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Abstract 
Many living systems produce mineral materials via organic-inorganic interactions; through a 

process known as biomineralisation. The formation of all biomineral structures is under 

exquisite biological control, concerning crystal morphology, polymorph selection and crystal 

orientation. The common blue mussel Mytilus edulis produces a shell structure composed of 

heterogeneous calcium carbonate polymorphs: an outer layer of prismatic calcite and an 

inner layer of aragonite nacre. The extrapallial (EP) fluid, confined to the space between the 

organic mantle and inner shell, is considered to be a key participant during shell growth. The 

existence of both organic components i.e. proteins, glycoproteins and inorganic ions in the 

extrapallial fluid supports such a hypothesis of functional involvement.  

This study screens the influence of extrapallial (EP) proteins from M. edulis on in vitro 

crystallisation in the laminar flow microfluidic system. In laminar flow microfluidic systems, 

mass exchange between adjacent streams is driven by diffusion. This principle provides 

opportunities to simultaneously screen protein influences in a range of scenarios by mixing 

with different reagents. In addition, the combination of computational modelling and real-time 

crystallisation demonstrates the major influence of the microenvironment on crystal formation 

along microfluidic channels. The simulation of protein and ion concentration profiles, as well 

as the supersaturation ratio, contributes to our understanding of protein influence on crystal 

morphology and polymorph control.  

In order to identify the influence of EP proteins on crystallisation, the total wild-type 

extrapallial (TWEP) proteins were initially used to produce oval calcite crystals. For further 

investigation, individual purified proteins were used to modify crystallisation, including the 

wild-type proteins directly extracted from living mussels and the expressed proteins provided 

from an E.coli expression system. Novel lemon-shaped structures precipitated in the 

microfluidic channel when the main wild-type 28 kDa extrapallial protein was mixed with 

CaCl2 solution only. Similar structures were also generated in microfluidic channel with the 

expressed proteins in either CaCl2 solution only or both reagent solutions. Multilayer calcite 

structures were induced in the microfluidic channel in the presence of biomineral proteins, 

mixed with Na2CO3 solution only. All of these results suggest that the extrapallial proteins 

influence CaCO3 crystallisation.  

Microcontact printing (µCP) has been used to create two-dimensional protein and polymer 

patterns for in vitro crystallisation. Polyacrylic acid (PAA) has been used as polymer patterns 
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to control CaCO3 crystal formation, including precipitation and morphology. Calcite crystals, 

composed of nano-blocks, are the only structures precipitated in the patterned regions while 

PAA and calcium ions are both printed on the substrates. Although encouraging, further work 

is required to fully establish the protocol for protein patterning as a means of screening 

biomineral protein function. 
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1 
1.1 Biomineralisation 

For 550 million years, living systems have evolved to have exquisite control in mineral 

formation, enabling precise morphology and crystal orientation (Addadi and Weiner, 1992). 

There are more than 60 minerals produced in the biosphere, including amorphous minerals 

and inorganic crystals (Lowenstam, 1981, Lowenstam and Weiner, 1989). Early on in 

evolution, a major schism occurred with calcium phosphate forming the internal skeleton of 

vertebrates and calcium carbonate utilized for the external protective structures in 

invertebrates (Lowenstam and Weiner, 1989, Cusack and Freer, 2008). This phenomenon 

was induced by different biochemical and cellular processes engaged in the processes of 

vertebrates utilizing phosphate and invertebrates utilizing carbonate (Costa and Maquis, 

1998, Weiner and Wagner, 1998, Mann, 2001, Weiner and Dove, 2003). In addition, other 

minerals such as magnetite and silica have been deposited by bacteria (Konhauser, 1998, 

Theil et al., 2006). The phenomenon of these mineral structures forming with organic 

materials is biomineralisation, the synthetic process of hierarchical mineral structures 

produced by living organisms in ambient conditions (Mann, 2001, Cusack and Freer, 2008).  

Biomineral materials provide a variety of functions in living organisms. In invertebrates, the 

biomineral structures support and protect the inner bodies. For example, shells provide 

support and protection for the soft tissues of bivalves (Addadi and Weiner, 1992), oysters 

(MacDonald et al., 2010) and brachiopods (Pérez-Huerta et al., 2009). Avian eggshells, a 

composite structure of calcite in associated with organic components, provide protection for 

the developing embryos (Cusack et al., 2003, Dalbeck and Cusack, 2006). In addition, 

internal support from biominerals is found in vertebrates (Cusack et al., 2003, Nys et al., 

2004). In vertebrates, bones have two major functions: the mechanical function of supporting 

various organs and metabolic function of serving as a conserver of calcium and phosphate for 

metabolism (Weiner and Wagner, 1998, Weiner et al., 1999, Nudelman et al., 2010).  

There are other functions directly or indirectly related to biomineral materials. An example is 
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the membrane-enclosed magnetite crystal used uniquely by magnetotactic bacteria to 

navigate using the Earth’s magnetic field (Scheffel et al., 2006). Another example is the 

calcite micro lenses of brittlestars, which acts as the optical elements regulating the light 

inside to the tissue (Aizenberg et al., 2001). In fish, the otolith is a calcified structure 

composed mainly of calcium carbonate, which is formed in the inner ear and participates in 

balance functions. (Murayama et al., 2002). In coccolithophorids, calcium carbonate plates 

(coccoliths) surround single algae cells and may provide protection for the inner cell from 

harmful UV light (Gauldie, 1996).  

Biomineral formation can be considered in two classes (Lowenstam and Weiner, 1989, 

Weiner and Dove, 2003). Biominerals can be produced from the biologically-induced 

mineralisation, which has little biological control on precipitated minerals (Lowenstam and 

Weiner, 1989). In this process, minerals are induced by the environments employed by the 

biological metabolic process, such as pH and the increasing pressure of carbon dioxide 

(pCO2) (Dove et al., 2003, Frankel and Bazylinski, 2003). Biogenic iron and manganese are 

common products from biologically induced mineralisation process. Fe- and Mn-oxidising 

bacteria are responsible for the precipitation of oxides of both metal, with oxidised Fe(Ⅲ) and 

Mn(Ⅳ) are soluble and active mineralisation by organism at low pH (Frankel and Bazylinski, 

2003). 

However, thoroughly precise biological control is required to produce specific biomineral 

structures. This is biologically-controlled mineralisation (Lowenstam and Weiner, 1989). One 

distinctive aspect of biologically-controlled mineralisation is the spatial determination, which 

provides the crystal growing sites (Wilbur and Saleuddin, 1983, Dove et al., 2003, Frankel 

and Bazylinski, 2003). Spatial control is provided by the pre-existence of an organic matrix 

template. A good example is the nacre formation in molluscan shells, which is under control 

of the existing organic components (Nudelman et al., 2006). The mineralisation is not 

progressed until the ion concentrations are saturated in aqueous conditions. The possible 

mechanism is that cells control the ion concentrations, thereafter to modify the crystal 

nucleation and growth. Moreover, the crystal morphological modification is associated with 

the acidic proteins existing in the organic matrix (Lowenstam and Weiner, 1989, Nudelman et 

al., 2006). Thus, the biologically-controlled mineralisation demonstrates the vital correlation 

between the organic components and specific inorganic structures. As a consequence, the 

biomineral materials consist of both organic and inorganic components. 
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1.2 Mollusc shell structure 

Mollusc shells are composed of calcium carbonate crystals (95%-99%) and organic 

component (less than 5%) (Weiner and Traub, 1984, Gotliv et al., 2003, Hou and Feng, 

2006). Mollusc shells have different microstructures comprising one or two calcium carbonate 

polymorphs, calcite and aragonite (Weiss et al., 2002, Gotliv et al., 2003). Some bivalves 

such as oyster gastropod Haliotis laevigata and mollusc Mytilus edulis produce bimineralic 

shells with calcite prisms and aragonite nacre (England et al., 2007, De Paula and Silveira, 

2009). Some bivalves produce only aragonite as both prism and nacre in a single shell, such 

as the freshwater mussels Anodonta anatina and Anodonta cygnea (Freer et al., 2009). On 

the other hand, the shell of the horse mussel, Modiolus modiolus, is almost entirely 

constructed of aragonite. However, here two forms of aragonite are present: prisms and 

nacre (Cusack et al., 2008). 

Calcite (Figure 1.1A) is the most thermodynamically stable calcium carbonate polymorph in 

nature. Calcite crystals exist in a variety of morphologies, including rhombohedral, tabular, 

fibrous and prismatic (Feng et al., 2000, Hou and Feng, 2006, Li and Estroff, 2007b, Feng et 

al., 2009). Compared to calcite, aragonite is a less thermodynamically stable polymorph. The 

aragonite crystal lattice has a different crystal shape, an orthorhombic system with acicular 

structure, which creates a stronger crack resistant structure (Figure 1.1B) (De Villiers J. P. R., 

1971). Aragonite forms more readily at elevated temperatures (>60 °C) in inorganic 

conditions without any additive (Dandeu et al., 2006). However, aragonite forms in the 

mollusc shell as nacre, mother of pearl, under ambient conditions as a result of biological 

control (Falini et al., 1996, Hou and Feng, 2006, Nudelman et al., 2006). 
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Figure 1.1. Schematic crystal structures of calcite and aragonite. 

(A) Calcite and (B) Aragonite. Both are from Mineralogy Database. 

 

The common blue marine mussel Mytilus edulis (Figure 1.2A) produces a bimineralic shell 

with an outer layer of prismatic calcite and an inner layer of aragonite nacre (Figure 1.2B) 

(Cusack et al., 2009). In natural conditions, a tough organic layer, the periostracum, covers 

the outside surface of the shell. The periostracum serves as a substrate on which 

mineralisation is initiated (Lowenstam and Weiner, 1989). The shell of M. edulis is ~98% by 

weight calcium carbonate, and the residual comprises organic material (Lowenstam and 

Weiner, 1989, Cusack and Freer, 2008).  
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Figure 1.2. Shell structure of mussel M. edulis. 

(A) The common blue mussel M. edulis has an external shell cover by organic 
periostracum. (B) The mollusc shell of M. edulis is composed of two CaCO3 
polymorphs, calcite in the outer layers and aragonite in the inner layer (Cusack 
and Freer, 2008). (C) Schematic diagram of transverse section of the mantle 
edge of a bivalve (Behrens and Baeuerlein, 2007). 

 

1.2.1 Organic components 

Organic macromolecules are associated with the formation of most biomineral structures, and 

they play a critical function in the control of mineralisation (Addadi and Weiner, 1992, Marin 

and Luquet, 2004, Nudelman et al., 2006, Saavedra and Bachère, 2006, Cartwright and 

Checa, 2007). According to the procedures of demineralisation using weak acids such as 

acetic acid or with a calcium-chelating agent like ethylenediaminetetraacetic acid (EDTA), the 

macromolecules can be divided into two subgroups; soluble and insoluble fractions 

(Lowenstam and Weiner, 1989, Marin and Luquet, 2005). The demineralisation process using 

EDTA was established in the 1980s and applied in the analysis of shell organic matrix 

proteins involved in biomineralisation by dissolving shell powder in 10% EDTA disodium salt 

dehydrate solution (pH 8) to separate organic matrix from inorganic crystals (Wheeler et al., 

1987, Pereira-Mouriès et al., 2002).   

In biomineral structures, the insoluble macromolecules are normally cross-linked and 

hydrophobic, namely framework hydrophobic macromolecules (Dove et al., 2003). These 
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hydrophobic organic components provide the template for mineralisation and protection of 

existing inorganic structures from degradation in aqueous conditions (Lowenstam and 

Weiner, 1989). This structural support and functional protection is determined by an inter-

crystalline matrix (Weiner and Traub, 1984, Lowenstam and Weiner, 1989, Nudelman et al., 

2007). The existing organic matrix framework in mollusc shells is spatially related to control 

mineral nucleation. Amino acid analysis shows that the protein nacre matrix is composed of 

silk-fibroin like proteins (Weiner and Wagner, 1998, Weiner et al., 1999, Weiner and Dove, 

2003). The assembly of molluscan nacre induces the insoluble framework which is composed 

with chitin and hydrophobic proteins (Addadi and Weiner, 1992, Nudelman et al., 2006). 

With respect to the soluble organic components, many shell proteins have been identified rich 

in aspartic acid. In addition, some of these molecules have covalently bound polysaccharides, 

classing them as glycoproteins (Chen et al., 1997, Zhang et al., 2003, Sarashina and Endo, 

2006). These hydrophilic acidic proteins are proposed to fulfil several functions in 

biomineralisation, such as the control of crystal polymorph and morphology (Wilbur and 

Saleuddin, 1983, Weiss et al., 2002). This hypothesis has been confirmed by in vitro 

crystallisation experiments using shell matrix acidic proteins for crystal morphology and 

polymorph control (Falini et al., 1996, Belcher et al., 1996, Takeuchi et al., 2008, Feng et al., 

2009). Pif, an acidic matrix protein form pearl oyster Pinctada fucata binds to aragonite layers 

only during in vitro crystallisation (Suzuki et al., 2009). Moreover, the in vitro experiments 

have determined that the calcite morphological modification and step-specific multilayer 

structures can be induced by the specific nacre protein, AP8 (De Yoreo and Dove, 2004). 

Recently, there have been several reviews highlighting the diversity and function of many of 

the shell matrix proteins. Marin et al. (2008) classified 44 mollusc shell matrix proteins based 

on their isoelectric point. That approach divided the matrix proteins into three major groups 

according to their pI: the extremely acidic proteins, moderately acidic proteins and basic shell 

proteins. On a broader sense Marin and Luquet (2004) reviewed total 77 skeletal matrix 

proteins from a large range of invertebrates that had the shell matrix proteins of completed 

primary protein structures (Marin and Luquet, 2004). A complementary review focused on 

mollusc shell proteins located in the aragonite layer only, prismatic layer only or in both layers 

(Sarashina and Endo, 2006). 

Several proteins have been identified in the aragonite only. The largest mollusc nacre protein, 

Lustrin A (molecular weight, 116 kDa), was identified by screening the mantle cell cDNA from 

abalone Haliotis rufescens (Shen et al., 1997). The deduced amino acid sequence showed 

that it had a modular structure consisting of several conserved domains: ten highly conserved 
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Cys-rich domains interspersed by 8 Ser-rich domains. The N16 protein family was purified 

from the aragonite layer of EDTA-insoluble matrix fraction  from the pearl oyster P. fucata 

(Samata et al., 1999). The N16 mRNA was only expressed in the dorsal region of the oyster, 

which indicated that this protein family must be closely related to nacre formation (Samata et 

al., 1999). In vitro crystallisation experiments demonstrated that N16 can inhibit crystal 

formation in aqueous conditions but induced plate-like aragonite crystals when present in the 

insoluble organic matrix (Samata et al., 1999). Another nacreous protein, Perlucin, was 

identified from the nacre layer of the shell of the gastropod Haliotis laevigata after 

demineralisation using acetic acid. Perlucin is composed of 155 amino acid including a 

glycosylated asparagine (Mann et al., 2000). 

Apart from the matrix proteins found in the nacreous layer, several proteins, especially the 

unusually acidic matrix proteins have been found in the prismatic layer of molluscs (Zhang 

and Zhang, 2006). MSP-1 was the first acidic protein characterised with an isoelectric point at 

3.2. MSP-1 has a high ratio of acidic amino acid such as Ser (31%), Gly (25%), and Asp 

(20%), which is typical of acidic glycoproteins in mineralisation tissue (Sarashina and Endo, 

1998).  MSP-1 consists of a motif of two conserved Asp-rich domains interspersed by three 

Ser- and Gly-rich regions near the N-terminus, which is considered to be the calcium-binding 

site of this protein (Sarashina and Endo, 1998). Another extremely acidic protein, Aspein, was 

isolated from the prisms of P. fucata. This protein has an extreme isoelectric point at 1.45 and 

a very high proportion of Asp (60.4%) (Tsukamoto et al., 2004). In vitro crystallisation 

experiments showed that this protein induced calcite crystals even in a reagent solution 

containing Mg/Ca=5:1,which produces aragonite crystals without proteins (Takeuchi et al., 

2008). 

As well as the matrix proteins specifically found in either the aragonite layer or calcite layer, 

several proteins have been found distributed in non-specific regions of the whole shell (Zhang 

and Zhang, 2006). An example is the Gly-rich protein, MS17, which has been purified from 

the whole shell of P. fucata (Zhang et al., 2003). The cDNA sequence analysis indicates that 

this protein can be divided into three regions: an N-terminal hydrophilic region, a Gly-rich 

region considering as Ca2+-binding site and a C-terminal hydrophobic region containing a β-

sheet conformation (Zhang et al., 2003). Caspartin, also a calcium-binding protein, has been 

isolated from bivalve P. nobilis, and can be found in both the prismatic and nacreous layers 

(Marin et al., 2001). This protein is an acidic protein composed of 77% of acidic residues with 

an N-terminal signal region of 75 Asp (Marin et al., 2005). 

In addition to isolating and studying the influence of proteins that are involved in 



Chapter 1   General introduction 

-9- 

biomineralisation, there has been an increased interest in the role of polysaccharides in the 

process. Arias et al., (2008) reviewed this area and showed that three types of 

polysaccharides are mainly involved in calcium carbonate biomineralisation: hydroxylated 

polysaccharide, polycarboxylated polysaccharide and sulfated polysaccharide. An example of 

a hydroxlated polysaccharide is chitin, which is a linear polysaccharide of α- or β-(1-4)-2-

acetamido-2-deoxy-D-glucopyranose (Arias and Fern nde , 2008). Chitin is wide-spread in 

biomineral structures, with α-chitin in crustacean carapaces and β-chitin being important for 

mollusc nacre formation (Arias and Fernández, 2003, Nudelman et al., 2006, Ehrlich et al., 

2007). Chitin provides an insoluble two-dimensional template for crystal nucleation during 

nacre formation (Nudelman et al., 2006). Polycarboxylate polysaccharides have been found 

in coccoliths and can be divided into two subgroups: polyalduronic acid polymer and 

polymers of uronic, tartaric acid and glyoxylic acids (Arias and Fern nde , 2008). 

Polycarboxylated polysaccharides are assumed to modify calcium carbonate crystallisation 

via cooperating with the bound calcium ions to form salt links (Marsh et al., 1992). The 

sulfated polysaccharides provide the main sulfate group in biominerals (Lootens et al., 2003). 

Demineralisation studies of mollusc shells have shown that crystal nucleation sites initiate on 

an organic matrix containing sulfate, acidic proteins and polysaccharides (Wilbur and 

Saleuddin, 1983, Nudelman et al., 2006). 

1.2.2 Extrapallial fluid proteins 

In bivalves, the extrapallial (EP) fluid is formed in the cavity between the organic mantle and 

the external shell (Figure 1.2C). Chemical analysis of the extrapallial fluid shows that the 

inorganic components in extrapallial fluid are regulated by the mantle  (Crenshaw, 1972). The 

concentration of total cations is greater than that found in the environment (Crenshaw, 1972). 

The pH and calcium concentration are dynamically changing when the bivalve opens and 

closes. Compared to the mussel blood, the extrapallial fluid has a lower [K+] and higher 

[Ca2+], which implies that there is a provision of excess Ca2+ for the essential calcium-binding 

process of biomineralisation. All these findings illustrate that the ion concentrations in the 

extrapallial fluid are under the control of mantle cells. The calcium-binding capacity 

demonstrates the hypothetical roles of extrapallial fluid during shell formation (Crenshaw, 

1972). 

Macromolecules, including proteins, glycoproteins and peptides have been detected in 

molluscan extrapallial fluid (Misogianes and Chasteen, 1979, Wilbur and Bernhardt, 1984, 

Moura et al., 2000b, Cusack et al., 2008). Initially more than five proteins were  identified from 
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the extrapallial fluid of M. edulis using sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) (Misogianes and Chasteen, 1979). This has been followed by 

specific protein identification from extrapallial fluid. Hattan et al., (2001) firstly identified the 

most abundant protein in extrapallial fluid from M. edulis existing as a dimer with a 

monomeric molecular weight of ~28.3kDa. This 28 kDa EP protein is highly glycosylated with 

approximately 14% by weight carbohydrate. Ultracentrifugation and polyacrylamide gel 

electrophoresis showed the calcium-binding property of this protein. This protein-calcium-

binding phenomenon influences the protein secondary structures as evidenced by circular 

dichroism (CD) (Hattan et al., 2001). Further work focused on the protein primary structure of 

this 28 kDa main EP protein (Yin et al., 2005). In their work, this protein was characterized 

with 213 amino acids and a signal peptide of 23 amino acids. In his study, previous molecular 

weight of 28 kDa was confirmed by the amino acid composition before post-translational 

modification of 24.3 kDa and the acidic N-linked glycan (~4kDa) (Yin et al., 2005). Highly rich 

in His, Glu and Asp acidic residues make this a prime candidate in the study of 

biomineralisation. 

Extrapallial fluid from bivalves has been used previously for calcium carbonate in vitro 

crystallisation. Wilbur and Bernhardt (1984) initially identified the strong inhibition of in vitro 

crystallisation in the presence of extrapallial (EP) fluid from the oyster Crassostrea virginica 

and the clam Mercenaria mercenaria (Wilbur and Bernhardt, 1984). This inhibition was 

induced by the large number of negatively charged residues in the extrapallial proteins. An 

acidic 38 kDa extrapallial protein from pearl oyster, P. funcata, was identified to promote the 

formation of amorphous calcium carbonate (ACC) thereafter inhibit calcite growth during in 

vitro CaCO3 crystallisation (Ma et al., 2007). In addition, in vivo crystallisation experiments 

using inorganic abiotic substrates implanted between the mantle and shell, the extrapallial 

cavity, demonstrated the influence of extrapallial fluid on shell formation (Fritz et al., 1994, 

Zaremba et al., 1996). In their studies, inorganic substrates such as glass, mica and MoS2 

were inserted into the extrapallial cavity of red abalone Haliotis rufescens for crystal growth. 

X-ray diffraction and SEM analysis of the biofabricated flat pearls reveals the biomineral 

process: it was initiated by the deposition of an organic components including EP proteins on 

the implanted substrate, and then followed by the formation of calcite layer and finally the 

growth of nacreous aragonite (Zaremba et al., 1996). Their results demonstrated the roles of 

EP proteins to mediate crystal nucleation in vivo.   
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1.2.3 Inorganic components 

The comparison of inorganic components between the extrapallial fluid and sea water shows 

that there is control of ion concentration. Higher concentration of calcium present in the 

extrapallial fluid of M. edulis (11 mM) than in sea water (9.2 mM) (Crenshaw, 1972, Pietrzak 

et al., 1976). In addition, heavy metal ions such as Cd, Cu and Zn were detected in the 

extrapallial fluid and assumed to moderate the protein and glycosaminoglycan (GAG) 

composition in shells (Moura et al., 2000a).  

In the biomineral process, not only organic components orchestrate in vitro crystallisation. 

Inorganic components also exert a strong influence on mineral formation (Moura et al., 

2000a). Many inorganic components have been investigated in crystallisation control, 

including K+, Sr2+ and Cd2+ (Falini et al., 2009). Sr2+ has complex effects on CaCO3 

crystallisation, with accelerating crystal formation in low [Sr2+] and decreasing crystal growth 

in high [Sr2+] in crystallisation solutions (de Leeuw, 2002, Falini et al., 2009). Also, both 

positive and negative ions contribute to the crystal morphological and polymorph control 

during in vitro crystallisation (Wasylenki et al., 2005).  

The presence of Mg2+ has a significant impact on calcium carbonate crystallisation. In vitro 

experiments determined that Mg2+ inhibits calcium carbonate crystallisation by prolonging the 

crystal induction time (Wilbur and Bernhardt, 1984). This phenomenon has been further 

analysed in another set of in vitro crystallisation using Mg2+ on calcite formation (Loste et al., 

2003b). The inhibition effect was illustrated by the effect of magnesium stabilising amorphous 

calcium carbonate (ACC) in aqueous conditions, where the stability of ACC strictly relies on 

the ratio of Mg/Ca (Loste et al., 2003b). Meanwhile, the Mg/Ca ratio also determines the 

crystal polymorph, producing a calcite lattice at a low ratio and aragonite at a sufficiently high 

ratio of greater than 3 (Loste et al., 2003b, Falini et al., 2009). 

1.2.4 Nacre formation 

Aragonite nacre or ‘mother of pearl’, has a distinctive morphology of mineral brick and organic 

mortar (Addadi and Weiner, 1992, Addadi et al., 2006). This unique structure has attracted 

significant research interesting on understanding biomineral process.  

Weiner and Traub (1984) discussed the influence of the soluble and insoluble matrix during 

shell growth and provided a multilayer model of the macromolecules for nacre formation. The 

representative multilayer sandwich structure is consisting of the central layer of β-chitin and 
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surrounding layers of silk-fibroin like protein and the outer layers of acidic macromolecules 

(Weiner and Traub, 1984, Lowenstam and Weiner, 1989). The β-sheet is important in that 

reactive side chains are located to one side of the chain (Lowenstam and Weiner, 1989). This 

organic framework is assumed to provide well defined nucleation points, and the soluble 

macromolecules on the surface are assumed to have Ca2+-binding ability, rich in Asp and Glu 

residues (Weiner and Traub, 1984, Lowenstam and Weiner, 1989). This model has been 

further developed by using Cryo-TEM with evidence identifying that the silk is absence from 

the matrix (Levi-Kalisman et al., 2001). 

A modified model for molluscan nacre formation with the silk protein was provided by Addadi 

et al. (2006). In their model, silk proteins are present as a hydrogel phase which pre-fills the 

mineralisation space between two layers of β-chitin (Addadi et al., 2006). The matrix 

components, including acidic proteins and carbohydrates, are then absorbed onto β-chitin 

spatially differentiated (Figure 1.3A). The single-crystal nucleation sites are determined by the 

central ring structures of sulfate-rich protein surrounding a central spot of carboxylate-rich 

proteins (Addadi et al., 2006, Nudelman et al., 2006). The mineral phase is first produced as 

colloidal amorphous calcium carbonate (ACC) from specialised cells in vesicles (Addadi et 

al., 2006). The ACC is transported to the single-crystal nucleation sites by cells. The existing 

acidic proteins induce and control mineralisation to form nacreous layers (Figure 1.3B). The 

crystal growth proceeds vertically along the fast growing c axis until it reaches the β-chitin 

boundary. During growth, some of acidic proteins are assumed to incorporate into nacre 

formation, to adjust the mineral chemical and soluble properties. In this model, β-chitin, silk 

protein, carboxylate-rich protein and sulfate-rich protein are required to build each nacre 

tablet (Addadi et al., 2006).   
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Figure 1.3. Schematic illustration of nacre formation. 

(A) The organic matrix assembled prior to the mineral deposition. Organic 
components involved in nacre formation include silk proteins and nucleation 
sites. (B) Mineralised nacreous layer. The nucleation and growth of aragonite 
crystals is controlled by acidic proteins. As crystal growth proceeds, the water 
and silk are displaced. Crystal tablets are trapped by surrounding chitin between 
adjacent tablets (Addadi et al., 2006) 

 

1.3 In vitro CaCO3 crystallisation systems 

Synthesis of inorganic crystals or hybrid inorganic-organic structures with precise control in 

morphology, orientation and size has attracted much research attention due to the importance 

and potential applications of new materials, such as catalysis, medicine and  electronics 

(Dabbs and Aksay, 2000, Pinna et al., 2001, Lanting and Barfett, 2006, Lee et al., 2008). 

Calcium carbonate, an important biomineral material, has three main crystal polymorphs 

(calcite, aragonite and vaterite) two hydrated polymorphs (calcium carbonate monohydrate 

and calcium carbonate hexahydrate) and an amorphous phase (Peric et al., 1996, Nebel et 

al., 2008). In recent decades, this calcium mineral has attracted much research attention for 

in vitro crystallisation. 

