes and interfaced with Matlab 2014a with pymatlab2. The hardware is interfaced to an
Intel Core i7-3930K computer at 3.20 GHz with 32GB of RAM running Ubuntu 12.04 and
ROS.

1http://code.google.com/p/msocket/ (verified on 4 March 2016)
2https://pypi.python.org/pypi/pymatlab (verified on 4 March, 2016)
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Figure 3.6: Left: The Prosiclica robot head exploring the scene. Right: An image of the dual-
arm robot featuring the Nikon robot head on top. Additionally, this robot features grippers
specifically designed for manipulating clothing.

3.5.2 Methodology

In order to test the robustness and repeatability of this active vision architecture, for both
binocular robot heads, 3 visual exploration tasks have been performed for each scene, each
visual task with a random initial home position. It must be noted that the visual search task
is terminated if the robot’s pre-attentive behavior does not find an object within 5 consec-
utive saccades; i.e. the system is only targeting salient features. This halting criterion has
been implemented in order to reduce the execution time while conducting these experiments.
There are three possible outcomes while actively exploring a scene:

• True positives are all correctly detected and identified object hypotheses where the
system is able to center the hypothesized object in the field of view.

• False positives are when the system localizes an object hypothesis, but without being
able to center the object in the field of view of both cameras during the attentive cycle
or, similarly, an attended object hypothesis does not correspond to the object class in
the scene.

• Not found is the case that translates to the system’s failures. i.e an object instance is
not detected in the visual search task at all.

For each robot head, scenes have been designed comprising of a mix of several multiple
same-class and different-class object instances, arranged in different poses. A scene com-
plexity is defined according to the number of similar unknown objects in the scene (i.e.
a typical source of potential outliers) and by the degree of background clutter present (i.e
surfaces, the objects are placed on, and at the background e.g wall). Training of the back-
ground clutter is not required for our active vision architecture. This makes the tasks object
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detection and recognition of objects, challenging in general. Experimental methodology is
detailed below.

Figure 3.7: Left: View from the Prosilica robot head’s left camera exploring a scene. Right:
View of the Nikon-based robot head as viewed from the left camera [Khan et al., 2016c].

Prosilica robot head.

7 different scenes have been arranged 3 of differing complexity, based on combinations of 20

known object instances, of 10 different object classes. Fig. 3.7 shows an example of a scene.
Objects were placed in arbitrary poses and locations. A database has been created of the 10
known objects by capturing stereo-pair images of an object at angular intervals of 45◦ and
60◦. These captured images are then manually segmented in order to contain only the object
of interest. This segmentation of objects for database creation is made autonomous and
reported in the vision pipeline developed for robotic interactive perception (details in Chapter
5). We have considered two databases in order to measure the recognition performance of
our system with different visual knowledge.

Nikon binocular robot head.

Scenes for these experiments consist of objects placed on top of a table. The goal is to
investigate the response of our active vision architecture to different viewpoints, different
feature extraction techniques and hardware components for the sake of portability. With this
robot head, we are also able to investigate the effects of having an anthropomorphic robot
configuration as opposed to a front-parallel configuration as above. Fig. 3.8 shows examples
of the scenes we created. Object databases used in these experiments include stereo-pair
images of object instances sampled randomly in order to cover the objects’ view-sphere
by placing the object in isolation on the working table. Each object instance stored in the
database is manually segmented.

Therefore, 3 different scenes4 are arranged of variable complexity. Each scene is a compo-
sition of 14 known object instances observing arbitrary poses and locations, of 9 different

3All 7 scenes can be accessed at http://www.gerardoaragon.com/taros2016.html
4All 3 scenes can be accessed at http://www.gerardoaragon.com/taros2016.html
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object classes. Scene 1 is considered to be the simplest while scene 3, the most complex
(Fig. 3.8). It must be noted that Scene 2 and Scene 3 include flat objects and objects with 3D
structure while Scene 1 only comprises objects having a 3D structure. In order to effectively
understand the response of the system to different feature extraction techniques, each of the
three scenes were explored by our system with SIFT, KAZE, and SURF features.

(a) Scene 1 (b) Scene 2

(c) Scene 3

Figure 3.8: Scenes used for the Nikon robot head. a) Scene 1 depicts less complexity. b)
Scene 2, medium complexity. c) Scene 3, most complex scene of the last two [Khan et al.,
2016c].

3.5.3 Analysis and discussion

Investigating all experiments and three randomly starting position for each scene, it can
be deduced that the portable active robot vision architecture presents stochastic behaviors.
Accordingly, neither robot vision head follows a pre-defined visual scan path but it adapts
according to the contents of the scene while exploring the scene. Table 3.2 and Table 3.3
show the true positives, false positives, objects not found and the active vision system to
recover from failure for different scenes, for Prosilica robot head and Nikon robot head
respectively. Summary of the outcomes for each robot head is presented as follows.
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Prosilica robot head.

Table 3.2 illustrates the system’s recognition rates for all experiments. False positives emerged
due to the object feature descriptors matching with unknown objects and, in consequence,
these matches were not consistent with the reference object center in the database while gen-
erating object hypotheses pre-attentively (as previously reported in [Aragon-Camarasa and
Siebert, 2009]). However, the system recovered from false positives. These results further
support the active vision paradigm, since the robot vision architecture is able to recover from
these failures while investigating the scene from different views. Thus, the robot is able to
locate the object instances, despite not identifying every object instance during the current
pre-attentive cycle.

Figure 3.9: Overall recognition rate for the visual tasks for the Prosilica robot head.

Table 3.2: Outcomes for the Prosilica robot head.
Scene no. True positives False positives Not found Recover from failures Performance (%)

1 56 5 7 0 82
2 57 1 3 0 93
3 60 2 0 2 97
4 60 2 0 2 97
5 59 5 1 4 91
6 59 0 1 1 98
7 59 1 1 0 97

Total 410 16 13 9 93.5 (average)
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Table 3.3: Outcomes for the Nikon robot head.
Type of

Feature Descriptor Scene no. True positives False positives Not found Recover from failures Performance (%)

SURF
1 16 5 14 54 53
2 26 4 13 65 66.6
3 25 2 17 64 59.5

Total 67 11 44 184 60 (average)

SIFT
1 24 0 6 30 91
2 29 0 10 54 98
3 32 0 10 59 97

Total 85 0 26 143 77 (average)

KAZE
1 30 0 0 30 100
2 30 0 9 39 76.9
3 30 0 12 29 71.4

Total 90 0 21 98 83 (average)

Nikon robot head.

From table 3.3, it can be observed that the recognition performance is linked to the feature
extraction techniques used. Average recognition rates for SURF, SIFT, and KAZE are 60%,
77%, and 83% percentage, respectively. SIFT and KAZE, in these experiments, achieved
better recognition rates than SURF due to the inherent properties of being ”almost” invariant
to perspective transformations. It is also worth noting that both SIFT and KAZE techniques
are less prone to false positives as opposed to SURF. As described above, this portable ac-
tive vision architecture is tested using an anthropomorphic configuration where objects are
not in similar 2D planes as it is the case from the Proscilica robot head experiments. By
comparing Table 3.3 with Table 3.2, a decrease in the performance is observed. That is, 3D
structures from an anthropomorphic configuration are more difficult to recognize and, there-
fore, the robustness of feature descriptions decrease. There has been an observation of more
recoveries from failures in these set of experiments. It can be deduced that this particular
configuration introduces challenging geometric transformations that state-of-the-art feature
descriptions are still not able to cope with. Hence, the chosen feature extraction has a key
role in the overall recognition performance. Nevertheless, our active robot head is able to
explore a scene regardless of hardware configuration, different viewpoint while maintaining
acceptable recognition rates.

3.6 Conclusions

This chapter presented a successful demonstration of a portable active binocular robot head
that integrates visual behaviors in a unified and parsimonious architecture that is capable of
autonomous scene exploration. That is, the portable active robot vision architecture can iden-
tify and localize multiple same-class and different-class object instances while maintaining
vergence and directing the system’s gaze towards scene regions and objects.
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This portable robot vision architecture has been validated over challenging scenes and re-
alistic scenarios in order to investigate and study the performance of the visual behaviors
as an integrated architecture. By carrying out a qualitative comparison with current robot
vision systems whose performance has been reported in the literature, it is argued that our
architecture clearly advances the reported state-of-the-art [Aragon-Camarasa et al., 2010, Ar-
bib et al., 2008, Ma et al., 2011, Meger et al., 2010, Rasolzadeh et al., 2010] in terms of our
system’s innate visual capabilities and portability to different environment settings, e.g. mul-
tiple same-class object identification and tolerated degree of visual scene complexity. Our
architecture is therefore portable in order to be adapted to different hardware configuration,
feature description, and viewpoints.

For any vision architecture to benefit from interaction with the scene i.e object manipulations,
requires the vision system to be integrated within the autonomous system’s kinematic frame
chain. This required an approach for camera-hand eye calibration. The Chapter 4 details the
proposed methodology for camera-hand eye calibration required for the vision system to be
integrated into a dual-arm robot’s kinematic frame chain.
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Chapter 4

On the Calibration of Active
Binocular and RGBD Vision Systems
for Dual-Arm Robots

In this chapter, a camera and hand-eye calibration methodology for integrating an active

binocular robot head within a dual-arm robot is described. For this purpose, the forward

kinematic model of the portable active robot head is derived and methodology for calibrating

and integrating the robot head is described in detail. The rigid calibration provides a closed-

form hand-to-eye solution. Furthermore, this chapter presents an approach for updating dy-

namically camera external parameters for optimal 3D reconstruction that is the foundation

for robotic tasks such as grasping and manipulating rigid and deformable objects. It is

shown from experimental results that our robot head achieves an overall sub-millimeter ac-

curacy of less than 0.3 millimetres while recovering the 3D structure of a scene. In addition,

a comparative study between current RGBD cameras and an active stereo head within two

dual-arm robotic testbeds is reported that demonstrates the accuracy and portability of the

proposed methodology.

4.1 Introduction

Camera calibration or more precisely geometric camera calibration is the process of estimat-
ing the parameters of a lens and image sensor of an image/video camera. Once estimated,
these parameters are used to correct for lens distortion, making it viable to measure the size
of an object in world units in the scene. Therefore, the importance of camera calibration is
realized in robotics, for navigation systems, 3-D scene reconstruction etc.

RGBD camera sensors (i.e. Kinect-like cameras) have had an impact on robotics and robot
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vision research as they have provided a low-cost, ready-to-use and off-the-shelf sensor to
accommodate different robotic configurations, settings, and tasks. However, the accuracy of
RGBD camera sensors varies according to the distance between the object to be imaged and
the sensor [Khoshelham and Elberink, 2012]. That is, RGBD sensors limit the perceptual
capabilities of robots since they provide low-resolution depth maps and usually suffer from
image noise. Likewise, their rigid configuration does not allow the robot to adjust the cam-
eras’ physical configuration in order to image objects at different distances from the camera
with high accuracy. These limitations make characterizing the 3D structure of a given object
challenging.

Photogrammetric vision systems provide the required accuracy but at a high cost. To mitigate
these costs without compromising accuracy, an active binocular robot head is designed with
off-the-shelf components for an industrial dual-arm Yakasawa robot (Fig. 4.1) under the FP7
CloPeMa project1. This robot head is capable of changing its gaze under computer control.
Our robot head has been used successfully for clothes perception and manipulation research
[Sun et al., 2015a, 2016a,b] because of its ability to provide high-resolution imaging for 3D
mapping and range sensing. Due to the ability of the robot head to target different parts of a
scene, it is required to maintain accurate calibration of its intrinsic and extrinsic parameters
with respect to the robot’s reference frame.

This chapter presents the methodology used to calibrate the active robot head, and the hand-
eye calibration by integrating our robot head, and RGBD cameras within a robot’s kinematic
frame.

This chapter is organized as follows: Section 4.2 provides the motivation and objectives.
Section 4.3.3 details the materials related to the investigation. Section 4.4 describes the
methodology opted for camera calibration and hand-eye calibration. Section 4.5 details
the experimental results of the system and concluding remarks and future extension of this
method are given in Section 4.6.

4.2 Motivation and objectives

One of the limitations of the off-the-shelf RGBD sensors is that these are rigidly configured
which, in turn, does not allow the robot to adjust the cameras’ physical configuration, in
order to image objects at different distances from the camera with high accuracy. These
limitations make characterizing the 3D structure of a given object challenging. This leads to
developing a vision system that could image objects located at different distances with high
accuracy such as the vision system discussed in previous chapter 3.

