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Abstract 

The rubber hand illusion has been established as one of the most important tools 

in the quest for understanding body ownership. Such understanding may be vital 

to neuro-rehabilitative and neurosurgical therapies that aim to modulate this 

phenomenon. Numerous brain imaging and TMS studies indicate that a wide 

ranging network of brain areas is associated with illusory hand ownership in the 

RHI. However, while we have a good idea of where neural activity related to the 

RHI occurs, the question of how these networks interact on the temporal basis is 

still rather unexplored as the few EEG studies that have investigated this 

question have relied on problematic stimulation methods or have failed to 

induce a strong sense of illusion in participants. Avoiding these limitations the 

experiments in this thesis provide insights into the temporal dynamics of body 

ownership in the brain. 

Experiment One (presented in Chapter Three) focussed on establishing that the 

purpose-built, automated setup induced the Rubber Hand Illusion reliably as 

measured by proprioceptive drift measurements and questionnaire ratings. The 

evoked visual and tactile responses elicited by the setup were identified and 

timing and intensity of illusory hand ownership were found to be comparable to 

the existing literature. The results of this experiment provided guidance 

regarding necessary adjustments to the RHI setup for the following experiments 

in order to avoid confounds induced by avoidable differences between 

conditions. 

Experiment Two (presented  in Chapter Four) used a setup adjusted according to 

the findings of Experiment One and recorded evoked responses and oscillatory 

responses in participants who felt the rubber hand illusion. A combination of 
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experimental conditions was applied to rule out confounds of attention and 

body-stimulus position. In addition two control conditions were applied to reveal 

the neural correlates of illusory hand ownership. The experiment revealed a 

reduction of alpha and beta power as well as an attenuation of evoked responses 

around 330 ms over central electrodes associated with illusory hand ownership. 

Also, the results indicate that body-stimulus processing and illusion processing as 

measured by evoked potentials might emanate from the same cortical network. 

Experiment Three (presented in Chapter Four) tested if the findings of the 

second experiment in regard to illusion effects were robust against changes in 

stimulus duration. The reduction in alpha and beta power and the attenuation of 

evoked responses at 330 ms were found to be robust against changes in stimulus 

duration. Together with the results from Experiment Two, these findings provide 

the first EEG marker of illusion related activity in the RHI induced by an 

automated setup with varying stimuli length. 

Experiment four (presented in Chapter Five) investigated if the neural correlates 

identified in the Experiment Two and Experiment Three were indeed related to 

the feeling of illusory hand ownership in the RHI and not to a mere remapping of 

visual receptive fields. To test this, evoked and oscillatory responses were 

recorded during the somatic rubber hand illusion, a non-visual variant of the 

RHI. The somatic rubber hand illusion was found to be associated with an 

attenuation around 330ms post-stimulus on central electrodes, similar to the 

classic RHI in Experiment Two and Three. This indicated that this illusion effect 

in evoked responses was not related to a remapping of visual receptive fields as 

a result of the RHI but to the neurophysiological processes of the RHI itself.  
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To summarise, the results of the experiments presented in this thesis indicate 

that an attenuation at 330ms in evoked potentials is associated with illusory 

hand ownership in both, the classic RHI and the somatic RHI. Further, 

attenuation in alpha and beta band power is associated with illusory hand 

ownership in the classic RHI.  
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Chapter 1: General Introduction 

When we hold up our hands in front of us and look at them, we have an 

unambiguous feeling that these hands are ours and belong to our body. We 

experience this feeling of being in a body and owning this body that constitutes 

our physical form in daily life and rarely question it. The feeling of body 

ownership is an established feeling in human self-consciousness and has been 

pondered upon for centuries by philosophers such as Descartes and Maurice 

Merleau-Ponty. However, the neurophysiological processes underlying the feeling 

of body ownership have only recently been started to get investigated by 

cognitive neuroscientists.  

It is important to note, that the concept of body ownership is complex and 

differs in its interpretation depending on the scientific or philosophical angle of 

observation and approach. For example, in clinical psychology, the focus lies on 

personality and pathological disturbances of the human consciousness, which can 

result in dysfunctional perception of the own body (e.g. body integrity identity 

disorder, eating disorders), while in the medical sciences, the term body 

ownership is often referred to in relation to ethical aspects of organ donation. 

Cognitive Neuroscientists define body ownership primarily as the sensation of 

experiencing a body as belonging to oneself. The studies presented in this thesis 

all adhere to this neuroscience specific definition of body ownership. 

The Rubber Hand Illusion 

One of the most important milestones in the quest of understanding body 

ownership has been the discovery of the so-called rubber hand illusion (RHI) by 

Matthew Botvinick and Jonathan Cohen (1998). Up to that point body ownership 

had only been investigated in clinical cases of patients suffering from 
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somatoparaphrenia, a bodily delusion in which patients report the loss of a 

feeling of body ownership over one or several of their limbs after sustaining 

damage to the brain (Vallar and Ronchi, 2009). Allowing a departure from 

clinical experimental samples, the rubber hand illusion offered the possibility of 

investigating body ownership for the first time in healthy participants. 

Botvinick and Cohen (1998) reported that healthy participants could be made to 

perceive an artificial hand belonging to themselves. This illusory hand ownership 

could be induced when a fake, but realistic, rubber hand was placed in front of 

the participant and the participant´s real hand was occluded from sight. Then, 

both the rubber hand and the participant’s hand were touched in synchrony at 

the same location. After experiencing this stimulation for some time participants 

began to feel the touch as if it was originating from the place where they saw 

the touch on the rubber hand occurring and reported that they felt as if the 

rubber hand was feeling like their own hand (illusory hand ownership). In 

addition, participants mislocated their own hand’s position towards the location 

of the rubber hand.  The fact that this simple manipulation induced changes 

both in body ownership and where people felt their hand to be located, provided 

the means for rigorous scientific research into the factors affecting body 

ownership and its neurophysiological correlates.  

Why should we study the Rubber Hand Illusion 

The rubber hand illusion has been established as one of the most important tools 

in the quest for understanding the neural basis of body ownership. Such 

understanding could grant insights into how our brain represents our body as our 

own and may be vital to neuro-rehabilitative and neurosurgical therapies that 

aim to modulate this phenomenon. For example, Collins et al. (2017) suggested 
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that inducing body ownership over a prosthetic hand in people who have 

undergone amputations could lead to improved acceptance and control over the 

prosthesis. As it is unlikely that continuous RHI stimulation could be provided in 

this case, intracranial stimulation has been suggested. So far this stimulation has 

focussed on bypassing the peripheral nervous system and eliciting the touch 

sensation directly in the brain, while at the same time providing the visual touch 

on the prosthesis (Collins et al., 2017). In an optimal scenario the latter step 

would be unnecessary as the ownership sensation over the prosthesis could be 

directly elicited in the brain. This however requires that we identify the 

neurophysiological correlates of illusory hand ownership, both in its temporal 

and its spatial dimension.  

Besides its clinical relevance, the neural basis of body ownership is also of 

interest in regard to the general workings of the brain. The rubber hand illusion 

allows to investigate the brain’s multisensory nature, tapping into visual, 

somatosensory and proprioceptive processing and its relationship to the 

ownership sensation of our body. Subsequently, the identification of the 

neurophysiological correlates of the rubber hand illusion bears direct relevance 

to the fundamental goal of cognitive neuroscience - understanding how the brain 

works. 

Measures of the Rubber Hand Illusion 

Both behavioural and subjective measures have been employed to measure 

illusory hand ownership in the Rubber Hand Illusion (Rohde et al., 2011). As it is 

not clear how well they serve as a proxy to measure intensity of feeling of 

illusory hand ownership in the RHI, often multiple measures are used in 

conjunction to determine if the Rubber Hand has successfully been induced. 
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Below I will outline the measurement techniques used in RHI research, while the 

next chapter will provide an overview of the suitability of each for measuring 

the intensity of feeling of illusory hand ownership in the RHI. 

To capture the subjective dimension of the Rubber Hand Illusion, a range of 

questionnaires has been designed. Among these one of the most commonly used 

is the original questionnaire used by Botvinick and Cohen (1998) (Figure 1).  

 

Figure 1| The questionnaire includes the nine statements shown. Subjects indicate 

their response on a seven-step visual-analogue scale ranging from ‘agree strongly’ 

(+++) to ‘disagree strongly’ (---) (Botvinick and Cohen, 1998). 

 

The questionnaire consists of 9 questions. Participants indicate their response on 

a seven-step visual analogue scale ranging from ‘agree strongly’ to ‘disagree 

strongly’. The first three questions refer to experiences commonly associated 

with the RHI, while the last six statements serve as control for suggestibility as 
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they describe experiences that are not commonly associated with the RHI. Other 

researchers have adapted these nine items to the particular focus of their 

studies (Longo, Schuur, Kammers, Tsakiris & Haggard, 2008; Farmer, Tajadura-

Jimenez & Tsakiris, 2012; Schaefer, Konczak, Heinze, & Rotte, 2013). For 

example, Pavani et al. (2000) used a shortened version which only contained six 

questions as the focus of the studies was on the experience of the visual-tactile 

stimulation rather than ownership, while Kalckert and Ehrsson (2014a) added 

items to investigate the concept of agency in the RHI.  

For capturing the behavioural dimension, the most widely applied measure is 

Proprioceptive drift, which measures the mislocation of one’s own hand in the 

RHI. Proprioceptive drift is measured by noting the distance between real hand 

position and the indicated felt hand position before RHI stimulation and after. 

These scores are then subtracted and compared with the similarly derived 

measurement score from a control condition. Some studies additionally scale 

these scores in regard to arm length of the participant (Cowie et al., 2013). In 

participants who successfully experience the RHI the measurement score derived 

from the RHI condition tends to be greater than the measurement score of the 

control condition indicating a greater hand-localization bias. The specifics of 

how the distance between real hand position and the indicated felt hand 

position is measured differ across studies. For example, Rohde et al. (2011) 

projected a white dot probe into the participant’s visual field onto a semi-

silvered mirror while the room was darkened. The participants were instructed 

to move the dot probe to the felt position of their hand with the help of the 

scroll wheel of a mouse. Other studies (Kanayama et al., 2016; Preston, 2013; 

Tsakiris and Haggard, 2005)  placed a  ruler horizontally above the participants’ 

hands and instructed the participants to read out the measurement from the 
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tape that corresponded with the felt position of their index finger. This 

procedure was further refined by Riemer et al. (2015) who used a ruler depicting 

a randomized sequence of numbers from 1 to 49, interspaced by 1 cm. 

Participants were then asked to open their eyes and indicate which number was 

directly above the felt position of their own right index finger. Different rulers 

(depicting different number sequences) and offsets were used for each block. 

Most studies however rely on simply instructing their participants to close their 

eyes and to point at the felt location of their index or middle finger by using the 

index finger of their unstimulated hand (Bekrater-Bodmann et al., 2012; 

Botvinick and Cohen, 1998; Ehrsson et al., 2008; Fuchs et al., 2016; Kalckert and 

Ehrsson, 2014b; Lopez et al., 2010; Shimada et al., 2014). This pointing takes 

place on a measuring tape attached to either top or bottom of the tabletop 

where stimulation is taking place. Despite different ways of measuring 

proprioceptive drift across studies, the measurements are generally reported in 

cm and thereby allow for easy comparison. This has helped to establish 

proprioceptive drift as a standard technique to measure the intensity of the RHI.  

Another behavioural measure of the RHI makes use of the interaction of 

crossmodal perception and the body. Zopf et al. (2010; 2013) developed a 

crossmodal congruency task in which tactile targets were presented on the real 

hand and visual distractors were presented on the rubber hand. Targets and 

distractors were spatially congruent (i.e. same finger) on some trials and 

incongruent (i.e. different finger) on others. Participants had to engage in a 

speeded forced choice location discrimination of the visual targets. The 

difference in performance between incongruent and congruent trials - the 

crossmodal congruency effect (CCE) – was found to be increased after induction 

of the RHI compared to a control condition.  
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Further, a measure using physiological changes to determine the extent of the 

feeling of illusory hand ownership in the RHI is the so-called skin conductance 

response (SCR) to threat. Armel and Ramachandran (2003) found that 

participants showed a higher SCR when after RHI induction the finger of the 

rubber hand was bent backwards. Although the manipulation affected only the 

rubber hand and not their real hand, participants who experienced the illusion 

more vividly tended to have higher SCR scores, showing a physiological response 

to a perceived threat. This defensive system activation has also been replicated 

by Ehrsson et al. (2008) and Honma et al. (2009) who found that, compared to a 

control condition where the illusion was not induced, stabbing the rubber hand 

with a  needle after RHI induction led to higher SCRs among participants.  

Similar to SCR in its focus on the physiological responses to the RHI, some studies 

monitor the temperature of the real hand that is being ‘replaced’ by the rubber 

hand (Moseley et al., 2008; Thakkar et al., 2011; van Stralen et al., 2013). 

Monitoring skin temperature in this way was based on findings by Moseley et al. 

(2008) who showed a relative decrease in skin temperature in the real hand of 

about 0.2 °C– 0.8 °C during RHI induction compared to a control condition where 

the illusion was not induced. The authors concluded that the illusion engages 

homeostatic processes in such a way that the skin temperature of the real hand 

decreases when participants experience ownership for the rubber hand.  

It is important to note that it is not clear yet what exact aspects of the RHI some 

of these measures capture. For example, questionnaire data on illusory hand 

ownership and proprioceptive drift have been shown to be dissociated in that 

they capture two possibly distinct processes of the RHI. Rohde et al. (2011) 

compared proprioceptive drift and RHI questionnaire responses across Illusion 

and two control conditions. The authors found that proprioceptive drift can 
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occur without a feeling of illusory hand ownership and that illusory hand 

ownership and proprioceptive drift were differently affected by both control 

conditions. This indicates that the processes underlying proprioceptive drift are 

independent of the processes that cause the feeling of ownership. Further 

evidence for this comes from Shimada et al. (2014) who found significant 

proprioceptive drift changes but no reports of illusory hand ownership after 60s 

of stimulation in the Illusion condition. Nonetheless, under conditions that elicit 

the sense of illusory hand ownership during the RHI, proprioceptive drift has 

been shown to correlate with the strength of this sense of illusory hand 

ownership (Botvinick & Cohen, 1998; Longo et al., 2008), suggesting that to an 

extent proprioceptive drifts can be used as a behavioural proxy of the 

ownership. The use of skin temperature of the real hand as a measurement of 

illusory hand ownership has also been debated. Skin temperature has been found 

to be affected by how the stimulation in the RHI is applied and thus might not be 

a direct correlate of the feeling of illusory hand ownership (Rohde et al., 2013a). 

Taken together, these findings highlight that RHI measures should be 

deliberately chosen in regard to the specific research question and paradigm and 

that measurement outcomes should be interpreted with caution.   

Constraints of the RHI and the Neurocognitive Model 

Two decades of behavioural research on the rubber hand illusion have revealed 

several factors that seem to determine if illusory hand ownership can be 

successfully induced. One of these was already suggested by Botvinick and Cohen 

(1998) who noted that temporal synchrony between the seen and felt touches 

was a fundamental requirement for the illusion to occur. The authors suggested 

that the RHI emerges from a three-way interaction between vision, touch and 

proprioception. Ehrsson (2012) further developed this suggestion into the 
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“multisensory hypothesis of body ownership” which posits that illusory hand 

ownership and body ownership as a whole is based on the integration of 

concurrent body-related multisensory information (Ehrsson, 2012; Makin et al., 

2008; Tsakiris, 2010). 

Based on suggestions by Meredith and Stein (1986) multisensory integration is 

believed to follow at least two basic principles, the temporal principle and the 

spatial principle. These rules are essential as the brain constantly receives 

signals from different sensory modalities and is thereby faced with the so-called 

binding problem: Which of all these signals should be grouped together as 

containing information about the same external events and which signals are to 

be treated separately? Ehrsson (2012) highlights that the natural constraints of 

the RHI fit well with some these principles of multisensory integration (Holmes 

and Spence, 2005; Meredith and Stein, 1986; Stein and Stanford, 2008). For 

example, the temporal principle of multisensory integration states that if two 

sensory signals occur close to one another in time, they are likely to have been 

caused by the same external event. The range of temporal offsets in which this 

takes effect is referred to as the “temporal binding window”. In regards to the 

RHI, Botvinick and Cohen (1998) found that only when seen and felt touch were 

applied in synchrony participants would start feeling the touch on the rubber 

hand and a feeling of ownership over the rubber hand. Thus, only when visual 

and touch signals occurred close to one another in time, they were perceived as 

having been caused by the same external event, i.e. the stroking of the rubber 

hand. The necessary temporal proximity of the visual and somatosensory 

stimulus in the RHI was further specified in recent years. Shimada and colleagues 

attempted to induce the RHI with delays between visual and somatosensory 

stimulus of up to 600 ms in steps of 100 ms (Shimada et al., 2009). The authors 
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found that the strength of the illusion was significantly reduced when delays 

were greater than 300ms as measured by RHI questionnaire and proprioceptive 

drift. Costantini et al. (2016) expanded on these findings by measuring their 

participants’ individual visuo-tactile binding window and then adjusting the 

asynchrony between visual and somatosensory stimuli in the RHI to lie in and 

outside of this window. The RHI as measured by questionnaire was significantly 

reduced in participants as soon as the asynchrony extended beyond their 

individual temporal binding window. Thus, temporal constraints of the RHI seem 

to be strongly associated with the temporal principle of multisensory 

integration. 

Another rule of multisensory integration refers to the location of perceived 

sensory signals in relation to each other, the spatial principle. It posits that two 

or more stimuli need to occur in approximately the same location to be 

attributed to the same event. Indeed, the location of the applied visual and 

somatosensory stimuli in the RHI has been found to impact on the strength of the 

feeling of illusory hand ownership. Limanowski et al. (2013) provided spatially 

incongruent stimulation, where visual stimulation occurred on the arm, while 

tactile stimulation was applied on the back of the hand (and vice versa). Thus, 

seen and felt touch occurred on anatomically different skin locations. The 

authors found that in this condition illusory hand ownership as measured by 

verbal ownership ratings was not induced. Similarly, Gentile et al. (2013) applied 

visual stimulation on the back of the hand and tactile stimulation on the 

forefinger (and vice versa). The strength of the RHI as measured by 

questionnaire and SCR was significantly reduced in these conditions compared to 

conditions where the stimuli where applied spatially congruent. In addition, 

Lloyd (2007) found that the RHI diminished with increasing distance between 
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real and rubber hand. Notably, the author found that the rubber hand needs to 

be placed in distances less than 30cm in relation to the real hand to elicit a 

strong illusion. This distance presented a spatial limit outside of which the 

strength of the illusion diminished rapidly. This spatial limit suggests that the 

rubber hand needs to be placed within peripersonal space of the participant’s 

real hand. While the above mentioned studies indicate that some of the spatial 

constraints of the RHI resemble the spatial principle of multisensory integration, 

there is also evidence for constraints that are not directly related to the applied 

multimodal stimuli but to body-related information itself (Tsakiris and Haggard, 

2005). 