CaCO3 crystals have been modified by additives such as proteins (Wilbur and Bernhardt, 

1984, Ma et al., 2007, Politi et al., 2007, Takeuchi et al., 2008) and ions (Gebauer et al., 2009, 

Politi et al., 2010), since they occur in biominerals. In the presence of all of these additives, 

crystals follow the kinetic control of crystallisation, which is based on the modification of 

activation-energy barriers (Cölfen and Mann, 2003). In such circumstances, crystallisation is 

proceeded via a sequential process including structural and compositional modification, 

instead of a single-step pathway (Cölfen and Mann, 2003).  
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1.3.1 CO2 diffusion system 

In vitro calcium carbonate crystal formation was initially modified by dissolving CaCO3 in a 

solution supersaturated with CO2 (Kitano, 1962). In Kitano crystallisation system, MgCl2 was 

used to produce pure aragonite crystals during recrystallisation of CaCO3 upon escape of the 

CO2 gas (Kitano, 1962). Another method, developed by Addadi et al., was using vapour of 

ammonium carbonate slowly diffused into solutions containing Ca2+ in a sealed chamber 

(Addadi et al., 1987). This system of diffused CO2 has been used during in vitro crystallisation 

experiments in screening both inorganic and organic components (Mann et al., 1988, Mann et 

al., 1993, Belcher et al., 1996, Aizenberg et al., 1999, Orme et al., 2001, Meldrum and 

Ludwigs, 2007, Stephens et al., 2010). However, in this crystallisation system, pH varies 

along this kinetic precipitation process, and a long incubation time was normally required for 

crystal growth (Matsushiro et al., 2003).  

1.3.2 Templates for crystal growth 

In recent biomineral studies, calcium carbonate crystallisation has been modified by polymers 

or organic components as templates in vitro (Kuther et al., 1998, Subburaman et al., 2006, Li 

and Estroff, 2007a, Meldrum and Ludwigs, 2007).Two major types of two-dimensional 

modified surface substrates with functional additives have been developed for crystallisation: 

Langmuir monolayers on aqueous surfaces and self-assembled monolayer on solid surfaces 

(Dey et al., 2010). 

Langmuir monolayer substrates with (CH3(CH2)16COOH) were first used to control CaCO3 

crystallisation and orientation (Mann et al., 1988). They used the stearic acid monolayer 

template to achieve oriented vaterite formation, instead of the rhombohedral calcite formation 

without monolayer substrates. Since the Langmuir monolayers provide an opportunity to 

control crystal nucleation, several organic components were used, including nitrilotriacetic 

acid and calixarenes (Archibald et al., 1996, Matsushiro et al., 2003, Volkmer et al., 2004). In 

subsequent studies, fatty acids have also been used to control CaCO3 crystallisation, 

polymorph and morphology using a series of Langmuir monolayer substrates (Loste et al., 

2003a). In these experiments, increasing the chain from C16 (palmitic acid) to C30 

(triacontanoic acid) changed to crystal formation by promoting aragonite and vaterite 

formation. This has demonstrated that by using Langmuir monolayers with functional 

residues, the crystal outcome can be determined. 

Aizenberg et al. (1999) revealed the effects of patterned self-assembled monolayers (SAMs) 
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of alkanethiols with a range of functional groups on Si surfaces on CaCO3 crystallisation. 

Crystals specifically nucleated on polar regions with X group (X=CO2H, SO3H and OH) 

(Aizenberg et al., 1999, Aizenberg, 2004). A schematic pathway of crystal nucleation control 

under two-dimensional organic templates has been provided, starting from the pre-nucleation 

clusters in aqueous conditions (Pouget et al., 2009). In their hypothesis, the prenucleation 

clusters initially formed in the aqueous conditions with dimension of 0.6 to 1.1 nm. This is 

followed by the aggregation to form amorphous nanoparticles (~30 nm). These nanoparticles 

were associated with the template surface to mediate crystal growth. During crystallisation, 

crystal orientation was controlled through the interaction between crystals and organic 

templates (Figure 1.4). 

 

Figure 1.4. Illustration of schematic pathway of crystal formation in the 
presence of organic templates. 

0: formation of pre-nucleation clusters in solution. 1: formation of amorphous 
calcium carbonate nanoparcitles. 2: growth of nano-particles on the template 
surface. 3,4: ACC aggregates to form crystalline domains. 5: stabilisation of 
crystalline domain by templates. 6: formation of single crystals (Pouget et al., 
2009). 

 

As described in Section 1.2.1, the insoluble organic matrix such as collagen in bone or chitin 

in bimineralic shell is considered to provide vital roles over crystallisation, especially at the 

initial stages. Therefore, apart from the two dimensional templates, three-dimensional 

insoluble organic or inorganic templates have been used to control crystal formation (Yue et 

al., 2006, Meldrum and Ludwigs, 2007, Kim et al., 2010). Porous single calcite crystals have 

been achieved in the presence of inorganic porous templates with a sea urchin skeleton 

structure (Yue et al., 2006). Porous calcite crystals also precipitated with replicated template 

structure of porous hexagonal morphology from colloid crystal templates (Hetherington et al., 

2011). In addition, organic templates consisting of block copolymers of double-gyroid 

morphology of a polystyrene-b-polyisoprene (PS-b-PI) was used to produce gyroid calcite 

crystal structures (Finnemore et al., 2009). All these findings demonstrate that using 3-D 

templates can be used to produce crystals with composite morphologies and structures. 
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1.3.3 Additive components for crystallisation 

In biomineral studies, soluble additives have been used to control CaCO3 crystal morphology 

and polymorph in aqueous conditions. These additives including small inorganic ions and 

large organic molecules such as proteins and polymers are selected to construct the model 

experiments demonstrating their impact on crystal formation (Cölfen, 2007, Gebauer et al., 

2009, Suzuki et al., 2009). As mentioned above, magnesium was initially assumed to inhibit 

crystal precipitation by prolonging the nucleation time (Misogianes and Chasteen, 1979). 

Later work has confirmed that Mg2+ has significant effects on calcium carbonate 

crystallisation, inducing stabilising ACC and formation of aragonite in the presence of a high 

ratio of Mg/Ca (Loste et al., 2003b, Politi et al., 2010). Further studies have illustrated that the 

ratio of Mg/Ca>3:1 has induced aragonite formation via forms of Ca(MgCO3)2 (Loste et al., 

2003b, Dey et al., 2010). Moreover, other inorganic ions apart from Mg2+ have been identified 

to influence CaCO3 crystal precipitation, including Na+, Mn2+, Cl- and SO4
2- (Gebauer et al., 

2009).  

Organic components, i.e. proteins, polysaccharides and poly amino acids, have been 

screened for crystallisation (Naka et al., 2000, Kuo and Ma, 2001, Politi et al., 2007, Cölfen, 

2007, Gower, 2008). Both calcite and aragonite were induced in the presence of in-situ 

generation of polyacrylic acid (PAA) (Naka et al., 2000). A double hydrophilic copolymer 

consisting of an outer layer of positive polydiethylaminoethyl methacrylate (PDEAEMA) and 

inner layer of negative polymethacrylic acid (PMMA) was used for crystal growth by diffusing 

carbon dioxide vapour into CaCl2 solution at 22 °C. Pure sable branched aragonite crystals 

were produced in this system (Nassif et al., 2005) 

All of these crystallisation modifications are taking place with functional additives in aqueous 

conditions, which are probably following the particle-mediating crystallisation pathway to form 

crystals in the mesoscopic transformation (Cölfen, 2007). According to the presence of 

different additives, this crystal transformation includes several possible pathways (Figure 1.5) 

(Cölfen and Mann, 2003). In aqueous condition with no additives, crystals form along the 

classical crystallisation pathway, where clusters nucleate until approaching a critical size of 

primary nanoparticle and then grow to a single crystal (Pathway a in Figure 1.5). The primary 

nanoparticles can be arranged to form an iso-orientated crystal (Pathway b in Figure 1.5). 

When the primary particles correlated with polymers or organic additives, they undergo a 

mesoscale assembly to form mesocrystals (Pathway c in Figure 1.5). Mesocrystals are 

colloidal inorganic crystals with a well-defined outer surfaces built from individual 

nanoparticles (Cölfen and Mann, 2003). Mesocrystals can transfer into individual crystals as 
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nanoparticles re-aligned, when the surface is insufficiently stable (Cölfen and Mann, 2003). In 

addition, amorphous calcium carbonate (ACC) can also assemble into complex morphologies 

during the crystallisation process (Pathway d in Figure 1.5).  

 

Figure 1.5. Schematic pathways of classical and non-classical 
crystallisation in aqueous condition (Cölfen, 2007). 

 

1.3.4 Amorphous calcium carbonate (ACC) and pre-nucleation 

clusters 

Amorphous calcium carbonate (ACC), the least stable phase of calcium carbonate, is highly 

soluble with a low density of crystalline mineral indicating that ACC is highly hydrated (Bolze 

et al., 2002). ACC can readily aggregate to form different crystalline materials i.e. calcite, 

aragonite or vaterite in aqueous conditions (Faatz et al., 2004, Stephens et al., 2010). Politi et 

al., (2004) used the water etching, infrared spectroscopy, electron diffraction and 

environmental scanning electron microscopy to identify that sea urchin spine regenerated 

crystallisation via the amorphous calcium carbonate (ACC). In their research, this 

transformation was started from ACC induced into an isotropic non-crystal solid phase. The 

small amount (15%) of water position was expelled and subsequently, ACC transformed into 
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composite crystalline solid phase (Politi et al., 2004). In the later work, Politi et al., (2008) 

used X-ray photoelectron emission spectromicroscopy to study the mechanism of 

transformation of ACC to calcite single crystals during sea urchin in vivo growth. Three 

distinctive mineral phases were detected during growth: the initial short-live hydrated ACC 

phase, the followed presumably hydrated ACC phase and the final crystals (Politi et al., 

2008). They proposed the mechanism of ACC to crystal is via a secondary nucleation with 

the pre-existing amorphous units (40 to 100 nm) (Politi et al., 2008). 

In vitro, acidic polymers including polyaspartic acid (Poly-Asp) and polyacrylic acid (PAA) 

have been used as a hydrated phase, called a polymer induced liquid-precursor (PILP) for 

calcium carbonate crystallisation (Gower and Odom, 2000, Gower, 2008). In this system, 

polyaspartate has been used to induce a liquid-liquid phase droplet as the mineral precursor, 

which induced solid amorphous calcium carbonate (ACC). Further work has demonstrated 

that in the presence of a low concentration of PAA, the ACC surface crystallised to form 

hollow vaterite structures (Gower and Tirrell, 1998, Gower, 2008, Gower and Odom, 2000). In 

addition, the solid amorphous calcium carbonate was induced by using Langmuir monolayer 

organic templates in aqueous condition (Pouget et al., 2009).  

However, the schematic pathway of crystallisation in aqueous conditions has not been 

confirmed until recently. Gebauer et al. (2008) has demonstrated the initial stage of crystal 

precipitation in an aqueous system. Pre-nucleation clusters were detected on the basis of 

equilibrium thermodynamics, even in unsaturated solutions (Gebauer et al., 2008). They used 

in-situ measurement of [Ca2+] at constant pH, enabling a quantitative analysis of all species 

during different stages of crystallisation. Based on their finding, the proposed mechanism of 

calcium carbonate crystallisation follows from the early formation of a nucleation cluster of 

around 70 ions in unsaturated solutions. This pre-nucleation cluster has also been 

demonstrated for the initial stage of CaCO3 precipitation in a template controlled system 

(Pouget et al., 2009).  

As mentioned above, calcium carbonate crystallisation has been widely studied in several 

different crystallisation systems as a means to fully understand the biomineralisation process. 

A large range of scenarios have to be considered for crystal precipitation to achieve exquisite 

crystal structures or the mechanism of biological control. In comparison to all of these 

systems, microfluidics can provide a platform to analyse a range of conditions providing a 

concentration gradient profile of ions and proteins. More information on biomineral protein 

screening can be achieved using microfluidic devices. In this project, rapid screening of in 

vitro calcium carbonate crystallisation has been demonstrated using microfluidics to present 
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this a novel platform for biomineralisation studies.  

1.4 Microfluidics 

1.4.1 Principle of microfluidics 

Microfluidics is an emerging and relatively novel technique requiring a multi-disciplinary 

approach for building effective systems with applications in chemistry, biology and 

engineering. Microfluidics has derived from research focusing on the precise control 

encountered with decreasing amount of liquid and miniaturization needed when handling this 

fluidic size (Haeberle and Zengerle, 2007). The microfluidic technique was initially developed 

in 1950s, when research efforts focused on dispensing a small fluidic volume on the micro-

litre and nano-litre scale (Mark et al., 2010). Later work by Terry et al. (1979) concentrated on 

a miniaturised gas chromatography (GC) instrument and achieved sub-micron cross-sections, 

which was seen as a milestone in microfluidic research (Terry et al., 1979, Mark et al., 2010). 

This technique was improved in 1990s by Manz et al., (1990), who fabricated the first high 

pressure liquid chromatography (HPLC) using Si-Pyrex techniques (Manz et al., 1990). 

During the same period, several types of integrated microfluidic devices had been generated 

for complex fluidic analysis such as microvalves and micropumps (Shoji et al., 1988, van 

Lintel et al., 1988, Zengerle et al., 1995). This integration has generated the dramatic growth 

in this novel research field, namely micro total analysis system (µTAS) or lab-on-a-chip 

(Harrison et al., 1992, Weigl and Yager, 1999).  

Lab-on-a-chip is the integrated microfluidic system designed to incorporate several phases 

including sample delivery, analysis and detection in a single chip (Haeberle and Zengerle, 

2007). Typically, the microfluidic device is the combination of a microfluidic channel of tens to 

hundreds of micron wide and several fluidic control components, i.e. the tubing and valves 

(Mark et al., 2010). All of these components are required to control sample delivering, 

separation and mixing. Lab-on-a-chip has been reviewed recently by Mark and his co-

workers for system design and the broader applications such as the polymer chain reactions 

(PCR) (Mark et al., 2010). 

Nowadays, microfluidic systems have wide applications in biology and biochemistry, drug 

delivery, combinatorial chemistry and proteomics research (Weigl et al., 2003, Lau et al., 

2007, Price and Kricka, 2007, Sauter et al., 2007, Kang et al., 2008, Teh et al., 2008). 

Several applications of microfluidic systems are seen in life science, such as cell culture and 
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tissue engineering (Andersson and Berg, 2004, El-Ali et al., 2006, Kimura et al., 2008). Ei-Ali 

et al. (2006) reviewed the highly integrated microfluidic devices applicable for biomedical and 

pharmaceutical studies. In their review, the microfluidics can be incorporated for cell culture 

and analysis in micro-systems, including cell stimulation by defining cells using temporal and 

spatial patterns, fractionating heterogeneous cell population into homogeneous population 

and even analysis of biomedical reaction in cells such as gene and protein analysis of cell 

lysates (El-Ali et al., 2006). In addition, in the studies of microfluidic applications in protein 

crystallisation, the droplet-based microfluidic device is essential for protein crystallisation 

using a minimal volume (Zheng et al., 2003, Song et al., 2006). Zhang et al., (2003) 

successfully precipitated soluble protein crystals in micro-droplets based on a 150 µm wide 

microfluidic channel (Zheng et al., 2003). Moreover, novel strategies in small-scale such as 

micro-gels and diffusion controlled system have been involved in drug delivery and release 

(Weigl et al., 2003). These systems provide opportunities of small quantities consumption of 

drug for clinical studies (LaVan et al., 2003, Kang et al., 2008).  

1.4.2 Classification of microfluidic systems 

Depending on the type of liquid propulsion used, microfluidic systems can be divided into 5 

subgroups: capillary, pressure-driven, centrifugal, electrokinetics and acoustic systems 

(Figure 1.6) (Haeberle and Zengerle, 2007, Mark et al., 2010). Each group has specific 

application in liquid handling, such as the frequency of rotation of the fabricated 

microstructure in a centrifugal microfluidic system (Haeberle and Zengerle, 2007, Mark et al., 

2010). Another example is the delivery of acoustic shock waves in an acoustic microfluidic 

system to control the droplet residing frequency on substrate surfaces (Mark et al., 2010). In 

our biomineralisation experiments, a pressure-driven device is used and only that type of 

microfluidic system is considered here.   
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Figure 1.6. Classification of microfluidic systems according to the fluidic 
propulsion. 

According to the fluidic propulsion, there are five major subgroups of microfluidic 
systems: capillary, pressure-driven, centrifugal, electrokinetic and acoustic 
systems, with respective applications in (bio-) chemical essays (Mark et al., 
2010).  

 

Pressure-driven microfluidic systems are characterized by the liquid delivery principles of 

pressure difference (Takayama et al., 2001, Teh et al., 2008, Meng and Kim, 2008). There 

are several methods to generate the pressure gradient, such as external syringe pumps and 

internal gas micropumps (Sia and Whitesides, 2003). In the laminar microfluidic system, 

several flow streams are running paralleling along the channel. In the turbulent flow system, 

the mass mixing is controlled by turbulence. Conditions of fluid delivery in this system also 

adjusted to obtain laminar flow throughout. 

The Reynolds number (Re) is the dimensionless parameter that characterise the fluidic flow 

region as laminar flow or turbulence flow. Also it is the ratio of the inertial forces to viscous 

forces. It can be defined as equation 1.1 (Chakraborty and Chakraborty, 2010). 

h
e

Ud
R

µ




      (Equation 1.1) 

Where ρ is the fluidic density (kg/m3),  

U is the velocity (m/s),  

dh is the microfluidic channel length scale (m) 

µ is viscosity (kg/(m·s))  
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The value of dh varies according to the cross-sectional dimensions, i.e. the channel width (w) 

and height (h). In microfluidic systems, rectangular channels are commonly used, as a 

consequence, dh for rectangular channels can be calculated using the equation of 

dh=2wh/(w+h). 

When Re<2000, viscous forces dominate. Under this circumstance, all fluidic streams run 

along the channel to form a stream line, leading to laminar flow formation. When Re>2000, 

the inertial forces are predominate, which determines the turbulence flow (Beebe et al., 

2002).  

In this project, two types of pressure-driven microfluidic channels have been used for 

crystallisation. The diameters of the microfluidic channels are: 

 Width= 100 µm, height =130 µm, flow rate of 2 µl/min (T-junction channel) 

 Width=250 µm, height=50 µm with flow rate of 2.5 µl/min (Y-type channel) 

As the protein samples and the reaction reagents are all aqueous solutions, the viscosity (µ) 

and the fluidic density (ρ) are considered the same as water, with respective numbers of 103 

(kg/m3) and 1.1x103 kg/(m·s). After calculation, the Reynolds number for the microfluidic 

conditions used in this study is around 0.03, which is far less than 2000. Therefore, all fluidic 

streams in our microfluidic devices are laminar flow.  

1.4.3 Mass transportation in the pressure-driven laminar flow 

system 

In this project, the fluidic samples are delivered using external syringes achieving laminar 

flow, making the device a pressure-driven laminar flow microfluidic system. In the laminar 

flow system, mass transportation into adjacent streams is controlled by lateral diffusion, which 

takes place as the solutions flow through microfluidic channels (Takayama et al., 2001).   

For example, with an aqueous solution of protein with a molecular weight of 100kDa and 

standard diffusion coefficient of 5x10-11 m2/s (Chakraborty and Chakraborty, 2010), it requires 

only 30 seconds for this protein solution to diffuse across the 100 µm wide microfluidic 

channel. This time of lateral diffusion can be compared to that encountered with ion diffusion 

for Ca2+, Cl- and CO3
2-, which will have a much smaller diffusion coefficient (Meechai et al., 

1999, Guiot et al., 2000, Lide, 2006). Therefore, ions take a much shorter time to transport 

across the microfluidic channels. However, the process of flow through microfluidic channel is 
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dynamic, with flow directions towards the outlet of the channel and the latent mass diffusion 

across the channel occurring at the same time. Complex calculations are required to 

construct the in-channel mass concentration distribution profiles in aqueous conditions. This 

calculation of protein and ion concentration distributions along the channel was achieved by 

using modelling software, Comsol (Chapter 3 Section 3.2). 

1.5 Microcontact printing (µCP) 

1.5.1 Principle of microcontact printing 

Microcontact printing (µCP) is a novel method to create patterned layers of organic 

components (Mrksich and Whitesides, 1995, Perl et al., 2009, Xu et al., 2009). This technique 

was initially designed to create patterned self assembled monolayers (SAMs) of 

hexadecanethiol on a gold substrate surface (Litman et al., 1983, Davey et al., 1986, Wilbur 

et al., 1994, Xia et al., 1996a, Xia et al., 1996b). In their procedures, photolithography was 

used to fabricate the elastomeric polydimethylsiloxane (PDMS) stamp (Figure 1.7), which was 

then used to transfer the ‘inked’ pattern onto the gold surface (Kumar and Whitesides, 1993). 

Although µCP was originally used on a gold surface, a variety of substrate surfaces have 

been used, including palladium (Carvalho et al., 2002), silver (Xia et al., 1996a), copper (Xia 

et al., 1996b), and silicon (Offenhausser et al., 2007). Apart from the organic thiol solutions, 

microcontact printing was developed by researchers to generate the patterns with other 

substrates, including proteins, DNA and cells (Bernard et al., 2000, Loo et al., 2002, 

Rozkiewicz et al., 2007b, Hynd et al., 2007). Acetylene-modified oligonucleotides were 

immobilised by ‘click’ chemistry induced microcontact printing (Bernard et al., 2000, Loo et 

al., 2002, Rozkiewicz et al., 2007b). 
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Figure 1.7. Schematic illustration of the procedures of microcontact 
printing. 

The ultraviolet (UV) photolithography is the most commonly used techniques for 
the fabrication of Si substrates, which is used for PDMS stamps (Kumar and 
Whitesides, 1993). After fabrication, PDMS stamps are used to create SAMs on 
substrate surfaces, the microcontact printing process. 
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1.5.2 Applications of microcontact printing (µCP) 

Since µCP can be used to generate different organic patterns on a variety of substrate 

surfaces, this novel technique has wide applications in biological assays and (bio-) chemistry. 

This technique was initially developed to achieve patterned SAMs substrates (Kumar and 

Whitesides, 1993, Wilbur et al., 1994). These substrates typically have a head domain 

binding to the surface and a long tail which regulates a highly ordered structure on the 

surface (Mrksich and Whitesides, 1995, Love et al., 2005). These patterned substrates are 

used for functional studies i.e. mineral crystallisation or cell alignment (Bain and Whitesides, 

1988, Aizenberg et al., 1999, Love et al., 2005). Calcium carbonate crystal nucleation and 

orientation have been well controlled by using Si substrates with patterned SAMs of 

alkanethiol in a slow diffusion system (Figure 1.8B) (Aizenberg et al., 1999).  

In addition, well-defined neural stem cell alignment was achieved using pre-patterned 

polypeptide substrates during cell culture (Figure 1.8A) (Ruiz et al., 2008). The substrates 

were generated by printing poly-L-lysine on a glass substrate which was pre-coated with poly-

ethylene oxide film (Ruiz et al., 2008). This process enhances the cells immobilised only by 

the poly-lysine patterns.   

Microcontact printing (µCP) has also been used for deoxyribonucleic acid (DNA) and 

ribonucleic acid (RNA) immobilisation and orientation (Lange et al., 2004, Rozkiewicz et al., 

2007a, Rozkiewicz et al., 2007b). During the µCP process, DNA patterns were generated 

using DNA fragments in the range of 20 to 160 bp oligonucleaotides from PCR products 

(Lange et al., 2004, Ruiz and Chen, 2007).  
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Figure 1.8. Examples of microcontact printing applications. 

(A) SAMs of proteins created using µCP have been used to immobilise cells for 
further analysis (Ruiz et al., 2008). (B) Well modified substrates with 
alkanethiols patterns used to grow calcium carbonate crystals in a slow diffusion 
system. Crystals have been distributed under control of the patterned substrates 
(Aizenberg et al., 1999).  

 

1.6 Aim of this study 

The understanding of biomineral protein control in calcium carbonate crystallisation is 

essential to gain an insight into the biomineralisation process. In the bivalve mussel Mytilus 

edulis, the well-defined shell structure is composed of calcite and aragonite. The biochemical 

properties and location of the extrapallial (EP) fluid proteins imply that they play a critical role 

in providing the ingredients for in vivo shell formation. In order to investigate possible 

functions of these EP proteins in vivo, it is necessary to carefully analyse and assess protein 

influence on crystal growth in vitro. The aim of this study is to investigate the influence of the 

extrapallial fluid proteins on calcium carbonate crystallisation using a novel microfluidic 

platform. For that purpose, not only will the total EP protein mixture be screened, but also 

several isolated and purified proteins will be assessed.  

A pressure-driven laminar flow microfluidic system has been used, where ion and protein 

concentrations are controlled in diffusion mode, generating a variety of conditions for 

crystallisation. The opportunity of using computational modelling to calculate ion and protein 

concentration distributions in the channel provides a theoretical on-site microenvironment for 

crystallisation prediction along the whole channel. Additionally, the extrapallial fluid proteins 

can be imprinted onto patterns via microcontact printing (µCP) process giving the possibility 
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of assessing protein function by a different route.  

The experimental procedures of both microfluidic system and microcontact printing for 

crystallisation are described in Chapter 2. The computational modelling and the 

establishment of the procedure for on-chip crystallisation are given in Chapter 3 and Chapter 

4 respectively. On-chip crystallisation control using individual extrapallial fluid proteins are 

detailed in Chapter 5. Initial experiments using extrapallial fluid protein as a template for 

crystallisation modification is described in Chapter 6. 
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2 
2.1 Materials 

In this study, reaction reagents for calcium carbonate (CaCO3) crystallisation are calcium 

chloride (CaCl2) and sodium carbonate (Na2CO3). Both were purchased from Sigma Aldrich 

and used without further purification. 3-(N-morpholino) propanesulfonic acid (MOPS), from 

Sigma Aldrich, was used to provide an environment for stable pH at 7.5. Poly acrylic acid 

(PAA), calcium-binding protein (CBP), bovine serum albumin (BSA) were commercially 

purchased and used for crystal growth as additives. 

In micro-fabrication process, 4-inch Si wafers were purchased from Si-Mat Ltd. The positive 

photoresist SU-8 series and its developer were purchased from MicroChem. 

Polydimethylsiloxane (PDMS) elastomer and the curing agent used for microfluidic chip 

fabrication and microcontact printing stamps were supplied by SYLGARD Ltd. A full list of 

materials used in this study is listed in appendix 1.  

2.2 Protein sample preparation 

Two major types of mussel extrapallial proteins were screened in order to assess their 

influence on crystallisation: the wild-type proteins extracted and expressed proteins (Table 

2.1). Wild-type EP proteins were extracted directly from the extrapallial (EP) cavity of living 

blue mussel, Mytilus edulis. To extract wild-type proteins, the bivalve shells were prized apart, 

clean needles gently inserted into the extrapallial space between shell and organic mantle.  

Extrapallial (EP) fluid was extracted from the mussels and dialysed against MOPS buffer 

(100mM, pH 7.5). Care was taken to avoid contamination from mussel blood and sea water. 

Centrifugation of the protein solution (5400 g force for 20 min) was used to pellet any sand 

and debris. Proteins were purified using the FPLC techniques of ion exchange and gel 

filtration chromatography.  

In this study, there are two expressed extrapallial fluid proteins, the expressed main 
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extrapallial fluid protein (EEP) and the C1q domain of this protein, both were provided from 

an E.coli protein express system. Further protein purifications, including gel filtration 

chromatography and Ni-NTA chromatography, were used to ensure pure protein solutions.  

Bovine serum albumin (BSA) and vitamin-D induced calcium-binding protein (Sigma Aldrich) 

were used as control experiments for in vitro crystallisation in the microfluidic experiments. 

Polyacrylic acid (PAA), average molecular weight (Mw) 3500, was used as both an additive 

in the microfluidic experiment and a template molecule in the microcontact printing 

experimental protocols. 
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2.3 Microfluidic experiments for crystal growth 

2.3.1 Microfluidic device design and computational modelling 

In mollusc shell formation, calcium carbonate (CaCO3) nucleation and growth are 

thermodynamic and kinetic processes that are dependent on the concentration of ions in the 

surrounding environment (Cölfen, 2007, Xu et al., 2007). In traditional experimental methods, 

a large range of crystallisation conditions has been investigated to determine the polymorph 

and morphology control. Understanding the diffusion control of proteins and ions in mineral 

formation is important in understanding the biomineral process.   

