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Abstract

Over the past decade there has been a growing body of evidence, obtained from 

studies employing a wide variety of pharmacological, biochemical and biophysical 

techniques, suggesting that G protein coupled receptors (GPCRs) exist not as 

monomeric entities but rather as dimers or other higher order oligomeric arrays. To 

further the accumulation of knowledge pertaining to this research area, the work 

presented in this thesis has made use of one such particular biophysical technique 

called bioluminescence resonance energy transfer (BRET). In order to utilise this 

system GPCRs were modified at their carboxyl terminal tail with either the anthozoan 

enzyme Renilla luciferase or the fluorescent protein eYFP. Through this expedient, if 

the differentially tagged GPCRs are in close proximity when co-expressed within 

mammalian cells, upon addition of the biohmiinescent molecule coelenterazine, there 

is a non-radiative exchange of energy between the Renilla and eYFP, resulting in a 

fluorescent emission fiom eYFP. The technique can be used to monitor interactions in 

real time, in living cells and does not require any biochemical 

manipulations/treatments such as are associated with more traditional approaches to 

this line of enquiry (e.g. co-immunoprecipitation). Using this technique, it was 

demonstrated that the P2-AR was closely associated when expressed within HEK 

293T cells, as were the 5-opioid and K-opioid receptors since all gave robust signals 

in energy transfer experiments. Contrary to some previous reports however, it was not 

seen to be the case that the presence of ligand was capable of modulating the 

magnitude of the energy transfer signal. This indicated that for these GPCRs the 

binding of ligand did not result in any alteration in the dimerization status of the 

receptor. It was further shown, through monitoring the energy transfer at varying
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levels of receptor expression, that energy transfer was favourable between homomers 

of the K-opioid receptor. At similar receptor densities, energy transfer between co­

expressed K-opioid-receptor and TRHr was seen to be considerably less favourable, 

requiring far higher receptor expression levels to be achieved before meaningful 

levels of energy transfer could be detected. These results strongly indicated that 

closely related GPCR types had a greater propensity for mutual interaction than did 

more distantly related ones. Many of these results were confirmed using a modified 

version of BRET, designated BRET2, which conferred an additional sensitivity to 

detection of protein-protein interactions. Using BRET2 a previously ill-defined result 

obtained with traditional BRET, that suggested that the p2-AR might interact with the 

5-opioid-receptor, was confinned.

An additional purpose of the work described herein was to explore the potential of 

GPCR dimerization as a means of providing a novel ligand detection assay suitable 

for application to industrial high-throughput screening programmes. Since the 

experiments concentrating on GPCR oligomerization failed to provide such an assay, 

it was decided that the ability of GPCRs to recruit p-arrestin as part of the process of 

desensitisation should be evaluated as a possible alternative. Using a cell line stably 

expressing the GPCR CCR2 the ability of this receptor to recruit various fluorescent 

proteins conjugated to p-arrestin2 (p-aiTestiii-red NEP and p-aiTestin-cyan NEP) from 

the cytosol in response to receptor activation was demonstrated. The p-arrestin2 was 

localized into endocytic vesicles and remained tightly associated with the internalised 

receptors after sequestration had occuied. This behaviour was in accordance with 

other previous reports for GPCRs that, like CCR2, possessed serine and tlireonine 

clusters within their carboxyl temiinal tails. If adapted to a ERET based format this 

particular protein-protein interaction could form the basis of a ligand screening
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method for agonists that would be equally applicable to most GPCRs. It was further 

shown that P-arrestin2-red NFP had a higher affinity for CCR2 than did p-an'estinl- 

GFP through the monitoring of the respective kinetics and extent of translocation 

when the constructs were co-expressed within the same cells.

As an alternative strategy for the detection of ligands, a constitutively active mutant of 

p2-AR (CAM P2-AR) was modified C-terminally with the bioluminescent enzyme 

Renilla luciferase. This CAM p2-AR was structurally destabilized to a high degree so 

that only modest expression levels could be obtained upon expression of the Renilla 

modified receptor construct (CAM p2-AR-Rluc) in HEK 293T cells. Upon prolonged 

exposure to various antagonist ligands, a two to thi’ee fold upregulation of the receptor 

construct could be detected via light output from the luciferase. From parallel 

competition binding experiments it was also demonstrated that, for each of these 

ligands, the EC50 for upregulation highly correlated with the dissociation equilibrium 

constant (Ki). This strongly indicated that it was the presence of the ligand within the 

receptor binding pocket that alone accounted for the observed upregulation effects. In 

a similar manner, it was demonstrated that agonist compounds were also capable of 

mediating a similar degree of upregulation. The increase in receptor density of CAM 

p2-AR in response to the presence of ligand was subsequently shown to be dependent 

on the constitutively active natuie of the receptor. In an additional experiment co­

transfection of CAM p2-AR-Rluc along with a GFP conjugated version of the aib- 

adrenoceptor into HEK 293T cells and subsequent monitoring of the upregulation of 

either constmct in response to selective ligands confinned the necessity for 

pharmacological specificity in mediating the upregulatory effect. Finally, to show that 

this assay method would be suitable as a means of detecting ligands in a high- 

throughput screening fonnat, the ability of (32-AR to be upregulated was assessed in
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the presence of a wide variety of compounds, only a proportion of which possessed 

pharmacological specificity for the p2-AR. When tested in this manner it was seen 

that only compounds that were specific for P2-AR were capable of mediating an 

upregulatory effect.
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Chapter 1

Introduction

1.1. Some preliminaries.

The G-protein coupled receptors (GPCRs) are a family of integral membrane proteins 

that occur in a variety of organisms and which are capable of interacting with a wide 

range of ligands. More than 1000 types of GPCR have been identified since the first 

receptors were cloned more than a decade ago. The spectrum of ligands that are 

known to participate in interactions with these receptors include; ions (calcium ions 

acting on the parathyroid and kidney chemosensor); amino acids (glutamate and 7 - 

amino butyric acid-GABA); monoamines (catacholamines, acetylcholine, serotonin, 

etc.); lipid messengers (prostaglandins, tliromboxane, anandamide [endogenous 

cannabinoid], platelet activating factor, etc.); purines (adenosine and ATP), 

neuropeptides (tachykinins, neuropeptide Y, endogenous opioids, cholecytokinin, 

vasoactive intestinal peptide[VIP], etc.); peptide hormones (angiotensin, bradykinin, 

glucagon, calcitonin, parathyroid hormone [PTH], etc.); chemokmes (interleukin-8 , 

fMLP [fomiyl-Met-Leu-Phe], RANTES, etc.); glycoprotein hormones (TSH, 

LH/FSH, chorionganadotropin, etc.) and proteases such as thiombin. In addition to all 

of these, GPCRs are involved in both the light sensory pathway through rhodopsin 

and in olfactory sensation due to a wide range of distinct odorant receptors. All 

members of this receptor superfamily comprise a single polypeptide chain which 

characteristically contains seven stretches of mostly hydrophobic residues of 2 0  to 30 

amino acids, linked by hydrophilic domains of variable length. The hydrophobic 

regions exhibit the secondary structural motif known as the alpha helix and it has been 

established that it is these hydrophobic regions that are embedded in the plasma



membrane with the hydrophilic regions exposed to the polar environment on the 

exterior or interior face of the cell surface (for this reason GPCRs are sometimes 

known as seven transmembrane or 7TM receptors). GPCRs have also been named 

through their ability to recruit and mediate signalling events through their interaction 

with heterotrimeric GTP-binding proteins (G proteins). These intracellular mediators 

of signalling events function as guanine nucleotide exchange factors where interaction 

with the GPCR acts as a molecular switch, inducing a conformational change in the a- 

subunit of the associated G-protein leading to the exchange of GDP for GTP. This 

activates the G protein causing dissociation of its «-subunit from the receptor and also 

from its associated (3y subunits. Both the GTP bound a subunit and the free (3/j 

complex are capable of initiating cellular signalling events which include, among 

others, the activation or inhibition of adenylyl cyclase, the activation of 

phospholipases and also the regulation of calcium and potassium ion channel activity. 

It has further been shown in recent years that GPCRs aie capable of activating 

signalling cascades normally associated with growth factor receptor activity, such as 

the mitogen activated pathways.

It is not surprising then that GPCRs have been the major target in industrially based 

drug discovery programmes over the past ten years, given the diversity of ligands that 

are capable of interacting with these proteins and the wide range of effector systems 

that they are capable of modulating. It is also probable that GPCRs will remain the 

principal targets for therapeutic intervention for quite some time to come, considering 

that there exists a growing number of GPCRs for which no natural ligand has yet been 

identified (known as orphan GPCRs). For this reason, many of the ensuing studies to 

be presented in the subsequent Chapters of this thesis focus upon the various 

phenomena associated with GPCRs in order to evaluate their potential in providing



the basis by which a novel screening assay designed to identify new ligands might be 

established. In this first Chapter the structure, function and signalling properties of 

GPCRs will be considered briefly before turning to the three main phenomena 

associated with GPCRs that form the core of the thesis, namely, receptor 

desensitisation, constitutive activation of GPCRs and dimerization of GPCRs.

1.2. Structural and functional features of GPCRs.

1.2.1. Structural features of the major GPCR families.

There has been considerable difficulty in resolving the three-dimensional structure of 

GPCRs tlrrough the use of X-ray crystallography or NMR. This is principally because 

the receptors are complicated transmembrane proteins that have proved difficult to 

purify in large quantities and even when this has been achieved they have proved 

almost impossible to crystallize. Much of what is known concerning the structure of 

GPCRs has been derived second hand from the structure of a light activated proton 

pump from Halobacterium halobrium, called bacteriorhodopsin. This molecule has 

substantial similarities to GPCRs in that it possesses seven-transmembrane «-helices 

and, like vertebrate rhodopsin, it uses retinal as its chromophore. However, this proton 

pump is not coupled to G protein, nor does it share sequence homology with any of 

the known GPCRs. The only GPCR that has had its three dimensional structure 

resolved to any degree of accuracy, is the vertebrate homologue of bacteriorhodopsin. 

A low resolution structure for both bovine and frog rhodopsin has been obtained 

(Unger et al., 1995; Unger et al., 1996), in addition to which a low resolution 

structure of squid rhodopsin has recently become available (Davies et at., 1996). 

More recently still, the crystal structure of bovine rhodopsin has been determined in 

some detail down to a resolution of 2.8Â (Palczewski et al., 2000). The projection



maps of these studies show that both bovine rhodopsin and bacteriorhodopsin are 

folded as seven helical bundles, with supporting evidence that transmembrane 

segment III is the central helix in the bundle and that the helices are placed in an 

anticlockwise fashion as viewed from outside the cell.

The GPCR superfamily does not display any overall sequence homology and the only 

sfructural feature that is common to all members is the presence of the seven 

transmembrane «-helix domains. GPCRs can be divided into three major subfamilies. 

The basis for this subdivision is the presence of highly conserved key residues and 

sequences of residues within the individual subfamilies; the presence of conseiwed 

structural motifs such as disulphide bridges and also the presence or absence of a 

palmitoylation site within the carboxyl terminal tail. The major subfamilies comprise 

of the rhodopsin and /32-adrenoceptor family (family A); the glucagonA^IP/calcitonin 

receptor family (family B) and the receptors related to the metabotropic 

neurotransmitter family of receptors (family C). In addition to this there are two other 

minor unrelated subfamilies of yeast pheromone GPCR, family D (STE2 receptors) 

and family E (STE3 receptors).

Family A is the largest and best characterized of these subfamilies. The overall 

homology between members of this subfamily is low but despite this, there are a 

number of “fingerprint” residues that are mainly located within the transmembrane 

segments and these are consei-ved within 95% to 98% of all family A receptors. 

Among all family A receptors there is only one single residue, identified here by its 

Schwartz numbering scheme nomenclature (Schwartz et aL, 1995), that is totally 

conserved and this is Ai-gIII:26 that forms part of a conserved D/E RY motif located 

at the bottom of TMIII. As shall be discussed later, it is thought that this residue is 

important in the activation of GPCRs. Among the most highly conserved residues



present in Family A GPCRs are several prolines present in TMIV, TMV, TMVI and 

TMVII. These are thought to introduce kinks into the «-helices and may be important 

in allowing flexibility about the ligand-binding pocket of the receptor. It is probable 

that such residues function in a dynamic role within the receptor, possibly allowing 

interchange between different confonnational states that may be stabilized through the 

association/ dissociation of various ligands. Many Family A receptors also have a 

highly conserved disulphide bridge between a cysteine at the top of TMIII and a 

cysteine located somewhere in the middle of the second extracellular loop. The 

second extracellular loop is thereby subdivided into two smaller loops and this has the 

effect of tying up TMIII close to TMIV and TMV, forming a central column in the 

seven-helical cluster. The lengths of most of the transmembrane loops within this 

family of receptors are remarkably well preseiwed. The loops connecting TMI and 

TMII and TMII and TMIII are short and do not, to any significant degree, vary much 

in length. The disulphide bridge mentioned above creates two short loops that tether 

TMIV and especially TMV close together with the first thi'ee «-helical bundles. The 

intracellular loop connecting TMV with TMVI is not well conseiwed in length 

however and may vary from as little as 1 0  amino acids (rhodopsin) to several 

hundreds of amino acids long. It has been proposed that rhodopsin like receptors are 

structurally composed of two intra molecular domains, held together by a network of 

relatively short loops, an A-domain consisting of TMI tlirough TMV and a B-domain 

consisting of TMVI and VII. This is a contention supported by experiments where the 

co-expression of two plasmids each coding for one of the receptor’s domains were 

capable of reconstituting a fully functional split receptor (Schwartz, 1996).

Other prominent features of Family A receptors are the extracellular amino-terminal 

domain and an intracellular carboxyl terminal domain. The N-terminus is very



variable in both its length and sequence. In the subfamily of the glycoprotein hormone 

receptors for TSH, FSH/LH and choriongonadotropin this segment tends to be very 

long and contains a number of well"Consei*ved cysteines that are expected to foim a 

network of disulphide bridges and thus generate a well-defined globular domain. The 

N-terminus of family A receptors usually contain a number of Asn-X~Thr/Ser 

recognition motifs for N-linked glycosylation. It is not thought that these 

modifications are involved in ligand binding but as is the case for many cell surface 

proteins glycosylation seems to facilitate maturation and export of the receptor from 

the E.R./ Golgi-apparatus (Von Heijne, 1990). The length of the carboxyl terminal tail 

is also highly variable; it is usually rich in serine and threonine residues that are 

potential sites for kinases such as jS-adrenergic receptor kinase (/3ARK). Both the C- 

terminal domain and the third intracellular loop contain potential sites for 

phosphorylation by cAMP dependent kinase (protein kinase A; PKA) or protein 

kinase C (PKC). These are of functional significance in the process of receptor 

desensitisation that follows on from receptor activation (detailed later). A further 

structural feature of the C-terminal domain of Family A GPCRs is the presence of a 

palmitoylation site represented on one or more cyctein residues located 15 to 2 0  

amino acid residues C-terminal to TMVII. The presence of the modification with 

palmitic acid tethers the C-terminal tail to the cytoplasmic face of the cellular plasma 

membrane. This forms a small peptide region lying between the NPXXY motif 

immediately following TM VII and the point of palmitoylation. It has been shown that 

this short stretch of amino acids forms an eighth «-helix lying perpendicular to TM 

VII. From the crystal structure of rhodopsin it is thought that this short helix is located 

in a hydrophobic environment and that it is an important contact site for interaction 

with G-protein (Palczewski et aL, 2000). Like phosphorylation, the palmitoylation



process appears to be regulated by receptor activation and seems to be involved in the 

process of receptor desensitisation (Schwartz, 1996). The two processes of 

palmitoylation and phosphorylation can influence one another, for instance, 

conformational constraints induced by the modification with palmitic acid can restrict 

the access of certain molecules to the phosphorylation sites (Schwartz, 1996). The 

consequences of palmitoylation tend to vary between distinct receptor types.

The Family B receptors comprise approximately 20 different receptors for a variety of 

peptide hoimones and neuropeptides such as VIP, calcitonin, PTH and glucagon. This 

family exhibits no sequence homology at all with family A except for the 

conservation of the disulphide bridge between cysteines at the top of TMIII and the 

middle of extracellular loop 2. There is no conservation of the DRY motif in family B 

receptors and although there are conserved proline residues present in the «-helical 

domains, the positions of these residues are distinct from the conserved positions 

observed in family A receptors. Aside from the seven transmembrane domains present 

in family B members, their most conspicuous feature is a large N-terminal domain 

(>100 amino acids). This contains a number of conserved cysteine residues which are 

presumably involved in the formation of disulphide bridges thus fonning a globular 

domain that is thought to be involved in ligand binding.

The size of family A GPCR N-teiminal domains are of modest magnitude compared 

to that of the family C receptors (500-600 amino acids). Family C GPCRs include the 

metabotropic glutamate and 7 -amino-butyiic acid (GABA) receptors, the calcium 

receptors, the mammalian pheromone receptors and recently identified putative taste 

receptors. Like family A and family B receptors there is a consei*ved disulphide bridge 

linking the second and third extracellular loops but aside from this they do not share 

any sequence homology with either of the other two main GPCR families. The large



N-terminal domains of the family C receptors baies considerable resemblance to a 

family of bacterial binding proteins that function as transporters for amino acids and 

other small molecules across the periplasmic space (Periplasmic binding proteins, 

PBPs). This extracellaular region of the metabotropic glutamate receptor (mGluR) can 

be divided into two separate regions: a ligand binding domain (LBR) and a cysteine 

rich region. The LBR has been demonstrated to be the ligand-binding domain through 

chimeric receptor analysis (Takahishi et aL, 1993) and also through homology model 

building (O’Hara et aL, 1993; Costantino et aL, 1999) based upon the crystal structure 

of the leucine/isoleucine/valine-binding protein (LIVBP), a PBP (Sack et aL, 1989). 

More directly, the extracellular regions of mGluR, when expressed in soluble fonn, 

have been shown to serve as ligand binding sites, conferring ligand-binding 

specificity (Han et aL, 1999). Recently, the LBR of mGluRl has been crystallized and 

shown to be a homodimer consisting of two protomers, existing in a number of 

different conformational fonns (Kunishima et aL, 2000). Each protomer consists of an 

amino and carboxyl terminal domain designated LBl and LB2 respectively with the 

LBl domain providing the dimer interface in all the identified conformational fonns. 

These two domains form a “clamshell” like structure with the glutamate-binding site 

located within the interdomain crevice. Through analysis of the crystal structure, it 

was determined that the LBP dimer exists in a dynamic equilibrium between active 

and resting states where the active state is favoured through the presence of glutamate 

in the binding crevice. The switch to the active conformation was accompanied by a 

conformatial change involving a reorientation in the position of the dimer interfaces. 

As will be seen later on, this dimerization of GPCR domains is now thought to play a 

cmcial role in certain aspects of GPCR regulation.



1.2.2. Ligand binding to GPCRs.

The interactions that occur between ligands and their cognate GPCRs have been best 

studied for the family A group of receptors. In rhodopsin the mechanism of receptor 

activation is unique in that the activating ligand, a photochromophore called ll-cis~ 

retinal, is covalently attached to the receptor and is buried within a binding crevice 

located within the seven transmembrane domain bundle. Retinal is known to attach to 

the e-amino group of a lysine residue located in the middle of transmembrane segment 

VII and to make a Schiff-base interaction with a glutamate residue located on the top 

of TMIII in rhodopsin. (Zhukovsky et aL, 1992). Upon absorption of a photon 11-cis- 

retinal undergoes an isomerization to all-fran.y-retinal, this leads to the formation of an 

overall confoimation known as the metarhodopsin II state, allowing the receptor to be 

activated (Sakmar, 1998). In this case, all-?rau5-retinal can be seen as acting as an 

agonist whereas the 11 -cw-retinal conformation can be viewed as an inverse agonist 

holding the receptor in an inactive conformation in the absence of light. Clearly, since 

photodetection requires such a rapid response to photons in mediating receptor 

signalling events, it is advantageous to have the activating ligand constitutively 

associated with the GPCR. Another family A receptor for which the mechanisms of 

receptor activation have been elucidated in some detail is the /32-AR whose natural 

ligands are adrenaline and noradrenaline (both catacholamines). These ligands belong 

to a class of small molecules loiown as biogenic amines, other members include 

serotonin, histamine, acetylcholine and dopamine. Docking of catecholamines to the 

^2 -AR is facilitated through interaction of the ligand with a receptor binding crevice 

that is buried deeply within the seven transmembrane helical bundle. The specific and 

direct interaction of the amine group from the ligand with the carboxyl group from a 

highly conserved aspartic acid residue located in TMIII (AspIII;08) is thought to be



the most energetically important binding characteristic (Strader et aL, 1991). Other 

interactions that are thought to be crucial in the stabilization of ligand docking aie the 

hydrogen bonds foimed between the hydroxyls of the catechol ring in adrenaline and 

two serines in TMV that are separated by one «-helical turn (SerV:09 and SerV:12) 

(Strader et aL, 1989). Other key residues thought to play a role in the stabilization of 

the catachol ring within the receptor binding site are a phenolalanine residue in TMVI 

(PheVI:17) (Tota et aL, 1990) and an asparagine residue, also in TMVI (AsnVI:20), 

thought to form a hydrogen bond with the /3-hydroxyl of adrenaline (Weiland et aL, 

1996). Evidence suggests that antagonists that are related structurally to adrenaline 

share the characteristic of binding to the conserved (AspIITOB) in TMIII, however, the 

other key ionic interactions are thought to differ. Although the majority of ligands for 

/32-AR are thought to interact with this buried binding crevice, some antagonists that 

are structurally distinct from adrenaline seem to interact with other residues of /32-AR 

located outside of this binding pocket.

Other ligands, such as the large glycoprotein hormones, tend to gain most of their 

binding energy through interaction with the large globular N-terminal domain of the 

receptor. Similarly, medium and small neuropeptides and peptide hoimones usually 

have their major points of interaction located in the N-terminal domain, although 

additional contact points located in the extracellular loops may be involved. The range 

of such interactions and the huge diversity of contact points employed by different 

receptor types means that it is not practical to discuss these in depth here. However, it 

should be mentioned here that an interesting mode of receptor activation is employed 

by the thiombin receptor. In this case the N-tenninal segment of the receptor forms 

the activating agonist, where proteolytic cleavage of this domain removes most of the 

segment to reveal a small pentapeptide that is still covalently tethered to the receptor.
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This peptide is then free to interact with other parts of the exterior receptor leading to 

receptor activation.

1.2.3. Conformational changes associated with GPCR activation.

GPCRs are thought to exist in a dynamic equilibrium between resting (R) and ligand 

activated (R*) states, with R* being capable of activating G-protein and initiating 

cellular signalling events. The structural changes that are thought to accompany the 

transition from R to R* upon ligand binding have been elucidated in some detail for 

the light activated photoreceptor rhodopsin. As mentioned previously, in rhodopsin 

the isomerization of 1 l-c/j'-retinal to dX\-trans retinal upon exposure to light induces a 

confoimational change in the receptor that leads to the formation of the 

metarhodopsin II state that is though to represent the active fonn (R*) of rhodopsin. 

The receptor, having adopted the R’̂' conformation, is then able to mediate signalling 

tlirough the G-protein transducin. Biophysical and biochemical analyses of both 

native rhodopsin and metarhodopsin II have revealed that there are structural 

differences between the two confonnations of the receptor. The studies suggested that 

the structural changes associated with the transition from R to R* were not drastic and 

that ligand isomerization induced changes in the relative orientation of the individual 

transmembrane helices and that this in turn affected the relative confonnation of the 

intracellular receptor surface, facilitating G-protein activation. One such study has 

indicated that upon light activation of rhodopsin there is a small outward movement 

of the cytoplamic portion of TM III relative to the other TM «-helices in the receptor 

core (Lin and Sakmar, 1996). This movement was accompanied by an ill-defined 

structural change in the second intracellular loop. An activation mechanism involving 

a rearrangement in the orientation of certain «-helices present in the transmembrane
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core was further substantiated by observations that disulphide crosslinking of the 

cytoplasmic ends of TM III and TM VI was capable of preventing activation of 

rhodopsin (Farrens et aL, 1996). Such results suggest that GPCR activation involves 

an opening of the intracellular face of the receptor and that this in turn allows the G- 

protein to have access to previously inaccessible amino acid sequences essential for 

its activation. Confirmatory evidence, implicating a role for TMs III and VI in 

receptor activation, has been provided by a study employing the cysteine-specific 

fluorescent marker molecule lANBD (N, N’-dimethyl-N (iodoacetyl)-N’-(7- 

nitrobenz-2-oxa-l, 3-diazol-4-yl) ethylene diamide) which is sensitive to changes in 

the polarity of its environment (Gether et aL, 1997b). This study showed that in the 

case of the /32-AR, the presence of the agonist isoprenaline in the receptor binding site 

led to a decrease in the fluorescence of two lANBD conjugated cysteine residues 

present in TMs III and IV, a finding consistent with a reorientation of these two 

transmembrane segments towards a more polar environment (i.e. away from the «- 

helical bundle).

1.2.4. Structural determinants important for G-protein coupling and activation.

The ability of a given GPCR to mediate signalling through a particular pathway is 

governed by its ability to interact with a limited set of structurally related G-proteins 

whose classification is defined thiough the nature of the «-subunit. Much information 

concerning the receptor regions implicated in mediating such interactions has been 

obtained tlnough analysing hybrid receptors constructed between functionally distinct 

members of the GPCR family. Most of these studies suggest that amino acid residues 

located in intracellular loop 2  and in the amino and carboxyl-terminal portions of 

intracellular loop 3 are essential in conferring the selectivity of G-protein recognition
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(Savarese et aL, 1992; Hedin et aL, 1993). The eighth helix, formed through 

palmitoylation of the carboxyl terminal tail may also contribute to receptor/G-protein 

interactions (Savarese et aL, 1992; Stader et aL, 1994), although it is unlikely to be 

essential for G-protein coupling since the hilly functional mammalian gonadotropin 

releasing hormone receptor completely lacks a carboxyl-terminal tail (Tsutsumi et aL, 

1992). These findings have been in close agreement with experiments that have made 

use of short peptides derived from receptors’ intracellular domains. It has been 

demonstrated that such peptides coiTesponding to regions from intracellular loop 2 or 

the amino and carboxyl segments of intracellular loop 3 are capable of mimicking or 

inhibiting receptor interactions with G-proteins (Konig et aL, 1989; Munich et aL, 

1991; Okamoto et aL, 1992). It is thought likely that the highly conserved D/E RY 

motif located at the junction between TM III and intracellular loop 2 is particularly 

critical in receptor activation. This has been clearly demonstrated in experiments 

where replacement of the conserved arginine residue with various amino acids was 

seen to abolish coupling to G-proteins (Zhu et aL, 1994; Scheer et al.,l996). 

Additional studies designed to monitor the effects on functional endpoint output of 

introducing amino-acid substitutions for this arginine into the Mi muscarinic receptor 

has shown that the charge conseiwed Arg-^ Lys substitution was the least effective in 

impairing G-protein coupling (Jones et aL, 1995). It is possible therefore that the 

conseiwed, charged arginine residue is capable of interacting with some anionic site 

present on the G-protein(s) and that by this expedient G-protein activation is 

achieved. Other mechanisms through which the D/E RY motif contributes to receptor 

activation involve the protonation of the acidic amino acid (glu or asp). Protonation of 

this residue results in a net neutral charge induced upon the residue and this is thought 

to be important in allowing the adjacent arginine side chain to interact with G protein.
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Consistent with such a notion, it was shown in studies involving rhodopsin and the 

«ib-adrenoceptor that substitution of the GIu/Asp residue with various neutral amino 

acids led to the generation of mutant receptors that were constitutively active, that is 

to say that they had an elevated basal signalling activity (Acharya et a l, 1996; Cohen 

et al., 1993; Hill Eubanks et al., 1996). A stretch of charged residues present in the 

carboxyl terminal portion of the third intracellular loop is also thought to be important 

in mediating efficient G-protein coupling, as has been revealed through several site 

directed mutagenesis studies (Franke et al., 1992; Kundel et al., 1993; Hôgger et al., 

1995). It may therefore be speculated that these residues, in conjunction with the 

eonseiwed D/E RY motif at the interface of TM III and intracellular loop 3, represent, 

at least in the case of family A receptors, the essential components in facilitating 

GPCR activation.

1.3, Signalling and desensitisation of G protein coupled receptors.

1.3.1. Signalling through G protein coupled receptors.

GPCRs transduce signals from the extracellular environment to the inside of the cell. 

This is achieved through the binding of the receptor to a ligand on the external face of 

the plasma membrane which induces or stabilizes an active confoimation of the 

receptor allowing activation of an associated heterotrimeric G protein. Through 

interaction with G proteins a receptor can influence a variety of effector systems. 

Heterotrimeric G proteins consist of a. and subunits and are classified according to 

the larger a  subunit which contains the GDP binding cleft which, upon exchange of 

GDP for GTP, triggers activation of the G-protein. This consequently leads to 

dissociation of the a  subunit from the ^y  subunits with both types of subunit {a and 

^y) being capable of stimulating/inhibiting cellular effector systems.
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A brief description of the molecular architecture of heterotrimeric G-proteins is as 

follows. The a subunit, has located at its centre binding sites for two or three 

phosphates, ribose and a magnesium ion as well as containing the GDP/GTP binding 

domain. The presence of magnesium is essential for the binding of the guanine 

nucleotide. The protein possesses an intrinsic GTPase activity so as to limit the 

activation time of the protein and limit its ability to interact with downstream 

effectors following receptor activation. The carboxyl terminus of the a subunit 

contains the receptor binding region important for its interaction with seven 

transmembrane domain type receptors. Certain G- protein a subunits can also be 

specifically ADP- ribosylated by bacterial toxins. For example the G protein G% can 

be specifically ADP- ribosylated on an arginine residue, via cholera toxin, near the 

GTP binding domain. The action of cholera toxin on Go  ̂is manifest in constitutive 

activation and a decrease in its intrinsic GTPase activity. In contrast, the G protein 

Ga\ is ADP- ribosylated by pertusis toxin at a cysteine residue that is located four 

amino acids from the COOH terminal of the protein and this is known to cause G 

protein uncoupling and inliibit signalling responses thiough GPCRs utilizing this G 

protein subtype.

There are four major families of G proteins, Gs, G\, Gq and G12 all of which have a 

number of variant subtypes and there is also considerable diversity among the 

subunits with 5 known /3, and 11 known 7  subunits. Such diversity means that there 

are over 1000 possible G protein heterotrimer combinations. The different types of Gee 

subunit target different effector systems in order to mediate their second messenger 

response. For instance 0  ̂protein is loiown to increase levels of cAMP in response to 

activation by GPCRs and it does so by directly interacting with and stimulating the 

enzyme adenylyl cyclase.
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The activation of adenylyl cyclase is the most well established paradigm for the 

generation of second messenger molecules in response to G protein activation via 

GPCRs. Cyclic AMP is foimed from adenosine triphosphate (ATP) by the enzymic 

action of adenylyl cyclase; termination of the signal is achieved by a 

phosphodiesterase enzyme which converts cAMP into 5’- adenosine monophosphate 

(5’-AMP). The target molecule upon which cAMP acts is a cAMP-dependent protein 

kinase loiown as protein kinase A (PKA). PKA is a serine/threonine kinase which 

exists as a tetramer with two regulatory and two catalytic subunits. The regulatory 

subunits each contain two binding sites for cAMP. Once cAMP has occupied both of 

these binding sites the catalytic subunits dissociate and become active.

The pathway from binding of extracellular ligand to physiological response has been 

well characterized for the action of iS2 -AR on skeletal muscle cells and will sei"ve here 

as a single example of a functional response mediated through the action of G«s- It 

should be stressed however that this is merely one pathway in a particular cell type 

stimulated tlirough the elevation of intracellular cAMP levels. This example is as 

follows. In vivo, adrenaline binds to the /32-AR on the extracellular face of the plasma 

membrane and adenylyl cyclase is rapidly activated (within seconds) through G(% 

resulting in elevated cellular levels of cAMP. The cAMP thus generated binds to the 

regulatory subunits of PKA and activates it tlnough the release of the catalytic 

subunits. These then phosphorylate the enzyme phosphorylase kinase at serine 

residues on its a  and (3 subunits at the phosphate acceptor recognition sequence 

RRXSX; phosphorylation of the jS subunit converts the phosphorylase kinase to its 

active form. The activated phosphorylase kinase then in turn phosphorylates and 

activates another molecule called phosphorylase b converting it to phosphorylase a, 

this then splits glucose-1 -phosphate molecules from glycogen. Other targets for the
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catalytic subunits of PKA in this signalling system are glycogen synthase and a 

phosphorylase phosphatase inhibitor protein. These additional targets for PKA play 

complementary roles in the signalling pathway in that phosphorylation of glycogen 

synthase inhibits activity and prevents further synthesis of glycogen from glucose. 

The phosphorylase inhibitor, once activated by PKA inliibits phosphorylase 

phosphatase whose target substrate is phosphorylase A, this has the effect of 

prolonging the dephosphorylation of phosphorylase A and consequently attenuating 

the breakdown of glycogen.

Other downstream targets for cAMP include cyclic nucleotide gated ion (CNG) 

channels, where the binding of cAMP (or cGMP) drives a conformational change that 

leads to the opening of an ion-conducting pore. CNG channels are important 

mediators in the visual and olfactory transduction pathways and are also present in 

many other tissues where they facilitate in regulating intracellular calcium levels 

(Richard and Gordon 2000; Zagotta and Siegelbaum, 1996). Another PKA 

independent pathway is that mediated tlirough cAMP-guanine nucleotide exchange 

factors (cAMP-GEFs) or exchange protein activated by cAMP (Epac). For the cAMP 

GEF Epacl, binding of cAMP to Epac stimulates guanine nucleotide exchange 

activity thereby activating the monomeric G-protein Rap-1. GTP bound Rap-1 

activates the kinase Raf-1 leading to the phosphorylation of the MAPK kinase MEK 

which then in turn phosphorylates and activates ERK (de Rooji et aL, 1998; Kawasaki 

et aL, 1998). ERK then translocates to the nucleus where it activates transcription 

factors through direct phosphorylation. ERKs are also thought to be involved in 

exocytosis and this particular pathway may therefore be important for cAMP 

mediated enhancement of cellular secretion in certain cell types (Ozaki et aL, 2000). 

Other targets for cAMP GEFs include the monomeric G-proteins Rap2 (Vanessa et

17



al, 1999) and possibly Ras (Pharm et aL, 2000), Through the latter cAMP would be 

able to activate additional kinase cascades such as the PI3-K/PDK1 pathway. It can be 

seen that there are many pathways that can be stimulated through the elevation of 

cAMP levels within a cell. The ultimate physiological response may be mediated 

through any one of these and indeed may be a result of complex regulation via the 

crosstalk between interdependent cascades.

The os subunit is known to mediate the opposite effect to % by inhibiting adenylyl 

cyclase. It was identified thiough the ability of certain hormones to decrease levels of 

intracellular cAMP in a S49 lymphoma cell line lacking known as eye'. Other a 

subunits are capable of mediating signalling thiough the activation of phospholipid 

signalling pathways, for instance cVq and an subunits activate phospholipase C. This 

causes hydrolysis of phosphatidyl inositol (4,5) bisphosphate (P IP 2 )  and leads to the 

generation of two second messengers, a water soluble product called inositol (1 ,4 ,5 ) 

trisphosphate (IP 3 ) and a membrane associated product called diacylglycerol (DAG). 

IP3 mobilizes the release of Ca^  ̂from intracellular stores localized in the endoplasmic 

reticulum. DAG activates the enzyme protein kinase C (PKC) which then 

phosphorylates various target proteins.

Another notable signal transduction system is that which is coupled to the activation 

of rhodopsin, the cGMP signalling system. In this case the generation of the signal is 

accompanied by a decrease rather than an increase in the intracellular levels of the 

signalling molecule. As mentioned previously, capture of a photon by retinal 

covalently bound to the rhodopsin receptor present in the rod cells of the retina results 

in receptor activation and adoption of the metarhodopsin II receptor conformation. 

This leads to activation of the G protein Gt (known as transducin): G«t interacts with a 

specific cGMP phosphodiesterase and this in turn becomes activated leading to an
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increase in the rate of cGMP breakdown in the rod cell These retinal cells contain 

cGMP dependent Na”̂ channels that remain open due to a cGMP binding site. Upon 

light activation of rhodopsin the levels of cGMP in the cell fall causing dissociation of 

cGMP from the ion channel, consequently closing it. The rod cells then hyperpolarize; 

this provides a signal for the release of a neurotranmitter which leads in turn to the 

propagation of a nerve impulse.

1.3.2. Attenuation of the signalling process.

An important aspect of the signal transduction mechanisms detailed above is that 

since a receptor in its activated conformation is capable of interacting with and hence 

activating many G protein molecules, a rapid amplification of the signal generated in 

response to agonist can be expected to ensue. It is clearly necessary that some form of 

regulation must be employed in order to attenuate such responses to agonist 

stimulation. On one level, control of second messenger generation is exerted through 

the G protein itself. Inactivation of the G protein requires hydrolysis of GTP to GDP 

in the binding cleft of G« and this causes G« to reassociate with (3y subunits, 

preventing further signalling. G protein a subunits possess an intrinsic GTPase 

activity that can be measured in vitro, however, this cannot usually account for the 

rapid termination of signalling observed in most systems. Interaction with effector 

systems can lead to an enhancement in this rate of GTP hydrolysis, such proteins are 

called GAPs (GTPase activating proteins). There are a number of downstream 

effectors that can function as GAPs: phospholipase C(3 stimulates the GTPase activity 

of Goii in vitro (Biddlecome et aL, 1996) and the y  subunit of cGMP 

phosphodiesterase stimulates GTP hydrolysis by G«t (Arshavsky et aL, 1992). Other 

proteins capable of functioning as GAPs are the RGS (regulators of G protein
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signalling) family of proteins. These are a superfamily of signal regulating proteins 

first isolated from yeast. From yeast two hybrid studies, a human protein, GAIP was 

identified possessing the 130 amino acid residue core that defines members of the 

RGS superfamily. Other mammalian RGS proteins have since been identified and 

these have been designated RGSl, RGS2, RGS3 and RGS4 etc. It has been shown in 

experiments using purified extracts of GAIP and RGS4 along with purified extacts of 

G«ii, G«i2, G«i3, G% and G«g that for all the G« subtypes tested, except G(%, RGS4 

and GAIP were capable of stimulating the rate of GTP hydrolysis by more than 40 

fold (Berman et aL, 1996).

The other level at which the extent of signalling through agonist activation of a GPCR 

may be modulated, is at the receptor itself (a phenomenon known as desensitisation). 

Desensitisation of GPCRs is a multi step process that begins by the receptor being 

functionally uncoupled from G protein and thereby terminating any further signalling 

events. The receptor is then internalised into intracellular compartments where 

thiough dephosphorylation by specific phosphatases the receptor can be resensitised. 

The receptor may then be recycled back to the plasma membrane where it is free to 

interact with more ligands and participate in further signalling events. Otherwise, 

when stimulation is chionically persistent, receptor downregulation occurs where the 

receptor density at the plasma membrane is decreased. The mechanisms by which this 

is achieved are thought to include redirection of internalised receptors to the lysosome 

where proteolytic degradation of the receptor leads to a concomitant loss in receptor 

number and destabilization of the mRNA transcripts for the GPCR causing a 

reduction in the receptor protein expression levels. It is these specific processes that 

shall now be described in more detail.
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1.3.3. Homologous and heterologous desensitisation.

1) Homologous desensitisation. This involves a specific attenuation of signalling 

through a receptor that has been exposed to an activating agonist. It is mediated 

primarily through the concerted action of two proteins: G protein receptor kinases 

(GRKs) which phosphorylate the activated receptor and arrestins that act to 

functionally uncouple G proteins from further interaction with the receptor (Figure 

1.1). Upon agonist activation of the GPCR conformational changes occur in the 

receptor allowing it to adopt a state that is capable of activating G protein. This active 

conformation also becomes a target for certain GRKs, a protein family that comprises 

seven different members that all share significant sequence homology. GRKs have 

been directly implicated in mediating the desensitisation of GPCRs. fri cells 

transfected with GRK cDNAs, resulting in the overexpression of these kinase 

molecules, it was found that second messenger production by various GPCRs (̂ 31, ^2 

and aiB-adrenoceptors, dopamine D1 receptor and thyroid stimulating hormone 

receptor) could be substantially attenuated (Pippig et a l, 1993; Freedman et al., 1995; 

Diviani et al, 1996). Furthermore, it was found that through the expression of 

antisense mRNA for GRK2 and 3 the degree to which the j82- adrenoceptor 

desensitised in response to agonist could be significantly decreased (Shihi and 

Malbon, 1994).

GRKs contain a central catalytic domain, an amino tenninal domain implicated in 

substrate recognition (that also contains an RGS-like domain) and a carboxyl temrinal 

domain thought to be involved in targeting the kinase to the plasma membrane. For 

GRKs 1-3 membrane targeting takes place only after stimulation of cellular receptors 

occurs, being localized in the cytosol in unstimulated cells. GRK-1 responds to light 

activation of rhodopsin in retinal cells to translocate to the plasma membrane and this
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Figure 1.1. The processes that underlie the desensitisation and internalisation of 

GPCRs in response to agonist activation.

Firstly ligand docking to the receptor binding site causes a conformational change that 

triggers exchange of GDP for GTP on the alpha subunit of a receptor associated 

heterotrimeric G protein. This then diffuses across the membrane laterally where it 

can interact with downstream targets and initiate signalling events. In response to 

receptor activation there is a rapid initial activation of PKA as intracellular cAMP 

levels are elevated. This leads to phosphorylation of the receptor on regions of its 

third intracellular loop and carboxyl terminal tail. Subsequent recruitment of GRKs to 

the plasma membrane leads to further phosphorylation events which promote the 

association of jS-arrestin molecules. These facilitate in the process of clatherin 

mediated receptor endocytosis into vesicles. A subsequent drop in pH within the 

lumin of the vesicle results in ligand dissociation and dephosphorylation of the 

receptor by GPCR specific phosphatases. This returns the receptor to its native state, 

the resensitised receptor can now recycle back to the plasma membrane where it can 

participate in further signalling events.
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is thought to be aided by a post-translational farnesylation of the kinase’s carboxyl 

terminal CAAX motif. GRK2 and GRK3 are both kinases that have been implicated 

in the desensitisation of the /32-AR. Their translocation to the plasma membrane 

seems to be mediated through their association with G protein subunits. It has been 

shown through in vitro experiments that incubation of purified GRK2 with a peptide 

corresponding to the sequence of the third intacellular loop of the M 3 - muscarinic 

receptor along with purified G(3y resulted in the formation of a functional ternary 

complex in which G^y acted as an adaptor protein (Guangyu et aL, 1997). G(3y acts in 

this case not only by facilitating the spatial translocation of GRK2 from the cytosol 

but also in positioning the enzyme directly on its substrate allowing phosphorylation 

to occur. Another factor that can influence the targeting of GRK2 and GRK3 to the 

plasma membrane is the binding of IP3 to a carboxyl terminal plekstrin homology 

domain (Pitcher et aL, 1995). Also, mitogen activated kinase (MAPK) 

phosphorylation of the carboxyl terminal of GRK2 which has been shown to decrease 

the kinase’s activity in response to activating ligands (Pitcher et aL, 1999). 

Translocation of GRK4 and GRK6  to the plasma membrane seems rather to be 

mediated by palmitoylation of cysteine residues present in the carboxyl terminal tail. 

This modification seem to be essential in facilitating translocation since the non- 

palmitoylated kinase is present only in the cytosol of the cell (Stoffel et aL, 1998). 

Upon interaction with their substrate receptors GRKs are thought to bring about 

phosphorylation of serine and threonine residues present in the third intracellular loop 

and carboxyl terminal tail. In support of this, it was seen through site directed 

mutagenesis of all the serine and tlireonine residues present in carboxyl terminal tail 

of the /32-AR or tluough similar mutagenisis of the third intracellular loop of the M2
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muscarinic acetylcholine receptor that GRK mediated phosphorylation was 

completely abolished (Bouvier et a l, 1998; Nakata et al., 1994).

It is not the phosphorylation of the activated receptor alone that causes its uncoupling 

from G-protein however. The abrogation of further signalling events is due instead to 

the interaction of the activated receptor with other types of cellular proteins known as 

arrestins. It is thought that the close interaction of an'estins with the phosphoiylated 

receptor prevents access of further G proteins to the receptor’s intracellular loops and 

COOH tail domain thus “arresting” the signalling process. There have been identified 

four different members of the arrestin family and these can be subdivided into two 

main groups based on sequence homology, tissue distribution and function: 1) visual 

arrestin and cone arrestin (X-arrestin or C-arrestin) and 2) |3-arrestins (|3-arrestinl and 

j3-arrestin2). Visual arrestin is primarily expressed in the rod cells of the retina with 

low expression in the pineal gland (Smith et a l, 1994), C-arrestin is present in both 

the retina and the pineal gland (Craft et al., 1994) whereas the ,3-aiTestins are 

ubiquitously expressed in tissues other than the retina and are primarily located in 

neuronal tissues and the spleen (Attramadal et al., 1992). A number of splice variants 

are Icnown to exist for visual arrestin, /3-arrestinl and j3-arrestin2 increasing the 

number of arrestins which may be functionally distinct (see Ferguson, 2001 for 

review). An'estins have been shown to bind preferentially to agonist activated and 

GRK phosphoiylated GPCRs and in vitro it has been shown that (S-anestin binding for 

the /32-AR is increased 10 to 30 fold by GRK phosphorylation (Lohse et aL, 1992). 

