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Abstract

This thesis has developed alternative approaches for inflation forecasting and analysed the

inflation risk premium in the context of commodity futures and options markets.

Chapter 1 proposes an approach to tackle the non-availability of exchange-traded inflation

futures price data. The composition of the consumer price index enables us to recognise

the commodities which correspond to the consumption goods in the CPI. By averaging the

commodity futures prices in the same way as the CPI is composed, we construct a synthetic

futures contract written on the consumer price index, i.e. a futures on the CPI proxy, based on

which we derive a ‘point’ forecast of inflation rate.

Chapter 2 analyses the term structures of futures on the CPI proxy using the Schwartz

(1997) method. Inspired by the Schwartz (1997)’s framework, we develop a two-factor

valuation model filtering the spot consumer price index and the instantaneous real interest

rate. The Kalman filter is applied to estimate the two-factor valuation model parameters. The

filtered spot consumer price index may help alleviate the publication lag in the U.S. CPI-U

index. What’s more, the two-factor valuation model is capable of forecasting the downward

trend in the U.S. CPI inflation rate during May 2014 to December 2014.

Chapter 3 forecasts the inflation rate from the perspective of commodity futures option

market. We construct a synthetic option contract written on the futures on the CPI proxy.

Based on a synthetic option implied volatility surface, we derive an interval estimate for the

one-year ahead expected inflation rate. Moreover, the fact that commodity futures option

market data is high-frequency enables our method of inflation forecasting to theoretically

capture the market expectation of price level evolution in the real time.

Chapter 4 estimates the inflation risk premium using commodity market data. We derive

a link between the inflation risk premium and the risk premium associated with the futures

on the CPI proxy. The negative inflation risk premium estimates in our result are consistent

with the recent inflation risk premium estimates in the macroeconomic inflation risk premium

literature.
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Introduction

An inflation futures is a futures contract written on the inflation rate, which is used by market

participants to hedge the risk associated with a volatile inflation rate. The attempts of issuing

inflation futures remain unsuccessful due to a lack of a liquid underlying inflation-indexed

bond market. Given that market participants are exposed to inflation risk, we propose an

approach to tackle the non-availability of exchange-traded inflation futures price data by

introducing a synthetic futures contract written on the consumer price index. The composition

of the consumer price index indicates that most of the consumption goods in the consumer

price index are actually commodities on which the futures contracts are actively traded.

Collecting these commodity futures contracts and averaging them in the same way as the CPI

is composed, will create a synthetic futures contract written on the consumer price index, i.e.

a futures on the CPI proxy. The term structure of futures on the CPI proxy constructed on a

certain date yields the contemporaneous expectations of spot price levels in corresponding

maturity months of futures on the CPI proxy chain. To obtain a longer sample period of price

level forecasts, we analyse the time series of the futures on the CPI proxy chain.

In the commodity pricing literature, the classical approach for analysing the term structures

of futures prices is the Schwartz (1997)’s framework. Thus, in Chapter 2, we construct a two-

factor valuation model and predict one-year ahead expected inflation rate using the filtered

spot consumer price index and fitted forward curves. Although the two-factor valuation

model is capable of forecasting the trend in the inflation rate, the prediction derived from

the two-factor valuation model is only a ‘point’ forecast. No prediction of future evolution

of price level can be made with absolute certainty. It is therefore more realistic to consider

uncertainty when any prediction is made. Thus, there is considerable uncertainty surrounding

the ‘point’ forecast of future price level. This implication motivates us to develop an approach

to derive the uncertainty surrounding the ‘point’ forecast of the future price level.

One important feature of commodity markets is that commodity futures and commodity

futures options are usually traded side by side in the same exchange. Besides, options contain
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information on their underlying assets’ risk. This implies that we can use commodity futures

options to derive the risk of underlying commodity futures and therefore figure out the

uncertainties surrounding the ‘point’ forecast of future price level. Following this logic, in

Chapter 3, we construct a synthetic option written on the futures on the CPI proxy. Using

the synthetic option implied volatility surface, we derive the interval estimate for future price

level, which yields one-year ahead inflation forecast.

The price level forecasts in Chapter 1 to Chapter 3 are all made under the risk-neutral

measure. Under the risk-neutral measure, the commodity futures price is equal to the expected

future commodity spot price. In this case, the commodity futures price is the accurate measure

of the market expectation of the future price level. However, under the real-world measure,

the existence of the risk premium in the commodity futures market renders the commodity

futures price an inaccurate measure of the expected future commodity spot price. Thus, in

Chapter 4, we extend our study from the risk-neutral measure to the real-world measure and

estimate the risk premium associated with the futures on the CPI proxy. By deriving a link

between the risk premium associated with the futures on the CPI proxy and the inflation risk

premium, we estimate the inflation risk premium using commodity market data.



Chapter 1

Constructing a Futures on the CPI Proxy

Coauthored with CHRISTIAN-OLIVER EWALD

Abstract

The growth of modern inflation-linked bond markets has been strong since the early 2000s.

Analogous to the nominal bond markets, the existence of an established underlying inflation-

linked bond market gave rise to the emergence of a liquid inflation-linked derivative market,

including the inflation futures. Compared to the over-the-counter traded inflation swaps,

inflation futures are exchange-traded and accessible. However, due to low liquidity, inflation

futures have been delisted from Eurex Exchange. There are no exchange-traded inflation-

linked derivatives available on the U.S. and European exchanges in 2014. Given the fact

that market participants such as pension funds and insurance companies are still exposed to

inflation risk, we propose an approach to tackle the non-availability of inflation futures data.

In this paper, we construct a CPI proxy by extracting information from commodity futures

price data. The consumer price index is a composition of many components, on which active

futures contracts are traded. Collecting these futures contracts and averaging them in the same

way as the CPI is composed, will create a synthetic futures contract written on the CPI, i.e. a

futures on the CPI proxy.
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1.1 Introduction

Inflation-linked derivatives are financial derivatives linked to the inflation rate, which are

used by market participants such as pension funds and insurance companies to hedge risks

associated with volatile inflation rate. Inflation-linked derivatives provide market participants

with additional choices to hedge inflation risk other than the existing inflation-indexed bonds.

Furthermore, the entry requirement of the inflation-linked derivative market is lower than that

of the inflation-indexed bond market and therefore small businesses can also benefit from

inflation markets. In addition, compared with inflation-indexed bonds, inflation-linked deriva-

tives are more flexible in terms of hedging inflation risk due to the fact that derivatives can

be customized to meet individual investor’s specific needs. Thus, inflation-linked derivative

market is a powerful complement to the existing inflation-indexed bond market.

Since the early 2000s, the demand from market participants for increasingly complex

inflation-linked derivatives kept growing. As a result, new inflation-linked derivatives other

than the traditional inflation-linked swaps began to emerge, including the inflation futures.

Inflation futures bridges the gap for hedging inflation risk at the front end of the inflation

curve by giving expectation about the short-term inflation rate. However, due to low liquidity,

all three attempts to issue inflation futures remain unsuccessful and nowadays data on inflation

futures prices can hardly be collected from exchanges. In fact, our investigation suggests that

there are no exchange-traded inflation-linked derivatives on inflation markets in 2014.

The existing inflation market literature mainly focus on the analysis of the development of

both the inflation-indexed bond markets and the inflation-linked derivative markets. Deacon

et al. (2004) is the most comprehensive guide for both the global inflation-indexed bond

market and inflation-linked derivative market. Campbell et al. (2009a) explore the history of

inflation-indexed bond markets in the U.S. and U.K.. Canty and Heider (2012) present the

recent development in inflation markets and analyse the mechanism determining the value of

inflation-linked products. The illiquidity of inflation futures is discussed in detail by Canty

and Heider (2012), but no solution has been given to tackle this issue. By analysing the history

and prospect of inflation futures, Ashton (2014) confirms the benefit that inflation futures

brought to the inflation market and expresses optimism for the prospect of inflation futures.

In this paper, we contribute to the literature by proposing an approach to tackle the non-

availability of exchange-traded inflation futures data. Based on the composition of U.S. CPI-U

index, we construct a synthetic futures written on the consumer price index by extracting

information from commodity futures contracts, i.e. a futures on the CPI proxy.
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We organise this paper as follows. The next section describes the global inflation-linked

derivative markets and our investigation for the availability of exchange-traded inflation-linked

derivatives data. Section 1.3 introduces the approach to tackle the non-availability of inflation

futures data. Section 1.4 describes the dataset. Section 1.5 discusses the empirical results.

Finally, section 1.6 concludes the paper.

1.2 Global Market of Inflation-linked Derivatives

The global inflation market emerged three decades ago since the U.K. started to issue inflation-

linked gilts in 1981. Although the modern global market of inflation-linked bonds is still

relatively young, the growth has been strong since the early 2000s. Analogous to the nominal

bond market, the existence of an established underlying inflation-linked bond market is

necessary for the emergence of a liquid inflation-linked derivatives market. According to

Canty and Heider (2012), the trading of inflation-linked derivatives has picked up since the

early 2000s, particularly in Europe and later also in the U.S.

Typically, the most liquid inflation-linked derivatives are zero-coupon inflation swaps,

year-on-year inflation swaps, inflation-linked asset swaps, inflation options and exchange-

traded inflation futures contracts. Since most zero-coupon inflation swaps, year-on-year

inflation swaps, inflation-linked asset swaps and inflation options are over-the-counter traded

between two individual counterparties, these inflation-linked derivatives generally cannot be

accessed from online financial data service platform such as Bloomberg.

Given the fact that there is no market for short-term government issued inflation-linked

bills and that the inflation-linked swaps only hedge long-term risks beyond one year, the

short-end of the inflation term structure remains undefined. According to Canty and Heider

(2012), individual investor indeed faces short-term inflation risk as inflation-linked bonds

and inflation-linked swaps roll down the inflation curve, and these risks will increase as

inflation market matures. As a result, inflation futures contracts are constructed by the

exchange to help investors to hedge short-term inflation risk. Next, we summarize briefly

Canty and Heider (2012)’s study about the three inflation futures contracts issued by the

Chicago Mercantile Exchange (CME) and Eurex Exchange and accordingly investigate the

availability of exchange-traded inflation-linked derivatives.

The CME constructed a U.S. CPI futures contract in February 2004. The design of this

contract was similar to the Eurodollar futures, with inflation defined as annualized quarterly
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inflation. The price of the contract for month was defined as 100 minus the annualized

percentage change in the CPI over the three-month period preceding the contract month.

The CME U.S. CPI futures contract failed to gain traction, with the contract design in

terms of quarterly inflation considered as the main culprit for the lack of interest. Because of

CPI seasonality, the values of the contracts would vary visibly from one month to the other,

making it more difficult to read the implied expectations of trend inflation. The CME has

since closed the U.S. CPI contract.

In September 2005, aiming at picking up product’s liquidity, the CME launched a euro

area inflation futures contract, which-contrary to the previously issued U.S. CPI contract-was

based on annual as opposed to quarterly inflation. Specifically, the price of the contract is

defined as 100 minus the year-on-year change in HICPx, with each monthly contract referring

to the HICPx released during the contract month. Contract for 12 consecutive calendar months

are tradable. Given this design, contract prices go up when inflation expectations decline.

However, liquidity has never really picked up, i.e. the product has never managed to break

out the circle of low liquidity/no investors/low liquidity. In late 2011, there was no open

interest in this contract.

Eurex Exchange launched a new euro area inflation futures contract on 21st of January

2008. The contract design is identical to the CME contract, but 20 consecutive contracts are

available (instead of 12 for the CME contract) and trading stops only on the day of the HICP

release (instead of one day earlier).

In order to overcome the problem of building up liquidity, Eurex Exchange proposed

specified trading rules. In particular, two daily auctions of 15 minutes-opening and closing-

were to be held where designated market makers would provide liquidity. During the auction,

the market makers were required to quote for 12 out of 20 calendar months at a maximum

spread of 20 ticks and be present at least 80% of the auction period. During continuous

trading, market makers would quote upon request and respond to at least 70% of all incoming

quote requests.

There was also some hope that the longer maturity contracts would attract additional

interest, with the 20th contract corresponding to the HICPx index just two months away from

the liquid 2Y zero-coupon inflation swap point. Despite these improvements over the CME

futures the Eurex HICP contract has not been a success. After some trading activity at the

start, liquidity has dried up over time. At the end of 2011, there were no open positions in the

Eurex HICP futures.
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Accordingly, based on Canty and Heider (2012), until the end of 2011, the liquidity of

Eurex HICP futures had dried up. However, given the fact that the Europe had been gradually

recovering from the 2008 financial crisis, we hope that there were chances that their liquidity

would be picked up since 2012. Therefore, we investigate the availability of data on Eurex

HICP futures by contacting Eurex Exchange. It turned out that the Euro-inflation-futures,

with product ID HICP, had only 4 closing prices during 2012 to 2013, i.e. this product was

not liquid at all on the Eurex market since 2012. Finally, the management board of Eurex

Exchange decided to de-list Eurex HICP futures on 11th of June 2014.

The three attempts of issuing inflation futures contract indicate that there were hardly any

interests for these products and consequently their liquidity has barely been picked up. Indeed,

as Canty and Heider (2012) suggested, the main reason could be that, unlike the comparable

nominal products such as the Eurodollar or Euribor futures contracts which are based on a

very liquid underlying money market and regular issuance of short-term government debt,

inflation futures contracts lack a liquid underlying inflation-linked bond market.

The existing literature suggests that the market of inflation futures contracts is illiquid. In

order to investigate the availability of any other exchange-traded inflation-linked derivatives,

we contacted the major exchange markets in U.S. and Europe, i.e. the CME group, Eurex

Exchange, London Stock Exchange, GXG Markets, Spanish Exchanges, Boerse-Frankfurt

Group, SuperDerivatives and European Stock Exchange and inquired about the availability

of any exchange-traded inflation-linked derivatives, the feedbacks indicate that there are no

exchange-traded inflation-linked derivatives on these major exchange markets in 2014.

However, an illiquid inflation futures market does not mean that market participants are

free from inflation risk. The U.S. CPI-U index kept decreasing (from 238.031 to 233.707)

for four consecutive months since September 2014, indicating potentially volatile inflation

rate in the near future. Thus, in order to tackle the non-availability of inflation futures data,

we introduce the futures on the CPI proxy. Next, we show step by step how we construct the

futures on the CPI proxy.

1.3 An Approach to Tackle the Non-availability of Inflation

Futures

We propose an approach to tackle the non-availability of exchange-traded inflation futures

data. The idea of our approach is as follows: the consumer price index is a composition
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of many items, e.g. food, housing, transportation and services, etc. An inspection at the

commodity futures exchange indicates that most of the items used to construct the CPI are

actually commodities on which active futures contracts are traded. Collecting these futures

contracts according to the composition of CPI and averaging them in the same way as the CPI

is composed, will create a synthetic futures contract written on the CPI, i.e. a futures on the

CPI proxy. Next, we present in detail how to construct the futures on the CPI proxy.

We focus on the U.S. exchanges, specifically the CME Group, to collect the commodity

futures contracts, since the CME Group is the world’s most diverse derivatives marketplace

and the largest futures exchange. We do not include U.K. exchanges in our study, given that

the majority of active commodity futures contracts are based in the U.S., focusing on the

U.K. exchanges will give rise to the issue that most of the included futures contracts are being

traded overseas, which leads to the exchange rate risks. Linking these futures contracts to

foreign exchange products can only hedge part of the risks. Therefore, to avoid that potential

risk, we focus on the U.S. exchanges.

Since we decide to focus on the U.S. exchanges, we then need to choose the reference

U.S. consumer price index. The U.S. Bureau of Labour Statistics (BLS) publishes CPI index

on a pre-specified date every calendar month. The three main U.S. CPI series are: CPI

for All Urban Consumers (CPI-U); Chained CPI for All Urban Consumers (C-CPI-U); CPI

for Urban Wage Earners and Clerical Workers (CPI-W). Specifically, CPI-U represents the

buying habits of the residents of urban areas in the United States, while CPI-W covers only

a subset of the urban population. C-CPI-U also represents the urban population as a whole,

but it uses a distinct calculation formula which accounts for consumers’ ability to achieve the

same standard of living from alternative sets of consumer goods and services. This formula

requires consumer spending data that are not immediately available and therefore C-CPI-U

is published first in preliminary form and is subject to two subsequent scheduled revisions.

Compared to CPI-W and C-CPI-U, CPI-U covers the largest urban population of the U.S. and

is the least lagged price index. Therefore, we choose CPI-U as our reference consumer price

index.

Given CPI-U as the reference consumer price index, we next reverse the procedure of

U.S. Bureau of Labour Statistics constructing the CPI-U and investigate the composition of

CPI-U. The official document ‘Relative importance of components in the Consumer Price

Indexes: U.S. city average’ published by the Bureau of Labour Statistics gives us indication

of the composition of CPI-U. Specifically, CPI-U consists of groups of items such as food
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and beverages, housing, apparel, transportation, medical care, recreation, education and

communication and other goods and services, and each group is composed of individual

items.

Given these items, we then try to find out their corresponding commodities on which

futures contracts are actively traded in exchanges. Most of the items have the exact corre-

sponding commodities. For those items which do not have exactly matching commodities,

however, we find close substitute commodities based on the main ingredients of these items,

e.g. bread can be treated as wheat; jewellery can be substituted with gold and silver, and so

on.

Next, based on the underlying commodities, we search for the available data on corre-

sponding commodity futures contracts in CME by using Bloomberg. Since the purpose of

constructing the CPI proxy is to track the CPI-U as closely as possible, for each commodity

futures contract table, we only include those futures contracts whose maturities follow closely

the release date of CPI-U, e.g. the release date of January 2015 CPI-U is 26th of February

2015, we only include the earliest-matured commodity futures contract among all futures

contracts that matured after 26th of February 2015. Once we have included all of the eligible

futures contracts, we then collect data on the last price of each futures contracts observed on

the CPI-U releasing date. If on the CPI-U release date, the last price is not available, we then

use the settlement price of that futures contract observed on the same date instead since it is

the best guess of the last price provided by the exchanges.

In order to ensure that the CPI proxy tracks the historical CPI-U index as closely as possi-

ble, we also need to figure out the optimum weight for each commodity. When determining

the commodity’s optimum weight, the key is to ensure that the optimum weight of each

commodity reflects precisely the relative importance of the corresponding item in the CPI.

One solution would be to take directly the original weight of item in the CPI and assign it to

the corresponding commodity. However, this solution is viable only when every item in the

CPI has an exactly matching commodity futures contract available in Bloomberg, which, in

our study, is not the case. In more precise terms, for 79% of all items in the CPI, we can find

either an exactly matching commodity futures contract or close substitute in Bloomberg; by

contrast, the remaining 21% of components in the CPI have neither corresponding commodity

futures nor any available substitute. Therefore, we need to renormalize the weights of the

79% of CPI components which have exactly matching commodity futures contract or close

substitute in Bloomberg.
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Given that we have two ‘Relative importance of components in the Consumer Price

Indexes: U.S. city average’ documents in the dataset, we need to determine from which docu-

ment of relative importance we derive the commodity’s optimum weight. For each ‘Relative

importance of components in the Consumer Price Indexes: U.S. city average’ document, we

take the weights of CPI components that have matching or substitute commodities, then we

renormalize these weights and assign them to each commodity. This gives us two groups

of renormalized weights for commodities. Next, for each group of renormalized weights,

we calculate the corresponding time series of CPI proxy. The CPI proxy corresponding to a

specific reference CPI-U release date is defined as:

n

∑
i=1

WiFi(0, t),

where Wi is the renormalized weight for the ith commodity; Fi(0, t) is the CPI-U-release-date-

observed last price of the ith commodity’s futures contract whose maturity follows closely the

CPI-U release date; n is the number of commodities included in the construction of CPI proxy.

For each one of the 26 CPI-U release dates in the dataset, we calculate one corresponding

CPI proxy, which forms the time series of CPI proxy. We then compare each time series

of CPI proxy with the time series of historical CPI-U indexes and see which time series of

CPI proxy tracks the time series of historical CPI-U indexes more closely. Lastly, the group

of renormalized weights that yields a time series of CPI proxy tracking the time series of

historical CPI-U indexes more closely will be the optimum weights for commodities.

Given the commodity optimum weight, we then look into the future and construct the

futures on the CPI proxy. The time 0 futures on the CPI proxy corresponding to a specific

future time T is defined as:
n

∑
i=1

aiFi(0,T ),

where ai is the optimum weight for the ith commodity; Fi(0,T ) is the time-0 last price of the ith

commodity’s futures contract maturing in the future time T ; n is the number of commodities

in the dataset. The weighted average of commodity futures prices, i.e. ∑
n
i=1 aiFi(0,T ), is

therefore the futures on the CPI proxy.
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1.4 Data Description

This section describes the data used in the empirical study. We have three datasets: U.S.

CPI-U data, relative importance of components in the Consumer Price indexes: U.S. city

average, and commodity futures price data.

1.4.1 U.S. CPI-U Data

We use the non-seasonally adjusted U.S. City Average All Items Consumer Price Index for

All Urban Consumers (CPI-U) as our reference consumer price index. We obtained this

index from the U.S. Bureau of Labour Statistics CPI Databases. CPI-U is a measure of the

average change over time in the prices paid by all U.S. urban consumers for a market basket

of consumer goods and services. We choose the non-seasonally adjusted CPI-U because it is

consistent with the seasonality observed in the commodity futures market.

We use monthly CPI-U data observed from December 2012 to January 2015. Table 1.1

presents the monthly CPI-U values from December 2012 to January 2015:

Table 1.1. CPI-U Index Values (December 2012 to January 2015)

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2012 229.601
2013 230.280 232.166 232.773 232.531 232.945 233.504 233.596 233.877 234.149 233.546 233.069 233.049
2014 233.916 234.781 236.293 237.072 237.900 238.343 238.250 237.852 238.031 237.433 236.151 234.812
2015 233.707

1.4.2 Relative Importance of Components in the Consumer Price In-

dexes: U.S. City Average

The data on the ‘Relative importance of components in the Consumer Price Indexes: U.S.

city average’ is available for downloading from ‘CPI Tables’ of U.S. Bureau of Labour

Statistics website. The Relative importance of components in the Consumer Price Indexes

is the component’s expenditure or value weight expressed as a percentage of all items in an

area. This percentage represents the component’s average annual expenditures and shows

how the indexed population distributes expenditures among all of the components. Every

update of these percentages shows how consumers would distribute their expenditures on

the components as prices change over time. The relative importance of components in the

CPI gives us an indication of what commodity futures we need to include in the construction
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of the CPI proxy. Furthermore, we use the relative importance of components in the CPI to

determine the optimum weight for each commodity.

Although the relative importance of components in the CPI data changes on monthly

basis, BLS publishes the relative importance of each component in the CPI only once a year

in every December as the monthly changes of the relative importance are deemed too small to

perceive. During our analysis period, two sets of data on ‘Relative importance of components

in the Consumer Price Indexes’ are available, namely ‘2011-2012 Weights, December 2013’

and ‘2011-2012 Weights, December 2014’, respectively. We present these two sets of data in

the Appendix A.

1.4.3 Commodity Futures Price Data

Commodity futures price in our analysis refers to the daily last price or the daily settlement

price for any commodity futures included in the construction of the futures on the CPI proxy.

We choose the commodity futures contracts that are actively traded on CME Group exchanges.

We collect the data on commodity futures price from Bloomberg.

As stated in the methodology, we start with the investigation of composition of the U.S.

CPI-U index. The ‘Relative importance of components in the Consumer Price Index’ shows

how the CPI-U is composed of different components and therefore is a precise indication

of what commodity we need to include in the construction of CPI proxy. On one hand,

we examine each item listed in the ‘Relative importance of components in the Consumer

Price Index’ to see what commodity we need to include; on the other hand, we check what

commodity futures contracts are available from CME Group exchanges. This ‘examine and

check’ process yields two results: for items that have exactly matching commodity futures,

we include these commodities directly; for other items which do not have exact matches,

we find close substitutes. Additionally, for any included commodity that has more than one

futures contracts written on it, we only choose the futures contract with the highest volume

and open interest. Following this method, we include 34 commodity futures contract tables,

with each contract table containing the chains of futures contracts with different maturities

written on one commodity. In Appendix A, we present in detail the generic tickers of the 34

commodity futures contract tables and how we find close substitute commodities for items

listed in the U.S. CPI-U index.

Given these 34 commodity futures contract tables, the next step is to collect the price data

for these futures contracts. We classify the price data into two categories by their usage: price
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data for commodity futures with the shortest maturity; and price data for commodity futures

maturing in the future.

Price Data for Commodity Futures with the Shortest Maturity

Our purpose of constructing the CPI proxy is to track the historical CPI-U as closely as

possible. Two factors determine how closely the CPI proxy tracks the historical CPI-U: the

weight of each commodity; and the prices of included commodity futures. In this section, we

present how we choose the commodity futures price data in order to ensure that the CPI proxy

tracks closely the historical CPI-U.

We use the time series of historical CPI-U index containing 26 consecutive observations

from December 2012 to January 2015. Each historical CPI-U index has a release date, we

present the 26 CPI-U release dates in Table 1.2.

Table 1.2. Schedule of Releases for CPI (December 2012-January 2015)

Reference Month U.S. CPI Release Date Unseasonally Adjusted U.S. CPI-U

January 2015 February 26, 2015 233.707
December 2014 January 16, 2015 234.812
November 2014 December 17, 2014 236.151
October 2014 November 20, 2014 237.433
September 2014 October 22, 2014 238.031
August 2014 September 17, 2014 237.852
July 2014 August 19, 2014 238.25
June 2014 July 22, 2014 238.343
May 2014 June 17, 2014 237.9
April 2014 May 15, 2014 237.072
March 2014 April 15, 2014 236.293
February 2014 March 18, 2014 234.781
January 2014 February 20, 2014 233.916
December 2013 January 16, 2014 233.049
November 2013 December 17, 2013 233.069
October 2013 November 20, 2013 233.546
September 2013 October 30, 2013 234.149
August 2013 September 17, 2013 233.877
July 2013 August 15, 2013 233.596
June 2013 July 16, 2013 233.504
May 2013 June 18, 2013 232.945
April 2013 May 16, 2013 232.531
March 2013 April 16, 2013 232.773
February 2013 March 15, 2013 232.166
January 2013 February 21, 2013 230.28
December 2012 January 16, 2013 229.601

source: U.S. Bureau of Labour Statistics

We set each CPI release date as the reference date for determining which commodity

futures contract to include. Each commodity futures contract table contains a series of futures

contracts with different maturities written on the underlying commodity, for each reference
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CPI release date, we only choose the futures contract with the shortest maturity, e.g. for

December 2014 CPI-U released on 16th of January 2015, we only include the earliest-matured

commodity futures contract among all futures contracts which matured after 16th of January

2015. It should be noted that although only the futures contract with the shortest maturity are

included, the CPI release date and included futures contract maturity are not necessarily in

the same month. Due to the fact that different commodities have different number and timing

of maturity months within a calendar year, it is common that certain commodity only has

futures contract maturity in odd (or even) months. For such commodity futures, the ‘shortest

maturity’ can be two or even three months away from the reference CPI release date.

For each commodity futures with the shortest maturity, we collect the historical daily last

price of the futures contract observed on the reference CPI release date, e.g. for reference CPI

release date 16th of January 2015, the crude oil futures contract ‘CLG5 Comdty’ maturing

on 20th of January 2015 is the futures contract with the shortest maturity, then we collect the

last price of ‘CLG5 Comdty’ observed on 16th of January 2015. In the case that the last price

is unobservable on the reference CPI release date, we use the settlement price instead since

the settlement price is the ‘best guess’ made by exchanges of the average price of all trades

happened on that day. In fact, even if there is no trade on a specific day, the settlement price

is still observable. Therefore, the settlement price data is available on all trading days during

our analysis period. Following this method, for each reference CPI release date, we collect 34

commodity futures price observations, producing a total of 884 price observations.

Price Data for Commodity Futures Maturing in the Future

We use price data for commodity futures with the shortest maturity to determine the optimum

weight for each commodity. To construct the futures on the CPI proxy, we remove the

restriction on the maturity of commodity futures contracts and collect the price data on

commodity futures maturing in the future.

Specifically, for each one of the 34 commodities, we check the corresponding commodity

futures contract table in Bloomberg and collect the historical daily last price data for all of the

available futures contracts in contract table. The daily last price data for each futures contract

observed from 1st of January 2012 to 9th of April 2015 (the most recent date in the analysis

period) are collected. In the case that the daily last price of a futures contract is not available

on a specific date, we use settlement price on that date instead.
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It should be noted that the longest available futures contract maturity differs from one

commodity to another. For example, for crude oil, we can observe available futures contract

maturing in December 2021, which means that we can ‘see far into the future’. Similarly, for

gold, copper, electricity and natural gas, futures contracts maturing in 2020 can be observed.

The longest available futures contract maturities of these five commodities are the longest

among all the commodities in the dataset. For the remaining commodities in the dataset, a

majority (28) of these commodities have futures contract maturities observable until May

2016; we also have commodity futures contract that has maturity month only available until

September 2015. Therefore, we select May 2015 to May 2016 as our analysis period because

during this period the majority of commodities have available futures contract maturity

observable until May 2016.

It should also be noted that the number and timing of futures maturity months within a

calendar year can vary from one commodity to another. As for our dataset, although there

exists ‘always-available’ commodity futures such as crude oil futures which have maturity

months available in every month of a year, most commodity futures only have maturity

available in even or odd months of a year, or even every other quarter. As a matter of fact,

during our analysis period (May 2015-May 2016), there are only 12 commodities which have

futures contract maturity available in every month of a year. In other words, for the remaining

commodities, the number of available maturity months within a calendar year is less than 12.

Table 1.3 presents the number and timing of maturity months of commodity futures contracts.

In Table 1.3, the first column presents the ticker of the commodities; each number ‘1’

in the table indicates that the commodity futures contract has observable maturity in that

month. It can be seen from the table that different number and timing of commodity futures

maturity months within a calendar year and distinct longest available futures contract maturity

observed in the dataset give rise to the issue of missing commodity futures price observations

in certain months. To tackle the issue of missing futures price observations, we apply the

linear interpolation and extrapolation method to replace the missing futures prices. We present

the result in section 1.5.

Our purpose is to extract information from the commodity futures maturing in the future

and construct the futures on the CPI proxy. The consumer price index only describes the price

level in current and historical periods, which indicates that the term structure of consumer

price index forecasting the future price level does not exist. However, the commodity futures
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Table 1.3. Number and Timing of Maturity Months of Commodity Futures Contracts

2015 2016 2017 2018

Ticker 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6

YP 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
FC 1 1 1 1 1 1 1 1
LH 1 1 1 1 1 1 1 1 1 1 1 1
LC 1 1 1 1 1 1 1 1 1
DA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

CHE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
FSB 1 1 1 1 1 1 1 1
LE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
JO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FCC 1 1 1 1 1 1 1 1 1 1
V6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

DRW 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
FCO 1 1 1 1 1 1 1 1 1 1
BO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
KV 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CPI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
DJE 1 1 1 1
NG 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LB 1 1 1 1 1 1 1
PH 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

HRC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
FC 1 1 1 1 1 1 1 1 1 1

DFL 1 1 1 1 1 1 1 1 1 1 1 1
HG 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
OP 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
GC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
IXC 1 1
SI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

MKC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
O 1 1 1 1 1 1 1 1 1 1 1 1 1

RR 1 1 1 1 1 1 1
KW 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
W 1 1 1 1 1 1 1 1 1 1 1 1

Notes: The first column presents the ticker of the commodities; each number ‘1’ in the table indicates that the commodity
futures contract has observable maturity in that month.