Microfluidics provides a platform for investigating this process with a range of scenarios. 

Fixed concentration gradients of proteins and ions can be achieved in the laminar flow 

microfluidic system under appropriate flow rates (Takayama et al., 2001, Kuczenski et al., 

2007). In this project, two types of pressure-driven laminar flow microfluidic devices were 

considered: the T-junction channel and the Y-type channels, each with two inlets and one 

outlet (Figure 2.1).  

Fluidic computational modelling is a powerful method that reveals mass transport in this 

system. Therefore calculation of fluidic velocity in specific channel dimension determines the 

flow velocities at 5.2 mm/s for the T-junction channel and 5.1 mm/s for the Y-type device. 

Under these conditions, a range of mass concentration gradients along the channel can be 

realised providing a full range of conditions to study calcium carbonate crystal growth. 
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Figure 2.1. Two types of microfluidic chips used in this study. 

(A) Illustration of the T-junction microfluidic chip used for calcium carbonate 
crystal growth. (B) The fluorescein profile of this T-junction microfluidic chip. 
This profile was generated by delivering the fluorescein solution and de-ionised 
water into the chip of a velocity at 5.2mm/s. (C) Cartoon of Y-type microfluidic 
channels with straight reaction channel. (D) The fluorescein profile of the Y-type 
channel illustrated the emerging of two solutions. This profile was achieved at a 
velocity at 5.1 mm/s. 

 

In order to precisely control crystal formation, a commercial computational software (Comsol) 

was used to construct a complete set of concentration gradient profiles for both ions and 

proteins, as well as in-channel distribution of supersaturation ratios (S). Crystal on-chip 

formation was controlled by both supersaturation ratios (S) and mass concentrations. 

 

2.3.1.1 Modelling for concentration profile 

There are several equilibria when sodium carbonate (Na2CO3) and calcium chloride (CaCl2) 

dissolve in de-ionised  water or MOPS buffer (100 mM, pH 7.5) (Table 2.2). All these 
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equilibria were considered to construct the concentration gradient profiles. In order to 

construct a complete set of on-chip concentration gradient profiles for Ca2+ and CO3
2- ions, a 

two-dimensional plot was designed, where the x-axis presents the mass lateral diffusion 

across reaction microfluidic channels (100 µm in T-junction channel and 250 µm in Y-type 

channel), and the y-axis represents the flow distance along microfluidic channel.  

In computational modelling, the first simulation was calculated for the ion concentrations only. 

Under such conditions, 10 mM calcium chloride solution was delivered through the right 

channel and 10 mM sodium carbonate through the left in the T-junction device at velocity of 

5.2 mm/s. To construct mass concentration with diffusion modelling, diffusion coefficients of 

each ion were induced in this calculation (Table 2.3). The concentration profile was 

constructed using the Nernst-Planck equation in the software of Consol.  

In the later experiments, simulation on concentration gradient was repeated with 

consideration of both ion and protein diffusion across the channels. Under such 

circumstance, 50 mM of CaCl2 and 50 μg/ml of protein were used as initial concentration in 

modelling calculation. In this modelling simulation, the diffusion coefficients of both protein 

and ions were involved. The diffusion coefficients of large protein molecules were significantly 

lower than ions such as Ca2+ and CO3
2- (Table 2.3).  

 

Equilibrium K value  

H
+
 + OH

-
 H2O 1× 107dm3/ mol 

CO3
2-

 + H
+
 HCO3

-
 2.25 × 106  dm3/mol 

HCO3
-
 + H

+
 H2CO3 2.13× 1010 dm3/mol 

MOPS
-
+H

+
 HMOPS 1.58 × 107  dm3/mol * 

Table 2.2 Acid bases and MOPS equilibria and corresponding K value at 
25°C. 

Several equilibria were considered for construction of the concentration 
gradient profile. * indicates a calculated value from the pKa data  (Verdoes et 
al., 1992). 
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Species Diffusion coefficients (m2/s) 

HCO3
-
 1.185× 10-9 

CO3
2-

 9.23 × 10-10 

H2CO3
 1.185 × 10-9 

H
+
 9.31 × 10-9 

Na
+
 1.33 × 10-9 

OH
-
 5.27 × 10-9 

Ca
2+

 7.92 × 10-9 

Cl
-
 2.03 × 10-9 

MOPS
-
 1.185 × 10-10 

MOPSH 1.185 × 10-10 

BSA 5.21 × 10-11 

28kDa EP  8.20 × 10-11  

EEP  8.20 × 10-11  

C1q domain 15.50 × 10-11  

Table 2.3 Diffusion coefficients of ions and proteins for mass diffusion 
in laminar flow microfluidic system. 

 indicates a calculated value based on the comparison to BSA according to 
the molecular weight (Meechai et al., 1999, Guiot et al., 2000, Lide, 2006) 

 

2.3.1.2 Modelling for on-chip surpersaturation ratio (S) 

Having determined protein and ion concentration gradient profiles, the supersaturation ratio 

(S) is the other key factor which influences on-chip crystal distribution. The supersaturation 

ratio (S) is effectively a measure of the driving force of crystallisation such that systems with 

high S values tend to precipitate readily. This ratio can be calculated using the equation 2.1. 

Ion activity was calculated using the extended Debye-Hückel equation. A two-dimensional 

plot of supersaturation ratio distribution was constructed, with x-axis standing for the lateral 

diffusion distance and y-axis for the supersaturation ratio.  

2
CO

3

CaCO
3

2
Ca

K
S

 


    (Equation 2.1) 

 

Where KCaCO3 is the solubility constant of calcium carbonate (mol2/dm6) 

 CO3
2- is the activity of CO3

2- (dm3/mol) 

 Ca
2+ is the activity of Ca2+ (dm3/mol) 
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2.3.2 Micro-fabrication of microfluidic chips 

Soft lithography is a diverse set of techniques encompassing replica moulding structures 

using elastomeric materials, such as polydimethylsiloxane (PDMS). This technique is used for 

the fabrication process of microfluidic devices as well as surface patterning using PDMS, i.e. 

microcontact printing (CP) (Whitesides et al., 2001).  

In this project, microfluidic chips were fabricated by casting PDMS against a Si mask with SU-

8 microfluidic channel patterns. The Si substrates were thoroughly cleaned using solvents (in 

the order of ethanol, acetone and then isopropanol) during sonication for 5 min for each 

solvent. Samples were then rinsed with Milli Q water and dried under a nitrogen stream. 

Positive photoresist SU-8 series was spun evenly onto the substrate surface at 2000 rpm for 

30 s. Prebaking of SU-8 coated samples on a hotplate (95 °C) for 10min was required to set 

down the resist for ultraviolet (UV) exposure. This is followed by an exposure using UV light 

through the dark field mask with designed channel features. Si sample was exposed in hard-

contact mode for 20 s and then baked again on a hotplate (95 °C) for 10 min. The 

development process was followed using the SU-8 developer for 10 min to create the channel 

features on the substrate with the correct height.  

Replica moulding with PDMS was required to achieve a negative replica structure of 

channels. This process requires pouring PDMS pre-polymer against SU-8 patterned Si 

substrate and curing at 70 °C in an oven for 2 hours. The PDMS pre-polymer is composed of 

PDMS elastomer and its curing agent at a ratio of 10:1. After peeling off the PDMS stamps, 

an irreversible microfluidic chip with microfluidic channels is achieved by exposing both 

PDMS and glass substrates to oxygen plasma at 50 V for 2 min and then bonding together. 

Alternatively, the clean PDMS chip can be clamped to a clean glass substrate directly to 

create the reversible microfluidic chip with inter-connected microfluidic channels. This 

technique was used for crystallisation in this project, which enables further crystal analysis 

using SEM and Raman spectroscopy (Figure 2.2). 
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Figure 2.2. Schematic illustration of micro-fabrication process for 
microfluidic chips. 

Si substrates were cleaned using solvents: (1) Photoresist was evenly spun 
onto substrate surface and soft-baked at 95 °C for 10 min. (2 and 3) The SU-8 
is illuminated with UV light through the photomask to cross-link the SU8 and 
uncross-linked SU-8 was removed to leave the channel features with proper 
height. (4) PDMS was cast against the mask. (5 & 6) After curing, stamps were 
peeled off the mask and bound to coverslip to make microfluidic chips. Two 
different types of microfluidic devices were fabricated and used in this project. In 
the beginning of the project, a T-junction channel with all channels having a 
uniform cross section of 130 µm (width) x 100 µm (height) and a long reaction 
channel length (>5 cm) was designed for crystal growth (Figure 2.1A). Later in 
this project, a Y-type channel with uniform cross section of 250 µm (width) x 50 
µm (height) with a 2 cm long straight reaction channel was fabricated for protein 
functional screenings (Figure 2.1C). 
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Fluorescein solution and de-ionised water were run through both types of microfluidic devices 

to investigate the dynamic flow rate profile. For each device, a continuous supplement of both 

fluorescein solution and Milli Q water were delivered into two inlets with a precise control on 

flow rate by KD scientific (KDS) pumps: 2 µl/min for the T-junction channel and 2.5 µl/min for 

the Y-type channel. For each experiment, flow profiles were monitored using a laser confocal 

scanning microscopy (Carl Zeiss LSM510, Germany) under 20x optical lens. An excitation 

laser of 488 nm was used with 505-530 emission filters to collect the fluorescence signals. 

Fluorescence profiles were analysed by the software from Zeiss LSM. In both microfluidic 

chips, a sharp interface of two solutions occurred in the junction where they first met (Figure 

2.1B&D). As the laminar flow progress along the mcrofluidic channels, the mass diffusion 

across the channel makes this interface more blurred. 

 

2.3.3 Microfluidic experimental setting for on-chip crystallisation 

Calcium chloride (CaCl2) and sodium carbonate (Na2CO3) were used as reaction reagents for 

calcium carbonate crystallisation. To identify the influence of biomolecules on crystallisation, 

additives were mixed with reagents prior to delivery into the microfluidic device. Each reaction 

solution was freshly prepared in an eppendorf tube in total volume of 1 ml. Macromolecules 

were mixed with CaCl2 only, Na2CO3 only or both solutions to create different conditions for 

crystal on-chip precipitation (Table 2.4). In addition, the blank condition with MOPS buffer 

(100mM, pH 7.5) only was also screened for comparison. Proteins were initially mixed with 

reagents prior to delivery into the microfludic channel. Solutions were delivered into 

microfluidic chip via 1 ml syringes and clean tubes with inner diameter of 0.35 mm. The 

reagent delivery into the channel was precisely controlled by syringes and pumps (KD 

Scientific). MOPS buffer (100 mM, pH 7.5), polyacrylic acid (PAA) and proteins from Table 

2.1 were screened to assess their influence on in vitro calcium carbonate crystallisation in 

Table 2.4.  
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 CaCl2 Na2CO3 

Condition 1 + - 

Condition 2 + + 

Condition 3 - + 

Condition 4 - - 

Table 2.4  Proteins in reaction reagents for crystallisation. 

Proteins and additives were used with different reagents to create more 
crystallisation conditions. Where + stands for bio-molecules were added and 
- stands no bio-molecules added. All samples were prepared in the same 
methods. 

 

All microfluidic experiments were observed via an Olympus Ix70 microscope under 20 x 

optical lens. Video and image recordings were processed during real-time crystallisation from 

two solutions merging in the reaction channel for on-chip crystallisation. After crystal 

formation, chips were rinsed with methanol to preserve crystals and used for further analysis. 

Each experiment was repeated three times.  

2.3.4 Bulk system for calcium carbonate crystallisation 

In order to compare crystal formation in the microfluidic system, a conventional bulk system 

was prepared. Extrapallial proteins used for this bulk system crystallisation were prepared in 

an analogous manner (Table 2.4) to create the same reaction conditions as in the microfluidic 

system. All reaction reagents were prepared in a total volume of 1 ml. In every set of 

experimental conditions, reagent solutions were mixed rapidly (with 500 l of each) for 1 min 

and left for 5min for crystal growth. Crystallisation mediums were filtered using a 0.2 m nylon 

membrane (Whatman, England) and then rinsed with methanol to ensure crystal stability. 

Crystals on the membranes were characterised by Raman spectroscopy for polymorph 

identification, and then coated with gold/palladium for SEM analysis. 
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2.4 Microcontact printing (µCP) patterns for crystal 

precipitation 

2.4.1 Microcontact printing (µCP) of protein patterns 

Similar to the fabrication process of microfluidic devices, microcontact printing requires the 

creation of a Si mask or template with designed patterns using photolithography. In brief, the 

Si substrates were evenly coated with positive photoresist SU-8 and exposed to UV light 

through a photomask with designed patterns. The post-baking with samples on a hotplate (95 

°C) and development using developer were followed in order to create the designed patterns 

on the mask. Cleaning process with solvents was followed for future use.  

After fabrication, the silicon elastomer (PDMS) and its curing reagent in the ratio of 10:1 were 

poured against the mask to create negative replica PDMS stamps. After cured elevated 

temperature at 70 °C for 2 hours, solid polymer stamps were ready for replicating the 

opposite of desired structures. After peeled off the mask, PDMS stamps and glass substrates 

were cleaned with solvents and dried with a stream of nitrogen. In order to enhance the 

immobilisation of biomolecules on substrate surface, both hydrophobic PDMS stamps and 

hydrophilic glass substrates were treated with oxygen plasma at 50 V for 5 min (Bhattacharya 

et al., 2005). This is followed by inking stamps with microcontact printing solutions. In this 

study, about 500 µl of microcontact printing solution was left on each stamp for 5 min for 

molecular surface binding.  Stamps were dried with a steam of N2 to leave thin layers of 

biomolecule on the surface.  

The next stage is to transfer the biomolecules from PDMS substrate surface. PDMS stamps 

were simply placed against the glass substrates with appropriate pressure for physical 

contact, leaving thin layers of biomolecules in the defined regions on the glass substrate. The 

stamps were then removed from the substrates to leave inked substrates ready for future use 

(Figure 2.3A). After the whole process of microcontact printing, well-developed glass 

substrates with localised biomolecule restricted to the only desired areas can be achieved 

(Figure 2.3B). 

In this project, microcontact printing provides the substrates with protein templates for 

crystallisation. In order to investigate the influence of extrapallial proteins as template on 

calcium carbonate in vitro crystallisation, microcontact printing solutions were prepared as 

Table 2.5. Polyacrylic acid (PAA) and bovine serum albumin (BSA) were used as positive and 
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negative controls to compare the influence on crystallisation of the target protein, the 

expressed major extrapallial fluid (EEP) protein from M. edulis.  

 

Figure 2.3. Schematic illustration of microcontact printing fabrication. 

(A) After cleaning with solvents, Si substrates were coated with positive 
photoresist. The UV exposure with dark field dot-patterned mask was processed 
for 25 s in hard-contact mould. Development is to create the mask with dotted 
patterns. PDMS stamps were prepared by casting against silicon mask at 70 °C 
for 2hours and then removed. PDMS stamps were wet with microcontact 
printing solutions for 5min and then dried with N2 to leave thin layers of 
molecules on the surface. Stamps were pressed onto the glass substrates 
surface to ink solution. Afterwards, stamps were removed to leave thin layers of 
molecules on the surface. (B) Microcontact printing samples after process. Well-
inked FITC-BSA solution dispersed on the substrate surface in defined areas 
only. 
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2.4.2 Calcium carbonate crystallisation on patterned substrates 

Since there are two sets of μCP solutions used in the µCP process (Table 2.5), two different 

crystallisation methods were required. As to the μCP substrates with proteins and Ca2+ (Set A 

in Table 2.5), the patterned substrates were placed upside down in a petri dish, by supporting 

the edges. The petri dish was filled with 1 M Na2CO3 solution and incubated at 25 ºC for 12 

hours (Figure 2.4A). However, as to the μCP patterns with protein/polymer only (Set B in 

Table 2.5), the substrates were incubated in a slow diffusion system with ammonium 

carbonate for crystal growth. Under this circumstance, the patterned substrates were placed 

upside down in 1 M CaCl2 solution, held in the edges. Both ammonium carbonate powder and 

CaCl2 solution were placed in a sealed dessicator chamber, crystals were incubated using the 

slow diffusion of CO2 into CaCl2 solution. 

In both crystallisation methods, the patterned glass substrates were removed from the petri 

dish and cleaned with de-ionised water after crystal formation. Crystal polymorph was 

identified by Raman spectroscopy using 632.81nm laser as an excitation light. Samples were 

coated with gold/palladium for crystal morphology observation by SEM.  

 μCP set A μCP set B 

Condition 1 1 M CaCl2 +50 g/ml EEP 50 g/ml EEP 

Condition 2 1 M CaCl2 + 50 g/ml BSA 50 g/ml BSA 

Condition 3 1 M CaCl2 +1% PAA 1% PAA 

Table 2.5  Components of microcontact printing (µCP) solution. 

Different biomolecules used in preparing microcontact printing (CP) 
solutions for comparison to the target protein: EEP protein. 
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Figure 2.4. Illustrations of crystal incubation methods with µCP patterns. 

Two types of crystallisation systems have been processed according to the 
different µCP patterns. (A) When the protein/peptide and calcium were both 
printed, the substrates were placed in Na2CO3 for crystallisation. (B) When the 
substrates were patterned with protein/peptide only, the substrates were 
incubated with ammonium carbonate in the slow diffusion system.  

 

2.5 Raman Spectroscopy and scanning electron 

microscopy (SEM) 

Raman spectroscopy is a non-destructive spectroscopic technique that provides a unique 

spectrum for each inorganic polymorph structure (Dandeu et al., 2006). It is widely used in 

chemistry and biology. For Raman spectroscopy, a fixed laser was used as an excitation 

light, which does not change the wavelength during analysis. Under this circumstance, the 

Raman shift was caused by the vibrational changes according to the chemical bonds, which 

are specific to the molecular structure (Truchet et al., 1995, Dandeu et al., 2006). Therefore, 

different polymorphs can be identified from the Raman spectra. Raman analysis can be 

performed as a point spectral analysis using submicron size samples. It can also be 

performed in two-dimensional Raman mapping analysis on flat samples.  
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Raman spectroscopy readily distinguishes between the three major crystalline polymorphs of 

calcium carbonate (Dandeu et al., 2006). The strongest peak from Raman detection of 

calcium carbonate is in the range of 1050 to 1100 cm-1, which exists in all three polymorphs 

(Figure 2.5). Vaterite can be easily distinguished from other polymorphs with the shoulder 

peak of 1074 adjacent to main peak at 1091 cm-1. In addition, the characteristic peaks of 

vaterite 115, 267 and 300 cm-1, are overlapped (Figure 2.5). Although both calcite and 

aragonite have the main peak at 1086 and minor peak 710 cm-1, the characteristic peak is 

the shift at 282 cm-1 for calcite and 213 cm-1 for aragonite (Figure 2.5). 

 

Figure 2.5. Raman spectra of CaCO3 polymorphs. 

Specific spectra were identified according to the different structures, with 
different characteristic Raman shift in the range of wavenumber from 100 to 400 
cm

-1
 (Dandeu et al., 2006). 

 

In this study, Raman spectroscopy has been used for the identification of calcium carbonate 

polymorphs formed in the microfluidic device, bulk system and on microcontact printing 

samples. A LabRam INV Raman spectrometer (Jobin Yvon Ltd) was used. For the off-chip 

Raman analysis, crystal samples were located under an optical microscope with 50x optical 

lens with Raman spectroscopy. Spectra were obtained using a 632.81 nm laser beam as the 
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excitation light source. An integration time of 20 seconds was used for each spectrum. An 

average of three spectra was recorded for each crystal. In-situ Raman spectroscopy was 

designed to record crystal growth from initial stage of the experiments.  

Crystal morphologies were initially observed using an optical microscope during crystal 

growth. In microfluidic system, after crystals formed, PDMS were peeled off the glass 

coverslip and both were coated with gold/palladium for scanning electron microscopy (SEM) 

imaging. Crystal off-chip analysis used a Hitachi S4700 SEM at high vacuum mode at an 

accelerating voltage of 10 kV for coated samples. 

In microcontact printing (µCP) experiments, SEM and Energy Dispersive X-ray Spectrometry 

(EDS or EDX) were used for both printed patterns and crystal analysis. Samples were dried 

and coated with gold/palladium, and then analysed using Hitachi S4700 SEM at an 

accelerating voltage of 10kV. Energy Dispersive X-ray Spectrometry (EDS), an analytical 

technique detecting emitted X-ray from investigated samples, is widely used in conjunct with 

scanning electron microscopy (SEM) or Transmission electron microscopy (TEM) (Newbury, 

2005). In this study, EDS was used to detect the calcium distribution on the patterned 

substrates. Two types of sample were used for EDS: the printed patterns without CaCO3 

crystals and the patterned substrates with crystals after incubation. EDS was carried out in an 

SEM (Hitachi S4700) at accelerating voltage of 10 kV and current at 10 μA.  
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3 
3.1 Introduction: 

3.1.1 Principles of microfluidics 

Microfluidics provides a set of fluidic-unit platforms for (bio-) chemical research, i.e. drug 

delivery (Teng et al., 1999, Weigl et al., 2003, Kang et al., 2008), combinatory chemistry 

(Price and Kricka, 2007) and protein crystallisation (Teh et al., 2008). Typically, microfluidic 

channels are tens to hundreds of microns wide. This offers great advantages over traditional 

experimental systems, providing fast screening with a large surface to consumption volume 

ratios. According to the dominating liquid propulsion, microfluidics could be divided into five 

subgroups: capillary, pressure-driven, centrifugal, electro-kinetic and acoustic systems (Mark 

et al., 2010).  

The laminar flow phenomenon is a characteristic feature in microfluidic system. Without any 

turbulence in microfluidic system, laminar flows were controlled by external pressures, such 

as syringe pumps (Mark et al., 2010). Previous studies demonstrated that parallel streams 

have been achieved allowing a wide range of flow rates and channel diameters.  

Under these conditions, the characteristic lengths of the channel are L and H respectively for 

the y- and x-axis (Figure 3.1). The u, v are presented as the respective velocity in two-

dimensional channel of flow-through (L in y-axis) and lateral diffusion (H in x-axis) (Figure 

3.1). However, with L>>H in the microfluidic devices used in this project, the flow streams (x-

axis) were considered as parallel streams. Under such circumstance, the flow delivery is 

determined by the Reynolds (Re) number for fluidic types.  
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Figure 3.1. Illustrates of pressure-driven flow in a parallel microfluidic 
channel with channel height (H) and length (L). 

 

The Reynolds number (Re) is used to characterise different fluidic regimes, laminar or 

turbulent. Re can be defined as the ratio of inertial force to viscous force (Mark et al., 2010). 

Laminar flow occurs at low Reynolds numbers (Re<2000), where viscous forces are 

dominant. It is characterized by smooth, constant fluid motion. However, high Reynolds 

numbers (Re>2000) occur in turbulent flow with dominated by inertial forces dominate.  

3.1.2 Mass transport in diffusion microfluidic mode 

With appropriate flow rate, parallel fluidic streams will form in the main reaction channel. By 

varying the ratios of flow rates of solutions, the interface between the solutions can be 

changed (Kuczenski et al., 2007). As mentioned before, lateral diffusion controls the mass 

exchange between the adjacent flow streams in this system. Times for transport of ions and 

proteins were calculated by considering both the flow rate (y-axis) and lateral diffusion (x-

axis), given by the dimensionless ratio, the Peclet number (Pe). To present the result of mass 

transportation, a two-dimensional profile of ionic distribution was created using the extended 

Nernst-Planck equation.   

3.1.3 Supersaturation ratios for CaCO3 crystallisation 

The supersaturation ratio (S) of calcium carbonate (CaCO3) in aqueous solution is 

fundamental for understanding the biomineral crystallisation. This ratio is the driving force for 

crystal precipitation and accounted for prediction of calcium carbonate crystal formation. 

Theoretically, in both seeded and unseeded conditions, supersaturation is achieved by 

altering reagent ion concentrations in reaction solutions. The supersaturation ratio (S) has 

already been described in Section 2.3 in Chapter 2. 
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In this project, we designed the pressure-driven laminar flow microfluidic devices with 

Re<<2000 to build on-chip crystallisation system with two reagent solutions. Mass 

concentration gradient profiles were required to present the normalised ions and proteins in 

the channel to demonstrate the influence on CaCO3 crystallisation. In addition, 

supersaturation ratio (S) calculation along the channel will illustrate the crystal on-chip 

distribution. Thus, commercial simulation software (Comsol) was used to construct both 

concentration gradients and supersaturation ratios to simulate on-chip crystallisation via this 

novel platform. 

 

3.2 Results: 

3.2.1 Modelling results with only ion diffusion 

In the beginning of this project, we used the total wild-type extrapallial (TWEP) proteins for 

crystal growth. Proteins were added into both calcium chloride and sodium carbonate 

solutions prior to crystallisation experiments (Table 2.2 in Chapter 2). Therefore, after delivery 

into the microfluidic channels, only ion concentration gradient was generated under this 

condition. Modelling of mass transportation was considered according to ion diffusion only to 

influence crystal precipitation.  

3.2.1.1 Modelling results on mass transportation 

In order to show the modelling results, a two-dimensional profile is constructed to represent 

the ion concentration gradients. The distance on the x-axis (Dx) is the lateral diffusion 

distance and the distance y-axis (Dy) is the fluidic running distance along the channel.  Figure 

3.2 shows that the concentrations vary in the channel when 10 mM of Na2CO3 is delivered in 

one inlet channel and 10mM CaCl2 in the other. At the initial meeting of two solutions (Dy=0), 

the concentration of Ca2+ is 10 mM in one channel and none in the other. Immediately after 

that, a close to half-Gaussian concentration profile of Ca2+ has formed. Concentration 

gradients gradually decrease as the solutions running through the devices (Dy increases). As 

the distance increases from the start of the channel (Dy=30 mm), the fluidic concentration of 

Ca2+ equilibrates to ~5mM. A similar profile is presented for CO3
2- ion in the other channel 

with an analogous profile to Ca2+ ions. Distributions of on-chip concentration gradients have 

been generated from the start point towards the outlet of device. 
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This set of modelling results demonstrates the well distributed ion concentrations along the 

channel in the laminar flow microfluidic devices. In this modelling, a steep step concentration 

gradient has been generated from the initial joint point of two solutions (Dy=0), without any 

lateral diffusion. As flow proceeds along the length of the device (Dy=1.0 mm), the 

concentration profile is getting less steep since ions diffused into the other streams in the 

channel. After long distances (Dy>10 mm), the concentration profile approaches flat, which 

denotes the ion concentration profile across the whole channel. 

 

Figure 3.2.On-chip ion concentration gradient modelling. 

Concentration profiles of Ca
2+

 and CO3
2-

 show across the channel at different 
distances in the direction of flow (Dy). Results are presented in the absence of 
precipitation of calcium carbonate. 

 

3.2.1.2 Modelling of supersaturation ratio (S) profile 

For calcium carbonate crystallisation, supersaturation ratio (S) is a precondition for crystal 

precipitation. In this study, supersaturation ratios in the channel were calculated to present 
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crystal precipitation mathematically. It has been calculated using the equation 2.1 in Section 

2.3.1.2. 

Figure 3.3 demonstrates that a well distributed supersaturation ratio occurred in the channel. 

The simulation result of supersaturation ratios (S) indicates that there is a sharp peak in the 

centre of channel in the initial stage of solutions merging (Dy=0). This indicates that only a 

single line of crystals will form on this interface in the initial joining of two reagent solutions. 

As the solutions run through the device (Dy increases), the supersaturation ratio profile 

becomes symmetrically wider. This widening profile predetermines that crystals will be 

dispersed across the whole channel rather than forming a single line. When solutions 

travelled a long distance towards the outlet (Dy≥30 mm), the profile is almost flat with high 

value of 50% of supersaturation. This profile implies that the crystals will be evenly 

dispersed across the whole channels under this condition. 

 

Figure 3.3. Simulation on supersaturation ratio in de-ionised condition. 