The enhanced affinity of ^-arrestins for GPCRs due to phosphophorylation on serine 

and threonine residues present on the carboxyl terminal tail and third intracellular 

loop seems to be specific for the action of GRKs since phosphorylation by other 

second messenger dependent kinases does not seem to enhance the affinity of
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arrestin for GPCRs. Clearly, since GRKs phosphorylate receptors on a number of 

different sites, arrestins must be able to recognize and interact with multiple receptor 

domains and conformations. The molecular stmcture of visual arrestin has been 

characterized in some detail and can be divided into three functional and two 

regulatory domains (Guervich et aL, 1995). The functional domains comprise a 

receptor activation domain located in the amino terminal portion of the molecule, a 

phosphate sensor domain also located in the amino terminus and a secondary receptor 

binding domain located in the carboxyl terminal portion of the protein. The two 

regulatory domains reside in either the carboxyl or amino terminal halves of the 

arrestin protein respectively. The molecular architecture of visual arrestin is arranged 

in such a way as to allow the phosphate sensor domain to fomi a polar core along with 

the amino-terminal and carboxyl-terminal regulatory domains (Gurevich et aL, 1995; 

Hirch et aL, 1999). From data obtained through both mutagenesis studies and from the 

crystal stmcture of visual aiTcstin it is thought that the arrestin carboxyl terminal tail 

interacts with this polar core in order to stabilize the resting state of the protein. 

Interaction with the phosphorylated carboxyl terminal tail of the agonist activated 

receptor leads to dismption of the interaction between the an-estin carboxyl terminus 

and the polar core. This conformational rearrangement of the amino and carboxyl 

terminal domains about the polar core of the arrestin molecule facilitates its 

interaction with the activated receptor (Hirch et aL, 1999).

2) Heterologous desensitisation. In heterologous desensitisation of GPCRs a distinct 

mechanism from that of the homologous pathway is employed in dampening the 

response of a receptor to activating ligand. It is achieved through phosphorylation of 

receptors via the enzymic action of the second messenger dependent kinases PKA and 

PKC both of which catalyse the transfer of a y- phosphate group to serine and
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threonine residues present in specific amino acid consensus recognition sequences. 

PKA is activated in response to elevated intracellular levels of cAMP. The iS2-AR 

contains two PKA consensus sequences, one in the third intracellular loop the other in 

the proximal region of the receptor’s carboxyl terminal tail. Many other GPCRs also 

contain PKA consensus sites in these regions. PKC is activated by receptors that 

couple to phospholipase signalling pathways and leads to the phosphorylation and 

desensitisation of many Gq and G, linked GPCRs. Any receptor that couples to these 

pathways can cause activation of these second messenger dependent kinases which 

are then capable of phosphorylating and hence desensitising a wide variety of GPCRs 

present in the cell. This is because agonist occupancy of and activation of potential 

substrate receptors does not seem to significantly enhance the phosphorylation 

kinetics of these kinases. In this manner many GPCR types may therefore be 

desensitised non-specifically in response to activation of a single GPCR type within 

the cell. This fonn of heterologous desensitisation is quite efficient with 

phosphorylation by PKA and PKC leading to a 40%-50% loss of receptor function. 

Interactions may occur between the two different desensitisation pathways, for 

instance GRK2 can be directly phosphorylated by PKC (Chuang et al., 1995). This 

phosphorylation has been shown to increase both the affinity of GRK2 for its 

substrate and the Vmax of its enzymic activity as well as increasing the desensitising 

potency of the kinase. It is probable that PKC interacts with GRÏC2 thiough directly 

binding to its pleckstrin homology domain, since PKC has been shown to bind to this 

domain in a number of different protein types. These interactions may have major 

implications for the mamier in which heterologous desensitisation is brought about.
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1,3.4. Internalisation and resensitisation of G protein coupled receptors 

Following on from the phosphorylation and desensitisation of many GPCRs there is 

often an associated sequestration of the receptors from the plasma membrane into 

small endocytic vesicles. This is a rapidly occurring process and usually takes place 

within a few minutes of receptor activation. Initially it was thought that the removal 

of receptors from the plasma membrane was part of the desensitisation process 

designed to attenuate signalling by spatially separating the receptors from G protein at 

the plasma membrane. However desensitisation is known to occur far more rapidly 

(less than 1 minute) than sequestration does and it is now thought that the role of 

receptor internalisation is more important in facilitating the dephosphorylation of the 

activated receptors and then returning them in a resensitised state back to the plasma 

membrane. Other roles for receptor internalisation are thought to include targeting of 

receptors to the lyzosome in response to a sustained treatment with agonist where 

degradation ultimately leads to a downregulation in receptor density. Also, it is now 

becoming clear that receptor sequestration is important for the activation of signalling 

pathways that are not mediated through the action of heterotrimeric G proteins but 

instead involve the activation of tyrosine kinase pathways that have classically been 

identified with growth factor receptor signalling.

The events that trigger receptor endocytosis have been somewhat obscure until recent 

years. Phosphorylation of GPCRs following their activation seemed a likely candidate 

for such a trigger mechanism and a number of studies have focused on trying to 

deteimine the role that phosphorylation plays in receptor internalisation. Many such 

experiments made use of dominant negative mutants of GRK in order to inhibit 

receptor phosphorylation. It was shown that a dominant negative mutant of GRK2 

could inhibit the phosphorylation and internalisation of the M2 muscarinic
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acetylcholine receptor in C0S7 cells (Tsuga et aL, 1994). Moreover, it was shown 

that overexpression of wild type GRK2 in the same cell type could enhance both the 

rate and extent of internalisation. However it was observed that similar experiments 

could not be repeated in either BHK-21 or HEK 293 cells (Pals-Rylaarsdam et aL, 

1995). It is likely that the discrepancies between these sets of experiments were due to 

higher expression levels of GRIC2 present in the HEK293 and BHK-21 cells 

preventing effective inhibition of phosphorylation with the dominant negative mutant 

since it has been determined that GRK2 expression levels vary gi'eatly from cell type 

to cell type (Aramori et aL, 1997) with the lowest GRK expression levels being found 

in COS7 cells (COS7< HEK 293 cells< RBL-2H3 cells). It has been confirmed that 

phosphorylation is an essential step for the internalisation of a number of receptors 

including the /32-AR (Ferguson et aL, 1995), the ATIAR (Smith et aL, 1998), the D2 

dopamine receptor (Itokawa et aL, 1996) and numerous others. Despite an obvious 

role for phosphorylation in mediating receptor internalisation it seems that it is not 

absolutely indispensable for endocytosis to occur. This was shown by an experiment 

where an internalisation/phosphorylation defective mutant of the ^2-AR was rescued 

by overexpression of either /3-aiTestinl or |S-arrestin2 within the same cells (Ferguson 

et aL, 1996). For most receptors then, it seems that internalisation is mediated through 

the concerted actions of both arrestin and GRK on the activated receptor target. In 

support of this contention it has been obseiwed that the extent to which the /32-AR can 

be internalised in different cell lines correlates well with the levels of GRK and (3- 

arrestin present (Menard et aL, 1997). It is probable that different receptor types have 

evolved so as to internalise according to the conditions within the cell in which they 

are naturally expressed. This is demonstrated by the fact that CXCRl is effectively 

internalised in response to agonist when expressed within the neutrophil-like RBL-
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2H3 cells in contrast to which, no internalisation can be observed in similar 

experiments carried out on HEK 293 cells (Barlic et aL, 1999). It is of note that RBL- 

2H3 cells express GRK2 and /3-arrestin2 at substantially higher levels than HEK 293 

cells and thus CXCRl may only internalise in the presence of high levels of these 

proteins.

The role of /3-arrestin in mediating receptor endocytosis has recently been elucidated 

in more detail. It is believed that j3-arrestin can specifically target receptors for 

endocytosis through the clathrin mediated endocytosis pathway. The involvement of 

clathrin in the internalisation of GPCRs was demonstrated through the use of a 

dominant negative mutant of dynamin, lacking in GTPase activity, to block 

internalisation of /32-AR (Zhang et aL, 1996). It has also been demonstrated that the 

/32-AR and |3-arrestins are colocalized with clathrin in clathrin-coated pits (Goodman 

et aL, 1996). /3-arrestin is thought to serve as an adaptor molecule directly linking the 

receptor with components of the clathrin internalisation machinery. For example, it 

has been shown that /3-arrestins can bind to both the heavy chain of the clathrin 

triskelion molecule and to the heterotetrameric AP-2 adapter complex. AP-2 is 

thought to be essential in linking the anestin bound receptor to clatlrrin since the 

interaction of /3-arrestin with the /32-adaptin subunit of AP-2 is essential for /32-AR 

internalisation (Lapoit et aL, 2000). For some GPCRs the clathrin-mediated pathway 

does not seem to be strictly necessary for endocytosis to occur since it has been 

obseiwed that the ATIAR and the M2 muscarinic acetylcholine receptor are capable of 

undergoing normal rates of internalisation in the presence of dominant negative 

mutants of j3-arrestin and dynamin (Zhang et aL, 1996; Volger et aL, 1999). However 

internalisation of these receptors is enhanced by the overexpression of GRIC and jS- 

an'estin molecules suggesting that these two receptor types are both capable of
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utilizing the clathrin route to endocytosis but that they exhibit redundancy in their 

choice of internalisation pathway. In the presence of negative inhibitors of clathrin- 

mediated endocytosis these receptors must be capable of utilizing other internalisation 

routes. As yet these alternative endocytic pathways have not been identified.

If it were the case that the desensitisation of GPCRs was an irreversible process, 

cellular signalling would soon be so perturbed as to prevent appropriate responses to 

external stimuli from occumng. As a possible mechanism for the prevention of such 

an occunence, it has been suggested that the internalisation of GPCRs is essential for 

the dephosphorylation, resensitisation and return of these same receptors back to the 

plasma membrane of the cell where they can participate in further signalling events. It 

is thought that the intracellular compartments used to internalise GPCRs are enriched 

in specific GPCR phosphatases that allow an endocytosed GPCR to be 

dephosphorylated and then returned to the cell surface in a pre-ligand exposed state. 

In this model arrestins would play an important role in not only mediating receptor 

desensitisation but also in resensitisation of the receptor. Evidence for this is seen in 

experiments where the /32-AR is not resensitised in C0S7 cells unless co-expressed 

with high levels of /3-aiTestin (Zhang et aL, 1997). The effective resensitisation of 

receptors seems to require the dissociation of /3-an'estin from the endocytic complex 

before interaction with the GPCR-specific dephosphorylases can occur, as is seen to 

be the case for the /32-AR (Anborgh et aL, 2000). It has recently been suggested that 

the ability of |3-an'estins to dissociate with the internalised GPCR complex is 

determined by the presence of clusters of serine and threonine residues present on the 

GPCR’s carboxyl temrinal tail. It has been shown through confocal microscopy 

studies that with respect to the strength and duration of the interaction between a 

given GPCR and arrestin molecules, the GPCR superfamily can be divided into two
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broad groups depending on whether or not they possess these serine/threonine clusters 

(Oakley et ak, 2000). Receptors that lack such clusters tend not to internalise into an 

endocytic complex with arrestin molecules and leave the arrestin localized in a diffuse 

distribution at the plasma membrane ((32-AR, /u-opioid receptor, endothelin type A 

receptor, dopamine DIA receptor and the cxib-AR). This was in contrast to receptors 

that did posses these serine/threonine clusters on the carboxyl terminal tail, where the 

arrestin was observed to remain associated with the receptor even after it had 

internalised (angiotensin II type 1A receptor, neurotensin receptor 1, vassopressin V2 

receptor, TRH receptor and substance P receptor). It has also been shown that for the 

V2 vassopressin receptor a serine cluster present on the carboxyl tenninal tail was 

responsible for preventing the recycling of the receptor (Innamorati et al., 1998) and it 

is likely that this will also be the case for other such receptors possessing 

serine/threonine clusters within the carboxyl terminal tail.

1.4. Constitutive activation of G protein coupled receptors.

It has become apparent over the last decade that GPCRs are capable of exhibiting 

constitutive activity and that they are capable of activating downstream effectors even 

in the absence of any activating ligand. This behaviour was first brought to light in 

experiments where the carboxyl teiminal portions of the third intracellular loops of 

the 0£ib-AR and the |32-AR were swapped. From these experiments it was anticipated 

that the specificity of G protein coupling with respect to the «ib-AR (Gq-coupled) and 

(32-AR (Gs-coupled) would be reversed. This however was not seen to be the case. 

Instead the mutant (32-AR was seen to produce elevated levels of cAMP production in 

the absence of any activating ligand when compared to the wild type /32-AR 

expressed at similar levels (Samama et al., 1993). Similar results were obtained with
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the 0 !ib-AR: the mutant receptor again exhibited a constitutively active phenotype with 

elevated levels of inositol phosphate production and downstream signalling even in 

the absence of agonists (Cottechia et aL, 1990; Allen et aL, 1991).

The mutant /32-AR had just four point mutations located at the distal end of the third 

intracellular loop (Figure 1.2). As well as exhibiting enhanced levels of basal second 

messenger production, the mutations were also seen to impart a number of 

characteristic properties that distinguished it from the wild type receptor (Samama et 

aL, 1993). For instance, it was obseiwed that cAMP generation via both the CAM and 

the wild type /32-AR increased as a function of receptor expression levels. However 

the CAM ^2-AR produced basal levels of cAMP that were comparable to those 

produced by the wild type receptor in the presence of isoprenaline. In addition to this 

it was seen that the mutant had an increased affinity for full agonists such as 

isoprenaline and adrenaline that was about 25-fold in excess of that seen at the wild 

type receptor. Furthennore, by determining the intrinsic activities of a range of partial 

agonists and comparing these values with the affinities of the same ligands for the 

CAM ^2-AR, it could be seen that agonist affinity correlated well with the intrinsic 

activity. When the affinities of the various agonist compounds for both wild type and 

CAM /32-AR were compared in the presence of Gpp(NH)p which causes uncoupling 

of the receptor from G protein, it was shown that the preference in affinity for mutant 

over wild type receptor was greatest for full agonists, intermediate for partial agonists 

and undetectable for very weak agonists and antagonists.

Through the consideration of these experimental results, Samama and co-workers 

were able to show that the established model proposed to explain the mechanism of 

interaction between ligand, receptor and G protein was not adequate to explain their 

new findings. This model, known as the ternary complex model, is composed of four
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Figure 1.2. Diagrammatic representation of the /32-AR, showing its seven 

transmembrane domain helices, its extracellular and intracellular loops as well 

as its amino and carboxyl terminal domains.

Highlighted (in grey) are the 4 amino acid residues present in the carboxyl terminal 

portion of the third intracellular loop that were altered upon exchanging this portion 

of the receptor with that of the analogous region derived from the «ib-AR. The 

phenotypic attributes of this CAM (32-AR are described in the main text. This receptor 

was used extensively in the studies presented herein.
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equilibrium reactions governed by the law of mass action and described by affinity 

constants (Figure 1.3a). There are three species involved in the dynamic equilibrium, 

hormone (H), receptor (R) and G protein (G). The two equilibrium constants K and M 

are independent of one another since the binding of R to H does not effect the binding 

of R to G and vice versa. The other two constants oK and oM are interdependent 

however, since the binding of H depends upon the quantity of RG and similarly the 

binding of G depends upon the abundance of HR. In this manner, the a  factor 

describes to what extent the binding of H to R effects the binding of G to R and vice 

versa. This model has three intrinsic properties: 1) an agonist-independent formation 

of an active complex is predicted by the model, the magnitude of which is governed 

by the constant M; 2) the ratio between the affinities of H for the two forms of the 

receptor R and RG is defined by the dimensionless factor a and therefore reflects the 

ability of H to promote the formation of the HRG complex, a is consequently a factor 

that defines a ligand’s molecular efficacy; 3) the affinity of H for R in the absence of 

G protein is described by K and is not therefore related to the a factor describing 

molecular efficacy and from this it is expected that ligand affinity and molecular 

efficacy are not correlated. Upon application of this model to the CAM /32-AR it was 

possible to explain a number of their experimental observations, for example, the 

increased basal activity of the mutant could be explained through an increase in the 

value of the M constant. However, an increase in the M constant could not by itself 

account for the increased affinity of the mutant receptor for agonists even in the 

absence of G-protein coupling. Such behaviour would require an additional increase 

in the value of the K constant. However, the model does not predict any correlation 

for affinity (K) of an agonist for the G-protein uncoupled receptor (R) and the 

molecular efficacy (a) as was observed in the experimental results. The ternary
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Figure 1.3. Theoretical models describing the mechanisms of interaction between 

GPCR, hormone and G-protien.

A) The ternary complex model describing the interaction of a receptor (R) with G 

protein (G) and hormone (H). The model is more fully described in the main text. B) 

The extended ternary complex model where the receptor can exist in two forms, 

inactive R and active R*. The capacity of the receptor to undergo this isomérisation is 

determined by the constant J. C) The cubic ternary complex model, where both active 

Ra and inactive Ri states of the receptor are allowed to interact with G protein but only 

HRaG mediates a response.
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complex model was then deemed inadequate in explaining the observed results with 

CAM /32-AR. The researchers then proposed a new model called the extended ternary 

complex model (Figure 1.3b) to better explain their findings. In this model, the 

assumption is made that the receptor exists in equilibrium between two confonnations 

designated R and R*. In this new model it is assumed that only the active 

conformation of the receptor is capable of coupling to the G protein hence HR*G is 

the only ternary complex that can be foraied. This model also introduces two new 

dimensionless constants, J, which describes the extent of the spontaneous 

isomerization between R and R*, and /3 which describes the extent to which the 

binding of ligand influences the R-w-R* equilibrium. In the model the capability of 

ligand to bring about the formation of the ternary complex depends on two factors: 1) 

the ability of H to facilitate the transition from R to R* as described by the constant /3; 

2) the capacity of H to bring about stabilization of the ternary complex, as detennined 

by the constant a. It was shown that this model was adequate in accounting for the 

observed correlation between the intrinsic activity of a ligand in the G protein 

uncoupled state and its affinity for the receptor.

To demonstrate, consider the fractional occupancy of the receptor H, given by 

[H]/([H] + Rapp) where Kapp= (1/K). (1+J.(1+M[G])/(1+ ^J.(l+oM[G]). From this 

equation it can be seen that J affects the apparent dissociation constant of a ligand for 

the receptor and that the extent to which this occurs is dependent upon both the 

constants a  and (3. For neutral antagonists a  and (3 are equal to 1 and therefore Kapp is 

equal to 1/K, the true Kd for the compound. For an agonist a and /3 are gi'eater than 1 

and this will lead to a decrease in Kapp, the extent of which depends on the size of a 

and ^  (J ?©). When a and ^  are greater than 1 increasing values of J result in a 

decrease in Kapp, enhancing the apparent affinity of the agonist for the receptor. Thus
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the extended ternary complex model explained what the simple ternary complex could 

not, namely, that increased constitutive activity of a receptor leads to an enhanced 

affinity of that receptor for agonists, the extent of which is determined by the efficacy 

of the ligand. In addition for this, a shift in the equilibrium towards the right,

represented by an increase in J, along with the constant M, promotes the formation of 

the ligand independent complex [R*G]. Thus an increase in the value of J results in an 

enhanced basal activity as is observed with constitutively active receptors.

Since this initial work identifying two constitutively active GPCRs with point 

mutations present in their third intracellular loops, many more CAM GPCRs have 

been identified with mutations in a wide range of structural domains. One important 

ramification of these efforts has been the discovery that many antagonists are capable 

of suppressing the basal second messenger production of these CAM receptors. Such 

antagonists have the opposite effect to agonists and have therefore become laiown as 

inverse agonists and it is now believed that most antagonists possess at least some 

degree of inverse efficacy and that only a few antagonists may be classed as being 

truly neutral. The mechanism of action of inverse agonists has generally been 

interpreted within the context of the extended ternary complex model described 

above. From this model, given that the R* confonnation is favoured by CAM 

receptors, if inverse agonists favour the R conformation of the receptor it might be 

expected that inverse agonists would have a decreased affinity for CAM GPCRs in a 

mamier contrary to agonists. Consistent with such a theory are experiments that have 

been carried out on a CAM Q!2a-AR where the efficacious inverse agonists yohimbine 

and rauwolscine were observed to be 1.7 and 2,1 fold weaker for the CAM «2A-AR as 

compared to wild type (Wade et aL, 2001). These results were consistent with 

approximately 50% of the CAM Q!2A"AR being in the R* state as compared to the wild
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type receptor where there was no detectable constitutive activity in the absence of 

agonist. Other evidence that suggests that inverse agonists are capable of stabilizing 

the R state of the receptor comes from analysis of desensitisation-associated events at 

CAM GPCRs. It has been demonstrated that CAM GPCRs are not only capable of 

producing increased basal levels of second messenger molecules but they are also 

constitutively phosphorylated and desensitised. This was first demonstrated for the 

CAM (32-AR possessing four point mutations in its third intracellular loop, where the 

receptor was purified and then reconstituted into phospholipid vesicles. It was found 

that in such preparations this CAM jS2-AR was phosphorylated by GRK in a manner 

comparable to the agonist occupied wild type receptor (Pei et aL, 1994) lending 

support to the contention that the mutated receptor was equivalent to the active R* 

confonnation which stimulates Gs and is a substrate for GRKs. In further studies it 

was shown that this constitutive phosphorylation could be suppressed 50% by the 

inverse agonist ICI 118 551 and it was also shown that the affinity of this compound 

for CAM /32-AR was reduced when compared with the wild type receptor (Samama et 

aL, 1994). These findings all suggest that inverse agonists are capable of binding to 

and stabilizing the R conformation of the receptor in preference to the R* 

conformation. Another method that has provided evidence that inverse agonists 

stabilize a distinct conformation of the GPCR to agonists comes from studies that 

monitor the fluorescence of a reporter gioup incorporated into the native /32-AR 

(Gether et aL, 1996). Here, it was seen that inverse agonists were capable of inducing 

fluorescence changes that were opposite to those induced by agonist compounds. One 

interpretation of these results is that the native receptor is isomerising between the R 

and R* states and that inverse agonists and agonists are capable of enriching these
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respective conformations. Such observations are ail consistent with the extended 

ternary complex model.

From consideration of the various models put forward for the purpose of shedding 

light upon the possible mechanisms of receptor activation, it has been proposed that 

inverse agonists can suppress receptor signalling by three possible methods (Strange, 

2002). 1) Inverse agonists bind to and stabilize the R state of the receptor in

preference to R* (a<l). 2) Inverse agonists bind to either of the G protein uncoupled 

states of the receptor R and R* in preference to the G protein coupled state, R*G 

(/3<1). 3) Inverse agonists do not redistribute different states of the receptor but 

instead switch the receptor to an inactive conformation that can exist in both G protein 

coupled and uncoupled forms but is, in both cases, inactive. An extended model, 

called the cubic ternary complex model (Figure 1.3c), predicts this final postulate and 

suggests that there will be an inactive conformation of the receptor that can 

nonetheless couple to G protein (Weiss et aL, 1996). Experiments that have attempted 

to discriminate between these possibilities have mainly employed radioligand binding 

teclmiques. From the extended ternary complex model, it should be the case that 

agonists will label the R*G state with high affinity whereas radiolabelled inverse 

agonists will label the R and/or R* states with higher affinity. Given this, it might be 

expected that the affinity for an inverse agonist when measured through competition 

binding with a radiolabelled agonist would be different to that determined in 

competition binding studies with a radiolabelled inverse agonist. This is provided that 

there is an excess of R to G in the experimental system such that there are substantial 

subpopulations of R*G and R/R* respectively. Such studies have been carried out 

using the 5-HTia receptor where the inverse agonist spiperone shows a clear 

difference in affinity for the receptor in the presence of a radiolabelled inverse agonist
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than it does in the presence of radiolabelled agonist (McLoughlin and Strange, 2000). 

This is consistent with an enrichment of the G-protein uncoupled form of the receptor 

as predicted by the extended ternary complex model (postulates 1 and 2). However, 

the inverse agonist methiothepin does not show any difference in affinity for the 

5HTia receptor, whether in the presence of radiolabelled agonist or inverse agonist. 

This finding supports the view that upon binding of the inverse agonist to the receptor 

there is a switch to an inactive conformation that can still couple to G proteins but 

which is incapable of activating them (postulate 3). Taken together these experimental 

obsei-vations suggest that inverse agonists may be capable of inactivating receptors by 

more than one distinct mechanism.

Another phenomenon that has been associated with constitutively active receptors is 

that of receptor upregulation upon prolonged exposure to ligands. This was initially 

noted in studies with the CAM |32-AR. With this mutant receptor it was observed that 

typical expression levels in mammalian cells were markedly lower than those seen 

with wild type receptors. It was found that the expression levels of CAM /32-AR could 

be increased upon exposing the cells expressing the CAM receptor to sustained 

treatment with betaxolol (Samama et aL, 1994). It was further observed in studies 

where expression levels of CAM /32-AR in NG108-15 cells were monitored in both 

the presence and absence of betaxolol that these upregulation events took place in the 

absence of any alteration in the levels of mRNA encoding the receptor protein 

(MacEwan and Milligan, 1996). It was at first thought that this upregulatory effect 

was a consequence of the inverse efficacy of the antagonist ligand. In experiments 

focusing on the /32-AR it was observed that betaxolol, an inverse agonist of high 

efficacy, was capable of upregulating both wild type and CAM versions of the 

receptor with the upregulatory effect being far more pronounced for the CAM
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receptor (MacEwan and Milligan, 1996). Similarly another /32-AR inverse agonist 

called sotolol was able to produce a marked upregulation of the CAM receptor as well 

as a modest increase in the number of ligand binding sites for the wild type receptor. 

In contrast to this a neutral antagonist called alprenolol was incapable of inducing an 

upregulation of either wild type or CAM /32-AR. Subsequent studies on this receptor 

type have since indicated that these observed increases in receptor number following 

prolonged exposure to ligands were not dependent on the inverse efficacy of the 

ligand. It was shown that the CAM /32-AR, when expressed in insect Sf9 cells was 

capable of being effectively upregulated by either betaxolol or the agonist 

isoprenaline (Gether et al., 1997a). It was further demonstrated that this upregulatoiy 

effect was the result of an extension in the half-life of the CAM /32-AR molecule in 

the presence of either agonist or antagonist, as demonstrated on purified extracts of 

the receptor protein. Also, from the results of Chapter 5 presented herein, it can be 

seen that a range of agonists were capable of inducing upregulation of CAM /32-AR 

when receptor number was monitored as a function of light output from a luciferase 

tagged /32-AR fusion construct. Viewed in retrospect, it may have been the case that 

in the experiments with alprenolol, where no upregulation was obseiwed, not all of the 

ligand was effectively washed out of the membrane extracts and this consequently 

lead to an inhibition in binding of the [^H]-radioligand to the receptor and an 

underestimation of the receptor number. This hypothesis is strengthened through 

observations that alprenolol was capable of upregulating a /32-AR-GFP fusion protein 

using confocal analysis (McLean et al., 1999). In addition to the CAM /32-AR, a wide 

variety of GPCRs have been shown to be upregulated in response to a sustained 

treatment with ligands and these are detailed in the discussion section of Chapter 5, as
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are the mechanisms and structural determinants believed to underlie the upregulation 

process.

The upregulation of receptors, especially wild type receptors, in response to inverse 

agonists may have important physiological implications pertaining to the therapeutic 

administration of drugs. This stems from the fact that long-term drug therapies with 

antagonists may cause receptor upregulation and hence lead to increased tolerance of 

the patient to that particular drug therapy. This has been observed in patients after 

prolonged treatment with the histamine H2 receptor inverse agonist cimetidine where 

drug tolerance and increased H2 receptor sensitivity occur following withdrawal (Smit 

et aL, 1996; Alewijnse et aL, 1998).

1.5. Dimerization of G protein coupled receptors.

1.5.1. Dimerization of opioid receptors.

The function of GPCRs and their mechanisms of activation have been described 

above under the assumption that the stoichiometry of interaction between ligand, 

receptor and G protein is 1:1:1. Concerning the mechanisms by which GPCRs 

functionally couple to G protein and traffic to the plasma membrane of the cell, there 

is now substantial evidence that this may be an oversimplification. It is now believed, 

thi'ough a diverse aiTay of studies that have employed a wide variety of techniques, 

that GPCRs exists as dimers or higher order oligomeric an*ays when expressed within 

mammalian cells. In this respect GPCRs are not atypical of other transmembrane 

receptor proteins. For example, single transmembrane domain growth factor receptors 

such as epidermal growth factor receptor (EGF) are known to dimerize in response to 

ligands. The direct association of the two proteins is essential for the initiation of the 

signalling events that eventually result in cell proliferation and growth. Although
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traditional models depict GPCRs as being monomeric entities there has been in 

existence, for some quite considerable length of time, evidence suggestive of the 

contrary. For no other type of GPCR is this better exemplified than for the opioid 

receptors. Opioids have a wide range of biological effects including analgesia, miosis, 

bradycardia, sedation, hypothermia and depression of nerve reflexes. Principally 

however, they have been the focus of intense research interest in the pharmaceutical 

industry due to their ability to relieve pain by inhibiting neurotransmitter release fi'om 

dorsal root ganglion projections in the dorsal horn of the spinal cord. Three subtypes 

of opioid receptor, fi, ô and /£, have been identified based upon their specificity of 

binding to different ligands. These have been subsequently shown also to differ in 

their distribution and function. A large number of opioid receptor subtypes have been 

identified through their differential ability to bind specific radiolabelled ligands. For 

example, the 6-opioid specific compounds naltrindole, naltriben and BNTX were used 

to identify two distinct 6-opioid subtypes (Jiang et a l, 1991; Mattia et a l, 1991). The 

number of subtypes identified for the opioid receptors exceeded the number of opioid 

genes discovered (only three) corresponding to the original p, 6 and k receptor types. 

The question that then naturally arose was this: if there only exist, in total, three 

cDNAs for the opioid receptor family of proteins, why were there so many different 

subtypes distinguishable through ligand binding experimental procedures? It was 

unlikely that the answer to this question was that there existed many splice variants of 

the opioid receptors and that these same splice variants exhibited distinct 

pharmological properties. This was an inference derived from the following 

observation: that although a splice variant of the p-opioid receptor was identified 

(MORlb) that differed horn the original in the length and amino acid sequence of the



carboxyl tenriinal tail (Zimprich et al., 1995), it presented a phannacological profile 

that was essentially similar to the previously cloned p-opioid receptor.

Functional evidence seemed to indicate that opioid receptors were capable of 

interacting, and that the ability of the different opioid receptor types to interact might 

form the basis of subtype specificity. Evidence that the p-opioid receptor and 6-opioid 

receptor could interact was obtained from the observation that delta selective agonists 

could modulate morphine-induced analgesia (Vaught and Takemori, 1979). This was 

backed up by pharmacological evidence, where it was observed that the moderately 

delta selective ligand leucine enkephalin (Leu-Enk) functioned as a non-competitive 

inliibitor of the slightly p selective ligand naloxone. Leu-Enk was observed to 

decrease the maximum binding of radiolabeled naloxone in saturation binding 

experiments without an apparent decrease in affinity of the compounds (Rotliman and 

Westfall, 1981, 1982). The researchers postulated that a population of the 6-opioid 

receptors complexed to /x-opioid receptors caused this, where, through an allosteric 

inhibition mechanism, binding of naloxone to the complexed /x-receptors was 

inhibited. Early biochemical evidence supporting the existence of opioid receptor 

interactions were provided by studies that made use of Rhodamine conjugated 

enkephalin analogues to label 6-opioid receptors at the cell surface (Hazum et al, 

1979). These studies revealed that the receptors tended to cluster at the cell surface 

and that this clustering could be abolished through the application of low 

concentrations of DDT, leading to the formation of a uniformly diffuse pattern 

instead. This suggested that disulphide bonds might be important in mediating these 

associations.

Despite these early indications that opioid receptors were capable of interacting it was 

not until relatively recently that the phenomenon was given serious attention. Over the
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past decade, with the development of molecular genetic cloning and advancements in 

biochemical techniques, evidence supporting dimerization of opioid receptors has 

accumulated rapidly. Some examples follow:

A study making use of sodium dodecyl- sulphate polyacrylamide gel electrophoresis 

(SDS-PAGE) showed that the 6-opioid receptor expressed in mammalian cells 

produced a band of about twice the molecular weight that was expected for the 6- 

opioid receptor, indicative of a dimeric species. Through the co-expression of 

differentially tagged receptors it could be shown via precipitation with an antibody 

directed against one of the epitopes and detection with an antibody directed against 

the other epitope, that this band was indeed a dimeric species and not a complex 

consisting of the 6-opioid receptor and another protein of similar size (Cvejic and 

Devi, 1997). These dimers were shown to be unstable in the presence of SDS and 

required a crosslinking molecule to strengthen the complex, suggesting that the 

interactions were ionic in nature. It was also shown that pre-incubation with certain, 

although not all, types of agonist were capable of destabilising the strength of the 

dimeric complex and that this preceded receptor sequestration. These results 

contrasted with those obtained from similar experiments carried out on the /c-opioid 

receptor where the dimer complex, as detected via SDS-PAGE, was unaffected by the 

presence of selective ligands (Jordan and Devi, 1999). The molecular weight band 

representing the dimeric species was also resistant to SDS and was sensitive to 

reducing agents suggesting that k-opioid receptor interactions were mediated through 

disulphide bonds. It was subsequently shown that the K-opioid receptor and 6-opioid 

receptor could heterodimerize using the differential tagging co-immunoprecipitation 

technique, although no interaction between the k-opioid receptor and the /x-opioid 

receptor could be demonstrated (Jordan and Devi, 1999). Like the K-opioid receptor
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homodimers these were found to be SDS resistant and sensitive to reducing agents. It 

was also observed that the k-ô homodimer exhibited a pharmacology that was distinct 

from either %-opioid or 6-opioid receptors alone. It was observed that the x-6 

homodimer lost its affinity for selective agonists (DPDPE and U-69593) as 

determined through competition binding studies with [^H]-diprenorphine, whereas 

non-selective ligands retained their ability to displace the radioligand. It was fuither 

shown that in the presence of both selective ligands together, the ability to displace 

[^H]-diprenorphine was restored (Jordan and Devi, 1999). Complexing of the 6-opioid 

receptor with the k-opioid receptor was also seen to have effects on the internalisation 

properties of the receptors. Specifically, the 6-opioid receptor, which nonnally 

internalises in response to the agonist etorphine was unable to internalise in response 

to this ligand when co-expressed with the /c-opioid receptor. Another observed effect 

of K-Ô co-expression included a leftward shift in the dose dependent inhibition of 

adenylyl cyclase in response to simultaneous stimulation with both selective ic and 6- 

opioid agonists when compared to treatment with either agonist alone. Again using 

SDS-PAGE techniques, interactions between the 6-opioid receptor and the /x-opioid 

receptor have been demonstrated (George et al, 2000). It was shown that, as was the 

case for /c-6 interactions, /x-6 heterodimers exhibited a pharmacological profile that 

was distinct from that seen by expressing 6-opioid receptor or /x-opioid receptor alone. 

When /X and 6-opioid receptors were co-expressed, highly selective agonists for either 

receptor were seen to have reduced potency and altered ranlc order for affinity 

whereas less selective ligands such as leucine enkephalin and endomorphine-1 had an 

enhanced affinity. The researchers attributed this alteration in the pharmacological 

profile to the generation of a novel ligand binding site generated through the 

interaction of the two receptor types. In their study, George and co-workers also
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showed that co-expressed (i and 6-opioid receptors were insensitive to pertussis toxin 

treatment, suggesting that the jx-ô heterodimer was capable of coupling to a G protein 

distinct from G;. These interactions between [i and 6- opioid receptors are likely to be 

of physiological relevance since studies on the dorsal root ganglia and measurement 

of the frequency of action potential firing in single neurones has shown that both fx 

and 6- opioid receptors co-localize in the same cells (Egan and North, 1981; Fields et 

al., 1980; Zieglgansberger et al, 1982). It is probable then, that the large number of 

opioid receptor subtypes observed in vivo result from the direct interaction of different 

opioid receptor types. In support of this hypothesis, it should be noted that k - ô  

receptor complexes which were seen to bind non-selective ligands such as 

bremazocine and ethylketocyclazocine with high affinity but were unable to bind the 

highly selective /(-agonist U69593 resemble, with regards to their pharmacological 

profile, previously described kappa2 receptor subtypes found in guinea pig brain 

(Audiger et al., 1982; Nock et al., 1988; Zuldn et al, 1988).

1.5.2. Dimerization of the /32-adrenoceptor.

The well-characterized /32-AR has also been the focus of many investigations 

concerning the dimerization of GPCRs. Initial studies again made use of epitope 

tagged versions of the wt /32-AR to perform co-immunoprecipitation experiments. /32- 

AR was shown to be consistutively dimerized in an interaction that was resistant to 

SDS treatment (Herbert et al., 1996). It was found, in contrast to studies focusing on 

the 6-opioid receptor that pre-incubation with agonist compounds led to a stabilization 

of the dimeric complex and that the reverse was the case when exposed to inverse 

agonist prior to SDS-PAGE analysis. The researchers were also able to implicate one 

of the transmembrane domains as being important in mediating these interactions.
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When the ^2-AR was expressed in the presence of a peptide mimicking the sequence 

of transmembrane domain VI of the receptor it was found that both dimerization and 

agonist-induced activation of cAMP were inhibited. Together these results suggested 

that for the (32-AR, dimerization was an important event in receptor activation and 

that biological activity of the receptor might be conferred through conversion of the 

receptor from a monomeric to a dimeric state.

One of the main detractions of the above-described experiments involving the peptide 

derived from TM VI was that it was not clear exactly how the peptide brought about 

adenylyl cyclase inhibition. It may have been due to the peptide inhibiting the 

dimerization of /32-AR or alternatively it could have been a result of the inactivation 

of the monomeric form of the |32-AR through formation of a “pseudodimer” with the 

peptide. The dimeric form was subsequently shown to be the active receptor 

conformation in studies where the wild type /32-AR was shown to be capable of 

functionally rescuing a non-palmitoylated and constitutively desensitised mutant of 

the /32-AR (Herbert et aL, 1998). This functional rescue was most likely to be 

attributable to the direct interaction between the wild type and mutant ^2-AR since it 

was possible to co-immunoprecipitate these two receptor types from cell extracts 

where they had been co-expressed.

1.5.3. Heterodimerization of the GABAb receptor: how GPCRs can function as 

mutual chaperones in facilitating cell surface delivery.

The 6-opioid receptor and the /32-AR are both class A receptors. A class C receptor 

for which the evidence for dimerization is unequivocal is the GABAb receptor, which 

plays a major role in neurotransmission. In native tissues GABAb receptors modulate 

the activity of specific ion channels including inwardly rectifying K’*' channels
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(GIRKS) and N- and P/Q type Ca^  ̂channels. The GABAbRI receptor was eventually 

identified and cloned through the use of a high affinity antagonist and was shown to 

be a member of the GPCR superfamily. However, GABAbRI was found to exhibit 

poor coupling to both GIRK channels and adenylyl cyclase. Publication of the 

sequence for this receptor led to an intensive search for other receptors that shared 

sequence homology with the originally isolated cDNA for GABAbRI . This resulted 

in the identification of a receptor sequence called GABAbR2 that exlhbited 35% 

sequence homology with GABAbRI and was also a member of the GPCR 

superfamily. A number of lines of evidence seemed to indicate that the fully 

functional form of the GABAb receptor consisted of a heterodimer between these two 

identified 7TM proteins. It was determined that the mRNA for GABAbRI and 

GABAbR2, in rat tissue, were present in the same neuronal cells (Jones et al, 1998; 

Kaupman et a l, 1998). It was also observed that upon co-expression of GABAbRI 

and GABAbR2 there was an up to tenfold increase in agonist potency as compared to 

expression of GABAbR2 alone (Kaupman et aL, 1998). Direct evidence for the 

interaction of these two receptor types was provided by yeast two hybrid cross 

experiments, where screening of the carboxyl teraiinal tail of GABAbRI using a 

human brain cDNA library identified GABAbR2 as a protein that had a high affinity 

for this region of GABAbRI (White et aL, 1998; Kuner et aL, 1999). In addition to 

this, co-expression of GABAbRI and GABAbR2 allowed a robust coupling to 

GIRKs, stimulation of [^^S]GTPtS binding and inhibition of forskolin-stimulated 

cAMP accumulation. In short, tlrrough the co-expression of GABAbRI and 

GABAbR2 a receptor with a pharmacological profile that was similar to that reported 

for native GABAb receptors present in rat brain was engendered. This restoration of 

GABAb functional activity appears to be linlced to the peculiar trafficking properties
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of the two G ABA receptor types. Previous reports had attributed the poor functional 

activity of GABAbRI to its inability to tai'get efficiently to the plasma membrane, the 

receptor being retained as an immature glycoprotein within the cell (White et aL, 

1998). It is believed that association of GABAbRI with GABAbR2 allows successful 

cell surface expression of the GABAb receptor to occur. Evidence for this was 

obtained from studies using FACs analysis to determine proportions of GABAbRI 

present on the cell surface when expressed alone or co-expressed with GABAbR2 

(White et aL, 1998). From all of this corroborative data, it seems almost certain that 

the GABAb heterodimers are pre-fonned in the endoplasmic reticulum and that they 

are tightly associated upon their transit to the plasma membrane. As yet there has 

been no evidence to suggest that this association is in any way influenced by the 

presence of agonists/antagonists. The mechanism by which GABAb receptors 

dimerize appears to be unique in that it involves the interaction of coiled-coil «-helical 

domains within the carboxyl terminal tails of the receptors (Mitrovic et aL, 2000). It 

has been demonstrated that the intracellular retention of GABAbRI was mediated 

through an RXR(R) retention motif present on the carboxyl terminal tail (Margreta- 

Mitrovic et aL, 2000). The researchers further showed that the masking of this 

retention motif led to the successful cell surface delivery of the heterodimeric unit. 

This view of GABAb receptors acting as mutual chaperones is not unique within the 

field of GPCR pharmacology. A similar role has been attributed to a group of single 

transmembrane domain proteins called RAMPs. These have been implicated in 

facilitating the maturation of the calcitonin receptor and the calcitonin receptor like 

receptor, both members of the class B category of GPCRs. It has been demonstrated 

that the pharmacological profile, and the pattern of glycosylation of these receptors 

can be modified according to the type of RAMP that they are co-expressed with and
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that this is due to a direct association within the endoplasmic reticulum (McLatchie et 

aL, 1998). Other evidence that GPCRs can function as mutual chaperones in 

facilitating the correct delivery of the receptor complex to the surface of the cell 

comes from studies which used several N-terminus truncation mutants of the V2 

vasopressin receptor, to analyse the effect of co-expressing such mutants with the 

wild type receptor in COS-7 cells (Zhu and Wess, 1998), It was found the mutants 

were capable of inhibiting the function, ligand binding and cell surface expression of 

the wild type V2 receptor. Furthennore, these tmncation mutants did not interfere 

with the function and trafficking of other receptors such as the /32-AR and the D1 

dopamine receptor. These observations strongly indicate that the specific interaction 

of GPCRs occurs in the endoplasmic reticulum and that this facilitates the correct 

folding of the receptor, an essential pre-requisite for receptor export.

The intracellular retention of GPCRs within the endoplasmic reticulum may have 

important physiological consequences in vivo. For instance, it has been determined 

that there are eight splice variants of the «ia-AR present in the human liver (Cogé et 

aL, 1999). Three of these give rise to receptors that possess all seven transmembrane 

domains, the other five are truncated receptors that lack TM VII. When transiently 

expressed in COS-7 cells the truncation mutants are seen to be impaired in both 

regards to their capacity to bind ligands and their ability to induce signal transduction 

and were exclusively localised intracellularly. This was in contrast to the frill length 

receptors that were unimpaired in their capacity to bind ligands or mediate signal 

transduction and which were seen to be present both at the cell surface and also inside 

the cell. Co-expression of each of the «ia-AR truncation isoforms with the original 

7TM «ia-AR led to an inhibition in receptor signalling, ligand binding and cell 

surface expression of this original, presumably through interaction of the isoforms
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prior to export from the endoplasmic reticulum (Cogé et aL, 1999). The selective co­

expression of truncated receptors along with full length GPCRs in different body 

tissues may therefore represent a novel pathway whereby the biological properties of 

a GPCR can be regulated.

Recent experiments have shown that the constitutive interaction between the 

GABAbRI with GABAbR2 receptors is essential not only in facilitating correct 

trafficking to the plasma membrane, it is also a prerequisite for maintaining the 

receptor in an appropriate functional state. Co-expression of GABAbRI with a mutant 

of GABAbR2 where the N-terminal domain was substituted for that of GABAbRI 

was seen to result in a receptor that responded to ligands in an aben'ant way. Exposure 

to GABA led to an inhibition, rather than an activation of GIRK channels and the 

complex between GABAbRI and the mutant receptor exhibited an elevated 

constitutive activity (Margreta-Mitrovich et aL, 2001). It was proposed that the N~ 

terminus of GABAbR2 may normally suppress the signalling of GABAb and that 

binding of GABA to the N-terminal PBP domain of GABAbRI relieves this 

inhibition. It was also proposed that the inhibition of GABAbRI signalling via the 

mutant GABAbR2 could be a reflection of the fact that the PBP domain of GABAbRI 

can provide an inefficient inhibitory effect upon its partner only when in the GABA 

bound state.

1.5.4. Various GPCRs: their ability to dimerize as determined via SDS-PAGE 

and the pharmacological/physiological consequences thereof.

Thi'ough the differential tagging of GPCRs, subsequent co-immunoprecipitation and 

SDS-PAGE analysis has (in addition to the GABAb receptor, opioid receptors and /32- 

AR) been used to demonstrate a variety of interactions, both homomeric and
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heteromeric, between GPCRs. Such studies are usually accompanied by binding and 

functional data to provide additional information concerning the nature of the 

interactions. There are numerous examples of these, a selection of which shall now be 

presented.

Among the class A receptors the dopamine D2 receptor has been shown to exist both 

as a monomer and a dimer when expressed within mammalian cells. In experiments 

similar to those performed for the ]32-AR, it was demonstrated that peptide sequences 

derived from the TM regions VI and VII of the dopamine D2 receptor were capable of 

disrupting the strength of the dimeric complex as revealed by SDS-PAGE (Gordon et 

aL, 1996). Similarly, by co-immunoprecipitation, oligomerization of the dopamine D3 

receptor has also been demonstrated with bands appearing on SDS-PAGE that were 

indicative of both dimerization and tetramerization (Nimchinsky et aL, 1997). This 

was obtained from the analysis of endogenously expressed receptor present in rodent 

and primate brain tissue. The dopamine D3 receptor was also shown to oligomerize 

with a naturally occurring truncated D3-like protein termed D3nf. It is thought that 

D3nf could be responsible for targeting the dopamine D3 receptor to specific 

locations within the dentritic tree. Also, since D3nf seems to influence the assembly 

of the D3 receptor it is probable that alterations in D3nf would have important 

consequences for neurotransmission. Numerous other GPCRs have been 

demonstrated to dimerize in this manner e.g. homo-oligomerization of the histamine 

H2 receptor (Fukushima et al., 1997), homodimerization of the metabotropic 

Glutamate receptor-1 (class C family receptor) (Ray and Hauschild, 2000; Tsuji et aL, 

2000), homodimerization of CCR2 (Rodriguez-ffade et aL, 1999), heterodimerization 

between CCR2 and CCR5 (Mellado et aL, 2001) as well as homodimerization of 

CCR5 (Vila-Coro et aL, 2000).