The importance of body-related factors other than spatial distance between the 

real and the rubber hand was highlighted in particular by Tsakiris and Haggard 

(2005), who systematically examined the influence of the positioning and 

features of the object used to ‘replace’ the real hand. Results indicated that 

illusory hand ownership in the RHI only occurred when the object being 

stimulated was a rubber hand of the same laterality and located in the same 

anatomical position as the participant’s own hand (Ehrsson, 2004; Pavani et al.,  

2000). No feeling of ownership could be induced for a rubber hand placed at an 

angle of 90º from the participant’ own hand or when a rubber hand of the 

opposite laterality from the participant’s hand was used. The importance of the 

position and the anatomical plausibility of the rubber hand was further 

underlined by Ide et al. (2013) who found that participants perceived higher 

ownership of the rubber hand when it was placed at an angle that was easy to 

mimic with the actual hand as opposed to angles that indicated anatomical 

incongruence. In addition, most studies find that illusory hand ownership can 

only be induced over a hand shaped object. (Bertamini and O’Sullivan, 2014; 
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Guterstam et al., 2013; Tsakiris et al., 2010, but see Guterstam et al., 2013 and 

Ma and Hommel, 2015). Taken together, these findings imply that beyond basic 

multisensory integration processes, body-related representations play a role in 

the RHI (Tsakiris et al., 2010). 

Control conditions 

To identify behavioural and neurophysiological features of illusory hand 

ownership in the RHI several control conditions have been developed. These 

control conditions tap into the bottom-up and top-down constraints described 

above and aim to constitute conditions in which the illusion is abolished or 

diminished. One commonly used control condition in studies on the RHI is the so 

called Asynchronous condition in which the experimenter induces an asynchrony 

between the felt stimulation on the participant’s real hand and the seen 

stimulation on the rubber hand. Studies either rely on random stimulation delays 

between the visual and somatosensory stimuli or a constant asynchrony of e.g. 

500 ms - 1000 ms (Tsakiris et al., 2007) or 2000 ms (Riemer et al., 2015b). As the 

asynchronous condition changes the temporality of stimulation it is generally not 

used for neurophysiological investigations of the RHI. Instead researchers often 

rely on the so called Incongruent condition in which stimuli are applied 

synchronously. The incongruence in the condition relates to spatial aspects of 

either the stimuli or the rubber hand itself. For example, Kanayama et al. (2015) 

applied visual and somatosensory stimulation on different fingers while 

Limanowski et al. (2015) provided visual stimuli on the rubber hand’s palm while 

the somatosensory stimulation was applied on the participant’s forearm (and 

vice versa). The spatial incongruence however can also be induced by flipping 

the rubber hand by 180 degrees along its longitudinal axis (Zeller et al., 2015) or 

placing the rubber hand at an anatomically incongruent angle (Schmalzl et al., 
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2014). Another control condition, the so called Real condition abolishes the 

illusion by removing the rubber hand from the setup. Visual and tactile 

stimulation now occur as one single event on the participant’s real hand (Zeller 

et al., 2015). Further, Rohde et al. (2011) used a so-called Vision only condition 

in which the rubber hand was present but no stimulation was applied, neither on 

rubber hand nor real hand. The choice of control condition varies depending on 

the nature of the research. Incongruent and Real condition are often used as 

control conditions in studies using methods of high temporal resolution , such as 

EEG and MEG, as the synchronicity of stimuli is preserved, while behavioural 

studies often rely on the easily applied Asynchronous condition. 

Neural Correlates of the RHI – The current state of 
knowledge 

fMRI and TMS studies 

Several neuroimaging studies have attempted to shed light on the neural 

correlates of the RHI. Using fMRI and comparing synchronous, asynchronous and 

incongruent conditions, Ehrsson et al. (2004), Ehrsson, Holmes, and Passingham 

(2005) and Ehrsson et al. (2007) concluded that neural activity in the ventral 

premotor cortex and posterior parietal cortex reflects the feeling of illusory 

hand ownership. Further evidence for this comes from (Bekrater-Bodmann et al., 

2014) who compared synchronous and asynchronous conditions and found 

significant activation in contralateral ventral premotor cortex and intraparietal 

cortex. Occipito-temporal regions like the body part-selective extrastriate body 

area have also been implicated, e.g. by Limanowski et al. (2014) who compared 

spatially congruent and incongruent conditions and Limanowski & Blankenburg 

(2016) who applied the Illusion condition, asynchronous condition and real 

condition. Furthermore, studies have found activations associated with the 
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illusion in the anterior insula (Apps et al., 2013; Guterstam et al., 2013; 

Limanowski et al., 2014; Petkova et al., 2011). The possible involvement in the 

RHI of each of these regions will be explored in the next paragraphs. 

Posterior parietal regions 

Converging evidence suggests that the posterior parietal cortex (PPC) is involved 

in mapping the position and orientation of limbs in space according to a body-

centred reference (Grivaz et al., 2017). This makes this region a prime 

candidate for underlying the occurrence of proprioceptive drift as part of 

illusory hand ownership. In an fMRI study by Lloyd et al. (2003) the intraparietal 

sulcus (IPS) in particular showed activation for tactile stimulations of the upper 

limb depending on the location of the stimulated limb in space. Further, Azañón 

et al. (2010) found that TMS pulses over the PPC impaired the ability of 

remapping the spatial location of two stimuli depending on the position of the 

limb in space. Kammers et al. (2009) showed that repetitive transcranial 

magnetic stimulation  over the intraparietal lobe (IPL) attenuated the strength 

of the RHI as measured by proprioceptive drift, while subjective self-reports of 

feeling of ownership over the rubber hand remained unaffected. While  it is not 

clear yet to what extent proprioceptive drift and illusory hand ownership are 

associated, these findings indicate that posterior parietal regions and in 

particular the intraparietal regions are key areas for multisensory reference 

frame realignments during illusory hand ownership. 

Premotor cortices 

Premotor cortex and in particular the ventral premotor cortex has been 

implicated as a crucial region for illusory hand ownership as several studies have 

found that its neural activity correlates with the subjective ratings of  the 
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strength of the illusion (Ehrsson, 2004; Ehrsson et al.; Gentile et al., 2013; 

Petkova et al., 2011). This is further supported by the observation that human 

premotor lesions are associated with disorders of bodily awareness, such as 

anosognosia for hemiplegia (i.e. lack of awareness of motor deficits in the 

contralesional limbs; Berti et al., 2005) and asomatognosia (i.e. lack of 

awareness of parts on one's own body; Arzy et al., (2006). Similarly to the 

posterior parietal cortices, the premotor cortex has also been associated with 

body-related multisensory integration during the RHI. Makin et al. (2008) note 

that the premotor cortex shows additional multisensory responses compared to 

parietal cortices during experience of illusory hand ownership. Tsakiris (2010) 

suggests that this supra-additive response could be explained by the 

enhancement of the responses of neurons responding to somatosensory and 

visual stimuli once their reference frame is centred on the rubber hand and 

participants start referring the touch to the rubber hand as a result of binding 

together the visual and tactile stimuli. These findings suggest that the premotor 

cortex plays a substantial role in the RHI, both in regards to the feeling of 

illusory hand ownership and the multisensory integration processes that underlie 

the RHI. 

Insula 

Another region that has been consistently found to be activated in the RHI is the 

insula (Grivaz et al., 2017). Ehrsson et al. (2004) found that activity of the 

anterior insula covaried with behavioural and subjective measured in the RHI, 

while Tsakiris et al. (2007) found similar effects in the posterior insula. 

Increased anterior insular activity was also reported when an owned rubber hand 

was threatened (Ehrsson et al., 2007). Findings in clinical populations also 

support a major role of the insula in body ownership, as patients suffering from 
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somatoparaphrenia (a delusion where one denies ownership of a limb or an 

entire side of one's body) or heautoscopy (a hallucination in which one sees one's 

own body from a distance) often show brain damage centering on the right 

insula (Cereda et al., 2002; Karnath and Baier, 2010). In addition, right insular 

activity has repeatedly been shown during self-attribution (Farrer and Frith, 

2002) and self-processing (Vogeley et al., 2004). Taken together these findings 

strongly indicate that the insula is indeed a critical structure involved in illusory 

hand ownership. 

Occipito-temporal regions  

Modulated activity during illusory hand ownership has also been found in 

occipito-temporal regions, such as the body-part selective extrastriate body area 

(EBA; Limanowski et al., 2014; Limanowski and Blankenburg, 2015). Crucially, in 

these studies activity differences correlated strongly with participants’ 

behavioural illusion scores indicating that EBA activity reflected interindividual 

differences in the experienced intensity of illusory limb ownership. Further 

evidence for the involvement of the EBA in illusory hand ownership comes from 

(Wold et al., 2014) who found that proprioceptive drift in the RHI was intensified 

following transcranial magnetic stimulation of the left EBA.  

EEG studies 

So far only a small number of EEG studies has attempted to elucidate the 

temporal aspects of the neural correlates of the RHI. Across these studies, 

illusion related changes in evoked potentials were reported both at short 

latencies around 55 ms on frontocentral electrodes (Zeller et al., 2015) and at 

much longer latencies around 460 ms on central electrodes (Peled et al., 2003). 

In partial agreement with previous fMRI studies on the RHI, Zeller et al. (2015) 
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localised the attenuation around 55 ms to the primary somatosensory cortex and 

the anterior intraparietal sulcus. Peled et al. (2003) suggested an involvement of 

the parietal cortex in the attenuation at 460 ms due to electrode location. In 

terms of oscillatory activity, both, a decrease in alpha and beta power (Faivre et 

al., 2017) and greater interelectrode synchrony in the gamma band range 

(Kanayama et al., 2007, 2009, 2016) have been reported.  

Two models of body ownership in the RHI 

The findings in fMRI and EEG studies have resulted in the formulation of two 

neurocognitive models of ownership in the RHI. The first model was suggested by 

Tsakiris (2010) and posits that the strength of illusory hand ownership over a 

foreign object is determined by a series of comparisons between sensory 

information entering the brain and various different representations of the body. 

In the first comparison step the shape of the object being viewed is compared 

with a model of the visual, anatomical and structural properties of the 

participant’s hand/arm. This first step of testing the incorporeability of the 

external object is suggested to be based on processing in the right temporo-

parietal junction. The second comparison is between the current postural and 

anatomical features of the participant’s own hand/arm and those of the 

observed object which is ascribed to activity in the secondary somatosensory 

cortex. The final comparison is between the seen touch on the observed object 

and the felt touch on the participant’s own hand which is mostly reliant on 

activity the posterior parietal and ventral premotor cortices, areas coding for 

the recalibration of the hand-centred coordinate systems (Tsakiris, 2010). 

According to Tsakiris (2010) the subjective experience of body-ownership 

resulting from the aforementioned steps is underpinned by the right posterior 

insula. A second model of body ownership in the RHI was suggested by Makin et 
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al. (2008). The authors suggest that visual information about the rubber hand 

and proprioceptive coordinates from the real hand are conveyed to neuronal 

populations in posterior parietal cortex including IPS, the PMC, and the 

cerebellum. If the rubber hand is situated in an anatomically plausible position, 

the integration of sensory information is weighed heavily in favour of vision. 

Under these circumstances, visual stimuli presented near the rubber hand should 

trigger peri-hand mechanisms: the seen stimulus on the rubber hand is processed 

as if it was occurring close to the real hand. Subsequently, once the space 

around the rubber hand is represented as peri-hand space, the visual stimulus is 

represented in reference frames centred on and with respect to the rubber 

hand. At the same time, the felt somatosensory stimulus on the real hand will 

also activate the same bimodal mechanism. This conjunction of visual and 

tactile sensory information in hand-centred coordinates results in the perceived 

occurrence of a single visual–tactile event on the rubber hand. Makin et al. 

(2008) suggest that this referral of touch might be sufficient for inducing 

ownership over the rubber hand. The authors suggest that activity in the PMC 

could constitute the neurophysiological processes associated with the resulting 

feeling of illusory hand ownership.  

Thesis rationale 

fMRI and TMS studies on the RHI indicate that a wide-ranging network of brain 

areas is associated with illusory hand ownership. Thus, we have a good idea of 

where neural activity related to the RHI occurs but the question of how these 

networks interact on the temporal basis is still rather unexplored as only a few 

EEG studies have investigated illusory hand ownership (Faivre et al., 2017; 

Kanayama et al., 2007, 2009, 2016; Peled et al., 2003; Press et al., 2008; Zeller 

et al., 2015, 2016). Interpretation of the results of these studies is complicated 



32 
 
as all have either relied on manual stimulation to induce the RHI (Faivre et al., 

2017; Peled et al., 2003; Zeller et al., 2015, 2016) or have failed to induce a 

strong feeling of illusion in participants (Kanayama et al., 2007, 2009, 2016). 

Avoiding these limitations the work contained in this thesis represents the first 

systematic EEG investigation of illusory hand ownership using automatic 

stimulation. Analysis of the EEG signal in all experiments included both, event 

related potentials (ERPs) and a time-frequency based approach. 

Thesis at a Glance 

In the series of experiments presented in this thesis I sought to elucidate the 

neural correlates of illusory hand ownership through a combination of varying 

parameters within an automated RHI setup and applying EEG recordings. More 

specifically, I manipulated stimulus length and control conditions/comparisons 

within the RHI and a non-visual variant of the RHI to uncover the 

neurophysiological correlates of the rubber hand illusion in evoked and 

oscillatory activity. 

In the first experiment (presented in Chapter Three), I aimed to establish that 

my purpose-built, automated setup induced the Rubber Hand Illusion reliably as 

measured by proprioceptive drift measurements and questionnaire ratings. The 

goal was to identify the evoked visual and tactile responses elicited by the setup 

and compare timing and intensity of illusory hand ownership to the existing 

literature. Elicited tactile and visual components were successfully identified. 

While the novel RHI setup induced the RHI reliably, the ERP analysis suggested 

that the setup had to be adjusted in terms of LED position to avoid confounds 

induced by avoidable differences between conditions. 
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In the second experiment (presented in Chapter Four), a setup adjusted 

according to the findings of the first experiment was used to record evoked 

responses and oscillatory responses in participants who felt the rubber hand 

illusion. I applied a combination of experimental conditions to rule out 

confounds of attention, body-stimulus position and stimulus duration, and relied 

on two control conditions to reveal the neural correlates of illusory hand 

ownership. The experiment revealed a reduction of alpha and beta power as 

well as an attenuation of evoked responses around 330 ms over central 

electrodes associated with illusory hand ownership. 

In the third experiment (presented in Chapter Four), stimulation parameters 

were varied, to test if the findings of the second experiment were robust against 

changes in stimulus duration. The reduction in alpha and beta power and the 

attenuation of evoked responses at 330 ms were found to be robust against 

changes in stimulus duration. 

Finally, the aim of experiment four (presented in Chapter Five) was to 

investigate if the neural correlates identified in the second experiment and third 

experiment were indeed related to the feeling of illusory hand ownership in the 

RHI or rather to a mere remapping of visual receptive fields. To test this, evoked 

and oscillatory responses were recorded during the somatic rubber hand illusion, 

a non-visual variant of the RHI. The somatic rubber hand illusion was associated 

with an attenuation around 330ms post-stimulus on central electrodes, similar to 

the classic RHI in experiment two and three. This indicates that this illusion 

effect in evoked responses is not merely related to a remapping of visual 

receptive fields as a result of the RHI but to the neurophysiological processes of 

the RHI itself. 
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Chapter 2: EEG Methods Overview 

What is Electroencephalography? 

Electroencephalography is a non-invasive brain imaging technique that records 

electrical activity from the brain with a millisecond time resolution. As neural 

responses are modulated by internal and external events on the order of 

milliseconds this makes EEG a suitable method to measure the temporal aspects 

of brain processes. To record EEG, electrodes are placed on multiple locations 

on the scalp. These electrodes can detect the electrical currents from the 

synchronised firing of neurons occurring in the brain. More specifically, it has 

been suggested that EEG reflects voltages generated (mostly) by excitatory 

postsynaptic potentials from apical dendrites of massively synchronised 

neocortical pyramidal cells (Olejniczak, 2006). While EEG allows for recording of 

signals from the whole brain simultaneously, valuable information from single 

electrodes can also be extracted. These include amplitude, latency and 

frequency of the electrical signal that is measured at the specific electrode 

location. The main limitation of EEG is its low spatial accuracy. The reason for 

this disadvantage is twofold. Firstly, each electrode not only records activity 

from the neurons directly below it but also from surrounding areas and other 

distributed sources in the brain. Secondly, the electrical propagation properties 

of the EEG signal mean that signals radiate out from the sources in varying 

manners depending on the orientation of the neurons and the tissue they pass 

through. This complicates the identification of where the EEG signal originates 

from and thus warrants caution in making spatial interpretations on the basis of 

EEG.  
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Event-related Potentials 

ERPs are positive or negative deflections of voltage that become evident when 

EEG time segments time-locked to a class of repeated stimulus or response 

events are averaged. As a result of averaging across a large number of these 

time segments or epochs, it is thought that non-related, random activity in the 

EEG cancels out, approaching zero as the number of epochs increases. The 

waveforms that survive this averaging process are known as ERP components. 

ERP components reflect deviations from a pre-event baseline, and their peak 

amplitudes and latencies are thought to relate to the cognitive processes 

triggered by the presented stimulus.  

Analysing ERPs is a widely used method to study the brain as ERPs are simple and 

fast to compute and have high temporal precision and accuracy. However, there 

are many kinds of dynamics in EEG data that do not have a representation in the 

ERP. Thus, to capture as much as possible of the dynamic and multidimensional 

space of brain processing, this thesis also included time-frequency based 

analyses.  

Time-Frequency-Based approach 

EEG activity measured from the brain fluctuates over time in rhythmic patterns. 

Known as “neural oscillations” two kinds of information are often examined in 

regards to these. Firstly, neural oscillations show variations in the speed with 

which they oscillate i.e. they exhibit different frequencies. This allows for a 

categorisation into five different bands: delta (δ, 1-4 Hz), theta (θ, 4-8 Hz), 

alpha (α, 8-12 Hz), beta (β, 13-30 Hz) and gamma (γ, >30Hz). In addition, 

information about power can be extracted. Power is the amount of energy in a 

given frequency band and is calculated by squaring the amplitude of the 
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oscillation. Time–frequency analysis can help to understand how oscillatory 

patterns in the brain relate to different cognitive and perceptual processes and 

offers a way of analysing the EEG signal beyond mere ERP analysis.  

Dealing with EEG noise 

Mainly due to its non-invasive nature, EEG recording is highly susceptible to 

various forms and sources of noise. In this context “noise” refers to any external 

or internal signal that is not related to cognitive processing. External noise can 

arise from electrical devices in the vicinity of where the recording is taking 

place (e.g. mobile phones, computers), or faulty recording equipment (e.g 

broken electrodes). Internal noise may arise from eye movements, heartbeat, 

body movements and neural processes related to phenomena other than the 

experimental task/stimulation. A number of strategies are available to deal with 

these noise sources. Some apply during the time of recording the data, such as 

ensuring the participant is sitting still and is shielded from avoidable electrical 

noise. Others apply during the so called pre-processing step of the recorded 

data. Pre-processing effectively cleans the data so that it is in a fit state to be 

analysed. EEG data in all experiments presented in this thesis were pre-

processed in a similar fashion. Firstly, pre-processing involved epoching data so 

that individual trials were separated. Trials with high amplitude fluctuations (± 

75V) were removed. In addition to this, trials with artefacts related to eye 

blinks or eye movements were identified using independent component analysis 

(ICA) and removed using both automatic and visual procedures. The general pre-

processing steps applied to the data contained in this thesis will be presented in 

detail in the following paragraphs. However, experiment specific parameters 

(e.g. time window length) will be described within each experimental chapter 

separately. 
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Artefact identification based on Independent Component Analysis 
(ICA) 

Independent component analysis is a statistical technique that uses linear 

decomposition to separate the EEG signal into a set of independent components. 