Table 1.3 - continued. Number and Timing of Maturity Months of Commodity Futures Contracts

2018 2019 2020 2021

Ticker 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

YP
FC
LH
LC
DA

CHE
FSB
LE
JO

FCC
V6

DRW
FCO
BO 1 1
KV
CPI
DJE
NG 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LB
PH 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

HRC
FC

DFL
HG 1 1 1 1 1 1 1 1 1
OP 1 1 1 1
GC 1 1 1 1 1
CL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
IXC
SI 1 1 1

MKC
O

RR
KW
W

Notes: The first column presents the ticker of the commodities; each number ‘1’ in the table indicates that the commodity
futures contract has observable maturity in that month.
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market makes expectation for the future price level by pricing the commodity futures contracts

and updating their prices continuously. The commodity futures prices observed on any date

reveal the prices of that commodity to be delivered in a certain future month. The weighted

sum of the prices of the 34 commodity futures contracts maturing in the same month creates

the futures on the CPI proxy for that month; and the collection of futures on the CPI proxy

corresponding to every month during May 2015 to May 2016 constructs the term structure

of futures on the CPI proxy. It should be noted that, the term structure of futures on the CPI

proxy may vary from one date to another because the underlying commodity futures price

data updates continuously. Therefore, we pre-specify one reference date and construct the

term structure of futures on the CPI proxy for that date, then the term structure of futures on

the CPI proxy for other historical dates can be constructed by following the same method.

In fact, we cannot arbitrarily appoint any date as the reference date. Given that the start

trading day of commodity futures maturing in the far future (e.g. 2 years in the future) can

be close to the current date, the price quotes for such a commodity futures contract are only

available during the most recent dates. For instance, cocoa futures contract ‘FCOH7’ maturing

in March 2017 only has price quotes available from 2nd of April 2015 to 8th of April 2015.

Therefore, in order to extract information from futures contracts maturing in the far future,

we need to select the appropriate date as our reference date. As a result, we choose 7th of

April 2015 as the reference date for our analysis. We collect the reference date’s daily last

price data for all available included commodity futures contracts. This dataset can be found

in section 1.5.

Given the collected datasets, we now move on to determine the optimum weight for each

commodity and construct the futures on the CPI proxy. In the next section, we present our

empirical results.

1.5 Empirical Results

In this section, we present in detail the construction of the futures on the CPI proxy. Using

the available datasets, we first determine the optimum weight for each commodity. Then we

replace the missing futures prices. Next, based on the optimum weights and complete futures

price dataset, we construct the term structure of futures on the CPI proxy.
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1.5.1 Determining the Optimum Weight for Commodity

The purpose of constructing the CPI proxy is to track the time series of historical CPI-U index

as closely as possible. To this end, we have selected the proper commodity futures price data

by choosing the futures contract whose maturity follows closely the reference CPI release

date. In order to fulfil the purpose, we also need to determine the optimum weight for each

commodity.

When determining the commodity’s optimum weight, the key is to ensure that the optimum

weight of each commodity reflects precisely the relative importance of the corresponding

item in the CPI. One solution would be to directly take the original weight of item in the

CPI and assign it to the corresponding commodity. This solution is viable only when every

item in the CPI has an exactly matching commodity futures contract available in Bloomberg,

which is not the case in our study. There is no futures contract written on item such as

tobacco and smoking products. Furthermore, services account for over 61% of total weight

of components in the CPI. For the majority of the services such as housing and medical, we

can find corresponding futures contracts; but for other services such as haircut, dental and

legal services, neither corresponding futures contracts nor close substitutes are available in

Bloomberg. Precisely, for 79% of all items in the CPI, we can find either an exactly matching

commodity futures contract or close substitute in Bloomberg; by contrast, the remaining 21%

of components in the CPI have neither corresponding commodity futures nor any available

substitute. Therefore, we need to renormalize the weights of the 79% of CPI components

which have exactly matching commodity futures contract or close substitute in Bloomberg.

As stated in the data description section, we have two ‘Relative importance of components

in the Consumer Price Indexes: U.S. city average’ datasets available during the analysis period,

i.e. 2011-2012 weights published in December 2013 and 2011-2012 weights published in

December 2014. These two datasets are the benchmark to determine the optimum weights for

commodities. The method for determining the renormalized weights is as follows: for items

that have corresponding commodity futures contract or close substitute in Bloomberg, we take

their weights from ‘Relative importance of components in the Consumer Price Indexes: U.S.

city average’ and assign these weights to the corresponding commodities or close substitutes.

Next, we renormalize these assigned weights to ensure the sum of these renormalized weights

is equal to one while keeping the relative importance unchanged. We present in Table 1.4 the

original assigned weights and renormalized weights for each commodity.
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Table 1.4. Original Assigned Weights and Renormalized Weights for Commodities

commodity

Weights for December 2013 Weights for December 2014

original weights renormalized weights original weights renormalized weights

YP 0.23% 0.30% 0.23% 0.30%
FC 5.70% 7.21% 5.84% 7.40%
LH 0.35% 0.44% 0.37% 0.47%
LC 0.83% 1.04% 0.91% 1.15%
DA 0.27% 0.34% 0.28% 0.36%
CHE 0.27% 0.34% 0.29% 0.36%
FSB 0.42% 0.53% 0.43% 0.54%
LE 0.20% 0.25% 0.20% 0.26%
JO 0.70% 0.89% 0.70% 0.89%
FCC 0.15% 0.19% 0.16% 0.20%
V6 0.25% 0.31% 0.25% 0.31%
DRW 0.28% 0.36% 0.29% 0.36%
FCO 0.33% 0.41% 0.33% 0.42%
BO 0.29% 0.36% 0.29% 0.37%
KV 0.05% 0.07% 0.06% 0.07%
CPI 0.44% 0.56% 0.44% 0.56%
DJE 32.03% 40.48% 32.71% 41.42%
NG 1.01% 1.27% 1.01% 1.28%
LB 2.67% 3.37% 2.60% 3.30%
PH 4.32% 5.46% 4.41% 5.58%
HRC 1.00% 1.27% 0.98% 1.24%
FCT 2.72% 3.44% 2.62% 3.32%
DFL 0.11% 0.13% 0.11% 0.14%
HG 0.56% 0.71% 0.56% 0.70%
OP 0.56% 0.71% 0.56% 0.70%
GC 0.11% 0.14% 0.11% 0.13%
CL 16.42% 20.75% 15.29% 19.36%
IXC 5.85% 7.39% 5.94% 7.53%
SI 0.11% 0.14% 0.11% 0.13%
MKC 0.12% 0.15% 0.12% 0.15%
O 0.25% 0.31% 0.25% 0.31%
RR 0.13% 0.16% 0.13% 0.16%
KW 0.19% 0.24% 0.19% 0.24%
W 0.23% 0.29% 0.23% 0.29%

SUM 79.13% 100% 78.97% 100%

Notes: Table 1.4 presents the original assigned weights and renormalized weights for each commodity
futures contract table; ‘Weights for December 2013’ represents that the original weights are taken from
‘2011-2012 Weights, December 2013’ document; ‘Weights for December 2014’ represents that the
original weights are taken from ‘2011-2012 Weights, December 2014’ document.

It should be noted that, although the absolute value of renormalized weight for each

commodity is greater than the original weight of corresponding component in the CPI,

the relative weight of commodity (after renormalization) remains the same to the relative

importance of corresponding component in the CPI, as it is the relative weight of each

commodity rather than the absolute value of weight that determines the importance of a

commodity in the construction of futures on the CPI proxy.

Given the two sets of renormalized weights, we now move on to construct the time series

of CPI proxy. Specifically, the CPI proxy corresponding to a specific reference CPI-U release
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date is defined as:
34

∑
i=1

WiFi(0, t),

where Wi is the renormalized weight for the ith commodity; Fi(0, t) is the reference-CPI-

release-date-observed last price of ith commodity’s futures contract whose maturity follows

closely the reference CPI release date. The weighted sum of futures prices, i.e. ∑
34
i=1WiFi(0, t),

is the CPI proxy corresponding to a reference CPI release date. Since we have 26 CPI release

dates in our analysis, we calculate the corresponding 26 CPI proxies; and these 26 indexes

construct the time series of CPI proxy which track closely the time series of 26 historical

CPI-U index values. In Table 1.5, we present the time series of CPI proxy derived from both

groups of renormalized weights.

Table 1.5. Time Series of CPI Proxies

U.S. CPI Release Dates CPI-U CPI Proxy 2013 CPI Proxy 2014

January 16, 2013 229.601 222.656 206.314
February 21, 2013 230.28 223.113 207.153
March 15, 2013 232.166 227.483 211.449
April 16, 2013 232.773 231.876 216.997
May 16, 2013 232.531 236.094 220.046
June 18, 2013 232.945 226.630 209.686
July 16, 2013 233.504 230.270 211.839
August 15, 2013 233.596 223.832 204.890
September 17, 2013 233.877 228.172 209.691
October 30, 2013 234.149 232.660 216.129
November 20, 2013 233.546 228.196 212.253
December 17, 2013 233.069 228.255 211.464
January 16, 2014 233.049 234.282 218.294
February 20, 2014 233.916 243.832 226.144
March 18, 2014 234.781 245.584 228.753
April 15, 2014 236.293 243.118 225.356
May 15, 2014 237.072 247.404 230.207
June 17, 2014 237.9 249.982 231.828
July 22, 2014 238.343 254.951 237.510
August 19, 2014 238.25 255.991 240.516
September 17, 2014 237.852 252.177 236.791
October 22, 2014 238.031 251.440 238.958
November 20, 2014 237.433 255.619 244.256
December 17, 2014 236.151 253.443 246.167
January 16, 2015 234.812 259.230 253.697
February 26, 2015 233.707 253.070 247.359

Notes: ‘CPI Proxy 2013’ is the abbreviation for ‘the time series of CPI
proxy derived from the renormalized 2013 weights’; ‘CPI Proxy 2014’ is the
abbreviation for ‘the time series of CPI proxy derived from the renormalized
2014 weights’. The shaded areas denote the periods when the price level is
decreasing.

In Table 1.5, ‘CPI Proxy 2013’ is the abbreviation for ‘the time series of CPI proxy derived

from the renormalized 2013 weights’; analogously, ‘CPI Proxy 2014’ is the abbreviation for
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‘the time series of CPI proxy derived from the renormalized 2014 weights’. The shaded areas

in Table 1.5 denote the periods when the price level is decreasing. The comparison between

the shaded areas in the third and the fourth column indicates that the CPI proxy evolution in

CPI proxy 2013 tracks the time series of historical CPI-U index more closely than CPI proxy

2014 does. We can also see from Table 1.5 that both time series of CPI proxy start with values

that are lower than the CPI-U on 16th of January 2013 (229.601) and end up with values that

are higher than the CPI-U on 26th of February 2015 (233.707). In order to see clearly the

trend and fluctuations of both time series of CPI proxy and therefore compare them with the

time series of historical CPI-U, we plot these time series in Figure 1.1 and Figure 1.2.
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Figure 1.1. The line chart compares the time series of historical CPI-U (solid line with cross symbol)
with the time series of CPI proxy constructed from the renormalized 2013 weights (solid line with
circle symbol).
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Figure 1.2. The line chart compares the time series of historical CPI-U (solid line with cross symbol)
with the time series of CPI proxy constructed from the renormalized 2014 weights (solid line with
circle symbol).
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In Figure 1.1 and Figure 1.2, CPI Proxy 2013 and CPI Proxy 2014 are the abbreviations

for CPI proxy constructed from renormalized 2013 weights and renormalized 2014 weights,

respectively. We can see from these charts that both time series of CPI proxy seem to track

closely the time series of historical CPI-U index.

In order to clearly observe which time series of CPI proxy tracks the time series of

historical CPI-U index more closely, we measure the similarity between the time series of

historical CPI-U index and each time series of CPI proxy. Following Wang et al. (2013),

the similarity between two time series T1 and T2 is measured by the similarity function

Dist(T1,T2) that calculates the distance between time series T1 and T2. The smaller the value

of similarity function Dist(T1,T2), the more similar the two time series will be. In our case,

the similarity between the time series of historical CPI-U index and each time series of CPI

proxy is the lock-step-measured distance, i.e. comparing the time-t historical CPI-U to the

contemporaneous time-t CPI proxy. Wang et al. (2013) suggest that, in the case of lock-step

measures, the Euclidean distance is an accurate, simple and efficient method for measuring

the similarity between two time series. Formally, for any two time series T1 = {x1,x2, . . . ,xn}

and T2 = {y1,y2, . . . ,yn} of equal length n, the similarity measured by the Euclidean distance

is defined as follows:

Dist (T1,T2) =

(
n

∑
i=1

(xi − yi)
2

) 1
2

.

The Euclidean distance method follows the similar rationale of least square method for

data fitting. The time series of historical CPI-U index is the observed time series; and the

time series of CPI proxy can be treated as ‘model-generated values’ derived from either the

2013 weights or 2014 weights. The difference between the time-t historical CPI-U index and

contemporaneous time-t CPI proxy can then be viewed as the residual. Thus, the time series

of CPI proxy with a smaller sum of squared residuals fits the time series of historical CPI-U

index better. More importantly, the similarity measured using the Euclidean distance fits our

purpose for recognizing which time series of CPI proxy tracks the time series of historical

CPI-U index more closely. Specifically, in Table 1.6, we generate four artificial time series

S1, S2, S3 and S4. Time series S2 and S3 are generated by vertically shifting time series S1

by 1 unit and 3 units, respectively; while time series S4 is randomly generated. Obviously,

all similarity measure methods including the Euclidean distance measure are capable of

identifying time series S4 as being dissimilar to time series S1, which is demonstrated in panel

C of Figure 1.3. The distinction between the Euclidean distance measure and other similarity
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measure methods can be illustrated by comparing panel A and panel B in Figure 1.3. Some

similarity measure methods (e.g. elastic measure) may identify time series S2 and time series

S3 as being equally similar to time series S1 due to the fact that both time series S2 and time

series S3 are the vertical shifts of time series S1. This conclusion is not robust when similarity

is measured by the Euclidean distance. That is, Dist (S1,S2) = 3.16 < Dist (S1,S3) = 9.49,

i.e. compared with time series S3, time series S2 is more similar to time series S1. In other

words, when measuring similarity, the Euclidean distance not only requires the measured

time series to resemble the original time series, but also requires the time-t observation of

measured time series to track closely the contemporaneous time-t observation of original

time series. Therefore, the similarity measured by the Euclidean distance fits our purpose for

identifying which time series of CPI proxy tracks the time series of historical CPI-U index

more closely. Consequently, the smaller the value of Euclidean distance, the more closely the

measured time series tracks the original time series.

Table 1.6. Artificial Time Series

S1 S2 S3 S4

10 9 7 12
10.2 9.2 7.2 8
10.1 9.1 7.1 6.5
10.5 9.5 7.5 12
10.1 9.1 7.1 11.9
10 9 7 7

10.4 9.4 7.4 10
10.2 9.2 7.2 11.8
10 9 7 6.3

10.1 9.1 7.1 8
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Figure 1.3. This figure plots the comparison between artificial time series. Line chart A compares
time series S1 (solid line) with time series S2 (solid line with square symbol); line chart B compares
time series S1 (solid line) with time series S3 (solid line with diamond symbol); line chart C compares
time series S1 (solid line) with time series S4 (solid line with triangle symbol).
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If we define the time series of historical CPI-U index as TCPI = {CPI1,CPI2, . . . ,CPI26},

the time series of CPI proxy derived from 2013 relative importance as

T 2013
CP = {CP2013

1 ,CP2013
2 , . . . ,CP2013

26 },

and the time series of CPI proxy derived from 2014 relative importance as

T 2014
CP = {CP2014

1 ,CP2014
2 , . . . ,CP2014

26 },

then the Euclidean distance between TCPI and T 2013
CP is defined as:

Dist
(
TCPI,T 2013

CP
)
=

(
26

∑
i=1

(CPIi −CP2013
i )

2
) 1

2

.

Similarly, the Euclidean distance between TCPI and T 2014
CP can be defined as:

Dist
(
TCPI,T 2014

CP
)
=

(
26

∑
i=1

(CPIi −CP2014
i )

2
) 1

2

.

Given the data in Table 1.5, Dist
(
TCPI,T 2013

CP

)
can be calculated as 58.82; and Dist

(
TCPI,T 2014

CP

)
is 82.41, which indicates that, compared with the time series of CPI proxy derived from 2014

relative importance, the time series of CPI proxy derived from 2013 relative importance tracks

the time series of historical CPI-U index more closely.

Consequently, based on the analysis of Table 1.5, Figure 1.1, Figure 1.2 and similarity

measure, the renormalized 2013 weights yield a time series of CPI proxy that tracks the time

series of historical CPI-U indexes more closely. Therefore, the renormalized 2013 weights

are the optimum weights for the commodities.

Given the optimum weights for commodities, we now look into the future and construct

the term structure of futures on the CPI proxy. In the next section, we replace the missing

commodity futures price observations.

1.5.2 Replacing the Missing Commodity Futures Prices

As stated in the data description section, due to different number and timing of commodity

futures contract maturity months within a calendar year and distinct longest observable matu-

rities of commodity futures contracts, some commodity futures prices are unobservable. In
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order to construct the complete term structure of futures on the CPI proxy, we need to replace

the missing commodity futures prices. We apply the linear interpolation and extrapolation

method to replace the missing commodity futures prices. The replaced commodity futures

prices are presented in Table 1.7.

Table 1.7. Replacing the Unobservable Commodity Futures Prices

Ticker May-15 Jun-15 Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 Mar-16 Apr-16 May-16

YP 527.25 526.0625 524.875 529.125 533.375 537.75 542.125 546.5 550.9167 555.3333 559.75 564.125 568.5
FC 214.6 214.9917 215.3833 215.775 214.775 213.725 212.7 209.5625 206.425 204.8375 203.25 201.6625 200.075
LH 68.75 76.525 77.65 78.275 74.225 70.175 68.7625 67.35 68.675 70 70.9875 71.975 75.825
LC 157.1375 151.8 150.1375 148.475 149.425 150.375 150.7375 151.1 150.8125 150.525 150.0625 149.6 145.9125
DA 15.92 15.85 16.36 16.85 17.18 17.25 17.26 17.23 16.87 16.75 16.7 16.55 16.56
CHE 1.633 1.636 1.697 1.752 1.789 1.8 1.805 1.795 1.749 1.755 1.737 1.743 1.725
FSB 12.77 12.77 12.77 12.9467 13.1233 13.3 13.52 13.74 13.96 14.18 14.4 14.43 14.46
LE 101.975 105.75 108.1 111 115 117.5 118.925 119.05 124.5 127.5 129.75 132 135
JO 119 119.9 120.8 121.775 122.75 122.25 121.75 122.325 122.9 123.925 124.95 125.9 126.85
FCC 141.8 143.325 144.85 146.25 147.65 148.9333 150.2167 151.5 152.7667 154.0333 155.3 156.375 157.45
V6 178.525 180.05 181.25 183.75 184.25 185 186 186.5 181.9 173.5 173.5 173.5 173.5
DRW 43.5 41.75 40.55 39.525 40.025 40 39.5 39.975 40.475 40.975 42 41 40.525
FCO 2787 2759.5 2732 2748 2764 2759 2754 2749 2745 2741 2737 2734 2731
BO 31 31.11 31.22 31.28 31.32 31.3 31.345 31.39 31.59 31.72 31.85 31.955 32.06
KV 14.2 14.72 14.96 15.27 15.73 15.84 16.08 16 16.54 16.88 16.9 16.78 16.88
CPI 600.25 595.5 599.25 598.75 598 600.75 603.25 606 608.75 610.5 612 611.5 610.75
DJE 308.7 309 309.3 309.6 309.9 309.6 309.3 309 309 309 309 309 309
NG 2.661 2.708 2.767 2.794 2.799 2.825 2.933 3.105 3.214 3.207 3.154 3.01 3.011
LB 270 267.7 265.4 268 270.6 271.55 272.5 278.75 285 286 287 288 289
PH 22 21.95 25.45 25.45 21.95 21.85 22.75 25.2 34.65 34.65 25 25 21.75
HRC 505 510 510 510 515 520 520 520 540 550 554 555 555
FCT 66.33 66.12 65.91 65.9467 65.9833 66.02 65.83 65.64 65.53 65.42 65.31 65.49 65.67
DFL 393.5 393.5 392 394 394 405 405 405 422.5 422.5 422.5 422.5 422.5
HG 275.75 275.6 275.85 276.9 275.7 276.75 276.85 275.5 276.65 276.8 275.85 276.4 276.45
OP 2.756 2.764 2.76 2.768 2.766 2.768 2.768 2.764 2.766 2.768 2.764 2.764 2.762
GC 1208.3 1208.2 1209.75 1211.3 1211.15 1211 1211 1211 1212.8 1214.6 1215.25 1215.9 1216.4
CL 53.25 54.55 55.42 55.87 56.31 56.78 57.39 57.89 58.23 58.56 58.87 59.2 59.43
IXC 724.5 723.9 723.3 722.7 722.1 721.5 720.9 720.3 719.7 719.1 718.5 717.9 717.3
SI 16.825 16.86 16.87 16.8975 16.925 16.9433 16.9617 16.98 16.975 16.9725 16.97 17.003 17.036
MKC 567.375 569.375 571.375 577.375 583.375 588.0417 592.7083 597.375 600.1667 602.9583 605.75 609.25 612.75
O 273 273.125 273.25 275 276.75 277 277.25 277.5 279.8333 282.1667 284.5 286.875 289.25
RR 10.68 10.8225 10.965 11.0575 11.15 11.25 11.35 11.475 11.6 11.6025 11.605 11.605 11.605
KW 566.5 568.75 571 576 581 586 591 596 600.0833 604.1667 608.25 608.625 609
W 526 525.875 525.75 530.25 534.75 539.1667 543.5833 548 552.0833 556.1667 560.25 565.25 570.25

Notes: The shaded numbers represent the interpolated and extrapolated commodity futures prices.

In Table 1.7, the shaded numbers represent the interpolated and extrapolated commodity

futures prices. It can be seen from Table 1.7 that, for the majority (22 out of 34) of commodi-

ties, the number of observable futures contract maturity months within a calendar year is

less than 12; and the timing of futures contract maturity months varies from one commodity

to another. Given that the commodity futures price dataset is complete, we now use the

commodity’s optimum weight and complete commodity futures price dataset to construct the

term structure of futures on the CPI proxy.
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1.5.3 Term Structure of Futures on the CPI Proxy

Given the optimum weights for commodities and complete commodity futures price dataset,

we now look into the future and construct the term structure of futures on the CPI proxy.

The consumer price index measures the present and historical price level, which suggests

that the term structure of consumer price index predicting the future price level does not

exist. However, the commodity futures market forecasts the future commodity price level

by pricing the commodity futures contracts and updating their pricing continuously. The

commodity futures prices reveal the prices of the underlying commodity to be delivered in a

certain future month. Collecting today’s last price data for all 34 available commodity futures

contracts maturing in the same month and averaging these commodity futures prices using

their optimum weights, will create the futures on the CPI proxy for that month. Collecting all

of the futures on the CPI proxy corresponding to different months in the future will construct

the term structure of futures on the CPI proxy for the analysis period. Specifically, the time 0

futures on the CPI proxy corresponding to a specific future time T is defined as:

34

∑
i=1

aiFi(0,T ),

where ai is the optimum weight for the ith commodity; Fi(0,T ) is the time 0 last price for the

futures contract written on the ith commodity maturing in month T ; we have 34 commodity

futures prices for each maturity month T . The weighted average of commodity futures prices,

i.e. ∑
34
i=1 aiFi(0,T ), is the futures on the CPI proxy for maturity month T . The analysis period

in our study consists of 13 consecutive months (from May 2015 to May 2016), collecting the

futures on the CPI proxy corresponding to the 13 months will construct the term structure of

futures on the CPI proxy. Table 1.8 presents the term structure of futures on the CPI proxy.

Table 1.8. Term Structure of Futures on the CPI Proxy

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2015 253.678 253.891 254.205 254.632 254.814 254.823 254.828 254.920
2016 255.790 255.898 255.410 255.413 255.185

It should be noted that this term structure of futures on the CPI proxy is derived from

the commodity futures price data observed on the reference date, i.e. 7th of April 2015. For

commodity futures price data observed on different historical date, the term structure of futures

on the CPI proxy can be different because the commodity futures market keeps updating the
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commodity futures prices continuously, which suggests that the commodity futures market

keeps updating its expectation about future commodity price level continuously.

In order to see clearly the trend of the term structure of futures on the CPI proxy, we plot

the term structure in Figure 1.4.
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Figure 1.4. This line chart plots the term structure of futures on the CPI proxy constructed on 7th of
April 2015.

From Table 1.8 and Figure 1.4, we can see that, the term structure of futures on the CPI

proxy starts with 253.678 at May 2015 and keeps increasing towards 255.898 at February

2016, then decreases slightly before finishing at 255.185 at May 2016. It also suggests that,

the commodity futures market expects the price level during the coming 13 months to be

higher than the latest U.S. CPI-U 234.722. Furthermore, based on the term structure of

futures on the CPI proxy, the expected inflation rate between May 2015 and May 2016 is

0.59%, which indicates that the commodity futures market expects that the general level of

commodity prices is going to increase by 0.59% from May 2015 to May 2016.

1.6 Conclusion and Future Research

In this paper, we describe an approach to tackle the non-availability of inflation futures data.

Based on the ‘Relative importance of components in the Consumer Price Indexes: U.S. city

average’ and historical price data of expired commodity futures contracts, we determine the

optimum weight for each commodity. Based on the optimum weights and available active

commodity futures contracts, we construct the term structure of futures on the CPI proxy,

which will be useful in future research as the dataset for constructing a two-factor valuation

model by following the Schwartz (1997) method.



Chapter 2

An Analysis of the Futures on the CPI

Proxy Using the Schwartz’ (1997)

Method

Coauthored with CHRISTIAN-OLIVER EWALD

Abstract

In this paper, we construct a two-factor valuation model filtering the spot consumer price

index and the instantaneous real interest rate. Based on the futures on the CPI proxy dataset,

the parameters of the two-factor valuation model are estimated by applying the Kalman filter.

The main results of our study are threefold. First, the parameter estimation results confirm

the relevance of using the two-factor valuation model to analyse the futures on the CPI proxy

dataset. Second, we introduce the spot consumer price index which may help alleviate the

issue of U.S. CPI-U publication lag. Third, the two-factor valuation model is capable of

forecasting the trend of inflation rate in the near future.
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2.1 Introduction

Due to data collection and computation issues, the current U.S. CPI-U index is always

reported with an unavoidable one-month lag. This one-month lag has an adverse impact on

the effectiveness of using the inflation-indexed securities to hedge inflation risk. With this

lag, inflation-indexed securities do not provide the exact real return but only approximate real

return (Jarrow and Yildirim (2003)). This lag also indicates that the spot CPI-U index without

lag is unobservable.

This paper aims to alleviate the issue of CPI-U publication lag by introducing the spot

consumer price index (spot CPI). Inspired by the Fisher equation, given that the consumer

price index is implicit in the expected inflation rate, the connection between the consumer

price index, nominal interest rate and real interest rate is the foundation for introducing the

spot CPI. However, the instantaneous real interest rate cannot be observed directly.

The non-observability of both spot CPI and instantaneous real interest rate is analogous to

the case of unobservable spot commodity price and convenience yield. This inspires us to

construct a valuation model analogous to the Schwartz (1997)’s framework to estimate both

latent variables. Gibson and Schwartz (1990) introduce a two-factor reduced form commodity

pricing model, in which spot commodity price and convenience yield follow a joint stochastic

process. Schwartz (1997) develops a variation of the two-factor Gibson and Schwartz (1990)

model and tests empirically the validity of the model using commodity futures dataset, which

forms the classical commodity pricing framework that is widely applied in energy product

evaluation literature.

Apart from intuitive analogy to the case of spot commodity price and convenience yield,

evidence can be found to support applying Schwartz (1997)’s framework to estimate both spot

CPI and instantaneous real interest rate. Schwartz (1997)’s model assumes that the two latent

variables follow a joint stochastic process and the convenience yield is mean-reverting. In our

case, the futures on the CPI proxy is constructed as the weighted sum of commodity futures

prices, the spot CPI may be viewed as the spot price of a commodity basket. It is therefore

reasonable to assume that the spot CPI has similar behaviour with the spot commodity price

in the Schwartz (1997)’s two-factor model. Furthermore, Lai (2015)’s result indicates that

the U.S. real interest rate is mean-reverting when a structural shift is taken into consideration,

which supports our model in assuming that the instantaneous real interest rate follows an

Ornstein-Uhlenbeck stochastic process.
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The key to the success of Schwartz (1997)’s framework is that the closed form solution

for the prices of futures contracts can be derived from the joint stochastic process. Once the

model is cast into the state space form, values of latent variables can be filtered from the

time series of the observable futures contracts, which in our case corresponds to the futures

contracts written on the consumer price index. Inflation futures contracts written on the

consumer price index have been launched since 2004. However, success remains very limited.

Due to illiquidity, the Eurex HICP futures contract was delisted in 2014. In order to tackle

the non-availability of exchange-traded inflation futures data, we introduce the futures on

the CPI proxy in Chapter 1. The futures on the CPI proxy is the futures contracts written

on the CPI. By applying the Kalman filter, we estimate the time series of both the spot CPI

and instantaneous real interest rate from the futures on the CPI proxy dataset. Based on the

parameter estimation results from the Kalman filter, the relevance of using the two-factor

valuation model to analyse the term structures of futures on the CPI proxy is confirmed.

Furthermore, we investigate the behaviour of spot CPI and instantaneous real interest rate and

use the two-factor valuation model to forecast the expected inflation rate.

Our contribution is twofold. First, we explore to apply the Schwartz (1997)’s framework

to estimate the spot CPI and instantaneous real interest rate. The spot CPI helps alleviate the

issue of U.S. CPI-U publication lag. The publication lag gives rise to the indexation lag of

inflation-indexed securities, so the inflation-indexed securities do not provide the exact real

return. As Deacon et al. (2004) suggest, the indexation lag can be reduced by indexing to a

price index that is published with a short lag. So our contribution is that the spot CPI helps

further reduce the indexation lag by minimising the price index publication lag. Second, we

use the forward curves generated from the two-factor valuation model to forecast the expected

inflation rate. The two-factor valuation model is capable to predict the downward trend in the

realised U.S. CPI inflation rate during May 2014 to December 2014.

We organise this paper as follows. In section 2.2, we construct the two-factor valuation

model. Section 2.3 describes the construction of the futures on the CPI proxy dataset. Section

2.4 presents the state space form and analyses the empirical results. Finally, section 2.5

discusses the results and concludes the paper.
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2.2 Valuation Model

In this section, we develop the two-factor valuation model and derive the corresponding

analytical formula for pricing futures contract (the futures on the CPI proxy). Our model is

based on the two-factor commodity pricing model from Schwartz (1997) which describes the

joint stochastic process of commodity spot price and convenience yield. The two stochastic

factors in our model are the spot consumer price index and instantaneous real interest rate.

The spot consumer price index is assumed to be lognormal and the instantaneous real interest

rate follows an Ornstein-Uhlenbeck stochastic process:

dCPI(t) =CPI(t)(µ − rR(t))dt +CPI(t)σCPIdW1(t) (2.1)

drR(t) = κ (α − rR(t))dt +σrRdW2(t), (2.2)

where

• CPI(t) is the spot consumer price index at time t (with no lag in publication), which cannot

be observed directly;

• rR(t) is the instantaneous real interest rate at time t, which is also unobservable;

• µ is the drift;

• σCPI denotes the volatility of spot consumer price index, while σrR is the volatility of

instantaneous real interest rate;

• κ is the instantaneous real interest rate’s speed of mean reversion;

• α is the long-run mean of instantaneous real interest rate;

• W1 and W2 are standard Brownian motions which are assumed to have correlation of

dW1dW2 = ρdt, ρ being constant. Specifically, equation (2.1) can be rewritten as follows,

dCPI(t)
CPI(t)

= (µ − rR(t))dt +σCPIdW1(t). (2.3)

Taking the expectation of equation (2.3), we obtain

E
[

dCPI(t)
CPI(t)

]
= (µ − rR(t))dt, (2.4)

where E[·] denotes the expectation under the real-world measure. The drift µ in the real-world

measure dynamic of the spot CPI is the difference between the nominal interest rate and the

inflation risk premium. Therefore, equation (2.4) can be linked to the inflation risk premium
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defined in the macroeconomic inflation risk premium literature, i.e.