56



As well as heterodimerization between receptors that are fairly closely related 

GPCRs, more distantly related receptor types have been shown to exhibit interactions, 

of which the association that occurs between the ATIAR and the bradykinin B2 

receptor shall serve as an example. These two GPCRs are known to couple to distinct 

types of G protein, G«i (ATIAR) and G«q (bradykinin 8% receptor) respectively. They 

are also known to be functional antagonists: angiotensin II is a vassopressor 

(increasing vascular contractility and blood pressure) whereas bradykinin is a 

vasodepressor (decreasing vascular contractility and blood pressure). It was foimd that 

upon co-transfection of ATIAR with the bradykinin B2 receptor that the potency and 

efficacy of angiotensin II was increased and that the potency and efficacy of 

bradykinin was decreased (Pfieffer et aL, 2001). The physiological relevance of these 

interactions was tested by reducing the levels of bradykinin B2 receptor expression in 

smooth muscle cells that endogenously expressed both types of receptor through the 

use of anti-sense oligonucleotides (Abdalla et aL, 2000). This caused a significant 

decrease in the levels of angiotensin II stimulated increase in intracellular Câ "̂  

without any alteration in the levels of ATIAR expression. These results show that the 

interaction of distantly related GPCR types could have an important role in mediating 

signalling events in vivo. Other interactions between distantly related GPCRs include 

reported interactions between the /32-AR and both the 6-opioid and /(-opioid receptors 

(Jordan et aL, 2000). An interaction has even been reported between the adenosine A1 

receptor (class A) and the metabotropic glutamate receptor (class C), where the 

heteromeric complex was isolated from cerebellar neuronal cultures and from cells 

co-transfected with differentially epitope tagged receptors (Cimela et aL, 2001).
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1.5.5. Evidence for dimerization of GPCRs obtained from functional 

rescue/complementation experiments.

Another line of enquiry that has contributed to our knowledge of GPCR dimerization 

is that of functional rescue/complementation experiments. These are of a similar sort 

to those described previously for the /32-AR, where upon co-expression of a wild type 

and a mutant receptor the wild type was seen to rescue the aberrant phenotype of the 

mutant. In such studies the interaction is inferred from the functional rescue rather 

than being directly demonstrated. These types of experiment have recently been 

applied to the luteinizing hormone receptor. This is a GPCR that essentially consists 

of two halves, an N-terminal extracellular domain (exodomain) and a C-terminal 

membrane associated portion (endodomain). Binding of the hormone to the 

exodomain causes receptor activation through interaction with the endodomain. It was 

demonstrated that co-expression of a binding defective mutant (mutation in the 

exodomain) with a signal defective mutant (mutation in the endodomain) resulted in 

restoration of ligand binding and signalling of the receptors whereas this was not 

observed when either receptor was expressed alone (Lee et aL, 2002). This f

observation suggested that the exodomain of one receptor was capable of interacting 

with the endodomain of another receptor, implying a very close interaction between 

the two. Similar types of experiments have been used to provide evidence that the 

somatostatin receptor subtypes ssti and ssts interact. The wild type ssti receptor, 

which is incapable of binding the ligand SMS- (201-995) was co-expressed with a 

carboxyl tenninal tail deletion mutant of the ssts receptor, which was capable of 

binding to SMS- (201-995) but was defective in its ability to signal. Exposure of the 

co-transfected cells to SMS- (201-995) lead to a dose dependent inliibition of 

forskolin stimulated cAMP production (Rochville et aL, 2000).
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Touching upon this issue of functional complementation, a certain study of interest 

focusing upon chimeras between the «2c- adrenoceptor and the M3 muscarine 

acetylcholine receptor should not be omitted. In this study the TM domains I-V and 

VI-VII were swapped to generate the chimeric receptors [«2c(TM I-V)-M3(TMVI-VII) 

and M3(TMI“V)- «2c(TMVI-VII)]. When transfected alone neither chimera was able 

to bind to selective muscarinic or adrenergic ligands. However upon co-expression the 

ability of these receptors to bind ligand and mediate signalling events was restored 

(Maggio et aL, 1993).

1.5.6. Detection of GPCR dimerization using biophysical techniques.

The biophysical technique known as resonance energy transfer has been in use for 

quite a considerable time in the field of biochemical research. This involves 

monitoring of the non-radiative transmission of energy from one fluorescent molecule 

(a donor) to another (an acceptor) and is characterised by a loss of fluorescence 

(quenching) at the donor fluorophore and a resultant emission peak emitted via 

excitation of the acceptor fluorophore (see Chapter 3 for in depth discussion). These 

non-radiative events only occur when the donor and acceptor fluorophores are in very 

close proximity to one another (typically 50-100Â) and the technique has been used in 

the past to accurately detennine intennolecular distances and to elucidate whether or 

not protein molecules are capable of interacting with one another. In recent years, 

with the advent of molecular cloning technology, it has become possible to apply 

these techniques to receptor protein molecules being expressed in living cells. This 

can be achieved by in-frame ligation of mutant versions of the GFP molecule derived 

from the jellyfish Aequorea victoria to provide appropriately donor and acceptor 

tagged receptor chimeras. Alternatively, antibodies that have been conjugated to
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fluorescent dyes can be used to label the extracellular face of GPCRs that have been 

genetically modified to incorporate specific epitope tags. These techniques have now 

been applied to a number of GPCRs in order to provide evidence for dimerization. 

Homodimerization of the dopamine D2 receptor has been demonstrated through the in 

frame ligation of cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) 

to the carboxyl terminal tails of both the long and short isofonns of the receptor. Co­

expression of the respectively tagged receptor types revealed significant levels of 

energy transfer between both long and short isoforms of the receptor which suggested 

that this GPCR existed at least in a partly dimerized state when expressed in 

mammalian cells (Wurch et al., 2001). The extent of dimerization could be increased 

through the presence of the agonist compound (-)-NPA, an effect that was seen to be 

dose dependent. These findings would seem to lend their support to the notion of 

dimerization playing a role in receptor activation as has been suggested for the /32- 

AR. It should here be noted however that these agonist induced increases in the extent 

of energy transfer may not necessarily imply that the ligand has increased the 

dimerization status of the receptor. This is because the efficiency of energy transfer is 

not only related to the distance between the donor and acceptor fluorophores but is 

also determined by the relative orientation between these two molecules. As a 

consequence of this, it may be the case that ligand binding to the receptor induces a 

confoiTnational change that results in a receptor orientation that is more conducive to 

the non-radiative transfer of energy and hence this results in a greater obseiwed 

magnitude of energy transfer. In further experiments it was shown that by introducing 

an untagged version of the dopamine D2 receptor into the transfection mixture with 

the CFP and YFP tagged chimeric constructs, energy transfer between the chimeras 

could be effectively abolished (Wurch et al., 2001). In this experiment both the long
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and short isoforms of the dopamine D2 receptor were seen to reduce energy transfer 

between short form CFP and YFP tagged versions of dopamine D2 receptor, 

suggesting that heterodimerization between splice variants could occur. It was further 

demonstrated, as a control, that no reduction in energy transfer occurred when an 

unmodified /32-AR was introduced into the co-transfection mixture in a similar 

manner as before. Evidence that the thyrotropin receptor exists as a dimer has been 

provided through the constmction of receptors differentially tagged with the GFP 

variants RFP and YFP (Latif et aL, 2001). Although the close spatial proximity of the 

receptors was demonstrated in this study, no ligand induced increases in energy 

transfer were reported. Photobleaching FRET has been used to demonstrate that 

homodimerization of the somatostatin receptor SSTR5 occurs (Rochville et al., 2000). 

Photobleaching is the loss of fluorescence that is observed when a fluorescent 

molecule is exposed to an excitatory wavelength of light over a prolonged period of 

time. If there is energy transfer between the excited fluorophore and an acceptor 

molecule the photobleaching process will occur less rapidly because there has been 

introduced into the system a new non-radiative pathway directing energy away from 

radiative photoemission. To take advantage of this system the donor acceptor pairing 

of fluorescein and rhodamine were used to label hemagglutinin (HA) specific 

antibodies. HA tagged SSTR5 was then expressed in CHO-Kl cells and then 

incubated in the presence of either fluorescein-conjugated mAB or both fluorescein 

and rhodamine conjugated mAB together in order to label the cell surface receptors. 

The decay in photobleaching in single cells was then measured through imaging via 

confocal microscopy. There was a significant slowdown in the rate of photobleaching 

observed in the cells where SSTR5 had been labelled with both donor and acceptor 

fluorophores, in comparison to cells where the receptor was labelled with just the
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fluorescein molecule alone (Rochville et aL, 2000). The researchers took this 

observation to indicate that the SSTR5 receptors were in sufficiently close proximity 

to allow energy transfer to occur between the fluorophores. It was further 

demonstrated that addition of agonist to the system resulted in significant increases in 

the observed FRET efficiencies between donor and acceptor fluorophores.

An alternative, but related, system to FRET has recently been developed, called 

bio luminescence resonance energy transfer (BRET), which was the system of choice 

for the studies presented herein. The BRET system is described fully in Chapter 3. 

Briefly, in this system the fluorescent donor molecule is substituted with a 

bio luminescent one, called coelenterazine. In this case the excitation energy for the 

donor molecule is provided not through absorbance of a photon of light, but instead 

thi'ough the oxidation of the coelenterazine molecule that is achieved through its 

interaction with a luciferase enzyme derived from the marine organism Renilla 

reniformis. The acceptor in this system is a red shifted mutant version of the GFP 

from A. victoria (eYFP). In-frame ligation of Renilla luciferase to the carboxyl 

terminal tail of one GPCR and similar ligation of eYFP to the carboxyl tenninal tail of 

another receptor allows the close proximity of such tagged receptors to be detected 

when co-expressed within mammalian cells thr ough monitoring of the energy transfer 

that occurs between Renilla luciferase and eYFP. Other researchers have also adopted 

this system and used it successfully to detect protein-protein interactions between 

GPCR molecules. Of note are studies carried out on the /32-AR where this receptor 

was shown, tlrrough analysis of the light emission spectmm obtained from cells 

expressing both Renilla and eYFP tagged forms of the /32-AR, to be corrstitutively 

dimerized (Angers et aL, 2000). It was also shown that the presence of the agonist 

isoprenaline was capable of increasing these levels of energy transfer, an effect that
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could be blocked by the presence of the antagonist propranolol. Similarly this 

technique has been applied to the thyrotropin releasing hormone receptor (TRHr). 

Again, it was demonstrated using BRET that these receptors are consitutively homo­

oligomerized and that the extent of this oligomerization could be increased through 

exposure to TRH (Kroeger et aL, 2001). Furthermore it was established that inclusion 

of untagged TRHr in the transfection mix could abolish energy transfer in a manner 

similar to the experiment described for the dopamine D2 receptor (above). The self­

self interactions observed with the TRHr seemed to be specific since no energy 

transfer was observed when the eYFP conjugated TRHr was co-expressed with 

Renilla conjugated gonadotropin releasing hormone receptor (GnRHR). Also, 

inhibition of BRET was not observed upon inclusion of untagged GnRHR into a 

transfection mixture of TRHr-Rluc and TRHr-eYFP. One concern with these types of 

biophysical studies is that increases in energy transfer could be due to clustering of 

receptors into vesicles as sequestration proceeds in response to receptor activation by 

agonists. It was shown that this was not the case for TRHr since the increases in the 

BRET signal in response to ligand were maintained, even in the presence of a 

dominant negative version of dynamin, named Dyn K44A that inhibits sequestration. 

Another receptor for which dimerization has been investigated using BRET is the 

cholecytokinin receptor (CCKr). This is a class A GPCR that binds to the small 

peptide hormone CCK and has numerous actions that effect nutrient homeostasis. 

BRET was used to show that this receptor existed in a homo-oligomerized state by co­

expressing CCKi'-Rluc and CCKr-eYFP chimeric constructs in COS cells (Cheng and 

Miller, 2001). Interestingly, in this study it was observed that upon addition of the 

peptide CCK there was a loss of energy transfer observed, an effect that was dose 

dependent. These results indicate that for this GPCR the presence of ligand in the
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receptor binding pocket favours the monomeric species of the receptor. Cheng and 

Miller also attempted to address the question of whether the changes in energy 

transfer observed were due to alterations in the conformation the receptor 

homodimers or whether they were truly due to monomerization (Cheng and Miller, 

2001). Their strategy was to not only position the donor and acceptor molecules on 

the carboxyl terminal tails of the receptors, but also to generate a construct where 

eYFP was placed on the amino terminal of the CCKr (eYFP-CCKr). When eYFP- 

CCKr was co-expressed with CCKr-Rluc (C-terminal modification) the same agonist 

induced changes in BRET were observed as before and this was also the case for two 

Rluc and eYFP tagged truncation mutants of the CCKr. Thus, since the loss of BRET 

was preserved upon co-expressing modified CCKi' with the position of the donor and 

accepter moieties varied, this seemed to lend credence to the presupposition that the 

loss in BRET was a consequence of ligand induced monomerization.
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Chapter 2

Materials and Methods

2.1. Materials

2.1.1. General reagents, enzymes and kits

Restriction enzymes-Roche molecular biochemicals and Promega.

Fast-link DNA ligation kit (Epicentre)- Contents: Fast-link DNA-ligase@ 2U/ul, 

lOX fast-link buffer (330mM Tris acetate (pH 7.8}, 660mM potassium acetate, 

lOOmM magnesium acetate, 5mM DTT), ATP lOmM.

Wizard Plus SV Minipreps DNA purification system - (Promega).

QIAGEN Plasmid Maxi Kit (Qiagen).

Contents: Buffer PI (Resuspension buffer), 50mM Tris.Cl, pH 8.0; lOmM EDTA; 

lOOug/ml RNase A.

Buffer P2 (lysis buffer), 200mM NaOH, 1% SDS

Buffer P3 (neutralization buffer) (3.CM potassium acetate, pH 5.5)

Buffer QBT (equilibration buffer) (750mM NaCl; 50mM MOPS, pH 7.0; 15% 

isopropanol)

Buffer QC (wash buffer) (l.OM NaCl; 50mM MOPS, pH 7.0; 15% isopropanol).

Buffer QN (elution buffer) (1.25M NaCl; 50mM Tris.CL, pH 8.5; 15% isopropanol).

RNase A (lOOmg/ml),

lOx QIAGEN-tip 500

QIAquick Gel Extraction Kit-Qiagen

Contents: Buffer QG (2 X 50ml)

Buffer PE 10ml plus 40ml ethanol 

QIAquick spin columns
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Collection tubes 2ml

Pfu DNA Polymerase -(Promega) plus lOX Reaction Buffer with MgS0 4 : (200mM 

Tris-HCl (pH 8.8 at 25°C), lOOmM KCl, lOOmM (NH4)2S0 4 , 20mM MgS0 4 , 1.0% 

Triton® X-100 and Img/ml nuclease-free BSA.)

dNTP’s (deoxynucleotide triphosphate set) (Roche)- lOOmM lithium sait solutions 

ofdATP, dCTP, dGTP, dTTP.

Antibiotics (Sigma)

Kanamycin A (C18H36N4O11), Stock solution lOmg/ml in distilled H2O.

Ampicillin (C16H19N3O4S), Stock solution lOOmg/ml in distilled H2O.

Geneticin (C20H40N4O10.2 H2SO4), Stock solution lOmg/ml in distilled H2O. 

Coelenterazine -  Nanolight technologies (Prolume).

Deep bine C -  Packard.

Luclite Luciferase gene reporter kit (Packard)- Contents: Luclite buffer 10ml (10 

aliquotes), lyophilized substrate (10 aliquotes).

Dual luciferase Reporter assay system (Promega)- Contents: 10x10ml Luciferase 

assay buffer II; 10x1 vial Luciferase assay substrate (lyophilized product); 10x11ml 

Stop and Glo buffer; 10x1 vial stop and Glo substrate; 10x25Oui stop and Glo solvent; 

30ml passive lysis buffer (5X).

2.1.2. Pharmacological compounds

5-HT 5-hydroxytryptamine hydrogen maleate (Sigma).

8-OH-DPAT (±) 8-Hydroxy-2-dipropylamino tetraline (Tocris).

Angiotensin II Asp-Arg-Val-Tyi-Ile-His-Pro-Phe, C49H69N1 3 0 12 (Sigma).

ATP 2’Monophosphoadenosine 5’-diphosphoribose sodium salt, C15H24N5O17P3 

(Sigma)

6 6



Betaxolol hydrochloride-l-[4-[2-(Cyclopropylmethoxy)ethyl] phenoxy] -3-

isopropylamino-2 -propanol (Tocris).

Calcitonin (human) peptide, C151H226N40O45S3 (Sigma).

Carbachol Carboamoylcholine chloride, C6H15CIN2O2 (Sigma)

CGP 12177 hydrochloride 4-[3-[(l,l-Dimethylethyl)amino]2-hydroxypropoxy]-l,3- 

dihydro-2H benzimidazol-2-one (Tocris).

Clenbuterol hydrochloride 4-Amino-«-(t-bntylaminomethyl)-3,5 ,-dichlorobenzyl 

alchohol (Tocris).

CPA -N^-Cyclopentyladenosine (Sigma).

DADLE-[D-Ala^, D-Leu^] Enkephalin (Sigma).

DPCPX 1,3, - Dipropyl-8 -cyclopentylxanthine (Sigma).

Formoterol (hemisulfate salt) (±) -(R*,R*)~N“[2-Hydroxy-5-[l-hydroxy-2-[[2-(4 

methoxyphenol) - 1 - methylethylene] amino]ethyl]phenyl] formamide (Tocris).

GNTI dihydrochloride 5 '~Guanidinyl-17-(cyclopropylmethyi)-6,7-dehydro-4,5a- 

epoxy-3,14-dihydroxy-6,7-2 ',3 '-indolomorphinan (Tocris).

GW590623X CCR2 antagonist (Astra-Zenecca Ltd).

ICI 118,551 hydrochloride (±)-(-l-[2,3-(Dihydro-7-methyl-lH-inden-4-yl)oxy]-3- 

[(l-methylethyl)amino] 2 -butanol (Tocris).

ICI 174 864 -  N,N, dialyl- Tyr-Aib-Aib-Phe-Leu (Tocris)

ICI-199, 441 hydrochloride 2-(3,4-Dichlorophenyl)-N-methyl-N-[(lS)-l-phenyl-2- 

(l-pynolidinyl) ethyl]acetamide (Tocris).

IL - 8  (Interlenkin 8) C-X-C family chemokine, 72 amino acids (Sigma). 

Isoproteronol (hemisnlfate salt) (l-[3’,4’-Dihydroxyphhenyl] -2-Isopropyl 

amino ethanol (Sigma).

MCH (Melanin concentrating hormone) peptide, Cio5Hi6oN3o026S4 (Sigma).
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Naloxone hydrochloride (5a)-4,5-Epoxy-3, 14-dihydro-17- (2-propenyl) morphinan-

6 -one (Tocris).

NEC A 5’-(N-Ethylcarboxamido) adenosine (Sigma).

Oxytosin « Hypophamine, Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Len-Gly-NHz (Sigma) 

PGE2 Protaglandin E2, C20H32O5 (Sigma)

Phentolamine 2- [N-(3-Hydroxyphenyl) -p-toluidinomethyl] -2- imidazoline 

hydrochloride (Sigma).

Procaterol hydrochloride (±)-erythro-8-Hydroxy-5- [1-hydroxy -2-(isopropylamino) 

butyl] carbostynil (Tocris).

Propranolol hydrochloride (RS)-l-[(1 -Methylethyl)amino]-3-(l-naphthalenyloxy)- 

2-propanol (Tocris).

PYY -C194H295N55O57 (gut hormone peptide) (Sigma).

Salbutamol sulphate a l  -[[(1,1 -Dimethylethyl)amino]methyl]-4-hydroxy-1,3

benzenedimethanol (Tocris).

SLGRL Ser-Leu-Ile-Gly-Arg-Arg-Leu-NH2 (Tocris).

Sotalol hydrochloride N-[4-[l-Hydroxy-2-[(l-methylethyl) amino]ethyljphenyl] 

methanesulphonamide (Tocris).

TRAP (thrombin receptor agonist peptide) Ser-Phe-Leu-Leu-Arg-Asn-Pro-Asn- 

Asp-Lys-Tyr-Glu-Pro-Phe (Tocris).

2.1.3. Tissue culture

DMEM- Dulbecco’s modified Eagle’s medium (Cell culture Lab fax, BIOS scientific 

publishers, 1992), with 4500mg glucose/L, sodium bicarbonate and pyroxidine 

hydrochloride (Sigma).
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DMEM-F12 Ham- Dulbecco’s modified Eagle’s medium F-12 Ham (Cell culture 

Lab fax, BIOS scientific publishers, 1992), with 15mM HEPES, sodium bicarbonate 

and pyroxidine hydrochloride (Sigma).

0.25% Trypsin-EDTA Solution- Contains 2.5g porcine trypsin and 0.2g EDTA in 

250ml (Sigma).

Optimem-l- A modification of Eagle’s minimal essential medium (Cell culture 

Labfax, BIOS scientific publishers, 1992), buffered with HEPES and sodium 

bicarbonate, and supplemented with hypoxanthine, thymidine, sodium pyiuvate, L- 

glutamine, trace elements and growth factors. Protein level is minimal (15ug/ml) with 

insulin and transferrin being the only protein supplements. Contains phenol red at a 

reduced level as a pH indicator (Gibco/Invitrogen).

L-Glutamine-lOOmM sterile filtered solution (lOQX concentrated) 

(Gibco/Invitrogen).

Freezing solution- 70% DMEM, 20% New born calf serum (NBCS) (Sigma), 10% 

Dimethyl sulfoxide (DMSO).

Flasks, dishes and pipettes-75cm^ tissue culture flask with vent cap 

(polystyrene/sterile) (Iwaki), 150cm^ tissue culture flask (polystyrene/sterile) (Iwaki). 

100mm tissue culture dish (polystyrene), sterile (Iwaki). 60mm tissue culture dish 

(polystyrene), sterile (Iwaki). 6 well dish with lid, flat bottom, well diameter 35mm 

(Tissue culture treated/sterile) (Iwaki). 24 well dish with lid, flat bottom, well 

diameter 16mm (tissue culture treated/sterile) (Iwaki).

Cryovials, sterile, non-pyi'ogenic, DNAse and RNAse free (Cellstar).

15ml and 50 ml polypropylene plastic tubes with lid (Sterilin).

25ml disposable serological pipette (Coming). 10ml disposable serological pipette 

(Coming). 5ml disposable serological pipette (Coming).
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2.1.4. Radiochemicals

[^H]-Diprenorphine-66Ci/mmol in ethanol solution (Amersham). 

[^H]-DihydroaIprenolol-40Ci/mmol in ethanol solution (Perkin-elmer lifesciences) 

[^H]-Naltrindoie-33Ci/mmol in ethanol solution (Perkin-elmer life sciences) 

1^H]-Adenme- IjxCi/fxi in ethanol solution (Perkin-elmer life sciences)

2.1.5. Oligonucleotides (Interactiva)

Primer melting temperature (Tm) was determined by the following equation:

Tm =[(number of G plus C) X 4°C + (number of A + T) X 2°C] (MJ. McPherson and

S.G. Moller, PCR, BIOS scientific publishers, 2000).

The Tm, is the temperature at which half the primers are annealed to their target

region. When calculating Tm only the part of the primer which would anneal to the

template was considered.

(1) (B2AR FWD) 5’-AAA AAG CTT GCC ACC ATG GGG CAA CGC GGG AA-3’ 

(Tm=56°C/ length=32 nucleotides)

(2) (B2AR REV) 5’-CCT CTC GAG CAG TGA GTC ATT-3’ (Tm=50°C/length=21 

nucleotides)

(3) (RLUC FWD) 5’-TCG CTC GAG ACT TCG AAA GTT TAT G-3’ (Tm=54°C/ 

length=25 nucleotides)

(4) (RLUC REV) 5’-GCG TCT AGA TTA TTG TTC ATT TT-3’ (Tm-56°C/ 

length=23 nucleotides)

(5) (PLUC FWD) 5’-GCC CTC GAG GAC GCC AAA AAC-3’ (Tm=46°C/ 

length=21 nucleotides)
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(6) (PLUG REV) 5’-TGC TCT AGA TTA GAG GGG GAT GTT-3’ (Tm=44°G/ 

length=24 nucleotides)

(7) (EYFP FWD B2) 5'-AGA GTG GAG ATG GTG AGG AAG GGG GA-3' 

(Tm=54°G/ length=26 nucleotides)

(8) (EYFP REV B2) 5’-TGA TGT AGA TTA GTT GTA GAG GTG GTG-3' 

(Tm=52°G/ length-27 nucleotides

(9) (BRETl+RF) 5'-GGG AAG GTT GGG AGG ATG AGT TGG AAA GTT TAT 

GAT-3' (Tm=54°G/ length-36 nucleotides)

(10) (BRETl+RR) 5'-GGG GGG ATG GGG GGG GGG TTG TTG ATT TTT 

GAG AAG TGG-3’ (Tm=54°G/ length-39 nucleotides)

(11) (BRETl+EF) 5’-G GGG GAT GGG GGG GTA GGG GTG GGG AGG ATG 

GTG AGG AAG GGG-3’ (Tm=54X/ length-43 nucleotides)

(12) (EYFPTr) 5'-AGA AAG GTT ATG GTG AGG AAG GGG GA-3' 

(Tm-54°G/ length-26 nucleotides)

(13) (DOR-1 FWD) 5'-AAA GGT AGG GGG AGG ATG GAG GAA AAG GTG 

AAT TGT GAA GAG GAG TTG GAA GGG GGG GGG TGG G-3’ (Tm-58°G/ 

length-64 nucleotides)

(14) (DOR-1 REV) 5’-ATA GGA TGG GGG GGG AGG GGG AG-3' (Tm=52°G/ 

length-23 nucleotides)

(15) (BARR2 FWD) 5'-AAA G GTA GGA GGG AGG ATG GGG GAG AAA 

GGG GG-3' (Tm=56°G/ length-33 nucleotides)

(16) (BARR2 REV) 5'-AAA ATG GGG GGG AGA GAA GTG GTG GTG ATA 

GT-3' (Tm-58°G/ length-32 nucleotides)

(17) (GGR2 FWD) 5'-AAA G GTA GGA GGG AGG ATG GTG TGG AGA TGT 

GGT T-3’ (Tm-56°G/ length-35 nucleotides)
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(18) (CCR2 REV) 5’-AAA TGG ATC CGC TAA ACC AGG GGA GAG TTG G- 

3’ (Tm=58°G/ length-31 nucleotides)

2.2. Buffers and Reagents

2.2.1. Buffers and reagents for molecular biology

LB Medium (Luria-Bertani Medium)

Bacto-tryptone lOg 

Bacto-yeast extract 5 g 

NaGl lOg

Dissolved in 950ml of distilled H2O, pH adjusted to 7.0 with 5M NaOH. Volume 

adjusted to IL with distilled H2O. Sterilized by autoclaving for 20mins at 151b/sq. in 

on liquid cycle.

LB Media (Luria-Bertani Medium) containing agar

Was made as above except for the addition of 15g/L of bacto-agar prior to 

autoclaving.

SOmM Calcium chloride

17.5g of GaGl2-6H20 was dissolved in IL of distilled H2O and sterilized by 

autoclaving for 20mins at 151b/sq. in on liquid cycle.

Ethidium bromide (lOmg/ml)

I g of ethidium bromide was added to 100ml of H2O and left stirring for several hours. 

Container was wrapped in magnesium foil and stored at room temperature.

Tris acetate (TAE) (SOX)

242g Tris base, 57.1ml glacial acetic acid, lOOmL 0.5M EDTA (pH 8.0). Made up to 

one litre with distilled H2O. 10ml of this stock was diluted in 450ml of H2O as 

required to make IX buffer.
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Gel loading buffer (6X)

0.25% bromophenol blue, 40% sucrose (w/v) dissolved in distilled H2O.

2.2.2. Buffers and reagents for biochemical assays 

Tris-EDTA buffer (T.E.l)

lOmM Tris Base O.lmM EDTA dissolved in distilled H2O, pH 7.4.

Tris-EDTA buffer (T.E.2)

50mM Tris Base ImM EDTA dissolved in distilled H2O, pH 7.4.

Tris-EDTA-Magnesium chloride buffer (T.E.M.)

50mM Tris Base, ImM EDTA, 12.5mM MgCb dissolved in distilled H2O, pH 7.4. 

Adenylyl cyclase assay medium

This consisted of DMEM minus semm buffered with HEPES (20mM pH 7.4) and 

containing the phosphodiesterase inhibitor ImM 3 -isobutyl-1 -methylxanthine 

(IBMX).

Adenylyl cyclase stop solution

5% trichloroacetic acid, ImM cAMP, ImM ATP made up in dH2 0 .

Phosphate buffered saline (PBS)

8 g of NaCl, 0.2g of KCl, 1.44g of Na2HP04 and 0.24 of KH2PO4, dissolved in 800ml 

of distilled H2O. The pH was adjusted to 7.4 with HCl, and the volume to one litre 

with distilled H2O. This was then sterilized by autoclaving for 20mins at 151b/sq. in 

on liquid cycle.

Hepes buffered saline (HBS)

0.95g of HEPES, 1.75g of NaCl was adjusted to a volume of 200ml with dH2 0 , pH 

was adjusted to 7.4 with HCl. This was then sterilized by passage thiough a 0.22 

micron filter.
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P.B.S. supplemented with magnesium and glucose

P.B.S was prepared as above to which was made the following additions: magnesium 

(0,1 g/1), glucose (1 g/1) and 2 pg/ml aprotinin (Sigma).

Extracellular buffer

125mM NaCl, 5mM KCl, 2mM CaCb, 2mM MgCh, 0.5mM NaH2P0 4 , 5mM 

NaHCOs, lOniM HEPES, lOmM Glucose, 0.1% BSA. Chemicals were dissolved in 

distilled water, the pH was adjusted to 7.4 and this was then sterilized by passage 

through a 0 .2 2  micron filter.

BCA protein assay buffer A

1% (w/v) Naz-BCA (4,4,- dicarboxy- 2,2, - Biquinoline), 2% (w/v) Na2C0 3 , 0.16% 

(w/v) K.Na tartate, 0.4% (w/v) NaOH, 0.95% (w/v) NaHCO], dissolved in dH2 0  and 

pH was adjusted to 11.25 with 50% NaOH.

BCA protein assay buffer B 

4% (w/v) CUSO4 dissolved in dHiO.

2.3. Molecular biology

2.3.1. LB plates

LB A was made as detailed above. After autoclaving, medium was swirled gently to 

distribute melted agar evenly throughout the solution. Medium was allowed to cool to 

50°C before addition of a thermolabile antibiotic. The final concentration depended 

on the type of antibiotic used, ampicilin (100/xg/ml), kanamycin (50/xg/ml) or 

geneticin (25/xg/ml). Media was mixed by swirling to avoid generating air bubbles. 

Plates (10cm petri dishes) could then be poured directly from the flask, using about 

25ml of liquid per dish. Any air bubbles were removed by flaming the surface of the

74



medium with a Bunsen humer before the agar had hardened, which normally took 

about 30 minutes. Once hardened, plates were inverted and stored at 4°C.

2.3.2. Preparation of competent bacteria

E. Coli, strain DH5a was used for all transfonnation procedures. A sample of DH5a 

was taken from glycerol stock via stabbing with a sterile pipette tip. This was used to 

inoculate a 3ml LB culture, which was grown for 16-20 hours at 37°C in a rotary 

shaker. Next day 1ml was used to inoculate 50ml (1 in 50 dilution) of LB and 

subsequently incubated for 2-3 hours at 37°C in a rotary shaker. A sample was then 

removed to a clear plastic cuvette and the O.D. at 600mn was determined using a 

spectrophotometer. Incubation of the 50ml culture continued until the O.D. was 

between 0.4 and 0.6 measured against a LB blank. Bacteria were then pelleted at 

3000ipm for 10 minutes in a swinging bucket rotor and then resuspended in 10ml (1/5 

volume) of ice-cold 50mM CaCfr. Bacterial cells were left for 30 minutes, then 

pelleted as before at 4°C, then resuspended in 4ml (1/12 volume) of ice cold 50mM 

CaCfr and left overnight at 4°C.

Next day glycerol stocks were prepared by adding 160/rl of the resuspension to 40/xl 

of glycerol (20% glycerol stock) in a sterile 1.5ml plastic microcentrifuge tube 

(Eppindorf). This was vortexed briefly to ensure complete mixing and then stored at 

-80°C until required.

2.3.3. Transformation of competent cells with bacteria

1) 200ul aliquots of competent DH5a were taken from -80°C storage and thawed on 

ice.
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2) Using a sterile pipette tip 50-500ng of plasmid DNA in a volume of 15ul or less 

was added to each tube and the contents then mixed by swirling gently. Tubes 

were left on ice for 30 minutes.

3) The tubes were then transferred to a water bath, which had been preheated to 42°C 

and heat shocked for 60 seconds.

4) Tubes were immediately transferred to ice and allowed to chill for 5 minutes.

5) 1ml of LB was added to each tube. Cultures were incubated for 60 minutes at 

37°C in a rotary shaker.

6) 3 3 Oui of each culture was transferred to a 100mm plate with LB A containing an 

appropriate antibiotic. A sterile bent glass rod was used to spread the bacteria.

7) Plates were left at room temperature for 20 minutes or until all the liquid had been 

absorbed.

8) Plates were inverted and left to incubate at 37°C. Colonies appeared after 12-16 

hours.

2.3.4. Preparation of plasmid DNA

This was performed according to the manufacturer’s instmctions, a brief outline is

provided below. For a more detailed explanation of the principal see Qiagen

purification handbook (Qiagen, 1999).

1) A single colony was picked horn a plate of transformed bacteria and used to 

inoculate a starter culture of 3ml LB containing appropriate selective antibiotic. 

This was incubated for 8-9 hours in a rotary shaker at 37°C.

2) The entire starter culture was used to inoculate a 400ml LB culture in a conical 

flask containing appropriate antibiotics. This was grown at 37®C for 12-16 hours 

with vigorous shaking.
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3) Bacterial cells were harvested by centrifugation at 6000rpm using a Beckman JA- 

14 rotor for 15 minutes at 4°C.

4) The bacterial pellet was resuspended in buffer P 1.

5) 10ml of buffer P2 was added and mixed by inversion 4-6 times then left for 5 

minutes at room temperature. This allowed lysis of the bacteria.

6) 10ml of chilled buffer P3 was added and again mixed by inversion and then left 

on ice for 20 minutes.

7) The sample was then centrifuged at lOOOOrpm using a Beckman JA-14 rotor for 

30 minutes at 4°C. The supernatant containing plasmid DNA was then filtered via 

pouring through mira-cloth.

8) A Qiagen-tip 500 was then equilibrated by applying 10ml of buffer QBT.

9) Supernatant from step 7 was then poured into the Qiagen tip and allowed to enter 

the resin by gravity flow.

10) The Qiagen tip was washed with 60ml of buffer QC.

11) DNA was eluted with 15ml of buffer QF.

12) The DNA was precipitated, by adding 10.5ml (0.7 volumes) of room temperature 

isopropanol to the eluate. This was mixed and centrifuged immediately at 17000 

rpm in a Beclonan JA-20 rotor for 30 minutes at 4°C. The supernatant was 

carefully poured off.

13) The DNA pellet was washed with with 5ml of room temperature 70% ethanol and 

then centrifuged immediately at 17000 i-pm in a Beclonan JA-20 rotor for 10 

minutes at 4°C.

14) The pellet was allowed to air dry for 10 minutes and then re-dissolved in 1ml of 

sterile distilled water. The quantity of DNA obtained was determined by 

measuring the absorbance at 260mn.
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2.3.5. Quantification of DNA

This was determined by spectrophotometric measurement of the amount of ultraviolet 

irradiation absorbed by the DNA bases.

In routine DNA measurements the stock DNA was diluted by a factor of 200 in sterile 

distilled H2O. The absorbance of this sample at 260nm was detemiined: one 

absorbance unit being equal to 50ug/ml of double stranded DNA (Maniatis, second 

edition). The sample concentration could then be detemiined using the following 

formula.

Sample concentration = OD260 x dilution factor (200) x 50ug/ml 

The purity of the sample was then determined by measuring the absorbance at 280nm, 

the ratio (OD260/OD280) provided an estimate of purity with a value of 1.8 representing 

a pure preparation. Typically, DNA samples gave a ratio in the range 1.6-2.0. This 

was adequate for all the procedures for which their use was required.

Otherwise, the amount of DNA in the sample could be determined using ethidium 

bromide fluorescent quantitation. Since the amount of fluorescence is equal to the 

total mass of the DNA, the quantity of DNA in the sample could be estimated by 

comparing the fluorescent yield of the sample with that of a series of Icnown standards 

(1Kb ladder DNA markers, Promega).

2.3.6. Digestion of DNA with restriction endonucleases

All DNA restriction endonucleases were obtaind from either Roche Molecular 

biochemicals or from Promega. One unit of restriction endonuclease activity was 

capable of completely digesting 1/rg of DNA in 60 minutes at the appropriate 

temperature. Volume activity of the enzymes (units/ul) ranged from 5-40. A typical 

reaction mixture is outlined below.
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l/xl of lug/ul plasmid DNA.

Ifxl of restriction enzyme (determined by restriction site to be cut).

2jitl lOX buffer (choice determined by enzyme used, according to manufacturers 

instructions).

15/xl of sterile distilled H2O.

The reaction was then incubated at 37°C in a water bath for 3-24 hours. Most 

enzymes required an incubation temperature of 37°C unless otherwise stated by the 

manufacturer.

2.3.7. Electrophoresis of agrose gels

A horizontal slab gel apparatus (Life technologies) was used for electrophoresis of 

agrose gels. This apparatus was so designed as to allow pouring of the gel directly on 

the electrophoresis platform.

1) The plastic tray was cleaned with distilled water and placed on the platform, 

where the open ends were sealed with two plastic wedges. A plastic comb was 

cleaned and placed in position above the tray.

2) 50ml of IX TAE buffer was prepared, to which was added 0.5g (1%) of 

electrophoresis grade agrose in a conical glass pyiex flask. The slurry was heated 

in a microwave oven until all the agrose had dissolved.

3) The solution was allowed to cool to about 60°C; 2/rl of ethidium bromide 

(lOmg/ml) solution was then added to give a final concentration of 0.4ju,g/ml.

4) All of the agrose solution was poured into the mould to give a gel thiclcness of 

about 5 mm.
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5) The gel was allowed to set completely which took 20-30 minutes, the comb and 

the plastic wedges were then removed. Enough TAE buffer was then added to 

cover the gel to a depth of about 1mm (250ml approximately).

6) DNA samples were mixed with a one sixth volume of gel loading buffer. The 

samples were then carefully loaded into the slots of the submerged gel using a 

sterile disposable micropipette tip.

7) The lid of the gel tank was then closed and leads attached so that the DNA would 

migrate towards the anode (red lead). A voltage of lOOV was applied across the 

electrodes.

8) After about 40 minutes when the gel loading buffer dye was about thi'ee-quarters 

of the way down the gel the electic current was turned off and leads removed ft om 

the gel tanlc. DNA bands stained with ethidium bromide could then be veiwed by 

ultraviolet light, and photographed using an UV transilluminator.

2.3.8. Purification of DNA from agrose gels

DNA bands of interest were located using an UV transilluminator and were excised 

from the agrose gel with a sterile disposable scalpel blade. Excised gel fi-agments 

were transfeired to a sterile Eppindorf tube. Recovery and purification of the fragment 

was achieved by using the QIAquick gel extraction kit, according to the 

manufacturors instruction, a brief out line of whieh is provided below.

1) The weight of the gel fragment was detennined using a tabletop balance, where 

lOOmg ~ lOOjUl.

2) 3 Gel volumes of buffer QG were added to the tube. This solubilizes the gel and 

provides appropriate conditions for binding of DNA fragments to the silica
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membrane of the QIAquick columns. This was then incubated at 50°C in a water 

bath for 10 minutes or until all of the gel-slice had dissolved.

3) 1 Gel volume of isopropanol was added and the solution mixed.

4) A QIAquick spin column was placed in a 2ml collection tube and the sample 

applied to the top of the column. This was then centrifuged for one minute at 

13000rpm in a tabletop microcentrifuge, the DNA absorbes to the silica 

membrane in high salt while contaminants pass through the column.

5) The flow thi'ough was discarded and the column was washed with 0.75ml of 

buffer and then centrifuged for 1 minute at IBOOOipm, to remove salts.

6) The flow through was discarded and the column centrifuged for an additional 

minute at 13000rpm to remove any residual buffer PE.

7) The flow through was discarded and the column transferred to a sterile 1.5ml 

microcentrifuge tube. 30-5Oui of sterile distilled H2O was then added and then 

centrifuged for 1 minute at 13000rpm. The low salt concentration allowed elution 

of the DNA.

2.3.9. Ligation of DNA fragments

Once plasmid DNA and PCR gel fragments had been digested and purified via the 

methods described above, the amount of DNA present in the samples was determined 

by ethidium bromide fluorescent quantitation. Ligation of digested PCR fragments to 

the digested DNA backbone was achieved using a Fast-link ligation kit (Epicenter). 

For ligations of DNA with cohesive ends the following reaction volumes were used:

1.5/d lOX Fast-linlc ligation buffer 

1.5/xl lOmM ATP
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X pi vector DNA 

X pi insert DNA

X pi sterile dH20 to a volume of 14pl 

Ipl Fast-link DNA ligase

Approximately 0.5pg of vector DNA was used per reaction. A vector to insert ratio of 

about 2 or 3 to one was typically aimed for, and multiple insert fragments could be 

used in a given ligation reaction. The reaction mix was left for 10-15 minutes at room 

temperature and then transformed into competent DH5a baeterial cells.

2.3.10. PCR

All reactions were carried out using Mastercycler gradient (Eppindorf), in 0.2ml PCR 

test tubes (Eppindorf). The particular conditions used in generating the PCR 

fragments depended on the gene fragment required (Table 2.1). All reactions had an 

initial stage where the sample was heated to 98°C for 2 minutes to ensure that the 

plasmid was completely denatured, and a final extension stage of 72°C for 2 minutes 

to ensure that all molecules were completely synthesised. The DNA polymerase pfu 

from the hyperthemiophilic archaebacterium pyrococcus furiosus, which has both 3’- 

5’ exonuclease proofreading activity and 5’-3’ exonuclease activity, was used for the 

synthesis of DNA strands.

The template DNA was always used at 30ng/pl. All reactions were made up to 50pl in 

a 0.2ml PCR tube as follows.

(a) 5pi of lOX PCR buffer

(b) 5pl of lOmM dNTPs

(c) 5 pi of primer 1 (lOpmol/pl)
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Table 2.1. The conditions employed in PCR amplification of various cDNA 

fragments used in ligation reactions.
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Gene

fragment

Forward

Primer

Reverse

Primer

Template

DNA

DMSO Melting

stage

Annealing

stage

Extension

stage

Number of 

cycles

P2-

adrenoceptor

(1) P2-AR 

fwd

(2) P2-AR 

Rev

P2-AR in 

pcDNA3

without 95°C/50

seeonds

42°C/60

seeonds

72°C 770 

seconds

20

P2-

adreiioceptor

(CAM)

(1) P2-AR 

fwd

(2) P2-AR 

Rev

(CAM) P2- 

AR in 

pcDNA3

without 95°C/50

seconds

42°C/60

seconds

72°C 770 

seconds

20

Rluc. 1 (3) Rluc 

fwd

(4) Rlue Rev pRLCMV without 95°C/50

seconds

42"C/60

seconds

72°C 750 

seconds

20

Plue (5) Plue 

fwd

(6) Plue Rev pGL3-basic

vector

without 95°C/50

seconds

42“C/60

seconds

72=C 760

seconds

20

eYFF, 1 (7)eYFP 

fwd B2

(8) eYFP 

rev B2

pEYFP without 95°C/50

seconds

42°C/60

seconds

72°C 750 

seconds

20

Rluc. 2 (9)

(BRET1 + 

RF)

(10)

(BRETl+RR

)

pRLCMV

without

95°C/50

seconds

42“C/60

seconds

72°C 750 

seconds

20

eYFP. 2 (H )

(BRET1 + 

EF)

(8) eYFP 

rev B2

pEYFP

without

95°C/50

seconds

42°C/60

seconds

72°C 750 

seconds

20

eYFP. 3 (12)

(EYFPTr)

(8) eYFP 

rev B2

pEYFP

without

95°C/50

seconds

42°C/60

seconds

12°C  760 

seconds

20

hDOR-1 (13)

DOR-I

fwd

(14) DOR-1 

Rev

hDOR-1 in 

pcDNA 4 without

95°C/50

seconds

56°C/60

seconds

72°C 760

seconds

20

P-arrestin 2 (15)

BARR2

FWD

(16) BARR2 

REV

Bovine P- 

anestin 2 in 

pcDNA3

added

95°C/60

seeonds

56°C/60

seconds

72°C 780 

seconds

28

CCR2 (17)

CCR2

fwd

(18) CCR2 

Rev

hCCR2 in 

pcDNA3 added

95°C/60

seconds

42°C/60

seconds

72°C 780 

seconds

35

Table 2.1.
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(d) 5 pi of primer 2 (lOpmol/pl)

(c) Ipl of template DNA (30ng/pl of plasmid)

(d) Ipl pfu polymerase

(e) 5pi DMSO (optional)

(f) dHzO (sterile) up to 50pl

2.4. Construction of fusion proteins

Stmctures and restriction sites used in cloning of all the constructs listed here are 

shown in Figure 1 (A-K). Any constructs mentioned in succeeding chapters, the 

construction of which is not detailed below, were made by other colleagues working 

within the same group as this author. The nucleotide sequence of all fragments 

generated via PCR amplification were verified to be comect via dideoxy-nucleotide 

sequencing (Leicester University).