Its use as an artefact removal technique is based on two assumptions. The first 

assumption is that the activity recorded on the scalp during EEG is a mix of 

independent sources related to artefacts and brain activity. The second 

assumption is that these signals propagate linearly out from sources in the brain. 

Subsequently, if the independent sources in the data can be successfully 

identified using ICA, the ones related to noise can be removed. 

The ICA approach includes finding a set of weights that linearly decompose the 

EEG signal into a set of independent components, which provide information 

about the time course and spatial topography of the signal. The time course can 

then be examined to find large amplitude fluctuations in the data which may 

represent noisy electrodes or eye blinks. The spatial topography of the 

components can be compared to typical artefact topographies to identify further 

noise (Li et al., 2006). The components that have been identified as artefact 

components in this way can then be removed. The remaining components are 

projected back into the scalp channels to produce artefact fee EEG data. 

ICA has been shown to be a successful technique for artefact processing within 

EEG (Iriarte et al., 2003 ; Plöchl et al., 2012). As opposed to the commonly used 

arbitrarily defined cut off threshold value to detect noise, ICA can detect small 

modulations in the EEG signal that may be related to artefacts. It also enables 

researchers to retain more data for analysis as it avoids the removal of entire 

trials and just removes the artefact components contained in the data. In this 
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thesis, a combination of visual inspection and three automatic procedures were 

used to determine which ICA components were related to artefacts. 

Artefact identification via correlation with templates 

For the first step of artefact rejection, templates containing typical topography 

patterns related to ocular-motor activity and noisy channels were created using 

Matlab. This was done  by inserting high amplitude values (i.e. +1 or 0.4 relative 

to 0) over several typical artefact areas such as the centro-frontal regions 

(related to eye movements), the frontal regions (as in Hipp & Siegel, 2013), the 

temporal areas (related to muscle activity), and  single electrodes (related to 

noisy channels). Using these templates, the correlation between the signals in 

each ICA component and the signals in each of these topographical template was 

calculated and components with high correlations (defined as >0.7) were 

suggested for removal. To confirm visual inspection was used. 

Artefact identification via correlation with electro-oculorgram 
(EOG) signals 

For the second step of artefact rejection time signals of highlighted components 

(identified by ICA) were correlated with electro-oculogram (EOG) signals. EOG 

signals capture the high frequency (>30Hz) EEG potentials that get elicited by 

muscle movements, small eye rotations, and involuntary microsaccades (Hipp 

and Siegel, 2013; Muthukumaraswamy, 2013). Conventional filtering and ICA 

often miss these, which is a particular problem if performing time-frequency 

analysis. The EOG signals were calculated using the eye movement signals from 

four electrodes placed around the eyes. These were: a vertical electro-

oculogram (VEOG), a horizontal electrooculogram (HEOG), and a radial electro-

oculogram (REOG) signal (Keren et al., 2010). These three EOG signals were 

correlated with the signals derived from ICA, and any which had high 
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correlations (defined as >0.8) were identified as artefacts. Again, visual 

inspection was used to confirm. 

Artefact identification via power spectrum analysis 

Finally, the power spectrum of each ICA component was computed and 

components were removed that had a low ratio between low frequency and high 

frequency power (with a low ratio defined as <6). This is because EEG data 

follows a power law which states that EEG power is a function of frequency. In 

EEG data specifically the signal has smaller power magnitude at higher 

frequencies than the signal at the lower frequencies. By searching for 

components with a low ratio between low frequency power and high frequency 

power (i.e. little difference, which is in contrast to what would be expected), 

artefactual components can be identified. In this thesis, the power spectral 

density ratio of each ICA component was calculated and components with a ratio 

>6 were then checked again for correlations between the component and the 

artefact templates.  

To summarise, in this thesis a combination of ICA, visual inspection and 

automatic procedures were used to remove artefact components in the EEG data 

as part of the pre-processing process. Further pre-processing steps and 

description of the analyses done can be found in each experimental chapter. 
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Chapter 3: Investigating a Novel Setup                                        
for the Electroencephalographic Investigation        

of the Rubber Hand Illusion 

Introduction 

For more than fifteen years, the rubber hand illusion (RHI) has offered 

researchers an opportunity to systematically manipulate the experience of body 

ownership (i.e. the subjective feeling that a body part belongs to oneself) in 

experimental settings. Research on the underlying neural mechanisms of the 

illusion, its neurophysiological correlates, however, remains inconclusive. 

Identifying these correlates would not only add to the current understanding of 

multisensory integration of bodily signals but could also be vital for the 

development of optimised neuro-rehabilitative interventions after the removal 

of a limb (Collins et al., 2017; D’Alonzo and Cipriani, 2012; Ehrsson et al., 2008).  

One of the challenges in researching the neurophysiological correlates of the RHI 

is to apply the precise, synchronous stimulation that is necessary for the 

induction of the illusion. Most studies rely on manual stimulation by the 

experimenter, either by stroking with a finger (Moseley et al., 2008; Rohde et 

al., 2013b), individual paintbrushes (Botvinick and Cohen, 1998; Butz et al., 

2014; D’Alonzo and Cipriani, 2012; Ehrsson, 2004; Moseley et al., 2008; Olivé et 

al., 2015; Smit et al., 2017) or connected paintbrushes (Ehrsson, 2009; Gentile 

et al., 2013; Zeller et al., 2011, 2015). While all of these variants of manual 

stimulation have been found to induce the illusion successfully and reliably, 

recent research has cast doubt on the suitability of manual stimulation in studies 

on the neural mechanisms underlying the RHI. For example, Rohde et al. (2013) 

suggests that the presence of the experimenter during the experiment might 

constitute a confound since social or empathic factors have been found to be 
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involved in the RHI (Asai et al., 2011). In line with this, neural responses have 

been shown to vary depending on whether tactile stimulation was applied by 

another person or by an object (Gallace, 2010). Above all, manual stimulation 

does not offer consistency across trials since each brushstroke can differ in 

timing and intensity. This variability in the sensory stimulus can be detrimental 

for measuring the timing and features of the respective neural activations, in 

particular in neuroimaging techniques with high temporal resolution such as EEG. 

Automated stimulation with its comparably higher temporal precision is 

therefore preferable to manual stimulation. The former has been applied both, 

with (Bekrater-Bodmann et al., 2014; Evans and Blanke, 2013; Slater et al., 

2008, 2009; Suzuki et al., 2013) and without using virtual reality devices 

(Kanayama et al., 2007, 2009; Limanowski and Blankenburg, 2015; Tsakiris et 

al., 2007). If induced with the help of virtual reality devices the rubber hand 

illusion is often referred to as the so-called virtual hand. In the so-called virtual 

hand illusion the rubber hand is replaced by a 3D virtual image of a hand, that is 

presented to the participants either through a head mounted display (Bekrater-

Bodmann et al., 2014; Evans and Blanke, 2013; Shimada et al., 2014) or on a 

back-projected screen (Slater et al., 2008). Tactile stimulation of the real hand 

is accompanied by synchronous visual stimulation in the 3D virtual space.  

The flexibility of this virtual space has enabled researchers to investigate e.g. 

how the RHI is affected by asymmetries in the fake limb  (Kilteni et al., 2012), 

by replacement of the fake limb with a non-corporeal object (Ma and Hommel, 

2015) and by substitution of the somatosensory stimulus with interoceptive 

signals (Suzuki et al., 2013). Nevertheless, despite advances in the accuracy of 

VR technology in recent years, ecology still poses a problem. In addition, 

research has highlighted neural responses to virtual reality stimuli can differ 



42 
 
from neural responses to real life stimuli (Aghajan et al., 2014). Also, Ijsselsteijn 

(2006) found that RHI induction in virtual reality and mixed reality produced a 

weaker illusion than RHI induction in reality, as indicated both by self-report and 

drift towards the rubber hand. It has also been noted that application of virtual 

reality in rehabilitation is limited due to its relatively high cost (Burdea, 2003). 

There are also a number of RHI setups that apply automatic stimulation without 

the use of virtual reality (Kanayama et al., 2007, 2009; Limanowski and 

Blankenburg, 2015; Schütz-Bosbach et al., 2006; Tsakiris et al., 2007). For 

example, Limanowski et al. (2015),  Schütz-Bosbach et al. (2006) and Tsakiris et 

al. (2007) used two motors with attached paint brushes to deliver visual and 

somatosensory stimulation to investigate the neurophysiological correlates of the 

RHI with fMRI and PET respectively. While this form of mechanical stimulation 

avoids the above mentioned problems it does not allow for the investigation of 

evoked responses as part of EEG. This is because the strokes of the paintbrushes 

differ in length and intensity depending on the position of the participant’s 

finger/limb which is likely to relax and move subtly across trials. As a result the 

moving paintbrush is unlikely to elicit clearly distinguishable somatosensory ERP 

across trials as even small movements of the finger can change the area and 

timing of touch. In addition, the moving paintbrush does not result in clearly 

distinguishable visual ERPs. Since the RHI is a product of somatosensory, 

proprioceptive and visual information processing however, both, visual and 

somatosensory ERPs are a potentially important research avenue in uncovering 

the neurophysiological correlates of the RHI.  

As Kanayama et al. (2007, 2009) have shown RHI induction through automated 

stimulation that leads to clearly distinguishable somatosensory and visual ERPs 

can be provided with the use of LEDs and vibration motors. The authors used a 
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rubber hand that was holding a polystyrene cube with two LEDs attached to its 

corners. These corners were held by the thumb and index finger of the rubber 

hand respectively. The participant’s real hand was holding a polystyrene cube 

with vibration motors affixed to the same locations. Visual-tactile stimulation 

consisted of a 300 ms LED flash on the rubber hand’s forefinger and thumb 

accompanied by a synchronous 300 ms vibration pulse to the participant’s 

forefinger and thumb. This synchronous automated stimulation induced the RHI 

as measured by post-stimulation questionnaires. The overall scores however 

were relatively low indicating that only a weak feeling of illusory hand 

ownership was induced. This might be due to the indirect stimulation, i.e. visual 

and tactile stimuli were associated with an object, not with the fingers 

themselves and the fact that the participant’s hand was grasping something, i.e. 

it was not relaxed as in the classic RHI (Botvinick and Cohen, 1998).  

Taking the above considerations into account, we decided to rely on an 

automated setup for RHI induction using LED and vibration motors placed 

directly under the rubber hand’s and participant’s middle finger. Our primary 

goal in the current experiment was to determine if our novel automated setup 

induced the RHI reliably as measured by proprioceptive drift scores and the RHI 

questionnaire. Further, we aimed to identify which somatosensory and visual 

components were elicited by our setup and compared evoked responses and 

alpha and beta power in the Illusion and Incongruent condition to probe the 

neurophysiological correlates of the RHI. 
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Materials and Methods 

Participants 

A total of 30 right-handed volunteers participated in this study (n=30 

participants including 18 female, mean age = 22.8, years, SD = 3.4). We first ran 

a pilot study on all 30 participants to determine which participants were 

susceptible to the RHI. This involved 2 minutes of RHI induction using brushes 

similar to the ‘classic’ procedure used by Botvinick and Cohen (1998). After the 

stimulation participants filled out a standard RHI questionnaire (Botvinick and 

Cohen, 1998). 23 of the 30 total participants (n=23 participants including 14 

female, mean age = 22.6 years, SD = 3.8) agreed or strongly agreed to the 

statement ‘During the last trial I felt as if the rubber hand were my hand’ and 

showed mean negative scores for the control statements. Out of these 23 

participants 13 agreed to be included in the subsequent experiment (n=13 

participants including 9 female, mean age = 22.1 years, SD = 3.3). All 

participants gave written informed consent before participation in this study. All 

protocols conducted in this study were approved by the Ethics Committee of the 

College of Science and Engineering of the University of Glasgow. 

Experimental conditions 

Participants sat on a comfortable chair in front of a one-compartment, open-

ended box placed on a wooden platform. Their left arm was placed on an arm 

rest. Visual stimulation was delivered by a red light-emitting diode (LED; 

Seeedstudio, 10mm diameter) positioned 5 cm to the right of the box. Tactile 

stimulation was delivered by a vibration motor placed under the subject’s left 

middle finger (Permanent magnet coreless DC motor, Seeedstudio, 10mm 

diameter).  Visual and tactile stimulation were controlled via Matlab and an 
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Arduino prototyping platform. A tape measure was attached to the underside of 

the table, stretching horizontally between the LED and the far edge of the open-

ended box. 

Each participant completed two sessions over two days. In each session one 

block of each of the four conditions was administered in a randomised order for 

each subject (Figure 2). The conditions differed in presence or absence of 

illusion and inclusion of visual, tactile or visuo-tactile stimulation events. Illusion 

condition: The participant’s left hand was placed in the box with the tip of the 

middle finger positioned on a vibration motor. The right hand was placed at the 

other end of the platform in reaching distance of the keyboard. A lifelike rubber 

hand was positioned in an anatomically congruent orientation next to the box in 

a distance of 15cm to the participant’s hidden left hand. The middle finger of 

the rubber hand was placed on an LED. Incongruent condition: The rubber hand 

was placed at an angle of 45˚. Besides this the setup was similar to the setup 

and stimulation protocol described in the Illusion condition (Ehrsson, 2004; Olivé 

et al., 2015; Press et al., 2008; Zeller et al., 2015, 2016). Tonly condition: No 

rubber hand was present. Besides this the setup was similar to the setup 

described in the Illusion condition. Vonly condition: No rubber hand was present. 

Besides this the setup was similar to the setup described in the Illusion condition 

and Tonly conditon.  

For all conditions, each block included 350 stimulation events. The stimulus 

duration of the tactile and/or visual events was always 100 ms with an inter-

stimulus interval of 600 ms. Each block lasted approximately 4 minutes. In the 

Illusion and Incongruent condition participants were instructed to use their right 

hand to press the right arrow key on a computer keyboard when they felt the 

onset of the illusion and the left arrow key when they lost the feeling of the 
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illusion. Further in the first session, we asked participants before the Illusion 

and Incongruent condition to close their eyes and use their right hand to indicate 

the felt position of the middle finger of their left hand on the tape measure 

attached to the underside of the table. This procedure was repeated after the 

stimulation. After the Illusion condition participants then filled out the RHI 

questionnaire (Figure 1). 

Participants sat with their gaze fixed on the LED and wore ear plugs throughout 

the experiment to reduce the noise caused by the vibration motors.  

We included the Vonly and Tonly condition to determine timing and location of 

somatosensory and visual components as induced by our setup. The Illusion 

condition and Incongruent were compared in order to tentatively probe the 

neurophysiological correlates of the RHI. 
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Figure 2| Stimulation and Experimental setup during the four conditions. (top panel) 

Illusion condition: Congruently placed rubber hand on LED, left hand on vibration 

motor. Incongruent condition: Incongruently placed rubber hand on LED, left hand 

on vibration motor. Tonly condition: No rubber hand, no LED, left hand on vibration 

motor. Vonly condition: No rubber hand, no vibration motor, left hand hidden from 

view. (bottom panel) Experimental setup for session 1 and 2. The order of blocks 

was randomised for every subject. 

 

EEG Recording 

Experiments were performed in a darkened and electrically shielded room. EEG 

signals were continuously recorded using an active 64 channel BioSemi (BioSemi, 

B.V., The Netherlands) system with Ag-AgCl electrodes mounted on an elastic 

cap (BioSemi) according to the 10/20 system. Four additional electrodes were 

placed at the outer canthi and below the eyes to obtain the electro-occulogram 

(EOG). Electrode offsets were kept below 25 mV. Data were acquired at a 

sampling rate of 500 Hz using a low pass filter of 208 Hz.  
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Analysis 

Behavioural analysis 

We computed an ownership rating score and a suggestibility score for every 

participant from question 1-3 and question 4-7 respectively of the administered 

RHI questionnaires (Figure 3). As data from the questionnaires was not normally 

distributed we performed a Wilcoxon signed-rank test on ownership ratings and 

susceptibility scores derived from the Illusion condition to ensure participants 

felt the illusion and that this subjective reporting was not influenced by 

suggestibility and task-compliance.  Changes in proprioceptive drift in the 

Illusion and Incongruent condition were assessed by subtracting pre-stimulation 

scores from post-stimulation scores in each condition. The resulting 

proprioceptive drift score was then compared between Illusion and Incongruent 

condition with a Wilcoxon signed rank test as scores were not normally 

distributed. 

EEG Analysis 

Data analysis was carried out offline with MATLAB (The MathWorks Inc., Natick, 

MA) using the FieldTrip toolbox (Oostenveld et al., 2011). Stimulation events and 

their corresponding triggers were sorted based on condition, presence or 

absence of the illusion. For the analysis of the Illusion condition only events in 

which the illusion was present, as indicated by the subjects, were used. This 

amounted to 446 ± 93.1 (mean ± SD) for each subject. In all other conditions 

only events in which the illusion was absent were used. Since no occurrence of 

the illusion was reported in any of these conditions in the experiment, all 

respective events were included in the analysis. EEG data was segmented into 

epochs of 700 ms (200 ms pre-stimulus to 500 ms post-stimulus) and pre-

processed as follows: the data were band-pass filtered between 0.5 Hz and 30 
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Hz, re-sampled to 200 Hz and subsequently de-noised using independent 

component analysis (ICA; Debener et al., 2010). We rejected trials on which the 

peak signal amplitude on any electrode exceeded a level of ± 75 µV, or during 

which potential eye movements were detected based on a threshold of 3 

standard deviations above mean of the high-pass filtered EOGs using procedures 

suggested by Keren et al. (2010). Together these criteria led to the rejection of 

34 ± 6.8 % of trials (mean ± SD). For further analysis the EEG signals were 

referenced to the common average reference.  

Condition averages of the evoked responses (ERPs) and oscillatory power (see 

below) were computed by randomly sampling the same number of stimulation 

events from each condition. This was necessary as the number of available trials 

differed across conditions. Condition averages were obtained by averaging 500 

times trial-averages obtained from 80% of the minimally available number of 

trials.  

To analyse oscillatory activity we extracted single trial spectral power for alpha 

(8-12Hz) and beta (13-25 Hz) using a discrete Fourier transformation on sliding 

Hanning windows with a length of 200 ms. Power values in the range of 100 ms 

pre-stimulus and 350 ms post-stimulus were averaged across trials. No baseline 

normalization was performed but within-subject statistical comparisons were 

used (see below), which make the subtraction of a common baseline 

unnecessary. As we did not monitor eye movements we decided to not include 

gamma band activity in our analysis, due to its particular susceptibility to 

miniature saccade artifacts (Keren et al., 2010, Muthukumaraswamy, 2013).   

We used spatio-temporal Cluster-based Permutation Analysis to detect 

significant condition differences between Illusion and Incongruent. As is standard 
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in many similar EEG studies, a two-tailed paired t-test was performed for each 

electrode, and the cluster statistic was defined as the sum of the t-values of all 

spatially adjacent electrodes exceeding a critical value corresponding to an 

alpha level of 0.05, and a minimal cluster size of 2 (Kayser et al., 2015; Maris 

and Oostenveld, 2007). The cluster statistic was compared with the maximum 

cluster statistic of 2000 random permutations, based on an overall p-value of 

<0.05.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



51 
 

Results 

Behavioural Results 

Illusion onset occurred on average 31.3 ± 32.3 seconds (mean ± SD) after the 

start of stimulation onset in the Illusion blocks. No participants lost the feeling 

of the illusion after its initial onset. No illusion sequences were reported in any 

other block. Ownership ratings were significantly higher than the suggestibility 

scores in the Illusion blocks (Z= 3.19, p<0.01, Wilcoxon signed-rank test; Figure 

3). 

