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Abstract

The spectrin superfamily is a diverse group of proteins variously involved in cross- 

linking, bundling and binding to the F-actin cytoskeleton. These proteins are modular 

in nature and interaction with actin occurs, at least in part, via CH domain containing 

ABDs. The actin-binding domains of the spectrin superfamily proteins are all very 

similar in overall structure however the functions of the individual proteins differ 

greatly. Utrophin is a member of the spectrin superfamily and has been used 

extensively to investigate and model the association of actin-binding domains with F- 

actin; however, much controversy exists as to whether binding occurs when the 

domain is in an open or a closed conformation.

The data herein specifically investigates the importance of the utrophin ABD inter- 

CH domain linker to the confonnation of the domain and how this domain associates 

with F-actin. We provide evidence that this particular region of the ABD is 

particularly sensitive to mutation and that the conformation of the domain when in 

solution can not be altered by affecting the electrostatic environment surrounding the 

protein. It has been assumed previously that the utrophin ABD adopts a closed and 

compact configuration in solution similar to the fimbrin crystal structure 

conformation; however we present evidence that suggests this is not the case. It has 

been proposed that the utrophin ABD may open from this closed conformation to 

bind F-actin in a more open manner, we present data that demonstrates that opening 

of the domain is not essential to F-actin binding and that there is very little 

conformation change associated with the domain upon interaction with F-actin.

It appears that the utrophin ABD can bind F-actin in two conformations. This 

supports current models of utrophin ABD binding where interaction with F-actin 

occurs in either an open or closed conformation. The data presented here provides an 

interesting insight into the utrophin ABD/F-actin interaction and raises many 

questions regarding the evaluation of current binding models. Future research 

stemming from this work will serve to further the understanding of how utrophin and 

related actin-binding proteins interact with F-actin.



Table of Contents

List of Figures................................................................................................................... vi

List of Tables.................................................................................................................... ix

Acknowledgements........................................................................................................... . x

Declaration.........................................................................................................................xi

Abbreviations................................................................................................................... xii

Chapter 1: Introduction

1.1 Introduction...............................................................................................................1

1.2 Spectrin superfamUy proteins.............................................     2

1.2.1 Introduction to spectrin superfamily proteins................................................2

1.2.2 Evolution o f  spectrin superfamily proteins.................................................... 3

1.2.3 Structure o f spectrin superfamily proteins..................................................... 6

1.2.4 Function o f spectrin superfamily proteins......................     9

1.3 Actin-binding domains........................................................................................... 13

1.4 Spectrin repeat region............................................................................................ 17

1.5 Other binding partners.................................................   20

1.6 Regulating interactions o f  spectrin superfamily proteins.....................  22

1.6.1 CH domains....................................................................................................22

1.6.2 EFhands.........................................................................................................23

1.6.3 Lipid binding............................................     25

1.6.4 Poly-proline binding domain........................................................................27

1.6.5 ZZdomain.......................................................................................................28

1.7 Disease and spectrin superfamily proteins.......................................................... 29

1.8 Summary and aims................................................................................................. 32



Chapter 2: Materials and Methods

2.1 Materials.................................   33

2.1.1 Molecular Biology Reagents....................................................................... 33

2.1.2 SDS-PAGE and Western Blotting............................................................... 33

2.1.3 Miscellaneous...............................................................................................34

2.2 Methods....................................................................................................................34

2.2.1 Restriction Digests....................................................................................... 34

2.2.2 Agarose Gel electrophoresis........................................................................34

2.2.3 DNA Purification from an Agarose G el.....................................................35

2.2.4 Ligation Reaction..........................................     35

2.2.5 Generation o f Competent Cells....................................................................35

2.2.6 Transformation o f  DNA into Competent Cells...........................................35

2.2.7 Small Scale Plasmid Preparation............................................................... 36

2.2.8 Polymerase Chain Reaction.........................................................................36

2.2.9 Mutagenesis..................................................................................................36

2.2.10 Bacterial Protein Expression.....................................................................37

2.2.11 Purification o f Expressed Protein............................................................. 38

2.2.12 Recovery ofInsoluble Protein from Inclusion Bodies............................. 38

2.2.13 Determination o f Protein Concentration..................................................39

2.2.14 SDS-PAGE  ............................................................................................40

2.2.15 SDS-PAGE Gel Staining........................................  40

2.2.16 Western Blotting.............................................................................  41

2.2.17 High Speed Co-sedimentation Assay........................................................ 41

2.2.18 Preparation o f Rabbit Muscle Acetone Powder...................  42

2.2.19 Actin Extraction from Acetone Powder....................................................43

2.2.20 Analytical Gel Filtration.................................................   44

2.2.21 Analytical Ultracentrifugation.................................................................. 45

2.2.21.1 Sedimentation Equilibrium..........................................................45

2.2.21.2 Sedimentation Velocity................................................................. 45

2.2.22 Proteolytic DigQsXion................................................................................. 46

11



2.2.22.1 Trypsin Digestion......................................................................... 46

2.2.22.2 Papain and Proteinase K  Digestion........................................... 46

2.2.22.3 Digestion o f Utrophin ABD bound to F-actin.............................47

2.2.23 Circular Dichroism.....................................................................................47

2.2.24 Tryptophan Fluorescence.......................................................................... 48

2.2.25 NTCB Digestion..............................  49

2.2.26 Bond Formation............................................... 49

2.2.27 Generation and Production o f  Fluorescently Labelled Protein.............. 50

2.2.28 Utrophin ABD Inter-Domain FRET ..........................................................51

2.2.29 Differential Scanning Calorimetry............................................................ 52

2.3 Solution Compositions........................................................................................... 52

Chapter 3: pH Induced Conformational Change of the Utrophin 

ABD

3.1 Introduction.............................................................................................................. 57

3.2 Results.......................................................     58

3.2.1 pH  dependant conformational change o f  the utrophin ABD ...................... 58

3.2.2 pH  dependant effects o f  the utrophin ABD binding to F-actin................... 62

3.2.3 Investigation o f  utrophin ABD structure using circular dichroism 66

3.2.4 Investigation o f utrophin ABD structure using tryptophan fluorescence ...6^

3.2.5 Analytical ultracentrifugation analysis o f  utrophin ABD at varying pH .... 70

2.2.5.1 Sedimentation equilibrium analysis o f utrophin ABD at

varying p H ...................................         71

2.2.5.2 Sedimentation velocity analysis o f utrophin ABD at

varying p H ......................................................................................... 73

5.2.6 Resistance o f utrophin ABD to proteolytic degradation at varying

pH  by papain and proteinase K ................................................................... 76

3.3 Discussion..................................................................................................................80

111



Chapter 4: Utrophin ABD Linker Mutants

4.1 Introduction.....................................................................................   89

4.2 Results.......................................................................................................................90

4.2.1.1 Design o f  the utrophin ABD fimbrin linker mutant..................................90

4.2.1.2 Expression and purification o f   91

4.2.1.3 Circular dichroism analysis o f   93

4.2.1.4 Tryptophan fluorescence analysis o f   99

4.2.1.5 Proteolytic resistance o f   100

4.2.2.1 Design o f  the utrophin ABD a-actinin linker mutant.............................. 102

4.2.2.2 Expression and purification o f   103

4.2.2.5 Circular dichroism analysis o f   105

4.2.2.4 Tryptophan fluorescence analysis o f   112

4.3 Discussion...........................................................................................................  113

Chapter 5: Utrophin ABD Cysteine Mutants

5.1 Introduction........................................................................................................... 121

5.2 Results..............................................................................       122

5.2.1 Design o f  the utrophin ABD cysteine mutants............................................122

5.2.2 Expression o fU T ^ '^ ^  and  124

5.2.3 SDS PAGE and western analysis ofUTR™'^ and [/77j™c/iMC

mutants.......................................................................................................... 125

5.2.4 NTCB digestion  125

5.2.5 Formation o f  the disulphide bond within ........................ . 126

5.2.6 Gel filtration analysis o f utrophin ABD and the and

UTpf^^c/S242C ̂ ^i^tants .................................................................... i2g

5.2.7 Actin-binding analysis o f   129

5.2.8 Labelling w/fA fluorescein andrhodamine........................... 132

5.2.9 Fluorescence Resonance Energy Transfer between fluorescein

and rhodamine conjugated to  134

IV



5.2.10 Comparison o f tryptophan fluorescence between
jjTjf36C/S242c ^ndyvildtype utrophin ABD ................................................138

5.2.11 Differential Scanning Calorimetry o f  the utrophin ABD ..........................144

5.3 Discussion...............................................................................................................150

Chapter 6: Final Discussion
6.1 Final Discussion................................................................................................... 159

Appendix 1: pSJWl plasmid.......................................................................................168

Appendix 2: Expression and purification of wild type utrophin A BD ............... 169

Appendix 3: Superose 12 HR calibration curves at pH 6, 8 and 10 .....................171

Appendix 4: Sedimentation equilibrium interference data..................................172

Appendix 5: Sedimentation equilibrium interference data (repeated)............... 173

Appendix 6: Sedimentation velocity data.................................................................174

Appendix 7: Confirmation of fluor conjugation using fluorescence................... 175

Appendix 8: Actin emission and excitation scans...................................................176

References...........................................    177



List of Figures

1.1 Structure of spectrin superfamily proteins................................  3

1.2 Evolution of spectrin superfamily proteins..............................................................5

3.1 Preliminary gel filtration data of the utrophin ABD at varying pH .....................59

3.2 Gel filtration elution volume of the utrophin ABD at varying p H ...................... 61

3.3 Relative MW of the utrophin ABD at pH 6, 8 and 10..........................................62

3.4 Example of a utrophin ABD high speed co-sedimentation assay........................63

3.5 Utrophin ABD F-actin binding curves at pH 6, 8 and 10.....................................64

3.6 Near and far UV CD spectra of the utrophin ABD at varying pH.......................67

3.7 Location of tryptophan residues within the utrophin ABD..................................68

3.8 Tryptophan fluorescence of the utrophin ABD at varying p H ............................ 70

3.9 Apparent MW of the utrophin ABD versus protein concentration at

varying p H .............................................................................................................. 72

3.10 Apparent MW of the utrophin ABD versus protein concentration at varying

pH (repeated experiment)  ......................     73

3.11 Sedimentation coefficient distribution plots of the utrophin ABD at 

approximately similar concentration, varying p H ...............   75

3.12 Resistance of the utrophin ABD to proteolytic degradation at varying pH.........77

3.13 Protection of F-actin from proteolysis by binding of the utrophin ABD.............79

4.1 Sequence aligmnent of the utrophin and fimbrin ABD linker regions............... .91

4.2 Expression, solubility and purification of the UTR^^^"^ linker mutant...............92

4.3 SDS PAGE and western analysis of the utrophin ABD and UTR^“”̂ ™ linker

mutant..............................................................................   92

4.4 Near and far UV CD spectra of the utrophin ABD and the UTR^^^™  ̂linker

mutant......................................................................................................................94

4.5 Far UV CD spectra demonstrating the thermal dénaturation of the utrophin

ABD and UTR^''™ linker mutant........................................................................ 97

4.6 CD spectra demonstrating the refolding of the utrophin ABD and

following thermal dénaturation  ............................................................... 98

VI



4.7 Tryptophan fluorescence spectra of the utrophin ABD and linker

mutant.........................................................................................  .....100

4.8 Proteolytic resistance of the utrophin ABD and %jTRGmbmi................................lo i

4.9 Sequence aligmnent of the utrophin and a-actinin ABD linker regions............ 103

4.10 Expression, solubility and purification of the linker mutant .....104

4.11 SDS PAGE and Western analysis of the utrophin ABD and UTR'"""'^

linker mutant......................................................................................................... 105

4.12 Near and far UV CD spectra of the utrophin ABD and linker

mutant.....................................................................  107

4.13 Far UV CD spectra demonstrating the thermal dénaturation of the utrophin 

ABD and UTR“'“"̂ “̂  linker mutant.................................................  109

4.14 Far UV CD spectra of the utrophin ABD and u x R “*®“̂ ” linker mutant

before and after thermal dénaturation..................................................................I l l

4.15 Tryptophan fluorescence of the utrophin ABD and the UTR̂ "̂ ^̂ ™̂  linker 

mutant.................................................................................................................... 112

4.16 Structural superposition of fimbrin and utrophin ABDs and models of 

proposed actin-binding by these domains........................................................... 117

4.17 Cryo-EM reconstructions of the ABD of smooth muscle a-actinin.................. 119

4.18 Structural superposition of the utrophin and a-actinin ABDs............................ 120

5.1 Location of the cysteine mutations within the utrophin ABD............................123

5.2 Expression, solubility and purification of UTR^^^^ and ............124

5.3 SDS PAGE and western analysis ofUTR^^^ and UTR'^^^^^^^......................125

5.4 NTCB digestion of utrophin ABD and    126

5.5 Oxidation of to form the disulphide bond.................................. 127

5.6 Oxidised and reduced samples of   128

5.7 UXR.T36C/S242C actin-binding curves determined with oxidised and reduced

fonns of the protein............................................................................................... 130

5.8 Successful labelling of with rhodamine and fluorescein............133

5.9 Fluorescence spectra of a mixture of labelled with either

fluorescein or rhodamine......................................................................................135

Vll



5.10 Fluorescence spectra labelled with fluorescein and

rhodamine..................   137

5.11 Intrinsic tryptophan fluorescence of the utrophin ABD in the presence and 

absence of F-actin..........................................    139

5.12 Comparison between the sum of the intrinsic tryptophan fluorescences of

the utrophin ABD, UTR^^^^ and  140

5.13 Position of the two cysteine mutations within relation to

the tryptophan residues present within the ABD................................................141

5.14 Comparison between the tryptophan fluorescence of the utrophin ABD,
Ut r T36c y^T36c/s242C bomid to F-actin with the sum of the

individual fluorescences of each protein............................................................. 142

5.15 Difference between the fluorescence of ligand in the presence of F-actin

and the arithmetic sum of ligand and F-actin fluorescence............................... 143

5.16 Differential Scanning Calorimetry data for the utrophin ABD and the 

UTR"“  mutant.................................................................................................... 148

5.17 Differential Scanning Calorimetry data for the utrophin ABD and the

mutant in the oxidised and reduced form.................................... 149

5.18 Location of the three actin-binding sites within the utrophin ABD when the 

domain is in an open or closed configuration..................................................... 157

Vlll



List of Tables

2.1 Mutagenesis primers....................................................... .....................................37

3.1 Preliminary determination of the utrophin ABD apparent MW at varying pH... 60

3.2 Stoichiometry and binding affinity of the utrophin ABD at pH 6, 8 and 10......65

3.3 Predicted secondary structure elements of the utrophin ABD at varying pH.... 66

4.1 SELCON analysis of the secondary structure content of utrophin and
U T R ^ A  ABDs...................................................................................................... 95

4.2 SELCON analysis of the secondary structure content of the utrophin ABD

and UTR”-”*^ linker mutant................................................................................ 108

5.1 Relative MW of the utrophin ABD, UTR™^ and u t r "'5c/s242c

following gel filtration analysis.............................  129

5.2 Binding affinity and stoichiometry of reduced and oxidised

compared with wild type utrophin ABD............................................................. 131

5.3 Dénaturation temperatures for DSC scans shown in Figure 5.16 and 5.17......147

IX



Acknowledgements

I would like to express my sincerest thanks to Professor Steve Winder for liis 

excellent supervision throughout the course of my PhD. I am very grateful for his 

advice, encouragement and constant support.

In addition, I wish to acknowledge the members of the Winder/Ayscough lab who 

have been a constant source of support and advice which I have found to be 

invaluable during the course of my project. I wish to thank Dr Sharon Kelly and Dr 

Rosie Stainforth for their assistance with circular dichroism and fluorescence 

analyses and Dr Olwyn Byron for her help with analytical ultracentrifugation. I 

would also like to thank Dr Audrey Bobkov for his help with the differential 

scanning calorimetry analyses. I would especially like to thank Professors Carl and 

Elizabeth Smythe who afforded me the use of space within their lab and were 

particularly accommodating of me during the final few months of my project. I 

would also like to thank the members of the Smythe lab but especially Barry and 

Richard who have helped keep me sane and were always at hand when a drink after 

work was required. I also wish to thank the University of Glasgow and the University 

of Sheffield for the opportunity to work at both institutions but also the MRC for 

providing the funding for my project.

Finally, I would also like to thank my family for their continued encouragement and 

support over the last four years, without which, I don’t think I would be where I am 

today.

X



Declaration

I certify that this thesis is a result of my own work and that I have not been assisted 

in its production, except where acknowledged in the text. No part of the manuscript 

has been submitted for consideration for any other higher degree, and all references 

cited have been consulted.

Michael J. F. Broderick 

Candidate

I certify that Michael J. F. Broderick is the author of this thesis and has complied 

with the regulations of the University of Glasgow appropriate to its submission.

Professor Steven J. Winder 

Supervisor

November 2005

XI



ABD;

atm;

ATP;

BMD;

CAPS;

CD;

CH;

DMSO;

DNA;

dNTP;

DSC;

DTT;

DTNB;

DMD;

e;

ECL;

EDTA;

EGTA;

F-actin;

FRET;

g;
G-actin;

HRP;

IPTG;

K;

Kavî

Kb;

Ku;

kDa;

Abbreviations

actin-binding domain

atmospheres

adenosine tri-phosphate

becker muscular dystrophy

3-(CycIohexylamino)-l-propanesulfonic acid

circular dichroism

calponin homology

dimethyl sulphoxide

deoxyribonucleic acid

deoxyribonucleotide triphosphate

differential scanning calorimetry

dithiothreitol

5,5 '-Dithiobis(2-nitrobenzoic acid)

duchenne muscular dystrophy

extinction coefficient (cm'^M'^)

enhanced chemiluminescence

ethylenediaminetetraacetic acid

ethylene glycol-bis(2-aminoethylether)-V N,N',N'

-tetraacetic acid

filamentous actin

fluorescence resonance energy transfer

gravity

globular actin

horseradish peroxidase

isopropyl-p-D-thiogalactopyranoside

Kelvin

coefficient of partitioning 

kilobases

dissociation constant 

kilo Daltons

XU



Mb;

mdeg;

MES;

MW;

NTCB;

PCR;
PDZ;

PÏP2;
PIPES;

rpm;

SDS;

SDS-PAGE;

SET;

TCEP;

TE;

TED

TEMED;

e;

Tm;
Tris;

13V;

UTR261;
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Chapter 1 

Introduction
L I  Introduction

The eukaryotic cytoskeletai network is formed from a number of filamentous 

systems composed of polymers of actin, tubulin or intermediate filament proteins. 

The actin stress fibres, microtubules and intermediate filaments generated are 

integrated in a highly organised manner that can be both dynamic as well as stable. 

The filamentous state and organisation of these proteins provides the cell with an 

internal scaffold essential to many cellular processes, including mechanical strength, 

cellular morphology, adhesion, motility, intracellular trafficking, cell division, and 

networks for inter- and intracellular communication. The cytoskeletai network allows 

rapid remodelling in response to altered mechanical needs facilitated by the dynamic 

exchange of protein subunits within the system and by the manner in which the 

network is linked through cross-linking proteins.

Interaction with filamentous actin (F-actin) requires a protein to possess motifs 

or domains that help to facilitate this association. One such domain is the calponin 

homology (CH) domain. This particular domain can be found within a wide range of 

proteins and may be present either singly, as a pair or a tandem pair. In any case 

almost all structural information about the domain has stemmed from work involving 

relatively few proteins that encompass all three of the CH domain families; namely 

calponin, containing a single CH domain; spectrin, a-actinin, dystrophin and 

utrophin, all of which contain a pair of CH domains referred to as an actin-binding 

domain (ABD); and fimbrin, which contains a tandem pair of CH domains (two 

ABDs). Of these proteins, a-actinin, dystrophin and utrophin are more closely related 

and form the bulk of a protein group referred to as the spectrin superfamily. This 

group of proteins is particularly interesting given that all members of the group have 

very different cellular functions even though they are essentially constructed from 

the same basic modules. These protein modules, most noticeably the spectrin repeat, 

are present to differing extents depending on the particular superfamily member and 

impart functionality specific to each protein. The following introduction aims to give
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an overview of this superfamily and how the structure of these proteins is tied to their 

function within the cell

1.2 Spectrin family Proteins

1.2.1 Introduction to spectrin superfamily proteins

The spectrin family of proteins are highly modular and share common 

structural elements including a calponin homology (CH) domain containing an actin- 

binding domain, spectrin repeats, EF-hands, and various other signalling domains 

and motifs (Fig. 1). The spectrin family of proteins arose from work that originally 

focused on understanding the role that spectrin played biochemically in the 

organisation and assembly of the cytoskeleton (reviewed in (Gratzer, 1982). Spectrin 

possesses the ability to self assemble but the molecular basis of this process could 

not be explained until more was known about the sequence and, ultimately, the 

structure of the protein. The work of Speicher and Marches! (1984) provided the 

protein sequence of almost half of the a-spectrin chain. This work identified spectrin 

as being a highly modular protein composed of many repeating 106 amino acid units 

(Speicher and Marches!, 1984). The helical nature of these units was predicted to 

form triple-helical coiled-coil bundles which were dubbed spectrin repeats. 

Continued investigation and DNA sequencing led to the determination of several a- 

spectrin sequences from erythrocyte. Drosophila and brain (Dubreuil et a l, 1989; 

Sahr et a l, 1990; Wasenius et a l, 1989). It was around this time that the DNA 

sequences encoding the related proteins a-actinin and dystrophin were completed 

(Baron et a l, 1987; Koenig et a l, 1988). These proteins were found to contain 

repeating units similar to those found in spectrin (Davison and Critchley, 1988) and 

hence, the spectrin family of proteins was born.

The sequencing of a- and p-spectrin, a-actinin and dystrophin has revealed 

similarities not only within the spectrin repeat but also the other domains and motifs 

present within these proteins. Subsequent analyses have revealed an evolutionary 

pathway for the divergence of spectrin and dystrophin/utrophin from a common a- 

actinin ancestor via a series of rearrangements, duplications and evolution of repeats
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and other domains, as well as the acquisition of unique domains such as PH, WW, 

and SH3 (Figure 2).

Dystrophin 427 kDa

itGOOQOOOOCn]OQ0OQO(!]GOGOOO0GIÊ
p-Spectrin 246 kDa

a-Spectrin 280 kDa 

a-Actinin 103 kDa

fBSi

.  U . r U J . A  X

Key
Actin-binding domain O i O  Coiled-cwls

EF hand motif ( â )  ZZ domain

0 Q Q g  Spectrin repeats 0  SH3 domain

I I Cysteine-rich region ^  PH domain

Figure 1.1: Structure of spectrin superfamily proteins. Modular domains within 
each protein are clearly defined. Shaded spectrin repeats represent coiled-coils 
involved in dimérisation events, incomplete repeats represent proportionally the 
number of coiled-coil helices contributed by a- and p-spectrin when generating a 
complete spectrin repeat during formation of the spectrin tetramer. The dashed lines 
indicate how two spectrin heterodimers interact to form a functional spectrin 
tetramer. Asterisks in the dystrophin spectrin repeats represent the position of the two 
greater repeats in dystrophin with respect to utrophin, which in all other respects has 
a similar overall structure. Numbers in the EF hand regions represent the number of 
EF hand motifs.

1.2.2 Evolution o f  spectrin superfamily proteins

The availability of complete sequences for a-actinin, spectrin and dystrophin 

has allowed the ancestry and evolution of the proteins to be traced. Multiple 

sequence alignments and phylogenetic trees have been combined with precise 

alignment of equivalent domains within each protein to provide details of the 

relationship that exist between each of the protein domains. Analysis of the amino
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acid sequences from a-actinin, spectrin and dystrophin suggested that all three of the 

protein families have arisen from a common ancestral protein that was similai' to a- 

actinin (Byers et ah, 1992; Dubreuil, 1991) via a series of gene duplications and gene 

rearrangements (Baines, 2003; Pascual et ah, 1997; Thomas et ah, 1997; Viel, 1999). 

One of the diagnostic features of the spectrin superfamily of proteins is the presence 

of the 106-120 repetitive unit referred to as the spectrin repeat (Speicher and 

Marches!, 1984). Sequence comparisons suggest that all three of these proteins share 

significant homology within their N-terminal actin-binding domains and in the 

spectrin repeats that form the rod domains (Davison and Critchley, 1988). The 

spectrin repeats are found in distinct multiples in each of the proteins resulting in a 

characteristic actin cross-linking distance. a-Actinin contains four repeats, p-spectrin 

17, a-spectrin 20 and dystrophin 24. The sequences of some spectrin repeats of a- 

and P-spectrin are similar in many ways to the four repeats present in a-actinin 

(Dubreuil, 1991). Within the cell a-actinin and spectrin dimerise although the 

spectrins interact further to generate a functional tetramer (Figui'e 1.1). Most notable 

is that the ends of the native spectrin tetramer involved in the dimérisation event 

show remarkable similarity to the rod domain repeats of a-actinin that also mediate 

dimer fonnation. Indeed, homologous regions of all of the a-actinin protehi domains 

can be found within the sequences of a- and p-spectrhi. For example, the amino and 

carboxy terminal regions of a-actinin resemble the N-terminus of p-spectrin and the 

C-terminus of a-spectrin respectively (Byers et ah, 1989; Dubreuil et al,, 1989). 

Phylogenetic analysis shows a common ancestor for the first repeat of a-actinin and 

the first repeat of p-spectrin. Similarly, each of the remaining repeats in a-actinin (2- 

4), correspond to repeats 1 and 2 of p-spectrin and repeats 19 and 20 of a-spectiin 

respectively (Fig. 2). This may have relevance for the function of these repeats in the 

dimérisation of these proteins (Pascual et ah, 1997). It is the similarity between these 

regions of a-actinin and the spectrins and the simpler domain organisation of a- 

actinin that have led to the hypothesis that these two protein families have evolved 

from an a-actinin like precursor.
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Figure 1.2: Evolution of the spectrin superfamily. Rounded rectangles represent 
spectrin repeats. Those that are shaded denote a-actinin-like repeats involved in 
dimérisation whereas un-shaded represent repeats that were involved in duplication 
and/or elongation events. The incomplete spectrin repeats involved in tetramer 
formation are proportionally represented depending on the number of repeat helices 
each protein contributes to the fonnation of a complete spectrin repeat (Adapted 
form Dubreuil, 1991 and Pascual, 1997). A dystrophin/utrophin ancestor probably 
diverged from a-actinin at a relatively early stage and then underwent their own 
series of duplications and acquisitions of new motifs.

Spectrin is a much more elongated protein compared to a-actinin due to the 

additional number of repeats. The additional repeats are more closely related to one 

another than repeats that seem to be common to both a-actinin and spectrin. The 

spectrin repeat sequences are the most divergent in dystrophin and its homologue 

utrophin (Winder et al., 1995), most likely reflecting an earlier divergent event when 

compared to spectrin (Pascual et al., 1997).

The additional molecular length of spectrin compared to the ancestral a-actinin 

is believed to have arisen through two major duplication events containing blocks of 

seven repeats (Pascual et al., 1997). The beginning of the process can be described as
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the elongation of a-actinin by insertion of a seven repeat block between the second 

and third a-actinin repeats. That block of repeats was then duplicated and an ancestor 

of the tetramerisation repeat inserted between the blocks (Pascual et al., 1997) 

(Figure 1.2). Overall, the two stage evolution of the superfamily is believed to have 

involved an initial dynamic phase involving intmgenic duplications and concerted 

evolution followed by a stable phase where repeat number became constant and their 

sequences evolved independently (Thomas et al., 1997). The first phase of evolution 

resulted in the a-actinin, spectrin and dystrophin lineages via a series of duplication 

events. This process gave rise to the necessary repeat lengths and number within the 

spectrin and dystrophin lineages. The a-actinin lineage continued to evolve. 

Phylogenetic analysis has indicated that the different isoforms found today in modem 

vertebrates have arisen after the vertebrate urochordate split with the muscle and 

non-muscle isoforms evolving separately (Virel and Backman, 2004). Thomas and 

colleagues (1997) hypothesised that during a transition period the new genes began 

to acquire distinct cross-linking distances and that subsequent selection against 

longer or shorter proteins would result in a stabilisation of protein length (Thomas et 

ah, 1997), The current length of spectrin repeats is evidently veiy stable as there has 

been little change since the split of the arthropod vertebrate lineages.

1.2.3 Structure o f spectrin superfamily proteins

The spectiin superfamily is an important group of cytoskeletai proteins that are 

involved in many functions that require cross-linking, bundling or binding to 

filamentous actin. Each of the proteins within this family differs greatly in their 

specific biological function. However, they all share a smprising level of stiuctural 

homology. The members of this protein family are composed from a number of 

conserved domains; spectrin repeats, CH domain containing actin-binding domains, 

EF-hands, calcium-binding motifs and various signalling domains (Figure 1.1). The 

actin-binding domain (ABD) is the most N-terminal domain and can be found in a- 

actinin, p-spectiin, dystrophin and utrophin but not a-spectrin. The presence of the
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ABD allows these proteins to Interact with F-actin in a variety of different cellular 

situations.

The ABDs of these proteins comprise a tandem pair of CH domains altliough 

the manner in which this domain interacts with F-actin is still unclear even after 

extensive investigation and modelling. The spectrin repeats form the rod domains of 

these proteins. There are four repeats in a-actinin and between 17 and 24 in spectrin 

and dystrophin. In general the spectiin repeats are responsible for the overall length 

of the protein and they are usually recognised as modules for the generation of 

elongated molecules and the separation of the specific N-and C-terminal domains 

(Winder, 1997). Overall, the core stiucture of the spectrin repeats from each family 

member are very similar although the size of the repeating regions differs slightly. In 

a-actinin repeats are 122 residues in length, in spectrin 106 and in dystrophin and 

utrophin tlie repeating units are 109 residues in length. Within the spectrin family 

proteins each member contains a differing number of repeating elements. The four 

repeats in a-actinin are separated from the ABD by a linker that allows a significant 

degree of flexibility between the rigid rod and the ABD. In the functional a-actinin 

dimer it is the spectrin repeats that ai*e responsible for the dimérisation. Crystal 

structures of the dimeric a-actinin rod domain have found that the rod bends slightly 

along its length but also the whole domain twists through approximately 90°. In 

conjunction with the rod domain and ABD the flexible linker that separates them 

contributes to a-actinin’s ability to cross-link actin filaments that are oriented in 

either a parallel or antipaiallel maimer (Ylanne et al., 2001).

The rod domains of a- and p-spectrin aie composed of 22 and 17 spectrin 

repeats respectively. At the N-terminus of a-spectrin the first repeating segment 

begins wiüi the ‘third hehx’ of what will become a complete triple helical coiled-coil 

structure analogous to a spectrin repeat when it interacts with die two helices that are 

found at the C-terminus of p-spectrin (Figure 1.1). This site allows the spectrin dimer 

to interact with another dimer to form a spectrin heterodimer or tetramer. This is the 

functional unit of spectrin witliin the eiythi'ocyte. It has been shown that specific 

repeats in boüi a- and p-spectrin are not just present as structural modules that 

contribute to the length of the rod domain. Repeat 10 of a-spectrin has been found to 

be slightly shorter than a typical spectrin repeat and shows substantial homology to
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tlie SH3 domain of the Src protein family (Wasenius et al., 1989), whereas repeat 15 

of P-spectrin has been found to be responsible for interaction with ankyrin (Kennedy 

et al., 1991). The two most C-terminal spectrin repeats of a-spectrin (21 and 22) and

the first two of p-spectrin (1 and 2) once again show differences in sequence and
I

structure from a typical spectrin repeat. This particular section of a-spectrin shows |

homology with the C-terminus of a-actinin whereas repeats 1 and 2 of P-spectrin 

share homology with the N-tenninus, It has been found tliat these repeats are 

responsible for the dimérisation of a- and p-spectrin in a manner analogous to the i

four spectrin repeats of the a-actinin rod domain, (reviewed in Winkelmann, 1993).

Tlie rod domains of dystrophin and its close relative utrophin have not been found to 

mediate dimérisation (Winder et a l, 1996). It seems that the spectrin repeats of these 

two proteins function primarily to separate the N- and C-termini. However, it should 

be noted that the rod domains of dystrophin and utrophin are able to associate with 

filamentous actin although the manner of interaction differs for each protein (Amann 

et al., 1999; Rybakova et al., 2002).

The C-termini of spectrin family proteins also exhibit a variety of structural 

similarities including motifs involved in protein-protein interactions (Figure 1.1). EF- 

hands motifs are found in all but p-spectrin. The function of this domain is most 

notable in a-actinin where the binding of calcium is able to affect the intemction of 

the ABD with F-actin. This is only the case, though, for the non-muscle isoforms of 

a-actinin, as the muscle isoforms are calcium-insensitive (Blanchard et al., 1989).

The C-terminus of a-spectrin has also been found to contain EF-hands similar to 

those of a-actinin. It is believed that these stnictures may play a role in modulating 

the functional conformation of the p-spectrin ABD when N- and C-teimini are 

juxtaposed in the spectrin heterodimers. The EF-hands of dystrophin have been 

predicted to be unable to bind calcium although it is thought that they have an 

important stiuctmul role (Huang et al., 2000). Finally, a number of smaller motifs 

have been found at or within the C-teimini of these proteins. The non-erythroid form 

of p-spectrin has been shown to possess a pleckstrin homology (PH) domain at its C- 

terminus. This fold is conseiwed in proteins that can interact with phospholipids and 

may allow direct interaction with the cell membrane. The remainder of the motifs are
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found within the C-terminus of dystrophin and utrophin. These motifs consist of WW 

and ZZ domains that together with the EF-hand region foim the cysteine-rich region. 

The WW domain is an example of a protein-protein interaction module that binds 

proline-rich sequences (Ilsley et al., 2002) whereas the ZZ domain is a zinc finger 

motif also involved in mediating protein-protein interactions (Ponting et al., 1996). 

At the extreme C-teiininus of dystrophin and utrophin are two helices predicted to 

foim dimeric coiled-coils (Blake et al., 1995) that mediate interaction with the 

dystrophin family proteins dystrobrevin and dystrophin-related protein 2 (DRP2).

1.2.4 Function o f spectrin superfamily proteins

Spectrin is a common component of the sub-membranous cytoskeleton. It was 

first identified as a major constituent of the erythrocyte membrane cytoskeleton but 

has since been found in many other vertebrate tissues as well as in the non­

vertebrates Drosophila, Acanthamoeha, Dictyosteliwn and echinoderms (Bennett and 

Condeelis, 1988; Byers et al., 1992; Dubreuil et al., 1989; Pollard, 1984; Wessel and 

Chen, 1993). The human erythrocyte possesses a characteristic bi-concave shape and 

remarkable viscoelastic properties. Electron microscopy studies performed on red 

blood cells (RBC), ghosts and skeletons revealed a two-dimensional lattice of 

cytoskeletal proteins. This meshwork of proteins was thought to determine the elastic 

properties of the RBC. This notion was supported further when it was found that 

detergent-extracted skeletons exhibited shape memory and since spectrin was the 

major constituent of these skeletons it was suggested that it was responsible for the 

elastic properties. The protein lattice that laminates the inner surface of the 

erythrocyte membrane is fonned from interactions between actin, spectrin and 

integral membrane proteins (Bennett and Gilligan, 1993). The lattice is 

predominantly formed from a- and p-spectrin dimers which again dimerise to 

generate tetramers roughly 200 mn in length. Five or six of these tetramers bind 

through their tail ends to a junctional complex, consisting of filamentous actin and 

band 4.1 (reviewed in Winkelmann, 1993). The molecular function of the complete 

spectrin heterodimer relies on the inter- and intra-molecular interactions that occur at
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two key points within the spectrin molecule. These associations take place at the 

head end where interchain binding between a- and p-spectrin gives rise to a 

heterodimer or the tetramer. The tail end of the molecule contains sites responsible 

for the interchain binding between spectrin chains integrating spectrin tetramers into 

a network via interactions with actin, protein 4.1 and other binding partners. Between 

the head and tail regions of the molecule much of the overall length of spectrin is 

attributed to the number of spectrin repeats, 20 for a-spectrin and 17 for p-spectrin. 

The spectrin tetramers associate with short actin oligomers to form a regular 

repeating polygonal lattice. This network is coupled to the membrane via a limited 

number of direct and indirect contacts between spectrin and integral membrane 

proteins. These attachments consist of interactions between ankyrin and band 3 

protein, and between protein 4.1 and glycophorin C.

a-Actinin is the smallest member of the spectrin family of proteins (Pascual et 

al., 1997). It was first described as an actin cross-linker in skeletal muscle but has 

subsequently been found to be ubiquitously expressed (Otto, 1994). Additional 

family members have been found in smooth muscle and non-muscle cells (Blanchard 

et al., 1989) and are localised at the leading edge, cell adhesion sites, focal contacts 

and along actin-stress fibres in migrating cells (Knight et al., 2000). The functional 

unit of a-actinin is an antiparallel homodimer of polypeptide chain mass of 94-103 

kDa (Blanchard et a l, 1989) in which the amino-terminal CH domains together with 

the carboxy-terminal calmodulin (CaM) homology domain form the actin-binding 

heads of the molecule (Critchley, 2000). The connection between these two heads is 

composed of four spectrin repeats, which define the distance between the actin 

filaments that are cross-linked. a-Actinin has three main biological functions. It is 

the major thin filament cross-linking protein in the muscle Z-discs, where it holds the 

adjacent sarcomeres together (Masaki et al., 1967). a-Actinin is also found close to 

the plasma membrane where it crosslinks cortical actin to integrins (Otey et a l, 

1990) and serves as a linker between transmembrane receptors and the cytoskeleton. 

In non-muscle cells a-actinin is a major component of stress fibres, an analogous 

contractile structure to the more organised units found in striated muscle (Otey and 

Carpen, 2004). a-Actinin is also a constituent of dense bodies (Lazarides and

10
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Burridge, 1975), which are believed to be structurally and functionally analogous to 

the sarcomere Z-disk,

Dystrophin is the product of the largest known gene within the human genome, 

spanning -2.5Mb of genomic sequence and is composed of 79 exons (Coffey et al., 

1992; Roberts, 1995). The protein product encoded by the transcript of this gene is 

known as dystrophin and the absence of this protein results in Duchenne muscular 

dystrophy (DMD) (Koenig et a l, 1987). Dystrophin is predominantly expressed in 

skeletal and cardiac muscle but small amounts are found in the brain. These full- 

length isoforms are under the control of three independently regulated promoters 

referred to as brain, muscle and Purkinje, the names of which reflect the site at which 

dystrophin expression is driven. Additionally, four internal promoters give rise to 

truncated C-terminal isoforms and alternative splicing further increases the number 

of isoforms and variants. The spectrin repeats form the bulk of the protein (Figure 

1.1) and are thought to allow flexibility and give the molecule a rod-like structure. 

Dystrophin can be found associated with the plasma membrane of cardiac and 

skeletal muscle, where it interacts with the integral membrane protein dystroglycan 

that binds to laminin on the extracellular face. The dystrophin-dystroglycan complex 

further interacts with the integral membrane sarcoglycan proteins and peripheral 

membrane proteins syntrophin and dystrobrevin, which together comprise the 

dystrophin glycoprotein complex (reviewed by (Winder et a l, 1995). This complex 

of proteins can then interact with F-actin via the N-terminus of dystrophin to form a 

flexible link between the basal lamina of the extracellular matrix and the internal 

cytoskeletal network (Campbell and Kahl, 1989; Rando, 2001). It is believed that this 

complex serves to stabilise the sarcolemma and protect muscle fibres from 

contraction-induced damage. Indeed, the absence or mutation of dystrophin results in 

the X-linked myopathies Duchenne and Becker muscular dystrophies (DMD and 

BMD respectively; these are reviewed in (Blake et a l, 2002).

Within the skeletal musculature dystrophin plays an important role in 

maintaining the integrity of the sarcolemmal membrane. Dystrophin is not able to 

perform this task alone and interacts with a number of other proteins that include 

dystroglycans, sarcoglycans, dystrobrevins, syntrophins and sarcospan (Straub and 

Campbell, 1997). Mutation of dystrophin or, indeed, other components of this

11
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complex can result in a variety of disease pathologies. Most notable, though, is that 

of DMD, where a complete absence of dystrophin is observed resulting in 

progressive muscle wasting and eventual death of the affected individual. This i

complex of proteins is thought to provide a link between the cortical actin 

cytoskeletal network and laminin in the extracellular matrix (Ervasti and Campbell,

1993; Ervasti and Campbell, 1993). Hence, it is thought that dystrophin and the 

associated proteins provide a mechanically stabilising role that protects the 

sarcolemmal membrane from the shear stresses generated during eccentric 

contraction of muscle (Petrof et al., 1993). Dystrophin has been found to localise j

adjacent to the cytoplasmic face of the sarcolemmal membrane in regions known as 

costameres (Porter et al., 1992; Straub et al., 1992). These assemblies of cytoskeletal 

proteins are involved in linking the force-generating sarcomeric apparatus to the 

sarcolemmal membrane (Craig and Pardo, 1983; Pardo et a l, 1983). Costameres 

transmit contractile forces laterally through the sarcolermnal membrane to the basal 

lamina (Danowski et a l, 1992). It has been found that dystrophin is not required for 

the assembly of several of the proteins that comprise costamere-like structures but its 

absence does lead to an altered costameric lattice (Ehmer et a l, 1997; Minetti et a l,

1992; Porter et a l, 1992; Williams and Bloch, 1999). These data suggest that 

dystrophin plays an important role in the organisation or stability of costameres 

perhaps via an interaction with actin filaments (Rybakova et a l, 2000). Rybakova 

and colleagues (2000) showed that the dystrophin complex formed a mechanically 

strong link between the sarcolemma and the costameric cytoskeleton through 

interaction with y-actin filaments (Rybakova et a l, 2000).