E
[

dCPI(t)
CPI(t)

]
= ((r−φ)− rR(t))dt, (2.5)

where r is the nominal interest rate; φ denotes the (annualised) inflation risk premium.

Rearranging equation (2.5), we have

(r− rR(t))dt = E
[

dCPI(t)
CPI(t)

]
+φdt. (2.6)

The left-hand side of equation (2.6) is the difference between the nominal interest rate and

the real interest rate; the right-hand side of equation (2.6) denotes the inflation compensation

comprising the expected inflation rate E
[

dCPI(t)
CPI(t)

]
and the inflation risk premium φdt. Thus,

equation (2.6) replicates the definition of inflation risk premium used in the macroeconomic

inflation risk premium literature (Bekaert and Wang (2010), Garcia and Werner (2010)). The

definition of µ as described in equations (2.3) to (2.6) will prove useful in estimating the

parameters of the two-factor valuation model.

Under the equivalent martingale measure, the joint stochastic process is as follows,

dCPI (t) =CPI (t)(r− rR(t))dt +CPI(t)σCPIdW Q
1 (t) (2.7)

drR (t) = κ (α − rR(t))dt +σrRdW Q
2 (t), (2.8)

where

α = α −λ/κ (2.9)

λ being the scaled market price of instantaneous real interest rate risk; and W Q
1 , W Q

2 denote

standard Brownian motions under equivalent martingale measure.

Next, based on the two-factor valuation model, we derive the analytical pricing formula

for the futures on the CPI proxy, which is the futures contract written on the consumer price

index. Applying Ito’s formula, the solution to the spot CPI lognormal process is as follows,

CPI (T ) =CPI (0)exp

((
µ − 1

2
σ

2
CPI

)
T −

∫ T

0
rR(s)ds+σCPI

∫ T

0
dW1(s)

)
. (2.10)



2.2 Valuation Model 33

For analysis, we need the discounted spot CPI process,

e−rTCPI (T ) =CPI (0)exp

((
µ − 1

2
σ

2
CPI − r

)
T −

∫ T

0
rR(s)ds

+σCPI

∫ T

0
dW1(s)

)
.

(2.11)

Following Mastro (2013), the integral of instantaneous real interest rate in (2.11) is found by

using the solution of integral of convenience yield in Bjerksund (1991),

∫ T

0
rR(s)ds =

1
κ

(
1− e−κT)(rR(0)−α)+αT − 1

κ
σrRe−κT

∫ T

0
eκsdW2(s)

+
1
κ

σrR

∫ T

0
dW2(s).

(2.12)

The discounted spot CPI process can now be solved by inserting (2.12) into (2.11) and

changing from the real-world measure to the equivalent martingale measure,

e−rTCPI (T ) =CPI (0)exp

((
−1

2
σ

2
CPI −α

)
T +

1
κ
(α − rR(0))

(
1− e−κT)

− σrR

κ

∫ T

0
dW Q

2 (s)+
σrR

κ
e−κT

∫ T

0
eκsdW Q

2 (s)

+σCPI

∫ T

0
dW Q

1 (s)

)
.

(2.13)

For convenience, we rewrite equation (2.13) as follows,

e−rTCPI (T ) =CPI (0)eZ. (2.14)

After calculation and rearranging, the mean ζ and variance σ2
Z of the normally distributed

factor Z under the risk-neutral measure are as follows,

ζ = EQ [Z] =
(
−1

2
σ

2
CPI −α

)
T +

1
κ
(α − rR(0))(1− e−κT ) (2.15)

σ
2
Z =EQ

[
(Z −E [Z])2

]
=

σ2
rR

κ2 T +
1
2

σ2
rR

κ3

(
1− e−2κT)+σ

2
CPIT −2

σ2
rR

κ3

(
1− e−κT)

−2
σrRσCPIρ

κ
T +2

σrRσCPIρ

κ2

(
1− e−κT) .

(2.16)
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The price of a time-zero-observed futures on the CPI proxy maturing at time T is,

G(CPI(0),rR(0),0,T ) = EQ [CPI(T )] = EQ [erTCPI(0)eZ]
= erTCPI(0)EQ [eZ]= erTCPI(0)eζ+ 1

2 σ2
Z .

(2.17)

Combining expressions (2.15) to (2.17), we obtain the pricing formula of the futures on the

CPI proxy for the joint stochastic process:

G(CPI (0) ,rR (0) ,0,T ) =CPI (0)eζ+ 1
2 σ2

Z+rT =CPI(0)eA(T )+B(T )rR(0) (2.18)

with

A(T ) =

(
r−α +

1
2

σ2
rR

κ2 − σCPIσrRρ

κ

)
T +

1
4

σ
2
rR

1− e−2κT

κ3

+

(
κα +σCPIσrRρ −

σ2
rR

κ

)
1− e−κT

κ2 ,

B(T ) =− 1− e−κT

κ
.

The logarithm of the futures on the CPI proxy price can then be derived,

lnG(CPI (0) ,rR (0) ,0,T ) = lnCPI (0)+A(T )+B(T )rR(0). (2.19)

The linear (affine) relationship between the (logarithm) futures on the CPI proxy price and

underlying two factors is important for applying the Kalman filter to estimate the two-factor

valuation model parameters in the following context.

2.3 Futures on the CPI Proxy Dataset

The futures on the CPI proxy dataset is constructed from weekly observations of last price

data (or settlement price if last price is unavailable) for commodity futures written on the

34 commodities constructing the futures on the CPI proxy. The original commodity futures

price data collected from Chicago Mercantile Exchange using Bloomberg terminal consists of

daily observations covering 2nd of January 2013 to 18th of December 2013. Every Wednesday

observation (to avoid weekend effects (Ramos Ribeiro and Hodges (2004))) is selected out of

the daily observations to obtain the weekly observations. At every observation date we collect
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last (settlement) price data for all available commodity futures observed on that historical date

for each commodity. Based on these weekly observations of commodity futures, we follow

the method introduced in Chapter 1 to construct the futures on the CPI proxy observed on

every Wednesday during 2nd of January 2013 to 18th of December 2013. In Figure 2.1, we

plot the term structures of futures on the CPI proxy. The solid line denotes the time series

of the price of the closest to maturity futures on the CPI proxy; the dotted lines represent

the prices of futures on the CPI proxy chain constructed on each observation date. For each

observation date, we construct a futures on the CPI proxy chain consisting of twelve futures

on the CPI proxy observations whose time to maturity range from one month to twelve months

in the future. The futures on the CPI proxy dataset will be used to estimate the two-factor

valuation model parameters as well as filtering the state variables.

dates

2013 2014 2015

  Closest to maturity contract 
Forward Curves

22
0

22
5

23
0

23
5

Figure 2.1. This figure plots the term structures of futures on the CPI proxy (or time series of futures
on the CPI proxy chain, the two terminologies are used interchangeably in the thesis). The solid line
denotes the time series of the price of the closest to maturity futures on the CPI proxy; each dotted line
represents the prices of futures on the CPI proxy chain observed on a observation date.
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2.4 Empirical Results

The available time series of U.S. CPI-U is the consumer price index with an inevitable one-

month lag. The spot CPI with no lag, however, cannot be observed directly. Furthermore,

the instantaneous real interest rate is also unobservable. By definition, the futures on the

CPI proxy is the weighted sum of exchange-traded futures contracts on the commodities

corresponding to the consumption goods comprising the U.S. CPI-U. Following Schwartz

(1997), the non-observability of spot CPI and instantaneous real interest rate, plus the linear

relationship between the (logarithm) futures on the CPI proxy and state variables indicates

that the Kalman filter is the appropriate technique to estimate the two-factor valuation model

parameters.

2.4.1 The State Space Form

In this section, we follow Erb et al. (2014) and put the two-factor valuation model into

the state space form. The Kalman filter may only be applied if the two-factor valuation

model is put in state space form. The state space representation applies to the time series

of observable variables, which in our study is a time series of the futures on the CPI proxy

maturing at different maturities. The observable variables are related to the unobservable

state variables (i.e. the spot CPI and instantaneous real interest rate) via the measurement

equation. The measurement equation is obtained from equation (2.19) by adding serially and

cross-sectionally independent disturbances:

yt = ct +Zt [xt ,rRt ]
′
+Qtηt , (2.20)

where

• yt =


lnGt(1)

...

lnGt(n)

 is the (logarithm) futures on the CPI proxy chain observed at time t;

• ct =


A(mt(1))

...

A(mt(n))

, and mt(i) denotes the remaining time to maturity of the ith closest to

maturity futures on the CPI proxy Gt(i);
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• Zt =


1 B(mt(1))
...

...

1 B(mt(n))

;

• xt = ln(CPI(t)) is the logarithm of spot CPI at time t;

• QtQt
′
=


q2

11
. . .

q2
nn

 is the innovations in the measurement equation, which is

assumed independent to each other;

• ηt ∼ N (0, In) is the disturbance in the measurement equation.

The evolution of the unobservable state variables is described by the transition equation,

which is given by the discretized form of the joint stochastic dynamics in (2.1) and (2.2):

[xt+∆t ,rRt+∆t ]
′
= dt +Tt [xt ,rRt ]

′
+Htεt , (2.21)

where

• dt =

 (
µ − 1

2σ2
CPI −α

)
∆t + α

κ
(1− e−κ∆t)

α(1− e−κ∆t)

;

• Tt =

 1 1
κ
(e−κ∆t −1)

0 e−κ∆t

;

• HtHt
′
=

 σ2
x (∆t) σxrR(∆t)

σxrR(∆t) σ2
rR
(∆t)

;

• εt ∼ N (0, I2).

We can see from expressions (2.20) and (2.21) that, the two-factor valuation model

parameters are included in the matrices of measurement equation and transition equation.

These parameters can be estimated by applying the Kalman filter via maximizing the log-

likelihood function:

− T ln(2π)

2
− 1

2

T

∑
t=1

ln(Var (ytP)) − 1
2

T

∑
t=1

(yt −E[ytP])
2

Var(ytP)
, (2.22)

where ytP denotes the predicted value of (logarithm) futures on the CPI proxy generated from

the measurement equation at each time step.

The two-factor valuation model parameters estimation as well as the state variables

filtration are realised by applying the R package ‘Schwartz97’. The parameter estimation

results and corresponding interpretations are presented in the next section.
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2.4.2 Empirical Results

Parameter estimation of Schwartz (1997) two-factor valuation model is statistically fragile.

Multiple local maxima of the likelihood may exist which can result in absurd parameter

estimates (Lüthi et al. (2014)). To obtain reasonable and meaningful parameter estimates, it

is necessary to hold different subsets of parameters constant. For this reason, in our study,

the initial spot CPI and initial instantaneous real interest rate are held constant; the risk-free

interest rate r is equal to 0.032, which is reasonable given the U.S. 30-Year Treasury Constant

Maturity Rate in 2013. Ideally, all the other parameters of two-factor valuation model can

be estimated from within the Kalman filter. However, our calculation suggests that with

leaving µ free as a parameter in the estimation, the Kalman filter does not converge very

well. Therefore, we run the Kalman filter with different set values of µ . The candidate set

values of µ are chosen based on the definition of µ as described in equations (2.3) to (2.6).

In the inflation risk premium literature, the magnitude of inflation risk premium estimate is

usually small, e.g. Buraschi and Jiltsov (2005) argue that the average 10-year inflation risk

premium can be as small as 0.7%. In addition, recent studies such as Grishchenko and Huang

(2013), d’Amico et al. (2016) and Chen et al. (2016) indicate that inflation risk premium

estimates switch sign from positive to negative in 2008 and have been trending downward.

Thus, given that µ = r−φ , the candidate set values of µ should be slightly larger than the

nominal interest rate r, e.g. 0.0326. We run the Kalman filter with different set values of

µ in the proximity of 0.032 and choose the estimate of µ that yields large log-likelihood

and meaningful estimates for the remaining parameters. Using this method, the Kalman

filter yields reasonable estimates for the parameters of two-factor valuation model. Table 2.1

presents the parameter estimation results based on the historical data for weekly observations

of futures on the CPI proxy from 2nd of January 2013 to 18th of December 2013.

It can be seen from the parameter estimation results that the correlation coefficient ρ

is large; the speed of mean reversion of instantaneous real interest rate κ and the scaled

market price of instantaneous real interest rate risk λ are all positive and reasonable. The

estimate of the market price of instantaneous real interest rate risk is λ̄ = λ

σrR
= 0.0113.

Chernyakov (2013)’s study of the magnitude of market price of real interest rate risk suggests

that, empirically, there is little evidence that real interest rate risk is priced at all. Our estimate

for λ̄ supports their observation. Furthermore, the long-run mean level of instantaneous real

interest rate α is 0.0164. According to the World Bank Dataset, the U.S. 2013 real interest

rate is 1.61%. Our estimate of long-term mean of instantaneous real interest rate indicates
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Table 2.1. Parameter Estimation Results

Parameters Estimates

mu 0.0328
sigma(CPI) 0.2397

kappa 2.2520
alpha 0.0164

sigma(r_R) 0.3968
rho 0.9201

lambda 0.0045
alpha-bar 0.0144

logLik 3039.8
Number of Iterations 1686

that the corresponding annual real interest rate is 1.65%, which is close to the actual U.S.

2013 real interest rate. This suggests that the parameter estimates are indeed economically

meaningful. Therefore, the parameter estimation results indicate that the relevance of applying

the two-factor valuation model to analyse the term structures of futures on the CPI proxy is

confirmed.

Figure 2.2 depicts the parameter evolution of the two-factor valuation model parameter es-

timation. The relative tolerance decreases below 10−8 after 1500 iterations and the parameter

values become more and more stationary, suggesting a good convergence.

The term structures of futures on the CPI proxy data from January 2013 to December

2013 are shown in Figure 2.3, where the left plot describes the actual term structures of

futures on the CPI proxy data and the right plot presents the forward curves generated by the

two-factor valuation model. By comparing these two plots, we can see that the two-factor

valuation model’s prediction looks reasonable. In general, the model captures the shapes of

both short-term panels and long-term panels.

Based on the fitted forward curves in Figure 2.3, we extract the fitted futures on the CPI

proxy values from the forward curves and calculate the inflation rate forecast using the filtered

spot CPI and the value of fitted futures on the CPI proxy maturing twelve months from each

observation date. Specifically, the one-year ahead expected inflation rate i(t,T ) is calculated

as follows,

i(t,T ) =
F (t,T )−CPI(t)

CPI(t)
, (2.23)

where CPI(t) is the filtered spot CPI on the observation date t; F (t,T ) is the time t price of

the fitted futures on the CPI proxy maturing twelve months from the current month which the
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Figure 2.2. This figure depicts the parameter evolution of the two-factor valuation model parameter
estimation.

observation date falls within. In Figure 2.4, we compare the time series of one-year ahead

expected inflation rate (solid line) with the contemporaneous realised U.S. CPI inflation rate

(dotted line), where X-axis denotes the months in 2014 and Y-axis represents the inflation rate

in percentage. During the first half of 2014, the two-factor valuation model expects one-year

ahead inflation. The inflation rate forecast switches sign from positive to negative in July

2014. Over the second half of 2014, the two-factor valuation model predicts one-year ahead

deflation. Furthermore, the two-factor valuation model has been under-predicted the inflation

rate during 2014. More importantly, the two-factor valuation model is capable to forecast the

downward trend in the realised U.S. CPI inflation rate during May 2014 to December 2014.
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   Closest to maturity contract 
Forward Curves
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Fitted Forward Curves
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Figure 2.3. In the right plot, the unit of X-axis, ‘Time’, refers to time to maturity in years. For example,
the right ending point of the fitted forward curve observed on the first observation date (i.e. 2nd of
January 2013) is the value of the fitted futures on the CPI proxy maturing in 1 year from 2nd of January
2013; the right ending point of the corresponding forward curve in the left plot represents the value of
the futures on the CPI proxy maturing in January 2014.
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Figure 2.4. The line chart compares the time series of one-year ahead expected inflation rate with the
contemporaneous realised U.S. CPI inflation rate. The original weekly forecasts are transformed into
monthly forecasts which can be compared with the realised U.S. CPI inflation rate.

Figure 2.5 presents the filtered state variables, i.e. spot CPI and instantaneous real interest

rate. It can be observed that the comovement between the two state variables is not obvious.
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Figure 2.5. This figure plots the evolution of the filtered spot CPI and filtered instantaneous real
interest rate.

In Figure 2.6, we compare the time series of filtered spot CPI (dotted line) with the time

series of actual 2013 U.S. CPI (solid line). The original spot CPI is weekly-filtered, to obtain

monthly observations we take the average of all weekly observations of the spot CPI falling

within the same month. It can be observed that in each month the spot CPI is slightly smaller

than the actual U.S. CPI, except in May where spot CPI is marginally larger than the U.S.

CPI. In addition, the spot CPI is more volatile than the actual U.S. CPI, which is reasonable

given the fluctuation observed in the closest to maturity futures on the CPI proxy time series.
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Figure 2.6. The line chart compares the time series of U.S. CPI (solid line) with the time series of
filtered spot CPI (dotted line).
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2.5 Discussion and Conclusions

We have analysed the behaviour of the term structures of futures on the CPI proxy using

the Schwartz (1997)’s method and investigate their implications. Based on Schwartz (1997)

two-factor commodity pricing model, we have constructed a two-factor valuation model

filtering the spot CPI and instantaneous real interest rate. From the joint stochastic process,

a closed-form pricing formula for the futures on the CPI proxy is derived. The two-factor

valuation model is then cast into the state space form, which enables us to apply the Kalman

filter to analyse the time series of the futures on the CPI proxy chain during 2nd of January

2013 to 18th of December 2013 and estimate the two-factor valuation model parameters.

The most significant two-factor valuation model parameter α , i.e. the long-run mean

level of the instantaneous real interest rate is estimated as 1.64%. This implies that the

corresponding annual real interest rate is estimated to be 1.65%, which is fairly close to

the actual U.S. 2013 real interest rate 1.61%. The parameter estimation results are indeed

economically meaningful. In addition, by comparing the term structures of futures on the CPI

proxy with the fitted forward curves, it can be seen that the two-factor valuation model fits the

dataset well. Therefore, the relevance of applying the two-factor valuation model to analyse

the futures on the CPI proxy dataset is confirmed.

In addition, based on the futures on the CPI proxy dataset, we forecast the one-year ahead

expected inflation rate. This method uses the filtered spot CPI as bases, and extracts the

model-generated futures on the CPI proxy values from the fitted forward curves to forecast

the inflation rate. The two-factor valuation model expects one-year ahead inflation during the

first half of 2014, whereas it predicts one-year ahead deflation over the second half of 2014.

More importantly, the two-factor valuation model is capable to predict the downward trend in

the realised U.S. CPI inflation rate during May 2014 to December 2014.

What’s more, we have introduced the consumer price index without any lag, i.e. the spot

CPI. Our method of using the futures on the CPI proxy dataset to filter the spot CPI may

help alleviate the unavoidable one-month lag in the publication of U.S. CPI-U index. Most

importantly, the most significant advantage of our method is that, the underlying data (i.e. the

commodity futures prices) is available at the exchanges immediately, therefore both the spot

CPI and inflation rate forecast can be calculated immediately without any lag.
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Inflation Forecasting through

Commodity Futures and Options

Coauthored with CHRISTIAN-OLIVER EWALD

Abstract

In this paper, we construct a synthetic option written on the futures on the CPI proxy and

forecast inflation rate by analysing the option implied volatility surface. The futures on the

CPI proxy derived from commodity futures price data predicts the CPI in the future. However,

there are considerable uncertainties surrounding these ‘point’ forecasts of future CPI. Inspired

by the Bank of England inflation fan chart, we estimate the volatility of the futures on the

CPI proxy by analysing a synthetic option. Using Monte Carlo simulation, we construct a

synthetic option written on the futures on the CPI proxy based on exchange-traded commodity

futures options data. Our assumption of independent lognormal underlying commodity futures

leads to a closed-form pricing formula for the European call option written on the futures on

the CPI proxy. Using this Black’s Model-type option pricing formula, we derive the implied

volatility surface for the futures on the CPI proxy. This implied volatility surface provides us

with information about the uncertainties surrounding the ‘point’ forecast of future price level,

based on which we derive the inflation forecast.
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3.1 Introduction

No prediction of future evolution of price level can be made with absolute certainty. It is

more realistic to consider uncertainty when any prediction is made. The Bank of England

publishes quarterly in its ‘Inflation Report’ the inflation fan chart depicting the Monetary

Policy Committee (MPC)’s judgement of the probability of various outcomes for inflation

in the future. Given the fact that each inflation fan chart is based on complex conditional

assumptions, MPC key judgements and indicative projections, it is therefore difficult for any

independent researcher to replicate the process of producing an inflation fan chart to predict

future price level evolution.

However, the ‘precisely engineered’ Bank of England inflation fan chart is not the only

way to figure out the uncertainty of future price level evolution. In this paper, we propose a

method to estimate the uncertainty surrounding the consumer price index forecast from the

perspective of commodity futures options.

In Chapter 1, we have constructed the futures on the CPI proxy based on the commodity

futures price data. The futures on the CPI proxy is constructed as a synthetic futures contract

written on the CPI. Several inflation futures contracts have been launched since 2004. However,

success remains very limited. Due to illiquidity, the Eurex HICP futures contract was delisted

in 2014. In order to tackle the non-availability of exchange-traded inflation futures data, we

introduce the futures on the CPI proxy. The consumer price index is a composition of many

items. An inspection at the futures exchange markets indicates that most of the items in

the CPI are actually commodities on which active futures contracts are traded. Collecting

these futures contracts and averaging them in the same way as the CPI is composed, will

create a synthetic futures written on the consumer price index, that is, the futures on the CPI

proxy. Specifically, based on the ‘Relative importance of components in the Consumer Price

Indexes: U.S. city average’ published by the U.S. Bureau of Labor Statistics, we investigate

the composition of U.S. CPI-U and locate the commodities on which commodity futures are

traded; next, we determine optimum weight for each commodity by matching the time series

of CPI proxy with the historical U.S. CPI-U time series; and lastly, we define the weighted

sum of commodity futures prices to construct the futures on the CPI proxy.

The term structure of futures on the CPI proxy provide us with a term structure of single

point CPI forecasts up to one year in the future. Inspired by the inflation fan chart, we

seek for a method to estimate the uncertainty surrounding the ‘point’ forecast of future

price level. One important feature of commodity markets is that commodity futures and
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commodity futures options are usually traded side by side in the same exchange. Besides,

options contain information on their underlying assets’ risk. This implies that we can use

commodity futures options to derive the risk of underlying commodity futures and therefore

figure out the uncertainties surrounding the ‘point’ forecast of future price level.

Following this implication, we construct a synthetic European call option written on the

futures on the CPI proxy. The synthetic option implied volatility surface is derived using a

Black’s model-type option pricing formula. The implication of the implied volatility surface

is analysed and consequent uncertainties of the price level forecast is discussed. Lastly, we

derive the inflation forecast from the uncertainties surrounding the ‘point’ forecast of future

price level.

The existing inflation forecasting literature use four main methods to forecast inflation.

First, forecasts based on past inflation. For example, Atkeson et al. (2001) random walk model.

Second, Phillips curve forecasts, whose performance has been shown by Stock and Watson

(2008) as being episodic and instable. Third, survey-based forecasts. Fourth, forecasting

inflation using information embedded in asset prices. An important study is Fleckenstein

et al. (2017), which use inflation swaps and options price data to solve for the instantaneous

expected inflation rate for horizon up to 30 years. Our approaches for inflation forecasting

in Chapter 2 and 3 join this branch of literature. Our study makes two main contributions

to the existing literature. First, compared with Fleckenstein et al. (2017) that use inflation

swaps, our inflation forecast is derived from commodity futures and option prices that are

exchange-traded and accessible. Second, compared with the existing literature which rely on

term structure models, we use different approaches to forecast inflation. That is, in Chapter 2,

we use a Schwartz (1997) two-factor valuation model to forecast inflation; in Chapter 3, we

derive the uncertainty in inflation forecast by constructing a synthetic option written on the

futures on the CPI proxy.

We organise the structure of this paper as follows. Section 3.2 describes the dataset.

Section 3.3 presents the method to construct a synthetic option on futures on the CPI proxy.

Section 3.4 then derives the synthetic option implied volatility surface and analyses its

implications and consequent inflation forecast. Finally, section 3.5 discusses and concludes

the paper.
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3.2 Data Description

We have three datasets in our analysis: daily settlement price data for commodity futures,

implied volatility surface data and European commodity futures options price data. The three

datasets are used to construct the synthetic option and study the option implied volatility

surface.

3.2.1 Commodity Futures Price

We use the daily settlement price data for included commodity futures contracts observed

on 22nd of January 2016. Data is imported from Bloomberg terminal using the Bloomberg

Excel Add-in. Since not all commodities used for constructing the futures on the CPI proxy

have available futures options, we only include the commodities which have corresponding

futures options written on them. This gives us 21 commodities. Due to the commodity

futures maturity month arrangement, the futures price for a specific maturity month may be

unobservable, we use linear interpolation and extrapolation to calculate the unobservable

commodity futures price data. Furthermore, for most of the included commodities, the longest

time to maturity of corresponding futures options is within 11 months. Taking this into

consideration, we only include commodity futures maturing within 12 months.

Table 3.1 presents the commodity futures price data, where texts in boldface refer to

the price data calculated using linear interpolation or extrapolation. It should be noted that

the commodity futures serve as the underlying assets of options. Therefore we index the

commodity futures by their corresponding options’ expiry month. The maturity month of

each commodity future in Table 3.1 is the commodity futures option’s expiry month, not the

maturity month of futures. In the case of CME Exchange, commodity futures options usually

expire several weeks earlier than their underlying futures do.

3.2.2 Commodity Futures Options Implied Volatility Surface

Each observed commodity futures in Table 3.1 (regular texts) has a corresponding option chain.

Every option chain consists of options with different strikes written on the same underlying

commodity futures. For each such option, Bloomberg calculates the Black-Scholes implied

volatility so that the American option model prices match the option market prices. The model

for the American option is a standard Black-Scholes American Option PDE Pricer, which is

solved numerically using a trinomial method.
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Table 3.1. Commodity Futures Daily Settlement Price

Tickers Feb-16 Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 Sep-16 Oct-16 Nov-16 Dec-16

wheat w 475.50 480.25 480.25 482.75 485.25 489.50 493.75 498.33 502.92 507.50 510.83
wheat kw 470.75 480.75 480.75 485.75 490.75 497.38 504.00 510.33 516.67 523.00 529.33
rough rice rra 10.96 11.10 11.24 11.38 11.52 11.57 11.62 11.73 11.84 11.84 11.84
oats o a 205.50 211.00 211.00 213.63 216.25 219.00 221.75 221.42 221.08 220.75 220.75
silver si 14.06 14.08 14.08 14.10 14.10 14.12 14.13 14.14 14.15 14.16 14.18
crude oil cla 32.19 33.51 34.67 35.65 36.44 37.06 37.56 37.99 38.41 38.84 39.18
gold gc 1096.30 1096.30 1096.50 1096.50 1097.00 1097.00 1097.60 1097.60 1098.40 1098.40 1099.30
copper hg 200.25 200.70 200.70 201.25 201.25 201.80 201.80 202.15 202.15 202.15 202.40
lumber lba 234.40 234.20 234.00 235.55 237.10 239.80 242.50 243.95 245.40 246.85 248.30
natural gas nga 2.14 2.22 2.29 2.35 2.41 2.44 2.44 2.47 2.55 2.72 2.84
milk classic IV kva 13.28 13.87 14.05 14.05 14.29 14.75 14.89 15.19 15.35 15.33 15.38
soybean oil boa 30.50 30.69 30.69 30.80 30.91 30.96 30.99 30.94 30.97 30.99 31.20
dry whey drwa 23.65 23.48 23.63 23.93 23.58 24.26 24.25 24.90 25.05 26.48 26.75
butter v6 206.93 224.03 225.24 225.03 223.45 224.23 225.00 221.24 221.03 219.45 217.23
lean hog lha 63.00 66.00 69.00 75.38 78.95 78.78 78.13 72.66 67.20 65.14 63.08
live cattle lca 132.08 133.08 133.08 128.46 123.85 122.00 120.15 120.53 120.90 120.99 121.08
cattle feeder fca 159.43 157.90 157.83 157.50 157.97 158.43 158.90 156.68 154.10 149.23 144.35
juice jo 121.65 122.10 122.10 122.90 122.90 123.25 123.60 123.78 123.95 125.35 126.75
non-fat milk lea 78.23 76.18 77.88 78.50 80.00 84.70 86.03 90.01 92.00 94.00 95.88
cheese che 1.52 1.52 1.52 1.53 1.56 1.62 1.64 1.70 1.71 1.73 1.72
milk daa 13.72 13.78 13.84 13.93 14.27 14.86 15.07 15.70 15.85 15.95 15.91

For instance, the implied volatility (observed from Bloomberg’s OVML option pricing

function) of wheat futures maturing in March 2016 (with ticker ‘W H6’) is presented in Table

3.2.

Table 3.2. OVDV Implied Volatility Surface Example

Contract Futures 75% 90% 95% 97.50% 100% 102.50% 105% 110% 125%

W H6 475.5 19.72 18.69 19.17 19.97 21.06 22.22 23.4 26.14 33.72
356.625 427.95 451.725 463.613 475.5 487.387 499.275 523.05 594.375

As shown in Table 3.2, moneyness for different options is indexed as %Moneyness (i.e.

(strike price/underlying asset price)*100%). For each option, Bloomberg computes the Black-

Scholes implied volatility (the 2nd row of Table 3.2). The 3rd row of Table 3.2 presents the

corresponding strike prices.

For each option chain, we observe five implied volatility values: 90% moneyness option,

95% moneyness option, 100% moneyness option, 105% moneyness option and 110% mon-

eyness option, corresponding to the implied volatilities for two in-the-money call options,

one at-the-money call option and two out-of-the-money call options, respectively. All im-

plied volatility surfaces are observed on 22nd of January 2016 from Bloomberg’s OVML

option pricing function. The implied volatility data is used by Bloomberg’s OVML option

pricing function to price the commodity futures European options, which will be useful in

constructing the synthetic option.
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3.2.3 Commodity Futures Options Price

Commodity futures and futures options are traded side by side in CME Exchange. For the

majority of commodities in CME Exchange, options written on their futures are traded. As

for our analysis, among the 34 commodities used in the construction of futures on the CPI

proxy, 21 commodities have available options written on their futures.

Traded futures options are usually American. Among the included 21 commodities, only

crude oil and natural gas have both American and European futures options traded.

In order to construct the synthetic option, we need to find the commodity futures European

options price data. Our research shows that we can derive implicitly the European options

prices from the American options market prices by using the implied volatility as a bridge.

Specifically, Bloomberg calculates the OVDV Black-Scholes implied volatility surface by

matching Black-Scholes model prices with the market American option prices. These implied

volatility surface data for the included 21 commodities are used by Bloomberg’s OVML

option pricing function as inputs of standard Black’s option pricing model to calculate the

European option prices. Bloomberg’s OVML option pricing function is capable of matching

automatically the Black’s model’s underlying commodity futures price, discount curve, time to

maturity and implied volatility with the corresponding American option price data, therefore

the calculated European option prices are accurate and reliable. As a result, we use OVML

function to calculate the European futures options prices.

For each implied volatility value as described in section 3.2.2, we use OVML function to

calculate the corresponding European option price. Due to the fact that the futures price may

be unobservable for certain maturity months, some European option prices lack the underlying

asset price and implied volatility as Black’s model’s inputs and therefore cannot be computed

from OVML function. In such occasions, we use linear interpolation and extrapolation to

calculate the missing European option prices. This gives us a total of 1155 European option

price values and these price data will be useful in constructing the synthetic option.