 

Figure 3| The questionnaire included the nine statements shown. Subjects indicated 

their response on a seven-step visual-analogue scale ranging from ‘agree strongly’ 

(+++) to ‘disagree strongly’ (---). Points indicate mean responses. Bars indicate 

response range. 
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Similarly, proprioceptive drift scores were significantly higher for the illusion 

condition (7.6 ± 3.5, mean ± SD) compared to the Incongruent condition (0.5 ± 

0.9, mean ± SD; Z= 3.19, p<0.01, Wilcoxon signed-rank test; Figure 4). 

 

Figure 4| Proprioceptive drift (i.e. change of perceived finger position post-

stimulation relative to perceived finger position pre-stimulation in cm) for Illusion 

and Incongruent conditions for each participant. 

 

EEG Results 

Unisensory ERPs: visual inspection 

Grand averaged unisensory visual and somatosensory ERPs are shown 

superimposed for select electrode sites (Error! Reference source not found.). 

We visually inspected electrode sites located contralateral to the side of 

somatosensory stimulation (FC2) and contralateral to the side of visual 

stimulation (PO4) at which somatosensory and visual components are commonly 

found (Eimer and Forster, 2003; Hämäläinen et al., 1990; Ohara et al., 2006; 

Senkowski et al., 2011; Teder-Sälejärvi et al., 2002). The somatosensory N140 

was clearly discernible at electrode sites around FC2 with a broad asymmetrical 
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peak between 120 ms-150 ms post-stimulus. The visual components P1 and N1 

were clearly discernable on electrodes around PO4 with peaks at around 115 ms 

and 155 ms respectively. Amplitude and latency of ERP amplitude peaks varied 

depending on electrode location. 

 

Figure 5| (top panel) Scalp distribution of evoked responses in the Tonly condition 
(green) and Vonly condition (black). (bottom panel) ERPs for Tonly and Vonly at 
electrodes FC2 and PO4. 
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Multisensory ERPs: visual inspection  

Grand-averaged multisensory ERPs from the Illusion and Incongruent conditions 

are shown superimposed for select electrode sites (Figure 6). In both conditions 

frontal and central electrodes showed a negative peak around 120 ms and a 

positive peak around 185 ms post-stimulus. Electrodes over parietal and occipital 

areas displayed a positive peak around 115 ms and a negative peak around 155 

ms post-stimulus. The negative peak at 155 ms was notably enhanced in the 

Incongruent condition compared to the Illusion condition. 

 

Figure 6| (top panel) Scalp distribution of evoked responses in the Illusion condition 

(blue) and Incongruent condition (red). (bottom panel) ERPs for Illusion and 

Incongruent at electrodes FC2 and PO4. 
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Illusion vs. Incongruent - ERPs and oscillatory activity 

For ERPs, no significant differences (cluster-permutation test, at least p<0.05) 

were found between the Illusion condition and the Incongruent condition (Figure 

6). However, on and around electrode PO4 an attenuation between 150 ms and 

200 ms in the Illusion condition was visually discernible.   

For oscillatory activity, no significant clusters (cluster-permutation test, at least 

p<0.05) were found between the Illusion condition and the Incongruent condition 

neither in alpha (8-12 hz) nor beta band (13-25 hz). 

Discussion 

In the present study we build a novel setup for induction of the RHI and 

investigated if this novel automated visuo-tactile setup reliably induced the 

illusion in our participants. Further we identified the visual and somatosensory 

ERP components that were elicited by our setup in unisensory, Illusion and 

Incongruent conditions. We found that our setup reliably induced the RHI and 

produced commonly identified somatosensory and visual components in the 

unisensory conditions. No statistically significant difference in ERPs and 

oscillatory activity was found between Illusion and Incongruent condition but 

notable differences in a late peak measured on electrodes over the visual area 

highlighted the need for an adjustment of LED location in future setups. 

Behavioural results 

Our modified automated RHI setup elicited the illusion reliably as indicated by 

all applied behavioural measures. Timing of onset of the feeling of ownership 

was on average 31.3 ± 32.3 seconds (mean ± SD) after start of stimulation. This 

falls into the range of onset times previously reported in studies. For example, 

using manual stimulation Ehrsson et al. (2007) reported that the mean time to 
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the onset of the illusion as 11.3 ± 7.0 s (2004) and 14.3 ± 9.1 s. Slater et al. 

(2009) utilized virtual reality and manual stimulation and reported onset times 

of 43 ± 34 seconds. The onset times in the current study are most closely 

matched by the onset times reported by Ide et al. (2013) who relied on 

automated somatosensory stimulation and found that participants reported an 

illusory feeling of hand ownership after around 30 seconds of stimulation. This 

indicates that stimulation onset times are likely to vary depending on the kind of 

stimulation that is being applied. We can conclude that while onset times in the 

present study were slightly longer than those reported in studies using manual 

stimulation, they fall within the range of onset times reported in studies using 

automated stimulation.  

In the current experiment, we found significantly higher proprioceptive drift in 

the Illusion condition compared to the Incongruent condition. The increase in 

drift when comparing pre-and post-stimulation scores in the Illusion condition 

was on average 7.6 cm. This is exceeds previous results reported, both, after 

manual stimulation and automated stimulation. Using manual stimulation Haan 

(2017) reported proprioceptive drift scores between 3.2 and 5.9 cm across five 

different experimental data sets. Studies using automated stimulation, generally 

report lower drift scores around 1.9 cm (Tsakiris et al., 2007) and 2 cm 

(Kanayama et al., 2016). While type of stimulation appears to play a role in the 

intensity of the measured proprioceptive drift, the differences between the 

current and previous findings is likely related to the duration of stimulation in 

induction of the RHI. We applied stimulation for 3.5 minutes which is 

substantially longer than in the above mentioned studies which relied on 

stimulation lasting 1.5 minutes (de Haan et al., 2017), 2 minutes (Tsakiris et al., 

2007) and around 3 minutes (Kanayama et al., 2016). As it has been shown that 
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proprioceptive drift gradually builds over time  (Rohde et al., 2011), the 

increased proprioceptive drift score in our experiment is thus likely to be a 

result of our prolonged stimulation procedure. Taken together with the 

questionnaire results, the proprioceptive score and illusion onset time in our 

experiment confirm that our automated visuo-tactile setup elicits the illusion 

reliably and in a fashion that is comparable to previous experiments. 

Neurophysiological results 

The visual inspection of evoked responses in the unisensory conditions confirmed 

that our setup successfully elicited common somatosensory and visual 

components. Somatosensory stimulation led to a clearly discernible N140 around 

135 ms on contralateral frontocentral electrodes. This matches descriptions of 

the somatosensory N140 component in the literature both in timing and location. 

Further, we identified the visual components P1 and N1 on contralateral parieto-

occipital electrodes when visual stimulation was applied. Again, the location and 

timing of these components match descriptions of the visual P1 and N1 in the 

literature. Thus, visual and somatosensory stimulation in our setup successfully 

elicited commonly expected visual and somatosensory ERP components. 

Analysis of Illusion and Incongruent condition did not reveal any differences in 

neither evoked responses nor oscillatory activity. However, our study was based 

on a sample size of only 13 subjects which is considered very small for 

neuroimaging studies (Poldrack et al., 2017). The resulting lack in statistical 

power has rendered our neurophysiological analysis prone to type 2 errors and 

undermines the found null result. Future experiments should include at least a 

minimum sample size of 20 participants as recommended in recent neuroimaging 

literature (Poldrack et al., 2017; Simmons et al., 2011). 
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Nevertheless, visual inspection of the evoked responses in the Illusion and 

Incongruent conditions revealed a greater negative amplitude on the visual N1 

component in the Incongruent condition. As the visual N1 has been shown to 

increase in amplitude with higher stimulus luminance  (Johannes et al., 1995) 

this difference between Illusion and Incongruent condition is possibly related to 

a difference in luminance of the visual stimulus between the two conditions. 

Indeed, closer inspections of the setup reveals that the adjustment of the rubber 

hand in the Incongruent condition decreases the space of the LED covered in 

relation to the participants eye line. As a result, stimulus luminance is increased 

in the Incongruent condition compared to the Illusion condition. To avoid this 

confound in future experiments the setup should be adjusted to keep the LED 

fully visible in both conditions. 

Conclusions 

The present experiment confirmed that our novel automated RHI setup induced 

the RHI reliably. In addition, we found that the setup elicited the somatosensory 

N140 and the visual N1 and P1 components. This underlines the suitability of our 

setup for investigating the neurophysiological correlates of the RHI. However, 

the current results also indicate that future experiments should adjust the 

position of the LED and rely on greater sample sizes to increase statistical 

power.
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Chapter 4: Neurophysiological Correlates of the 

Rubber Hand Illusion in late Evoked and Alpha/Beta 

Band Activity 

Introduction 

Philosophy, psychology, and neuroscience continue to debate the sources and 

modulators of conscious experience. The scientific study of consciousness has 

long been focussed on the visual domain, but recent decades have seen a rise of 

interest in bodily self-consciousness and the integration of bodily signals with 

other multisensory information (Jeannerod, 2007). Bodily self-consciousness 

refers to the integrated, pre-reflexive experience of being a self in a body and 

has been related to tactile, vestibular, proprioceptive, as well as visual and 

motor information (Blanke, 2012; Tsakiris and Haggard, 2005). One extensively 

investigated aspect of bodily self-consciousness is the experience that our body 

and its parts belong to us and are distinguished from non-body objects and other 

people’s bodies, so-called body ownership. A widely used paradigm to study 

body ownership is the rubber hand illusion (RHI; Botvinick, 2004) during which 

participants watch an artificial rubber hand being stroked in synchrony with 

strokes on their own occluded hand. This synchronous visuo-tactile stimulation 

alters bodily experience as it induces the illusion that the rubber hand is one's 

own hand. 

Several functional magnetic resonance imaging (fMRI) studies have aimed to 

identify the neural correlates of illusory hand ownership. The experience of 

illusory hand ownership has been linked to activity in frontal brain regions, such 

as the premotor cortex (Bekrater-Bodmann et al., 2014; Ehrsson, 2004; Petkova 
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et al., 2011), occipito-temporal regions such as the extrastriate body area 

(Limanowski et al., 2014), intraparietal areas (Petkova et al., 2011), the anterior 

insula (Limanowski et al., 2014), and the temporoparietal junction (Guterstam 

et al., 2013). However, given the nature of the fMRI signal, these studies have 

not been able to provide a functionally specific picture that assigns these neural 

correlates to a specific part of the sensory-perceptual cascade, for example by 

assigning the relevant neural activations to a specific latency following each 

repeat of the visuo-tactile stimulation. 

Overcoming these limitations, several EEG studies have aimed to reveal the 

physiological correlates of illusory hand ownership at higher temporal precision. 

One such study has described the relative attenuation of somatosensory-evoked 

responses during the Illusion about 55 ms after stimulus onset (Zeller et al., 

2015). This attenuation was localized to the primary somatosensory cortex and 

the anterior intraparietal sulcus, and was interpreted by the authors as an 

attenuated precision of the relevant proprioceptive representations involved in 

the RHI. However, another EEG study using a similar experimental paradigm 

reported illusion-related changes in ERPs only at much longer latencies of around 

460 ms over central electrodes (Peled et al., 2003). Furthermore, studies on 

oscillatory power showed a decrease in frontal-parietal alpha power and fronto-

parietal beta power to be associated with illusory hand ownership (Faivre et al., 

2016). This was interpreted as reflecting increased activation in sensorimotor 

cortices due to the illusion. Further support for a role of alpha band activity was 

provided by Lenggenhager et al. (2011) who reported a correlation between 

alpha band oscillations and a measure of illusory body ownership. In contrast to 

this, Kanayama (2007; 2009) only found greater interelectrode phase synchrony 

in the gamma band range (40-50 Hz) to be correlated with the perceived 
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intensity of illusory hand ownership. Overall, it remains unclear whether neural 

correlates of the RHI include aspects of early sensory encoding, hence at shorter 

latencies relative to stimulus onset, or mostly involve higher cognitive processes 

emerging at longer latencies relative to the touch stimulus.  

The lack of clear insights from the existing EEG studies on the RHI may in part 

result from the use of distinct control conditions and different stimulation 

parameters, and confounding factors that may have emerged as a consequence 

of this. Two widely used control conditions for the rubber hand illusion are the 

Incongruent condition, in which the rubber hand is placed at an anatomically 

incongruent angle, and the Real condition, in which the rubber hand is absent 

and stimulation occurs on the real hand in view (Ehrsson, 2004; Olivé et al., 

2015; Schmalzl et al., 2014; Tsakiris et al., 2007; Zeller et al., 2015, 2016). 

Unfortunately, these control conditions carry inherent confounds by differing 

from the illusion condition by more than just the absence of the illusion. In the 

Real condition, the hand position is changed and the rubber hand is completely 

absent from the setup, hence all seen potential body parts are indeed a natural 

part of the participant’s body. In the Incongruent condition the visual 

stimulation of the Rubber Hand and the somatosensory stimulation on the real 

hand occur in two different locations, while in the Illusion condition these 

stimulations are perceived to occur on one location, i.e. on the rubber hand. It 

is hence possible that spatial attention in the Illusion condition is focused on one 

location, while in the Incongruent condition attention is divided across two 

locations. As a result, changes in spatial attention may confound some of the 

previous results. In addition, in the Illusion condition, the visual stimulus is 

perceived to occur on the participant’s body, i.e. the embodied rubber hand. 

The visual stimulus in the Incongruent condition however is perceived to occur 
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not on the body, but on the non-embodied rubber hand. Previous studies have 

suggested that visual stimuli are processed differently when the stimuli is placed 

near the hand, rather than when it is not (Langerak et al., 2013). Thus, visual 

processing due to body-stimulus position between Illusion and Incongruent 

condition may differ substantially. As a result, it remains unclear whether 

illusion-related effects reported in previous studies are indeed only related to 

the illusory body experience, or rather originate from confounding factors 

introduced by the control conditions, such as changes in attention or body-

stimulus position. We here directly investigated the role of these confounding 

factors by including manipulations of these in our experimental design 

(Experiment 3). 

Differing stimulation parameters in regard to stimulus duration might have 

added to the discrepancy among results. Peled et al. (2003), Zeller et al. (2015) 

and Faivre et al. (2016) relied on manual stimulation applied by an 

experimenter, with inconsistent and unspecified stimulus duration, while 

Kanayama et al. (2007, 2009) administered automated visuo-tactile stimuli of 

300ms duration. The differing stimuli durations across studies pose a problem for 

the identification of evoked responses related to the RHI. The use of a fixed 

stimulation duration as in Kanayama et al. limits the scope of the results in that 

the location and latency of the identified modulation related to the RHI might 

be specific to the respective stimulus duration. Varying and undetermined 

stimulus durations across trials as used by Zeller et al. and Peled et al. are 

problematic due to the differences in stimulus offset times and their possible 

influence on shape and amplitudes of evoked responses (Spackman et al., 2006; 

Woodman, 2010). For these reasons, it remains very difficult to collate findings 

across studies and to reliably identify the electrophysiological correlates of 
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illusionary hand ownership. To overcome this problem we relied on a temporally 

precise stimulation setup and explicitly manipulated the duration of the 

individual stimulation events (Experiment 3). 

All in all, our goal was to study the neural correlates of the RHI in 

electroencephalographic brain activity by refining the typical protocol used to 

induce the RHI in three ways: First, by introducing a temporally precise 

stimulation apparatus that allows the recording of evoked activity that is 

precisely-time locked to the somatosensory and visual stimuli; second, by 

comparing neural correlates of the RHI across different control conditions to rule 

out confounds of attention and body-stimulus position; and third, by testing if 

the identified neural correlates of the RHI are robust against changes in stimulus 

duration. Given that previous studies have reported illusion-related effects both 

in evoked responses (Peled et al., 2003; Zeller et al., 2015) and in induced 

oscillatory activity (Faivre et al., 2017; Kanayama et al., 2007, 2009), we here 

focused on both these markers of neural processing. In the first experiment 

presented in this chapter we recorded EEG activity during the Illusion, the Real 

and Incongruent control conditions and two further conditions which varied in 

attention focus and body-stimulus position. We identified neurophysiological 

correlates of illusionary hand ownership that were consistent across both control 

conditions and then differentiated these from the two confounds by comparing 

the respective contrasts. In the second experiment, we expected to replicate 

these neurophysiological correlates of illusionary hand ownership, and 

hypothesized that these were robust against changes in stimulus duration.  
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Materials and Methods 

Participants 

A total of 52 right-handed volunteers participated in this study. We first ran a 

pilot study on all 52 participants, which involved 2 minutes of synchronous visuo-

tactile stimulation identical to the Illusion condition described below. After the 

stimulation participants filled out a standard RHI questionnaire (Botvinick and 

Cohen, 1998). 32 of the 52 total participants agreed or strongly agreed to the 

statement ‘During the last trial I felt as if the rubber hand were my hand’ 

(Botvinick and Cohen, 1998) and showed mean negative scores for the control 

statements. Only the 32 participants who showed this response pattern were 

included in the subsequent two experiments, with 8 participants participating in 

both experiments.  Thus, the presented data is from 20 participants each 

(Experiment 2: n=20 participants including 13 female, mean age = 23.1 years, SD 

= 3.1; Experiment 3: n=20 participants including 13 female, mean age = 22.1 

years, SD = 2.9 years). All participants gave written informed consent before 

participation in this study. All protocols conducted in this study were approved 

by the Ethics Committee of the College of Science and Engineering of the 

University of Glasgow. 

Experimental conditions 

Participants sat on a comfortable chair in front of a one-compartment, open-

ended box placed on a two-storey wooden platform. Their left arm was placed 

on an arm rest. Visual stimulation was delivered by a red light-emitting diode 

(LED; Seeedstudio, 10mm diameter) positioned 5 cm to the right of the box on 

the top storey. Tactile stimulation was delivered by a vibration motor placed 

close to the subject’s skin (Permanent magnet coreless DC motor, Seeedstudio, 
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10mm diameter).  Visual and tactile stimulation were controlled via Matlab and 

an Arduino prototyping platform.  

In experiment 2 five conditions were administered in a randomised order for 

each subject (Figure 7A). The conditions differed in presence or absence of 

illusion, body-stimulus position (visual stimulus on body, visual stimulus not on 

body) and attention (focussed, divided). Illusion condition: The participant’s left 

hand was placed in the box with the tip of the middle finger positioned on a 

vibration motor. The right hand was placed at the other end of the platform in 

reaching distance of the keyboard. A lifelike rubber hand was positioned in an 

anatomically congruent orientation next to the box in a distance of 15cm to the 

participant’s hidden left hand. The middle finger of the rubber hand was placed 

on a dummy vibration motor. The LED was positioned five millimetres above the 

dummy motor. This condition is typically used to induce the RHI. Incongruent 

condition: The rubber hand was placed at an angle of 45˚. Besides this the setup 

was similar to the setup described in Illusion (Ehrsson, 2004; Olivé et al., 2015; 

Press et al., 2008; Zeller et al., 2015, 2016). Real condition: No rubber hand was 

present. The middle finger of the left hand was placed in view on a vibration 

motor positioned 5 millimetres below the LED. The right hand was in the same 

position as in the Illusion and Incongruent conditions (Zeller et al., 2015, 2016). 

