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“Some ass has got to do the donkey work”

— a quote from somewhere.

“This entire story has been fabricated”

— a pun from somewhere.




PRECIS

This thesis describes the development of a commercially viable technique for batch-
fabricating novel nanoprobes to act as the imaging component in a variety of scanning
probe microscopy (SPM) techniques.

In order to accomplish this a method for combining bulk silicon micromachining and
electron-beam lithography has been developed. A special micromachined substrate of
basic atomic force microscopy probes for both contact and non-contact mode has been
designed, complete with the necessary features for electron-beam lithography to be
carried out on the cantilevers and probes. The design of these probes has also been

optimised for ease of cleaving, allowing access to the specimen and easy mounting onto a

scanning probe microscope.

A micromachining method has been developed for fabricating 20um tall silicon atomic
force tips with flat tops less than 2um wide suitable for defining nanosensors upon, and

with low aspect ratio sides suitable for defining electrical connections to the sensor.

Methods have been developed to allow flat substrate processing techniques to be applied
to such non-planar micromachined substrates. This has necessitated the development of

a novel resist-coating technique and the use of defocused electron-beam lithography.
Methods for through-wafer alignment by electron-beam lithography and accurate
alignment to the tips using micromachined alignment markers have also had to be

developed.

The fabrication process has been designed to enable a wide variety of sub-micron sensors
to be defined on the atomic force probes, with little additional development beyond that of
the sensors themselves. This flexibility has enabled very different sensors meant for very
different scanning probe microscopy techniques to be designed without significant
redevelopment of the underlying fabrication process. The main restrictions on the type of
sensor that can be used are the physical dimensions of the sensor, the number of

alignment levels necessary, the degree of alignment accuracy required and the choice of

sensor materials. However, within these constraints it has been found that probes
optimised for scanning near-field optical microscopy (SNOM), scanning thermal
microscopy, modulation differential scanning calorimetry (MDSC) and scanning Hall-

probe microscopy can be fabricated.

For the SNOM probes three methods for fabricating sub-100nm diameter apertures have

been developed, analysed and compared with each other to evaluate both the process
latitude, and, the size and reproducibility of apertures that can be fabricated, as a
function of electron beam dose, pattern shape and size, and metallisation material and

thickness. Two methods, both utilising multilayer ‘resist’ schemes have been found
suitable for this purpose, one based on conventional electron-beam lithography with
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PMMA and a new dry etching process for titanium, and the other based on a novel

electron-beam lithography technique utilising cross-linked PMMA for lifting off nichrome.
A simple analytical model has also been developed for these probes allowing the effects of

changes in the sensor design parameters on the light throughput to be compared
qualitatively, if not quantitatively.

For the scanning thermal probes a method for lifting-off sub-100nm, thin-film
thermocouple sensors on silicon tips without the loss of electrical continuity has been
developed. For the MDSC probes, a similar method has been developed for defining
thermal resistors. A method has also been presented for fabricating sensors for scanning
Hall-probe microscopy based on an evaporated germanium sensing layer. This has been

found to require annealing and optimisation of sensor design and geometry to reduce
sensor resistance to acceptable levels.
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SCANNING PROBE MICROSCOPY

This chapter starts with a general introduction to microscopy and goes on to
give an overview of those microscopy techniques that are the precursors and

subject of this thesis. The first section describes concepts valid for microscopy

in general. and introduces ideas such as resolution, artefacts and contrast
mechanisms. The following sections describe various scanning probe
microscopy techniques and report on their discovery, their current status, their
main principles of operation, and their main applications and limitations. Where
appropriate the concepts of the first section are related to the technique and

suggestions are made as to what major improvements would be desirable.
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2 Chapter |1 Scanning Probe Microscopy

1.1 INTRODUCTION TO MICROSCOPY

Microscope comes from the Greek words mikros, meaning small, and skopos, meaning
focus. Historically, the first microscopes were optical and consisted of a single convex
lens. Here an object was placed just inside the focal plane of the lens to form a magnified
virtual image of the object which could be viewed directly. This ‘magnifier’ was
superseded by the compound optical microscope which makes use of two convex lenses —
the objective forms a magnified real image of the object just inside the focal plane of the
eyeplece, which then magnifies this by forming a virtual image, just as in the simple
magnifler. This is essentially the principle by which modern optical microscopes work.

Sight is the primary sense by which human beings interact with the world around them,
so it was only to be expected that the first microscopes sought to enhance its ability. Due
to everyday experience the human brain is well acquainted with the interactions of
Incoherent visible light, so there is less trouble in interpreting images obtained using this
technique, and it is this, together with its simplicity, speed and non-invasive nature,
which makes optical microscopes the first choice for examining any specimen.

As the understanding of other physical interactions increased, new techniques were
developed to obtain spatially localised information using these phenomena.
Consequently, the meaning of microscopy was extended to encompass all such
techniques and not simply those based on the interaction of visible light. The use of these
other physical interactions together with the drive for greater magnification has shaped
the development of this field over the last two centuries. Microscopy has therefore become

the science of measurement on a small scale, where small is continually being redefined

as new techniques are invented and developed, and ‘measurement’ can be interpreted in

its broadest sense.

The second half of this century has seen a huge increase in the number of techniques
avallable to the microscopist. For any new technique to become established, it must offer
certain advantages over those already existing, but, since microscopy is a practical
science, the success of a technique is not purely governed by the kind of information it
reveals or by its quality, or even by any improved magnification it may offer - it also
depends on other criteria such as specimen preparation, examination conditions, the
effects of the technique on the specimen being examined, the contrast mechanisms
available, the ease of interpretation of the data, and the speed and cost of the technique.
When making comparisons, all these must be taken into account in the context of the
specific purpose for which the technique is required. In addition, it is not only the range
of applications for which the technique is best suited under these criteria, but also the

importance of the applications that determines whether the technique becomes
established or simply remains a scientific curfosity until an important application is

found.
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As an example, consider the scanning electron microscope (SEM) which has been one of
the biggest successes of the last seventy-five years [Cosslett! (1981); Cosslett2 (1981)].
Here an electron beam is focused and scanned over the specimen and an image is formed
from the intensity of secondary or backscattered electrons received by a detector.
Although these interactions are very different to those used in optical microscopes, by
presenting the information obtained from them visually, as a grey-scale image, the brain
can be tricked into interpreting the information as though it was obtained using optical

techniques.

Secondary electrons are knocked out of the specimen as a result of excitation by the
incident (or backscattered) electrons. In general, many secondary electrons (depending on
incident electron energy and the work function of the scattering material) are generated
from each incident electron, each having much lower energy than the incident electron.
The lower energy means that secondary electrons generated close to the surface are more
likely to escape than those deeper within the specimen. As a result, this interaction is

mainly sensitive to the topography of the specimen.

Backscattered electrons are incident electrons that have rebounded and escaped from the
specimen. Such ‘reflected’ electrons have an energy close to that of the incident electrons.
The likelihood of a backscattered electron escaping from the specimen without losing
much energy {e.g. by producing secondary electrons) decreases rapidly with depth
(although escape from a particular depth is much more likely for larger depths than with
secondary electrons). For this reason, this technique is more sensitive to variations in the
composition of the specimen with depth and therefore yields information below the
surface of the specimen. Thus both of these interactions yields a different contrast and is
termed a contrast mechanism.