Following the discovery of the dystrophin gene another cDNA was identified 

which showed considerable homology to that of dystrophin (Love et a l, 1989).

Initially this protein was referred to as dystrophin related protein (DRP), but once 

cloned and sequenced (Tinsley et a l, 1992) it was subsequently renamed utrophin 

due to a ubiquitous expression pattern compared to that of dystrophin. Utrophin is 

found in many tissues but it does not exhibit a uniform distribution; for example, 

within muscle, utrophin localises to intramuscular nerves, blood vessels and 

myotendinous junctions. In muscle cells utrophin shares a high degree of functional 

similarity with dystrophin (Claudepierre et a l, 1999; Earnest et a l, 1995; Loh et a l.

12
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2000; Matsumura et al., 1993; Nguyen et al., 1991; Pons et a l, 1994; Raats et a l, 

2000) and within the myofîbre, utrophin can be found at the neuromuscular junction 

where it binds to components of the dystrophin associated glycoprotein complex 

(DAGC) (Perkins and Davies, 2002). Given the overall similarities between utrophin 

and dystrophin it has been proposed that utrophin may function in a similar manner 

to dystrophin; for example, the extraocular muscles (EOM) within the the eyes of 

mdx mice do not exhibit myofîbre degeneration and it has been proposed that 

endogenous upregulation of utrophin is responsible for the protection of extraocular 

muscle in dystrophinopathy (Porter et a/., 1998). This has led to the proposition of 

utrophin as a potential therapeutic replacement for dystrophin in the treatment of 

DMD (Matsumura et a l, 1992; Pearce et a l, 1993; Tinsley et a l, 1992).

1.3 Actin-binding domains

Actin-binding domains generally consist of approximately 240 residues that 

comprise two functionally distinct but structurally equivalent domains (Gimona and 

Winder, 1998; Matsudaira, 1991). These domains have been named calponin 

homology or CH domains (Castresana and Saraste, 1995) based on the sequence 

similarity to the smooth muscle regulatory protein calponin (Winder and Walsh,

1990), where this domain is found only as a single copy. Compared to the single CH 

domain seen in calponin, the double domain found in the spectrin superfamily of 

proteins has been proposed to have arisen through a process of gene duplication 

(Castresana and Saraste, 1995; Matsudaira, 1991), Furthermore, phylogenetic 

analysis of CH domain-containing proteins has revealed that there is a greater 

similarity between the N-tenninal CH domains (CHI) and the C-terminal CH 

domains (CH2) in any of the classes of actin-binding proteins than between the CH 

domains found within the same protein (Banuelos et a l, 1998; Keep et a i, 1999a; 

Korenbaum and Rivero, 2002; Stradal et a t, 1998). Some actin-binding proteins 

have been found to contain a single CH domain although the binding interaction 

requires additional elements as the isolated CH domains from these proteins do not 

exhibit analogous actin-binding when compared to the whole protein (Gimona and 

Mital, 1998). Functionally, it should be noted that characterisation of bacterially

13
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expressed CH domains corresponding to the actin-binding domains of a-actinin, 

dystrophin and utrophin were found not to be equivalent (Way et al., 1992; Winder et 

ah, 1995). When the two CH domains are separated and then used in actin-binding 

experiments it has been found that only CHI has the ability to interact with F-actin 

although the affinity is reduced. CH2 has little or no intrinsic actin-binding activity 

but it is obvious that its presence is functionally important. It has been shown that 

both of the CH domains are required to achieve the greatest interaction with F-actin 

and hence, single CH domains are not regarded as actin-binding domains per se 

(Gimona and Winder, 1998).

The first crystal structures of CH domains were published in 1997. These were 

the CH2 domain of spectrin (Camgo et al., 1997) and the N-teiminal ABD of 

fimbrin, comprising two CH domains (CH l.l and CH2.1) (Goldsmith et al., 1997). 

The crystal stiucture of the second utrophin CH domain (CH2) was later published 

by (Keep et a t, 1999a). It was not long, however, before the complete actm-binding 

domain of utrophin was crystallised (Keep et a l, 1999b) followed closely by 

dystrophin (Norwood et al., 2000). The CH domain is a compact globular domain 

that appears to show a high degree of structural conservation. Overall, the domain 

comprises four main a-helices (A, C, E and G) that are approximately 11-18 residues 

in length and exhibit a roughly parallel orientation. Three shorter helices (B, D and 

F) aie less regular and foim lesser secondary structure elements. The stiucture can be 

considered to comprise a number of layers. The core of the domain is formed by a 

parallel arrangement of helices C and G, which are then sandwiched between helix E 

and the N-terminal helix A (Broderick and Winder, 2002).

The crystal stiuctures of CH domains from a-actinin, dysti’ophin, utrophin, 

fimbrin, spectiin and plectin have been solved to date. These structures have given 

insight into certain aspects of CH domain function but have also raised many new 

questions regarding the interaction of these domains with actin. The dimeric 

organisation displayed by the crystallised utrophin and dystrophin ABDs contrasts 

strongly with that of the a-actinin and the related fimbrin actin-binding domain 

(Franzot et al., 2005; Goldsmith et al., 1997). When crystallised, fimbrin and a- 

actinin do so as compact monomers, where the two CH domains fold back on 

themselves to form a compact globulai" structure. These same interfaces are involved

14
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in the dimérisation seen in utrophin, except it is the CHI and CH2 domains from 

separate molecules that interact. The preservation of an interface between two 

domains of the same or related proteins when in monomeric or oligomeric forms is 

known as thi'ee-dimensional domain swapping (Schlunegger et al., 1997). Recent 

cryo-EM reconstructions of these domains with E-aetin have not served to 

definitively resolve the mode of interaction of tliese proteins with F-actin. 

Reconstructions of fimbrin and bound to F-actin have been modelled on a compact 

conformation (Hanein et al., 1998) and the reconstiuction of utrophin with F-actin on 

an extended conformation (Moores et al., 2000). Electron diffraction and modelling 

of the a-actinin molecule bound to F-actin showed that the ABD could be 

associating as an open bi-lobed structure (Tang et al., 2001; Taylor and Taylor,

1993). The cryo-EM reconstruction of a-actinin with F-actin (McGough et al.,

1994), however, revealed a more globular difference density, suggesting that a- 

actinin might also associate with F-actin in a manner more analogous to the compact 

mode of interaction seen in the fimbrin crystal structure. The helical linkers between 

the two CH domains of these proteins may play an important role in determining the 

flexibility between the two CH domains and, subsequently, the manner they interact 

with F-actin. Gel-filtration studies of the utrophin ABD have shown it to be 

monomeric when in solution (Winder at al., 1995). Hence, the crystal structures of 

the ABDs from fimbrin and utrophin may represent two conformational extremes 

within this class of actin-binding proteins (Keep et a l, 1999b). Several modes of 

interaction with F-actin have been demonstrated in cryo-EM studies with the 

utrophin ABD (Galkin et al., 2002).

Within N-teiminal actin-binding domains thi'ee actin-binding sites (ABS) have 

been delineated (ABSl, 2 and 3). The first and third ABS have been localised to the 

a l  helix in the first and second CH domains respectively. These sites were originally 

identified using synthetic peptides derived from dystrophin (Levine et al., 1990; 

Levine et al., 1992). The second ABS coiTcsponding to helices a5 and a6 in the CHI 

domain was first identified in the Dictyostelium actin-gelation factor ABP-120 

(Bresnick et al., 1991; Bresnick et al., 1990). ABS2 was later identified in a-actinin 

using in vitro actin-binding studies with glutathione S-transferase (GST) fusion 

proteins (Kuhlman et al., 1992). It was later recognised that the ABS sequences were
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not part of a fully folded globular protein and hence residues not noraially involved 

in actin-binding may have been allowed to interact with actin. Structural approaches 

have begun to shed light on the mechanism by which the spectrin superfamily of 

proteins interact with the cytoskeleton. Biochemical work studying the actin-binding 

sites of a-actinin (Lebait et al., 1990; Lebart et al., 1993; McGough et al., 1994; 

Mimura and Asano, 1987) and dysti'ophin (Levine et al., 1992) have been successful 

in identifying actin subdomain 1 as an important binding site for this particulai* class 

of proteins. Electron microscope reconstructions of F-actin decorated with a-actinin 

(McGough et al., 1994; Tang et al., 2001) reveal that actin subdomain 1 foims the 

major site of interaction. Helical reconstiuction also revealed that these two proteins 

interacted with adjacent actin monomers on the long pitch helix, a site apparently 

shared by most F-actin binding proteins (McGough, 1998). The crystal structure of 

the utrophin ABD suggested an alternate model to that of the association of fimbrin 

with actin (Keep et a l, 1999b). As utrophin ciystallised as a head-to-tail dimer each 

of the monomers adopted an extended conformation. This arrangement placed the 

predicted ABSs on the surface of the protein clearly enabling interaction with actin. 

The dimérisation of utrophin seen in the crystal conserved the inter-CH domain 

interfaces suggesting that utrophin may adopt a more compact conformation when in 

solution. To date, there is no evidence to support anything other than a monomeric 

conformation of utrophin when in solution as the binding stoichiometi'y with actin is 

1:1 (Keep et a l, 1999b; Winder et al, 1996), However, the crystallisation of 

utrophin as a dimer suggested that the ABD of this protein may be flexible and allow 

actin-binding in an open conformation even when utrophin exists as a monomer in 

solution. Moores et a l  (2000) developed tiiis idea further by demonstrating a model 

of utrophin-actin binding which contrasted that of fimbrin bound to actin (Moores et 

al., 2000). A pseudo-atomic model of utrophin bound to F-actin in an open 

conformation was constructed, showing that all of the ABSs could be directly 

involved in the actin interaction. This mode of binding was found to create a 

different conformational change within actin compared with that caused by fimbrin, 

suggesting that an induced fit mechanism involving conformational flexibility of 

actin and utrophin may be crucial to their interaction (Moores et al., 2000). The 

validity of this model has recently been called into question (Galkin et al., 2003),
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however, and alternative models have been proposed (Galkin et aL, 2002). The 

comparison between the previously published model of fimbrin binding to actin and 

that of utrophin shows that both proteins possess a totally different mode of 

interaction even though their ABDs share sequence homology. Such a difference is 

likely to be related to the overall function of each protein but the utrophin model has 

identified an alternate means of actin association within a large family of proteins 

important to cellular organisation. It should be noted that Moores et al, (2000) did 

not exclude the compact orientation in utrophin actin-binding (Moores et al., 2000). 

However, their model relies on inherent protein flexibility. Indeed, models of 

utrophin ABDs have been generated where association with F-actin is made in a 

closed compact conformation (Sutherland-Smith et al., 2003). Recent 

crystallographic and calorimetric studies of the plectin ABD demonstrated that while 

the two CH domains associate to form a closed conformation in the crystal structure 

bindmg to F-actin induces the open conformation (Garcia-Alvarez et al., 2003). 

Elucidation of spectrin’s interaction with actin at the molecular level, however, has 

been hampered by an inability to express a functional spectrin ABD in isolation.

1.4 Spectrin repeat region

The rod domain of a-actinin is the shortest within this family of proteins and 

comprises just four spectrin-like repeats. Given the reduced length of this domain it 

is feasible to assume a greater degree of rigidity, especially as the functional unit of 

a-actinin is a dimer. The spectrin repeats of the rod domain are essential to the 

dimérisation of a-actinin. The fact that the rod domains of two monomers associate 

leads to a much more stable and less flexible domain overall (Djinovic-Carugo et al., 

2002). Spectrin, dystrophin and utrophin all contain many more spectrin repeats that 

seem to play a more direct role in the cellular function of these proteins. Studies 

performed by Pasternak and colleagues show the sarcoleimna of muscles from the 

mdx mouse is four times less stiff than in controls (Pasternak et al., 1995), 

demonstrating directly that dystrophin and its associated proteins reinforce the 

stability of the sarcomere. Spectrin forms roughly 5% of the total protein of the 

erythrocyte and is pivotal to the formation and function of the sub-membranous
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skeleton in red blood cells. This erythrocyte plasma membrane possesses remarkable 

mechanical properties more like an elastic semi-solid (Evans and Hoclimuth, 1977). 

This allows storage of energy during deformation, for example squeezing through a 

narrow capillary, but allows the erythrocyte to return to its normal shape once the 

deformation ceases (Bennett and Gilligan, 1993). The ability of erythrocytes to 

survive repeated deformation is essential to their physiological function and their 

prolonged life within the vasculature. Direct evidence has detennined that spectrin is 

the major factor in providing the elastic properties exhibited by the erythrocyte. 

Studies of erythrocytes from patients suffering from hereditary spherocytosis clearly 

demonstrate this (Waugh and Agre, 1988) as reduced quantities of spectrin result in a 

greater extent of clinical severity and a reduction in the force required to deform the 

affected erythrocytes (Agre et al., 1986; Agre et a l, 1985). This, perhaps, results 

from an overall effect of the structure of the sub-membranous lattice on the whole, 

but the properties of this mesh work of proteins can be linked to the properties of the 

spectrin repeats found within the rod domain. For many cytoskeletal and adhesion 

proteins the ability to survive extension and deformability is pivotal to their role in a 

cellular environment. Atomic force microscopy (AFM) has been employed to 

examine the extensibility of spectrin repeats (Rief et a l, 1999). These studies have 

determined that the a-helical spectrin repeat can be forced to unfold in a stochastic 

one-domain-at-a-time fashion (Rief et a l, 1999). The availability of tandem spectrin 

repeat structures from non-erythroid a-spectrin (Grum et a l, 1999) and the four 

repeat rod domain of a-actinin (Ylanne et al, 2001) have shown that individual 

spectrin repeats should not be considered as such and that the inter-spectrin repeat 

links are actually formed from contiguous helices rather than flexible linkers (Law et 

a l, 2003). This has implications for the manner that spectrin repeats respond to 

mechanical stress inasmuch as the repeats within the rod domain do not unfold one at 

a time. Rather, they are subject to a cooperative manner of forced unfolding (Law et 

a l, 2003). Helical linkers between spectrin repeats have been implicated to help 

explain the extensibility and elasticity observed within the erythrocyte cytoskeleton. 

The unfolding of spectrin repeats might explain thermal-softening (Waugh and 

Evans, 1979) and strain softening of the RBC sub-membranous network (Lee and 

Discher, 2001; Markle et a l, 1983). Additionally, it has also been shown that tandem
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spectrin repeats are thermodynamically more stable than individual repeats and that 

tandem repeats unfold in unison behaving similarly to an individual repeat 

(MacDonald and Pozharski, 2001).

The rod domains of spectrin family proteins are assumed to function solely as 

structural spacers that serve to separate the C-terminus from the N-terminal actin- 

binding domain. Whilst this is likely to be the case for a-actinin, and to a certain 

extent in spectrin, natural mutations and transgenic experiments would suggest 

otherwise for dystrophin. It was widely thought that the rod domain of dystrophin 

(and utrophin) served as flexible spacers or shock absorbers between the actin 

cytoskeleton and the sarcolemmal membrane (Winder et al., 1995). However, is the 

length of this ‘shock absorber’ crucial to the function of the protein? An individual 

with a large deletion in the dystrophin gene encompassing 46% of the entire protein 

and 73% of the rod region (repeats 4-19) presented with a very mild BMD phenotype 

(England et al., 1990). This would tend to suggest that rod domain length is not 

essential with regard to the proposed shock absorbing role of the protein. The fact 

that a dystrophic phenotype is observed, regardless of how mild, would suggest that 

there is functional importance regarding the length of the rod domain. However, 

dystrophin minigenes have been designed on the basis of this shortened dystrophin 

and have been used to correct the dystrophic phenotype in mdx mice (Phelps et al., 

1995; Wells et al., 1995). Similarly, a minispectrin has also been generated that 

consists of the N-terminal ABD and the first two spectrin repeats of p-spectrin, and 

the C-terminus of a-spectrin consisting of the last two spectrin repeats and the 

calmodulin-like domain. This construct was still able to dimerise and retained the 

ability to bind F-actin and induce the formation of bundles but it is unlikely to be 

functional in vivo (Raae et a l, 2003). The shock-absorbing role of the spectrin 

repeats found within these proteins is widely accepted, which leads on to the 

question of why there are so many coiled coils in dystrophin and utrophin. a-Actinin 

contains only four spectrin repeats, which mediate dimérisation and result in a rather 

inflexible link between the termini of the protein (Ylanne et a l, 2001). In this case 

the length of the rod domain clearly defines the distance at which filamentous actin 

can be cross-linked. a-Actinin is localised to structures that require actin filaments to 

be cross-linked in either a parallel or antiparallel fashion. This requires the a-actinin
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dimer to bind actin filaments in orientations separated by as much as 180°. 

Furthermore, a-actinin is able to accommodate a range of inter-actin filament cross- 

linking distances, from 15-40 mn (Liu et al., 2004; Luther, 2000; Taylor et al., 2000). 

The domain is essential to the formation of the functional dimer and for the 

separation of the C- and N-tennini of the protein, but it would seem that the flexible 

hinge that separates the rod from the ABD and the ABD itself play an important role 

in determining the ultimate cross-linking distance.

1,5 Other binding partners

The repeating constituents of the rod domains of spectrin family proteins were 

generally regarded as modules for the construction of elongated molecules (Winder, 

1997). However, this is not the only function of spectrin repeats. It is widely 

accepted that proteins containing spectrin repeats are localised to cellular sites that 

experience significant mechanical stress, and the properties of the spectrin repeat can 

be used to explain this functionality (see above, section 1.4). Additionally, some 

spectrin repeats have acquired functions with a purely structural role and these are 

able to interact with a variety of structural and signalling proteins (Djinovic-Carugo 

et al., 2002).

The function of spectrin superfamily proteins is particularly evident when taken 

in context of their cellular localisation. They often form flexible links or structures 

that allow interactions with the cellular cytoskeletal architecture and the membrane. 

In both spectrin and dystrophin such a function is performed but the spectrin repeats 

of these molecules are also able to interact with actin and contribute to binding. A 

portion of the dystrophin rod domain that spans residues 11-17 contains a number of 

basic repeats that allow a lateral interaction with filamentous actin (Rybakova et a l, 

1996). The homologous utrophin can also interact laterally with actin. This 

interaction is distinct from that of dystrophin as the utrophin rod domain lacks the 

basic repeat cluster and associates vrith actin via the first ten spectrin repeats 

(Rybakova et a l, 2002). P-Spectrin also exhibits an extended contact with actin via 

the first spectrin repeat. In this situation it was found that the extended contact 

increased the association of the adjacent ABD with actin (Li and Bennett, 1996). In
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conjunction with this interaction it has been found that the second repeat is also 

required for maximal interaction with adducin (Li and Bennett, 1996), a protein 

localised at the spectrin-actin junction, which is believed to contribute to the 

assembly of this structure in the membrane skeletal network (Gardner and Bennett, 

1987). In the erythrocyte cytoskeletal lattice p»spectrin interacts with ankyrin, which 

in turn binds to the cytoplasmic domain of the membrane-associated anion 

exchanger. This indirect link to the cellular membrane occurs via repeat 15 of p- 

spectrin (Kennedy et a l, 1991) and is largely responsible for the attachment of the 

spectrin-actin network to the erythrocyte membrane (Bennett and Baines, 2001). A 

much larger number of direct links to transmembrane proteins have been determined 

for the spectrin repeats of a-actinin (Djinovic-Carugo et a l, 2002), The crystal 

structure of the a-actinin rod domain (Ylanne et a l, 2001) has allowed the analysis 

of the surface features leading to predictions of possible protein-protein interaction 

sites. It was found that the most conserved surface residues were acidic in nature, 

which would correlate well with the relatively short basic sequences that can be 

found within the cytoplasmic domains of many transmembrane proteins (Ylanne et 

a l, 2001). a-Actinin has been found to provide a direct link with a variety of 

transmembrane proteins including integrins, ICAMs, L-selectin, Ep-Cam, ADAM12 

and NMDA receptor subunits (see Djinovic-Carugo et al, 2002 for references). The 

a-actinin rod domain is also involved in a number of dynamic and regulatory 

interactions that involve interactions with titin (Young et a l, 1998), myotilin 

(Salmikangas et a l, 1999), ALP (Xia et a l, 1997) and FATZ (Faulkner et a l, 2000) 

at the Z-disk of striated muscle and interactions with Rho-kinase type protein kinase 

N (PKN) (Mukai et a l, 1997). All of these interactions occur tlirough the rod domain 

of a-actinin and demonstrate the multivarience of the rod domain as a binding site 

for the interactions with these proteins (Djinovic-Carugo et a l, 2002). Spectrin and 

dystrophin rod domains have also been demonstrated to interact directly with lipid 

surfaces suggesting a lateral association with biological membranes (An et a l, 2004; 

De Wolf et a l, 1997; Le Rumeur et a l, 2003; Maksymiw et a l, 1987).
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1.6 Regulating interactions o f spectrin superfamily proteins

The spectrin family of proteins, depending on the particular function, has 

numerous smaller motifs and binding sites for interaction with other proteins. These 

regions are important as they are major protein-protein or protein-membrane 

interaction modules that bind to F-actin, proline-containing ligands and/or 

phospholipids. Spectrin and dystrophin/utrophin have all acquired copies of such 

domains since their evolution from a-actinin, presumably as a consequence of their 

more diverse roles in the cell.

1.6.1 CH domains

The calponin homology (CH) domain has been identified in many molecules of 

differing function. However, its presence usually signifies an interaction of some sort 

with the actin cytoskeleton via an association with F-actin. The domain was initially 

identified as a 100 residue motif found at the N-terminus of the smooth muscle 

regulatory protein calponin and, hence, was termed the CH domain (Castresana and 

Saraste, 1995). The refinement of algorithms for the identification of distinct protein 

motifs has allowed the identification of CH domains in proteins that range in 

function from cross-linking to signalling (Korenbaum and Rivero, 2002). Despite the 

functional variability of this domain the secondary structure is conserved remarkably 

well between proteins that contain it (Bramham et al., 2002).

Several mechanisms have been identified that seem to regulate the CH domains 

found in spectrin, dystrophin and a-actinin. These range from effects induced by 

calcium via EF-hand motifs, PIP2 binding, phosphorylation and interactions with 

calmodulin. The actin-binding properties of the non-muscle isofonns of the F-actin 

crosslinker a-actinin can be regulated via the presence of EF-hands. Calcium does 

not directly regulate a-actinin’s CH domains interaction with F-actin but it does bind 

to the EF-hand motif present in the molecule. As a-actinin dimerises this brings the 

CH domains and EF-hands in the antiparallel dimer in close association. The 

conformational changes induced in the EF-hand motif can then exert an effect on the 

CH domains to influence the interaction with F-actin (Noegel et al., 1987; Tang et
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a l, 2001). a-Actinin has also been found to bind phosphatidylinositol (4,5)- 

bisphosphate (PÏP2) at the muscle Z-line (Fukami et a l, 1992). The PIP2 binding site 

has been delineated to a region immediately C-terminal of the third ABS (Fukami et 

a l, 1996) although the precise mechanism of control is not known for this region. It 

has been found, though, that in non-muscle cells where a-actinin is associated with 

actin this region contained bound PIP2 whereas free a-actinin did not. This 

implicates a role for PIP2 in the activation of a-actinin induced actin-bundling 

(Fukami et a l, 1994).

Calmodulin has also been shown to regulate the interaction of the ABDs from 

dystrophin, utrophin and a-actinin by binding directly to the CH domains (Bonet- 

Kerrache et a l, 1994; Jarrett and Foster, 1995; Winder et a l, 1995) suggesting a 

potential role for modulating the attachment of these proteins to the cytoskeleton. 

Recently, it has been shown that a-actinin is phosphorylated by focal adhesion 

kinase (FAK) and that this phosphorylation reduces the ability of a-actinin to bind 

actin (Izaguirre et a l, 2001). The site of tyrosine phosphorylation is N-terminal to the 

first CH domain in a region that is most conserved between spectrin family proteins.

1.6.2 EF hands

EF-hand regions are involved in the chelation of up to two divalent calcium 

cations (occasionally magnesium) via an interaction through a paired helix-loop- 

helix structure (Tufty and Kretsinger, 1975). Binding of calcium to this globular 

domain leads to a dramatic conformational change from "closed” to "open," exposing 

a hydrophobic surface that binds to a target peptide, often helical in nature. However, 

divergent evolution has led to a subset of EF-hands that no longer chelate calcium 

and possibly serve an alternate function (Nakayama and Kretsinger, 1994). This is 

exemplified in a-actinin non-muscle isoforms, where calcium is bound via the EF- 

hands thus allowing regulation of actin-binding. The muscle-specific isoforms of a- 

actinin have lost the ability to bind calcium through their EF-hands (Blanchard et a l, 

1989), possibly to protect the muscle architecture from the potential destabilising 

effect of calcium during calcium-induced contractions. Spectrin has also both 

retained and lost the ability to bind calcium. Calcium and calmodulin bind to human
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non-erythroid spectrins (alipil) at sites that have either degenerated or are absent in 

erythroid spectrins (alpl) (Limdberg et al., 1992). The roles of non-erythroid 

spectrins are far more diverse and, hence, calcium and calmodulin might participate 

in regulatory events not required in the erythrocyte (Buevich et al., 2004). The EF- 

hands of a-spectrin are brought in close opposition with the p-spectrin ABD once the 

proteins form the heterodimer. The EF-hand is then able to exert regulatory control 

over the actin-binding activity of the adjacent domain. The molecular details of how 

this is achieved are still to be detennined, however. A similar interface is observed in 

a-actinin. It is thought that the EF-hand region could engage the actin-binding 

domain in a manner analogous to calmodulin binding a target peptide. Regulation of 

the interaction would be affected by the binding of calcium to the EF-hand, which 

would cause a conformational change resulting in altered interaction surfaces. The 

calcium-binding activity of non-erythroid spectrin has been located to the two EF- 

hands present in the C-terminus of the all-spectrin (Lundberg et al., 1995; Trave et 

al., 1995). Buevich and colleagues (2004) found that the EF-hands in non erythroid 

spectrin exhibited a degree of co-operativity in their binding of calcium, suggesting 

that EFl binds before EF2 and modulates the affinity of EF2 for calcium although 

overall, calcium binding to a-spectrin has been found to be much weaker than to 

other EF hand-containing proteins such as troponin C and calmodulin (Zhang et al.,

1995).

Each of the three EF-hand structures solved from the spectrin family proteins 

exhibit unique structural and functional differences even though all are 

fundamentally similar. The a-spectrin (non-erythroid) EF-hands bind calcium and 

presumably perform some kind of regulatory role regarding the actin-binding 

function of spectrin (Zhang et al., 1995). Due to the low calcium affinity it is 

expected that calcium regulatory events involving spectrin would occur in areas of 

the cell that would experience a transient but significant fluctuation of calcium 

concentration (Buevich et a l, 2004). It is possible that in the cell the calcium-bound 

form of spectrin would be stabilised by accessory proteins as non-erythroid spectrin 

interacts with many proteins that are involved in regulatory events and not just with 

the cytoskeleton. In muscle a-actinin (isofonn 2) the third and fourth EF-hands can 

be referred to as ‘empty’ on the basis of a lack of key liganding residues and large
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insertions in the helix-loop-helix motif. This muscle isoform of a-actinin is 

important in striated muscle Z-disk structure, where it interacts with F-actin and titin. 

The structure of this complex was solved and showed the titin Z-repeat peptide 

bound in a groove formed by the partially open lobes of the two EF-hands (Atkinson 

et al., 2001). The EF-hands of dystrophin were solved as part of a larger structure 

that also included the adjacent WW domain (Huang et al., 2000). These EF-hands 

had been predicted to be unable to bind calcium due to a lack of key liganding 

residues (Winder, 1997). The structure of the dystrophin WW-EF region indicated 

that the EF-hands may play a structural role and that they are not required to bind 

either calcium or a target peptide (Huang et al., 2000). It is still to be elucidated if 

this region of dystrophin interacts with other target peptides but as the EF-hands are 

oriented in a closed and compact manner it is difficult to see how these interactions 

would occur (Broderick and Winder, 2002). Indeed, studies with constructs spanning 

both the WW domains and EF-hand regions of dystrophin and utrophin have failed to 

show any calcium-induced regulation of binding to j3-dystroglycan (James et al., 

2000; Rentschler et a l, 1999).

1.6.3 Lipid binding

Pleckstim homology (PH) domains are motifs that are approximately 100

amino acids in length and which have been identified in over 100 different

eukaryotic proteins. They are thought to participate in cell signalling and cytoskeletal 

regulation via interactions with phospholipids (Lemmon and Ferguson, 1998; 

Rebecchi and Scarlata, 1998). It has been suggested tliat these domains function as 

membrane anchors and tethers, as PH domams are often found within membrane- 

associated proteins (Ferguson et a l, 1995). The domain was first recognised in 1993 

(Haslam et a l, 1993; Mayer et a l, 1993; Musacchio et al., 1993) and was quickly 

followed by the determination of 3D structures.

The P-spectrin PH domain stmcture was solved in a lipid-free (Zhang et a l,

1995) and lipid-bound form (Hyvonen et a l, 1995). The role of the spectrin PH

domain has been proposed to be part of the mechanism whereby spectrin associates 

directly with the membrane through binding phospholipids. The sub-membranous
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framework formed by spectrin is linked to transmembrane polypeptides via 

peripheral proteins such as ankyrin and band 4.1 (Viel and Branton, 1996), and 

spectiin is essential to the integrity of this network. The PH domain of spectrin has 

been fomid to have a weak affinity and specificity for PI(4,5)P2 (Harlan et al., 1994; 

Hyvonen et al., 1995). Lemmon and colleagues (2002) suggested that the P- 

spectrin/membrane interaction is diiven by a delocalised electrostatic attraction 

between an anionic ligand and the positively charged face of the polarised PH 

domain (Lemmon et al., 2002). The PH domain of spectrin appears to falls into a 

class of PH domains which exhibit a moderate affinity for the phospohinositides. In 

cells this polarised domain may direct a few spectrin isoforms to PI(4,5)P2 enriched 

sites such as caveoli or focal adhesions (Bmridge and Chrzanowska-Wodnicka,

1996), where other determinants of membrane association are likely to play an equal 

or more dominant role in stabilizing attachment. Although membrane attachment is 

not necessarily dependent on this domain it has been shown that the PH domain of 

the human pIZ2 spectrin isoform binds to protein-depleted membranes containing 

P1(4,5)P2 and to Ins(l,4,5)P3 in solution (Wang and Shaw, 1995). This domain 

localises to plasma membranes in COS7 cells (Wang et al., 1996). Ins(l,4,5)P3 

binding has been found to perturb residues located in or near loop 1 of the 

Drosophila spectrin PH domain as is the case for the N-terminal PH domain and the 

mouse form of p-spectrin (Zhou et al., 1995). The binding site of P-spectrin has no 

elaborate hydrogen bonding network and the inositol ring has no specific contacts 

with the protem, unlike the PH domain of PLC-ôi (Ferguson et al., 1995). Moreover, 

spectiin does not bind Ins(l,4,5)P3 on the same face as PLC-Ôi, whose binding 

pocket is located on the other side of the protein.

The P-spectrin PH domain binds weakly to all phosphoinositides and is likely 

to associate with the negatively chaiged membrane surface via the positively charged 

face of the domain. Spectiin networks contain many spectrin molecules and it is 

likely that the individual weak association with phosphoinositides is facilitated by the 

overall collective interaction of many molecules. Such a mechanism of multivariant 

association allows only the assembled cytoskeletal components to interact strongly 

with cellular membranes such as in die RBC.
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1,6.4 Poly-proline binding domains

The Src homology 3 (SH3) domain of a-spectrin was the first SH3 domain 

structure to be solved (Musacchio et al., 1992). The domain was initially identified as 

regions of similar sequence found within signalling proteins, such as the Src family 

of tyrosine kinases, the Crk adaptor protein, and phospholipase C-y (Mayer et al., 

1993). In the case of spectrin, the specific target ligand and function are still to be 

identified. The domain is approximately 60 residues in lengdi and has been identified 

in many proteins (Bateman et al., 1999; Rubin et al., 2000). The SH3 domain 

continues to be identified within a variety of proteins and, subsequently, is regaided 

as one of tlie most common modular protein interaction domains found and is 

widespread in signalling, adaptor and cytoskeletal protein alike (Mayer, 2001). Due 

to the small size of this domain a search for a potential function focused on protein- 

protein interactions, with screening of expression libraries soon identifying 

seemingly specific binding partners (Cicchetti et al., 1992). Binding studies have 

indicated that the interaction sites of SH3 domains were proline-rich with PxxP being 

identified as a core conserved binding motif (Ren et al., 1993). It should also be 

noted that profihn and WW domains also make use of a similar mode of interaction 

with proline-rich helical ligands (Ilsley et a l,  2002; Kay et a l,  2000; Tanaka and 

Shibata, 1985; Zarrinpar and Lim, 2000).

As mentioned above the WW domain is another example of a protein-protein 

interaction module that binds proline-rich sequences (Kay et al., 2000). Dystrophin 

and utrophin WW domains interact predominantly with the extracellular matrix 

receptor dystroglycan, which contains a type 1 WW motif of consensus PPxY (Ilsley 

et al., 2002; Winder, 2001). A structure of a WW domain from dystrophin was 

solved recently as part of a structure including the EF-hand region, and also with and 

without a bound P-dystroglycan peptide (Huang et a l, 2000).

Chung and Campanelli (1999) found that the interaction between utrophin and 

p-dystroglycan mirrored that of dystrophin (Chung and Campanelli, 1999). This is 

mainly mediated by the WW domain, which recognises the PPPY peptide at the 

carboxy terminus of p-dystroglycan. Adhesion-dependent tyrosine phosphorylation 

of p-dystroglycan within the WW domain binding motif has been found to be able to
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regulate the WW domain-mediated interaction between utrophin and p-dystroglycan. 

This was the first demonstration of physiologically relevant tyrosine phosphorylation 

of a WW domain ligand and parallels the tyrosine phosphorylation of SH3 domain 

ligands regulating SH3 mediated interactions (James et a l, 2000). Investigations 

performed by Rentschler and associates (1999) have also determined that the EF- 

hand regions following the WW domain are necessary for WW binding (Rentschler 

et a l, 1999). It was later shown that the integrity of the utrophin WW-EF-ZZ region 

is essential for efficient binding to P-dystroglycan (Tommasi di Vignano et a l, 

2000). This binding activity can be abolished in utrophin if  the ZZ domain is deleted, 

but only a reduction in binding is observed for dystrophin (Rentschler et a l, 1999).

1.6.5 ZZ domain

Dystrophin and utrophin contain a putative zinc finger motif within their C- 

terminal cysteine-rich domains homologous to domains found in sequences of a wide 

variety of proteins (Ponting et al., 1996). The ZZ domains of dystrophin and utrophin 

have been shown to bind zinc (Michalak et a l, 1996; Winder, 1997) and are believed 

to be involved in mediating protein-protein interactions although the precise function 

of the ZZ domain has not yet been elucidated. It has been found that the cysteine-iich 

domain of dystrophin is required for binding to p-dystroglycan and it has been shown 

that the ZZ domain strengthens the interaction between the dystrophin WW-EF 

region and p-dystroglycan (James et al., 2000; Jung et a l, 1995; Rentschler et al., 

1999). More recently, Ishikawa-Sakurai and colleagues identified tlie components of 

the C-terminal domain of dystrophin that are required for the full binding activity. 

They have detailed the extent of the C-terminal sequence (residues 3026-3345) that 

is required for effective binding and have identified cysteine 3340 within the ZZ 

domain as essential to the binding activity with p-dystroglycan (Ishikawa-Sakurai et 

a l, 2004). The functional importance of the ZZ domain has been proven further by 

the identification of a rare mutation where C3340 has been mutated to a tyrosine 

resulting in tlie affected individual suffering from a foim of DMD (Lenk et a l,

1996). However, to date, no structure of any ZZ domain has been solved. C-terminal 

to the ZZ domain is a pair of highly conserved helices predicted to form dimeric
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coiled-coils (Blake et al., 1995). These helices, which are restricted to dystrophin 

family proteins (dystrophin, utrophin, DRP2 and dystrobrevin), are involved in 

heterophilic-associations between family members and also members of the 

syntrophin family of proteins (Blake et al., 2002).

1,7 Disease and spectrin superfam ily prote ins

It has already been described how each of the spectrin superfamily members 

function within the cellular context and how these functions relate to the overall 

structure of each protein. These proteins each have specialised roles that are essential 

to the overall function to the specific cells and tissues in which they are found. 

Disruption of these proteins functionality via mutation may often result in 

undesirable pathologies that are detrimental to the overall health of the affected 

individual. For example, erythrocytes in the human blood stream have to squeeze 

repeatedly through narrow capillaries of diameters lesser in size than their own 

dimensions whilst resisting rupture. Spectrin forms an integral part of the erythrocyte 

cytoskeletal architecture and any defects that disrupt the association of the spectrin 

heterotetramer or the interaction with any of the other sub membranous proteins can 

result in red blood cell defects (Hassoun and Palek, 1996). Indeed, abnormalities of 

the P-spectrin N-terminus and the a-spectrin C-terminus affect the self-association 

site and result in hereditary elliptocytosis and hereditary pyropoikilocytosis 

(Delaunay, 1995; Delaunay and Dhermy, 1993; Palek and Jarolim, 1993) whereas 

defects outside the self-association site of spectrin are also associated with hereditary 

spherocytosis (HS) (Hassoun et al., 1997).

In humans, mutations in the ACTN4 gene result in a-actinin-4 mutations, 

which are believed to cause a fonn of familial focal segmental glomerulosclerosis 

(FSGS) (Kaplan et al., 2000). FSGS is a common non-specific renal lesion 

characterised by regions of sclerosis in some renal glomeruli often resulting in loss of 

kidney function and ultimately end-stage renal failure. Kaplan and colleagues (2000) 

have sequenced the coding region of ACTN4 from a number of families that present 

one fonn or another of FSGS. Three specific residues were characterised; K228E, 

T232I and S235P, all three of which can be found on the solvent-accessible surface 

in helix G of the second CH domain (Kaplan et al, 2000). These mutations are not
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expected to perturb the secondary structure of the actin-binding domain. However, 

they are all highly conserved amongst all of the four human isoforms of a-actinin as 

well as a-actinins of other species. The presence of these mutations has a marked 

affect on the functionality of the mutant protein when in the cellular environment and 

when binding to F-actin. Yao and colleagues (2004) have demonstrated that the 

mutant a-actinins exhibit altered structural characteristics, localise abnormally and 

are targeted for degradation (Yao et al., 2004). They suggest that the mutant a- 

actinin-4 is much less dynamic within the cellular enviromnent and, due to its 

propensity to aggregate, loss of normal function becomes inevitable and contributes 

to progression of kidney disease.

Finally, mutations that affect dystrophin result in pathologies that are perhaps 

the most well known out of all the spectrin superfamily diseases, namely, the 

muscular dystrophies. Duchenne muscular dystrophy (DMD) is a severe X-linked 

recessive, progressive muscle wasting disease that affects approximately 1 in 3500 

new-born males (Emery, 1991). An allelic variant of DMD is also known and this is 

referred to as Becker muscular dystrophy (BMD). The vast majority of DMD 

mutations result in the complete absence of dystrophin, whereas a truncated protein 

is often associated with the milder Becker form of the disease (Kingston et al., 1983). 

Mutations in the genes encoding other components of the dystrophin-associated 

protein complex cause other forms of dystrophy, such as limb-girdle and congenital 

dystrophies.

The cause of approximately 65% of DMD pathologies can be traced to large 

deletions or duplications within the dystrophin gene. The remainder of affected 

individuals are the result of small insertion/deletion mutations and point mutations 

(Koenig et a l, 1989; Monaco et a l, 1985; Roberts et a l, 1994). In DMD, it has been 

found that point mutations nearly always result in a truncation of the open reading 

frame causing nonsense-mediated decay, but rare cases are known where a truncated 

non-functional protein is transcribed (Kerr et a l, 2001). In BMD most point 

mutations disrupt splicing, which results in an intact but interstitially deleted open 

reading frame and a partially functional protein (Roberts et a l, 1994). Mutations 

identified in all of the major domains of dystrophin result in disease phenotypes 

ranging from mild to severe. N-terminal mutations have been identified which stem
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from mis-sense and in-frame mutations. In the ABD a mis-sense mutation resulting 

in an amino acid change of an arginine residue for leucine 54 results in a DMD 

phenotype with reduced levels of protein (Prior et al., 1995). DMD patients have also 

been described with in-frame deletions of exons 3-25 indirectly resulting in normal 

levels of truncated protein (Vainzof et al., 1993).