Hand under condition: The participant’s left hand was placed on the lower 

storey of the platform with the middle finger placed on a vibration motor. The 

vibration motor was positioned right below the dummy vibration motor on the 

top storey. The vertical distance between the two motors was 10 cm. Besides 

this, the setting was identical to the Incongruent condition. Two hands 

condition: No rubber hand was present. The middle finger of the participant’s 

right hand was placed on a dummy vibration motor below the LED. Besides this, 
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the setting was identical to the Incongruent condition. Throughout all conditions 

view of the left arm, and the trunk of the rubber hand where applicable, was 

obstructed by an opaque piece of fabric. 

For subsequent analysis the differences in hand and stimuli location across 

conditions allow for a grouping of Incongruent, Real, Hand under and Two hands 

in regard to attentional and body- stimulus related processing (Figure 7B). In the 

Incongruent and Two hands conditions attention is divided, since in both 

conditions visual and somatosensory stimuli occur at distant locations. In the 

Real and Hand under conditions attention is focused, since visual and 

somatosensory stimuli occur at the same location. For body-stimulus related 

processing, Incongruent and Hand under can be grouped as the visual stimulus 

does not occur on the subject’s body, while the Real and Two hands conditions 

can be grouped as the visual stimulus does occur on the participant’s body.  
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Figure 7| (A) Stimulation setup during the five conditions. Illusion condition: 

Congruently placed rubber hand on dummy vibration motor below LED, left hand on 

vibration motor. Incongruent condition: Incongruently placed rubber hand on 

dummy vibration motor below LED, left hand on vibration motor. Hand under 

condition: Incongruently placed rubber hand on dummy vibration motor below LED, 

left hand on vibration motor below dummy vibration motor and LED. Two hands 

condition: No rubber hand, left hand on vibration motor, right hand on dummy 

vibration below LED. Real condition: No rubber hand, left hand on vibration motor 

under LED. The four non-illusion conditions were additionally grouped in a 2x2 

design according to the factors attention and body-stimulus position. (B) Experiment 

2: Illusion effect, Attention and Body-stimulus position contrasts and the 

experimental conditions they are based on. (C) Experimental setup in experiment 3 
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(top panel) and in experiment 3 (bottom panel). The order of blocks was randomised 

for every subject. 

Experimental procedure 

In Experiment 2 one block of each condition was administered. Each block 

included 200 stimulation events. The visuo-tactile stimulus duration was 100 ms 

and the inter-stimulus interval varied randomly and evenly between 700 ms and 

1500 ms. Each block lasted approximately 3.5 minutes. Experiment 3 contained 

three blocks of each, the Illusion and Incongruent condition administered in a 

pseudorandom order. Each block included 291 stimulation events. On a given 

stimulation event visuo-tactile stimulus duration was either 100 ms, 125 ms, 150 

ms or 175 ms (pseudo-randomly assigned). Every block contained at least 64 

events of each stimulus duration. The inter-stimulus interval varied randomly 

and evenly between 700 ms and 1500 ms. Each block lasted approximately 5 

minutes (Figure 7C).  

In both experiments participants were instructed to use their right hand to press 

the right arrow key on a computer keyboard when they felt the onset of the 

illusion and the left arrow key when they lost the feeling of the illusion. 

Participants sat with their gaze fixed on the LED and wore ear plugs throughout 

the experiment to reduce the noise caused by the vibration motors. 

EEG Recording 

Experiments were performed in a darkened and electrically shielded room. EEG 

signals were continuously recorded using an active 64 channel BioSemi (BioSemi, 

B.V., The Netherlands) system with Ag-AgCl electrodes mounted on an elastic 

cap (BioSemi) according to the 10/20 system. Four additional electrodes were 

placed at the outer canthi and below the eyes to obtain the electro-occulogram 
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(EOG). Electrode offsets were kept below 25 mV. Data were acquired at a 

sampling rate of 500 Hz using a low pass filter of 208 Hz.  

EEG analysis 

Data analysis was carried out offline with MATLAB (The MathWorks Inc., Natick, 

MA) using the FieldTrip toolbox (Oostenveld et al., 2011). Stimulation events and 

their corresponding triggers were sorted based on condition, presence or 

absence of the illusion and stimulus length (Experiment 3 only). For the analysis 

of the Illusion condition only events in which the illusion was present, as 

indicated by the subjects, were used. This amounted to 163±29 (mean±SD) 

events in experiment 2, and 248±34 (mean±SD) events in experiment 3. For 

analysis of all other conditions only events in which the illusion was absent were 

used. Since no occurrence of the illusion was reported in any of these conditions 

in either experiment, all respective events were included in the analysis. EEG 

data was segmented into epochs of 700 ms (200 ms pre-stimulus to 500 ms post-

stimulus) and pre-processed as follows: the data were band-pass filtered 

between 0.5 Hz and 30 Hz, re-sampled to 200 Hz and subsequently de-noised 

using independent component analysis (ICA; Debener et al., 2010). To detect 

potential artefacts pertaining to remaining blinks or eye movements we 

computed horizontal, vertical and radial EOG signals following established 

procedures (Hipp and Siegel, 2013; Keren et al., 2010). We rejected trials on 

which the peak signal amplitude on any electrode exceeded a level of ±75 µV, or 

during which potential eye movements were detected based on a threshold of 3 

standard deviations above mean of the high-pass filtered EOGs using procedures 

suggested by Keren et al. (2010). Together these criteria led to the rejection of 

34±8 % of trials (mean±SD) in Experiment 2 and of 25±11% of trials (mean±SD) of 
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trials in Experiment 3. For further analysis the EEG signals were referenced to 

the common average reference.  

Condition averages of the evoked responses (ERPs) and oscillatory power (see 

below) were computed by randomly sampling the same number of stimulation 

events from each condition. This was necessary as the number of available trials 

differed across conditions. Condition averages were obtained by averaging 500 

times trial-averages obtained from 80% of the minimally available number of 

trials.  

To analyse oscillatory activity, we extracted single trial spectral power for alpha 

(8-12Hz) and beta (13-25 Hz) using a discrete Fourier transformation on sliding 

Hanning windows with a length of 200 ms. Power values in the range of 100 ms 

pre-stimulus and 350 ms post-stimulus were averaged across trials. No baseline 

normalization was performed but within-subject statistical comparisons were 

used (see below), which make the subtraction of a common baseline 

unnecessary. As we did not monitor eye movements we decided to not include 

gamma band activity in our analysis, due to their particular susceptibility to 

miniature saccade artefacts (Keren et al., 2010, Muthukumaraswamy, 2013).   

In experiment 2 our primary aims were to determine ERP and oscillatory 

signatures of the illusion and to compare these to ERP and time-frequency 

signatures of attentional and body-stimulus position related processes. While we 

expected to find significant differences in evoked activity between Illusion and 

control conditions over parietal and centrofrontal areas (Peled et al., 2003; 

Zeller et al., 2015) our stimulation parametres and experimental setup differed 

from previous studies to such an extent that we decided to employ an unbiased 

approach and to test for statistical effects across all electrodes and a wide time 
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range. We hence used spatio-temporal Cluster-based Permutation Analysis to 

detect significant condition differences. As is standard in many similar EEG 

studies, a two-tailed paired t-test was performed for each electrode, and the 

cluster statistic was defined as the sum of the t-values of all spatially adjacent 

electrodes exceeding a critical value corresponding to an alpha level of 0.05, 

and a minimal cluster size of 2 (Kayser et al., 2015; Maris and Oostenveld, 2007). 

The cluster statistic was compared with the maximum cluster statistic of 2000 

random permutations, based on an overall p-value of 0.05. To identify illusion 

effects we compared Illusion vs. Incongruent and Illusion vs. Real conditions. For 

obtaining Body-stimulus position and Attention contrasts we used the four 

conditions Incongruent, Hand under, Two hands, Real, which differed along the 

factors of Attention (focussed, divided) and Body-stimulus position (visual 

stimulus on body, visual stimulus not on body) in a 2x2 design (Figure 7B). To 

obtain the contrasts for each factor we averaged over the respective conditions 

belonging to each level and then compared the averages with a cluster 

permutation test. To calculate the interaction of Attention and Body-stimulus 

position factors, that is the difference between the differences between the 

means of one factor, across the levels of the other factor, we subtracted Two 

hands from Real, and Incongruent from Hand under, and compared these 

differences with a cluster permutation test.  

In experiment 3 our primary aims were to replicate the illusion effect from 

experiment 2 and to investigate if stimulus duration modulates this effect. For 

the analysis of evoked responses we selected the time point with the biggest 

overlap of significant electrodes between Illusion vs. Incongruent and Illusion vs. 

Real contrasts as found in experiment 2. We conducted a 2x4 repeated measures 

ANOVA with the factors illusion presence and stimulus duration on data averaged 
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over the significant electrodes at this time point. For the analysis of oscillatory 

power we selected the electrodes in the overlap of significant electrodes 

between Illusion vs. Incongruent and Illusion vs. Real time-frequency contrasts in 

alpha and beta band as found in experiment 2. We conducted a 2x4 repeated 

measures ANOVA on power in each band. Greenhouse–Geisser correction was 

applied where sphericity was violated. 

Results 

Experiment 2 

Behavioural data 

lllusion onset occurred on average 41.3±32.3 seconds (mean ±SD) after the start 

of stimulation onset in the Illusion block. Four participants lost the feeling of the 

illusion after its initial onset. The resulting non-illusion sequences lasted on 

average 41.8 ± 29.4 seconds (mean ±SD). No illusion sequences were reported in 

any other block. 

Illusion effect – ERPs 

Significant differences (cluster-permutation test, at least p<0.05) between the 

Illusion condition and the Incongruent condition emerged around two time 

points: At 120 ms the Illusion condition showed lower amplitudes in right frontal 

regions (Tsum = -659.0, p<0.05) and more positive amplitudes in left parietal 

areas (Tsum = 490.9, p<0.05) compared to the Incongruent condition (Figure 8A). 

At 330 ms the Illusion condition showed lower amplitudes in frontocentral 

regions compared to the Incongruent condition and this frontocentral negativity 

was centred around electrode FCz (Tsum = -404.4, p<0.05, Figure 8A). 

Significant differences between the Illusion condition and the Real condition 

emerged around 330ms and were also centred around electrode FCz (Tsum = -
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823.1, p<0.05; Figure 8B). The respective ERPs at electrode FCz suggest that the 

illusion is characterized by a more pronounced negativity of the evoked activity 

around 330ms in compared to the two control conditions (Figure 8C).  

To better localize the illusion effect we determined those electrodes that were 

part of both significant effects around 330 ms, i.e. which were part of the 

significant time-electrode clusters in both, the Illusion-Incongruent and Illusion-

Real contrast. The resulting electrodes comprised the medial central and 

centrofrontal electrodes (Figure 8D). 
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Figure 8| Illusion effect. (A) T-maps of the Illusion vs. Incongruent contrast (top) 

and the Illusion vs. Real contrast (bottom). Significant clusters (permutation 

statistics, p < 0.05, n=20) are highlighted in black, significant clusters common to 
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both contrasts are indicated in yellow. (B) Scalp topographies of t-values with 

significant clusters highlighted. (C) Grand-averaged event-related potentials at FCz 

of Illusion (blue), Incongruent (red) and Real (green). The shaded areas indicate the 

standard errors of the mean. (D) Overlap of significant electrodes between Illusion 

vs. Incongruent contrast and Illusion vs. Real contrast at 330 ms post-stimulus. 

Illusion effect – Oscillatory activity  

The illusion contrasts applied to the power of oscillatory activity revealed 

significant clusters of 19 electrodes in parietal areas where alpha power (8-

12Hz) was lower in the Illusion compared to the Incongruent condition (Tsum = -

77.4, p<0.05; Figure 9A, top left topography), and lower in the Illusion compared 

to the Real condition (Tsum = -80.4, p<0.05, Figure 9A, bottom left topography). 

In the beta band (13-25Hz) a cluster of 38 electrodes over frontoparietal regions 

also showed reduced power during the Illusion condition compared to the 

Incongruent (Tsum = -109.1, p<0.05, Figure 9A, top right topography)  and Real 

conditions (Tsum = -178.2, p<0.05, Figure 9A, bottom right topography). The 

overlap of significant illusion effects for each band is shown in Figure 9B.  
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Figure 9| (A) Scalp topographies of t-values for differences in alpha (8-12 Hz, left 

panel) and beta power (13-25 Hz, right panel) for the Illusion vs. Incongruent (top 

panel) and Illusion vs. Real (bottom panel) contrast. Significant clusters 

(permutation statistics; p < .05, n=20) are highlighted in black. (B) Overlap of 

significant clusters between the Illusion vs. Incongruent and Illusion vs. Real 

contrasts. 

Attention and Body-stimulus position contrasts  

Potential confounding effects of changes in spatial attention and body-stimulus 

position were quantified using four additional experimental conditions analysed 

in a 2x2 design (Figure 7B). No significant effects were found when analysing the 

interaction between the factors Attention and Body-stimulus position. However, 
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significant effects emerged in the attention contrast around 100 ms (Positive 

cluster: Tsum = 701.0, p<0.05; Negative cluster: Tsum = 728.0, p<0.05) and 250 

ms (Positive cluster: Tsum = 687.7, p<0.05; Negative cluster: Tsum = -470.4, 

p<0.05; Figure 10A) in frontal and parietal regions. Significant effects in the 

body-stimulus position contrast emerged around 180 ms centred around 

electrode FCz (Tsum = -474.6, p<0.05; Figure 10B).   

While the timing and location of the attention effects do not resemble the 

illusion effect, the topography of significant effects in the body-stimulus position 

contrast closely resembles the topography of the illusion effect (c.f. Figure 8D). 

The electrodes consistently involved in both effects comprised medial central 

and centrofrontal electrodes (Figure 10C), making it possible that potentially 

similar regions are involved in mediating the illusion and body-stimulus effects, 

but reflect these at distinct latencies relative to the stimulus.  

We found no significant differences in oscillatory responses in the attention and 

body-stimulus position contrasts in either the alpha (8-12Hz) or beta band (13-25 

Hz). 
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Figure 10| Contrasts for the effects of Attention and Body-stimulus position. (A) T-

maps for Attention (top) and Body-stimulus position contrasts (bottom). Significant 

clusters (permutation statistics; p < 0.05, n=20) are highlighted in black. (B) Scalp 

topographies of t-values with significant clusters highlighted. (C) Overlap of 

significant clusters between the illusion effect (from Figure 8D) and the body-

stimulus position effect. 

 

Experiment 3 

Behavioural data 

Illusion onset occurred on average 46.7 ± 32.7 seconds (mean ± SD) after the 

start of stimulation onset in the illusion blocks. Five participants lost the feeling 

of the illusion after its initial onset. This occurred either in all three of the 

blocks (Participant 1, 2) or a single block (Participant 3, 4, 5). The resulting non-

illusion sequences lasted on average 30.2 ± 27.1 seconds (mean ± SD). No illusion 

sequences were reported in any Incongruent blocks. 
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Illusion effect – ERPs 

In the second experiment we compared the Illusion to the Incongruent condition 

while manipulating the duration of the visuo-tactile stimulation. We then 

performed a repeated-measures ANOVA on the ERP amplitudes at the time-

electrode cluster identified by the illusion effect in experiment 2 (c.f. Figure 8D) 

to test the effects of illusion and stimulus duration (Table 1 & Figure 11). This 

confirmed a main effect of illusion at 330ms in this second dataset (F(1,19)=16.08, 

p<0.05, η2p =0.46), and revealed an effect of stimulus duration 

(F(1.63,31.02)=21.318, p<0.05,  η2p =0.53) but no significant interaction 

(F(2.81,53.40)=0.235, p=0.860,  η2p =0.012).  

Condition Stimulus duration 

100 ms 125 ms 150 ms 175 ms 

Illusion 

Incongruent 

-0.6652 (0.8934) 

-0.4447 (0.7040) 

-0.3829 (0.6558) 

-0.1790 (0.7211) 

-0.0917 (0.5668) 

0.2105 (0.6217) 

0.0138 (0.4904) 

0.2503 (0.6161) 

Table 1| Group means and standard deviations of amplitudes (μV) at 330ms post-

stimulus in experiment 3. 
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Figure 11|Group means of ERP amplitudes (μV) at 330ms post-stimulus in 

experiment 3. 

 

Illusion effect – Oscillatory activity  

For alpha power we found a main effect of illusion (F(1.00,19.00)=16.407, p<0.05, 

η2p =0.46) but no effect of stimulus duration (F(2.69,51.08)=2.822, p=0.053, η2p 

=0.13) and no significant interaction (F(2.36,44.85)=2.860, p=0.059, η2p =0.13). For 

beta power we found a main effect of illusion (F(1.00,19.00)=15.337, p<0.05, η2p 

=0.45) but no main effect of stimulus duration (F(2.36,44.84)=2.917, p=0.056, η2p 

=0.13). However, a significant interaction between illusion presence and 

stimulus duration was present (F(2.28,43.33)= 7.533, p<0.05, η2p =0.28). This 

interaction appeared to be driven by higher beta power for the stimulus duration 

of 100ms compared to the other durations in the illusion condition (Table 2 & 

Figure 12). 
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Alpha (8-12 Hz)   

Condition Stimulus duration 

 100 ms 125 ms 150 ms 175 ms 

Illusion 3.9137 (1.9996) 3.5172 (1.7485) 3.6505 (1.7688) 3.6360 (2.0241) 

Incongruent 4.3655 (2.1172) 4.3723 (2.0797) 4.4066 (2.1775) 4.3273 (2.0935) 

     

Beta (13-25 Hz)   

Condition Stimulus duration 

 100 ms 125 ms 150 ms 175 ms 

Illusion 1.0390 (0.4441) 0.9808 (0.4092) 0.9843 (0.4028) 0.9748 (0.4180) 

Incongruent 1.0778 (0.4461) 1.1071 (0.4672) 1.0895 (0.4380) 1.0897 (0.4432) 

Table 2| Mean values and standard deviations of oscillatory power in alpha (8-12 Hz) 

and beta band (13-25 Hz) in experiment 3. 
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Figure 12| Group means of oscillatory power in alpha (8-12 Hz) and beta band (13-

25 Hz) in experiment 3. 

 

Discussion 

We studied the neurophysiological correlates of the rubber hand illusion using a 

fully automated and precisely-timed visuo-tactile setup and a combination of 
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experimental conditions. Across two studies and two control conditions we 

reliably found an illusion-related attenuation of ERPs around 330 ms over 

frontocentral electrodes. This effect was not related to attention or body-

stimulus position confounds and was robust against changes in stimulus duration. 

We furthermore found that oscillatory activity in the alpha and beta bands was 

reliably reduced during the illusion. We thereby provide multiple neural markers 

of the RHI. 

Illusion effects in evoked responses 

Several previous EEG studies have aimed to understand the neural correlates and 

mechanisms underlying the illusory percept of body ownership in the RHI. These 

studies compared the evoked responses associated with the tactile stimulus on 

the participant’s hand between conditions inducing the illusion and control 

conditions. The rationale behind this approach is to see whether and how the 

cortical representation of the tactile stimulus changes when its subjective 

location changes from the actual hand to the rubber hand. Previous studies 

differed regarding the latency of such an illusion-correlate in ERPs, reporting 

either early effects around 55 ms (Zeller et al., 2015) or much later effects 

around 460 ms (Peled et al., 2003). However, both studies relied on the manual 

stimulation by a brush handled by an experimenter, whereby each individual 

brush stroke can differ in timing and intensity. This variability in the sensory 

stimulus can be detrimental for measuring the timing and shape of the 

respective sensory evoked responses. To overcome this problem we here 

designed an automated setup that allows visuo-tactile stimulation with great 

temporal fidelity and consistency across trials. Furthermore, we asked subjects 

to indicate the onset of the rubber hand illusion during each trial and hence 

were able to include only those stimulation events in the analysis during which 
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subjects actually reported the presence of the RHI.  To facilitate this we only 

considered participants that had previously and reliably experienced ownership 

over a rubber hand and were familiar with the sensations associated with onset 

and presence of the RHI as determined by a pilot session.  