1http://www.clopema.eu/
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Figure 4.1: Top: The active binocular robot head. Bottom: Dual-arm Yakasawa robot with
our robot head integrated.

However, with the ability to target different parts of a scene, the active robot vision system is
required to maintain accurate calibration of its intrinsic and extrinsic parameters with respect
to the robot’s reference frame.

This chapter describes the methodology to calibrate the active robot head and describes the
solution developed to dynamically update cameras’ extrinsic parameters, in order to achieve
geometric compatibility with respect to the robot’s kinematic chain. Furthermore, this chap-
ter provides a comparative evaluation of 3D reconstruction of the scene, between our robot
head and RGBD cameras by integrating them within a robot’s kinematic frame to demon-
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strate the operational validity of the proposed method.

4.3 Materials

This section starts by introducing the hardware facilities used to demonstrate the validity
of the proposed approach. It is followed by the methodology opted for Camera-Hand eye
calibration.

4.3.1 RGB-D cameras

This section briefly states specifications of the two of the most famous RGB-D cameras.

ASUS Xtion Pro

The ASUS Xtion Pro is an RGB-D camera that uses depth-sensing technology. It is based
on structured light and has a depth range from 0.8 to 3.5 m, a 3D point cloud resolution of
640 × 480, an RGB image resolution of 1280 × 1024, a frame rate of 30 fps and a latency
of 1.5 frames. The depth error of this sensor decreases according to the increasing distance
between the sensor and the object. After calibrating the sensor, it achieves a depth accuracy
at best of 4.7 mm at a distance of 0.96 m and drops to 38.6mm at a distance of 3.6m [Karan,
2015].

Kinect V2

Kinect V2 is also an RGB-D camera from Microsoft based on time of flight technology. It
has a depth range of 0.5 to 4.5 m, 3D resolution of 512×424, RGB resolution of 1920×1080,
a frame rate of 30 fps and latency of 20 ms. Similar to the ASUS Xtion Pro, the depth error of
the Kinect V2 sensor decreases according to the distance between the sensor and the object.
It is evident that the distance measurements delivered by this sensor are much more precise
than the ASUS Xtion Pro. However, the Kinect V2 reconstruction error is approximately
20mm at a distance of 3m [Pagliari and Pinto, 2015].

4.3.2 Active binocular robot head

For the developed active binocular robot head, we employed relatively inexpensive and com-
mercially available components in order to allow us to capture high-quality 3D depth maps
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and dense point clouds for deformable object recognition [Sun et al., 2016a] and manipu-
lation [Sun et al., 2015a]. Hence, our robot head comprises two off-the-shelf Nikon DSLR
cameras (D5100) that capture 16 MegaPixels images (MP) every 400ms. Each camera is
mounted on two degrees of freedom pan and tilt platforms (PTU-D46). Cameras are rigidly
separated by a pre-defined baseline for optimal stereo capturing. We interface our active
robot head to an Intel Core i7-3930K computer with 32GB of RAM running Ubuntu and
ROS.

Fig. 4.1 depicts the robot head as mounted on our dual-arm robot. The active robot head’s
visual capabilities include: autonomous gaze control and visual search based on SIFT fea-
tures [Khan et al., 2016c]. To achieve real-time performance, we have implemented a GPU
variant of SIFT [Wu, 2007]. GPU-SIFT features are used for verging the cameras and for
tracking features in the scene for our dynamic calibration routine (Section 4.4.4). Likewise,
a GPU version of the stereo matcher [Cockshott et al., 2012] is used, to compute horizontal
and vertical disparities of two images captured by our robot head. Thus, our robot head can
produce 16MP depth maps and point clouds in 0.2 fps.

4.3.3 Robots

In this paper, an evaluation is provided for the developed calibration methods over two dif-
ferent robotic testbeds. The first testbed is a dual-arm industrial robot manufactured by
YASKAWA Motoman, as shown in Fig. 4.1. This robotic testbed comprises two MA1400
manipulators and a custom-made turntable. Each arm has 6 DOF and features 4 kg maximal
load weight, 1.4 meters of maximal reaching distance, and ±0.08 mm accuracy. The dual-
arm robot is powered and controlled by the DX100 controller. Our active binocular robot
head is rigidly mounted on the turntable and in between both robot arms.

The second testbed is the Rethink Baxter robot (Fig. 4.2). Baxter is a humanoid, anthro-
pomorphic robot with two seven degree-of-freedom arms and state-of-the-art sensing tech-
nologies. Its key purpose is to be able to operate continuously within humans environments
and run for longer periods of time. Baxter’s positional accuracy is ±5mm with a maximal
reaching distance of 1.2 meters.

4.4 Methodology

To obtain metrically accurate depth maps under dynamic camera motion, in this chapter, a
hybrid approach is adopted. That is, first rigid camera calibration routines are employed to
obtain intrinsic and extrinsic camera parameters and then the rigid Euclidean transformations
between the robot and calibration target is found, and for the robot head and robot (Section
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Figure 4.2: Rethink Baxter robot, holding the calibration target. In our experiments, the
RGBD camera (Kinect V2 in Fig.) was mounted at the top of the robot’s head.

4.4.2 and 4.4.3, respectively). Dynamic, online, calibration, in turn, consists of tracking
known 3D positions from stable interest point features observed from previous camera poses
(Section 4.4.4). Tracked features are then used to update camera extrinsic parameters ac-
cordingly.

4.4.1 Forward Kinematics Derivation

In order to find the geometric transformations to integrate the active binocular robot head
within the robot, firstly there is a need to deduce the forward kinematic model of the active
binocular robot head. Fig. 4.3 depicts the coordinates frames in the “home” position of the
robot head (H subscript in Fig.). We use Sharkey et. al. [Sharkey et al., 1997] notation
to express our forward kinematic model. Table 4.1 defines the coordinate frames. It is
assumed that the world reference frame, {W}, lies on the base, {B}, of the robot head, and
yCS0 = zCS0 = θC = 0. Sharkey et. al. [Sharkey et al., 1997] established that if the cameras
are targeting the same point X in {W} , then both open kinematic chains for each camera
will be closed around X . Therefore, the forward kinematics for the open kinematic chain
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Figure 4.3: Coordinate frames in the HOME position of the CLoPeMa robot head [Khan
et al., 2016a].

Table 4.1: Coordinate frames definition.
{World} World

{Base} Base

{Roll} Roll (Not considered)

{Pan} Pan (Not considered)

{CSR/L}
Camera separation (left/right)

Offsets: (0, ycs0, zcs0) ; and from {B}, it is given by + / - δ

{ER/L} Independently elevated (left/right)

{θ} Angle of rotation (θR; θP ; θEL; θER; θV L; θV R; θCL; and θCR

{VL/R}
Vergence (left/right)

Offsets w.r.t {E} : (0, yv0, zv0)

{CL/R} Cyclotorsion (left/right) (Not considered)

{OL/R}
Optical (left/right)

Offsets w.r.t {C} or {V} (for systems without {C} : (α, β, γ) and (u, v, w)

{T} Target object. For simplicity, both camera represent a single point in {W}
Offsets w.r.t zOL/OR : dTL and dTR
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from the base to the target position is found as:

BX = HW
T ×

[
0 0 0 1

]T
=

sδ + dTCos(θE)Sin(θV ) + zEoSin(θV )

dTSin(θE) + yE0

dTCos(θE)Cos(θV ) + zEoCos(θV )

1


(4.1)

where BX is the point w.r.t. the base of the robot head, HW
T is the transformation between

world and target reference frames, s indicates if the camera separation is for the left, s = 1,
or right, s = −1, camera. Thus, Equation 4.1 defines both forward kinematic chain for the
left and right camera.

In practice, the above forward kinematic chain is not closed as it is assumed that the tilt
reference frame is aligned to the optical image plane. In our robot head, it is required to
find the geometric transformation from the tilt reference frame to the principal point of the
camera’s image plane, ({E} and {C} as defined in Table 4.1, respectively). To find HE

C ,
first, it is needed, to carry out camera calibration to find the intrinsic geometry of the camera
and hence the principal point of the camera’s image plane as described on what follows.

4.4.2 Camera calibration

For camera calibration, OpenCV camera calibration method determines the distortion matrix
and afterward, the required camera matrix. The distortion matrix is composed of radial and
tangential distortion coefficients.

xcorrected = x(1 + k1r
2 + k2r

4 + k3r
6) (4.2)

ycorrected = y(1 + k1r
2 + k2r

4 + k3r
6) (4.3)

Where xcorrected and ycorrected are the corrected pixel values of the corresponding x and y
pixel values in the original image. When images are taken with lenses not perfectly parallel
to the imaging plane, tangential distortion occurs which can be corrected as follows:

xcorrected = x+ [2p1xy + p2(r
2 + 2x2)] (4.4)

ycorrected = y + [p1(r
2 + 2y2) + 2p2xy] (4.5)
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Solution to these equations (4.2, 4.3, 4.4 and 4.5) result in distortion matrix expressed as:

Distortioncoefficients = (k1 k2 p1 p2 k3) (4.6)

Finally camera matrix is given as:xy
w

 =

fx 0 cx

0 fy cy

0 0 1


XY
Z


Here, using homography coordinate system, w = Z. To find these intrinsic camera param-
eters, the cameras’ parameter spaces are sampled using different positions and orientations
of the OpenCV’s check-board target. The calibration target is attached to the robot gripper
and used the dual-arm robot to automate the target’s sampling process. The robot head is
converged to a fixed point in the robot’s space and the robot head remains fixed at this point
during camera calibration. Thus calibration for each camera in isolation is performed by
presenting the calibration target at different positions and orientations in order to sample the
camera parameter space adequately.

For each sampled target position, OpenCV returns the cameras’ pose w.r.t. the target. How-
ever, it is found that by optimizing these poses using sparse bundle adjustment2, it is possible
to obtain a more accurate estimation of the camera’s pose in comparison to the one obtained
through OpenCV’s stereo calibration routines. Hence, the stereo geometric relationship be-
tween cameras can be found by triangulating kinematic transformation across the calibration
target as:

HOL
OR

= HOL
T

(
HOR

T

)−1
(4.7)

4.4.3 Hand-Eye calibration

Typically for object manipulation tasks in robotics, an object recognition system determines
the position and orientation of the object with respect to the sensor. This location (position
and orientation) of the object is mapped from the sensor frame to the gripper of the robot,
to perform the manipulation task in hand. This mapping of position and orientation from
sensor frame to the gripper of the robot is coined as hand-eye calibration. For this purpose,
the classical method for solving the homogeneous transformation equation is employed.

AX = XB (4.8)
2https://sourceforge.net/projects/cvsba/
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Where the robot gripper’s motion A, and the corresponding camera motion is B, the two
motions are conjugated by the hand-eye transformation X . Decomposing the above equa-
tion into two equations: A matrix equation depending on rotation and a vector equation
depending both on rotation and translation:

RARX = RXRB (4.9)

and
(RA − I)tX = RXtB − tA (4.10)

where I is 3x3 identity matrix. Taking advantage of the particular algebraic and geometric
properties of rotation (orthogonal) matrices. Eq. 4.9 can be written as:

RA = RXRBR
T
X (4.11)

which is a similarity transformation since RX is an orthogonal matrix. Hence, matrices RA

and RB have the same eigenvalues. As we know property of a rotation matrix is that, it
has one of its eigenvalues equal to 1. Let nB be the eigenvector of RB associated with this
eigenvalue. By multiplying eq. 4.9 with nB we obtain:

RARXnB = RXRBnB = RXnB (4.12)

and it can be concluded that RXnB is equal to nA , the eigenvector of RA associated with the
unit eigenvalue:

nA = RXnB (4.13)

To conclude, solving for AX = XB is equivalent to solving for eq. 4.13 and for eq. 4.10.
According to [Tsai and Lenz, 1989], at least three positions are necessary in order to uniquely
determine X , i.e., RX and tX .

Specifically, to close the kinematic chain of the robot head and, consequently, the robot
integrating the robot head, it is required to find:

• The transformation between the robot gripper and the calibration target –HT
gripper; and,

• The transformation from tilt (E) and the camera frame (O) for the left and right camera
– HE

O .