The rod domain of dystrophin has been found to accommodate large in-frame 

deletions. A case where a patient was found to missing exons 17-48 corresponding to 

a 73% deletion of the rod domain only exhibited a mild form of BMD (England et 

al., 1990). Other large deletions of the rod domain have also been observed in other 

BMD patients (Love et al., 1991; Winnard et al., 1993), the phenotypes of which are 

usually milder than those of DMD.

Few missense mutations have been described in DMD patients although two 

informative substitutions have been identified in the cysteine-rich domain. The 

cysteine-rich domain contains a number of motifs that are important for regulation 

and protein-protein interactions. The substitution of a conserved cysteine residue for 

a tyrosine at position 3340 results in reduced but detectable levels of dystrophin. This 

mutation alters one of the coordinating residues in the ZZ domain that is thought to 

interfere with the binding of the dystrophin-associated protein p-dystroglycan (Lenk 

et al., 1996). Another substitution involving an aspartate to a histidine at position 

3335 is also thought to affect the p-dystroglycan binding site (Goldberg et al., 1998). 

Removal of a highly conserved glutamic acid (residue 3367) adjacent to the 

dystrophin ZZ domain results in a phenotype of DMD with substantial retention of a 

presumably functionally compromised dystrophin protein (Becker et al., 2003). 

Interestingly, the cysteine-rich domain is never deleted in BMD patients suggesting 

that this domain is critical for dystrophin function as the BMD phenotypes are less 

severe (Rafael et al., 1996).

A small number of cases have been identified in which there is a deletion of the 

carboxy-terminus of dystrophin. In these patients it is common for the mutant protein 

to localise to the sarcolemma (Bies et al., 1992; Helliwell et al., 1992; Hoffman et al.,

1991). These cases are good examples of the importance of the cysteine-rich and C- 

terminal domains of dystrophin, presumably reflecting the importance of interactions 

with components of the dystrophin-associated glycoprotein complex.
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1.8 Summary and aims

The spectrin superfamily is a group of cytoskeletal proteins that perform a 

variety of cellular functions. The role of each protein and the interactions that they 

are involved in within the cellular enviromnent stem from the specific domains found 

within each protein and the manner in which they are organised. Of this group of 

proteins, utrophin has generated significant interest over recent years given the 

structural and functional similarities it shares with dystrophin. It has been proposed 

that utrophin may be of use to the treatment of muscular dystrophies where 

dystrophin is absent or disrupted. In order for utrophin to be developed as a 

functional replacement for dystrophin it is necessary to understand how the structure 

of the protein relates to the specific cellular functions that it exhibits and also what 

other proteins are interacted with and how these interactions are controlled and 

regulated. Much work has focussed on the up-regulation of utrophin to treat muscular 

dystrophy phenotypes; however, a large body of work has focused upon the 

interaction of the utrophin ABD with F-actin. Crystal structures are available for a 

small number of ABD containing proteins and it has been shown that these domains 

possess a certain degree of structural homology. It seems that the modelling of ABD 

association with F-actin has centred on the utrophin ABD however these studies have 

suggested a number of potential modes of interaction. The current research suggests 

that the utrophin ABD may associate with F-actin in either an open extended 

conformation or a closed and compact mode of interaction. There is much 

controversy over exactly which mode of interaction is correct; however, given the 

large degree of structural homology shared between CH domain containing ABDs, it 

is possible that the manner of interaction that the utrophin ABD exhibits when 

interacting with F-actin would be of importance when understanding the actin- 

binding interactions of related ABDs.

This study aims to further develop the current knowledge regarding the 

interaction of the utrophin ABD with F-actin via the manipulation of the domain 

conformation at varied solution pH and via the generation and characterisation of a 

number of utrophin ABD mutants.
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2.1. Materials

2.1.1 Molecular Biology Reagents

Restriction enzymes and their associated buffers were purchased from New England 

Biosciences (UK) Ltd. Pfu DNA polymerase was from Promega and dNTPs were 

obtained from Bioline. Mutagenesis was based around the QuikChange^*  ̂ Site- 

directed mutagenesis kit, Stratagene Europe/Biocrest B.V. Small scale plasmid 

purification and agarose gel extraction of DNA were performed using QIAGEN 

QIAprep® Spin Miniprep and QIAquick® Gel Extraction Kits respectively.

Professor Steve Winder supplied the initial stock of pSJWl expression vector 

(Winder and Kendrick-Jones, 1995) and provided an original stock of the vector 

containing the utrophin ABD construct (UTR261) (Winder et al., 1995). 

Oligonucleotides were purchased from MWG Biotech UK Ltd.

Protein expression and purification was perfonned using ampicillin and protease 

inhibitors obtained from Sigma. Protease inhibitors were bought as individual 

components which were then used to make the necessary inhibitor cocktail. IPTG 

was bought from Melford Laboratories.

SephacryP" S-200 HR, DEAE Sepharose' '̂^ and the Superose 12 HR analytical gel 

filtration column were purchased from Amersham Biosciences (UK) Ltd.

2.1.2 SDS-PAGE and Western blotting

Kaleidoscope pre-stained and unstained standards were obtained from Bio-Rad 

Laboratories Ltd. Nitrocellulose was purchased from Schleicher and Schunell 

Biosciences and acrylamide:bisacrylamide was obtained from Severn Biotech Ltd..
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Fluorescein-5-maleimide and tetramethylrhodamine-6-maleimide were obtained 

from Molecular Probes, Inc. All other chemicals used were of standard or AnalaR 

reagent grade and were purchased from Sigma-Aldrich Company Ltd. or Merck Ltd.

2.2 Methods

2.2.1 Restriction Digests

Restriction digests were perfonned using Sal I and Nde I (New England 

Biosciences). Each digestion was performed as a double digest containing 1 unit of 

each enzyme and 1 pi of plasmid mini prep DNA made up to a total reaction volume 

of 10 pi. The double digestion was performed in Sal 1 buffer consisting of 

50 mM Tris-HCl, 100 mMNaCflO mMMgClz andlm M (pH  7.9). Digestion was 

perfonned at 37 for 1 hour followed by enzyme deactivation at 65 °C for 20 

minutes. Samples were then subjected to agarose gel electrophoresis.

2.2.2 Agarose Gel electrophoresis

DNA samples in DNA loading buffer were loaded onto 1 % (w/v) 40mM tris-acetate 

pH 8.2 1 inM EDTA (TAB) gels. Ethidium Bromide was added to the molten 

agarose prior to gel casting to allow visualisation of the DNA under UY light 

following electrophoresis. Electrophoresis was performed in TAE buffer at 60 V 

(constant voltage) for 1 hour. DNA markers in the range of 200-10,000 bp 

(HyperLadder I, Bioline) were run alongside the samples to allow molecular weight 

determination of the separated bands.

Horse radish peroxidase (HRP) was purchased from Sigma and utrophin ABD
"■i'

antibody was supplied by Professor Winder.

2.1.3 Miscellaneous
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2.2.3 DNA Purification from Agarose Gel

After size separation by agarose gel electrophoresis, the required fragments of DNA 

were visualised under UV light and excised from the gel using a scalpel. The DNA 

was then purified from the gel slice using a QIAquick® gel extraction kit, according 

to the manufacturer’s instructions.

2.2.4 Ligation Reaction

Ligation reactions were performed in 1 x ligation buffer in a final volume of 20 pi. 

Gel purified insert and cut vector were added in a 3:1 molar ratio in the presence of 1 

unit of T4 DNA ligase. Ligations were incubated at room temperature for 5 minutes.

2.2.5 Generation o f  Competent Cells

An overnight culture of appropriate E. coli strain isolated from a single colony was 

used to inoculate 100 ml of 2 x YT broth. The culture was incubated at 37 *C, with 

shaking at approximately 200 rpm in a CERTOMAT® BS-1 incubator until an 

absorbance reading of 0.6 was obtained at 600 mn. After incubation the culture was 

chilled on ice for 30 minutes before the cells were harvested by centrifugation in 

sterile tubes at 1400 x g for 5 minutes at 4 °C. After removal of the supernatant the 

cell pellet was re-suspended in 50 ml of ice cold 100 mM CaCb and left on ice for 30 

minutes. Cells were again harvested by centrifugation at 1400 x g for 5 minutes at 4 

°C before a final re-suspension of the cell pellet in 5 ml of 100 mM CaCE.

2.2.6 Transformation o f DNA into Competent Cells

Competent E. coli cells (100 pi) were incubated on ice in sterile eppendorf tubes 

with 5 pi of plasmid DNA for 30 minutes. Cells were then subjected to a 2 minute 

heat shock at 42 °C before being briefly returned to ice. 2 x YT broth (900 pi) was 

subsequently added to the cells before culturing at 37 °C for 1 hour without shaking. 

After incubation the culture was spread onto sterile agar plates containing 100 pg/ml
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ampicillin before incubation for 16 hours at 37 °C to select for those cells containing 

the transfonned plasmid.

2.2.7 Small Scale Plasmid Preparation

A  single colony of plasmid-containing E. coli DH5a was selected and grown 

overnight in 5 ml of 2 x YT containing 100 pg/ml ampicillin. 1 ml of the culture was 

then centrifuged at 12000 x g for 1 minute to pellet the bacterial cells. Following 

removal of the supernatant DNA was prepared using the QIAprep® Spin plasmid 

miniprep kit as described by the manufacturer’s instructions.

2.2.8 Polymerase Chain Reaction

Polymerase Chain Reaction (PCR) was typically carried out with 1-10 ng of double 

stranded template DNA in a 50 pi reaction volume. The reaction contained 1 x buffer 

(as supplied by the manufacturer), 125 ng of forward and reverse primers, 200 pM 

dNTPs (from a 10 mM equimolar stock of each of the four bases) and 1 unit of Pfu 

DNA polymerase.

PCR cycling was carried out in a Biometra Personal Cycler. Typically, 35 cycles 

consisting of 3 steps were perfonned: 30 seconds at 95 °C (dénaturation), 30 seconds 

at 45-65 °C (primer annealing) and 1 minute at 72 °C (elongation). Annealing 

temperature varied depending on the primers used, typically a temperature 5 °C 

below the lowest melting temperature of the two primers was chosen. Before the 

PCR cycles were allowed to commence an initial dénaturation step of 2 minutes at 95 

°C was perfonned. On completion of the PCR reaction all products were checked by 

agarose gel electrophoresis and sequencing.

2.2.9 Mutagenesis

Mutagenesis was carried out either by overlap extension or via use of the Stratagene 

QuickChange^^ Site-directed mutagenesis kit. Primers, listed below (Table 2.1), were
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designed to remove multiple amino acid residues or substitute selected amino acids 

with cysteine. Primer pairs were designed across the same section of sequence with 

the mutation in the centre of the sequence. The resulting primers were between 33-60 

bases in length and complementary to each other. For optimal mutagenesis, the 

primers were designed such that the GC content was above 45 % and the melting 

temperatures above 75 °C.

Table 2.1 Mutagenesis primers

UTR Mutant Forward Primer Reverse Primer

UTR261 5^ -GTGCGGATCCATATGGC 
CAAGTATGGAGAACAT- 3 '

5 '  -CTCCAGGTCGACCTAGT 
CTATGGTGACTTGCTGAGG- 
3 '

5 '  “ TGGCAGGTGAAAGATGT 
CATGAAGGATGAAGCTCTGG 
CTGCTCTGCTGCGTGATGGT 
G G A -3 '

5 " -CGTCTGCTGCAGGTCCG 
ACATGACTTCACCATCACGC 
AGCAGAGCAGCCAGAGCTTC 
- 3 '

5 ' -ATCATTTTGCACTGGCA 
GGTGAAAGATGTCCTGCAGC 
AGACGAACAGTGAGAAGATC 
CTG-3'

5 '  -CAGGATCTTCTCACTGT 
TCGTCTGCTGCAGGCAATCT 
TTCACCTGCCAGTGCAAAAT 
G A T -3 '

5 ' "GACGTACAGAAGAAATG 
TTTTACCAAATGGATA» 3 '

5 '  “ TATCCATTTGGTAAAAC 
ATTTCTTCTGTACGTC-3 '

6C/S242C 5 '  -CTTCCTGACAAGAATT 
GTATAATTATGTATTTA-3 '

5 '  -TAAATACATAATTATAC 
AATTCTTGTCAGGAAG-3 '

2.2.10 Bacterial Protein Expression

The pSJWl expression vector (Winder and Kendrick-Jones, 1995) (Appendix 1) 

containing the DNA encoding either wild type utrophin ABD or one of the ABD 

mutants was transformed into the BL21 (DE3) strain of E, coli. A  fresh batch of 

competent cells was prepared each time protein expression was required. An 

overnight culture was used to inoculate 1 litre of 2 x YT broth containing 100 pg/ml 

ampicillin. This was shaken at 200 rpm in a 2 litre bevelled flask at 37 °C in a 

CERTOMAT®* BS-1 shaking incubator until an Â oo of approximately 0.6 was 

reached. IPTG was added to a final concentration of 0,5 mM and incubation 

continued with shaking for 2 hours to allow protein expression.
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2.2.11 Purification o f Expressed Protein

Following protein expression bacterial cultures were subjected to centrifugation at 

5000 X g for 20 minutes and the bacterial cells that pelleted frozen. After thawing, 

the cells were then re-suspended in 25 % w/v sucrose, 1 mM EDTA and 50 mM Tris- 

HCl pH 8.0 (SET) (10 ml per litre of original culture) to which the required protease 

inhibitors had been added. Lysozyme was then added (5 mg per litre of original 

culture) and the cell lysate incubated at room temperature for 30 minutes. In some 

instances sonication was used to aid bacterial lysis. Prior to centrifugation MgCE and 

MnCE were added to the cell lysate to a final concentration of 10 mM and 1 mM 

respectively followed by addition of 10 pi of 10 mg/ml DNAase 1. The bacterial 

lysate was incubated for 10 minutes at room temperature before all insoluble material 

was pelleted by centrifugation at 30000 x g for 20 minutes. The supernatant was then 

applied directly to a Sepharose™ DEAE anion exchange column and after extensive 

washing of the column with 20 mM Tris-HCL, 1 mM EDTA and 1 mM DTT pH 8.0 

(TED) the bound protein was eluted using a 0-0.5 M NaCl gradient. Fractions 

corresponding to protein peaks were subjected to sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (SDS-PAGE) to identify the fractions containing 

the protein of interest. These fractions were then pooled, concentrated and gel 

purified using a Sephacry™ S-200 HR gel filtration column. Once again, eluted 

fractions corresponding to the protein of interest were pooled and concentrated 

before use.

2.2.12 Recovery o f Insoluble Prote in from Inclusion Bodies

In some instances bacterial expression resulted in the production of insoluble protein. 

In these circumstances the pellet formed after centrifugation of the lysed bacterial 

expression culture was re-suspended in 20 mM Tris-HCl, 200 mM NaCl, 1 mM 

EGTA and 0.25 % (w/v) deoxycholate (pH 8.0) (insoluble protein buffer I) (10 ml/L 

of original culture). The pellet was re-suspended with stirring and sonication to aid 

with the break-up of the sticky bacterial cell walls. The sample was then centrifuged
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at 8000 X g for 5 minutes and the viscous supernatant discarded. The creamy white 

pellet was repeatedly re-suspended in 20 mM Tris-HCl, 1 mM EGTA and 0.25 (w/v) 

deoxycholate (pH 8.0) (insoluble protein buffer II) and centrifuged as above until the 

supernatant became clear and the pellet took on a granular texture and a grey colour. 

This pellet was then re-suspended in 20 mM Tris-HCl, and 1 mM EGTA (pH 8.0) 

(insoluble protein buffer III) and spun as above to remove traces of detergent. The 

final washed pellet was then re-suspended in 8M urea before dilution to 6M urea in 

buffer suitable for subsequent purification using a Sepharose™ DEAE anion 

exchange column and a Sephaciy™ S-200 HR gel filtration column. Following 

collection of the eluted fractions corresponding to the protein of interest the urea was 

removed in a stepwise fashion by numerous rounds of dialysis. All solutions were 

made with TED pH 8.0 and urea was reduced from 6M to 4M, 2M, IM, 0.5M, 

0.25M, O.IM then 500 mM NaCl and final dialysis into TED pH 8.0. The final 

protein solution was then concentrated before use.

2.2.13 Determination o f Protein Concentration

Protein concentration was routinely determined using the Beer-Lambert law where 

the extinction coefficient of a protein and absorbance at 280 mn are used to 

determine the concentration of the protein in solution. The extinction coefficient of 

the utrophin ABD and the mutant proteins were calculated from the content of 

tryptophan, tyrosine and cysteine (Gill and von Hippel, 1989). The extinction 

coefficients (cm'^M*^) were determined to be as follows:

Wild type utrophin ABD = 39,160

UTR^^^^^ = 39,160
■yrpj^a-actinin = 39,160
U T J^ T 36C = 39,220
U T R T 36C /S 242C = 39,280
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Resolving Gel:

Acrylamide:bisacrylamide 25.2 ml

SDS-PAGE resolving buffer 12.5 ml

Water (dH^O) 14.92 ml

10 % Ammonium Persulphate (freshly prepared) 150 pi

TEMED 25 pi

Stacking Gel:

Acrylamide'.bisacrylamide 3.32 ml

SDS-PAGE stacking buffer 5 ml

Water (dH^O) 11.52 ml

10 % Ammonium Persulphate (freshly prepared) 120 pi

TEMED 40 pi

Samples were prepared by boiling in 1 x sample buffer for 2 minutes. Pre-stained 

molecular weight markers were run for size comparison. Following electrophoresis 

in 1 X SDS-PAGE running buffer at a constant voltage of 400 V for between 40-60 

minutes, proteins were detected by Coomassie Blue staining or transferred to 

nitrocellulose for western blot detection.

2.2.15 SDS-PAGE Gel Staining

Proteins were visualised directly on SDS-PAGE polyacrylamide gels following 

staining with Coomassie Blue consisting of 0.25 % (w/v) Coomassie Brilliant Blue

40

2.2.14 SDS-PAGE
n
I

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was 

performed essentially as described by Laemmli (1970) using the Matsudaira type gel 

system (Cambridge electrophoresis; (Laemmli, 1970)). Resolving gels were typically 

15 % (except where stated) and stacking gels were always 5 %. Gels were prepared 

in batches of 10 using the following solutions:
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R250, 25 % (v/v) methanol and 10 % (v/v) acetic acid. Gels were incubated in 

Coomassie Blue stain for approximately 30 minutes before rinsing with dH^O and 

destaining with a solution of 40 % (v/v) methanol and 10 % (v/v) acetic acid 

(destain) for either 30-60 minutes or over night.

2.2.16 Western Blotting

Protein transfer to nitrocellulose was performed using a BioRad mini Trans Blot kit® 

in blotting buffer consisting of 48 mM Tris-HCl, 39 mM glycine, 1,3 mM sodium 

dodecyl sulphate (SDS) and 20 % (v/v) methanol at 400 mA, 100 V for 1 hour. 

Following transfer, membranes were blocked in 2,5 % (w/v) semi-skimmed milk 

powder prepared in 10 mM Tris-HCl, 150 mM NaCl and 0.1 % (v/v) Tween-20 (pH

8.0) (TEST) for 1 hour. Incubation with utrophin 261 antibody (1/1000 dilution) in 

2.5 % (w/v) semi-skimmed milk powder/TBST was performed for 1 hour at 4 ®C. 

Following extensive washing in 2.5 % (w/v) semi-skimmed milk powder/TBST (5 x 

5 minutes), blots were incubated with horse radish peroxidase (HRP) conjugated 

secondary antibody (1/500 dilution) prepared in 2.5 % (w/v) semi-skimmed milk 

powder/TBST for 1 hour at 4 °C, After subsequent washing in 2.5 % (w/v) semi­

skimmed milk powder/TBST ( 5 x 5  minutes), immunoreactive bands were detected 

by enhanced chemiluminescence (ECL). Equal volumes of 100 mM Tris-HCl, 2.5 

mM luminal, 396 pM/?-coumaric acid (pH 8.5) (ECL solution I) and 100 mM Tris- 

HCl, 0.02 % (w/v) H2O2 (pH 8.5) (ECL solution II) were mixed and added to the 

membranes for 1 minute with minor agitation. Membranes were transferred to 

autoradiography cassettes and exposed to Konica Minolta medical X-ray film. Film 

was developed using a KODAK RP X-OMAT EX developer.

2.2.17 High Speed Co-sedimentation Assay

High speed co-sedimentation was performed essentially as described by Winder and 

Walsh, 1990 (Winder and Walsh, 1990). Each assay was performed in 1 x actin- 

binding buffer (ABB) pH 8.0 (usually prepared as a 10 x stock) consisting of 20 mM 

Tris-HCl, 100 mM NaCl, 2 mM MgCL, 1 mM DTT, 0.1 mM CaClg and 1 mM ATP

41



Chapter 2: Materials and Methods

in a reaction volume of 50 pi. A standard assay usually contained 5-10 pM F-actin 

and 0-400 pM of binding ligand. Where the pH of the experiment was required to be 

varied the 10 x ABB stock was made with either MES or CAPS and then the pH 

adjusted to either 6.0 or 10.0 respectively. Binding assays that required the removal 

of reducing agents were performed with buffer components lacking in DTT. 

Typically, an assay would involve the step-wise addition of 10 x ABB, TED buffer 

and then ligand to generate the required final ligand concentration in the 50 pi assay 

volume. This was briefly vortexed before addition of F-actin followed by a final 

mixing. It is essential that all reagents have been clarified by centrifugation at 

100000 g prior to use to remove suspended particulates and insoluble protein. Each 

assay was then incubated at room temperature for 5 minutes before centrifugation at 

100000 X g for 15 minutes at 4 °C in a TLA-100 rotor using an Optima''''^ Benchtop 

Ultracentrifuge (Beckman Coulter). After centrifugation an aliquot of supernatant 

from each assay tube was taken and mixed with an equal volume of 2 x sample 

buffer. The excess supernatant was then carefully removed and the pelleted F-actin 

and bound ligand re-suspended with 2 x sample buffer. It is important to retain an 

equivalent proportion of pellet and supernatant fraction. These fractions were then 

run on 15 % SDS-PAGE gels in equivalent amounts ensuring sufficient loading 

separation between samples so that protein bands of the higher ligand concentrations 

would not merge. Gels were then stained with Coomassie Blue and thoroughly 

destained until background staining was minimal or absent. Gels were then 

transferred to water and scanned using an Epson Expression 1680 Pro set to 

transmissive mode. The densities of the protein bands were calculated and corrected 

for background using NIH Image 1.63. These densities were used to determine the 

proportion of ligand that remained soluble and that which was recovered in the pellet 

bound to F-actin. An actin-binding curve was then generated to show the relationship 

between ligand concentration and that which bound to F-actin.

2.2.18 Preparation o f rabbit muscle acetone powder

Rabbit muscle acetone powder was prepared essentially as described by (Perry, 

1955). The hind leg muscle was quickly excised from two freshly killed rabbits and
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immediately placed into ice to preserve endogenous ATP. After cooling for 30 

minutes all fat and connective tissue was removed before mincing the tissue twice. 

The tissue was then mixed with three volumes of 300 mM NaCl, 100 mM NaH2P04, 

50 mM Na2HP04, 1 mM sodium azide, 0.05 mM PMSF, 2 mM ATP 1 mM MgCU 

and 1 mM Na4P207 (pH 6.5) (Guba Straub buffer) with stirring at 4 '̂ C for 15 

minutes. After extraction the residual muscle tissue was centrifuged at 40000 x g for 

20 minutes before re-suspension in ten volumes of 5 mM NaHCOa and 0.01 mM 

CaCb (extraction buffer I) with stirring at 4 °C for 15 minutes. The residue was then 

filtered through cheese cloth to allow removal of the salt and the pH adjusted to 9.0 

before re-suspension in one volume of 10 mM NaHCOs, 10 mM Na2C03 and 0.1 

mM CaCE (extraction buffer II) with stirring at 4 °C for 10 minutes. Once again, the 

residue is filtered through cheese cloth before re-suspension in ten volumes of chilled 

distilled H2O. The distilled H2O must be removed quickly, again using cheese cloth, 

to prevent the excessive swelling of the muscle tissue and to prevent loss of actin as 

F-actin will rapidly convert to monomer. The remaining residue was then re­

suspended in 2.5 litres of cold acetone and allowed to stand at room temperature for 

15 minutes before filtering through cheese cloth. The acetone washing and filtering 

was repeated until the supernatant became clear before the muscle residue was 

spread out on filter paper and allowed to dry over night in a fume hood.

2.2.19 Actin extraction from acetone powder

G-actin was prepared as described by Winder et al., (1995) essentially a modified 

version of the method described by Spudich and Watt (Spudich and Watt, 1971). 20 

ml of 2 mM Tris-HCl pH 8.0, 0.2 mM ATP, 0.5 mM DTT, 1 mM CaCE and 1 mM 

NaN] (G buffer) was mixed with each gram of acetone powder and stirred on ice for 

30 minutes. Following re-hydration the muscle tissue was pelleted by centrifugation 

at approximately 40000 x g and the supernatant retained. The supernatant was then 

filtered through glass wool, 8 pm, 1.2 pm, 0.45 pm and finally, 0.22 pm filters. The 

polymerisation of actin was induced by the addition of MgCE to 2 mM and KOI to 

0.8 M followed by stirring at room temperature for 30 minutes and then at 4 °C for 

another 30 minutes. The polymerised F-actin was then pelleted by centrifugation at
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2.2.20 Analytical Gel Filtration

Analytical gel filtration was performed using a calibrated Superose™ 12 HR column 

(Amersham Biosciences) under control of a BioCad 700E Perfusion Chromatography 

system or an ÀKTA FPLC system (Amersham Biosciences). Prior to gel filtration, 

the column was equilibrated by washing with at least two column volumes of 

appropriate buffer at the required pH. All solutions were 0.22 micron filtered to 

remove particulates and 200 mM NaCl was present to minimise electrostatic 

interactions with the column matrix. Protein samples were loaded onto the column 

using a 100 pi sample loop and the point of injection marked on the chart recorder to 

allow the elution volume of the protein peak to be determined. Each run was 

performed at a flow rate of 0.4 ml/min and the elution of the loaded protein 

monitored using absorbance at 280 nm. The elution volume was then used to 

calculate the apparent molecular weight of the protein. This was achieved by using a 

calibration curve determined by running a set of protein standards of known 

molecular weight. The elution volumes of these proteins were used to calculate the 

Kav for each protein using the following equation:

Kav = Ve-Vo
V c-V o

Where: Ve = Protein elution volume. 
Vc = Column volume.
Vo = Column void volume.

44

vS

100000 X g in a Ti45 rotor at 4 ^C for 2 hours. The pellet was then re-suspended in 

approximately 10 ml of G buffer using a glass Teflon homogeniser before dialysis in 

G buffer for 2 days with at least two changes of dialysate. Following dialysis, the 

actin solution was again pelleted (as described above) and the top 2/3 of each tube

retained before running on a Sephacryl S200 column in G bufier. The peak and 

training fractions containing monomeric actin were collected and pooled. The 

concentration of G-actin was then calculated using the absorbance at 290 mn (0.0264 

pM/cm or 0.63 mg/cm).
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Kav was then plotted against the Log MW of the protein standards to generate the 

calibration curve. The calibration curve was then used to determine the relative 

molecular weight of an eluted protein using a Kav calculated from the elution data.

2.2.21 Analytical Ultracentrifugation

Sedimentation velocity and equilibration analyses were performed with the utrophin 

ABD at pH 6, 8 and 10 in the presence of 100 mM NaCl. All experimental runs were 

performed using a Beckman Optima XL-I analytical ultracentrifuge equipped with 

interference optics.

2.2.21.1 Sedimentation Equilibrium

Utrophin ABD was subjected to sedimentation equilibrium analysis at 20000, 25000 

and 30000 rpm. A serial dilution of the utrophin stocks at pH 6, 8 and 10 were 

prepared to give nine samples ranging in concentration between 0.1 and 0.5 au at 280 

nm. 100 pi of each concentration was prepared using the buffer dialysate at each pH 

consisting of 100 mM NaCl, 1 mM EDTA and either 20 mM Tris at pH 8 or 10 or 

MES at pH 6. 20 pi of each sample concentration was loaded into two 8 channel 

centrepieces along with a 20 pi reference buffer sample. An initial scan was recorded 

at 3000 rpm to check for cell leakage before running the samples at 18000, 25000 

and 30000 rpm at 4 °C. Scans of sample distribution were recorded at each of these 

speeds and were used to calculate whole-cell apparent weight molecular masses for 

the utrophin ABD at each pH. The biophysical data required to determine the 

apparent molecular weight (buffer density, viscosity and v-bar) were calculated using 

the program sednterp (Lane, 1992).

2.2.21.2 Sedimentation Velocity

Sedimentation velocity experiments were perfonned following dilution of the protein 

stocks, with the respective buffers, to give a range of concentrations covering several 

orders of magnitude at each pH. 360 pi of each sample concentration was loaded into
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a two channel centrepiece along with 360 pi of buffer to serve as a reference. Once 

again, an initial scan was recorded at 3000 rpm to check for cell leakage. Once 

thermal equilibrium was attained (20 °C) the centrifuge was accelerated to 50000 

rpm and 240 scans of sample distribution were recorded at 2 minute intervals. Data 

from the sedimentation velocity runs was analysed using the program sedfit (Schuck, 

1998).

2.2.22 Proteolytic Digestion

2.2.22.1 Trypsin Digestion

Trypsin was made as a 1 mg/ml stock in TED pH 8.0 100 mM NaCl and diluted to a 

working concentration of 0.01 mg/ml in the final reaction volume. Reactions were 

performed in 100 pi TED pH 8.0 with 100 mM NaCl. Wild type utrophin ABD and 

UTR®“bn» were diluted to 20 pM and incubated for 1 hour at room temperature. The 

digestion and degradation products formed were visualised using SDS-PAGE and 

Coomassie Blue staining.

2.2.22.2 Papain and Proteinase K  Digestion

A 200 pi solution comprising 25 pM utrophin, 100 mM NaCl, 1 mM EDTA, 1 mM 

DTT and 20 mM Tris pH 10 or MES pH 6 was subjected to proteolytic degradation 

by either papain or proteinase K. Proteinase K or papain were added to a final 

concentration of 0.01 mg/ml and 0.001 mg/ml respectively. These concentrations 

were determined to give a reasonable degree of protein degradation. The complete 

assay solution was incubated at room temperature for a total of 60 minutes. Samples 

of digested utrophin ABD were removed after 5, 10, 20, 40 and 60 minutes and the 

degradation reaction halted by boiling in SDS-PAGE sample buffer for 2 minutes. A 

1 mg/ml solution of BSA was also digested by each enzyme at both pH values to 

help assess the activity of both enzymes over the range of pH used in the experiment. 

All samples were subjected to gel electrophoresis and non-digested utrophin and 

BSA samples were run as a comparison.
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2.2.22.3 Digestion o f  Utrophin ABD Bound to F~actin

200 pi reactions containing either 25 pM utrophin, 10 pM F-actin, papain (0.01 

mg/ml) or a mixture of protease and utrophin or F-actin were prepared in TED pH 8 

and 1 X ABB. These samples were incubated at room temperature for 30 minutes 

before centrifugation at 100000 x g for 15 minutes. Supernatant and pellet fractions 

were then separated to give samples corresponding to all species in the presence and 

absence of protease. All components were then combined in one reaction and 

incubated at room temperature for 30 minutes, aliquots were removed at 5 ,10,15,20 

and 30 minute time points and the remaining sample was then centrifuged as 

described before to show the protein distribution between supernatant and pellet 

fractions. All samples were then subjected to SDS-PAGE analysis so that the extent 

of protein degradation could be compared.

2.2.23 Circular Dichroism

Near and far UV circular dichroism (CD) and thermal dénaturation analyses of the 

utrophin ABD and the linker mutant were performed at the University of

Glasgow with the help of Dr Sharon Kelly. Near and far UV CD and thermal 

dénaturation analyses of the UTR̂ '̂ '̂ ^™" linker mutant were performed at the 

University of Sheffield along with repeats of utrophin ABD near and far UV CD. 

Thermal dénaturation of utrophin ABD was not repeated. The Glasgow work 

encompassed the thermal dénaturation of the wild type utrophin ABD and the 

UTR^“bnn niutant along with analysis of the utrophin ABD at pH 6, 8 and 10. These 

studies were performed using a Jasco J-600 spectropolarimeter. Utrophin ABD and 

UTRb”̂ b™ were prepared in 10 mM phosphate buffer at the required pH at a 

concentration of 0.5 mg/ml. Near and far UV measurements were made between 

320-260 and 260-190 nm respectively. Protein samples were scanned in either 0.5 or 

0.02 cm quartz cuvettes depending on whether data were collected in the near or far 

UV regions. Thermal dénaturation of the utrophin ABD and UTR^”̂ b™ was 

monitored in the far UV region between 20 and 80°C. One final scan was made after 

heating to 80°C after the sample was allowed to cool to 20°C to allow protein
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refolding. All scans were perfonned with a data pitch of 0.2 mn, a band width of 1 

mn, a detector response time of 2 seconds and a scanning speed of 100 mn/minnte. 

Three accumulations were collected for each protein sample. Secondary structure 

prediction was performed by Dr Kelly using SELCON (Sreerama and Woody, 1993).

Analysis of the mutant was performed at the University of Sheffield

using a J-810 CD spectropolarimeter equipped with a PFD 425 S Peltier temperature 

controller. Near and far UV CD spectra were perfomied using 1 or 0.2 cm quartz 

cuvettes scanned between 320-260 mn and 260-190 mn respectively. Protein samples 

were prepared in 10 mM phosphate buffer at concentrations of 1 and 0.4 mg/ml 

corresponding to near and far UV measurements respectively. Thermal dénaturation 

of was performed over the same range of temperature as described

previously. CD spectra were collected using a data pitch of 0.1 nm, band width of 1 

nm, detector response time of 4 seconds and at a scanning speed of 100 nm/minute. 

Once again, three scans were performed for each protein sample. As with the 

Glasgow work. Dr Kelly kindly provided help analysing the data using SELCON.

2.2.24 Tryptophan Fluorescence

The fluorescence of the intrinsic tryptophans present within the utrophin ABD were 

measured using a Shimadzu RF-5301PC spectrofluorophotometer. Protein samples 

were held within a 1 cm quartz cuvette and excited at 296 nm. Fluorescence emission 

data were recorded between 300-450 nm using a slow scanning speed with excitation 

and emission slits set to 1.5 mn. Protein samples were prepared in 20 mM Tris-HCl 

pH 8.0 and 1 mM EDTA (TE) to a final concentration of 30 pM. All solutions and 

samples were 0.22 micron filtered to remove all particulates and extensive dialysis 

was used to ensure that no reducing agents were present. All buffers solutions were 

scanned prior to use to ensure that there was no fluorescence after excitation at 296 

nm. Experiments involving F-actin were performed in the presence of 5 pM F-actin 

and 1 X ABB. Where this was the case, all other buffering solutions within the 

experiment (for example utrophin ABD in the absence of F-actin) also contained 1 x
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ABB to ensure that any fluorescence attributable to the 1 x ABB remained constant 

throughout all experimental samples.

2.2.25 NTCB Digestion

Specific cleavage of peptide backbone at cysteine residues was performed in the 

presence of 2-Nitro-5-thiocyanobenzoate (NTCB) (Jacobson et al., 1973). The 

protein to be digested was diluted to 20 pM in a total reaction volume of 100 pi 

using 6M urea prepared with TED pH 8.0. NTCB was then added to the reaction in a 

10-fold molar excess compared to the protein and then incubated for 1 hour at room 

temperature. After incubation the pH of the solution was adjusted to 9.0 by the 

addition of 5 pi of IM NaOH/lM Tris-HCl solution before incubation at 30 °C for 3 

hours. After incubation a molar excess of ft-mercaptoethanol was added to halt the 

reaction and the samples then run on 15 % SDS-PAGE gels to visualise the size of 

peptide fragments generated compared to a molecular weight standard.

2.2.26 Disulphide Bond Formation in the Double Cysteine Mutant

T|jTpĵ T36c/s242c dialyscd into TE pH 8.0 to remove the reducing affects of DTT. 

To this solution o-phenanthroline and CUSO4 were added in a drop-wise fashion with 

vigorous stirring to final concentrations of 4 mM and 1 mM respectively. The protein 

solution was incubated overnight at 4 °C to allow oxidation and disulphide bond 

formation. Oxidation was also performed by dialysis of the protein sample into a 

solution of TE pH 8.0 containing 4 mM o-phenanthroline and 1 mM CUSO4 

overnight at 4®C. Following oxidation, o-phenanthroline and CUSO4 were removed 

via extensive dialysis with TE pH 8.0 and then samples of reduced and oxidised 

U ĵ^T36c/s242c on 15 % SDS-PAGE gels to assess the success of disulphide bond 

formation. It is important to allow sufficient separation between reduced and non­

reduced samples when running on a gel so that the oxidised sample will not be 

partially reduced by diffusion of ft-mercaptoethanol from the reduced sample lane.
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2.2.27 Generation and Purification ofFluorescently Labelled Protein

Ujj^T36c/s242c Singly labelled with either fluorescein-5-maleimide or

tetramethylrhodamine-5-maleimide (single isomer) or double labelled with both. The 

labelling reaction was performed essentially as described by the Molecular Probes 

Handbook and generally involved reaction of a 100 pM solution of %jx]̂ T3Gc/s242C 

prepared in TE pH 7.0 with the fluorescent dyes. It is important that the reaction 

solution remains around pH 7.0 to ensure that protein thiol groups are sufficiently 

nucleophilic and hydrolysis of the maleimide to an unreactive product can compete 

significantly with thiol modification, particularly above pH 8. A 10-fold molar 

excess of Tris(2-carboxyethyl)phosphine hydrochloride (TCEP) was added prior to 

labelling to reduce any disulphide bonds that may form. Each of the reactive dyes 

was prepared as a 10 mM stock made up in dimethyl sulphoxide (DMSO). The dyes 

were then added to the reduced in a drop-wise manner with vigorous

stirring until a 20-fold molar excess was attained. The reaction was allowed to 

proceed for 16 hours at 4 °C. Upon completion of the reaction a molar excess of p- 

mercaptoethanol was added to consume the excess thiol-reactive reagent The 
labelled uxrT36c/s242c then extensively dialysed using TE pH 7.0 to remove any 

un-conjugated fluorescent dye and then gel purified. At all stages during the reaction 

and purification procedures reagents and protein solutions were protected from light 

as much as possible due to reagent sensitivity to light.

The degree of labelling was calculated as follows:

Ay X MW of protein = moles of dve 
8 mg protein/mL moles of protein

Where:
A% = the absorbance value of the dye at the absorbance maximum wavelength.
8 = molar extinction coefficient of the dye or reagent at the absorption maximum 

wavelength.
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2.2.28 Utrophin ABD Inter-Domain FRET

Following fluorescent labelling with rhodamine, fluorescein or both,

excitation and emission scans were collected at the specific excitation and emission 

wavelengths of the two fluors. Rhodamine can be excited at 555 mn producing an 

emission at 580 nm whilst fluorescein can be excited at 494 mn and produces an 

emission at 518 mn. Scans of fluorescence excitation and emission were performed 

using a 1 cm quartz cuvette and a Shimadzu RF-5301PC spectrofluorophotometer. 