Due to the difference between these interactions and those of incoherent visible light, the

interpretation of these images when presented as a gdrey-scale image is not

straightforward. This is due to the presence of artefacts. An artefact is the result of other
interactions (or contrast mechanisms) acting simultaneously with the desired interaction

(or contrast mechanism), and can often manifest itself as an ‘easily misinterpretable’
change in contrast. Thus any interactions which act so as to confuse the results of the

interaction required result in artefacts.

It can be argued that shadows are an artefact of the interaction of visible light from
localised sources with the environment. Artefacts that are common in optical microscopy
are caused by diffraction, interference, and refraction. However, because the human
brain is familiar with these artefacts (from a very early age we become familiar with the
effects of illumination in producing shadows, with interference effects producing the
rainbow patterns in soap bubbles, with refraction effects changing the apparent depth of

a swimming pool, etc.), it will try to interpret images obtained by different techniques in
terms of our experience with visible light phenomena.
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4 Chapter 1 Scanning Probe Microscopy

For example, in SEM the charging up of areas of a specimen can result in secondary
electron images that appear to show the presence of shadows but which are actually the
result of the incident electron beam being deflected by the electrostatic potential of the
charged object. In backscatter images, a thin membrane may appear darker than the
surrounding supporting substrate due to the absence of scattering material beneath a
certain depth, but without prior information could be interpreted as indicating the
presence of a different material on the surface, when, in reality, the surface is

homogenous.

It Is also clear that any techniques which are rich in artefacts are also potentially rich in
contrast mechanisms. However, of key importance to tapping into this potential is the
ability to separate these contrast mechanisms, or at least be able to distinguish between
data affected by each contrast mechanism. In the case of the optical microscope, which is
rich in contrast mechanisms, many methods have been developed to promote one
contrast mechanism at the expense of others with great success, and without a

prohibitive increase in the complexity and expense of the instrument.

As another example, scanning electron microscopy has become established due to its
reasonable speed (video-rate images), relatively low cost, well-understood artefacts.
minimal sample preparation (at least in the case of non-organic specimens, which, if they
are insulating, need to be coated with a charge conduction layer), high magnification (at
least two orders of magnitude better than with an optical microscope), and low damage
(electron-beam damage, pump-oil contamination and electrostatic discharge) caused to
one of the most commonly viewed specimens (semiconductor devices). In general, even
one application, if of sufficient importance or interest, can be enough to establish a
microscopy technique, even if all the contrast mechanisms and artefacts are not well

understood.

Over the last two decades the importance and profile of microscopy has been steadily

increasing. This is due, in no small measure, to the world-wide growth of the consumer
electronics industry. The rise of the computer and the onset of the information age have
created a demand for faster and faster computers capable of handling more and more
data in less and less time. These computers are powered by semiconductor
microprocessors, use semiconductor circulitry for temporary data storage (random access
memory or RAM) and use magnetic, magneto-optic or all-optical techniques for
permanent data storage. In order to satisfy the demands of the consumer while achieving
lower costs through increased volume, the chosen route has been to manufacture at
smaller and smaller dimensions. Faster processors run at higher clock speeds and result
in greater power consumption and therefore greater likelihood of overheating. In addition

the demand for portable computers coupled with the limited life of batteries has also put
pressure on reducing the power consumption of these processors. This is only possible by

shrinking the dimensions of processor components and reducing the logic voltage level at
which these components work. Add to this the demanded increase in functionality and
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the situation becomes one of integrating a greater density of lower power components on
an increasingly larger die (which must then have a lower defect density in order to make
manufacture financially viable). Currently desktop computers contain microprocessors
with component features patterned at dimensions down to 0.18um, with features of
0.12um already demonstrated as being industrially feasible. Industry projections suggest
that features down to O.luym may be possible without requiring a radical change in
manufacturing methodology (i.e. from photolithography to extreme ultra-violet

lithography, x-ray lithography or electron-beam lithography).

However as the volume of data being processed increases, other bottlenecks appear -
transmission of such data from one computer to another (which could be thousands of
kilometres away), from temporary memory to the processor and from permanent storage
to temporary memory. The first of these has resulted in the rapid growth of the
communications industry in recent years and the increasing adoption of optical fibre
networks for data transmission. This has also been mirrored by the increasing research
into optoelectronic devices where optical components are integrated with very fast
electronic circuitry using semiconductor technology to enhance communication
throughput and bandwidth. The second has forced the random access memory
manufacturers to follow the same route as the microprocessor manufacturers, i.e. to
integrate more capacity on the same size of die so as to increase or maintain the rate at

which data can be accessed. The third has forced media manufacturers to look at smaller

storage dimensions in order to increase capacity, data access speed and reading or

writing speed.

All these factors have caused the world’s research efforts to focus increasingly on:
(1) studying the effects of manufacturing and operating electrical components at even
smaller dimensions running on even less power (in the extreme this includes quantum,
ballistic and single-electron devices); (ii) the development of magnetic, magneto-optic and
optical materials capable of offering high contrast at even smaller dimensions, for data
storage purposes, along with the techniques necessary for reading and writing this data;
and (1ii) the development of techniques for examining specimens at these length scales
for: (a) the failure and quality analysis of ‘microchips’ and materials during the
manufacturing process; (b) the evaluation of the correctness of models used to optimise

device and material designs; and (c) the understanding of the small-scale behaviour of
new and existing materials under different external conditions. This thesis will be

primarily concerned with item (iii).

From the previous discussion it should come as no surprise that much of the early work

described in the remaining sections of this chapter was carried out in the industrial
research laboratories of semiconductor manufacturing, media manufacturing and
communication companies, as it is these companies who stand to gain the most from the

development of such techniques. However, these ‘surface science’ techniques, have also

been of use in other completely unrelated areas, such as biology, bilochemistry,
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electrochemistry, polymer science and metallurgy, which have also contributed to the
recent growth in small-scale imaging techniques.

To take a microscopy technique down to the scale of a few tens of nanometres is not a
trivial matter. It is tempting to assume that the factor limiting the magnification of any
existing technique is the less than ideal performance of the components of the
instrument. However, while this is true for certain techniques, for others, ideal
components would still not give the desired improvement in magnification. This is
because microscopy relies on interactions that are governed, and ultimately limited, by
the laws of physics. For example, with an SEM it is possible to view gaps of 1nm but this
can never be the case with a conventional optical microscope. In fact, higher
magnification with the SEM s primarily limited by the quality of the lenses used, while in
the optical microscope negligible improvements would be obtained by using ‘perfect’
lenses (such microscopes are already diffraction limited with today’s lens technology).

The ablility of a microscopy technique to operate at small dimensions is often described in
terms of its magnification. However, this is not the best way of measuring the capability
of a technique as can be seen by considering what happens if a small section of a
photograph is enlarged (using photographic techniques), and then a small section of the
enlargement is enlarged and so on... Then the final photograph is an enlargement of a
very small area of the original, representing a substantial overall magnification. However,
it s clear that this final photograph cannot contain more detail than in the original.
Whilst, the first enlargement may appear to show more detail than the original, this is
only because that detail was contained in the original photograph at a size difficult for
the human eye to see. Placing the original under an optical microscope can rectify this
without the need for a photographic enlargement. So it becomes clear that the power of a
microscopy technique should be based on the level of usable and useful detail it delivers,
as opposed to the magnification it produces. This attribute is usually expressed in terms

of the resolution of the technique.