3.3 A Synthetic Option on the Futures on the CPI Proxy

The purpose of the research is to find out the volatility of the futures on the CPI proxy from a

forward-looking perspective. Inspired by the market convention that traders often quote the

implied volatility of an option rather than the option price, we need to find an option contract

written on the futures on the CPI proxy so that the implied volatility of futures on the CPI
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proxy can be derived. But in practice there is no such an option traded because the futures on

the CPI proxy is itself synthetic.

Our solution is to use the available commodity futures European option price data to

construct a synthetic European option written on the futures on the CPI proxy. Monte Carlo

simulation is applied to construct the synthetic option. This section describes the construction

of synthetic European option.

3.3.1 From Exchange-traded Futures Options to a Synthetic Option

The idea is to use weighted sum of observable commodity futures options prices as an index

for the synthetic European option on futures on the CPI proxy. First, we define the ‘data

option’ and the ‘synthetic option’.

With the commodity futures European options price data in hand, the ‘data option’ can be

defined. As the name suggests, ‘data option’ is an option contract derived from the market

data. Suppose we work in a risk-neutral world and risk-free interest rate r is a constant. Based

on risk-neutral theorem, we define the time 0 price of a European call ‘data option’ as follows.

Doption =
21

∑
i=1

λiEQ [e−rT (Fi −Ki)
+] , (3.1)

where the upper limit of summation 21 is the number of included commodities; λi is the

rescaled optimal weight for the ith commodity (see Table 3.8), the original optimal weight can

be found in the construction of CPI proxy (see Chapter 1). The expected value EQ[·] denotes

the expectation under the risk-neutral measure. Fi is the futures price on the ith commodity

observed on option’s maturity date. Each Fi is carefully chosen to make sure that different

commodity futures options expire in the same month. Ki is each option’s strike price with

identical moneyness level. For instance, when we consider constructing a deep-in-the-money

European call ‘data option’, every Ki’s moneyness is 90%moneyness.

By definition, EQ[e−rT (Fi −Ki)
+] is the commodity futures European option price ob-

served on 22nd of January 2016, which is ready to use. Multiplying each option price with

corresponding optimal weight and sum them together yields the weighted sum of observed

futures option prices, which is Doption. The key in defining Doption is twofold. First, all

futures options in equation (3.1) must expire in the same month, which is realised by carefully

choosing the identical time to maturity T and the underlying commodity futures contract.

Second, each strike price Ki has identical %moneyness. As a result, each weighted sum of
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observed futures option prices defined this way gives a corresponding Doption maturing at

time T with Ki’s moneyness.

Next, we define the synthetic option written on the futures on the CPI proxy. In the

risk-neutral world, the time 0 arbitrage-free price of the synthetic European call option is

defined as follows.

Soption = EQ

[
e−rT

(
21

∑
i=1

λiFi − k

)+]
(3.2)

with k = ∑
21
i=1 λiKi. EQ[·] denotes the expectation under the risk-neutral measure. The

optimal weight λi, underlying commodity futures Fi, strike price Ki and time to maturity T

are identical to those in the definition of Doption. In contrast to Doption, the strike price k is

now the weighted sum of Ki from Doption and therefore Soption and Doption share the same

moneyness level. What’s more, the synthetic option Soption’s underlying asset ∑
21
i=1 λiFi is

now a weighted sum of the commodity futures prices. By definition, this is exactly the futures

on the CPI proxy, yet observed at option’s expiry date instead of current date. We will show

later in the derivation of implied volatility that we only need the price of futures on the CPI

proxy observed at current date. Consequently, we have now defined a synthetic European

call option written on the futures on the CPI proxy. Using the same inputs, it is possible to

compare the values of Doption and Soption.

In fact, the comparison between equation (3.1) and equation (3.2) leads to the Jensen’s

inequality. The Jensen’s inequality is actually what initially inspired us to construct the

Doption and Soption in this way.

Simply put, if p1, ..., pn are positive numbers which sum to 1 and f is a real continuous

function that is convex, then

f

(
n

∑
i=1

pixi

)
≤

n

∑
i=1

pi f (xi). (3.3)

As for our case, since function f (x) = (x)+ is convex, comparison between Doption and

Soption fits the Jensen’s inequality in (3.3).

Since now we are aware that, with the same inputs, the price of Doption is supposed to be

greater than or equal to that of Soption, we proceed to figure out the exact difference level

between the prices of the two options.

By definition, the synthetic option Soption is actually a basket option, whose underlying

asset is a portfolio of commodity futures contracts. Figuring out a closed-form pricing
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formula for basket option is challenging, because in most cases the density of the portfolio

of underlying assets is unknown. For example, in the case of arithmetic Asian option, even

if the underlying assets are assumed to follow geometric Brownian motion, an analytical

pricing formula can hardly be found because the sum of lognormal variables is not lognormal

anymore. Also, no such basket option is traded on the market. Therefore, numerical method

is necessary to compute the price of basket option such as the synthetic option Soption. Next,

we present step by step how we find out the general difference level between Doption and

Soption and then evaluate Soption.

3.3.2 Evaluating the Synthetic Option Using Monte Carlo Method

In the risk-neutral world, each underlying commodity future in Doption follows a driftless

lognormal process. However, the density of the weighted sum of these commodity futures in

Soption is unknown. In such occasion, numerical method is needed to calculate option prices.

This section describes how we set up the Monte Carlo simulation to compute the difference

between (the prices of) Doption and Soption, and evaluate the synthetic option accordingly.

The Model As we work in the risk-neutral world, the futures price F(t,T ) observed at time

t is assumed to follow the driftless lognormal process, i.e.

dF(t,T ) = σF(t,T )dW (t), (3.4)

where σ is the volatility of futures price; W (t) is the standard Brownian motion.

The solution to the stochastic differential equation in (3.4) is therefore

F (t,T ) = F(0,T )exp
(
−1

2
σ

2t +σW (t)
)
, (3.5)

where F(0,T ) is the futures price observed at time 0.

Since W (t)∼ N(0, t) is a Brownian motion, we have W (t) =
√

tN(0,1). This yields

F (t,T ) = F(0,T )exp
(
−1

2
σ

2t +σ
√

tN(0,1)
)
, (3.6)

where N(0,1) is the standard normal random variable. Equation (3.6) is the primary process

for generating the underlying futures price evolution in Monte Carlo simulation.
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Evaluating the Synthetic Option Inspired by the Jensen’s inequality for convex function,

we apply Monte Carlo simulation method to calculate the general difference level between

Doption and Soption which contain the same inputs. The evaluation of the synthetic option

consists of the following four steps.

1. Collecting option price simulation inputs for 21 different commodities with the same

option maturity month and moneyness level. Simulating 21 commodity futures price paths to

obtain the value of Doption and Soption. This gives a general difference level for this specific

pair of maturity and moneyness level.

First, we collect inputs for the option price simulation, i.e. the underlying futures price of

the ith commodity observed at initial time, the rescaled optimal weight for the ith commodity

and the implied volatility for individual commodity futures option contract from OVML

function. Here we take the difference level calculated for maturity month October 2016 at

90% moneyness as an example. The Matlab code for option parameters is presented as follows.
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%%%%%%option parameters%%%%%%%%%%%%%%%%

f1=502.9167;q1=0.007421699;v1=0.225975;

f2=516.6667;q2=0.006125333;v2=0.2198;

f3=11.835;q3=0.004180783;v3=0.1868;

f4=221.0833;q4=0.007940246;v4=0.26905;

f5=14.15233;q5=0.003597418;v5=0.26975;

f6=38.41;q6=0.532093719;v6=0.4705;

f7=1098.4;q7=0.003597418;v7=0.1838;

f8=202.15;q8=0.018262566;v8=0.2631;

f9=245.4;q9=0.086498989;v9=0.1674;

f10=2.553;q10=0.032636032;v10=0.312;

f11=15.35;q11=0.001750095;v11=0.2148;

f12=30.965;q12=0.00933384;v12=0.1814;

f13=25.05;q13=0.009106976;v13=0.2402;

f14=221.025;q14=0.007940246;v14=0.2889;

f15=67.2;q15=0.011213572;v15=0.2039;

f16=120.9;q16=0.026737564;v16=0.2002;

f17=154.1;q17=0.184861894;v17=0.2403;

f18=123.95;q18=0.022783645;v18=0.2309;

f19=92;q19=0.006417015;v19=0.2948;

f20=1.714;q20=0.008653248;v20=0.1648;

f21=15.85;q21=0.008847703;v21=0.162;

T=9/12;

rep=5000000;

In the above code, fi is the underlying futures price of the ith commodity observed at

initial time, i.e. 22nd of January 2016; qi is the rescaled optimal weight for the ith commodity;

vi is the implied volatility, which is used by Bloomberg as the inputs of OVML function to

compute the commodity futures European option prices; T is the option’s time to maturity;

rep is the replication time of Monte Carlo simulation, here we replicate the simulation for 5

million times, which is practically large enough to obtain an accurate approximation of option

price.
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Second, we generate the underlying futures price evolution based on the solution to the

dynamics of futures price in the risk-neutral world (equation (3.6)), i.e.

F (t,T ) = F(0,T )exp
(
−1

2
σ

2t +σ
√

tN(0,1)
)
.

The corresponding Matlab code example is as follows.

%%%%%%generate underlying futures price evolution%%%

ai=fi*exp(-0.5*((vi)∧2)*T+vi*sqrt(T)*randn(rep,1));

In the above code, ai is the futures price for the ith commodity at option’s maturity, it

corresponds to the time t futures price F(t,T ) in equation (3.6); randn(rep,1) is a 5000000-

by-1 column vector consisting of standard normal random numbers.

A key assumption for underlying futures price generation process is that we assume the

futures price is independent to each other,1 i.e. each standard Brownian motion driving the

futures price process is independent to each other. This assumption enables us to derive a

closed-form pricing formula for the European call option written on the futures on the CPI

proxy.

Third, we evaluate the futures option price for each of the 21 commodities. The relevant

Matlab code is:

%%%%%%define option’s moneyness level%%%%%%%%%

ki=0.9*fi;

%%%%%%option evaluation%%%%%%%%%%%%%%%%%

doptionpayoffi=max(ai-ki,0);

doptiondiscounti=doptionpayoffi*exp(-r*T);

doptionmeani=mean(doptiondiscounti);

In the above code, ki is option strike price for the ith commodity, in this example, we

let every ki equal to 90% of corresponding underlying futures price, this setting enables us

1We assume the futures price is independent to each other. The case where the futures prices are correlated
in the Monte Carlo simulation is discussed in Appendix B.
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to investigate the general difference between Doption and Soption when both options are

deep-in-the-money (90%moneyness).

For each commodity, we simulate the option payoff max(ai − ki,0). Then, discounting

this payoff back to the initial date and taking the average gives us the estimated futures option

price for each commodity.

Fourth, we multiply each estimated futures option price with corresponding optimal

weight and sum them up. This yields the price of Doption for the predetermined option

maturity month and moneyness level, i.e.

%%%%%%evaluate Doption%%%%%%%%%%%%%%%%%

doption=q1*doptionmean1+q2*doptionmean2

+q3*doptionmean3+q4*doptionmean4+q5*doptionmean5

+q6*doptionmean6+q7*doptionmean7+q8*doptionmean8

+q9*doptionmean9+q10*doptionmean10

+q11*doptionmean11+q12*doptionmean12

+q13*doptionmean13+q14*doptionmean14

+q15*doptionmean15+q16*doptionmean16

+q17*doptionmean17+q18*doptionmean18

+q19*doptionmean19+q20*doptionmean20

+q21*doptionmean21;

Next, we evaluate the synthetic option based on the above inputs and underlying futures

price evolutions:
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%%%%%%evaluate the synthetic option%%%%%%%%%%

j=q1*k1+q2*k2+q3*k3+q4*k4+q5*k5+q6*k6+q7*k7+q8*k8

+q9*k9+q10*k10+q11*k11+q12*k12+q13*k13+q14*k14

+q15*k15+q16*k16+q17*k17+q18*k18+q19*k19+q20*k20

+q21*k21;

Soptionpayoff=max((q1*a1+q2*a2+q3*a3+q4*a4+q5*a5

+q6*a6+q7*a7+q8*a8+q9*a9+q10*a10+q11*a11+q12*a12

+q13*a13+q14*a14+q15*a15+q16*a16+q17*a17+q18*a18

+q19*a19+q20*a20+q21*a21)-j,0);

Soptiondiscount=Soptionpayoff*exp(-r*T);

Soption=mean(Soptiondiscount);

In the above code, we define j as the weighted sum of ki, and each ki is a replicate of the

option strike price in the construction of Doption. The payoff of Soption has identical form

with the payoff in the Soption’s definition (equation (3.2)). Discounting this payoff back to

the initial date and taking the average, we find the estimated value of Soption.

Finally, we calculate the difference level between Doption and Soption.

%%%%%%calculate the difference level%%%%%%%%%%%

difference=Soption-doption;

We run the code for at least ten times. Since the replication time is large enough, the

difference level between Doption and Soption is always stable at two decimal place accuracy.

2. With the option’s time to maturity held fixed, we estimate the general difference levels

for the remaining four different moneyness levels. That is, we repeat the process in step 1

for another four times, but each time we run the code with different implied volatility inputs

for corresponding %moneyness level (95%, 100%, 105%, 110%). This yields a difference

level chain describing respectively the general difference levels for two in-the-money, one

at-the-money and two out-of-the-money options maturing in the same month.

3. We now repeat the first and second steps to calculate the difference level chains for all

other option’s expiry months. This gives a difference level surface as shown in Table 3.3.
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Table 3.3. Difference Level Surface

Expiry 90% moneyness level 95% moneyness level 100% moneyness level 105% moneyness level 110% moneyness level

Feb 2016 -0.74 -1.24 -1.48 -1.24 -0.83
Mar 2016 -1.49 -2.1 -2.36 -2.04 -1.49
Apr 2016 -2.01 -2.62 -2.86 -2.58 -2.03
May 2016 -2.37 -2.93 -3.12 -2.86 -2.33
Jun 2016 -2.67 -3.18 -3.33 -3.08 -2.58
Jul 2016 -2.94 -3.43 -3.58 -3.33 -2.84
Aug 2016 -3.16 -3.65 -3.78 -3.55 -3.07
Sep 2016 -3.36 -3.83 -3.96 -3.73 -3.26
Oct 2016 -3.52 -3.98 -4.1 -3.88 -3.42
Nov 2016 -3.7 -4.26 -4.26 -4.04 -3.59
Dec 2016 -3.81 -4.27 -4.38 -4.16 -3.72

Notes: ‘Expiry’ in the first column denotes the synthetic option expiry month; each number represents a difference level for a specific pair
of expiry month and %moneyness level, the difference level is defined as ‘Soption−Doption’.

All difference level values in Table 3.3 are negative, i.e. for all expiry months and

moneyness levels, Soption price is always smaller than Doption price. Not surprisingly, our

result fits the Jensen’s inequality for convex function.

Figure 3.1 plots the 3D bar of difference level surface. Interesting patterns can be

observed. First, as the month to maturity increases, the magnitude of the difference level

between Doption and Soption increases. Second, for Doption and Soption maturing in the

same month, as moneyness level increases from 90% to 110%, the magnitude of difference

level keeps rising until 100% moneyness and then falls to a level roughly equal to difference

level at 90% moneyness. That is, difference levels at 90% and 110% moneyness, difference

levels at 95% and 105% moneyness, are roughly symmetrical with respect to difference level

at 100% moneyness, respectively.

4. Given the general difference level, we now proceed to evaluate the synthetic option.

Given the commodity futures European option price data, the price of synthetic option Soption

is the sum of corresponding Doption price and difference level. Table 3.4 presents the price

data for the synthetic options.

Table 3.4. Synthetic Option Price

Expiry 90% moneyness level 95% moneyness level 100% moneyness level 105% moneyness level 110% moneyness level

Feb 2016 9.09 4.58 1.11 0.03 0.00
Mar 2016 9.36 5.20 2.15 0.60 0.10
Apr 2016 9.62 5.65 2.72 1.06 0.33
May 2016 9.81 5.92 3.25 1.32 0.50
Jun 2016 10.01 6.21 3.37 1.60 0.70
Jul 2016 10.23 6.49 3.67 1.87 0.89
Aug 2016 10.48 6.78 3.99 2.14 1.09
Sep 2016 10.62 6.99 4.22 2.37 1.27
Oct 2016 10.73 7.16 4.43 2.56 1.42
Nov 2016 10.79 7.17 4.59 2.72 1.56
Dec 2016 10.86 7.40 4.74 2.88 1.69

Notes: ‘Expiry’ in the first column denotes the synthetic option expiry month. In Table 3.4, due to the fact that the absolute difference level
is larger than the 110% moneyness Doption price maturing in February 2016, the calculated Soption price is actually negative. But option
price must be greater than or equal to zero, therefore, to make the price economically meaningful, we equate this price to zero.
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Figure 3.1. This figure plots the difference level surface data of Table 3.3 in the form of 3D bar.

In Table 3.4, due to the fact that the absolute difference level is larger than the 110%

moneyness Doption price maturing in February 2016, the calculated Soption is actually

negative. But option price must be greater than or equal to zero, therefore to make the price

economically meaningful, we equate this price to zero.

Figure 3.2 plots the 3D bar of synthetic option price. We can see from Figure 3.2 that, for

fixed option expiry month, Soption price decreases dramatically as the %moneyness increases.

Furthermore, as the month to maturity increases, Soption price rises gradually.

Analogous to any exchange-traded option contract, the synthetic option price contains

implicitly the volatility of the underlying asset. In our case, this is the implied volatility of the

futures on the CPI proxy. In the next section, we derive this implied volatility surface.
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Figure 3.2. This figure plots the synthetic option price data of Table 3.4 in the form of 3D bar.

3.4 The Synthetic Option Implied Volatility Surface

This section describes how we derive the synthetic option implied volatility surface. Given

the fact that the synthetic option prices are derived from exchange-traded commodity futures

options price data, the synthetic option prices can therefore be treated as the observed market

prices for the synthetic options. The synthetic option implied volatility is the volatility value

such that, when inserted into the option pricing formula, equates the theoretical option model

price with the observed market price of synthetic option. Before we reverse this process to

find the synthetic option implied volatility, we need a proper pricing formula for the synthetic

option written on the futures on the CPI proxy. Now we derive this pricing formula.
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3.4.1 Pricing the Synthetic Option in a Black’s Model Type Framework

In the risk-neutral world, the futures price is assumed to follow a driftless lognormal process,

i.e.

dF(t,T ) = σF(t,T )dW (t). (3.7)

Therefore in the risk-neutral world, the futures price is a martingale.

Since we assume that the futures price is independent to each other, the linearity of

conditional expectation implies that the sum of futures prices is also a martingale. More

specifically, we consider a continuous trading economy. The uncertainty in the economy is

characterized by a probability space (Ω,F ,P) where Ω is the state space, F is the set of all

possible events, P is the statistical probability measure and P̃ is the equivalent martingale

measure. Let {Ft : t ∈ [0,T ]} be the standard filtration generated by the standard Brownian

motion W (t). By the linearity of conditional expectation,

EQ [FCP(t,T ) |F0] = EQ

[
21

∑
i=1

λiFi (t,T ) |F0

]

=
21

∑
i=1

λiEQ [Fi (t,T ) |F0]

=
21

∑
i=1

λiFi (0,T )

= FCP(0,T ) ,

(3.8)

where FCP(t,T ) is by our definition the maturity T futures on the CPI proxy observed at time

t; Fi (t,T ) is the ith maturity T commodity futures observed at time t; λi is the optimal weight

for the ith commodity. Equation (3.8) proves that the futures on the CPI proxy FCP(t,T ) is

indeed a martingale in the risk-neutral world.

Therefore, we assume that the futures on the CPI proxy FCP(t,T ′) follows the driftless

lognormal process.

dFCP(t,T ′) = σFCPFCP(t,T ′)dWFCP(t), (3.9)

where σFCP is the volatility of futures on the CPI proxy FCP(t,T ′).

Under the assumption that the futures on the CPI proxy follows the dynamics given in

(3.9), the price of a European call option on the futures on the CPI proxy with strike price K,
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maturity T and with maturity payoff

C
(
T,FCP

(
T,T ′))= (FCP(T,T ′)−K)

+ (3.10)

is at time 0 given by

C
(
0,FCP

(
0,T ′))= e−rT [FCP

(
0,T ′)N (d1)−KN(d2)] (3.11)

with N(·) denotes the cumulative density function and

d1 =
ln
(

FCP(0,T ′)
K

)
+ 1

2σ2
FCPT

σFCP
√

T

d2 =
ln
(

FCP(0,T ′)
K

)
− 1

2σ2
FCPT

σFCP
√

T
= d1 −σFCP

√
T ,

where FCP(0,T ′) denotes the futures on the CPI proxy observed at current time 0; FCP(T,T ′)

is the futures on the CPI proxy observed at a future time T with maturity T ′ > T . The deriva-

tion of equation (3.11) is presented in Appendix C. Using the closed-form option pricing

formula given by (3.11), we can now move on to derive the synthetic option implied volatility.

3.4.2 Derive the Synthetic Option Implied Volatility

With the closed-form option pricing formula in hand, we now take as inputs the synthetic

option prices, risk-free interest rate, strike prices, initial price of the futures on the CPI proxy

and time to maturity for this formula and calculate the implied volatility surface. Newton-

Raphson method is applied to compute the implied volatility. This process can be realised by

using the ‘blkimpv’ function from the Matlab Financial Toolbox. The result is presented in

Table 3.5.

It can be seen from Table 3.5 that the synthetic option implied volatility is time and strike

dependent. To see the time and strike-dependency of implied volatility more clearly, we plot

the implied volatility surface in Figure 3.3.

From Figure 3.3 we can see that, for every option expiry month, the volatility skew is

observed, i.e. the implied volatility value decreases as strike price increases. Although

not pronounced, a slight volatility smile can also be observed for April 2016 to November

2016 as the implied volatility for these months rise slightly from 105%moneyness option to

110%moneyness option. Next, we analyse the implication of the implied volatility surface.
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Table 3.5. Implied Volatility Surface

Expiry 90% moneyness level 95% moneyness level 100% moneyness level 105% moneyness level 110% moneyness level

Mar 2016 0.1743 0.1499 0.1440 0.1417 0.1364
Apr 2016 0.1799 0.1560 0.1489 0.1476 0.1480
May 2016 0.1740 0.1516 0.1544 0.1426 0.1444
Jun 2016 0.1722 0.1509 0.1435 0.1416 0.1433
Jul 2016 0.1710 0.1507 0.1426 0.1409 0.1424
Aug 2016 0.1726 0.1519 0.1438 0.1413 0.1423
Sep 2016 0.1723 0.1522 0.1437 0.1412 0.1422
Oct 2016 0.1719 0.1522 0.1434 0.1404 0.1410
Nov 2016 0.1711 0.1478 0.1427 0.1396 0.1399
Dec 2016 0.1719 0.1517 0.1425 0.1391 0.1390

Notes: ‘Expiry’ in the first column denotes the synthetic option expiry month. Due to the fact that the price of 110% moneyness Soption
maturing in February 2016 is zero, we only calculate the implied volatility for synthetic options maturing from March 2016 to December
2016.
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Figure 3.3. This figure plots the implied volatility surface corresponding to the data in Table 3.5.

3.4.3 Implication of Implied Volatility Surface

Based on the current value of the futures on the CPI proxy, the implied volatility indicates

an interval estimate of the futures on the CPI proxy at some future time T , i.e. the range of

swing of the futures on the CPI proxy at a future time T .
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Formally, assuming the futures on the CPI proxy follows the lognormal dynamics in (3.9),

dFCP(t,T ′) = σFCPFCP(t,T ′)dWFCP(t).

The probability distribution of the natural logarithm of the futures on the CPI proxy lnFCP(T,T ′)

is

lnFCP(T,T ′)∼ φ

[
lnFCP(0,T ′)− 1

2
σ

2
FCPT, σ

2
FCPT

]
, (3.12)

where φ [a,b] denotes the normal distribution with mean a and variance b. Note that the

volatility of futures on the CPI proxy σFCP is calculated by matching the theoretical option

price derived from option pricing formula (3.11) with the observed synthetic option price,

therefore the volatility of futures on the CPI proxy σFCP is equal to the implied volatility, i.e.

σFCP = σimp. Thus, we have

lnFCP(T,T ′)∼ φ

[
lnFCP(0,T ′)− 1

2
σ

2
impT, σ

2
impT

]
. (3.13)

Using the probability distribution of lnFCP(T,T ′) in (3.13), we calculate the 90%, 95% and

99% level confidence intervals of lnFCP(T,T ′) for each futures on the CPI proxy of the

futures on the CPI proxy chain FCP(T,T ′) with maturity T ′ ranging from April 2016 to

January 2017. We use Figure 3.4 and an example to illustrate the timing of the futures on the

CPI proxy and corresponding synthetic option; and how we calculate the confidence interval

of lnFCP(T,T ′) and the corresponding interval estimate of the futures on the CPI proxy.

time T'

 time 0 time T

current time Feb 16 Mar 16 Apr 16 May 16 Jun 16 Jul 16 Aug 16 Sep 16 Oct 16 Nov 16 Dec 16 Jan 17

option expiry month

underlying futures 
(futures on the CPI 

proxy) maturity month; 
forecast of CPI for future 

month T'

Figure 3.4. This timeline chart plots the timing of futures on the CPI proxy and corresponding
synthetic option.
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In Figure 3.4, the current month (time 0) is January 2016. We take the synthetic option

maturing in eleven months (December 2016) as an example. Usually, for commodity futures

options traded at the CME, there is a gap of one to three months between the commodity

futures option expiry and the underlying commodity futures maturity. In our case, most

commodity futures options expire one month earlier than the underlying commodity futures

contracts. Therefore, we assume that the synthetic option expires one month earlier than the

underlying futures on the CPI proxy. This means that, in Figure 3.4, the synthetic option

maturing in December 2016 has an underlying futures on the CPI proxy maturing in January

2017 (time T ′).

By definition, the futures on the CPI proxy FCP(0,T ′) in Figure 3.4 is the current-time

forecast of consumer price index at a future time T ′ (January 2017). The way we constructed

the futures on the CPI proxy indicates that the futures on the CPI proxy FCP(0,T ′) is a ‘point’

forecast, i.e. a single value which is the weighted average of commodity futures last prices

(or settlement prices) observed on current date. No prediction of future evolution of price

level can be made with absolute certainty. It is therefore more realistic to consider uncertainty

when the prediction is made. Thus, we calculate the 90%, 95% and 99% level confidence

intervals of lnFCP(T,T ′) where time T is the synthetic option expiry. Using the confidence

intervals of lnFCP(T,T ′), we then calculate the corresponding contemporaneous interval

estimates of FCP(T,T ′). Given that the futures on the CPI proxy FCP(T,T ′) is essentially

a futures contract, the time T interval estimates of futures on the CPI proxy FCP(T,T ′) are

actually the interval estimates for the consumer price index at the futures on the CPI proxy

maturity T ′ (January 2017). Consequently, we have derived the uncertainty surrounding the

‘point’ forecast of consumer price index at time T ′ (January 2017).

We now use a numerical example to demonstrate the above-described procedure of

deriving the uncertainty surrounding the ‘point’ forecast of consumer price index at some

future time T ′. The current value of futures on the CPI proxy FCP(0,T ′) maturing in January

2017 is 95.53044, which is the time 0 ‘point’ forecast for January 2017 price level. The

implied volatility of this futures on the CPI proxy (implied from the 105% moneyness level

synthetic option chain) is 13.91% per annum. From equation (3.13) the probability distribution

of the futures on the CPI proxy FCP(T,T ′) in eleven months’ time is given by

lnFCP(T,T ′)∼ φ [4.55,0.02].
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There is a 95% probability that a normally distributed variable has a value within 1.96

standard deviations of its mean. In our case, the standard deviation is 0.13. Therefore, with

95% confidence,

4.55−1.96×0.13 < lnFCP(T,T ′)< 4.55+1.96×0.13,

based on which we can derive the corresponding contemporaneous interval estimates of

FCP(T,T ′)

e4.55−1.96×0.13 < FCP(T,T ′)< e4.55+1.96×0.13,

this is

72.94 < FCP(T,T ′)< 122.92.

Since the futures on the CPI proxy is essentially a futures contract, the interval estimate of

time T value of FCP(T,T ′) is actually an interval estimate of price level at time T ′, i.e. there

is 95% probability that the price level in January 2017 will lie between 72.94 and 122.92.

Using the same method, we can calculate the 90% and 99% level confidence intervals of

lnFCP(T,T ′) and derive the corresponding interval estimates of price level in January 2017.

The three interval estimates constitute the uncertainty surrounding the ‘point’ forecast of price

level in January 2017.

Following this logic, we calculate the time T (synthetic option expiry month) 90%, 95%

and 99% level confidence intervals of lnFCP(T,T ′) for each futures on the CPI proxy in the

futures on the CPI proxy chain whose maturities range from April 2016 to January 2017. For

expository purpose, the calculated confidence intervals and corresponding contemporaneous

interval estimates of FCP(T,T ′) are presented in Appendix D. By our definition of the futures

on the CPI proxy, these interval estimates of FCP(T,T ′) can be translated into a time series

of monthly interval estimates for future price level from April 2016 to January 2017. We

calculate the time series of interval estimates for price level with respect to each %moneyness

level synthetic option chain in our study. We plot these interval estimates for price level in

Figure 3.5.
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Figure 3.5. The three fan charts (from top to bottom) plot the uncertainty in projection of future price
level derived from deep-in-the-money call option chain (90%moneyness), in-the-money call option
chain (95%moneyness) and at-the-money call option chain (100%moneyness), respectively.
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Figure 3.5 - continued. The two fan charts (from top to bottom) plot the uncertainty in projection of
future price level derived from out-of-the-money call option chain (105%moneyness) and deep-out-of-
the-money call option chain (110%moneyness), respectively.

There are five fan charts in Figure 3.5, each plots the uncertainty in projection of future

price level derived from deep-in-the-money call option chain (90%moneyness), in-the-money

call option chain (95%moneyness), at-the-money call option chain (100%moneyness), out-of-

the-money call option chain (105%moneyness) and deep-out-of-the-money call option chain

(110%moneyness), respectively.

In each fan chart, X-axis denotes the calendar months from April 2016 to January 2017,

corresponding to the expiry months of futures on the CPI proxy chain; Y-axis is the forecast

of future price level. Every dot on the solid line represents a current ‘point’ forecast for future

consumer price index, forming a time series of ‘point’ forecasts for price level from April

2016 to January 2017, which correspond to the values of time 0 futures on the CPI proxy

chain FCP(0,T ′) with maturity T ′ ranging from April 2016 to January 2017.
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To illustrate the uncertainty surrounding the ‘point’ forecast, coloured bands are drawn

alongside the solid line. The coloured bands become lighter as the distance from the solid line

increases, forming a fan chart. For every ‘point’ forecast of future price level , we derive three

interval estimates of price level forecast surrounding the ‘point’ forecast. Different interval

estimates are characterized by different shades of grey, reflecting the relative probability of

future price level lying in a particular interval estimate. The central interval estimate in the

deepest shade of grey represents the interval estimate of future price level derived from the

90% level confidence interval of lnFCP(T,T ′); the pair of interval estimates in the second

deepest shade of grey on either side of the central interval estimate denote the range of interval

estimate of future price level derived from the 95% level confidence interval of lnFCP(T,T ′)

that exceeds the interval estimate of future price level derived from the 90% level confidence

interval of lnFCP(T,T ′); the pair of interval estimates in the lightest shade of grey on both

edges of the fan chart stand for the portion of interval estimate of future price level derived

from the 99% level confidence interval of lnFCP(T,T ′) that exceeds the interval estimate of

future price level derived from the 95% level confidence interval of lnFCP(T,T ′). The time

series of interval estimates derived from the 90% level confidence interval of lnFCP(T,T ′)

are chronologically connected to form the band in the deepest shade of grey at the centre of

the fan chart; each pair of interval estimates in the second deepest shade of grey on either side

of the central interval estimate are chronologically connected to form the bands in the second

deepest shade of grey; and analogously, the time series of each pair of interval estimates in the

lightest shade of grey form the bands in the lightest shade of grey. Altogether, the coloured

bands construct the fan chart.