Scans were collected at a slow scanning speed between 480 and 700 mn with 

excitation and emission slit widths set to 1.5 nm. An emission scan involves the 

stimulation of the protein sample at a specific excitation wavelength recording the 

wavelength of any fluorescent emission. An excitation scan involves recording the 

fluorescence produced after excitation of the sample with radiation that covers a 

specific range, in this case between 480 and 700 nm. Protein samples were prepared 

in TE pH 7.0 with labelled present to a final concentration of 10 pM. 1

X ABB was also added where samples of labelled were to be compared

with samples in the presence of F-actin. In these instances F-actin was added to a 

final concentration of 5 pM. Initially, samples of individually labelled

with fluorescein or rhodamine were subjected to excitation and emission scans at the 

wavelengths of both fluors to test if one fluor could be stimulated by the others 

excitation or emission parameters. This was then repeated for a mixture of 

Ut r T36c/S242c jjjciividually labelled with either rhodamine or fluorescein before the 

final experiment was attempted with double labelled xjTR^^bc/s242c and

rhodamine fonn a donor/acceptor pair that may allow FRET to occur within doubly 

labelled A FRET signal would present itself as a rhodamine emission

at 580 nm following stimulation of the doubly labelled sample at 494

nm (fluorescein excitation wavelength). The affect of binding to F-actin on the FRET 

signal was also assessed by the addition of F-actin to the final concentration stated 

above. Fluorescent emission and excitation spectra of an F-actin solution were also 

collected at rhodamine and fluorescein wavelengths prior to the addition of labelled 

ljrpĵ T36c/s242c detenniuc if actin alone could be stimulated at any of the 

wavelengths used in the experiment.
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2.2.29 Differential Scanning Calorimetry

Differential scanning calorimetry (DSC) experiments were kindly performed by Dr 

Andrey Bobkov at the Bumham Institute, La Jolla, CA. DSC experiments were 

performed using a N-DSC II differential scanning calorimeter from Calorimetry 

Sciences Corp (Provo, UT), at scanning rate of 1 K/min under 3.0 atm pressure. DSC 

samples contained 10 pM utrophin ABD (wild type or mutants), 20 mM PIPES (pH

7.0), 50 mM NaCl, 1.0 mM MgCH, 0.2 mM ATP and, when stated, lOpM F-actin or 

20pM F-actin + 20pM phalloidin (Sigma, St Louis, MO). Utrophin ABD, 

yjj^T36c/s242c UTR^^^^ samplcs under reducing conditions were kept with 1.0 

mM DTT at all times and diluted 10 fold with DTT-free buffer immediately before 

loading into the calorimeter.

Ï

2.3 Solution Compositions

1 X Actin Binding Buffer

Tris-HCl pH 8.0

NaCl

MgCL

DTT

CaClz

ATP

20 mM 

100 mM 

2m M  

1 mM 

0.1 mM 

1 mM

Blotting Buffer

Tris-HCl

Glycine

SDS

Methanol

48 mM 

39 mM 

1.3 mM 

20 % (v/v)
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Coomassie Blue Stain

Coomassie Brilliant Blue R250

Methanol

Acetic acid

0.25 % (w/v) 

25 % (v/v)

10 % (v/v)

Destain

Methanol 

Acetic acid

40 % (v/v) 

10 % (v/v)

DNA Loading Buffer

Ficoll

EDTA pH 8.0 

Orange G to colour

30 % (w/v) 

100 mM

ECL Solution I

Tris-HCl pH 8.5 

Luminol 

/?~coumaric acid

100 mM 

2.5 mM 

396 pM

ECL Solution H

Tris-HCl pH 8.5 

H2O2

100 mM 

0.02 % (w/v)

Extraction Buffer I 

NaHCO)

CaCl2

5 mM 

0.01 niM

Extraction Buffer H

NaHCOs

Na2COs
CaCla

10 mM 

10 inM 

0.1 mM
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G -Buffer

Tris-HCl pH 8.0 2 mM

ATP 0.2 mM

DTT 0.5 mM

CaCli 1 mM

NaNs 1 mM

Guba Straub Buffer

NaCl 0.3 M

NaH2P04 O.IM

Na2HP04 0.05 M

Sodium Azide 1 mM

PMSF 0.05 mM

ATP 2 mM

MgCE 1 mM

Na4?207 1 mM

(IH2O to 4 litres pH to 6.5

Insoluble Protein Buffer 1

Tris-HCl pH 8.0 20 mM

NaCl 200 mM

EGTA 1 mM

Deoxycholate 0.25 % (w/v)

Insoluble Protein Buffer 2

Tris-HCl pH 8.0 20 mM

EGTA 1 mM

Deoxycholate 0.25 % (w/v)

Insuluble Protein Buffer 3

Tris-HCl pH 8.0 20 mM

EGTA ImM
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lOxKME

Tris-HCl pH 8.0

KCl

M gS 04

EGTA

100 mM 

500 mM 

10 mM 

10 mM

2 X Sample Buffer

Tris-HCl pH 6.8

SDS

Glycerol

Bromophenol Blue 

(3-Mercaptoethanol

50 mM 

1 % (w/v)

30 % (v/v)

0.01 % (w/v)

20 pl/ml before use

2 X YT Broth

Yeast Extract

NaCl

Tryptone

lOg/L

5g/L

16g/L

2 X TY Agar

Yeast Extract 

NaCl 

Tryptone 

Agar

lOg/L

5g/L

16g/L

2 0 g/L

SDS-PAGE Resolving Buffer

SDS

Tris-HCl pH 8.8

0.4 % (w/v) 

1.5 M

SDS-PAGE Stacking Buffer

SDS

Tris-HCl pH 6.8

0.4 % (w/v) 

0.5 M
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SDS-PAGE Running Buffer

Tris-HCl

Glycine

SDS

3g/L 

14.4 g/L 

0.1 % (w/v)

SET

Sucrose

Tris-HCl pH 8.0 

EDTA

25 % (w/v) 

50 mM 

1 inM

TAE

Tris acetate pH 8.2 

EDTA

40 inM 

1 mM

TEST

Tris-HCl pH 8.0

NaCl

Tween-20

10 mM 

150 mM 

0.1 % (v/v)

TED

Tris-HCl pH 8.0

EDTA

DTT

20 mM 

Im M  

1 mM
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Chapter 3

pH Induced Conformational Change of the Utrophin ABD

3.1 Introduction

The amino tenninal utrophin actin-binding domain (ABD) was first 

crystallised by Keep et al, 1999, This structure revealed that two utrophin monomers 

interact in an antiparallel manner to form a crystallographic dimer where the first and 

second CH domains of the adjacent monomers are in close association (Keep et aL, 

1999b). Analysis of the utrophin ABD when in solution indicates that the protein 

behaves as a monomer and hence, the dimérisation observed in the crystal is 

probably an artefact of the crystallisation process (Moores and Kendrick-Jones, 

2000). The ABD of the highly homologous dystrophin also crystallised as an anti- 

parallel homodimer (Norwood et a l, 2000); however, the ABD from the actin 

bundling protein fimbrin, was found to crystallise as a monomer with the two CH 

domains in close association with one another (Goldsmith et a l, 1997). It was 

apparent, from the crystal structures of utrophin and fimbrin that the interface 

observed between the two CH domains in the fimbrin crystal was preserved in the 

interface between opposing CH domains in the utrophin dimer. This kind of 

structural similarity between related proteins can be described by a phenomenon 

referred to as three-dimensional domain swapping (Schlunegger et a l, 1997), 

Modelling of the utrophin ABD binding to F-actin using cryo-electron microscopy 

(cryo-EM) reconstruction suggested that utrophin was binding in a conformation 

similar to that observed in the utrophin crystal structure (Moores et a l, 2000); 

however, fimbrin has been modelled to bind F-actin in a compact conformation 

similar to that observed in the fimbrin crystal structure (Hanein et a l, 1998). Recent 

modelling of utrophin binding to F-actin has suggested a number of possible modes 

of interaction, including both extended and compact binding interactions (Galkin et 

a l, 2002; Lehman et a l, 2004; Sutherland-Smith et a l, 2003)

It is apparent from this previous work that the binding of the utrophin ABD to 

F-actin is highly dynamic. Biochemical analyses of the utrophin ABD in solution 

indicate that the protein is monomeric (Winder et a l, 1995), potentially adopting a 

conformation more akin to that of the fimbrin crystal structure. This conformation is
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then induced to ‘open’ upon binding with F-actin to become more similar to the 

structure observed in the utrophin crystal dimer. This ‘opening’ of the molecule 

requires a loss of association between the two CH domains to switch from one 

conformation to the other.

Preliminary work performed by Professor Winder suggested that the 

conformation of the utrophin ABD (open or closed) could be influenced by the pH of 

the buffering solution. It appeared that at lower pH the ABD behaved as if a more 

compact conformation were adopted compared to a more ‘open’ or extended 

conformation at higher pH. It is possible that at different pH the electrostatic 

interactions that occur between the two CH domains are altered allowing the degree 

of ‘openness’ to be affected. Many proteins undergo a shift in their conformation or 

an alteration in activity resulting from a change in the pH of their environment 

(Blondin et a l, 2002; Lagarrigue et al., 2003; Lamb et al., 1993; Schmidt et al., 1993; 

Stoeckelhuber et al., 1996) and hence, it is feasible that similar effects could 

contribute to a change in confonnation of the utrophin ABD over a range of pH.

To test these hypotheses the utrophin ABD was subjected to a number of 

analyses that would investigate the potential structural and conformational changes 

induced by varying pH and how these potential changes would affect the interaction 

with F-actin.

3.2 Results

3.2.1 pH  dependent conformational change o f  the utrophin ABD

The amino terminal ABD of utrophin was purified as described previously 

((Winder and Kendrick-Jones, 1995); section 2.2.11; Appendix 2). Preliminary gel 

filtration studies suggested that the utrophin ABD was experiencing a size dependent 

shift when eluted from an analytical gel filtration column at varying pH. It appeared 

that the utrophin ABD was increasing in relative size as the pH of the buffering 

solution was elevated suggesting a separation of the two CH domains and the protein 

adopting a more ‘open’ conformation. In order to replicate this experiment gel 

purified samples of utrophin ABD were dialysed into suitable buffer to give a series
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of pH ranging from 5 to 9. 100 pi samples of utrophin ABD at each pH were loaded 

onto a Superose *̂  ̂ 12 HR analytical gel filtration column equilibrated with buffer at 

equivalent pH to the samples. The exact point of loading was recorded and the 

protein elution followed via absorbance at 280 nm (Section 2.2.20). Figure 3.4 

represents an overlay of the utrophin ABD elution at each pH. From the curves it is 

evident that as the pH of the buffer solution decreased from 9 down to 5 there was an 

increase in the elution volume of the utrophin ABD. This increase in elution volume 

suggested that at lower pH the utrophin ABD was interacting with the column matrix 

to a greater extent hindering passage through the column The increased elution 

would be consistent with a relative reduction in size of the protein. It is also evident 

from Figure 3.1 that the protein peaks are not of an equivalent size. This is 

attributable to difference in protein concentration of each sample that was loaded 

onto the column.

0.045 -1
— pH 5
— pH6 

pH 7
— pH 8
— pH 9

0.04 -

_  0.035 -

o 003- co
r  0.025 -

0.02 -

0.015 -x>
0.01 -

0.005 -

11.4 12.2 13.0 13.8 14.6
Elution Volume (mis)

Figure 3.1: Preliminary gel filtration data of the utrophin ABD at varying pH.
Samples of utrophin ABD ranging in pH from 5 to 9 were subjected to gel filtration 
analysis using a Superose™ 12 HR analytical gel filtration column. The column was 
run at 0.4 ml/min and the elution volume of utrophin ABD was monitored using 
protein absorbance at 280 nm.

In order to estimate the change in size of the utrophin ABD a calibration 

curve produced for the column at pH 8 was used. Previous experiments have 

determined the MW of the utrophin ABD to be approximately 30 kDa (Winder et al..
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1995). The calculated relative MW at each pH (Table 3.1) indicated a size shift 

ranging from 31 kDa at pH 5 up to 40 kDa at pH 9. This was a large change in the 

apparent size of the protein in solution however; the calculated MW at pH 8 was very 

different to previously detennined values and hence, it was necessary to repeat the 

experiment using more stringent conditions.

pH 5 6 7 8 9
Elution Volume (ml) 13.6 13.2 13.1 13.0 12.7
Relative MW (kDa) 31 34 35 37 40

Table 3,1: Preliminary determination of the utrophin ABD apparent MW at 
varying pH. The preliminary gel filtration data (protein elution volume) was used to 
determine the relative MW of the utrophin ABD at each pH when compared to the 
elution volumes of a set of protein standards of known MW (Section 2.2.20).

The pH range of the above experiment was subsequently modified to span the 

pH range 6 to 10. This range was chosen to centre the maximum and minimum pH 

values on pH 8, a value at which much utrophin ABD biochemistry has been 

performed (Moores and Kendrick-Jones, 2000; Morris et a l, 1999; Winder et a l, 

1995; Winder et a l, 1995; Winder and Kendrick-Jones, 1995). This served to 

generate an equal change in the pH above and below pH 8 whilst maximising the 

potential to visualise a pH induced effect. At each pH (6, 8 and 10) multiple runs 

were performed and the average elution volume at each pH was plotted (Figure 3.5). 

In these instances 100 pi samples of 20 pM utrophin ABD were loaded onto a 

Superose™ 12 HR column. The samples were run at 0.4 ml/min and all buffers 

contained 200 mM NaCl to prevent electrostatic interactions with the column matrix. 

Once again a pH dependent shift in the elution was observed potentially attributable 

to a shift in size of the protein when in solution. Indeed these data suggested that the 

relative MW of the utrophin ABD was increasing in size from pH 6 to 10. However, 

during equilibration and sample runs at pH 6 and 10 it was noticed that the volume of 

gel bed was changing slightly from that of pH 8. In order to calibrate the column for 

the calculation of MW the gel bed volume must be known accurately or this would 

affect the MW ultimately determined.
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Figure 3.2: Gel filtration elution volume of the utrophin ABD at varying pH.
Utrophin ABD samples were subjected to gel filtration analysis at pH 6, 8 and 10. 
All experiments were run at 0.4 ml/min and 200 mM NaCl was present to prevent 
electrostatic interactions with the column matrix. Elution of the utrophin ABD was 
monitored via absorbance at 280 nm and each experiment was repeated in triplicate 
to obtain an average elution volume at each pH. Error bars represent standard 
deviation.

So that the relative MW of the utrophin ABD at each pH could be calculated 

accurately the Superose™ 12 HR column was calibrated at each pH with a set of 

protein standards of known molecular weight. This would remove any potential 

effects that the buffering pH would exhibit on the final calculated MW. The 

standards consisted of blue dextran, ribonuclease A (13.7 kDa), chymotrypsinogen 

(25 kDa), ovalbumin (43 kDa) and albumin (67 kDa). Blue dextran is a large protein 

and was used to calculate the column void volume as it effectively passes through the 

column with very little interaction with the gel matrix. From these data a calibration 

curve could be generated for the column at each pH (Appendix 3) which could be 

used to determine the relative MW of the utrophin ABD at each pH

Following calibration of the gel filtration column at each pH the relative MW 

of the utrophin ABD could be calculated (Figure 3.3). From the data the relative MW 

calculated at each pH was 30.6, 29.8, and 30.7 kDa corresponding to pH 6, 8 and 10 

respectively. These values of MW are in agreement vrith literature values (Moores
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and Kendrick-Jones, 2000; Winder et al., 1995) and those determined in Figure 3.1. 

However, it is clear that there is no appreciable size change over this range of pH.

5 27

r  ’ -r./'

pH 6 pH 8 
Sample pH

pH 10

Figure 3.3: Relative MW of the utrophin ABD at pH 6, 8 and 10. Utrophin ABD 
at pH 6, 8 and 10 was run through a calibrated Superose 12 HR column at each pH. 
The elution volumes of the domain were used to calculate the relative MW of the 
protein at each pH when compared to a set of protein standards. Each experiment 
was performed in triplicate and the error bars represent standard deviation.

3.2.2 pH dependent effects o f the utrophin ABD binding to F~actin.

Utrophin is an actin-binding protein that interacts with F-actin via its N- 

terminal ABD (Banuelos et al., 1998; Broderick and Winder, 2002; Gimona et al., 

2002; Stradal et al., 1998; Winder, 2003; Winder et al., 1995). This interaction has 

previously been characterised via the use of high speed co-sedimentation assay 

(Moores and Kendrick-Jones, 2000; Winder et al., 1995). An example of a utrophin 

ABD actin-binding assay is shown in Figure 3.4. This figure clearly demonstrates the 

pelleting of F-actin and associated utrophin ABD following centrifugation.
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Figure 3.4: Example of a utrophin ABD high speed co-sedimentation assay.
High speed co-sedimentation involves the titration of a range of utrophin ABD with 
F-actin. Typically, this involves utrophin ABD over a concentration range of 1-400 
pM, F-actin is typically added to 5 pM. Utrophin ABD and F-actin are incubated in 
the presence of 1 x ABB typically at pH 8 although the exact pH of the experiment 
can be varied. F-actin and bound utrophin ABD are pelleted at 100,000 x g to 
produce samples that correspond to soluble (S) and insoluble (P) protein fractions. 
These fractions are prepared using 1 x sample buffer and are then run out on a SDS- 
PAGE gel. Following separation, the gel is stained with Coomassie to visualise the 
protein bands, these bands are then quantified to determine the proportion of protein 
present which can then be used to determine the stoichiometry and binding affinity of 
utrophin ABD for F-actin. Each experiment is typically performed in triplicate.

Previous experiments have determined that the utrophin ABD binds to F- 

actin with a 1:1 ratio and IQ of approximately 20 pM (Winder et al., 1995). The 

conformation of a protein is of particular importance in an interaction with another as 

the affinity or mode of interaction may be affected (Creighton, 1996). Current 

models of utrophin ABD binding to F-actin in the open conformation rely of the 

assumption of utrophin ‘opening’ from a monomeric state in solution to present the 

actin-binding surfaces towards F-actin. The analytical gel filtration data suggest little 

difference in the apparent size of the protein in solution at differing pH; however, 

there may be a structural effect not detectable by analytical gel filtration that might 

be more apparent when the utrophin ABD binds F-actin. If the association between
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the two CH domains within the solution monomer can be reduced, by altering the pH 

of the surrounding solution, it might be possible that the association of the utrophin 

ABD with F-actin would be more favourable, potentially resulting in an increased 

binding affinity.

The binding of the utrophin ABD to F-actin was characterised using co­

sedimentation assays ranging in pH from 6 to 10. Polymerised actin was titrated with 

a range of utrophin ABD concentrations in TED and 1 x ABB buffer at the 

appropriate pH. These data were used to produce actin-binding curves (Figure 3.5) at 

pH 6, 8, and 10, from which the binding affinity and stoichiometry could be 

determined (Table 3.2).

g- 0.6 -

0.2 -

0 50 100 150 200

♦ pH6 
■ pH8 
ipHIO

Utrophin ABD (pM)

Figure 3.5: Utrophin ABD F-actin binding curves at pH 6, 8 and 10. Actin- 
binding curves were generated for utrophin ABD interacting with rabbit skeletal 
actin at pH 6, 8 and 10. The binding curves were generated essentially as described 
by Winder et al., 1995 (Section 2.2.17). The data were subjected to a Michaelis- 
Menten-type fitting to determine the affinity and the stoichiometry of the binding 
reaction. At each pH standard error was calculated (n=3) however, the error bars 
have been omitted for clarity of the figure.
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pH Stoichiometry +/- Kd(pM) +/-
6 0.6 0.05 10.6 3.8
8 1.2 0.06 26.7 4.1
10 0.2 0.07 11.3 20.7

Table 3.2: Stoichiometry and binding affinity of the utrophin ABD at pH 6, 8
and 10. The table presents the calculated utrophin ABD/F-actin binding affinities 
and stoichiometries determined using a Michaelis-Menten-type fitting of the co­
sedimentation data. In each case the standard error has been displayed adjacent to the 
stoichiometry and affinity (Kd) data (n=3).

From binding data it is apparent that the interaction of utrophin ABD with F- 

actin varies considerably depending on the pH at which binding occurs. The binding 

affinity (25.7 pM ± 4.1) and stoichiometry (1.2:1) determined at pH 8 are very 

similar to the literature values determined by Winder et a l, 1995 however, the pH 6 

and 10 values differ greatly. At pH 6 the ratio of binding has reduced to 0.6:1 and the 

binding affinity has increased to 10.6 pM ±3.8. This reduced stoichiometry may be 

explained by the half binding model of association proposed by Galkin and 

colleagues where the utrophin ABD binds in an extended conformation spanning two 

actin monomers within the filament (Galkin et a l, 2002).The data at pH 10 cannot be 

considered reliable but may suggest a much lower stoichiometry of 0.2:1 and an 

increase in affinity to 11.3 pM ±20.7. This data is not realistic and does not conform 

to any of known utrophin ABD biochemistry or binding models. The binding affinity 

calculated at pH 10 is much greater than normal and it is associated with a 

considerable error whereas the stoichiometry suggests the association of 

approximately eight utrophin ABDs to each actin monomer in the filament. In this 

instance, the lack of reliability of the pH 10 binding data may result from the 

decreased stability of F-actin at elevated pH. It was observed during the analysis of 

the data at pH 10 that the proportion of F-actin recovered in the pellet was 

particularly low and varied greatly. This fluctuation in the pelleting F-actin would 

have significant consequences on the stoichiometries and affinities calculated from 

the data. The F-actin that pelleted at pH 6 and 8 was very consistent, if anything, the 

proportion of G-actin at pH 6 was much less than at pH 8 suggesting greater stability.

65



Chapter 3: pH Induced Conformational Change o f the Utrophin ABD

This increased stability may help to explain the increased affinity of the utrophin 

ABD at this pH.

3.2.3 Investigation o f utrophin ABD structure using circular dichroism.

In order to assess the effects of varied pH on the structure and conformation 

of the utrophin ABD protein samples at pH 6, 8 and 10 was subjected to near and far 

UV CD analysis. Any differences in the structure or conformation of the protein over 

the pH range could result in differences in the CD spectra. Figure 3.6 represents the 

near and far UV spectra of the three utrophin samples. From these data the secondary 

structure content of the protein was predicted using SBLCON (Table 3.3).

Figure 3.6A demonstrates that the utrophin samples show very little difference 

in their secondary structures. There appears to be a slight variation in the molar 

ellipticity at pH 10 however, this is most likely to be attributable to a slight 

difference in sample concentration. The SBLCON analyses determined that the 

utrophin ABD consisted of approximately 60 % a-helix, which would be expected 

when compared to the known crystal structure of the utrophin ABD (Keep et al.  ̂

1999a; Keep ef a/., 1999b).

It is evident that there is little difference in the secondary structure of the 

protein over the pH range. The near UV spectra (Figure 3.6B) demonstrate that there 

is no major change in the near UV region and hence, no change in the overall 

conformation of the utrophin ABD over the range of pH tested.

Sit

Helix A P Turn Other
pH 6 60% 5% 2% 17% 17%
pH 8 61% 5% 1% 16% 18%
pH 10 60% 4% 1% 17% 19%

Table 3.3: Predicted secondary structure elements of the utrophin ABD at 
varying pH. The proportion of each secondary structure element that contributes to 
the utrophin CD spectra as predicted using SBLCON analysis (Sreerama and Woody, 
1993). Secondary structural elements predicted consist of a-helix (helix), anti­
parallel p-sheet (A), parallel p-sheet (P), turn and other.
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Figure 3.6: Near and far UV CD spectra of the utrophin ABD at varying pH.
Samples of utrophin ABD (0.5 mg/ml) prepared in 10 mM phosphate buffer at pH 6, 
8 and 10 were subjected to near and far UV CD analysis. Far UV CD spectra of 
utrophin ABD are presented in panel A whereas near UV CD spectra are displayed in 
panel B. Utrophin ABD samples at pH 6, 8 and 10 are represented in magenta, blue 
and red respectively. In panel A the data has been converted into mean residue molar 
ellipticity whereas panel B presents the near UV CD data in terms of the raw 
ellipticity of the data measured in millidegrees (mdeg).
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3.2.4 Investigation of utrophin ABD structure ming tryptophan fluorescence.

Proteins can be stimulated to produce an intrinsic fluorescence that may be of 

use when investigating conformational transitions, substrate binding or association 

and dénaturation (Chen and Barkley, 1998). Within a polypeptide the aromatic amino 

acids tryptophan, phenylalanine and tyrosine are responsible for fluorescence 

however tryptophan is usually the dominant intrinsic fluorophore (Lakowicz, 1999). 

The utrophin ABD contains six tryptophan residues, three in each CH domain 

(Figure 3.7), that could be useful to investigate any structural changes or differences 

in conformation that might occur over a varied pH range.

Trp 128^ (

Trp 159 Trp 40

Figure 3.7: Location of tryptophan residues within the utrophin ABD. Ribbon 
and spacefill diagrams of the utrophin ABD highlighted to show the location of the 
six tryptophan residues (yellow) found within the utrophin ABD. The three 
tryptophan residues that may be affected by a conformational change are indicated. 
The first and second CH domains are shown in blue and red respectively.

In this instance, the presence of multiple fluorescent residues complicates the 

analysis of utrophin ABD tryptophan fluorescence; however, three of the six 

tryptophan residues 40, 128 and 159 may be useful. These three residues could be 

located at the potential interface between the two CH domains when the utrophin 

ABD is in solution. If the ABD adopts a closed conformation in solution, similar to 

the CH1/CH2 interface of opposing monomers in the crystal dimer (Keep et a i.
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1999b), then inducing a change in protein conformation by varying the pH might 

alter the environment of these residues allowing detection of the conformational 

change via altered tryptophan fluorescence. Analysis of the tryptophan fluorescence 

would also complement the near UV data collected in the previous experiment.

To test this hypothesis 0.5 mg/ml samples of utrophin ABD at pH 6, 8 and 10 

were excited at a wavelength of 296 nm and the resulting fluorescence recorded 

between 300 and 400 nm (Figure 3,8). From the data plot it is evident that there has 

been a reduction in the fluorescent intensity recorded at pH 10 when compared to 

that at pH 6 and 8. This reduction could be due, in part, to fluorescence quenching of 

one or more tryptophan residues upon increased exposure to the solvent (Lakowicz,

1999). However, if this were the case then a red shifting of the fluorescence peak 

would also occur (Vivian and Callis, 2001).

It is more likely that this sample is of slightly lower concentration than that of 

the pH 6 and 8 samples (as stated in 3.2.4) and this reduced concentration would 

serve to give a slightly lower fluorescence upon stimulation. The fluorescence of the 

utrophin ABD samples at pH 6 and 10 are maximal at approximately 339 nm 

whereas the peak at pH 8 corresponds to roughly 337 nm. The difference in the 

fluorescence maxima of these three samples is not particularly great and hence, there 

is very little difference in the tryptophan environments over the range of pH.

It is apparent that the tryptophan fluorescence of the utrophin ABD is 

invariant over the range of pH. The actin nucléation and severing protein gelsolin 

experiences a marked change in activity as pH is varied (Lagarrigue et a l, 2003). 

Tryptophan fluorescence of gelsolin changes considerably over a much narrower pH 

range than used in this investigation. Hence, if utrophin was to exhibit a pH 

dependent conformational change an alteration in tiyptophan fluorescence should be 

detectable. The lack of any variance of tryptophan fluorescence agrees with the near 

UV CD data which demonstrates no overall change in the tertiaiy structure of the 

protein (Figure 3.6).

69



Chapter 3: pH  Induced Conformational Change o f the Utrophin ABD

350

=)
<
s
Io
3

300 i

250 ^

200 -

150 i

100 ]

300 310 320 330 340 350 360 370 380 390 400 
Waveienath (nm)

Figure 3.8: Tryptophan fluorescence of the utrophin ABD at varying pH.
Samples of utrophin ABD (0.5 mg/ml) at pH 6 (red), 8 (blue) and 10 (magenta) were 
stimulated at 296 nm and the fluorescent emission between 300 and 400 nm recorded 
at a slow scanning rate. Excitation and emission slit widths were set at 1.5 nm and 
fluorescence is represented in arbitrary units (AU).

3.2.5 Analytical ultracentrifugation analysis of the utrophin ABD at varying pH.

The analysis of the secondary and tertiary structure of the utrophin ABD over 

a range of pH revealed little difference in the overall conformation of the protein 

although is apparent that the binding of the utrophin ABD to F-actin varies 

considerably over the range of experimental pH (section 3.2.3). This variability in 

binding may result from structural changes experienced by F-actin and not the 

utrophin ABD over the range of experimental pH. For completeness of the structural 

and conformational analysis of the utrophin ABD at pH 6, 8 and 10 analytical 

ultracentrifugation was performed. These analyses were performed with the help of 

Dr Olwyn Byron and her technician Gordon Campbell at the University of Glasgow. 

This technique provided a means of characterising the hydrodynamic and solution 

behaviour of the utrophin ABD when in solution.
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3.2.5.1 Sedimentation equilibrimn analysis o f the utrophin ABD at varying pH

Sedimentation equilibrium (SE) is particularly useful in determining molar 

mass and the study of self-association and heterogeneous interactions of proteins in 

solution. When multiple SE experiments are performed at varying speeds of 

centrifugation an accurate determination of monomer molecular weight can be 

determined along with the stoichiometry of any oligomeric state occurring through f

self-interaction. Utrophin ABD at pH 6, 8 and 10 was subjected to sedimentation 

equilibrium analysis at 20000, 25000 and 30000 rpm. The resultant whole-cell 

apparent molecular weight (MW, app; kDa) are shown in Figure 3.9 (data tables are 

shown in Appendix 4).

These data demonstrate how the apparent MW of the utrophin ABD varies 

when compared to the protein concentration of the sedimenting samples. When the 

utrophin ABD was sedimented at 25000 rpm the data suggest that the molecular 

weight of the protein changes quite considerably as the concentration of the sample 

increases. It is known that the utrophin ABD is monomeric when in solution and has 

a MW of approximately 30 kDa (Moores and Kendrick-Jones, 2000; Winder et al.,

1995). The data at 25000 rpm suggest a stoichiometry that ranges from a dimer at pH 

6 and 8 up to an octamer at two data points at pH 10. This is an unlikely 

stoichiometry however; the pH 10 data seems to suggest a self association of the 

utrophin ABD that is not apparent at pH 6 and 8. The 25000 and 30000 rpm 

experiments both suggest a higher molecular weight of utrophin at pH 10, a tetramer 

at 25000 rpm and a dimer at 30000 rpm. Overall, the mass of the utrophin ABD at 

pH 10 appears to be reducing as the centrifugal speed used in the experiment 

increases. The pH 6 and 8 data suggest that that the molecular mass of the utrophin 

ABD at 25000 rpm corresponds to a dimer whereas, at 25000 and 30000 rpm the 

molecular mass is representative of a monomer. This value, approximately 30 kDa is 

similar to the known MW of the utrophin ABD and the MW determined from gel 

filtration and gel electrophoresis (Appendix 2). The pH 10 data suggested a higher 

MW potentially resulting from oligomerisation, a second set of data at 25000 and 

30000 rpm was collected using the same the utrophin ABD samples and 

experimental parameters.
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Figure 3.9: Apparent MW of the utrophin ABD versus protein concentration at 
varying pH. Sedimentation equilibration data of the utrophin ABD collected at pH 
6, 8 and 10 and at sedimentation speeds of 20000, 25000 and 30000 rpm. Each 
experiment depicts the oligomeric state of the utrophin ABD at each pH and at each 
centrifugation speed. The discontinuity of the pH 10 data results from the failure of 
the pH 10 sample cell. The raw data for this figure can be found in Appendix 4. 
Protein concentration is represented by arbitrary units (au).
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From these data (Figure 3.10, Appendix 5) it is evident that at pH 10, once 

again, the mass of utrophin appears to increase dramatically to almost 10 times the 

known value. The pH 6 and 8 samples do not exhibit a similar effect. At the higher 

protein concentration (above 0.4 au) the pH 10 samples behave as if they were 

monomeric and over lay closely with the pH 6 and 8 samples at both centrifugation 

speeds. Hence, these sedimentation equilibrium data generally indicate that the 

utrophin ABD is monomeric at pH 6 and 8 however at pH 10 the protein appears to 

self associate.

I
<

300-,

250-

 25k pH6
25k pH8

 25k pH 10
 ------- 30k pH6

30k pH8 
 30k pH 10

200 -

150-

100 -

,-J---- Î"-50 -

0 -

0.1 0.2 0.3 0.4

Concentration (AU)
0.5

Figure 3.10: Apparent MW of the utrophin ABD versus protein concentration 
at varying pH (repeated experiment). Sedimentation equilibration experiments of 
the utrophin ABD were repeated at 25000 and 30000 rpm using samples at pH 6, 8 
and 10. The data used to generate the figure can be found in Appendix 5.

3.2.5.2 Sedimentation velocity analysis o f the utrophin ABD at varying pH.

The SE experiments determined that the utrophin ABD was monomeric at pH 6 

and 8 although there did appear to be oligomerisation at pH 10. Sedimentation 

velocity (SV) experiments can be used to determine the sedimentation coefficient, S, 

which is extremely valuable in characterising changes in size or shape of a molecule 

over varying experimental conditions, in this instance, change in pH.

Before the SV experiment was performed hydrodynamic bead modelling was 

used to assess the potential difference in the hydrodynamic properties of the utrophin
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ABD in ‘open’ and ‘closed’ conformations (Byron, 2000; Garcia De La Torre et al., 

2000). The crystal structures of utrophin and fimbrin (Goldsmith et a l,  1997; Keep 

et a l, 1999b) were used to calculate the sedimentation coefficient and radius of 

gyration of the molecules in solution. The fimbrin structure was used to generate 

modelled data attributable to the ‘closed’ utrophin confonnation whilst the utrophin 

crystal monomer was used to represent the ‘open’ conformation. The utrophin crystal 

dimer was also modelled for comparison.

The modelling determined that the extended and compact conformations could, 

in theory, be differentiated hydrodynamically. The closed conformation generated a 

radius of gyration of 19.6 Â and a sedimentation coefficient of 2.72 S. The extended 

conformation generated a radius of gyration of 26.6 Â and 2.33 S and the utrophin 

crystal dimer a radius of gyration of 27.6 Â and 3.74 S respectively.

The utrophin ABD was subjected to sedimentation velocity analysis at pH 6, 8 

and 10. The SV data (Appendix 6) are presented in Figure 3.11 as plots of 

sedimentation coefficient distribution (c(s)) versus sedimentation coefficient 

corrected for temperature and buffer density (s20w). The data were analysed using 

direct boundary modelling with a distribution of Lamm equation solutions (Schuck, 

2000).

At low protein concentration (approximately 0.5 mg/ml) the utrophin ABD 

does not appear to exhibit any detectable difference in sedimentation coefficient 

however, at higher concentrations it appears that the molecule does display a slight 

difference over the range of pH. The sedimentation coefficients calculated at the 

highest utrophin ABD concentrations were determined as 2.55 S, 2.48 S and 2.47 S 

corresponding to pH 6, 8 and 10 respectively. This difference is small however, it 

suggests that at pH 6 the domain behaves as if it were more compact than at pH 8 

and the pH 10 data suggests that the domain is more open. The modelled 

hydrodynamic properties of the compact and open conformations of utrophin ABD 

demonstrate that a difference in conformation could be detected in solution however 

it is evident, from the SV analysis, that pH only affects the hydrodynamic properties 

of the utrophin ABD to a small degree.
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Figure 3.11: Sedimentation coefTicient distribution plots of the utrophin ABD at 
approximately similar concentration, varying pH. Sedimentation coefficient 
distribution (c(s)) plots of the utrophin ABD at each pH and approximately similar 
concentration after deconvolution of diffusion effects based on direct boundary 
modelling with a distribution of Lamm equation solutions. The sedimentation 
coefficients calculated have been corrected for temperature and buffer density 
(s20w).
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3.2.6 Resistance o f the utrophin ABD to proteolytic degradation at varying pH  by 

papain and proteinase K.

The sedimentation velocity data suggest that there is only a slight pH 

dependant change in the overall shape of the molecule when in solution (section 

3.2.5.2), From these data it is possible that the varied pH is responsible for the 

change in the hydrodynamic properties of the protein and hence a slight change in 

the tertiary structure of the protein. The utrophin ABD is monomeric in solution, 

potentially adopting a compact globular structure; however, models exist where the 

utrophin ABD binds F-actin in an open conformation. If the degree of compactness is 

affected across the range of experimental pH then it is possible that the protein may 

display an altered susceptibility to proteolytic degradation. Therefore, it is possible 

that at higher pH, when the protein was predicted to be more ‘open’, a protease may 

be able to degrade the utrophin ABD to a greater extent than at lower pH when a 

more compact conformation might be adopted.

Papain and proteinase K are two proteases that display activity over a wide 

range of pH. Any difference in the overall structure of the utrophin ABD resulting 

from a pH induced conformational change may be detectable by a change in the 

pattern of peptide fragments produced by digestion with these two proteases at 

different pH.

Papain and proteinase K were found to readily digest utrophin ABD at pH 8. 

Utrophin ABD was subjected to digestion by papain and proteinase K for 5, 10, 20, 

40 and 60 minutes at pH 6 and 10 (Section 2.2.22.2). A 1 mg/mi solution of BSA 

was also digested by each enzyme at both pH values to help assess the activity of 

both enzymes over the range of pH used in the experiment. All samples were 

subjected to gel electrophoresis and non-digested utrophin and BSA samples were 

run as a comparison (Figure 3.12).
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Figure 3.12: Resistance of the utrophin ABD to proteolytic degradation at 
varying pH. 25 pM samples of the utrophin ABD were subjected to proteolytic 
degradation by papain and proteinase K at pH 6 and 10. Lane 1 of each gel 
corresponds to a sample of protease alone. Lane 2 and 3 represent the utrophin ABD 
alone before and after 60 minutes of incubation at room temperature. Lanes 4 to 8 
represent utrophin degradation at 5, 10, 20, 40 and 60 minutes after addition of 
protease and incubation at room temperature. A 1 mg/ml sample of BSA was also 
subjected to degradation. Lanes 10 and 11 represent BSA alone before and after 60 
minutes of incubation and lanes 12 to 16 show degradation at 5, 10, 20, 40 and 60 
minutes after addition of protease. Digestion was performed in 100 mM NaCl, 1 mM 
EDTA, 1 mM DTT and 20 mM Tris pH 10 or MES pH 6 and papain or proteinase K 
were present at final working concentrations of 0.01 mg/ml and 0.001 mg/ml 
respectively. Molecular weight markers are shown to the left of each gel (kDa).

Figure 3.12 demonstrates the degradation of utrophin ABD by papain and 

protease K. It is apparent that digestion by papain does not seem to have progressed
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to a great extent; however, the degradation of utrophin ABD at pH 6 by this enzyme 

seems to have generated a number of peptide fragments that are not visible in the 

undigested sample of utrophin ABD. Much of the full length utrophin ABD remains 

un-degraded by the end of the time course. The BSA control also shows little 

degradation at pH 6. When the digestion was performed at pH 10 there appeared to 

be less degradation of utrophin ABD and the pattern of products formed was 

different to that of pH 6. The BSA control also showed little degradation; however, a 

similar pattern of fragments was generated compared to those formed at pH 6 and the 

degradation resulted in fewer peptide fragments.

The digestion of the utrophin ABD with proteinase K was much more 

successful. At pH 6 much of the full-length the utrophin ABD remains after 60 

minutes but a number of fragments have been produced. The degradation that 

occurred at pH 10 was much more substantial. Almost all full-length utrophin ABD 

was degraded after 5 minutes; the band that remains at approximately 30 kDa 

corresponds to proteinase K. The fragments are similar to the fragments produced by 

digestion at pH 6 however they are produced in much greater quantities. It is clear 

form these digestions that the activity of the enzyme has, once again, varied 

considerably. Comparison of the BSA degradation mirrors this, demonstrating that 

almost all BSA is degraded over the course of the 60 minute assay.

Both proteinase K and papain clearly degrade the utrophin ABD at pH 6 and 

10; however they do so with a large variability in their activities. Even though both 

enzymes are stable over a broad pH range the large difference in their activities 

would make comparison of utrophin degradation between papain and proteinase K 

experiments difficult. The experiment aimed to identify any potential differences in 

the extent of cleavage and the cleavage products formed by digestion of the utrophin 

ABD by these two proteases at varied pH. From these data it is evident that these two 

enzymes are not suitable to compare the resistance of the utrophin ABD to 

proteolytic degradation at pH 6 and 10.

The utrophin ABD has been modelled to bind to F-actin in a variety of different 

conformations (Galkin et al., 2002; Moores et al., 2000). If different modes of 

interaction can be induced by varying the pH then it is possible that the difference in 

association of the utrophin ABD with F-actin could protect actin from proteolytic
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degradation to differing extents. Before this hypothesis could be tested a preliminary 

experiment was performed to assess the resistance of F-actin to proteolytic 

degradation when the utrophin ABD was bound. Papain was chosen to perform the 

digestion as the number of peptide fragments generated by digestion with this 

enzyme were less than those produced by proteinase K however, the protease 

concentration was increased to 0.01 mg/ml to increase the extent of degradation. The 

preliminary experiment involved the digestion of a 25 pM sample of utrophin ABD 

in the presence of 10 pM F-actin and 0.01 mg/ml of papain prepared in TED pH 8 

and 1 X ABB (section 2.2.22.3). All samples were subjected to proteolytic 

degradation and SDS-PAGE analysis so that the extent of protein degradation could 

be assessed (Figure 3.13).
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Figure 3.13: Protection of F-actin from proteolysis by binding of the utrophin
ABD. Samples of the utrophin ABD (25 pM) and F-actin (10 pM) at pH 8 were 
subjected to proteolysis by papain (0.01 mg/ml) at room temperature. These samples 
are compared to undigested protein samples. In all cases, samples were subjected to 
high-speed sedimentation to separate soluble and insoluble protein fractions. F-actin 
degradation in the presence of the utrophin ABD was followed for 30 minutes. 
Samples were removed at 5, 10, 15, 20 and 30 minute time intervals. The remaining 
sample was then centrifuged at high speed to pellet any remaining insoluble protein. 
The limited proteolysis of F-actin in the presence of the utrophin ABD was repeated 
at 4°C. Samples were removed from the proteolytic reaction at equivalent time points 
as those taken at room temperature.
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Figure 3.13 demonstrates the size of the utrophin ABD, F-actin, papain and 

the combinations of these species before and after proteolytic degradation. The 

utrophin ABD is soluble and remains in the supernatant fraction whilst F-actin is 

readily pelleted. Combination of these two proteins clearly shows the utrophin ABD 

associating with F-actin in the pellet fraction. Addition of protease to utrophin ABD 

and F-actin alone produces complete digestion of full-length utrophin; however, F- 

actin is not completely degraded but the fragments that are generated still localise to 

the pellet fraction. The F-actin/utrophin sample shows complete degradation of full- 

length F-actin after only 5 minutes and almost complete degradation of the utrophin 

ABD. This indicates that the activity of the enzyme is too high and/or that binding of 

the utrophin ABD to F-actin is affording little protection from proteolysis, A small 

amount of full-length utrophin ABD seems to perpetuate throughout the time course. 