To find the above transformations, Tsai’s hand-eye calibration is implemented [Tsai and
Lenz, 1989] as a ROS node. Thus, for HT

gripper, the hand-eye calibration routine is fed
with the left camera poses and the forward kinematic chain of the robot for each sampled
target position as described in Section 4.4.2. Note that the kinematic chain of the robot
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is defined using ROS Unified Robot Description Format (URDF) (http://wiki.ros.
org/urdf) and transformations are retrieved using TF (http://wiki.ros.org/tf).

By obtaining the pose of the camera with respect to the robot base for both the left and right
cameras, it is now possible to be able to estimate HE

O . The strategy adopted consists of
sampling random PTU pan and tilt positions while capturing images of the calibration target
that is fixed. For each camera movement, the forward kinematic chain is computed for each
camera using the kinematic model described in Section 4.4.1. Finally, an implementation
of ROS node is used for each camera in order to obtain the geometric transformation that
relates {E} and {C}.

It must be noted that each actuated pan and tilt unit (PTU) is treated separately during hand-
eye calibration. It is assumed that the world reference frame lies on the base of each PTU
of the robot head. If the cameras are targeting the same point in the world, then both open
kinematic chains for each camera will be closed around this world point.

Tsai’s hand-eye calibration algorithm provides us with an estimation of the kinematic trans-
formation from the base of the robot to the gripper holding the calibration target and from the
gripper to the calibration target. It is then possible to find the forward kinematic transforma-
tion from the robot’s world reference frame to the left camera in the robot head’s “HOME”
position by triangulating transformations. For the right camera, the transformation of the
stereo configuration is known; therefore, it can be concluded that the kinematic chains for
each camera will be closed around the robot base. The complete camera-hand eye calibration
routine is depicted in Fig. 4.4.

4.4.4 Dynamic tracking of extrinsic camera parameters

The estimated forward kinematic chain in the previous section holds true only when the
cameras do not change their gazing point and remain in the “HOME” position. This is
because the mechanical information of the PTUs is inaccurate and, in consequence, Tsai’s
hand-eye calibration routine finds an optimal solution for the sampled poses. Thus, in order
to maintain dynamic calibration, the Euclidean transformation is computed every time the
cameras move by using known visual information from previous camera positions. Hence,
it is necessary to update the transformation from the world reference frame of the robot to
the left camera and the left camera to the right camera. The latter is achieved by tracking
previously observed and stable 3D points in the scene.

Tracking consists of stereo triangulating SIFT features coordinates from each camera. 3D
projection of SIFT coordinates are expressed in terms of the world reference frame of the
robot – these features are then used to initialize the dynamic updating routine. A PnP algo-
rithm [Ferraz et al., 2014] is used on matched SIFT features between previous and current
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Figure 4.4: Flow diagram of the camera-hand eye calibration pipeline [Khan et al., 2016a].

observations in order to recover the Euclidean transformation from 3D coordinates to the left
camera. As outliers are likely to affect the performance of the PnP algorithm, SIFT feature
matches are filtered by adopting a RANSAC homography fitting strategy from the current
image to the previous image. Finally, the stereo relationship between the cameras is com-
puted by computing the missing link from the forward kinematic chains of each camera and
the camera projection matrices are updated accordingly for optimal 3D reconstruction.
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4.5 Experiments

In this section, details of experiments performed are presented.

4.5.1 Active binocular robot head

The ability of the system to maintain dynamic calibration is expressed in terms of the accu-
racy of 3D reconstruction. In this case, the cameras can be positioned in any angle range in
the tilt and pan axes (within the hardware range limits of the PTU); therefore, the extrinsic
properties of the stereo configuration need to be updated as explained in section 4.4.4. Fig.
4.5 shows a simplified example of the coordinate frames defined for describing the kinematic
structure of the robot head after hand-eye calibration. The objective of this experiment is to

Figure 4.5: Simplified coordinate frames of the stereo head. This consists of the world,
camera and calibration target coordinate systems.

test the accuracy of our binocular robot head, to recover and reconstruct an accurate point
cloud regardless of camera motion. For this purpose, an object model with known 3D struc-
ture is employed. The object model used in these experiments is the check-board calibration
target. This planar calibration target allows us to:

1. compare the reconstruction residuals between a calibrated stereo system and the up-
dated extrinsic camera parameters; and,

2. verify the accuracy of the reconstructed geometry by measuring the RMSE between
a known 3D (ground truth) measurement on the real object and the 3D reconstructed
model.
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To measure the accuracy of the system, the calibration target is sampled over 10 different
poses, by setting the robot head, and robot in a random position. The 3D Euclidean dis-
tance from one point of the calibration target to next in line is measured (Table 4.2). The
ground truth distance between squares on the checkboard is 24mm. The RMSE between
reconstructed points of the check-board while using the dynamic calibration parameters is
therefore compared with respect to the ground truth. As observed in Table 4.2, the recon-
struction accuracy for X , Y and Z is less than 0.3 mm. Therefore it can be stated that our
binocular robot head in combination with the proposed rigid and dynamic calibration is ca-
pable of reconstructing the scene within sub-millimeter accuracy. Likewise, Table 4.3 shows
the mean and standard deviation of RMSE (in millimetres) values in Table 4.2. From the
results, it can, therefore, be concluded that the system is able to recover the 3D geometry
with sub-millimeter accuracy – our dual-arm robot has an accuracy of ±0.08mm. Hence,
the estimated geometric transformations between robot head’s and robot’s frame are within
optimal limits for the required accuracy for practical manipulation tasks.

Table 4.2: Residual errors (in millimetres) between optimal stereo calibration and dynamic
calibration of the extrinsic camera parameters. 3D coordinates are expressed with respect to
the world reference frame of the robot head.

Pose # X Y Z
1 0.17 -1.03E-02 -3.02E-02
2 1.50E-02 6.37E-02 -4.68E-02
3 2.04E-02 5.14E-02 3.76E-02
4 0.67 -6.69E-02 -0.201
5 0.79 -8.60E-02 -0.111
6 7.82E-02 1.85E-02 -3.47E-02
7 0.42 -3.67E-02 -0.119
8 6.95E-02 1.16E-02 -6.94E-03
9 0.38 -3.22E-02 -6.90E-02

10 0.32 -2.60E-02 1.50E-02
Mean 0.29 -0.011 -0.056
1 Std 0.27 0.025 0.06

4.5.2 Xtion Pro and Kinect V2

From the above assertion, system’s ability to maintain dynamic calibration is expressed in
terms of the accuracy of the 3D reconstruction. For consistency and completeness of our
hand-eye calibration approach, the experiments discussed above for two RGB-D sensors i.e
ASUS Xtion Pro and Kinect V2, mounted on Baxter’s head are repeated. The aim is to test
the accuracy of these RGB-D sensors while being integrated within the kinematic’s chain of
the robot.
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Table 4.3: RMSE (in millimeters) between estimated 3D reconstructed points and ground
truth for the active binocular robot head.

Pose # Mean 1 Std
1 0.10 0.077
2 0.09 0.034
3 0.12 0.067
4 0.31 0.072
5 0.05 0.060
6 0.12 0.067
7 0.22 0.077
8 0.22 0.077
9 0.05 0.057
10 0.34 0.069

Overall 0.16 0.105

It must be noted that similar rigid calibration steps are followed as for our robot head
(Fig. 4.4). Hence, both RGBD sensors are calibrated by employing calibration meth-
ods for the Xtion PRO available at http://wiki.ros.org/camera_calibration;
and, for Kinect V2 from https://github.com/code-iai/iai_kinect2/tree/

master/kinect2_calibration. Then the geometric transformation from robot’s
gripper and calibration target is obtained using our hand-eye calibration routine. By hav-
ing knowledge of this transformation, then the RGBD camera’s position w.r.t. the robot’s
kinematic chain is computed. The accuracy of the RGBD cameras is shown in table 4.4 for
ASUS Xtion Pro and table 4.5 for Kinect V2.

From the errors reported in the table 4.4 and table 4.5, it can be observed that the system is
able to recover the 3D geometry with an overall RMSE of 12.4mm with ASUS Xtion Pro
sensor and 11.6mm with Kinect V2 sensor. As observed, the larger accuracy errors are due to
the intrinsic properties of the RGBD sensors (ref. Section 4.3.1) and the positional accuracy
of Baxter’s robot (ref. Section 4.3.3). Hence, it can be concluded that these RGBD cameras
are able to recover the 3D geometry of objects and scenes within millimeters accuracy. Note
that the latter statement depends on the positional accuracy of the robot test-bed and depth
accuracies of RGBD sensors.

4.6 Conclusion

This chapter described a calibration methodology to calibrate an active binocular robot head
system integrated within an industrial dual-arm Yakasawa robot and described a compar-
ative experiment on the integration of RGB cameras into the Rethink Baxter robot. This
chapter also presented a simple, yet effective solution to dynamically update cameras’ ex-



4.6. Conclusion 79

Table 4.4: RMSE (in millimetres) between estimated 3D reconstructed points and ground
truth for ASUS Xtion Pro in Baxter.

Pose # Mean 1 Std
1 13.63 9.35
2 14.04 5.18
3 10.55 5.24
4 11.85 6.15
5 14.63 6.66
6 14.88 5.85
7 15.54 8.56
8 8.83 4.40
9 9.38 3.63
10 11.59 6.40

Overall 12.49 6.14

Table 4.5: RMSE (in millimeters) between estimated 3D reconstructed points and ground
truth for Kinect V2 in Baxter.

Pose # Mean 1 Std
1 13.68 7.401
2 13.42 4.24
3 12.84 4.70
4 12.88 5.58
5 8.09 3.45
6 11.43 5.09
7 9.08 3.97
8 8.44 2.16
9 9.85 3.30
10 16.55 8.38

Overall 11.62 4.83

trinsic parameters in order to achieve geometric compatibility with respect to the robot’s
kinematic chain. By comparing the binocular robot head with consumer RGBD cameras,
it can be concluded that this robot head provides an off-the-shelf depth sensing solution
capable of reconstructing the observed 3D scene within sub-millimeter accuracy. Like-
wise, it is shown that the implemented calibration routines in this chapter can provide re-
liable results that allow reconstruction with relative 3D errors of less than 0.3 millime-
ters. An open-source ROS package that implements our calibration methods can be found
at https://github.com/gerac83/glasgow_calibration. A video demon-
stration of the calibration of our active binocular robot head can be accessed at https:
//youtu.be/9OYy9Q_bN2w.

Having solved the problem of camera-hand eye calibration by the proposed methodology in
this chapter, it is desirable for the visual architecture to extend its capability of interaction
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with the scene, by object manipulation. An initial attempt towards achieving this goal is the
subject of Chapter 5.
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Chapter 5

Interactive Perception based on
Gaussian Process Classification for
House-Hold objects Recognition and
Sorting

This chapter presents an interactive perception model for the task of category-wise objects

sorting, based on Gaussian Process (GP) classification that is capable of recognizing objects

categories from point cloud data. In this approach, Fast Point Feature Histogram (FPFH)

features are extracted from point clouds to describe the local 3D shape of objects, and a Bag-

of-Words coding method is used to obtain an object-level vocabulary representation. Multi-

class Gaussian Process classification is employed to provide a probable estimation of the

identity of the object and serves a key role in the interactive perception cycle - modeling the

perception confidence. This serves as reasoning information useful for the interaction stage,

that is responsible to invoke action skills on a need basis to confirm the identity of the object

with high confidence in multiple perception-action cycles. For this purpose, first, results are

obtained by simulation of input data on both SVM and GP based multi-class classifiers to

validate the recognition accuracy of the proposed perception model and suitability of GP

based classification. Results obtained during this investigation demonstrate that by using

a GP-based classifier, true positive classification rates are achieved of up to 80% for the

hand-crafted dataset of general household objects. Second, experiments are designed and

results are obtained by demonstrating the task of semi-autonomous objects sorting system to

show that the proposed GP based interactive sorting approach outperforms random sorting

by up to 30% when applied to scenes comprising configurations of household objects.
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5.1 Introduction

It is essential for service robots to have the ability to recognize objects in their immediate
vicinity when working in dynamically evolving human environments. Ideally, these robots
should be capable of detecting, recognizing and classifying objects within their environment,
and then interacting with these objects without the need for supervision. In this chapter, an
interactive perception model is presented to prove its effectiveness by demonstrating with
an application of sorting everyday household objects into their respective categories through
direct visual observation (typically when objects are not occluded), and then by means of
active object manipulation where objects are occluded or ”difficult to recognise”. The pro-
posed visual architecture also termed as GP based Interactive Perception Model (GP-IPM)
does not require prior knowledge about the environment or scene. This visually assisted ob-
jects sorting system is capable of segmenting a set of household objects lying directly on the
robot’s workspace tabletop, and categorizing these objects into their respective object classes
(e.g. juices bottles, mugs, etc.). The system has been pre-trained on a subset of these object
instances, while a proportion of the objects investigated have not been used to pre-train the
system. We revisit the high-level model of the proposed visual architecture from Chapter 1.