One definition of the resolution is the smallest difference in the actual result of a
measurement that can be detected. This limit, may be set by the components of the
microscope, or by the laws of physics (Heisenberg uncertainty principle). In the case of
the optical microscope this definition is given numerical form through the Rayleigh

criterion [Jenkins and White3 (1981})]. A typical microscope can have many different
resolutions corresponding to different directions or contrast mechanisms, e.g. the lateral
resolution of an optical microscope may differ from its depth resolution.

As this thesis is concerned with the engineering of microscopy techniques, all the
concepts discussed in this section are applicable to the work presented here. The
remainder of this chapter is concerned with describing the subset of microscopy

techniques that define scanning probe microscopy. A full coverage of the field of
microscopy would occupy many volumes and as such is beyond the scope of this thesis.
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1.2 The Scanning Tunnelling Microscope 7

1.2 THE SCANNING TUNNELLING MICROSCOPE

The scanning tunnelling microscope (STM) was invented by Binnig, Rohrer, Gerber and
Weibel [Binnig and Rohrer? (1982); Binnig, Rohrer, Gerber and Weibel® (1982); Binnig,
Rohrer, Gerber and Weibel® (1982)] and introduced not just a new microscopy technique
but a whole new concept for microscopy. It was this concept which inspired most of the
other techniques described in this chapter. The Nobel prize was awarded to the inventors
five years later, in 1986, for this very reason (jointly with the inventors of the SEM). This
technique, its limitations and its applications have been described in some of the many
excellent books and reviews of the subject [see, for example, Hansma and Tersoff? (1987),
or Wiesendanger® (1994)]. However, it is instructive to discuss some aspects of this

technique here, since it contains some elements common to all scanning probe

microscopy techniques.

1.2.1 Historic Origins and Principles of Operation

¢2
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Figure 1.2.1: Tunnelling into a material with a bandgap. Spectroscopy is camied out by
varying the bias and observing changes in curent caused by variations in the density of
occupled and unoccupied states as a function of energy.

Z

The principle behind the technique is an extension of the Nobel prize winning work of
Giaever, carried out in the late 1950s and early 1960s, which established electron

tunnelling spectroscopy as a useful technique, particularly for measuring band gaps in
superconductors [Glaever® (1960)]. [A more detailed discussion of the origins and
historical context of STM is given by Walmsley!® (1987).] In electron tunnelling
spectroscopy, the conductance due to electrons tunnelling between two conducting films
separated by an insulating layer much less than 10nm thick is measured as a function of
the bias between them. Clearly the current can only flow from filled states in one material
to empty states in the other (which are located at the Fermi level in the low temperature

limit). The bias acts so as to shift the Fermli levels of the two materials with respect to

each other (as shown in Figure 1.2.1) and thus scans through the energy states of the
two materials. If there is a range of energies where there are no electron states, as in
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8 Chapter 1 Scanning Probe Microscopy 3

Figure 1.2.1, then in the low temperature limit (where there is insufficient thermal energy
for electrons to occupy higher energy states than necessary to fulfil the Pauli Exclusion
Principle), the current will drop below the noise floor as the blas is scanned across the

band gap.

Elementary quantum mechanics shows that the probability of an electron tunnelling with
energy, E, through a barrier of height, V, and width, d, is given by [Fowler and
Nordheim!! (1928); Frenkel!? (1930)]:

4./2m, 7
p(E) = Aexp ~—hLVV—Ed]. (1.2.1)

where A is a normalisation factor, 4 is Planck’'s constant and m, is the mass of the
electron. This exponential dependence on barrier width means that most tunnelling will
take place at the ‘point’ where the inhomogeneities in the insulating material are such
that the barrier is narrowest. Thus most of the early problems with this technique were
due to the difficulty in obtaining thin insulating films free from defects allowing ohmic
current flow between the two materials. For low bias voltages, the height of the barrier
above the Fermi level is usually dominated by the work functions of the two materials (the
energy required to remove an electron from a material to a point an infinite distance

away) which is typically of the order of 4eV for metals. Putting this value into
Equation 1.2.1 shows that the characteristic decay length for this interaction is about

0.5A (L.e. a change in the barrier width of 0.5A will alter the tunnelling current by a factor
equivalent to the inverse natural logarithm of 1 or put another way, a 1A change in
barrier width causes the tunnelling current to change by almost one order of magnitude).

The scanning tunnelling microscope was an attempt to obtain (a) an instrument capable
of varying the tunnelling gap in a controllable fashion; and (b) an instrument capable of
investigating spatial variations in electron tunnelling spectra. To this end the instrument
consists of a sharpened tip, usually tungsten, held in close proximity to the specimen
being examined, but making use of piezoelectric actuators to allow the tip to be moved in
all three dimensions. These piezoelectric actuators, whilst exhibiting non-linear
behaviour and suffering from hysteresis and creep, permit very small displacements to be
made by the application of small, but achievable, voltages — a particularly compact
implementation allowing motion in all three dimensions uses the piezoelectric ceramic,
lead zirconate-titanate (PZT), mounted in a tubular arrangement and has a response of a
few nm/V [Binnig and Smith!3 (1986)). [This arrangement has become popular in many
commercial implementations of scanning probe microscope systems.] In order to
maintain gaps as small as a few nanometres, the instrument has to be isolated from

sources of vibration, such as building vibrations, acoustic vibrations, etc. This
necessitates the use of damped springs, air (optical) tables, rubber mounts, etc., upon

which the critical parts of the instrument can be placed.
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1.2.2 Modes of Operation

The STM can be operated in many modes. In the most commonly used mode, constant
current mode, the tip is raster-scanned over the surface in such a manner as to maintain
a constant tunnelling current between the tip and the specimen, achieved by altering the
tip-specimen distance. Figure 1.2.2 shows a typical implementation of this mode. The
axis joining the tip and the sample is conventionally taken to be the z-axis. As the tip is
scanned over the surface, the tip-specimen distance is sampled at a set of discrete points
(x, y), and this data is used to form an image of the specimen. The scan-rate is typically
limited by the lowest mechanical resonance of the system (due to the use of an
integrating amplifier to control the tip-specimen distance). The lowest resonance, usually
associated with the translation stages and piezoelectric actuators, is of the order of a few
tens of kilohertz. Typical tunnelling currents are of the order of 1nA for a bias of a few

tens of millivolts and a tunnelling gap of 1nm (on metallic surfaces).
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Figure 1.2.2: Implementation of an STM system for constant tunnelling current operation.

In another mode of operation, constant height mode, the tip is raster-scanned as belore,
but without feedback, and the image is formed by measuring the tunnelling current (at
constant bias) or bias (at constant tunnelling current) at each position. The advantage of
this is that faster operation is possible since the tip can be scanned at any frequency
away from mechanical resonances (rather than being limited to the lowest mechanical

resonance) while the measurements are made in a bandwidth between these resonances.
However, the specimen must be relatively flat, not tilted appreciably and the scan area

must be small since the tunnelling gap is typically less than 1nm.
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The STM is also a tool for performing spatially resolved electron tunnelling spectroscopy,
when the technique is often given the name scanning tunnelling spectroscopy or STS.
Again several modes are possible. In one mode, based on the constant current mode
described above, the feedback loop is briefly ‘switched off at each co-ordinate and an I-V
curve is taken. From this the conductance (normalised to the conductance prior to
breaking the feedback loop to avoid the effects of varying tunnelling gaps) can be plotted
as a function of bias. This technique allows the normal STM image to be obtained
simultaneously with the spectra and is often known as current-imaging tunnelling
spectroscopy (CITS). The instrument needs to be fairly stable to perform this technique
(to prevent the tip drifting while the spectra are obtained) and is often carried out under
conditions of ultra-high vacuum (clean surface) and low temperature (minimum thermal
energy). More refined methods are also possible [Tromp, Hamers and Demuth!4 (1986)).