These data combined with the varied enzyme activity at different pH make any 

differences in digestion difficult to interpret. It is evident that F-actin was not 

protected from proteolysis by the binding of the utrophin ABD and hence, the 

experiment was not developed further.

3,3 Discussion

Based upon preliminaiy data and the proposed models of the utrophin ABD 

interacting with F-actin, we have investigated the structural and conformational 

effects that varied solution pH has on the utrophin ABD structure. To achieve this, 

the utrophin ABD at pH 6, 8 and 10 was subjected to a number of biochemical and 

biophysical analyses.

Preliminary gel filtration data suggested that the apparent size of the utrophin 

ABD may be induced to change by varying the solution pH. This apparent pH 

dependant change in molecular weight suggested that the conformation of the 

utrophin ABD was changing from a more ‘compact' configuration at lower pH to a 

more ‘open' configuration at higher pH. It has been assumed that the utrophin ABD 

adopts a closed and compact state when in solution. It was possible that the 

interactions between the two CH domains of the utrophin ABD when in the 

monomeric solution state were disrupted at higher pH allowing separation of the CH
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domains. Analytical gel filtration analysis determined that there was no difference in 

the MW of the utrophin ABD over the range of pH used (section 3.2.1) although, the 

calculated MW (29.8 kDa) matched closely with previously detemiined values of the 

utrophin ABD MW (Winder and Kendrick-Jones, 1995a). It was evident that the 

original pH dependant size shift detennined for the utrophin ABD was a result of a 

difference in the gel bed volume of the gel filtration column. Calibration of the 

column at each pH resulted in a loss of the apparent pH induced size shift originally 

determined for the protein.

Although there was no detectable change in the MW of utrophin using gel 

filtration, the surface charge, and hence, the degree of association of the two CH 

domains could still be altered as the extent of protonation varies depending on pH. 

This led on to the investigation of the utrophin ABD binding to F-actin at varied pH. 

If the electrostatic association between the CH domains could be disrupted or the 

overall structure of the domain altered in any way then binding to F-actin in an 

‘open’ conformation may become more favourable and conversely, if the CH domain 

association was increased, then binding in a more ‘closed' conformation may also 

occur. The binding affinity and stoichiometiy of binding of the utrophin ABD to F- 

actin was determined at pH 6, 8 and 10 (section 3.2.3). From these data it was 

apparent that at a reduced pH the affinity of the utrophin ABD for F-actin was 

increased to 10.6 pM compared to 25.7 pM at pH 8. The stoichiometry of the 

interaction also changed significantly from 1:1 to 0.6:1, suggesting binding of one 

molecule of utrophin molecule to two molecules of actin or a possible half-binding 

interaction (Galkin et al., 2002). The pH 10 data were not sufficiently reliable to 

rationally explain, the binding affinity was unreliable due to the large degree of 

associated error whilst the binding stoichiometry suggests that one molecule of 

utrophin ABD was associating with six molecules of actin. Full length utrophin has 

been shown to bind laterally to F-actin with a stoichiometry of 1:14 but this 

interaction requires association of the ABD and a number of the spectrin repeats that 

form the rod domain of the complete molecule (Rybakova et al., 2002). Reduction of 

the number of spectrin repeats following the utrophin ABD appears to reduce the 

binding stoichiometry (Zuellig et al., 2000) to a value intermediate to that of full 

length utrophin and the ABD alone. These studies indicate that the binding
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stoichiometry of 1:6 determined at pH 10 would not be possible for the isolated 

utrophin ABD.

During determination of the binding data it was noticed that the proportion of 

F-actin that pelleted during the co-sedimentation assay was not consistent at pH 10.

It appeared that the proportion of F-actin compared to G-actin was greatly reduced at 

pH 10 when compared to pH 6 and 8. A destabilisation of F-actin at pH 10 would 

help explain the error associated with the pH 10 binding data which would contribute 

to the determined stoichiometry. Indeed, this was found to be the problem. The 

structure and stability of F-actin is affected significantly by the pH of the 

surrounding solution. Polymerisation of G-actin to fonn F-actin, requires nucléation 

and then elongation of the actin filaments, a process referred to as the nucleation- 

elongation reaction (Oosawa and Kasai, 1962). The polymerisation of actin is 

influenced strongly by pH. At lower pH, proton binding increases and induces a 

conformational change causing a large increase in the stability of actin dimers 

(Zimmerle and Frieden, 1988). This increased stability, in turn, generates a faster rate 

of polymerisation (Zimmerle and Frieden, 1988). It has also been found that the 

critical concentration required for filament formation also increases significantly at 

higher pH (Zimmerle and Frieden, 1988). From these studies it is evident that the 

stability of F-actin at pH 10 would be significantly lower that at pH 6 and hence, any 

data collected at the elevated pH could be unreliable. Indeed, comparison of the pH 6 

and 10 data would also be difficult as the structure of the actin filament is also 

affected by varying pH. Oda, et al., 2001 demonstrated that the helical pitch of F- 

actin is slightly larger at lower pH (Oda et al., 2001). This would potentially affect 

the utrophin ABD/F-actin binding interaction producing another variable that would 

need to be taken into account when interpreting the data.

From these data it is evident that the analysis of the utrophin ABD binding to 

F-actin at pH 6 and 10 would be very difficult and would require the structural 

effects experienced by F-actin to be taken into consideration. However, the utrophin 

ABD does bind F-actin with a higher affinity at pH 6 than at pH 8 and a 

stoichiometry that suggests half binding. It is unlikely that the utrophin ABD has a 

bundling ability, an effect that could explain the 1:2 stoichiometry, as this would 

require binding of CHI and 2 to adjacent actin filaments. In light of current
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knowledge this is not possible as the utrophin ABD CH domains are not equivalent 

with regard their actin-binding ability (Gimona and Winder, 1998). Separation of the 

two CH domains has shown that only CHI can bind F-actin, although this 

association is greatly reduced and hence, the utrophin ABD would be required to 

dimerise so that actin filaments could be cross-linked. It is clear from the gel 

filtration data (section 3.2,2) and analytical ultracentrifugation data (section 3.2,6.1) 

that the utrophin ABD is monomeric at pH 6 indicating that the 1:2 stoichiometry at 

this pH can not be explained via utrophin dimérisation. However, it should be noted 

that the CH2 does play a significant role in the actin-binding interaction of the 

utrophin ABD. The binding affinity of CHI alone is much reduced when compared 

to that of the complete ABD although CH2 does have an important role to play in the 

interaction of the complete domain with F-actin. Solutions of separated CHI and 

CH2 domains found that only CHI associated with F-actin (Winder et al., 1995). In 

this instance the connection of the two CH domains by the utrophin helical linker is 

required to aid in the association of CH2 with F-actin and the realisation of the ABD 

full binding potential.

It is possible however, that the utrophin ABD at pH 6 is binding to F-actin in 

a half decorated manner, a model proposed by Galkin et al., 2002. This model 

describes utrophin interacting with F-actin in an extended conformation where one 

molecule of utrophin binds two molecules of actin in the filament. A number of 

proteins that bind F-actin exhibit a conformational change or an alteration in their 

activity in a pH dependent manner. For example, members of the actin 

depolymerising factor (ADF)/ cofilin family bind F-actin at low pH but to G-actin at 

higher pH values (Blondin et a l, 2002) whereas low values of pH activate the actin 

nucléation and severing protein geisolin (Lagarrigue et a l, 2003). In these two 

instances the change in activity of the proteins in question stems from either a 

conformational change in F-actin or within the binding protein itself. However, it is 

clear that the binding of the utrophin ABD to F-actin over the experimental range of 

pH is more dependent on the confonnation and structure of F-actin rather than a 

detectable structural or conformational change induced in the utrophin ABD. The 

proposed half binding of the utrophin ABD at lower pH may be caused by the
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increased filament pitch of F-actin at lower pH and may result in the determined 

stoichiometry and increased affinity.

It has proven complicated to differentiate any pH dependant structural or 

conformational changes in the utrophin ABD when interacting with F-actin. Altering 

the concentration of hydrogen ions in solution would affect amino acid protonation 

and hence, there may still be a detectable structural or conformational alteration. The 

actin-binding protein hisactophilin from Dictyostelium discoideum demonstrates a 

pH dependent actin-binding seemingly based around the pKa of histidine - an amino 

acid found in abundance within the protein (Scheel et al., 1989; Stoeckelhuber et al.,

1996); however, the utrophin ABD only contains nine histidine residues (compared 

to 31 for hisactophilin) so it would be unlikely that a gross conformational change 

could be induced by so few residues. To continue the structural and conformational 

analysis of the utrophin ABD, circular dichroism was used to investigate the 

secondary and tertiary structure of the protein. The far UV spectra of the utrophin 

ABD at pH 6, 8 and 10 (Figure 3,6) showed little difference in the secondary 

structures of the utrophin ABD over the range of pH. SELCON analysis determined 

that the utrophin ABD was approximately 60 % a-helix at all pH values whereas the 

content of the other secondary structure elements varied little over the range of pH 

although there appeared to be a slight increase in the proportion of anti-parallel and 

parallel (3-sheet as pH decreased from 10 to 6. It is odd that the secondary structure 

prediction suggests the presence of p-sheet as the utrophin ABD has been shown to 

contain no such structures and is comprised primarily of a-helix (Keep et a l, 1999b). 

The near and far UV analysis of the utrophin ABD structure at each pH demonstrated 

that there was no change in the structure of the protein. The activation of geisolin at 

low pH is generated by the movement of a number of protein domains; this 

activation occurs over a narrower range of pH than used here but it is evident that 

varied pH does not alter the structure of the utrophin ABD.

The tryptophan fluorescence of the utrophin ABD at pH 6, 8 and 10 was 

measured to detect any alteration in the environment of the tryptophan residues 

present within the protein. This analysis would be purely qualitative, as utrophin 

contains six tryptophan residues and distinguisliing between the contribution of each 

to the overall fluorescence would be impossible. However, if one or more of the
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tryptophans became more or less solvent exposed due to a conformational change in 

the utrophin ABD a shift in the fluorescent maxima would be observed (Lakowicz, 

1999; Vivian and Callis, 2001). The structural change exhibited by geisolin resulted 

in increased tryptophan fluorescence and a red shifting of the fluorescence maxima 

as pH was elevated (Lagarrigue et al., 2003); no such increase or shifting of the 

utrophin ABD fluorescence intensities was observed. From these analyses it is clear 

that the tryptophan environments are not altered across the range of pH and hence, 

the conformation of the utrophin ABD does not appear to alter as pH is varied.

The utrophin ABD has been modelled to bind to actin in both open and 

closed confonnations and much controversy exists over the exact manner of 

association (Lehman et al., 2004). Binding of the utrophin ABD to F-actin in an 

extended manner would require the opening of the molecule, from the proposed 

closed solution state, to an extended conformation (Galkin et al., 2002; Moores et al., 

2000), Hydrodynamic bead modelling was used to determine if there could be a 

detectable difference in the hydrodynamic properties of the utrophin ABD if a more 

open or closed conformation was occurring in solution. The crystal structure of 

fimbrin was used to represent the closed solution conformation (Goldsmith et al., 

1997) whilst the utrophin crystal structure was used to represent the open 

conformation (Keep et al^ 1999b). The modelling demonstrated that the radius of 

gyration and sedimentation coefficient of the two conformations were quite different 

and could be detected by sedimentation velocity analysis. Sedimentation equilibrium 

analysis of the utrophin ABD demonstrated variability in the apparent oligomeric 

state of the domain in solution. Generally, at pH 6 and 8, the protein was a monomer 

however at pH 10 the data were confusing suggesting a variety of oligomeric states. 

This does not fit with the known utrophin ABD biochemistry as the protein has been 

found to be monomeric when in solution (Moores and Kendrick-Jones, 2000; Winder 

et al., 1995). The highly homologous domain fi-om dystrophin has been shown to 

dimerise (Norwood et al., 2000) but other studies dispute this (Chan and Kunkel,

1997) however, no larger oligomers have been reported. The fact that no utrophin 

dimérisation was occurring at pH 6 suggests that the F-actin binding stoichiometry 

detennined in section 3.2.3 was not a result of the utrophin ABD self associating. 

The sedimentation velocity data (section 3.2.6.2) demonstrated that the utrophin
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ABD was experiencing a slight pH dependent variation in sedimentation coefficient.

This variation could be consistent with the modelling of the open and closed states of 

the utrophin ABD. At pH 6 the sedimentation coefficient was slightly higher than at 

pH 10 suggesting a more compact globular conformation potentially attributable to 

an increased interaction between the two CH domains. The slightly lower 

sedimentation coefficient at pH 10 could therefore represent a slightly extended 

conformation where the CH domain association has been reduced. A pH induced 

increase in hydrodynamic size has been reported for geisolin however, the ‘opening 

up' of geisolin was caused by a decreased pH (Lamb et al., 1993), an opposite effect 

to that exhibited by the utrophin ABD. From these data it is apparent that utrophin 

might exhibit a slight pH dependent change in conformation although a 

disassociation of the CH domains would be expected to generate a larger difference 

in sedimentation coefficient. For example binding of ATP to the alpha subunit of the 

E. coli Fi ATPase causes a confonnational change that increases the sedimentation 

coefficient from 3.52 to 4.00 (Dunn, 1980); this is quite a large difference when 

compared to the pH induced change in the utrophin ABD.

The slight difference in conformation determined via ultracentrifugation 

might also be detectable by a differing resistance to proteolytic degradation. A 

preliminary experiment was performed to assess the resistance of the utrophin ABD 

to degradation by two proteases that were stable over a broad range of pH. These two 

enzymes, papain and proteinase K are stable over a pH range of 4 -  10 and 4 -  12.5 

respectively (Zucker et al., 1985) and therefore, would be ideally suited to bring 

about proteolysis over the experimental range of pH. Utrophin ABD and BSA were 

subjected to degradation by both enzyme but, unfortunately, the optimum activity of 

both enzymes was not maintained over their complete pH stable range. Proteinase K 

was found to be much more active at higher pH, whereas, papain was much more 

active at lower pH. The peptide fi*agments produced by both enzymes also varied 

with pH and hence, comparison between high and low pH would be difficult and 

complicated. As a result of these findings the experiment was not carried further. 

Interestingly, the sedimentation velocity data suggest a more compact conformation 

of the utrophin ABD at pH 6, which is opposite to the actin-binding data, which 

suggests greater affinity for F-actin at lower pH and a more ‘open’ conformation of
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binding. The actin-binding data is heavily influenced by the structure of F-actin at 

each pH but the sedimentation velocity data suggested a potential change in the 

conformation of the utrophin ABD when in solution. It was therefore possible that 

pH induced changes in actin-binding were a combination of pH effects on both the 

utrophin ABD and F-actin. Altering pH has many effects on actin and the proteins 

that bind to it. For example, low pH allows ADF/cofilin and talin to bind F-actin and 

geisolin to be activated whereas higher pH allows binding of ADF/cofilin to G-actin 

(Blondin et al., 2002; Hawkins et al., 1993; Lagarrigue et al., 2003; Schmidt et al., 

1993). If the binding conformation of the utrophin ABD to F-actin at each pH 

differed, then it was possible that a slightly different binding surface would be bound 

on actin at each pH. The differences in binding surface may protect F-actin from 

proteolytic degradation to differing extents at each pH. A preliminary investigation 

of the resistance of F-actin with bound utrophin at pH 8 found that there was little 

protection from degradation by papain even when the experiment was repeated at 

lower temperature.

Previous studies have utilised limited proteolysis of utrophin ABD and F- 

actin to probe the interaction of these two species (Moores and Kendrick-Jones, 

2000; Winder et al., 1995). In these instances chymotrypsin and trypsin were used; 

however, both of these enzymes display a more restricted and distinct range of pH 

activity than both papain and proteinase K and hence, would be unsuitable in this 

experiment. From this preliminary work it was evident that neither papain or 

proteinase K were suitable for the investigation of pFI dependent differences in 

degradation of utrophin bound to F-actin at varying pH and hence, the experiment 

was not developed further.

In summary, the data presented here suggest that the actin-binding domain of 

human utrophin can not be induced to undergo a pH dependent induced change in 

conformation. It is apparent that the original hypothesis predicting a pH induced 

conformational change of the domain was flawed. Even though the sedimentation 

velocity data do suggest a slight pH dependent conformational change the near UV 

and fluorescence data suggest no change in the structure of the protein. From these 

data it is clear that the utrophin ABD confonnation is independent of pH and that the
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proposed conformational change observed upon binding to F-actin cannot be induced 

in solution by altering the electrostatic environment of the protein.
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Utrophin ABD Linker Mutants

4.1 Introduction

Studies investigating the interaction of the utrophin ABD and F-actin have 

identified a number of possible modes of interaction ranging from a ‘closed’ compact 

conformation to an ‘open’ extended conformation (Galkin et al., 2003; Galkin et a l, 

2002; Moores et al., 2000; Sutherland-Smith et a l, 2003). The interaction of utrophin 

with F-actin in these various ways requires the protein to possess a certain degree of 

structural flexibility. Indeed, orienting the utrophin ABD crystal structure into the 

cryo-EM electron densities generated by utrophin ABD bound to F-actin required an 

induced fitting of the protein (Moores et a l, 2000). The utrophin ABD has been 

shown to be monomeric when in solution, presumably adopting a compact globular 

conformation (Winder et a l, 1995). This conformation contrasts with the extended 

arrangement exhibited by the utrophin ABD crystal structure which was found to be 

open and extended (Keep et a l, 1999b). The dimeric organisation of this crystal 

structure contrasts with that of the fimbrin ABD structure which was shown to be a 

compact monomer (Goldsmith et a l, 1997). The two CH domains in the fimbrin 

crystal fold back on themselves to generate a similar inter-CH domain interface that 

is seen in the anti-parallel CH domain interface of the utrophin ABD crystal 

structure, a phenomenon described as tliree dimensional domain swapping (section 

3.1). This phenomenon describes the structures that link swapped domains to be of 

particularly importance in facilitating this kind of dimer formation (Schlunegger et 

a l, 1997). The fonnation of the utrophin ABD solution monomer requires the linker 

region separating the two CH domains to be sufficiently long to allow the linker to 

fold back on itself (Keep et a l, 1999b). Sequence aligmnent has shown that the 

fimbrin ABD linker region is longer than that of the utrophin ABD ((Goldsmith et 

a l, 1997); section 4.2.1) and that this extra length may allow greater flexibility 

assisting in the crystallisation of the fimbrin ABD as a monomer and the association 

of the molecule with F-actin in a closed and compact conformation (Hanein et a l,

1998).

89



Chapter 4: Utrophin ABD Linker Mutants

The ABD of the actin cross-linking protein a-actinin has also been modelled 

when bound to F-actin. These models have demonstrated either an open, bi-lobed 

manner of interaction or a compact globular interaction as seen with the fimbrin 

ABD (McGough et al., 1994; Tang et al., 2001; Taylor and Taylor, 1993). The linker 

residues that separate the CH domains in this protein are fewer in number than in the 

utrophin ABD (section 4.2.6) and may influence the way in which the a-actinin 

ABD crystallises and interacts with F-actin.

It is possible that the number of residues that separate CH domains may be of 

particular importance in determining the manner of interaction of an actin-binding 

protein with F-actin. A larger number of residues would render the linker more 

flexible and may favour adoption of a compact ABD conformation upon interaction 

with F-actin. Conversely, shortening of the linker may increase rigidity, lessening 

interaction of the CH domains and favouring a more open conformation when 

interacting with F-actin. In order to test these hypotheses two linker mutants of the 

utrophin ABD were generated. The first involved extension of the utrophin inter-CH 

domain linker to model the longer linker seen in the fimbrin ABD and the second 

involved shortening of the utrophin ABD linker to model the reduced length of the 

a-actinin linker region.

4.2 Results

4.2. L 1 Design o f the utrophin ABD fimbrin linker mutant

Alignment of the utrophin and fimbrin ABD amino acid sequences revealed a 

stretch of sequence separating the two CH domains that was present in fimbrin but 

not utrophin ABD (Figure 4.1). The extra residues present in the fimbrin sequence 

corresponded t o l l  amino acids and it was these amino acids that were chosen to be 

inserted into the utrophin ABD linker region. Primers were designed using the 

utrophin and fimbrin sequences and overlap extension PCR was used to introduce the 

11 amino acids into the utrophin ABD sequence. This construct was then inserted 

into the pSJWl expression vector (section 2.2.10). The presence of the correct
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mutation was confirmed via sequencing before expression of the mutant construct 

was attempted.

Utr 134 WQVKDVMKD------------ VMSDLQQTNSEKILLSW 159
Fim 140 FADIELSRNEALAALLRDGETLEELMKLSPEELLLRW 136

•  • • •  #  * "À" #  "ic "k
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,1

Mut 1 3 4  WQVKDVMKDEALAALLRDGEVMSDLQQTNSEKILLSW 1 5 9

Figure 4.1: Sequence alignments of the utrophin and fimbrin actin-binding 
domain linker regions. Clustal W alignment of utrophin (Utr) and fimbrin (Fim)
ABD linker regions demonstrating the stretch of extra linker residues found in the
fimbrin ABD that are not seen in the utrophin ABD. The 11 extra residues that were |
inserted into the utrophin ABD linker to form UTR̂ ^̂ *̂"™ (Mut) are highlighted in red.
The consensus symbols and residue colours are defined as follows: and
represent identical residues, conserved substitutions and semi-conserved 
substitutions respectively whilst red, blue, magenta and green represent 
small/hydrophobic, acidic, basic and hydroxyl/amine/basic residues respectively.

4.2.1.2 Expression and purification o f

pSJWl vector containing the mutated utrophin ABD was transformed into 

competent E, coli strain BL21 (DE3); expression of the mutant protein was 

performed as described previously (Winder et al., 1995; section 2.2.10). The fimbrin 

linker mutant (UTR^^^™) seemed to express well showing a large induction after 

addition of IPTG (Figure 4.2) however, separation of the insoluble and soluble 

protein fractions revealed that u tR “ ™ was completely insoluble. This required the 

mutant protein to be recovered from its insoluble form vrithin bacterial inclusion 

bodies before purification (section 2.2.11). This was performed via an inclusion body 

preparation and solubilisation with urea. At this point the protein was subjected to 

anion exchange and gel filtration chromatography before step wise refolding of the 

protein via gradual removal of the dénaturant (section 2.2.12); a method used 

successfully for other utrophin ABD constructs (Winder et al., 1995). A sample of 

soluble refolded U T R ^^^ is shown in lane 5 of Figure 4.2.
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UTRfimbrin

Figure 4.2: Expression, solubility and purification of tbe ujr*™*’*™ linker 
mutant. Freshly competent BL21 (DE3) E. coli were transformed with the pSJWl 
UTR̂ rabrin constTuct. The bacteria were grown to a cell density of 0.6 at 600 nm 
before induction of protein expression via addition of IPTG. The protein present at 
pre and post induction are shown in lanes 1 and 2 respectively. After bacterial 
harvesting and lysis insoluble and soluble protein fractions are presented in lanes 3 
and 4. Lane 5 represents a fraction of purified UTR^*^. MW markers (kDa) are 
shown on the left.

3 7 -

25 -

Figure 4.3: SDS PAGE and western analysis of tbe utropbin ABD and tbe 
UTR^ '

fimbrin linker mutant. 1 pM samples of utrophin ABD and were
prepared. 2 x sample buffer was added to these samples and 10 pi was loaded onto a 
15 % acrylamide gel. Following separation the proteins were transferred to 
nitrocellulose ready for western blotting using the utrophin antibody (right hand 
panel). The acrylamide gel was then treated with Coomassie Blue to detect any 
protein not transferred to the nitrocellulose (left hand panel). MW markers (kDa) are 
shown on the left.

UTR̂ b̂nn appeared to refold from a denatured state; however, there was protein 

precipitation during this process. Comparison of the mutant with utrophin ABD 

indicated that was slightly larger than the wild type protein (Figure 4.3)

which was to be expected given the insertion of 11 amino acid residues. Western
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analysis of the wild type and mutant proteins demonstrated reactivity with an 

antibody raised to the wild type utrophin ABD sequence indicating that the mutant 

protein was sufficiently similar to the wild type protein (Figure 4.3).

4.2.L3 Circular dichroism analysis o f the linker mutant.

Before biochemical analyses were performed with the UTR^b™ mutant it was 

necessary to check that the insertion of the fimbrin linker sequence into the utrophin 

ABD linker had not disrupted the overall structure of the protein. CD and the 

analysis of the collected utrophin ABD and UTR "̂^b™ j^ta was performed with the 

help of Dr Sharon Kelly at the Scottish Circular Dichroism facility situated at The 

University of Glasgow. Far UV CD was used to compare the secondary structure of 

the mutant with the wild type protein (Figure 4.4). The utrophin ABD is a mostly 

helical protein (Keep et a l, 1999b) and the far UV CD spectra demonstrates this 

producing a trace indicative of a protein with high a-helix content (Kelly and Price,

2000). The utrophin ABD spectra demonstrates characteristic intensities at 

approximately 209 and 222 nm commonly associated with a-helix; however, the 

UTR̂ ™bnn mutant does not display a characteristic a-helical intensity at 209 nm. 

Overall the intensity of the UTR^“b™i ig reduced compared to that of the

utrophin ABD although the mutant protein does appear to have some secondary 

structure even though the spectrum is more indicative of a protein comprised of p- 

sheet.

The near UV CD spectra of UTR̂ ™b™ were also dissimilar to those of the 

utrophin ABD. These data give an indication of the similarities of the proteins 

tertiary structures based on the environments of aromatic residues present within the 

protein (Kelly and Price, 2000). Utrophin ABD displays a pronounced intensity at 

296 nm attributable to the tryptophan residues that it contains. The UTR®”b”*̂ mutant 

should display a similar trace as the lengthened linker does not contain any extra 

aromatics. This was found not to be the case; the xjTR^b«» spectrum is completely 

dissimilar to the utrophin ABD and does not appear to suggest a tertiary structure 

comparable to the wild type protein. From these data is probable that the UTR*“ b̂rû
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possesses little tertiary structure and that the overall folding of the protein is not 

equivalent to that of the utrophin ABD.
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Figure 4.4: Near and far UV CD spectra of the utrophin ABD and the 
linker mutant. Samples of the utrophin ABD (blue spectra) and (green
spectra) were subjected to near (1 m^ml) and far (0.4 mg/ml) UV CD analysis using 
10 and 0.2 mm quartz cells respectively. Protein samples were prepared in 10 mM 
phosphate buffer (pH 8.0). Each spectrum was an average of 3 scans recorded with a 
data pitch of 0.2 and a detector response time of 2 seconds. Near UV data are shown 
in terms of normalised CD millidegrees whereas far UV data are expressed as molar 
ellipticity (degrees cm  ̂dmol' )̂.
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To further investigate the structure of the utrophin ABD and 

SELCON 3 analysis was performed for both proteins to give an estimation of the 

secondaiy structure content of the two proteins (Sreerama and Woody, 2000). The 

utrophin ABD analysis estimated that the protein was approximately 50 % a-helix 

with much of the remaining structure attributable to unordered elements. This 

estimation would be expected given that the utrophin ABD is composed of a CH 

domain pair, formed almost exclusively, from a-helices and their interconnecting

loops (Banuelos et a l, 1998). CD analysis of UTR^^™ has suggested that the 

addition of a section of the fimbrin linker sequence has disrupted the structure of the 

mutant protein. The SELCON 3 analysis seems to agree with this. The proportions of 

each secondary structure element within the mutant protein are very different 

compared to the wild type. Most noticeably, the a-helical content has diminished 

from nearly 50 % to approximately 29 %. Importantly, the percentage of regular a- 

helix has halved which would severely affect the overall structure of the CH 

domains. The proportion of turn and p-strand has also risen dramatically (even 

though this element is not present within the utrophin ABD) as has the percentage of 

unordered structure. It appears that insertion of the fimbrin linker sequence has 

severely disrupted the secondary structure of the mutant protein. If this were to be the 

case then it is unlikely that U T R ^’’̂ ” would be functional

Ur OtD pR Pd Turn Unordered
Utrophin ABD 32% 16% 7% 5% 13% 26%

16% 13% 11% 9% 22% 30%

Table 4.1: SELCON analysis of the secondary structure content of utrophin and 
^jg,fimbrm SELCON 3 was used to analyse the utrophin ABD and UTR®”̂ *̂̂'®
far UV CD spectra to give an estimation of the proportions of secondary structure 
elements present within the proteins. The a-helical and p-sheet structures were split 
into regular and distorted classes as described by (Sreerama and Woody, 2000) to 
give the six secondary structure classes: regular a-helix, aR; distorted a-helix, ap; 
regular p-strand, Pr; distorted P-strand, Pd; turn and unordered.
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I

SELCON 3 analysis of suggests that the linker mutation has severely

altered the secondary structure of the protein. To further analyse the possibility of 

this occurrence a thermal dénaturation of was undertaken so that the

melting of the protein could be compared with the utrophin ABD in order to assess 

the overall stability of the proteins. Samples of the utrophin ABD and UTR^“ ™̂’ 

were subjected to thermal dénaturation over the temperature range 20-77°C and 20- 

89°C respectively. The effect of elevated temperature on the secondary structure of 

the proteins was monitored using far UV CD. The UTR̂ "*"̂ "̂  mutant was taken to a 

higher maximum temperature as it was evident, during the course of the experiment, 

that increasing temperature was producing little effect on the observed spectra.

Figure 4.5 demonstrates the melting profiles of both proteins between the 

temperatures stated previously.

Thermal dénaturation of the utrophin ABD resulted in changes in the CD 

spectra indicating an alteration of the secondary structure of the protein as the 

temperature was elevated. Figure 4.5 illustrates the alteration of the CD spectra 

occurring during thermal dénaturation of the utrophin ABD and UTR^"'*"". As the 

temperature increases, the intensity of the utrophin ABD CD spectra decreases and 

the peak maxima shift to shorter wavelengths. The peak initially found at 209 nm 

gradually shifts to approximately 204 nm with the largest shift occurring between 37 

and 77°C. A similar shift in peak maxima and intensity were not observed for 

UTR '̂"^™. There appeared to be a slight decrease in the spectral intensity of the 

UTR̂ ™bnn sample at 30°C; however, the intensities present in the utrophin ABD at 

209 and 220 nm were not observable.

After completion of the initial melt, the utrophin ABD and were

allowed to cool back to 20°C, to verify if the dénaturation was reversible. Figure 4.6 |

shows the CD spectra of the initial the utrophin ABD and UTR̂ ^̂ b™ scans at 20°C 

compared to the spectra produced after cooling of the sample back to 20°C from 77 

and 89“C respectively. It is apparent that the utrophin ABD spectra are very similar

however, the intensity of the refolded protein is slightly reduced and the peak found 

initially at 209 nm has shifted to approximately 207 nm. The spectra of the refolded
'5

UTRfi“bnn njutant was almost identical to the initial scan at 20°C although 

there is a slight decrease in intensity.
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Figure 4.5: Far UV CD spectra demonstrating the thermal dénaturation of the 
utrophin ABD and UTR linker mutant. The secondary structure changes
exhibited by the utrophin ABD and were monitored using far UV CD. 0.4
mg/ml samples of each protein were scanned between 190 and 260 nm over a 
temperature range of 20 - 77°C for the utrophin ABD and 20 - 89°C for 
The spectra at each temperature are the result of three accumulations. Molar 
ellipticity is represented in degrees cm  ̂dmol'\
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Figure 4.6: CD spectra demonstrating the refolding of the utrophin ABD and 
Uj f̂imbrin following thermal dénaturation. Samples of utrophin ABD and 

were heated from 20°C up to maximum temperatures of 77 and 89°C 
respectively. After scanning of these samples both proteins were allowed to cool 
back to 20°C before a final scan in the far UV region was made. The utrophin ABD 
spectra at 20°C before and after dénaturation are represented in red and cyan whereas 
UTR̂ mbnn spcctra before and after dénaturation are represented in blue and magenta. 
The spectra at each temperature are the result of three accumulations. Molar 
ellipticity is represented in degrees cm  ̂dmol'\
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These data indicate that the wild type protein does refold after cooling but not 

completely whilst the UTR^^"" mutant reverts back to a structural state almost 

identical to that observed in the initial scan at 20°C. The lack of complete refolding 

by the utrophin ABD may result from taking the protein so close to complete 

dénaturation. It is evident that the secondary structures present within UTR®*”̂ ”“ have 

not been damaged or disrupted by dénaturation of the protein even though the 

maximal dénaturation temperature was much higher for the mutant protein.

4.2.1.4 Tryptophan fluorescence analysis o f

The fluorescence of aromatic residues is sensitive to the environment in which 

they are located (Lakowicz, 1999). The tryptophan fluorescence of the utrophin ABD 

and U T R ^^^ were compared in order to investigate the similarities between the two 

proteins. The addition of the fimbrin residues to the utrophin ABD did not involve 

any aromatics hence the fluorescent spectra should be identical for the mutant and 

wild type proteins. 1 mg/ml samples of the utrophin ABD and UTR^""^"" were 

excited at 296 nm and an emission spectrum recorded between 300 and 450 mn 

(Figure 4,7),

It was apparent that the fluorescent emission of was slightly larger

than the utrophin ABD. In light of the CD data, which suggests that the mutant 

protein is most likely not folded correctly, disruption of the structure of the protein 

would alter the environment of the aromatics potentially exposing then to the solvent.

Exposure to solvent is suggested by the UTR^^^"‘̂ spectra given that the fluorescence 

intensity has red shifted from 334 inn to 338 mn. The utrophin ABD displays 

emission maxima similar to proteins that contain partially exposed tryptophan 

residues, for example, staphylococcal nuclease (Lakowicz, 1999). The addition of the 

fimbrin linker sequence has altered the structure of the protein suggesting that the 

tryptophan residues are now more exposed to the solvent (Vivian and Callis, 2001).

Once again, these data suggest that the stincture of has been disrupted by

the mutation.
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Figure 4.7: Tryptophan fluorescence spectra of the utrophin ABD and
ĵj f̂imbrin mutant. Samples of utrophin ABD and each at 30 pM,

were excited at 296 nm and emission spectra recorded between 300 and 450 nm 
Scans were performed at slow speed with emission and excitation slit widths of 1 
nm. The utrophin ABD is represented in red whilst is represented in blue.
Fluorescence is represented by arbitrary units (AU).
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4.2. /. 5 Proteolytic resistance o f UTI^"’imbrin

The CD analysis of the UTR “̂”*̂ " mutant suggests that the protein is not

refolding correctly from the urea denatured state. Soluble UTR^™^ can be produced 

but it is unlikely that the protein would be functionally comparable with the 

biochemical characteristics of the wild type protein and hence, the true effect of the 

fimbrin linker sequence could not be determined. One final experiment was 

performed to assess the structural integrity of UTR^^"". This involved the

investigation of the mutant protein’s ability to resist degradation by trypsin. A pair of 

CH domains form the ABD of utrophin; this particular domain fold is quite compact 

and would be relatively resistant to proteolysis. Previous studies of the utrophin ABD 

involving limited proteolysis demonstrate the resistance of this domain to proteolytic
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cleavage (Moores and Kendrick-Jones, 2000). If the structure of the 

mutant is dissimilar to that of the utrophin ABD then the digestion pattern of the two 

proteins would differ. Also, if the mutant protein was folded incorrectly then it would 

exhibit a reduced resistance to the actions of the protease.

Utr ABD

0 5 10 20 30 40 50 60 0 5 10 20 30 40 50 60
32.5-

2 5 -

16.5-

6.5 -  • ‘

Figure 4.8: Proteolytic resistance of utrophin ABD and 20 jiM
samples of utrophin ABD and UTR^™^ were subjected to proteolytic degradation 
by trypsin. Time 0 represents an undigested sample of each protein whereas the 
remaining lanes represent protein samples that have been digested with trypsin for 5, 
10, 20, 30, 40, 50, and 60 minutes. At each time point during the course of the 
digestion samples were removed from the main reaction; proteolysis was halted by 
boiling of sample in 2 x sample buffer. 10 pi of each time point sample were loaded 
and run on a 15 % acrylamide gel. Protein bands were visualised using Coomassie 
Blue staining. MW markers (kDa) are shown on the left.

A sample of utrophin ABD and UTR^*^ was subjected to degradation by 

trypsin. At various time points degraded samples were removed from the main 

reactions and the digestion halted by boiling (section 2.2.22.1). SDS PAGE was used 

to visualise the digestion patterns of both proteins (Figure 4.8). Figure 4.8 

demonstrates that the utrophin ABD is relatively resistant to degradation by trypsin 

under these assay conditions; however, it is apparent that is not. The

utrophin ABD shows complete degradation from the full length form after ten 

minutes. A species of approximately 27 kDa persists throughout the course of the 

assay although it is apparent that this species is also degrading and protein bands of
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roughly 18, 17, 15 and 6.5 kDa are beginning to increase in quantity as the digestion 

progresses. A completely different digestion product is formed for the 

mutant. The full length protein is almost completely degraded after 5 minutes and no 

27 kDa species persist after 20 minutes of digestion. The protein fragments that are 

generated do not persist and are rapidly degraded. By the end of the time course only 

low MW fragments can be seen.

4.2.2.1 Design o f the utrophin ABD a-actinin linker mutant

a-Actinin is an F-actin cross-linking protein and a member of the spectrin 

superfamily of proteins. The ABD of a-actinin is formed from a pair of CH domains 

and the binding of this domain to F-actin has been proposed to occur in either an 

extended (Tang et al., 2001; Taylor and Taylor, 1993) or a compact conformation 

(Liu et al., 2004; McGough et al., 1994). Sequence comparisons between the 

utrophin ABD and a-actinin revealed that the linker region separating the two CH 

domains is shorter than that of the utrophin ABD (Figure 4.9). It is possible that the 

reduced length may favour a more extended conformation owing to reduced 

flexibility within the linker.

To test this hypothesis a mutant utrophin ABD was designed that possesses a 

linker shortened by seven residues. The a-actinin linker sequence is only six residues 

shorter than that of the utrophin ABD; however, removal of seven residues would 

allow nearly two complete turns of a-helix to be removed. This would hopefully 

prevent disruption to the orientation of the two CH domains with regard to each other 

as removal of incomplete helical turns might force twisting along the long axis of the 

protein. It was intended that by reducing the length of the helical linker then the 

flexibility of the interconnecting helix would be reduced. If the linker was less 

flexible then it would be more difficult for the CH domains to associate to form a 

compact conformation when in solution or when interacting with F-actin. This would 

potentially favour the mutated ABD to adopt a more ‘open’ conformation perhaps 

forcing association with F-actin in an open and extended conformation as proposed 

by Moores and colleagues (Moores et al., 2000).
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The utrophin ABD sequence was used to design primers that would facilitate 

removal of the target sequence using site directed mutagenesis (section 2.2.9). The 

success of the mutation was validated by sequencing before the mutated pSJWl 

construct could be used to express the mutant protein. was generated

after the production and analysis of the UTR®™̂"̂ ™ mutant with the intention that the 

removal of sequence from the ABD would be less disruptive to the structure of the 

ABD.

Utrophin 134 WQVKDVMKDVMSDLQQTNSEKGLBSW 159 I
a-Actinin 125 FAIQDIS------- VEETSAKEGLLLW 144 |

• • • "A" • • • • ^ • ■A" ★ r-
Mutant 134 WQVKDV--------LQQTNSEKILLSW 159

Figure 4.9: Sequence alignment of the utrophin and a-actinin ABD linker i
regions. Clustal W alignment of utrophin and a-actinin ABD linker regions i
demonstrating the stretch of residues found in the utrophin ABD that are not seen in 
the a-actinin ABD. The 7 residues that are to be removed from the utrophin ABD 
linker are highlighted in grey. The consensus symbols and residue colours are 
defined as follows: and represent identical residues, conserved
substitutions and semi-conserved substitutions respectively whilst red, blue, magenta 
and green represent small/hydrophobic, acidic, basic and hydroxyl/amine/basic 
residues respectively.