Profiles for supersaturation of Ca
2+

 and CO3
2-

 corresponding to the flow 
distances (Dy). The supersaturation ratio was calculated with the activities 
estimated from the localized pH and the concentrations of Na

+
, Ca

2+
, CO3

2-
, and 

Cl
-
. 
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3.2.1.3 On-chip crystallisation in de-ionised conditions 

In order to test the computational modelling results, real time crystallisation experiments were 

set up according to the modelling conditions. On-chip crystallisation was set up with 10 mM 

CaCl2 and 10 mM Na2CO3 solutions at a flow rate of 2 l/min. During crystallisation, optical 

image recording captured the crystal on-chip distribution in this laminar flow microfluidic 

system. Crystal on-chip formation was determined by analysing the real time crystallisation 

images with different flow rate distance (Dy) along the microfluidic channels (Figure 3.4). An 

interface formed immediately when two solutions merged in the channel (Figure 3.4A). After 

the induction time for crystal precipitation, a single line of crystals formed on this interface 

(Figure 3.4B). As the solutions ran along the channel (Dy>0), the dispersed crystals 

predominately formed in Na2CO3 side in this microfluidic channel (Figure 3.4C).  Near the 

outlet of the channel, where the concentration gradients are thoroughly balanced, crystals 

were uniformly dispersed across the entire width of the channel (Figure 3.4D). This set of 

results confirms the predictions from the Comsol modelling, that on-chip crystallisation is 

under the control of localised ion concentration gradients and supersaturation ratios across 

the channels.  
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Figure 3.4. On-chip crystal formation with 10 mM Na2CO3 and 10 mM CaCl2 
in de-ionised water. 

(A) Interface arrow of two solutions delivery into microfluidic channel. (B) Single 
stream of individual crystals formed on the interface after induction time for 
crystal precipitation at initial interface. (C) Crystals formed in the Na

+
 side with 

Dy increase. (D) Well-dispersed crystals formed in the channel near the outlet of 
channel. 

 

This experiment demonstrates the usefulness of computational modelling as precursors to 

real time crystal nucleation experiments. At the initial interface, a single line of individual 

crystals is formed in the real experiment, which was induced by a sharp peak in the 

supersaturation ratio in the modelling calculation. At the outlet of channel, a flat 

supersaturation ratio profile in the model implied that the crystals would be uniformly 

distributed across the channel. This is coincident with the experimental results which showed 

the well-dispersed crystals across the whole channel at the end of this laminar flow 

microfluidic device.  

However, there is a discrepancy between the observation from computational modelling on 
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crystal growth and real-time crystallisation. After solutions running along the channel (Dy>1.0 

mm), the wider supersaturation ratio profile suggests that crystals will precipitate in the 

central areas of the channel rather than forming a single line (Figure 3.4B). But real 

crystallisation results revealed that crystals precipitating towards the side of the Na2CO3 

solution (Figure 3.4C). An explanation for this phenomenon is the effect of pH differential of 

CaCl2 and Na2CO3 solutions. The crystal precipitation was inhibited by the initial low pH of the 

calcium chloride solution (pH 4.9). The diffusion process mixed with the slightly alkalinity 

sodium carbonate solution (pH 9.5), crystals were accelerated by the high pH of Na2CO3 

solution. 

To investigate the variation of local pH in the microfluidic channel, the pH indicator 

phenolphthalein (0.1 mM), was added into both CaCl2 and Na2CO3 solutions prior to injecting 

into the microfluidic channels for crystallisation.  The results clearly showed the interface 

between the low pH of CaCl2 and high pH of Na2CO3 solutions, which remained for a long 

distance (~5 mm) from the joint point (Figure 3.5). This interface finally disappears when the 

ions are balanced across the channel after running along towards the end of the channel. 

Confirming the modelling prediction under this condition, a single line of crystals formed in the 

initial stage of two merged solutions. This was followed by most crystals precipitated in the 

Na2CO3 channel side, with higher pH than the CaCl2 side. This in-situ crystallisation 

experiment in the presence of the pH indicator clearly demonstrated that crystal formation is 

controlled by the pH differentials. Crystallisation is accelerated by higher pH conditions and 

inhibited in acidic conditions.  
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Figure 3.5. On-chip crystallisation in presence of 0.1 mM phenolphthalein. 

The pH indicator, phenolphthalein presented in both solutions indicates the pH 
profile in microfluidic channel. In the condition of pH>9.5, phenolphthalein 
appears dark under 548 nm illumination. 

 

This set of combination work of systematic computational simulation and experimental 

confirmation demonstrated the opportunity for trial experiments of calcium carbonate 

crystallisation using microfluidics. In a laminar flow system, calcium carbonate on-chip 

crystallisation seems to be dependent on ion diffusion and pH gradient. These experiments 

highlighted the need to control the pH of both solutions. As a consequence, the MOPS buffer 

was used to provide a pH buffered condition for crystallisation in subsequent experiments.  

3.2.2 Modelling results with both protein and ion diffusion 

The above work has demonstrated the advantage of computational simulation in the condition 

where the lateral diffusion of proteins was estimated. However, within the later work in this 

project, more reaction conditions were required to investigate the influence of mussel proteins 

on CaCO3 crystallisation. Macromolecules including proteins and polymers were added into 

CaCl2 only, Na2CO3 only or both solutions to create more scenarios to investigate their effects 

on crystallisation (Table 2.2 in Chapter 2). Therefore, computational modelling was required 

Na2CO3 

CaCl2 



Chapter 3                       Computational modelling for crystallisation 

-56- 

to demonstrate the mathematical control of both ion and protein concentration on crystal 

formation under this situation.   

3.2.2.1 Modelling of mass transportation with EP protein 

Understanding the protein influence on mineral formation is an important feature of calcium 

carbonate crystallisation studies. Under the conditions of the lateral diffusion over the 

microfluidic channel existing in both ions and proteins, the computational fluid dynamic 

software (Comsol) is again used to construct the complete set of concentration profiles of on-

chip distributions for Ca2+, CO3
2- and proteins.  

To eliminate the pH influence on crystal precipitation, MOPS buffer (100 mM, pH 7.5), a 

physiologically relevant pH for this protein, has been used to keep all reagents within this pH 

range. A two-dimensional concentration profile was used in this simulation modelling. 

Although there is a right-angle turn at 10 mm along the channel, its effects on mass 

contribution was negligible. In comparison to previous simulation work, the simulation of a pH 

buffered system required the consideration of acid-based and MOPS equilibria at pH 7.5, 

which was presented in Table 2.2 in Chapter 2. Mass diffusion coefficients (Table 2.3 in 

Chapter 2) were used in concentration gradient profile calculation. 

Previous modelling demonstrated the similar concentration profile achieved for both Ca2+ and 

CO3
2- ions. In addition, protein concentration gradients are generated as proteins are 

delivered into microfluidic device with only one reagent in this set of experimental design. 

Therefore, Ca2+ ion and the wild-type major 28 kDa extrapallial (WEP) protein are selected for 

concentration profile in this computational modelling. This concentration profile was 

calculated by considering both flow running distance (y-axis) and lateral diffusion distance (x-

axis). The bigger diffusion coefficient of proteins compared to small ions (Table 2.3 in Chapter 

2) implies a much lower lateral diffusion speed of protein molecules than Ca2+. In the 

condition where protein and calcium were delivered only in one channel, both calcium and 

protein will diffuse across the channel throughout the whole length of the microfluidic 

channels. As a consequence, both protein and calcium ion will have a similar concentration 

gradient profile. 

With a low diffusion coefficient (shown in Table 2.3 in Chapter 2), the protein concentration 

gradient will remain along the length of channel. After delivery the 50 μg/ml of EP protein as 

initial concentration into one inlet, a sharp gradient profile is generated across the channel 

(Figure 3.6, red dash line). After flow running of 10 mm along the channel, this concentration 

gradient still remains with less steep steps (Figure 3.6, red lines). The Ca2+ concentration 
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reduces rapidly along the channel (Figure 3.5, black lines). The initial concentration of 50 mM 

CaCl2 was delivered into one side of the channel, a sharp gradient profile is generated, 

similar to the WEP protein. But ions were uniformly dispersed across the entire channel by 10 

mm down in the channel (Dy=10 mm). Therefore, over long channel distance (Dy≥10 mm), 

the protein concentration gradient still remains mainly with balanced ion concentration across 

the channel. As mentioned preciously, after delivery into the microfluidic channel at the same 

flow rate, the CO3
2- will have the similar concentration profile as Ca2+, not presented in this 

simulation work. This set of modelling results indicates a great range of scenarios of 

concentration gradient with proteins and ions being achieved for on-chip calcium carbonate 

crystal formation.  

The long distance of microfluidic channel (5 cm), allows both the protein and ion 

concentrations to eventually be balanced across the microfluidic channel. This set of diffusion 

modelling presents the opportunity to screen the influence of biomineral proteins on crystal 

growth with a vast range of conditions along this long channel microfluidic device. Under such 

circumstance, different crystallisation conditions will be generated via delivering protein 

solutions into the laminar flow microfluidic devices. Therefore, biomineral protein influence on 

calcium carbonate crystallisation can be achieved by analysing the crystal formation along 

the whole microfluidic channel with different protein concentrations. 
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Figure 3.6. Illustration of concentration gradient profiles of EP and Ca
2+

 
on-chip distribution. 

Ions and protein have similar diffusion profile along the directions of stream flow 
(Dy). Protein has small diffusion rate, with concentration gradient remainning 
after running long distance (Dy>10 mm). Ionic gradient across the channel has 
been elimated after running long distance (Dy>10 mm). 

 

3.2.2.2 Supersaturation ratio in the presence of protein diffusion 

Under the buffered pH conditions, the calculation of the supersaturation ratio (S) is more 

complicated than for the previous work in de-ionised water. Using the same calculations and 

taking into account the MOPS and pH equilibria, the supersaturation ratio (S) of this system 

was constructed. This calculation indicates that the supersaturation ratio (S) varies under 

different conditions of pH and ion concentrations (Table 3.1). In the presence of the same 

concentration of 10 mM reagents, the supersaturation ratio is much higher in de-ionised water 

(53) than that in the buffer condition of pH 7.5 (3.4). Meanwhile, given the constant pH value, 

supersaturation ratio of CaCO3 varies by the presence of the concentrations of Ca2+ and 

CO3
2-. For example, the presence of 50 mM Na2CO3 and CaCl2 in MOPS buffer (100mM, 

pH7.5) induced an S value of 7.4 while 10 mM Na2CO3 and 10 mM CaCl2 in MOPS buffer 

(100mM, pH 7.5) induces an S value of 3.4. 



Chapter 3                       Computational modelling for crystallisation 

-59- 

The supersaturation ratio profile was presented as a two-dimensional plot with x-axis 

representing for the lateral distance of the channel (Dx) and distance y-axis for the flow rate 

distance (Dy). Under this pH buffered condition, the supersaturation ratio of calcium 

carbonate was presented in Figure 3.7. The results imply a similarity in overall shape of the 

supersaturation distribution to that of a non-buffered system. There is a sharp peak in the 

middle of channel in the initial stage after sample delivery (Dy=0 mm). Supersaturation ratio 

profile broadens across the channel on the sample continuous along the device (Dy 

increases) and finally flattens across the whole channel after distance of Dy≥30 mm.  

System Supersaturation ratio 

10 mM Na2CO3 in DI water, pH 11.0 

10 mM CaCl2 in DI water, pH 4.9 
53 

10 mM Na2CO3 in 100mM MOPS buffer, pH 7.5 

10 mM CaCl2 in 100mM MOPS buffer, pH 7.5 
3.4 

50 mM Na2CO3 in 100mM MOPS buffer, pH 7.5 

50 mM CaCl2 in 100mM MOPS buffer, pH 7.5 
7.4 

Table 3.1  The maximum supersaturation ratio in different systems. 

The formation of bicarbonate and carbonate is determined by the pH of the 
system. Based on the equilibrium between H2CO3, HCO3

-
, CO3

2-
, bicarbonate 

is dominant in the system consisting of 50 mM Na2CO3 and 50 mM CaCl2 in 
100 mM MOPS buffer at pH 7.5. The concentration of bicarbonate is 46.9mM 
in comparison to 0.07 mM of carbonate accounting for the much lower 
supersaturation ratios of CaCO3 in the MOPS buffer system (100mM, pH 
7.5). 
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Figure 3.7.Simulation of supersaturation ratio in pH buffered condition. 

Supersaturation ratio differs across the channel along the distances in flow 
direction (Dy). The various acid-base equilibrium and the MOPS buffer (100mM, 
pH7.5) were taken into account in the simulation. The supersaturation ratio was 
same calculated as previous non-buffered system. 

 

This set of computational modelling results predicts the distribution of crystals along the 

microfluidic channel in this pH controlled condition. The simulation predicts that a single line 

of crystals will form in the channel in the initial stage of the two merged solutions (Dy<1 mm). 

Thereafter crystals will be more dispersed across the channel and finally crystals become 

well separated in the channel at the outlet. In addition, after delivering the same concentration 

of CaCl2 and Na2CO3 solutions, a lower crystal density will occur in the channel in this pH 

controlled condition than the non-buffered de-ionised water conditions in previous work. 

In this PhD project, two types of microfluidic channels are used: the T-junction channel and Y-

type channel. In our experiments, same reagent solutions are running at similar velocity for 

both microfluidic channels: 5.2 mm/s for T-junction channel and 5.1 mm/s for Y-type channel. 

As a consequence, the similar computational modelling results are achieved, as presented in 

T-junction channel mentioned above, with steep step profile for the concentration gradient 

and central peaks profile for the supersaturation ratio (S). 
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3.2.2.3 Real time experiments with both protein and ion diffusion 

To investigate the crystallisation in this pH buffered condition in microfluidic devices, real time 

on-chip crystallisation experiments are required. According to the modelling settings, 10 g/ml 

of protein were added to CaCl2 solution only, with all reagents bufferred in MOPS buffer (100 

mM, pH 7.5). Crystallisation reagents of 10 mM CaCl2 and 10 mM Na2CO3 solutions, were 

used for on-chip crystallisation. Two solutions were delivered at flow rate of 2 µl/min, 

controlled by syringe pumps. In-situ optical image recordings were required to determine the 

crystal on-chip distribution under this condition.  

Under the condition of equal pH 7.5 in the presence of functional protein, overall investigation 

demonstrated that fewer crystals precipitated in the channel than in the de-ionised conditions. 

As to the initial stage of the interface, a line of individual crystals occurs in the centre of the 

channel (Figure 3.8A). This phenomenon remains for some flow distances (Dy≥1 mm) 

towards the outlet (Figure 3.8B). The stream of crystals start to disperse across the channel 

further towards the outlet (Figure 3.8C). Finally, crystals were well separated across the 

whole channel with protein and ion diffused into the other stream (Figure 3.8D). This real time 

crystallisation experiment demonstrates the crystal distribution throughout the whole channel 

in the buffered pH conditions.  
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Dy=0 mm Dy > 1 mm

Dy> 2 mm Dy> 5 mm

Dy=0 mm Dy > 1 mm

Dy> 2 mm Dy> 5 mm

 

Figure 3.8. Optical images of the crystal precipitation in microfluidic 
channels. 

Optical graphs show crystal distribution along the channel.(A) A line of individual 
crystals formed with Dy=0 mm and (B) remains for a long distance of Dy>1 mm. 
Crystals dispersed across the channel under mass diffusion (Dy> 2mm) (C) and 
finally across the whole channel (D).   

 

This set of computational modelling results represents the crystal distribution in the 

microfluidic channels with the presence of both proteins and ion concentration gradients. The 

supersaturation profile demonstrated the crystal distribution in this microfluidic channel.Under 

the buffered pH (7.5) conditions, low supersaturation ratios (S) indicated lower crystal density 

than that in de-ionised water system. The coincidence between the computational modelling 

prediction and real time crystallisation experiments reveal the usefulness of this combination 

of modelling prediction and real-time confirmation experiments for crystal growth control. The 

modelling calculation reveals the ion and protein concentration gradient profile throughout the 

channel, which can be used for calcium carbonate on-chip crystallisation to investigate the 

protein influence on crystal formation control.  
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3.3 Discussion: 

Compared to the mineral crystallisation in the de-ionised conditions, biomineralisation is a 

much more complicated process. There are three major steps for this processes, each 

exerting precise control. The first step is the templation of biomineral nucleation from the 

interaction from organisms. During the nacre formation, mantle cells are orchestrating the 

whole process, probably from assembling the chitin before mineralisation. Also, a local 

microenvironment for mineralisation is controlled by cells delivering the mineral-loaded 

vesicles into the nucleation site (Nudelman et al., 2006). In addition, biomineral properties are 

controlled by ions and organic molecules as a mineralisation modifier in vivo. During 

molluscan shell formation, the existing acidic proteins are thought to induce and control 

mineralisation to form the nacreous layer structures (Addadi et al., 2006). Finally, biomineral 

structures are perfectly regulated from the localized microenvironment (Xu et al., 2007). Take 

the example of nacre formation, the crystal first grows vertically along the c-axis until it 

reaches the limitation of chitin, and then grows laterally to form the tablet structure (Addadi et 

al., 2006).  Meanwhile in vitro crystallisation experiments in the presence of functional 

peptides or proteins demonstrated the influence of specific proteins on crystal formation, i.e. 

the promotion of amorphous calcium carbonate (ACC) (Aizenberg et al., 1996, Lévêque et al., 

2004, Politi et al., 2008). Therefore, it is important to investigate calcium carbonate 

crystallisation under the precise control of these functional biomineral proteins. 

Computational modelling demonstrates the advantages of applying microfluidics to in vitro 

calcium carbonate crystallisation. In this pressure-driven laminar flow microfluidic system, the 

supersaturation ratio profile was calculated to predict the crystal on-chip distribution. Real 

time on-chip crystal distribution coincides with the prediction of supersaturation ratio profile in 

modelling results. This combination of the computational modelling and real time experiments 

demonstrated the well controlled crystal formation by the on-chip supersaturation ratios.  

After reagent solution was delivered into the laminar flow microfluidic system, ions and 

proteins were transferred in both lateral mass diffusion (x-axis) and advection (y-axis) 

throughout the channel simutaneously. The modelling results denote a large number of 

crystallisation conditions have been achieved with specific ion and protein concentrations in 

each part of the microfluidic channel. Under these circumstances, crystals would be precisely 

controlled by the microenviroment of localised ions and proteins. Proteins that are potentially 

involved in biomineralisation can be screened using this approach for calcium carbonate 

crystallisation. The influence of biomineral proteins, the potential morphology and polymorph 
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control on crystallisation, can be determined by analysing the on-chip crystal formation along 

the microfluidic channel. 
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4 
4.1 Introduction 

4.1.1 CaCO3 in vitro crystallisation system 

A key issue in the study of biomineralisation is how biological molecules control crystal 

nucleation and orientation in vivo (Lowenstam and Weiner, 1989, Addadi and Weiner, 1992, 

Belcher et al., 1996, Yan et al., 2007). This is fairly difficult to determine as biological systems 

are complex, with many possible pathways for in vivo control (Nudelman et al., 2006, Addadi 

et al., 2006, Cartwright and Checa, 2007). Therefore, relatively simplified in vitro 

crystallisation systems have been used to control crystal nucleation and growth.  

In the in vitro systems, additives such as proteins (Belcher et al., 1996, Gotliv et al., 2003), 

polymers (Ma et al., 2007, Pokroy et al., 2007), low molecular compounds (Gebauer et al., 

2009, Wang et al., 2009b) and ions (Wilbur and Bernhardt, 1984, Loste et al., 2003b, Politi et 

al., 2010) are investigated for their effects on crystallisation. For example, magnesium has a 

vital impact on CaCO3 crystallisation. Early in vitro experiments confirmed that crystal 

inhibition was achieved by Mg, by prolonging the induction time for crystal growth (Wilbur and 

Bernhardt, 1984). This was followed by experiments on stabilising amorphous calcium 

carbonate using MgCl2 solution (Loste et al., 2003b, Politi et al., 2010). In addition, the ratio of 

[Mg]/[Ca] determined the crystal polymorph in aqueous conditions: low ratios produce calcite 

and a high ratio aragonite (Loste et al., 2003b, Dandeu et al., 2006, Falini et al., 2009). Not 

only Mg, other ions such as Sr2+ and K+ have also been used for in vitro crystallisation 

(Wasylenki et al., 2005, Gebauer et al., 2009, Falini et al., 2009).  

In vitro, organic components are used to modify crystallisation in two main ways: either as 

additives in aqueous condition (Pietrzak et al., 1976, Suzuki et al., 2009, Dey et al., 2010) or 

serving as manufactured templates (Loste et al., 2003a, Aizenberg, 2004, Gower, 2008). In 

aqueous conditions, an acidic shell matrix protein from P. fucata, Aspein, was identified to 

induce calcite crystal formation in aqueous conditions (Takeuchi et al., 2008). They incubated 
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calcite crystals by adding 10 µg/ml Aspein as an additive into a reagent solution of Mg/Ca at a 

ratio of 5:1 for crystallisation. In addition, a double hydrophilic polymer consisting of 

polydiethylaminoethyl methacrylate (PDEAEMA) and polymethacrylic acid (PMMA) was used 

to induce pure branched aragonite crystals in aqueous conditions (Nassif et al., 2005). 

Polymers have also been used as organic templates to mediate crystal nucleation and 

orientation (Loste et al., 2003a, Dey et al., 2010, Li et al., 2011). Well-defined crystal 

topography with templated structure (~1 µm particle monolayer) was generated using a 

colloidal monolayer template in a bulk system (Meldrum and Ludwigs, 2007). In addition, 

printed templates with self-assembled monolayer (SAMs) of HS(CH2)15CO2H were used to 

control CaCO3 nucleation and orientations in a slow diffusion bulk system (Aizenberg, 2004). 

All these findings demonstrate a range of in vitro systems that have been successfully used 

to control crystal nucleation and orientation. 

In all these experiments, a bulk system with fixed reagent volumes was used, i.e. 500 ml 

solution was used to determine magnesium effect on crystallisation (Loste et al., 2003b). 

However, most studies demonstrated that additive concentrations influence crystallisation. In 

this chapter, we get into explore situation where the bulk process is not needed, but instead 

components are screened in an individual way to determine the order of events and subtle 

influence of each of the participants. 

4.1.2 Laminar flow microfluidic system 

The laminar flow microfluidic system provides a dynamic system with continuous flow for (bio-

) chemical analysis in microlitres (Takayama et al., 2001, Ismagilov et al., 2001, Kuczenski et 

al., 2007). In the experimental design, reagent solutions containing proteins are delivered into 

the laminar flow microfluidic system. This method offers simultaneous control of 

microenvironments along the channel by locating [ion] and [protein] at different channel parts, 

which enables an opportunity to grow crystals in a number of conditions in a single channel. 

These conditions have been demonstrated from on-chip protein and ion concentration profiles 

using the computational modelling software (Comsol) in Section 3.2 in Chapter 3. 

In order to establish a systematic screening method, extrapallial fluid proteins were used. The 

wild-type extrapallial proteins, existing in the cavity between the shell and organic mantle, are 

considered important for in vivo shell growth (Wilbur and Saleuddin, 1983, Wilbur and 

Bernhardt, 1984). The total wild-type extrapallial fluid proteins (TWEP) mixture is used for on-

chip crystallisation. TWEP is the total proteins extracted from the extrapallial cavity from the 

bivalve M. edulis, which is made up of many proteins, some of which may, or may not, be 
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involved in biomineralisation.  

4.2 Results 

4.2.1 Fast crystal on-chip growth in aqueous conditions 

Under appropriate control of the flow rate, the pressure-driven laminar flow system can 

generate a series of conditions with stable concentration gradients. In the first trial 

experiments on applying the microfluidic system to biomineral studies, a simple T-junction 

microfluidic device with ~5 cm long reaction channel was initially used (Figure 2.1 in Chapter 

2). Calcium chloride (CaCl2) and sodium carbonate (Na2CO3) were used as reagents, with 

both dissolved in de-ionised water without pH control. Aliquots of reagent solutions were 

continuously delivered into the microfluidic channels for on-chip crystallisation. In order to 

investigate the influence of reagent concentration on crystal formation, a range of 

concentrations were used, including 1 mM, 10 mM, 50 mM and 100 mM.  

In the presence of very low concentration (1 mM) of both reagents, no crystals precipitated in 

the channel after constant delivery for 20 min. Crystals started to precipitate once a 

concentration of 10 mM was reached. In the presence of 10 mM CaCl2 and Na2CO3 solutions, 

a line consisting of a few individual crystals formed, biased towards the CO3
2- channel (Figure 

4.1A). Compared to crystallisation with 10 mM reagents, when 20 mM was delivered into 

microfluidic channel, a stream of crystals formed in the Na2CO3 channel side with higher 

crystal density (Figure 4.1B). When a higher concentration of 50 mM was used, a stream of 

crystals with greater density formed in the channel (Figure 4.1C). However, in the presence of 

100 mM, a large number of crystals precipitated across the whole channel (Figure 4.1D). This 

was a result of greater supersaturation ratio in the presence of high concentrations.  



Chapter 4                                    Established protocols of microfluidics for CaCO3 on-chip crystallisation 

-69- 

 
 

Figure 4.1. On-chip crystallisation with different reagent concentrations. 

(A) Individual crystals aligned in a line in the CO3
2-

 side of channel with 10 mM 
reagent solution. A stream of crystals formed in the presence of both (B) 20 mM 
and (C) 50 mM of reagents into the microfluidic channels. (D) High crystal 
density occurs cross the whole channel after delivering 100 mM reagents of 
both CaCl2 and Na2CO3. 

 

The reagent concentration influence is seen with high crystal density in the channel in the 

presence of highest reagent concentration (100 mM). This high density distribution would 

prevent the analysis of individual crystals. In addition, previous modelling has shown a range 

of reaction conditions being achieved using appropriate reagent concentrations such as 50 

mM. As a consequence, a concentration of 50 mM for each reagent was used for protein 

screening in this project. This ensured sufficient crystals were produced while avoiding crystal 

‘overcrowding’ in the channel, which would have enhanced the analysis of individual crystals 

by Raman spectroscopy. 
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4.2.2 Crystal off-chip analysis using Raman spectroscopy & SEM 

The reversible sealed microfluidic chip enhances the off-chip analysis of crystal polymorph 

identification from Raman spectroscopy and morphology study via scanning electron 

microscope (SEM). With appropriate volume of reaction solutions, well-dispersed crystals 

formed on the surface of the glass substrate and PDMS channels of microfluidic chips. After 

crystal on-chip formation, methanol was run-through the channel to ‘free e’ the crystals for 

further analysis.  

Rhombohedral crystals were dominant in the microfluidic channel when both reagents were 

dissolved in de-ionised water without any additives (Figure 4.2). Micro-Raman spectroscopy 

was used for crystal polymorph identification. In this experiment, over 10 crystals were 

randomly selected for Raman spectra collection. The Raman results showed the same 

spectra for crystals investigated, with the strongest peak at 1086 cm-1, and vibration bands of 

710 cm-1, 281 cm-1 and 155 cm-1. These specific peaks identify the cubic structures as calcite 

crystals. Scanning electron microscope (SEM) images showed the well dispersed crystals in 

detail. All crystals have similar cubic morphology, aligning on the glass coverslip according to 

the microfluidic channel. Figure 4.2B shows crystals at the turn of the channel.  
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Figure 4.2. Off-chip analysis of crystals formed in microfluidic channels. 

(A) Optical microscope image reveals a line of crystal formed in the channel 
with 10 mM CaCl2 and 10 mM Na2CO3. (B) Scanning electron microscope 
(SEM) observation of crystals formed on the glass cover-slip of microfluidic chip. 
Well dispersed crystals formed along the channel figures. (C) Polymorph 
identification using Raman spectroscopy confirmed the crystals as calcite. 

 

The combination of on-chip crystallisation and off-chip analysis presents a novel platform for 

biomineral studies. In the de-ionised water conditions, calcite was the dominant polymorph 

formed in a wide range of concentration gradients of CaCl2 and Na2CO3 solutions.  

 

4.2.3 On-chip screening of TWEP protein 

In native conditions, calcium carbonate deposition under biological control is not as simple as 

the experiments above using CaCl2 and Na2CO3 in de-ionised water. For some long time, the 

extrapallial fluid was considered important for molluscan in vivo shell formation (Wilbur and 

Bernhardt, 1984, Fritz et al., 1994, Weiner, 2008). Rich in inorganic and organic components, 

the extrapallial fluid supplies potential roles in the biomineralisation process including 

providing a microenvironment for CaCO3 deposition (Crenshaw, 1972, Misogianes and 
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Chasteen, 1979). 