To establish neural correlates of the RHI a comparison of the illusion condition 

with a control condition is required. Most previous ERP studies relied on the 

Incongruent condition in which the rubber hand is placed at an anatomically 

incongruent angle, or relied on the Real condition in which the rubber hand is 

absent and stimulation occurs on the real hand in view (Peled et al., 2003; Zeller 

et al., 2015, 2016). Using only one control condition makes the implicit and 

critical assumption that the illusion and control conditions differ only in a single 

factor, the presence of the subjective illusion. Yet, closer inspection of these 

conditions suggests that these may differ by other factors as well, such as focus 

of attention and body-stimulus position in the Incongruent condition, or the 

absence of a rubber hand in the Real condition. We therefore relied on the 

combination of control conditions to identify potential changes in evoked 

activity that are reliably associated with the illusion.  The need to consider 

multiple control conditions is further demonstrated by the observation that some 

significant ERP effects were observed only in one of the two illusion vs control  

contrasts (c.f. Fig. 2). For example, the Illusion-Incongruent difference revealed 

a significant effect around 150 ms, which was absent in the Illusion-Real 

difference, and hence unlikely is a correlate of the subjective illusion. This 

suggests that results on the neural correlates of illusory body ownership that 

were obtained using a single control condition have to be considered with care. 

We found neural activations that were reliably associated with the illusion only 

at longer latencies (here 330 ms) over frontocentral regions. Furthermore, this 
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illusion effect did not interact with changes in stimulus duration. Together this 

suggests that these activations do not reflect processes related to early sensory 

encoding but rather reflect late and higher-order processes. Thereby our results 

differ from Zeller et al. (2015) who reported illusion related activity as early as 

55 ms, but also differ from those of Peled et al. (2003), who found illusion 

related activity around 460ms. The discrepancies are possibly due to several 

factors: First, these previous studies relied on the manual stimulation by a 

brush, as opposed to the automated visual-tactile stimuli in the current study. 

Second, Zeller et al. restricted their analysis to activity before 300 ms post-

stimulus, while Peled et al. only tested at specific time points not including 330 

ms. This makes it difficult to compare significant effects across studies, as each 

relied on distinct time windows where potential effects were expected and 

contrasted using methods for multiple comparison . Third, the study by Zeller et 

al. relied on a rather small sample size (n=13), while we here relied on a sample 

size of n=20 participants in each experiment, which is considered to be the 

minimal sample size for neuroimaging studies based on concerns of reporting 

false positive results (Poldrack et al., 2017; Simmons et al., 2011). Fourth, the 

study of Zeller et al. reported significant illusion effects only for stimulation on 

the right hand, while we here focused on the subject’s left hand, as previous 

studies have suggested a strong link between the right hemisphere and 

awareness of the subjective experience of body ownership (Frassinetti et al., 

2008; Karnath and Baier, 2010; Tsakiris et al., 2007). Last but not least, we 

replicated the illusion effect around 330 ms in two independent studies, 

providing further evidence for the robustness of our result. 
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Neural origins of illusion-related activations 

While the exact local neurophysiological sources of the illusion effect in the 

current study cannot be identified, its frontocentral location provides support 

for a pivotal role of premotor and possibly intraparietal areas in illusory hand 

ownership. Several studies have consistently associated activity in the ventral 

premotor and/or posterior parietal cortex with the illusory percept of ownership 

and hand position in the RHI (Brozzoli et al., 2012; Guterstam et al., 2015; 

Kanayama et al., 2016; Limanowski and Blankenburg, 2015; Petkova et al., 

2011). Furthermore, Limanowski et al. (2015) and Guterstam et al. (2015) 

reported increased functional coupling between intra-parietal regions and 

premotor cortices during the illusion compared to control conditions. Both 

regions are ideal candidates for mediating the multisensory integrative processes 

that underlie the RHI. They process signals involved in self-attribution of the 

hand (Ehrsson, 2004; Evans and Blanke, 2013; Tsakiris et al., 2007) and 

analogous regions in the monkey brain have been found to contain trimodal 

neurons that integrate tactile, visual and proprioceptive signals (Fogassi et al., 

1996; Graziano et al., 1997; Graziano and Gandhi, 2000; Iriki et al., 1996). Based 

on the topography of illusion-related ERP effects our data further corroborate a 

central role of motor-related regions in the body illusion. 

This interpretation is further supported by the timing of the illusion effect, 

which matches results from intracranial recording studies, which have reported 

correlates of multisensory integration between 280 and 330 ms over precentral 

and postcentral regions adjacent to premotor cortex and IPS (Quinn et al., 

2014). Similar late latencies were also reported for the integration of visual and 

somatosensory stimuli in parietal association cortex (Lippert et al., 2013). The 

attenuation of the evoked potential at 330ms during the illusion condition 
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observed here could thus be indicative of the integration of visual, tactile, and 

proprioceptive information within the parietal-premotor network, which then 

results in the illusory percept of ownership and hand position in the RHI. 

We did not administer any behavioural or physiological measures to measure the 

RHI, such as proprioceptive drift measurements or changes in body temperature. 

The reason for this was twofold. Firstly, we relied on a subjective measure of 

the illusion, as it allowed for uninterrupted recording of EEG data across all 

conditions. Secondly, our study aimed to identify the correlates of the ownership 

aspect of the RHI. As shown recently, proprioceptive drift does not provide a 

reliable assessment of this ownership aspect (Asai, 2015; Rohde et al., 2011). 

Rather, subjective ownership and the proprioceptive drift can be dissociated, 

with the latter measuring the spatial updating of the body in space rather than 

the strength of ownership over the rubber hand itself.  

Illusion, attention and body-stimulus position 

We used additional control conditions to reliably dissociate the neural correlates 

of the RHI from attention and body-stimulus position related activity. 

Specifically, we identified the timing and location of attention / body-stimulus 

position related effects and compared these to the activations revealed by the 

two statistical contrasts obtained from the Illusion. By comparing conditions 

where the visual stimulus was near the body with conditions where the visual 

stimulus was far from the body, we found body-stimulus position related 

processing to be associated with activity in frontocentral areas around 180 ms. 

This is in line with previous studies investigating the influence of proximity of 

hands and visual stimuli. For example, Reed et al. (2013) recorded ERPs during a 

visual detection task in which the hand was placed near or kept far from the 

stimuli. Similar to the results of the current study, they found increased 
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negativity in the Nd1 component around 180 ms in the near hand condition (see 

also Sambo and Forster, 2009). The timing of the body-stimulus position related 

activity (~180 ms) was notably different from that of the illusion effect (~330 

ms). This differentiates the illusion effect from body-stimulus position related 

activity. However, the topography of the body-stimulus position related activity 

at 180 ms was highly similar to that of our illusion effect at 330 ms. Thus, it is 

possible that both effects may emanate from the same cortical networks related 

to body processing. Support for this comes from a study by Brozzoli et al. (2012) 

who measured BOLD response while presenting participants with visual stimuli 

occurring next or distant from their hands. Their results indicated increased 

activity in premotor and intraparietal cortices in the condition where the 

stimulus was close to the hand compared to the condition where the stimulus 

was distant form the hand. Similar results were obtained when the participant’s 

hand was replaced by a rubber hand on which the RHI was induced (Brozzoli et 

al., 2012). This suggests that both, the effects of body-stimulus position and the 

illusion may originate from processing in the intraparietal-premotor network but 

do so at different latencies relative to stimulus onset, further corroborating that 

the ERP correlates of the illusory percept reflect sensory integration processes in 

the parietal-premotor network. 

We found attention related activity in frontal and parietal regions around 100 ms 

and around 250 ms. This timing is in agreement with previous ERP studies on 

visual-tactile attention which presented simultaneous stimuli in close proximity 

or at distant locations (Eimer and Driver, 2001; Sambo and Forster, 2009) and 

reported modulations of amplitudes between 80-125 ms and 200-280 ms 

associated with the induced changes in spatial attention. Interestingly the timing 

and location of activity related to attentional processing in our study is similar 
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to the timing and location of early differences between Illusion and Incongruent. 

This could mean that these early differences in evoked potentials between 

Illusion and Incongruent condition are not directly related to the illusion but 

rather reflect the difference in attention focus between the two conditions. This 

underlines that the Incongruent condition, one of the most commonly used 

control condition in EEG experiments on the RHI, should be used with caution 

when trying to determine the neurophysiological correlates of the RHI. 

Illusion effects in oscillatory activity 

The analysis of oscillatory activity revealed that illusory hand ownership resulted 

in a relative decrease of oscillatory power in the alpha and beta bands. 

Modulations of alpha power have previously been implicated in the rubber hand 

illusion (Evans and Blanke, 2013) as well as the full body illusion (Lenggenhager 

et al., 2011). Our results are also in good agreement with those from a recent 

study on the somatic RHI (Faivre et al., 2017), a variant of the conventional RHI. 

Very similar to our results this study found a relative decrease in alpha power 

over frontocentral regions contralateral to stimulation site and a relative 

decrease in beta power bilaterally over frontoparietal regions during the illusion. 

Combined with the consistency of these power decreases across two control 

conditions and two experiments as shown here, this implicates that the decrease 

in alpha and beta power during the illusion is not associated with visual 

information or a specific control condition. Instead, it is likely to be directly tied 

to the feeling of ownership during the illusion itself, and hence constitutes a 

robust physiological marker of body ownership. 
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Limitations 

We developed a fully-automated, temporally precise stimulation apparatus for 

induction of the RHI in our study. This allowed for the recording of evoked 

activity time-locked to the administered visuo-tactile stimuli, but resulted in a 

less naturalistic stimulation compared to the conventional manual stimulation 

(Peled et al., 2003; Zeller et al., 2015). This unnaturalness was consistent across 

the Illusion and control conditions and thus is very unlikely to have introduced 

differences between conditions in the current results. Yet it could potentially 

account for differences between the current and previous results. Future studies 

could explore this possibility by e.g. using an automated stimulation apparatus 

with motor-driven rods/brushes, providing a more naturalistic stimulation in 

addition to temporal precision. 

All participants in the study were familiar with the illusion as they had 

previously indicated the experience of this illusion and had completed the RHI 

Questionnaire (Botvinick and Cohen, 1998). We only tested previously screened 

participants to facilitate the analysis of brain activity in response to the illusion, 

as this necessary requires participants that reliably experience the illusion for a 

sufficiently long period of time. 

While this selection of participants was necessary to test for statistical 

differences between the Illusion and control conditions, future research should 

examine the neurophysiological processes that differ between subjects who 

experience the illusion and subjects who do not, or could test how illusion-

related brain activity builds up in response to experiencing the illusion the first 

time, or over multiple times of exposure. 
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Finally, and this pertains all research on the neurophysiological correlates of 

illusory hand ownership, it is important to keep in mind that the illusion 

condition might differ from any control condition in factors not easily measured, 

such as a participant’s increased state of introspection or arousal. This 

illustrates the importance of improving the quality of control conditions in 

further research on the subjective experience of the RHI. 

Conclusion 

We identified neurophysiological correlates of the rubber hand illusion in a 

reduction of alpha and beta power as well as in an attenuation of evoked 

responses around 330 ms over central electrodes. The attenuation of evoked 

responses is likely to reflect the integration of visual, somatosensory and 

proprioceptive information during the illusion, which then leads to the 

experience of ownership over the rubber hand. Our results furthermore 

emphasize the need to consider multiple control conditions in studies on body 

illusions, to avoid misidentifying effects related to changes in body-stimulus 

position or attention for correlates of illusory body ownership. 
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Chapter 5: Neurophysiological Correlates of the 

Somatic Rubber Hand Illusion in late Evoked and 

Alpha/Beta band Activity 

Introduction 

In the two experiments described in Chapter Four we suggested that the feeling 

of ownership in the RHI is associated with a reduction of alpha and beta power 

and an attenuation of evoked responses around 330ms over central electrodes. 

We concluded that these effects were likely to stem from activity in premotor 

and intraparietal areas which have previously been implicated in the illusory 

percept of hand ownership and hand position in the RHI (Brozzoli et al., 2012; 

Guterstam et al., 2015; Kanayama et al., 2016; Limanowski and Blankenburg, 

2015; Petkova et al., 2011). However, when considering the visual processing 

that takes place during the RHI, there is another possible source for these 

effects. Evidence suggest that cells in the premotor cortex code visual inputs in 

a body-centred frame of reference (Graziano et al., 1994, 1997) in that they 

respond both when an object is seen approaching a specific body area and when 

this area is touched (Fogassi et al., 1992; Gentilucci et al., 1983; Graziano et 

al., 1994; Rizzolatti et al., 1981a, 1981b). As pointed out by Botvinick (2004) 

these cells are likely to be active after onset of the RHI when the hand-centred 

visual receptive fields become aligned with the rubber hand. The resulting 

premotor activity would then be related to the touch stimulus occurring on the 

remapped rubber hand rather than the actual processes underlying the feeling of 

ownership. In the current chapter our goal was to test that the attenuation of 

evoked responses around 330ms and the reduction in alpha and beta power in 
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the Illusion condition as found in Chapter Four were not related to a remapping 

of visual receptive fields but to the feeling of ownership in the RHI. 

To induce an illusory feeling of hand ownership in the absence of visual input 

i.e. without a change in hand-centred visual receptive fields we made use of the 

so called somatic rubber hand illusion (Davies et al., 2013; Ehrsson et al.; Faivre 

et al., 2017; Hara et al., 2015; Kodaka et al., 2014; Petkova et al., 2012; Pozeg 

et al., 2014; White et al., 2015a). The somatic rubber hand illusion was 

developed from the so-called self-touch illusion which was first reported by 

Ramachandran and Hirstein (1998). In their study an assistant was seated in front 

of a blindfolded participant whose index finger was guided to stroke and tap the 

assistant’s nose by an experimenter. At the same time, the experimenter 

stroked and tapped the participant’s own nose in synchrony. This synchronous 

tactile stimulation resulted not only in the participant feeling as if he/she was 

touching his/her own nose but also induced the sensation of the nose being 

dislocated or extended in space. This self-touch illusion was modified and 

adapted for illusory hand ownership by Ehrsson et al. (2005). To induce a 

somatic rubber hand illusion the participant’s finger were guided to touch a 

rubber hand, while the participant’s real hand was being touched by an 

experimenter in synchrony. Participants were instructed to press a foot pedal as 

soon as they started the illusion that the hand they were touching was their 

own. The study recorded fMRI data in this illusion condition and two control 

conditions- an asynchronous condition in which the touches occurred randomly 

and an incongruent condition in which the participant’s finger was guided to 

touch a non-hand shaped object instead of the rubber hand. The results showed 

that despite the absence of visual input the somatic RHI was associated with 

greater bilateral activity in premotor regions compared to both control 
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condition. This finding was in agreement with previous fMRI findings on 

increased premotor activity in the classical RHI (Ehrsson, 2004) prompting the 

authors to conclude that premotor activity in the classical RHI is unlikely to be 

associated with activity in remapped hand-centred visual receptive fields as 

suggested by Botvinick (2004). Applying a similar logic as Ehrsson et al. (2005), 

the current experiment compared ERPs and oscillatory activity in the somatic 

Rubber hand Illusion to establish if the neural correlates of the somatic rubber 

hand illusion are similar to the neurophysiological correlates of the classic RHI as 

identified in the two experiments described in chapter 4.  

Probing the neural correlates of the somatic RHI in EEG brain activity required 

two modifications of the commonly used setup to avoid possible confounds. 

Firstly, the somatic rubber hand illusion is generally induced manually by an 

experimenter who applies direct touch to the participant’s hand and guides the 

participant’s finger to touch the rubber hand synchronously. However, manual 

stimulation cannot provide consistent stimulation across trials and is therefore 

not suitable for experiments using EEG. In addition, the presence of an 

experimenter during illusion experiments has been suggested to introduce 

various confounds (Rohde et al., 2013b). To overcome these problems, we 

developed an automated setup for inducing the somatic rubber hand illusion. 

The setup involved a stepper motor which guided the participant’s finger to 

touch the rubber hand and a second stepper motor which guided a finger-shaped 

object to touch the participant’s real hand. This setup delivered consistent 

stimulation across trials for each participant and did not require the presence of 

an experimenter.  Secondly, we had to apply a novel control condition in order 

to allow for the recording of ERPs to similar touch stimuli across Illusion and 

control conditions. Commonly used control conditions in the somatic RHI such as 
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the Incongruent condition and Asynchronous condition as described by Ehrsson et 

al. (2004) are not suitable for comparing ERPs across conditions. This is because 

the touch stimuli in these control conditions vary either in timing or texture 

from the touch stimuli in the illusion condition. In the current experiment we 

introduced a novel control condition in which the illusion is unlikely to occur 

because of an increased distance between rubber hand and the participant’s real 

hand. This allowed us to directly compared touch evoked ERPs across illusion and 

control conditions. 

In summary, in the current experiment our goal was to induce an illusory feeling 

of hand ownership in the absence of visual input by using the somatic RHI. We 

hypothesised that the somatic rubber hand illusion would be associated with an 

attenuation around 330ms post-stimulus on central electrodes and a reduction in 

alpha and beta power, as found in Chapter 4 in the classic RHI. A similarity 

between the results in the current experiment and the results in Chapter 4 

would indicate that the illusion effects found in Chapter 4 were not merely 

related to a remapping of visual receptive fields as a result of the RHI but to the 

neurophysiological processes in the RHI itself. 

Materials and Methods 

Participants 

A total of 34 right-handed volunteers participated in this study. We first ran a 

pilot study on all 34 participants, which involved two stimulation blocks of 2 

minutes identical to the Illusion condition and Control condition described 

below. After each stimulation block participants rated the statement ‘I felt as if 

I was touching my left hand with my right index finger’ (Ehrsson et al., 2004). All 

participants strongly disagreed with the statement after the control condition 
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block, while 20 of the 34 participants agreed or strongly agreed to the statement 

after the Illusion trial. Only these 20 participants were included in the current 

experiment (n=20 participants including 10 female, mean age = 20.8, years, SD = 

3.6). All participants gave written informed consent before participation in this 

study. All protocols conducted in this study were approved by the Ethics 

Committee of the College of Science and Engineering of the University of 

Glasgow. 

Experimental conditions and Procedure 

Participants sat in a completely dark room comfortable chair in front of a 

wooden platform with two stepper motors (NEMA-17, 42mm) attached to it. The 

participant’s left hand rested on the wooden board below a fixed stepper motor 

(Figure 13). A finger-shaped cylindrical putty cone was attached to this stepper 

motor in such a way that the tip of the cone repeatedly touched the dorsal part 

of the proximal phalanx of the participant’s index finger when the stepper motor 

moved up and down. The participant’s right hand was placed under a second 

movable stepper motor which had a ring attached to it. The ring was fitted 

around the participant’s index finger’s distal interphalangeal joint and the 

rubber hand was placed below the tip of the participant’s index finger. 