Figure 5.1: Gaussian Process Classification based Interactive Perception Model (GP-IPM).

The proposed visual architecture is portable, invariant to 6 Degree Of Freedom (DOF) pose
changes and operates close to real-time. The pipeline consists of the following stages: object
segmentation, visual representation, classification, semantic visualization, and finally a hu-
man operator, that is responsible for removing the object from the scene following its correct
classification by the system. For the interactive perception model, it is pivotal to obtain a
measure of confidence for a class label in the proposed research, which also serves as the de-
cision strategy towards the interaction stage. In terms of classification accuracy, a Gaussian



5.2. Motivation and objectives 83

Process-based multi-class classifier has been cross-validated by comparing the classification
results with an SVM multi-class classifier for a similar dataset.
The operating scenario adopted comprises a visual identification of objects lying directly
on the table, such as a bottle(s) or mug(s), potentially partially occluded. After one shot
recognition, a list of identified and recognized objects is maintained along with their respec-
tive probabilistic confidences. Based on this scenario, the proposed visual architecture is
validated by conducting experiments, to sort household objects, on the basis of the class
predictions obtained from the GP based multi-class classifier with the highest probability.
By opting this strategy, the scene becomes simpler after each recognized object with high
confidence is removed. The visual architecture proposed in this chapter claims to make the
following contributions to the state-of-the-art in visually guided object sorting system:

1. the first example of research to adapt non-parametric multi-class probabilistic clas-
sification (via Gaussian Processes) to the household object recognition problem by
performing household objects sorting task.

2. a demonstration of the proposed GP-IPM approach applied to a semi-autonomous sort-
ing task yields substantially improved performance over non-interactive alternatives.

This chapter is organized as follows: Section 5.2 presents motivation and objectives of the in-
vestigation. Section 5.3 presents the proposed GP classification based interactive perception
model. Finally, Section 5.4 and Section 5.5 describe the preliminary experimental validation
of the system and concluding remarks of this chapter, respectively.

5.2 Motivation and objectives

In an ideal scenario, robots should be capable of detecting, recognizing and classifying ob-
jects within their environment, and then depending on the task at hand, interacting with these
objects without the need for supervision. When understanding challenging scenes, conven-
tional single shot recognition either fails or have low success rates. This makes the task of
object manipulation for robots difficult.

In [Gibson, 1966], the authors argued that physical interaction further augments perceptual
processing beyond what it can be achieved by invoking deliberate pose changes. Building
on this premise, this chapter argues and demonstrates that the interaction with the scene
and objects can significantly improve the success rate of detecting object classes in front
of a service robot. This is because interactive perception allows the perception-behavior to
acquire more information about the object(s) that is present in the environment. Furthermore,
It has the potential to reduce the complexity of the observed scene, in this case, encoded
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within a heuristic that directs the robot to grasp an object under investigation and separate
it from other objects prior to making an attempt at re-classifying it. This, in turn, requires,
development of a visual model for scene understanding in the context of robotic interactive
perception, that is capable of providing information in addition to an object category, i.e
prediction confidence. Such knowledge extends the capability of a visual architecture for
accurate scene understanding by interaction with the scene, and hence, enabling it to reason
over a given object class, i.e to accept it as a true class or investigate further before it is
confirmed as a true class. This chapter describes an overall visual architecture for scene
understanding by interaction for an autonomous system. Specifically, it describes the details
of the perception stage of the proposed visual architecture for scene understanding by robotic
interactive perception and demonstrates its application by carrying out the task of the semi-
autonomous objects sorting system.

5.3 Methodology

This section describes the proposed approach in detail which consists of interleaving five
stages:

• Segmentation of an input point cloud captured for a scene containing household ob-
jects of different shape, size, color, and texture, into individual objects.

• Visual representation of each segmented object is created.

• Category classification based on Gaussian Process multi-class classifier is carried out
to provide the class label for each object along with respective prediction confidence.

• A semantic visualization is used for meaningful visualization of the scene, where ob-
jects are color-coded according to their respective categories.

• For this initial attempt at performing the task of objects sorting, a human operator is
needed to pick the object from the tabletop and place it into a bin designated for the
object’s class.

The proposed visual system for category-based objects sorting is implemented, and cross-
validation is performed by means of simulating GP based classification against SVM based
classification for classification accuracy. Furthermore, a demonstration is carried out on two
dual-arm industrial robots, 1. Yaskawa Motoman industrial robot, that is equipped with
stereo cameras, a pair of Xtion pro cameras and tactile sensing gripper and a smart grasping
system, and 2. Baxter robot. The proposed system utilizes the depth images from one of
the Xtion pro cameras mounted on each arm of the robot which serves as an input and
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triggers the rest of the pipeline of the system. The visual system pins out the category of
the objects lying on the table directly, and the system recognizes the category of the object
and in addition, produces a color-coded semantic representation of the scene contents. For
implementation purpose, the visual system is implemented using the Point Cloud Library
(PCL) 1 and integrated into ROS. In the following sections, the components of the pipeline
are described briefly.

5.3.1 Segmentation

An input point cloud is first processed for points within a defined range by a pass-through
filter 2. This filter enables the visual system to define a range in order to disregard the points
that are not of interest. This allows the proposed visual system to process only the 3D
points of the scene which belong to objects on the table. Initially, segmentation is carried
out by detecting the table plane solely from the depth information. The operating table is
segmented by using Random Consensus Sampling (RANSAC) [Fischler and Bolles, 1981]
which estimates all the points in a point cloud for a model plane. Afterward, objects lying
on the table are segmented by computing a convex hull from the plane coefficients, and it
extrudes a certain height to create a prism, and give back all points that are lying inside. This
process of segmentation for an example scene (Fig. 5.4) is shown in Figures 5.3, 5.5 and 5.6.

5.3.2 Visual representation

Local statistical 3D shape features are extracted for each of the object obtained from seg-
mentation. These features are then encoded to create a dictionary containing codes for all
the trained objects. For each extracted object, a visual representation is acquired by means of
the Bag-Of-Words model. For low-level features, local 3D curvature features are computed
by means of the Fast Point Feature Histogram (FPFH) [Rusu et al., 2009a]. For each query
point, pq and its neighbors, a set of tuples α, φ, θ are computed that results in Simplified Point
Feature Histograms (SPFH). Subsequently, for each point, its k neighbors are re-evaluated,
and the neighboring SPFH features are used to weight the final histogram pq (called FPFH)
as follows:

FPFH(Pq) = SPFH(Pq)
1
k

∑k
i=1

1
wk
.SPFH(Pk)

where the weight ωk represents a distance between the query point pq and a neighbor point
pk in some given metric space, thus scoring the (pq, pk) pair, but could just as well be selected

1www.pointclouds.org
2http://pointclouds.org/documentation/tutorials/passthrough.php
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Figure 5.2: An RGB image of an example scene.

Figure 5.3: Point Cloud of the above example scene.

as a different measure if necessary. To understand the importance of this weighting scheme,
the figure below presents the influence region diagram for a k-neighborhood set centered at
pq.
At the training stage, after features are extracted for all the views and for all the objects,
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Figure 5.4: Result of pass-through filter of an example scene.

Figure 5.5: Point Cloud of the segmented plane of the above example scene.

we perform K-means clustering over all the vectors to obtain feature codes from the centers
of the computed clusters. We set 256 K clusters as the size of our codebook. A putative
visual representation for each object is then obtained by comparing all the features in the
codebook generated by finding the minimum Euclidean distance, max pooling, and finally l2
normalization, resulting in 256 dimensional long vectors for each pose of an object. At the
test phase, features extracted for all the objects are encoded using the codebook generated
and fed into the classifier.
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Figure 5.6: Point Cloud of the segmented objects of the above example scene.

5.3.3 Classification

Since SVM-like classifiers cannot generate true probabilistic confidence through one-vs-
one or one-vs-all voting for the multi-class classification problem, in order to model the
distribution of probabilistic confidence among all object categories, multi-class Gaussian
Process Classification [Rasmussen] is employed.

In this approach, RBF kernel is used as the kernel function, the posterior of the Gaussian
Process is estimated by straightforward Laplace approximation. The RBF kernel we use has
two hyper-parameters:

kernel(x1, x2) = α2 exp
− 1

2
(x1−x2)T diag(

1
β2

,..., 1
β2

)(x1−x2), (5.1)

where x1 and x2 are two examples, and α and β are the two hyper-parameters controlling
the scale and shape of the exponential function. These hyper-parameters are optimized by
the log marginal likelihood maximization. For completeness, we briefly present the classi-
fication based on the Gaussian process to model the distribution of predictive probabilities
among all object categories. A more detailed description can be found in previous work Sun
et al. [2016c]. The advantages of kernel-based approaches (as found in SVMs) with a prin-
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(a) The graph model of basic GP.

(b) The graph model of GP regression and binary classification.

Figure 5.7: The difference between basic binary GP model and the multi-class classification
model. In these Figures, x refers to examples, y refers to labels and f refers to latent variables.
In (b), fij refers to f j

i , which is the jth latent variable of the ith example.

cipled probabilistic framework are incorporated by using multi-class Gaussian process (GP)
classifiers. Unlike SVM, the GP is probabilistic by default and can provide with the probabil-
ity distributions across all objects categories. A multi-class GP classification is used, with the
standard Laplace approximation to estimate the posterior and covariance hyper-parameters
optimized by maximizing the log marginal likelihood. This approach closely follows that
described in [Rasmussen] where their hyper-parameter optimization is extended from the bi-
nary case to the multi-class case by one-vs-all or one-vs-one voting using binary classifiers,
the class-conditional distributions within multi-classification problem are unlikely to be well-
modeled. Therefore, the multi-class GP classification 3 with hyper-parameter optimisation is
integrated into the proposed visual system.

The rules for the symbol usage are illustrated here. Upper-case denotes matrices and lower-
case denote vectors. The symbols with subscript and superscript ‘*’ refer to testing examples.
Other subscripts and superscripts refer to vector and matrix indices.

We start with a short introduction of GP. GP is a non-parametric model; a collection of latent
variables (numeric values). For a basic GP model problem, as shown in Fig. 5.7(a), each
example has a latent variable. Given the training examples X and testing example x∗ and

3https://kevinlisun@bitbucket.org/kevinlisun/multi-class-gpc.git
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their latent variables f and f∗. For the regression problem, the latent variable refers to the
mean of the target, and for the classification (binary case) problem it can be squeezed into
a sigmoid function to get probabilities of categories. In the regression problem, in order to
predict a testing example, the latent value of the testing example can be estimated by the
conditional probability of f∗ given the joint distribution on training and testing examples
f∗|X, x∗, f ; these can be straightforwardly calculated since the joint distribution of f and f∗
is f

f∗
∼ N (0, [KXX

Kx∗X

KXx∗
Kx∗x∗

]). The GP classification problem is introduced below.

In the classification problem, in order to predict a test example, the conditional probability
p(f∗|X, y, x∗) need to be solved, in which the key problem is to estimate the posterior of
latent variables given on training examples and labels p(f |X, y). For the multi-class classifi-
cation problem, as shown in Fig. 5.7(b), each example will have C latent variables respond-
ing to C categories, and they will go to soft-max to generate the prediction probabilities. We
detail the multi-class GP classification below.

For a classification problem, the GP classifier fits a real-valued latent variable to each obser-
vation. Jointly, the set of latent variables are given a GP prior (which typically enforces a
degree of smoothness for the latent function over the input space). The classification proba-
bilities are obtained by pushing the real values through a squashing function (e.g. the sigmoid
function, soft-max function). The training phase consists of obtaining a posterior density
over the latent function p(f |X, y) (y is the training labels). Prediction consists of using this
posterior to perform a regression to give the latent values at testing points, which are then
squashed to provide predictive probabilities. To extend the GP to multi-class classification,
one latent function is fitted for each of the C classes. The classification probabilities are ob-
tained by squeezing the C function values for each observation through a soft-max function.
To make predictions for a test point, C regressions are performed (one with each of the latent
functions) and the resulting probabilities are pushed through the soft-max. The multi-class
GP classification is detailed as follows.