2.4.1. Construction of wild-type and CAM bz-adrenoceptor/luciferase fusion 

proteins

Both human wild-type and CAM B2-adrenoceptor-/?e/7///i3 luciferase fusion proteins 

were generated. A B2-adrenoceptor fr agment was generated via PCR amplification of 

an existing B2-adrenoceptor DNA in pcDNA3. Generation of the CAM B2- 

adrenoceptor-fragment was also via the same PCR amplification of the CAM B2- 

adrenoceptor in pcDNA3. The mutations, which comprise the CAM sequence consist 

of four amino acid substitutions in intracellular loop 3 of the receptor. The primers 

used were as follows: (1) p2-AR fwd, which incorporates both a 5' Hindill cloning 

site and Kozak sequence. The reverse (2)P2-AR rev which incorporates an Xhol 

cloning site to allow linkage to the Renilla luciferase gene. Introducing the Xhol site
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Figure 2.1. The arrangement of genes coding for various chimeric proteins plus 

the cloning sites used to facilitate their construction.

Consti*ucts shown are (A) ^2-AR gene sequence fused to that of Renilla luciferase and 

cloned into pcDNA3, (B) the gene sequence for a constitutively active mutant of the 

/32-AR (|32~AR(CAM)) fused to that of Renilla luciferase and cloned into pcDNA3, 

(C) the j32-AR sequence fiised to that of enhanced yellow fluorescent protein (eYFP) 

and cloned into pcDNA3, (D) the thyrotropin releasing hormone receptor (TRHr) 

gene sequence fused to the eYFP gene and cloned into pcDNA3.1+, (E) the Renilla 

luciferase gene fused to the gene encoding eYFP cloned into pcDNA3 (IS=intergenic 

sequence), (F) The gene sequence for Renilla luciferase fused to that of a variant of 

green fluorescent protein (GFP2) and cloned into pGFPN3. (G) /3-arrestin2 fused to 

that of cyan NFP and cloned into the vector pAM-Cyan, (H) the gene encoding |8- 

anestin2 fused to that encoding red NFP and cloned into pAS-Red, (I) the gene 

encoding CCR2 fused to the cyan NFP gene sequence and cloned into pAM-cyan, (J) 

the gene sequence for CCR2 fused to that of yellow NFP and cloned into the vector 

pZS-Yellow, (K) the gene sequence for the 8-opioid receptor fused to GFP2 and 

cloned into the vector pGFPN2, (L) the gene sequence for the /32-AR fused to the 

firefly luciferase from Photinus pyralis and cloned into the vector pcDNAS.
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Figure 2.1.
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results in an insertion of a glutamate residue between the B2-adrenoceptor DNA and 

the Renilla luciferase. It also resulted in alteration of the last nucleotide in the amino 

acid coding sequence of B2-adrenoceptor (G->C). This did not alter the amino acid 

sequence as the new codon CTC still encodes leucine. Renilla luciferase (Rluc.l) was 

similarly generated via PCR amplification of a Renilla luciferase DNA cloned into 

plasmid pRLCMV (Promega). The primers used for amplification were (3) Rluc fwd, 

which incorporates an Xhol site at the 5' end of the gene to allow linkage to either the 

B2-adrenoceptor or the CAM B2-adrenoceptor fragment. The reverse primer, (4) Rluc 

rev, incorporates an site into the 3' end of the gene immediately downstream of 

the stop codon. Following PCR reactions the resultant fragments were digested with 

the appropriate enzymes and subsequently gel purified. The plasmid pcDNA3 was 

digested with Hindlll and Xbal to provide a recipient vector for the ligated fragments. 

Ligations were performed using Fast-link DNA ligation kit (CAMBIO) in which 

digested pcDNA3, B2-adrenoceptor (or CAM B2-adrenoceptor fragment) and Renilla 

luciferase fragments were mixed and ligated together.

2.4.2, Construction of p2-adrenoceptor-eYFP

PCR of the (32-AR gene fragment was achieved as for the p2-AR-Rluc construct. PCR 

of eYFP (eYFP.l) used foiward primer, (7) eYFP fwd B2, which incorporated a Hind 

III site and Kozac sequence, upstream of the gene sequence. The reverse primer, 

eYFP rev B2, incorporated an Xba 1 site immediately downstream of the gene 

sequence. Digestion and ligation of the fragments into pcDNA3 was performed as 

above. The |32-adrenoceptor in this construct had a cysteine to glutamate substitution 

in the last amino acid of the receptor sequence to facilitate cloning.
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2.4.3. Construction of TRHr-eYFP

TRHr-eYFP was constructed as follows. TRHr-GFP the constmction of which has 

been described previously (Drmota et al., 1998), was digested with Hind III and YSa I 

to excise the GFP fragment. PCR amplification of the eYFP DNA fragment (eYFP.3) 

was achieved using pEYFP (Clontech) as a template. The primer (12) eYFPTr, 

included a Hind III site immediately upstream of the eYFP gene. The primer (8) eYFP 

rev B2 was used to place an Xbal site immediately downstream of the stop codon at 

the end of eYFP.

2.4.4. Construction of BRETi and BRET2 positive controls

For BRETI+, PCR of Renilla luciferase (Rluc.2) used the primer (9) BRETl+RF to 

incorporate a Hind III site and a Kozac sequence upstream of the Rluc gene sequence. 

The reverse primer (10) BRETl+RR placed part of the intergenic sequence and a Bam 

HI site downstream of the Rluc coding sequence, also removing the Rluc stop codon 

to allow in frame ligation with eYFP. PCR of the eYFP gene sequence (eYYP.2) used 

the foiward primer (11) BRETl+EF, which placed a Bam HI site and part of the 

intergenic sequence upstream of the eYFP gene. The reverse primer (8) eYFP rev B2 

was used to place an Xba 1 site immediately downstream of the eYFP stop codon.

The PCR fragments thus generated were digested and ligated to form an in frame 

fusion construct with a 13 codon intergenic sequence (5’-CGG GCC CGG GAT CCG 

GAT CCC CGG GTA CCG GTC GCC ACC-3’) linldng the Rluc and eYFP gene 

sequences. This chimeric protein was cloned into pcDNA 3.

For construction of the BRET2 +, the Rluc fragment from the above construct was 

excised using Hind III and Bam HI, the vector pGFPz-N3 was similarly digested. This 

generated an inframe fusion protein between Rluc and GFP2 with an 11 codon
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intergenic, linking sequence (S’- CGG GCC CGG GAT CCG GAT CCA CCG GTC 

GCC ACC-3’).

2.4.5. Construction of jS-arrestin2-cyan NFP and /3-arrestin2-Red NFP

PCR of the bovine beta-arrestin2 gene fragment used forward primer (15) BARR2 

fwd to introduce an Nhe\ site and Kozac sequence immediately upstream of (3- 

arrestin-2 gene sequence. The reverse primer (16) BARR2 Rev was used to introduce 

an Apal site immediately downstream of the (3-arrestin-2 gene sequence. Primers 

were also designed to remove the stop codon from C-terminal tail of receptor. The 

plasmid pAM-Cyan-Nl (Clontech) was digested with the same restriction enzymes. 

Ligation of plasmid and the PCR fragment resulted in a chimeric protein, with cyan 

NFP attached to and in fr'ame with the C-terminal tail of (3-arrestin-2. 

p-arrestin-2 red NFP was made using the above primers for PCR of bovine (3-aiTestin- 

2. The fragment was digested and then ligated into similarly digested pAS-Red 

(Clontech) plasmid vector.

2.4.6. Construction of CCR2-cyau NFP and CCRl-yellow NFP

PCR of the human receptor for MCP-1 (CCR2R) used forward primer (17) CCR2 

fwd, which placed an Nhel site and Kozac sequence immediately upstream of the 

CCR2 gene sequence. The reverse primer (18) CCR2 rev, removed the stop codon 

from the C-terminal tail of the receptor and placed a Bam HI site immediately 

downstream of the CCR2 gene sequence. The vector pAM-Cyan-N 1 was digested 

using the same restriction enzymes and the CCR2 gene fragment was ligated, 

immediately upstream of, and in frame with the cyan NFP gene.
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CCR2-yellow NFP was constructed using the same CCR2 PCR fragment as above. 

The fragment was digested and ligated into a similarly digested pZN-Yellow 

(Clontech) vector.

2.4.7. Construction of 8 -opioid-GFP2

The human 8-opioid receptor in pcDNA4 was used as a template for PCR 

amplification. The primer, (13) hDOR-1 fwd, was used to incorporate a c-Myc 

epitope tag, a Kozac sequence and an Nhel site immediately upstream of the human - 

8-opioid receptor.

The reverse primer (14) hDOR-1 rev, incorporated a BamHl site immediately 

downstream of the liDOR-1 sequence, also removing the receptor stop codon thus 

allowing in frame ligation with GFP2. The plasmid pGFPNi (Green fluorescent 

protein, Packard) was digested with Nhel and BamUl to allow in frame ligation of 

the human -8-opioid receptor with GFP2.

2.4.8. Construction of j82-adi enoceptor-Pluc

Construction of the 132-adrenoceptor fused to the luciferase from the firefly Photinus 

pyralis (Pluc) was achieved as follows. PCR of the 132-adrenoceptor was achieved as 

described above for 132-AR-Rluc. PCR of Pluc utilized the forward primer (5) Pluc 

fwd which incorporated an Xhol site immediately upstream of the Pluc coding 

sequence and (6) Pluc rev which incorporated an Xbal site immediately downstream 

of the Pluc coding sequence. This arrangement of restriction sites allowed direct in 

frame ligation of the 132-adrenoceptor with Pluc within the plasmid vector pcDNAB.
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2.5. Cell culture

2.5.1. Routine cell culture

For cell growth (maintainance of cells in non-selective media), sterile pipettes and 

flasks were used for all manipulations, and all tissue culture work was carried out in a 

sterile flow cabinet. To initiate growth of a specific cell line, cells were brought up 

from liquid nitrogen storage and the aliquot was thawed rapidly at 37°C. The entire 

aliquot (1ml) was then added to a 75cm^ tissue cultui'e flask where 10ml of an 

appropriate media (Table 2.2), pre-warmed to 37°C in a water bath was added.

Cells were left at 37°C in an incubator overnight to allow cells to attach to the bottom 

of the flask. Next day, the media was removed and fresh media applied.

Typically cells were grown to a confluency of approximately 80-100% before being 

subcultured into new flasks.

2.5.2. Cell subculture

Once cells growing in 75cm^ flasks had approximately reached confluency, they were 

cubcultured into new flasks. The following procedure was adopted.

Media was completely removed and the cells, while still adhered to the bottom of the 

flask were washed with 2ml of trypsin solution. This was then removed and a further 

2ml of new trypsin was added and the flasks were plaeed in a 37°C incubator for 2 to 

3 minutes. Any cells, which remained adhered, were detached by administering a 

sharp slap to the side of the flask. Once all the cells had been detached, 8ml of 

appropriate media containing serum was added to stop the enzymatic action of the 

trypsin. Cells were then spun at 1 OOOrpm at room temperature in a swinging bucket 

rotor for 10 minutes to pellet the cells. Media containing the trypsin was then poured 

off and 1ml of fresh media was added. Cells were gently pipetted up and down to
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Table 2.2. Growth media used for sustenance of different mammalian cell types.
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Cell type Media

HEK293T DMEM/10%NBCS/lmM L- 

Glutamine

CHO-Kl DMEM-12/10%FCS/lmM L- 

Glutamine

Table 2.2.
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resuspend and to eliminate any cell clumping. The cells were then diluted as desired 

for further subculturing into 75cm^ flasks.

2.5.3. Coating of coverslips and 24 well plates with poly-D-lysine

50mg of poly-D-lysine was dissolved in 50ml of sterile dH20 (Img/ml stock 

solution). Coverslips were prepared by soaking overnight in concentrated 

hydrochloric acid, washing several times with dH2 0  and then autoclaving in a sealed 

container.

Coverslips were placed into the wells of a six well dish using sterile foreceps, 

working in a flow cabinet. The stock solution of poly-D-lysine was then diluted 1 in 

10 in sterile dH2 0  and 2ml of this was added to each well containing a coverslip. 

Plates were then left in the sterile hood at room temperature for 30 minutes. The poly- 

D-lysine was removed and the wells washed three times with sterile dH20 to remove 

any unadhered traces of the poly-D-lysine. The prepared dishes were sealed and 

allowed to dry overnight before seeding the cells next day. The same coating 

procedure was used for 24 well dishes, minus coverslips

2.5.4. Transient transfection

Cells were grown in an appropriately sized dish and allowed to reach approximately 

90% confluency. All transfections on HEK293T and CHO-Kl cells used 

lipofectamine. The amounts of DNA and lipofectamine used, was largly dependent on 

the dish size and the experimental requirements (see Table 2.3).

The DNA was first dissolved in optimem. A quantity of lipofectamine was also 

dissolved in an equal volume of optimem. These were combined and allowed to 

incubate for 30 minutes, before being made up to a final volume in optimem.
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Table 2.3. Different transfection conditions employed corresponding to dish size 

used in transfection procedure.
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DNA(jitg) Lipofectamine
(Ml)

Incubation
time

Final
volume

10cm Dish 7-12/xg in 
500/tl optimem

25jLtl in 500/xl 
of optimem

30 minutes 5.0ml

6cm Dish 3-lOjiig in
250^1
optimem

12.5j[il in 
250/xl of 
optimem

30 minutes 2.5ml

6 well plate
+/-

covers lip

0.5~2jU.g in 
lOÔ tl of 
optimem

8)Ltl in 100/xl 
of optimem

30 minutes 1.0ml

Table 2.3.
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Cells to be transfected had gi'owth media removed and an appropriate volume of 

optimem was added to the dish. The dish was gently swirled and the optimem was 

pipetted off, removing any traces of serum which tends to inhibit the action of the 

lipofectamine. The DNA/lipofectamine/optimem mixture was then added to the nearly 

confluent monolayer of cells and returned to the 37°C incubator for 4-7 hours. At the 

close of this period, an equal volume of giowth medium containing 20% NBCS was 

added onto the transfection medium. The cells were then returned to the incubator for 

18-20 hours, before the medium was replaced with giowth medium containing 

10%NBCS. The cells were then allowed a further 24 hours of growth before 

harvesting for assays. Cells growing on coverslips were transfected as for a normal 6 

well dish transfection.

2.5.5. Generation and maintainance of p2-AR(CAM)-Rluc stable cell line

The following procedure was adopted.

(1) Naïve HEK 293 cells were split into three 10cm dishes and grown to 

approximately 50% confluency.

(2) The dishes were then transfected with 5ug DNA of either (32-AR(CAM)-Rluc 

or pcDNA3 (positive control), using DOTAP (Roche) transfection reagent. A 

third dish was left untransfected as a negative control. DNA was added to 40ul 

of DOTAP reagent along with 200ul of HBS buffer. This was left at room 

temperature for 10-15 minutes before being added dropwise to the dish 

containing cells in ordinary growth medium.

(3) Cells were left for 2-3 days until they had almost reached 100% confluency.
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(4) Cells were then subcultured into duplicate lOcm  ̂ dishes by splitting the cells 

l->  10 in fresh giowth medium, containing geneticin at a concentration of 

Img/ml.

(5) The cells were then maintained in these dishes for two to thiee weeks by 

renewing the selective medium every two to three days.

(6) After three weeks had passed, and all the cells in the untransfected dishes had 

died, individual antibiotic resistant colonies could be seen growing in the 

pcDNA3 and |32“AR(CAM)-Rluc transfected dishes. Colonies were removed 

from the p2-AR(CAM)-Rluc dishes by carefully sucking up the colony using a 

sterile pipette tip. About 40 colonies were selected and transferred to 

individual wells of 24 well tissue culture plates.

(7) Clones growing in 24 well dishes were then allowed to reach confluency 

before being subcultured into 6 well dishes and then into 75cm^ flasks. Clones 

were maintained in selective medium.

(8) Clones were then screened for expression of the |32-AR(CAM)-Rluc chimeric 

construct, via the luciferase assay. Once clones producing readily detectable 

levels of luciferase activity had been identified a single clone was selected for 

further analysis.

2.5,6. Preservation of cell lines

Aliquots of both stably transfected and naïve cells were routinely frozen down to 

maintain stocks of frozen cells.

Cells were grown to approximately 70% confluency and then trypsinized and pelleted 

in the manner described for media subculture. Cells were then resuspended in 1ml of 

freezing solution and pipetted up and down in order to ensure a homogeneous
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suspension of cells. The entire aliquot was then transferred to a cryo-vial and placed 

at -20°C for 1-2 hours until the aliquot was frozen. This was then transferred to a - 

80°C freezer and left overnight. Next day the aliquots were quickly transfened to dry 

ice and then stored in liquid nitrogen until required.

2.5.7.Cell harvesting

(1) The medium was removed from transfected dishes. 5ml of PBS was gently 

applied to wash away any remaining medium. This wash process was then 

repeated twice. Cells were kept on ice throughout all stages of the harvesting 

procedure.

(2) If cells were required for the BRET assay, a final volume of 5ml of PBS was 

added to a 10cm dish (2.5ml if using a 6cm dish). The cells were then gently 

resuspended using a 1ml Gilson pipette. The number of cells per 1ml of the 

suspension could then be determined using a haemocytometer and diluted if 

necessary.

(3) Otheiwise, the cells were required for a membrane preparation and were 

pelleted at 3000rpm in a swinging bucket rotor at 4°C. The supernatant was 

discarded and the cell pellets were transfeiTed to an -80°C freezer where they 

could be stored until required.

2.5.8. Counting cells using haemocytometer

Cell samples to be counted were diluted 1 in 20 in PBS. The cytometer and coverslip 

were then cleaned with ethanol and dHzO and the coverslip put in place. Using a 

Gilson pipette, a small amount of the sample containing the cells was then applied to 

the chamber, which had a depth of 0.1mm. Using a light microscope the cells could
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then be counted on the grid. The area of each grid is Imm^ and therefore the volume 

is O.lmm^.

The number of cells in lcm^=N X 20(dilution factor) X 10"̂

N= number of cells in 0.1 mm^

The number of cells under 4 grids was counted and an average value was taken in 

each case to detemiine the number of cells per 1ml.

2.6. Biochemical assays and other methods of analysis

2.6.1. FACS analysis of HEK 293T cells for eYFP expression

Cells haiwested and resuspended in PBS as described above were subject to FACS 

with machine settings optimised for HEK 293T cells expressing GFP protein from 

Aequoria victoria. The overlap between absorbance spectra for GFP and eYFP was 

sufficient for these settings to be adapted to the detection of eYFP. FACS readings 

were taken for both HEK 293T cells expressing eYFP and for untransfected HEK 

293T cells. Dot plots showing foiward scatter and side scatter of light were obtained 

and fi'om this a population of cells were selected (gated) for fluorescence analysis. 

Histograms of the same cells plotting fluorescence intensity against number of events 

was also obtained, from which, using the untransfected sample, background 

fluorescence was defined. It was then possible to determine the mean fluorescence of 

cells in a given population for the remaining transfected samples.

2.6.2. BCA protein quantification assay

A standard cuiwe of protein extracts made through the serial dilution of a stock 

solution containing bovine serum albumin (BSA) was established. lOjUl of each 

concentration point were then applied to duplicate wells in a clear 96 well plate.
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Similarly for the test samples, serial dilutions in dH20 were established and 10/rl were 

applied to duplicate wells of the same 96 well plate. To prepare the BCA working 

solution, 49 parts of BCA protein assay buffer A were combined with 1 part of BCA 

protein assay buffer B and then mixed. 200/rl of this working solution was then 

applied to each of the wells containing protein samples and then the plate was left to 

incubate for 30 minutes at 37“C. After this period had elapsed the plate was removed 

to a spectrophotometer where the absorbance of the samples at 492nm was 

determined. The protein concentration of the unknown samples could then be 

determined through constuction of a calibration graph using the known BSA 

standards.

2.6.3. Radioligand binding

Cells were grown in 10 cm dishes. Following a 48 hour period post transfection cells 

were washed three times with ice-cold phosphate-buffered saline (PBS). Cells were 

then detached from plates with PBS/0.5 mM EDTA, pelleted and resuspended in ice- 

cold TE buffer (10 mM Tris HCl, 0,1 mM EDTA pH 7.5) and lysed with 2x10 second 

bursts of a polytron. The homogenate was centrifuged at 500xg to remove unbroken 

cells and nuclei. The supernatant fraction was then centrifuged at 48,000xg for 30 min 

and the pellet resuspended in TE buffer and stored at -80°C until use. Serial dilutions 

of the membrane samples were evaluated for their protein content using the BCA 

protein assay described above.

Specific binding at the kappa-opioid receptor was determined using the following 

conditions; [^H]-Diprenorphine (5nM) was incubated with membrane preps 

expressing the kappa-opioid receptor at 30°C for 60 minutes in T.E. (50mM Tris, 

5mM EDTA, pH 7.4) buffer. Naloxone at a concentration of 300|liM was used to
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determine non-specific binding. For the delta-opioid receptor, [^H]-Naltrindole (5nM) 

was incubated with membrane preps expressing the delta-opioid receptor at 30°C for 

60 minutes in T.E. (50mM Tris, 5niM EDTA, pH 7.4) buffer. Naloxone at a 

concentration of 300pM was used to determine non-specific binding. Specific binding 

at the /32-adrenoceptor, was determined by incubating [^H]-Dihydroalprenolol (2nM) 

with membrane preps expressing the /32-adrenoceptor at 30°C for 60 minutes in 

T.E.M. (75mM Tris, ImM EDTA, 12mM, MgCb, pH 7.4) buffer. Propranolol at a 

concentration of lOpM was used to deteimine non-specific binding.

All assays used triplicate tubes to obtain average d.p.m readings for each assay point. 

Counts on the scintillation counter in d.p.m., could be converted to molar 

concentrations of radioligand using the following formula.

RL*=10‘̂  X B/(V X SA x2220)M

Where B is the amount of bound ligand in d.p.m., V is the sample volume, used in the 

assay, and SA is the specific activity of the radioligand used.

In some instances, varying concentrations of compound were used to compete for 

binding with the tritiated radioligand, in order to determine the K/ of that particular 

compound at the receptor binding site. In this case the following formula was used in 

the determination of K/.

K r  IC5o/(1+ [L ]/IC l)

Where IC50 is the concentration of competitor which reduces the specific binding by 

50%, [L] is the concentration of radioligand and Kl is the dissociation equilibrium 

constant of the radioligand (Haylett, 1996).

For the j32-AR, in some instances, filtration radioligand binding was performed using 

intact cells. In this case the cells were harvested in extracellular buffer and then 

counted using a heamocytometer. Approximately 400,000 cells were then applied to
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each assay point using extracellular buffer as the assay medium. Specific binding was 

determined using -Dihydroalprenolol (2nM) which was capable of permeating the 

cell membrane. Non-specific binding was determined using the antagonist propranolol 

(10p.M). Replicates were incubated at 30°C for one hour. The d.p.m. per finol for 

[^H]-dihydroalprenolol was determined from the corresponding molarity of the 

standards. The number of fmol present for each cell sample and subsequently the 

number of receptors/cell were determined using the following formulae: 

frnol= (specific d.p.m.)/d.p.m./fmol 

frnol/cell= fmol/Number of cells 

moles/cell- (ônols/cell)/10'^ 

receptors/ceil= (moles/cell) x 6x10^^

2.6.4. Adenylyi cyclase assay

Was performed essentially as described by (Wong, 1994)

(1) Cells were grown to 80% confluency in 24 well plates, to which was added 

luCi/ml of [^H]-adenine. Cells were then incubated for 16-20 hours.

(2) Extacellular -adenine was washed off with 1ml of adenylyi cyclase assay 

media, without detaching the cells.

(3) To each well was added 0.5ml of adenylyi cyclase assay medium containing 

test reagents. This was then incubated for 30 minutes at 37°C.

(4) The reaction was terminated by aspiration and addition of 1ml of ice cold stop 

solution to each well and incubated for 30 minutes at 4°C. Entire extract was 

then removed without disturbing the cells.

(5) Dowex columns were washed with 2ml of IM HCl followed by 10ml of H2O. 

The entire 0.5ml of TCA extract was applied to the Dowex column. This was
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allowed to drain through the column and was collected in 25ml scintillation 

vials.

(6) A further 3ml of H2O was applied to the column and eluate was collected in 

the same scintillation vial. This eluate contained the [^H]-ADP and [^H]-ATP. 

9ml of scintillation fluid was added to the vial and then assayed on a 

scintillation counter to detemiine radioactivity (d.p.m).

(7) Alumina columns were washed with 10ml of IM imidazole (pH 5.0) before 

use. Dowex columns were then placed over an equal number of the alumina 

columns. 10ml of H2O was then applied to the columns and allowed to drip 

directly onto the alumina.

(8) [^H]-cAMP was eluted from the alumina columns with 6ml of O.IM imidazole 

(pH 7.5) and collected in a 25ml scintillation tube. 12.5ml of scintillation fluid 

was added to each vial and transferred to a counter.

(9) Results were expressed as the ratio of [^H-]cAMP to total [^H]-adenine 

nucleotides, i.e. [^H]-cAMP / [^H]~ATP + [^H]-ADP + [^H]-cAMP.

2.6.5. Correlation of receptor number with fluorescence for ô-opioid-GFPi

Membrane preparations were first serially diluted in T.E. buffer. An arbitrary 

fluorescence value for lOOpl of each concentration point was then determined using a 

Victor^ (Wallac) multi-label counter. An equivalent concentration of membranes from 

untransfected HEK 293T cells was assayed for each point, to determine background 

fluorescence. Excitation of GFP2 was at 405 nm, emission from the GFP was 

determined using a 500mn cutoff filter. The same membrane concentrations were then 

used to determine the receptor number (fmol) for each concentration point using 

radioligand binding (as detailed above), the two values were then correlated to
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determine fmol/lOOpl, In routine BRET2 experiments cells were counted using a 

haemocytometer and approximately 700,000 cells in a lOOpl volume were seeded per 

well and untransfected cells were used to deteimine backgiound fluorescence. It was 

therefore possible by use of Avagadro’s number to estimate the number of acceptor 

tagged receptors/cell in each sample.

2.6.6. Correlation of receptor number with fluorescence for K-opioid-eYFP

Membranes were prepared and receptor number was correlated with arbitrary 

fluorescence in the manner described for the delta-opioid-GFP2 construct above with 

the following exceptions: excitation wavelength filter 485nm, emission wavelength 

filter 535nM.

2.6.7. Correlation of receptor number with luminescence

Membrane preps of HEK293T cells expressing jS2"AR-Rluc were serially diluted in 

PBS. To detennine the luminescence in counts per second (C.P.S.), 1.5ml of diluted 

membranes were assayed in a Spex fluorolog spectrofluorimeter with the excitation 

lamp turned off (slit width=10mn, 2 seconds/increment) following addition of an 

equal volume of PBS containing lOpM coelenterazine (Prolume). An average value 

of the peak region centred at 480nm was determined for each of the concentration 

points. Similarly diluted membranes from the same preparation were assayed for 

specific binding of [^FI]-Dihydroalprenolol to deteimine receptor concentration 

(fmol), these two values were then correlated. Since approximately 3000000 cells 

(counted with a haemocytometer) were added during routine BRET experiments, it 

was possible to estimate the number of donor tagged receptors present by use of 

Avogadro’s number.
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2.6.8. Correlation of mean fluorescence (FACS) with acceptor concentration

In routine BRET experiments, transfected cells were analysed using a fluorescence 

activated cell sorter (FACS) to determine the mean fluorescence per cell (mean of 

10,000 cells) of the transfected sample. This value was taken to represent the acceptor 

concentration. This method of counting cells was favoured over the use of a 

haemocytometer as being almost certainly a more accurate means of quantification 

and would therefore make results from different experiments more directly 

comparable.

To convert the mean fluorescence values on the FACS into concentration of 

receptors/cell, the following method was adopted. Cells expressing different levels of 

kappa-opioid-eYFP tagged receptor were grown to the same level of confluency in 

6cm dishes. The number of cells per lOOpl was then estimated using a 

haemocytometer and determined to be approximately 200,000 cells/lOOul. The 

arbitrary fluorescence of a lOOpl sample was then measured using the Victor^ multi­

label counter. These values could be converted to fniol, using the graph shown in 

Figure 3.17a which could then be further converted to receptors/cell using the 

following formula.

Recetors/cell= (Nmol x A)/200,000

Where Nmol is the number of moles as deteimined from the graph in figure 3.17a and 

A, is Avogadro’s number.

The mean fluorescence was determined using FACS for the same cells as above. 

Mean fluorescence (FACS) could then be directly coiTelated with an approximation of 

receptor number.
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2.6.9. BRET

Cells were harvested 48 h after transfection. Medium was removed from cell culture 

dishes and cells were washed twice with PBS before being detached to form a 

suspension. In samples where a time course addition of dmg was required, cells were 

incubated at 37°C in PBS supplemented with 0.1% glucose and an appropriate 

volume was removed from the cell suspension at the indicated time intervals. 

Approximately 3,000,000 cells in 1.5 ml of PBS buffer were then added to a glass 

cuvette; an equal volume of PBS containing lOpM coelenterazine was added and the 

contents of the cuvette mixed. The emission spectrum (400-600mn) was immediately 

acquired using a Spex fluorolog spectrofluorimeter with the excitation lamp turned off 

(slit width^lOnm, 2 seconds/increment). For comparisons between experiments, 

emission spectra were normalized with the peak emission from Renilla luciferase in 

the region of 480mn being defined as an intensity of 1.00. Energy transfer signal was 

calculated by measuring the area under the curve between 500nm and 550nm. 

Background was taken as the area of this region of the spectrum when examining 

emission from the isolated Renilla luciferase. The energy transfer signal was then 

expressed as a percentage above the background using the fonnula:

((Ead-Ed)/Ed)x100)

Where Ep is the integrated emission spectmm between 500nm and 550nm for the 

isolated Renilla luciferase expressed alone and Ead is the integrated emission 

spectrum between 500nm and 550nm for an Rluc-receptor construct expressed in the 

presence of an eYFP-receptor construct.

In some instances the victor^ multilabel counter was used in determining energy 

transfer in BRET experiment, using a white-walled, culturplate (Packard). Cells 

resuspended in PBS were dispensed into wells of a 96-well plate, to a final volume of
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90jLtl, to which was added either a further 10/xl of PBS or lOjul of PBS containing a 

test compound at a suitable concentration. The Victor^ was set up with 2 emission 

filters, capable of capturing light emitted from Renilla luciferase (using a 450mn 

bandpass 80nm filter) and from eYFP (using 500nm cutoff filter). A ten-minute 

incubation period was provided for the compound before addition of 100/d of 

coelenterazine (10(xM). The intensity of light emitted by both Renilla luciferase and 

eYFP was then immediately determined using the Victor^, by alternating between 

each filter, with 1 second well reading times. The amount of energy transfer was then 

expressed as a ratio of the value of light intensity emitted from eYFP compared to that 

of Renilla luciferase (light emitted 450nm/light emitted 500+nm).

2.6.10. BRETz

Cells were washed three times in PBS and then harvested in PBS supplemented with 

magnesium (0.1 g/L) and glucose (Ig/L). Cells were then counted on a 

haemocytometer and approximately 700,000 cells were dispensed/well into a 96 well, 

white-walled, culturplate (Packard). DeepBlueC (Packard) reagent was prepared as in 

accordance with the manufacturer’s directions. Any compounds to be tested were 

dissolved in the same buffer as that used for the resuspension of the cells and then 

dispensed into the appropriate wells of a 96 well plate, to achieve a final 

concentration of lOpM. The plate was then left standing for 15 minutes at room 

temperature to allow time for the ligands to come to equilibrium with the expressed 

receptors. DeepBlueC was then added to a final concentration of lOpM before being 

assayed immediately either on a Victor^ (wallac) or a Fusion universal microplate 

analyser (Packard), using 410mn (bandpass 80nm) to measure light emitted fiom 

DeepBlueC and a 515nm (bandpass 30nm) filter to measure light emitted from GFPz.
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The extent of energy transfer was defined as the ratio of light intensity (515nm)/light 

intensity (410nm) with the ratio obtained from cells expressing Renilla luciferase 

alone defined as zero energy transfer.

2.6.11. Confocal Laser Scanning Microscopy

Cells were observed using a laser scanning confocal microscope (Zeiss Axiovert 100) 

using a Zeiss Plan-Apo 63 x 1.40 NA oil immersion objective, pinhole of 25, and 

variable electronic zoom. The eYFP or GFPz was exited using a 488 mn 

argon/krypton laser and detected with 515-540 nm band pass filter. Excitation of cyan 

NFP was achieved using an argon laser (450mn), excitation of red NFP was achieved 

using a krypton laser (568nm). The images were manipulated with MetaMorph 

software.

Live cells were used in all experiments; cells were grown on glass coverslips and 

mounted on the imaging chamber. Cells were immersed in extracellular buffer, and 

temperature was maintained at 37 °C.

2.6.12. Luciferase activity assay

A stably transfected cell line of HEK 293 cells expressing the CAM p2-adrenoceptor 

C-terminally tagged with Renilla luciferase was used to seed 96 well microtiter plates 

to a volume of 90/d/well. The 96 well plates were then incubated overnight and on the 

following day, the cells were usually about 80% confluent. Compound additions were 

then prepared in phenol red free medium and 10/xl from each of 10 stock solutions, of 

different concentrations, were added to the wells of the 96 well plates and then 

incubated for 24 hours. After this period had elapsed, the medium was pipetted off 

from each well.
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SOpl of phenol red free medium was then added to each well, plus SOjal of LucLite 

luciferase assay solution (Packard). Fifty microlitres of 15/iM coelenterazine in 

phenol red free medium was then added to produce a final concentration of 5jnM. The 

plates were then assayed immediately using a topcount luminometer (Packard) using 

two second well readings, to determine the light intensity in relative light units.

2.6.13. Dual luciferase assay

40pi of a sample of known protein concentration was added to the wells of a 96 well 

white plastic plate (Packard). Luciferase assay reagent II (LARII) and stop and glow 

reagent were prepared as according to the manufacturer’s instructions. 

lOOul of LAR II reagent was added to the sample to be assayed in 96 well plates and 

this was assayed immediately on a topcount luminometer, using 2 second reading 

times to determine light intensity from Photinus luciferase in counts per second. The 

reaction was then quenched by addition of stop and glow reagent. This was then 

assayed similarly in the topcount and the light intensity from Renilla luciferase 

determined in counts per second.
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CHAPTER 3

First results chapter

3.1. Introduction

3.1.1 Dimerization of GPCRs

Historically, models that depict the interaction between GPCRs and their respective 

G-proteins have assumed that the receptor units were monomeric and that they would 

couple to G-protein with a 1:1 ratio of interaction. Recent advances have provided 

compelling evidence that such models will soon have to be adjusted to take account of 

both interactions between identical receptor units (homomers) and between distinct 

receptor units (heteromers). Although in this chapter such interactions will be referred 

to as being dimeric, it is possible that the receptor complexes may comprise multiple 

subunits. However, since existing techniques are not capable of distinguishing 

between dimers and higher order oligomers and to simplify the discussion of these 

interactions, only the dimer scenario will be considered. Dimerization of GPCRs has 

been investigated using predominantly three different types of technique.

(1) Co-immunoprecipitation studies, where co-expressed receptors are 

precipitated with an antibody directed against one receptor type and then 

detected using SDS-PAGE with a separate antibody directed against the other 

expressed receptor type. This biochemical technique has been used to detect 

dimerization between members of both closely and more distantly related 

families of GPCRs.

(2) Functional complementation tecliniques as exemplified by Maggio et al, 

1993. Here chimeric receptors between elements of the CKzc-adrenoceptor and 

the M3 muscarinic acetylcholine receptor were generated via exchange of
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TMs VI and VII, [%c(TM I-V)-M3(TMVI-VII) and MaCTMI-V)- %c(TMVI- 

VII)]. Both these chimeric constructs were incapable of binding selective 

ligands when expressed singly in mammalian cells whereas co-expression of 

the two mutated constructs resulted in a restoration of ligand binding and 

signalling properties. These results imply that the two receptors can interact.

(3) Most recently, biophysical techniques have been employed which generally 

rely on resonance energy transfer between closely associated, modified 

receptor molecules.

3.1,2 Biolummescence resonance energy transfer (BRET)

In order to investigate dimerization of G-protein coupled receptors, one such 

biophysical approach for detecting the close proximity of two protein molecules was 

adopted, namely bioluminescence resonance energy transfer (BRET). This is a 

naturally occurring phenomenon similar to fluorescence resonance energy transfer 

(FRET). Bioluminescent coelenterates from the classes Anthozoa and Hydrozoa can 

produce green light via the intracellular oxidation of a coelenterate type luciferin, 

known as coelenterazine (Ward and Cormier, 1978). la Anthozoans, calcium initiates 

release of luciferin from a specific binding protein; the luciferin is then converted via 

molecular oxygen to oxyluciferin producing carbon dioxide in the presence of the 

enzyme luciferase.

Light emitted from Anthozoans is green, whereas, in vitro reactions involving the 

purified form of the luciferase produces blue light. The green fluorescence in Renilla 

sp. is due to energy transfer to a fluorescent protein (GFP), which is often carried 

along during purification of Renilla luciferase from whole organisms (Cormier et al., 

1974). Energy transfer in Renilla bio luminescence is a radiationless process such as
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that described by Forster (Forster, 1966): energy from the electronic excited state of 

the oxycoelenterazine mono-anion is transferred to the fluorescent protein, resulting 

in green light emission (Figure 3.1). Electronic excitation, such as that generated by 

the oxyluciferin mono-anion can be efficiently transferred to a suitable energy 

acceptor (i.e. GFP) over distances as large as 70Â, in which case the oxyluciferin 

monoanion is said to be acting as a donor.

Several preconditions have to be met before such Forster type energy transfer events 

can occur. Firstly, there must be significant overlap between the donor emission and 

the acceptor absorbance spectra. The donor is raised to an excited state either by 

absorption of a photon (FRET) or via a chemical reaction (BRET), which induces a 

dipole upon it. If an acceptor is in close proximity, an oppositely charged dipole is 

induced, and it is consequently raised to an excited electronic state. These dipole- 

induced-dipole interactions fall off inversely with the sixth power of distance (Figure

3.2.). Such energy transfer is an all or none event: all of the energy must be 

transferred and this can only occur when the energy levels (i.e. spectra) overlap. 

FRET (or BRET) manifests itself as a decrease in donor fluorescence, called 

quenching and an increase in acceptor fluorescence.

The presence of acceptor also results in a decrease in the excited state lifetime of the 

donor molecule. In FRET, this lifetime is normally equilibrated between the rate at 

which the fluorophore is being driven towards the excited state via the intensity of the 

incident light upon it and the sum of the rates deactivating this state (i.e. fluorescence 

and non-radiative processes such as intersystem crossing and internal conversion). 

The presence of acceptor adds a new non-radiative process to the system, hence 

decreasing the excited state lifetime of the donor fluorophore (Alberty and Silby, 

1997).

114



The FRET teclmique has been extensively developed over the past fifty years by a 

number of groups, (e.g. Baird and Holowka 1988; Cardullo et al, 1988; Fung and 

Stryer, 1978; Koppel et a l, 1979; Kleinfeld, 1988). This discussion and the following 

fomialisms are based on this proceeding work. The efficiency of energy transfer is, 

according to Forsters theory, given by;

1) E=R ‘̂ /(R''̂ +R„"‘’)

Where R is the distance between the centers of the donor and acceptor fluorophores. 

Ro is the distance at which energy transfer is 50% efficient.

The rate of energy transfer between any isolated donor-acceptor pair is given by;

2) k,= (l/T.)(RVRf

Where Tq is the excited state lifetime of the donor in the absence of acceptor.

Here Ro is given by:

3) R„=(Jk^Qo»)'‘)'®x9.76x10̂

Where J is the overlap between the donor emission and acceptor absorption spectra, rj 

is the refraction index of the media between donor and acceptor flurophores, is the 

dipole-dipole orientation factor and Qo is the quantum yield of the donor in the 

absence of acceptor.

3.1.3 Use of BRET to detect protein-protein interactions in living cells

A modified version of the naturally occumng BRET system was chosen to investigate 

both homo-dimerization and hetero-dimerization between G-protein coupled receptor 

(GPCR) molecules. This system involves using Renilla luciferase (Rluc) catalysed 

oxidation of coelenterazine as a donor molecule and an enhanced yellow fluorescent 

protein (eYFP) as an energy acceptor. The eYFP is a red shifted mutant variant of the
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GFP from the hydrozoan coelenterate, Aequorea victoria. This system has been 

successfully used to investigate interactions between circadian clock proteins from 

cyano-bacteria (Xu et al,, 1999). In their study, the cDNA for Renilla luciferase was 

fused in frame with the cDNA for the KiaB circadian clock protein, and similarly the 

gene coding eYFP was fused, in frame with the cDNA for either KiaB or KiaA 

circadian clock proteins. Co-expression of the Kia-B/Rluc and the KiaB-eYFP fusion 

proteins in E. coli cells led to a change in the emission spectrum of light upon 

addition of colenterazine, compared to the emission spectrum of light emitted from 

cells expressing KiaB/Rluc fusion protein alone. The alteration in the light emission 

spectrum was due to energy transfer between the donor and acceptor tagged pairs of 

molecules. No spectral shift was observed in bacterial cells co-expressing the KiaA- 

eYFP and the KiaB-Rluc constructs. Thus they were able to detect specific 

interactions between molecules by monitoring changes in the light emission spectrum 

due to energy transfer.

Particularly attractive features of this system are that the interactions can be 

monitored between proteins being expressed in living cells. The assay procedure 

avoids rupture of the cells because coelenterazine is a hydrophobic molecule that can 

readily permeate both eukaryotic and prokaryotic cell membranes/walls. BRET also 

avoids external manipulations and treatments with certain crosslinldng reagents that 

are often necessary in co-immunoprecipitation based studies. There is also very little 

chance of the enzyme Renilla luciferase and eYFP having a natural affinity for one 

another since these two proteins are derived from different biological organisms; 

eYFP is a modified foim of the GFP found in the hydrozoan coelenterate Aequorea 

Victoria. This GFP does not interact directly with the Renilla luciferase but with a
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photo-protein called aequorin, which becomes activated on binding to calcium 

(Coimier e/a/., 1974).

Further, since the system relies on a chemoluminescent reaction there is no need for 

light excitation of the donor. This has a number of advantages. There will be no 

photobleaching of the donor, which occurs in FRET systems when the fluorescent 

donor is exposed to repeated excitation with light of a suitable wavelength. Also, 

there will be no indirect excitation of the acceptor molecule with the external light 

source, which can often occur if there is only a poor separation between the 

absorbance spectra of the donor and acceptor pair.

The spectral overlap between coelenterazine and eYFP is similar to the spectral 

overlap between the Aquorea victoria mutant fluorescent proteins eYFP and enhanced 

cyan fluorescent protein. This donor and acceptor pairing has an R° value of 

approximately 50Â (Mahajan, 1998). We would therefore expect a significant degree 

of energy transfer between these two molecules provided they were separated by no 

greater a distance than 50A.

Adoption of this BRET strategy would provide a useful method for investigating 

dimerization of GPCRs in living cells. Of particular interest was whether addition of 

agonist or antagonist ligands would alter the extent of dimerization in GPCRs. If so, 

addition of a pharmacological compound might then be expected to result in an 

increase or decrease in the amount of energy transfer measured. If such alterations in 

dimerization could be detected using BRET it is reasonable to assume that this might 

foim the basis of a fast and effective screening assay for these pharmacological 

compounds. Such an assay would be of considerable interest to the pharmaceutical 

industry. Figure 3.3 demonstrates how such an assay might work in principle, 

considering three possible outcomes of adding a compound which has binding affinity
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at that receptor type. If addition of agonist produces a conformational change which 

favours the active (R*) form of the receptor (Figure 3.3 A) and consequently drives the 

receptors towards dimerization, this will cause an increase in the energy transfer 

signal. Alternatively, the receptors may have a high affinity for each other in the 

absence of bound ligand and are already associated with each other at the plasma 

membrane (Figure 3.3B). Addition of agonist might not affect this mutual affinity and 

the amount of energy transfer would remain the same. In a third scenario (Figure 

3.3C), again, the receptors have high affinity for each other and are already associated 

at the plasma membrane. Addition of agonist favours the R’*' form of the receptor 

which has a destabilizing effect on the dimer complex. Receptors then dissociate into 

monomers with a concomitant loss of energy transfer.

If addition of pharmacological ligands was found to produce no alteration in energy 

transfer signals detected, BRET based detection of dimerization would not provide us 

with a method of screening for pharmacological compounds. However it would still 

further our understanding of how GPCRs are associated in living cells.

3.2 Results

The well-characterized /32-adrenoceptor (/32-AR) was chosen as a starting point in this 

investigation. Chimeric constructs with the /32-AR fused to either Renilla luciferase or 

to eYFP were made as described in section 2.4.1 and 2.4.2. To ensure that the fusion 

of these proteins to the carboxyl-teiminal end of the receptor did not abolish the 

interaction of pharmacological compounds with the ligand binding site, radioligand 

binding using a single concentration of [^H]-dihydroalprenolol was performed on 

membrane preparations of HEK 293T cells, transiently transfected with the modified 

constructs.
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Figure 3.1. The pathway to both blue and green light emission in Renilla 

reniformis.
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Figure 3.2. The dipole-induced dipole interactions that occur between two 

fluorescent molecules that result in FRET.

(A) An incident photon of frequency is absorbed by the donor.

(B) This induces a dipole on the donor molecule.

(C) Instead of emitting a photon, the excited donor induces a dipole on the 

acceptor molecule.

(D)The acceptor emits a photon of frequency Vj.

121



(A)
VI o

(B)

(C)

(D)

hv O

©
(3O 
O
o 
o

< ►
R

hv
V2

Figure 3.2.

122



Figure 3.3. The three possible outcomes of the BRET assay as applied to GPCRs.

(A) In the absence of ligand receptors are monomeric. Addition of compound 

drives the receptors towards dimerization.