The laminar flow microfluidic system provides an opportunity to screen these EP proteins 

using small volumes. In this trial experiment, the total wild-type extrapallial (TWEP) protein 

mixture is used for on-chip crystallisation in a T-junction channel. This T-junction microfluidic 

device enables comparison of crystal formation in different channel parts, from the initial 

stage to the end of channel, where different ion concentrations exist. To compare the results 

with TWEP protein, the same experiments were carried out using BSA and Tris buffer (100 

mM, pH 7.5). 

In the presence of TWEP protein, branched crystal clusters were firstly observed in 

microfluidic channel (Figure 4.3A). This cluster structure is similar to the synthetic aragonite 

formation (Dandeu et al., 2006). However, this is an unstable formation with continuous 

reagents running through the channel. Oval crystals, derived from these clusters, 

subsequently appeared in the microfluidic channel (Figure 4.3B). This is a unique 

phenomenon only existing in the presence of TWEP protein. It was not seen in the condition 

when Tris buffer (100mM, pH 7.5) or BSA was used.  

 

Figure 4.3. Optical images of CaCO3 on-chip crystallisation with TWEP 
proteins. 

(A) Unstable branched crystal clusters initially formed in the channel. (B) 
Subsequently, clusters transformed into stable ovoid-shaped crystals. 

 

For each condition, five crystals were selected for Raman analysis. An average of three 

spectra was collected for each single crystal. The ovoid crystals (Figure 4.4A), formed in the 

presence of TWEP protein, were identified as calcite. Average Raman spectrum gives a 

strong signal at 1086 cm-1, with characteristic peak at 281 cm-1 (Figure 4.4B). In contrast to 

the calcite crystals formed in the control experiments, the background spectrum of ovoid 
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calcite crystals is higher and the intensity ratio of the main peak (1086 cm-1) compared to two 

other peaks (712 and 281 cm-1) is lower (Figure 4.4B).  

In the control experiment with BSA, both spherical and rhombohedral crystals precipitated in 

the channel (Figure 4.4C). The rhombohedral crystals were confirmed as calcite, with 

characteristic peaks at 1086 cm-1, 710 cm-1, 281 cm-1 and 155cm-1 (Figure 4.4D). The 

spherical crystals were identified as vaterite by Raman. Average Raman spectra presented 

spherical crystals with strong signals at 1073 cm-1 adjacent to the major peak at 1088 cm-1 

(Figure 4.4F). Both crystals also appear in the experiment with buffer system only (Figure 

4.4E).  
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Figure 4.4.Fast screening of on-chip crystallisation. 

(A) Ovoid-shaped crystals were dominant in the presence of TWEP protein 
mixture. (B) The Raman spectrum identified the ovoid crystal as calcite with 
calcite-like Raman spectra but with much higher background scattering. Similar 
phenomenon of both spherical and rhombohedral crystals has been generated 
in the control experiments of (C) BSA and (E) Tris buffer system only. Raman 
spectra presented (D) calcite and (F) vaterite crystals. 

 

After polymorph identification from Raman spectra, scanning electron microscopy (SEM) was 

used to observe crystal morphology. In the presence of TWEP proteins, the ovoid crystals 
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were presented as peanut-shaped structures (Figure 4.5A). High-magnification SEM images 

revealed that these peanut-shaped crystals had a rough surface (Figure 4.5A, Insert). In the 

control experiments, both rhombohedral calcite and spherical vaterite crystals were observed 

in the channel (Figure 4.5B&C). The inserted high-resolution SEM images show the details of 

both the spherical vaterite (Figure 4.5B) and rhombohedral calcite crystals (Figure 4.5C) with 

smooth surfaces (Figure 4.5B&C, Inserts). However, BSA generated more vaterite crystals 

(Figure 4.5B), compared to that of the buffer system (Figure 4.5C).  

 
 

Figure 4.5. SEM images of on-chip crystallisation. 

(A) In the presence of TWEP protein mixture, the ovoid calcite crystals were 
shown as peanut-shaped crystals. The insert high-magnification image 
represents the rough surface on the pea-nut shaped crystals. (B) In microfluidic 
channels, BSA induced spherical vaterite and rhobomhedral calcite crystals. (C) 
Similar phenomenon occurs in the Tris buffer (100mM, pH 7.5) conditions. The 
insert high-magnification SEM images show the details of both spherical and 
cubic calcite crystals. 

 

The presence of TWEP protein induced ovoid calcite formation in microfluidic channels, 

illustrating the effect that TWEP protein has on crystal morphology. In the control 

experiments, calcite was the dominant polymorph, while again shows the influence of the 

TWEP protein. 

4.2.4 In-situ Raman detection during crystal formation 

In the biomineral process, calcium carbonate crystallisation is a kinetic process, controlling 

crystal morphology, size and orientation (Verdoes et al., 1992, Cölfen, 2007). Optical 

recording alone cannot distinguish which polymorph has been formed, since several different 

gross morphologies can exist within the same polymorph. The examples are the 

rhombohedral and peanut-shaped crystals identified as calcite in this study, as well as the 

nacre tablet and branch cluster crystals confirmed as aragonite. Therefore, monitoring crystal 
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polymorph switch during in vitro growth is important for understanding the crystallisation 

mechanism involved in the biomineral process.  

Raman spectroscopy, the non-destructive and non-invasive analysis approach, has great 

application i.e. live cell analysis and synthetic structure detection (Maguregui et al., 2009). 

For this in-situ analysis, we integrated micro-Raman spectroscopy and the microfluidic device 

for crystal polymorph detection during on-chip growth. Real time Raman spectroscopy 

enables investigation on crystal formation from the very initial stage.  

In this set of in-situ Raman experiments, the TWEP protein was used for crystal growth. All 

microfluidic chips were placed on the microscope with the Raman detector. Real-time Raman 

spectra were collected every 40 s during crystal formation. Initially, no significant spectrum 

appeared on the interface during the induction time. As flow progressed, a strong peak at 

1086 cm-1 appears on initial crystal formation, but no significant peaks at 710 or 281 cm-1. At 

this early stage, it is not possible to distinguish polymorph. With time increasing, all Raman 

peaks were getting stronger, at 1086, 710 and 281cm-1, which identified the crystals as calcite 

(Figure 4.6). More spectra were collected during the investigation to identify that there was no 

polymorph switch during formation. It can be concluded that calcite was initially formed in the 

presence of TWEP proteins in the microfluidic system, without polymorph switch during 

crystal growth.  
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Figure 4.6. In-situ Raman spectroscopy of on-chip crystal formation with 
TWEP protein mixture. 

Consecutive spectra were collected every 40 s from the initial joint of interface. 
(A) The Raman peak at 1086 cm

-1
 firstly appeared to show the calcium 

carbonate. (B) With time elapse, the peak of 281 cm
-1

 increased without any 
shift, which identified the crystal as calcite.  

 

This is the first example of the integration of a microfluidic device with micro-Raman 

spectroscopy in biomineralisation study. It provides a platform to investigate the mechanism 

of crystal formation in the presence of functional macromolecules from initial stage of crystal 

precipitation. This has demonstrated an approach for real-time polymorph monitoring during 

crystallisation, which can be used for functional screening of biomineral proteins.  

 

4.3 Discussion 

The detailed mechanism of CaCO3 crystal growth control during in vivo shell formation is 

poorly understood. We have demonstrated the microfluidic approach as an important tool in 

the rapid screening of biomineral extrapallial proteins during CaCO3 in vitro crystallisation.  In 
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this experiment, reversible sealed microfluidic device was developed. T-junction channel was 

designed to allow consistent laminar flow when the two solutions met in the channel. This 

uses a mass diffusion module to create a mass concentration gradient profile along the 

channel, as well as a large range of crystallisation conditions with different supersaturation 

ratio (S) (Chapter 3).  

This study clearly shows the advantages of using a microfluidic approach for crystal formation 

over traditional methods. This technique consumes small quantities of functional proteins, but 

yields much information on rapid screening of biomineral proteins. In this laminar flow 

approach, crystal morphology control has been achieved using the extrapallial proteins, 

inducing ovoid calcite crystals. In-situ Raman spectroscopy indicates no polymorph switch 

during this calcite crystal formation in the presence of TWEP proteins. The result of this initial 

set of experiments provides a platform to study individual proteins that have been purified 

from the extracted extrapallial fluid. 
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5 
5.1 Introduction 

5.1.1 Calcium carbonate polymorphs 

As described in the general introduction, calcium carbonate, one of the most widely studied 

biominerals, has three main crystalline polymorphs (vaterite, aragonite and calcite) (Addadi et 

al., 2006, Meldrum and Ludwigs, 2007, De Paula and Silveira, 2009), two hydrated crystal 

forms (calcium carbonate monohydrate and calcium carbonate hexahydrate) (Peric et al., 

1996, Nebel et al., 2008) and an amorphous calcium carbonate (ACC) precursor (Politi et al., 

2008). 

Calcite and aragonite are the most common polymorphs in the biosphere, both of which can 

occur in the mollusc shells (Marin and Luquet, 2005, Addadi et al., 2006, Nudelman et al., 

2006). The mussel Mytilus edulis produces a well defined bimineralic shell structure with an 

outer layer of prismatic calcite and an inner layer of aragonite nacre (Cusack and Freer, 

2008). This contiguous formation is under exquisite biological control from organic 

components (Addadi et al., 2006, Cusack and Freer, 2008). 

In this chapter, calcium carbonate in vitro crystallisation is investigated in the presence of 

several individual extrapallial fluid proteins, including the major wild-type 28 kDa extrapallial 

(WEP) protein, the major expressed extrapallial (EEP) protein, the C1q domain and the wild-

type extrapallial complex (WCEP) protein. All of these proteins were used to study 

crystallisation in the microfluidic system and also to compare these results with conventional 

bulk system experiments. 

5.1.2 Molluscan extrapallial (EP) proteins 

The extrapallial (EP) fluid, filling the cavity between organic mantle tissue and the inner shell 

surface, is considered to influence shell formation. This has been supported by the flat pearl 
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formation on inorganic substrates inserted into the extrapallial space of abalone Haliotis 

rufescens (Fritz et al., 1994, Zaremba et al., 1996). There are many inorganic ions in the 

extrapallial fluid, including K+, Ca2+, Mg2+, Na+, SO4
2-, Cl- and CO3

2- (Crenshaw, 1972, 

Pietrzak et al., 1976). The components of the extrapallial fluid have calcium-binding capacity 

and as a consequence, the EP fluid has a calcium ion concentration of approximately 9.8 

mM, with  over 70% of the calcium bound to small molecules (Misogianes and Chasteen, 

1979). Both the Ca2+-binding ability and the spatial location of extrapallial fluid suggest that it 

has a potential role during shell formation (Wilbur and Bernhardt, 1984).  

In recent decades, major advances in molecular biology have been used in the identification 

of molluscan proteins (Miyamoto et al., 1996, Marin et al., 2007, Takeuchi et al., 2008, Suzuki 

et al., 2009). The reverse transcription polymerase chain reaction (RT-PCR) has been widely 

used to generate the amplified DNA sequence allowing protein expression of biomineral 

proteins, which enhances the opportunity for functional studies of these molluscan shell 

matrix proteins (Takeuchi et al., 2008, Kong et al., 2009). Recently, RNA interference (RNAi), 

a molecular biology technique to silence the target gene expression, has been used to clarify 

the in vivo function of the Pif protein, which is involved in aragonite layer binding (Suzuki et 

al., 2009). Simultaneously, pyrosequencing techniques using expressed sequencing tags 

(ESTs) have been used to cover most of the diversity of matrix protein in P. margaritifera 

shell. This novel technique has also been used to encode of the shell matrix proteins, which 

indicates their implications on shell formation (Clark et al., 2010, Craft et al., 2010, Joubert et 

al., 2010). 

Organic components of the extrapallial (EP) fluid from the bivalve M. edulis had been initially 

analysed by Misogianes and Chasteen (1979). In their studies, at least five proteins were 

confirmed from the extrapallial fluid using a disc gel electrophesis system. Hattan et al. (2001) 

illustrated that the major EP protein from M. edulis exists as a dimmer with a monomeric 

molecular weight of 28.3kDa and is highly glycosylated (estimated 14% of total mass is 

carbohydrate). This protein has a pI of 4.43 indicating an acidic protein with probable calcium-

binding capacity. This calcium-binding interaction is coupled with changes to the protein 

secondary structure (increase in α-Helix, and reduction in β-sheet) (Hattan et al., 2001). 

These findings provide a starting point to investigate the mechanism of in vivo 

biomineralisation. 

Yin et al. (2005) used molecular biology methods, including the reverse transcription 

polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE), to 

characterise the primary structure of the main extrapallial (EP) protein from M. edulis. They 
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determined that the major EP protein is composed of 236 amino acids of 24.3 kDa with an N-

linked acidic glycan (~4kDa). This protein binds to Ca2+ and other divalent ions such as Mg2+, 

Cd2+, Mn2+ and Cu2+. The amino acid sequencing and protein domain prediction indicate that 

the Ca2+-binding sites and H+-binding receptors are probably located towards N-terminus, 

which is rich in Ca2+-binding amino acids, such as Asp. All these findings imply a potential 

role for this protein during biomineralisation, calcium transportation for shell growth and heavy 

metal detoxification (Yin et al., 2005).  

5.1.3 Influence of EP proteins on crystallisation 

Due to their calcium-binding abilities, molluscan extrapallial proteins may fulfill several 

functions during biomineralisation (Misogianes and Chasteen, 1979, Hattan et al., 2001, Yin 

et al., 2005). In order to determine the function of the extrapallial proteins, they have been 

used for in vitro crystallisation studies. Wilbur et al. (1984) used the extrapallial fluids (EPF) 

from both the oyster Crassostrea virginica and the clam Mercenaria mercenaria for 

crystallisation. The EPF inhibits crystallisation by prolonging the crystal induction time (Wilbur 

and Bernhardt, 1984). A novel ~38 kDa EP protein from the pearl oyster Pinctada funcata 

was determined to be an amorphous calcium carbonate-binding protein (ACCBP), rich in 

acidic residues with its theoretical pH at 4.56 (Ma et al., 2007). Crystal binding experiments 

indicate this 38 kDa protein having crystal recognisation ability. This capacity to bind to 

specific polymorph potentially influences in vivo crystal deposition by protecting undesired 

crystal attachment (Ma et al., 2007).   

The total wild-type extrapallial fluid (TWEP) protein mixture from the bivalve M. edulis (Figure 

5.1A), has already been screened for calcium carbonate crystal formation in the laminar flow 

microfluidic system (Chapter 4 Section 4.2). Crystallisation results demonstrate the influence 

of TWEP on crystal growth, inducing ‘peanut’ shaped calcite crystals in the microfluidic 

channel (Yin et al., 2009). 

Apart from the total wild-type extrapallial (TWEP) proteins, four different protein samples were 

screened to investigate the influence of individual EP proteins on crystallisation. Before the 

consideration of the synergistic effects on crystallisation between exrapallial proteins, all 

proteins are used to modify CaCO3 on-chip crystallisation individually. This functional study 

experimental design will contribute to the understanding of potential influence from individual 

proteins and then how to control crystallisation collaboratively. In these experiments both 

wild-type and expressed proteins were used (Figure 5.1). The major wild-type 28 kDa 

extrapallial (WEP) protein (Figure 5.1B), directly extracted from living mussels, has already 
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been identified and characterised in previous work (Hattan et al., 2001, Yin et al., 2005). The 

properties and calcium-binding ability implied a possible involvement in crystallisation. 

Molecular biology techniques have been used to express the 28 kDa WEP, the major 

expressed extrapallial (EEP) protein (Figure 5.1C) and the C1q domain of this protein (Figure 

5.1D). As to further characterise the WEP protein, the cDNA coding WEP protein was 

synthesised using GenScript. WEP cDNA was incorporated into plasmid pET21a which was 

further amplified in the E.coli System. Therefore, EEP protein has the same amino acid 

sequence as the WEP protein, but without the carbohydrate moiety (Figure 5.2A). The C1q 

domain is a 14 kDa (Figure 5.1D) C-terminal conserved domain of the EEP (Figure 5.2B). In 

addition, a wild-type complex was extracted from the extrapallial fluid and purified using ion 

exchange chromatography. Three bands from this complex are usually associated together in 

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) (Figure 5.1E).    
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Figure 5.1. Electrophoretic analyses of extrapallial fluid proteins. 

There are four individual extrapallial proteins used for functional screening on 
calcium carbonate crystallisation. Each sample was subjected to SDS-PAGE 
analysis on 10% gel and stained with Coomassie blue. (A) The total wild-type 
extrapallial (EP) proteins from M.edulis (lane 2). A multitude of proteins are 
present in this mixture. (B) The profile of the major wild-type 28 kDa extrapallial 
fluid (WEP) protein from M. edulis (lanes 2, 3). (C) The expressed major 
extrapallial fluid (EEP) protein from E.coli system (lanes 2, 3). (D) The 
conserved C-terminal domain, C1q domain has a molecular weight 14 kDa (lane 
2). (E) The wild-type extrapallial fluid complex (WCEP) proteins from M. edulis 
(lane 2). There are three proteins associated together during protein purification 
in the range of 40 to 62 kDa. The lanes 1 in all images are the molecular protein 
standards presenting the molecular weight. 
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Figure 5.2. Illustration of the major extrapallial fluid proteins in M. eduis. 

In this functional screening study, three proteins related to the main EP protein 
are screened: the wild-type EP protein, expressed EP protein and the C1q 
domain. (A) Cartoon shows the protein components of all three screened main 
EP proteins. The 28 kDa WTEP protein is a glycosylated protein. EEP has the 
same amino acid sequence but without carbohydrate, C1q domain is the 
conserved C-terminal domain of the main extrapallial fluid protein. (B) Amino 
acid sequence of the main EP protein from mussel M. edulis. The red region 
indicates the conserved C1q domain.  

 

All four EP proteins were screened to assess their roles on crystallisation in both conventional 

bulk conditions and microfluidic system. Using the microfluidic system, the combination of 

computational modelling and real-time on-chip crystallisation provides precise control of 

experimental conditions for crystallisation (Chapter 3). This advantage of generating a large 

number of scenarios with precise control over crystallisation cannot be achieved by the bulk 

system. This combination has been used to identify the influence of these four proteins on 

crystal distribution and morphology.  
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5.2 Results 

5.2.1 Crystallisation with EP proteins in bulk system 

There have been many investigations on the application of Ca2+-binding acidic polymers, i.e. 

polyacrylic acid (PAA) and polyaspartic acid (poly-Asp) on CaCO3 crystallisation (Gower and 

Odom, 2000, Park and Meldrum, 2004, Nassif et al., 2005, Cheng et al., 2007, Cölfen, 2007). 

Han et al. (2007) demonstrated that at low concentrations of PAA, amorphous calcium 

carbonate (ACC) spheres aggregated to form hollow structures. A twin-sphere structure has 

been generated in the presence of  poly L-lysine (pLys) in a slow diffusion system (Yao et al., 

2009). All these findings illustrate the modification effect of Ca2+-binding polymers on crystal 

formation. In order to identify the influence of extrapallial (EP) proteins on CaCO3 

crystallisation, a conventional bulk precipitation approach using an eppendorf™ tube was 

used to study crystal growth. This has been described in Chapter 2.  

Before crystallisation, all individual EP proteins, including the major wild-type 28 kDa 

extrapallial (WEP) protein, the wild-type extrapallial complex (WCEP) protein, the major 

expressed extrapallial (EEP) protein and the expressed C1q domain, were mixed with CaCl2 

only, Na2CO3 only, or both reagent solutions to create a range crystallisation conditions 

analogous to those used in microfluidics to determine the protein influence. 

In the presence of 28 kDa WEP protein mixed with different reagents, calcite is the only 

precipitated polymorph in bulk conditions. Multilayer calcite structures have been achieved 

under this circumstance (Figure 5.3A).The insert is the high-magnification SEM image 

representing the crystal details in layered structures (Figure 5.3A, Insert). Calcite is also the 

dominant polymorph in the presence of the WCEP protein, with conventional rhombohedral 

morphologies (Figure 5.3B). However, in the presence of EEP protein, both layered calcite 

crystals and spherical vaterite crystals formed (Figure 5.3C). Similar results have been 

achieved in the presence of C1q domain (Figure 5.3D). The high-magnification SEM images 

represent the similar crystal results with spherical vaterite and layered calcite crystal 

formation (Figure 5.3C &D, Insert).  

All these crystallisation experiments demonstrate the shortfall of the bulk system in identifying 

the EP protein function on crystallisation. The similar phenomenon of predominant calcite 

crystal formation occurs when WEP or WCEP was used for crystallisation in bulk system. The 

multilayer calcite and spherical vaterite crystals were generated by both EEP protein and C1q 

domain in bulk conditions. In addition, the same crystallisation results were achieved when 
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one specific EP protein was mixed with different reagents. 

 

Figure 5.3. Crystallisation in bulk system. 

When one EP protein is mixed with different reagents, same crystal formation 
was generated. This phenomenon occurs to all four individual EP proteins, with 
(A) multilayer calcite formation in WEP protein, (B) rhombohedral calcite crystal 
formation in WCEP protein, spherical vaterite and multilayer calcite crystal 
formation in both (C) EEP and (D) C1q domain. All inserted images are the 
high-magnification SEM images presenting the details of crystal morphologies. 

 

5.2.2 Protein concentration determination for on-chip crystallisation 

The above crystallisation results demonstrate that the conventional bulk system cannot fully 

enable the determination of protein influence on crystallisation. Therefore, the pressure-

driven laminar flow microfluidic system has been used for EP protein functional screening. 

The microfluidic system has been applied to biomineral studies with reaction reagents of 

CaCl2 and Na2CO3 for crystallisation in non-buffered aqueous conditions (Chapter 4). The 

well controlled on-chip crystal distribution has been achieved by using 50mM reagents. For 

protein functional screening, the pH buffered condition of pH 7.5, a physiological pH for 

molluscan extrapallial fluid proteins, was used. Under this condition, mathematical 

calculations determined that there is a lower value for the maximum supersaturation ratio (S) 
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of 50 mM CaCl2 and Na2CO3 solutions at this pH than in the non-buffer system. This 50 mM 

reagent concentration has also been confirmed by real-time crystallisation experiments with 

appropriate crystal density formed in microfluidic channel (Figure 4.4 in Chapter 4). 

Therefore, 50 mM CaCl2 and Na2CO3 have been used from here on as the concentration 

during on-chip crystallisation in MOPS buffer (100 mM, pH 7.5) 

Previous screening of EP protein mixture demonstrated the influences of total extrapallial fluid 

(TWEP) proteins on crystal morphological and polymorph control in microfluidic system. 

Since many mollusc biomineral proteins are assumed to have calcium-binding ability, they 

are assessed by mixing the proteins with different reaction reagents for crystallisation.  

In functional screening studies, a key factor of protein influence on crystallisation is protein 

concentration. Based on the reagent concentration of 50 mM, the major wild-type 28kDa 

extrapallial (WEP) protein has been mixed with 50 mM CaCl2 solution only for trial 

experiments for crystal growth, in a range from 1 to 100 μg/ml, since this protein has calcium-

binding abilities. A blank condition without any protein was used for comparison (Figure 

5.4A).  

The results illustrate that protein concentration has a major impact on the control of crystal 

formation (Figure 5.4). Rhombohedral calcite crystals dominated on-chip formation with buffer 

only (Figure 5.4A). In the very low concentration (1 μg/ml) of 28 kDa WEP (Figure 5.4B), both 

rhombohedral calcite and spherical vaterite crystals precipitated in the channel. When the 

protein concentration is increased (10 μg/ml), the novel hollow lemon-shaped crystals formed 

in the channel (Figure 5.4C). At 50 µg/ml of WEP, lemon-shaped crystals dominated on-chip 

crystal formation (Figure 5.4D). The presence of the highest concentration (100 μg/ml) 

produces a similar result as the concentration of 50 μg/ml, with predominant lemon-shaped 

crystals in the microfluidic channel (Figure 5.4E). This set of experiments demonstrates the 

influence of protein concentration on crystal morphology. 
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Figure 5.4. On-chip crystallisation with a range of concentrations of WEP 
protein. 

Scanning electron microscopy images of crystals formed in microfluidic channel. 
A range of EP protein concentrations (0 to 100 μg/ml) have been used to 
assess protein concentration influence on crystallisation. (A) The rhombohedral 
calcite crystals dominated on-chip crystallisation in the condition of buffer 
system without any protein. (B) In the presence of very low concentration (1 
μg/ml) of WEP protein, both rhombohedral calcite and spherical vaterite crystal 
precipitated in the channel. (C) The hollow lemon-shaped crystals were 
generated by the 28 kDa WEP from 10 μg/ml protein. (D) The relatively higher 
concentrations of 50 μg/ml induced predominant lemon-shaped crystals during 
on-chip formation. (E) Similar phenomenon with dominated lemon-shaped 
crystal formation occurs in the highest concentration of 100 μg/ml. 

 

Since protein has a more marked effect on crystallisation in the range of 10 μg/ml and 50 

μg/ml, these two concentrations were subsequently used as protein concentrations in 

functional screening experiments, including the major wild-type 28 kDa extrapallial (WEP) 

protein, the expressed main extrapallial (EEP) protein, the 14 kDa C1q domain and the wild-

type extrapallial proteins complex (WCEP) proteins. To maintain an objective analysis and 

comparison of all these proteins, commercial calcium-binding protein (CBP) and polyacrylic 
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acid (PAA, Mw ~3500) were used as positive controls while BSA was used as a negative 

control during on-chip crystallisation. 100 mM MOPS buffer, pH 7.5, was used throughout this 

set of experiments. Prior to delivery into the microfluidic chip, all proteins and polymers are 

mixed with CaCl2 only, Na2CO3 only and both solutions to create more diverse range of 

conditions to investigate protein influence on crystallisation (Table 2.1). Although a T-junction 

microfluic chip was used for initial experiments all the results for TWEP proteins and WEP 

protein, described here were obtained using Y-type microfluidic channel (250µm width x50µm 

depth x 2cm length) for all individual EP proteins.  

 

5.2.3 Semi-quantitative analysis of on-chip crystallisation 

Previous research indicates that extrapallial fluid has an inhibitory effect on crystallisation 

(Wilbur and Bernhardt, 1984). This inhibitory effect can be identified in the semi-quantitative 

analysis of protein screening in microfluidic system. Semi-quantitative analysis includes the 

crystal induction time and on-chip crystal distribution. In microfluidic system, the 

crystallisation induction time is defined as the time lag from the formation of the interface of 

the two solutions to the first crystal observed under 20x objective lens. In each case, a time of 

90 s, after observation of first crystal, was used for crystal growth. To determine the crystal 

on-chip distribution, the images of all microfluidic chips were recorded. Recorded images 

were analysed using the software (Image J) to count the crystal numbers in the whole 

microfluidic channel under all conditions. Both the induction time and the induced on-chip 

crystal numbers are used to illustrate the influence of extrapallial fluid proteins on 

crystallisation. 

Molluscan extrapallial proteins were screened using the same procedure as for CaCO3 crystal 

growth (Section 2.3 in Chapter 2). The results demonstrate that crystal induction time varies 

depending on the reaction components. Shortest induction time (190 s) occurs in the absence 

of any protein, i.e. only in MOPS buffer (100 mM, pH 7.5) condition (Figure 5.5A). Different 

extrapallial fluid proteins induced similar induction times in the range of 300 to 350 s (Figure 

5.5). But as to each individual protein, shorter induction time was generated by low 

concentration (10 µg/ml) (Figure 5.5A), compared to high concentration (50 µg/ml) (Figure 

5.5B). This set of analysis demonstrates one aspect of the inhibition effect of proteins on 

crystal formation by prolonging the induction time for the first crystal to appear.  

The inorganic buffer condition induces more crystals (crystal number>6500) than with any 
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biomineral protein (crystal number <4500) after the same crystallisation time. As to the 

presence of extrapallial fluid proteins, fewer crystals precipitate in the presence of high 

concentration (50 μg/ml) (Figure 5.5B) of protein than in the condition of low concentration 

(10 μg/ml) (Figure 5.5A).  