In particular, givenN training examples (with {n1, n2, ..., nc} examples in each class,
∑

i ni =

N ), X = {x11, ..., x1n1
, x21, ..., x

2
n2
, ..., xC1 , ..., x

C
nc}, and corresponding labels are denoted y =

{y11, ..., y1N , y21, ..., y2N , ..., yC1 , ..., yCN} where yci = 1 if the ith example belongs to the cth
class. This vector is therefore of length Cn = C × N . In the description of this work, fol-
lowing [Rasmussen] the C sets of latent variables (each of length N ) are concatenated into
one Cn-length vector, f .

Ultimately, the prediction of the class of an unknown instance x∗ needs to be solved as
([Rasmussen]):

P (yc∗ = 1|x∗, X, y) =

∫∫
P (yc∗ = 1|f∗)p(f∗|f, x∗, X)p(f |X, y) df∗ df. (5.2)
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Now each of the terms on the right hand side is analysed in turn. The first term is the standard
soft-max function:

P (yc∗ = 1|f∗) =
exp(f c

∗)∑
j exp(f j

∗ )
, (5.3)

where f∗ is used to denote the C latent variables for the unknown instance. The second term
in Eq. 5.2 is a standard noise-free GP regression. Defining the GP prior of this work with
a zero mean function and kernel matrix K: f |X ∼ N (0, KXX), and defining kx∗X as the
1 × N vector of the kernel function evaluated between the test point and all of the training
points, and kx∗x∗ as the kernel scalar evaluated at the test point, this is:

f∗|x∗, X, f ∼ N (kx∗XK
−1
XXf, Kx∗x∗ − kx∗XK

−1
XXkXx∗). (5.4)

In multi-class classification of GP, the covariance matrix KXX is a Cn×Cn diagonal matrix
consisting of C of n× n covariance matrices {k1XX , · · · , kCXX} on the diagonal correspond-
ing to C classes. Similarly, Kx∗X and KXx∗ are also diagonal matrices. The final term in
Eq. 5.2 is the posterior density over the latent function for the training examples. In classifi-
cation problems, this is not available in closed form, and the popular Laplace approximation
[Williams and Barber, 1998] is used. This approximates the posterior with a multiple-variate
Gaussian (in this case, a Cn dimensional Gaussian) centred at the maximum of the posterior
and with covariance equal to the negative inverse of the Hessian matrix at the maximum.

p(f |X, y) ≈ q(f |X, y) = N (f̂ ,−(55 log p(f |X, y)|f=f̂ )−1), (5.5)

where f̂ is the value of f that maximises the posterior and 5 5 log p(f |X, y)|f=f̂ is the
Hessian of the log posterior distribution evaluated at the maximum.

Given the three terms in Eq. 5.2, it is possible to evaluate the integrals to obtain the required
predictive probabilities. The conditional probability of f∗, given X, y, x∗, is:

p(f∗|X, y, x∗) =

∫
p(f∗|X, x∗, f)q(f |X, y)df, (5.6)

where q(f |X, y) is the Laplace approximation. As both p(f∗|X, x∗, f) and q(f |X, y) are
Gaussian distributions (Eq. 5.4 and Eq. 5.5), it is possible to analytically evaluate this
integral. The mean of the resulting Gaussian µ = {µ1, · · · , µC} in which each µc can be
calculated by:

µc = (kcx∗X)TK−1c f̂ c = (kcx∗X)T (yc − π̂c) (5.7)
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Then, the covariance matrix of the resulting Gaussian is:

Σ = diag(kx∗x∗)−QT
∗ (K +W−1)−1Q∗, (5.8)

where W is the matrix containing second order partial derivatives of log p(yci |fi). Similar to
KXX , Q is the diagonal matrix diag{k1x∗X , ..., k

C
x∗X}, and kcx∗X is the vector of covariance

between the testing example and training examples with respect to the cth category.

Because of the form of the softmax function, evaluating the integral over f∗ is not analytically
tractable but is easily approximated via sampling from the predictive distribution over f∗. In
particular, if S samples of the C latent variables are drawn, and f cs

∗ donates sth sample, the
predictive probability can be calculated as:

P (yc∗ = 1|X, x∗, f) ≈ 1

S

∑
s=1...S

exp(f cs
∗ )∑

j exp(f js
∗ )
. (5.9)

5.3.4 Hyper-Parameters optimisation

The square exponential kernel function (SEiso) is used:

kSEiso(x1, x2) = α2 exp
− 1

2
(x1−x2)T diag(

1
β2

,..., 1
β2

)(x1−x2), (5.10)

where α and β are hyper-parameters of the kernel function. Sensible choice of hyper-
parameters is crucial to getting good performance. Following [Rasmussen], the kernel pa-
rameters are optimised via maximising the Laplace approximation to the marginal likelihood
(this could also be achieved by a cross-validation procedure). Broyden-Fletcher-Goldfarb-
Shanno [Shanno, 1985] algorithm (BFGS) is employed for the optimisation. Since the BFGS
is a derivative based optimisation method, the derivatives of the likelihood are necessary to
be computed.

A pre-trained Gaussian process based classifier is used to work on the resultant encoded
visual representation for each object from the stage above in order to predict the category of
the object along with probability confidences. These confidences are then used to make a
decision of the identity of the object. The visual system described in this chapter has been
tested with two multi-class classifiers, Support Vector Machines and Multi-class Gaussian
Process models.

5.3.5 Semantic visualization

This provides a semantic representation of the results from the classifier by color coding each
object according to their respective categories. A color-coded visual representation is used
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for objects via the RVIZ tool available in ROS (http://wiki.ros.org/rviz), where each color
corresponds to a category and probabilities produced by the classification step are used to
place the object on the operating table in their respective bins in order of higher probabilistic
confidences.

5.3.6 Human operator

After one shot recognition of all the objects present in the scene, the multi-class GP based
classification, results in class label along with respective probabilistic confidences. The rec-
ognized objects are needed to be removed from the table top. Each object is removed by
a human operator from the table and placed into its respective bin by observing the color-
coded semantic representation that describes each object’s label along with confidence.
A pseudo-code Algorithm of the proposed method is shown in Algorithm 1 [Khan et al.,
2016b].

5.4 Experiments

These experiments are designed to demonstrate the validity of the proposed Gaussian Process-
based interactive perception model, capable of improving the recognition rate with the aid of
interaction with objects by demonstrating the task of semi-autonomous object sorting. These
experiments have been carried out for five household object categories i.e Juice Bottles, Milk
Packs, Bowls, Mugs and Juice Boxes. Scenes have been arranged based on combinations of
known and unknown object instances, of 5 different object classes. Objects were placed in
arbitrary poses and locations as shown in Fig. 5.8, which is a semantic visualization of the
recognition and classification performed by the perception stage. In Fig. 5.8, the red color is
for juice bottles, green for milk boxes and yellow for mugs. The training dataset consists of
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the above 5 object classes – this dataset is created by capturing point clouds of each object at
angular intervals of approximately 20 degrees. In this section, the proposed GP-based per-

Figure 5.8: Robot recognising object categories according to colours [Khan et al., 2016b].

ception model is evaluated for objects sorting into their respective bins. Note that the objects
are placed directly on top of the table. An input point cloud is obtained from the ASUS Xtion
pro camera from a single view. The point cloud is subsequently passed on to the pipeline.

As stated before, these experiments consisted of evaluating simulation results on an SVM
multi-class classifier and a GP-based classifier as shown in Fig. 5.10 and Fig. 5.9, respec-
tively. These Figures present confusion matrices which are tables often used to describe
the performance of a classification model (or ”classifier”) on a set of test data for which the
true values are known. The diagonal of each confusion matrix, colored in green, shows the
true positives and the bottom row gives the recognition rate for each category. Figure 5.11
shows the prediction confidences, where each vertical line corresponds to an object category
i.e red, blue, black, green, yellow, respectively, different color marks outside its group, refer
to incorrect predictions.

For the SVM multi-class classifier, an average recognition rate of 75% and for GP based
multi-class classifier, 79% are obtained, by calculating (true positives + true negatives)/total
number of samples. It can be noticed that the bowl’s category has the lowest recognition rate
which in turns affects the overall recognition rate. This is due to the bowl’s intrinsic shape
as it contains less visual information as well as consisting of a highly reflective surface, to
which depth sensing is very sensitive (i.e. limitation of the ASUS Xtion pro camera).

To demonstrate the viability of the proposed GP based interactive perception model for im-
proving the recognition rate towards the task of object sorting, two scenes have been con-
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Figure 5.9: Confusion matrix shown obtained from multi-class gp classifier for 5 object
categories.

structed; (1) without any occlusion and simple objects, and (2) with occlusion among objects
and challenging objects such as bowls. Also, for each scene, two types of sorting operations
are investigated. First random sorting is considered, where the output class of the classifier
along with the highest object is first removed and placed into the respective bin. Second,
by using GP based interactive perception model, the object is removed from the table based
on confidence probability. Fig. 5.8 shows the output of the proposed visual system with the
help of colors representing categories.

After all the objects have successfully been recognized and classified, objects were manually
placed into their respective bin. Table 5.1 shows the success rate for the objects placed into
the respective bin guided by the proposed GP-IPM. For complex scenes, containing objects
having challenging shapes and suffering from occlusion, the proposed method outperforms
random sorting by a factor of 30%.
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Figure 5.10: Confusion matrix shown obtained from multi-class svm classifier.

Table 5.1: Table showing true positives for Random objects sorting and GP-IPM based ob-
jects sorting. [Khan et al., 2016b]

Scene Complexity Method of Sorting True Positives Total

Juice Bottles Milk Cartons Bowls Mugs Juice Boxes

Uncluttered Random 5/5 1/1 - 4/4 - 9/9

GP-IPM 5/5 1/1 - 4/4 - 9/9

Cluttered Random 2/4 1/2 2/3 2/3 1/2 8/14

57%

GP-IPM 4/4 2/2 2/3 3/3 1/2 12/14

86%

5.5 Conclusion

This chapter has described an interactive perception model for object sorting system, incor-
porating depth sensing, 3D feature extraction, object representation, and classification. The
proposed visual interactive perception system achieves real-time object category identifica-
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Figure 5.11: The classification performance under different confidences for 5 object cat-
egories. In this Fig., the confidence of the predictions are shown, in which each column
corresponds to a object category. The correct prediction should be red, blue, black, green
and yellow, respectively.

tion with associated perception confidence estimates, which serves to establish whether an
observation is sufficient to make a classification or to determine if it is necessary to interact
with the object to achieve a sufficiently reliable classification of the instance contained in the
observation.

A dataset of household objects used in the evaluation during this investigation is established,
and the experimental results show that the proposed perception pipeline achieves 80% clas-
sification accuracy for 5 object categories. As the autonomous robot manipulation phase is
presented in the following chapter, this chapter focused on the visual perception components
of the overall proposed system and presented sorting results obtained using a human operator
to manipulate the objects. From these semi-autonomous sorting experiments, the proposed
Gaussian Process-based interactive sorting system outperformed random sorting by up to
30% in terms of sorting accuracy. It has also been observed that the proposed interactive
perception strategy not only mitigates segmentation failures prevalent in single-shot sorting,
but it also increased perception performance in terms of recognition rate, thereby facilitating
the sorting decision.

The proposed approach can be extended by integrating the perception model with an interac-
tion model, to develop an autonomous visual architecture for scene understanding by robotic
interactive perception. Where the task of objects sorting, demonstrated in this chapter by
a semi-autonomous interactive perception model based on GP based classifier, can achieve
complete autonomy. This is detailed in Chapter 6.
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Chapter 6

Objects Manipulation - Interactive
Perception

This chapter of the thesis proposes a fully autonomous integrated visual architecture for

scene understanding by robotic interactive perception. Building on the premises of the last

chapter, a modified perception stage is described. Following, the perception stage, an in-

teraction stage is discussed in detail that performs a set of ad-hoc actions relying on the

information received from the perception stage. More specifically, the interaction stage sim-

ply reasons over the information (class label and associated probabilistic confidence score)

received from the perception stage to chose one of the following two actions. 1) An ob-

ject class has been identified with high confidence, requiring removal of the object from the

scene and place it in the designated basket/bin for that particular class. 2) An object class

has been identified with less probabilistic confidence, since from observation and inspired

from human behaviour of inspecting doubtful objects, an action is chosen to carry out more

investigation for the object - confirm the object identity by taking more images from different

views in isolation and perform operations of perception stage for those views, hence multiple

perception-action/interaction cycles take place. From an application perspective, the task of

autonomous category based objects sorting system is performed and the experimental design

for the task is described in detail.