We can see from Figure 3.5 that, in each fan chart, the bands widen as forecast horizon

extends, i.e. the magnitude of uncertainty surrounding the ‘point’ forecast of price level

increases as month to maturity becomes longer. This result makes economic sense. It is

natural when forecasting to assume that the future degree of uncertainty is greater than that at

present; and the increasing degree of uncertainty in price level forecast as horizon extends

can also be observed from the Bank of England inflation fan chart. What’s more, the trend

in the evolution of the degree of price level forecast uncertainty can be understood from the

financial derivatives point of view. Given the observed persistency in the time series of U.S.

CPI for a short period, it is reasonable to assume when forecasting that the CPI to remain

persistent for three months in the future. However, as forecast horizon extends from three

months to one year ahead, the uncertainty is expected to increase. Canty and Heider (2012)
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indicate that, the very front end of the inflation curve remains relatively undefined, because

there is no government inflation-linked bills market; and the inflation-linked swaps trading

is mostly beyond one year and often two-year maturities. Additionally, the inflation futures

hedging inflation risk one year ahead have been delisted due to illiquidity. Therefore, market

participants lack the proper financial derivatives to speculate inflation expectation for one year

in the future. As a result, the uncertainty of price level forecast increases as forecast horizon

extends from three month to one year ahead.
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Figure 3.6. The line chart plots the average length of interval estimate of future price level of the five
fan charts.

Furthermore, in Figure 3.6, we compare the average length of interval estimates of

future price level across the five fan charts. We define the length of interval estimates of

future price level as the difference between the maximum value and minimum value of each

interval estimate of future price level, which reflects the degree of uncertainty surrounding

the ‘point’ forecast of future price level. We can see from Figure 3.6 that, as the %moneyness

level increases from deep-in-the-money call option chain (90%moneyness) to deep-out-of-

the-money call option chain (110%moneyness), the average length of interval estimate of

future price level keeps decreasing towards its bottom level at out-of-the-money call option

chain (105%moneyness) and then rises slightly at deep-out-of-the-money call option chain

(110%moneyness), suggesting that the lowest average uncertainty surrounding the ‘point’

forecast of future price level appears at out-of-the-money call option chain. In other words,

we are overall more certain about the price level forecast when we use out-of-the-money call

option chain. One explicit reason is the volatility skew (slight smile) of synthetic options.



3.4 The Synthetic Option Implied Volatility Surface 71

Another implicit reason is that, the implied volatility surface used by Bloomberg to compute

the European commodity futures options prices is derived from out-of-the-money exchange-

traded American commodity futures options. Therefore, compared with in-the-money and

at-the-money option chains, implied volatility derived from out-of-the-money options has

superior capability of capturing the market expectation of future price level.

3.4.4 Inflation Forecast

In this section, we discuss the inflation forecast implied from the fan charts in Figure 3.5 and

compare our result with the Bank of England inflation fan chart’s inflation prediction.

Our fan charts depict the uncertainty in projection of future price level, and the U.S.

inflation forecast can be implied implicitly from the interval estimate of future price level. By

contrast, the Bank of England inflation fan chart predicts the probability density of U.K. CPI

inflation and therefore inflation prediction can be read explicitly from the fan chart. Our fan

charts are technically distinct in many ways from the Bank of England inflation fan chart, a

comparison between the two types of fan charts yields a more comprehensive understanding

of our results.

Figure 3.7 presents an inflation fan chart taken from the Bank of England February 2016

Inflation Report.
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financial market volatility, continued subdued global growth
and domestic fiscal consolidation.  The outlook is supported
by a further pickup in annual productivity growth, though
growth in average hours, and hence labour supply, is slower in
the first couple of years of the forecast than previously
projected. 

In the central projection conditioned on market rates, 
four-quarter GDP growth rises back to around 2½% 
(Chart 5.1).  The risks to the growth projection lie to the
downside (Chart 5.4).  That profile is weaker than in
November;  but weaker demand is matched by a lower
projection for potential supply.  As in November, growth is
associated with a gradual build-up of capacity pressures, and
hence a pickup in domestic cost growth.  This returns inflation
to the 2% target once the drag from external factors fades and
then pushes it slightly above the target (Chart 5.2).  The
central projection for CPI inflation is modestly below that of
three months ago (Chart 5.3) for much of the forecast period
— reflecting a greater drag from energy prices and a lower
path for wage growth, only partly offset by a smaller drag
from other import prices — but broadly similar by the end.
The risks to the central projection are judged to lie to the
downside in the near term, reflecting the possibility of greater
persistence in low inflation, but to be broadly balanced 
further out. 

In light of the economic outlook, at its meeting ending on
3 February the MPC voted to maintain Bank Rate at 0.5% and
the stock of purchased assets at £375 billion.  The factors
behind that decision are set out in the Monetary Policy
Summary on pages i–ii of this Report, and in more detail in the
Minutes of the meeting.(1)

(1) The Minutes are available at www.bankofengland.co.uk/publications/minutes/
Documents/mpc/pdf/2016/feb.pdf.
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The fan chart depicts the probability of various outcomes for GDP growth.  It has been
conditioned on the assumption that the stock of purchased assets financed by the issuance of
central bank reserves remains at £375 billion throughout the forecast period.  To the left of the
vertical dashed line, the distribution reflects the likelihood of revisions to the data over the past;
to the right, it reflects uncertainty over the evolution of GDP growth in the future.  If economic
circumstances identical to today’s were to prevail on 100 occasions, the MPC’s best collective
judgement is that the mature estimate of GDP growth would lie within the darkest central band
on only 30 of those occasions.  The fan chart is constructed so that outturns are also expected to
lie within each pair of the lighter green areas on 30 occasions.  In any particular quarter of the
forecast period, GDP growth is therefore expected to lie somewhere within the fan on 90 out of
100 occasions.  And on the remaining 10 out of 100 occasions GDP growth can fall anywhere
outside the green area of the fan chart.  Over the forecast period, this has been depicted by the
light grey background.  See the box on page 39 of the November 2007 Inflation Report for a
fuller description of the fan chart and what it represents.

Chart 5.1  GDP projection based on market interest rate
expectations and £375 billion purchased assets
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Chart 5.2 CPI inflation projection based on market interest
rate expectations and £375 billion purchased assets
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Chart 5.3 CPI inflation projection in November based on market
interest rate expectations and £375 billion purchased assets

Charts 5.2 and 5.3 depict the probability of various outcomes for CPI inflation in the future.  They have been conditioned on the assumption that the stock of purchased assets financed by the issuance of central bank reserves
remains at £375 billion throughout the forecast period.  If economic circumstances identical to today’s were to prevail on 100 occasions, the MPC’s best collective judgement is that inflation in any particular quarter would lie
within the darkest central band on only 30 of those occasions.  The fan charts are constructed so that outturns of inflation are also expected to lie within each pair of the lighter red areas on 30 occasions.  In any particular
quarter of the forecast period, inflation is therefore expected to lie somewhere within the fans on 90 out of 100 occasions.  And on the remaining 10 out of 100 occasions inflation can fall anywhere outside the red area of the
fan chart.  Over the forecast period, this has been depicted by the light grey background.  See the box on pages 48–49 of the May 2002 Inflation Report for a fuller description of the fan chart and what it represents.

Figure 3.7. This figure presents an inflation fan chart taken from the Bank of England February
2016 Inflation Report. The Inflation Report is produced quarterly (i.e. in February, May, August and
November) by Bank staff under the guidance of the members of the Monetary Policy Committee.
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The Bank of England Monetary Policy Committee (MPC)’s view of the likely outcome for

inflation in any future quarter is represented by a ‘two-piece’ normal probability density (see

Britton et al. (1998) and pages 48-49 of the May 2002 Inflation Report). Such a probability

density is produced for each of all future quarters in the forecast. The inflation fan charts

correspond to the bird’s-eye view of the interpolated time series of the probability densities

of CPI inflation. For any time point in the forecast period, the shade of red reflects the

relative probability of inflation lying in a particular band. For example, at the end of forecast

period, i.e. the 4th quarter of 2018, the darkest red band in the centre of the chart represents a

30% probability, so there is a 30% probability that inflation will lie approximately between

1.7% and 2.8%. Moving away from the central band, the area covered by each pair of

successive identically shaded bands-one on each side of the central band-also represents a

30% probability. Therefore, at the 4th quarter of 2018 there is judged to be a 90% probability

that the outturn of CPI inflation will be approximately between -0.3% and 4.7%.

Because our fan charts are forward-looking forecast with no historical time series of

‘point’ forecast of future price level, we compare our fan charts with the forward-looking part

of the Bank of England inflation fan charts, i.e. the red fan charts with grey background.

First, we notice that for both our fan charts and the Bank of England inflation fan charts,

the coloured bands widen as the forecast horizon extends. In other words, the magnitude of

forecast uncertainty increases as the prediction looks further into the future. This implies that,

the further ahead in time, the less certain both the commodity futures options market and the

MPC tend to be about the future price level.

The horizon of our interval estimate of future price level indicates that we are able to

predict an interval estimate for inflation rate 12 months in the future. By contrast, the Bank

of England inflation forecast covers 13 quarters ahead in time. The reason that our forecast

horizon is limited to 12 months is that, for the majority of commodities included in the

construction of the futures on the CPI proxy, the longest time to maturity of the available

futures options is 11 months. Therefore, the constructed synthetic options can only imply

volatilities for the underlying futures on the CPI proxy with time to maturity up to 12 months

(i.e. corresponding to the one-year ahead price level forecast). In other words, for the futures

on the CPI proxy with time to maturity longer than 12 months, we lack the corresponding

synthetic option to derive the implied volatility for the underlying futures on the CPI proxy,

which limits the forecast horizon to 12 months in the future.
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Furthermore, the uncertainty of our one-year ahead inflation forecast is larger than that of

inflation prediction from the Bank of England inflation fan chart. We compare the Bank of

England inflation prediction with our one-year ahead inflation forecast derived from the out-

of-the-money call option chain (105% moneyness), as the 105% moneyness level synthetic

option chain yields the lowest average uncertainty surrounding the ‘point’ forecast of future

price level among all 5 call option chains (see Figure 3.6). Furthermore, we compute the

inflation forecast using only the interval estimate of future price level derived from the 90%

level confidence intervals of lnFCP(T,T ′), in order that the confidence level of our forecast

matches the coverage of the probability of the Bank of England inflation fan chart (90%

probability). Specifically, based on the interval estimate of price level in January 2017 (76.11

to 117.79) and the CPI proxy one year earlier at January 2016 (93.662), we expect that there

is a 90% probability that January 2017’s inflation rate will lie between -18.74% and 25.76%.

By contrast, the Bank of England inflation fan chart predicts that January 2017’s inflation rate

will be between -1% and 3.5% with a 90% chance. Although we predict U.S. inflation rate

while the Bank of England forecasts U.K. CPI inflation, given that both U.S. (the Federal

Open Market Committee) and U.K. target 2% inflation rate, the magnitude of these inflation

rate forecasts are comparable. Clearly, the length of the interval estimate of our inflation

rate forecast is larger than the uncertainty of inflation prediction from the Bank of England

inflation fan chart. Next, we show that it is the source of uncertainty that gives rise to the

distinct magnitudes of the two inflation forecasts.

To evaluate the complete inflation forecast distribution, the Bank of England forecast

team assesses a number of economic shocks affecting the inflation forecast. The variance of

inflation is derived from the underlying variances of economic shocks. Simulation is then

used to identify the contribution of relevant economic shock variances to the variance of the

inflation forecast. The inflation forecast variance can then be obtained by a weighted sum of

underlying individual economic shocks. But rather than simply adding up all the variances,

the past inflation forecast error variance is taken as a starting point and then adjusted upwards

or downwards. Above all, since 1994, U.K. inflation has been much less volatile than it was

in the past, helping to lower forecast error. Thus, a lower starting forecast error variance helps

curb the future forecast uncertainty within a narrow range. What’s more, the Bank of England

has concentrated on systematically building up a forecast distribution of inflation in a manner

that reflects MPC’s subjective judgment, rather than simply the mapping from the objective

economic shocks. Therefore, by adjusting the underlying economic shock variances, the
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inflation forecast variance is thus changed to match the degree of uncertainty as viewed by the

MPC, which limits the forecast uncertainty within a satisfying range. Thus, the uncertainty of

Bank of England inflation forecast is limited subjectively to a low level to match the MPC’s

view as well as the small historical forecast error.

By contrast, the uncertainty of our inflation forecast comes directly from the commodity

futures options market, with no subjective adjustments. We now analyze step by step how

the inflation forecast uncertainty is generated from the commodity futures options market.

Specifically, every observed CME commodity futures in our study has a corresponding

option chain; each option chain consists of options with different strikes written on the

same underlying commodity futures. For each one such option, Bloomberg OVDV function

calculates the Black-Scholes implied volatility so that the American option model prices

match the exchange-traded option prices. The Bloomberg OVDV Black-Scholes implied

volatility surface is then used by Bloomberg OVML option pricing function to calculate the

corresponding European commodity futures options prices. These European commodity

futures options price data are then used to construct the synthetic European call options,

which imply the implied volatility for the underlying futures on the CPI proxy. The implied

volatility determines directly the magnitude of the confidence interval of lnFCP(T,T ′), which

yields the length of the interval estimate of future price level. Finally, based on these interval

estimates of future price level, the uncertainty of one-year ahead inflation forecast can be

derived.

To figure out the origin of large inflation forecast uncertainty, we calculate in Table 3.6

for each option expiry month and %moneyness level the weighted sum of Bloomberg OVDV

implied volatility for individual commodity futures option observed in Bloomberg OVML

option pricing function.

Table 3.6. Weighted Sum of Bloomberg OVDV Individual Option Implied Volatility (proxy)

Expiry 90% moneyness level 95% moneyness level 100% moneyness level 105% moneyness level 110% moneyness level

Feb 2016 0.4585 0.4320 0.4585 0.4214 0.4585
Mar 2016 0.4496 0.4356 0.4252 0.4188 0.4177
Apr 2016 0.4316 0.4209 0.4127 0.4065 0.4029
May 2016 0.4118 0.4018 0.3941 0.3882 0.3845
Jun 2016 0.3968 0.3874 0.3798 0.3741 0.3704
Jul 2016 0.3849 0.3765 0.3696 0.3642 0.3603
Aug 2016 0.3741 0.3665 0.3602 0.3551 0.3511
Sep 2016 0.3651 0.3579 0.3520 0.3471 0.3433
Oct 2016 0.3560 0.3493 0.3434 0.3385 0.3345
Nov 2016 0.3492 0.3492 0.3377 0.3330 0.3293
Dec 2016 0.3419 0.3363 0.3311 0.3265 0.3227

Notes: ‘Expiry’ in the first column denotes the individual option expiry month. For each option expiry month and %moneyness level,
the number represents the weighted sum of Bloomberg OVDV implied volatility for individual commodity futures option observed in
Bloomberg OVML option pricing function.
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Each weighted sum in Table 3.6 is a proxy indicating the overall view of how big the individual

implied volatility is on average. It can be seen from Table 3.6 that, overall, for each expiry

month and %moneyness level, the volatility proxy is large. To understand the magnitude of

these proxies more intuitively, we compare in Table 3.7 in percentage the ratio of synthetic

option implied volatility to the corresponding weighted sum of individual option implied

volatility with the same expiry month and %moneyness level.

Table 3.7. The Ratio of Synthetic Option Implied Volatility to the Corresponding Proxy (in percentage)

Expiry 90% moneyness level 95% moneyness level 100% moneyness level 105% moneyness level 110% moneyness level

Mar 2016 39% 34% 34% 34% 33%
Apr 2016 42% 37% 36% 36% 37%
May 2016 42% 38% 39% 37% 38%
Jun 2016 43% 39% 38% 38% 39%
Jul 2016 44% 40% 39% 39% 40%
Aug 2016 46% 41% 40% 40% 41%
Sep 2016 47% 43% 41% 41% 41%
Oct 2016 48% 44% 42% 41% 42%
Nov 2016 49% 42% 42% 42% 42%
Dec 2016 50% 45% 43% 43% 43%

Notes: ‘Expiry’ in the first column denotes the synthetic option expiry month. For each option expiry month and %moneyness level, the
percentage denotes the ratio of synthetic option implied volatility to the corresponding weighted sum of individual option implied volatility
(i.e. corresponding proxy in Table 3.6).

We can see from Table 3.7 that, on average, the synthetic option implied volatility accounts

for only 41% of the corresponding weighted sum of individual option implied volatility,

indicating that the proxy volatility is indeed much larger than the corresponding synthetic

option implied volatility.

What’s more, we figure out which commodity contributes the most to the large proxy

volatility. In Table 3.8, we present the weight of each commodity as well as corresponding

commodity’s average implied volatility over all expiry months and %moneyness levels. We

can see clearly from Table 3.8 that ‘crude oil’ stands out among all commodities, i.e. not only

its weight accounts for over half of total weight (53%), but also its average commodity futures

option implied volatility is significantly higher than that of the remaining commodities. The

result is reasonable, as the crude oil futures price is known to be volatile. As a result, the

volatile crude oil futures prices drive up the overall proxy volatility.

Accordingly, results from Table 3.6, 3.7 and 3.8 indicate that the Bloomberg OVDV

Black-Scholes implied volatilities are overall large, especially the implied volatility of crude

oil futures. As the input data used by Bloomberg OVML option pricing function, large

implied volatilities yield high European commodity futures call option prices. The higher

the European commodity futures call option prices, the higher the prices of the constructed

synthetic option will be, which imply larger implied volatility for the underlying futures on
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Table 3.8. Commodity Weight and Average Implied Volatilities

Ticker Weight Average Implied Volatilities

wheat w 0.74% 0.2358
wheat kw 0.61% 0.2276
rough rice rra 0.42% 0.2051
oats o a 0.79% 0.2964
silver si 0.36% 0.2608
crude oil cla 53.21% 0.5098
gold gc 0.36% 0.1704
copper hg 1.83% 0.2690
lumber lba 8.65% 0.1968
natural gas nga 3.26% 0.3533
milk class IV kva 0.18% 0.2064
soybean oil boa 0.93% 0.1885
dry whey drwa 0.91% 0.2402
butter v6 0.79% 0.2817
lean hog lha 1.12% 0.2086
live cattle lca 2.67% 0.2004
cattle feeder fca 18.49% 0.2299
juice jo 2.28% 0.2612
non-fat milk lea 0.64% 0.2680
cheese che 0.87% 0.1564
milk daa 0.88% 0.1565

Notes: ‘Average Implied Volatilities’ represent the commod-
ity’s average implied volatility for individual commodity fu-
tures option observed in Bloomberg OVML option pricing
function over all expiry months and %moneyness levels.

the CPI proxy. These implied volatilities then translate into greater length of interval estimate

of future price level, leading to higher uncertainty of corresponding inflation forecast.

Consequently, the Chicago Mercantile Exchange prices the commodity futures options

in the way that the options’ implied volatilities are large, which then translate into the large

uncertainty of inflation forecast in our study. In other words, by analysing the option contracts,

we conclude that the commodity futures options market expects high uncertainty for one-year

ahead inflation forecast; and this uncertainty implied from the commodity futures options

market is higher than the magnitude of inflation forecast uncertainty assumed by the Bank of

England.

3.4.5 Rescaling the Synthetic Option Implied Volatility

The previous section analyses the inflation forecast purely from the perspective of the com-

modity futures options market. In this section, we consider the fact that the consumption
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good price is generally less volatile than the corresponding commodity futures price, based on

which we rescale the synthetic option implied volatility and therefore reduce the uncertainty

of inflation forecast.

Specifically, we collect from U.S. Bureau of Labor Statistics the 2011 to 2015’s time series

of data on U.S. city average prices of consumption goods in the CPI, with each consumption

good corresponding to one commodity in the commodity basket of the futures on the CPI

proxy, e.g. the time series of U.S. bread prices corresponds to wheat commodity. Next, we use

the time series to calculate the historical volatility vi of the price of the ith consumption good.

Then, we compare, over the same period, the consumption good price historical volatility

vi with the corresponding commodity futures option implied volatility Vi. We observe the

commodity futures option implied volatility surface from Bloomberg OVML option pricing

function for each commodity on 21st of January 2011, 20th of January 2012, 22nd of January

2013, 22nd of January 2014 and 22nd of January 2015, respectively, corresponding to the 2011

to 2015’s time series of consumption goods average price data. The ratio ui =
vi
Vi

is calculated

for each period (see Table 3.9) and each %moneyness level to estimate the proportion of

variation in the price of the ith consumption good to the option implied volatility of the

corresponding ith commodity. The average value of ui calculated across five years’ data gives

us, in general, the proportion of the ith consumption good price historical volatility to the ith

commodity futures option implied volatility for a specific pair of option maturity (period) and

%moneyness level. Lastly, we define

U = q1u1 +q2u2 + ...+q21u21

as the weighted sum of ratio ui for the same pair of option maturity (period) and %moneyness

level across 21 commodities, where qi denotes the optimal weight for the ith commodity. Since

our basket of commodities includes all the commodities with options written on them, based

on rich data sample covering the past five years (2011 to 2015), the ratio U can be defined as

the general proportion of historical volatility for all consumption goods to the corresponding

commodity basket’s option implied volatility. The results for ratio U are presented in Table

3.9.

The general proportion of historical volatility for all consumption goods to the correspond-

ing commodity basket’s option implied volatility ranges from 23.52% to 56.91%, with an

average value of 42.93%, i.e. across all option maturities (period) and %moneyness levels,
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Table 3.9. General Proportion of Historical Volatility to Implied Volatility

Period 90% moneyness level 95% moneyness level 100% moneyness level 105% moneyness level 110% moneyness level

Jan-Mar 2016 23.52% 25.60% 27.46% 28.58% 28.39%
Jan-Apr 2016 28.65% 30.60% 32.45% 33.76% 34.22%
Jan-May 2016 33.24% 35.36% 37.46% 39.22% 40.17%
Jan-Jun 2016 39.34% 41.67% 44.14% 46.44% 48.03%
Jan-Jul 2016 39.73% 41.90% 44.21% 46.50% 48.50%
Jan-Aug 2016 42.02% 44.22% 46.60% 48.95% 50.94%
Jan-Sep 2016 42.52% 44.70% 47.05% 49.33% 51.15%
Jan-Oct 2016 43.98% 46.17% 48.50% 50.75% 52.53%
Jan-Nov 2016 46.48% 48.81% 51.28% 53.68% 55.67%
Jan-Dec 2016 47.83% 50.10% 52.50% 54.87% 56.91%

Notes: ‘Period’ in the first column denotes the period over which we compare the consumption good price historical volatility vi with the
corresponding commodity futures option implied volatility Vi. Each percentage represents the general proportion of historical volatility for all
consumption goods to the corresponding commodity basket’s option implied volatility.

averagely, only 42.93% of the volatility implied by the commodity futures option can be

reflected in the variation of the consumption goods prices.

Next, since the ratio U is generated using rich data sample covering the past five years, we

now treat U as an ‘attribute’ of commodity basket indicating a ‘fixed’ proportion of historical

volatility for all consumption goods to the corresponding commodity basket’s option implied

volatility. Using this ‘attribute’, we predict the volatility of consumption goods prices in

2016 by rescaling the synthetic option implied volatility, i.e. by multiplying each synthetic

option implied volatility with corresponding ratio U at the same option maturity (period) and

%moneyness level. The result is shown in Table 3.10.

Table 3.10. Rescaled Synthetic Option Implied Volatility

Expiry 90% moneyness level 95% moneyness level 100% moneyness level 105% moneyness level 110% moneyness level

Mar 2016 0.0410 0.0384 0.0396 0.0405 0.0387
Apr 2016 0.0515 0.0477 0.0483 0.0498 0.0507
May 2016 0.0578 0.0536 0.0579 0.0559 0.0580
Jun 2016 0.0677 0.0629 0.0633 0.0658 0.0688
Jul 2016 0.0679 0.0631 0.0630 0.0655 0.0691

Aug 2016 0.0725 0.0672 0.0670 0.0692 0.0725
Sep 2016 0.0732 0.0680 0.0676 0.0696 0.0727
Oct 2016 0.0756 0.0702 0.0696 0.0713 0.0741
Nov 2016 0.0796 0.0721 0.0732 0.0749 0.0779
Dec 2016 0.0822 0.0760 0.0748 0.0763 0.0791

Notes: ‘Expiry’ in the first column denotes the synthetic option expiry month.

Following the same procedure of forecasting future price level in section 3.4.3, we use

the rescaled synthetic option implied volatility data to recalculate the interval estimate of the

future price level and therefore reproduce the fan chart in Figure 3.8.
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Figure 3.8. The three reproduced fan charts (from top to bottom) plot the uncertainty in projection of
future price level derived from deep-in-the-money call option chain (90%moneyness), in-the-money
call option chain (95%moneyness) and at-the-money call option chain (100%moneyness), respectively.
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Figure 3.8 - continued. The two reproduced fan charts (from top to bottom) plot the uncertainty in
projection of future price level derived from out-of-the-money call option chain (105%moneyness) and
deep-out-of-the-money call option chain (110%moneyness), respectively.

We can see from Figure 3.8 that, in each reproduced fan chart, the uncertainty surrounding

the ‘point’ forecast of future price level has been decreased significantly due to the rescaled

synthetic option implied volatility.

What’s more, based on the interval estimate of price level in January 2017 recalculated

using the 105% moneyness level out-of-the-money call option chain (84.52 to 107.4) and

the CPI proxy one year earlier at January 2016 (93.662), we now predict that there is a 90%

chance that January 2017’s inflation rate will lie between -9.76% and 14.67%. Therefore, the

uncertainty of inflation forecast has almost been halved.
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However, the uncertainty of our inflation forecast is still relatively large compared to that

of the Bank of England’s inflation forecast. The reason for our inflation forecast uncertainty

being large even after rescaling the synthetic option implied volatility is that the implied

volatility of crude oil futures in 2016 is especially high compared to those observed during

the past five years. To see this clearly, we compare the annual average implied volatility of

crude oil futures observed during 2011 to 2016 in Figure 3.9.
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Figure 3.9. Each bar in Figure 3.9 denotes the average implied volatility of crude oil futures price
observed on the observation date of the indexed year. For example, the bar indexed with ‘2011’
represents the average value of the implied volatility surface of crude oil futures observed on 21st of
January 2011 from Bloomberg OVML option pricing function.

It can be seen from Figure 3.9 that the annual average implied volatility of crude oil futures

in 2016 is significantly higher than those observed during the past five years; it increases

considerably from the lowest annual average implied volatility 0.1861 in 2014 to 0.5098 in

2016. Given that the crude oil accounts for over half of the weight in commodity basket

(53%), it is not surprising that the high implied volatility of crude oil futures has been driving

the uncertainty of our inflation forecast to a relatively high level. In addition, the implied

volatility surface updates continuously, therefore, if we apply our method to the period when

the crude oil futures option implied volatility is low, then the uncertainty of our inflation

forecast can be narrowed down to similar magnitude of the inflation prediction uncertainty of

the Bank of England inflation fan chart.

3.5 Discussion and Conclusions

The futures on the CPI proxy derived from commodity futures price data predicts the price

level up to one year in the future. However, there are considerable uncertainties surrounding



3.5 Discussion and Conclusions 82

these ‘point’ forecasts. In this paper, we have investigated the uncertainty of consumer price

index prediction by studying the implication of a synthetic option’s implied volatility surface.

The major difficulty we encountered in the analysis is that most exchanged-traded com-

modity futures options are American options. In order to construct the synthetic option, we

need the corresponding European options price data. This is realized by using Bloomberg

OVML option pricing function which uses Bloomberg OVDV function implied volatility

surface to price consistently the corresponding commodity futures European options.

Based on the commodity futures European option price data, we apply Monte Carlo

method and construct a synthetic European option written on the futures on the CPI proxy.

Our assumption of independent lognormal commodity futures leads to a closed-form Black’s

model type option pricing formula. We then use this option pricing formula to derive the

implied volatility surface.

A volatility skew (slight smile) is observed in the synthetic option’s implied volatility

surface. We analyse the implication of implied volatility surface by calculating the interval

estimate of the future price level at the maturity of the futures on the CPI proxy. Our result has

two major implications. First, for one-year horizon, the further we look into the future, the

less certain we are about the price level prediction. This is due to a lack of predicting tool such

as inflation futures which covers the price level prediction over one year in the future. Second,

compared to in-the-money and at-the-money option chains, we are more certain about the

price level forecast when the prediction is derived from the out-of-the-money option chain

(105%moneyness). This can be explained by the implied volatility skew (slight smile) and

the fact that out-of-the-money option chain has superior capability of capturing the market

expectation of future price level compared to in-the-money and at-the-money option chains.

Furthermore, based on the uncertainty surrounding the ‘point’ forecast of future price level,

we derive the one-year ahead inflation forecast, which reflects the commodity futures options

market’s expectation for future inflation rate. Our analysis indicates that the commodity

futures options market expects high uncertainty for one-year ahead inflation forecast; and this

uncertainty implied from the commodity futures options market is higher than the uncertainty

of inflation prediction of the Bank of England inflation fan chart. The main factor driving

the uncertainty of our inflation forecast to a high level proves to be the especially high

crude oil futures option implied volatility in 2016. By comparing the consumption goods

price historical volatility with corresponding commodity futures option implied volatility, we

significantly reduce the uncertainty of inflation forecast.
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Most importantly, one of the most important features of the commodity futures option

market is that tradings are happening continuously, leading to high frequency in the update of

market data, including the commodity futures option implied volatility surface. This feature

indicates that, the continuously-updated market data yields continuously-updated inflation

forecast. We can narrow down the uncertainty of inflation forecast to the same range as

the Bank of England’s inflation forecast by applying our method to the period when the

crude oil futures option implied volatility is low, but what is important in our study is that

the inflation forecast derived from our method tracks closely the commodity futures option

market’s expectation about future inflation rate in the real time, i.e. inflation forecasting

through commodity futures and options.
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Abstract

In this paper, we estimate and analyse the inflation risk premium based on a link between the

inflation risk premium and the risk premium associated with the futures on the CPI proxy. We

estimate the risk premium associated with the futures on the CPI proxy as the predictable

component in the prediction error. We then use the most accurate estimate of the risk premium

associated with the futures on the CPI proxy to estimate the inflation risk premium. The

negative inflation risk premium estimated from our method is consistent with the post-Lehman

evidence for negative inflation risk premium in the macroeconomic inflation risk premium

literature. Given that the price of the futures on the CPI proxy is more volatile than the

consumer price index, the magnitude of our inflation risk premium estimate is larger than that

of the inflation risk premium estimate in the macroeconomic inflation risk premium literature.
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4.1 Introduction

Traditionally, the standard practice among central bankers and policy makers has been to

interpret the price of a commodity futures contract as the market expectation of the spot

price of the commodity, e.g. many researchers have treated the crude oil futures price as

the measure of the market expectation of the spot crude oil price at the expiry of the futures

contract. Indeed, under the risk-neutral measure, the commodity futures price is equal to the

expected spot commodity price at the expiry of the futures contract, therefore the error from

predicting the spot commodity price based on the commodity futures price should be zero on

average. However, as the central bankers and policy makers usually make forecast under the

real-world measure, the existence of a time-varying risk premium in the commodity futures

market will render the commodity futures price an inaccurate measure of the expected future

spot price.

In the commodity futures market risk premium literature, there has been emerging con-

sensus on the existence of a time-varying risk premium in the commodity futures market.