This set of semi-quantitative analyses on both crystallisation induction time and on-chip 

distribution demonstrates the influence of extrapallial fluid protein on on-chip crystallisation. It 

illustrates that proteins can serve as inhibitors to crystal precipitation in aqueous conditions. 

This effect has been determined by the prolonged crystal induction time and reduced crystal 

numbers after on-chip formation. More information on protein influence during crystallisation 

can be achieved by analysing the morphologies of crystals formed in the presence of specific 

proteins. 

In the laminar flow microfluidic system, the supersaturation ratio (S) profile has been 

constructed in modelling (Chapter 3), with a sharp peak in the middle of the channel in the 

beginning of the experiments, getting wider along the microfluidic channel, and finally 

flattening after a long flow rate distance (Dy) (Figure 3.7 in Chapter 3). This profile may 

influence the crystal numbers along the channel. In order to investigate the crystal on-chip 

distribution in the presence of biomineral proteins, the expressed extrapallial (EEP) protein 

was used for crystallisation. The result shows that the precipitated crystal number is 

increasing with increasing Dy (Figure 5.5C). But crystals have similar crystal size along the 

channel. This result can be explained by the wider distribution of supersaturation ratio (S) 

profile, with the increased supersaturation ratio across the channel when Dy increases. 
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Figure 5.5. Semi-quantitative analysis of on-chip crystallisation. 

Semi-quantitative analysis includes the crystallisation lag and the in-channel 
crystal numbers in the presence of extrapallial fluid proteins. (A) The presence 
of 10 μg/ml EP proteins mediates both crystallisation lag and in-channel crystal 
numbers, in contrast to the blank condition with buffer only. (B) The semi-
quantitative analysis in the presence of 50 μg/ml extrapallial proteins, comparing 
to the buffer condition. (C) In the laminar flow microfluidic system, the in-
channel crystal number is increasing along the channel in the presence of EEP. 

 

5.2.4 Glycosylated major wild-type extrapallial (WEP) protein 

In our initial experiments (Chapter 4), the total wild-type extrapallial (TWEP) protein from M. 

edulis induced oval calcite crystal formation on-chip. To investigate the influence of the major 

wild-type 28 kDa extrapallial (WEP) protein during on-chip crystallisation (Figure 5.6), it was 

screened at two concentrations. A high concentration of 50 µg/ml and a low concentration of 

10 µg/ml were used. Both concentrations were screened using three conditions: protein 

mixed with CaCl2 only, Na2CO3 only and both solutions (Table 2.1 in Chapter 2). 
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Figure 5.6. Illustration of the major wild-type 28 kDa extrapallial protein. 

(A) Illustration of protein domains of the abundant wild-type extrapallial fluid 
protein from mussel M. edulis. (B) SDS-PAGE shows the molecular weight of 
this protein is approximately 28 kDa. 

 

 WEP in CaCl2 solution only 

Using a microfluidic approach, it is realised that the influence of WEP protein on crystal 

growth critically depends on the solutions in which the protein is delivered. In the presence of 

50 µg/ml WEP in 50 mM CaCl2 solution, hollow lemon-shaped crystals dominate at the initial 

point of interface of the two solutions (Dy<1 mm) (Figure 5.7A). As the experiment 

progresses, the formed lemon-shaped structures are open at both ends indicating hollow 

structures (Figure 5.7B). Calcite crystals form further down the channel, after some flow rate 

distance (Dy >5 mm) (Figure 5.7C). Raman spectroscopy has identified both lemon-shaped 

and open structures as vaterite, with a shoulder peak at 1074 cm-1 near the major Raman 

shift at 1089 cm-1 (Figure 5.7E).  

As mentioned, the computational simulation (Comsol) predicted the protein concentration 

profile along the microfluidic channel (Figure 3.7 in Chapter 3). The combination of the protein 

concentration gradient profile and real-time on-chip crystallisation reveals that WEP protein 

controlled crystal morphology. At high concentration in the initial stage of experiments, lemon-

shaped crystals dominate at the beginning of the channel. The vaterite structures formed are 

more open as protein diffuses across the channel.  

The presence of low concentration (10 μg/ml) WEP protein induces hollow vaterite structures 

in the channel, which is a similar result that occurs with 50 μg/ml WEP in CaCl2 only. Under 

this condition, high-resolution SEM images show that most hollow crystals precipitate with a 

rough crystal surface composed of nano-granules (Figure 5.7D). A few calcite crystals also 

form along with the hollow vaterite crystals.  
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Figure 5.7. On-chip crystal formation with WEP present in CaCl2 only. 

SEM images of the crystals formed at the distances of (A) Dy=100 μm and (B) 
Dy=5 mm. High-resolution images are given in the inserts. The lemon-shaped 
crystal in A is closed whereas the one in B is open. (C) At Dy>5 mm, calcite 
crystals start forming in the channel. (D) High-magnification SEM image 
represents the hollow structure formation at the low concentration (10 µg/ml) of 
WEP in CaCl2 only. (E) Raman spectrum of the lemon-shaped vaterite crystal. 
All scale bars 10 µm. 

 

 WEP in both reagent solutions and in Na2CO3 solution only 

When 50 µg/ml WEP is added into Na2CO3 solution only or both solutions, calcite is the only 

polymorph precipitated in the channel (Figure 5.8A). However, by comparing these crystals 

with classic rhombohedral calcite crystals formed in the inorganic condition without any 

protein (Figure 5.8C&D), the presence of WEP produces a multilayered structure (Figure 

5.8A&B). This structure is composed of stacks of thin plates parallel to each other, although 

the edges are not perfectly aligned (Figure 5.8B). High-magnification SEM images also show 

that the rhombohedral calcite crystals form with smooth surface (Figure 5.8D). The 

identification of mineral polymorph from Raman spectroscopy has identified both structures 

as calcite, with the same Raman peaks at 1086, 712 and 281 cm-1 (Figure 5.8E). Similar 

structures have been generated under the conditions of low concentration (10 µg/ml) WEP 

protein mixed with both reagents or with Na2CO3 solution only. In comparison to the lemon-
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shaped vaterite formation, this phenomenon probably demonstrates another possible way of 

the major extrapallial proteins in modifying crystal formation.  

 

Figure 5.8. Crystal formation when WEP protein is present in Na2CO3 
solution only or in both solutions. 

(A) Layered crystals were the only product formed. The crystals aligned in the 
direction of flow and in the middle of the channel. (B) High magnification SEM 
image shows the layered structure under this condition. (C) Rhombohedral 
calcite crystals dominated on-chip formation without any protein. (D) High-
magnification image shows calcite crystal with smooth surface in this condition. 
(E) Raman spectrum of the layered crystal shows that it is the same as standard 
rhombohedral calcite formed in pure inorganic solutions (inorganic calcite). 

 

5.2.5 Non-glycosylated main expressed extrapallial (EEP) protein 

EEP protein is a non glycosylated expressed protein with the same amino acid sequence as 

WEP protein. Therefore, the molecular weight of this protein is approximately 24 kDa, 

excluding the ~4 kDa N-glycan from WEP protein (Figure 5.9). This protein has been 
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screened in both the bulk condition and microfluidic system to determine the protein’s 

influence on biomineral crystallisation.  

 

Figure 5.9. Illustration of the expressed major extrapallial fluid (EEP) 
protein. 

(A) The illustration of protein domain demonstrates this protein as non-
glycosylated protein with the same protein sequence as the abundant wild-type 
extrapallial fluid (WEP) protein. (B) SDS-PAGE reveals the molecular weight of 
this protein is approximating 28 kDa.  

 

 EEP in CaCl2 only 

As with the WEP protein, the influence of EEP protein strictly depends on the location of the 

protein at delivery into the microfluidic channel. In the condition of 50 μg/ml EEP mixed in the 

CaCl2 channel only, vaterite crystals dominated in the channel. From the beginning of the 

interface (Dy<1 mm), only a few crystals formed a single line at the interface (Figure 5.10A). 

High-magnification SEM image reveals the rough surface of these crystals (Figure 5.10A, 

Insert). After protein and ions diffusion across the channel (as Dy increases), the uniform 

lemon-shaped vaterite structures appeared in the channel. With progress towards the end of 

the device (Dy>10 mm), ions are completely distributed across the channel, and protein 

partially diffused with a concentration gradient still remaining. Under this condition, crystals of 

both lemon-shaped vaterite and rhombohedral calcite are well dispersed in the channel 

(Figure 5.10B). Similar results were found with the low concentration (10 μg/ml) of EEP in the 

CaCl2side only (Figure 5.10C). After ion and protein diffusion across the channel, both lemon-

shaped vaterite crystals and rhombohedral crystals formed in the channel. 

This set of experiments reveals the influence on crystal polymorph from the EEP protein 

concentrations. In the beginning of the reaction channel, the presence of a high concentration 

of EEP induced vaterite crystals. As flow runs through the channel (Dy increase), protein and 
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ions diffuse across the channel. As a consequence, both calcite and vaterite are precipitated 

in the channel.  

 

Figure 5.10. On-chip crystallisation with EEP protein in CaCl2 only. 

(A) When 50 μg/ml EEP was added in 50 mM CaCl2 only, few crystals formed in 
a line in the beginning of the channel. (B) Crystals dispersed in the channel after 
mass diffusion into the other reagent streams. The inserted images present the 
details of crystal formation in this condition. (C) When 10 µg/ml EEP protein was 
added in 50 mM CaCl2 only, the lemon-shaped vaterite and rhombohedral 
calcite crystals formed in the microfluidic channel. The inserted image shows 
the details of vaterite crystals with rough surface. 

 

As shown above, when 50 μg/ml EEP protein was mixed with CaCl2 solution only, crystal 

morphology and polymorphs vary along the channel, which is induced by the changing of 

protein and ion concentrations. Under this condition, the overview of crystal on-chip formation 

in the initial stages (Dy<2 mm) represents this phenomenon (Figure 5.11). In the very initial 

stage (Dy=0), protein is not diffused across the interface. Under this circumstance, vaterite 

formation is favoured, precipitating in the channel in the presence of high protein 

concentration and less diffusion. With Dy increasing, more crystals precipitated in the 

channel. Only a few rhombohedral calcite crystals start appearing in the channel after some 

distance (Dy≥1.8 mm), with EEP protein diffusion across the interface.  
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High-magnification SEM images reveal the details of the vaterite crystals precipitated in the 

channel at different Dy values. In the beginning of the channel, oval vaterite crystals 

precipitate, with a rough surface (Figure 5.11B). With increasing flow distance, lemon-shaped 

structures appear and are then formed uniformly in the latter section of the channel (Figure 

5.11C&D). Calcite crystals start forming in the channel section of Dy≈2 mm. This set of 

results demonstrates the influence on crystal morphological control, polymorph selection and 

distributions using this laminar flow microfluidic system.  

 

Figure 5.11. Overview of on-chip crystallisation with EEP protein in CaCl2 
only. 

Calcium carbonate on-chip crystallisation in the condition of EEP protein mixed 
with 50 mM CaCl2 solution only. (A) Representative SEM images demonstrate 
the crystal formation in the beginning stages of microfluidic channel (Dy<2 mm). 
In this condition, a line of individual vaterite crystals form in the beginning of the 
channel. Crystals start separating in the channel after mass diffusion during flow 

running (Dy1 mm). High-magnification SEM images reveal the details of 
vaterite formation in different channel sections (B, C and D). 

 

 EEP in both reagent solutions 

When the EEP protein is mixed with both CaCl2 and Na2CO3 solutions prior to crystallisation, 

only ion concentration gradients remain across the channel with balanced protein 

concentration. Figure 5.12 demonstrates the on-chip crystallisation with EEP protein in both 

solutions. A stream of individual crystals forms at the interface of two solutions at the 

beginning of merging (Figure 5.12A). High-magnification SEM image reveals lemon-shaped 

structures form in this part of the channel (Figure 5.12A, insert). As the flow runs through the 

channel (Dy increases), both rhombohedral calcite and lemon-shaped vaterite crystals 

precipitated in the channel (Figure 5.12B). With a low concentration (10 μg/ml) of EEP protein 

mixed with both solutions, more crystals precipitated in the channel from the initial stage 
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(Figure 5.12C) to the latter channel part (Figure 5.12D).  Under this condition, lemon-shaped 

vaterite crystals dominated on-chip formation. All the lemon-shaped crystals have been 

identified as vaterite by Raman spectroscopy with a characteristic shoulder peak at 1074 cm-1 

nearby the major peak at 1091 cm-1 (Figure 5.12E). 

In this set of experiments, the condition of mixing EEP protein with both reagents induces the 

formation of both rhombohedral calcite and ‘lemon’ vaterite. This result is different from the 

crystallisation in the condition of mixing both reagents with WEP protein containing 

carbohydrate, which generates layered calcite crystals only. The difference between the two 

sets experiments probably implies that the carbohydrate, present in the wild-type protein, and 

not on the expressed, may influence crystal formation.  
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Figure 5.12. On-chip crystal formation in the presence of EEP in both 
solutions. 

Lemon-shaped vaterite crystals dominate on-chip crystallisation in the presence 
of the EEP protein in both reagent solutions. (A) In the presence of 50 µg/ml 
EEP in both solutions, a single line of individual vaterite crystals precipitates in 
the initial stage of channel, high-magnification image showing the lemon-shaped 
structures. (B) Crystals start dispersing across the channel after ion diffusion. 
Vaterite dominated in-channel formation, from the initial stage (C) to the channel 
part with Dy increasing (D), when 10 µg/ml EEP was added in both solutions. 
The Insert is the high-resolution SEM image showing the lemon-shaped crystals 
under this condition. (E) Raman spectra confirmed the lemon-shaped crystals 
as vaterite, with characteristic should peak of 1074 cm

-1 
near the major shift of 

1091 cm
-1

. 
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 EEP in Na2CO3 solution only 

In the presence of 10 µg/ml EEP in Na2CO3 solution only, both calcite and vaterite crystals 

precipitate in the channel (Figure 5.13). This condition induces a dominance of calcite 

crystals in the initial part of the reaction channel (Figure 5.13A), and more vaterite precipitate 

down the channel (Dy increases) (Figure 5.13D). High-resolution SEM images reveal the 

details of rhombohedral calcite (Figure 5.13B) and spherical vaterite crystals (Figure 5.13 

C&E) forming in the channel. Compared to the results of low concentration of glycosylated 

major wild-type 28 kDa extrapallial fluid protein (WEP) in Na2CO3 solution only, the presence 

of non-glycosylated EEP induces vaterite crystal formation when protein added in Na2CO3 

only. This comparison also implies the potential influence of carbohydrate on crystal 

morphology and polymorph discrimination. 

 

Figure 5.13.On-chip crystallisation with 10 μg/ml EEP protein in Na2CO3 
solution only. 

(A) SEM image of on-chip crystallisation in initial part of channel in presence of 
10µg/ml EEP in Na2CO3 solution only. High-magnification SEM images 
represent the (B) rhombohedral calcite and (C) spherical vaterite crystals in this 
condition. (D) Crystals dispersed in the channel with Dy increasing. (E) High-
magnification SEM image represents the spherical vaterite structures in this 
condition. 

 

However, in the presence of high concentration (50 μg/ml) of expressed major extrapallial 

fluid protein (EEP) in sodium carbonate solution only, calcite dominated on-chip 

crystallisation. From the start of the initial interface of the two solutions, a line of individual 

crystals formed (Figure 5.14A). High-magnification images revealed that the hillock-shaped 

crystals formed in a line (Figure 5.14A, Insert). After protein and ions diffused into the other 

stream, the hillock-shaped crystals formed in the remainder of the channel (Figure 5.14B). 

The high-resolution microscopic images show that crystals have a columnar morphology with 
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two facets forming a cap, and one face generally decreasing towards the base of crystal. This 

uniform structure only formed in the microfluidic channel with 50 μg/ml EEP in Na2CO3 

solution. Micro-Raman spectra identify this structure as calcite, with characteristic shifts at 

1091, 710 and 139 cm-1.  

 

Figure 5.14. Representative SEM images of crystals formed in the 
microfluidic channel with 50 μg/ml EEP in Na2CO3 solution only. 

(A) The crystal formed in a line in the beginning of microfluidic channel. The 
insert image represents the details of crystals in hillock-shaped. (B) After mass 
diffusion across the microfluidic channel, crystals randomly separated in the 
channel. The insert presents the crystals details with similar structure as that 
formed in the beginning of the channel.  

5.2.6 Non-glycosylated conserved C1q domain 

The C1q domain is a conserved C-terminal domain of the major extrapallial fluid protein from 

M. edulis (Figure 5.15). This domain has been provided from an E.coli protein expression 

system, as a consequence, devoid of carbohydrate (Figure 5.15A). SDS-PAGE has clearly 

showed the molecular weight of this domain as approximately 14kDa (Figure 5.15B). As with 

WEP and EEP proteins, this domain has been screened for crystallisation using microfluidics 

at two concentrations: 50 µg/ml and 10 µg/ml.  

 

Figure 5.15. Illustration of the C1q domain. 

(A) The amino acid sequence of the major extrapallial fluid protein from M. 
edulis. The red region is the conserved C-terminal domain, the C1q domain. (B) 
Protein purification using SDS-PAGE presents the molecular weight of this 
domain as ~14kDa. 
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 C1q domain in CaCl2 solution only 

The on-chip crystallisation results reveal that the influence of this domain again relies on 

which component the C1q domain is mixed with prior to crystal incubation in the microfluidic 

device. When C1q domain was added in CaCl2 solution only, the lemon-shaped structures 

were induced in the channel (Figure 5.16). When 50 µg/ml C1q domain was mixed with CaCl2 

solution only, individual crystals aligned in a line in the middle of channel at the beginning of 

reaction channel (Dy<1mm) (Figure 5.16A). These crystals have been confirmed as lemon-

shaped structures from the higher magnification SEM image (Figure 5.16B). Greater 

magnification SEM image reveals a rough surface on the lemon-shaped structures (Figure 

5.16B, Insert). As the experiment proceeds (Dy>10 mm), both lemon-shaped vaterite and 

only a few rhombohedral calcite crystals precipitated across the whole channel, with lemon-

shaped vaterite dominant (Figure 5.16C). High-magnification SEM image reveals the crystal 

as lemon-shaped structure (Figure 5.16D). 

Similar crystallisation results have been generated when low concentration (10 µg/ml) C1q 

domain was added into CaCl2 solution. In the initial stage of channel (Dy=0), crystals aligned 

in a line on the interface of two solutions, with lemon-shaped structures dominated crystal 

formation (Figure 5.16E). High-magnification SEM image presents the lemon-shaped 

structure with rough surface as well (Figure 5.16F). These results are similar to those 

recorded when the major expressed EP protein was used (Section 5.2.3). Micro-Raman 

spectroscopy was again used to identify the crystal polymorph. All these lemon-shaped 

structures have been identified as vaterite crystals. 
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Figure 5.16. Representative SEM images of on-chip crystal formation with 
C1q domain in 50 mM CaCl2 only. 

When C1q domain was mixed with 50 mM CaCl2 solution, lemon-shaped 
vaterite crystals dominated in-channel crystallisation. (A) A line of individual 
crystals formed in the channel at Dy<1 mm. (B) High-magnification images 
show the crystal initially formed as lemon-shaped structures. The insert Image 
represents details of crystal surface with nano-granules. (C) After diffusion, 
crystal randomly formed in the channel, including lemon-shaped vaterite and a 
few rhombohedral calcite crystals. (D) High-magnification images present the 
single lemon-shaped vaterite structure. (E) When 10 µg/ml C1q domain mixed 
with 50 mM CaCl2 solution, a line of crystals formed in the channel, with vaterite 
crystals predominant. (F) High-resolution SEM image shows the vaterite 
crystals as ‘lemon’ structure. 

 

 C1q domain in both reagent solutions 

When the 50 µg/ml C1q domain is mixed with both reagents for on-chip crystallisation, a line 

of individual crystals including both rhombohedral calcite and lemon-shaped crystals appear 

at the beginning of the interface (Figure 5.17A). The insert reveals the crystal details with the 



Chapter 5                                      Functional screening of biomineral proteins using microfluidic system 

-105- 

well-shaped ‘lemon’ structures (Figure 5.17A, Insert). As the experiment progresses (Dy>10 

mm), the ion concentration balances across the channel. This balanced ion concentration 

induces crystals to be deposited separately in the channel (Figure 5.17B). Under this 

condition, both lemon-shaped vaterite and rhombohedral calcite crystals formed in the 

channel. Vaterite crystals have similar lemon-shaped structures along the whole channel. The 

presence of low concentration (10 μg/ml) of C1q domain mixed with both solutions induced 

the similar results as 50 μg/ml C1q domain, with vaterite crystals aligning a line in the 

beginning of channel (Figure 5.17C). The high-magnification SEM image shows the crystal as 

lemon-shaped structure. After protein diffusion across the channel, both lemon-shaped 

vaterite and rhombohedral calcite crystals dispersed in the channel (Figure 5.17D). 

 

Figure 5.17. On-chip crystallisation in the condition of C1q domain mixed 
in both solutions. 

When 50 μg/ml C1q domain is mixed with both reagent solutions, both lemon-
shaped vaterite and rhombohedral calcite crystals dominated in the channel. (A) 
Few crystals precipitated in the beginning of the channel (Dy<1 mm). Both 
lemons-shaped and rhombohedral crystals formed. (B) After diffusion across the 
channel (Dy>10 mm), both kinds of crystals dispersed in the channel. (C) When 
10 μg/ml C1q domain is mixed with both solutions, a line of crystals aligned in 
the beginning of channel. The insert high magnification SEM image shows the 
lemon-shaped crystals formed in the channel. (D) After protein diffusion across 
the channel, both calcite and vaterite dispersed in the channel.  
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 C1q domain in Na2CO3 solution only 

Similarly to the major wild-type 28 kDa extrapallial protein (WEP) and the main expressed 

extrapallial fluid protein (EEP), the C1q domain has been screened in crystallisation trails in 

microfluidic channel with 50 mM Na2CO3 solution only. In the condition of 10 μg/ml C1q 

domain mixed with 50 mM Na2CO3 only, a single line of individual crystals precipitate in the 

channel in the beginning of the experiment (Dy<1 mm) (Figure 5.18A). High-magnification 

SEM images reveal that spherical vaterite crystals have formed. After the solutions progress 

towards the outlet (Dy>10 mm), crystals separated in the channel, including both 

rhombohedral calcite and spherical vaterite crystals (Figure 5.18B).  

 

Figure 5.18. On-chip crystallisation with 10 μg/ml C1q in Na2CO3 only. 

(A) Spherical vaterite crystals precipitated in the channel from the beginning of 
the channel. (B) When mass balance across the whole channel, both 
rhombohedral calcite and spherical vaterite crystals precipitated.  

 

Under the condition of 50 μg/ml C1q domain in 50 mM Na2CO3 solution only, the in-channel 

crystal distribution is similar to that found for the low concentration of C1q domain, with 

crystals forming a single line in the beginning of channel (Dy<1 mm) (Figure 5.19A) and 

dispersing across the channel after Dy>10 mm (Figure 5.19C). Compared to the 

crystallisation with 10 μg/ml C1q domain in 50 mM Na2CO3 solution only, the presence of 

high protein concentration induces the crystal morphology changes. The significant change is 

that a multilayer calcite structure has been produced (Figure 5.19B&E). This layered calcite 

structure forms from the initial stage of Dy<1 mm (Figure 5.19B) and continues along the 

channel of Dy>10 mm (Figure 5.19E). Also, spherical vaterite crystals remain along the 

channel (Figure 5.19C).  
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Figure 5.19. On-chip crystallisation with 50 μg/ml C1q domain in 50 mM 
Na2CO3 solution only. 

In this condition, calcite crystals dominate on-chip formation. (A) The initial 
crystallisation shows a line consisting of individual crystals. This crystal 
formation includes both (B) layered calcite and (C) spherical vaterite formation. 
(D) After ion diffusion across the whole channel, crystals precipitated across the 
whole channel, including both multilayer and spherical structures (E). 

 

5.2.7 Wild-type extrapallial complex (WCEP) protein 

As well as the major extrapallial protein that was purified, other proteins were purified by my 

colleagues (Dr Khedidja Mosbahi and Dr Jiahong Jiang). During the protein purification using 

DE-52 anion exchange chromatography and analytical gel filtration chromatography, three 

proteins were co-eluted together, which appear to form a complex (Figure 5.20). Cross-linking 

experiments, using glutaraldehyde as a cross-linker confirmed that these proteins are 
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physically combined to form a complex. This complex consists of three proteins in the 

molecular weight (MW) range of 40 to 60 kDa. This complex was labelled as the wild-type 

extrapallial fluid complex protein (WCEP).  

 

Figure 5.20. Electrophoretic analysis of WCEP protein. 

SDS-PAGE analysis shows three bands, which stands for wild-type extrapallial f 
complex (WCEP) proteins (Lane 2). Lane 1 is the preloaded protein standard 
molecular weight markers. 

 

 WCEP in CaCl2 solution only 

Unlike the other proteins, when WCEP is used, remarkably different results have been 

observed. Under the condition of 50 µg/ml WCEP added into 50 mM CaCl2 solution only, 

calcite crystals dominate in-channel crystal formation (Figure 5.21A&B). In the initial stage in 

the reaction channel, individual crystals precipitate to form a line in the middle of channel, and 

the high-magnification SEM images show that these single crystals as multilayered structures 

(Figure 5.20, Insert). After some distance along the channel (Dy>10 mm), protein and ions 

diffuse across the interface, crystals randomly precipitate in the microfluidic channel (Figure 

5.21B). The crystal details are shown in the high-resolution image: calcite formed by several 

layers (Figure 5.21A&B, Insert).  

Similar results have been achieved in the presence of low concentration (10 µg/ml) of WCEP 

protein in CaCl2 only. Crystals favour precipitating in a line in the initial stage of the channel 

(Dy<1 mm) (Figure 5.21C), and separated in the channel with Dy>10 mm (Figure 5.21D). 

However, the presence of a low concentration of WCEP induces more crystal precipitation in 

the channel. The high-magnification SEM images demonstrate the crystal details in both 

areas, in stratified structures (Figure 5.21C& D, Inserts).  
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Figure 5.21. Crystal formation in the presence of WCEP in CaCl2 solution 
only. 

Calcite crystals dominate the on-chip crystallisation when WCEP protein was 
added in 50 mM CaCl2 solution only. (A) In the presence of high concentration 
(50 μg/ml) of proteins, a line of individual crystals appeared in the beginning of 
the main channel. (B) Crystals separated across the channel after mass lateral 
diffusion. The inserted images present the individual crystals with layered 
structures respectively. (C) Similar phenomenon appears in the condition of low 
concentration (10 μg/ml) of proteins, with crystals aggregating in a line in the 
beginning of channel. (D) Well separated across the channel after protein and 
ion diffusion. The inserted high-resolution SEM images present the crystal 
formation of layers structures (The inserts in C&D). 

 

 WCEP in both reagent solutions  

When 50 µg/ml WCEP protein is present in both solutions, crystal morphology is changed, 

with both calcite and vaterite forming in the microfluidic channel (Figure 5.22). In the 

presence of WCEP in both solutions, a line of individual crystals forms in the channel with 

short flow distance (Dy<1 mm) (Figure 5.22A). Further down the microfluidic channel (Dy>10 

mm), crystals are spread across the channel, with both spherical and rhombohedral crystals 

(Figure 5.22B). In this instance, calcite structures have been found embedded in the spherical 

vaterite crystal surface (Figure 5.22C). This bi-polymorph structure comprises layered calcite 

edges coming out from the spherical vaterite crystals (Figure 5.22C, Insert). This illustrates a 
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polymorph switch in the presence of WCEP in both reagent solutions. When 10 μg/ml WCEP 

protein was mixed with both solutions, similar crystallisation results were generated, with both 

vaterite and calcite crystals formed in the channel (Figure 5.22D). However, compared to the 

presence of high concentration of WCEP protein, the presence of 10 μg/ml protein induces 

more calcite crystals.  

 

Figure 5.22. On-chip crystallisation in the present of WCEP mixed with 
both solutions. 