(B) The receptors are constitutively dimerized and remain so in the absence, or 

presence of external ligands.

(C) The receptors are constitutively dimerized but become monomeric upon 

addition of external ligands.
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The /52-AR flised to Renilla luciferase (/32-AR-Rluc) was capable of binding to [^H]- 

dibydroalprenolol (Figure 3.4) (1232±64fmol/mg). It was further observed that this 

construct was also capable of functionally coupling to endogenously expressed G- 

protein, since it was capable of generating cAMP in response to agonist (Figure 3.5). 

In intact cell adenylyl cyclase assays performed in HEK 293 cells the j62-AR-Rluc 

construct produced a three to four fold increase in intracellular cAMP when exposed 

for thirty-minutes to isoprenaline. This was comparable to the wild type |32-AR which 

produced a four to five fold increase of intracellular cAMP levels following a similar 

challenge. The level of constitutive signalling activity imparted by the Rluc modified 

version of the receptor appeared to be slightly elevated in comparison with its wild 

type counterpart. However, this was not markedly so.

To verify that the /32-AR hised to eYFP (j32-AR-eYFP) was similarly capable of 

binding agonist and antagonist ligands, competition binding was performed, using 

5nM [^H]-dihydroaiprenaolol and varying concentrations of either isoprenaline 

(Figure 3.6A), or the inverse agonist betaxolol (Figure 3.6B). To determine the 

binding affinity of these ligands for the receptor, the dissociation equilibrium constant 

(K/), was then detennined. In both cases competition with [^H]- dihydroalprenolol at 

the receptor was successful, yielding K/ values of 5.6xlO“̂ M and 4.8xlO‘®M for 

isoprenaline and betaxolol respectively. It was thus confirmed that the eYFP tagged 

form of the /32-AR was correctly folded and capable of binding to appropriate ligands. 

In the case of isoprenaline, the K/ value obtained was indicative of a somewhat lower 

affinity than what might have been expected. Previous studies showed the K/ for 

isoprenaline at the wild type /32-AR to be 3.6xlO‘̂ M (MacEwan et al., 1995). The 

reasons for this discrepancy were not experimentally determined.
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Before determining the degree of energy transfer observed between j32-AR“Rluc and 

/32-AR-eYFP constructs when expressed in mammalian cells it was first necessary to 

establish what sort of energy transfer signal would be observed between Rluc and 

eYFP if all the donor and acceptor molecules present were forced into close 

proximity. To this end, a positive control vector was constructed in pcDNA3 where 

Rluc and eYFP were fused together with a short linking intergenic sequence 

separating the two sequences (Figure 2.1). The light emission spectrum between 

400mn and 600nm was obtained from transiently transfected HEK 293T cells 

following the addition of coelenterazine. The emission spectrum thus generated 

displayed two distinct peak regions, one centred on 460nm, corresponding to the blue 

light emitted via the enzymic action of Renilla luciferase and another peak centred on 

530nm, corresponding to yellow light emitted fi-om eYFP (Figure 3.7A). This was in 

contrast to cells expressing only /32-AR-Rluc, where in the absence of acceptor, there 

is only one peak region, which is centred on 460mn (Figure 3.7B), It should be noted 

that there is a significant shoulder on the trace obtained from Renilla luciferase alone. 

There is thus a substantial overlap between the emission spectrum of Renilla 

luciferase and that of eYFP. Such overlap can make it difficult to resolve small 

amounts of energy transfer (see later, Figure 3.21).

Energy transfer between /32-AR-Rluc and /32-AR-eYFP was next investigated. An 

emission spectrum was obtained from co-transfected HEK 293T cells following 

addition of coelenterazine (Figure 3.8A). Overlayed for comparisons are the traces 

obtained from the positive control vector and from /32-AR-Rluc alone, with the 

emission spectra nonnalized at the peak region centred on 460nm. The co-transfected 

sample produced a clear energy transfer signal. To quantify the energy transfer, the 

area under the normalized light emission spectra between 500mn and 550nm were
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determined. The mean energy transfer values between three separate experiments 

were taken for the positive control, the co-transfection of |82-AR-Rluc and j82-AR- 

eYFP and also for a mixture of cells expressing either /32-AR-Rluc or j02-AR-eYFP 

where the differentially tagged receptors are expressed in separate cells (Figure 3.8B). 

The positive control gave a robust energy transfer signal whereas the mixed cell 

population gave no discernable signal. Cells co-transfected with jS2-AR-Rluc and /32- 

AR-eYFP gave a value intermediate between the positive control and mixed cells. 

This showed that the /32-AR-Rluc and j32-AR-eYFP constructs were in close enough 

proximity to produce a degree of energy transfer which was approximately 50% of 

that obseiwed with the positive control construct, presumably due to some degree of 

constitutive homo-dimerization. The amount of energy transfer was considerably less 

for cells co-transfected with donor and acceptor tagged (32-AR fusion proteins than 

for the positive control vector. This is explainable in view of the fact that not all /32- 

AR dimers present in the cells will be donor acceptor pairs, since it is possible that 

donor-donor and acceptor-acceptor tagged receptor pairs may form. Considering that 

the donor-donor tagged receptor pairs contribute nothing to energy transfer and 

further considering that, due to the overlap in the Rluc and eYFP emission spectra, 

such donor-donor receptor pairs will have a masking effect on any emission from 

eYFP, the result is as expected. It was encouraging that no energy transfer could be 

observed between the Rluc and eYFP tagged constmcts when they were expressed in 

separate cell populations and then mixed. This result underlines the fact that a very 

close spatial proximity between tagged receptor molecules is essential in enabling 

energy transfer events, such as those described by Forster (Forster, 1966), to occur. 

Energy transfer events of this kind are most likely to be caused by the close contact 

between specifically interacting receptor molecules which posses a high affinity for
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one another provided that the levels of receptor expression are not excessively high 

(as will be demonstrated later in the chapter).

To see if this constitutive homo-dimerisation could be influenced by the addition of 

agonist or antagonist ligands, energy transfer was measured before and ten minutes 

after addition of isoprenaline (10‘̂ M) (Figure 3.9). The isoprenaline pre-treatment did 

not effect the basal level of constitutive energy transfer observed in co-transfected 

cells, the level of which remained intennediate between that of the positive control 

and a mixed population of cells expressing either the donor or acceptor tagged forms 

of the jS2-AR. The ratio (Rluc/eYFP) was 0.853±0.015 for the untreated, co­

transfected cells and 0.870±0.006 for co-transfected cells exposed to pre-treatment 

with isoprenaline. This was found not to be a statistically significant increase {p > 

0.05). These experiments were carried out using a fixed filter multiwell plate reader as 

described in section 2.6.9 and in this case, the ratio (eYFP/Rluc) is given without a 

subtraction for background, to demonstrate the magnitude of the signal relative to 

noise in the system.

The 5-opioid receptor was chosen next for the continuation of the study. Previous 

reports based on co-immunoprecipitation experiments showed that the receptors were 

preformed as dimers at the plasma membrane and that addition of certain agonist 

ligands could decrease the extent of this dimerization (Cvejic and Devi, 1997). 

Additional evidence for constitutive homodimerization comes from time resolved 

FRET assays performed on living cells (McVey et al, 2001). Chimeric constmcts of 

the d-opioid receptor were made with either Rluc or eYFP fused to the carboxy 

teiininal end of its amino acid sequence. As with the /32-AR, a single concentration 

point radioligand binding assay was performed on cells transiently transfected with 

either of the 0-opioid chimeric constructs, this time using [^H]-diprenorphine. The
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eYFP tagged form of the receptor was seen to express at higher levels than its Rluc 

modified counterpart (248 ±88fmol/mg for ô-opioid-Rluc and 892 ±122 finol/mg for 

d-opioid-eYFP) (Figure 3.10). No expression of endogenous receptor was detected in 

untransfected HEK 293T cells.

Energy transfer experiments between ô-opioid-Rluc and ô-opioid-eYFP co-transfected 

into HEK 293T cells revealed a robust energy transfer signal, with a clearly defined 

peak at 530nm indicative of energy transfer (Figure 3.11 A). The magnitude of this 

signal was comparable in size to that observed for the positive control (Figure 3.1 IB) 

Neither the addition of the agonist peptide DADLE, nor the inverse agonist ICI 174 

864 (each lOpM) was seen to induce a statistically significant alteration (p<0.05) in 

the strength of this signal given a ten minute pre-incubation period at room 

temperature with ligand, prior to assay (Figure 3.11C). As a control, energy transfer 

between /32-AR-Rluc and ô-opioid-eYFP was monitored in co-transfected cells. It was 

reasoned that these two receptor types should have little affinity for one another given 

the small degree of sequence homology present in their respective gene sequences. 

Very little energy transfer was observed between the /32-AR and ô-opioid receptors 

(Figures 3.1 IB and 3.11C). A possible explanation for this difference is that in the ^2- 

AR/ ô-opioid receptor heterodimer the donor and acceptor moieties are further apart 

than is the case with the ô-opioid receptor homodimer. Since the efficiency of energy 

transfer is proportional to the inverse sixth power of distance (Equation 1) even a 

small increase in the distance between the centres of reaction of the two fluorophores 

would result in a dramatic drop in energy transfer efficiency. Alternatively the 

distances between the reaction centres of the donor and acceptor molecules could be 

similar for both homo and heterodimers but with the affinity of /32-AR for the Ô- 

opioid receptor low compared to the mutual affinity of ô-opioid receptors, hi this
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scenario, the majority of Rluc tagged receptors would not be associated with eYFP 

tagged receptors when jS2-AR-Rluc and ô-opioid-eYFP were co-expressed. This 

would limit the amount of energy transfer so that only a small signal at 530nm 

relative to the peak at 470nm would be observed. It is impossible to distinguish 

between these two hypotheses without recourse to a more quantitative analysis (see 

later).

hiterestingly, a ten-minute pre-incubation with either the ô-opioid agonist DADLE or 

the /32-AR agonist isoprenaline resulted in a statistically significant (p<0.05), 

although somewhat modest, increase in energy transfer levels (Figure 3.11C). FACS 

analysis of the cells in the experiments described above revealed that similar levels of 

acceptor tagged receptor were present in cells co-transfected with either /32-AR-Rluc 

and Ô-opioid-eYFP (mean fluorescence^ 224.5 ± 19.0 (arbitrary units)) (n=4) or with 

and ô-opioid-Rluc and ô-opioid-eYFP (mean fluorescence^ 228.5 ± 10.5 (arbitrary 

units)) (n=4). An example of a FACS reading from each of the co-transfected cells is 

shown (Figure 3.12). It was further verified that similar receptor expression levels 

were maintained in these experiments via single concentration point radioligand 

binding on membrane preparations of each of the co-transfected cell types. Table 3.1 

shows the receptor expression levels determined in each case. Expression of /32-AR- 

Rluc was found to be considerably lower than that of the acceptor tagged ô-opioid 

receptor.

To further elucidate whether or not the energy transfer events observed were truly due 

to receptor oligomerization the ability of an untagged wild type version of the ô- 

opioid receptor to compete with its donor and acceptor chimeric counterparts was 

assessed. HEK 293T cells were co-transfected with optimal levels (2.5^g ô-opioid- 

Rluc and 5/Ug ô-opioid-eYFP, transfected in 6cm dishes) of DNA encoding donor and
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Table 3.1. The expression levels of Renilla luciferase and eYFP-tagged forms of 

the human ô-opioid receptor and /32-AR in BRET studies.

Following transient expression of HEK 293T cells with combinations of Renilla 

luciferase and eYFP tagged forms of the 5-opioid receptor and /32-AR, levels of 

expression of receptor binding sites were estimated from the specific binding of single 

concentrations of the agonists [^H]-dihydroalprenalol (DHA) (/32-AR) and [^H]- 

diprenorphine (5-opioid receptor), which are sufficient to occupy more than 90% of 

the receptors. Parallel FACS analysis of the cell populations demonstrated 

transfection efficiency to vary between 33% and 40%. These values were then 

combined to calculate the number of receptors per transfected cell. HEK 293T cells 

do not endogenously express the human 5-opioid receptor and although many clones 

of HEK 293T cells endogenously express a low level of the /32-AR this was not 

detectable in these studies. Data represents means ± S.E.M. from three independent 

experiments. ND, not detected.
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Study f'Hl-DHA binding 

receptors/cell

[̂ H] -diprenorphine 

receptors/cell

ô-opioid receptor 

homo- oligomer

ND 200,000 ± 10,000

^2-à receptor hetero­

oligomer

76,000 ± 14,000 243,000 ± 23000

Table 3.1.
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acceptor tagged forms of the 5-opioid receptor, along with varying quantities of DNA 

encoding the wild type (unmodified) ô-opioid receptor. It was reasoned that 

introducing the untagged receptor would abolish the energy transfer signal by 

sequestering the donor and acceptor tagged forms of the ô-opioid receptor. Indeed this 

was found to be the case (Figure 3.13). Introducing larger quantities of the wild type 

ô-opioid cDNA caused a decrease in the strength of the energy transfer signal. This 

was approximately halved for the highest quantity of ô-opioid (wt) cDNA. To ensure 

that the loss of the signal was not simply due to decreasing levels of expression of ô- 

opioid-Rluc and ô-opioid-eYFP, the experiments were repeated substituting pcDNA3 

vector for wild type ô-opioid cDNA as a competitor. Introducing large quantities of 

this pcDNA3 vector to the optimal ô-opioid-Rluc and ô-opioid-eYFP ratios in the 

transfection mix did not result in the same 50% loss of energy transfer as observed 

previously with wild type ô-opioid cDNA. As shown in both of the representitive 

experiments (Figure 3.14), introducing up to 4pg of pcDNA3 had little or no effect on 

the strength of the signal. It remains possible however that the blank pcDNA3 vector 

did not challenge the expression levels of ô-opioid-Rluc and ô-opioid-eYFP quite as 

effectively as did wild type ô-opioid cDNA.

Homo-dimerization of the /(-opioid receptor was next investigated. Previous studies 

on this receptor involving co-immunoprecipitation techniques suggested that this 

receptor type was constitutively homo-dimerized and that this was unaffected by the 

presence of agonist ligands (Jordan and Devi, 1999). To apply the BRET assay to this 

receptor type the /(-opioid receptor was modified at the carhoxy terminal tail via 

fusion with either Rluc or eYFP in a manner analogous to the j32-AR and Ô-opioid 

receptors. Single concentration point radioligand binding with [^H]-diprenorphine, 

revealed that both of these chimeric constructs had been successfully expressed and
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yielded a correctly folded receptor which was capable of binding to appropriate 

ligands (Figure 3.15). Again it was observed that the eYFP tagged form of the 

receptor expressed at significantly higher levels than the Rluc tagged chimera 

(528±14 finol/mg for K-opioid-Rluc and 2427±213 fmol/mg for /c-opioid-eYFP). 

Since the binding studies were performed on membrane preparations that comprised 

of all the cellular compartments, the differences could not have been brought about 

through any discrepancies in the trafficking properties of the differentially modified 

/£-opioid receptors. The differences in expression levels observed could have been due 

to an alteration in affinity of the receptor for ligand brought about by the presence of 

the carboxyl tail modification with Rluc or eYFP. However for these constructs this 

was not the case since both K-opioid-Rluc and /(-opioid-eYFP have been shown to 

have Kd values that are indistinguishable from the wild type unmodified receptor in 

saturation binding studies with [^H]-diprenorphine (Ramsay et al., 2002). It is more 

likely therefore that the differences in expression levels were due to the relative 

stabilities of the constructs. However, the turnover numbers of the constructs were not 

experimentally determined in the course of these studies.

HEK 293T cells co-transfected with /(-opioid-Rluc and /(-opioid-eYFP cDNA 

produced a detectable energy transfer signal upon addition of coelenterazine with a 

distinct peak in the 530nm region. No change in the extent of energy transfer was 

observed upon addition of either the K-opioid agonist ICI 199 441 or the K-opioid 

antagonist GNTI when assayed over a time course of 30 minutes where the cells were 

maintained at 37“C throughout the time course. The subtle variations in energy 

transfer levels measured at the various time points following the initial reading for t=0 

were not found, in both cases, to be statistically significant (p > 0.05) (Figure 3.16).
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Having observed that a number of GPCRs types, when modified on their carboxyl 

teiminus with either Renilla luciferase or eYFP, could give rise to levels of energy 

transfer which suggested that the molecules were in a close proximity with one 

another, the question of whether all GPCRs were equally capable of interaction, or 

whether different types of GPCRs would have differing affinities for one another 

naturally arose. In order to address this issue in a rigorous manner it was deemed 

necessary to analyse the increases in energy transfer as a function of increasing levels 

of acceptor tagged receptors (acceptors) against a relatively fixed concentration of 

donor tagged receptors (donors). It was reasoned that if the tagged receptors interact, 

then by maintaining the concentration of donors at a consistently low level in cells 

that are also co-expressing the acceptors at a variety of concentrations, it would be 

possible to correlate the increase in energy transfer signal with increased 

concentration of acceptors. If there were no high affinity interactions occurring 

between the donor and acceptor tagged receptors then over a wide range of acceptor 

concentrations, no increase in energy transfer would be expected, provided the surface 

density of the acceptors at the plasma membrane was not so great as to elicit energy 

transfer events from random molecular collisions. Also, if the tagged receptors were 

capable of interacting, then when the concentration of acceptors was elevated to a 

sufficiently high level, it would be expected that some saturation point would 

eventually he reached where all the donors were partnered with acceptors. The level 

of energy transfer at this saturation point would be determined by the efficiency of 

energy transfer between the donor and acceptor tagged receptor partners. Using this 

method it might be possible to deteimine whether the affinity of interaction between a 

given donor/acceptor pairing is greater or less than other donor/acceptor pairings 

subject to a similar analysis by noting the concentration of acceptor tagged receptors
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at the point where saturation is achieved. To implement this analysis some method of 

rapidly quantifying the relative amounts of both donor and acceptor tagged receptor 

molecules present in co-transfected cells was first necessary.

To achieve this, /c-opioid-eYFP expression was correlated with fluorescence signal 

using a multiplate fixed filter fluorimeter (r^=0.973) (Figure 3.17A). Mean 

fluorescence of cells expressing K-opioid-eYFP, as determined using FACS, was also 

con-elated with fluorescence from the fixed filter fluorimeter. Conversion of the x- 

axis to receptors/cell (see section 2.6.8) yielded the correlation graph of mean 

fluorescence against receptor number (receptors/cell) (Figure 16B). The two variables 

were found to correlate linearly (r̂  = 0.960). This method provided a convenient way 

of quantifying levels of eYFP tagged receptor expression in HEK 293T cells. 

Similarly, to determine expression levels of receptors tagged with Rluc, receptor 

expression from ligand binding was correlated with light intensity (c.p.s.) using a 

spectrofluorimeter. Similarly light intensity was found to correlate well with receptor 

number (r̂  = 0.994) and provided a convenient conversion of spectrofluorimeter 

readings into receptor numbers during routine BRET experiments (Figure 3.18).

To more thoroughly investigate interactions occumng between the donor and acceptor 

tagged versions of the /c-opioid receptor, using this quantitative method, HEK 293T 

cells were co transfected with the cDNAs for hoth K-opioid-Rluc and /c-opioid-eYFP 

at various ratios in the transfection mixture, in such a way as to always maintain k~ 

opioid-Rluc expression at as low a level as possible. Prior to performing the BRET 

assay, the cells were subject to FACs analysis to determine the expression levels of 

acceptor tagged receptors within the cell. The emission spectrum emitted by the cells 

following addition of coelenterazine (5pM) was then obtained, with the value of 

energy transfer deteimined as described in section 2.6.9 From this trace, the number
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of donor tagged receptors/cell was also detennined from the intensity of luminescence 

emitted via Renilla luciferase in the mamier described in section 2.6.7 Taking the data 

thus obtained, energy transfer was plotted against the concentration both of acceptor 

and donor tagged receptors/cell (Figure 3.19). It can be seen that when energy transfer 

is considered as a function of the acceptor concentration, a linear relationship is 

observed to exist between the two variables (Figure 3.19A) (r^=0.90). It is also noted 

that although a wide range of /(-opioid-eYFP expression levels were achieved, it was 

not possible to saturate the system; this was despite the widest range of transfection 

ratios possible. Through plotting the same levels of energy transfer against the 

concentration of donor tagged receptors it could be seen that a narrow band of 

expression levels had been achieved, mostly ranging from about 25,000 to 100,000 

recep tors/cell (Figure 3.19B). The expression levels of /c-opioid-Rluc were 

consistently lower than those of /c-opioid-eYFP and no correlation could be 

determined between the expression levels of /<-opioid-Rluc and energy transfer 

(r^=0.10), indicating that under these conditions the extent of energy transfer was 

predominantly dictated by the expression levels of the acceptor tagged receptor.

For the purpose of a compaiison, similar experiments were performed through the co­

transfection of the cDNA for k-opioid-Rluc and TRHr-eYFP into HEK 293T cells at 

varying ratios in the transfection mixture. When expression levels of TRHr-eYFP are 

plotted against energy transfer levels, some degree of correlation could be obtained 

(r^=0.68), however, as was the case for the /{-opioid-Rluc/ /c-opioid-eYFP pairing, no 

clear saturation of the system could be perceived even when TRHr-eYFP was 

expressed as highly as 400,000 copies/cell (Figure 3.20). Again, in this experiment, 

expression levels of /c-opioid-Rluc were maintained within a narrow range of 

expression (predominantly between 50,000 and 150,000 receptors/cell) and these
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were expression levels which were considerably lower than the acceptor tagged 

receptor expression levels within the same cells. Since in neither case were saturating 

concentrations of acceptor tagged receptor achieved it is difficult to draw strong 

conclusions concerning the relative affinities of these two receptor pairings. It can 

however be shown that the levels of energy transfer achieved with the /c-opioid-Rluc/ 

TRHr-eYFP pairing were at the periphery of what might be considered meaningful 

levels of energy transfer, even at the highest levels of TRHr-eYFP expression 

achieved. This is clearly demonstrated by considering traces obtained from BRET 

experiments where different quantities of energy transfer were obtained (Figure 3.21). 

It can be seen that energy transfer readings of up to about 10 units are virtually 

impossible to resolve from background and the majority of energy transfer readings 

obtained in the /c-opioid-Rluc/ TRHr-eYFP pairing were of this order of magnitude. 

This casts doubt on whether these two GPCR types are in close enough proximity to 

produce any meaningful levels of energy transfer even when high levels of TRHr- 

eYFP are expressed within mammalian cells.

To show that the observed differences between the two different pairings subject to 

quantitative analysis, as detailed above, were not simply due to the different acceptor 

tagged receptors being predominantly localized to different cellular compartments, 

confocal pictures of both /c-opioid-eYFP and TRHr-eYFP were obtained following 

transient transfection of the cDNA encoding the respective constmcts into HEK 293T 

cells. Pictures subsequently obtained revealed that hoth constructs had a 

predominantly plasma membrane localized cellular distribution (Figure 3.22) and 

given this, it would be expected that /(-opioid-Rluc would be equally accessible to 

both /(-opioid-eYFP and TRHr-eYFP when co-transfected with either into HEK 293T 

cells.
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Figure 3.4. Expression levels of the wild type /32-adrenoceptor and Renilla tagged 

/32-adrenoceptor when expressed in HEK 293T cells.

Expression levels were determined for membrane preparations of imtransfected HEK 

293T cells, HEK 293T cells expressing the wild type /32-AR and HEK 293T cells 

expressing the /32-AR-Rluc chimeric protein using [^H]-DHA (2nM) in a single 

concentration point, radioligand binding assay. Results are from a single transfection, 

representative of three such performed, standard errors were determined for triplicate 

well assay points.
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Figure 3.5. Functional coupling of wild type /32-adrenoceptor and Renilla tagged 

/32-adrenoceptor to adenylyl cyclase in HEK 293T cells.

HEK 293T cells were mock transfected or transiently transfected with cDNAs 

encoding wild type /32-AR or /32-AR-Rluc. Twenty-four hours later cells were 

labelled with [^H]-adenine and a further twenty-four hours later cAMP generation was 

measured as described in section 2.6.4 in the presence or absence of a 30 minute 

pretreatment at 37“C with the /32-AR agonist isoprenaline (lO/uM). Results are taken 

from a representative experiment of three performed.
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Figure 3.6. Competition Radioligand binding studies performed on cell 

membranes expressing /32-AR-eYFP.

The capacity of various concentrations of isoprenaline and betaxolol to compete with 

[^H]“DHA in membrane preparations of HEK 293T cells transiently expressing the 

/32-AR-eYFP construct. Data represents a mean ±S.E.M. from three independent 

experiments.
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Figure 3.7. Light emission spectra form BRET positive control: Comparison 

with light emission spectra obtained from Renilla alone.

Emission spectra from HEK 293T cells transiently transfected with either (A) positive 

control vector or (B) /32-AR-Rluc, following addition of SjitM coelenterazine. The 

results are from a single transfection, representative of at least three such experiments 

perfoiTned.
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Figure 3.8. BRET based detection of constitutive /32-AR homo-dimerization in 

intact cells.

(A) Light emission spectra were obtained from HEK 293T cells transiently 

ti'ansfected with positive control vector (black), a co transfection of |82-AR-Rluc and 

/32-AR-eYFP (green) and a mixed pool of cells expressing either (82-AR-Rluc or j82- 

AR-eYFP in separate cells (red). (B) Energy transfer values were quantitated, by 

measuring the area under the normalized light emission spectra between 500nm and 

550nm for the above transfections. The data represnt means ± S.E.M for three 

independent experiments.
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Figure 3.9. Absence of ligand induced regulation of BRET based detection of ]32- 

adrenoceptor homodimerization.

The amount of light emitted from both Renilla luciferase or eYFP was quantitated 

using filters of fixed bandwidth on a Victor^ multiwell plate reader. Readings were 

taken from wells containing HEK 293T cells, either transfected with positive control 

vector, CO-transfected with j32-AR-Rluc and j82-AR-eYTP or containing a mixed pool 

of cells expressing both /32-AR-Rluc and /32-AR-eYFP in separate cells. Data 

represents means ± S.E.M. of three independent experiments.

149



£ 0.8

a  0.6û:

g  0-4

Positive Beta2-A R - Beta2-A R - Beta2-A R - M ixed cells
control R luc/Beta2- R luc/Beta2- Rluc

A R -eYFP A R-eYFP  
plus 

isoprenaline

Figure 3.9.

150



Figure 3.10. Expression levels of ô-opioid-Rluc and Ô-opioid-eYFP constructs 

expressed in HEK 293T cells.

Radioligand binding, using a single concentration of [^H]-diprenorphine (5nM), was 

used to determine the expression levels of either ô-opioid-Rluc or ô-opioid-eYFP 

transiently expressed in HEK 293T cells. Data represent the results of a single 

transfection from two such experiments performed, both of which gave similar 

results.
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Figure 3.11. BRET based detection of constitutive homodimerization of the Ô- 

opioid receptor in HEK 293T: Ligands do not effect the dimerization status.

(A) The light emission spectrum from HEK 293T cells transiently co-expressing both 

0-opioid-Rluc and ô-opioid-eYFP, was obtained (dark blue). After a ten-minute pre­

incubation at room temperature of either the 6-opioid agonist DADLE (lOpM) or the 

6-opioid inverse agonist ICI 174 864 (lOpM), light emission spectra were re-obtained 

(red and green spectra respectively). Background is represented by HEK 293T cells 

expressing 6-opioid-Rluc alone (light blue). (B) The light emission spectrum obtained 

from HEK 293T cells transiently co-expressing both /32-AR-Rluc and 6-opioid-eYFP 

(red) was obtained. Also included for comparison are the traces obtained from cells 

co-expressing 6-opioid-Rluc and 6-opioid-eYFP (dark blue) as well as from the 

positive control vector (black) and 6-opioid-Rluc alone (light blue). (C) The area 

under the normalized emission spectra, obtained from the same types of transfection 

as those detailed above, were determined as detailed in section 2.6.9. Data represent 

means ± S.E.M. of four independent experiments.
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Figure 3.12. Typical data obtained from FACS analysis of cell co-transfected 

with either (A) 8 -opioid-Rluc and ô-opioid-eYFP, (B) j82-AR-Rluc and 5-opioid- 

eYFP or (C) untransfected cells.

Shown are the plots for forward scatter and side scatter from a representative of four 

such readings obtained for both co-transfection types. The encircled (gated) area 

represents the proportion of cells, which were chosen for fluorescence analysis. Also 

shown are histogram plots of fluorescence intensity readings (FLl-H) from cells 

within the gated region. The marker Ml denotes the boundary region within which 

cells were defined as being fluorescent. This was determined using the histogram plot 

for untransfected cells. The mean fluorescence within this Ml region was recorded for 

each transfection type.
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Figure 3,13. Introduction of an untagged version of the 5-opioid into a 

transfection mix of both 5-opioid Bret partners results in a reduction of the 

energy transfer signal.

HEK 293T cells were transiently transfected with cDNA for both 5-opioid-Rluc and 

5-opioid-eYFP, at a ratio that was deemed optimal for detection of energy transfer. 

Varying amounts of cDNA for the wild type 5-opioid receptor was included in the 

transfection mix. The light emission spectra for these transfected cells were 

determined and the results quantitated by measuring the area under the normalized 

light emission spectra as detailed in section 2.6.9. The data represent means ± S.E.M. 

of tliree independent experiments.
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Figure 3.14. Introduction of blank pcDNA3 vector into a transfection mix of both 

Ô-opioid BRET partners did not result in a reduction of the energy transfer 

signal.

HEK 293T cells were transiently transfected with cDNAs for both 5-opioid-Rluc and 

5-opioid-eYFP, at ratios that were deemed optimal for detection of energy transfer. 

Varying amounts of DNA for the pcDNA3 vector was included in the transfection 

mix. The light emission spectra for these transfected cells were determined and the 

results quantitated by measuring the area under the normalized light emission spectra 

as detailed in section 2.6.9. The data represent the results of two such experiments 

performed.
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Figure 3.15. Expression levels of x-opioid-Rluc and x-opioid-eYFP expressed in 

HEK293T cells.

Radioligand binding, using a single concentration of [^H]-diprenorphine (5nM), was 

used to determine the expression levels of either K-opioid-Rluc or K-opioid-eYFP 

transiently expressed in HEK 293T cells. Data represent means ± S.E.M. of three 

independent experiments.
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Figure 3.16. BRET based detection of K-opioid receptor homodimerization in 

HEK 293T cells: Ligands do not affect the dimerization status of this interaction 

over a thirty-minute time course.

HEK 293T cells were transiently co-transfected with an optimised ratio of cDNA for 

both /c-opioid-Rluc and K-opioid-eYFP. The light emission spectrum was obtained 

both before and after the addition of either the x-opioid agonist ICI 199 441 or the k- 

opioid antagonist GNTI (both at 10/tM), and energy transfer was quantified by 

measuring the area under the trace of the normalized emission spectra between 500nm 

and 550nm. The emission spectrum was examined at time points 9, 18 and 28 minutes 

following addition of the test compound. Cells were maintained at 37“C throughout 

the experiment. Data represent means ± S.E.M. of three individual experiments.
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Figure 3.17. Correlation of receptor number against fluorescence from K-opioid- 

eYFP.

(A). Membrane preparations from cells transiently transfected with /c-opioid-eYFP 

were subject to serial dilution then assayed for fluorescence on a Victor^ multiplate 

well reader. Parallel binding studies with [^H]-diprenorphine (5nM) on equivalent 

dilutions of the same membrane preparations determined the amount of receptor 

(fmol) at each dilution point. The values were highly correlated (r^-0.973). Data 

represent the combined results of two independent experiments with error bars 

representing the S.E.M. between triplicate well readings. (B). HEK 293T cells 

transiently transfected with /c-opioid-eYFP were subject to FACS analysis to 

determine the mean fluorescence of the cells. The fluorescence of a fixed quantity of 

the same cells was obtained, using the Victor^ multiplate well reader, to obtain a 

parallel set of readings for this instrument. The two sets of values were then correlated 

(r^-0.960). Conversion of the x-axis to receptors per cell was achieved using the data 

from graph (A) as described in section 2.6.8. The results represent the combined data 

of tliree such experiments performed.
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Figure 3.18. Correlation of Receptor number against Renilla bioluminescence 

from P2-AR-R1UC.

Membrane preparations from HEK 293T cells, transiently transfected with |32-AR- 

Rluc, were subject to serial dilution. The light emission spectrum upon addition of 

coelenterazine was obtained and the average value of light intensity for the peak 

centred on 460nm determined in each case. Parallel binding studies with [^H]-DHA 

(2nM) on equivalent dilutions of the same membrane preparations determined the 

amount of receptor (frnol) at each dilution point. Both sets of results were then 

correlated (r^=0.994). The data is representative of three similar experiments 

performed. The error bars for triplicate wells used in the radioligand binding assay are 

too small to be observed.
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Figure 3.19. For K-opioid receptor homodimerization, the presence of only 

1 0 0 , 0 0 0  acceptor tagged receptors/cell is required in order to obtain significant 

levels of energy transfer.

(A) HEK 293T cells were transiently transfected with a range of cDNA ratios in a co­

transfection of K-opioid-Rluc and K-opioid-eYFP. The light emission spectra obtained 

horn these transfections were used to determine energy transfer levels by measuring 

the area under the normalized light emission spectra between 500nm and 550nm. 

Mean fluorescence values obtained from FACS analysis of the same cells were used 

to determine the number of receptors/cell using the graph in Figure 3.17B. The two 

sets of results were then correlated (r^=0.90). Results represent the pooled data from 

three individual experiments. (B) From the light emission spectra, the average light 

intensity fr om the peak centred on 460nm was determined. This value was converted 

to a donor receptor concentration using the graph of Figure 3.18 These results were 

then plotted against the energy transfer levels (r^=0.10).
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Figure 3.20, For heterodimerizatioii between the TRHr and K-opioid receptors, 

the presence of at least 300,000 acceptor tagged receptors/cell is required in 

order to obtain significant levels of energy transfer.

(A) HEK293T cells were transiently transfected with a range of cDNA ratios in a co­

transfection of K-opioid-Rluc and TRHr-eYFP. The light emission spectra obtained 

from these transfections were used to determine energy transfer levels by measuring 

the area under the normalized light emission spectra between 500nm and 550nm. 

Mean fluorescence values obtained from FACS analysis of the same cells were used 

to determine the number of receptors/cell using the graph in Figure 3.17B. The two 

sets of results were then correlated (r^=0.68). Results represent the pooled data from 

two individual experiments. (B) From the light emission spectra, the average light 

intensity fi'om the peak centred on 460nm was determined. This value was converted 

to a donor receptor concentration using the graph of Figure 3.18 These results were 

then plotted against the energy transfer levels (r^=0.33).
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Figure 3.21. The light emission spectra obtained from BRET studies showing a 

variety of energy transfer levels.

Shows typical emission spectra obtained from HEK 293T cells co-transfected with 

Rluc and eYFP K-opioid tagged receptors and their corresponding levels of energy 

transfer as determined by measuring the area under the normalized light emission 

spectra between 500nm and 550nm. From such studies it was decided that energy 

transfer levels above 10 units could be convincingly resolved from the background 

trace.
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Figure 3.22. Cellular localization of both K-opioid-eYFP and TRHr-eYFP 

constructs expressed in HEK 293T cells.

Images taken using scanning confocal microscopy show that (A) the K-opioid-eYFF 

construct targeted predominantly to the plasma membrane when expressed transiently 

in HEK 293T cells. (B) When expressed transiently in HEK 293T cells, the TRHr- 

eYFP construct targeted predominantly to the plasma membrane. The results are 

representative of three such experiments performed.
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Figure 3.23. Altering the magnitude of the light emission spectra from Renilla 

luciferase did not result in any alteration in the shape of the graph upon 

normalization of the data.

(A) The light emission spectra from dilutions of membrane preparations of HEK 

293T cells, transiently expressing the jS2-AR-Rluc construct were obtained. (B) 

Normalization of these traces revealed a near perfect overlap for all such spectra 

analysed. (C) Measurement of the area under the normalized light emission spectra 

(from (B)) between 500nm and 550nm showed that there was no alteration in the 

normalized readings due to different magnitudes of signal. Data shown are 

representative of three such experiments performed.
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To ensure that the graph area between SOOnm and 550nm did not alter upon 

normalization of traces of different magnitudes the area under the trace obtained from 

the emission spectrum of a series of membrane dilutions expressing j(32“AR-Rluc 

alone was determined. The peak centred on 460nm ranged in magnitude for these 

traces, from between 1000 (c.p.s.) to 22,000 (c.p.s.), covering the whole range of 

values which were obtained in the BRET experiments (Figure 3.23a). Normalization 

of the peak centred on 460nm revealed a near perfect overlay for all of the traces 

(Figure 3.23b). The area under the gmph between SOOnm and 550mn was also 

unchanging (Figure 3.23c). There is no subtraction for background in Figure 3.23c, so 

that all of these values represent zero energy transfer. This data would lead us to 

conclude that even small deviations (i.e. greater than or equal to 10 units), obtained in 

BRET experiments, would be of significance, provided a good overlay was obtained 

between the background (Rluc alone) emission specti'a and the emission spectmm 

showing energy transfer.

3.3 Discussion

In this study, bioluminescence resonance energy transfer was used to investigate 

interactions between various types of G-protein coupled receptors. The results 

obtained with the j32-AR indicated that this receptor was constitutively dimerized and 

that addition of ligand did not alter the extent of energy transfer. Previous studies, 

which were based on co-immunoprecipitation experiments, had suggested that the ^2- 

AR existed as a homodimer when expressed in insect Sf9 cells and also, to a lesser 

extent, in mammalian CHW cells (Herbert et a l, 1996). Further evidence for 

interactions between /32-ARs was provided by functional rescue experiments, where 

the /52-AR was seen to be capable of exerting a dominant positive effect on a
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constitutively desensitised mutant version of the j82-AR, when co-expressed in insect 

Sf9 cells (Herbert et al., 1998). In the former study, it was found that a peptide 

derived from the amino acid sequence of jS2-AR transmembrane domain VI was 

capable of disrupting homodimerization and that this effect could be inhibited by the 

presence of agonist ligand, presumably by exerting a stabilising effect upon the 

homomeric complex. The same group have also used BRET to coiToborate their 

previous findings and were successftil, both in confirming that the jS2-AR is 

constitutively homodimerized and that the amount of energy transfer observed could 

by increased upon addition of agonist, an effect which could be blocked by the 

antagonist propranolol (Angers et ai, 2000). With respect to these ligand-induced 

increases in energy transfer this author was unable to replicate the above-mentioned 

results. Addition of the agonist isoprenaline was not found to induce a statistically 

significant increase in energy transfer levels given a ten-minute preincubation time 

prior to the assay. It should be noted however, that the increases in energy transfer 

detected by Angers and co-workers (Angers et al., 2000) were extremely small and it 

is possible they were beyond the limits of resolution for the equipment used in our 

experiments. Experiments using BRET to detect the homomeric interactions of the 

thyi'otropin releasing hormone receptor, (Kroeger et al., 2001) produced similar 

results to those of studies focusing on the i32-AR (Angers et al., 2000). In such 

studies, the TRH receptor was seen to be constitutively homodimerised in the absence 

of ligand. Addition of TRH resulted in a reproducible, statistically significant increase 

in the strength of the energy transfer signal, though the magnitude of this increase was 

still very small in comparison with the constitutive signal.

A problem associated with the detection of ligand-induced alterations in the extent of 

dimerization between GPCR types is that over expression of receptors, which possess
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a certain affinity for one another, may drive any dynamic equilibrium between 

monomeric and dimeric states towards the associated foiin. This is implied by the law 

of mass action which states that the rate of a reaction is proportional to the product of 

the concentrations of the reactants. If such an equilibrium were to be influenced by 

the presence of agonist, but the concentrations of the reactants (receptors) were 

sufficiently high as to force that reaction almost to completion, it would be difficult to 

detect alterations in energy transfer upon addition of the agonist. Another difficulty is 

that such extremely small alterations in energy transfer could be due to a reorientation 

of the donor and acceptor tagged molecules, induced by the presence of agonist ligand 

in the receptor-binding pocket. This could alter the angle of orientation between the 

donor and acceptor molecules, which would change the efficiency of the energy 

transfer process (by Equations 1 and 3, Section 3.1.2).

Other receptor types investigated in the course of conducting the experiments detailed 

herein, like the ((52-AR, similarly failed to produce ligand-induced alterations in the 

extent of homodimerization. This was the case in examining homomeric interactions 

with the d-opioid receptor as well as homomeric interactions of the K-opioid receptor, 

where even in a time course of up to thirty minutes following addition of agonist, no 

changes in the levels of energy transfer were observed. The fomier result was not 

consistent with previous studies involving the ô-opioid receptor (Cvejic and Devi, 

1997) where upon addition of certain types of agonist (athough not all), dimer 

complexes of the 6 -opioid receptor were seen to be destabilized and that this process 

preceded receptor internalisation. However, these experiments (Cvejic and Devi, 

1997) required the addition of an external cross-linking reagent in order to obtain a 

stable receptor complex in the presence of the detergent sodium dodecyl sulfate. It is 

possible that certain ligands may have interfered with this process, perhaps by
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masking or sequestering lysine residues important in cross-linking. In contrast, the 

BRET technique requires no such external manipulations and therefore, perhaps, 

provides a more genuine result. Credence to this assertion is provided by results 

obtained from time resolved FRET based assays on living cells, which did not reveal 

any alterations in the extent of homodimerization between 6 -opioid receptors in the 

presence of agonist (McVey et al., 2001). The FRET based experiments presented by 

McVey and co-workers (McVey et al., 2001) had certain advantages over the BRET 

method described herein. Principle of these advantages was that the receptors were 

tagged with acceptor and donor fluorophores by use of fluorescent antibodies that 

bound to the amino-terminus of the respective receptors protruding from the 

extracellular face of the cell. Since these antibodies could not traverse the plasma 

membrane, only receptors successfully delivered to the plasma membrane were thus 

tagged and consequently all of the receptors, involved in energy transfer events, must 

have been accessible to external ligand. This is not the case with BRET where the 

donor or acceptor tagged receptors may be present at any location within the cell 

depending on the trafficking properties of the receptor. Hence it may be the case that 

not all donor or acceptor tagged receptors present in co-transfected cells will be 

accessible to external ligand provided that it is not sufficiently hydrophobic so as to 

traverse the cell plasma membrane. Also, it remains difficult to assess to what degree 

the energy transfer signal is the result of interactions between mature receptor or 

between immature receptors not yet exported from the endoplasmic reticulum and /or 

the Golgi apparatus.

Another possible reason as to why it was not possible to detect statistically significant 

increases and/or decreases in energy transfer upon agonist/antagonist treatment may 

lie in the fact that the GPCRs do not necessarily exist in equilibrium between
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monomers and dimers. Obviously the existence of higher oligomeric states would 

complicate things. If the GPCRs existed in equilibrium between dimers and tetramers 

(say) then even if the presence of agonist drove the GPCRs towards the tetrameric 

state this change would not be detectable with the BRET system described herein. 

However, it is beyond the scope of these studies to address such issues directly.

As a means of confirming that the energy transfer signals between Rluc and eYFP 

tagged 6 -opioid receptors were due to intermolecular interactions, it was demonstrated 

that by introducing increasing quantities of untagged 6 -opioid receptor into the co­

transfection mixture the levels of energy transfer between these two chimeric 

receptors could be substantially attenuated and that this was not a result of altering the 

conditions of transfection. This technique may provide a useful method for 

determining whether any given (untagged) GPCR is capable of interacting with the 6 - 

opioid receptor by measuring the extent to which it is able to disrupt homomeric 

interactions between the BRET partners with a resultant loss in energy transfer signal. 

This method circumvents the need to construct more chimeric receptors tagged with 

Rluc and eYFP and in future studies a wide range of untagged GPCRs may be utilized 

in this fashion. The technique may also prove useful in elucidating those domains of 

the receptor that are involved in intermolecular interactions. For instance, since 

previous studies on the 6 -opioid receptor have implicated a role for the carboxyl 

terminal tail in mediating intermolecular interactions between the homo-dimers 

(Cvejic and Devi, 1997), it would be interesting to see if a mutated version of the 6 - 

opioid receptor which had a truncation in the carboxyl terminal tail domain was as 

efficient at disrupting the tagged 6 -opioid BRET partners as the full length receptor. 

This approach might have certain advantages over constructing a truncated 6 -opioid 

receptor modified with either the Rluc or eYFP because it removes the theoretical
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possibility that by changing the length of the tail of a chimeric receptor construct, you 

are potentially altering the distance (R) between the centres of reaction of the donor 

and acceptor fluorophores.

An experiment intended to assess the extent to which energy transfer signals could be 

observed between the (32-AK  and the 6 -opioid receptor was initially designed as a 

control since it was anticipated that there would be only a small chance of these two 

receptor types having a significant affinity for each other owing to the low sequence 

homology between the two. The results did not indicate any significant constitutive 

interaction between these two receptor pairs. However, addition of either isoprenaline 

or DADLE caused a statistically significant increase in the energy transfer signal. 

This might indicate that the presence of either agonist increases the mutual affinity of 

these two receptor types, thus bringing them into closer proximity. Interactions 

between the /52-AR and the 6 -opioid receptor have been confinned in a recent study 

(Jordan et a l, 2001), wherein by making use of co-immunoprecipitation techniques 

they demonstrated that such interactions, athough not capable of altering the ligand 

binding or G-protein coupling affinities of associated receptors, were capable of 

altering their trafficking properties. In these experiments it was found that /32-ARs 

were internalised upon addition of the opioid agonist etorphine when co-expressed 

with 6 -opioid receptors and that this response was not observed in cells expressing 

jS2-AR alone. It can be envisaged that the efficiency of this co-intemalization process 

would be considerably entranced by an increase in the affinity of the 6 -opioid 

receptors for j62-AR upon binding agonist.