As might be expected, numerous other STM variants have been developed in the years
since its invention - good coverage is given by e.g. Wiesendanger® (1994).

1.2.3 Interpretation of STM Images and Resolution

In the constant current mode of operation, changes in the tip-specimen distance are
caused by two effects. The first, and simplest, is a change in the topography of the
specimen (and hence the tunnelling gap). The second, due to the spectroscopic nature of
the STM, is a change in the number of available states for tunnelling from or to at that
energy and position. Both of these changes can have equally dramatic effects on the
tunnelling current and are therefore indistinguishable in the absence of additional
information. [Consider for example, the effect of a topographic change of 2A - the current
will change by nearly two orders of magnitude. Consider the effect of a tip moving from a
surface covered in metal to the surface of a semiconductor when the bias is within the
semiconductor band gap - the current will drop to below the noise level.] Due to these
dual effects, interpretation of STM images is not straightforward and can be very bias
dependent. In a sense the STM images electronic structure, but only that part of the
electronic structure which can participate in the transfer of electrons at an energy and

momentum determined by the bias and the work functions of the tip and specimen. A
more appropriate description of the STM might be that it is an instrument for imaging

topography in the absence of variations in (specific parts of the) electronic structure and
vice-versa. The problem is that both variations are present on most real surfaces.

Clearly, the STM as described above is not suitable for imaging insulating surfaces.
However, the technique demonstrates incredibly high vertical resolution (along the z-

axis). A tunnel current variation of 10% corresponds to a height change of only Spm -
less than the ‘diameter’ of a typical atom. This also results in high lateral resolution as
{llustrated in Figure 1.2.3: all things being equal, in terms of the nomenclature used in
the figure, the T2-S1 and T2-S3 interactions are around 4 times weaker than the T2-S2
interaction while the T1-S2 and T3-S2 interactions are over 150 times weaker for the

S e - T —
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1.2 The Scanning Tunnelling Microscope 11

values used in the figure. Thus with a tip of the correct profile and under the right

conditions the STM is able to resolve individual atoms. However, the question of
resolution in STM is not a simple one since it depends on the geometry of the tip and
specimen, the electronic structure of the tip and the specimen, the bias between them
and the tunnelling gap size. A simple discussion of some of the most important issues is

given by Hansma, et al.” (1987).

2 5A

4.0A

S1 S2 S3

258

Figure 1.2.3: Diagram illustrating the origin of the high lateral resolution in the STM. '§’
atoms are part of the sample, ‘T’ atoms are part of the tip.

1.2.4 STM Tip Fabrication

The original STM tips were made from tungsten using electrochemical etching. Typically a
solution of sodium hydroxide or potassium hydroxide is used as the electrolyte with the
tungsten wire forming the anode and some other material (such as a graphite rod)
forming the cathode. The application of a bias induces the etching process. A variety of
techniques have been employed for making the tips as sharp as possible, from attaching
weights to the wire so that when it reaches a certain thickness the weight falls and

breaks the electrical circuit, to relying on the meniscus of the electrolyte and diffusion of

the reaction products to form a taper in the wire until its own weight causes it to break
and lift the suspended end out of the solution [Melmed!® (1991)]. Such techniques can

result in tips with a radius of curvature of less than 50nm.

However, tungsten is not chemically inert, making it unsuitable for use in chemical
solutions, and its tendency to oxidise leads to problems in tunnel junction stability even
in air so that it is often preferable or necessary to use tips made from other metals. The

choices are limited to noble metals for which a good electrochemical etch can be found.
Iridium is a good choice because of its mechanical strength (Young's modulus of 528GPa)
but platinum or platinum-iridium are also commonly used. An alloy is usually preferable
due to its improved plastic deformation properties so platinum-iridium (usually
90%/10% as used in thermocouples) is a popular choice. This can be electrochemically

etched in, for example, a mixture of calcium chloride and hydrochloric acid [Musselman
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and Russelll® (1990)]. Alternatively, the wires may simply be cut or mechanically ground.
The main advantages of electrochemically etched tips is that they can be made to taper
thus producing a tip with a narrow cone angle (high aspect ratio). This makes the tip
better able to access deep and narrow crevices on the specimen surface in comparison
with a tip cut from a relatively large diameter wire. From a practical standpoint,

mechanically ground and electrochemically etched tips are preferable to cut tips because
it is much easier to judge the proximity of the tip to the specimen surface during the

initial coarse approach.

1.2.5 Applications and Limitations

The applications of STM are many and varied in areas from superconductivity and
semiconductors to biology, electrochemistry and nanolithography as reviewed by
Hansma, et al.” (1987); Schneilr, et al.!” (1988); Jahanmir, Haggar and Hayes!® (1992);
Penner!® (1993). The technique has been shown to work in gases (such as air) e.qg.
Miranda, et al.?° (1985), liquids (such as water, electrolytes and alcohols) e.g. Carrejo, et
al.?! (1991); Song, Morch, Carneiro and Tholen?? (1994) and under vacuum e.qg.
Gimzewski, Modesti, David and Schlittler?3 (1994), and at temperatures ranging from
dilution fridge temperatures through to several hundred degrees above room temperature

e.g. Gaisch, et al.2% (1994); Ichinokawa, et al.25 (1994). Each of these environments has
its own advantages and disadvantages depending on the nature and requirements of the

specimen being examined, and the information being sought. This flexibility is one of the
advantages of STM over electron microscopy techniques. However, leakage currents due
to the lonisation of air or the presence of ions in liquids means that the range of bias that
can be used in these environments can be more limited (a 1V bias across a Inm gap
corresponds to an electric field strength of 10MV/cm).

Many biological specimens are better imaged in a liquid environment, where surface
distortions due to the specimen ‘drying out’ can be reduced. As these specimens are
typically soft and mobile and are not good conductors they are typically adsorbed onto a
conducting substrate which is relatively free of electronic and topographic features,

usually highly oriented pyrolytic graphite (HOPG) [Baro, Miranda and CarrascosaZ?6
(1986)], or coated with a thin metallic layer (which has the disadvantage of requiring

vacuum conditions for deposition and may deform the shape of the specimen on an
atomic scale). Electrodes can be studied by the STM while in their natural environment,
but require an insulating layer to be deposited or coated over the tip, leaving just a small
length at the end exposed to the ions in the solution, to minimise leakage currents, e.g.

Carrejo, et al.?! (1991).

The dual nature of STM images has led to it mostly being applied to the ordered surfaces
of metals and semiconductors where the periodicity of the atomic structure can be

postulated, calculated or measured by other means. Thus STM has mainly been used as
a complementary technique for surface science studies of superconductors,
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1.2 The Scanning Tunnelling Microscope 13

semiconductors, metals, and metal alloys. In particular, since atoms on the surfaces of
many materials tend to reorganise or reconstruct to minimise surface energy [Myers27?
(1990)], the STM has proven very useful (when combined with theoretical calculations
and other techniques) in determining the precise nature of these reconstructions. The
behaviour of surfaces is very important to the semiconductor industry, particularly
because as the dimensions of semiconductor devices decrease, the surface plays a larger
role in determining electrical behaviour. In addition, the spectroscopic capabilities of the

STM also allow the presence of surface states to be detected and spatial variations in the

band gap to be measured across a semiconductor surface.