4.2.2.2 Expression and purification o f the

The linker mutant pSJWl construct was used to transform freshly

competent BL21 (DE3) E. coli before expression and purification was attempted as 

described previously (Winder et a l, 1995; section 2.2.11). The mutent protein 

expressed successfully as demonstrated by lanes 1 and 2 of Figure 4.10. Unlike the 

UTRf^“ n̂n mutant there was a small portion of the expressed protein that was soluble 

(Figure 4.8 lane 3); however a large portion of the protein did appear to be localised 

to the insoluble bacterial fraction (Figure 4,8 lane 4). Once again the mutation of the 

linker appeared to be seriously affecting the production and processing of the protein |

within the bacteria. Fortunately, some protein was soluble and present in sufficient S

i
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quantity to be purified in an analogous manner to the wild type protein A sample of 

purified is shown in lane 5 of Figure 4.10.

3 2 .5 -

UTR°

1 6 .5 -

Figure 4.10: Expression, solubility and purification of the linker
mutant. Freshly competent BL21 (DE3) E. coli were transformed with the pSJWl 
yyĵ a-actinin QQnstruct. The bacteria were grown to a cell density of 0.6 at 600 nm 
before induction of protein expression via addition of IPTG. The protein present at 
pre and post induction are shown in lanes 1 and 2 respectively. After bacterial 
harvesting and lysis soluble and insoluble protein fractions are presented in lanes 3 
and 4. Lane 5 represents a fraction of purified MW markers (kDa) are
shown to the left.

The purified mutant appeared to be approximately 30 kDa in size

however it was possible that the protein represented in lane 3 of Figure 4.10 was not 

the mutant. Most of the expressed protein appeared to be insoluble and

therefore, it was necessary to confirm that the protein band selected for purification 

was indeed a utrophin ABD mutant. To test this, a sample of UTR""®®***̂  mutant and 

utrophin ABD was subjected to SDS-PAGE and the resultant gel either Coomassie 

Blue stained or subjected to western analysis (Figure 4.11).

Figure 4.11 demonstrates that the mutant is slightly smaller than

the utrophin ABD. This may be expected given that seven linker residues have been 

removed from the protein. The western analysis confirms that is indeed a

mutant of the utrophin ABD given the reactivity with the utrophin antibody. It does 

appear however, that the band is not as dense as that of the wild type

utrophin ABD. From these data it appeared that the mutant had been

successfully expressed and purified. Before any biochemistry was attempted CD and
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fluorescence spectroscopy were employed to investigate the structure of the mutant 

compared to the wild type protein. Lengthening of the ABD linker appeared to 

disrupt the overall structure of the ABD; it is possible that a similar effect

may result from a shortening of the linker.

3 2 . 5 -

2 5 -

Figure 4.11: SDS PAGE and western analysis of the utrophin ABD and UTR“' 
actinin mutant 1 |iM samples of utrophin ABD and UTR“'“® ^ were prepared.
2 X sample buffer was added to these samples and 1 0  pi was loaded onto a 1 5  %  

acrylamide gel. Following separation the proteins were transferred to nitrocellulose 
ready for western blotting using the utrophin antibody (right hand panel). The 
acrylamide gel was then treated with Coomassie Blue to detect any protein not 
transferred to nitrocellulose (left hand panel). MW markers (kDa) are shown to the 
left.

4.2.2.3 Circular dichroism analysis o f LJTRa-actinin

As with the ujR^^™ mutant, the mutant was subjected to near and

far LTV CD analysis and thermal dénaturation. The mutant CD data were

collected at the University of Sheffield however help with the data analysis was 

sought from Dr Sharon Kelly at the Scottish Circular Dichroism Facility situated at 

the University of Glasgow. Once again, these analyses demonstrated that mutation of 

the linker region within the ABD severely affects the structure of the protein.

Near and far UV CD spectra of were compared to spectra of the

utrophin ABD (Figure 4.12). The far UV spectra of the utrophin ABD show negative 

deflections at 222 and 209 nm that are not visible in the spectra (Figure
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4.12). These deflections are indicative of a protein formed from a-helix; therefore, it 

is apparent that is not fonned from a-helix or it has a greatly reduced

content of this structural element when compared to wild type utrophin ABD. The 

Û ĝ a-actmm ( jy  spcctia also appear very similar to those collected for the 

mutant (section 4.2.3) so it would seem that the secondary structure of the 

mutant differs from that of the utrophin ABD.

The near UV CD spectra of are again, very different to that of the

wild type protein. The utrophin ABD shows a pronounced intensity at 296 nm 

generated by the tryptophan residues present within the protein; however, 

does not display a peak at this wavelength and instead, pronounced peaks can be seen 

at approximately 270 and 280 nm. It is apparent that the removal of the short stretch 

of linker has disrupted the tertiary structure of the protein in some way. The fact that 

there is a signal indicates the presence of some tertiary structure; however the tertiaiy 

structure of the mutant is significantly different to that of the utrophin ABD.

Far and near UV CD indicates that the secondary and tertiary structures of 

^rj^a-acünin Comparable to those of the utrophin ABD. In order to give an

indication of the secondary structure elements present SELCON analysis was 

performed using the mutant and wild type far UV CD spectra. The proportions of 

each type of structural element are displayed in Table 4.2. It is apparent that UTR“" 

actinm contain a significant proportion of secondary structure but the amount of 

each element does differ from that of the utrophin ABD. The utrophin ABD is 

essentially an a-helical protein: the utrophin ABD crystal structure has been 

determined and clearly demonstrates the helical nature of the secondary structure 

elements present within the protein (Keep et al., 1999b). The SELCON analysis 

echoes this although a small proportion of p-sheet has been determined to be present. 

Analysis of demonstrates that the protein does contain a significant

proportion of a-helix although the amount of regular and distorted helix has dropped 

by 5 % and 1 % respectively. The proportion of p-sheet has also increased in the 

mutant protein and the proportion of turn and unordered structure has risen to 17 % 

and 29 % respectively. Overall the mutant displays a reduced helical

content which does help to explain the differences in the far UV CD spectra. The 

presence of increased proportions of the other elements also indicates that the
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mutation has caused the overall structure of the protein to be disrupted greatly 

affecting the environments of the aromatic residues detected in the near UV region.
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Figure 4.12: Near and far UV CD spectra of the utrophin ABD and UTR""^*" 
linker mutant. Samples of utrophin ABD (blue spectra) and (red
spectra) were subjected to near (1 mg/ml) and far (0.4 mg/ml) UV CD analysis using 
10 and 0.2 mm quartz cells respectively. Protein samples were prepared in 10 mM 
phosphate buffer (pH 8.0). Each spectrum was an average of 3 scans recorded 
between 260-320 nm and 190-260 nm corresponding to near and far UV CD regions. 
Near UV data are shown in terms of normalised CD millidegrees whereas far UV 
data are expressed as molar ellipticity (degrees cm  ̂dmol"̂ ).
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ttR CtD pR pD Turn Unordered
Utrophin ABD 32% 16% 7% 5% 13% 26%

■Qfpĵ a-actinin 27% 15% 7% 7% 17% 29%

Table 4.2: SELCON analysis of the secondary structure content of the utrophin
ABD and UTRa-actinin linker mutant. Utrophin ABD and UTR‘a-actmm

S p e c tr a  w e r e

analysed using SELCON 3 to estimate the proportions of secondary structure 
elements present within the proteins. The a-helical and p-sheet structures were split 
into regular and distorted classes as described by Sreerama and Woody (2000) to 
give the six secondary structure classes: regular a-helix, aR; distorted a-helix, an; 
regular p-strand, Pr; distorted p-strand, Pd; turn and unordered.

The final set of CD experiments involved investigation of the structural 

changes induced by the thermal dénaturation of Samples of utrophin

ABD and UTR“'̂ *̂™“ were subjected to thennal dénaturation over the temperature 

range 20-77°C and 20-80°C respectively (Figure 4.13). The effect of elevated 

temperature on the secondary structure of the proteins was monitored using far UV 

CD. A similar set of experiments perfonned with demonstrated the mutant

structure changing little during the course of dénaturation. If the removal of the 

linker sequence to generate the mutant had disrupted the overall structure

of the protein (as seen with UTR“ ”^̂) it was likely that there would be little change 

in the spectra during thermal dénaturation.

Figure 4.13 demonstrates the change in structure of the wild type utrophin 

ABD as it is heated from 20 to 77°C. It is apparent that the a-helical signatures at 

222 and 209 mn reduce in intensity and experience a blue shifting, the most 

noticeable of which, is the movement of the 209 nm intensity to approximately 204 

nm. Thermal dénaturation of chicken gizzard calponin shows a similar reduction in 

deflection and shifting in intensities when heated from 20 to 80°C (Czurylo et a l, 

2000). The UTR" '̂̂ ^ "̂  ̂ mutant does not demonstrate a similar shift in peak 

intensities (Figure 4.13) instead the only noticeable difference during the course of 

the thermal dénaturation is a reduction in the intensity of the spectra at 210 nm from 

approximately -16000 to -13000 degrees cm^ dmoT\
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Figure 4.13: Far UV CD spectra demonstrating the thermal dénaturation of the 
utrophin ABD and UTR°^^**  ̂ linker mutant The secondary structure changes 
exhibited by the utrophin ABD and were monitored using far UV CD.
0.4 mg/ml samples of each protein were scanned between 190 and 260 nm over a 
temperature range of 20 - 77°C for the utrophin ABD and 20 - 80°C for 
Each trace results from three accumulations with molar ellipticity represented in 
degrees cm  ̂dmol'\
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After completion of the initial melt, the utrophin ABD and were

allowed to cool back to 20°C, to verify if the dénaturation was reversible. Figure 

4.14 shows the CD spectra of the initial utrophin ABD and scans at 20°C

compared to the spectra produced after cooling of the samples back to 20°C ftom 77 

and 80°C respectively. The utrophin ABD spectra were described previously in 

section 4.2.3 Figure 4.6; however, it is apparent that the mutant does not

behave like the wild type protein. Before dénaturation, did not display the

peak intensities at 222 or 209 nm like the wild type protein. After cooling, the 

utrophin ABD does not refold completely as the spectrum shows a loss of intensity 

and the 209 nm peak remains slightly blue shifted at approximately 208 nm. 

Interestingly, after refolding, displays intensity at approximately 211 nm

not present before dénaturation. It appears that cooling of the mutant protein sample 

after dénaturation has allowed a slight adjustment to the secondary structure of the 

protein resulting in an improved a-helical CD signal. The fact that the wild type 

protein does not return to the structural state prior to dénaturation probably results 

from bringing the protein close to the point of complete dénaturation although the 

yjj^a-actmm appears to have benefited from this process. Overall,

does not appear to have a similar secondary or tertiary structure when compared to 

the utrophin ABD and it does not behave in an analogous manner when subjected to 

thermal dénaturation.
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Figure 4.14: Far UV CD spectra of the utrophin ABD and before
and after thermal dénaturation. The structural affects of thermal dénaturation on 
the utrophin ABD and were monitored using far UV CD. Samples of
utrophin ABD and (1 mg/ml) were gradually heated from 20°C to a
maximum temperature of 77 and 80°C respectively. The samples were allowed to 
cool back to 20°C allowing refolding of the denatured proteins. Utrophin ABD 
spectra before and after cooling are represented by red and cyan traces, whereas 
Ujĵ a-actmm and after refolding are represented in blue and magenta. Each
trace results from three accumulations with molar ellipticity represented in degrees 
cm  ̂dmol'\ Utrophin ABD and traces have been separated for clarity.
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4.2.2.4 Tryptophan fluorescence analysis o f  UTFT-actinin

The removal of the seven residues from the utrophin ABD linker region did not 

involve any aromatic amino acids and hence, the fluorescent spectra should be 

identical for the mutant and wild type proteins. 1 mg/ml samples of utrophin ABD 

and were excited at 296 nm and an emission spectrum recorded between

300 and 450 nm (Figure 4.15).
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Figure 4.15: Tryptophan fluorescence of the utrophin ABD and 
linker mutant. Samples of utrophin ABD and each at 30 pM, were
excited at 296 nm and emission spectra recorded between 300 and 450 nm. Scans 
were performed at slow speed with emission and excitation slit widths set to 1.5 nm. 
The utrophin ABD is represented in blue whilst |jrrR“'“®*  ̂ is represented in red. 
Fluorescence is represented in arbitrary units (AU).

It is apparent that the fluorescence of is reduced compared to the

utrophin ABD. This would be consistent with an exposure of tryptophan residues to 

the aqueous solvent allowing quenching to occur (Vivian and Callis, 2001). The CD 

data suggests that the structure of has been disrupted as a result of the

mutation. As with the tryptophan fluorescence spectra, the UTR"'®*̂ *̂"

spectra suggest an exposure of the tryptophan residues to the solvent as the
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fluorescent intensity recorded for the wild type protein is red shifted from 334 nm to 

338 nm in the mutant. Once again, these data suggest that the structure of UTR“ 

has been disrupted by the mutation.

4.3 Discussion

Comparison of the amino acid sequence of fimbrin and a-actinin ABDs with 

the utrophin ABD revealed a respective extension or reduction in the length of the 

inter-CH domain linker. These three proteins exhibit very different functions and 

have been modelled to have differing modes of interaction with F-actin (reviewed in 

(Winder, 2003). It has been proposed that the length of the linker that separates the 

CH domains of these proteins may have relevance to the manner in which they 

interact with F-actin. In order to test this hypothesis two mutants of the utrophin 

ABD were designed, one containing an extended linker region modelling the fimbrin 

linker and one with a shortened linker modelling the a-actinin linker. Before a 

comparison could be made between the mutant proteins and wild type utrophin ABD 

it was necessary to express and purify the mutant proteins.

The first mutant generated was the fimbrin linker mutant,

Generation of the mutation was straightforward using overlap extension PCR 

however the expression and purification of the protein was a little more problematic. 

Unfortunately, the protein was not soluble when expressed in BL21 (DE3) E. coli 

(Figure 4.2); however recovery of the mis-folded protein from the insoluble bacterial 

lysate was attempted. Refolding of the protein was not perceived to be problematic 

as other studies involving expressed CH domain containing proteins (Bramham et al., 

2002; Winder et al., 1995; Winder et al., 2003) utilised protein refolded from urea. It 

appeared that refolding of UTR̂ '̂ ^™̂  from urea was also successful based on its 

solubility (section 4.2.2). The mutant protein appeared to be slightly larger than the 

wild type; this would be expected given the extra residues present in the mutant 

protein and it was also reactive with a utrophin ABD polyclonal antibody. UTR"'

was generated using site directed mutagenesis and expression of the protein in 

BL21 (DE3) E, coli was less problematic than that of UTR^”*"”". A sufficient 

quantity of was purified from the soluble fraction allowing initial
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analyses of the protein. Once again, there was a size shift when compared to the wild 

type and the mutant was detectable using the utrophin ABD antibody (section 4.2.7).

Following purification of the two mutant proteins it was necessary to detennine 

that the structure of each protein had not been adversely affected by the introduction 

or removal of linker residues. CD was chosen to initially assess the structural 

similarities between the utrophin ABD and the linker mutants. It was expected that 

the near and far UV CD spectra of the mutants would almost be identical to the wild 

type protein given that the mutations was not made within either of the CH domains 

and no extra aromatic residues were inserted. The mutant proteins would still, 

essentially, be wild type utrophin ABD but this was not found to be the case. The 

utrophin ABD is largely formed from a-helix and the far UV CD spectra 

demonstrated typical a-helical features very similar to polylysine in the all helical 

conformation (Greenfield and Fasman, 1969) and the smooth muscle regulatory 

protein calponin (that contains a single CH domain) (Czurylo et al., 2000; Stafford et 

al., 1995). The spectrum of UTR^^"^ did not display the characteristic a-helical 

intensities at 209 and 222nm instead the mutant spectrum appeared to be more (3- 

sheet like in nature. It was apparent that the secondary structure of UTR̂ ™̂ "'̂  was not 

similar to that of the utrophin ABD. It is evident that UTR̂ ™̂ "̂̂  contains significantly 

less a-helix than the utrophin ABD, SELCON analysis identifies a shift in secondary 

structure content demonstrating a significant increase in turn and unordered 

structures but also the (3-sheet content. The near UV CD of XJTR̂ ™'̂ ™ indicated that 

the tertiary structure of the protein had been disrupted. The utrophin ABD gave a 

strong tryptophan signal that was not visible in UTR̂ ™*̂ "” indeed, it was apparent that 

yj^fiinbrm exhibit any tertiary structure. The structural analysis continued via

thermal dénaturation of both utrophin ABD and upR^™^™. This demonstrated that 

the utrophin ABD was denatured as temperature increased and that most of the 

secondary structure elements were recovered after cooling. UTR^*^™ did not display 

any loss of structure as the sample was heated. The fact that there was no significant 

near UV signal and that there was no change in the far UV signal suggests that the 

protein was incorrectly folded. The tryptophan fluorescence data demonstrated a red 

shifting in intensity which would be expected if tryptophan residues were exposed to 

the polar environment of the solvent (Vivian and Callis, 2001). The lack of correctly
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folded structure was finally demonstrated via the investigation of 

resistance to proteolysis. The utrophin ABD appeared to be resistant to proteolysis by 

trypsin. Previous studies involving the limited digestion of the utrophin ABD with 

trypsin (Moores and Kendrick-Jones, 2000) demonstrated similar digestion patterns 

to those presented here (2.2.22.1). They detennined that the resistance of the 

utrophin ABD to trypsin degradation was attributable to the compact nature of the 

utrophin ABD in solution. The ypR^mbrm ^^mtant evidently does not possess this 

compact structure as it displayed no resistance to degradation by trypsin. Overall, it 

was assumed that UTR^"^™ was not folded correctly and hence was not suitable for 

further analysis; however, it was hoped that the UTR"'®‘'‘'”“ mutant would prove 

more successful.

Initial far UV CD data suggested that UTR"'®̂ ^™" did possess secondary 

structure but once again the spectra were not comparable to the wild type protein. As 

with none of the CH domain secondaiy structure had been targeted for

mutation so it was expected that the CD spectra of UTR"'“‘'‘̂ “ and wild type protein 

would be very similar. In fact, spectra appeared to be more similar to the

UTR̂ 'mbrm gpectra. Thermal dénaturation demonstrated that the mutant protein was 

very resistant to thermal dénaturation. UTR"'®°^”^ could be heated to higher 

temperatures than the utrophin ABD and did not show a change in secondaiy 

structure that was observed with utrophin ABD dénaturation. Interestingly, after 

cooling of U1R“ back to 20°C, the spectra suggested that the protein was now 

more a-helical in nature as there was a definite intensity present at 211 mn that was 

not observable prior to heating. Near UV CD of UTR"'®̂ '̂ ”'" demonstrated that there 

was some tertiary structure; however it was not at all comparable to the utrophin 

ABD. The tryptophan fluorescence of the wild type utrophin ABD was taken to be a 

signature for the correctly folded confonnation of the ABD and spectra

should have been similar given that no aromatic residues were removed in the 

mutation. Tryptophan fluorescence confirmed that the enviromnent of the aromatics 

had indeed changed. The fluorescence intensity of UTR“'®‘̂ “̂“ had shifted from 334 

to 338 mn and the intensity of the fluorescence had reduced by approximately 40 % 

compared to the wild type. This would be consistent with the tryptophan residues
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becoming more solvent exposed and would indicate disruption of the CH domain 

structures as this is where these residues are located in the ABD.

Unfortunately the differences in the spectra suggest that, once again, the 

mutation of the linker region has caused the disruption of the overall structure of the 

mutant protein. It was hoped that the removal of residues would not be as disruptive 

to the overall structure of the ABD as addition of residues but it was apparent that 

this was not the case. No further analyses of the mutant were performed

and as neither of the mutant proteins were perceived to be folded correctly no actin 

binding experiments were attempted.

Unfortunately, it appears tliat the insertion of the extra residues into the inter- 

CH domain linker has disrupted the overall structure of the mutant proteins. The 

extension of the utrophin ABD linker to generate involved the addition of

11 residues inserted between residues 142 and 143 based on the utrophin crystal 

structure of Keep et al., 1999. This particular section of the protein is a-helical in 

nature and has been denoted the a6A helix. This particular helix is not directly part 

of either CH domain although it does follow the sixth a-helix of CHI. Referral to the 

fimbrin crystal structure (lAOA) determined by Hanein et al., indicated that the 

section of linker chosen for insertion into the utrophin ABD does not have any 

defined structure (Hanein et al., 1998). It appears that this section of the protein is 

formed by an extended loop of residues. Binding of the utrophin ABD to F-actin has 

been modelled to occur in a number of different open and extended confonnations 

but also closed and compact conformations (Lehman et al., 2004) similar to the 

proposed binding to F-actin by the fimbrin ABD (Figure 4.1). The CH domain 

interface present in the fimbrin crystal structure is very similar to an interface 

generated within the utrophin ABD crystal dimer (Figure 4.1). This similarity has led 

to the idea that the utrophin ABD may open from a closed fimbrin like state in 

solution to bind F-actin in an extended manner although binding in a closed compact 

conformation may also occur.
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cm

Figure 4.16: Structural superposition of fimbrin and utrophin ABDs and 
models of proposed actin-binding by these domains, (a) PyMol was used to 
superimpose the utrophin (Keep et al., 1999b) and fimbrin (Goldsmith et al., 1997) 
crystal structures. The utrophin crystal monomers are represented in blue and red 
whereas fimbrin is represented in green, (b) Reconstruction of fimbrin ABD, 
comprising two CH domains, bound to F-actin (Hanein et al., 1998). (c) 
Reconstruction of utrophin ABD bound to F-actin in an open conformation at a 
density of 1:1 with actin (Moores et al., 2000). Both of these reconstructions were 
taken from Winder, 2003 (Winder, 2003) with actin monomers represented in blue 
and red whilst CHI and CH2 of the ABDs are represented by yellow and orange 
respectively.

It was the similarity in the CH domain interface and the difference in the linker 

length that led to the production of the fimbrin linker mutant. It has become apparent 

though that the insertion of the fimbrin linker region into the utrophin ABD disrupts 

the structure of the inter-CH domain linker to such an extent that the overall 

structures of the CH domains that flank the mutation have been perturbed. This was 

not expected to occur but it is known that mis-sense mutations within the ABD of 

dystrophin can have dramatic affects on the structure and overall function of the 

domain. In these instances, for example, mutation of Leu54 to an arginine results in 

the destabilisation of the CH domain fold by the presence of a large charged side 

chain in an essentially hydrophobic environment (Prior et al., 1993). Another three 

mis-sense mutations are known that occur in BMD patients, all of which induce a 

destabilisation of a protein fold or the overall structure of the CH domain (Muntoni 

et al., 1994; Roberts et al., 1994). The position of the mutations suggests that the 

mutations affect the structure as none of the residues affected are directly involved in 

actin-binding (Norwood et al., 2000). The presence of a single point mutation within 

the utrophin ABD has also been found to have a dramatic effect on the function of
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the whole domain. In this instance the domain was found to possess a substitution 

where a threonine was exchanged for a threonine at residue 113 (Winder et al.,

1995). This caused the domain to bind actin in a 2:1 ratio however correction of the 

mutation back to wild type restored the normal stoichiometry (1:1). In hind sight, it 

may have been more favourable to insert a duplicated section of the utrophin ABD 

a6A helix which would maintain the helical nature of the linker and may have 

prevented the overall disruption of the domain. However, the existence of dystrophin 

ABD mutations resulting from relatively small mis-sense mutations and the large 

functional affects that a single point mutation can generate point towards the relative 

sensitivity of the ABD to mutation.

The utrophin ABD a-actinin linker mutant was generated following the 

investigation of UTR̂ ™*" .̂ It was hoped that the removal of the residues from the 

utrophin ABD would be less disruptive to the overall structure of the domain than 

addition. The inter-CH domain linker of the utrophin ABD was found to be 6 

residues longer compared to the a-actinin linker. Seven residues were removed from 

the utrophin ABD (almost two complete helical turns) to form These

residues encompass amino acids 140 - 146 of the utrophin ABD structure (IQAG)

(Keep et a l, 1999b). These residues form part of the a6A helix; essentially, the 

mutation would have shortened this helix by approximately two turns preventing any 

relative twisting of the CH domains with respect to one another. This would result in 

a reduction of the length of the a6A helix by approximately 10.8 Â (Creighton,

1996). The shortening of the utrophin linker was intended to model the manner of 

association that the a-actinin ABD may adopt when binding to F-actin. Interaction of 

a-actinin with actin has been proposed to occur in either open or closed 

conformations (Liu et al., 2004; Tang et a l, 2001 ; Taylor and Taylor, 1993)but it was ' 

proposed that shortening of the utrophin ABD linker would reduce flexibility and 

disrupt CH domain association. This, in turn, may force the mutant utrophin ABD to 

adopt a more 'open' conformation in solution resulting in binding with F-actin in this 

manner. Figure 4.2 demonstrates the different confonnations of smooth muscle a- 

actinin ABD within a 2D array of the protein and clearly depicts the different 

confonnations that the domain may adopt when binding to F-actin.
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Figure 4.17; Cryo-Em reconstruction of the ABD of smooth muscle a-actinin.
2D arrays of smooth muscle a-actinin were used by Liu and colleagues to generate 
3D images of a-actinin within the array lattice. Three possible interpretations of how 
the ABD may fit into the N-terminal densities are presented. A, depicts an open 
conformation involving domain swapping whereas B and C depict closed 
conformations without domain swapping. In each reconstruction the various domains 
present within a-actinin have been labelled accordingly (Liu et al., 2004).

Unfortunately, following expression and initial analysis of it was

determined that the overall structure of the protein was dissimilar to that of wild type 

protein. Removal of the linker residues had, once again, disrupted the structure of the 

mutant proteins ABD and rendered the protein unsuitable for any further 

biochemistry. It was believed that the removal of a relatively small number of 

residues within the ABD linker region would not affect the structure of the CH 

domains themselves but this was not found to be the case. Deletions of much larger 

regions of the dystrophin ABD can result in muscular dystrophy pathologies of 

varying severity. In frame deletions of exons 3 (residues 32-62) and 5 (residues 89- 

119) of the dystrophin gene have been characterised (Muntoni et al., 1994) and found 

to cause large scale affects on the structure and function of the protein (Norwood et 

al., 2000). In any case, recent crystal structures of the a-actinin ABD have been 

determined and depict the domain in a closed and compact fimbrin like conformation 

(Franzot et al., 2005). Superposition of the crystal structure in this conformation 

indicates that the overall CH domain architecture matches well (Figure 4.3); 

however, the shortened linker region does not adopt a helical conformation instead 

being formed from an extended loop. It is now clear that comparison of a shortened 

utrophin linker with the actual linker depicted in the a-actinin crystal structure would
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not be correct although it is possible that the reduced number of residues may still 

restrict CH domain motion in manner relevant to the function and regulation of 

binding of a-actinin to F-actin.

CH2

CHI

Figure 4.18: Structural superposition of the utrophin and a-actinin ABDs.
PyMol was used to prepare a superposition of utrophin (Keep et a l, 1999b) and a- 
actinin (Franzot et al., 2005) ABD crystal structures. Two views are presented so that 
it is clear to identify the structural similarities exhibited by both proteins CH 
domains. The a-actinin crystal structure is represented in green whilst the two 
utrophin monomers are represented in blue and red. The CH domains have been 
labelled accordingly.

It is apparent that the linker region of the utrophin ABD is particularly 

sensitive to mutation. Both utrophin ABD linker mutants appeared to be structurally 

dissimilar to the wild type protein; this was not expected given the lack of mutation 

to the CH domains and the general stability of the protein domain fold. The structure 

of the CH domains is pivotal to the correct presentation of the actin-binding surfaces 

towards F-actin and any disruption to the domain fold would be detrimental to the 

overall function of the ABD (as proven by pathogenic mutation of the dystrophin 

ABD). It is clear that the linker region of the utrophin ABD is important not only for 

the connection of the CH domains but also has a significant relevance for the overall 

structure and function of the ABD.
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Chapter 5

Utrophin ABD Cysteine Mutants

5.1 Introduction

The utrophin ABD appears to possess a certain degree of inherent flexibility. 

The isolated ABD is monomeric in solution and does not exhibit the dimeric 

organisation observed in the crystal structure. It is much more likely that the solution 

monomer is more similar to the fimbrin ABD crystal structure. Three dimensional 

domain swapping helps to describe how the interface between the CH domains of 

these two proteins is so similar but also suggests a significant importance to the 

linkers that join the domain swapped regions of the proteins (ScMunegger et al.,

1997). Modelling the utrophin ABD when interacting with F-actin has relied upon a 

degree of assumed flexibility; it is apparent that the helical linker that connects the 

two CH domains is indeed flexible, given that the crystallised protein forms an anti- 

parallel dimer with the ABD of the two crystal monomers, adopting an open 

extended conformation. Conversely, the solution monomer may be more closed and 

compact perhaps adopting a conformation more akin to the crystal structure of 

fimbrin. In any case, the utrophin ABD has been modelled bound to F-actin in both 

an open and a closed confonnation (Galkin et al., 2003; Moores et al., 2000; 

Sutherland-Smith et a l, 2003). These studies have shown that interactions in these 

two modes do present the actin-binding sites of the protein towards the surface of F- 

actin. It is becoming increasingly clear that CH domain-containing-ABDs are 

required to be particularly dynamic upon interaction with F-actin. Recent work 

investigating the interaction of plectin with F-actin suggests a conformational change 

of the plectin ABD upon interaction with F-actin (Garcia-Alvarez et a l, 2003). It is 

known that the CH domains that form ABDs are not equivalent in their ability to 

bind actin. Indeed, only the first CH domain of the utrophin ABD has the ability to 

bind F-actin, albeit weakly, the second CH domain does not (Gimona et a l, 2002; 

Winder et a l, 1995). The full binding of the domain is not achieved unless both CHI 

and CH2 are present so it is clear that the second CH domain has an important role in 

either locating the domain on the surface of F-actin or the enhancement of the 

binding interaction. The modelling of the utrophin ABD when bound to F-actin in an
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open confonnation requires an induced fitting of the utrophin ABD crystal structure 

within the bound protein’s electron density (Moores et al., 2000). This fitting 

requires the solution monomer to ‘open’ to allow association with F-actin. This 

conformational change must occur upon interaction with F-actin but will the utrophin 

ABD still associate with F-actin if the opening of the two CH domains can be 

restricted?

To test this hypothesis a double cysteine mutant of the utrophin ABD was 

designed that would allow the formation of a disulphide bond between CHI and 

CH2, effectively locking the domain in the closed conformation. The mutant protein 

was subjected to a number of biochemical and biophysical analyses that would help 

to determine the effects of locking the ABD in the closed conformation. These data 

would provide further information on the manner in which the utrophin ABD 

interacts with F-actin.

5.2 Results

5.2.1 Design o f the utrophin ABD cysteine mutants.

The utrophin ABD has been shown to be monomeric in solution (Moores and 

Kendrick-Jones, 2000), presumably adopting a compact configuration, but upon 

interaction with F-actin the molecule opens to associate in an extended conformation 

(Moores et al., 2000). In order to probe the necessity of this ‘opening’ for the actin 

interaction a double cysteine mutant of the utrophin ABD was designed that would 

allow covalent linkage of the two CH domains and prevent opening of the molecule. 

The location for the mutations was determined using the utrophin ABD crystal 

structure. The utrophin ABD was proposed to adopt a similar configuration to the 

fimbrin crystal when in solution; the utrophin ABD crystal is formed from an anti­

parallel dimer; however, the CHI and CH2 domains from the two different 

molecules form a similar interface to that observed in the fimbrin crystal (Keep et a l, 

1999b). The utrophin ABD crystal structure was viewed using Rasmol and two 

residues were chosen that appeared to be orientated so that a disulphide bond could 

be fonned if these residues were mutated to cysteines (Figure 5.1). Primers were then 

designed (Table 2.1) to allow the site directed mutation of these residues using the 

UTR261 pSJWl construct. Initially, the T36C mutation was generated and
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sequenced to confirm the correct substitution of the amino acid before being used to 

generate the double mutation by further site directed mutagenesis at S242. Following 

sequencing to confirm the presence of the correct mutations, the constructs were used 

to generate utrophin ABD containing both the single and double cysteine mutations 
denoted UTR^^ and u t r ^̂ ^̂ s242c respectively.

S242C T36C

‘O pen’ Conformation

C 2 .

r

‘C losed ’ Conformation

Figure 5.1: Location of the cysteine mutations within the utrophin ABD. Site 
directed mutagenesis was used to mutate threonine 36 and serine 242 to cysteine 
residues (yellow space-fill). CHI and CH2 of the utrophin ABD are highlighted in 
red and blue respectively. The utrophin ABD is shown in the ‘open’ and ‘closed’ 
conformations based on the crystal structure of Keep and Winder et al., 1999.
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5.2.2 Expression ofUTR̂ ^̂ '̂ and mutants

Ujj^T36c yjjjT36c/s242c constructs were transformed into freshly

competent BL21 (DE3) E. coli. These bacteria were then grown and used to express 

the UTR261 cysteine mutants. Figure 5.2 demonstrates the expression of both 
UTRT36c uyĵ T36c/s242c j and 2 of both panels represent pre and post

induction sample after addition of IPTG. Both of the mutant proteins demonstrate a 

clear induction of protein generated. Lanes 3 and 4 demonstrate the soluble and 

insoluble protein fractions following bacterial lysis. Both UTR^^  ̂and UTRT36C/S242C 

are soluble although there does appear to be a proportion of both proteins that 

localises in the insoluble fraction. It is likely that the cellular debris generated by 

lysis was trapping a proportion of soluble protein within the pellet matrix. Following 

anion exchange and gel filtration chromatography a purified portion of both mutants 
is displayed in lane 5 of Figure 5.2. The UTR^^^ and %JTRT36C/S242C ĵ iutants appear 

to be similar in size to the other mutants expressed in this study and the wild type 

utrophin ABD.

1 6 .5 -  "

Figure 5.2: Expression, solubility and purification of and
^Y^T36c/s242c competent BL21 (DE3) E. coli were transformed with the
pSJWl UTR^^  ̂ and UTR  ̂6c/s242c Qonstructs. The bacteria were grown to a cell 
density of 0.6 at 600 nm before induction of protein expression via addition of IPTG. 
Protein present at pre and post induction are shown in lanes 1 and 2 respectively. 
After bacterial harvesting and lysis insoluble and soluble protein fractions are 
presented in lanes 3 and 4. Lane 5 represents a fraction of the purified mutant 
proteins. Molecular weight markers (kDa) are shown to the left of each gel and the 
protein band representative of each mutant is indicated.
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5.2.3 SDS PAGE and western analysis ofUTtT^^ and mutants

Following expression and purification of the UTR^^ and UPRT36C/S242C 

mutants SDS PAGE and western analysis was used to compare the mutants with wild 

type utrophin ABD (UTR261) (Figure 5.3). SDS PAGE analysis of the mutants 

indicates that they are identical in size to wild type utrophin ABD; approximately 30 

kDa (Moores and Kendrick-Jones, 2000; Winder and Kendrick-Jones, 1995). This 

would be expected given that only one or two amino acids (depending on the mutant) 

have been substituted for cysteines. The change in MW generated by these 

substitutions would not be sufficient to cause a size shift identifiable by SDS PAGE. 

Western analysis (Figure 5.3, right hand panel) indicates that the UTR^^ and 

yjj^T36c/s242c are detectable using the utrophin antibody raised against the

wild type ABD.

g  g çC oi,
D

3 7 -

2 5 -

Figure 5.3: SDS PAGE and western analysis of and %jYRT%c/s242c j
pM samples of UTR261, UTR^^ and were prepared. 2 x sample
buffer was added to these samples and 10 pi was loaded onto a 15 % acrylamide gel. 
Following separation the proteins were transferred to nitrocellulose ready for western 
blotting with the utrophin antibody (right hand panel). An identical acrylamide gel 
was run to allow comparison of the mutant proteins via Coomassie Blue staining (left 
hand panel). Molecular weight markers (kDa) are shown to the left.

5.2.4 NTCB digestion of

Sequencing of UTR^^^ and confirmed the presence of the

cysteine mutations but NTCB digestion was also used to demonstrate the presence of 

cysteines in the purified proteins. NTCB cleaves specifically at cysteine residues 

(Jacobson et al., 1973) and the presence of the amino acid within the peptide chain of
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the cysteine mutants will allow peptide fragments to be generated that would not 

occur in UTR261 which, contains no cysteine (Jacobson et al., 1973). Figure 5.4 
demonstrates the NTCB cleavage of UTR261 and u x rT36c/s242c that the

digestion of utrophin ABD has not been possible as there was no appreciable 

reduction of full length utrophin ABD when in the presence of NTCB. The 

yPRT36c/s242c ĝ ĵ iplc in the absence of NTCB shows no appreciable digestion; 

however, addition of NTCB has almost completely digested full length u j r T36c/s242c 

resulting in the formation of two peptide fragments that are approximately 26 and 27 

kDa in size. This experiment clearly demonstrates the presence of the cysteines 

within the mutant.

; I I
32 -

25 -

Figure 5.4: NTCB digestion of utrophin ABD and ujr'*'36c/s242c  ̂ ^  20 pM 
sample of UTR261 and denatured in 6M urea in TE pH 8.0 was
incubated with a ten-fold excess of NTCB for 1 at room temperature. Following 
adjustment to pH 9.0 the samples were incubated at 30°C for three hours. Following 
digestion samples were subjected to SDS PAGE and the cleavag^roducts visualised 
using Coomassie Blue staining. Samples of UTR261 and (JXR̂ ^̂ S242C indicated 
in the presence (+) and absence (-) of NTCB. Molecular weight markers (kDa) are 
shown to the left of the figure.

5,2.5 Formation o f the disulphide bond within

Sequencing and NTCB digestion have clearly demonstrated that u j r T̂6c/s242c 

contained two cysteine residues in the correct positions. It was necessary to 

demonstrate that these cysteines were capable of forming a disulphide bond, thus 

locking the mutant protein in a closed conformation. To allow the formation of the
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disulphide all reducing agents were removed from the protein solution via extensive 

dialysis. To promote oxidation and formation of the disulphide bond copper sulphate 

and phenanthroline were used as described in section 2.2.26. Two oxidation methods 

were attempted; one involving a drop-wise addition of the reagents and one 

involving overnight dialysis. The dialysis method was found to be the least likely to 

cause protein aggregation. Figure 5.5 demonstrates two separate sets of protein 

samples that have been subjected to oxidation. The figure clearly demonstrates that 

UTR261 and UTR^^^ do not experience a size shift after oxidation. There was the 

potential for the single and double cysteine mutants to form disulphides with other 

protein molecules; however, SDS PAGE and gel filtration analysis (Section 5.2.6) 

did not find this to occur. The samples that were subjected to oxidation

demonstrate a clear shift in size when compared to UTR261 and UTR^^ .̂ This shift 
appears to suggest that the disulphide does form in (JXRT̂ /̂S242c ^  oxidised 

protein samples run slightly faster when subjected to SDS PAGE (Figure 5.5).

UTR261 UTRT36C yjR T 3«C /S242C

+ +

32.5-

Disulphide

Disulphide

Figure 5.5: Oxidation of UTRT36C/S242C

UTR261, UTR"^ and UTR► T36C/S242C
to form the disulphide bond. Solutions of 

were oxidised by dialysis with a solution
containing 1 mM CUSO4 and 4 mM phenanthroline. All solutions were prepared in 
TE pH 8.0 and no DTT was present. After overnight oxidation samples of each 
protein were prepared for SDS PAGE by addition of reducing (+) and non-reducing 
(-) sample buffer. Samples were run on a non-reducing gel for comparison. Protein 
bands were visualised using Coomassie Blue staining. The experiment was 
duplicated and the position of the disulphide linked protein has been indicated. 
Molecular weight markers (kDa) are shown to the left.
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Figure 5.6 demonstrates a %JTRT36C/S242C 2X higher concentration that

has been oxidised. It is clear that there was a size shift in the oxidised protein 

although it is apparent that not all of remains in the oxidised form. It is

possible that the close proximity of the reduced sample lane has allowed partial 

reduction of the oxidised sample. In the presence of the oxidising agents all of the 

yjj^T36c/s242c wgpg observed to form the disulphide however, removal of

oxidant does allow some protein to remain in a none cross-linked state (data not 
shown) and therefore, it is feasible that the (JTRT3̂ /S242c g^^p|g contains a 

proportion of protein that does not form the disulphide.

y ^ T 3 6 C /S 2 4 2 C

Disulphide
formed

Figure 5.6: Oxidised and reduced samples of u j r T36c/s242ĉ  Oxidised and reduced 
samples of u j r ^ '̂^242c shown following SDS PAGE using a non-reducing gel. 
The position of (JTRT36C/S242C disulphide formation is indicated and molecular 
weight markers (kDa) are shown to the left.