6.1 Introduction

In this Chapter, the benefits of perception by adding interaction into it are explored to sim-
plify and improve the accuracy of understanding a real-world challenging scene made of
household objects by an autonomous system. As stated before, essentially service robots
need to have the ability to recognize objects in their immediate vicinity when working in
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dynamically evolving human environments. Ideally, these robots should be capable of de-
tecting and classifying objects within their environment and then interacting with these ob-
jects without the need for human supervision to achieve the task at hand. Traditional vision
techniques in uncontrolled lighting and complex environments tend to yield low accuracy
in understanding a scene without interaction or feedback. When understanding challenging
scenes, single shot recognition fails or have low success rates without manipulating objects.
The authors in [Gibson, 1966], argue that physical interaction further augments perceptual
processing beyond what it can be achieved by invoking deliberate pose changes. This is be-
cause interactive perception allows the perception module to acquire more information about
the object(s) in the environment.
Based on the proposed approach, it is also argued that interaction with the scene and objects
can significantly improve the success rate while detecting object classes in front of a service
robot. It also has the potential to reduce the complexity of the observed scene, in this case,
encoded within a heuristic that directs the robot to grasp an object under investigation, sep-
arate it from other objects prior to investigating it further. Therefore, a better understanding
of a scene i.e improving classification accuracy is achieved by robotic interactive perception.
For the validation of the proposed autonomous visual architecture by robotic interactive per-
ception, the proposed interactive perception pipeline demonstrated the task of sorting every-
day household objects into bins, assigned to these objects according to their category. The
proposed interactive perception pipeline does not require prior knowledge about the environ-
ment or scene, and is capable of recognizing objects in the scene by means of active object
manipulation. Fig. 6.1 illustrated the proposed visual architecture. To recap from the pre-
vious chapter, the visually assisted object sorting system is capable of segmenting a set of
household objects lying directly on the robot’s workspace table and performs categorizing
those objects into their respective object classes (fie.g. juice bottles, mugs, etc.). The sys-
tem has been pre-trained on a subset of these object instances, while the other subset of the
objects investigated have not been used to pre-train the system. The perception model of
the proposed autonomous interactive perception system consists of the same capabilities as
to the one presented in Chapter 5, i.e portable, invariant to 6 DOF object pose changes and
operates in real-time. The perception stage of the interactive perception pipeline comprises
of a modified object segmentation module, visual representation, classification, semantic vi-
sualization and autonomous robotic manipulation. For completeness and comparison, the
perception stage of the interactive perception pipeline, together with a multi-class Gaussian
process classifier, has been cross-validated by comparing the classification results obtained
using an SVM multi-class classifier to ground truth. The reason for the choice of choosing
GP based multi-class classifier over SVM like classifier is not only that GP based classifier
gives equal or better classification accuracy but also, provides with classification confidence
which plays a key role in the proposed architecture. It is also claimed that for the first time
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Figure 6.1: The proposed visual architecture consisting of perception stage and interaction
stage, working on the principle of multiple perception-action cycles for scene understanding
tasks.

that interactive perception is based on GP classification for rigid objects.
An interaction stage follows the perception stage in the proposed visual perception architec-
ture that orchestrates the set of object manipulation skills available. Two simple manipulation
skills/actions are available for the interaction stage to chose from after receiving the required
information from the perception stage: 1) An object class has been identified with high confi-
dence, so the action of pick an object from the tabtop and place it in the designated basket/bin
for that particular class. 2) An object class has been identified with less probabilistic confi-
dence, since from observation and inspired from the human behavior of inspecting doubtful
objects, an action is chosen to investigate that object further. This means, to confirm the
object identity by taking more images from different views in isolation and perception stage
performs the visual operation for those views, hence multiple perception-action/interaction
cycles take place.
The operating scenario adopted in this thesis consists of completing the task of sorting and
removing objects from a table-top into the object’s designated bins according to their respec-
tive classes. After receiving point cloud from the ASUS xtion pro camera, of the scene, one
shot recognition takes place. A list of objects identified along with their respective classi-
fication confidences is maintained, such as a bottle or juice box, which can potentially be
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partially occluded, have been influenced by varying lighting, background. Based on the clas-
sification label along with the object’s corresponding classification values (i.e. confidence
scores), objects are picked-and-placed into their respective bins. For objects with a classifi-
cation confidence score lower than a pre-defined threshold, this object is actively explored
by manipulating and interacting with the object. Based on the above scenario, this chapter
presents results obtained from experiments where the object are sorted by the probabilities
of the class predictions obtained from the GP based multi-class classifier.
Organization of the rest of the chapter is followed as Section 6.2 presents motivation and
objectives for the investigation of the proposed visual perception architecture for scene un-
derstanding through robotic interaction. Section 6.3, briefly describes the hardware and soft-
ware facilities used during the development of the proposed approach. Section 6.4 details
the proposed methodology opted for developing the proposed visual perception architecture
featuring an interaction stage as an addition and extension to the proposed visual perception
stage presented in Chapter 5. Section 6.5 discusses the experimental approach taken to per-
form the task of objects sorting, using the proposed visual perception architecture involving
interaction with objects in the scene. Finally, Section 6.6 concludes the chapter with remarks
on the effectiveness and advancement to the state-of-the-art by the proposed architecture.

6.2 The Motivation and objectives

The investigation reported in Chapter 5 provides a perception stage that is viable for develop-
ing an autonomous visual architecture for scene understanding involving robotic interaction
and providing the feedback to the perception stage. The main objective of this chapter is to
study the effect of an autonomous system interacting with the scene while carrying out the
task of scene understanding. Specifically, to answer the question of, what objects are in the
scene, and if it struggles to identify an object, what it can do with it that will improve the
object recognition following the principle of multiple perception-action cycles without the
involvement of human.

6.3 Hardware and software details

This section provides details of different hardware and software used during the development
of the proposed interactive perception system.
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6.3.1 Hardware

This sub-section describes the hardware details of the different vision systems, robots, and
workstation used and tested for the proposed visual perception architecture for scene under-
standing.

Vision systems

Since the proposed perception stage pipeline utilizes depth image as input, it requires a vision
system capable of producing quality point clouds. Active vision system reported in Chapter
3 provides low-cost good quality RGB images and depth images for non-rigid objects such as
clothes but, quality of the depth images produced for rigid objects is poor and is not suitable
for the purpose of the proposed approach. RGBD cameras were the next in line to be tested.
Cameras such as ASUS Xtion Pro, Mircosoft Kinect Xbox One, Intel ZR300, ZED stereo
camera and ASUS Xtion 2 have been tested for generating point clouds of the scenes. ASUS
Xtion 2 produced the best quality point cloud, however, it suffers from firmware issues and
is not reliable. ASUS Xtion Pro and Kinect Xbox One, generate decent quality point clouds
and both have been used.

Dual arm robots

The proposed approach has been employed both on Baxter robot (shown in Fig. 6.3 with
vision system of Mircosoft Kinect Xbox One and on Yaskawa Motoman robot with ASUS
Xtion pro. To carry out manipulation tasks precisely i.e estimating object’s location with
precision, and equipped with the smart grasping system as shown in Fig. 6.10 as one of the
end effectors, Yaskawa robot has been the focus in designing the experiments to validate the
proposed visual perception architecture.

Workstation

Workstation connecting with Yaskawa robot has the following specifications: Processor:
Intel Core i7-7700K 4.2 GHz QuadCore 8MB Cache Processor.
Memory: Corsair CMK32GX4M2A2133C13 Vengeance LPX 32 GB (2 x 16 GB) DDR4
2133 MHz C13 XMP 2.0.
Graphics Card: Gigabyte GeForce GTX 1080 Ti NVIDIA Founders Edition 11 GB GDDR5
PCI-Express 3.0 352 Bit Graphics Card.
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Figure 6.2: Smart Grasping System, installed on Yakawa Motoman Robot, making an at-
tempt to pick an object in the scene.

6.3.2 Software

Visual perception architecture proposed in this chapter is developed using Robot Operating
system (ROS), Point Cloud Library (PCL) and MATLAB with ROS toolbox and can be
accessed at the following URL: https://github.com/gerac83/isee_aamir.



6.4. Methodology 104

Figure 6.3: Visual perception architecture, investigating an object in the scene, employed on
Baxter robot.

6.4 Methodology

The approach for implementing autonomous object sorting system based on interactive per-
ception consists of two main stages: a perception stage and an interaction stage working
in a loop until the given task in hand is accomplished i.e objects sorting according to their
categories in this thesis. Where the output of the perception stage is fed into the interac-
tion stage, and vice versa to accomplish the task of sorting, household objects placed on a
table-top following perception-action cycles. The perception stage is responsible for object
detection/segmentation and object recognition, and the interaction stage verifies object class
labels by interacting with the object and picking the object from the table-top and drop-
ping it in the bin designated for each class. Before the details of each of the two stages are
given, it is worth revisiting camera and Hand-Eye calibration process which is needed for an
autonomous system to fulfill the manipulation tasks using vision systems.

Camera and Hand-Eye calibration

Employing camera calibration, it is possible to measure the size of an object in world units
in the scene. Therefore, the importance of camera calibration is realized in robotics, for nav-
igation systems, and 3-D scene reconstruction. In addition, hand-eye calibration is needed
to integrate cameras within a robot’s kinematic frame chain. For RGB-D cameras such as
ASUS Xtion Pro, default camera parameters are given. The hand-eye calibration process,
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specifically, to integrating such cameras into Yaskawa Motoman robot’s kinematic frame is
described by the Fig. 6.4 and discussed in Chapter 4. From Fig. 6.4, it can be deduced
that the transform from robot’s base to the camera can be obtained and integrated it into the
robot’s kinematic frame chain.

Figure 6.4: Handy Eye Caliration for intergrating camera into Yaskawa Motoman Robot.

6.4.1 Perception stage

The perception stage is made of three sub-stages: Modified Object segmentation from object
segmentation discussed in the previous chapter, visual representation, and category classifi-
cation. The visually assisted vision system for autonomous object sorting is implemented,
and for comparison with SVM classifier in terms of classification accuracy, an evaluation
is presented from cross-validating in the simulation. Also, a demonstration of the proposed
approach is applied to Yaskawa Motoman robot. The proposed system utilizes the depth
images from an ASUS Xtion pro camera mounted on one of the arms of the robot which
serves as an input and triggers the rest of the pipeline of the system. In 6.5, the perception
model implemented is shown. In the following sections, the segmentation component is de-
scribed in detail which is modified from the corresponding component in Chapter 5 and for
completeness other components of the perception stage of the proposed pipeline are briefly
described.

Segmentation

To effectively utilize the feedback from the interaction stage, the object segmentation module
works in two modes: Foveated and Non-Foveated, which are discussed briefly as:
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Figure 6.5: Perception stage of the proposed autonomous visual architecture for scene un-
derstanding applied to the task of object sorting.

Non-Foveated mode

In the non-Foveated mode, the object segmentation module the perception stage follows the
same pipeline as discussed in the previous chapters, such as for an input point cloud of the
complete scene, a pass-through filter is applied to keep points within a defined range that
covers the main work-cell area i.e table and its boundaries. Next, table plane is detected
from the remaining point cloud using Random Consensus Sampling (RANSAC) [Fischler
and Bolles, 1981] which estimates all the points in a point cloud for a model plane. As a
final step, objects lying on the table are segmented by computing a convex hull from the
plane coefficients and create a prism of a maximum of 30 cm to only consider the objects
on a table top and the maximum height of the objects for sorting task is less than 30 cm.
This process of segmentation remains the same when one the perception stage is performing
one-shot recognition.