The problems with STM as a technique are almost as varied and numerous as the
number of modes of operation. The first and foremost limitation is that the specimen
being examined must either be conducting or adsorbed onto a conducting substrate -
this makes it awkward when applying STM to semiconductor devices having conducting,
semiconducting and insulating areas on the same specimen. The second problem is the
difficulty in interpreting images. Obviously the STM is not the ideal metrological tool due
to its spectroscopic sensitivity. However it is also not the ideal spectroscopic tool, not only
because topography plays a part in determining the image, but also because the
spectroscopic information it provides is often not sufficient to unambiguously identify the
particular atoms which are present on the specimen surface [Wiesendanger?® (1994).

Some cases where this has led to confusion are discussed by Tromp?? (1989), who also
describes an experiment showing the bias dependent nature of images of the (110)
surface of gallium arsenide, where the gallium atoms can be imaged with one bias and
the arsenic atoms with another. This bias dependence has proven useful for studying the
early (sub-monolayer) stages of the deposition of metals onto semiconductor surfaces
since the metals show up clearly in both empty and filled state images, whereas the
semiconductor shows up better in one rather than the other, depending on doping. A
similar technique can be used to look at the adsorption of insulating atoms, such as

oxygen, onto conducting surfaces.

One particular problem is caused by the geometry of the tips used. Since tunnelling is
normally dominated by the atom closest to the surface, if a tip contains more than one
large protrusion (more common for tips which are mechanically ground or cut), the atom
involved in the tunnelling can switch between all the protrusions according to the

geometry of the sample. This occurs even when there is only a single major protrusion
since the atoms at the end of the tip are often mobile and can move around causing the

tunnelling atom to switch. This artefact is known as tip switching, and iIn extreme cases,
images can appear to be suffering from ‘double vision’ (or even higher orders). This
artefact is a common problem with most scanning probe microscopy techniques, however
with the STM, it is more difficult to judge when this is taking place if the tunnelling
atoms are close together, since at small length scales the actual shape of the specimen is

not known.
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Another tip-related problem is caused by there being many atoms at the end interacting
simultaneously. In this case the images may appear to show the expected atomic
corrugations but a single atomic defect may go unnoticed due to the averaging effect
caused by having multiple tips [Albrecht, et al.*° (1988)]. This artefact is known as
multiple-tip averaging. The situation is akin to rubbing two corrugated surfaces against
each other - the surfaces will move up and down with the correct periodicity but if a

single corrugation is missing it will go unnoticed. Again this is a common problem for

most atomic resolution scanning probe microscopy techniques.

Additional problems are also caused by the tip modifying the surface by moving atoms
around, by the tip picking up atoms from the specimen resulting in a change in the
nature of the tip tunnelling atom, or by the tip crunching into the specimen due to either,
a change in topography too sudden or large for the feedback loop to respond, or by a
sudden reduction in conductivity. In common with most scanning probe microscopy
techniques, tips are a consumable item and rarely last beyond a few days of use. In those
techniques where the tip is extremely close to the specimen, they often suffer from
continual modifications during scanning. Other problems of the technique include slow
image acquisition rates and the need for verification by repetition, calculation and the

application of other techniques.

Despite these problems, as a technique capable of producing ‘atomic resolution’ images,
and with the dedication and the perseverance of its advocates, STM has helped to
revolutionise our understanding in many key areas of surface behaviour and
organisation. Perhaps even more importantly, it has introduced a new concept to the

microscopy world - scanning probe microscopy.

1.3 THE ATOMIC FORCE MICROSCOPE

As discussed in the previous section, STM satisfies the criteria necessary for a useful
scanning probe microscopy technique: it requires a probe which can be held in close
proximity to the specimen and an interaction mechanism with a very strong
characteristic decay length. If both these attributes are combined with a probe of
sufficiently small dimensions, so as to limit the interacting regions of the specimen and
the probe primarily to single atoms, then atomic resolution is possible. The greatest
weakness of the STM is that the interaction is complex enough to support many
comparable contrast mechanisms which can act simultaneously or individually and
without control from the user. However, this 1s also its greatest strength and has led to
the many modes of STM operation in use today. Ironically, understanding microscopic

behaviour would have been easier if a ‘simpler’ interaction mechanism could have been
used. In 1986 a ‘simpler’ technique was found by Binnig, Quate and Gerber3! (1986).
This technique was atomic force microscopy.
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1.3.1 Principle of Operation

The idea stems from the fact that there are many types of forces in nature which act so
as to bind materials together. Classically five main types of binding mechanisms are
normally identified: ionic binding, covalent binding, metallic binding, hydrogen binding
and Van der Waal's binding. However, forces are a very general expression of the
presence of an energy gradient and so numerous other forces can be identified at the
atomic level. These forces are, in general, very complex and will not be dealt with in detail

here. For a more thorough overview see Sarid32 (1991).

At first sight the complex nature of these forces (some of which are not additive in the
normal sense) seems to suggest that any technique based on these interactions would be
even more rich in conflicting contrast mechanisms than STM. However, in practice it
turns out that integrating and averaging all the forces between two macroscopic bodies
(tip and sample) results in a potential that can usually be approximated by a simple

power law expression.

That this should be possible and the resulting interaction being simpler than that of STM
is not immediately clear, however, it can be explained simplistically in the following
manner: forces acting on components of a system can be viewed in a more general sense
as the result of a difference in potential energy between spatially separated components
and as the force is simply the rate of change in potential energy with position, it becomes
a vector, with both magnitude and direction. However, the potential energy itself is scalar
and so no matter how complex the system, these potential energies can be summed up
individually for each system component, and its gradient will be the resultant force acting

on each component.

Whilst the expression for the potential energy itself may be complex, and may involve
vectors as parameters and integrals for valuation, the procedure for accommodating
additional contributions is very simple. Often, due to the huge differences in magnitude
between the potential energy contributions of each interaction mechanism, the entire
problem can be adequately approximated by the dominant interactions, at least one of
which must be attractive and one repulsive to allow an equilibrium state to be defined.
Usually it is not necessary to include more than two repulsive and attractive interaction
mechanisms to obtain a good approximation to system behaviour. Since the dominant
interactions for any given equilibrium situation can be readily found by comparing the
size and distance dependence of their potential energy contributions, the system
configuration can be readily optimised to enhance specific interactions. Unfortunately, in
the case of STM, the tunnelling current can in no way be explained as arising from the

distance dependence of a single scalar value, making it substantially harder to determine

the dominant interactions within a particular system.

Based on this approach, the case of a two body system can be analysed in a simplistic
manner. Using the fact that the potential energy must tend to a constant as the
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16 Chapter 1 Scanning Probe Microscopy

separation tends to infinity (so that forces tend to zero), the potential energy function,
W(r), where r is the separation between the two bodies, can be viewed as being a
function of the reciprocal of separation and so can be expressed using a Maclaurin
expansion as:

e 2

W(r) = zc_x_

i
i'
J-lr

for some «;, where the arbitrary zero of potential energy has been taken to be

(1.3.1)

numerically zero. The use of the reciprocal of separation automatically ensures that the
potential energy tends to zero as the separation tends to infinity. For small distances only
the first few terms will be significant and the rest can be neglected. This is a general

method for expressing forces in power law terms.