5.2.6 Gel filtration analysis o f utrophin ABD and the and
mutants.

The utrophin ABD is known to behave as a monomer when in solution 

however, the introduction of cysteines into the domain generates the potential for 

oligomerisation. The double cysteine mutant was designed to allow the formation of 

a disulphide between the two CH domains of the ABD. It is possible, if the ABD 

does not adopt a closed and compact conformation when in solution, that a 

disulphide may form with another molecule of utrophin ABD. To investigate if this 

was possible analytical gel filtration was utilised to determine if oligomers of the 

cysteine mutants were occurring in solution. Samples of utrophin ABD, UTR^^^ and
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Ut r T36c/s242c reduccd and oxidised conformations (disulphide formed) were 

run through a calibrated analytical gel filtration column (Section 2.2.20). The relative 

MW of each protein was calculated to evaluate the relative size of the proteins when 

in solution (Table 5.1).

The relative MW of each protein was comparable to literature values and those 

previously detennined in section 3.2.1, It appears that utrophin ABD and 
are slightly larger than ypRT36c/s242c either the oxidised or reduced form. This 

may suggest that the solution monomer was less compact than y%'Ri'3 ĉ/s242c 

although, the introduction of the disulphide does not seem to result in the 
UTR^36c/s242c becoming more compact than the reduced form. Most

importantly, all proteins eluted as a single species, with no visibly larger peaks 

present on the gel filtration elution profiles. Hence, the presence of cysteine residues 

within the mutated ABDs does not result in protein oligomerisation.

UTR ABD U T R ^ 3 6 C y j p t à 6 ( i / S 2 4 2 C y  J P J T 3 6 C / S 2 4 2 C

MW (kDa) 29.4 ± 0.03 29.6 ± 0.06 28.0 ±0.14 28.2 ±0.14

Table 5.1: Relative MW of the utrophin ABD, UTR^^ec ^^ j t̂36c/s242c 
mutants following gel filtration analysis. Samples of utrophin ABD, UTR^^^c 
Utr'^36c/s242c subjectcd to gel filtration analysis using a calibrated Superose 12 
HR gel filtration column under control of an Akta FPLC system. Two sets of samples 
were run for UTR3̂ 3̂ c/s242c. was not oxidised prior to the run whereas the
other contained UTR^3^c/s242c the disulphide formed (ox). The elution volume 
of each protein after loading was used to determine the relative molecular weight of 
each protein. Protein samples were ran at 0.4 ml/min in TE pH 8.0 and 200 mM 
NaCl. Standard error was calculated (n = 3).

5.2.7 Actin-binding analysis o f

The utrophin ABD has been shown to associate with F-actin with a moderate 

affinity (Kd approximately 20 pM) and a binding stoichiometry of 1:1 (Keep et. a l, 

1999a; Winder et a l, 1995). Models of the utrophin ABD when associated with F- 

actin favour an open mode of association where the molecule appears to bind across 

actin subdomain 1 with CHI lying between two actin monomers (Moores et al..
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2000). The opening of the ABD to present the actin-binding sites towards F-actin 

would be prevented in the oxidised u j r T36c/s242c The disulphide bond

would prevent the dissociation of CHI and CH2 forcing the molecule to bind F-actin 

in a closed conformation or possibly not at all. High speed co-sedimentation assays 

were performed with the u j r ^̂ ^̂ s242c in the oxidised or reduced form to

assess the affect the disulphide may have upon actin binding. The actin-binding data 

generated are presented in Figure 5.7.
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Figure 5.7: u x r T36c/s242c gg^in.^inding curves determined with oxidised and 
reduced forms of the protein. UTR̂ ^̂  in the disulphide formed (oxidised; 
magenta) and reduced (blue) state was subjected to high speed co-sedimentation 
assay (n = 3). A range of concentration (I - 400 pM) was titrated with
5 |iM F-actin (Winder et al., 1995). Soluble and insoluble protein fractions were 
separated and subjected to SDS PAGE; Coomassie Blue staining was used to 
visualise the separated protein. The proportion of u x rT36c/s242c bound F-actin 
was calculated from gel densitometry measurements of the Coomassie stained gels 
(NIH Image). Binding affinities and stoichiometries were determined using a 
Michaelis-Menten-type fitting. Error bars are omitted for clarity.

The co-sedimentation data suggest that the oxidised UTRT36C/S242C mutant does

retain the ability to bind to F-actin. This is surprising although not unlikely as the 

ABD of fimbrin and a-actinin has been modelled to associate with F-actin in a 

closed conformation (Hanein et al, 1998; McGough et a l, 1994). Cryo-EM
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reconstructions of the utrophin ABD bound to F-actin have determined that it is 

possible to fit a structure of the proposed utrophin ABD solution monomer into the 

electron densities associated with F-actin (Moores et a l, 2000; Sutherland-Smith et 

a l, 2003). The positioning of the compact model appeared to fit reasonably well 

however, the orientation of the molecule was significantly different to the proposed 

orientation that fimbrin would adopt when associating with F-actin (Moores et a l, 

2000). It has also been found that the ABD of plectin also retains the ability to 

associate with F-actin when the CH domains are linked by a disulphide (Garcia- 

Alvarez et a l, 2003).

The binding affinities and stoichiometries of the oxidised and reduced forms of 
yjj^T36c/s242c differ from that of the wild type protein (Table 5.2). The binding 

stoichiometry of the reduced form is identical to the wild type protein however; the 

oxidised form of the mutant displays a slightly higher value of approximately 1.2:1 

(Table 5.2). This value is not greatly dissimilar but the increase may be significant 

when considering that the association with F-actin occurs when the utrophin AJBD is 

in a closed conformation. Interestingly, binding of a utrophin ABD construct that 

lacked the first 27 N-terminal residues also displayed a similar stoichiometry (1.29 ± 

0.08) but essentially, the stoichiometry was 1:1 (Keep et a i, 1999a). Garcia-Alvarez 

and colleagues did not determine a binding stoichiometry of the plectin ABD when 

binding F-actin however; the binding affinities are significantly different between the 

reduced and oxidised forms of the protein (Garcia-Alvarez et a l, 2003).

UTR ABD y-ppl36C/S2426
Kd(pM) 19.2 ± 2.2 pM 74.8 ± 19.2 pM 123 ±14.1 pM

Stoichiometry 1:1 ±0.06 1:1 ±0.06 1.2:1 ±0.06

Table 5,2: Binding affinity and stoichiometry of reduced and oxidised 
compared with wild type utrophin ABD. The calculated 

stoichiometries and binding affinities of the UTR mutant when in the
reduced and oxidised form are compared to literature values of utrophin ABD 
determined by Winder and colleagues (Winder et a i, 1996). Michaelis-Menten-type 
fitting was used to determine the respective affinities and stoichiometries. Standard 
error is shown (n = 3).

This was found to be the case with the oxidised and reduced forms of 
Ut r T36c/s242c rcduccd form u 'X’r T36c/S242c F-actin with a lower affinity

than the wild type protein (Kd = 74.8 ± 19.2 pM) suggesting that the cysteine
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mutations were disrupting binding to F-actin. The affinity of the oxidised mutant was 

significantly lower than the reduced form (Kd = 123 ±14.1 pM) suggesting that the 

formation of the disulphide made association with F-actin less favourable. A similar 

reduction in the binding affinity was also observed when the plectin ABD was locked 

in the closed conformation by a disulphide bond. In this situation the affinity of the 

plectin ABD reduced by a factor of two although the initial affinity of the ABD for 

F-actin was identical to that of the wild type protein (Garcia-Alvarez et a l, 2003).

It is apparent that the utrophin ABD retains the ability to bind to F-actin even 

when the domain is prevented form opening by locking the two CH domains together 

using a disulphide bond. This is interesting given that it is clear that F-actin bound 

utrophin ABD demonstrates clear electron density attributable to either extended or 

compact modes of association (Moores et a l, 2000; Sutherland-Smith et a l, 2003).

5.2.8 Labelling with fluorescein and rhodamine

Generation of the utrophin ABD double cysteine mutant has allowed the 

investigation of the constraints a disulphide bond imposes upon the F-actin 

interaction. Wild type utrophin ABD does not contain cysteine but the generation of 

the double cysteine mutant allows further analysis of the utrophin ABD conformation 

via the conjugation of fluorescent labels to the cysteine residues in the mutant 

proteins.

The utrophin ABD has been shown to be monomeric in solution. If the domain 

adopts a compact conformation in solution where the two CH domains are in close 

association then it should be possible for fluorescence resonance energy transfer 

(FRET) to occur between a donor and an acceptor chromophore conjugated to the 

cysteine residues of The two fluorophores were chosen that exhibit a

suitable spectral overlap that would allow FRET to occur. These two fluors were 

fluorescein-5-maleimide and tetramethylrhodamine-6-maleimide (rhodamine). These 

two fluors form a donor/acceptor pair that achieves maximal energy transfer over a 

Forster radius (Ro) of approximately 55 Â (Molecular probes handbook). The 

labelling of with both fluors was achieved by the selective reduction of

the cysteine thiol groups using TCEP. The maleimide conjugated fluors react in a
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thiol-selective manner allowing specific labelling only at the cysteine residues. Once 

conjugation was complete excess un-conjugated fluor was removed via extensive 

dialysis before the extent of labelling could be determined (Section 2.2.28).

Figure 5.8 demonstrates that the conjugation of both fluors to u j r T36C/s242c 

either individually, or as a mix, was possible. A solution of purified u 7 rT̂ 6C/S242c 

either singly labelled with fluorescein, rhodamine or a mix of both can be seen after 

the samples were subjected to SDS PAGE. The Coomassie Blue stained gel 

demonstrates that the protein-dye conjugates are all loaded equally and the labelled 

protein was of the expected size (approximately 30 kDa). The lower panel of Figure 

5.8 shows the SDS PAGE gel prior to Coomassie Blue staining viewed when placed 
over a UV light box. It is clear that %jTRT36c/s242c conjugated to fluorescein of 

rhodamine emits a green or red fluorescence respectively, whereas the double 

labelled protein emits a yellow fluorescence (combination of green and red). The 

extent of labelling for all protein samples was then determined (Section 2.2.27). It 
was calculated that tjpRT36c/s242c labelled with rhodamine at a ratio of 1:0.81 

whereas fluorescein labelling was approximately 1:2. The doubly labelled protein 

was labelled with rhodamine and fluorescein at ratios of 0.48:1 and 0.78:1 

respectively.

•s I
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Figure 5,8: Successful labelling of y%RT36c/s242c rhodamine and
fluorescein, was labelled with either rhodamine (red), fluorescein
(green) or a mixture of both (yellow). Samples of uprT36c/s242c labelled with each 
fluor were subjected to SDS PAGE. A UV light box was used to demonstrate 
successful conjugation of the fluors to ujr3^36c/s2 2c panel) before Coomassie 
Blue staining of the gel was performed to visualise the protein present. Molecular 
weight markers (kDa) are shown to the left.
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5,2.9 Fluorescence Resonance E n e r^  Ti^anrfer between fluorescein and 
rhodamine conjugated to UTR .

Before the actual FRET experiment was attempted it was necessaiy to check 

that the conjugated chromophores were detectable spectroscopically and that the 

fluorescent signal generated from the samples was attributable to the fluors and not 

yTRT36c/s242c ^ buffer componcut. Appendix 7 demonstrates excitation and 

emission spectra of that have been labelled with either rhodamine or

fluorescein. In both instances, neither fluor emitted a significant fluorescence signal 

after collection of excitation and emission spectra at the wavelengths of the opposite 

fluor. Once this was established, a mix of the two samples labelled

with either rhodamine or fluorescein was prepared. The known extent of labelling 

was then used to adjust the quantity of each labelled protein that was added so that 

equivalent proportions of each fluor were present within the final sample of labelled 

Ut r 'I’36C/s242c g^citation and emission spectra of this sample were collected to 

determine if there was any FRET between the solution monomers

labelled with either fluorescein or rhodamine (Figure 5.9).

It is apparent that the fluorescence of the rhodamine excitation and emission 

spectra are much larger than those of fluorescein. This indicated that the proportion 

of fluorescein labelled protein was less than expected even though it was attempted 

to add an equivalent amount of fluor when preparing the mixture. In

any case, it does not appear that there was any FRET between the singly labelled 

Ut r T36c/s242c ^ould be expected when the sample was excited at 494 nm.

This would excite fluorescein allowing FRET to rhodamine which should generate a 

rhodamine emission intensity at approximately 580 nm (Lakowicz, 1999). This does 

not appear to occur although there is a fluorescence intensity produced at 

approximately 565 nm after excitation at 494 nm.
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Figure 5.9; Fluorescence spectra of a mixture of [jTRT36c/s242c 
either fluorescein or rhodamine. 30 uM samples containing both fluorescein (F) 
and rhodamine (R) labelled 242c examined for fluorescence at the
emission and excitation wavelengths of both fluorescent conjugates. Spectra were 
collected at a slow scanning speed with excitation and emission slit widths of 1.5 nm 
Excitation and emission wavelengths are as follows: fluorescein, 494 and 518 nm 
respectively; rhodamine, 555 and 580 nm respectively. Fluorescence is shown in 
arbitrary units (AU).

It was clear that there was no FRET between a mixture of singly labelled 

protein. If there was to be FRET intra-molecularly then the two fluors would need to 

be close enough and orientated correctly to allow energy transfer (Bemey and 

Dan user, 2003). Figure 5.10 demonstrates a sample of doubly labelled (jxrT36c/s242c 

that has been scanned at the fluorescein and rhodamine emission wavelengths. A 

FRET signal would be expected at 580 nm after excitation at 494 nm. There is a 

fluorescent intensity at approximately 570 nm but this is not attributable to FRET. 

Comparison of the relative fluorescence of this shoulder peak with the similar peak 

visible in the mix of singly labelled proteins (Figure 5.9) indicated that, 

proportionally, the peaks were of equivalent size when compared to the larger 

fluorescein excitation peak at 518 nm. Therefore, it is apparent that there is no 

significant FRET between the two fluors. Fluorescein and rhodamine have been used 

previously to determine molecular distances and to determine protein interactions
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over much larger distances that were attempted here (Johnson et a l, 1984; Kosk- 

Kosicka et a l, 1989). The effects of cAMP and kinase inhibitor on the association of 

the catalytic subunits of cAMP-dependant protein kinase demonstrated that 

fluorescein and rhodamine were suitable candidates for the study of protein subunit 

interaction (Lakowicz, 1999). Essentially, CHI and CH2 are protein subunits that 

interact with each other therefore; it should have been possible to demonstrate FRET 

if the fluors were suitably positioned (Wu and Brand, 1994). It is apparent that the 

fluors are not able to interact and hence, it is likely that the positioning of the fluors 

within permit FRET to occur.

The utrophin ABD is an actin-binding protein: F-actin was added to the double 

labelled protein in an attempt to detennine the affects of actin binding on the 

fluorescence of the fluors. Initially, it was hoped that a FRET signal would be 
generated when the labelled yp^T36c/s242c solution and that this signal would

be altered upon interaction with F-actin. As FRET can be used to determine inter­

atomic distances the technique has many uses for the investigation of structural and 

conformational change in proteins (Heyduk, 2002). However, there was no FRET 

signal when was in solution and this continued to be the case when F-

actin was added. The lower panel of Figure 5.10 demonstrates the spectra collected at 

fluorescein and rhodamine excitation and emission wavelengths. A sample of F-actin 

was scanned previously at the emission and excitation wavelengths of the fluors to 

determine if there was any auto-fluorescence of the sample; none was found 

(Appendix 8).
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Figure 5.10; Fluorescence spectra of UTRT36C/S242C labelled with fluorescein and
rhodamine. 30 pM samples of labelled with equal proportions of
rhodamine and fluorescein were scanned at the excitation and emission wavelengths 
for both fluorescent conjugates (fluorescein: 404 and 518 nm; Rhodamine: 555 and 
580 nm). All scans were performed at a slow speed and emission and excitation slit 
widths were 1.5 nm. The data demonstrates spectra collected in the absence of F- 
actin (top panel) and after addition of F-actin to a final concentration of 5 pM 
(bottom panel). All experiments were performed in TE pH 7.0 and 1 x ABB.
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5.2.10 Comparison o f tryptophan fluorescence between and
wild type utrophin ABD

The intrinsic fluorophores of a protein may be of use when determining a 

conformational change or the effects of a mutation (Chen and Barkley, 1998; Vivian 

and Callis, 2001). The utrophin ABD contains six tryptophan residues that could be 

useful in determining the affects of the cysteine mutations introduced into the 

utrophin ABD and may yield information regarding the interaction of the domain 

with F-actin. To allow comparison of the tryptophan fluorescence of wild type 

protein with that of the oxidised and reduced fonns of initial

fluorescent scans were performed with the wild type protein in the presence and 

absence of F-actin (Figure 5.11). These scans demonstrate that the fluorescence 

associated with individual samples of the utrophin ABD and F-actin and a mixture of 

the two where the utrophin ABD would be expected to bind to F-actin. The 

fluorescent maxima of F-actin (332 mn) was slightly blue shifted compared to that of 

utrophin (334 nm); however, the combined sample displayed a maximum identical to 

the utrophin ABD alone (334 nm). The sample where utrophin ABD was bound to F- 

actin was found to exhibit a tryptophan fluorescence that was less than the sum of the 

two proteins alone. This probably results from a degree of tryptophan fluorescence 

quenching occurring upon interaction of the two proteins. It is difficult to determine 

what proportion of the total fluorescence would result from either of the proteins 

given the multiple number of chromophores present within the structure of each but 

it may provide a method for comparing the association of the cysteine mutants with 

F-actin and the wild-type protein binding. A similar method was used by Garcia- 

Alvarez and colleagues to monitor the binding of the plectin ABD to F-actin (Garcia- 

Alvarez et al., 2003).

Samples of each cysteine mutant and the wild type utrophin ABD were 

scanned for tryptophan fluorescence in the presence and absence of F-actin (Figure 

5.12). The spectra demonstrated that the presence of cysteine and the formation of 

absence of the disulphide bond resulted in a marked difference in the fluorescent 

intensity generated by the tryptophan residues. The fluorescent maxima were also 

found to vary slightly from the value obtained from the wild type ABD signifying an 

alteration in the local enviromnent of some of the tryptophan residues. Cysteine has
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been shown to be an efficient quencher of tryptophan fluorescence (Gonnelli and 

Strambini, 1995).
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Figure 5.11: Intrinsic tryptophan fluorescence of the utrophin ABD in the 
presence and absence of F-actin. 30 pM samples of utrophin ABD were excited at 
296 nm and the resultant tryptophan fluorescence recorded between 300 and 450 nm 
All scans were performed at a slow scanning speed with excitation and emission sit 
widths set to 1 nm. All samples were prepared in TE pH 8.0 in the presence of 1 x 
ABB. F-actin was added to a final concentration of 5 pM. Spectra of utrophin ABD 
and F-actin are demonstrated alongside a solution of utrophin ABD/F-actin and the 
sum of fluorescent spectra of the individual proteins. Tryptophan fluorescence is 
represented in arbitrary units (AU).

The proximity of this amino acid to tryptophan produces a quenching affect 

that has been used to measure the formation of specific intra-molecular contacts 

(Buscaglia et al., 2003). In this study it is apparent that the cysteine present in the 
Utr T̂ ĉ yjj^T36c/s242c has produced a quenching effect towards the

tryptophan fluorescence of these proteins. The utrophin ABD contains six 

tryptophans located at the positions highlighted in Figure 5.13. The cysteine 

mutations are located at residues 36 and 242 of the utrophin ABD. The utrophin 

ABD is displayed in the open crystal conformation; it is apparent that tryptophan 

residues 40 and 128 are particularly close to the cysteine mutation at S36; and may 

be amenable to cysteine quenching of the fluorescence they produce.
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Figure 5.12: Comparison between the sum 
fluorescences of the utrophin ABD,
of utrophin ABD, F-actin and the cysteine mutants were excited at 296 nm and the 
resultant tryptophan fluorescence recorded between 300 and 450 nm. All scans were 
performed at a slow scanning speed with excitation and emission sit widths set to 1 
nm. All samples were prepared in TE pH 8.0 in the presence of 1 x ABB, F-actin was 
added to a final concentration of 5 pM. Spectra of each protein alone and in the 
presence of F-actin are shown. Tryptophan fluorescence is represented in arbitrary 
units (AU).
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T36C/S242C inFigure 5.13: Position of the two cysteine mutations within UTR 
relation to the ti^tophan residues present within the ABD. The two cysteine 
residues of UTR̂  ̂ ^ are represented by yellow spacefill to identify their location
and proximity to the six tryptophan residues present within the utrophin ABD (blue 
spacefill).

Figure 5.12 demonstrates that the fluorescent intensity of the UTR^^  ̂ was 

lower than that of wild type utrophin ABD probably as a result of a quenching effect.

The reduced form of UTRT36C/S242C demonstrated a further reduction of fluorescence

with the oxidised form exhibiting the greatest decrease in intensity. The peak 

maxima of the u j r ^̂ '̂'̂ 242c also appear to be slightly red shifted when

compared to wild type utrophin ABD (333 nm), demonstrating maxima at 335 and 

334 nm for the reduced and oxidised forms respectively; this may represent a slight 

change in tryptophan environment caused by the presence of both cysteine residues.

Following addition of F-actin, all of the cysteine mutants display a similar 

pattern of fluorescence when compared to the intensities generated in the absence of 

actin. However, it appears that the fluorescent intensity of the oxidised mutant is 
much lower than wild type utrophin ABD, UTR^^  ̂or u 7 r T36c/s242c reduced 

form. In the oxidised state the protein displays a fluorescent intensity slightly lower 

than that of the protein sample when in the absence of F-actin (Figure 5.12). In this 
form, u j r T36c/s242c yg interacting with F-actin in a manner that is distinct to 

that of the reduced form resulting in a marked difference in the combined protein 
fluorescence. Given that in the oxidised form of %jTRT36c/s242c ĵ̂ g
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domains of the utrophin ABD are locked together it is not unreasonable to assume 

that the domain is interacting with F-actin in a manner distinct to that of the reduced 

form of the protein.
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Figure 5.14: Comparison between the tryptophan fluorescence of the utrophin 
ABD, and bound to F-actin with the sum of the
individual fluorescences of each protein. The fluorescence spectra of each ligand 
when in the presence of F-actin was recorded; these spectra were then compared to a 
sum of each ligands spectra and F-actin alone. Fluorescence is represented in 
arbitrary units (AU).

In an attempt to clarify the differences in fluorescence, the intensities of each 

protein in the presence of F-actin were compared to the sum of the individual 

proteins and F-actin (Figure 5.14). In each case the sum of the fluorescence were 

greater than the actual fluorescence of the ligand in the presence of F-actin. The 

difference between the fluorescent intensities between samples of ligand and F-actin 

and the sum of the individual intensities was used as a measure of the difference in 

fluorescence resulting from the interaction of the ligand with F-actin (Figure 5.15).
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Figure 5.15: Difference between the fluorescence of ligand in the presence of F- 
actin and the arithmetic sum of ligand and F-actin fluorescence. The arithmetic 
sum of the individual proteins fluorescences when compared to the actual 
fluorescence of ligand and F-actin was found to be slightly larger. Subtraction of the 
combined fluorescence from the arithmetic sum allows a comparison between the 
extent of quenching caused by the presence of the cysteine residues within the 
utrophin ABD mutants and/or quenching caused by interaction with F-actin. 
Fluorescence intensity is represented by arbitrary units (AU).

Figure 5.15 demonstrates that the single cysteine mutation results in slightly 

less fluorescence; this is attributable to a greater extent of quenching when 

interacts with F-actin when compared to the wild type protein interaction with F-

actin. The reduced form of the double cysteine mutant (UTRT36C/S242C) appears to

generate a larger fluorescence than would be expected as the additional cysteine 

residue should result in greater quenching. It appears that in this form the double 

mutant displays little difference in fluorescence of the sum of the individual 

intensities when compared to the sample where both F-actin and ligand were present. 

The oxidised double cysteine mutant demonstrates a larger degree of quenching 

signified by the larger difference in fluorescence.

It is apparent that the introduction of a single cysteine residue into the utrophin 

ABD generates a significant degree of tryptophan quenching when compared with 

the wild type fluorescence. When the second cysteine mutation was introduced this
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increased the fluorescent quenching; however, there appeared to be a relative loss of 

quenching of the double cysteine mutant when interacting with F-actin, possible 

resulting from the cysteine residues separating as the molecule interacts with F-actin. 

The mutant with the disulphide fonned displayed a greater extent of

quenching than the reduced fonn and the single cysteine mutant except that this 

quenching affect was not lost upon interaction with F-actin. This suggests that the 

utrophin ABD may still interact with F-actin in the closed conformation although the 

large proportional difference between the sum of the individual components and the 

ligand/F-actin mixture may hint at a different manner of interaction of the utrophin 

ABD in this form.

5.2.11 Dijferential Scanning Calorimetry o f the utrophin ABD

Differential scanning calorimetry has been used previously to demonstrate that 

the plectin ABD exists in a closed state when in solution but preferentially binds to 

F-actin in an open conformation (Garcia-Alvarez et al., 2003). This study also 

identified that the plectin ABD was also able to interact to F-actin if the domain was 

locked closed by the formation of an engineered disulphide bond between the two 

CH domains of the protein (Garcia-Alvarez et a l, 2003).

It was apparent that the cysteine mutants generated during this study would be 

amenable to similar analysis; samples of the wild type utrophin ABD, UTR̂ ^̂ *̂  and 

UTR^^^c/S242c subjected to DSC with the help of Dr Audrey Bobkov at the 

Burnham Institute, La Jolla. It was thought that these analyses would help to provide 

insight into the conformational state of the utrophin ABD when in solution and upon 

interaction with F-actin.

The utrophin ABD (UTR261) was found to denature as a single peak with a 

transition midpoint (T^) of 53.3 °C (Figure 5.16, Table 5.3). This Tm was much 

lower than the T^ of 63.9 °C recorded for the plectin ABD in solution and was 

similar to the T^ of 59.1 °C recorded for the plectin ABD in complex with F-actin 

(Garcia-Alvarez et a l, 2003). Comparison with the data of Garcia-Alvarez et al. 

implies that the utrophin ABD adopts an open confonnation when in solution similar 

to the conformation detennined from plectin (Garcia-Alvarez et a l, 2003). These
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data oppose other studies that propose that the utrophin ABD adopts a closed 

compact structure in solution only opening upon interaction with F-actin. Gel 

filtration and SDS PAGE analysis have confirmed that the oxidised 

mutant remains monomeric in solution (Section 5.2.5; 5.2.6) but the formation of the 

disulphide should lock the protein in a closed state. DSC determined that oxidised 
UTRr36c/S242c a much higher temperature than UTR261 (Figure 5.17,

Table 5.3). The T^ of 68.1 °C was very close to the oxidised plectin ABD mutant in 

the locked closed conformation (Garcia-Alvarez et al., 2003) suggesting that the 

production of the disulphide bond was successful and that was locked

in a closed conformation.

It was necessary to verify that the increased Tm resulted from the formation of 

a disulphide and not from the presence of the two cysteine mutations within the 

utrophin ABD. To test this, DSC was performed on a sample of UTR™^, containing 

a single cysteine mutation at T36, and a sample ofUTR^^ '̂^^^ '̂̂ ^  ̂when in the reduced 

form (no disulphide formation). The determined melting profile and Tm of UTR^^^^ 

were very close to that of UTR261 (Figure 5.17, Table 5.3) indicating that the single 

cysteine mutation had no significant effect on the conformation of the utrophin ABD 

in solution. The melting profile of reduced demonstrated two peaks

(Figure 5.17, Table 5.3); indicating the presence of two populations of utrophin ABD 

with differing conformations. The larger population of reduced (JT]̂ T36C/S242C 

with a Tin of 56.3 °C, very close to that of wild type utrophin ABD. The smaller 

population of reduced melted with a Tm of 68.6 °C very close to that of

oxidised Based on the similarity to the oxidised form it is likely that

this proportion of reduced exists in the closed conformation when in

solution whereas the larger population of reduced adopts the open

conformation. It is apparent that the formation of the disulphide between the CH 

domains of the utrophin ABD results in a shift of the solution equilibrium of 
UTr T36c/s242c the open state towards that of the closed conformation.

In the presence of F-actin the utrophin ABD demonstrates an increase in Tm to

55.5 ®C (Figure 5.16, Table 5.3); this indicates binding of the domain to F-actin 

although the relatively small increase in Tm (2.2 °C) suggests no major change in the 

conformation of the protein upon interaction with F-actin. Thus, the utrophin ABD
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binds F-actin in the open confonnation which is in agreement with Moores et af, but 

also the unmodified plectin ABD also associated with F-actin in the open state 

(Garcia-Alvarez et a l, 2003; Moores et a l, 2000). The single cysteine mutant, 

UTR^^® ,̂ also behaved in a similar manner to the wild type protein indicating the 

lack of disulphide fonnation and any effects on the structure of the domain overall 

(Figure 5.16 B).

The DSC profile of oxidised bound to F-actin (Figure 5.17 B)

displayed a main peak with a Tm of 69.7 and a shoulder at approximately 67 °C. 

The main peak represents the melting of F-actin and it is likely that the shoulder can 

be attributed to the melting of To resolve these peaks the experiment

was repeated in the presence of phalloidin, which serves to increase the melting 

temperature of F-actin by approximately 10 °C (Figure 5.16 and 5.17) resulting from 

a stabilisation effect between the inter-subunit contacts of F-actin (Levitsky et a l, 

1998). The actin samples where phalloidin was present were also doubled in 

concentration to investigate if the actin effect on the utrophin ABD was saturated. It 

was apparent that the melting profiles of oxidised u'pR'r36c/s242c presence and 

absence of phalloidin-F-actin are very similar (Figure 5.17B, Table 5.3); thus 

oxidised {jY^T36c/s242c y îth phalloidin-F-actin in the closed conformation.

It was possible that the presence of phalloidin was altering the manner of interaction 

of the utrophin ABD with actin. To verify that phalloidin does not alter the 

interaction, DSC was performed with the wild type utrophin ABD in the presence of 

Phalloidin-F-actin (Figure 5.16A, Table 5.3). The data demonstrate that the effects of 

F-actin and phalloidin-F-actin on the conformation of the wild type protein are 

similar.

The melting profile of reduced in the presence of F-actin was

very similar to that of the oxidised fonn of the protein (Figure 5.17 A and B 

respectively). Once again, phalloidin-F-actin was used to allow resolution of the Tm 

peaks. Reduced was found to melt with a single peak of Tm 68 °C

(Figure 5.17 A, Table 5.2) thus, the majority of reduced adopts a

closed conformation when F-actin is present; however, in the absence of F-actin 

reduced approximately 60 % of the protein molecules adopt an open

conformational state (Figure 5.17 A).
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The results indicate that favours the closed conformational state

but interestingly, UTR̂ ^̂ *̂  displays a reduced intensity of the peak at 56.5 and an 

appearance of a shoulder at 69 °C in the presence of phalloidin-F-actin (Figure 5.16 

B), These data imply that a small proportion of UTR^^^^ molecules adopt a closed 

conformation upon interaction with F-actin. The wild type utrophin ABD also 

displays a small shoulder at 68 °C in the presence of phalloidin-F-actin (Figure 

5.16. A); thus although the vast majority of wild type utrophin ABD associates with 

F-actin in the open conformation, the potential for association of a small population 

of molecules in the closed conformation does exist.

Proteins Tmi (°C) Tm2 (°C) TmsCC)

UTR261 53.3 ““

52.6 """

56.3 68.6
— 68.1 --

F-actin "" — 69.1

UTR261 + F-actin 55.5 — 69.8

UTR’'̂ “  + F-actin 55.0 — 68.7
UTR'^“ c/s242c + p.actin - r - shoulder at -67 69.7
UTR™c/®242c oxidized + F-actin "" shoulder at -67 69.6

F-actin-phalloidin — 80.0

UTR261 + F-actin-phall. 56.2 — 79.8

UTR” “  + F-actin-phall. 56.5 shoulder at -69 80.6
UJRT36C/S242C rgjjgged + F-actin-phall. — 68.5 80.8
Û Ĵ T36C/S242C g^idizod + F-actin- 

phall.

— 68.2 79.4

■4

I

Table 5.3: Dénaturation temperatures for DSC scans shown in Figure 5.16 and 
5.17. DSC data of the wild type utrophin ABD and the U TR"“  and u t r T36c/s242c 
mutants. The transition peaks (Tm) recorded during each scan are denoted Tm 1-3 and 
the absolute errors in Tm values did not exceed 0.2°C.
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Figure 5.16: Differential Scanning Calorimetry data for the utrophin ABD and 
the mutant. DSC melting profiles of the wild type utrophin ABD (A) and
the single cysteine mutant (B). 10 pM samples of each protein were
scanned at a rate of IK/min under 3 atmospheres of pressure in 20 mM PIPES pH 
7.0, 50 mM NaCl, 1 mM MgCl2, 0.2 mM ATP and where necessary, 10 pM F-actin 
or 20 pM F-actin + 20 pM phalloidin. Protein samples under reducing conditions 
were kept with I mM DTT at all times and diluted 10 fold with DTT-free buffer 
immediately before analysis. C? represents the heat energy uptake during the 
unfolding transition expressed in arbitrary units (A.U.).
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Figure 5.17: Differential scanning calorimetry data for the utrophin ABD and 
the UTR^  ̂̂
of the UTR

T36C/S242C

T36C/S242C
mutant in the oxidised and reduced form. DSC melting profiles 

mutant when analysed in the reduced (A) and oxidised (B) form.
10 pM samples of the protein were scanned at a rate of IK/min under 3 atmospheres 
of pressure in 20 mM PIPES pH 7.0, 50 mM NaCl, 1 mM MgCh, 0.2 mM ATP and 
where necessary, 10 pM F-actin or 20 pM F-actin + 20 pM phalloidin. Protein 
samples under reducing conditions were kept with 1 mM DTT at all times and 
diluted 10 fold with DTT-free buffer immediately before analysis. Cp represents the 
heat energy uptake during the unfolding transition expressed in arbitrary units 
(A.U.).
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5.3 Discussion

The utrophin ABD comprises a tandem pair of CH domains separated by a 

helical linker that is believed to pennit the CH domains a certain degree of flexibility 

(Broderick and Winder, 2005). The utrophin ABD is one of a handful of CH domain 

containing ABDs that have been crystallised (Garcia-Alvarez et al^ 2003; Goldsmith 

et a i, 1997; Keep et al^ 1999b; Klein et aL  ̂ 2004; Norwood et al^ 2000), most 

notable however, is the similarity that exists between the CHI and CH2 domains of 

the utrophin crystallographic dimer and the fimbrin crystal structure (Keep et a l, 

1999b). The CH domain interface that exists between CHI and CH2 domains of the 

opposed utrophin crystal monomers, fonning the utrophin crystal dimer, is very 

similar in orientation and interface to the CH domain arrangement exhibited by the 

fimbrin crystal structure. This phenomenon can be described as three dimensional 

domain swapping but it has been proposed that the utrophin ABD may exist as a 

closed compact monomer when in solution similar in conformation to the fimbrin 

crystal structure (Keep et a l, 1999b); binding of the domain to F-actin causes a 

rearrangement of the CH domains allowing interaction in an open conformation more 

analogous to the extended arrangement of the utrophin crystal dimer (Galkin et al., 

2002; Moores et a l, 2000). The work of this chapter has served to further investigate 

the apparent flexibility of the utrophin ABD by the generation of a double cysteine 

mutant that permits the two CH domains to be covalently linked thus, preventing 

disassociation of the domains in solution or upon interaction with F-actin.

Initially, it was necessary to generate and purify the double cysteine mutation. 

The double cysteine mutation was generated via two rounds of site directed 

mutagenesis, firstly via the generation of a single cysteine mutation at T36 followed 

by addition of a second cysteine mutation at position S242 of the utrophin ABD. This 

served to generate two mutant proteins containing either a single or double cysteine 

mutation. The single cysteine mutant, UTR^^^^, was deemed to be useful towards the 

characterisation of the double mutant, u t r T36cvs242c of utrophin ABD

was also expressed.

Initial analysis of the cysteine mutants proved the presence of the correct 

mutations within the utrophin ABD and that the disulphide bond could be induced to
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fonn between the CH domains of the mutant A similar cross-linking

of the plectin ABD demonstrated that a disulphide bond could be successfully 

generated between the CH domains of this protein (Garcia-Alvarez et a t, 2003). The 

introduction of cysteine residues into the utrophin ABD generated the potential for 

cross-linking to occur inter-molecuiarly; gel filtration analysis and SDS PAGE were 

used to prove that this was not the case. After formation of the disulphide within 
Ut r T36c/s242c fouiid that the mobility of the protein on a gel was increased

indicating that the disulphide had formed successfully. The disulphide did not result 

in the generation of any larger molecular weight species indicating that the mutant 

protein was still behaving as a monomer in solution. Previous analyses of the 

utrophin ABD have indicated that it does not exist in an oligomeric state when bound 

to F-actin or when in solution (Moores and Kendrick-Jones, 2000); the only known 

instance of utrophin interacting with itself is within the crystal dimer. In this instance 

it is apparent that the extreme conditions that are required for crystal fonnation could 

result in this molecular arrangement (Liu and Eisenberg, 2002) although it is 

interesting that the homologous dystrophin ABD also crystallised as an antiparallel 

dimer (Norwood et al., 2000). The large degree of sequence identity between these 

two proteins may explain why they crystallise in a similar manner although it has 

been shown previously that the dystrophin ABD can dimerise in solution and bind to 

F-actin in this confonnation (Norwood et al., 2000); these are abilities not shared by 

the utrophin ABD or the double cysteine mutant.

The covalent linkage of the CH domains within the utrophin ABD allowed the 

effect of the disulphide upon actin binding to be assessed. It was found that the 

presence of the disulphide did not prevent the utrophin ABD from interacting with F- 

actin. Interaction with F-actin in this state indicated that binding must occur when the 

utrophin ABD is in the closed conformation. This manner of association would be in 

agreement with models proposed by Sutherland-Smith et al., and Lehman et a l, in 

which the utrophin ABD was shown to associate with F-actin in a closed 

conformation (Lehman et a l, 2004; Sutherland-Smith et a l, 2003). These models are 

in sharp contrast to the open and extended models of association proposed by Galkin 

et a l, and Moores et a l, (Galkin et a l, 2002; Moores et a l, 2000). It is unlikely that 

all of the current models of the utrophin ABD bound to F-actin are correct when

151



Chapter 5: Utrophin ABD Cysteine Mutants

describing the interaction of the wild type protein with F-actin and this matter was 

recently discussed by Lehman and colleagues (Lehman et al., 2004).

The models where the utrophin ABD associates with F-actin in an open and 

extended conformation assume that the domain opens from a relatively compact 

solution monomer (Galkin et al., 2002; Moores et al., 2000). This assumption was 

based on the structural similarities that exist between the CH domain interface of the 

utrophin ABD and fimbrin ABD crystal (Keep et a l, 1999b) and the fact that the 

domain is strictly mono-disperse in solution. The models where actin-binding occurs 

in an open confonnation are all very different; Moores et al., and Galkin et al., both 

propose models where CHI and CH2 of the utrophin ABD are associated with F- 

actin; however, the Galkin model depicts utrophin spanning two actin monomers 

generating a binding stoichiometry of 1:2 (known as the 'half decorated’). 

Biochemical evidence presented here, and determined previously, suggest that 

utrophin binding with F-actin occurs in a 1:1 ratio so it seems unlikely that this 

model describes the actual mode of interaction with actin. An alternate model 

proposed by Galkin and colleagues suggests binding of the utrophin ABD to F-actin 

via CHI only with CH2 remaining free from the actin filament ('singly decorated’ 

model) (Galkin et al., 2002). This latter model fits well with the known biochemistiy 

of the individual CH domains but it does seem unlikely overall as the presence of the 

second CH domain has been shown to strengthen the binding activity of the complete 

domain.

The model proposed by Moores et al., was generated after an induced fitting of 

the utrophin crystal structure within the electron densities generated by bound 

utrophin ABD (Moores et al., 2000). Modelling in this study also identified density 

attributable to the helical linker that separates the CH domains but the necessity for 

an induced fit of the utrophin crystal structure suggests that this is not the exact mode 

of interaction that the domain adopts when binding actin (Moores et al., 2000). The 

work presented here proposes that the utrophin ABD may bind F-actin in a closed 

conformation. The formation of the disulphide prevents the opening of the domain 

upon association with F-actin and hence the interaction must occur in a closed 

conformation. The 1:1 stoichiometry of the interaction is identical to previously 

detennined ratios for the wild type protein (Moores and Kendrick-Jones, 2000). The
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binding affinities of the mutant in the reduced (Kd = 74.8 ± 19.2 |xM)

and oxidised (Kd = 123.2 ± 14.1 jxM) forms are not too dissimilar to the documented 

wild type protein affinity (Kd ~ 20 pM) (Moores and Kendrick-Jones, 2000; Winder 

et al., 1995). These binding affinities indicate that the presence of the cysteine 

residues do not affect the binding interaction to any great extent when the protein is 

in the reduced form but also that the disulphide does not prevent association with F- 

actin. It is apparent that the presence of the disulphide does compromise the actin- 

binding reaction to some extent as the cross-linked ABD exhibits a slightly lower 

actin-binding affinity. The overall structure of the CH domains that form the ABD of 

many actin binding proteins are very similar, so it would seem feasible to assume a 

similar mode of interaction, although the large difference in sequence homology may 

allow some variation in the exact manner of interaction.