Foveated mode

When the feedback received from the interaction stage indicates the visual perception archi-
tecture needs to investigate an object more i.w low predictive probability for a given object
class, then, this foveated mode is enabled. This is achieved by applying a pass-through fil-
ter to keep only points that belong to the object. For this purpose two strategies have been
employed dependent on interaction stage: 1) segmentation from a designated location on the
table, 2) in-hand segmentation.
Segmentation from the designated location on the table is performed when the interaction
stage has placed an object on a place on the table designated for objects that need more in-
vestigation and contains one object at a time. For this type of the segmentation, the pipeline
in 6.4.1 is performed.
For in-hand segmentation, the interaction stage picks the object and holds it in front of the
camera, the size of the object is used to segment the object from the gripper.
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Visual representation

Low-level features are computed by Fast Point Feature Histogram (FPFH) [Rusu et al.,
2009a] to represent local 3D curvature features. For each query point, pq and its neigh-
bors, a set of tuples α, φ, θ are computed that results in Simplified Point Feature Histograms
(SPFH). Subsequently, for each point, its k neighbors are re-evaluated, and the neighboring
SPFH features are used to weight the final histogram pq (FPFH) as follows:

FPFH(Pq) = SPFH(Pq)
1
k

∑k
i=1

1
wk
.SPFH(Pk)

where the weight ωk represents a distance between the query point pq and a neighbor point
pk in some given metric space, thus scoring the (pq, pk) pair, but could just as well be selected
as a different measure if necessary. To understand the importance of this weighting scheme,
the figure below presents the influence region diagram for a k-neighborhood set centered at
pq.

These features are then encoded to create a dictionary containing codes for all the trained
objects. For each segmented object, a visual representation at object level is acquired by
means of the Bag-Of-Words model. We briefly discuss the process.

For training, features extracted for all the captured views of all the objects in the database,
K-means clustering is performed over all the vectors to obtain feature codes from the centers
of the computed clusters. We set 256 K clusters as the size of our codebook as we found
this size to give the effect and better results in comparison to sizes of 128 and 512. A
putative visual representation for each object is then obtained by comparing all the features
in the codebook generated by finding the minimum Euclidean distance, max pooling, and l2
normalization, resulting in 256 dimensional long vectors for each pose of an object. At the
test phase, features extracted for all the objects are encoded using the codebook generated
and fed to the classifier.

Classification

In the proposed interactive perception stage, the distribution of predictive probabilities among
all object categories is modeled by employing multi-class Gaussian Process Classification
[Rasmussen, Sun et al., 2016c].

A brief description of the GP based classification is provided in Chapter 5 and a more detailed
description can be found in our previous work [Sun et al., 2016c].

A pre-trained Gaussian process based classifier is used to work on the resultant encoded
visual representation for each object from the stage above in order to predict the category
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of the object along with probability confidences. These confidences are then used to make
a decision of the identity of the object. The visual system described in this paper has been
tested with two multi-class classifiers, Support Vector Machines and Multi-class Gaussian
Process models [Rasmussen].

Semantic visualization

Semantic visualization is an added tool provided with our proposed system to visualize the
output of GP multi-class classification. A color-coded visual representation is used for ob-
jects via the RVIZ tool available in ROS (http://wiki.ros.org/rviz), where each color corre-
sponds to a category.

6.4.2 Interaction stage

This stage of the autonomous visual architecture applied to the task of objects sorting is
responsible for carrying out the manipulation tasks, , such as, pick an object as shown in
Figures 6.10 and 6.11, place an object on the table for further investigation at a designated
area or hold it in-hand as shown in Figures 6.14 and 6.15, in front of the camera, rotating an
object in order to inspect different views, and remove objects from tabletop into designated
bin as shown in Figures 6.12 and 6.13. Fig. 6.6 shows the interaction model opted for the
task of object sorting.

Figure 6.6: Interaction stage of the proposed autonomous visual architecture for scene un-
derstanding, applied to the task of object sorting.

An interaction stage follows the perception stage in the proposed visual perception architec-
ture that orchestrates the set of object manipulation skills available. Two simple manipulation
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skills/actions are available for the interaction stage to chose from after receiving the required
information from the perception stage: 1) An object class has been identified with high con-
fidence, so this object can be picked from the scene (tabtop in this case) and place it in the
designated basket/bin for that particular object class. 2) An object class has been identified
with less probabilistic confidence, since from observation and inspired from the human be-
havior of inspecting doubtful objects, an action is chosen to investigate that object more.
This means, to confirm the object identity by taking more images from different views in
isolation and perception stage perform the visual operation for those views, hence multiple
perception-action/interaction cycles take place.

Upon receiving the class label, confidence and location information from the perception
model, the interaction stage in the proposed visual architecture, orchestrates the set of object
manipulation skills available. Two simple manipulation skills/actions are available for the
interaction stage to chose from after receiving the required information from the perception
stage. One of these two actions is chosen for each object, from a maintained list of all the
objects in the scene along with their classification confidence score. Before an action/skill
is selected, each object in the list is checked for whether or not, its confidence is above a
threshold. If the confidence score of an observed object is above the threshold, the object
is thus removed from the table top and placed into their respective classification bin by
invoking action 1. Alternatively, if the confidence score is lower than the threshold, the
object is further investigated by picking the object and actively exploring the view-sphere of
the object in order to provide feedback to the perception model, thus, invoking action 2. The
underlying hypothesis is that by exploring a different view of the object, this new view can
increase the classification score and improve the recognition accuracy. Finally, the object is
moved into the respective bin.

It must be noticed that the manipulation actions/skill developed and integrated into the pro-
posed visual perception architecture are simple and doesn’t provide complex grasping solu-
tions. Because, finding a grasping solution for objects with different shapes is still an open
research area and current solutions depend on the availability of the type of end effector i.e
suction cups, two parallel fingers etc. Due to these limitations, grasping has not been the
focus of investigation while developing the proposed visual architecture.

6.5 Experiments

These experiments are designed to demonstrate the validity of the proposed visual architec-
ture incorporating interactive perception. Furthermore, it is integrated into an autonomous
robotic system, for scene understanding. The proposed approach is simple and capable of
improving the classification accuracy by interacting with objects by applying the approach to
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the real-world application of carrying out the task of autonomous object sorting. It is pointed
out, that the dataset constructed for these experiments contain objects which can be accom-
modated by both the simple manipulation tasks developed to demonstrate the effectiveness
of the proposed approach and the availability of the smart grasping system as an end effector.
The developer version of the grasping system has a set of defined grasping actions. For these
reasons, the objects chosen to construct the database of objects and construct the test scene
contain three household object categories i.e Juice Bottles, Milk Packs, and mugs. These
scenes are arranged by combinations of known and unknown object instances of the 3 dif-
ferent object classes used. Objects were placed in arbitrary poses and locations. The dataset
is created by capturing point clouds of each object at angular intervals of approximately 20
degrees and it will be made public to test and use.

To show the performance of GP based multi-class classifier in comparison with an SVM
multi-class classifier, results are shown from simulated evaluation in Fig. 6.8 and Fig. 6.7,
respectively. The diagonal of each confusion matrix, colored in green, shows the true pos-
itives and the bottom row gives the recognition rate for each category. Also in Fig. 6.9
illustrates the conditional probability against testing examples for three object classes. Same
colored testing examples shown in the Fig. belong to the same class.

For the SVM multi-class classifier, an average recognition rate of 83% approx. and for the
GP based multi-class classifier, 92% approx. is obtained. It must be pointed out that the
recognition rate is expected to be lower as reported in Chapter 5 for challenging scenes,
since the use of a low-cost sensor, in these experiments. That also augments the argument
towards interactive perception model where one shot recognition fails.

By taking advantage of the dual arm Yaskawa Motoman robot, one arm equipped with ASUS
Xtion pro is designated to capture the data while the other arm is used to fulfill the manip-
ulation tasks needed. This configuration of using the two arms, in contrast to a single arm,
eliminates the problem of not having a clear view of the scene and/or objects contained in
them, by occlusion caused by the end effector of the same arm.

For arranging the scene, objects are placed directly on the table. An input point cloud is
obtained from the RGBD camera from one view. The point cloud is subsequently passed
on to our pipeline to trigger the perception model of our proposed system. After obtaining
a point cloud, all the objects are segmented, features of each object are extracted and fed
to the pre-trained Gaussian process based classifier. The GP based classifier provides both
class label for each object and associated prediction confidence scores. After the class la-
bels and related confidences are received, the interaction stage of the proposed system takes
over. The interaction stage performs the manipulation tasks. The interaction stage keeps
and maintains a list of objects according to their respective confidences. Additionally, it also
keeps information about the object location and size for all the detected objects on the table-
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Figure 6.7: Confusion matrix for the multi-class SVM classifier.

top. Experiments carried out after this step to investigate the impact of interactive perception
through an application of object sorting task.

For consistency and validity of the proposed visual perception architecture based on GP
classification for improving the recognition rate towards the task of object sorting, three
working scenarios have been designed;

1. For confidences of objects classified above a pre-defined threshold, the object is removed
from the table top directly into bins w.r.t their predicted labels.

2. for confidences of objects classified lower than a pre-defined threshold, before moving
them to their bins, are first moved to an area where the object will have none or little oc-
clusion, and capture a few more point clouds for at least 3 views to observe the increase in
confidence along with the class label. This area, where further investigation of the object
takes place, can’t contain any object from the original scene.

3. Repeat 2, but in this case, instead of placing each object back on the table, the observation
of different poses and capture of point cloud from each pose will be made in hand of the
robot after picking each object. The rationale for this scenario is for better and generalized
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Figure 6.8: Confusion matrix for multi-class gp classifier for 5 object categories.

segmentation results as compared to putting it back on the table. In hand, observation is
imitation from the observation of what human at early ages do, both for verification and
learning of objects.

After all the objects have successfully been recognized and classified accordingly, objects
are placed into their respective bin by Yaskawa Motoman robot arm.

Note: The experimental design to validate the proposed approach for the task of autonomous
objects sorting is implemented and integrated into Yaskawa Motoman Robot. Unfortunately,
the end effector i.e the smart grasping system ran into hardware issues and and wasn’t avail-
able until the presentation of this thesis.

6.6 Conclusion

This chapter described a simple and generic visual architecture for scene understanding by
enabling an autonomous system to interact with the scene to achieve a substantial increase in
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Figure 6.9: The classification performance under different confidences for 3 object cate-
gories.

Figure 6.10: Interaction stage of the proposed autonomous visual architecture for scene un-
derstanding, while picking a juice bottle.

scene understanding over non-interactive approaches through an application of autonomous
objects sorting. Further, the proposed approach is applied to the task of autonomous ob-
jects sorting, incorporating depth sensing, 3D feature extraction, object representation, and
classification. The proposed visual architecture achieves near real-time object category iden-
tification with associated perception confidence estimates, which serves to establish whether
an observation is sufficient to make a classification or to determine if it is necessary to inter-
act with the object to achieve a sufficiently reliable classification of the instance contained in
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Figure 6.11: Interaction stage of the proposed autonomous visual architecture for scene un-
derstanding, while picking a milk-box.

Figure 6.12: Interaction stage of the proposed autonomous visual architecture for scene un-
derstanding, while placing a juice bottle.

the observation.

During the development of the proposed visual architecture, interesting lessons have been
learned from the contributions, limitations have been realized and provide insight into future
work. These are described in the penultimate Chapter, Chapter 7.
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Figure 6.13: Interaction stage of the proposed autonomous visual architecture for scene un-
derstanding, while placing a milk-box.

Figure 6.14: Interaction stage of the proposed autonomous visual architecture for scene un-
derstanding, while investigating the juice bottle more by rotating the juice bottle and taking
images.
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Figure 6.15: Interaction stage of the proposed autonomous visual architecture for scene un-
derstanding, while investigating milk-box more by rotating the milk-box and taking images.
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Chapter 7

Conclusion

This chapter finalizes the thesis by presenting the contributions made during the course of

the thesis. It then states the hypothesis validation. Limitations in the current visual per-

ception architecture of scene understanding by robotic manipulation are discussed. Future

work suggestions are then detailed while to extend the proposed visual architecture for scene

understanding by robotic interaction.

7.1 Summary of Contributions

This section contains the summary of contributions during the course of producing this thesis
in four parts in chronological order: Contribution to active binocular robot vision architecture
[Aragon-Camarasa et al., 2010], Camera-Hand Eye Calibration, Visual perception model for
scene understanding by interactive perception, an autonomous visual perception architec-
ture capable of scene understanding by interactive perception. These are discussed in the
following section.