Sadorsky (2002), Pagano and Pisani (2009), Hamilton and Wu (2014) and Baumeister and

Kilian (2017) all document the existence of a time-varying risk premium in the oil futures

market. More importantly, the time-varying risk premium exists in a wide range of commodity

futures markets. Evidence includes Fama and French (1987), Bessembinder and Chan (1992),

Bjornson and Carter (1997), Lucia and Torró (2008) and Hambur et al. (2016). These studies

all provide evidence supporting that the time-varying risk premium exists in the energy, metal,

agricultural and electricity futures market. In Chapter 2, we construct the term structures of

futures on the CPI proxy dataset. Given that the futures on the CPI proxy is constructed as

the weighted sum of commodity futures prices, the evidence of the existence of time-varying

risk premium in a wide range of commodity futures markets inspires us to investigate and

estimate the time-varying risk premium associated with the futures on the CPI proxy.

The purpose of constructing the futures on the CPI proxy dataset is to offer an approach

to predict the future U.S. price level. The forecast of future price level implies explicitly the

expected inflation rate. Our result in Chapter 3 shows that, a volatile futures on the CPI proxy

yields large degree of uncertainty in the inflation rate prediction. Thus, the risk premium

associated with the futures on the CPI proxy is connected to the inflation risk premium. In

this paper, we derive a link between the risk premium associated with the futures on the CPI

proxy and the inflation risk premium, based on which we estimate the inflation risk premium.
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In the existing inflation risk premium literature, the mainstream approach to estimate the

unobservable inflation risk premium is to use the no-arbitrage term structure model, where

data on the nominal yield and inflation rate are a must. For example, Ang et al. (2008) specify

a no-arbitrage term structure model with both nominal yield and inflation data to identify the

term structure of real rates and inflation risk premium. Apart from data on nominal yield

and inflation, more recent study such as Grishchenko and Huang (2013) use TIPS data and

Survey of Professional Forecast to estimate the inflation risk premium. An important recent

study, Fleckenstein et al. (2017), differentiates itself from the previous literature by using

the inflation swaps and options prices to infer the inflation risk premium. They construct

a continuous-time model describing the dynamics of instantaneous expected inflation rate,

and price the inflation swaps and options accordingly. Our study makes two contributions

to the literature. First, we do not need TIPS or inflation swaps data to infer the real yield

and expected inflation rate, our approach is based on the widely available commodity futures

and spot prices data. Second, we derive a link between the inflation risk premium and the

risk premium associated with the futures on the CPI proxy and use this link to estimate the

inflation risk premium.

The reminder of the paper is organised as follows. We start by describing the method for

estimating the time-varying risk premium associated with the futures on the CPI proxy in

section 4.2; we then derive the relationship between the risk premium associated with the

futures on the CPI proxy and the inflation risk premium in section 4.3; section 4.4 describes the

construction of datasets; next, sections 4.5 and 4.6 estimate and select the accurate estimates

for the risk premium associated with the futures on the CPI proxy; section 4.7 estimates the

inflation risk premium and assesses our estimate against the inflation risk premium estimates

in the macroeconomic inflation risk premium literature; finally, section 4.8 concludes the

paper.

4.2 Estimating the Risk Premium Associated with the Fu-

tures on the CPI Proxy

We follow the approach proposed by Baumeister and Kilian (2017) to estimate the time-

varying risk premium associated with the futures on the CPI proxy. Let FCPh
t denote the

current price of the futures on the CPI proxy maturing h periods from now; and CPt+h the

corresponding spot CPI proxy at the expiry of the futures on the CPI proxy. As shown in
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Shreve (2004), the marking to margin mechanism of the futures market implies that, if an

agent holds a long futures position between time t and t + 1, then at time t + 1 the agent

receives a payment

FCPh−1
t+1 −FCPh

t .

Furthermore, the futures price FCPh
t satisfies

FCP0
t+h =CPt+h.

Therefore, the sum of the payments received by the agent holding a long position from the

current time until the expiry of the futures on the CPI proxy is

CPt+h −FCPh
t .

As stated in Hansen and Renault (2010), the principle of no arbitrage implies that

Et [Qt+h(CPt+h −FCPh
t )] = 0, (4.1)

where Qt+h is the stochastic discount factor and E[·] denotes the expectation under the

real-world measure. Using the definition of covariance, we rearrange equation (4.1) and

obtain

FCPh
t = Et [CPt+h]+

cov(CPt+h,Qt+h)

Et [Qt+h]
, (4.2)

where cov(CPt+h,Qt+h)
Et [Qt+h]

refers to the risk premium. The commodity futures pricing theory that

explains equation (4.2) is the risk premium theory, which originates from the theory of normal

backwardation introduced by Keynes (1934). As shown in equation (4.2), the risk premium

theory states that the futures on the CPI proxy is equal to the sum of the expected spot CPI

proxy at the expiry of the futures on the CPI proxy, and the risk premium associated with the

futures on the CPI proxy. While the theory of normal backwardation from Keynes (1934)

argues that the risk premium is negative, more recent evidence in commodity risk premium

literature such as Cootner (1960), Bessembinder (1992), Brooks et al. (2013), Gorton et al.

(2013) and Hambur et al. (2016) show that the sign of the risk premium can vary cross-

sectionally and inter-temporally, depending on the net hedging pressure, i.e. the net supply of

the futures contracts. For example, if the commodity producers’ hedging activity is greater

than that of the commodity consumers, there will be net short hedging position. As Cootner
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(1960) argues, to induce the speculator to buy, the futures price must be depressed below the

price expected by the speculator to offer them an adequate return, leading to a negative risk

premium. If, on the other hand, the commodity consumers’ hedging activity is greater than

that of the commodity producers, then there will be net long hedging position. In this case,

the futures price will be set above the expected future spot price, corresponding to a positive

risk premium.

Furthermore, it follows from equation (4.2) that, when the risk premium cov(CPt+h,Qt+h)
Et [Qt+h]

is

zero, the futures on the CPI proxy is equal to the expected spot CPI proxy at the expiry of the

futures on the CPI proxy, i.e.

FCPh
t = Et [CPt+h], (4.3)

rearranging, we have

Et [CPt+h −FCPh
t ] = 0,

where CPt+h −FCPh
t denotes the prediction error from predicting the spot CPI proxy at the

expiry of the futures on the CPI proxy based on the current price of the futures on the CPI

proxy. According to Baumeister and Kilian (2017), evidence of a predictable component in

the prediction error CPt+h −FCPh
t such that

Et [CPt+h −FCPh
t ] ̸= 0

would be consistent with the existence of a time-varying risk premium.

As stated in Baumeister and Kilian (2017), the prediction error CPt+h −FCPh
t is not

stationary, in order to estimate the predictable component in the prediction error by regression

method, we need to normalize the prediction error CPt+h −FCPh
t as follows,

CPt+h −FCPh
t

FCPh
t

.

The risk premium associated with the futures on the CPI proxy may be estimated from the

regression
CPt+h −FCPh

t

FCPh
t

= αh +βhxt + vt+h, (4.4)

where αh and βh are the horizon-specific regression coefficients; xt denotes the predictor; and

vt+h is the mean zero error term. Compared with the traditional return regression method

based on the holding-period return, estimating the risk premium as the predictable component

in the prediction error as in equation (4.4) yields estimates of risk premium at the horizon
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towards the expiry of the futures on the CPI proxy, which enables us to measure the implied

spot CPI proxy expectations. Based on the implied spot CPI proxy expectations, we may

estimate the risk premium associated with the futures on the CPI proxy. Solving equation

(4.4) for the spot CPI proxy at the expiry of the futures on the CPI proxy CPt+h, we obtain

CPt+h = FCPh
t (1+αh +βhxt + vt+h). (4.5)

Taking the expectation of equation (4.5), we obtain the expectation of the spot CPI proxy

at the expiry of the futures on the CPI proxy

Et [CPt+h] = FCPh
t (1+αh +βhxt). (4.6)

The risk premium associated with the futures on the CPI proxy RPh
t then may be estimated

as

RPh
t = FCPh

t −Et [CPt+h]. (4.7)

4.3 A Link between the Inflation Risk Premium and the

Risk Premium Associated with the Futures on the CPI

Proxy

Based on the method of estimating the risk premium associated with the futures on the CPI

proxy, we now show that the inflation risk premium found in the macroeconomic inflation

risk premium literature can be derived from the risk premium associated with the futures on

the CPI proxy.

As shown in equation (4.7), the futures on the CPI proxy is equal to the sum of the

expectation of the spot CPI proxy at the expiry of the futures on the CPI proxy and the risk

premium, i.e.

FCPh
t = Et [CPt+h]+RPh

t . (4.8)

In the macroeconomic inflation risk premium literature (Bekaert and Wang (2010), Garcia

and Werner (2010)), the difference between the yield of a nominal bond and the yield of a real

bond is the break-even inflation rate, and the break-even inflation rate comprises the expected
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inflation rate and the inflation risk premium:

yh
t − rh

t = Et [πt+h,h]+φ
h
t , (4.9)

where yh
t denotes the yield of a nominal bond with maturity of h periods; rh

t is the yield of a

real bond with maturity of h periods; Et [πt+h,h] is the expected inflation rate; and φ h
t denotes

the inflation risk premium.

The inflation rate between time t and time t +h is:

πt+h,h =
CPt+h −CPt

CPt
. (4.10)

If we take the expectation of equation (4.10), we have:

Et [πt+h,h] =
Et [CPt+h]−CPt

CPt
. (4.11)

Furthermore, the real bond pays off:

1+
CPt+h −CPt

CPt
. (4.12)

The price of the real bond is equal to the expected discounted payoff in (4.12), where

EQ[·] denotes the expectation under the risk-neutral measure:

EQ
t

[
1

1+ yh
t

(
1+

CPt+h −CPt

CPt

)]
(4.13)

=
1

1+ yh
t

(
1+

FCPh
t −CPt

CPt

)
≈ (1− yh

t )

(
1+

FCPh
t −CPt

CPt

)
≈ 1− yh

t +
FCPh

t −CPt

CPt
.
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The real yield is computed as the difference between the real payoff (which is equal to 1)

and the real price, divided by the real price:

rh
t =

1−
(

1− yh
t +

FCPh
t −CPt

CPt

)
1− yh

t +
FCPh

t −CPt
CPt

(4.14)

≈ yh
t −

FCPh
t −CPt

CPt
.

Therefore,

yh
t − rh

t =
FCPh

t −CPt

CPt
. (4.15)

We now substitute equation (4.15) and (4.11) into (4.9):

FCPh
t −CPt

CPt
=

Et [CPt+h]−CPt

CPt
+φ

h
t ,

which is:

FCPh
t −Et [CPt+h] =CPt ×φ

h
t . (4.16)

Therefore, substituting equation (4.8) into (4.16), we have derived the relationship between

the risk premium associated with the futures on the CPI proxy and the inflation risk premium

in the macroeconomic inflation risk premium literature:

φ
h
t =

RPh
t

CPt
, (4.17)

i.e. the inflation risk premium is equal to the ratio of the risk premium at time t associated

with the futures on the CPI proxy maturing h periods from time t to the spot CPI proxy at

time t. Equation (4.17) enables us to estimate the inflation risk premium from the estimates

of the risk premium associated with the futures on the CPI proxy.

4.4 Data Description

Based on the approach for estimating the inflation risk premium as described above, we now

describe the construction of the datasets. Our analysis uses three datasets, namely, the futures

on the CPI proxy, the spot CPI proxy, and the predictors.
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4.4.1 Futures on the CPI Proxy

We apply the futures on the CPI proxy dataset constructed in Chapter 2 to estimate the

inflation risk premium. This application indicates that the futures on the CPI proxy dataset

may potentially be fitted into various frameworks in both the commodity market literature

and macroeconomic inflation risk premium literature to gain new findings. The original

commodity futures price data consists of daily observations from 2nd of January 2013 to 18th

of December 2013. Every Wednesday observation is selected out of the daily observations to

obtain the weekly observations. At every observation date we collect last price (or settlement

price if last price is unavailable) for the available commodity futures chain with time to

maturity up to twelve months in the future. Based on these weekly observations of commodity

futures prices we then construct the futures on the CPI proxy chain observed on every

Wednesday from 2nd of January 2013 to 18th of December 2013. Specifically, we construct

the time t price of the futures on the CPI proxy maturing in the future month T > t as the

weighted sum of individual commodity futures price, i.e.

FCP(t,T ) =
34

∑
i=1

aiFi(t,T ), (4.18)

where i = 1,2,3, ...,34 represents the ith commodity of the 34 commodities in the construction

of the futures on the CPI proxy; ai denotes the weight for the ith commodity; Fi(t,T ) is the

time t price of the futures contract maturing in month T written on the ith commodity. Given

that all 34 commodity futures contracts mature in the same month T , the way we construct the

futures on the CPI proxy as shown in expression (4.18) suggests that FCP(t,T ) is the time

t expectation of the average spot price level in month T . More importantly, although all 34

commodity futures contracts expire in the same month T , the fact that each commodity has

its unique futures maturity month arrangement indicates that the last trading date in month T

differs from one commodity to another. As a result, the maturity T of the futures on the CPI

proxy can be viewed as a maturity month and therefore the futures on the CPI proxy does

not have a specific maturity date. Defining the maturity of the futures on the CPI proxy as a

maturity month is our desired result and this definition is consistent with our interpretation of

the futures on the CPI proxy, i.e. the time t expectation of consumer price index for month T .

However, for the purpose of using the futures on the CPI proxy dataset to estimate the

inflation risk premium empirically in this study, the futures on the CPI proxy needs to have a

specific maturity date. Thus, we follow the approach suggested by Fama and French (1987)
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Figure 4.1. This figure illustrates the timing of the futures on the CPI proxy, which explains the
connection between FCP(t,T ) and FCPh

t .

and assume that the futures on the CPI proxy matures on the first Wednesday of the expiry

month. This assumption facilitates us to apply consistently the construction of the futures

on the CPI proxy FCP(t,T ) as described in (4.18) to the definition of the futures on the CPI

proxy FCPh
t in this study. Given that the futures on the CPI proxy is constructed to forecast

the price level in the future, we define the nearest futures on the CPI proxy on each observation

date as the futures on the CPI proxy maturing in the month following the month which time

t falls within, e.g. on observation date 2nd of January 2013, the nearest futures on the CPI

proxy is the futures on the CPI proxy maturing in February 2013. For each observation date,

the futures on the CPI proxy chain consists of twelve consecutive futures on the CPI proxy,

i.e. from the nearest futures on the CPI proxy to the futures on the CPI proxy maturing twelve

months in the future. Accordingly, the way we construct the futures on the CPI proxy chain

indicates that all observation dates within the same month correspond to the same futures on

the CPI proxy chain. In other words, the futures on the CPI proxy chain observed on the dates

falling within the same month are actually different observations of the same futures on the

CPI proxy chain.

Specifically, we use an example in Figure 4.1 to illustrate the timing of the futures on the

CPI proxy, which explains the connection between FCP(t,T ) and FCPh
t . In Figure 4.1, 2nd

of January 2013 (t1), 9th of January 2013 (t2), 16th of January 2013 (t3), 23rd of January 2013

(t4) and 30th of January 2013 (t5) are five observation dates in January 2013; 6th of February

2013 (T ) is the maturity date of the five observation dates’ nearest futures on the CPI proxy.

FCP(ti,T ) denotes the time ti price of the futures on the CPI proxy maturing on time T ;

FCPhi
ti represents the corresponding contemporaneous price of the futures on the CPI proxy
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maturing hi weeks from time ti. Following this logic, we define the horizon hi as follows,

hi =
T − ti

7
, (4.19)

i.e. the number of weeks between the observation date ti and the maturity date T of the futures

on the CPI proxy. Under this definition, the 2nd of January 2013 price of the futures on the

CPI proxy maturing on 6th of February 2013 (FCP(t1,T )) is the 2nd of January 2013 price

of the futures on the CPI proxy maturing in five weeks (FCPh1
t1 ). Accordingly, we define

the connection between the definition of FCPh
t and the corresponding dataset FCP(t,T ) as

follows,

FCPh
t = FCP(t,T ) ⇔ h =

T − t
7

, (4.20)

i.e. FCPh
t and FCP(t,T ) refer to the same futures on the CPI proxy if and only if the horizon

h is equal to the number of weeks between the observation date t and the futures on the CPI

proxy maturity T .

4.4.2 Spot CPI Proxy

The spot CPI proxy is constructed as the weighted sum of the commodity spot prices, i.e.

CPt =
34

∑
i=1

aiSit , (4.21)

where CPt is the time t spot CPI proxy; i = 1,2,3, ...,34 represents the ith commodity of the

34 commodities in the construction of the futures on the CPI proxy as shown in (4.18); ai

denotes the same weight for the ith commodity as described in (4.18); Sit is the time t spot

price for the ith commodity. We construct the spot CPI proxy with two category of timings.

The first category of timing denotes the spot CPI proxy on each observation date of the futures

on the CPI proxy, which is the weighted sum of commodity spot prices on the observation

date as shown in definition (4.21). This category of spot CPI proxy will be applied in equation

(4.17) to estimate the inflation risk premium. The second category of timing refers to the spot

CPI proxy at the expiry of the corresponding futures on the CPI proxy, i.e.

CPt+h =
34

∑
i=1

aiSi(t+h), (4.22)
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where CPt+h is the spot CPI proxy at the expiry of the corresponding futures on the CPI proxy;

Si(t+h) denotes the spot price of the ith commodity observed on the last trading date of the

corresponding futures contract written on the ith commodity. Analogous to the relationship

between the timing of individual commodity futures contract maturity and the timing of

the constructed futures on the CPI proxy maturity, due to the fact that the last trading date

arrangement of futures contract differs from one commodity to another, the subscript t +h

of CPt+h actually denotes a period of time which is the same expiry month T of FCP(t,T )

as described in definition (4.18). In order to keep the timing of the spot CPI proxy and

corresponding futures on the CPI proxy consistent, we assume that the subscript t + h of

CPt+h to be a specific date that is the same date as the assumed maturity date of corresponding

futures on the CPI proxy.

We use Bloomberg to collect commodity spot price data. Energy commodity and metal

commodity spot price data are widely available. For agricultural commodities, we read the

commodity futures contract’s description and note about the underlying commodity and

obtain relevant information regarding the grade and quality of the commodity, then we use

Bloomberg ‘AGGP’ function to search for the spot price data of commodity that matches

the grade and quality of the commodity underlying the corresponding commodity futures

contract. For those futures contracts whose underlying assets’ spot price data is not available,

we follow the approach in Fama and French (1987) and use the relevant futures price instead.

Specifically, for the spot CPI proxy on the observation date as constructed in definition (4.21),

we use the futures price of the observation date’s nearest futures contract as the measurement

of the unavailable spot price; for the spot CPI proxy at the expiry of the futures on the CPI

proxy as described in definition (4.22), we use the futures price observed on the last trading

day of the futures contract as the substitution for the unobservable spot price.

4.4.3 Predictors

As suggested by Pagano and Pisani (2009) and Baumeister and Kilian (2017), in the absence

of a time-varying risk premium, the prediction error from predicting the spot CPI proxy at the

expiry of the futures on the CPI proxy based on the current price of the futures on the CPI

proxy should be zero on average, and the prediction error is expected to be uncorrelated with

any variable in the information set at the time the prediction is made. In the presence of the

time-varying risk premium, however, the prediction error may be predictable based on the
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information available at the time the forecast is made. Therefore, we include twelve candidate

predictors which are conjectured to be correlated with the prediction error.

The candidate predictors are divided into three categories based on the way they are con-

nected with the prediction error. First, given that both the futures on the CPI proxy and spot

CPI proxy are based on price data from the commodity market, we include indices that are

broad measures of the U.S. commodity spot and futures market, i.e. Bloomberg Commodity

Index, Bloomberg Commodity Index Total Return, Commodity Research Bureau BLS/U.S.

Spot All Commodities, Commodity Research Bureau BLS/U.S. Spot Raw Industrials, Thom-

son Reuters/Core Commodity CRB Commodity Index, Dow Jones Commodity Index and

Rogers International Commodity Index Total Return. Second, the purpose of constructing

the futures on the CPI proxy is to forecast future U.S. consumer price index level. Given

that the ratio between S&P 500 Index and consumer price index is closely monitored by the

Federal Reserve Bank due to the connection between the two indices, we include S&P 500

Index, S&P 500 Total Return Index, Dow Jones Industrial Average and Dow Jones Industrial

Average Total Return Index. Third, the market price of the non-diversifiable risk is known as

the risk premium. We include the Chicago Board Options Exchange SPX Volatility Index

(VIX Index) as a proxy of market risk estimate. The daily observations of the twelve candidate

predictors are collected from Bloomberg. The description of the twelve candidate predictors

are presented in Table 4.1.

4.5 Estimation Results of the Risk Premium Associated with

the Futures on the CPI Proxy

Using the three datasets as described in the previous section, we apply the OLS regression as

displayed in (4.4)
CPt+h −FCPh

t

FCPh
t

= αh +βhxt + vt+h

to estimate the time-varying risk premium associated with the futures on the CPI proxy based

on the information available at time t. For each horizon h ∈ {1,2,3, ...,52}, the time series

of the dependent variable is paired with the contemporaneous time series of each candidate

predictor to estimate the horizon-specific regression coefficients αh and βh, and therefore for

every horizon the twelve candidate predictors yield twelve estimates of regression coefficients

αh and βh. Any regression result with insignificant p-value of βh is excluded from further
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Table 4.1. Description of Predictors

Predictor Description

S&P 500 Total Return Index (SPXT
Index)

Calculated intraday by S&P based on the price changes and reinvested dividends of SPX Index with a starting
date of 4th January 1988.

Bloomberg Commodity Index (BCOM
Index)

Bloomberg Commodity Index (BCOM) is calculated on an excess return basis and reflects commodity futures
price movements. The index rebalances annually weighted 2/3 by trading volume and 1/3 by world production
and weight-caps are applied at the commodity, sector and group level for diversification. Roll period typically
occurs from 6th -10th business day based on the roll schedule.

Bloomberg Commodity Index Total Re-
turn (BCOMTR Index)

The Bloomberg Commodity Total Return index is composed of futures contracts and reflects the returns on a
fully collateralized investment in the BCOM. This combines the returns of the BCOM with the returns on cash
collateral invested in 13 weeks (3 Month) U.S. Treasury Bills.

Commodity Research Bureau BLS/U.S.
Spot All Commodities (CRB CMDT
Index)

This data represents Commodity Research Bureau BLS Spot Indices. The prices used in the index are obtained
from trade publications or from other government agencies. Prices for cocoa beans, corn, steers, sugar, wheat,
burlap, copper scrap, cotton, lead scrap, print cloth (spot), rubber, steel scrap, wool tops, and zinc, are of the
same specification and market source as those used in the comprehensive monthly Wholesale Price Index.
Prices for butter, hides, hogs, lard, rosin, tallow, and tin are either differently specified spot prices or from
different markets.

Commodity Research Bureau BLS/U.S.
Spot Raw Industrials (CRB RIND In-
dex)

This data represents Commodity Research Bureau BLS Spot Indices. CRB BLS Raw Industrials: Hides, tallow,
copper scrap, lead scrap, steel scrap, zinc, tin, burlap, cotton, print cloth, wool tops, rosin, and rubber.

Thomson Reuters/Core Commodity
CRB Commodity Index (CRY Index)

The TR/CC CRB Excess Return Index is an arithmetic average of commodity futures prices with monthly
rebalancing.

Dow Jones Commodity Index (DJCI
Index)

Dow Jones Commodity Index.

Dow Jones Industrial Average Total Re-
turn Index (DJITR Index)

The Dow Jones Industrial Average Total Return Index tracks the total return of the member stocks of the DJI
Index. Dividends are reinvested. This index prices once per day at market close by Dow Jones. The index is
quoted in USD.

Dow Jones Industrial Average (INDU
Index)

The Dow Jones Industrial Average is a price-weighted average of 30 blue-chip stocks that are generally the
leaders in their industry. It has been a widely followed indicator of the stock market since 1st October 1928.

Rogers International Commodity Index
Total Return (RICIGLTR Index)

This data represents Rogers International commodity index data for Agricultural, Energy and Metals markets.

S&P 500 Index (SPX Index) Standard and Poor’s 500 Index is a capitalization-weighted index of 500 stocks. The index is designed to
measure performance of the broad domestic economy through changes in the aggregate market value of 500
stocks representing all major industries. The index was developed with a base level of 10 for the 1941-43 base
period.

Chicago Board Options Exchange SPX
Volatility Index (VIX Index)

The Chicago Board Options Exchange Volatility Index reflects a market estimate of future volatility, based on
the weighted average of the implied volatilities for a wide range of strikes. 1st and 2nd month expirations are
used until 8 days from expiration, then the 2nd and 3rd are used.

consideration, so that we only use the statistically significant OLS regression results to

estimate the risk premium associated with the futures on the CPI proxy.

Based on the datasets and estimates of the regression coefficients, we follow the procedure

as described in equation (4.5), (4.6) and (4.7) to estimate the risk premium associated with

the futures on the CPI proxy. The estimation results are presented in Figure 4.2.

For expository purpose, Figure 4.2 focuses on 13-week, 26-week, 39-week and 52-week

horizons. Each line chart in Figure 4.2 illustrates estimates of the risk premium associated with

the futures on the CPI proxy based on statistically significant regression results of alternative

candidate predictors. The X-axis is the observation date; the Y-axis denotes the estimates of

the risk premium associated with the futures on the CPI proxy; different candidate predictors
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Figure 4.2. The line charts in Figure 4.2 presents the alternative estimates of the risk premium
associated with the futures on the CPI proxy.

are characterised by different colours. In our study, a risk premium of 5, for instance, means

that the futures on the CPI proxy exceeds the expected spot CPI proxy at the expiry of futures

on the CPI proxy by 5, whereas a risk premium of -10 denotes that the expectation of spot

CPI proxy exceeds the futures on the CPI proxy by 10. The estimates for all four horizons

agree that there is a downward trend in the risk premium associated with the futures on the

CPI proxy from January 2013 to December 2013. The sign and magnitude of risk premium,

however, differ across four horizons. Specifically, for the 13-week horizon, the risk premium

starts with an estimate slightly above zero and ends up with an average value of -11.72. The

26-week horizon saw the risk premium decreases from an average value slight below zero to
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-21.29 averagely. As for the 39-week horizon, the risk premium starts further below zero and

ends up with an average of -28.58. Finally, the 52-week horizon yields the lowest values, i.e.

the risk premium estimation declines averagely from -17.89 to -33.51. Accordingly, in Figure

4.2, as horizon increases from 13 weeks to 52 weeks, the risk premium estimates decrease

from a slightly positive average value to an average value of -33.51.

More importantly, it can be seen from each line chart that there is disagreement on the

magnitude and even the sign of the estimates of risk premium on the same date. To be more

specific, for 13-week horizon, on the 2nd of January 2013, SPXT Index estimates a risk

premium of 2.5, whereas CRB RIND Index yields a risk premium of -4.85. In terms of

disagreement on the magnitude, alternative estimates of risk premium on the same date can

differ by as much as 12.12. Given that the purpose of this empirical study is to estimate the

inflation risk premium by using the estimates of risk premium associated with the futures

on the CPI proxy, dispersion in the estimates of risk premium associated with the futures on

the CPI proxy on the same date will yield mutually inconsistent estimates of inflation risk

premium. Therefore, not all of the estimates of risk premium associated with the futures

on the CPI proxy are equally valid. As a result, we need to select the most accurate and

reliable estimate of risk premium, so that we can derive the accurate estimate of inflation risk

premium.

4.6 Selecting the Most Credible Estimate of the Risk Pre-

mium Associated with the Futures on the CPI Proxy

We follow closely the approach proposed by Baumeister and Kilian (2017) to select the most

accurate estimate of risk premium associated with the futures on the CPI proxy for a specific

horizon.

As shown in equation (4.7), the risk premium theory argues that the futures on the CPI

proxy is the sum of the risk premium associated with the futures on the CPI proxy and the

expected spot CPI proxy at the expiry of the futures on the CPI proxy, i.e.

FCPh
t = RPh

t +Et [CPt+h]. (4.23)

A credible estimate of the risk premium associated with the futures on the CPI proxy RPh
t ,

when inserted into equation (4.23), should yield an implied spot CPI proxy expectation
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Et [CPt+h] that is as close as possible to the realised spot CPI proxy CPt+h. Thus, the credibility

of the estimate of risk premium associated with the futures on the CPI proxy may be assessed

by measuring the accuracy of the implied spot CPI proxy expectation. The accuracy of the

implied spot CPI proxy expectation can be assessed by the mean squared prediction error of

Et [CPt+h], that is,

E[CPt+h −Et [CPt+h]]
2. (4.24)

According to Baumeister and Kilian (2017), the conditional expectation, i.e. Et [CPt+h] in this

case, minimises the mean squared prediction error.

The credibility of the estimate of risk premium associated with the futures on the CPI

proxy is assessed by comparing the mean squared prediction error derived from alternative

specifications of the implied spot CPI proxy expectation Et [CPt+h]. We first assume that the

time-varying risk premium associated with the futures on the CPI proxy does not exist. In

this case, as described by equation (4.3), the futures on the CPI proxy is equal to the expected

spot CPI proxy at the expiry of the futures on the CPI proxy, i.e.

FCPh
t = Et [CPt+h].

Therefore, in the absence of time-varying risk premium, FCPh
t minimises the mean squared

prediction error, and the corresponding specification of the mean squared prediction error is

E[CPt+h −FCPh
t ]

2. (4.25)

Now, in the presence of the time-varying risk premium, the risk premium adjusted futures

on the CPI proxy instead minimises the mean squared prediction error. On this occasion, the

corresponding specification of the mean squared prediction error is

E[CPt+h − (FCPh
t −RPh

t )]
2. (4.26)

Given that our result shows clearly that the time-varying risk premium associated with the

futures on the CPI proxy indeed exists in reality, a credible estimate of the risk premium

associated with the futures on the CPI proxy is supposed to yield an implied spot CPI proxy

expectation FCPh
t −RPh

t with mean squared prediction error (4.26) being smaller than the

mean squared prediction error (4.25). Thus, any estimate of risk premium yielding an implied

spot CPI proxy expectation FCPh
t −RPh

t with mean squared prediction error (4.26) being
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higher than mean squared prediction error (4.25) is inadmissible and should therefore be

discarded.

An immediate implication of the mean squared prediction error (4.26) is that, the most

credible estimate of risk premium associated with the futures on the CPI proxy, among all

candidate risk premium estimates for a specific horizon, is the estimate yielding the smallest

mean squared prediction error (4.26). This implication enables us to rank the risk premium

estimated from alternative candidate predictors and therefore recognise the most credible risk

premium estimate. In Table 4.2, we use the mean squared prediction error derived from 13-

week horizon risk premium estimates as an example to illustrate the above selection procedure.

The first column denotes the mean squared prediction error (4.25) of the 13-week horizon

Table 4.2. Selecting the Most Credible Estimate of the 13-week Horizon Risk Premium

E
[
CPt+h −FCPh

t
]2 SPXT Index BCOM Index BCOMTR Index CRB CMDT Index CRB RIND Index CRY Index SPX Index

101.13 40.58 42.44 42.46 39.50 41.01 43.73 41.72

Notes: E
[
CPt+h −FCPh

t
]2 denotes the mean squared prediction error (4.25); ‘SPXT Index’ represents the mean squared prediction error

(4.26) derived from the risk premium estimated using the candidate predictor ‘SPXT Index’, this explanation applies to all remaining candidate
predictors in the first row; boldface indicates that ‘CRB CMDT Index’ yields the most credible risk premium estimate.

futures on the CPI proxy; the second column to the eighth column represent the mean squared

prediction error (4.26) of the risk premium adjusted futures on the CPI proxy derived from

alternative candidate predictors. According to the criterion defined by the comparison between

mean squared prediction error (4.25) and (4.26), all candidate predictors and corresponding

risk premium estimates are admissible. Furthermore, since the mean squared prediction error

(4.26) of the risk premium adjusted futures on the CPI proxy derived from CRB CMDT Index

is the smallest among all candidate predictors, we select the risk premium estimated from CRB

CMDT Index as the most credible risk premium estimate for 13-week horizon. Following this

criterion and selection procedure, we select the most credible risk premium estimate out of

candidate risk premium estimates for all other horizons, the result is presented in Table 4.3.