Subsequently, when the stepper motor was set in motion the participant’s 

fingertip repeatedly touched the dorsal part of the proximal phalanx of the 

rubber hand’s index finger. The stepper motors were controlled via Matlab and 

an Arduino prototyping platform. Tactile stimulation was synchronous so that the 

participant’s index finger touched the rubber hand at the same time as the putty 

cone touched the participant’s left hand. To reduce eye movements, 

participants sat with their gaze fixed on a dimly illuminated 1 cm sized cross 



97 
 
attached to the wall at eyeline height in 80cm distance in front of them. 

Participants wore ear plugs to reduce the noise caused by the stepper motors. 

Each participant completed one block of the Illusion condition and one block of 

the Control condition. Illusion condition: The rubber hand was placed in parallel 

to the participant’s left hand at a distance of 15cm (distance between middle 

fingers). The stepper motor guiding the participant’s right index finger was 

adjusted accordingly. Control condition: The rubber hand was positioned at a 

distance of 85 cm to the participant’s hand (distance between middle fingers) 

and angled 45˚. Besides this the setup was similar to the setup and stimulation 

protocol described in the Illusion condition. The condition sequence was 

randomized for each participant. Each block included 350 stimulation events. 

The tactile stimuli (i.e. the participant’s fingertip touching the rubber hand and 

the putty cone touching the participant’s hand) occurred within a time window 

of 100 ms after the stepper motors were set in motion. The timing of the 

touches varied across participants depending on finger anatomy, hand thickness 

and muscle tension but were consistent for each individual participant. The ISI 

between onset of the motor movement varied randomly and evenly between 900 

ms and 1300 ms. Each block lasted approximately 5.5 minutes. Similar to Ehrsson 

et al. (2005) participants indicated verbally when they felt the onset of the 

illusion and when they lost the feeling of the illusion.  
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Figure 13|Stimulation and Experimental setup. Illusion condition: rubber hand 

placed in parallel to the participant’s left hand at a distance of 15cm. Control 

condition: rubber hand was placed at a distance of 85 cm and angled 45˚. The order 

of blocks was randomised for each participant. 

EEG Recording  

Experiments were performed in a darkened and electrically shielded room. EEG 

signals were continuously recorded using an active 64 channel BioSemi (BioSemi, 

B.V., The Netherlands) system with Ag-AgCl electrodes mounted on an elastic 

cap (BioSemi) according to the 10/20 system. Four additional electrodes were 

placed at the outer canthi and below the eyes to obtain the electro-occulogram 

(EOG). Electrode offsets were kept below 25 mV. Data were acquired at a 

sampling rate of 500 Hz using a low pass filter of 208 Hz. 

EEG Analysis 

Data analysis was carried out offline with MATLAB (The MathWorks Inc., Natick, 

MA) using the FieldTrip toolbox (Oostenveld et al., 2011). Stimulation events and 

their corresponding triggers were sorted based on condition and presence or 

absence of the illusion. For the analysis of the Illusion condition only events in 
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which the illusion was present, as indicated by the subjects, were used. This 

amounted to 266±48 (mean±SD) events. For analysis of the control conditions 

only events in which the illusion was absent were used. Since no occurrence of 

the illusion was reported in the control condition, all respective events were 

included in the analysis. EEG data was segmented into epochs of 800 ms (200 ms 

pre-stimulus to 600 ms post-stimulus, stimulus defined as onset of the motor 

movement i.e. start of motor movement guiding the fingertip onto the rubber 

hand/ the putty cone onto the participant’s left hand+100 ms) and pre-

processed as described in chapter 4. According to the respective criteria we 

rejected of 34 ± 8 % of trials (mean ± SD). For further analysis the EEG signals 

were referenced to the mean EEG signal of near mastoid electrodes P9 and P10 

to facilitate the recording of somatosensory related EEG activity. Condition 

averages of the evoked responses (ERPs) and oscillatory power were computed 

similar to the procedure described in experiment 2 and 3.  

Our primary aims were to determine if ERP and oscillatory signatures of the 

somatic rubber hand illusion were similar to those of the classic rubber hand 

illusion as described in Chapter 4. Thus we compared average evoked responses 

at illusion effect electrodes and in a time window around the time point 

identified in Experiment 2. This time window was chosen as follows: Since in the 

illusion effect occurred 330 ms after stimulus onset in Experiment 2, the same 

was expected in the current experiment. However, in the current experiment 

the exact moment of stimulus onset, i.e. the moment the fingertip was touching 

the rubber hand and the putty cone was touching the participant’s hands varied 

across participants. Taking into account the time the stepper motor took to 

move to its respective positions we estimated that the touch stimuli onset across 

participants varied within a time window of approximately 100 ms. 
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Subsequently, we choose to compare average evoked responses at illusion effect 

electrodes within a time window of 330 ms to 430 ms using a dependent t-test. 

Analysis of oscillatory activity was restricted to the respective illusion effect 

electrodes for alpha and beta band as identified in experiment 2. The average 

oscillatory power on these electrodes was compared using a dependent t-test. 

Both t-tests were computed one-tailed as both experiment 2 and 3 strongly 

suggested that an attenuation in both evoked responses and oscillatory responses 

was to be expected. 

Results 

Illusion onset occurred on average 84 ± 49 seconds after the start of stimulation 

onset in the illusion block. No participants lost the feeling of illusory hand 

ownership after its initial onset. No illusion sequences were reported in the 

control block. There was a significant difference in the average evoked response 

between the Illusion (0.43 ± 0.73) and the Control condition (0.67 ± 0.70) 

between 330 ms and 430 ms post-stimulus (t(19) = -1.80; p < 0.05, one-tailed) in 

that the Illusion condition showed an attenuation in the ERP. The grand-

averaged evoked response in FCz is shown in Figure 14. We found no significant 

differences in oscillatory responses in the Illusion and Control condition in either 

the alpha band (8-12 Hz; t(19) = 2.31; p = 0.98, one-tailed) or beta band (13-25 

Hz; t(19) = 1.62; p = 0.94, one-tailed; Table 3).  
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Figure 14|Grand-averaged event-related potentials at FCz in Illusion (blue) and 

Control (red) condition. The shaded areas indicate the standard error of the mean. 

The yellow shaded rectangle illustrates the analysed time window of 330ms-430 ms. 

 

Condition Alpha (8-12 Hz)                         Beta (13-25 Hz) 

Illusion 7.0127(5.6763)  1.4965(0.7850) 

Incongruent 5.6966(3.8775)  1.3775(0.6119) 

Table 3| Mean values and standard deviations of oscillatory power in alpha (8-12 Hz) 

and beta band (13-25 Hz)  

                                                                                                             
Discussion 

In the present study we studied the illusory feeling of hand ownership in the 

absence of visual input by using an automated setup to induce the somatic RHI. 

We found that the somatic rubber hand illusion was associated with an 
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attenuation around 330ms post-stimulus on central electrodes similar to the RHI 

as described in Chapter 4. This provides evidence that the illusion effect in 

evoked responses as found in Chapter 4 does not merely reflect a remapping of 

visual receptive fields as a result of the RHI but the neurophysiological processes 

of the RHI itself.  

Behavioural Results 

In this experiment we introduced a novel fully automated setup for the somatic 

RHI which retained consistency of stimuli texture and quality across trials. It 

thereby allowed for the recording of somatosensory ERPs in the somatic RHI for 

the first time. Previous setups for inducing the somatic RHI relied on applying 

stimuli on the participant’s hand by using either the experimenter’s finger, 

automated vibration, or an automated tap by a robotic master-slave system. To 

compare our novel setup with previously used setups we recorded illusion onset 

times. We found that in our experiment illusion onset times were markedly 

longer than in previous experiments. Participants in our study reported the 

illusion onset after around 80 seconds, while previous studies noted illusion 

onset times of around 10- 15 seconds (Davies et al., 2013; Ehrsson et al.). The 

different onset times between studies are likely to be caused by the difference 

in stimuli quality and application. Both, Ehrsson et al. and Davies et al. relied on 

brushstrokes and touches applied and guided by an experimenter. The 

inconsistency in timing and quality across the applied stimuli may have led to a 

more rapid onset of a feeling of illusory hand ownership, similar to what has 

been found for the RHI (Rohde et al., 2011). In addition, the automated 

movement as induced by the stepper motor in our experiment was less 

naturalistic than movement induced by another person which might have added 

to the increase in illusion onset times. However, as can be seen in regard to the 
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conventional RHI varying illusion onset times are not associated with a decrease 

in strength of illusory hand ownership (Ehrsson, 2004; Ide, 2013; Slater et al., 

2009) . Thus, the delayed illusion onset time in the current setup presents no 

problem for the current experiment with its defined purpose. A second 

important parameter to compare our current setup’s performance is how many 

participants successfully felt the somatic RHI. Previous studies on the somatic 

RHI reported that 25 out of 32 (Ehrsson et al., 2005) and 8 out of 12 (Petkova et 

al., 2012) participants felt the illusion. We found that in our experiment 20 out 

of 34 participants felt the illusion. With this ratio being similar to the previously 

reported ones we can conclude that despite a delayed illusion onset our novel 

fully automated setup can successfully induce illusory hand ownership in the 

somatic rubber hand illusion. 

Neurophysiological results  

Evoked responses 

In chapter 4 we identified the neurophysiological correlates of the RHI in an 

attenuation of evoked response around 330ms over central electrodes. 

Considering the findings of previous fMRI studies on the RHI, we suggested that 

this attenuation provided further evidence for the involvement of premotor 

areas in illusory hand ownership. As noted by Botvinick (2004) however, there 

was a possibility that this premotor activity stemmed from a remapping of visual 

fields during the RHI rather than from processes directly related to illusory hand 

ownership. To investigate this possibility we used time point and location of the 

illusion effect identified in chapter 4 and tested if the average amplitude at this 

time point and location showed a significant attenuation in evoked responses 

associated with illusory hand ownership in a non-visual variant of the RHI, the 

somatic RHI. We found that similar to the conventional RHI, the somatic RHI 
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shows an illusion-related attenuation around 330 ms on central electrodes. This 

suggests that this attenuation stems from brain activity both present in the 

conventional RHI and the somatic RHI. Since there was no informative visual 

information available in our experimental setup it is unlikely that this 

attenuation at 330 ms on central electrodes is then related to a remapping of 

visual fields as was suggested by Botvinick (2004). Rather, our findings suggest 

that this attenuation in evoked responses is associated with processes common 

in both illusions and directly related to illusory hand ownership. The current 

results should be considered with caution however because our setup did not 

allow us to determine the exact timing of the delivered touches. Further 

research is needed to create a setup that allows not only for consistency in 

stimuli texture but also for a precise measurement of when the touch stimuli 

occur.  

Oscillatory activity 

In chapter 4 analysis of oscillatory activity in the conventional RHI revealed that 

illusory hand ownership was associated with a reduction in alpha and beta 

power. In the current experiment on the somatic RHI, we found that illusory 

hand ownership did not result in a significant reduction of alpha and beta power, 

rather both alpha and beta showed an increase in power during the Illusion 

condition. There are two possible explanations for this. Firstly, a reduction in 

alpha and beta power might be directly related to a process that only occurs in 

the conventional RHI and not in the somatic Rubber hand illusion. As the lack of 

informative visual information is the main difference between the two illusions, 

it could therefore be suggested that the changes in oscillatory activity identified 

in chapter four are due to visual processing occurring in the conventional RHI. 

Since no visual processing of this kind occurs in the somatic RHI there would also 
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not be a reduction in alpha and beta power. However, in a recent study Faivre 

et al. (2016) found evidence for a reduction in alpha and beta power in the 

somatic RHI. The failure to replicate these findings in our study might be due to 

the choice of our control condition. As Faivre et al. did not investigate evoked 

responses, they compared the illusion condition with a commonly used control 

condition in which the touches occurred asynchronously (Ehrsson et al.; Naish et 

al., 2012; Petkova et al., 2012; Pozeg et al., 2014; White et al., 2015b). As this 

control condition would have rendered the analysis of somatosensory evoked 

responses impossible we relied on a control condition in which we increased the 

distance and changed the angle between the participant’s left hand and the 

rubber hand. This control condition might have involved processing associated 

with an increase in alpha and beta power. As a result it would have been more 

difficult to detect potentially subtle effects in oscillatory activity such as the 

attenuation in alpha and beta band that we identified in experiment two and 

three. In addition, our control condition might have been flawed in its ability to 

diminish the feeling of illusory hand ownership. While none of our participants 

reported feeling the illusion during this condition, Davies et al. (2013) found that 

illusory hand ownership in the somatic RHI was diminished though never 

abolished by distance and alignment manipulation in a synchronous condition. 

While Davies only tested distances of up to 60 cm which falls short of the 85 cm 

used in the current study, these results suggest that our control condition is not 

as consistent in abolishing the somatic RHI as e.g. the asynchronous condition 

used by Faivre et al. (2017). But why did participants in our study not report an 

onset of the illusion during the control condition? This might be due to the 

difference in intensity between the feeling of illusory hand ownership in the 

Control condition and the Illusion condition. If the participant associated the 
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stronger feeling of illusory hand ownership as it occurs during the Illusion 

condition with the presence of the illusion, the diminished feeling in the Control 

condition could then go unreported. On the neurophysiological level however the 

control condition would not serve as a good control anymore as it has ceased to 

constitute a baseline. This might have resulted in a lack of statistical power to 

detect the differences in oscillatory activity between the illusion and the control 

condition. This possibility highlights the need for more objective measures of 

illusion presence and for refined control conditions in research on the somatic 

RHI.  In order to further investigate the neurophysiological processes underlying 

the somatic RHI future studies should develop a control condition which 

abolishes the feeling of illusory hand ownership but retains consistency of stimuli 

texture and quality across trials. This would allow for a better comparison of 

both ERPs and oscillatory activity between illusion and control conditions as it 

limits possible confounds that could be mistaken for illusion effects. 

Conclusions 

We induced an illusory feeling of hand ownership in the absence of visual input 

by using an automated somatic RHI setup. We found that the somatic rubber 

hand illusion was associated with an attenuation around 330ms post-stimulus on 

central electrodes, as found in Chapter 4 in the classic RHI. The similarity 

between the results in the current experiment and the results in Chapter 4 

indicates that this illusion effects in evoked responses is not merely related to a 

remapping of visual receptive fields as a result of the RHI but to the 

neurophysiological processes of the RHI itself.  
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Chapter 6: General Discussion 

The work in this thesis systematically investigated the neurophysiological 

correlates of illusory hand ownership by using an automated RHI setup with 

variable parameters and applying high-density neuroimaging (EEG). This 

approach made it possible to identify the neural correlates of hand ownership in 

two variants of the RHI in evoked potentials and oscillatory activity across four 

experiments. As a result, the work presented here steps beyond previous EEG 

studies on the RHI and provides insights into the temporal dynamics of body 

ownership in the brain. 

The first experiment (presented in Chapter Three), focused on establishing that 

the purpose-built, automated setup induced the Rubber Hand Illusion reliably, as 

measured by proprioceptive drift measurements and questionnaire ratings. The 

evoked visual and tactile responses elicited by the setup were identified. Timing 

and intensity of illusory hand ownership was found to be comparable to the 

existing literature. Further, the experiment identified necessary adjustments for 

the RHI setup in order to avoid confounds induced by avoidable differences 

between conditions in the subsequent experiments. 

In the second experiment (presented in Chapter Four), a setup adjusted 

according to the findings of the first experiment was used to record evoked 

potentials and oscillatory responses in participants who experienced the rubber 

hand illusion. A combination of experimental conditions was applied to rule out 

confounds of attention, body-stimulus position and stimulus duration. We relied 

on of two control conditions to reveal the neural correlates of illusory hand 

ownership. The experiment revealed a reduction of alpha and beta power as 

well as an attenuation of evoked responses around 330 ms over central 
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electrodes associated with illusory hand ownership. Further, the results 

indicated that body-stimulus processing and illusion processing as measured by 

evoked potentials might emanate from the same cortical network. 

The third experiment (presented in Chapter Four) tested if the findings of the 

second experiment in regard to illusion effects were robust against changes in 

stimulus duration. Indeed, the reduction in alpha and beta power and the 

attenuation of evoked responses at 330 ms were found to be robust against 

changes in the length of the applied visuo-tactile stimuli. Together with the 

results from experiment two, these findings provide the first EEG marker of 

illusion related activity in the RHI induced by an automated setup with varying 

stimulus length. As both non-automated setups and invariable stimuli length 

have complicated the interpretation of previous EEG research on the RHI, the 

current results provide the first systematically derived insight into the temporal 

dynamics of illusory hand ownership in the brain.  

Experiment four (presented in Chapter Five) investigated if the neural correlates 

identified in the second and third experiment were indeed related to the feeling 

of illusory hand ownership in the RHI and not to a mere remapping of visual 

receptive fields. To test this, evoked potentials and oscillatory responses were 

recorded during the somatic rubber hand illusion, a non-visual variant of the 

RHI. The somatic rubber hand illusion was found to be associated with an 

attenuation around 330 ms post-stimulus on central electrodes, similar to the 

classic RHI in experiment two and three. This indicated that this illusion effect 

in evoked potentials was not merely related to a remapping of visual receptive 

fields as a result of the RHI but to the neurophysiological processes of the RHI 

itself. This study constituted the first investigation of evoked potentials in the 

somatic RHI using an automated setup and consolidated the interpretation of the 
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attenuation around 330 ms in evoked potentials as pertaining to illusory hand 

ownership processes.   

Neural and functional origins of the attenuation in evoked 

potentials and oscillatory activity 

The results of these experiments suggest that illusory hand ownership was 

associated with an attenuation around 330ms on frontocentral electrodes 

(Experiment two, three and four) and an attenuation in alpha and beta power 

(Experiment two and three).  The following paragraphs explore how these results 

fit in with the current literature on body ownership. 

Neural origins of the attenuation in evoked potentials 

As the work in this thesis relied on EEG as its neuroimaging tool, the exact 

neurophysiological sources of the identified illusion effect cannot be directly 

identified. However, there is a strong body of evidence that our identified 

illusion effect in evoked potentials is a result of illusion related multisensory 

processing in premotor and/or parietal areas. Firstly, numerous fMRI studies on 

the rubber hand illusion have identified illusory hand ownership to be associated 

with processing in premotor and parietal regions (Bekrater-Bodmann et al., 

2014; Brozzoli et al., 2012; Ehrsson, 2004; Gentile et al., 2013; Grivaz et al., 

2017; Guterstam et al., 2014; Limanowski and Blankenburg, 2015; Petkova et 

al., 2011). Further, the timing of the illusion effect matches results from 

previous multisensory integration studies which reported visual-tactile 

integration related processing over precentral and postcentral regions adjacent 

to premotor cortex and intraparietal sulcus between 280 ms and 330 ms.  



110 
 
Further evidence in particular for parietal areas as the source of our illusion 

effect in evoked potentials emerges when we compare our results to findings 

derived from an EEG investigation on the Aristotle illusion. A tactuo- 

proprioceptive illusion in which one object touching the contact area between 

two crossed fingers is perceived as two lateral objects, the Aristotle illusion is 

not an illusion modulating body ownership but is still comparable to the RHI in 

that it is a multisensory illusion involving somatosensation and proprioception. In 

line with our results, Bufalari et al. (2014) found modulations in late evoked 

potentials over frontocentral electrodes in the Aristotle illusion (Bufalari et al., 

2014). Source localisation revealed the source of these modulations to be in 

inferior parietal regions. These findings indicate that illusion related (and, in the 

case of the RHI, potentially ownership related) activity in such multisensory 

illusions occur in parietal areas and can manifest itself as modulations over 

frontocentral electrodes.  