For simplicity, the remainder of this section will illustrate AFM using a simple interaction
mechanism for which only two terms of the expansion (one attractive and one repulsive)
are an adequate approximation. This simplifies the integrals involved and allows the
basic principles to be explained without focusing in detail on the specifics of any
particular interaction mechanism. The chosen interaction will be that of the Van der
Waal's force. This force dominates AFM strictly only in an ultra-high vacuum
environment, in the absence of the capillary forces which tend to dominate in air due to
the presence of a surface layer of water.

The Van der Waal's force acts so as to bring neutral atoms and molecules together. This
has its biggest impact on the behaviour of gases. It is caused by the correlation of what
would otherwise be random (thermally induced) dipole fluctuations which are a
consequence of the separation of charge between the nucleus and surrounding electrons
(in the case of atoms) or shifts in the positions of shared electrons from one atom to

another (in the case of molecules).

If this force were allowed to act unrestrained, it would diverge to infinity as the atomic
separation decreased to zero. This does not happen because of the electrostatic repulsion
between nuclei caused by a reduction in screening due to the forced reconfiguration of
the outer electrons in accordance with the Pauli Exclusion Principle. It is this force which
s responsible for the lack of compressibility of solids. Between the attractive and

repulsive forces lies a position where each cancels - this is the equilibrium position of
atoms which are bonded together. Since the lengths of chemical bonds are of the order of
a few angstroms, it is clear that the repulsive forces must be very short range and
therefore very strong. This behaviour can be approximated by the Lennard-Jones or 6-12
potential [Gould, Burke and Hansma?3? (1989)):

Wer) = 4W [fz\“ (2], 132

'Wr) \r)

where W(r) is the potential energy variation with separation, r, and the minimum
energy value, -W_, is obtained at a separation of about 1.120, where O is the
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separation at which the energy first drops to zero. Figure 1.3.1 illustrates the variation of
the potential energy and force with separation for some typical values of minimum energy
and separation. It can be seen that for separations smaller than the minimum energy
distance, the energy rises sharply with decreasing separation (corresponding to a very
strong repulsive force), while for separations larger than this, the energy changes much

more slowly with increasing separation (corresponding to the much weaker attractive
forces). The force, F,(r), can be obtained by differentiating Equation 1.3.2:

F.(r) = -2402 [(‘—’-)7 - 2(-9'-) 13}, (1.3.3

O r r

and is plotted in Figure 1.3.1 for some typical values of minimum energy and separation.
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Figure 1.3.1: The Lennard-Jones potential for a minimum energy of -10meV at @
separation of 4A. Also shown is the negative of the force associated with this potential.

Due to its simplicity Equation 1.3.2 is often used to model general forces between objects
even though it specifically applies only to Van der Waal's forces. To model the forces
between two macroscopic bodies, such as a sample and a tip, the potentials must be

integrated over the two interaction volumes. The regions are usually represented as a
sphere (the tip) and planar surface (the sample). This then gives [see Sarid>? (1991)]:

2 , O 1 /0\’
W) = -=*W nn.o’R —-——(—) | 1.3.4
() 3.7!: ol [r 210\ r ] | ]

where n, and n, are the number densities of the interacting atoms in the sample and tip,
R is the effective radius of curvature of the end of the tip and all other parameters are as
in Equation 1.3.2. [Note that, in general, Van der Waal’s forces are not additive in this
way, however, following on from Sarid32 (1991), a first order approximation is made here.]
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Then the force, F,(r), is given by differentiating Equation 1.3.4:

2
F (r)= —-Z-JrZWomnzo‘*R[(g) - —1—(2)8]. (1.3.5)
3 r 30\ r
Using Equation 1.3.5 for a tip with an effective radius of curvature of 20nm, a nominal
interatomic spacing of 4A and with a bond strength of only 10meV (a typical value for the
Van der Waal's interaction), it can be seen that the repulsive force has increased to 1nN
when the separation is reduced to 1.9A. This force would cause a deflection of about 1A
in a direction perpendicular to the largest plane of a rectangular piece of aluminium foil
10um thick, 50um wide and 450pum long. This foil cantilever would have a stiffness of
about 10N/m while the repulsive force gradient is 130N/m so that a 0.1A change in
separation would cause a 1.3A (or 130%) change in deflection. This is comparable to the
sensitivity to separation achieved in STM and so atomic resolution should be possible.
Figure 1.3.2 plots the energy, force and compliance for the values used above. As with
STM, ‘it is the rapidity of the decay of the interaction with separation which allows such
an amplification of deflection amplitude to be obtained. [Note that the separation is
defined to be the distance between the surface and the end of the cantilever in the
absence of any bending moment while the deflection is the departure of the interacting
end of the cantilever from this position.] Most of the early problems with this technique
were related to the manufacture of such compliant, yet robust cantilever probes and the
measurement of cantilever deflection. Other problems, such as vibration isolation and

fine displacement control had already been resolved during the development of the STM.
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Figure 1.3.2: Typical energy, force and compliance curves for UHV AFM with Van der
Waal's forces dominating. The graphs are for a minimxm energy of -10meV and an
interatomic spacing in both probe and specimen of 4A, The probe is modelled as a
sphere with a radius of curvature of 20nm while the specimen is modelled as an infipite
plane. The minimum energy (equilibrium) position occurs at a separation of about 2A.
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1.3.2 Modes of Operation

Like the STM, the AFM can be operated in many modes. However, these modes fall into
three main categories: contact modes, non-contact modes and intermittent-contact modes.
The first of these are the most analogous to the normal STM modes, while the second
makes use of the mechanical nature of the interaction dynamics to translate deflections

to changes in resonant frequency. The last of these is a hybrid of the other two methods.

1.3.2.1 Contact Modes

In the contact modes, the cantilever is scanned across the specimen in close proximity to
the surface (so that the interaction lies in the repulsive force regime of Figure 1.3.2) and
changes in the cantilever deflection are monitored. The most commonly used mode in
this category is constant force mode, where the deflection of the cantilever is held at a
constant value as it is scanned across the specimen by varying the undeflected

cantilever-to-specimen spacing. Figure 1.3.3 shows a typical implementation of this

mode.
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Figure 1.3.3: Implementation of an AFM system for constant deflection operation in
contact mode.

As with the STM in constant current mode, the image of the specimen is formed by
sampling the tip-specimen distance at a set of discrete points (x, y). Again the scan-rate

is typically limited by the lowest mechanical resonance of the system (due to the use of

an integrating amplifier to control the tip-specimen distance). Typical cantilever
compliances are between 0.01 and IN/m and operating forces range from
~10pN to ~100nN.
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As noted earlier, the power law model for forces in UHV AFM (as described in §1.3.1) can
be generalised to accommodate other forces and additional terms. For simplicity only the
UHV AFM situation will be considered here. Since the restoring force of a cantilever is
proportional to its compliance, k, and deflection from equilibrium, the equilibrium

EENTES R
d-s 30\d-s/ | o

where all parameters are as given in Figure 1.3.4 and Equation 1.3.4. Thus maintaining

situation can be expressed as:

~k(u-d) = -%nzwﬂmnzo“R

constant force is equivalent to maintaining a constant deflection. Figure 1.3.5 represents
this interaction as a force balance. From this figure it can be seen that the mechanical
gain is given by the ratio of the spatial derivative of the force to the stiffness of the
cantilever. As the force derivative is a function of the separation, this amplification is not
constant but increases with decreasing separation. However, it is clear that the cantilever
should be as compliant as possible for maximum sensitivity.

cantilever, k

Figure 1.3.4: Parameters used to describe the constant force mode of operation. d is
the defiected position of the probe, u is the undeflected position of the probe, s is the

position of the sample surface at the point of interaction and & is the compliance of the
cantilever in the direction normal to the cantilever.