We can see from Table 4.3 that, for each horizon, all predictors and the corresponding risk

premium estimates are admissible. For each horizon, the predictor yielding the most accurate

risk premium estimate is highlighted in boldface. Next, based on the selected risk premium

estimates, we estimate the contemporaneous inflation risk premium.
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Table 4.3. Selecting the Most Accurate Risk Premium Estimates (all horizons)

Horizon E[CPt+h−FCPh
t ]

2 SPXT Index BCOM Index BCOMTR Index CRB CMDT Index CRB RIND Index CRY Index DJCI Index DJITR Index INDU Index RICIGLTR Index SPX Index VIX Index

11 91.48 44.94 42.96 45.85

12 120.77 61.27 53.08 53.09 56.94 59.57

13 101.13 40.58 42.44 42.46 39.50 41.01 43.73 41.72

14 98.60 25.92 23.44 23.47 30.99 35.14 32.60 31.88 27.41 29.61 26.82

15 116.00 31.89 35.07 35.11 38.00 42.47 47.33 38.63 41.63 84.19 33.04

16 132.23 39.85 41.81 41.87 41.63 51.35 59.76 49.78 53.78 41.56

17 144.94 39.24 42.54 42.60 32.36 42.91 45.08 48.91 55.19 59.15 41.91

18 127.56 14.07 30.57 30.65 25.22 34.89 40.56 21.04 24.89 15.29

19 137.89 33.52 30.34 30.38 30.83 42.29 42.04 46.38 43.94 48.82 35.65

20 149.12 26.11 35.15 35.22 25.90 47.17 52.91 34.56 37.94 27.51

21 192.81 36.36 41.54 41.64 34.18 63.37 49.54 49.67 54.44 61.71 63.02 39.45

22 179.94 15.45 30.70 30.77 24.15 40.75 49.40 41.77 25.01 28.93 16.58

23 189.18 26.35 37.72 37.80 39.74 34.94 39.27 28.10

24 224.42 32.87 37.05 37.12 31.99 61.33 59.74 43.52 47.83 34.65

25 271.90 53.41 55.07 55.18 47.61 83.53 82.15 72.09 79.93 57.11

26 264.42 47.69 50.06 50.13 45.72 55.05 65.61 60.48 60.21 65.78 50.05

27 284.97 51.70 59.98 60.07 61.37 60.42 54.11

28 319.79 66.52 74.74 74.81 74.81 78.48 68.81

29 335.81 64.26 83.28 83.39 77.58 78.37 84.32 66.81

30 367.72 79.95 67.99 68.05 67.86 78.36 88.27 86.26 83.76

31 337.50 47.49 62.40 62.48 59.97 58.87 63.47 49.27

32 376.06 75.62 72.39 72.43 81.39 78.53

33 361.21 43.14 58.66 58.73 46.83 54.86 58.63 44.43

34 437.02 69.49 56.14 56.19 63.00 77.09 77.07 72.66 87.15 72.88

35 436.20 45.16 55.80 55.87 56.02 55.41 70.20 54.96 59.43 46.63

36 447.88 61.90 56.71 56.78 52.72 68.35 68.78 64.14

37 454.85 51.89 50.66 50.72 54.47 59.77 67.80 61.23 65.28 53.55

38 513.22 79.31 50.45 50.47 68.65 76.07 90.19 77.00 92.68 83.06 82.15

39 508.00 65.04 54.17 54.22 62.99 41.66 74.48 55.66 72.14 77.41 67.46

40 522.81 55.71 48.65 48.74 63.95 46.65 55.16 54.09 58.20 57.71

41 514.57 40.05 44.95 45.02 56.69 64.27 50.15 41.28 44.34 41.27

42 530.54 36.40 39.65 39.75 51.79 52.80 37.38 40.82 37.88

43 568.99 57.39 41.82 41.90 56.07 43.78 67.25 39.77 65.59 72.17 73.13 60.27

44 548.73 40.49 34.62 34.69 46.55 41.23 38.89 41.33 44.64 41.98

45 588.88 57.75 33.71 33.73 55.90 55.61 56.72 45.84 57.62 61.93 62.49 59.99

46 578.26 29.37 26.95 27.00 31.04 48.00 38.72 27.24 28.64 53.59 30.13

47 652.58 28.51 23.15 23.22 37.58 55.04 39.01 23.63 31.60 36.24 45.66 30.28

48 660.72 24.93 20.86 20.91 33.12 43.96 40.63 24.40 20.11 21.72 48.16 25.71

49 695.28 29.13 27.06 27.11 32.83 28.90 28.09 30.07 30.13

50 710.07 29.18 27.83 27.87 29.28 35.48 31.22 32.99 29.95

51 760.51 38.53 28.33 28.38 37.66 47.45 41.32 43.43 47.47 53.55 40.54

52 773.60 32.00 22.95 22.98 28.76 31.95 28.89 23.65 33.26 35.93 35.73 33.30

Notes: Only the statistically significant OLS regression results are included to estimate the risk premium; for 1-week horizon to 10-
week horizon, no candidate predictor has statistically significant linear relationship with the corresponding dependent variables; blank
indicates that the candidate predictor has no statistically significant linear relationship with the corresponding dependent variable;
E[CPt+h−FCPh

t ]
2 denotes the mean squared prediction error (4.25); ‘SPXT Index’ represents the mean squared prediction error (4.26)

derived from the risk premium estimated using the candidate predictor ‘SPXT Index’, this explanation applies to all remaining candidate
predictors in the first row; boldface denotes the smallest mean squared prediction error (4.26) for a specific horizon.

4.7 The Inflation Risk Premium

4.7.1 Estimating the Inflation Risk Premium

In this section, we apply the selected estimates of the risk premium associated with the futures

on the CPI proxy and the spot CPI proxy dataset to equation (4.17)

φ
h
t =

RPh
t

CPt
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to estimate the inflation risk premium. The inflation risk premium φ h
t estimated using equation

(4.17) is the h-week horizon inflation risk premium at time t, which is equal to the ratio of

the contemporaneous h-week horizon risk premium associated with the futures on the CPI

proxy to the spot CPI proxy at time t. The estimates of inflation risk premium are presented

in Figure 4.3. For expository purpose, Figure 4.3 focuses on 13-week, 26-week, 39-week and
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Figure 4.3. The line charts in Figure 4.3 presents the 13-week, 26-week, 39-week and 52-week
horizon inflation risk premium estimates.

52-week horizon inflation risk premium estimates. In each line chart, X-axis is the observation
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date; Y-axis denotes the inflation risk premium estimates in percentage. As illustrated in

Figure 4.3, across all four horizons, the inflation risk premium estimates have been trending

down during 2013. For all four horizons, the trough in inflation risk premium estimates

are in November 2013. The peak of 26-week, 39-week and 52-week horizon inflation risk

premium estimates are in February 2013, whereas the 13-week horizon inflation risk premium

estimates have peak value in January 2013. Furthermore, all inflation risk premium estimates

are negative except the peak values of 13-week and 26-week inflation risk premium estimates.

In addition, as horizon extends from 13 weeks to 52 weeks, the magnitude of the average

inflation risk premium estimates keeps increasing from 2.59% to 11.64%. Figure 4.3 clearly
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Figure 4.4. This figure presents the inflation risk premium estimates for all horizons (i.e. 11-week to
52-week horizons).

visualises the trend in the inflation risk premium estimates for four specific horizons. In

order to see the trend of inflation risk premium for all horizons, we plot Figure 4.4. Figure

4.4 suggests that, for every horizon, the inflation risk premium estimate shows downward

trend. In terms of the sign of the inflation risk premium estimates, for 11-week to 22-week

horizons, 24-week horizon and 26-week horizon, positive inflation risk premium estimates

can be observed during the first quarter of 2013; for all remaining horizons, the inflation risk

premium estimates are negative. Moreover, in Figure 4.5, we plot the average inflation risk

premium estimates for each horizon. As horizon extends from 11 weeks to 52 weeks, the

magnitude of the average inflation risk premium increases steadily.
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Figure 4.5. This line chart plots the average inflation risk premium estimates for each horizon.

4.7.2 Recent Estimates of the Inflation Risk Premium

Campbell and Shiller (1996) discuss two methods of estimating the magnitude of the inflation

risk premium. First, the direct estimates from the average excess return on a nominal 5-year

bond. Second, the indirect estimates from the covariances of the return on the nominal 5-year

bond with relevant state variables. Their results suggest that there is a 50 to 100 basis points

inflation risk premium in the returns on the 5-year zero-coupon nominal bond. Campbell and

Viceira (2001) use a two-factor term structure model to estimate the inflation risk premium,

their findings indicate that the inflation risk premium is 35 bps for three-months nominal

zero-coupon bond and 1.1% for ten-year zero-coupon bond. Buraschi and Jiltsov (2005)

estimate the inflation risk premium based on a structural monetary version of a real business

cycle model. Their estimate for 10-year inflation risk premium is on average 70 basis points.

Based on three alternative proxies for inflation expectations, Grishchenko and Huang

(2013) extract the inflation risk premium from monthly yields on zero-coupon TIPS and

nominal Treasury bonds of 5, 7 and 10-year maturities. They document negative inflation risk

premium estimates: -37 basis points for 5-year horizon, -26 basis points for 7-year horizon and

-10 basis points for 10-year horizon. Camba-Mendez and Werner (2017) construct model-free

and model-based indicators for the inflation risk premium. They show that the inflation risk

premium turned negative during the post-Lehman period. Their estimate for 1-year ahead
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inflation risk premium is on average -40 basis points. Fleckenstein et al. (2017) measure

deflation risk by extracting the objective distribution of inflation from the market prices of

inflation swaps and options. Their estimates for 1-year, 5-year and 10-year can be as small

as -1.57 basis points, -23.89 basis points and -42.53 basis points, respectively. The recent

estimates of inflation risk premium are summarised in Table 4.4.

Table 4.4. Recent Estimates of the Inflation Risk Premium

sample period prior to recent financial crisis sample period covers recent financial crisis

Campbell and
Shiller (1996)

Campbell and Vi-
ceira (2001)

Buraschi and
Jiltsov (2005)

Grishchenko and
Huang (2013)

Fleckenstein et al.
(2017)

Camba-Mendez
and Werner
(2017)

Sample
Period

1953-1994 1952-1996 1960-2000 2000-2008 2009-2015 2008-2016

Data 5-year zero-
coupon nominal
bond

nominal zero-
coupon yields at
maturities three
months, one year,
three years, and
ten years; equity
return; inflation

zero-coupon
yields and for-
ward curves from
one month to ten
years; inflation;
money supply
(M2 as measure
of the money
stock)

monthly yields
on zero-coupon
TIPS and nom-
inal Treasury
bonds of 5, 7,
and 10-year ma-
turities

prices of inflation
swaps and options

the quoted prices
for the ILS con-
tracts and the sur-
vey data from Con-
sensus

Method information from
5-year bond

two-factor term
structure model

a structural mon-
etary version of a
real business cy-
cle model

‘model free’ ap-
proach based on
three proxies of
inflation expecta-
tions

measure deflation
risk by extracting
the objective distri-
bution of inflation
from the market
prices of inflation
swaps and options

first approach com-
pares inflation fore-
casts from Consen-
sus Economics with
ILS rates; second
approach applies a
standard affine term
structure model to
the term structure
of ILS rates

3-month 35 bps

1-year as small as -1.57 bps -40 bps

5-year between 50 bps
and 100 bps

-37 bps as small as -23.89 bps

7-year -26 bps

10-year 110 bps on average
70 bps (time-
varying between
20 to 140 bps)

-10 bps as small as -42.53 bps

Table 4.4 summarises the sample period, data, method and inflation risk premium estimates

of alternative studies. We divide the studies on inflation risk premium into two groups based

on their sample period. The first group of studies (i.e. Campbell and Shiller (1996), Campbell

and Viceira (2001) and Buraschi and Jiltsov (2005)) use data sample which is prior to the

recent financial crisis; whereas the second group of studies (i.e. Grishchenko and Huang

(2013), Camba-Mendez and Werner (2017) and Fleckenstein et al. (2017)) include the recent

financial crisis in their sample period. Table 4.4 shows that, studies using data sample period
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prior to the recent financial crisis usually yield positive inflation risk premium estimates. By

contrast, studies that cover the recent financial crisis, especially the post-Lehman period,

obtain negative inflation risk premium estimates. In addition to the above-mentioned studies,

Campbell et al. (2009a) review the inflation-indexed bond markets and argue that, when

inflation is positively correlated with stock prices, the inflation risk premium in nominal

Treasury bonds is likely negative. Chen et al. (2016) also indicate that the consumption-

based asset pricing model and the capital asset pricing model suggest that the long-run

inflation risk premium has trended down over time, and is likely to be negative in the current

macroeconomic environment. What’s more, d’Amico et al. (2016)’s inflation risk premium

estimates trended down over time and turned negative at the 5-year maturity during the recent

financial crisis. They argue that the downward trend in inflation risk premium reflects the

substantial risk of deflation at the time.

The fact that negative inflation risk premium estimates can be observed for all horizons

in our result is consistent with the evidence from the post-Lehman studies which argue that

the inflation risk premium is negative. From equation (4.17), given that the spot CPI proxy

CPt is strictly positive, the sign of the inflation risk premium φ h
t is determined by the sign

of the risk premium associated with the futures on the CPI proxy RPh
t . From the definition

of the risk premium associated with the futures on the CPI proxy as described in equation

(4.7), a negative RPh
t suggests that the implied spot CPI proxy expectation Et [CPt+h] exceeds

the futures on the CPI proxy FCPh
t . Given the estimates of negative risk premium associated

with the futures on the CPI proxy, the corresponding inflation risk premium are therefore

negative. Furthermore, as suggested by d’Amico et al. (2016) and Camba-Mendez and Werner

(2017), inflation risk premium is likely to be negative during times of deflation fears and

higher and positive when hyperinflation is a concern. In Figure 4.6, we plot the realised U.S.

CPI inflation rate during 2014 to 2015. We can see that, from May 2014 to April 2015, the

inflation rate has been trending down; deflation indeed occurs during January 2015 to May

2015, which suggests that the deflation fears are likely to exist during 2013 to 2014. Thus, the

negative inflation risk premium estimates in our result may be explained by the deflation fears

prevailing during 2013 to 2014.

An inspection of the inflation risk premium estimates in Table 4.4 indicates that, there is

disagreement on the magnitude of the inflation risk premium for the same horizon estimated

from alternative studies. For instance, Campbell and Viceira (2001) estimate the 10-year

inflation risk premium to be 110 basis points on average; whereas Buraschi and Jiltsov
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Figure 4.6. This line chart plots the realised U.S. CPI inflation rate during 2014 to 2015.

(2005)’s result argues that the 10-year inflation risk premium is on average 70 basis points and

can be as small as 20 basis points. The different magnitude of inflation risk premium estimates

may be attributed to the distinct sample period, data and method used in these studies. Indeed,

as Bekaert and Wang (2010) suggest, the variation in the estimates across the different studies

reflects not only different methodologies, but also simply the use of different data and sample

periods. Grishchenko and Huang (2013) also point out that there appears to be no consensus

so far in the literature as to the magnitude of the inflation risk premium estimates.

The magnitude of our estimates of the average 1-year horizon inflation risk premium

(11.64%) is larger than that from Camba-Mendez and Werner (2017) (0.4%), as the method

and data used in our study are different from those used by the inflation risk premium literature.

The inflation risk premium literature usually depend on the TIPS and nominal Treasury bond,

inflation expectation survey, inflation-linked derivatives and alternative specifications of

term structure models to estimate the inflation risk premium. By contrast, our study uses

commodity market data and estimates the inflation risk premium by deriving the relationship

between the inflation risk premium and the risk premium associated with the futures on the

CPI proxy. The meaning of the negative inflation risk premium in our study is different from

that in the inflation risk premium literature. In our study, the sign of the inflation risk premium

is determined by the sign of the risk premium associated with the futures on the CPI proxy.

As the futures on the CPI proxy is essentially a futures contract, a negative inflation risk

premium actually reflects net short hedging position in the commodity futures market. By

contrast, in the inflation risk premium literature, as discussed by Campbell et al. (2009b)

and Imakubo et al. (2015), a negative inflation risk premium corresponds to the negative
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covariance between the representative agents’ intertemporal marginal rate of substitution and

their inflation expectation. If inflation falls unexpectedly, when the marginal utility is high, the

representative agents benefit from holding the short-term nominal bond, as the nominal bond

hedges real risk in this occasion. Therefore the representative agents command a negative risk

premium. Since the meaning of the negative inflation risk premium in our study is different

from that in the inflation risk premium literature, we focus on the magnitude of the inflation

risk premium estimates. In Chapter 3, section 3.4.5, we compare the variation in the price of

the consumption good in the CPI with the corresponding commodity futures option implied

volatility. Our result shows that the commodity futures market is more volatile than the market

for the actual consumption good. For example, the price of bread in the supermarket changes

much slower than the futures price of wheat at the CME. Thus, the volatility of the price of

the futures on the CPI proxy is higher than the volatility of the consumer price index. As a

result, the magnitude of the inflation risk premium estimates in our study is larger than that of

the inflation risk premium estimate in the macroeconomic inflation risk premium literature.

4.8 Conclusions

In this paper, we study the inflation risk premium in the context of commodity futures market.

Following the approach proposed by Baumeister and Kilian (2017), we estimate the risk

premium as the predictable component in the prediction error. We confirm the existence of

the time-varying risk premium associated with the futures on the CPI proxy by documenting

the time series of downward-trending risk premium estimates. Given that not all risk premium

estimates are equally valid, we select the most accurate risk premium estimate by comparing

alternative specifications of the mean squared prediction error. Based on the link between the

risk premium associated with the futures on the CPI proxy and the inflation risk premium, we

use the selected risk premium estimates to estimate the inflation risk premium. The fact that

negative inflation risk premium can be observed for all horizons in our result is consistent

with the post-Lehman estimates of inflation risk premium estimate in the macroeconomic

inflation risk premium literature. Due to the fact that the price of the futures on the CPI proxy

is more volatile than the consumer price index, the magnitude of our inflation risk premium

estimates is larger than that of the inflation risk premium estimates in the macroeconomic

inflation risk premium literature.



Conclusions

In Chapter 1, we have constructed the futures on the CPI proxy. The term structure of

futures on the CPI proxy yields one-year ahead ‘point’ forecast of inflation rate. The data

underlying the construction of the futures on the CPI proxy (i.e. the commodity futures price)

is exchange-traded and therefore more accessible compared to the over-the-counter traded

inflation-linked derivatives. This point is important because the futures on the CPI proxy

offers an accessible approach for inflation forecasting given that exchange-traded inflation

futures contract had been delisted. Thus, the construction of the futures on the CPI proxy

tackles the non-availability of exchange-traded inflation futures price data.

Chapter 2 has analysed the term structures of futures on the CPI proxy using a two-factor

valuation model inspired by Schwartz (1997)’s framework. The most significant two-factor

valuation model parameter α , i.e. the long-run mean level of the instantaneous real interest

rate, yields corresponding annual real interest rate which is fairly close to the actual U.S. 2013

real interest rate. This result confirms the relevance of applying the two-factor valuation model

to analyse the term structures of futures on the CPI proxy. Based on the filtered spot consumer

price index and the fitted forward curves, we predict the one-year ahead expected inflation

rate. Our result suggests that the two-factor valuation model is capable of forecasting the

downward trend of U.S. CPI inflation rate during May 2014 to December 2014. Furthermore,

the spot consumer price index may help alleviate the lag in the publication of U.S. CPI-U

index. Indeed, since the data used by the two-factor valuation model (i.e. the commodity

futures price) is available from the exchange immediately, the spot consumer price index can

be calculated immediately without any lag.

In Chapter 3, we have used the synthetic option implied volatility surface to derive the

interval estimate for future price level, which is illustrated by the fan chart. The fan chart

suggests that, for one-year horizon, the further we look into the future, the less certain we

are about the price level prediction. In addition, by comparing the average length of interval

estimate of future price level across the fan charts, we find that, compared with in-the-money
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and at-the-money option chain, we are more certain about the price level forecast when the

prediction is derived from the out-of-the-money option chain. Furthermore, the uncertainty

of one-year ahead inflation forecast derived from the fan chart is larger than that of inflation

prediction of the Bank of England inflation fan chart due to the high implied volatility of

commodity futures prices. More importantly, given that the commodity futures option market

data is high-frequency, our method of inflation forecasting is theoretically capable of capturing

the commodity futures option market’s expectation of inflation rate in the real time.

In Chapter 4, we have documented the time-varying risk premium associated with the

futures on the CPI proxy. By deriving the link between the inflation risk premium and the

risk premium associated with the futures on the CPI proxy, we estimate the inflation risk

premium. The negative inflation risk premium estimated from our method is consistent

with the post-Lehman inflation risk premium estimates in the macroeconomic inflation risk

premium literature. Due to the fact that the volatility of the price of futures on the CPI

proxy is higher than the variation in the consumer price index, the magnitude of our inflation

risk premium estimates is larger than that of the inflation risk premium estimates in the

macroeconomic inflation risk premium literature.
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Appendix A

Relative Importance of Components in

the Consumer Price Indexes: U.S. City

Average

The first column contains all of the items in the U.S. CPI, this is the precise composition of

U.S. CPI. The second and third columns present the original weight for each item in the CPI

taken from the ‘Relative importance of components in the Consumer Price Index: U.S. city

average’ published in December 2013 and December 2014, respectively. The weights for

some of the items changed slightly as time evolves from December 2013 to December 2014.

We look at every item in the CPI, this gives us indication of which item we need to include.

At the same time, we examine the CME commodity futures contract table to see which

commodity futures contracts are available. Comparing the items in the CPI and available

commodity futures contracts in Bloomberg enables us to locate the commodities that we need

to include. If the item in the CPI has an exactly matching commodity, then that commodity is

included directly. For those items which do not have exactly matching commodities, we find

close substitutes. For example, for transportation, we use crude oil as crude oil is the primary

energy used in transportation. For apparels, we use lumber and cotton because lumber and

cotton are the primary resources used to make apparels. By analysing the main ingredients of

items in the CPI, we find close substitute commodities for these items. The fifth column shows

the exact matches and close substitute commodities for all included items in the construction

of CPI proxy.

Given included commodities, we then look for the futures contracts written on these

commodities in Bloomberg. For commodities which have more than one futures contract
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written on them, we only include the futures contract with the highest volume and open

interest. Following this method, we include 34 commodity futures contract tables, which are

listed in the fourth column.

We can see from the fourth column that some commodity futures appear more than once.

Then the weights for these commodity futures are just the summation of individual weight

of the same commodity futures appearing for different items. For clarification, the ‘weight

for commodity futures’ in this appendix actually denotes the weight for each futures contract

table written on the underlying commodity, which holds the same meaning to the expression

‘optimum weight for each commodity’ in the thesis because one commodity corresponds to

one futures contract table containing all futures contracts written on this commodity.
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27 
 

Item and Group Weights of Items 
in CPI-U 

(December 
2013) 

Weights of items 
in CPI-U 

(December 
2014) 

Corresponding 
Commodity 

Futures 
Contract Ticker 

Corresponding 
Commodity 

All items 100 100   

Food and beverages 14.901 15.272   

 Food  13.891 14.257   

  Food at home 8.187 8.427 
 

  

   Cereals and bakery 
products     

1.141 1.138 
 

  

    Cereals and cereal 
products 

.374 .370 
 

  

Flour and prepared 
flour mixes 

.049 .048 
 

O A Comdty (O 
H5 COMB 
Comdty) 

oats 

Breakfast cereals .196 .197 
 

O A Comdty (O 
H5 COMB 
Comdty) 

oats 

Rice, pasta, cornmeal .129 .126 
 

RRA Comdty 
(RRH5 COMB 
Comdty) 

rough rice 

    Bakery products .766 .767 
 

  

Bread  .229 .230 
 

W A Comdty (W 
H5 COMB 
Comdty) 

wheat 

Fresh biscuits, rolls, 
muffins 

.115 .116 
 

MKCA 
Comdty)(MKCH5 
COMB Comdty) 

mini kc hrw 
wheat 

 Cakes, cupcakes, and 
cookies 

.189 .189 
 

KWA Comdty 
(KWK5 COMB 
Comdty) 

wheat 

Other bakery products .234 .233 
 

YPA Comdty 
(YPH5 COMB 
Comdty) 

mini-sized wheat 

   Meats, poultry, 
fish, and eggs 

1.859 2.014 
 

  

    Meats, poultry, 
and fish 

1.737 1.880 
 

  

     Meats 1.099 1.229 
 

  

Beef and veal .494 .582 
 

LCA Comdty 
(LCG5 COMB 
Comdty) 

live cattle 

Pork .346 .372 
 

LHA Comdty 
(LHJ5 COMB 
Comdty) 

lean hog 

Other meats .258 .275 
 

FCA Comdty  �  
(FCH5 COMB 
Comdty) 

cattle feeder 

Poultry .357 .360 
 

  

Fish and seafood .281 .291 
 

  

Eggs .122 .134 
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   Dairy and related 
products 

.860 .898 
 

  

Milk .273 .283 
 

DAA Comdty 
(DAG5 COMB 
Comdty) 

milk 

Cheese and related 
products 

.267 .286 
 

CHEA Comdty 
(CHEG5 Comdty) 

cheese 

Ice cream and related 
products (sugar) 

.122 .126 
 

FSBA Comdty 
(FSBH5 Comdty) 

sugar 

Other dairy and 
related products 

.198 .204 
 

LEA Comdty 
(LEG5 COMB 
Comdty) 

non-fat milk 

   Fruits and 
vegetables 

1.346 1.379 
 

  

    Fresh fruits and 
vegetables 

1.042 1.076 
 

  

     Fresh fruits .560 .575 
 

  

Apples .085 .083 
 

  

Bananas .088 .087 
 

  

Citrus fruits .140 .146 
 

  

Other fresh fruits .246 .259 
 

  

     Fresh vegetables .482 .500 
 

  

Potatoes .077 .075 
 

  

Lettuce .069 .072 
 

  

Tomatoes .089 .102 
 

  

Other fresh vegetables .247 .251 
 

  

Processed fruits and 
vegetables 

 .303   

 Non-alcoholic 
beverages and 
beverage materials  

.955 .955 
 

  

  Juices and non-
alcoholic drinks 

.703 .699 
 

FCOJ Comdty 
(JOH5 Comdty) 

juice 

Carbonated drinks .283 .285 
 

Frozen non-
carbonated juices and 
drinks 

.014 .014 
 

Non-frozen non-
carbonated juices and 
drinks 

.406 .400 
 

  Beverage materials 
and including coffee 
and tea 

.252 .256 
 

  

Coffee .153 .158 
 

FCCA Comdty 
(FCCK5 Comdty) 

coffee 

Other beverage 
materials including tea 

.099 .099 
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 Other food at home 2.027 2.043 
 

  

  Sugar and sweets .298 .299 
 

FSBA Comdty 
(FSBH5 
Comdty) 2 

sugar 

Sugar and artificial 
sweeteners 

.054 .054 
 

Candy and chewing 
gum 

.183 .185 
 

Other sweets .060 .060 
 

  Fats and oils .245 .245 
 

V6A Comdty 
(V6G5 Comdty) 

butter 

Butter and margarine .069 .077 
 

Salad dressing .065 .062 
 

Other fats and oil 
including peanut 
butter 

.111 .107 
 

  Other foods 1.485 1.499 
 

  

Soups .094 .093 
 

  

Frozen and freeze 
dried prepared food 
(dry whey) 

.281 .285 
 

DRWA Comdty 
(DRWG5 
Comdty) 

dry whey 

Snacks (cocoa) .326 .330 
 

FCOA Comdty 
(FCOK5 Comdty) 

cocoa 

Spices, seasonings, 
condiments, sauces 
(soybean oil) 

.288 .292 
 

BOA Comdty 
(BOH5 COMB 
Comdty) 

soybean oil 

Baby food .054 .055 
 

KVA Comdty  
(KVG5 Comdty) 

classic IV milk 

Other miscellaneous 
foods (palm oil) 

.440 .444 
 

CPIA Comdty 
(CPIG5 Comdty) 

crude palm oil 

 Food away from 
home 

5.704 5.830 
 

  

Full service meals and 
snacks 

2.759 2.823 
 

FCA Comdty 
(FCH5 COMB 
Comdty) 2  

cattle feeder 

Limited service meals 
and snacks 

2.356 2.413 
 

Food at employee sites 
and schools 

.210 .212 
 

  

Food from vending 
machines and mobile 
vendors 

.064 .064 
 

  

Other food away from 
home 

.315 .319 
 

  

 Alcoholic beverages 1.010 1.015 
 

  

Alcoholic beverages at 
home 

.597 .597 
 

  

Beer, ale, and other 
malt beverages at 
home 

.274 .274 
 

  

Distilled spirits at 
home 

.073 .073 
 

  

Wine at home .250 .250   



121

30 
 

 

Alcoholic beverages 
away from home 

.412 .418 
 

 
 

 

Housing  41.448 42.173 
 

  

 Shelter 32.029 32.711 
 

DJEA Index 
(DJEH5 Index), 
(Z5)  

shelter 

  Rent of primary 
residence 

6.977 7.159 
 

  Lodging away from 
home 

.795 .839 
 

Housing at school, 
excluding board 

.169 .172 
 

Other lodging away 
from home including 
hotels and motels 

.626 .666 
 

  Owners’ equivalent 
rent of residence 

23.900 24.339 
 

Owners’ equivalent 
rent of primary 
residence 

22.505 22.918 
 

Unsampled owners’ 
equivalent rent of 
secondary residences 

1.395 1.421 
 

  Tenants’ and 
household insurance 

.358 .375 
 

 Fuels and utilities 5.158 5.273 
 

  

  Household energy 3.980 4.051 
 

  

   Fuel oil and other 
fuels 

.275 .236 
 

  

Fuel oil .173 .139 
 

NGA Comdty 
(NGH5 COMB 
Comdty 

natural gas 

Propane, kerosene, 
and firewood 

.102 .097 
 

LBA Comdty   
(H6) (LBH5 
COMB Comdty) 

lumber 

   Energy services 3.705 3.815 
 

  

Electricity 2.872 2.940 
 

PHA Comdty 
(Z20) (PHG5 
COMB Comdty) 

electricity 

Utility (piped) gas 
service 

.834 .875 
 

NGA Comdty 
(NGJ5 COMB 
Comdty) 2 

natural gas 

  Water and sewer 
and trash collection 
services 

1.177 1.222 
 

  

Water and sewer 
maintenance 

.902 .945 
 

  

Garbage and trash 
collection 

.275 .277 
 

  

 Household 
furnishings and 
operations 

4.262 4.189 
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  Window and floor 
coverings and other 
linens 

.278 .266 
 

FCTA Comdty 
(FCTK5 
Comdty) 

cotton 

Floor covering .047 .047 
 

Window coverings .055 .053 
 

Other linens .176 .166 
 

  Furniture and 
bedding 

.787 .769 
 

FCTA Comdty 
(FCTK5 
Comdty) 2, LBA 
Comdty (LBH5 
COMB Comdty) 
3 

cotton, lumber 

Bedroom furniture .276 .268 
 

Living room, kitchen, 
and dining room 
furniture 

.373 .363 
 

Other furniture .128 .128 
 

Unsampled furniture .010 .009 
 

  Appliances .288 .271 
 

LBA Comdty 
(LBH5 COMB 
Comdty) 2, 
HRCA Comdty 
(HRCH5 
Comdty) 

lumber, hot 
rolled steel 

Major appliances .159 .147 
 

Other appliances .124 .120 
 

Unsampled appliances .004 .004 
 

  Other household 
equipment and 
furnishings 

.503 .479 
 

  