Further support for our suggestions that the attenuation in evoked potentials 

originates from processing within the premotor-parietal network is provided by 

the overlap of electrodes showing illusion effect and body-stimulus effect in 

experiment two. We found that body-stimulus processing related to the position 

of the visual stimulus in relation to the body, i.e. if the visual stimulus occurred 

on the body or not on the body, was associated with an attenuation at 180ms on 

frontocentral electrodes. This attenuation is likely to originate from activity in 

the peripersonal space (PPS) system  as previous research has shown that this 

system integrates multisensory cues around the body, depending on the position 

of these stimuli in the surrounding environment with respect to the body (Makin 

et al., 2008).  This multisensory integration in PPS has been shown to involve a 

range of brain areas, such as superior parietal cortex (Gentile et al., 2013, 2011; 
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Makin et al., 2008; Schaefer et al., 2012; Sereno and Huang, 2006), temporo-

parietal cortex (Brozzoli et al., 2012, Gentile et al., 2013, 2011) and the 

premotor cortex (Brozzoli et al., 2012; Gentile et al., 2013, 2011). Notably, a 

recent meta-study by Grivaz et al. (2017) confirmed that PPS and body 

ownership share common neural substrates in parietal in premotor areas. This is 

in agreement with our finding in experiment two that, while occurring at 

different time points, the body-stimulus effect and illusion effect occurred at 

similar electrodes, i.e. frontocentral channels. This similar location in how both 

PPS system and body ownership activity emerged at the electrode level is 

indicative of similar neural origins. In conjunction with findings of Grivaz et al. 

(2017), we therefore have more evidence that the attenuation in evoked 

potentials around 330ms reflects processing in parietal and premotor areas. 

The final piece of evidence that our identified illusion effect in evoked 

potentials is a result of illusion related multisensory processing in premotor 

and/or parietal areas emerges when the findings of experiment four are 

interpreted in context with previous research on bodily illusions beyond the RHI. 

In experiment four we found the attenuation at 330 ms on frontocentral 

electrodes in a non-visual variant of the RHI, the so-called somatic rubber hand 

illusion or self-touch illusion. Thus, the illusion-related change in evoked 

responses was identifiable in two different bodily illusions, the classic RHI and 

the somatic RHI. This hints at the possibility that this illusion effect might be 

related to the general processing involved in illusory body ownership. Notably, 

previous research on various bodily illusions has repeatedly found processing 

related to body ownership to be associated with activity in premotor and 

parietal cortices. For example, Petkova et al. (2011) induced a full body illusion, 

in which people experienced an artificial body to be their own, and fMRI analysis 
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revealed a coupling between the experience of full-body ownership and neural 

responses in bilateral ventral premotor and left intraparietal cortices. Further, 

Apps et al. (2015) investigated the so called enfacement illusion, in which 

participants experience the sensation of looking at themselves in the mirror 

when in fact looking at another person's face, and found that the strength of this 

illusory experience correlated with activity in intraparietal areas. Thus, there is 

converging evidence that that both premotor and parietal regions are involved in 

generating a feeling of body ownership and in general body-illusion related 

processing across various kinds of illusions. This is in agreement with our result 

that illusory hand ownership in both the classic RHI and the somatic rubber hand 

illusion was related to an attenuation at 330 ms on frontocentral electrodes. 

Hence, our identified illusion effect at 330 ms in evoked potentials is likely to 

reflect higher-order multisensory integration processes involved in the origin of 

not only illusory hand ownership but illusory body ownership in premotor and 

parietal regions.  

Predictive coding and the functional neural underpinnings of the 
RHI  

While the involvement of premotor and parietal regions in illusory body 

ownership has been established, it is less known in what way these regions 

communicate with each other and other regions during the RHI. While the 

neurocognitive models of body ownership in the RHI suggested by Tsakiris (2010) 

and Makin et al. (2008) have attempted to outline a possible step-by-step 

process of how illusory hand ownership originates, separating neurophysiological 

multisensory integration processes from neurophysiological processes directly 

related to the feeling of illusory hand ownership remains difficult. Studies on the 

functional processes in the RHI have however provided glimpses into how illusory 
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hand ownership emerges and is maintained. Using effective connectivity 

analysis, Gentile et al. (2013) were the first to report increased functional 

coupling of the left IPS with the PMv and the LOC during congruent visuo-tactile 

stimulation in an RHI inspired paradigm. This functional coupling was identified 

during the RHI by Limanowski and Blankenburg (2015) in an fMRI study which 

relied on an automatic stimulation setup for inducing illusory hand ownership. 

This study also demonstrated an information exchange between hierarchically 

lower areas in lateral occipital areas (LOC) and somatosensory cortex and the 

hierarchically higher intraparietal sulcus, and between the intraparietal sulcus 

and the premotor cortex. Notably, connections from both the somatosensory 

cortex and the LOC to the intraparietal sulcus were significantly enhanced under 

the RHI, meaning that activity within the intraparietal sulcus was more strongly 

causally influenced by modulations of the bottom- up connections from the 

somatosensory cortex and the LOC. A similar dynamic was also observed by 

Zeller et al. (2016) who used dynamic causal modelling on EEG data in the RHI. 

The researchers found a significant increase of forward connectivity between 

occipital areas and the premotor cortex and a decrease in intrinsic connectivity 

within primary somatosensory cortex. These findings indicate that during the RHI 

information exchange between hierarchically lower sensory areas such as the 

somatosensory cortex and the occipital cortex and hierarchically higher 

integration areas such as the premotor cortex and parietal areas increases. This 

communication between lower and higher areas identified in both EEG and fMRI 

studies on the RHI has been suggested to reflect hierarchical information 

exchange according to the principles of predictive coding (Zeller et al., 2016).  

The predictive coding theory posits that the brain constructs hierarchical 

generative models about the causes of the sensory input it receives. It then 
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continually attempts to minimize its models’ prediction errors on each 

hierarchical level. To achieve this, the brain derives sensory predictions from its 

models. These predictions then get tested against incoming sensory input 

(Friston, 2010; Limanowski and Blankenburg, 2013). If there is a match between 

the predicted and actual sensory input, the model in question is confirmed. If 

there is a mismatch, prediction error occurs and the model needs to be updated 

(Friston, 2010; Friston et al., 2013). Apps and Tsakiris (2014) suggested how 

predictive coding can account for the different stages of the RHI. Everyday 

experience makes people predict that a touch they feel on their hand is 

associated to a touch they see on their hand. Before synchronous stimulation, 

the sensory input to the visual system has created predictions in the visual 

system that the participant is seeing a rubber hand which has been assigned a 

low probability that this is the participant’s own hand. During visuo-tactile 

stimulation the temporal congruence between the visual stimulus on the rubber 

hand and the somatosensory stimulus on the real hand evokes surprise both in 

the somatosensory system and the visual system.  This surprise is explained away 

by the top-down influence from multimodal areas and perceptual learning 

processes in the unimodal areas i.e. the model is updated. As a result, the 

probability that the visually perceived rubber hand is part of the participant’s 

body increases. At the same time, the probability that this object is part of the 

body updates the probability that touch on the rubber hand will result in a touch 

experience. Subsequently during the resulting illusory hand ownership touch on 

the rubber hand is no longer surprising, as the object is perceived visually as 

part of one’s body. In other words, the proprioceptive information about where 

the participant’s real hand is located is explained away to accommodate a new 

model which reconciles the incoming sensory input from visual and 
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somatosensory areas with a predicted input- I am looking at my own hand 

therefore I can feel and see touch on it. 

These suggestions of how illusory hand ownership in the RHI emerges as a result 

of predictive coding processes are consistent with the above mentioned findings 

on the functional correlates of illusory hand ownership in the RHI by Gentile et 

al. (2013), Limanowski and Blankenburg (2015) and Zeller et al. (2016). The 

enhancement in connectivity between lateral occipital areas and somatosensory 

areas with the parietal cortex and premotor cortex that was identified by 

Gentile et al. and Limanowski et al. is likely to represent the ascending of the 

prediction errors from visual and somatosensory areas to the hierarchically 

higher parietal and premotor cortex. Zeller et al. (2016) suggested that the 

increase in connectivity between lateral occipital areas and the parietal cortex 

in particular represents a process of affording greater precision to the visual 

input, which in turn attenuates the precision of somatosensory and 

proprioceptive inputs, leading to a recalibration of felt hand position and 

ultimately to illusory hand ownership.  

Our identified illusion effect in evoked potentials at 330 ms cannot be 

unequivocally assigned to a particular stage in this predictive coding model of 

the RHI. We can however speculate as to which functional step it may represent. 

Zeller at al. (2015) interpreted their finding of an attenuation in evoked 

potentials over parietal areas at around 55 ms in the illusion condition as a 

result of the attenuation of proprioceptive and mechanoreceptive input. The 

authors argued that the early timing of this effect supports this suggestion as 

such an attenuation after illusion onset would be established before multimodal 

integration of sensory afferents in hierarchical higher levels which is thought to 

occur earliest after around 100 ms post-stimulus. Our illusion effect in evoked 
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potentials at 330 ms is therefore unlikely to reflect this early attenuation of 

proprioceptive and mechanoreceptive input but might relate to the later 

occurring illusion specific processes, such as integration of visual, somatosensory 

and proprioceptive input or the disownership of the real hand. While this 

underlines our illusion effect as a valuable marker for illusory hand ownership, 

identification of the exact computational process underlying its emergence will 

require further investigation in the future. 

Neural and functional origins of the attenuation in alpha 

and beta band activity 

In oscillatory brain activity, illusory hand ownership was associated with a 

relative decrease of oscillatory power in the alpha and beta band in the work of 

this thesis. Across experiment two and three we found a decrease in oscillatory 

alpha power over parietal areas and a decrease in oscillatory beta power over 

frontoparietal regions. These findings are in agreement with a recent study by 

Kanayama et al. (2016) who applied causality analysis during the RHI and found a 

reduction in connectivity from frontal areas to parietal areas at 3-20 Hz at 200 

ms poststimulus. This reduction in connectivity was negatively correlated with 

the ownership score on a RHI questionnaire. This suggests that activity in alpha 

and beta band is strongly involved in illusory hand ownership by facilitating 

communication between frontal and parietal areas. Kanayama et al. (2016) 

suggested that the reduced connectivity between frontal and parietal areas 

might unlock the mechanisms preserving body integrity thereby allowing the 

rubber hand to be perceived as part of the participant’s body. Thus, the 

identified reduction in alpha and beta band power in the work of this thesis 

might relate to this process, too. Notably this loosening of body integrity would 
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occur in any kind of body illusion and therefore the involvement of alpha and 

beta should be found in studies on illusions other than the RHI. Indeed, in 

particular for alpha this is the case. Lenggenhager et al. (2011) for example 

found modulated alpha band oscillations in the illusion condition in an 

experiment on the full body illusion. Further, Serino et al. (2015) found a 

decrease in alpha power in the illusion condition of a study investigating a 

movement dependent VR variant of the enfacement illusion. An illusion during 

which synchronous visual and tactile inputs update the mental representation of 

a participant’s own face to assimilate another person's face (Serino et al., 2015). 

Considering the predictive coding account of illusory body ownership, alpha and 

beta band activity might thus play a role in enabling the communication 

between brain areas involved in the RHI. In support of this, alpha band and beta 

band activity have been suggested to be involved in shaping the functional 

architecture of the working by determining both engagement and disengagement 

of different regions (Haegens et al., 2011). This has been found in particular for 

the somatosensory cortex in studies involving the body. For example, Brinkman 

et al. (2014) used MEG to investigate changes in oscillatory power while 

participants imagined grasping a cylinder oriented at different angles. The 

authors found that alpha-band oscillatory power increased in the sensorimotor 

cortex ipsilateral to the arm used for imagery, whereas beta-band power 

concurrently decreased in the contralateral sensorimotor cortex. Similarly, 

Buchholz et al. (2014) found that beta oscillations increased excitability in 

contralateral cortex in a saccade task. The authors suggested that oscillatory 

activity in the beta band gates information flow throughout the sensorimotor 

network. This indicates that the identified decrease in alpha and beta power in 

the data presented here is involved in the communication between 
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somatosensory and potentially higher hierarchical areas in the RHI. Further 

research is needed however to identify the exact underlying computational 

processes. 

Applicability and Impact of our findings 

The identification of the neurophysiological correlates of illusory hand ownership 

in evoked potentials and oscillatory activity in this thesis presents an important 

step towards facilitating clinical and technological applications of the rubber 

hand illusion and of other bodily illusions. As both, the attenuation around 330 

ms in evoked potentials and the decrease in alpha and beta band power appear 

to be part of the EEG fingerprint of the illusion, these markers could be utilised 

as a new physiological measure of the RHI. A new, reliable, and temporally 

precise physiological measure for the RHI and other bodily illusion would present 

a much needed step towards the standardisation among experiments 

investigating body ownership (Ramakonar et al., 2011). This standardisation is 

becoming more and more important as the RHI has proven useful in improving 

diagnostics and ideas for therapeutic intervention for a range of different 

pathologies. For example, numerous studies report a link between susceptibility 

to illusory hand ownership and schizophrenia  (Peled et al., 2000, 2003), and 

schizotypical personality traits (Asai et al., 2011). Further, Schaefer et al. (2013)  

demonstrated that alien hand syndrome can be affected by the somatic RHI and 

suggests  that further investigation of this influence could lead to the 

developments of treatments in the future. Induction of the RHI has also been 

found to improve the symptoms of somatoparaphrenia. In a study on two 

patients with somatoparaphrenia, Bolognini et al. (2014) investigated whether a 

RHI, modified for this specific purpose, could induce a remission of the 

delusional beliefs concerning the left hand. The intervention induced an 
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immediate self-reattribution of the left hand, with one patient showing long-

lasting remission. These promising results underline the usefulness of 

interventions involving bodily illusions in clinical settings and the need for a 

standardised measure of illusory body ownership.  

Besides the possibility of using our identified illusion effects as a marker for 

when ownership has been induced, they might also help in the quest of finding a 

way to directly induce a feeling of ownership over a fake limb/body without 

applying visual-tactile stimulation. Future advances in technology and in our 

functional understanding of the brain may make it possible to directly facilitate 

illusory body ownership via brain stimulation. This stimulation would require 

detailed knowledge of the temporal aspect of the neurophysiological processes 

underlying bodily illusions, which our results have shed light upon. The 

facilitation of body ownership through brain stimulation would be applicable 

mainly in two areas – immersive virtual environment technology and the 

rehabilitation of people with amputated limbs. In virtual reality (VR) and 

augmented reality (AR), inducing ownership towards a digital avatar enhances 

the degree of immersion and the user's physical performance (Gonzalez-Franco 

and Peck, 2018). Instantly establishing a user’s body ownership of his/her virtual 

avatar would greatly facilitate the applicability of technology using VR or AR. In 

addition, establishing a feeling of ownership over neuro-prosthetic devices is a 

key goal in rehabilitative therapies for limb amputees (Collins et al., 2017). 

While advances have been made in creating prosthetic limbs which provide 

sensory feedback (Akhtar et al., 2018; Hsiao et al., 2011) facilitating body 

ownership over these artificial limbs in a direct way via brain stimulation would 

support acceptance and intuition of use. In summary, inducing body ownership 

over artificial limbs/bodies is of importance in both clinical and technological 
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settings and the findings of the work contained in this thesis might provide a 

conceptually important step towards facilitating this process. 

Limitations 

In experiments one, two and three we applied visuo-tactile stimulation with the 

help of vibration motors and LED lamps as opposed to the brushstrokes 

commonly used in RHI experiments. This less naturalistic setup gave us flexible 

control over the duration of the stimuli and enabled us to record evoked 

potentials time locked to the visuo-tactile stimuli. In light of the predictive 

coding account of the RHI which places importance on the participant’s previous 

experience regarding visuo-tactile stimuli on and surrounding their body, it can 

be argued that this unnaturalness might have impacted on our result. Vibratory 

stimuli paired with flashes of light are not a naturalistic occurrence and thereby 

might have interacted differently with the sensory models held by the brain 

compared to a more naturalistic brush stroke. Our stimulation however was 

successful in inducing the illusion in time frames similar to other experiments 

using brushstrokes indicating that the general computational processes 

underlying the onset of the illusion were similar. However, if possible our 

illusion effects should be investigated using a more naturalistic but temporally 

accurate stimulation setup to confirm this conclusion. 

Further, our experiments did not control for wandering attention during the 

illusion condition. In experiments one, two and three participants were simply 

instructed to keep their eyes focussed on the LED situated on/close to the 

rubber hand and in experiment four participants had to focus on a fixation cross. 

While stimulation in all experiments was continuous throughout each trial and 

participants had a task at hand i.e. indicating if they experienced a feeling of 
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illusory hand ownership, we cannot be sure if this sustained participants’ 

attention throughout the trials. Future studies could possibly include background 

tasks involving the stimulation setup itself to increase the likelihood of 

participants’ attention remaining focussed on the stimulation. 

Finally, all our results are based on a very particular sample - people who 

successfully experienced illusory hand ownership in the RHI. Similar to most 

other studies on the RHI we excluded participants who did not experience the 

illusion within the trial duration of each experiment. While this allowed us to 

identify the neurophysiological correlates of the RHI in a within-subjects design, 

future studies should compare evoked potentials and oscillatory activity during 

stimulation between people who feel and who don’t feel the illusion. This may 

help to dissociate processes related to multisensory processing from processes 

related to the conscious experience of body ownership and will shed further 

light onto the functional significance of the illusion effects reported here. 

Future experiments 

There are several avenues for future studies on the neurophysiological correlates 

of the RHI and of illusory body ownership in general. Most studies including those 

presented in this thesis have focussed on comparing neuroimaging data obtained 

in an illusion condition with that obtained in one or more control conditions. 

This approach however does not elucidate the mechanisms of the initial onset of 

the illusion, which is potentially one of the most informative processes for 

understanding the RHI on the neurophysiological level. Future studies should 

focus on the neurophysiological processes during the transition time when a 

participant is just starting to experience a feeling of illusory hand ownership. 

These initial processes during onset of the RHI might differ from the processes 
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occurring during maintenance of the illusion which are captured by most current 

studies. In line with this, more attention in general should be paid to the time 

before the onset of the illusion. For example, instead of relying on a separate 

control condition, data obtained from the trials/events before the onset of the 

illusion could be compared data obtained from the trials/events after the onset 

of the illusion. This would avoid confounds induced by control conditions and 

allow for a better comparison between states of illusion and no illusion. 

Further, future studies could make use of the recent developments in combining 

fMRI and EEG. Combined fMRI-EEG studies can acquire high temporal and spatial 

resolution at the same time. Such data would allow for a better understanding of 

the exact processes and the involvement of the various brain areas in the RHI. In 

addition, this approach would derive EEG and fMRI data from the same RHI 

setup. Notably, EEG and fMRI studies on the RHI have generally employed 

different experimental setups and stimulation parameters in the past often due 

to demands of the specific neuroimaging method. Thus, comparing results across 

studies has been problematic. A combined fMRI-EEG approach however, would 

use a single experimental setup for obtaining both, EEG and fMRI data, and 

thereby allow for direct comparison and integration of these data. 

In addition, future studies should strive to ease integration of previous findings 

with their own results, e.g. by employing previously used parameters and/or 

measurement standards. This would make results more informative and would 

reduce the probability of small differences in experimental procedure leading to 

different results on the neurophysiological level. By adopting a more rigorous 

and standardised approach, future research will be able to give us a better 

understanding of the neurophysiological processes underlying illusory hand 

ownership and body ownership as a whole. 
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Experiment 1: RHI Questionnaire 
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Experiment 2 and 3: RHI Questionnaire 
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