7.1.1 A Portable Active Binocular Robot Vision Architecture

This thesis presented a successful demonstration of portable active binocular robot head
that integrates visual behaviors in a unified and parsimonious architecture that is capable
of autonomous scene exploration. This robot architecture can identify and localise multiple
same-class and different-class object instances while maintaining vergence and directing the
system’s gaze towards scene regions and objects.

In terms of functional accuracy and performance of the portable active vision architecture, it
has been validated over challenging scenes and realistic scenarios in order to investigate and
study the performance of the visual behaviours as an integrated architecture. By carrying
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out a qualitative comparison with current robot vision systems whose performance has been
reported in the literature, it is argued that our architecture clearly advances the reported
state-of-the-art [Aragon-Camarasa et al., 2010, Arbib et al., 2008, Ma et al., 2011, Meger
et al., 2010, Rasolzadeh et al., 2010] in terms of our system’s innate visual capabilities and
portability to different environment settings, e.g. multiple same-class object identification
and tolerated degree of visual scene complexity. In addition, this architecture is therefore
portable in order to be adapted to different hardware configuration, feature description, and
view-points.

7.1.2 Calibration of Active Binocular and RGBD Vision Systems

This thesis also made a contribution by proposing a calibration methodology to calibrate the
portable active binocular robot head system integrated within an industrial dual-arm Yaka-
sawa robot and described a comparative experiment on the integration of RGB cameras into
the Rethink Baxter robot. Moreover, a simple, yet effective solution to dynamically up-
date cameras’ extrinsic parameters in order to achieve geometric compatibility with respect
to the robot’s kinematic chain has been reported. By comparing our binocular robot head
with consumer RGBD cameras, it can be concluded that our robot head provides an off-
the-self depth sensing solution capable of reconstructing the observed 3D scene within sub
millimetre accuracy. Likewise, it is shown that the implemented calibration routines in this
chapter can provide reliable results that allow reconstruction with relative 3-D errors of less
than 0.3 millimetres. An open-source ROS package that implements our calibration meth-
ods can be found at https://github.com/gerac83/glasgow_calibration. A
video demonstration of the calibration of our active binocular robot head can be accessed at:
https://youtu.be/9OYy9Q_bN2w.

7.1.3 Interactive Perception Model Based on Gaussian Process
Classification

This thesis makes contribution by proposing a visual interactive perception system achieving
real-time object category identification/recognition with associated classification confidence
(probabilistic) estimates, which serves to establish whether an observation is sufficient to
make a classification or to determine if it is necessary to interact with the object to achieve a
sufficiently reliable classification of the instance contained in the observation.
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7.1.4 Objects Manipulation in Scene Understanding By Interac-
tive Perception

Extending the visual perception model by interactive perception from Chapter 5, the pro-
posed architecture is made fully autonomous and integrated into dual arm robot test-bed. An
application of autonomous objects sorting is demonstrated by applying the proposed visual
perception architecture. The whole architecture is two-fold. On one hand, the visual per-
ception stage, handles vision related behaviours such as, object segmentation, identification,
classification with classification confidence (probabilistic). On the other hand, the interac-
tion stage takes one of the two actions. One, if the object’s predictive confidence besides
class label is higher than a predefined threshold, the interaction stage carries the action of
picking up the object and placing it in the class designated bin. Second, if the object’s predic-
tive confidence besides class label is lower than a predefined threshold, the interaction stage
chooses the action, that picks up the object and investigate it by rotating with an angle 30
degrees and capture three more distinct views. For each new capture image, the perception
stage is invoked in foveated mode, where the image of only the object in hand is captured.
This multiple perception-action cycles continue and at the end of three captures, the maxi-
mum number of class prediction along with higher probabilities is taken as the true class and
at this stage, action 1 is executed.

7.2 Revisiting Thesis Statement

This thesis advances the state-of-the-art in scene understanding by robotic interactive percep-
tion compared to non-interactive approaches. On one hand, an autonomous system equipped
with an active vision system, more specifically, the portable active vision system (Chapter
3), can explore a scene in detail. By following the underlying principle of structuring visual
perception as what and where systems, whose joint interaction affords the necessary visual
understanding required to conduct robotic hand-eye grasping and manipulation tasks. For
these reasons, experimental validation of the portability, functional accuracy of the portable
active binocular robot vision system is presented in Chapter 3. From results obtained and
discussed in Chapter 3, it can be deduced that by actively exploring a scene for scene un-
derstanding, provides an improved solution over non-interactive systems. Additionally, a
camera-hand eye calibration approach is also devised and detailed in Chapter 4, to integrate
the vision system into robotic’s kinematic frame’s chain. Which enables the robot to perform
manipulation tasks supported by visual stimuli.

On the other hand, an autonomous visual architecture is proposed for scene understanding,
from the perspective of interacting with the object in the scene by repositioning it, in order to
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obtain new, potentially more diagnostic, views of it while performing the scene understand-
ing task.
This proposed architecture has been implemented and integrated into a dual-arm robotic test-
bed. Furthermore, the proposed approach has been demonstrated by performing the task of
house-hold objects sorting. This proposed approach consists of two stages namely: Per-
ception stage and Interaction stage. The perception stage performs visual tasks while the
interaction stage follows the perception stage in the proposed visual perception architecture
that is responsible for object manipulation skills. Chapter 5 and Chapter 6 present a visual
architecture integrated with robotic manipulation skills performing object repositioning in
the scene, that improves the classification accuracy compared to non-interactive perception
models. Additionally Chapter 5 and Chapter 6 verifies the base capability of the proposed
visual perception architecture integrated into fully autonomous robotic system, that demon-
strates, that by performing objects sorting of house-hold objects that requires understanding
of what (house-hold object) is in the scene and what it can do with it (grasp & reposition the
object).

7.3 Limitations and Future Work

This section discusses the limitations encountered in the course of producing this thesis and
ideas for future improvements are suggested.

7.3.1 Active Vision System

In biological systems, it is found that a region in the scene that is sufficiently salient can
capture the attention of an observer more than once during a visual task [Wolfe and Whitney,
2015, Wurtz et al., 2011]. Our current inhibition of return behaviour, however, has been
formulated explicitly to prevent the robot from visiting a previously attended location. We
propose to revise this behaviour by incorporating an exponential decay criterion that dictates
the mean-lifetime of inhibition of an attended location. The robot would then be able to
re-visit a previously attended location, perhaps in the context of a spatial awareness model
with a cognitive module.

Another interesting research question that needs to be investigated is: while performing the
scene exploration task, what areas of interest in the scene need to explored and in what order?
Here, underline principle is to reduce the number of saccades for the active vision system
and perform visual search task efficiently.

Another possible extenstion to exisiting active vision system can be substituting the macro
script with a cognitive/intelligent layer, the sequence of behaviours required to convey a
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visual task can be generated deliberatively, thereby, removing the fixed-task limitation of
the current control scheme. Accordingly, the architecture discussed in this thesis has been
designed such that a deliberative/cognitive module might replace the fixed script in future
modifications of the robot system without altering the underlying visual behaviours.

7.3.2 Improving Quality of Depth Images Generated by the Ac-
tive Vision System

As mentioned in section 2.4.3, the resident stereo matcher for active vision system is inclined
to work on deformable objects better where the boundaries are continuous and produce good
quality depth images for such objects. It is therefore interesting to improve the stereo matcher
for the active vision system to handle the discontinuities at the boundaries of rigid objects
and produce good quality depth images which has been a desirable commodity in need in the
robotic vision community.

7.3.3 Camera-Hand Eye Calibration

Currently, the investigation aims at as how to maintain dynamic intrinsic camera calibration
(i.e. change of focus) to enable the robot head to focus different depth of fields. There is a
need to validate the extrinsic dynamic calibration in terms of drift errors and accuracy of the
computed point clouds.

7.3.4 Visual Perception Model for Interactive Perception

This thesis presented a visual perception architecture for scene understanding by robotic
interactive perception, by successfully demonstrating the application of sorting house-hold
objects into categories. With our own limited created database and for the scope of this
thesis, the visual architecture proposed for proof of concept in this thesis suffice. However,
recently, as the dataset of variety of objects has been created at the resident lab, for the pro-
posed architecture to work with large number of objects, incorporating deep learning tech-
niques for better and accurate object recognition - both for rigid and non-rigid objects, better
localization and pose estimation, would add scalability and reliability into the architecture.

Also, the proposed architecture struggles with scenes made up in a pile configuration. The
current technique of segmentation of the scene into possible objects fails. Replacing current
segmentation technique with more robust segmentation method such as [Badrinarayanan
et al., 2017], and integrating into the architecture would extend the use of the work presented
in this thesis to wider applications.



7.3. Limitations and Future Work 122

Finally, the proposed visual architecture only takes into account the depth image and extract
diagnostic visual cues from it. Combining the visual cues both from RGB and Depth images
would add both reliability and robustness to the scene understanding which require reasoning
(what to see and what the robot can do with it) as compared to just producing classification
label according to category. Fig. 7.1 illustrates recent work by [Sun et al., 2017b], that
provides an example of incorporating different visual cues.

Figure 7.1: The architecture of proposed multi-modal DCNN-GPC. The inputs of the DC-
NNs are the raw RGB image and depth map of the object proposal. The architecture consists
of three components: RGB-Net (shown in yellow) Depth-Net (shown in Blue) and non-
parametric GPC (shown in Green).

7.3.5 Objects Manipulation in Scene Understanding By Interac-
tive Perception

Despite the fact that grasping strategy for objects manipulation is not the focus of the work
presented in this thesis, it is still worth discussing the effect of grasping on scene understand-
ing involving robotic interactive perception. The interaction stage, in the proposed visual
perception architecture is made of simple actions (details in Chapter 6). More specifically,
after the information received from the perception stage, the object chosen for manipulation
is always picked in the same way. The object is picked at a right angle, at most 3 cms deep, so
that if the object needs to be investigated further, still should have a visible part of it to have
a diagnostic view. This poses a restriction on the number of objects with different shapes
to be handled by the proposed approach as failed grasps are inevitable for objects at inter-
action stage, which are short in height. With the availability of the large dataset, techniques
reported such as [Levine et al., 0], developed a deep learning architecture that learns from
a large convolutional neural network to predict the probability of quality grasp solutions as
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shown in Fig. 7.2.

Figure 7.2: The large-scale data collection setup for the first set of experiments, consisting
of 14 robotic manipulators. They collected over 800,000 grasp attempts to train the CNN
grasp prediction model..

Another notable example is from [Mahler et al., 2017a,b], who have developed benchmark
datasets (i.e. Dexnet 1.0, 2.0 and 3.0) where grasping candidates are learned using annotated
datasets consisting of 150 3D models of which 1M rendered poses are extracted. Techniques
like these are good motivation for incorporating better grasping strategies into the proposed
visual architecture and in turn, can extend the affect of this architecture on a wider range of
applications.

7.3.6 Objects Appearance Learning By Interactive Perception

Building on the premises of previous sections 7.3.4 & 7.3.5, the visual perception architec-
ture could be extended with the capabilities of learning the appearance of unknown objects
by modifying the in hand object manipulation skill described in Chapter 7. Both recogni-
tion task and learning the appearance of an unknown object, an important research question
is what pose of the object is most useful to be identified with. [Camarasa, 2012] validated
that in terms of underlying properties from which learned canonical representations must be
composed of, namely, the goodness of recognition, familiarity, and functionality (according
to [Blanz et al., 1999] and [Ullman et al., 2002]).
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7.3.7 Investigation into Interaction with Object in Scene Strat-
egy

To improve recognition accuracy in scene understanding by robotic interactive perception,
it is vital to obtain information that contains the knowledge of which pose of an object is
diagnostic to its identity. A possible solution is to devise a technique which at the interac-
tion stage, finds poses of objects in the scene that have been identified diagnostic to their
respective identities at the training/learning stage.

Further extension may include, more advanced deep learning based object detection methods
such as [Sun et al., 2017c] and further build a 3D semantic map [Sun et al., 2018, Zhao et al.,
2017a,b]. Moreover, an investigatation can be carried out into the possibility to adapt the
manipulation system to a mobile platform [Sun et al., 2017a, Yan et al., 2018, Zaganidis
et al., 2018, Zhao et al., 2018].
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