The results presented herein, show that certain types of GPCR are in close spatial 

proximity when co-expressed within HEK 293T cells and that this therefore leads us 

to suspect that they possess the close physical intimacy such as would result from
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intermolecular interactions. This evidence should not be regarded in isolation 

however, since there is now a wealth of studies all of which direct our attention to the 

fact that GPCRs exist as, or are capable of forming dimeric complexes. The range of 

GPCRs that have been subject to these studies are multitudinous and now include all 

the major classes of GPCR (class A, class B and class C). Examples are seen in 

receptors as diverse as the B2 bradykinin receptor, in which involvement of the N- 

terminus in receptor association was indicated (Said et al., 1999) and in the 

chemokine receptor for MCP-1 (CCR2), where interactions seem to be largely 

modulated by the presence of agonist (Rodriguez-Frade et al.,\999). Instances of 

heterodimerization within this family are also common, of which the somatostatin 

receptors provide particularly illuminating examples. For instance, for the 

somatostatin receptor subtypes ssti and ssts, heteromeric interactions are reported to 

result in an increase in agonist potency and efficacy and a change in agonist-mediated 

endocytosis (Rochville et a l, 2000). This is in contrast to interactions between 

somatostatin subtypes sst2A and sst] (Pfieffer et a l, 2001) which result in a decrease in 

agonist potency and efficacy as well as a change in agonist mediated-endocytosis. 

Another member of the gioup of type A family receptors, which has been shown to 

exhibit dimerization, is the gonadotropin releasing hormone receptor (GnRHr). In a 

FRET based study on this receptor it was found that addition of the agonist buserelin 

promoted receptor micro aggregation (Cornea et al., 2000); this study was extended to 

show that the increased levels of FRET induced upon addition of agonist were not a 

consequence of receptor clustering into lipid vesicles but were instead due to a 

physical intimacy between the receptor molecules, imparted by a gain in mutual 

affinity. The experimental evidence for this was that the presence of cytocholasin D, a 

micro filament destabilising agent, did not alter the ability of buserilin to enhance
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energy transfer. Type B family GPCRs are represented by interactions between the 

calcitonin receptor and one TM receptor activity modifying proteins (RAMPs), where 

the RAMP acts as a chaperone protein to the GPCR, accompanying the receptor as it 

passes through the cellular trafficking machinery of the E.R. and Golgi apparatus. The 

maturation process of the receptor is governed by the type of RAMP which is co­

expressed with the calcitonin receptor. RAMPs land 3, when co-expressed with 

human calcitonin receptor, generate a receptor with a higher affinity for amylin than 

when this gene product is expressed with RAMP2 (Christopoulos et a l, 1999). 

Interactions between type C family GPCRs include heteromeric assemblies of 

subtypes of the y-amino butyric acidB (GABAb) receptor, where successful cell- 

surface expression of a fully functional receptor complex requires the presence of 

both GABAb(ri) and GABAb(R2) subtypes (Jones., et a l 1998; Kaupmann., et al, 

1998; White et a l, 1998; Kuner et a l, 1999; Sullivan et a l, 2000). Interactions 

between unrelated receptors belonging to different families have also been described. 

For instance, the adenosine A1 receptor (family A) has been shown to associate with 

metabotrobic glutamate receptor la  (family C), by co-immunoprecipitation of co­

expressed receptors in HEK 293T cells as well as endogenously expressed receptors 

in rat cerebellar synaptosomes (Ciniela., et al 2000). A more comprehensive and 

inclusive discussion of the diverse range of studies concerning the phenomenon of 

dimerization of GPCRs is provided in Chapter 1.

It had been seen, through the course of this investigation that certain receptors, when 

tagged with molecules that serve as appropriate donor and acceptor moieties, were 

capable of producing significant levels of energy transfer when co-expressed within 

mammalian cells and assayed for BRET (e.g. j92-AR-Rluc and /32-AR-eYFP; b- 

opioid-Rluc and 6 -opioid-eYFP; /{-opioid-Rluc and K-opioid-eYFP). These findings
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suggested that when co-expressed these respective pairings were in close spatial 

proximity such as would be expected if the molecules were capable of interacting 

with one another. Other receptor pairings (e.g. j32-AR-Rluc and 6 -opioid-eYFP) did 

not produce large quantities of energy transfer, so no evidence could be but forward in 

support of these receptors being able to interact. To further explore the differing 

propensities of the various types of GPCR to either homo- or hetero-dimerize, it was 

thought desirable that some system should be established whereby, through 

consideration of the quantities of donor and acceptor tagged receptors present in the 

cells, the relative affinity of a particular GPCR tagged with Renilla luciferase for 

other GPCRs tagged with eYFP might be established. It was reasoned that through 

deliberately maintaining low levels of the Renilla luciferase tagged receptor in co­

transfections with an eYFP tagged receptor construct, the amount of energy transfer 

could be monitored as a function of the eYFP tagged receptor concentration. It was 

anticipated that in such analyses a saturation point would eventually be reached, this 

point being where practically all of the Rluc tagged receptors would be partnered with 

eYFP tagged receptors. Through the comparison of the acceptor tagged receptor 

concentrations at which the system became saturated, it would be possible to draw 

conclusions about the relative affinities that any donor/acceptor tagged receptor 

pairing might have for one another, this was of course provided that the donor 

concentrations could be maintained at comparably low and unvarying levels in the 

respective analyses.

When such studies were attempted with Rluc and eYFP modified versions of the k -  

opioid receptor, it was found that upon introducing increasing levels of K-opioid- 

eYFP to a relatively unvarying amount of k-opioid-Rluc a linear increase in the 

amounts of energy transfer could be observed (Figure 3.19). A saturation point was
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not reached however and since the widest range of cDNA ratios possible were 

employed in the transfection stages of the experiment there was no way in which this 

could be achieved short of recourse to an alternative transfection method, hi similar 

experiments, this time employing /c-opioid-Rluc and TRHr-eYFP as the 

donor/acceptor partners there was no convincing evidence to suggest that significant 

levels of energy transfer had been achieved (Figure 3.20) even though this parameter 

was tracked over a similar range of acceptor concentrations as was used in the 

previous experiment employing K-opioid-Rluc and K-opioid-eYFP as the 

donor/acceptor partners, hi both of the experiments the donor tagged receptor 

concentrations were maintained at similar levels and these were comparatively low 

compared the acceptor concentrations tested. Despite the obvious differences between 

the ability of these two pairings to produce energy transfer events, the results 

presented, though suggestive, do not amount to a rigorous demonstration of an ability 

for K-opioid receptor to form a homomeric complex in preference to a heteromeric 

complex with another distinct and distantly related receptor type.

It is however infonnative to consider the relationship between the amount of energy 

transfer and the proportion of the receptor molecules which were acceptors, in the 

light of a simplified model for GPCR dimerization. For such a model the simplifying 

assumption will be made that at the super endogenous levels of expression achieved 

in the experiments detailed above, any equilibrium that exists between donor and 

acceptor tagged receptors will reduce to a set of conditions where all the receptors are 

part of a dimeric complex, hence the only equilibrium which need be considered is: 

[AA] + [DD] 2[AD], where [AA] and [DD] represent the concentrations of 

acceptor tagged receptor homo-dimers and donor tagged receptor homo-dimers 

respectively and [AD] represents the concentration of a heteromeric complex
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consisting of both donor and acceptor tagged receptors. A second simplifying 

assumption is that all energy transfer signals are generated through the interaction of 

receptors as opposed to random collisions at the receptor surface densities achieved. 

Given these assumptions, it is expected that the proportion of donor tagged receptors 

in the heteromeric complex will determine the extent of energy transfer, since only 

these will contribute to energy transfer. Now let the proportion of receptor that are 

acceptors be defined as the acceptor fraction, where: acceptor fraction^ (acceptors 

(receptors/cell)/acceptors (receptors/cell) + donors (receptors/cell)). If looking at 

homodimerization, then it is logical to assume that there is no bias between the 

formation of [DD] and [AD], and the proportion of donors in the heteromeric complex 

will be determined solely through the probability of A and D or D and D interacting 

with one another. It is evident, given no bias, that the relative concentrations of A and 

D respectively (represented here by the acceptor fraction) will detemiine this 

probability. Following this line of reasoning it is logical that in the case of 

homodimerization, saturation will only occur when there is an excess of acceptor 

tagged receptor over donor tagged receptor such that the acceptor fraction is 

approaching unity. In the case of heterodimerization, if there is strong bias in favour 

of the heterodimer then the equilibrium will lie well to the right and the associations 

between A and D will not be determined by random chance alone. In this case it 

might be expected that saturation would occur well before the proportion of acceptors 

approached unity, for example, if the bias were strong enough saturation might occur 

when the proportion of A:D was equal (0.5:0.5). On the other hand, if there was a 

strong bias against the formation of the heterodimer the equilibrium would lie well to 

the left and it might be expected that no significant levels of energy transfer would be 

observed even as the proportion of acceptors tended towards unity.
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By plotting the acceptor fraction against the obtained energy transfer values for the /<- 

opioid-Rluc/K-opioid-eYFP pairing, it can be seen that energy transfer increases with 

the acceptor fraction in a relationship that is best described as being linear (r^=0 .8 ) 

(Figure 3.24A). As predicted for homodimerization, the highest readings are those 

that cluster close to the point of unity on the x-axis. From the simplified model of 

dimerization it would be expected that these are about the highest readings which we 

might reasonable expect to obtain, since at this point virtually all of the donor 

molecules must be incorporated into the [AD] complex. In contrast to this when 

examining heteromeric interactions between K-opioid-Rluc and TRHr-eYFP, even as 

the acceptor fraction tends towards unity there is still no evidence that significant 

levels of energy transfer are being achieved and this is under conditions where, if k- 

opioidRluc and TRHr-eYFP had at least an equal affinity for one another it would be 

expected that the greatest levels of energy transfer achievable would almost have been 

reached (Figure 3.24B). One explanation for this anomaly, from considering the 

simple model for dimerization, is that in the case of the K-opioid-Rluc/TRHr-eYFP 

pairing there is a very strong bias against the formation of the heterodimer and that 

even in the presence of a large excess in the proportion of acceptor tagged receptors it 

is still not possible to detect any significant energy transfer events. Hence one likely 

interpetation of this data is that K-opioid-Rluc has a greater tendancy to interact with 

itself than with the more distantly related TRH receptor.

One alternative explanation for the anomaly between the data generated for the two 

donor/acceptor tagged receptor pairings tested is that TRHr-eYFP and K-opioid-eYFP 

were not predominantly localized within the same compartments of the cell and that 

this imposed an artificial bias on the ability of K-opioid-Rluc to interact with K-opioid- 

eYFP. However, confocal analysis demonstrated that this was manifestly not the case.
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Figure 3.24. Re-evaluation of the data for K-opioid receptor homodimerization 

and heterodimerization of the K-opioid receptor and TRHr receptor through 

consideration of these results in the light of a simplified dimerization model

(A) The data from Figure 3.19 was taken and the values obtained for the 

concentrations of both K-opioid- Rluc and K-opioid-eYFP (receptors/cell) were used 

to calculate the acceptor fraction defined as: acceptor fraction^ (acceptors 

(receptors/cell)/ acceptors (receptors/cell) + (donors (receptors/cell)). This new 

parameter was then plotted against the values of energy transfer to yield the shown 

correlation graph (r^=0.8). (B) The data from Figure 3.20 was taken and the values 

obtained for the concentrations of both k-opioid-Rluc and TRHr-eYFP (receptors/cell) 

were used to calculate the acceptor fraction. This new parameter was the plotted 

against the values of energy transfer to yield the shown correlation graph (r^=0.576).
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with both TRHr-eYFP and K-opioid-eYFP being equally capable of targeting 

successfully to the plasma membrane of the cell. It is therefore logical to assume that 

when either of these two eYFP tagged receptors were co-expressed with /£-opioid- 

Rluc there would be no spatial restrictions imposed upon the capacity of either of the 

pairings to interaet.

A third way by which the anomaly between the data generated for the two 

donor/acceptor tagged receptor pairings may be explained is through the /<-opioid- 

Rluc/ TRHr-eYFP heterodimer being so orientated as for the efficiency of energy 

transfer between the two molecules to be effectively zero. It should be mentioned here 

that there is quite a large difference in the sizes of the carboxyl terminal tails of the 

TRHr and K-opioid receptor, with TRHr possessing 91 amino acids immediately 

downstream of the NPXXY motif that marks the end of the seventh transmembrane 

helix contrasting with only 50 amino acids in the case of the K-opioid. However it is 

not necessarily to be supposed that this carboxyl teiminus is simply “dangling” 

underneath the receptor: it may well interact with other domains of the receptor, such 

as the intracellular loops and thus be incoiporated into paif of the receptors overall 

tertiary structure. It is also evident that many GPCRs are modified at the carboxyl 

teiTQinus with lipid modifications as palmitic acid and that these are used to anchor 

the carboxyl tenninus to the plasma membrane. The presence of such modifications 

upon the carboxyl terminal tails of TRHr and K-opioid receptor would significantly 

alter the distance of the carboxyl-terminally attached Rluc/eYFP molecule from the 

periphery of the plasma membrane. Without detailed information concerning the 

tertiary structure of these two GPCRs it is not easy to determine what influence the 

discrepancy in the size of the TRHr and K-opioid receptor carboxyl terminal tails
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would have on the relative spatial differences between Rluc and eYFP in either the k -  

opioid-Rluc/ K-opioid-eYFP or the K-opioid-Rluc/TRHr-eYFP pairings.

3.4. Conclusion

It was demonstrated that constitutive homodimerization could be observed for the j32- 

AR, the ô-opioid receptor and the K-opioid receptor, using a biophysical technique 

called bioluminescence resonance energy transfer. For these receptor types, no ligand 

induced alterations in the strength of the energy transfer signal could be detected, 

indicating that the R* conformation of the receptor does not favour dimerization, as 

has been reported for other receptor types. It would seem rather, that these receptors 

arrive at the plasma membrane preformed as dimeric complexes, perhaps serving as 

mutual chaperone proteins, as is the case with the GABAb receptor, to facilitate in the 

conect trafficking of the receptor complex to the cell surface and to yield a fully 

functional receptor unit. When heteromeric interactions between the /32-AR-Rluc and 

the 5-opioid-eYFP receptors were examined, no strong energy transfer signals could 

be detected upon performance of the BRET assay so that no evidence that these two 

distinct and unrelated GPCRs interacted could therefore be obtained. However, upon 

addition of either the /52-AR agonist isoprenaline or the ô-opioid agonist DADLE, a 

reproducible, statistically significant increase in the levels of energy transfer could be 

obtained, suggesting that the presence of either of these two ligands was capable of 

enhancing the mutual affinity of these two receptor types. To try and elucidate 

whether or not a given GPCR would have differing affinities for interaction with 

distinct types of other GPCRs, a method was devised where increases in energy 

transfer could be monitored by varying the concentration of the acceptor tagged 

receptor, while maintaining the donor tagged receptor at a relatively unvarying level.
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This method was applied to both homo-dimers between the K-opioid receptors and 

heterodimers between K-opioid-receptor and TRHr. The inability to achieve saturation 

over the range of acceptor concentrations tested in either of the two pairings tested 

meant that definite conclusions regarding the relative affinities could not be 

established. However, when the levels of energy transfer were plotted against the 

acceptor fraction, it could be seen that the data obtained for the k-opioid-Rluc/ K- 

opioid-eYFP pairing was not incompatible with a proposed, simplified dimer model. 

In the case of the k-opioid-Rluc/ TRHr-eYFP pairing no significant levels of energy 

transfer were discernable even when the concentration of acceptor was in great excess 

of that of the donor. A lower affinity of TRHr for the K-opioid receptor would be a 

likely explanation for the observed differences between the two sets of data. It was 

also possible that the differences could be attributed to very low energy transfer 

efficiency between a hypothetical k-opioid-Rluc and TRHr-eYFP heteromer owing to 

an unfavourable orientation between the BRET partners and/or the discrepancy in the 

size of the receptors’ carboxyl terminal tails.

It is unlikely that BRET-based detection of receptor dimerization would provide a 

useful basis on which an assay-screening programme for the detection of ligands with 

an affinity for a particular receptor could be established for industrial purposes. This 

is principally because, although homodimerization and heterodimerization occurs 

between certain GPCR types, in not all cases is the degi*ee of interaction influenced by 

the presence of an externally binding ligand.
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Chapter 4

Second Results Chapter

4.1. Introduction

4.1.1. BRETz: a variant of bioluminescence resonance energy transfer

In recent years, resonance energy transfer techniques have become increasingly 

popular as a means of detecting intermolecular interactions and they are being used by 

an increasing number of researchers to investigate the phenomenon of dimerization of 

GPCRs. Such applications of energy transfer to this field of research are diverse with 

regards to the particular methodology employed, whether it relies on traditional FRET 

experiments between well characterized fluorophores such as rhodamine and 

fluorescein; on time resolved FRET experiments or on activation of the donor 

molecule via bioluminescence with subsequent energy transfer to a mutant GFP.

As a result of the rapid expansion in such applications of resonance energy ti'ansfer 

teclmiques, a variant of BRET has been developed by Packard, specifically designed 

to offer considerable advantages over preceding methods employing bioluminescence. 

This variant system, called BRET2, differs from traditional BRET in two ways: it 

employs a modified version of h-coelenterazine, known as DeepblueC, to act as a 

donor for electronic excitation energy and it utilizes a mutant version of GFP (GFP2) 

to function as an energy acceptor. These modifications to traditional BRET (hereafter 

loiown as BRET]) result in a donor/acceptor pairing which has emission peaks centred 

on 395mn and 510mn respectively (see manufacturer’s web site: 

http://www.packardbioscience.com). This broad spectral resolution (approximately 

115nm) between the donor and acceptor has been shown to offer a substantial
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improvement in the GFP signal to background noise when conducting energy transfer 

experiments using positive controls for both BRETi and BRET2 systems (see 

manufacturer’s web site: http://www.packardbioscience.com). It should also be 

mentioned that transition from using BRET 1 to BRET2 is greatly facilitated by the fact 

that DeepBlueC, like h-coelenterazine, acts as a substrate for Renilla luciferase, so 

that Rluc tagged receptor constructs used in previous experiments may be easily 

incorporated into the BRET2 methodology.

In the previous chapter it was shown that a number of postulates might reasonably be 

formed concerning the dimerization of GPCRs: that they were capable of both homo 

and hetero-dimerization; that particular types were constitutively associated when co­

expressed within mammalian cells and that receptors which shared a high degree of 

sequence homology possessed a greater propensity for mutual interaction. It was also 

established that resonance energy transfer was a novel and effective method for 

examining the interactions between these molecules. The experiments presented in the 

first half of the results section of this Chapter make use of BRET2 to both confirm and 

extend these studies, particularly in determining whether or not agonists and/or 

antagonists are capable of inducing alterations in the extent of dimerization, since a 

high degree of sensitivity is required to detect such changes if they are only small in 

their extent.

4.1.2. Interaction of GPCRs with intracellular molecules involved in the 

desensitisation process: a possible alternative to GFCR dimerization as a means 

of identifying ligand activated receptors

The investigation into the phenomenon of dimerization of GPCRs was, to a certain 

extent, initiated in the hope that such studies would provide novel methods of
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screening compounds for ligand binding affinity and that this would lead to the 

development of an assay that would be applicable to industrial usage in identifying 

ligands for orphan GPCRs. A different approach, which may prove useM in this 

respect (that of ligand screening) focuses more on the downstream processes which 

occur rapidly (typically within a few seconds to minutes) upon agonist activation of 

GPCRs, a sequence of events known as desensitisation. The process of receptor 

desensitisation is traditionally seen as resulting in termination or attenuation of 

receptor signalling. It may be achieved by two different, though similar, patterns of 

events known as homologous and heterologous desensitisation. The former involves a 

process mediated by two distinct protein types: G-protein coupled receptor kinases 

(GRKs) which act to phosphorylate G-protein coupled receptors (Inglese et a l, 1993) 

and jS-an-estin molecules, which are recruited from a cytoplasmic pool following 

receptor phosphorylation (Wilson and Appleby, 1993). A brief account of the 

mechanism of homologous desensitisation is as follows. To begin with, an agonist 

binds to and stabilizes the active conformation of a receptor; this is followed by a 

rapid recruitment of a GRK from the cytosol to the plasma membrane (Barak et al., 

1999), probably mediated via the interaction of free jSy subunits of heterotrimeric G- 

proteins made available by receptor activation (Daaka et al., 1996). Once localized to 

the plasma membrane, the activated receptor acts as a substrate for the GRX. 

Consequently, within regions of its carboxyl terminal tail and intracellular loops, the 

receptor is phosphorylated on serine and threonine residues. This increases the affinity 

of the receptor for |6-arrestin and promotes translocation of jS-arrestin from the 

cytoplasm. Direct physical contact between /3-arrestin and the receptor prevents any 

continuation of receptor-G-protein interactions thus attenuating further signalling 

events. Only receptors occupied by agonists may serve as substrate for the GRK and
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since this will be specifically the activated receptors which initiated desensitisation, 

the process is strictly homologous. In heterologous desensitisation, phosphorylation of 

the GPCR is mediated by second messenger dependent kinases such as PKA and 

PKC. These kinases do not exhibit specificity with regards to the GPCR at the plasma 

membrane: hence a mechanism is established whereby crosstalk between different 

receptor pathways can lead to phosphorylation of a substrate receptor without the 

need for agonist occupancy, priming it for an attenuated response to any subsequent 

challenges with agonist.

The receptor-jS-arrestin interactions that mediate the homologous desensitisation 

process are particularly attractive as targets for developing an assay that would be 

capable of detecting agonist affinity for a particular GPCR type. This is because, 

generally, in the large number of studies involving arrestins and particulaiiy in one 

study involving more than 15 different types of receptor (Barak et a l, 1997), GPCRs 

have been found to almost universally utilize the jS-aiTestin pathway in mediated the 

short term attenuation of signalling.

In the experiments involving /3-arrestin presented in the second section of this 

Chapter, jS-arrestin molecules modified with GFP derived from the organism, 

Aequoria victoria or novel fluorescent proteins (NFPs) derived from the organisms 

Anemia majano, Amenio sulcata and Zoanthus Sp, have been used to examine the 

relative affinities of (3-arrestin-l and j8-arrestin-2 for the chemokine receptor CCR2 

using confocal microscopy techniques. The NFPs are part of a new generation of 

fluorescent proteins that consist of nine separate cDNAs. Upon expression in 

mammalian cells they fluoresce at distinct wavelengths in response to excitation with 

light of a suitable wavelength and offer a greater diversity of colours than the GFP 

range, where mutagenesis of the original GFP cDNA is used to obtain variants with
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altered light emission characteristics. Some of the NFPs possess overlapping light 

excitation and emission spectra: for instance between cyan-NFP and yellow NFP, as 

well as between yellow NFP and red NFP. This potentially enables them to be used in 

FRET based experiments designed to examine protein/protein interactions such as 

those which occur in the process of desensitization, following on from receptor 

activation. Red NFP should also be useful in studies concerning the co-localization of 

cellular proteins, as it emits light at a wavelength which is easily distinguishable from 

that emitted by cyan, yellow or green fluorescent protein variants. Existing studies 

that attempt to co-localize receptors with intracellular molecules such as /3-arrestin 

tend to make use of a GFP tagged arrestin and an antibody to label the receptor which 

is usually conjugated to a fluorescent dye such as Rhodamine B or Texas red (for an 

example see, Groark et al., 1999). An advantage of conducting such experiments with 

both receptor and intracellular molecule directly fused to either one of two easily 

distinguishable fluorescent proteins is that the experiments can be conducted on live 

cells, in real time and do not require any of the fixing processes which are necessary 

in similar experiments using antibodies.

CCR2, a receptor for the C-C chemokine monocyte chemoattractant protein 1 (MCP- 

1), was chosen for this study because previous reports had indicated that it utilized the 

jS-arrestin pathway in mediating a rapid attenuation in the generation of second 

messenger molecules, demonstrated in studies where phosphorylation of the receptors 

carboxyl tenninal tail was accompanied by a rapid desensitisation of calcium 

mobilization (Amgay et al., 1998). Both GRK2 and /3-arrestin have been implicated in 

this process, forming a macromolecular complex with the receptor shortly after MCP- 

1 binding (Aragay et al., 1998). This desensitisation pathway may be important in
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mediating an on-off mechanism for delivering signals essential for migration across a 

chemotactic giadient.

The results presented in the subsequent part of this chapter represent the first analysis 

of j8 -arrestin interactions with CCR2 using confocal microscopy techniques and at the 

same time, they provide the groundwork whereby a FRET based assay might be 

developed for the detection of agonist activation of GPCRs.

4.2, Results

To confirm that BRET] would be a suitable technique for ex ending and corroborating 

the findings detailed in Chapter 3, a positive control vector was constructed which 

directly fused the cDNA for Renilla luciferase with that of the mutant GFP, GFP2 (as 

described in section 2.4.4). The light emission spectrum aquired from HEK 293T cells 

transiently transfected with this positive control vector had two distinct emission 

peaks visible, one centred on 395mn coinespending to light emitted via the enzymatic 

action of Renilla luciferase on DeepBlueC and the other centred on 510nm 

corresponding to light emitted as a result of energy transfer to GFP2 (Figure 4.1 A). As 

was anticipated, the peak centred on 395nm did not exhibit any substantial overlap 

with the second peak centred on 510nm. This contrasted with the light emission 

spectrum from the BRETi positive control vector consisting of a fusion between 

Renilla luciferase and eYFP. The light emission spectrum obtained from HEK 293T 

cells transiently expressing the BRETi positive control vector following addition of 

coelenterazine was obtained previously and is shown again here (Figure 4.IB) to 

provide a direct comparison between BRETi and BRET2. The resolution of the two 

peaks can clearly be seen as being improved in the case of the BRET2. It was also 

obseiwed however, that the intensity of light emitted from the BRET2 positive control 

vector was rather weak. This was unlikely to be attributed to low expression levels of
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the chimeric protein since addition of coelenterazine to the same cells produced a 

light emission spectrum which was comparable in intensity to that obtained from 

transfections with the BRETi positive control (results not shown). It is more likely 

that the weak levels of light emission were due to a low quantum yield of the donor 

molecule, where the number of photons emitted per number of molecules of 

DeepBlueC converted to the excited electronic state would be low when compared to 

coelenterazine. Another possibility is that the turnover number of Renilla luciferase 

when using DeepBlueC as a substrate is markedly decreased, but without a more 

thorough analysis which is beyond the scope of the experiments presented here it is 

impossible to distinguish between these two hypotheses. Nonetheless, it was decided 

that given the superior resolution between the donor and acceptor emission peaks, 

BRET2 would provide a more sensitive means of detecting energy transfer, although 

detection of the weak light signals emitted from the system would require a high 

degree of sensitivity on the part of the photo-detection apparatus used in order to 

adequately detect the signal. Given this set of conditions, it was decided that all 

BRET2 experiments would henceforth be carried out using optical multiwell plate 

readers utilizing fixed bandwidth filters, since such devices were more sensitive than 

more conventional fluorimeters.

BRET2 technology was initially applied to the ô-opioid receptor, principally because 

this receptor had already been thoroughly investigated previously using BRETi (see 

Chapter 3) and it would therefore be of interest to compare results obtained using 

BRET2, as applied to this receptor, with those obtained formerly. To achieve this, 

GFP2 was fused to the carboxyl terminal tail of the Ô-opioid receptor (as described in 

section 2.4.7). To confirm that the ô-opioid-GFP2 construct was capable of being 

expressed and targeted appropriately to the plasma membrane the cDNA was
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transiently transfected into HEK 293T cells and visualized under a confocal 

microscope (Figure 4.2). The results confirmed that the construct was capable of 

reaching the plasma membrane, however unlike K-opioid-eYFP and TRH-eYFP there 

were a large number of cells exhibiting a substantial intracellular pool of receptors, 

apparently retained in the E.R./Golgi apparatus. This intracellular retention of the ô- 

opioid-GFP] is less likely to be due to the carboxyl-terminal tail modification of the 

receptor as to being a consequence of the maturation process of the receptor itself. 

This opinion is supported by a recent study were examination of the kinetics of 6 - 

opioid-receptor transport tlirough various intracellular compartments (Petaja-Repo et 

al, 2 0 0 0 ) showed that there was a low overall efficiency of receptor maturation, with 

less than 50% of the precursor protein being processed to a fully glycosylated receptor 

and which suggested that only a fraction of the synthesised receptors attained the 

properly folded conformation that allowed exit from the E.R.

Having established previously that energy transfer levels observed between BRET 

partners were largely dependent upon the concentration of the acceptor tagged 

molecules, the receptor number in HEK 293T cells transiently transfected with the 

cDNA for ô-opioid-GFPi was correlated with arbitrary fluorescence as determined 

using a fluorimeter. This was perfoimied in a maimer similar to the experiments 

described in Chapter 3 using K-opioid-eYFP. As expected, the correlation graph 

showed a linear relationship between the two sets of values, allowing the value of 

receptor number/cell to be conveniently estimated in BRET2 experiments by 

measuring the fluorescence intensity exhibited upon excitation of a known number of 

cells (Figure 4.3). Typical receptor expression levels for membranes transfected with 

Ô-opioid-GFPi cDNA were (2470 frnol/mg + 150, n=2), which was significantly
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gi'eater than the expression levels obtained in radioligand binding experiments on the 

S-opioid-Rluc construct (250 ± 90 fmol/mg).

BRET2 was then applied to reinvestigate homo-dimerization of the ô-opioid receptor. 

Co-transfection of ô-opioid-GFP2 and 0-opioid-Rluc into FIEK293T cells resulted in a 

robust enegy transfer signal upon addition of DeepBlueC (Figure 4.4), the magnitude 

of which was comparable to that obtained for the BRET2 positive control vector. The 

energy transfer signal generated, in terms of signal to noise, was a substantial 

improvement over BRETi. The BRET2 positive control exhibited an approximately 4- 

fold increase in (GFP2/RI11C) ratio as compared to the ratio obtained from cells 

expressing the ô-opioid-Rluc alone whereas the BRETi positive control exhibited 

only a twofold increase above the ratio (eYFP/Rluc) obtained from HEK 293T cells 

expressing the p2-AR-Rluc construct alone (see Chapter 3, Figure 3.9). Despite these 

advantages, it was still not possible to detect any agonist or antagonist induced 

alterations in the extent of energy transfer when the transfected cells were exposed to 

a 10 minute pre-incubation of either DADLE or ICI 176 864 (both lOpM) (Figure 

4.4). The result reaffimied the findings of Chapter 3 which indicated that external 

ligands were incapable of altering the dimerization status of the ô-opioid receptor. 

Independent monitoring of fluorescence, obtained from the co-transfected HEK 293T 

cells used in the BRET2 experiments detailed above, revealed that there were 

approximately 114,000±5000 GFP2 tagged receptors/cell.

Since previously with traditional BRET it had been shown that a small degree of 

energy transfer could be observed upon co-expressing the |32-AR-Rluc with ô-opioid- 

eYFP, it was decided that this result should be re-evaluated using BRET2. HEK 293T 

cells were co-transfected with both P2-AR-Rluc with ô-opioid-GFP2 and the light 

emission spectrum obtained upon addition of DeepBlueC acquired. Energy transfer
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levels between these two constructs were lower than those observed between 5- 

opioid-Rluc and b-opioid-GFPi, about 2/3 as great as that observed with the positive 

control vector (Figure 4.5), despite expressing a greater number of acceptor tagged 

receptors/cell (152,000± 12,000). The energy transfer signal generated between p2- 

AR-Rluc and 5-opioid-eYFP was however substantially greater than that which was 

obtained in experiments which used BRETi to determine the spatial proximity 

between these two receptor types. Using BRET2, the strength of this signal seemed to 

be unaffected by the presence of either the 6 -opioid receptor agonist DADLE or the 

P2-AR agonist isoprenaline. Equally, the concerted action of both agonists together 

produced no detectable changes (Figure 4.5). These results were somewhat 

contradictory to those obtained in Chapter 3, where no significant amount of energy 

transfer was observed between P2-AR-Rluc and 6 -opioid-eYFP and it was found that 

addition of agonist for either receptor type was capable of inducing modest increases 

in the amount of energy transfer observed. However the results obtained using BRET2 

were consistent with a study of these two receptor types, based on co- 

immunoprecipitation data, where they were found to be constitutively 

heterodimerized when co-expressed in HEK 293T cells (Jordan et al., 2001). In these 

studies the effects of ligand occupancy upon the strength of the heteromeric complex 

were not investigated. Given that the results obtained using BRET 1 for energy transfer 

between this receptor pairing were at or near to the limits of resolution for the 

detection of interactions and considering the added sensitivity which the BRET2 

system confers, it is possible that the BRET2 results are more reliably accurate and 

that the results obtained with BRET 1 were, to a certain extent, artefactual. 

Heterodimerization between the 6 -opioid receptor and the K-opioid receptor was 

investigated next using the BRET2 system. The cDNAs for K-opioid-Rluc and 6 -
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opioid-eYFP were co-transfected into HEK 293T cells and the ratio of (GFP2/RIUC) 

upon addition of DeepBlueC was determined. A significant degree of energy transfer 

was detected between the two constructs, this being approximately 80% as strong as 

that observed with the BRET2 positive control vector (Figure 4.6). Again, neither the 

addition of agonists or antagonists directed against the ô-opioid receptor (DADLE and 

ICI 174 864) or the K-opioid-receptor (ICI 199 441 and GNTI) were capable of 

affecting the extent of energy transfer and the concerted action of the two agonists 

together proved similarly ineffective in producing any changes (Figure 4.6). This 

reinforced the findings obtained in Chapter 3, that these two receptor types were 

capable of heterodimerization and was in agreement with other previous studies 

(Jordan and Devi, 1999).

Having firmly established that there was no possibility of detecting alterations in 

energy transfer signals associated with agonist regulated changes in the dimerization 

status of opioid receptors, attention was turned to the downstream processes of 

desensitisation to see if these would provide more suitable targets for the detection of 

receptor activation.

To begin this study, the cDNA for /3-arrestin2 was ligated upstream of the cDNA for 

the fluorescent proteins, cyan NFP and red NFP. The cDNA for /3-arrestin2-cyan NFP 

was transiently transfected into CHO-K cells stably expressing CCR2, the chemokine 

receptor for MCP-1. This receptor was chosen as it had been previously reported that 

it utilized the /5-an'estin pathway to mediate desensitisation of receptor signalling, a 

process strongly influenced by the expression levels of GRK2 (Ai'agay et al., 1998). 

Upon visualization of the transfected cells using confocal microscopy, the cyan NFP 

was clearly visible and was localized exclusively to the cytoplasm of the cell (Figure 

4.7.) This was in-keeping with previous observations made with GFP modified
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versions of the molecule, where ^-arrestin2  was seen to be present in the cytoplasm 

but excluded from the nucleus of the cell (Barak et al., 1997). Following addition of 

MCP-1 (1/xM), a translocation of the jS-arrestin2-cyan NFP from the cytosol to the 

plasma membrane occurred within a space of 2 to 4 minutes (Figure 4.7). Within 20 

minutes, a distinct punctate pattern could be seen to have formed within the cells 

indicative of a sustained interaction between the internalised receptors and the j6 - 

arrestin2-cyan NFP molecule (Figure 4.7). The formation of this pattern persisted 

within the cell and 30 minutes following agonist exposure the punctate pattern was 

strongly visible in all cells within the field of view (Figure 4.7). This clearly showed 

that addition of cyan-NFP to the carboxyl terminal tail of /3-arrestin2 did not 

significantly affect the molecule’s ability to target to appropriate cellular locations 

upon expression in mammalian cells. Nor did it affect the ability of |S-aiTestin2 to 

migrate to the plasma membrane in response to receptor activation by an external 

agonist or its capacity to fonn part of the macromolecular complex which facilitates 

the process of receptor desensitisation.

The experiment was then repeated, this time by transiently transfecting the CCR2 

stable cell line with the cDNA for the j6-arrestin2-red NFP. As was the case with (3- 

arrestin2-cyan NFP the cellular distribution of the ]8-aiTestin2-red NFP construct was 

seen to be exclusively cytoplasmic when viewed under a confocal microscope (Figure

4.8). Addition of MCP-1 produced a rapid recruitment of the /3-arrestin2-red NFP 

from the cytoplasm as a response to receptor activation with practically all of the 

cytoplasmic pool having migrated to the plasma membrane within 6  minutes (Figure

4.8). Within 24 minutes a clearly defined punctate pattern could be observed to have 

formed at the periphery of the cell membrane, indicative of the presence of (3- 

arrestin2-red NFP within endocytic vesicles which could be seen to have migrated
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towards sites further inside the cell at later time points (Figure 4.8,G and H) as 

sequestration proceeded. These observations showed that /3-arrestin2 was unaffected 

as a result of the addition of red NFP to its carboxyl tenninal tail.

To extend this study it was decided that similar experiments should be performed to 

investigate the pattern of iS-arrestinl recruitment in the same CCR2 stable cell line. To 

achieve this, a jg-arrestinl-GFP fusion protein was used, as this had been previously 

shown to recruit to the plasma membrane in cells stably expressing the TRH receptor- 

1 upon addition of agonist (Groarke et al., 1999). The cDNA for /3-arrestin 1-GFP was 

transiently transfected into the CCR2 stable cell line and then visualized using a 

confocal microscope. The jS-arrestin 1-GFP was present both in the cytoplasm and the 

nucleus of the cell (Figure 4.9 (A)); this was consistent with previous observations in 

experiments using the same construct (Groarke et a l, 1999). Upon addition of the 

agonist MCP-1 (1/rM) there was a distinct translocation of j8-arrestinl-GFP from the 

cytoplasm of the cell to the plasma membrane after about 1 2  minutes had elapsed, 

while the nuclear pool of jS-arrestinl-GFP remained intact (Figure 4.9). This was 

considerably slower than the response observed using the /3-arrestin2-NFP constructs 

indicating that the activated CCR2 receptor might have a higher affinity for /3- 

arrestin2 than for /3-anestinl. As was the case with /3~arrestin2, /3-arrestin 1-GFP did 

not remain localized with an even distribution at the plasma membrane, but instead 

remained closely associated with the endocytic vesicles containing internalised CCR2 

receptor. This is clearly demonstrated by examination of Figure 4.9(H), where the 

punctate distribution of /3-arrestin 1-GFP can clearly be seen to have migrated fr om the 

cell periphery to more distant sites located within the cell 30 minutes after addition of 

agonist.
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The observations made with the jS-arrestin2-cyan NFP and /3-arrestin2-red NFP were 

unlikely to be artefacts coincidently caused by the conditions under which the cells 

were maintained throughout the course of the experiments. In support of this 

contention, the CHO-Kl cell line stable expressing CCR2 was transiently transfected 

with the cDNAs for either /3-arrestin2-cyan NFP or /3-arrestin2-red NFP. The cells 

were then set up as previously for viewing under the confocal microscope and were 

this time challenged with IL-8, a peptide agonist with affinity for CXC-chemokine 

receptors (types 1 and 2) and which does not have any significant affinity for CCR2. 

Addition of IL-8 (1/rM) did not cause any redistribution of cytoplasmic |3-arrestin2- 

cyan NFP or /3-arrestin2-red NFP to the plasma membrane even when monitored up to 

30 minutes following exposure to the peptide (Figure 4.10).

To demonstrate that receptor activation was an absolute requirement for the initiation 

of an*estin-translocation, the response of jS-arrestin2-cyan NFP, transiently transfected 

into the CHO-K cell line stably expressing CCR2, to the CCR2 antagonist 

GW5906723X (10/rM) was monitored using a confocal microscope. It can be seen 

that exposure to this antagonist compound had no effect on the cytoplasmic 

distribution of the j8-arrestin2-cyan NFP and even after 30 minutes there was no sign 

of the formation of a punctate pattern such as that which was observed following 

similar treatments with the agonist MCP-1 (Figure 4.11).

To show that the presence of this antagonist in the extracellular medium was capable 

of blocking activation of the desensitisation pathway, the CCR2 stable cell line was 

transiently transfected with /3-arrestin2-cyan NFP and then exposed to a 30 minute 

pre-incubation with GW5906223X (10/xM), after which examination of the cells 

under the confocal microscope did not reveal any signs of a punctate redistribution in 

the cellular location of jS-arrestin2-cyan NFP (Figure 4.12 (A)). Maintaining the cells
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in the presence of the antagonist, a further treatment of MCP-1 (1/xM) was added to 

the extracellular medium, following which there was no rapid mobilization of /3- 

arrestin2-cyan NFP to the plasma membrane in contrast to experiments conducted in 

the absence of any antagonist. After a further 30 minutes had elapsed the cells were 

again examined and images were obtained, revealing that some of the cells within the 

field of vision displayed a limited redistribution in the cellular location of |3-arrestin2- 

cyan NFP, although it required close inspection to discern this and it was not 

especially pronounced (Figure 4.12 (B)). The result suggests that although the 

presence of antagonist attenuated the efficacy of MCP-1 in mobilizing the 

intracellular components of the desensitisation pathway through competition with the 

agonist for receptor binding sites, a small amount of receptor activation still continued 

to occur.

Attention was next turned towards whether or not these observations might be 

quantified in a FRET based assay system which would be amenable to a high 

throughput ligand screening process. To this end the cDNA for the CCR2 receptor 

was ligated upstream of the cDNA for yellow NFP to create a CCR2-yellow NFP 

fusion protein. This was then transiently transfected into CHO-Kl and HEK 293T 

cells and then examined under a confocal microscope. Unfortunately the construct 

seemed to be impaired in its ability to reach the plasma membrane. This problem was 

best demonstrated in a co-transfection of CCR2-yellow NFP and |9-aiTestin2-red NFP 

in CHO-K cells. Here, excitation of either of the fluorophores, whose respective 

cellular locations were revealed through use of appropriate filters, showed that the 

CCR2-yellow NFP was localized entirely within the cellular compartments of the 

cytoplasm and the nuclear membrane, with the boundaries of the cell being delineated 

by the cellular distribution of |3-arrestin2-red NFP (Figure 4.13). In addition to this,
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the cellular distribution of CCRl-yelllow was seen to be somewhat globular, 

indicative of a certain involuntary aggregation of the chimeric receptor construct. 

Since the CCR2-yellow NFP seemed incapable of targeting to the plasma membrane 

it was deemed unsuitable as an exploratory tool for the continuance of these studies, 

being both inaccessible to agonists present in the extracellular environment and in the 

wrong location to engage with intracellular components of the desensitisation 

machinery.

Despite these reverses, the results which showed that jS-arrestinZ recruited to the 

plasma membrane more rapidly than /3-aiTestinl, hence potentially indicating a higher 

affinity, were interesting and it was decided that this should be investigated more 

thoroughly. To achieve this, the CCR2 stable cell line was transiently co-transfected 

with both |3-arrestinl-GFP and /3-arrestin2-red NFP and the response of each construct 

within the same cells to receptor activation with MCP-1 (IgM) was determined. 

Acquisition of images both before and after the MCP-1 treatment revealed that after 

30 minutes had elapsed the /3-arrestin2-red NFP had redistributed to a punctate pattern 

indicating sequestration of this construct at the endocytic vesicles containing 

internalised receptor (Figure 4.14). In contrast /3-arrestin 1-GFP displayed no such 

redistribution in the pattern of localization in cells where it was co-expressed with /3- 

arrestin2-red NFP (Figure 4.14), consistent with the previous observation that the 

kinetics of jS-an-estinl recruitment were substantially slower than those of /3-arrestin2 

upon activation of CCR2. This result indicates that in cells co-expressing /3-an*estin2- 

red NFP and j3-arrestinl-GFP, a higher affinity for the activated CCR2 receptor 

promotes the translocation of /3-arrestin2-red NFP from the cytosol in preference to /3- 

arrestinl-GFP. Once sequestered at the endocytic vesicles through interaction with
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components of the clatherin mediated internalisation pathway, the /3-arrestin2-red 

NFP prevents any translocation of /3-arrestin 1-GFP.

To provide evidence that the ability of a /3-arrestin2- NFP construct to respond to 

receptor activation was not only restricted to the CCR2 receptor, the response of (3- 

arrestin2-red NFP to agonist stimulation of the angiotensin II type 1 receptor 

(ATIAR) was examined. To achieve this, CHO-K cells stably expressing the ATIAR 

were transiently transfected with /3-arrestin2-red NFP. The response of the cells to 

addition of angiotensin II (lOgM) was then monitored using a confocal microscope. 

Initially there was no clear translocation of ^-arrestin2-red NFP from the cytosol to 

the plasma membrane as was observed in similar experiments with CCR2. However 

after 30 minutes a clearly defined punctate pattern could be recognized, indicating 

that /3-arrestin2-red NFP had been localized to newly formed endosomes within the 

cell (Figure 4.15).

Finally, to extend further the number of GPCRs for which the nature and kinetics of 

/3-arrestin recruitment could be evaluated using j3-arrestin2 NFP constructs, it was 

thought desirable that the response of these molecules to ligand activation of 

endogenously expressed GPCRs within HEK 293T and CHO-K cells should be 

evaluated. Consequently, naïve CHO-Kl cells were transiently transfected with j3- 

arrestin2-cyan NFP and then examined under a confocal microscope. Neither the 

addition of ATP to stimulate purinergic receptors nor the addition of calcitonin to 

activate calcitonin receptors was capable of eliciting an immediate response from the 

/3-arrestin2-cyan NFP. More prolonged exposure to the respective agonists similarly 

failed to result in a redistribution of the /3-arrestin2-cyan NFP from a diffuse cytosolic 

distribution to a localized punctate pattern (Figure 4.16). In similar experiments naïve 

HEK 293T cells were transiently transfected with the ^-an'estin2-cyan NFP construct;
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Figure 4.1. Comparison of the light emission spectra obtained from BRET% 

positive control with BRETi positive control.

(A) The light emission spectrum obtained from HEK 293T cells transiently 

transfected with the BRET2 positive control vector following addition of DeepBlueC 

reagent (5gM) (B) Shown for comparison is the light emission spectrum obtained 

from HEK 293T cells transfected with BRETi positive control vector upon addition of 

coelenterazine Results represent a single transfection from three such

experiments performed.
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Figure 4.2. The cellular location of the ô-opioid-GFP2 construct when transiently 

transfected into HEK 293T cells.

Images were generated using scanning confocal microscopy. Results represent typical 

images obtained from one of two such experiments performed.
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Figure 4.2.
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Figure 4.3. Correlation of ^-opioid-GFPz receptor number with fluorescence.