As with the STM, faster operation is possible by using the AFM in constant height mode,
which requires no feedback, and hence can be operated away from any system
resonances while measurements are made in a bandwidth chosen to avoid these
resonances. In this case the restoring force is monitored as a function of position by
means of the cantilever deflection. Again, the specimen must be relatively flat, not tilted

appreciably and the scan area must be small since the ‘separation’ between the probe
and the specimen is typically less than 1nm.

tip-sample separation
cantilever force

cantilever deflection

|dF/dzl k

Figure 1.3.5: A force balance representation of the atomic force microscope. Both
springs here have identical spring constants. Small changes in separation or atomic
forces cause large changes in cantilever deflection if the cantilever stiffness is much

smaller than the atomic force gradient.
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1.3.2.2 Non-Contact Modes

In the non-contact modes, first demonstrated by Martin, Willlams and Wickramasinghe34

(1987), the situation depicted in Figure 1.3.4 is treated as a coupled spring system with
the cantilever representing one spring (the test spring) and the atomic force or bond
representing the other spring (the spring to be measured). Each spring has its own
resonant frequency and energy dissipation mechanisms. The atomic spring can be viewed
as a lossy spring, with losses being associated with deformation of the sample and due to
the specific force mechanism involved. However, unlike an ideal spring, the compliance of
the atomic spring is a function of position as can be seen from the compliance curve in
Figure 1.3.2. Thus the effective spring constant and resonant frequency of the whole
system is a function of the separation between the specimen and probe and by measuring
this frequency, a measure of the separation can be obtained.

Aexp(jwt)
fixed end of cantilever driven end of cantilever
k, cantilever k, cantilever

free end of cantilever » Bexp(jwt) t measured end of cantilever

-dF/dz, atomic bonds -dF/dz, atomic bonds

fixed end of specimen fixed end of specimen

Figure 1.3.4: A schematic representation of the principle behind non-contact AFM in
terms of mechanical sprnngs.

The situation can be schematically represented as in Figure 1.3.6. Within the specimen
the driving force upon the cantilever will lead to a group of atoms oscillating with respect
to the rest of the specimen by varying amplitudes. However only the response of the free
end of the cantilever can be easily measured. To simplify the analysis, the specimen is

usually assumed to be a solid incompressible block in comparison with the atomic force
interaction between the probe and the specimen at the resonant frequency of the free end
of the cantilever. Then the analysis is no longer that of a system comprising two springs

in series, but is closer to that of a system with two springs in parallel.

Consider the static equilibrium situation. If the probe is in the repulsive atomic force

regime, both springs of Figure 1.3.6 can be considered to be compressed (by the force
acting on the fixed end of the cantilever). If the probe is in the attractive atomic force

regime, both springs can be considered to be extended. Quantitatively the analysis begins
with Equation 1.3.6 from which the general force equation can be written as:

Fafomic(d_s) = _k(u_ d) = Fa:gmic(zo) = _k(f—h"' Lo -S), U= f"h, i, = d-s, (1.3.7)

where k is the stiffness of the cantilever, u is the undeflected position of the probe, d is

the deflected position of the probe, f is the position of the fixed end of the cantilever, A
is the height of the probe, F_ . is the atomic force between the sample and the probe, s
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iIs the position of the interacting part of the sample and z, is the distance between the
sample and the deflected position of the probe. [Note that the compliance of the ‘atomic
spring’ 1s given by the negative of the spatial derivative of the atomic force with respect to
the z-axis, however, the atomic forces can act so as to increase deviations from the
(metastable) equilibrium position and so this compliance can be negative, unlike with a
classical spring.] In order to measure changes in compliance it is normal to measure the
resonant frequency of the system. This can be done by using the piezoelectric driver to
alter the position of the fixed end of the cantilever by a small amount, so that:

kAf = kAz - AF a!amic(zo) = kA7 - —'_“‘—'dF;mm'.c
Z

where the deviation of the atomic force has been expanded to the first order of the
deviation in the sample-probe distance. With sinusoidal excitation of the fixed end of the

Az = [k + kmmic(zo)]bz. (1.3.8)

<o

cantilever by the plezoelectric driver of amplitude, a, and angular frequency, @, and
simply denoting the separation deviation by z, the equation of motion becomes:

d’z dz dF, .
k taem—+my—+|k+k, . , k. . = - —dome 1.3.
acosr = m—z+my— [ mm(za)]z atomic(Z) 1 (1.3.9)

where m 1is the effective mass of the cantilever and probe and ¥ is the specific coefficient

of velocity damping experienced by the probe (this includes losses within the cantilever
and velocity damping effects caused by the force interactions being used). This is just the

equation of a forced and damped simple harmonic osclillator. In terms of the amplitude
response of the cantilever, Equations 1.3.8 and 1.3.9 are only valid for:

k
1% Ak piomic (26| << [Karomic (20| = Jl-jc—"'—-(i?- >> _ézi__ (1.3.10)
alomic
az |,

To proceed further, the UHV Van der Waal's force system of §1.3.1 will be used as an
example - the analysis for other force mechanisms would proceed in a similar manner.

Then from Equation 1.3.5 the compliance of the atomic force on the probe is given by:
4 o\’ 2/(0\’
k . AX =——752W0 03R (—) “—(—) (13.11
and the compliance gradient is given by:

- Raonie") | _472W 1y R[(g)4 - 2(2)

10

. (1.3.12)
dar r 5\r

where all parameters are as in Equation 1.3.4. From this, the ratio of compliance to

compliance gradient is given by:

1__2__(_9_)6
_M-lg ISAr .-L forr>>0. (1.3.13)
dkarﬂm:‘c (r ) 3 o 2/0 ! 3
dr [7'5(7) ]

— e y———— . —
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Figure 1.3.7: Typical compliance-to-compliance-gradient ratio and compliance curves
for non-contact in UHV. The graphs are for a minimum energy of -10meV (Vgn der
Waal's force) and an interatomic spacing in both the probe and specimen of 4A, The
probe is modelled as a sphere with a radius of curvature of 20nm while the specimen is
1[nc:icc:l)gllgc:l 215.5 En infinite plane. The error in the approximation of Equation 1.3.13 is down
O o DY 4.0A.

Figure 1.3.7 plots the ratio of the compliance-to-compliance-gradient for the UHV Van
der Waal's force system described by Figure 1.3.2. [Note that the behaviour at a
separation of around 3A is due to the second order term (compliance gradient) going to
zero. This is a mathematical artefact and not a physical phenomenon. The correct
behaviour for this region would be obtained by considering higher order derivatives.] If
the condition expressed by Equation 1.3.10 is arbitrarily taken to mean that the second
order term is 20% of the first order term and the total noise in the system is 0.5A
(typically limited by thermal noise in the cantilever), so that the minimum usable
oscillation amplitude is 1.0A, t.e. Az, is 2.0A, (corresponding to a signal to noise ratio of
two), then it is clear from Figure 1.3.7 that the condition can only be satisfied for r >> O.
In terms of the oscillation amplitude 2A = Az,, and applying Equation 1.3.13, the
operating separation condition becomes:

<o
7.5
so that the minimum operating separation is 7.5A which is around 20, for the above

Z,21T.0A< As

(1.3.14)

values. This can be compared with contact mode AFM which can be viewed as AFM at an

operating ‘separation’ of around O.