When 50 μg/ml WCEP protein was mixed with both reagents, vaterite and 
calcite precipitated in the microfluidic channel. (A) Few crystals were aligned in 
the beginning of channel. The inserted high-magnification image confirmed 
these crystals as spherical vaterite. (B) At Dy>10 mm, crystals of calcite and 
vaterite are dispersed in the channel. (C) High-resolution SEM image reveals 
the rough surface of the vaterite structure, with layered calcite crystal growing 
out from the surface. The insert image presents the details of layered structures. 
(D) When 10μg/ml WCEP protein was mixed with both reagent solutions, both 
vaterite and calcite crystals precipitated in the channel. The inserted images 
show the details of vaterite and calcite crystals formed in this condition.  

 

 WCEP in Na2CO3 solution only 

When this complex was mixed with Na2CO3 solution only, spherical vaterite crystals 

dominantly formed in the microfluidic channel. A stream of crystals initially formed without any 

mass diffusion across the interface of two streams (Figure 5.23A). In this condition, many 
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spherical vaterite structures are precipitated in the channel with only a few calcite crystals. 

After mass diffusion, randomly separated crystals appear in the channel instead of the single 

line. Calcite crystals formed in the channel after some distance (Dy>5 mm) (Figure 5.23B). 

When a low concentration (10 µg/ml) of WCEP protein was added in Na2CO3 solution only, a 

similar result was obtained (Figure 5.23C), with both calcite and spherical vaterite crystals 

precipitated in the channel.  

 

Figure 5.23. On-chip crystallisation with WCEP in Na2CO3 solution. 

High concentration (50 μg/ml) of WCEP mixed with 50 mM Na2CO3 solution 
only, spherical vaterite crystals dominate in the channel. (A) A line of crystals 
formed in the centre of the microfluidic channel in the beginning of the reaction 
channel (Dy<1 mm). (B) The diffusion of ions and proteins with Dy>5 mm 
induces well dispersed crystals including both calcite and vaterite. (C) When low 
concentration (10 μg/ml) of WCEP protein mixed with 50 mM Na2CO3 solution, 
both calcite and spherical vaterite crystals precipitated in the channel. The 
inserted images show the structure details of both calcite and vaterite crystals. 

 

This set of on-chip crystallisation studies show a lack of polymorph selection in the presence 

of WCEP in Na2CO3 solution only. Both conventional spherical vaterite and rhombohedral 

calcite crystals precipitate in the channel under this condition. Compared to the on-chip 

crystal formation with other extrapallial fluid proteins in Na2CO3 solution only, the presence of 

WCEP is the only protein that does not induce multilayered calcite crystals. 
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5.2.8 Positive and negative controls on crystallisation 

The on-chip functional screening of extrapallial fluid proteins clearly demonstrates that the 

influence of EP proteins on CaCO3 formation strictly depends on the components carried with 

the protein. This phenomenon can be explained by protein calcium-binding abilities, which 

has generated novel structures in in vitro crystallisation experiments (Falini et al., 1996, 

Belcher et al., 1996, Pokroy et al., 2007). As a consequence, both positive and negative 

control experiments were conducted on-chip, to compare with the results shown for the EP 

proteins. Commercial calcium-binding protein (CBP), purchased from Sigma Aldrich, was 

used as a positive control, while bovine serum albumin (BSA) was used as a negative control 

since it is a non-biomineral protein. Polyacrylic acid (PAA, 1%), with molecular weight of 

~3500 was used for on-chip crystallisation as a positive control. All these control experiments 

were conducted in an analogous manner to the previous experiments with EP proteins, 

mixing with different reaction reagents to create the same scenarios for crystal growth. 

 Calcium-binding protein (CBP) 

In the presence of CBP, crystal formation is similar to that observed for the major wild-type 28 

kDa extrapallial fluid protein (WEP). Hollow vaterite structures and calcite crystals formed 

when high concentration (50 μg/ml) of CBP added into CaCl2 solution only (Figure 5.24A). 

The results imply that the protein’s calcium-binding ability has impacted on crystal formation, 

inducing hollow lemon-shaped crystals. However, the hollow vaterite structures formed with 

CBP are different from those formed in the presence of WEP protein. With WEP protein, the 

hollow structure has a rough surface composed of nano-granules (Section 5.2.3). The CBP 

protein generated the hollow structure with a thin smooth wall (Figure 5.24A) and 

rhombohedral calcite (Figure 5.24B). It is assumed that this difference in the outer wall of 

these structures is attributable to the differences in the structure of the two calcium-binding 

proteins. In other conditions of on-chip screening with the CBP protein, calcite is the only 

polymorph precipitated in the microfluidic chips (Figure 5.24C). High-resolution SEM images 

indicate the calcite crystal structure with several layers in the presence of CBP protein (Figure 

5.24D). 
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Figure 5.24. On-chip crystal formation with calcium-binding protein. 

Calcium-binding protein in CaCl2 solution only gave rise to both open, thin shell 
vaterite (A) and rhombohedral calcite (B) crystal formation. (C) All other 
conditions gave calcite crystals in the channel. (D) High-magnification SEM 
image shows the calcite crystal details in the condition of CBP in both solutions. 

 

 Polyacrylic acid (PAA) 

Polyacrylic acid (PAA), which has strong calcium-binding characteristics, was also used as a 

positive control. Three different reaction conditions (Table 2.2 in Chapter 2) were used to 

illustrate the influence of PAA on crystallisation.  

In all conditions of PAA mixed with different reagents, similar results were achieved, with the 

spherical vaterite crystals, having a rough surface composed with nano-granules and 

multilayered calcite crystals (Figure 5.25), either PAA is dissolved in CaCl2 solution only 

(Figure 5.25A), Na2CO3 solution only (Figure 5.25B) or in both solutions (Figure 5.25C). High-

magnification SEM images show that vaterite crystal structures have a rough surface with 

nano-granules (Figure 5.25D). The calcite crystals have been confirmed by high-

magnification SEM images indicating layered structures in all conditions in the presence of 

PAA. 
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Figure 5.25. On-chip crystallisation in the presence of polyacrylic acid. 

Polyacrylic acid (PAA) was used as a positive control for CaCO3 on-chip 
crystallisation. (A) When PAA is in the CaCl2 solution, both calcite and vaterite 
crystals formed in the microfluidic-channel. (B) Both spherical vaterite and 
layered calcite crystals formed in the channel in the condition of PAA in Na2CO3 
solution only. (C) Similar crystallisation results, with vaterite and calcite crystals, 
occurred when PAA was added in both reagents. All inserted images show the 
individual crystals with structure details: calcite in layered structures and vaterite 
crystals having rough surfaces. (D) Higher magnification SEM image shows the 
surface details of vaterite crystals. 

 

 Bovine serum albumin (BSA) 

Bovine serum albumin (BSA) only has calcium-binding ability when the BSA concentration is 

greater than 3 g/ml (Besarab et al., 1981). Therefore, it can be assumed that there is unlikely 

to be calcium-binding occurring in the presence of 50 μg/ml BSA. In microfluidic system, BSA 

serves as a non-functional protein control at a concentration of 50 μg/ml. Although BSA has 

been mixed with CaCl2 only, Na2CO3 only and both solution to create more crystallisation 

conditions, both rhombohedral calcite and spherical vaterite crystals formed in all these 

conditions (Figure 5.26A). The high-magnification SEM image represents the details of crystal 

morphologies with smooth surfaces, appearing on both vaterite and calcite (Figure 5.26 

B&C). It is worth noting that when BSA is used, no hollow lemon-shaped crystals are formed 
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in any condition tried using microfluidic device. 

 

Figure 5.26. On-chip crystallisation in the presence of BSA. 

(A) In all three conditions in the presence of BSA, both spherical vaterite and 
rhombohedral calcite crystals formed in the microfluidic channel. (B, C) Both 
structures have regular smooth surfaces (B , C). 

 

5.2.9 On-chip crystallisation without proteins 

A negative control without any protein, only 100mM MOPS buffer (pH 7.5), was also used to 

study crystal growth in the microfluidic channel. In the absence of any functional protein, 

rhombohedral calcite crystals are abundant in the channel (Figure 5.27A). High-resolution 

SEM image display conventional rhombohedral calcite precipitated in the microfluidic channel 

(Figure 5.27B). Raman spectroscopy identifies these crystals as calcite, with characteristic 

shifts at 1086, 712, 281 and 155 cm-1 (Figure 5.27C). In addition, semi-quantitative analysis 

indicates that this inorganic condition induced more crystals with a shorter induction time, 

compared to that when extrapallial proteins were present (Figure 5.4 in Section 5.2.3). 
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Figure 5.27. Crystal formation in inorganic buffer system. 

(A) Overview of crystals formed in the microfluidic channel in the buffer system 
without any protein. Calcite is the abundant polymorph in this inorganic 
condition. (B) High-resolution SEM image shows the details of the 
rhombohedral calcite crystals. (C) Raman spectrum identified the rhombohedral 
crystals as inorganic calcite with major peak of characteristic Raman shifts at 
1086 cm

-1
 and minor peaks at 155 and 281 cm

-1
. 

 

5.2.10 In-situ Raman detection of on-chip vaterite formation 

In biomineral studies, vaterite is the least stable polymorph among the three major crystalline 

polymorphs: calcite, aragonite and vaterite. In the protein screening experiments, lemon-

shaped vaterite crystals are induced by three main extrapallial proteins during crystallisation. 

These vaterite crystals are assumed to be a result of the influence of the protein-Ca2+ binding 

ability. This interesting structure has been only found in the presence of main extrapallial fluid 

proteins and the CBP protein.  

In order to investigate the protein-mineral interaction during lemon-shaped vaterite formation, 

in-situ Raman spectroscopy was used during on-chip crystallisation. This combination of 

Raman detection and real-time on-chip crystallisation was used to detect calcite crystal 

formation in the presence of total wild-type extrapallial fluid (TWEP) proteins in the microfludic 

device (Section 4.2.4 in Chapter 4). It confirmed that the oval calcite crystals are stable 

structures during crystallisation. 
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In-situ Raman spectroscopy was used again during on-chip crystallisation with the major 

expressed extrapallial (EEP) protein in 50 mM CaCl2 solution only, which had induced the 

lemon-shaped crystals. Real-time Raman spectra were collected every 20 seconds, during 

the crystallisation. Initially, there are no characteristic peaks except the channel background 

of the interface of the two solutions (Figure 5.28). As time lapses, the characteristic peak for 

vaterite formation of a shoulder at 1074 cm-1 appears. With continuous flow the spectrum gets 

stronger without any further change.  

The amplified investigation on the characteristic peaks of vaterite in the range of 1050 to 

1120 cm-1 show the major Raman shifts during the crystallisation (Figure 5.28A). The 

significant vaterite characteristic of a of shoulder at 1074 cm-1 adjacent to the major peak at 

1091 cm-1 starts forming after 20 seconds. After this, both peaks get stronger without any shift 

during crystallisation. All these investigations confirm that there is no polymorph switch during 

the vaterie on-chip formation, with stable lemon-shaped vaterite formation in the presence of 

EEP. 
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Figure 5.28. In-situ Raman spectra of on-chip crystallisation of vaterite in 
the presence of EEP protein. 

Consecutive spectra are collected every 20 s from the initial the interface. (A) 
The characteristic peaks of vaterite crystal in the range of wavelength of 1050 to 
1120 cm

-1
 were presented during crystallisation.  

 

5.3 Discussion 

5.3.1 CaCO3 crystal distribution in the laminar flow microfluidic 

system 

Understanding the function of biomineral proteins during in vitro crystallisation is 

fundamentally important for the investigation on the mechanism of the biomineralisation 

process. Previous studies have presented numerous experimental conditions required for 

protein function on crystallisation control (Belcher et al., 1996, Gotliv et al., 2005, Hou and 

Feng, 2006, Takeuchi et al., 2008, Feng et al., 2009, Suzuki et al., 2009).  
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In the pressure-driven laminar flow microfluidic system, mass transport into other streams is 

driven by the lateral diffusion. Therefore, a large number of scenarios have been created in 

the channel, with localised ions and proteins for crystal morphology and polymorph control. 

Combination of computational modelling and real-time experiments illustrates the influence of 

protein and ion concentration profiles on crystal morphology and polymorph. When EEP 

protein is mixed with CaCl2 only, the decreasing of protein concentration along the channel 

(Dy increasing) induced the changing of roughness of lemon-shaped vaterite surface, 

simultaneously produced calcite crystals (Figure 5.11 in Section 5.2.5).  

As shown above, different crystal structures have been generated in microfluidic channel in 

presence of different biomineral proteins. The summary of all crystallisation results with high 

concentration (50 µg/ml) biomineral proteins mixed with different reagents have been listed in 

Table 5.1. In addition, all control experimental results have also been presented for the 

comparison to functional biomineral proteins. All these results indicate the modification on 

crystal morphology and polymorph have been achieved from biomineral proteins. 

In addition, in the laminar flow microfluidic system, crystal distribution is strictly controlled by 

the on-chip supersaturation ratio (S) profile. In the buffered pH condition, individual crystals 

formed in a line at the beginning, when the two solutions merge. This phenomenon has been 

predicted by the supersaturation ratio modelling results showing a sharp peak in the middle of 

the channel. With flow running along the channel (Dy increases), crystals start to spread in 

the channel, with a broader profile of supersaturation ratio. Finally, crystals are randomly 

distributed in the channel with a flatten supersaturation ratio profile after a long distance 

(Dy>10 mm).  
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Protein Conditions in microfluidic Crystallisation results 

WEP 

WEP in CaCl2 Hollow lemon-shaped vaterite 

WEP in both solutions Multilayered calcite 

WEP in Na2CO3 Multilayered calcite 

EEP 

EEP in CaCl2 Lemon-shaped vaterite 

EEP in both solutions Lemon-shaped vaterite 

EEP in Na2CO3 Multilayered calcite 

C1q 

C1q in CaCl2 Lemon-shaped vaterite 

C1q in both solutions Lemon-shaped vaterite 

C1q in Na2CO3 Multilayered calcite 

WCEP 

WCEP in CaCl2 Layered calcite crystals 

WCEP in both solutions Vaterite switch to layered calcite 

WCEP in Na2CO3 Round vaterite and rhombohedral calcite 

PAA 

PAA in CaCl2 
Vaterite with rough surface and 

multilayered calcite 
PAA in both solutions 

PAA in Na2CO3 

CBP 

CBP in CaCl2 Hollow vaterite 

CBP in both solutions Multilayered calcite 

CBP in Na2CO3 Multilayered calcite 

BSA 

CBP in CaCl2 

Round vaterite and rhombohedral calcite BSA in both solutions 

BSA in Na2CO3 

MOPS buffer  Rhombohedral calcite dominated  

Table 5.1  Summary of on-chip crystallisation results in different 
conditions. 

The on-chip CaCO3 crystallisation varies in different conditions. This table 
summarises the crystallisation results with high concentration (50 µg/ml) of 
biomineral proteins in microfluidic channel mixed with different reagents. 
Control experimental results including positive controls (PAA and CBP) and 
negative controls (BSA and MOPS buffer) are also listed in the table.  

 

5.3.2 Vaterite crystal formation in the microfluidic system 

In the functional screening experiments on CaCO3 on-chip crystallisation, vaterite crystals 

formed in the channel when organic additives are mixed with CaCl2 solution only, except in 

the presence of wild-type extrapallial fluid complex (WCEP) proteins. An overview of vaterite 
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formation illustrates that different morphologies have been achieved with different proteins 

(Figure 5.29). Classic spherical vaterite structures formed with smooth surfaces in the 

channel with BSA (Figure 5.29A). The lemon-shaped hollow structures precipitated in the 

channel in the presence of calcium-binding protein (CBP) in CaCl2 solution only (Figure 

5.29B). This structure also precipitated in the channel in the presence of biomineral proteins 

including the major wild-type 28 kDa extrapallial (WEP) protein (Figure 5.29C), the major 

expressed extrapallial (EEP) protein (Figure 5.29D) and the C1q domain (Figure 5.29E).  

Previous studies illustrated the calcium-binding capacity of the 28 kDa WEP (Yin et al., 2005). 

Since EEP protein has the same amino acid sequence as the WEP protein, this protein is 

assumed to also have a similar calcium-binding capacity. The same prediction applies to the 

C1q domain since it is the C-terminal domain of EEP. The on-chip crystallisation results of 

screening all three proteins produced lemon-shaped crystals. Therefore, this specific 

structure is likely to be the product of the presence of calcium-binding capacity of extrapallial 

fluid proteins.  

 

Figure 5.29. Vaterite crystal on-chip formation in the presence of different 
additives. 

Vaterite crystals precipitated in the channel when proteins added to the CaCl2 
solution only, except for the WCEP protein. (A) Spherical vaterite crystal formed 
in the presence of non-functional protein, BSA, with smooth crystal surfaces. (B) 
Hollow vaterite structures precipitated in the channel in the condition of CBP 
protein in CaCl2 solution only. Lemon-shaped structures formed in the channel 
in the presence of biomineral proteins of 28 kDa WEP (C), EEP (D) and 14kDa 
C1q (E). 
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High-magnification SEM images reveal the sub-micron surface details of the vaterite crystals 

formed in the presence of the glycosylated WEP (Figure 5.30A) and the non-glycosylated 

EEP (Figure 5.30B). The hollow vaterite crystals have a porous surface composed of nano-

granules of diameter of ~30 nm (Figure 5.30A). However, in the presence of non-glycosylated 

EEP protein, there is no direct evidence identifying the lemon-shaped vaterite as hollow 

structures. High-resolution SEM images show that these lemon-shaped crystals also have a 

rough surface with nano-granules (Figure 5.30B). This set of results shows the possible effect 

of carbohydrate chains on crystal morphological control. The linked carbohydrate moiety 

probably enhances the hollow structure formation composed within crystals. These hollow 

structures are composed of nano-granules (40 nm), which form in aqueous condition with the 

interaction between the protein and inorganic ions. This phenomenon can be explained by 

the hypothesis of protein modification on crystal morphologies (Cölfen and Mann, 2003, Gao 

et al., 2006).  

 

Figure 5.30. High-magnification SEM images of vaterite crystal surface 
details. 

(A) High-magnification SEM images demonstrate the thin crystal shell of hollow 
vaterite formed in the condition of glycosylated 28 kDa WEP in CaCl2 solution 
only. The surface is composed with nano-granules. (B) High-magnification SEM 
image presents the surface details of vaterite crystals formed in the condition of 
the non-glycosylated EEP protein in CaCl2 solution only.  

 

The possible mechanisms of protein-mineral interaction during lemon-shaped crystal 

formation in this dynamic system are shown in Figure 5.31. During the sample preparation, 

proteins were added to the CaCl2 solution, complex with Ca2+. This complex induces the 

formation of nucleation clusters with proteins. Some of these cluster units aggregate to form 

the vaterite nano-particles in the presence of extrapallial proteins. Afterwards, nano-particles 

assemble together to form a nucleation oval template. With continuous supplement of reagent 

solutions, nucleation clusters attach onto the template and the lemon-shaped crystals form in 
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the channel. According to the different structure of biomineral proteins, especially the 

glycosylated chains in the WEP protein, the hollow structures formed in the channel under the 

control of the protein aggregation with linked carbohydrate. In addition, in this dynamic 

system, protein concentration varies in different parts of the microfluidic channel. Roughness 

of vaterite crystal surface may vary according to the protein concentrations. 

As to the WCEP protein, spherical vaterite crystals formed when protein is mixed with 

Na2CO3 only or both reagents, which is not following the pathway of lemon-shaped crystals. 

The possible mechanism of WCEP protein on crystallisation control will be discussed below. 

 

Figure 5.31. Schematic illustration of pathway of lemon-shaped vaterite 
formation. 

When main extrapallial proteins are mixed with Ca
2+

 solution prior to 
crystallisation, Ca

2+
 ions are captured by proteins in aqueous conditions. This 

leads the formation of nucleation clusters with proteins. It is followed by the oval 
crystal template formation, which generate the lemon-shaped crystals. The 
presence of glycoproteins induces the hollow crystals.  

 

5.3.3 The calcite formation in the microfluidic system 

In the on-chip screening experiments, the condition of mixing organic additives with Na2CO3 

solution only induced calcite crystal formation. However, the influence of organic additives 

can be illustrated by comparing the calcite crystal morphologies in all these conditions (Figure 

5.32). The conventional calcite crystals formed in the BSA condition confirms the negative 

control of this protein (Figure 5.32A). On the other hand, the positive control of PAA (Figure 

5.32B) and CBP (Figure 5.32C) induced layered calcite structures. Similar multilayer calcite 

structures form in the presence of all the biomineral proteins: C1q domain (Figure 5.32D), 

WEP protein (Figure 5.32E) and EEP protein (Figure 5.32F). 
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Figure 5.32. Calcite on-chip formation in the presence of different proteins. 

In microfluidic crystallisation experiments, proteins and polymers were mixed 
with sodium carbonate only prior to delivery into the channel. Different calcite 
morphologies formed in the microfluidic channel with different proteins of BSA 
(A), PAA (B), CBP (C), C1q (D), WEP (E) and EEP (F). 

 

Among all these calcite crystals, the most interesting structure is the hillock type structure 

(Figure 5.32F). These hillock shaped crystals formed in the presence of EEP protein in 

sodium carbonate solution only, with two facets forming the cap and one facet decreasing 

towards the base (Figure 5.33A). Similar calcite morphology had also been found in previous 

crystallisation work by Orme et al. (2001). They used the chiral peptides (L- and D-aspartic 

acid) to form this hillock type calcite crystals (Figure 5.33B), and then used AFM to identify 
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crystal topography (Figure 5.33C). They combined in-situ atomic force microscope (AFM) and 

peptide molecular modelling studies to illustrate the amino acid specific binding sites for 

crystal geometrical modification (Orme et al., 2001). Their work provides the mechanical 

hypothesis on the functional peptide effect on mediating crystallisation by adsorbing onto the 

crystal surface during crystal growth.  

As similar crystal structures have been produced during on-chip screening experiments 

(Figure 5.33A), the EEP protein is assumed to bind to the crystal surfaces inducing 

geometrical structure modification. In the microfluidic system, when the extrapallial proteins 

are mixed with sodium carbonate solution only, there are no precursors such as protein-Ca2+ 

complex are likely to pre-exist to mediate crystal formation in aqueous conditions. Hence, 

during crystal formation the EEP protein may bind, or be adsorbed onto, the crystal surface 

mediating crystal growth in a stepwise manner. Afterwards, the protein binding process 

induces multilayer structure formation in the microfluidic channel. A similar mechanism can 

be applied to the formation of other layered calcite structures. According to the difference in 

the amino acid components and spatial structure of each protein or polymer, different 

multilayer calcite structures form in the microfluidic channel in the presence of different 

organic additives.  
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Figure 5.33. Hillock-shaped calcite formed in the presence of additives. 

(A) The hillock-shaped calcite formed in microfluidic system in the condition of 
50 μg/ml EEP protein in 50 mM Na2CO3 solution only. (B) The growth of hillock 
calcite crystal formed in the presence of chiral amino acid L-Asp. (C) AFM 
analysis of the crystal topography (Orme et al., 2001). 

 

5.3.4 Possible pathways of crystal formation in microfluidics 

Since the microfluidic system provides opportunities to screen the extrapallial fluid proteins by 

mixing with different reagents, the crystallisation mechanism can be varied. When the main 

extrapallial proteins (WEP, EEP and C1q) are mixed with the calcium chloride solution only, 

lemon-shaped structures precipitated in the microfluidic channel. The multilayer calcite 

structures are induced under the conditions when main EP proteins are introduced in sodium 

carbonate solution only.  

The mixing of main EP proteins in CaCl2 solution only induces the lemon-shaped vaterite 

structure. As discussed in Section 5.3.2, the mechanism of this ovoid crystal formation is 
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probably from the formation of nucleation cluster with proteins, which presented in Figure 

5.34A.  

When biomineral proteins are mixed with Na2CO3 only, nucleation clusters form without any 

protein. Proteins then recognise and bind to the cluster surface of calcium ion. The protein 

attachment onto the crystal surface mediates the classic rhombohedral calcite crystal 

formation into layered structures (Figure 5.34B). This layered crystal structure formed in the 

presence of functional polymers has been published previously (Orme et al., 2001). 

When the major extrapallial proteins are mixed with both reagents, proteins are likely to 

binding to calcium and therefore follow the pathway of Figure 5.34A to produce lemon-

shaped structures. This prediction has been confirmed by the experiments of EEP protein 

and C1q domain. However, this crystallisation process can be disturbed by the carbohydrate 

moiety during crystallisation, i.e. the major wild-type 28 kDa extrapallial (WEP) protein 

inducing multilayer calcite structures when mixed with both reagents.  

In the negative control experiments, neither calcite nor vaterite crystals have been identified 

as morphological modifications using BSA. Both polymorphs precipitate in the microfluidic 

channel by a typical aggregation pathway in aqueous conditions (Cölfen and Mann, 2003). 
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Figure 5.34. Schematic illustrations of possible pathways of on-chip 
crystallisation macromolecules. 

There are two possible pathways of crystallisation in microfluidics when the 
macromolecules are delivered in different reaction reagents. (A) The schematic 
pathways of lemon-shaped crystal formation, which has been described as 
Figure 5.31. (B) When the biomineral proteins are mixed with CO3

2-
 only before 

nucleation, nucleation clusters form without protein. Proteins attach onto the 
crystal surface during precipitation.  

 

However, the possible mechanism on crystal formation in the presence of the wild-type 

extrapallial complex (WCEP) protein is unclear. Since the WCEP complex is eluted and 

isolated at the beginning of the anion exchange process, it is much less strongly bound to the 

exchange, which suggests that it has few calcium-binding sites. Of course, as it is a complex 

it may have as many calcium-binding domains but these have been excluded, or pushed 

internally into the complex and thus unavailable for calcium-binding. When introduced into the 

CaCl2 side, few Ca2+ ions are taken out of solution and hence the proposed mechanism for 

the lemon-shaped crystal does not occur. On the other hand, when placed into the Na2CO3 

side, the complex may be disrupted, thus making the calcium binding amino acids available 

and hence we get vaterite crystal forming. 

Another possibility is the function of inducing calcite crystal formation of the WCEP, the 

calcite-inducing protein. Only calcite crystals formed in the channel when 50 mM CaCl2 was 
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mixed with this complex, in either high or low protein concentrations. This can be supported 

by the existence of the bi-polymorphs structures in the condition of WCEP in both reagent 

solution and vaterite formation in WCEP-Na2CO3 conditions. Compared to the negative 

control, this set of proteins is assumed to induce calcite formation during crystallisation. The 

calcite inducing function has been identified to a matrix protein from oyster P. fucata in 

previous work (Takeuchi et al., 2008). 

However, aragonite is a key component during the shell formation of mussel M. edulis, which 

has not been found in any experiment in our microfluidic system using extrapallial proteins. 

The missing structure of aragonite can be induced by the synergistic effects from several EP 

proteins in natural conditions. This has been eliminated in our functional studies when 

screening individual EP proteins for crystallisation. In addition, the inorganic additives in 

extrapallial fluid, such as Mg2+, can also be involved to induce aragonite formation.    

5.4 Conclusion 

Calcium carbonate biomineralisation is a complicated process, which produces well defined 

inorganic structures with a number of macromolecules involved in the process, including 

proteins, glycoproteins and carbohydrates (Weiner and Hood, 1975, Falini et al., 1996, 

Addadi et al., 2006, Weiner, 2008).  Extrapallial fluid from mussels have been used to study 

their effects on crystallisation, since this fluid is rich in inorganic and organic components 

(Crenshaw, 1972, Weiner and Hood, 1975).  The total extrapallial fluid (TWEP) proteins from 

the mussel M. edulis have been screened for crystal formation in the microfluidic system in 

our previous results, where they induced oval crystal structures (Chapter 4). In this chapter, 

individual extrapallial fluid proteins including the wild-type glycosylated proteins and 

expressed non-glycosylated proteins are used for CaCO3 on-chip crystallisation.   

In the microfluidic system, reversible sealed devices have been developed to create designed 

channel devices. Laminar flow microfluidic channel allows constant laminar flow formation 

when two solutions meet in the channel. This type of microfluidic system uses mass diffusion 

to create a large range of crystallisation scenarios with mass concentration gradients and 

different supersaturation ratio (S) along the channel, which enables precise functional 

screening of biomineral proteins during in vitro crystallisation.  