Membrane preparations from cells transiently transfected with ô-opioid-GF? 2  were 

subject to serial dilution and each dilution point was then assayed for fluorescence on 

a Victor^ multiplate well reader. Parallel binding studies with [^H]-naltrindole (5nM) 

on equivalent dilutions of the same membrane preparations determined the amount of 

receptor (frnol) at each dilution point. Data shown is a representative of two such 

transfections performed with error bars representing the S.E.M. between triplicate 

well readings. The Y-error bars are too small to be observed.
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Figure 4.4. Detection of ô-opioid receptor homodimerization using BRET2.

The amount of light emitted from both Renilla luciferase and GFP2 was quantitated 

using filters of fixed bandwidth on a Victor^ multiwell plate reader. Readings were 

taken from wells containing HEK 293T cells, either transfected with the positive 

control vector pBRET2+, with both ô-opioid-Rluc and ô-opioid-GFP2 constructs, or 

with 0-opioid-Rluc alone to determine the background ratio of light emission 

(GFP2)/R1uc. To see if there were any alterations in the ratio (GFP2/RIUC) upon 

addition of agonist or inverse agonist ligands cells co-transfected with both ô-opioid- 

Rluc and ô-opioid-GFP2 were subject to a 15 minute pre-incubation period with either 

DADLE or ICI 174 864 prior to addition of DeepBIueC. The results represent means 

± S.E.M. of three independent experiments.
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Figure 4.5. Detection of heterodimerization between the /32-AR and the 6 -opioid 

receptor using BRET2 .

The amount of light emitted from both Renilla iuciferase and GFP2 was quantitated 

using filters of fixed bandwidth on a Victor^ multiwell plate reader. Readings were 

taken from wells containing HEK 293T cells either transfected with the positive 

control vector pBRET2+, with both jS2-AR-Rluc and 6 -opioid-GFP2 constructs, or 

with /32-AR-Rluc alone to determine the background ratio of light emission 

(GFP2)/Rluc. To see if there were any alterations in the ratio (GFP2/RIUC) upon 

addition of agonist ligands, cells co-transfected with both jS2-AR-Rluc and 6 -opioid- 

GFP2 were subject to a 15 minute pre-incubation period with either DADLE, 

isoprenaline, or both DADLE and isoprenaline (each at lOjuM) together prior to 

addition of DeepBlue C. The results represent means ± S.E.M. of three independent 

experiments.
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Figure 4.6. Detection of heterodimerization between the K-opioid receptor and 

the 6-opioid receptor using BRET:.

The amount of light emitted from both Renilla Iuciferase and GPP: was quantitated 

using filters of fixed bandwidth on a Fusion multiwell plate reader. Readings were 

taken from wells containing HEK 293T cells either transfected with the positive 

control vector pBRET2+, with both K-opioid-Rluc and ô-opioid-GFP: constructs, or 

with K-opioid-Rluc alone to determine the background ratio of light emission 

(GFP2)/R1uc. To see if there were any alterations in the ratio (GFP2/RIUC) upon 

addition of agonist or antagonist ligands, cells co-transfected with both x-opioid-Rluc 

and ô-opioid-GFP: were subject to a 15 minute pre-incubation period with either 

DADLE, ICI 174 864, ICI 199 441, GNTI, or both DADLE and ICI 199441 together 

(each at lOfiM) prior to addition of DeepblueC. The results represent means ± S.E.M. 

of tliree independent experiments.
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Figure 4.7. iS-arrestin2-cyan is recruited to the plasma membrane in response to 

CCR2 activation: it internalises along with the receptor over a thirty-minute 

time course,

A CHO-Kl cell line stably expressing CCR2 was transiently transfected with the 

cDNA for the j6-arrestin2-cyan NFP construct. The response of the cells following the 

addition of the CCR2 agonist MCP-l (l^M) was then monitored using scanning 

confocal microscopy. (A) The cellular location of ^-arrestin2-cyan NFP prior to 

addition of MCP-l. (B) Cells 2 minutes after addition of MCP-l. (C) Cells 4 minutes 

after addition of MCP-l. (D) Cells 8 minutes after addition of MCP-l. (E) Cells 12 

minutes after addition of MCP-l. (F) Cells 20 minutes after addition of MCP-l. (G) 

Cells 26 minutes after addition of MCP-l. (H) Cells 30 minutes after addition of 

MCP-l. The results shown are of a single transfection, representative of three such 

performed.
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Figure 4.8. /3-arrestin2-red is recruited to the plasma membrane in response to 

CCR2 activation: it internalises along with the receptor over a thirty minute time 

course.

A CHO-Kl cell line stably expressing CCR2 was transiently transfected with the 

cDNA for the jS-arrestinl-red NFP construct. The response of the cells following the 

addition of the CCR2 agonist MCP-l (l/rM) was then monitored using scanning 

confocal microscopy. (A) The cellular location of j8-arrestin2-red NFP prior to 

addition of MCP-l. (B) Cells 6 minutes after addition of MCP-l. (C) Cells 10 

minutes after addition of MCP-l. (D) Cells 14 minutes after addition of MCP-l. (E) 

Cells 24 minutes after addition of MCP-l. (F) Cells 28 minutes after addition of 

MCP-l. (G) Cells 38 minutes after addition of MCP-l. (H) Cells 42 minutes after 

addition of MCP-l. The results shown are of a single transfection representative of 

two such performed.
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Figure 4.9. /3-arrestinl-GFP is recruited to the plasma membrane in response to 

CCR2 activation: it internalises along with the receptor over a thirty minute time 

course.

A CHO-Kl cell line stably expressing CCR2 was transiently transfected with the 

cDNA for the j3-arrestinl-GFP construct. The response of the cells following the 

addition of the CCR2 agonist MCP-l (IjnM) was then monitored using scanning 

confocal microscopy. (A) The cellular location of /3-arrestinl-GFP prior to addition of 

MCP-l. (B) Cells 6 minutes after addition of MCP-l. (C) Cells 8 minutes after 

addition of MCP-l. (D) Cells 12 minutes after addition of MCP-l. (E) Cells 16 

minutes after addition of MCP-l. (F) Cells 20 minutes after addition of MCP-l. (G) 

Cells 26 minutes after addition of MCP-l. (H) Cells 30 minutes after addition of 

MCP-l. The results shown are of a single transfection representative of three such 

performed.
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Figure 4.10. /S-arrestinl-cyan NFP and j8-arrestm2-red NFP are only recruited to 

the plasma membrane in response to a specific activating agonist.

A CHO-Kl cell line stably expressing CCR2 was transiently transfected with the 

cDNA for either (A) /3-arrestin2-cyan NFP or (B) /3-arrestin2-red NFP and the 

response of the cells to a chemokine (IL-8) which does not have specificity for the 

CCR2 was monitored. In each case images were obtained using scaiming confocal 

microscopy. The pictures were taken both before and after the addition of IL-8 (IfiM). 

The results are of a single transfection and are representative of two such experiments 

performed.
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Figure 4.11. The presence of an antagonist ligand for CCR2 does not cause 

translocation of ]3-arrestin2-cyan NFP transiently expressed in CCR2 stable cell 

line.

A CHO-Kl cell line stably expressing CCR2 was transiently transfected with (3- 

arrestin2-cyan NFP. The response of the cells following addition of the CCR2 

antagonist GW590623X (lOpM) was monitored using confocal scanning microscopy.

(A) The cellular location of j3-arrestin2-cyan NFP prior to addition of the compound.

(B) The cellular location of j3-arrestin2-cyan NFP 30 minutes after addition of 

GW590623X (lOpM). The results are of a single transfection and are representative 

of two such experiments performed.
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Figure 4.12. The presence of antagonist can effectively block MCP-l mediated 

translocation of j3-arrestin2-cyan NFP expressed in CCR2 stable cell line.

A CHO-Kl cell line stably expressing CCR2 was transiently transfected with /?- 

arrestin2-cyan NFP. Cells were prepared for confocal scanning microscopy by placing 

them on a heated stage, as described in section 2.6. (A) The cells were given a 30 

minutes pre-incubation period with the compound GW590623X (lOpM) before 

obtaining the shown image. (B) MCP-l (IjLtM) was then added and the cellular 

location of /3-arrestin2-cyan NFP was re-determined after 30 minutes by obtaining the 

shown image. The results are of a single transfection, and are representative of two 

such experiments performed.
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Figure 4.13. Comparison of the cellular locations of CCR2-cyan NFP and |3- 

arrestin2-red NFP when transiently expressed in HEK 293T cells.

HEK 293T cells were transient co-transfected with the cDNAs for both CCR2-cyan 

NFP and /3-arrestin2-red NFP. Images of the respective cellular locations of both 

constructs within the same cells were then obtained using appropriate excitation 

wavelengths and emission filters to detect light emitted from either (A) CCR2-cyan 

NFP or (B) iS-arrestin2-red NFP, The results are a single representative of two such 

experiments performed.
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Figure 4.14. Comparison of the extent of translocation of both j3-arrestin2-red 

NFP and /5-arrestinl-GFP expressed within the same cells.

A CHO-Kl cell line stably expressing CCR2 was transiently co-transfected with the 

cDNA for both j3-arrestin2-red NFP and /3-arrestinl-GFP. The response of the cells 

following addition of MCP-l (1/rM) was then monitored using confocal scanning 

microscopy, switching between green and red filters, in order to visualise light 

emitted from each fluorescent protein. (A) The cellular location of /3-arrestinl-GFP 

both before and 30 minutes after addition of MCP-l. (B) The cellular location of j3- 

arrestin2-red NFP both before and 30 minutes after addition of MCP-l. The results 

are of a single transfection and are representative of two such experiments performed.
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Figure 4.15, |3-arrestin2-red NFP is recruited to the plasma membrane in 

response to ATIAR activation: it internalises along with the receptor thirty 

minutes following addition of ligand.

A CHO-Kl cell line stably expressing the ATIAR was transiently transfected with the 

cDNA for the /3-arrestin2-red NFP construct. The response of the cells following 

addition of angiotensin II (lOfxM) was then monitored in (A) cells prior to addition of 

angiotensin II and (B) cells 30 minutes after the addition of angiotensin. Results are of 

a single transfection and are representative of two such experiments performed.
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Figure 4,16. No translocation of /3-arrestin2-cyan NFP expressed in CHO-Kl 

cells could be detected in response to activation of endogenous GPCRs.

CHO-Kl cells were transiently transfected with the cDNA for j8-arrestin2-cyan NFP. 

The response of the cells to either (A) ATP (10 fjM) or (B) calcitonin (10 /xM) was 

then monitored upto 30 minutes after exposure to the compound. The results are a 

single representative of two such experiments performed.
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Figure 4.17. No translocation of /3-arrestin2-cyan NFP expressed in HEK 293T 

cells could be detected in response to activation of endogenous GPCRs.

HEK 293T cells were transiently transfected with the cDNA for j(3-arrestin2-cyan 

NFP. The response of the cells to either (A) Carbachol (100 /xM) or (B) PGE2 (10 

/xM) was then monitored up to 30 minutes after exposure to the compound. The 

results are a single representative of two such experiments performed.

245



(A)

0 minutes 30 minutes (Carbachol)

(B)

0 minutes 30 minutes

Figure 4.17.

246



these were then exposed to either carbachol (100/rM) or PGE2 (10 fiM) while being 

examined via confocal microscopy. Endogenously expressed M2 and M3 muscarinic 

receptors and prostaglandin receptors were incapable of inducing an immediate 

response to agonist such as was seen in the CCR2 stable cell line. Moreover, 

prolonged exposuie of agonist (up to 30 minutes) did not result in the foimation of a 

punctate pattern either at the plasma membrane, or within the cell (Figure 4.17).

4.3 Discussion

4.3.1. Results obtained using BRET2 reinforced previous findings which 

suggested that the dimerization of opioid receptors was not ligand regulated

There is a rapidly expanding body of evidence which, over the past five years, has 

established that GPCRs can paidicipate in both homomeric and heteromeric 

interactions between closely related, and sometimes distantly related, receptor types. 

Despite this, the role of external ligands in GPCR dimerization remains a contentious 

one. Many studies report that dimerization of GPCRs is constitutive, with the 

presence of external ligand increasing the extent of these interactions (Angers et aL, 

2000; Kroeger et aL, 2001). hi others, the fonnation of the dimeric complex seems to 

be largely agonist dependent (Rochville et aL, 2000; Rodriguez-Frade et aL, 1999; 

Cornea et aL, 2001). In contrast to these findings, no evidence to support a role for 

ligand binding in stabilizing the strength of dimeric complexes could be found 

tlirough the work detailed in the preceding Chapter; this, despite an extensive 

investigation, utilizing a bio luminescence based energy transfer system.

In this Chapter, it was first verified that by using BRET] the energy transfer signal 

(generated with the DeepBlueC/GFP] pairing) could be more effectively resolved 

fi'om background than in BRETi. Experiments conducted using BRET] confirmed

247



findings of the previous Chapter that opioid receptor subtypes were able to foim both 

homo and hetero-dimers. Additionally, more compelling evidence was found to 

support the notion that heteromeric complexes between the delta opioid receptor and 

the i32-AR could be formed. Yet despite this, in all cases, there was no confirmation 

that the strength of the dimeric complex could be influenced by the presence of either 

agonist or antagonist ligands within the receptor-binding pocket.

The findings presented herein would seem to argue, by default, in favour of a role for 

dimerization which is typified by the GABAb receptor. In this case 

heterodimerization of two polypepdides (GABAb(Rl) and GABAb(R2)) within the 

endoplasmic reticulum facilitates receptor maturation and delivery to the plasma 

membrane (Margreta-Metrovic et aL, 2000; Kuner et aL, 1999) and there is no cleat' 

evidence to date which suggests that ligands regulate the interaction of these two 

receptor subtypes. This view of GPCRs acting as mutual chaperones has been dealt 

with extensively in Chapter 1; yet, for the purpose of illustration, two further 

examples may be cited here.

In a study involving the D3 dopamine receptor, co-expression of the wild type 

receptor with a naturally occurring splice variant lacking transmembrane regions VI 

and VII blocked successful delivery of the wild type receptor to the plasma 

membrane. This suggests a role for dimerization in ensuring that correct trafficking is 

observed as the receptor is processed through the E.R and Golgi apparatus. Any 

incorrectly folded receptors, or receptors that lack essential determinants in 

facilitating egress from the said organelles are incapable of targeting properly to the 

cell plasma membrane (Karpa et aL, 2000). Comparable results were obtained in 

experiments using truncation mutants of the vasopresin V2 receptor where again co­

expression of these mutants with the wild type receptor inhibited both receptor
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functional activity and delivery to the plasma membrane (Zhu and Wess et aL, 1998). 

From this study, similar functional implications concerning the role of dimerization in 

facilitating receptor maturation can be drawn.

4.3.2. A FRET assay based on the recruitment of j3-arrestin2 to phosphorylated 

receptors at the plasma membrane would be ideally suited to compound library 

screening programmes

Having firmly established that, at least in the case of the opioid receptors, the 

presence of an external ligand in the binding pocket of the receptor was incapable of 

affecting the extent of dimerization, attention was turned to investigating whether 

intermolecular interactions between activated receptors and components of the 

receptor desensitisation pathway might provide a suitable alternative to dimerization 

for developing an energy transfer based assay capable of detecting ligand binding. 

The results obtained when examining recruitment of /3-arrestin2, modified with either 

red or cyan fluorescent proteins from various Anthozoan species, indicated that the j8- 

arrestin2 was unimpaired in its ability to translocate to the plasma membrane in 

response to activation of a stably expressed CCR2 receptor in a CHO-Kl cell line. 

The confocal microscopy techniques used in this study would not of course be 

suitable as an assay procedure applicable to industrial compound screening 

programmes since a high throughput assay is required to handle the large number of 

test compounds used in such circumstances. For this reason, FRET has been proposed 

as a potentially powerful method for the detection of agonists via activation of the 

desensitisation pathway. Equally, it may be used to identify antagonists through 

competitive inhibition of this process, provided at least one agonist for the receptor is 

known.
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Such an assay would require the labelling of both the receptor and the /3-arrestin 

molecules with fluorescent proteins between which energy transfer could occur. 

Certain fluorescent proteins within the NFP range are excellent candidates for 

donor/acceptor pairs provided that upon in frame ligation with the aforementioned 

cellular proteins they yield chimeric molecules that are not impaired in their cellular 

targeting and functionality. The cyan NFP has been shown to have a maximum 

emission peak centred on 486nm and the yellow NFP to posses two characteristic 

emission peaks, one centred on 531nm, and the other (smaller) peak centred on 

590mn (personal communication). Similarly the yellow and red NFPs have been 

shown to exhibit considerable overlap in their respective excitation and emission 

spectra, with yellow NFP displaying an emission maximum at 540nm and red NFP 

showing two distinct peaks in its absorbance spectrum, one centred on 571nm, the 

other centred on 522nm (personal communication). From this information, it is 

obvious that there is a potential for developing a FRET based assay by monitoring 

energy transfer between proteins which have been modified with these fluorescent 

proteins to form cyan NFP/yellow NFP or yellow NFP/red NFP donor/acceptor 

pairings. In an attempt to exploit this, the CCR2 receptor was modified at the carboxyl 

terminal tail with yellow NFP. Regrettably, transient transfection of the receptor 

construct into CHO-Kl cells showed that it was incapable of reaching the plasma 

membrane and tended to foi*m a globular pattern indicative of retention within 

intracellular compartments such as the E.R and golgi apparatus. This intracellular 

retention may have been due to the presence of the NFP on the carboxyl terminal tail 

of the receptor interfering with the trafficking and maturation steps necessary for 

correct delivery of the receptor to the plasma membrane. Some receptor types may be 

more affected by such modifications than others, however, within the time limits
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given for these studies it was not possible to construct any further GPCR-NFPs to test 

this hypothesis and therefore properly evaluate the potentiality of this method for 

detection of receptor activation in a FRET based format.

If a FRET assay based on this principal could be established it would prove useful in 

not only identifying new potential ligands for loiown GPCRs but also provide a 

powerful method of screening compound libraries for activity at orphan GPCRs. 

These are new members of the GPCR superfamily of receptors which have been 

identified either thiough traditional molecular genetic approaches or through 

bioinformatic screening of genomic information for structural signatures characteristic 

of known GPCRs. Identification of ligands for these orphan GPCRs, of which more 

than 100 have been recognized (Stadel et aL, 1997), would result in novel drug 

discoveries, a significant proportion of which would be useful for treating diseases for 

which existing therapies are lacking or insufficient.

Arguing in favour of the case for exploiting desensitisation as a means of 

implementing compound screening programmes in the detection of agonists with 

affinity for orphan GPCRs, is the fact that it has been demonstrated that GPCRs 

exhibit considerable redundancy in their ability to couple to the clathrin mediated 

internalisation pathway. This is illustrated by the ATI AR, a receptor which nonnally 

utilizes a pathway which is independent of dynamin and jS-arrestin (Zhang et aL, 

1996) but can be induced to undergo sequestration via clathiin in the presence of 

over-expressed /3-arrestin (Zhang et aL, 1999). Present assay systems employed in 

“fishing” for ligands capable of activating orphan GPCRs usually focus on the ability 

of the receptor to activate a particular signalling pathway such as stimulation or 

inhibition of cAMP production or mobilization of intracellular calcium. As it is not 

always easy to predict accurately the G-protein coupling specificity of an orphan
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GPCR from its primary sequence, an assay system wtiich measures the ability of a 

ligand to engage with a desensitisation pathway almost ubiquitously shared by all 

GPCRs is of particular interest as a means of compound screening. Such an assay 

would function simply on the proviso that high levels of /3-arrestin were maintained in 

the cells used.

In addition to high levels of /3-arrestin expression, a FRET assay based on the 

detection of j3-arrestin recruitment from the cytosol to phosphorylated receptors at the 

plasma membrane would probably require high levels of expression of the GPCR 

under investigation. This is based on the evidence presented herein that diverse GPCR 

types endogenously expressed in either HEK 293T or CHO-Kl cells, when assessed 

for their ability to recruit |3-arrestin2 cyan NFP to the plasma membrane were unable 

to elicit a response even after a 30 minute pre-incubation with saturating 

concentrations of agonists. It is probable that in the studies presented here, the low 

levels of endogenous GPCR limited the amount of jS-aiTestin mobilized to the plasma 

membrane to a level that was undetectable using the confocal microscopy 

methodologies applied. In support of this it should be noted that, although this 

approach has been previously used to provide real time analysis of receptor-arrestin 

interactions (Barak et aL, 1999; Zhang et aL, 1999; McConaloue., et al 1999), there 

are some studies which report that aiTestin recruitment was undetectable when 

endogenous GPCRs in HEK 293T cells were challenged with agonist and the 

response of GFP tagged arrestin was subsequently monitored, notably (Mundell and 

Benovic., 2000).

4.3.3. jS-arrestinl and jS-arrestinl have different affinities for the CCR2 receptor 

following activation of the desensitisation pathway

252



An observation of particular interest made during the course of these experiments was 

that although both j6-arrestin2 and j(3-arrestinl associated with the endosomes 

containing the activated CCR2 receptor following receptor sequestration, j3-arrestin2 

seemed to have a higher affinity for the activated CCR2 receptor than the related 

protein /3-arrestinl, as revealed by examining the kinetics of the respective molecules 

in singly transfected cells and by observations made in cells co-expressing both 

arrestin types together. In the latter experiments it was unlikely that these observed 

differences were due to greater expression levels of j8-arrestin2. This is because in all 

the co-transfected cells CCR2 showed a preference for /3-arrestin2 in mediating 

sequestration and in a transient transfection system we would expect a wide range of 

expression levels of both constructs within the cells present in the field of vision.

It has been shown in a recent study using confocal microscopy that the pattern of the 

jS-an’estin recmitment process may differ depending upon the type of GPCR that has 

been stimulated (Oakley et aL, 2000). Two classes of GPCR have been identified: 

class (A) (j82-AR, /r-opioid receptor, endothelin type A receptor, dopamine DIA 

receptor and the alb-AR) which bound /3-arrestin-2 with higher affinity than /3- 

arrestin-1, did not internalise with /3-arrestin as a stable complex and did not interact 

with visual an'estin and class (B) (angiotensin II type 1A receptor, neurotensin 

receptor 1, vasopressin V2 receptor, TRH receptor and substance P receptor) which 

bound ^-arrestin-1 and /3-arrestin-2 with equal affinity, internalised with /3-arrestin as 

a stable complex and were capable of recruiting visual aiTestin to the plasma 

membrane. It has also been suggested in recent studies involving members of both 

classes of GPCR described above that the duration for which the GPCR- j8-arrestin 

complex persists following receptor sequestration is important in defining the kinetics 

of resensitization of the receptor (Oakley et a/., 1999). It was shown that the /32-AR
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(class A) was rapidly dephosphorylated and recycled back to the plasma membrane 

whereas the vassopressin V2 receptor (class B) possessed much slower recycling 

kinetics, presumably because the prolonged interaction between V2R and |S-an'estin 

inhibits the association of this GPCR with receptor phosphotases present in the 

acidified endosome. A further proposal in this study was that the observed differences 

between the two classes of receptor were attributable to the presence of clusters of 

serine and threonine residues present in the carboxyl terminal tail of the receptor, so 

that receptors which remained associated with aiTestins following ligand activation 

(such as the vassopresin V2 receptor, neurotensin receptor-1 andangiotensin II type 

lA receptor) possessed these clusters whereas receptors which dissociated from 

arrestins at the plasma membrane (such as /32-AR) did not. This assertion was further 

backed up in studies where truncation of the carboxyl terminal tail of the substance P 

receptor (class B) to remove all such serine/threonine clusters, resulted in a receptor 

which was severely compromised in its ability to recruit a /3arrestin2-GFP constmct 

into endocytic vesicles (Oakley et al., 2001).

Examination of the carboxyl terminal domain of the CCR2b receptor (the subtype 

used in the study herein) reveals the presence of such clusters (Figure 4.18) 

downstream of the conserved NPXXY motif that marks the end of the seventh 

transmembrane helix. Shown for comparison are the carboxyl terminal tails of both 

the ATIAR and (32-AR, Although previous studies have not been precise in exactly 

what constitutes a serine/threonine cluster, they were typically reported to be located 

30-50 amino acids downstream of the NPXXY motif and included three or more 

serine/threonine residues running together, interspersed by not more than one 

dissimilar amino acid residue (Oakley et al,, 2001). Note the absence of such motifs 

within the carboxyl teiminal tail of the /32-AR. On the basis of this information.
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Figure 4.18. Comparison of the carboxyl terminal tails of the CCR2, ATIAR and 

/32-AR.

Shown are the amino acid compositions of the carboxyl terminal tails of the CCR2, 

ATIAR and /32-AR downstream of the conserved NPXXY motif (Bold). Clusters of 

three or more serine/threonine residues together or interspersed by just one dissimilar 

amino acid residue are underlined.
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1) CCR2 ^NPIIYAFVGEKFRRYLSVFFRKHITKRFCKQCPVFY
RETVDGVTSTNTPSTGEOEVSAGL

2) ATIAR- NPLFYGFLGKKFKRYFLQLLKYIPPKAKSHSNLSTK
MSTLSYRPSDNVSSSTKKPAPCFEVE

3) /32-AR - NPLIYCRSPDFRIAFQELLCLRRSSLKAYGNGYSSN
GNTGEQSGYHVEQEKENKLLCENLPGTGDPVGHQ
GTVPSDNIDSQGRNCSTNDSLL

Figure 4.18.
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CCR2 would have to be classified within the gioup of receptors that co-intemalised 

with arrestins in a prolonged interaction that would delay dephosphorylation and 

resensitization of the receptor and its recycling back to the plasma membrane. This 

was in agreement with the results presented here. However one proposed property of 

class (B) receptors is that they have equal affinities for both of the major aiTestin 

types (Oakley et al., 1999), though in fairness this was only demonstrated for the 

ATIAR. Given the findings presented herein, it would seem possible that with regards 

to affinity for /3-arrestin subtypes, the number, position and quality of the 

serine/threonine clusters or the presence of some yet unidentified motif may be of 

additional importance in determining a preference for recruitment of either |3-arrestinl 

or (S“arrestin2, whereas the ability to enter into a tightly binding complex with a given 

an'estin merely requires the presence of such clusters.

Since both /3-arrestin 1 and /3-arrestin2 are ubiquitously expressed in all cell types, 

though in different proportions (Lohse et aL, 1990; Attramadal et aL, 1992), there has 

been a considerable effort to try and determine whether they seiwe different roles in 

GPCR signalling or whether they are functionally redundant. In one such study, using 

embryonic fibroblasts from knockout mice that lack either /3-arrestin 1 (/3arrl-KO), /3- 

arrestin2 (|3arr2-KO) or both aiTestins (j3arrl/2-KO), it was shown that both /3arrl-K0 

and /3arr2-KO showed similar impairment in desensitisation of ATIAR and /32-AR 

when compared to similar experiments in wild type control cells. However, 

sequestration of /32-AR was impaired only in j3arr2-KO whereas it was unaffected in 

j3arrl-K0 cells, in contrast to which ATIAR was not compromised in its 

sequestration when expressed in either |3arrl-KO or /3arr2~KO alone. In /3arrl/2-KO 

cells both receptors were dramatically impaired in their ability to be internalised 

(Kohout et aL, 2001). This indicates that although in all cells a given receptor may
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undergo desensitisation, the ability of some receptor types to be internalised, and 

hence resensitized, will depend on the relative expression levels of the major arrestins 

within that cell. This is in contrast to receptors with a high affinity for both /3-an'estinl 

and /3-arrestin2 which will internalise regardless of the cell’s arrestin complement.

It is not surprising that the strength of interaction between GPCRs and arrestins are 

mediated by the presence of serine and threonine residues on the carboxyl terminal 

tail of the receptor, considering that arrestin recruitment from the cytosol follows on 

fiom phosphorylation of the receptor by members of the GRK family of kinases. The 

binding of /3-arrestin to agonist activated GPCRs at the plasma membrane is thought 

to be mediated by two domains present within the /3-arrestin molecule: a large domain 

within the amino terminus termed the activation recognition domain which engages 

with the second and third intracellular loops of the receptor (Wu et aL, 1997) and a 

smaller positively charged region within the middle of the molecule which is thought 

to interact with the phosphorylated carboxyl terminal tail of the receptor called the 

phosphorylation recognition domain (Kieselbach et aL, 1994). It can be envisaged that 

the presence of clusters of negatively charged phosphate groups present on the serine 

and thi'eonine residues of class (B) receptors would he sufficient to stabilize the 

arrestin/receptor complex allowing both to be incorporated into the endocytic vesicle 

upon receptor internalisation. It is also possible that by engaging the phosphorylated 

carboxyl terminal tail of the activated receptor, jS-aiTestin undergoes a conformational 

change that promotes a high affinity interaction between the two molecules 

(Vishnivetski et aL, 2000). This proposal was advocated in a recent study where 

truncation of the carboxyl terminal domain of /3-arrestin 1 resulted in a mutant that 

remained closely associated with GPCRs lacking serine/threonine clusters following 

receptor internalisation. This implied that removal of the carboxyl terminus had
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uncovered a high affinity-binding site within the /3-arrestin molecule, allowing it to 

interact with GPCRs in the absence of phosphorylation (Oakley et aL, 2001).

Enquiry into the nature and mechanisms of the interactions between GPCRs and 

components of the receptor desensitisation pathway, such as are presented here, might 

ultimately lead to novel theapeutic targets for the treatment of certain disease 

processes being uncovered. For instance, a naturally occurring loss of function 

mutation in the human vasopressin V2 receptor has been identified (Rosenthal et aL, 

1993), which is associated with familial nephrogenic diabetes insipidus and induces a 

constitutive arrestin-mediated desensitisation, leading to receptor sequestration even 

in the absence of agonist. It was found, thiough subsequent work, that the removal of 

serine triplets from the carboxyl terminal tail of this mutant receptor rescued it and 

allowed the receptor to be resensitized and properly localized to the plasma membrane 

(Barak et aL, 2001), suggesting that umegulated desensitisation of GPCRs may be the 

basis of certain types of disease states and that the desensitisation pathway may 

provide a possible therapeutic target for intervention in these disease processes.

4.5 Conclusion

In this chapter it was confiimed that the strength of the energy transfer signal 

generated, relative to background noise, by a variant of traditional BRET, BRET], 

was a substantial improvement over its predecessor. This new system was then used to 

reinforce the observations made in the previous Chapter: that opioid receptors are 

constitutively associated when transiently co-expressed in mammalian cells and that 

the strength of the dimeric complex is not influenced by the presence of either agonist 

or antagonist ligands. Earlier experiments, using BRETi, to investigate interactions 

between the /32-AR and the d-opioid receptor were better clarified using BRET]
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technology and indicated that these two receptor types do heterodimerize, though, 

perhaps disappointingly, previous indications of agonist-induced regulation could not 

be confirmed. Taken together these results support the theory that the role of 

dimerization is more in facilitating the maturation and cell surface delivery of a fully 

functional receptor molecule than in facilitating the stabilization of an active 

conformation of the receptor. These conclusions exclude the general usefulness of 

dimerization in the detection of ligand induced receptor activation.

Investigation of the desensitisation pathway provided a more attractive alternative to 

the development of such an assay. The viability of this proposal was been clearly 

demonstrated through studies using confocal microscopy techniques. Although no 

actual demonstration has been yet provided, the possibility of adapting the detection 

of /3-arrestin recruitment to a FRET based format could potentially provide 

industrially based compound library screening programmes with a powerful method 

for the detection of receptor activation. In addition to this, the studies revealed that a 

CCR2 receptor, a class B receptor candidate based on the classification system of 

(Oakley et ah, 2000), was capable of forming a high affinity complex with /3-arrestin2 

with which it remained associated following sequestration. This was in accordance 

with previous observations made for other class B receptor candidates. However, 

CCR2 did not display equal affinities for both /3-arrestin 1 and /3-arrestin2, providing a 

counterexample to the conjecture that all class B receptors possessing serine/threonine 

clusters on the carboxyl terminal tail would engage the major arrestin types with equal 

affinity.
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Chapter 5

Third results chapter

5.1 Introduction

In recent years, it has been shown that through the process of introducing certain 

mutations into GPCRs, it is possible to generate mutant receptors that are capable of 

exhibiting enhanced levels of constitutive activity. This constitutive activity manifests 

itself through an ability of the mutant GPCR to produce higher levels of second 

messenger molecules in the absence of an agonist ligand compared to their wild type 

counterparts when heterologously expressed within the same cell lines. GPCRs thus 

endowed with these characteristics, generate, in assays designed to measure a 

functional output, a response that is proportional to the expression levels of the mutant 

receptor (Samama et aL, 1993). Many examples of these mutants have been well 

characterized and it has been shown that mutations in a diverse range of unrelated 

receptor regions within a great variety of receptor types can give rise to the 

phenomenon (Sheer and Cotecchia., 1997; Leurs et aL, 1998).

Diverse studies focusing on such constitutively active receptors have provided a 

wealth of useful information concerning the mechanisms by which GPCRs adopt 

active conformations in the presence of agonists and about how naturally occurring 

mutations in GPCRs can form the basis of certain disease processes. They have also 

illuminated the role of antagonists in GPCR regulation and ligands previously thought 

of as possessing neutral efficacy have been found to be capable of dampening the 

basal production of second messenger molecules (Milligan et aL, 1995). It is believed 

that this inhibition is due to the antagonists favouring the enrichment of an inactive
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conformation of the receptor and consequently such ligands have come to be known 

as inverse agonists (Milligan et aL, 1995). The phenomenon of inverse agonism is 

more thoroughly discussed in Chapter 1.

One of the most extensively studied of these constitutively active mutant (CAM) 

GPCRs is a form of the human /32-AR where a portion of the carboxyl terminal end of 

the third intracellular loop was replaced by the analogous region from the «ib- 

adrenoceptor (Samma et aL, 1993). This mutant displays all of the phenotypic 

features nowadays commonly attributed to CAM receptors: it has markedly elevated 

levels of second messenger molecule production in comparison to the wild type 

receptor; it produces a basal functional activity which is correlated well with receptor 

expression levels and it possesses an entranced affinity for agonists, the rank order of 

which is dictated by the ligand’s intrinsic activity. The prevailing theory which has 

been offered to explain these findings is that in the case of the CAM /32-AR there is a 

perturbation in the equilibrium between the inactive (R) and active (R'^) states of the 

receptor; this shifts the equilibrium in favour of the R* conformation and hence leads 

to an increase in the population of the activated form of the receptor. In all likelihood, 

this perturbation is brought about through the relaxation of conformational constraints 

designed to minimize spontaneous coupling to cellular G proteins which in the wild 

type receptor help to maintain very low levels of constitutive signalling in the absence 

of any activating ligand (Samma et aL, 1993; Lefkowitz et aL, 1993).

This theory finds support in experimental observations suggesting that the CAM form 

of the /32-AR is inherently less stable than the wild type receptor when incubated at 

37°C (Gether et aL, 1997a). Presumably these findings reflect the fact that when the 

R* form is adopted, the receptor exists in a high-energy state which is more prone to 

spontaneous dénaturation than the ground state (R) and that the CAM /32-AR, having
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an increased proclivity for isomérisation to the R* conformation of the receptor, 

therefore exhibits a higher rate of degradation than its wild type counterpart. Further 

evidence comes from studies which have made use of fluorescent dyes that are 

sensitive to changes in the polarity of their molecular environment to determine 

whether any structural differences exist between the CAM /32-AR and wild type (32- 

AR. These have revealed that there do indeed exist distinctions between the two. 

Specifically obsei-ved was an alteration in the conformation of the protein structure 

within the immediate vicinity of the ligand-binding pocket (Javitch et aL, 1997). 

These differences are accompanied by exaggerated conformational responses of CAM 

/32-AR to the binding of agonist compounds, suggesting that constitutive activation of 

the /32-AR confers a higher degree of conformational flexibility to the receptor protein 

and that this may allow the CAM to more readily undergo transitions between the R 

and R* states (Gether et aL, 1997b).

Aside from the useful structural information that may be gleaned from studies into 

constitutive activation of GPCRs, investigations within this field have practical 

implications, applicable to industrially based drug discovery agendas. For instance, it 

has been recently suggested that through the use of constitutively active GPCRs, 

ligand-screening programmes designed to identify compounds that possess either 

positive or negative efficacy might be established. This was demonstrated in a study 

where Xenopus laevis melanophores were transiently transfected with various 

constitutively active GPCRs. The ability of the mutant receptors to promote the 

dispersion or aggregation of intracellular melanosomes was then measured through 

the monitoring of changes in the light transmittance of the cells in both the presence 

and absence of exogenous ligands. The results suggested that, provided the right 

expression levels of the mutant receptor could be achieved, such an assay would be
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amenable to the detection of ligands for both Icnown and orphan GPCRs (Chen et aL, 

2000).

In the subsequent section of this chapter the structural instability of the CAM jS2-AR 

is exploited in order to develop a similarly novel, yet more direct, alternative for the 

screening of potential receptor ligands. To achieve this, the cDNA for the 

bioluminescent luciferase from the Anthozoan Renilla reniformis has been ligated in 

frame with the cDNA for CAM /32-AR to create a chimeric receptor called CAM /32- 

AR-Rluc. The construct is modified at its carboxyl terminal tail by the presence of the 

Renilla luciferase enzyme in a similar manner to the wild type /32-AR-Rliic, described 

in Chapter 3. Through the expediency of in-frame linkage to the Renilla luciferase any 

increase in receptor number, brought about by ligand-mediated stabilization of the 

receptor construct, should result in an increase in the luminescent output of the 

enzyme in the presence of its substrate coelenterazine (Figure 5.1). Such a system 

should prove to be tractable in its application to high throughput compound screening 

programmes since there are only a very limited number of manipulations required in 

order to obtain assay readings. It is also seen through the pursuit of these studies that 

the upregulation observed is most likely to be attributable to a stabilization of the 

receptor structure that is induced by the presence of the ligand in the binding cavity of 

the receptor. This conclusion is inferred by a strong correlation between pECso for 

receptor upregulation (as measured through luminescence) and pK; (as determined by 

competition binding for ligands in the presence of [^H]-DHA).

5.2 Results

The cDNA for a CAM form of the human /32-AR, containing four point mutations 

within the carboxyl terminal end of its third intacellular loop (previously described in
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Figure 5.1. The principal upon which an assay based upon agonist-induced 

stabilization of a Renilla luciferase tagged CAM GPCR might work.

Ligand binding to the CAM receptor favours the formation of a structure that is less 

liable to spontaneous dénaturation. Over a period of 24 hours, in the presence of this 

ligand, there is an increase in the overall receptor population present within the cells. 

If the CAM receptor is directly fused to a bioluminescent marker protein (in this case 

Renilla luciferase) in a stoichiometry of 1:1, then this increase in receptor number will 

be exactly paralleled by an increase in bioluminescence. The increase is readily 

quantifiable using a sensitive luminometer.
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Samama et aL, 1993), was ligated in frame with and upstream of the cDNA encoding 

Renilla luciferase (as described in section 2.4.1). To test that this construct (CAM jS2- 

AR-Rluc) was able to form a correctly folded receptor molecule that was capable of 

binding appropriate ligands, it was transiently transfected into HEK 293 cells and its 

ability to bind [^H]-DHA in radio-ligand binding studies, using a single concentration 

of [^H]-DHA (2nM) assessed. Typically, such transfections yielded levels of specific 

binding that were of the order of 500 to 600 fmol/mg and these were comparable to a 

version of the CAM j82-AR lacking in the Rluc modification that was assayed 

simultaneously with the chimera (Figure 5.2). These expression levels were 

substantially lower than those observed in similar experiments performed on wild 

type j32-AR and j52-AR-Rluc (see Chapter 3, Figure 3.4) where specific binding was 

in the range of 1200-1600 finol/mg of protein. The observations were in accordance 

with previous work which had shown that the CAM form of the /32-AR expressed less 

well than the wild type receptor in mammalian cells (MacEwan and Milligan 1996). 

Saturation binding studies, using a number of concentration points of [^H]-DHA 

showed that the for CAM j62-AR~Rluc was effectively unaltered through the 

addition of the Renilla luciferase to the carboxyl terminal tail of the receptor (Results 

shown later).

Similar chimeric constructs were made with the luciferase from the firefly Photinus 

pyralis. Again the cDNA for either CAM or wild type /32-AR was ligated 

immediately upstream of the cDNA for the luciferase. Following transient 

transfection within HEK 293 cells, intact cell binding assays were performed to 

determine whether or not the carboxyl tail modification of the receptor, with this 

alternative luciferase, prevented successful expression of the receptor constmct. It was 

found that specific binding of [^H]-DHA to the wild type /32-AR was similar to /32-
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AR"Pluc (Figure 5.3). However, in the case of the CAM form of the receptor specific 

binding was not detectable (results not shown). In view of these circumstances it was 

decided to continue the study by focusing primarily on the CAM /32-AR-Rluc 

construct with the wild type /32-AR-Pluc used in only a limited number of 

experiments detailed towards the end of the Results section.

To demonstrate that this CAM /32-AR-Rluc was functionally active and that the 

carboxyl terminal tail modification of the receptor with Renilla luciferase did not 

interfere with coupling to intracellular' G proteins, intact cell adenylyl cyclase assays 

were performed on cells transiently expressing the chimeric construct. The results of 

the experiments showed that expression of CAM j32-AR-Rliic within HEK 293 cells 

had the effect of substantially elevating basal levels of cAMP production, an effect 

which could be enhanced by the presence of isoprenaline (10/rM) (Figure 5.4). These 

levels of cAMP, measured both in the presence and absence of agonist, were 

comparable to those seen in similar assays carried out on the unmodified version of 

the CAM iS2-AR, conducted along side those of the chimera (Figure 5.4). In 

untransfected HEK 293 eells, although basal levels of cAMP were very low, a clear 

increase could be detected in the presence of isoprenaline, plainly demonstrating the 

presence of a small population of endogenously expressed /32-AR (Figure 5,4). In 

contrast to intact cell adenylyl cyclase assays perfoi'med on cells transiently 

transfected with either the Rluc modified or intact wild type /32-AR (Chapter 3, Figure 

3.5), basal production of cAMP nucleotides was substantially elevated in the case of 

CAM-jS2-AR-Rluc (Figure 5.4). This was in agreement with the existing notion that 

constitutively activating mutations produce an elevated basal production of second 

messenger nucleotides. Taken together, these results indicate that the carboxyl 

terminal tail modification of CAM (32-AR with Renilla luciferase does not interfere
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with the ability of the receptor to activate downstream effectors in response to 

agonists. Nor does the Renilla luciferase molecule suppress the CAM characteristics 

conferred by the presence of the point mutations in intracellulai* loop 3 of the receptor. 

To confirm that the modification of CAM ]32-AR with Renilla luciferase did not affect 

the ability of the receptor to be upregulated in the sustained presence of inverse 

agonists, HEK 293 cells were transiently transfected with the cDNA for either CAM 

/32-AR or CAM /32-AR-Rluc and then exposed to a twenty-four hour incubation with 

betaxolol (\OfxM). After this period had elapsed, cells were harvested and the specific 

binding to membrane preparations of a single concentration of [^H]-DHA was 

assessed. The outcome was that in the presence of betaxolol both constructs exhibited 

a three to four fold increase in levels of specific binding (Figure 5.5). This was an 

observation that was attributable to the presence of the inverse agonist causing a 

direct increase in the expression levels of the receptor, as was revealed through 

binding studies on CAM /32-AR-Rluc membranes in which a variety of concentrations 

of [^H]“DHA were used (Figure 5.6). In these saturation binding experiments, the 

Bmax value for receptor expression levels following a twenty-four hour pre-incubation 

with betaxolol was 2600 finol/mg; this was in comparison to a B^ax value of 400 

fmol/mg obtained from membranes where the pre-treatment with betaxolol was 

omitted. Further verification was obtained through experiments where HEK 293 cells 

transiently expressing CAM /32-AR-Rluc were exposed to varying concentrations of 

betaxolol for twenty-four hours before the cells were harvested and membranes 

prepared. Applying the same protein concentration to each assay point, the 

membranes were monitored both for their ability to bind to antagonist in radioligand 

assays using a single concentration of [^H]-DHA (2nM) and for their ability to 

produce light through bioluminescence upon addition of coelenterazine (5juM), Data
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collected from both of these assay methods showed that the levels of receptor 

expression and consequently the bioluminescence of Renilla luciferase could be 

modulated by the concentration of betaxolol used in the pre-incubation step. When the 

data was normalized to the magnitude of the readings obtained using the highest 

concentration of betaxolol, it could be seen that the specific binding of [^H]-DHA to 

the receptor and the values of light emitted via Renilla bioluminescence paralleled one 

another (Figure 5.7). This result is as expected, given the 1:1 stoichiometry that exists 

between the receptor and the bioluminescent enzyme.

To continue the study, HEK 293 cells stably expressing CAM (32-AR-Rluc were 

established, a single clone of which was isolated and selected for further examination. 

Membranes prepared from this clone were subject to saturation binding using multiple 

concentrations of [^H]-DHA. B^ax values hence obtained revealed that the receptor 

was stably expressed at relatively low levels (600 fmol/mg) within the cells and that 

the Kd for DHA at the CAM (32-AR-Rluc receptor construct was approximately 0.3 ± 

O.lnM (Figure 5.8), a value in close agreement with previous obseiwations for other 

CAM /32-AR constructs (McLean et al., 1999). Cells of this clone were then plated 

into 96 well plate dishes and then exposed for twenty-four hours to five different 

antagonist compounds, all of which were Icnown to have affinity for the /32-AR. 

Subsequent monitoring of the light emitted by Renilla luciferase upon addition of 

coelenterazine (5/aM) showed that all five antagonist compounds were capable of 

inducing an upregulation of CAM (32-AR-Rluc (Figure 5.9) and that typically the 

degree of upregulation was of the order of two-fold for all compounds tested. The 

ability of the ligands to upregulate the CAM (32-AR-Rluc did not seem to be related to 

their efficacy however, since betaxolol and ICI 118 551 (both strong inverse agonists) 

did not produce a degree of upregulation that was markedly different fiom that
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confeiTed by propranolol, a ligand of almost neutral efficacy. The EC50 values for 

each compound are shown in Table 5.1, Each of these ligands was able to compete 

with [^H]~DHA for occupancy of the receptor binding site in membranes prepared 

from the cell line stably expressing CAM |(32-AR-Rluc (Figure 5.10). From this data, 

the dissociation equilibrium constant Ki (a measure of the binding affinity of a 

compound for the receptor) was calculated and the values thus obtained revealed that 

the ligands showed varying affinities for CAM jS2-AR-Rluc (Table 5.1). By taking the 

negative log values for these two sets of results to obtain values of pKi and pECso, it 

could be seen that they correlated well (Figure 5.11) (r̂  = 0.932).