From elementary mechanics the natural undamped angular frequency of the cantilever,

w,, and the quality factor of its oscillations, (J, are given by the relations:

k 2 x energy stored o,
w,_,n.,/—, Os —m8Mm—————— = —2, (1.3.15)
m energy lost per cycle vy
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free cantilever frequency symbol formula/value

natural undamped; velocity,

phase and power resonance

natural damped -

= Q‘” \/Q2 —%, ~m for Q>>1

amplitude resonance

- %i\/QZ - %2, ~mw, for Q>>1

Qwﬂ R

V@' -

Table 1.3.1: The exact values of important free cantilever frequencies and useful
approximations for cantilevers exnibiting a large quality factor.

~w, for 0 >>1

acceleration resonance w,

the stiffness of the coupled system of Equation 1.3.9 is given by:

, ar ., .
k'(2)=k+k,,,; (2)=k-— aomic (2) (1.3.186)
dz
and the resulting natural undamped angular frequency of the system is given by:
k'(z) | kummicf(z)

(1.3.17)

w”(z)=\——z—= ”\l+ n
Other important frequencies of the free and coupled cantilever are given in Tables 1.3.1
and 1.3.2. From Figure 1.3.7 it is clear that for separations of 20 or more, the atomic
force gradient is always negative and hence the resonant frequency of the coupled
cantilever system is always below that of the free cantilever. In addition, as can be seen
from Equation 1.3.17, the compliance of the cantilever must exceed the atomic force

gradient for oscillations to take place. Physically, this corresponds to having a cantilever

capable of resisting the attractive atomic force. Ignoring any change in the velocity
damping coefficient from that in the uncoupled system for simplicity (valid for UHV Van
der Waal's AFM), the effective quality factor of the system is given by:

w'(2) Q\ ™ kumz.(z) |

and since the atomic force gradient is negative in the operating regime, this is always

w, (2

-0

L= (1.3.18)
Y @,

Q'(z) =

less than the quality factor of the free cantilever. The normal condition for a system to
exhibit intrinsic oscillatory behaviour is that the effective quality factor exceed 0.5 (i.e. an

underdamped system). If the compliance of the cantilever is at least double the atomic

force gradient, this corresponds to the quality factor of the free cantilever exceeding 1/v2.

The general solution of Equation 1.3.9 can be calculated from elementary mechanics:

z=Acos(wt - 0)+ Bexp[_w%Q] cos(w't + 0), (1.3.19)
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coupled cantilever frequency | symbol . formula/value | .

- —

'
k kufnm:' C
(

natural undamped:; velocity, \m = CUU\ [ + r

phase and power resonance ;
<<

m
K, .
w 1+ “”’”"] for O>>1, k

2 k aromic

l+( atomic _ 0

natural damped
k
1+ atomic for >SS 13 k -
2k Q atomic

<< k

k

atomic 1 + atomic

T wn‘\

for O>>1, k << k

aromic

amplitude resonance

k

1 e atomic

k

2

- 0, k..
acceleration resonance | + ( a ) atomic
0 k

o

k .
atomic for 5 - l, kuf“mjf
2K .

<< k

Table 1.3.2: The exact values of important coupled cantilever frequencies and useful
approximations for cantilevers exhibiting a large quality factor in the presence of force
gradients much smaller than the compliance of the cantilever.

where the first term is the response of the cantilever to the forced oscillations at an

angular frequency, @, and the second term is the transient response of the cantilever at
the natural damped vibration frequency (as shown in Table 1.3.2). The amplitude, B,
and phase, 0, of the transient response are the two integration constants necessary for a

complete solution to Equation 1.3.9 and are determined from initial conditions.

The amplitude of the cantilever response to the forced oscillations, A, is given by:

aw ’ aw .

Alw,m]) = - “ (1.3.20)

2

7 i 7
IR . o
(w:.? _ a)z) E . : wﬂz [ 4 km”m“_, w2 N w, f_)
Q I 0

where a is the amplitude of the forced oscillations driven by a piezoelectric actuator, with

all angular frequencies as indicated in Tables 1.3.1 and 1.3.2.
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The phase lag of the cantilever response, 0, behind that of the driving oscillations is
implicitly given by the following relations:

tan o = Ol —~ = :
W, - w; w, 0,
Q| [ [l + u.‘umic ] .l
w”w w, ,
5o D@ _ __w_A(w,a);) w' 5 w'? - w’ A(w 0} ) .8
SIN -Q\/ﬁ_Qw ———————a . = @ = oy . (1.3.21)
7 S
2 W W
Q= (! —a)z) + ”QZ
From Equation 1.3.20 the gain (or transfer function) of the amplitude scheme is given by:
2 2
/ wn wﬂ
G(a),w“) B e ' - e ——— 7 (1.3.22)
12 2 : a) w : o) k et ’) g ) 2(:02 y
(CU” - (D ) + Q [wﬂ [l+ a!zmrt ] - l s el .
0

There are then three possible feedback systems based on the change in important
coupled system frequencies with sample-probe separation: those based on maintaining a
constant oscillation amplitude at a fixed frequency; those based on maintaining a
constant phase lag at a fixed frequency; and those based on maintaining a constant
resonant frequency - all by altering the sample-probe separation. As with STM and
contact mode AFM, each of these systems can also be run open loop (in a constant height
mode) for faster scanning, where either the amplitude, phase lag or resonant frequency

are measured as a function of lateral position.
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Figure 1.3.8: The variation in the cantilever response with frequency for a range of
quality factors. Here the natural undamped resonant frequency is 50kHz and the

frequency reduction factor is v0.99.
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Taking into account the fact that the atomic force gradient is always negative, the

condition that must hold over the range of operation is:

K, (2 l 0,
02—“"‘”’"”( )a—-—=> W,z =——7

k 2 2

Thus in order to be sensitive to the probe-specimen separation, the detection scheme

(1.3.23)

must be able to distinguish between changes in amplitude, phase lag or frequency over
this range. If it is assumed that the operating undamped resonant frequency of the

coupled system at the operating separation lies within the limits of Equation 1.3.23, then

we can write:

w,(z,)= a,. (1.3.24)
where a is a frequency reduction factor which lies within the range:
1 o1
I>s>az—=1>a" 2—. (1.3.25)
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Figure 1.3.9: The variation in the cantilever response with frequency for a range of
frequency reduction factors. Here the natural undamped resonant frequency Is SOkHz

and the quality factoris 100.
Figure 1.3.8 plots the amplitude and phase response of a cantilever with a natural

undamped resonant frequency of 50kHz and a frequency reduction factor of v0.99 for

various values of the quality factor. As expected, the gain increases with increasing
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quality factor. Figure 1.3.9 plots the amplitude and phase response of a cantilever with a
natural undamped resonant frequency of 50kHz and a quality factor of 100 for various
values of the frequency reduction factor. From this it is clear that the amplitude

increases and the resonant frequency decreases as the frequency reduction factor

decreases.
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Figure 1.3.10: Variation of the cantilever stiffness with operating separation for a range
of frequency reduction factors in Van der Waal's UHV AFM.

For Van der Waal's UHV AFM the cantilever stiffness is simply given by:

3 9

P . kmm(w 47