The ABD of a-actinin has been modelled to bind in both ‘open’ and ‘closed’ 

conformations (Liu et al., 2004; Tang et al., 2001; Taylor and Taylor, 1993) whilst 

the ABD of fimbrin has been found to associate with F-actin in a closed 

conformation (Hanein et al., 1998). The locations of the cysteine mutations in the 

utrophin ABD were selected based on their proximity to one another using the 

utrophin ABD crystal structure. The utrophin and fimbrin crystal structures can be 

overlaid to demonstrate the similarities between the CH domain interface exhibited 

by each protein; this led to the proposition that the utrophin ABD may adopt a closed 

fimbrin like conformation when in solution (Keep et a l,  1999a).

The ability to cross-link the utrophin ABD CH domains via use of a disulphide 

demonstrates that these residues are sufficiently close to allow formation of the bond. 

It was thought that labelling of the two cysteine residues of u x r T36c/s242c 

rhodamine and fluorescein would allow FRET to occur between this donor/acceptor 

pair. FRET can occur between rhodamine and fluorescein over a distance of 

approximately 56 angstroms; however, the efficiency of energy transfer could be 

significantly affected by the relative orientation of the two fluors with regard to one 

another (Bemey and Danuser, 2003; Ha et al., 1996) and the distance that separates 

them. FRET analysis of u x j t̂36c/s242c jj^^jcated that there was no energy transfer 

between the fluors. It is possible that the labelling of the cysteines was at fault given 

that double labelling with rhodamine and fluorescein could generate a number of
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different species within the population of labelled The proportion of

the two dyes was adjusted to try and ensure equal labelling of the protein; however, 

labelling may not be complete and the double labelled protein sample would contain 

a number of differently labelled species comprising protein singly and double 

labelled, at either the first or second cysteine mutation, but also species that are not 

completely labelled at one or the other of the cysteine residues, or not at a ll In any 

case the FRET experiment was not successful. The fact that a disulphide could be 

formed between the two cysteines of indicates that these resides are

sufficiently close, at least transiently, for the bond to form. However, it is possible 

that the fluors were not oriented correctly or were not close enough to allow a FRET 

signal to be generated.

The disulphide linkage formed between the CH domains of the plectin ABD 

was induced in almost 100 % of the protein sample (Garcia-Alvarez et a l, 2003). 

SDS PAGE analysis indicates that not all the oxidised %JT̂ (T36C/S242C forms

the disulphide. DSC analysis confirms this, demonstrating that the oxidised 

melting profile contains two peaks, one with a higher Tm similar to the 

disulphide linker plectin ABD and the other with a lower Tm at a value similar to the 

wild type protein that contains no cysteine residues. Referral to the utrophin ABD 

crystal structure also highlights another potential reason for a lack of complete 

oxidation of the sample (Keep et a l, 1999b). The inter-CH domain a-helix is 

believed to be flexible allowing the ABD to shift from a closed solution monomer 

structure to an open extended conformation upon F-actin binding (Keep et a l, 

1999b; Moores et a l,  2000). This hnker may not be as flexible as initially thought. 

Figure 5.1 demonstrates the proposed structure of the cross-linked utrophin ABD; in 

this configuration the helical linker would be required to bend back over upon itself 

quite significantly. It is apparent that this can occur as a disulphide can be formed; 

however, a degree of strain may be imparted upon the disulphide bond due to the un­

natural flexing of the linker that may result in the disulphide formation being less 

favourable. Garcia-Alvarez and colleagues used a program, SSBOND, when 

designing their double cysteine mutant (Garcia-Alvarez et a l, 2003); this program 

uses the crystal structure of the protein to choose the most optimal residues to mutate 

based on the crystal co-ordinates (Hazes and Dijkstra, 1988). In this instance the use
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of this program may have allowed a more favourable cysteine configuration to be 

devised but if the actual solution structure of utrophin is very different to that 

proposed by comparison to the fimbrin crystal then it is possible that design of the 

mutant in this way would still not allow favourable bond fonnation. Keep and 

colleagues proposed that a modest level of structural unwinding may allow formation 

of the utrophin ABD solution monomer whilst Moores and colleagues describe the 

interconnecting a-helix to have a hydrophobic surface (Keep et a l, 1999b; Moores el 

a l, 2000). These two studies give credence to the formation of a closed and compact 

solution monomer similar to the fimbrin crystal structure; however it has become 

evident that the CH domains of the utrophin ABD are not as closely associated when 

in solution as previously thought.

The DSC analyses of the utrophin ABD demonstrate that the domain does bind 

to F-actin in an open conformation, which agrees with previous data; however, the 

relatively small increase in the amplitude of the Tm upon actin binding is not 

indicative of a conformational change. The plectin ABD was determined to 

experience a conformational change upon association with F-actin rationalised by a 

two step mechanism of association (Garcia-Alvarez et al., 2003). The utrophin ABD 

does not exhibit a conformational change which suggests that the domain adopts an 

open conformation when in solution. It is likely that the species that exists in solution 

is not as ‘open’ as can be seen in the crystallographic dimer (Keep et a l, 1999b) but 

utrophin does not adopt a closed and compact conformation similar to the fimbrin 

crystal structure (Goldsmith et al., 1997). The inability to generate a RET signal and 

completely oxidise 100 % of the notion that the actual

utrophin solution monomer is not represented by a closed compact conformation. It 

is more likely that the utrophin ABD is dynamic in solution adopting a more ‘open’ 

configuration than previously thought. Interestingly, it was proposed by Keep et a l, 

that the molecular interface of the utrophin CH domains may be more dynamic than 

the similar interface observed in the fimbrin crystal based upon analysis of the 

gap/volume index (Keep et a l, 1999b). It has become clear that the utrophin ABD is 

indeed more dynamic when in solution.

Analyses of numerous ABDs have allowed the determination of a series of 

sites deemed to be responsible for the association of an ABD with F-actin (Bresnick
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et al., 1991; Bresnick et al., 1990; Corrado et al., 1994; Fabbrizio et al., 1993; 

Kuhlman et al., 1992; Levine et al., 1990; Levine et a l, 1992; Morris et a l, 1999). 

These actin-binding sites (ABS) are believed to be presented towards F-actin in order 

to facilitate binding. The generation of the disulphide bond within the utrophin ABD 

effectively prevents ABSl from interacting with F-actin. The first cysteine mutation 

is located within ABSl (Figure 5.18), which spans residues 34-43 (Moores et a l, 

2000); it is interesting that the domain can still associate and bind to F-actin when the 

disulphide bond is formed. Cross-linking the two CH domains effectively places 

ABSl at the CH domain interface and would prevent association with F-actin. The 

fimbrin ABD has been modelled to bind F-actin in a closed conformation (Hanein et 

a l, 1998); during interaction with F-actin the fimbrin ABD present all three ABSs 

towards actin. This manner of interaction would require a modest amount of CH 

domain movement from the CH domain interface visible in the crystal structure 

(Hanein et a l, 1998), The formation of the disulphide bond in the utrophin ABD 

would not allow this to occur but it is apparent that ABS 2 and 3 can still participate 

in the F-actin interaction.

The CH domains that form ABDs are not equal in their ability to bind F-actin 

(Gimona et a l, 2002; Way et a l, 1992; Winder et a l, 1995); when separated only 

CHI can bind to F-actin, whereas CH2 has no appreciable affinity. It is interesting 

that the removal of ABSl still allows association of the utrophin ABD with F-actin. 

The cross-linked plectin ABD (Garcia-Alvarez et a l, 2003) was also able to retain its 

ability to bind F-actin so it is possible that utrophin may interact with F-actin in a 

manner analogous to the proposed interaction of the plectin ABD. If this were to 

occur then the utrophin ABD would initially associate with F-actin with a closed 

conformation similar to the proposed binding of fimbrin where ABS2 and ABS3 and 

the inter-domain linker form the initial interaction surface (Garcia-Alvarez et al, 

2003; Hanein et a l, 1998). The second step of the binding interaction may then 

involve a structural change in the ABD potentially caused by actin allowing the final 

presentation of the actin binding surfaces towards the filament. However, it has been 

shown here that the utrophin ABD exhibits a more open conformation when in 

solution. It may therefore be more feasible to assume an initial association by CHI, 

as this domain possesses an inherent actin-binding affinity not exhibited by CH2
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(Gimona and Winder, 1998; Way et al., 1992; Winder et al., 1995), which then 

allows the correct location of CH2 upon the actin filament to achieve the full actin- 

binding capability of the overall ABD.

Figure 5.18: Location of the three actin-binding sites within the utrophin ABD 
when the domain is in an open or closed configuration. The three ABS of the 
utrophin ABD have been highlighted to show their relative positions when the 
molecule is in the open and closed conformation. The location of the two cysteine 
residues that were inserted into the ABD to generate the UTRT36C/S242C mutant are
indicated in yellow. ABSl, 2 and 3 are highlighted based on information taken from 
Moores et al. (2000) and are represented in red, green and blue respectively.

Overall, the work presented here demonstrates that the utrophin ABD can 

adopt two conformations, closed and open. Previous studies have led to the 

assumption that the utrophin ABD adopted a closed and compact configuration in 

solution more analogous to the fimbrin crystal structure but this has been found not
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to be the case. It appears that the utrophin ABD is in fact more open in solution and 

does not appear to undergo a vast conformational change upon interaction with F- 

actin. These analyses have interesting implications regarding the interpretation of 

current models of the utrophin ABD and other related ABDs when interacting with 

F-actin.
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Final Discussion

Utrophin is the autosomal homologue of the cytoskeletal protein, dystrophin. 

Much research has focused upon the potential use of utrophin as a therapeutic 

replacement for dystrophin in the treatment of muscular dystrophy. However, a 

considerable body of work has focused upon the N-terminal ABD of this protein and 

specifically, the modelling of how this domain interacts with F-actin during binding. 

The exact manner in which the utrophin ABD interacts with F-actin has been the 

subject of much controversy over recent years. Currently, four models exist that 

depict binding of the domain to F-actin in either closed or compact conformations 

(Galkin et a l, 2003; Galkin et a l, 2002; Lehman et a l, 2004; Moores et a l, 2000; 

Sutherland-Smith et a l, 2003). The utrophin ABD crystal structure has provided an 

invaluable tool for the generation of these models; however, the dimeric state of the 

domain within the crystal structure does not correlate with the known behaviour of 

the domain in solution or when binding to F-actin; in these situations binding 

normally occurs in a 1:1 ratio and the protein is exclusively monomeric (Moores and 

Kendrick-Jones, 2000; Winder et a l, 1995). The interface generated within the 

utrophin ABD crystal between the CHI and CH2 domains of opposing crystal 

monomers was very similar to the interface exhibited within the fimbrin ABD crystal 

structure formed from a single molecule (Goldsmith et a l, 1997; Keep et a l, 1999b). 

It was postulated that the utrophin ABD adopted a closed state in solution (which 

would fit the known biochemistry) and could then associate with F-actin in an open 

conformation (Keep et a l, 1999b). Indeed, this was modelled to occur by Moores 

and colleagues (Moores et a l, 2000); however later research has suggested that 

binding may also occur in a closed conformation (Sutherland-Smith et a l, 2003). It 

was apparent that the utrophin ABD possesses a certain degree of structural 

flexibility attributable to the extended helical linkage that separated the two CH 

domains. The initial work presented herein aimed to investigate the effects that a 

varied solution pH would produce regarding the solution state and the effects upon 

actin-binding. Many proteins exhibit a pH-dependent conformational change and 

activity; however it was found that the utrophin ABD did not. Varying the solution
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pH only served to generate a slight pH-dependent shift in the sedimentation 

coefficient of the domain. This shift, however, did correlate with hydrodynamic 

models generated from the closed fimbrin crystal structure and the open structure of 

the utrophin ABD crystal so it would appear that altering the electrostatic 

environment of the utrophin ABD does slightly affect the structure of the protein but 

this is not to any great extent. Binding of the domain to F-actin at varied pH 

generated a marked difference in both stoichiometry and binding affinity. 

Unfortunately, the structure of F-actin is particularly sensitive to varied pH and 

hence, it was impossible to differentiate between effects caused by the varied pH 

upon the utrophin ABD and those resulting from an altered F-actin structure. It 

became apparent that the original hypothesis was flawed and that altered pH could 

not be used to induce a conformational change within the utrophin ABD.

The utrophin, and many other ABDs, are formed from a pair of CH domains 

separated by a linker (Stradal et al., 1998; Winder, 2003). This linker has been found 

to be of differing length and conformation; continued analysis of the utrophin ABD 

focused upon the flexibility of this region within the domain. Two utrophin ABD 

mutants were designed that would allow modelling of the linker regions of the F- 

actin cross-linking protein a-actinin and the bundling protein fimbrin. These two 

proteins possess linkers that are either shorter (a-actinin) or longer (fimbrin) than the 

equivalent portion of the utrophin ABD. It was proposed that the length of the inter- 

CH domain linker may be relevant to the manner in which the ABDs of these 

proteins interact with F-actin. The fimbrin ABD has been modelled to bind F-actin in 

a closed conformation (Hanein et al., 1998) whereas the a-actinin domain has been 

modelled to bind in both open and closed conformations (McGough et al., 1994; 

Tang et a l, 2001; Taylor and Taylor, 1993). It was assumed that shortening the inter­

helical linker would force the domain to adopt a more open conformation whereas 

increasing the linker length would result in greater flexibility and CH domain 

association. Unfortunately, neither of the two linker mutants were found to be folded 

correctly; the secondary and tertiary structures of the two mutants differed greatly 

from the wild type utrophin ABD and as a result no biochemistry was performed.

CH domains are found within a large number of proteins and generally the 

overall structure of these domains is well conserved even though at a sequence level
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they can be quite different (Korenbaum and Rivero, 2002). The differences in protein 

sequence potentially allow for unique interaction sites that facilitate binding with F- 

actin but it seems that the linker region that separates the CH domains is also of 

particular importance. The disruption of this region to produce the utrophin ABD 

linker mutants resulted in mis-folding of the mutant proteins. CH domains are 

particularly stable and it seems that the mutations have caused destabilisation of CH 

domain structure in both mutants even though soluble protein was produced. The 

linker region that separates the CH domains of the utrophin ABD is principally a- 

helical in nature however the equivalent stretch of sequence in the fimbrin domain 

exhibits no defined structure. This introduction of this stretch of sequence has 

obviously perturbed the structure of the CH domain helices that flank the mutation in 

the utrophin fimbrin linker mutant. Removal of a stretch of the utrophin ABD linker 

to generate the a-actinin linker mutant was hoped to be less disruptive to the overall 

structure of the ABD; however this mutation was also unsuccessful. Reference to the 

recently published crystal structure of the a-actinin ABD suggests that the inter-CH 

domain linker is formed principally from helix although there is a stretch of sequence 

predicted to form turn (Franzot et al., 2005). In the case of the utrophin ABD, it 

appears that the helical nature of the utrophin ABD linker region is of particular 

importance to the overall structure of the domain. The a-actinin linker mutant was 

expressed as a soluble protein whereas the fimbrin linker mutant required 

solubilisation and recovery from urea. It may be possible to express both of these 

mutants and generate soluble protein if expression was performed at a lower 

temperature or a strain of bacteria was used that would assist with protein folding. In 

any case, it is interesting that there is such a contrast in the structure of the linker 

domains between ABD-containing proteins given that utrophin and dystrophin 

linkers are almost exclusively helical in nature (Keep et a l, 1999b; Norwood et a l, 

2000); a-actinin and plectin contain some helix but a large amount of turn (Franzot et 

a l, 2005; Garcia-Alvarez et a l, 2003) and fimbrin has no defined structure 

(Goldsmith et a l, 1997). It should be noted, however, that the crystallisation of these 

protein domains may result in a linker structure that is not representative of the 

native protein in solution. It is quite possible that the association of the CH domains
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to generate the compact crystal structures of plectin, a-actinin and fimbrin may result 

in a certain degree of helical disruption and unwinding of the linker region.

If future studies of the importance of linker domain structure and function are 

undertaken it may be more useful to manipulate the linker sequence as little as 

possible to minimise potential disruption to the surrounding CH domains. For 

instance, duplication of a portion of the utrophin linker sequence that is a-helical in 

nature would serve to lengthen the linker without the introduction of foreign 

sequence and this may be less disruptive. It is odd that removal of sequence to 

generate the a-actinin linker mutant was problematic, especially as the mutant was 

designed to remove almost two complete helical turns, but it is likely that the stretch 

of sequence that flanked the removed portion was not compatible once joined. If this 

were the case then a larger region of the linker may need to be mutated to ensure that 

the helical nature of the linker is maintained and disruption to the structure of the 

flanking CH domains does not occur. In any case, it is apparent that the design of the 

linker mutants would have benefited from a more stringent experimental design 

focussing upon the maintenance of the secondary structure of the linker rather than 

the simple insertion or removal of sequence to lengthen or shorten the linker 

respectively.

It was apparent that the confonnation of the utrophin ABD could not be easily 

investigated by simply altering solution pH or by mutating the linker region. 

However, it would be possible to prevent the proposed opening of the molecule upon 

F-actin binding by introducing a disulphide bond into the domain. The presence of a 

disulphide bond effectively forces the utrophin ABD to remain in a closed 

conformation when in solution and when associating with F-actin. The location of 

the cysteine residues that would form the disulphide were chosen based upon two 

residues that opposed one another in the CH domain interface of tlie utrophin ABD 

crystal dimer. This interface was very similar to the interface generated within the 

fimbrin crystal dimer and this structure has been used to model the association of the 

utrophin ABD with F-actin in the closed conformation (Lehman et a l, 2004; 

Sutherland-Smith et a l, 2003). The mutant protein was expressed well and was 

soluble. The initial characterisation confirmed the presence of the cysteines within 

the mutant protein and that the presence of these residues did not cause any
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oligomerisation in solution. Following these analyses the disulphide bond was 

successfully induced to form via oxidation but it was clear that not all of the protein 

sample could be induced to form the disulphide. A small portion of the sample 

remained in the non-cross-linked state when the oxidants were removed potentially 

suggesting that the disulphide was under strain. This was interesting as it implied that 

the CH domain interface generated in the crystal was not the interface adopted when 

in solution and given the extreme conditions employed during crystal formation this 

was not surprising. It was possible, however, that the position of the disulphide could 

be altered to give a more favourable alignment of the two cysteine residues. A 

similar disulphide was engineered into the plectin ABD using a program called 

SSBOND (Garcia-Alvarez et al., 2003). If this program were used to predict the 

residues to mutate it may be possible to generate a disulphide that would form more 

favourably. However, this program bases its predictions upon the crystal structure of 

the protein in question so it may not improve upon the locations of the cysteines that 

are chosen manually. The formation of the disulphide within the plectin ABD 

resulted in complete oxidation of the protein indicating that the cysteine residues 

were favourably aligned and/or that the plectin ABD crystal structure was very 

similar to the structure of the protein in solution (Garcia-Alvarez et al., 2003). It may 

be possible that the plectin inter-CH domain linker allows much more freedom to the 

positioning of the CH domains than the utrophin ABD linker. The fact that tire 

utrophin ABD linker is mostly helical in nature may limit the free rotation of the CH 

domains with regard to one another and this may be relevant to the mode of binding 

with F-actin.

The presence of cysteines within the utrophin ABD also allowed the 

fluorescent labelling of the mutant ABD. It was hoped that the conjugation of fluors 

to the cysteine residues could be used to indicate the conformation of the domain 

when in solution via use of FRET. Following the successful labelling of the double 

cysteine mutant with fluorescein and rhodmaine FRET was attempted. No energy 

transfer was detected suggesting that the two fluors were not aligned and/or close 

enough to allow FRET. It was clear, in conjunction with a failure to completely 

oxidise the protein sample, that the utrophin ABD solution state is not represented by 

the CH domain interface observed in the crystal structure.
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Initial analyses confirmed that a disulphide was formed within the utrophin 

ABD effectively locking the domain in a closed conformation. It was shown that the 

oxidised (locked closed) utrophin ABD retained an ability to bind F-actin with a 1:1 

stoichiometry and a binding affinity similar to the reduced (no disulphide) protein 

sample. The binding affinity of the double cysteine mutant in both oxidised and 

reduced forms was found to be less than that of the wild type protein with the 

oxidised mutant exhibiting an affinity that was lower than that of the reduced mutant. 

This demonstrates that it is not essential for the utrophin ABD to open upon binding 

and presumably, this manner of association could be described by the closed model 

of binding proposed by Sutherland-Smith and colleagues (Sutherland-Smith et a l, 

2003), The DSC analysis demonstrates that the utrophin ABD does interact with F- 

actin in the locked closed conformation but interestingly the data for the wild type 

protein suggests that binding occurs in an open manner with no obvious 

conformational change upon association. The tryptophan fluorescence data also 

suggests that the oxidised double cysteine mutant is associating with F-actin in a 

different manner to the wild type protein but the question remains as to how this 

relates to the known models of the utrophin ABD binding to F-actin. The fact that the 

utrophin ABD binds in an open conformation is in agreement with the binding 

models of Moores and colleagues (Moores et a l, 2000) but the ability to bind in a 

locked closed conformation could be described by the Sutherland-Smith model 

(Sutherland-Smith et a l, 2003). The data presented here suggest that the utrophin 

ABD does not experience a large change in confoimation upon association with F- 

actin as previously thought. The DSC analysis suggests that the domain adopts a 

more open conformation in solution which is also supported by the inability to 

generate a FRET signal and to completely oxidise the double cysteine mutant. A 

recent review presented by Lehman and colleagues attempted to evaluate the 

different models of utrophin ABD association with F-actin (Lehman et a l, 2004). 

Lehman et a l, (2004) proposed that the different methodologies used to produce the 

molecular reconstructions of tlie utrophin ABD/F-actin interaction could potentially 

be where problems have arisen in the generation of a number of seemingly exclusive 

models. It was proposed that the relatively low affinity of the utrophin ABD towards 

F-actin required a high molar excess to be used to ensure saturation of actin filaments
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(Lehman et al., 2004). This large excess poses the danger of generating spurious 

binding and may contribute towards generating binding models where interaction 

with F-actin was partial and varied considerably. In any case, Lehman and colleagues 

re-analysed some of their earlier data using iterative helical real space refinement 

(IHRSR) and could find no differences when compared to earlier data generated 

using helical reconstruction (Lehman et al., 2004). They maintain that the utrophin 

ABD associates with F-actin in a closed and compact configuration similar to the 

models generated for the fimbrin and a-actinin ABDs (Hanein et al., 1998; Tang et 

al., 2001). Given the similarity of the overall structure of these domains it would not 

be surprising for actin-binding to occur in a similar manner. However, during the 

construction of the utrophin binding models it is often required to fit the ABD crystal 

structure into the density envelope attributed to bound protein. Models of the 

utrophin ABD binding actin in the closed state often employ a CH domain 

arrangement that is similar to the closed and compact fimbrin crystal structure 

(Lehman et al., 2004; Sutherland-Smith et al., 2003). The data presented here suggest 

that this is not the conformation adopted by the utrophin ABD in solution and that 

binding to F-actin causes little or no conformational change. Paradoxically, DSC 

analysis suggests that binding to F-actin can occur in both an open and closed 

manner so it would seem that binding to F-actin by the utrophin ABD can occur in 

both conformations. Binding to F-actin in the locked closed conformation effectively 

removed ABSl from participating with the interaction when it is known that, 

individually, only CHI possesses actin-binding capabilities whereas CH2 does not 

(Gimona and Mital, 1998; Way et al., 1992; Winder et al., 1995). Analyses of the 

plectin ABD associating with F-actin suggest that initial association occurs via CHI 

followed by a conformational change within the domain that allows a relative 

relocation of CH2 to attain the full binding potential (Garcia-Alvarez et al., 2003). It 

is possible that this may also occur for the utrophin ABD.

This study has presented data that have interesting implications regarding the 

interpretation of the current models of utrophin ABD association with F-actin. 

However, a more rigorous analysis of utrophin ABD cysteine mutants would yield 

data of further use towards the investigation of the binding interaction. This work has 

principally focused upon a double cysteine mutant of the utrophin ABD. During the
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production of this mutant a single cysteine mutant was generated within CHI but it 

would also be useful to produce the second CH domain cysteine mutation within 

CH2. Characterising the actin-binding properties of these mutants would be of use 

towards a complete determination of the effects that the cysteine mutations have 

upon the binding interaction. It would also be beneficial to subject all of the cysteine 

mutants to CD analysis to make sure that no gross structural alterations have 

occurred as a result of the mutations. Any structural perturbation may affect the 

manner in which these mutants associate with F-actin as already determined via the 

linker mutants. It would be of particular importance to try and visualise the binding 

of the locked closed utrophin ABD with F-actin using either helical reconstruction or 

IHRSR. CH domains have been found to be particularly stable protein folds, it would 

be useful to investigate the effects upon protein stability that the presence of a 

disulphide generates. It is likely that the disulphide bond would increase the 

resistance to proteolysis and may prove useful in supporting the DSC data. All of 

these experiments would yield information that, combined with the current models of 

utrophin ABD association, would be particularly useful when evaluating the current 

modes of association. Also, analytical ultracentrifugation may be of use to identify 

hydrodynamic differences between the locked closed form of the utrophin ABD and 

the wild type protein to help determine if there is a detectable difference in solution 

conformation which may complement the DSC work. It would also be of use to 

further map the interaction of the utrophin ABD with F-actin. The double or single 

cysteine mutants could be fluorescently labelled and FRET could be attempted with 

phalloidin labelled F-actin to try and gauge specific distances between the labels of 

both molecules. All of these studies would be useful in contributing to the overall 

understanding of how the utrophin ABD interacts with F-actin.

It would seem that utrophin association with F-actin can be quite dynamic and 

ambiguous when only the ABD is considered. Analyses of the isolated utrophin ABD 

have been preferred given the large size of the whole protein. It is known that 

utrophin does not associate solely with F-actin via its N-terminal ABD but also via a 

number of spectrin repeats immediately following the domain (Rybakova and 

Ervasti, 2005; Rybakova et al., 2002). The utrophin ABD and the first spectrin repeat 

have been modelled to bind F-actin with a 1:1 stoichiometry and affinities similar to
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the isolated domain (Rybakova and Ervasti, 2005; Sutherland-Smith et ai., 2003). 

More recent work using utrophin ABD constructs and up to ten spectrin repeats has 

shown that binding affinities and stoichiometries identical to the full length protein 

can be attained (Rybakova and Ervasti, 2005). It is clear that modelling the isolated 

utrophin ABD may result in ambiguous data given that this particular domain 

requires the presence of the neighbouring spectrin repeats to achieve an interaction 

with F-actin more akin to the complete protein. Given the importance of the spectrin 

repeats that follow the utrophin ABD to the interaction with F-actin, modelling the 

association of plectin and a-actinin ABDs should also be approached carefully until 

an understanding of the contribution that the domains that follow the ABDs of these 

proteins is better understood. In the case of a-actinin, the presence of adjoining 

spectrin repeats would be particularly important, not only for the location of the 

ABD and the overall binding reaction, but also to the potential regulation of the 

interaction with F-actin,

The work presented here has helped to further develop the understanding of 

how the utrophin ABD interacts with F-actin but many more questions have been 

raised. It is apparent, though, that continued work is required to try and determine 

how the utrophin ABD and those related to it interact with and bind to F-actin.
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Appendix 1: pSJWl plasmid

pB R 322 >
é10 p rom oter

GGCAGGATCT CGATCCCGCG AAATTAATAC GACTCACTAT AGGGAGACCA CAACGGTTTC
10 20 30 4 0 50 60

J C b g J L SD N d e l S a i l
CCTCTAQAftA TAATTTTQTT TAACTTTAAG AAGOAGAIIAT ACATATGGGA TCGTCGACGA

70 80 90 10 0 11 0 1 20

N c o  1 Hind III S tu  1 X baf E c o  RI
TCC&TGQTAA GCTTASGCCT CTAGTCTAGA CTAGAATTCC GATCCGGCTG CTAACAAAGC

13 0 1 4 0 1 5 0 16 0 1 70 18 0

CCGAAAGGAA GCTCSAGTTGG CTGCTCCCAC CGCTGAGCAA TAACTAGCAT AACCCXZTTGG
19 0 2 0 0 2 1 0 2 2 0 2 30 2 4 0

Term inator
GGCCTCTAAA CGQGWCTTGA QGGGTTTTTT GCTCAAAQG& GGAACTATAT CCGATAATTC

25 0 2 6 0 2 7 0 26 0 290 30 0

T4»

> PBR322

T7 insert

Figure A: T7 insert region pf pSJW l. The utrophin ABD construct (UTR261) was 
inserted into the pSJWl vector (Winder and Kendrick-Jones, 1995) between the Nde I 
and Sal I restriction sites. The pSJWl vector is based upon the pET expression vector 
pMW172 which was modified by the addition of a Sal I restriction site in place of an 
existing Bam HI site. These vectors are under the control of the T7 promoter and are 
particulary useful for the generation of high levels of soluble protein. An initial 
aliquot of pSJWl and UTR261 construct was supplied by Professor S. Winder.

168



Appendix 2: Expression and purification o f wild type utrophin ABD

1 2 3 4 5

Utr ABD

Appendix B: Expression, solubility and purification of wild type utrophin ABD.
Lanes 1 and 2 represent the protein present in a pre and post induction sample of 1 ml 
of bacterial lysate. Lanes 4 and 5 indicate soluble and insoluble protein fractions and 
lane 5 represents a sample of gel purified utrophin ABD.

0 I 2 5 0

8 3 -  

6 2 -  •

4 7  5 _  I Pooled fractions

1 ^ ^ \
3 2 .5 -  :

utr ABD
2 5 -

Appendix C: Sepharose'*'’'* DEAE elution profile of utrophin ABD. Bacterial 
lysate containing soluble utrophin ABD (lane 1) was loaded onto DEAE sepharose 
equilibrated with TED buffer pH 8.0. Utrophin ABD was eluted using a 0-0.5 M 
NaCl gradient (lanes 2-16). The most homogenous fractions were chosen to be 
concentrated for gel filtration.
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Appendix 2: Expression and purification o f wild type utrophin ABD
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Appendix D; Gel purification of wild type utrophin ABD. Elution of utrophin 
ABD from a Sephacryl™ S200 gel filtration column. Homogenous fractions were 
selected and concentrated ready for experimental use. A sample of concentrated 
DEAE eluted utrophin ABD is shown on the far left of the figure for comparison with 
the gel purified fractions.
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Appendix 3: Superose 12 calibration curves at pH  6, 8 and 10
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Figure E: Calibration of the Superose gel nitration column at pH 6, 8 and 10.
Calibration cures were generated for the Superose™ 12 HR column at pH 6, 8 and 10 
to allow accurate determination of utrophin ABD MW. The dashed lines mark the 
value of Kav calculated for utrophin ABD at each pH and the log MW to which this 
corresponds
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Appendix 4: Sedimentation equilibrium interference data

20k Interference data fitted with a model for a single ideal species
approximate pH6 pH8 PHIO

cone (au) Mw,app (kDa) (+/-) Mw.app (kDa) (+/-) Mw,npp (kDa) (+/-)
0.10 174.9 14.2 52.2 7.8
0,15 13.7 1.6 128.8 10.2 19,9 2,3
0.20 21.0 2.0 103.6 8.7 25.1 2.2
0.25 21.2 1.8 71.2 11.0 200.6 17.2
0.30 53.8 3.9 66.0 8.5 41,3 2.9
0.35 48.9 2,9 131.5 15.1 232.7 17.6
0.40 53.6 2.7 64.9 7.0 131.5 11.9
0.45 94.7 6.6 51.8 4.8 73.0 4.6
0.50 53.3 3.2 53.6 4.2 72.8 5.8

25k Interference data fitted with a model for a single ideal species
approximate pH6 pH8 pHlO

cone (au) M\v,app (kDa) (+/-) Mw,app (kDa) (+/-) Mw,app (kDa) (+/-)
0,10 87.6 6.7 43.9 5.1
0.15 15.3 1.4 89.8 6.1 45,1 5.3
0.20 35.1 4.5 60.0 4.1 165.4 19,6

____—   ̂

035

29,3 ....

46.5

___ 2J___

"'Te
52.8___

—

3.2

ZZZ&EZZ
...%5

__ 120,0 __ 14.6

ÎÔÔ
0.40 46.8 2.2 38.9 1.9 88,2 7.8
0,45 38.5 1.5 46.3 3,2 52.8 4.3
0.50 43.9 0.4 41.0 2.0 517 3.9

;

30k Interference data fitted with a model for a single ideal species
a p p r o x i m a t e p H 6 p H 8 p H l O

c o n e  ( a u ) ^ w . a p p  ( k D a ^ ( + / - ) ^ w . a p p  ( k D U ; ( + / - ) ^ w . a p p  ( k D a ] ( + / - )

0 . 1 0 4 0 . 5 3 . 7 7 4 . 5 4 . 3 5 3 . 5 2 . 5

0 . 1 5 3 5 . 8 3 . 6 5 9 . 5 2 . 5 5 5 . 9 3 . 2

0 . 2 0 4 1 . 4 1 . 9 2 4 . 5 1 . 5 7 3 8 . 2

0 . 2 5 3 7 . 6 2 . 4 5 1 . 8 4 . 9 9 6 . 8 1 1 . 6

0 . 3 0 4 0 . 9 0 . 8 4 4 . 9 2 . 8

0 . 3 5 3 7 . 9 1 . 1 6 0 . 2 5 . 9 7 5 . 9 5 . 7

0 . 4 0 3 6 . 5 2 . 7 3 6 . 7 1 . 2 5 5 . 8 4 . 6

0 , 4 5 3 6 . 3 0 . 8 3 7 . 0 1 . 0 4 1 . 8 2 . 1

0 . 5 0 3 6 . 8 0 . 9 3 8 . 8 1 . 2 4 0 . 0 1 . 3

Figure F: Utrophin ABD interference data at 20000, 25000 and 30000 rpm, 
varying pH. Utrophin ABD was subjected to sedimentation equilibrium analysis at 
20000, 25000 and 30000 rpm. A serial dilution of the utrophin stocks at pH 6, 8 and 
10 were prepared to give nine samples ranging in concentration between 0.1 and 0.5 
au at 280 nm. 100 p.1 of each concentration was prepared using the buffer dialysate at 
each pH consisting of 100 mM NaCl, 1 mM EDTA and either 20 mM Tris at pH 8 or 
10 or MES at pH 6. 20 pi of each sample concentration was loaded into two 8 channel 
centrepieces along with a 20 pi reference buffer sample. An initial scan was recorded 
at 3000 rpm to check for cell leakage before running the samples at 18000, 25000 and 
30000 rpm at 4 °C. Scans of sample distribution were recorded at each of these speeds 
and were used to calculate whole-cell apparent weight molecular masses for the 
utrophin ABD at each pH. The biophysical data required to determine the apparent 
molecular weight (buffer density, viscosity and v-bar) were calculated using the 
program sednterp (Laue, 1992). Blank cells refer to data that had not sufficiently 
distributed to be analysed.
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Appendix 5: Sedimentation equilibrium interference data (repeated)

2SK Interference data fitted with model for single ideal species
approximate pH6 pH8 pHlO

coivc (ail) ■̂ 'V.app (kDa) (+/-) Mw.app(kDa) (+A) (A.am(kDa) (+/-)
0.10 65.2 11.7 226.8 30.4 192.0 45.6
0.15 47.4 5.2 12.5 1.4 59.3 11.1
0.20 27.8 2.6 20.7 2.3 231.8 7.3
0.25 36.4 3.2 56.8 7.3 190.8 _ 6.2
0.30 32,3 2,2 61,5 6.3 215.6 9.7
0.35 34.7 1.9 50.9 9.9 137.9 9,9
0.40 24.2 1.4 26.0 2.3 45,0 2.9
0.45 23,8 1.0 36.2 1.3 28,2 1.3
0.50 32.1 1.5 37.0 2.1 31.8 1.4

approximate pH6 pH8 pHlO
coiic (an) IA.am(kDa) (+A) Hv.app(kDa) (+/-) (kDa) (+/-)

0.10 61.4 9.7 100.0 17.3 175.7 24.0
0.15 31,6 3.3 29.4 3,0 33.5 3.8
0.20 33.8 2,6 25,5 2.0 202.4 7.2
0.25 34.4 2.7 39.8 3.7 187.3 5.8
0.30 31.9 1.6 40.6 2,6 163,8 20.8
0.35 30.2 1.0 33.7 2,8 119.0 3,1
0.40 32.2 1,2 26.7 1.3 38.5 1-0
0.45 27.9 1,0 32.6 0.8 32.6 0-8
0.50 31.7 0.7 31.9 0.7 31.8 1-4

Figure G: Repeated interference data of the utrophin ABD at 25000 and 30000 
rpm, varying pH. Interference data of utrophin ABD at pH 6, 8 and 10 fitted with a 
model for a single ideal species. The experimental perameters were identical to those 
found in Figure F.
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Appendix 6: Sedimentation velocity data

sample rmsd s20 s20,w D c(f) c(au} c(mg/ml) M (kDa)
pH 6.0 0.1249 2.47 2.55 7.8 45.1 13.7 8.6 29.9

0.0925 2.45 2.53 7.9 28.6 8.7 5.5 29.3
0.0668 2.41 2.49 7.9 15.8 4.8 3.0 28.8

cell leakage
0.0080 2.41 2.49 8.0 2.9 0.9 0.6 28.6

pH 8.0 0.0941 2.40 2.48 7.1 40.8 12.4 7.8 32.0
0.0411 2.42 2.50 7.5 25.3 7.7 4.8 30.6

cell leakage
0.0348 2.38 2.45 7.8 9.6 2.9 1.8 29.0
0.0153 2.41 2.49 7.5 2.6 0.8 0.5 30.3

pH 10.0 0.1807 2.39 2.47 6.9 39.9 12.1 7.6 32.8
0.1744 2.31 2.38 7.1 24.9 7.5 4.8 30.7
0.0366 2.43 2.51 7.8 14.9 4.5 2.9 29.5
0.0265 2.43 2.51 7.6 9.2 2.8 1.8 30.2
0.0177 2.38 2.45 7.4 2.5 0.8 0.5 30.3

Figure H: Summary of utrophin A B D  sedimentation velocity data at varying pH.
The utrophin ABD was subjected to sedimentation velocity analysis at pH 6, 8 and 10. 
Protein stocks were diluted, with the respective buffers, to give a range of 
concentrations covering several orders of magnitude at each pH. 360 pi of each 
sample concentration was loaded into a two channel centrepiece along with 360 pi of 
buffer to serve as a reference. An initial scan was recorded at 3000 rpm to check for 
cell leakage. Once thermal equilibrium was attained (20 °C) the centrifuge was 
accelerated to 50000 rpm and 240 scans of sample distribution were recorded at 2 
minute intervals. Data from the sedimentation velocity runs was analysed using the 
program .vetÿir (Schuck, 1998).
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Appendix 7: Confirmation o f  fluor conjugation using fluorescence

700
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Appendix I: Confirmation of fluor conjugation using fluorescence. 30 pM
samples with either rhodamine or fluorescein were subjected to
fluorescence analysis to confirm the presence of the conjugated fluors. Rhodamine 
conjugated UTR excited at 555 nm and emission spectra collected
between 490-700 nm. Excitation spectra were also collected over the same range 
based on rhodamine emission at 580 nm. The rhodamine conjugated UTR̂ ^̂ ''̂  
was also subjected to emission and excitation scans at the excitation (494 nm) and 
emission (518 nm) wavelengths of fluorescein to determine if rhodamine was 
stimulated at these wavelengths. Fluorescein conjugated u t r T36c/s242c also 
subjected to emission and excitation scans at the wavelengths detailed above to 
confirm the presence of the fluor and if there was any stimulation by the rhodamine 
emission and excitation wavelengths. All scans were made at a slow scanning speed 
between wavelengths of 480 - 700 nm. Emission and excitation slit widths were both 
1.5 nm. Fluorescence is represented in arbitrary units (AU).
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Appendix 8: Actin emission and excitation scans
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Appendix J: Actin fluorescence when scanned at the emission and excitation 
wavelengths of fluorescein and rhodamine. Samples of F-actin (5 jiM) in TE pH 
7.0 and 1 x ABB were subjected to emission and excitation scans at 555 or 494 nm 
and 580 or 518 nm. All scans were made at a slow scanning speed between 
wavelengths of 490 - 600 nm. Emission and excitation slit widths were both 1.5 nm. 
Fluorescence is represented as arbitrary units (AU).
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