Similar sets of experiments were performed using agonist compounds. It was shown 

that the partial agonists salbutamol and salmeterol, and the full agonist isoprenaline 

were all capable of giving rise to a degree of upregulation that was comparable in 

magnitude to that imparted by the antagonist compounds (Figure 5.12). Two of these, 

isoprenaline and salbutamol, were selected for competition binding studies and were 

both found to be capable of displacing [^H]-DHA from the receptor binding crevice 

(Figure 5.13). However, in contrast to values obtained with the antagonist 

compounds, there was a marked dissimilarity between the E C 50 and Ki values for 

isoprenaline (EC5o= 3.0xl0'^± 3.7x10'^, K]= 2.0xl0'^± 4.8x10’̂ ) and salbutamol 

(EC50-  1.7x10'^ ± 2.2xlO'\ K i = 8 . 1 x  10‘®± 2.9x10'^) respectively.

To demonstrate the dependence on the CAM nature of the receptor for upregulation of 

CAM /32-AR-Rluc, HEK 293 cells were transiently co-transfected with the cDNAs 

for both CAM /32-AR-Rluc and wild type /32-AR-Pluc. After twenty-four hours the 

cells were either left untreated or exposed to a saturating concentration of betaxolol 

(lOjLtM) and then maintained under these conditions at 3>TC for a further twenty-four 

hours. Subsequently, crude membranes were prepared and their protein content
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Table 5.1. EC50 values for upregulation and K; values for competition binding 

obtained in studies with CAM jS2-AR-Rluc.

A complete list of all the E C 50  values obtained from the data for receptor 

upregulation, as determined through monitoring increases in receptor number via the 

luciferase assay. Also shown are all the Ki values from the competition binding 

studies, as were determined through the ability of the test compound to displace [^H]- 

DHA from receptor binding sites. The results represent means ± S.E.M. of three 

experiments.

272



Compound ECso Ki
Betaxolol l.lxIO -'±  8.3x10'^ 6.9x10"" ± 1.8x10"''

Propranolol 3.3x10'^ ±7.6x10'^" 6.8x10"'" ± l.SxlO"'"

ICI 118 551 1.4xI0'^d= 2.7x10'^ 1.5x10"  ̂±3.2x10"'"

Sotolol 1.8x10"'’±7.2x10'' 2.9x10"'±6.0x10""

CGP 121 11A 4.4x10"^ ±5.1x10"''' 2.1x10"^ ±4.2x10"'"

Table 5.1.
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evaluated as described in section 2.6.2. The membranes were then monitored in 

parallel for light output from both Renilla and Photinus luciferases using the dual 

luciferase assay system that is described in section 2.6.12. In the presence of betaxolol 

light output from Renilla luciferase was seen to undergo a twofold increase (Figure

5.14) in contrast to the levels of light emitted by Photinus which were not elevated 

above basal levels. This clearly showed that only the version of the /32-AR receptor 

possessing constitutively activating mutations was capable of being upregulated in the 

presence of the inverse agonist.

The upregulation effect could only be mediated by antagonists/inverse agonists which 

had phannacological specificity for the CAM /32-AR-Riuc. This was shown by 

transiently transfecting the cDNA for CAM j32-AR-Rluc into a HEK 293 cell line 

stably expressing a GFP conjugated CAM version of the «ib-adrenoceptor (CAM 0!ib- 

AR-GFP) (Stevens et al., 2000). Here, cells were either left untreated, exposed to 

betaxolol (10/rM) or exposed to phentolamine (lOjitM), a potent inverse agonist that is 

highly selective for ai-receptors (Lee et a l, 1997). The cells were then maintained in 

the presence of these compounds for a further 24 hours, after which they were lysed 

and then treated in such a way as to isolate membranes with the protein content 

quantified as described in section 2.6.2. Using equal quantities of protein at each 

assay point, the light output from Renilla luciferase upon addition of coelenterazine 

(5/xM) and the resultant fluorescence upon excitation of GFP with an appropriate 

wavelength of light were then measured in parallel. The results obtained fiom cell 

samples that had been exposed to either betaxolol or phentolamine were expressed as 

percentages of similar readings obtained from the cells that were left untreated during 

the experiment. In the presence of betaxolol, Renilla bioluminescence from CAM /32- 

AR-Rluc produced a two to threefold increase in the levels of light output (Figure
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5.15). The same cells displayed no increases above basal levels of fluorescence 

however when assayed to quantitate levels of CAM «ib-AR-GFP in an arbitrary 

manner (Figure 5.15). This effect was antipodal to that seen in cells which had been 

exposed to phentolamine, where no alterations in the levels of light output from 

Renilla were observed and GFP fluorescence was seen to undergo an approximately 

threefold increase above basal levels (Figure 5.15). From these results, it can be 

unambiguously seen that it is only ligands capable of interacting directly with the 

binding crevice of CAM /32-AR-Rluc that are capable of producing increases in 

receptor number.

To finish this investigation it was deemed necessary to provide some further 

confirmatory evidence that the system described herein would lend itself towards the 

development of a high throughput ligand-screening assay. To this end, the stable cell 

line expressing CAM j32-AR-Rluc was seeded into 96 well microtiter plates and then 

exposed for twenty-four hours to a variety of agonist and antagonist compounds, 

possessing a wide range of pharmacological specificities. Following this pre­

incubation period the cells were assayed for luciferase activity in the mamier 

described in section 2.6.12. Generally cells which had been exposed to ligands with a 

specificity for CAM j82-AR-Rluc tended to produce gieater levels of Renilla 

bioluminescence above basal than that observed in cells exposed to compounds that 

lacked any affinity for adrenergic receptors, as seen in both duplicate runs of this 

experiment (Figure 5.16). Occasional false positive results made it difficult to 

inteipret whether one or two of the compounds lacking in affinity for /32-AR were 

capable of inducing upregulation or not (for example DPCPX (Figure 5.16A) and 

CPA (Figure 5.16B)), however, it is to be anticipated that this could be in some way 

rectified thiough the use of triplicate assay points. One of the compounds, melanin-
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Figure 5.2. Expression levels of the CAM /32-adrenoceptor and Renilla tagged 

CAM /32-adrenoceptor when expressed in HEK 293T cells.

HEK 293 cells were mock transfected or transiently transfected with the cDNAs for 

either CAM /32-AR or CAM /32-AR-Rluc. Forty-eight hours later membranes were 

prepared and the specific binding of [^H]-DHA (2nM) measured. The data are means 

± S.E.M. values of triplicate wells taken from a single assay. Two further experiments 

produced similar results.
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Figure 5.3. Expression levels of the wild type j32-adrenoceptor and Photinus 

tagged /32-adrenoceptor when expressed in HEK 293T cells.

HEK 293T cells either mock transfected, transiently transfected with wild type /32-AR 

or transiently transfected with /32-AR-Pluc were assayed for specific binding of [^H]- 

DHA via the intact cell methodologies described in section 2.6.3. The experiment is a 

single representative experiment of three such performed with the error bars 

representing means ± S.E.M. of triplicate assay points.
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Figure 5.4. Functional coupling of CAM |32-adrenoceptor and Renilla tagged 

CAM /32-adrenoceptor to adenylyl cyclase in HEK 293T cells.

HEK 293 cells were mock transfected or transiently transfected with the cDNA for 

either CAM /32-AR or CAM /32-AR-Rluc. Twenty-four hours later the cells were 

labelled with [^H]-adenine. After a further twenty-four hours, cAMP generation was 

measured (as described in section 2.6.4) in both the presence and absence of the /32- 

AR agonist isoprenaline (10/LtM). The data are means ± S.E.M. values of triplicate 

wells taken ftom a single assay representative of three such experiments performed.
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Figure 5.5. Prolonged treatment with betaxolol upregulates both CAM /32- 

adrenoceptor and CAM /32-adrenoceptor- Rluc expressed in HEK 293T cells.

HEK 293 cells were transiently transfected with the cDNA for either CAM /32-AR or 

CAM /32-AR-Rluc. Twenty-four hours later the cells were either left untreated or 

were exposed to betaxolol (lO/xM). After a ftirther twenty-four hours, membranes 

were prepared and the specific binding of [^H]-DHA (2nM) was measured. The 

results are means ± S.EM. of three independent experiments performed.
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Figure 5.6. Upregulation of CAM j32-adrenoceptor-RIuc in response to prolonged 

treatment with betaxolol represents a true increase in receptor number.

HEK 293 cells were transiently transfected with the cDNA for CAM /32-AR-Rluc. 

Twenty-four hours later the cells were either left untreated or were exposed to 

betaxolol (10/xM). After a further twenty-four hours membranes were prepared and 

the specific binding of a range of [^H]-DHA concentrations measured. The results are 

a single representative of three independent experiments.

284



■ (CAM) Beta2-AR-Rluc

A (CAM) beta2-AR-Rluc  
plus betaxolol

2500-1

g  2000-
c  g
S  I  1500-
ë  i
o ê  1000-

500-

0 1 2 3 4 5
[3H-DHA](nM )

Figure 5.6.

285



Figure 5,7. The increase in receptor number as determined via radioligand 

binding exactly parallels the increases observed in Renilla bioluminescence.

HEK 293 cells were transiently transfected with cDNA to express the CAM /32-AR- 

Rluc construct. Twenty-four hours later the cells were exposed to varying 

concentrations of betaxolol. The specific [^H]-DHA (2nM) binding of the receptor 

and the luminescence from Renilla luciferase were then measured in parallel twenty- 

four hours later. Data are presented as per cent maximal effect with results derived 

from three independent experiments.
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Figure 5.8. The Kd for CAM /32-adrenoceptor-Rluc is essentially unaltered by the 

carboxyl terminal tail modification with Renilla.

A HEK 293 cell line stably expressing the CAM /32-AR-Rluc was established from a 

single clone and membrane preparations were obtained. Specific binding, using a 

range of [^H]-DHA concentrations, allowed the Ka and B^ax values for the receptor 

construct to be determined. Data are from a single transfection representative of three 

such experiments performed.
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Figure 5.9. The ability of various antagonist compounds to upregulate CAM j32- 

adrenoceptor-Rluc: EC50 values were determined.

Cells of a clone of HEK 293 cells stably expressing CAM j82~AR-Rluc were grown in 

96 well microtiter plates and exposed to various concentrations of either (A) 

betaxolol, (B) ICI 118 551, (C) propranolol, (D) CGP 121 77A or (E) sotalol for a 

period of twenty four hours. The light emission from Renilla luciferase was then 

monitored as described in section 2.6.12. The results represent means ± S.E.M. from 

tlu'ee experiments.
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Figure 5.10. The ability of various antagonist compounds to compete with [^H]- 

DHA for binding to CAM /32-adrenoceptor-Rluc: Ki values were determined.

Membrane preparations from HEK 293 cells stably expressing CAM ^32-AR-Rluc 

were obtained. The capacity for various concentrations of (A) betaxolol, (B) ICI 118 

551, (C) propranolol, (D) CGP 121 77A or (E) sotalol to compete with [^H]-DHA 

(2nM) for binding to CAM j32-AR-Rluc was assessed. Data represent means ± S.E.M. 

from tliree experiments.
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Figure 5.11. The correlation between the pKj and pECso values for a variety of 

antagonist compounds.

From the data presented in figures 5.9 and 5.10 the pECso and estimated pKi values of 

each compound, (A) sotolol, (B) betaxolol, (C) ICI 118 551, (D) CGP 121 77A and 

(E) propranolol were determined. Data represent means ± S.E.M. from three 

experiments.
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Figure 5.12. The ability of various agonist compounds to upregulate CAM /32- 

adrenoceptor-Rlue: EC50 values were determined.

Cells of a clone of HEK 293 cells stably expressing CAM |32-AR-Rluc were grown in 

96 well microtiter plates and exposed to various concentrations of either (A) 

isoprenaline, (B) salmeterol or (C) salbutamol for a period of twenty four hours. The 

light emission from Renilla luciferase was then monitored as described in section 

2.6.12. The results represent means ± S.E.M. from three experiments.
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Figure 5.13. The ability of various agonist compounds to compete with [3H]- 

DHA for binding to CAM jS2-adrenoceptor-Rluc: Kj values were determined.

Membrane preparations from HEK 293 cells stably expressing CAM j82-AR-Rluc 

were obtained. The capacity for various concentrations of (A) isoprenaline or (B) 

salbutamol to compete with [^H]-DHA (2nM) for binding to CAM j32-AR-Rluc was 

assessed. Data represent means ± S.E.M. from three experiments.
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Figure 5.14. Upregulation of the /32-adrenoceptor requires the eonstitutively 

activating mutation.

HEK 293T cells were transiently transfected with a combination of CAM /32-AR-Rluc 

and wild type j32-AR-Pluc constructs. Cells were then treated twenty-four hours later 

with or without betaxolol (lOjuM) for a further twenty-four hours. Photinus and 

Renilla luciferase activities were then measured in parallel. Data represent means ± 

S.E.M. from three experiments.
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Figure 5.15. CAM j32-adrenoceptor-Rluc is only upregulated by compounds that 

exhibit pharmacological specificity for the receptor.

A clone of HEK 293T cells stably expressing a CAM ofi-adrenoceptor-GFP construct 

(Stevens et al., 2000) was transiently transfected for twenty-four hours to express 

CAM jS2-AR-Rluc. The cells were then either exposed to betaxolol (lOjuM) or to the 

« 1-adrenoceptor antagonist/inverse agonist phentolamine (each at 10 /xM) for twenty- 

four hours. Renilla luciferase activity (as bioluminescence) and GFP fluorescence 

were then monitored in parallel. Results are presented as per cent of the signals 

obtained from cells in the absence of any treatment and represent means ± S.E.M. 

from three experiments.
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Figure 5.16. The upregulation of the CAM /32-adrenoceptor-Rluc could 

potentially form the basis of an assay for the detection of compounds exhibiting 

pharmacological specificity for the /32-adrenoceptor.

Cells of a clone of HEK 293 cells stably expressing CAM iS2-AR-Rluc were grown in 

96 well microtiter plates and then exposed to various test compounds (all at lOpM) 

for a period of twenty-four hours. The light emission from Renilla luciferase was then 

monitored as described in section 2.6.12. Results are presented as per cent of the 

signals obtained from cells in the absence of any treatment. The experiment was 

performed in duplicate with the results from (A) and (B) (overleaf) representing 

means ± range obtained from the duplicate wells of each individual test compound.
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concentrating hormone (MCH), gave extremely poor levels of Renilla 

bioluminescence in both of the experimental mns presented here. It was observed 

however, throughout the course of conducting these experiments, that MCH tended to 

lead to toxic effects which induced cell death in the samples under investigation, 

though whether this was due to some inherent toxicity of the compound to the cells 

used or simply due some fonn of contamination present in the compound preparation 

was not determined.

5.3 Discussion.

Many CAM forms of GPCRs have been generated through molecular biological 

manipulations in the past ten years. These CAM mutants have been extensively 

researched and well characterized and many have been shown to be structurally 

unstable (MacEwan and Milligan, 1996; Gether et al., 1997b). It has been 

demonstrated that such structurally unstable receptors can be upregulated following a 

prolonged exposure to certain antagonist compounds and it has been further shown 

that this is not accompanied by an increase in the levels of transcription of the 

receptor mRNA in the cell (MacEwan and Milligan, 1996; McLean et al., 1999; 

Milligan and Bond, 1997). The observed effects, where exposure to various 

antagonists produced increases in receptor number, are rather thought to be due to the 

stabilization of the receptor by forcing it to adopt an inactive conformation. The low 

energy (R) conformation thereby induced is consequently less likely to spontaneously 

adopt the active (R*) fonn of the receptor and therefore may be less prone to 

spontaneous degradation. CAM GPCRs provide good models for examining the 

conformationally active state of any particular GPCR: studies range from making use 

of conformationally sensitive fluorescent dyes to identify the stmctural alterations that
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mediate receptor activation (Javitch et al., 1997; Gether et al., 1997b) to more 

conventional studies where the effects of antagonist/inverse agonist binding on both 

receptor number and functional endpoint output are investigated (MacEwan and 

Milligan, 1996).

In order to quantify the ligand-induced upregulation of CAM /32-AR-Rluc, the 

enzyme Renilla luciferase was used to modify the carboxyl terminal tail of this 

receptor and thereby provide a bioluminescent marker for receptor upregulation. In 

this respect the chimera thus constructed resembled similar modifications to receptors 

made with the 27kDa green fluorescent protein from Aequorea victoria which has 

been utilized in a wide variety of studies in recent years. Through the use of confocal 

microscopy methodologies, the responses of such tagged receptors to agonist ligands 

have been monitored in real time and this has provided a wealth of information 

concerning both the kinetics and mechanisms whereby GPCRs are internalised. These 

methods have also been applied to the study of GPCRs recycling back to the plasma 

membrane, a process that accompanies receptor resensitisation. In addition, our 

understanding of the long-term process of receptor downregulation has been 

considerably enhanced by such studies (Milligan, 1999; Kallal and Benovic, 2000). 

Fortuitously, in the vast majority of these investigations there has been little evidence 

to suggest that such carboxyl terminal tail modifications have any significant effect on 

receptor-ligand binding affinity or on the ability of the receptor to couple to its 

cognate G-protein and therefore mediate signalling tlirough the generation of second 

messenger molecules.

Application of these GFP tagged GPCRs to the detection of CAM receptor 

upregulation has been attempted in a previous study on the j62-AR where a twenty- 

four hour pre-treatment with a variety of antagonists/inverse agonists lead to a marked
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receptor upregulation, detected through the use of confocal microscopy (McLean et 

al., 1999). However, when trying to monitor the upregulation of /32-AR-GFP through 

the use of a fluorimeter, quantitation, though possible, was hampered through poor 

reproducibility of the results, poor agreement between assay point replicates and a 

poorly pronounced increase in fluorescence signal above that seen in cells which were 

exempt from antagonist/inverse agonist treatment (McLean et al., 1999). In response 

to these earlier attempts, it was reasoned that through the expedient of in-hame 

ligation of a bioluminescent enzyme on to the carboxyl terminal tail of |32-AR, an 

assay system more amenable to quantitative analysis might be established. To achieve 

this objective, the cDNA for jS2-AR was fused upstream of the cDNA encoding either 

the luciferase from the anthozoan coelenterate Renilla reniformis or the luciferase 

derived from the firefly Photinus pyralis. When expression levels of the various 

constructs were examined via transient transfection into HEK 293 cells, it was found 

that although /32-AR-Rluc, /32-AR-Pluc and CAM /32-AR-Rluc (Figures 5.2 and 5.3) 

expressed at levels which were comparable to their unmodified counterpaits which 

were assayed alongside them, CAM /32-AR-Pluc failed to expressed at quantities 

detectable through radioligand binding experiments. The abrogation of successful 

binding to the CAM j82-AR consequent to the presence of Photinus luciferase (in 

contrast to similar modifications with Renilla luciferase on the same receptor which 

did not affect expression levels) may be a reflection of the fact that the Photinus 

luciferase enzyme is a substantially larger molecule than its Renilla equivalent, 61kDa 

compared to 311cDa for Renilla luciferase. This is an assertion that can be understood 

in terms of the CAM receptor being more inherently imstable than the wild type 

receptor and therefore less likely to tolerate a large carboxyl terminus modification. 

The CAM /32-AR-Rluc construct that was chosen for the continuation of the study
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was not only successfully expressed as a properly folded receptor that was capable of 

binding to appropriate ligands. It was also capable of reaching the plasma membrane 

where, in response to stimulation by agonist compounds, it could couple to its cognate 

G-protein (G%) and hence stimulate production of cAMP as revealed through the 

results of the intact cell adenylyl cyclase assays (Figure 5.4). In this respect it was 

essentially similar in its behaviour to equivalent constructs made between jS2-AR and 

GFP that have been characterised in a number of studies (Barak et al., 1997; Kallal et 

al., 1998; McLean et al., 1999). In the intact cell adenylyl cyclase assays described 

herein it was obseiwed that both the |32-AR-Rluc (Chapter 3, Figure 3.5) and CAM 

j32-AR-Rluc (Figure 5.4) constructs were capable of elevating basal levels of cAMP 

production, perhaps indicating that the wild type /32-AR possessed a degree of 

constitutive activity in itself and that this only became apparent when expression 

levels within the cells were highly elevated. This viewpoint is home out by the 

observation that small levels of endogenous receptor (too small to be effectively 

quantified in radioligand binding assays) did not give rise to any significant levels of 

basal second messenger production, even though a clear elevation in cAMP levels 

could be detected from these untransfected cells in the presence of agonist. Agonist 

independent cAMP levels produced by the wild type /32-AR-Rluc were, however, not 

nearly so great as those produced by CAM /32-AR-Rluc, especially when it is kept in 

mind that the expression levels for CAM j32-AR-Rluc were significantly lower than 

those of |32-AR-Rluc (Figure 5.2 and Chapter 3, Figure 3.4).

In previous investigations, making use of confocal microscopy techniques, it was 

shown that the /32-AR was capable of being upregulated in the presence of a twenty- 

four hour pre-incubation with various antagonist/inverse agonist compounds and, as 

was mentioned previously, this increase in fluorescence was not particularly amenable
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to quantification using a fluorimeter (McLean et al.,1999). In contrast to this, 

treatment of a stable cell line stably expressing CAM jS2-AR-Rluc with similar 

antagonist/ inverse agonist compounds lead to a degree of receptor upregulation that 

was easily quantifiable via the luciferase assay described in section 2.6.12 (Figure 

5.9). The results were highly reproducible, with only modest standard errors generated 

when the results of triplicate experiments were combined. With this degree of 

reproducibility; given that the assay is carried out in a 96 well microtiter plate format 

and given that these assay plates can be rapidly processed, it can be anticipated that 

the assay system should provide a reliable alternative to existing means of high 

throughput screening for the detection of ligands for both known and orphan GPCRs. 

When the pECso values for upregulation obtained from these experiments were 

compared to the pKi values acquired fi'om competition radioligand binding 

experiments, it was found that there was a strong coirelation between the two sets of 

data (Figure 5.11). This result would seem to indicate, at least in the case of the 

antagonist compounds, that the obseiwed upregulation was mediated primarily 

thi'ough the stabilization of the receptor molecule via the presence of the antagonist in 

the receptor-binding pocket. As mentioned previously, the increases in receptor 

number were not attributable to increases in the levels of receptor mRNA, since 

previous studies focusing upon upregulation of similar CAM mutants of the /32-AR 

did not detect any modulation in the transcription of these molecules in response to a 

sustained treatment with betaxolol (MacEwan and Milligan, 1996). The inference of 

these results is that, rather than through increased rates of protein synthesis, the 

upregulation is caused primarily tlirough a decrease in the rate of degradation of the 

CAM /32-AR brought about by a shift in the equilibrium of the receptor towards that
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of the less themially labile (R) conformation of the receptor, a consequence of ligand 

occupancy of the receptor binding site.

To demonstrate that the upregulation of the CAM j32-AR-Rluc constmct was solely 

attributable to the eonstitutively active nature of the receptor, an experiment was 

devised whereby the light output from both CAM /32-AR-Rluc and /32-AR-Pluc could 

be monitored following exposure to the inverse agonist betaxolol. It was perhaps not 

surprising that only the CAM version of the /32-AR was capable of producing 

increases in light intensity when bioluminescence from both Renilla and Photinus 

luciferases were monitored together, an observation which suggested that ligand- 

induced receptor upregulation was entirely dependent on the destabilized nature of 

CAM |32-AR-Rluc (Figure 5.14). It has recently been demonstrated that a GFP 

tagged, CAM version of «ib-adrenoceptor (which had a small segment of its third 

intracellular loop replaced by a conesponding region of the /32-AR) was capable of 

being upregulated in a manner analogous to CAM |32-AR (Stevens et al., 2000). 

Therefore, to establish that the upregulation of CAM /32-AR-Rluc could only be 

accomplished through the use of ligands with a pharmacological specificity for /32- 

AR, a cell line stably expressing the aforementioned CAM cxib-adrenoceptor was 

transiently transfected with the cDNA for CAM /32-AR and then exposed to a receptor 

saturating concentration of either betaxolol or the potent 0!ib-adrenoceptor inverse 

agonist phentolamine. The results obtained from these experiments showed that the 

respective CAM receptors could only undergo upregulation in the presence of a ligand 

which possessed specificity for that particular receptor type, i.e. betaxolol only 

induced upregulation of CAM /32-AR-Rluc construct and likewise phentolamine only 

induced upregulation of CAM «ib-adrenoceptor (Figure 5.15). For the purposes of 

adapting this assay procedure to high throughput screening procedures the result is an
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ideal one, since only ligands which are capable of binding to the receptor of interest 

will induce an increase in receptor number as detected through the monitoring of light 

levels emitted via Renilla luciferase.

A surprising result obtained in the course of these experiments was that CAM /32-AR- 

Rluc was capable of undergoing a robust upregulation in response to agonists 

possessing both partial and full intrinsic activities (Figure 5.12). This was not perhaps 

to have been expected, considering the traditional view that in the sustained presence 

of a receptor activating agonist there is a gradual redirection of internalised receptor 

molecules away from the recycling endosomes towards lyzosomes where proteolytic 

degradation of the receptor can occur. In consequence, it is rather to be expected that 

a receptor will undergo a downregulation in the sustained presence of agonists. The 

only previous findings that could be said to pre-figure these results were those 

obtained through the transient transfection of a CAM /32-AR into insect Sf-9 cells, 

where a forty-eight hour exposure to either the inverse agonist ICI 118 551 or the 

agonist isoprenaline caused a greater than two-fold increase in the levels of receptor 

expression (Gether et al., 1996a). In the same study, incubation of both purified wild 

type and CAM j32-AR receptor at 37°C, showed that the CAM /32-AR had a four-fold 

faster rate of dénaturation when compared to its wild type counteipart. This was an 

effect that could be substantially reversed through the incubation of the CAM /32-AR 

with either the inverse agonist ICI 118 551 or the agonist isoprenaline. Hence the 

researchers postulated that their observed results could be explained thus: that the 

binding of any ligand to the CAM /32-AR had a stabilizing effect upon the receptor 

and that this therefore produced an decrease in its turnover number, ultimately 

translating as an increase in receptor expression levels.
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A further factor that may influence the expression levels of CAM /32-AR-Rluc upon 

prolonged exposure to agonist compounds is the carboxyl terminal tail modification 

with Renilla luciferase itself. This particular concern arises from a study which 

showed that modification of the carboxyl terminal tail of j82-AR with GFP resulted in 

an impaiiment in the ability of HEK 293 cells to destroy this receptor type (McLean 

and Milligan., 2000). This may have been a consequence of the relatively high half- 

life of the GFP molecule: carboxyl terminal tail modification of |S2-AR with the GFP 

would have had a stabilizing effect on the receptor, extending the receptor’s own 

intrinsic half-life. However, it is also possible that the GFP modification could have 

interfered with the intracellular trafficking of /32-AR. Any alteration in the ability of 

the receptor to be redirected from the recycling endosome to the lyzosome would 

result in a change in its susceptibility to cellular degradation. To distinguish between 

these two hypotheses it would be necessary to compare the half-lives of both the /32- 

AR and /32-AR-GFP molecules in vitro, as purified receptors.

It is therefore possible that a similar modification to the CAM j32-AR with Renilla 

luciferase would result, upon expression in the HEK 293 cells, in a chimeric receptor 

that was less prone to cellular destruction, although this idea must remain conjecture 

at the moment. It should be stressed though that even if such consequences arise 

through the carboxyl terminal tail modification of j32-AR with Renilla luciferase, it in 

no way detracts from the suitability of the assay for screening compounds for 

pharmacological selectivity.

In considering the various possibilities concerning the fate of carboxyl tail modified, 

CAM GPCRs in response to their exposure to agonist ligands, it may be best to regard 

the effect on receptor number in response to agonists as being dictated by an 

equilibrium between the ability of the cell to target the receptors for destruction in the
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lyzosomes with a propensity for the agonist compound to extend the lifetime of the 

receptor. Given this, it would be expected that since there is an extremely large 

number of mutations that can give rise to receptor activation, it might also be the case 

that that not all of these CAM receptors will be equally destabilised and that they 

might therefore vary in their ability to be upregulated in response to agonist 

compounds.

Lending their support to these suppositions, are investigations centred have centred 

upon the histamine H2 receptor, hi a study that examined the effects of various amino 

acid substitutions in a conserved DRY motif (located at the boundary of 

transmembrane helix three and the second intracellular loop) of the histamine H2 

receptor, a number of mutants with enhanced basal production of second messenger 

molecules were obtained (Alewijnse et al., 2000). These were all expressed at 

considerably lower levels than the wild type receptor, with one mutant expressed at 

levels which were too low to facilitate characterization. The wild type H2 histamine 

receptor underwent upregulation in response to the inverse agonist ranitidine but was 

slightly downregulated in response to the agonist histamine, hi contrast to this the 

mutant receptors were upregulated in response to either agonist or antagonist with the 

degree of upregulation being most pronounced (10 fold) for the mutant that exhibited 

the lowest levels of basal expression and hence, presumably, was the most 

destabilized. It can be appreciated that since the receptor was expressed at such low 

levels to begin with, any stabilization of the receptor construct leading to increases in 

receptor number will automatically translate as a substantial (percent) increase in 

expression levels.

It can therefore be seen that not all CAM GPCRs are destabilised to the same extent, 

nor are they upregulated to the same degree in response to prolonged exposure to
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ligands. Further evidence supporting the notion that not all GPCRs with eonstitutively 

activating mutations are equal comes from a recent study where three CAM mutants 

of the Œib-arenoceptor were analysed (Stevens et al., 2000). It was shown that the 

three mutants each exhibited a different degree of constitutive activation. Only one of 

these was capable of being upregulated via exposure to a variety of antagonist/inverse 

agonist compounds and interestingly it was this mutant that displayed the highest 

degree of constitutive activation. The other two mutants that were less eonstitutively 

active were not upregulated in response to the same compounds.

A study on the related 0 !i a-adrenoceptor extends this view to show that CAM 

receptors may exhibit dissimilarities in their ability to upregulate depending on the 

type of antagonist used in the pre-incubation step (Zhu et al, 2000). The experimental 

evidence for this came from observations that a CAM mutant of the oiiA-adrenoceptor 

displayed a marked upregulation when challenged with a sustained treatment of the 

inverse agonist prazosin whereas a similar treatment with the neutral antagonist 

KMD-3213 failed to elicit any like effect. Although the researchers did not forward 

any explanation to account for these discrepancies it is perhaps not too unreasonable 

to assume, in this particular case, that the upregulation may have been a result of the 

reduction in basal signalling levels which would in turn lead to an attenuation in the 

steady-state levels of desensitisation/internalisation of the receptor. Such effects might 

be expected to lead to an increase in receptor number. Arguing against this viewpoint 

however was the observation that BMY7378, a ligand of similar efficacy to KMD 

3213, did produce a robust upregulation. This was a result that can only suggest that 

our understanding of CAM GPCR upregulation is incomplete. Comparing the 

response of the CAM cüiA-adrenoceptor in this study (Zhu et al, 2000) with those of 

the other CAM GPCR responses to antagonists/agonists, cited above, it is evident that
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not ail eonstitutively activating mutations lead to identical responses to such ligands 

and that the degree of inherent instability of the receptor may be of primary 

importance in dictating whether or not an agonist/antagonist will be capable of 

mediating upregulation in a specific CAM GPCR type.

One other investigation which merits mention here, being of relevance to the general 

discussion, is a study where tlrree consecutive point mutations were introduced into 

separate regions of the aiy-adrenoceptor and it was shown that these mutations acted 

in a synergistic manner with regards to their effect on basal receptor activation and 

agonist binding affinity (Hwa et al., 1997). The results showed that there was a direct 

correlation between agonist binding affinity and basal constitutive activity. This 

observation is explicable through consideration of the extended ternary complex 

model for receptor activation in that the perturbation of the equilibrium existing 

between (R) and (R*) conformations of the receptor in favour of (R*), in the CAM 

form of the receptor, leads to an enhanced affinity for agonists. From this, it might be 

anticipated that increased constitutive activity can be predicted by examining the 

increases in agonist binding affinity to the CAM receptor over that of wild type. A 

number of recent studies have shown that this is not always the case however, since 

although all CAM receptors are more structurally unstable than their wild type 

counterparts, some destabilizing mutations also have the effect of impairing the 

receptor in its ability to couple to G-proteins. Such receptors do not exhibit enhanced 

basal functional activity; indeed, it is usually abolished.

These digressions should not deflect our attention from the fact that the results 

presented herein provide a framework in which an assay based on the detection of 

receptor upregulation in response to stabilizing pharmacological compounds may be 

further developed. It was shown that the assay system described, which made use of
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the bioluminescent marker enzyme Renilla luciferase, was capable of accurately 

monitoring receptor upregulation in response to sustained exposure of either 

antagonist or agonist compounds. The potential of this assay system as a method for 

screening compounds for pharmacological specificity to the /32-AR was assessed by 

challenging cells stably expressing CAM |32-AR-Rluc with a variety of compounds, 

some of which had specificity for /32-AR, some of which did not. It was seen that 

ligands with specificity for /32-AR mediated a 50-100% increase in luciferase output 

in comparison to other compounds, lacking such specificity, which did not mediate 

upregulation (Figure 5.16). It was also noted that the assay was somewhat 

compromised by the generation of one or two false positive results, however, it is to 

be anticipated that such shortcomings may be somewhat ameliorated through the use 

of a larger number of replicate wells in the assay system. Further developments in 

bioluminescence technology may also be of potential use in the future for improving 

the existing assay methodology. For instance Gaussia luciferase, an enzyme for which 

coelenterazine acts as a substrate, has recently been cloned and is reported to be 

considerably brighter than Renilla luciferase in addition to being a significantly 

smaller molecule. Use of Gaussia luciferase might therefore allow the assay to be 

more sensitive for the detection of slight increases in receptor number and given the 

smaller size of Gaussia luciferase (185 amino acids) it is to be expected that GPCR- 

Gaussia luciferase chimeric constructs will be less likely to be affected with regards to 

their trafficking properties.

5.4 Conclusion.

In this chapter it has been shown that a chimeric construct consisting of a fusion 

between a eonstitutively active mutant of the /32-AR and the enzyme Renilla
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luciferase was not impaired in its ability to couple to G-protein. As such, this 

construct (CAM /32-AR-Rluc) generated elevated levels of cAMP nucleotides as 

compared to the wild type /32-AR when transiently expressed in HEK 293 cells and 

this was in accordance with previous studies focusing on similar CAM /32-AR 

receptors. The upregulation of this construct by various /32-AR ligands could be 

monitored by quantitating the light emitted via Renilla bio luminescence upon addition 

of the enzyme substrate coelenterazine.

The pECso values from the upregulation of CAM /32-AR-Rluc in response to twenty- 

four hour exposure to various /32-AR antagonists showed a high degree of coiTelation 

with the pKi values obtained from competition binding studies conducted using the 

same compounds. These findings suggested that in the case of upregulation by 

antagonists, it was the presence of the ligand in the binding pocket of the receptor that 

was primarily responsible for the observed increases in receptor number. When taking 

into account the substantial amount of research carried out previously on this 

eonstitutively active /32-AR, the underlying mechanism of this process could best be 

explained by the ligand stabilizing the more inherently labile CAM foim of the 

receptor and hence increasing the half life of the receptor. It was also noted that 

agonist compounds were similarly capable of occasioning a marked degree of 

receptor upregulation, however, the values of EC50 obtained from these experiments 

were not especially comparable to K/ values obtained for these same compounds in 

competition binding studies. These obseiwations suggested that there were other 

mechanisms at work, other than the stabilizing presence of the ligand in the receptor 

binding crevice, which influenced the observed agonist-mediated upregulation effects. 

It was shown that upregulation of CAM /32-AR-Rluc was critically dependent upon 

the eonstitutively active nature of the receptor construct and that this process was
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highly selective, only being engendered through the interaction of phairnacologically 

specific ligands with the CAM receptor construct. This selectivity was affirmed when 

HEK 293 cells stably expressing CAM /32-AR-Rluc were exposed to a twenty-four 

hour pre-treatment with a variety of phaimacological compounds and only those 

ligands that had specificity for /32-AR were seen to be capable of inducing the 

upregulation effect.

The upregulation assay, using Renilla luciferase as a bioluminescent marker protein, 

described herein, displays a variety of attractive features which, considered together, 

suggest that the system would be ideally suited to compound screening programmes 

attempting to identify new agonist/antogonist compounds for both well characterized 

and orphan GPCRs. The principal virtues of this assay system are a high degree of 

pharmacological specificity and an ability to detect ligands endowed with either a 

positive or negative efficacy, though it should be stressed that because not all CAM 

GPCRs are seen to be equally destabilized this may not be the case for all such 

receptors modified with Renilla luciferase. These advantages are combined with an 

assay procedure that is rapid, requires very few manipulations and is readily 

applicable to a 96 well plate format such as is required for the high throughput 

demands of industrial screening. Thus a novel and effective method for detecting 

ligands with a pharmacological specificity for a given receptor has been established, 

the realization of which was the ultimate puipose of this whole research project.
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Chapter 6.

Final discussion

In the introduction to this thesis, the large amount of experimental evidence 

suggesting that GPCRs were capable of forming dimeric or higher order oligomeric 

complexes was discussed in some detail. Through consideration of these studies, it 

was seen that although there was ample evidence to suggest that GPCRs were capable 

of interacting, there was no single consensus of opinion as to what the ultimate 

function and biological relevance of these interactions was and instead there were a 

number of hypotheses presented. However, upon consideration of the discussion of 

Chapter 1 (Section 1.5) the possible functions of GPCR dimerization may be 

reasonably categorized into tliree main aieas. These are; 1) that the binding of agonist 

to the GPCR influences the dimerization status of the receptor and that this in some 

way facilitates the process of receptor activation; 2) That the interaction of different 

GPCR types generates receptor units that exhibit a distinct pharmacology and that this 

contributes to the diversity of receptor subtypes observed in vivo\ 3) The interaction 

between different types and splice variants of GPCRs facilitates in regulating the 

export of the receptor from the endoplasmic reticulum to the surface of the cell. These 

options are not mutually exclusive. Ligand binding may increase the quantity of 

heterodimers within a cell and this complex may then possess a pharmacology distinct 

from the homodimer. Alternatively, two receptors may be tightly associated within 

the endoplasmic reticulum and serve as mutual chaperones in targeting to the plasma 

membrane, where once arrived, the sustained interaction would serve to influence the 

pharmacological profile of the receptor. Option 3 is not so easily reconciled with 

option 1 however, since it would be supposed that if GPCRs required a tight
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constitutive association, mediated either through covalent association or coiled-coil 

interactions, in order to reach the plasma membrane then it would also be logical to 

assume that this would persist at the cell surface and it would therefore be unlikely 

that the presence of ligand would be capable of promoting the dimeric state of the 

GPCR. It is possible that different classes of GPCR may utilize the process of 

dimerization in order to achieve different ends. For the class C receptor GABAb it 

seems quite likely that dimerization is essential for receptor function. For class A 

receptors ligand regulation of dimerization may play a more important role in merely 

promoting receptor activation as opposed to export from the intracellular 

compartments, though it must be stated that within the class A GPCR family there has 

been a wide variety of reports concerning the role of ligand regulation some of which 

have been conflicting.

From the perspective of the results presented herein, the role of GPCR dimerization 

would seem to be more likely associated with options 2) and 3) rather than 1) since no 

clear evidence that the presence of ligands in the receptor binding cleft promoted 

GPCR dimerization could be obtained. This was despite applying two separate 

variants of bioluminescence resonance energy transfer to address the issue of ligand 

regulated dimerization. It was seen that ligand occupancy had no effect on ô-opioid 

receptor homo-dimerization, homo-dimerization of the jS2-AR or homo-dimerization 

of the X-opioid receptor using BRETi. Using the more sensitive BRET2 technique it 

was further demonstrated that heterodimerization between the /32-AR and the d-opioid 

receptor was not modulated by ligand occupancy, despite earlier indications that this 

might be the case using BRETi. It was demonstrated using BRET] that heterodimers 

between the 0-opioid receptor and the x-opioid receptor were unaffected by ligand 

occupancy. The strength of these studies lies in their use of the biophysical technique
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BRET. BRET is superior to previous biochemical approaches such as co- 

immunoprecipitation where non-specific aggregates between proteins possessing 

highly hydrophobic domains can lead to a non-specific carry over of proteins as a 

result of the precipitation process. Now that it has been established that GPCR 

dimerization is a real phenomenon, further work will involve trying to elucidate the 

domains of the receptors that are responsible for mediating these interactions. This 

could potentially be achieved through the generation of truncation mutants and /or site 

directed mutagenesis of the relevant receptors. The ability of these mutants to 

influence observed energy transfer levels, as well as their ability to effect the 

pharmacological profile and/or trafficking of the receptors would further extend our 

knowledge of the role that dimerization plays in regulating the biology of GPCRs.

The experiments where BRETi was used to determine the effect of receptor density 

upon the extent of energy transfer, conducted using the transient transfection method, 

revealed that at a low concentration of acceptor tagged receptors homomeric 

interactions between the x-opioid receptor were more favoured than heteromeric 

interactions between this receptor and the TRHr. One likely interpretation of these 

results was that the x-opioid receptor had a greater propensity for self-self interactions 

than for interactions with more distantly related GPCRs. The experiments also 

demonstrated the importance of considering the concentrations of the donor and 

acceptor tagged moieties present in the cells when conducting these types of energy 

transfer studies. The transient nature of the expression system used in the experiments 

and the fact that saturating concentrations of acceptor tagged receptors were not 

achieved made the results somewhat inconclusive however. Future work will need to 

address this issue by stably expressing the donor tagged receptor with an inducible 

plasmid with the cDNA for an acceptor tagged receptor integrated into its expression
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cassette. Through the introduction of increasing levels of an inducer molecule, 

progressively higher levels of acceptor tagged receptor protein should be achieved. In 

this type of system all of the cells would express the receptors at equal concentrations 

and it would thus be superior to the transient system where there is cell-to-cell 

variation in the expression levels of the constructs. Another advantage would be that 

the stably expressed donor tagged receptor would be more relatively invariant in its 

expression levels as the acceptor concentration increased. Also since there would be 

no independent pools of cells that only expressed either the donor or the acceptor 

tagged receptor alone, saturating conditions would be more likely to be achieved. It is 

clear from the results of Chapter 3 of this thesis that the further development of more 

quantitative approaches to defining GPCR interactions will lead towards a more 

complete understanding of how these molecules exist in their native state and also 

shed light on the relative affinities of interaction between distinct receptor types.

Given that there were no ligand induced alterations in the dimerization status of the 

receptor pairings tested in the studies presented herein and considering that there are 

numerous other reports of GPCRs being unaffected by the presence of ligands in the 

binding pocket of the receptor, it would seem that BRET or FRET based detection of 

GPCR dimerization would be of limited use for industrial ligand screening programs. 

It was demonstrated herein that /?-arrestin recruitment to the plasma membrane in 

response to agonist activation of the receptor would be a far more attractive 

proposition for the establishment of such a FRET/BRET based screening assay since 

arrestin recmitment is almost ubiquitously utilized by GPCRs in initiating the 

desensitisation pathway. BRETi has already been applied to this end, where it was 

demonstrated that upon co-expression of a |32-AR fiised to Renilla luciferase along 

with a ^-arrestin fused to eYFP that a dose dependent increase in the level of energy
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transfer could be detected following the addition of the agonist isoprenaline (Angers 

et a l, 2000). This system could be easily adapted to a BRET] format, replacing the 

eYFP with GFP] and substituting coelenterazine with the Deepblue C molecule. This 

would impart an added sensitivity to the system, perhaps allowing for the detection of 

ligands that have a low potency and which only cause the GPCR to engage with the 

downstream desensitisation machinery to a limited degree. Alternatively, a FRET 

based assay might be developed based on the detection of energy transfer between the 

novel fluorescent proteins that were employed in the confocal studies of Chapter 4. 

This might offer an advantage over BRET] in that there would not be any problems 

associated with low light output fiom the donor molecule that sometimes makes 

signal detection with BRET] difficult.

A final method that might be successfully applied to compound screening 

programmes is that of monitoring light output from a Renilla tagged CAM GPCR 

both in the presence and absence of a prolonged exposure to a specific ligand. It was 

seen in Chapter 5, that such exposures to either antagonist or agonist ligands were 

capable of inducing an effective upregulation in the receptor number and that this was 

conveniently detectable from measurement of the luciferase light output on a 

luminometer. This method of ligand detection might be applicable to other types of 

GPCR provided that point mutations can be introduced to these receptors in order to 

impart a sufficient degree of structural instability which could then be subsequently 

stabilized through the presence of ligand. The lai'ge number of positions in which 

point mutations have been observed to produce receptors where the amount of second 

messenger production was substantially elevated tends to suggest that such receptors 

would be reasonably easy to produce. Further work relating to this assay system 

should involve taking a variety of GPCRs known to possess constitutive activity and
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to then modify these at the carboxyl terminal tail with the Renilla luciferase enzyme 

to see if the assay method is equally applicable, and if so to what extent, to all 

constitutively active GPCRs. Finally, since it was seen with the CAM j32~AR-Rluc 

that all types of ligand, even full agonists, were capable of inducing upregulation, it 

would seem advisable to analyse this construct in parallel with the unmodified CAM 

jS2-AR to see to what extent, if any, this construct was impaired in its ability to 

internalise in response to the presence of agonist ligands. If there is any attenuation in 

the capacity of the construct to internalise, this may affect the capacity of the cells to 

downregulate the construct in response to prolonged exposures to agonists.

This concludes the work presented in this thesis, in which much was learned 

concerning the dimerization of GPCRs. Also the potential of a number of novel 

methods for the detection of ligand binding were explored; these methods may be of 

potential future benefit to the pharmaceutical industry where there is currently a high 

demand for new and effective means for screening compound libraries in order to 

identify new ligands for both known and orphan GPCRs. Such searches may 

eventually lead to the development of new dmgs that will be of clinical value in the 

treatment of a diverse range of disease processes.

FINIS
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