Clocks, lamps, and 
decorator items 

.275 .257 
 

HRCA Comdty 
(HRCH5 Comdty) 
2, FCTA Comdty 
(FCTK5 Comdty) 
3  

hot rolled steel, 
cotton  

Indoor plants and 
flowers 

.106 .107 
 

DFLA Comdty 
(DFLH5 Comdty 

fertilizer 

Dishes and flatware .045 .041 
 

  

Non-electric 
cookware and 
tableware 

.077 .074 
 

HGA, Comdty 
(HGH5 COMB 
Comdty), OPA 
Comdty (OPJ5 
Comdty) 

copper 

  Tools, hardware, 
outdoor equipment 
and supplies 

.715 .710 
 

HGA Comdty 
(HGH5 COMB 
Comdty) 2 , OPA 
Comdty (OPJ5 
Comdty), HRCA 
Comdty 

copper,  hot 
rolled steel 

Tools, hardware and 
suppliers 

.189 .189 
 

Outdoor equipment 
and supplies 

.371 .367 
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Un-sampled tools, 
hardware, outdoor 
equipment and 
supplies 

.155 .154 
 

(HRCH5 
Comdty) 

  Housekeeping 
supplies 

.860 .847 
 

HGA Comdty 
(HGH5 Comdty) 
3, OPA Comdty             
(H20)  (OPJ5 
Comdty), HRCA 
Comdty 
(HRCH5 
Comdty) 

copper,  hot 
rolled steel 

Household cleaning 
products 

.343 .337 
 

Household paper 
products 

.251 .247 
 

Miscellaneous 
household products 

.267 .263 
 

  Household 
operations 

.831 .848 
 

  

Domestic services .277 .279 
 

  

Gardening and 
lawncare services 

.269 .279 
 

  

Moving, storage, 
freight expense 

.115 .116 
 

  

Repair of household 
items 

.064 .066 
 

  

Un-sampled 
household operations  

.104 .107 
 

  

Appeal 3.437 3.343 
 

  

 Men’s and boys’ 
apparel  

.866 .834 
 

LBA Comdty 
(LBH5 Comdty), 
FCTA Comdty 
(FCTK5 
Comdty) 

lumber, cotton 

  Men’s apparel .678 .653 
 

Men’s suits, sport 
coats, and outerwear 

.113 .104 
 

Men’s furnishings .191 .185 
 

Men’s shirts and 
sweaters 

.207 .196 
 

Men’s pants and shorts .160 .160 
 

Un-sampled men’s 
apparel 

.007 .007 
 

  Boys’ apparel .188 .181 
 

 Women’s and girls’ 
apparel 

1.504 1.439 
 

  Women’s apparel  1.263 1.210 
 

Women’s outerwear  .114 .118 
 

Women’s dresses .154 .155 
 

Women’s suits and 
separates 

.604 .550 
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Women’s underwear, 
nightwear, sportswear 
and accessories 

.382 .378 
 

Un-sampled women’s 
apparel 

.010 .010 
 
 

  Girls’ apparel .240 .229 
 

 Footwear  .710 .725 
 

Men’s footwear .216 .218 
 

Boys’ and girls’ 
footwear 

.169 .178 
 

Women’s footwear .326 .329 
 

 Infants’ and 
toddlers’ apparel 

.136 .135 
 

 Jewellery and 
watches  

.222 .211 
 

GCA Comdty 
(GCH5 COMB 
Comdty),  
SI1  Z19 
 

gold, silver 

Watches .047 .046 
 

Jewellery .175 .164 
 

Transportation 16.418 15.289 
 

CLA Comdty 
(CLJ5 COMB 
Comdty) 

crude oil 

 Private 
transportation 

15.254 14.167 
 

  New and used 
motor vehicles 

5.815 5.720 
 

New vehicles 3.559 3.551 
 

Used cars and trucks 1.673 1.591 
 

Leased cars and trucks .401 .397 
 

Car and truck rental .073 .073 
 

Un-sampled new and 
used motor vehicles 

.109 .109 

  Motor fuel 5.065 3.979 
 

Gasoline (all types) 4.979 3.904 
 

Other motor fuels .086 .075 
 

  Motor vehicle parts 
and equipment 

.441 .435 
 

Tires  .292 .285 
 

Vehicle accessories 
other than tires 

.148 .150 
 

  Motor  vehicle 
maintenance and 
repair 

1.153 1.168 
 



125

34 
 

Motor vehicle body 
work 

.056 .057 
 

Motor vehicle 
maintenance and 
servicing 

.485 .492 
 

Motor vehicle repair .580 .587 
 

Un-sampled service 
policies 

.032 .032 
 

  Motor vehicle 
insurance 

2.213 2.300 
 

  Motor vehicle fees .567 .565 
 

State motor vehicle 
registration and 
license fees 

.318 .312 
 

Parking and other fees .231 .235 
 

Un-sampled motor 
vehicle fees 

.018 .018 
 

  Public 
transportation 

1.164 1.122 
 

Airline fare .742 .702 
 

Other intercity 
transportation  

.159 .157 
 

Intra-city 
transportation  

.259 .260 
 

Un-sampled public 
transportation 

.004 .004 
 

Medical care 7.551 7.716 
 

  

 Medical care 
commodities 

1.704 1.772 
 

  

  Medicinal drugs 1.628 1.696 
 

  

Prescription drugs 1.274 1.345 
 

  

Non-prescription 
drugs 

.354 .351 
 

  

  Medical equipment 
and supplies 

.076 .076 
 

  

 Medical care 
services 

5.847 5.944 
 

IXCA Index     
(Spot) (IXCH5 
Index) 

e-mini health 
care 

  Professional 
services 

3.003 3.032 
 

Physician’s services 1.579 1.590 
 

Dental services .795 .804 
 

Eyeglasses and eye 
care 

.279 .284 
 

Services by other 
medical professionals  

.350 .354 
 

  Hospital and 
related services 

2.081 2.159 
 

Hospital services 1.780 1.853 
 



126

35 
 

Nursing homes and 
adult day services 

.170 .174 
 

Care of invalids and 
elderly at home 

.131 .132 
 

  Health insurance .763 .753 
 

Recreation 5.793 5.750 
 

  

 Video and audio 1.867 1.847 
 

  

Televisions .161 .133 
 

  

Cable and satellite 
television and radio 
service 

1.448 1.468 
 

PHA Comdty 
(PHG5 COMB 
Comdty) 2 

electricity  

Other video 
equipment 

.030 .029 
 

  

Video discs and other 
media, including 
rental of video and 
audio 

.093 .090   

Audio equipment .072 .066   

Audio discs, tapes and 
other media 

.046 .044   

Un-sampled video and 
audio 

.017 .016   

 Pets, pet products 
and services 

1.053 1.058   

Pets and pet products .662 .659 
 

LCA Comdty 
(LCG5 COMB 
Comdty) 2, FCA 
Comdty  (FCH5 
COMB Comdty) 2 

live cattle, cattle 
feeder 

Pet services including 
veterinary 

.391 .399 
 

  

 Sporting goods .412 .400 
 

HRCA Comdty 
(HRCH5 
Comdty), LBA 
Comdty (LBH5 
COMB Comdty) 

hot rolled steel, 
lumber 

Sports vehicles 
including bicycles 

.185 .181 
 

Sports equipment .222 .214 
 

Un-sampled sporting 
goods 

.005 .005 
 

 Photography .121 .120 
 

  

Photographic 
equipment and 
supplies 

.059 .058 
 

  

Photographers and 
film processing 

.061 .062 
 

  

Un-sampled 
photography 

.001 .001 
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 Other recreational 
goods 

.399 .381 
 

  

toys .295 .277 
 

FCTA Comdty 
(FCTK5 Comdty) 

cotton 

Sewing machines, 
fabric and supplies 

.051 .050 
 

  

Music instruments and 
accessories 

.041 .042 
 

  

Un-sampled 
recreation 
commodities 

.012 .011 
 

  

 Other recreational 
services 

1.723 1.724 
 

  

Club dues and fees for 
participant sports and 
group exercises 

.604 .602 
 

  

Admissions .641 .640 
 

  

Fees for lessons or 
instructions 

.208 .211 
 

  

Un-sampled 
recreation services 

.270 .271 
 

  

 Recreational 
reading materials 

.216 .220 
 

LBA Comdty 
(LBH5 COMB 
Comdty) 

lumber 

Newspapers and 
magazines 

.119 .123 
 

Recreational books .096 .094 
 

Un-sampled 
recreational reading 
materials 

.002 .002 
 

Educational and 
communication 

7.087 7.062 
 

  

 Education 3.244 3.325 
 

  

  Educational books 
and supplies 

.195 .203 
 

  

  Tuition, other 
school fees, and 
childcare  

3.049 3.122 
 

  

College tuition and 
fees 

1.806 1.853 
 

  

Elementary and high 
school tuition and fees 

.365 .377 
 

  

Child care and nursery 
school 

.714 .725 
 

  

Technical and 
business school tuition 
and fees 

.039 .039 
 

  

Un-sampled tuition, 
other school fees, and 
childcare 

.125 .128 
 

  

 Communication  3.843 3.737 
 

  

  Postage and 
delivery services 

.140 .144 
 

  

Postage .126 .130 
 

  



128

37 
 

Delivery services .014 .014 
 

  

  Information and 
information 
processing 

3.703 3.593 
 

  

   Telephone services 2.534 2.462 
 

  

Wireless telephone 
services 

1.706 1.624 
 

  

Land-line telephone 
services 

.828 .837 
 

  

  Information 
technology, 
hardware and 
services 

1.169 1.132 
 

  

Personal computers 
and peripheral 
equipment 

.306 .272 
 

  

Computer software 
and accessories 

.069 .068 
 

  

Internet services and 
electronic information 
providers 

.705 .711 
 

  

Telephone hardware, 
calculators, and other 
consumer information 
items 

.076 .068 
 

  

Un-sampled 
information and 
information 
processing 

.013 .012 
 

  

Other goods and 
services 

3.365 3.394 
 

  

 Tobacco and 
smoking products 

.703 .718 
 

  

Cigarettes  .647 .661 
 

  

Tobacco products 
other than cigarettes 

.050 .050 
 

  

Un-sampled tobacco 
and smoking products 

.006 .006 
 

  

 Personal care 2.662 2.676 
 

  

  Personal care 
products 

.727 .724 
 

  

Hair, dental, shaving, 
and miscellaneous 
personal care products 

.373 .369 
 

  

Cosmetics. Perfume, 
bath, nail preparations 
and implements  

.347 .348 
 

  

Un-sampled personal 
care products 

.007 .007 
 

  

  Personal care 
services 

.633 .638 
 

  

Haircuts and other 
personal care services 

.633 .638 
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  Miscellaneous 
personal services 

1.107 1.122 
 

  

Legal services .314 .316 
 

  

Funeral expenses .172 .173 
 

  

Laundry and dry 
cleaning services 

.273 .276 
 

  

Apparel services other 
than laundry and dry 
cleaning  

.033 .034 
 

  

Financial services .222 .228 
 

  

Un-sampled items .093 .095 
 

  

  Miscellaneous 
personal goods 

.195 .192 
 

  

 



Appendix B

Monte Carlo Simulation with Correlated

Commodity Futures Prices

In section 3.3.2, we assume the futures price is independent to each other in the Monte Carlo

simulation. We now consider the case where the commodity futures prices are correlated

in the Monte Carlo simulation, and accordingly evaluate the synthetic option based on the

simulated correlated commodity futures prices.

Following Sieczka and Hołyst (2009), the correlation between futures price of commodity

i and futures price of commodity j is defined as follows:

Corri j =
cov
(
ri,r j

)
σriσr j

,

where ri = ln
(

Fi(t+1)
Fi(t)

)
and r j = ln

(
Fj(t+1)

Fj(t)

)
are the logarithmic returns of the commodity

futures prices; Fi (t) and Fj (t) denote the time t daily settlement price of the closest to maturity

commodity futures contract written on commodity i and commodity j, respectively.

For each one of the 21 commodities listed in Table 3.1, we collect the daily settlement

price data for the closest to maturity commodity futures contract on every Wednesday from

8th of January 2014 to 8th of June 2016 (i.e. 127 observations for each commodity).

We calculate the correlation coefficient for all pairs of commodities listed in Table 3.1.

The lower triangular matrix of the correlation coefficient matrix is presented in Table B.1.

For every iteration in the Monte Carlo simulation, simulating 21 correlated commodity

futures price paths requires simulating 21 correlated random numbers. Following the method

described by Hull (2012), let x denote independent random numbers; θ denote correlated

random numbers; ρi j denote the correlation between θi and θ j. For every iteration in the Monte
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Table B.1. Correlations of Commodity Futures Prices

Ticker w kw rr o si cl gc hg lb ng kv bo drw v6 lh lc fc jo le che da

w 1

kw 0.927 1

rr 0.271 0.266 1

o 0.177 0.160 0.074 1

si 0.048 0.074 0.143 0.081 1

cl 0.000 0.022 0.121 0.021 0.221 1

gc 0.090 0.094 0.031 0.080 0.767 0.055 1

hg 0.044 0.103 0.064 0.072 0.319 0.493 0.157 1

lb 0.189 0.196 0.057 0.234 0.123 0.133 0.154 0.114 1

ng 0.043 0.015 0.126 0.047 -0.035 0.051 -0.123 -0.052 -0.004 1

kv 0.048 0.115 0.110 0.027 0.236 0.203 0.066 0.174 -0.054 -0.127 1

bo 0.244 0.255 0.123 0.224 0.281 0.349 0.114 0.256 0.093 0.087 0.175 1

drw -0.037 -0.033 -0.109 -0.011 0.101 0.059 0.112 -0.035 0.144 0.051 -0.032 0.045 1

v6 0.005 0.060 0.015 0.093 0.212 0.123 0.073 0.150 -0.078 -0.148 0.822 0.135 -0.064 1

lh 0.016 0.016 0.065 0.014 0.168 0.200 0.121 0.106 -0.022 0.123 -0.022 0.191 0.071 -0.014 1

lc -0.028 0.027 0.131 0.026 0.143 0.248 0.084 0.200 0.133 0.001 0.079 0.157 -0.046 -0.021 0.058 1

fc -0.079 -0.074 0.071 0.074 0.137 0.182 0.090 0.146 0.022 0.122 -0.016 0.007 -0.030 -0.079 0.074 0.671 1

jo 0.030 0.008 -0.091 0.108 0.072 0.103 0.108 0.089 0.320 0.010 0.031 0.071 0.227 0.050 -0.130 0.015 0.017 1

le 0.080 0.111 0.137 0.010 0.188 0.242 0.111 0.140 0.019 -0.100 0.613 0.206 0.101 0.205 0.027 0.188 0.158 0.003 1

che -0.048 0.009 0.099 0.050 0.126 0.120 -0.009 0.067 -0.094 0.091 0.353 0.133 0.134 0.413 0.099 0.002 -0.045 0.022 0.116 1

da -0.038 0.018 0.085 0.060 0.154 0.130 0.012 0.067 -0.076 0.087 0.408 0.150 0.261 0.469 0.102 -0.010 -0.052 0.054 0.149 0.984 1

Carlo simulation, we first sample 21 independent random numbers xi (1 ≤ i ≤ 21) from the

standard normal distribution. The corresponding correlated random numbers θi (1 ≤ i ≤ 21)

can be generated as follows:

θ1 = β11x1

θ2 = β21x1 +β22x2

θ3 = β31x1 +β32x2 +β33x3

...

(B.1)

The coefficients βi j are chosen as follows: set β11 = 1; choose β21 so that β21β11 = ρ21;

choose β22 so that β 2
21 + β 2

22 = 1; choose β31 so that β31β11 = ρ31; choose β32 so that

β31β21 +β32β22 = ρ32; choose β33 so that β 2
31 +β 2

32 +β 2
33 = 1; and so on. This procedure is

known as the Cholesky decomposition.

Let Corr denote the correlation coefficient matrix of commodity futures prices. The

Cholesky decomposition of correlation coefficient matrix Corr means that Corr can be

factorized as Corr = DD∗, where D is the lower triangular matrix whose elements are the
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coefficients βi j in (B.1): 
β11 0 0 · · ·

β21 β22 0 · · ·

β31 β32 β33 · · ·
...

...
... . . .

 ;

and D∗ is the conjugate transpose of D. The lower triangular matrix of Cholesky decompo-

sition of the correlation coefficient matrix of commodity futures prices is calculated using

the Matlab function ‘chol(Corr,‘lower’)’. Now the correlated random numbers θi (1 ≤ i ≤ 21)

can be generated from the independent random numbers xi (1 ≤ i ≤ 21) as follows:



θ1

θ2

θ3
...

θ21


= D



x1

x2

x3
...

x21


. (B.2)

For every iteration in the Monte Carlo simulation, we first generate 21 independent random

numbers xi (1 ≤ i ≤ 21), then the corresponding correlated random numbers θi (1 ≤ i ≤ 21)

are generated using equation (B.2). The correlated random numbers are used to generate the

corresponding correlated commodity futures price paths. Based on large number of samples

(5000000 replications), we follow the same simulation procedure as described in substep 3

to substep 6 of step 1 as described in section 3.3.2 to calculate the general difference level

between Soption and Doption. The difference level surface is presented in Table B.2.

Table B.2. Difference Level Surface (Correlated Commodity Futures Prices)

Expiry 90% moneyness level 95% moneyness level 100% moneyness level 105% moneyness level 110% moneyness level

Feb 2016 -0.70 -1.08 -1.20 -1.08 -0.78
Mar 2016 -1.35 -1.77 -1.92 -1.72 -1.34
Apr 2016 -1.78 -2.18 -2.33 -2.16 -1.78
May 2016 -2.07 -2.43 -2.55 -2.38 -2.03
Jun 2016 -2.31 -2.63 -2.72 -2.56 -2.22
Jul 2016 -2.52 -2.84 -2.92 -2.77 -2.44

Aug 2016 -2.71 -3.02 -3.10 -2.94 -2.62
Sep 2016 -2.86 -3.16 -3.24 -3.09 -2.78
Oct 2016 -2.99 -3.28 -3.35 -3.21 -2.90
Nov 2016 -3.13 -3.50 -3.48 -3.34 -3.04
Dec 2016 -3.22 -3.51 -3.58 -3.43 -3.14

Notes: ‘Expiry’ in the first column denotes the synthetic option expiry month.

We now proceed to evaluate the synthetic option. Using the commodity futures European

option price data as described in section 3.2.3, the price of synthetic option Soption is the sum
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of corresponding Doption price and difference level. The prices of the synthetic options are

presented in Table B.3.

Table B.3. Synthetic Option Price (Correlated Commodity Futures Prices)

Expiry 90% moneyness level 95% moneyness level 100% moneyness level 105% moneyness level 110% moneyness level

Feb 2016 9.13 4.74 1.39 0.19 0.00
Mar 2016 9.50 5.54 2.59 0.93 0.25
Apr 2016 9.86 6.08 3.25 1.48 0.58
May 2016 10.11 6.41 3.82 1.80 0.80
Jun 2016 10.38 6.75 3.98 2.13 1.05
Jul 2016 10.65 7.08 4.32 2.43 1.29

Aug 2016 10.93 7.42 4.67 2.75 1.53
Sep 2016 11.11 7.66 4.95 3.02 1.76
Oct 2016 11.26 7.86 5.18 3.24 1.94
Nov 2016 11.35 7.93 5.37 3.43 2.11
Dec 2016 11.45 8.16 5.54 3.60 2.26

Notes: ‘Expiry’ in the first column denotes the synthetic option expiry month. Due to the fact that the absolute difference level is larger
than the 110% moneyness Doption price maturing in February 2016, the calculated Soption price is actually negative. But option price must
be greater than or equal to zero, therefore, to make the price economically meaningful, we equate this price to zero.

The comparison between the synthetic option prices in Table B.3 and the synthetic option

prices in Table 3.4 indicates that, when the correlation between commodity futures prices is

taken into consideration, the synthetic option prices increase for all maturity and %moneyness

level synthetic options. Since the synthetic option is constructed as an European option,

higher synthetic option prices implies that the synthetic option implied volatilities will be

higher, which indicates that the corresponding uncertainty of inflation rate forecast will be

higher than that derived from the Monte Carlo simulation based on independent commodity

futures prices. Therefore, to keep the uncertainty of inflation rate forecast at a reasonably low

level, we assume the commodity futures price is independent to each other in the Monte Carlo

simulation.



Appendix C

Derivation of Black’s Model Type Option

Pricing Formula

The risk-neutral pricing theorem implies that the European call option written on the futures

on the CPI proxy with maturity T and strike price K has time 0 price as follows,

C
(
0,FCP

(
0,T ′))= EQ[e−rT (FCP

(
T,T ′)−K)

+
].

Since the risk-free interest rate r is assumed constant, we have

C
(
0,FCP

(
0,T ′))= e−rT EQ[(FCP

(
T,T ′)−K)

+
].

Given the assumption that the underlying futures on the CPI proxy FCP(t,T ′) follows the

driftless lognormal process in (3.9), we can use the solution for stochastic differential equation

in (3.9) to write the value of futures on the CPI proxy FCP(T,T ′) at time T as

FCP
(
T,T ′)= FCP

(
0,T ′)exp

(
−1

2
σ

2
FCPT +σFCP

√
T ε

)
,

where ε ∼ N (0,1) is the standard normal random variable. Taken the value of FCP(T,T ′)

into consideration, the time 0 option price can be written as

C
(
0,FCP

(
0,T ′))= e−rT EQ

[(
FCP

(
0,T ′)exp

(
−1

2
σ

2
FCPT +σFCP

√
T ε

)
−K

)+
]

= e−rT
∫

∞

−∞

(
FCP

(
0,T ′)exp

(
−1

2
σ

2
FCPT +σFCP

√
T ε

)
−K

)+

f (ε)dε,
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where f (ε) = 1√
2π

e
(
− ε2

2

)
is the standard normal density function.

The European call option will be exercised at maturity only when futures on the CPI proxy

observed at maturity FCP(T,T ′) is greater than the strike price K, i.e.

ε >
ln
(

K
FCP(0,T ′)

)
+ 1

2σ2
FCPT

σFCP
√

T
= ε0,

which yields

C
(
0,FCP

(
0,T ′))=e−rT

(∫
∞

ε0

(
FCP

(
0,T ′)exp

(
−1

2
σ

2
FCPT +σFCP

√
T ε

) )
f (ε)dε

+
∫

∞

ε0

(−K) f (ε)dε

)
=e−rT (A+B).

We now calculate the value of A and B respectively.

A =
∫

∞

ε0

(
FCP

(
0,T ′)exp

(
−1

2
σ

2
FCPT +σFCP

√
T ε

) )
f (ε)dε

=
FCP(0,T ′)√

2π

∫
∞

ε0

exp
(
−1

2
σ

2
FCPT +σFCP

√
T ε − 1

2
ε

2
)

dε

=
FCP(0,T ′)√

2π

∫
∞

ε0

exp
(
−1

2
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Therefore, the time 0 European call option price is

C
(
0,FCP

(
0,T ′))= e−rT (A+B)

= e−rT (FCP
(
0,T ′)N

(
−ε0 +σFCP

√
T
)
−KN (−ε0))

= e−rT (FCP
(
0,T ′)N (d1)−KN (d2)),

where N(·) denotes the cumulative density function and

d1 =
ln
(

FCP(0,T ′)
K

)
+ 1

2σ2
FCPT

σFCP
√

T

d2 =
ln
(

FCP(0,T ′)
K

)
− 1

2σ2
FCPT

σFCP
√

T
= d1 −σFCP

√
T .

This completes the derivation of option pricing formula.



Appendix D

Confidence Interval and Interval

Estimates of Futures on the CPI Proxy

90% Confidence Level 95% Confidence Level 99% Confidence Level

Confidence Interval Interval Estimate Confidence Interval Interval Estimate Confidence Interval Interval Estimate

90% Moneyness Level

Synthetic Option Expiry lnlc90 lnrc90 lc90 rc90 lnlc95 lnrc95 lc95 rc95 lnlc99 lnrc99 lc99 rc99

Mar-16 4.42 4.65 82.77 104.52 4.39 4.67 80.91 106.93 4.35 4.72 77.42 111.75
Apr-16 4.39 4.69 80.69 108.38 4.36 4.71 78.40 111.54 4.31 4.77 74.15 117.94
May-16 4.38 4.71 79.78 110.92 4.35 4.74 77.26 114.54 4.28 4.80 72.59 121.91
Jun-16 4.37 4.73 78.83 113.50 4.33 4.77 76.08 117.61 4.26 4.84 71.01 126.00
Jul-16 4.36 4.75 78.11 116.12 4.32 4.79 75.15 120.70 4.24 4.87 69.72 130.10

Aug-16 4.35 4.78 77.14 118.86 4.30 4.82 73.95 123.98 4.22 4.90 68.15 134.54
Sep-16 4.33 4.79 75.92 120.43 4.28 4.84 72.58 125.97 4.20 4.92 66.52 137.45
Oct-16 4.31 4.80 74.75 121.82 4.27 4.85 71.27 127.76 4.17 4.94 64.98 140.12
Nov-16 4.30 4.81 73.43 122.58 4.25 4.86 69.85 128.87 4.15 4.96 63.40 141.97
Dec-16 4.28 4.82 71.95 123.45 4.22 4.87 68.26 130.12 4.12 4.97 61.64 144.10

95% Moneyness Level

Synthetic Option Expiry lnlc90 lnrc90 lc90 rc90 lnlc95 lnrc95 lc95 rc95 lnlc99 lnrc99 lc99 rc99

Mar-16 4.43 4.63 84.18 102.90 4.41 4.65 82.55 104.94 4.38 4.69 79.48 109.00
Apr-16 4.41 4.67 82.37 106.39 4.39 4.69 80.34 109.07 4.34 4.74 76.54 114.48
May-16 4.40 4.69 81.59 108.72 4.37 4.72 79.34 111.81 4.32 4.77 75.15 118.04
Jun-16 4.39 4.71 80.74 111.13 4.36 4.74 78.27 114.65 4.30 4.80 73.68 121.78
Jul-16 4.38 4.73 80.10 113.61 4.35 4.77 77.42 117.55 4.28 4.83 72.47 125.57

Aug-16 4.37 4.75 79.32 116.04 4.34 4.79 76.43 120.43 4.26 4.86 71.12 129.41
Sep-16 4.36 4.77 78.16 117.49 4.32 4.81 75.11 122.25 4.24 4.88 69.54 132.05
Oct-16 4.34 4.78 77.06 118.73 4.30 4.82 73.88 123.84 4.22 4.90 68.08 134.38
Nov-16 4.33 4.78 76.28 118.74 4.29 4.82 73.06 123.97 4.21 4.90 67.20 134.79
Dec-16 4.31 4.79 74.49 119.96 4.26 4.83 71.11 125.66 4.17 4.92 64.98 137.51

100% Moneyness Level

Synthetic Option Expiry lnlc90 lnrc90 lc90 rc90 lnlc95 lnrc95 lc95 rc95 lnlc99 lnrc99 lc99 rc99

Mar-16 4.44 4.63 84.53 102.51 4.42 4.65 82.95 104.46 4.38 4.69 79.98 108.34
Apr-16 4.42 4.66 82.87 105.80 4.39 4.69 80.92 108.35 4.35 4.73 77.27 113.47
May-16 4.40 4.69 81.36 109.00 4.37 4.72 79.07 112.15 4.32 4.78 74.82 118.53
Jun-16 4.40 4.70 81.42 110.31 4.37 4.73 79.04 113.63 4.31 4.79 74.63 120.34
Jul-16 4.39 4.72 80.91 112.61 4.36 4.76 78.34 116.30 4.30 4.82 73.59 123.80

Aug-16 4.38 4.74 80.18 114.96 4.35 4.78 77.41 119.07 4.28 4.85 72.31 127.47
Sep-16 4.37 4.76 79.12 116.25 4.33 4.79 76.21 120.70 4.26 4.87 70.86 129.80
Oct-16 4.36 4.77 78.10 117.38 4.32 4.81 75.06 122.14 4.24 4.88 69.49 131.91
Nov-16 4.34 4.77 76.91 117.92 4.30 4.81 73.77 122.94 4.22 4.89 68.04 133.28
Dec-16 4.33 4.77 75.67 118.38 4.28 4.82 72.44 123.66 4.20 4.90 66.57 134.57
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90% Confidence Level 95% Confidence Level 99% Confidence Level

Confidence Interval Interval Estimate Confidence Interval Interval Estimate Confidence Interval Interval Estimate

105% Moneyness Level

Synthetic Option Expiry lnlc90 lnrc90 lc90 rc90 lnlc95 lnrc95 lc95 rc95 lnlc99 lnrc99 lc99 rc99

Mar-16 4.44 4.63 84.67 102.36 4.42 4.65 83.11 104.27 4.38 4.68 80.18 108.08
Apr-16 4.42 4.66 82.97 105.69 4.39 4.68 81.03 108.21 4.35 4.73 77.41 113.28
May-16 4.41 4.68 82.32 107.85 4.38 4.71 80.18 110.73 4.33 4.76 76.19 116.53
Jun-16 4.40 4.70 81.58 110.11 4.37 4.73 79.23 113.38 4.32 4.79 74.87 119.99
Jul-16 4.40 4.72 81.08 112.40 4.36 4.75 78.53 116.04 4.30 4.82 73.83 123.43

Aug-16 4.39 4.74 80.45 114.62 4.35 4.78 77.72 118.65 4.29 4.84 72.69 126.86
Sep-16 4.37 4.75 79.41 115.89 4.34 4.79 76.53 120.24 4.27 4.86 71.25 129.15
Oct-16 4.36 4.76 78.46 116.91 4.32 4.80 75.46 121.55 4.25 4.88 69.98 131.07
Nov-16 4.35 4.77 77.30 117.40 4.31 4.81 74.21 122.29 4.23 4.89 68.58 132.34
Dec-16 4.33 4.77 76.11 117.79 4.29 4.81 72.94 122.92 4.21 4.89 67.16 133.50

110% Moneyness Level

Synthetic Option Expiry lnlc90 lnrc90 lc90 rc90 lnlc95 lnrc95 lc95 rc95 lnlc99 lnrc99 lc99 rc99

Mar-16 4.44 4.63 84.98 102.01 4.42 4.64 83.47 103.85 4.39 4.68 80.64 107.49
Apr-16 4.42 4.66 82.93 105.72 4.39 4.68 80.99 108.26 4.35 4.73 77.36 113.34
May-16 4.41 4.68 82.18 108.02 4.38 4.71 80.02 110.94 4.33 4.76 75.99 116.82
Jun-16 4.40 4.70 81.43 110.30 4.37 4.73 79.05 113.61 4.31 4.79 74.65 120.32
Jul-16 4.39 4.72 80.92 112.59 4.36 4.76 78.36 116.28 4.30 4.82 73.61 123.77

Aug-16 4.39 4.74 80.34 114.76 4.35 4.78 77.59 118.82 4.28 4.85 72.54 127.10
Sep-16 4.37 4.75 79.29 116.04 4.34 4.79 76.40 120.43 4.26 4.86 71.09 129.42
Oct-16 4.36 4.76 78.39 117.00 4.32 4.80 75.39 121.66 4.25 4.88 69.89 131.23
Nov-16 4.35 4.77 77.26 117.45 4.31 4.81 74.17 122.35 4.23 4.89 68.52 132.43
Dec-16 4.33 4.77 76.12 117.78 4.29 4.81 72.95 122.90 4.21 4.89 67.17 133.47

Notes: ‘lnlc’ denotes the lower end of the confidence interval; ‘lnrc’ denotes the upper end of the confidence interval;‘lc’
denotes the minimum value of interval estimate of futures on the CPI proxy; ‘rc’ represents the maximum value of
interval estimate of futures on the CPI proxy.
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