The combination of on-chip crystallisation and off-chip analysis provides a novel platform for 

biomineral in vitro crystallisation studies. The accurate control of crystal formation can be 

achieved by the microenvironment of localized protein and ion concentrations. Crystals 
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localized in different regions of the channel with different morphologies and polymorphs 

illustrate the influence of the protein concentration gradient on crystal formation. The 

crystallisation results indicate that crystal on-chip distribution is controlled by the 

supersaturation ratio (S) profile. In addition, the in-situ Raman spectroscopy enhances the 

opportunity to investigate the crystal formation from the very initial stages. The result 

produces stable lemon-shaped vaterite formation. These stabile vaterite crystals confirmed 

the protein influence during crystallisation, with EP proteins possibly integrating with ions and 

stabilising the vaterite formation.  

This study presents the advantages of using the microfluidic approach for crystal formation 

over traditional methods. This technique combines the computational modelling of on-chip 

concentration prediction and real-time crystallisation. Protein concentrations control both 

crystal morphology and polymorph outcome. According to the protein calcium-binding 

capacities, two possible pathways for crystal formation are proposed. The lemon-shaped 

crystal structures are mediated by calcium-binding capacity of the extrapallial fluid proteins 

from the very initial stage of nucleation. However, the multilayer calcite structures are 

probably formed by an organic macromolecules attachment process. Both structures define 

the protein influence on crystal morphological control in microfluidic system.  
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6 
6.1 Introduction 

6.1.1 Organic matrices in biomineral crystallisation 

Biomineral analysis indicates that the formation of most biominerals is controlled by two major 

types of organic components: soluble organic hydrophilic components, which include 

proteins, glycoproteins and polypeptides; and insoluble organic matrix components such as 

collagen and chitin (Lowenstam and Weiner, 1989, Nudelman et al., 2006, Addadi et al., 

2006). The insoluble organic components play critical roles during biomineralisation, 

providing a template for initial crystal nucleation, exerting influence on crystal formation 

including crystal orientation and morphology (Lowenstam and Weiner, 1989, Dove et al., 

2003, De Paula and Silveira, 2009). Nacre, mother of pearl, is an important biomineral 

example composed of both organic and inorganic components. As to molluscs, the 

hypothesis presented for nacre growth includes four different organic zones: a central spot 

rich in carboxylates, a surrounding ring-shaped area of sulfates, a intertabular matrix area 

rich in carboxylates and sulfates and a space between the intertabular matrix and ring-

shaped area containing carboxylates (Nudelman et al., 2006). Addadi et al. provided a model 

for nacre formation, which comprised two layers of chitin with crystal nucleation sites and gel-

like silk fibroin proteins filling the space in between (Addadi et al., 2006). This matrix is 

assembled prior to crystallisation. The silk gel phase controlled crystallisation by stabilising 

amorphous calcium carbonate (ACC), until in contact with the nucleation sites. During crystal 

formation, acidic proteins were incorporated into crystals, adjusting crystal chemical and 

soluble properties (Addadi et al., 2006). These findings denote the critical roles provided by 

organic templates in the initial crystallisation process. 
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6.1.2 In vitro crystallisation with templates 

In previous studies, numerous organic and inorganic materials were used as templates to 

modify calcium carbonate crystallisation, including Langmuir monolayer substrates (Mann et 

al., 1988, Mann et al., 1993), imprinted self-assembled monolayers (SAMs) on inorganic 

substrates (Kuther et al., 1998, Aizenberg et al., 1999) and insoluble macroporous substrates 

(Meldrum and Seshadri, 2000, Hetherington et al., 2011). Steric acid was initially used as a 

Langmuir monolayer to control crystal nucleation since it provided a functional surface (Mann 

et al., 1988). Self-assembled monolayers (SAMs) of alkylthiols on a Si surface was used to 

control CaCO3 crystal nucleation, with crystallisation accelerated in the polar regions and 

suspended in the rest of the methyl-terminated regions (Aizenberg et al., 1999). In addition, Li 

and Estroff (2007) used the carboxylate-terminated self-assembled monolayers (SAMs) 

substrates coupled with agarose hydrogel to control crystal nucleation and morphology 

simultaneously. In their crystallisation system, calcite crystals, the only observed polymorph, 

precipitated primarily on the surface with SAMs of alkanethiols (Li and Estroff, 2007a). 

Meanwhile, insoluble 3-D substrates, including a polymer with sea urchin skeletal structure or 

colloid particle monolayer substrate, were used for crystallisation. Single calcite crystals 

within the template polymer structure precipitated in the presence of a rigid sponge-like 

polymeric sea-urchin plate (Park and Meldrum, 2004, Meldrum and Ludwigs, 2007). In their 

experiments, double diffusion technique was used to grow microporous crystals, after the 

polymer replicated identical structure to the original sea urchin template (Meldrum and 

Ludwigs, 2007). Moreover, well-defined crystal topography with patterned individual crystal 

faces has been achieved from micrometer to nano-meter scale via crystallisation on colloidal 

monolayer templates (Meldrum and Ludwigs, 2007, Finnemore et al., 2009). Thin films (120 

nm thick) composed of polystyrene or polyvinyl pyridine have been also used to pattern 

individual calcite crystal faces (Meldrum and Colfen, 2008, Kim et al., 2010). All these 

findings demonstrated the applications of templated substrates in controlling crystal 

precipitation, orientation, polymorph and morphology.  

6.1.3 Microcontact printing (μCP) 

Microcontact printing (µCP), an efficient and quick method to exploit the adsorption of organic 

components on a variety of surfaces, was initially described by Whiteside’s co-workers 

(Wilbur et al., 1996, Xia and Whitesides, 1998).The application of μCP in patterning proteins 

has advanced in biosensor, cell biology and tissue engineering research (Chen et al., 1997, 

Bhatia et al., 1999, Hodgson et al., 2007). For example, in cell biology studies, microcontact 
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printing provides protein patterns to control cell morphologies (Chen et al., 1997), orientation 

(Altomare et al., 2010) and segregations (Hynd et al., 2007, Hodgkinson et al., 2007). These 

examples illustrate that protein-patterned substrates can be achieved from this simple, 

reliable and efficient way of direct patterning via microcontact printing.   

Currently, there is no published work describing μCP of biomineral proteins on CaCO3 

crystallisation research. This chapter firstly establishes a novel platform for crystallisation 

studies by using μCP extrapallial (EP) protein patterns for functional screening on in vitro 

crystallisation. In this study, the major expressed extrapallial (EEP) protein has been used as 

the target protein to create protein patterns for crystal growth. This protein has been shown to 

control CaCO3 crystal growth in the microfluidic system (Section 5.2.5 in Chapter 5). In order 

to identify any genuine effects from the EEP protein, control experiments were employed, 

including a positive control with polyacrylic acid (PAA) with its strong calcium-binding capacity 

and a negative control with bovine serum albumin (BSA), neither of which is involved in 

biomineralisation.  

6.2 Results 

6.2.1 The fabrication of microcontact printing (μP) patterns 

In order to achieve the patterns without denaturing the proteins, proteins or polymer 

substrates are directly ‘inked’ onto substrates using microcontact printing (μCP). During μCP 

process used here, only the substrates (PDMS and glass coverslip) are treated by oxidation 

from an oxygen plasma to make both PDMS and glass substrate surfaces hydrophilic, no 

further treatment was used. Moreover, in our microcontact printing (μCP), there is no ‘click’ 

chemistry process as normally used on glass substrates e.g. surface modification with 

triazole group (Link and Tirrell, 2003). All of these treatments may enhance protein 

immobilisation on substrate, but are likely to denature the acidic biomineral proteins.  

After the micro-fabrication process, PDMS stamps were produced for the μCP. In this project, 

both square and circular PDMS stamps have been used for printing. Figure 6.1A presents the 

square PDMS patterns used in this project, patterns fabricated in dimension of 100 μm (wide) 

x 20 μm (height). After the μCP process, protein and polymer patterns were generated on the 

glass substrate surface. Fluorescein isothiocyanate-labelled bovine serum albumin (FITC-

BSA) was localised in the designed regions only (Figure 6.1B&C). This provides an 

opportunity to control the CaCO3 crystal distributions after crystallisation takes place on the 
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patterned substrates.  

 

Figure 6.1. Microncontact printing patterns. 

(A) Oblique view SEM image of PDMS stamp for microcontact printing (μCP). 
The inserted images are the high-magnification SEM micrographs showing 
patterns with 20 µm height and 100 µm wide. (B) After microcontact printing, 
proteins are localised in defined areas according to the PDMS stamp. (C) 
Round patterns generated using a circular PDMS stamps. 

 

6.2.2 Crystallisation on μCP patterns using a soaking system 

For this set of µCP experiments, protein and polymer are transferred onto the substrates with 

CaCl2 solution (1 M), which was initially designed as the only calcium source to control crystal 

distribution. Thereafter, patterned substrates are soaked in Na2CO3 solution (1 M) for crystal 
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growth (Figure 2.4A in Chapter 2). Polyacrylic acid (PAA), the EEP protein and BSA were 

used in an analogous way. 

In the presence of PAA-CaCl2 patterns, crystals only precipitated on the patterned regions on 

glass substrates after a 12 hour incubation period (Figure 6.2). Stamps with circular features 

resulted in the formation of round patterns on the substrate with PAA-CaCl2 solution (Figure 

6.1C). After incubation using this patterned substrate, crystals formed on the patterned 

regions only (Figure 6.2).  

High-resolution SEM images reveal the morphological details of precipitated crystals. Crystals 

form with a similar diameter of approximately 2 µm. High-resolution images show the crystal 

morphology in detail, which is composed of nano-particles (Figure 6.2C&D). Although the 

crystal morphology is not identical, these structures can be easily identified as aggregates 

formed from several nano-blocks (~500 nm) (Figure 6.2C&D). These crystals are the 

products of the presence of PAA-CaCl2 patterns, which controlled crystallisation in aqueous 

condition. These crystals are determined as calcite by micro-Raman spectroscopy with 

characteristic peaks at 139 and 269, 711 and 1086 cm-1. 
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Figure 6.2. Representative SEM images of crystals formed on μCP 
patterned substrates. 

(A, B) Since the dotted PDMS stamps have been used in this μCP process, the 
crystals precipitated on the dotted patterns only. (C, D) The respective high-
magnification SEM images present the details of the crystals formed on the 
patterns. The crystals have diameters of ~2 μm, consisting of blocks of nano-
structures. 

 

After crystallisation, three spots were selected for chemical analysis via energy dispersive 

spectroscopy (EDS): one in the patterned area and two others in the non-patterned region. 

The EDS analysis clearly shows that there is a significant difference in chemical composition 

between the two areas (Figure 6.3). There are strong signals in both the calcium and carbon 

spectral range in the patterned areas (Figure 6.3B). However, there is no peak identifying 

either calcium or carbon from the spot analysis of two non-patterned areas, which have 

identical spectra (Figure 6.3C& D). These findings demonstrate polyacrylic acid (PAA) as an 

effective substrate to mediate crystallisation when serving as template.  
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Figure 6.3. Energy dispersive spectroscopy (EDS) detection of printed 
PAA-CaCl2 patterns. 

(A) The SEM image represents the crystals only precipitated on the regions of 
µCP patterns. (B) EDS spectra of area in the patterned area. Both calcium and 
carbon were detected in this area. (C, D) EDS spectra of non-patterned regions. 
In the non-patterned areas, there is neither calcium nor carbon detected. 
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In an analogous manner to the PAA experiments, the same procedures were used for the 

expressed major extrapallial fluid protein (EEP) to create patterns on the glass substrate. In 

this condition, 50 μg/ml EEP protein was printed onto the substrate alone with 1 M CaCl2 

solution (Figure 6.4A). 

After incubation, there was no evidence of crystals having precipitated on the substrates 

when using the EEP-CaCl2 pattern substrates. This lack of crystal formation may be due to 

several possibilities. The first possibility is that only protein had been localised on the 

substrate surface during the μCP process, without any calcium ions. However, there are 

several other possibilities, i.e. insufficient Ca2+ was provided by the patterns to form crystals 

or the dissolving of EEP protein during soaking the substrates in solution.  

In order to answer these questions, EDS was used again for chemical analysis prior to the 

crystallisation. After microcontact printing (μCP), the patterned substrate was used for EDS 

analysis, in the same way as PAA-CaCl2 pattern with crystals. Two different areas were 

selected for EDS spectra comparison: one in the patterned region and the other outside the 

patterned region (Figure 6.4). The protein patterns can be easily observed from SEM images, 

with square patterns on the surface (Figure 6.4A). Energy dispersive spectroscopy (EDS) 

was used to distinguish the patterns from the non-patterned areas by chemical composition 

analysis. However, the results are the same for both regions (Figure 6.4B and C). There is no 

calcium detected in the patterned areas, although the protein and Ca2+ were printed onto the 

surface via µCP. The same result occurs when CaCl2 solution is patterned with 50 µg/ml BSA 

onto glass surface. These results may prove that calcium ions were not printed onto surface. 

Alternatively, the EDS results will not distinguish calcium spectra because of the shortfall of 

EDS on surface chemical analysis with extremely thin protein layers. These results 

demonstrate the shortcoming of EDS on surface chemical analysis with thin protein layers. 

No crystals precipitated on the patterned substrates after applying the EEP/BSA patterns for 

crystallisation. Even increasing the incubation time to 24 hours makes no difference. 
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Figure 6.4. EDS analysis of the μCP patterns with EEP protein. 

The SEM image represents the printed patterns on the glass substrates. (A) In 
this condition, 50 μg/ml EEP protein and 1M CaCl2 solution were initially 
patterned onto the surface via μCP. Two areas were selected for EDS 
detection: area 1 (B) in the patterned regions and area 2 (C) outside of the 
patterns.  

 

6.2.3 Crystallisation in a slow diffusion system 

In the soaking crystallisation system with imprinted calcium-protein/polymer patterns, only 

PAA, the polymer with strong calcium-binding ability, successfully induced crystal formation. 

Calcite crystals composed of nano-blocks precipitated only on the PAA patterns during 

incubation. To eliminate the influence of the incubation process on crystal formation, a 

conventional slow diffusion system with (NH4)2CO3 powder was used for crystal growth 

(Figure 2.4B in Chapter 2). Under this condition, the μCP solution was changed, with only 

proteins or polymer patterned on the substrate, excluding the CaCl2 solution. In this set of 

experiments, 1% PAA was initially used to create the patterned substrates, via the same 
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microcontact printing (µCP) process as described above. The patterned substrates were 

placed upside down in 1M CaCl2 solution to enact a slow diffusion system in a sealed 

desiccator with solid (NH4)2CO3 powder. 

Well patterned glass substrates were achieved after the microcontact printing process with 

appropriate pressure. After incubation for 4 hours at 25 °C, crystals precipitated on the 

patterned substrate. Substrates were then removed from the petri dish and cleaned for further 

analysis. Crystals are easily observed using an optical microscope since the average crystal 

size is approximately 50 μm. The SEM images show that crystals randomly deposit on the 

substrate in both patterned and non-patterned areas (Figure 6.5A). Crystal morphology is 

presented by high-magnification SEM images (Figure 6.5B&C). Two different types of crystals 

already formed on the substrates, the classic rhombohedral structures with smooth surface 

(Figure 6.5B) and multilayered structures (Figure 6.5C). This layered structure is similar to the 

multilayered structure formation already observed in the microfluidic system (Figure 5.32 in 

Chapter 5). 
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Figure 6.5. Representative SEM images of crystals formed on the 
patterned glass substrates in the slow diffusion system. 

(A) Glass substrates were pre-patterned with 1% polyacrylic acid (PAA) only 
and used for crystal growth in a slow diffusion approach. CaCO3 crystals in 
various morphologies precipitated on the patterned substrates randomly. High-
magnification SEM images present the (B) classic rhombohedral calcite crystals 
and (C) layered structures formed on the same substrates. The insert greater-
magnification SEM image presents the layered structures on crystal surface. 

 

Micro-Raman spectroscopy was used to determine which polymorph was produced (Figure 

6.6). Both the rhombohedral and multilayer structures are calcite, with characteristic Raman 

shifts at 139, 268, 710 and 1091 cm-1. This experiment using PAA patterns for crystallisation 

in a slow diffusion system with ammonium carbonate shows that there is no control over 

crystal morphology. 
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Figure 6.6. Polymorph characterisation of crystals formed on the 
patterned substrates. 

(A) The SEM image shows the randomly distributed crystal on the substrate. (B) 
The characteristic Raman spectroscopy identifies all precipitated crystals as 
calcite, with characteristic Raman shift at 1091, 710, 268 and 139 cm

-1
. 

 

The PAA patterns were originally assumed to control the crystal nucleation by capturing the 

calcium ions from the initial stage of nucleation in aqueous conditions. However, the random 

deposition and different morphologies illustrate the non-specific control over crystal formation 

in this slow diffusion system with imprinted PAA patterns.    

6.3 Discussion: 

This chapter demonstrates the applications of μCP protein patterning for CaCO3 

crystallisation studies. Without any surface chemical modification, the PAA-CaCl2 solution 

patterns using a direct μCP process can be used for calcium carbonate crystallisation. 

6.3.1 Possible mechanism of organic templates over crystallisation 

 Crystallisation in the soaking system 

In the soaking system, crystals only precipitated onto the patterned regions on the substrate 

surface. This phenomenon is induced by the polymer template to mediate crystal formation. 

The crystallisation method in the presence of μCP organic patterns is analogous to the 

organic matrix moderating (OMM) crystallisation system, which has been described in 

previous work (Cölfen and Mann, 2003). Their research illustrated the mechanisms of three 

potential pathways to control the crystal distribution and orientation using an organic matrix 

(Figure 6.7). In their studies, the conventional pathway is organic matrix mediating the 

crystallisation from the capture of cations from the aqueous solution. This is followed by 
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clustering which controls crystal orientation (Figure 6.7A). In the soaking crystallisation 

experiments, the calcium is only provided from the μCP patterns. This procedure produced 

crystals with a nano-block structure which only nucleated in patterned regions. It shows that 

the process probably followed the pathway A in Figure 6.7. In addition, in the organic matrix 

templating system, the organic templates are assumed to be lowering energy barriers 

allowing calcium carbonate homogeneous precipitation (Dey et al., 2010). 

When the organic additive is changed from PAA to BSA, calcium is in insufficient quantities 

attracted to the BSA on the patterned substrates after μCP. Thus, the printed BSA pattern, 

lacking calcium ions will not induce CaCO3 crystals. This is consistent with the experimental 

design, with 50 μg/ml BSA as a negative control.  

 Crystallisation in the slow diffusion system 

During crystallisation experiments in the slow diffusion system, there is no specific 

crystallisation control. Crystals randomly deposited on the substrate surface, with two 

different morphologies. This phenomenon can be explained by either of two pathways in the 

organic matrix mediating (OMM) system (Figure 6.7B&C). The classic rhombohedral 

structures with smooth surfaces probably formed according to the pathway B in Figure 6.7. 

Ions aggregated to form amorphous calcium carbonate and then crystalline nuclei in aqueous 

condition. Crystals then bind to the patterns after transforming into calcite. The layered 

structures probably form via the crystallisation pathway C in Figure 6.7. Amorphous phases 

form on the pattern surface and then modified by the organic matrix to form the multilayered 

structures.  
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Figure 6.7. Schematic illustration of crystallisation pathway in the organic 
matrix mediating system. 

In the presence of two-dimensional organic matrix template, there are several 
potential ways to control crystallisation. (A) The classic pathway is from the 
binding of aqueous cations to matrix. It is followed by the cluster formation and 
finally orientated crystals. (B) Matrix can bind the crystalline nuclei already 
formed in aqueous condition, either directly from ions or transformed via 
amorphous clusters. (C) An alternative pathway is the amorphous particle 
formation by ions binding to matrix, which leads the formation of orientated 
crystals (Cölfen and Mann, 2003). 

 

6.3.2  Unsuccessful crystallisation using protein patterns 

When the major expressed extrapallial (EEP) protein was printed on the substrate with 

calcium ions, no crystals formed on the glass substrate in the soaking crystallisation system. 

The EDS results indicated that there was no calcium present on the patterns. There are 

several possible explanations for the contrast between the predicted and experimental 

results. The most likely is the calcium-binding capacity of the EEP protein compared to PAA.  

As the EEP protein (50 μg/ml) added into 1 M CaCl2 solution, there is little Ca2+ binding to the 

protein. After the μCP process, thin layers of protein are printed on the substrate surface, with 

an extremely low concentration of calcium ions. There is insufficient calcium ion concentration 

on the imprinted patterns to lead to crystal precipitation. Moreover, the high solubility of the 

protein may also prevent crystal deposition because the protein itself is removed. 
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Previous work has demonstrated control on crystal nucleation by the alkanethiols SAMs with 

a range of functionalities on a Si substrate surface, with highly orientated single crystal grown 

in a slow diffusion crystallisation system (Aizenberg et al., 1999). They used the slow 

diffusion system of carbon dioxide or ammonium carbonate into a 1M CaCl2 solution to 

mediate the crystal formation (Aizenberg et al., 1999, Li and Estroff, 2007b, Kim et al., 2010). 

The same crystal incubation system of ammonium carbonate vapour diffusion has also been 

used with PAA patterns on glass substrates in this project, which yields non-specific control 

on crystal deposition in the slow diffusion system. Crystals randomly deposit on the substrate 

surface, with two different morphologies.  

Taking an overview of the successful use of microcontact printing (μCP) substrates, surface 

modifications with functional residues are required (Aizenberg et al., 1999, Li and Estroff, 

2007a). These studies have demonstrated the importance of substrate surface modification 

with covalent biomolecules immobilisation for successful applications.  

However, a simple method was used to create the protein patterns, where all proteins and 

polymers were directly printed onto the substrate. According to the µCP procedure, the 

PDMS stamps and glass substrates were only treated using oxygen plasma treatment for the 

hydrophilic surface according to previous work of Bhattacharya et al., (2005). The 

experimental results proved that calcium ions had not been immobilised on glass substrates 

by direct printing. One possibility to solve this non-specific crystallisation is to combine the 

microcontact printing (µCP) process with fuctionalisation of designed regions with proteins 

and blocking the remaining areas with other organic components, the ‘click’ chemistry, which 

has been used for cell biology and biochemistry studies (Kolb et al., 2001, Kolb and 

Sharpless, 2003). 
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7 
7.1 Aim of the investigation 

The aim of this project was to develop a novel technique to analyse the function of extrapallial 

protein in the biomineralisation process. Understanding the biological control exerted by 

these proteins in crystal formation will give details on protein-mineral interactions during 

crystallisation. The influence of extrapallial proteins on crystallisation has been established by 

studying the crystallisation process in detail in the presence of a range of biomineral proteins 

in the microfluidic device and also by microcontact printing (μCP) patterns. Microfluidics 

enhances the opportunity of controlling the speed of solution delivery, diffusion gradient and 

supersaturation ratio. By localising the microenvironment of protein and ion concentrations in 

the channels, the laminar flow microfluidic system has allowed us to study several aspects of 

the biomineralisation process simultaneously in a very short time span. 

The following chapter summarises the main findings of this project and the investigations on 

the microfluidic applications on the biomineral protein screening for calcium carbonate in vitro 

crystallisation.  

7.2 Advantages of using microfluidic system for biomineral 

screening 

Understanding of biomineral protein function during in vitro crystallisation is fundamentally 

important for the investigation in the biomineralisation process. Many crystallisation systems 

have been provided to investigate the mechanism of additive control over crystal 

morphologies and polymorphs during formation (Kitano et al., 1962, Aizenberg et al., 1999, 

Zheng et al., 2003, De Yoreo and Dove, 2004, Pokroy et al., 2007, Politi et al., 2007, Gower, 

2008, Dey et al., 2010, Hetherington et al., 2011, Li et al., 2011). In their crystallisation 

methods, a large range of experimental conditions are required, including variation in protein 

and ion concentrations. All these findings suggest several simultaneous conditions are 
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required for biomineral protein functional studies. 

In this project, the pressure-driven laminar flow microfluidic system was used for 

crystallisation. In this approach, the mass transport is driven by lateral diffusion into adjacent 

streams after two solutions are delivered into the channel. As the diffusion coefficients 

determine the movement of protein and ions, their concentration profile on-chip can be 

constructed using commercial simulation software (i.e. Comsol). This approach has been 

used to investigate the influence of protein and ion concentration on crystal morphology. As 

described in Chapter 5, in the present of EEP protein in CaCl2 solution only, the on-chip 

crystal morphology varies according to the protein and ion concentrations along the 

microfluidic channels. These concentration profiles have also provided an insight into 

polymorph selection during the on-chip formation. Take the example of EEP protein in CaCl2 

solution only again, calcite crystals start to precipitate in the channel after protein and ions 

diffused across the channel with Dy increasing. This phenomenon of polymorph selection 

occurs in almost all crystallisation experiments in the presence of biomineral proteins in 

laminar flow microfluidic system. This novel approach demonstrates that the stable localised 

mass concentrations along the channels control crystal morphology and polymorph. 

Not only is crystal morphology and polymorph modified, but also the crystal distribution is 

strictly controlled in this laminar flow microfluidic system. The supersaturation ratio (S) is also 

an essential condition in calcium carbonate crystallisation. Computational modelling has 

generated the on-chip supersaturation ratio profile, which accurately predicted the crystal 

distributions along the channel. The modelling prediction has been confirmed by the real-time 

crystallisation experiments, with a single line of crystal forms at the beginning of channel, and 

well separated crystals across the channel after a long flow rate distance (Dy).  

These advantages outlined above cannot be achieved using a conventional bulk system for 

crystallisation. In the bulk conditions, there is no significant difference between the results 

generated by the conditions of one specific biomineral protein mixed with different reaction 

reagents. Moreover, in the bulk system, there is no continuous supply of reagents during 

crystallisation. Thus the parameters of crystal precipitation are changing all the time, including 

the supersaturation ratio, organic additive concentration and ion concentrations. It is therefore 

difficult to detect the best conditions to generate the desired mineral formation such as 

porous structures.   

In addition, the combination of on-chip crystallisation using microfluidic system and Raman 

spectroscopy real-time detection provides another opportunity to thoroughly investigate 
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crystallisation from the initial stage. The in-situ Raman confirmed the formation of stable 

lemon-shaped vaterite crystals and stable ovoid calcite structures induced by the extrapallial 

proteins.  

7.3 Crystallisation controlled by extrapallial fluid proteins 

As described by previous researchers, some of extrapallial proteins are defined as acidic 

proteins and considered to contribute significantly to the biomineral processes (Misogianes 

and Chasteen, 1979, Lowenstam and Weiner, 1989). Also previous work was published on 

the 28kDa main EP protein from M. edulis defining it as an acidic glycoprotein with calcium-

binding capacities (Hattan et al., 2001, Yin et al., 2005). The extrapallial fluid proteins, 

screened in this project, include total wild-type extrapallial fluid (TWEP) protein, the major 

wild-type 28 kDa extrapallial (WEP) protein, the abundant expressed extrapallial (EEP) 

protein, C1q domain and the wild-type extrapallial complex (WCEP) proteins were screened. 

Initially, the total wild-type extrapallial (TWEP) protein mixture was used to study its effect on 

crystallisation in the laminar flow microfluidic system. The protein mixture was added into 

both solutions and produced ovoid calcite crystals. This structure has been identified as a 

stable structure without any polymorph switch during formation by in-situ Raman detection. 

In this study, a set of the major EP proteins have been systematically screened using 

microfluidics for crystallisation, including the glycosylated WEP protein, the non-glycosylated 

EEP protein and non-glycosylated C1q domain. The novel structure of lemon-shaped vaterite 

crystals were produced in the microfluidic channel when these proteins were introduced in the 

CaCl2 solution only. The vaterite crystals are considered to be induced by the calcium-binding 

property of these proteins. This calcium-binding ability probably modifies the crystallisation 

from the initial stage in aqueous conditions, as forming the complex of EP-Ca2+. The EP-Ca2+ 

complex is assumed to be the precursor to these novel structures. Although the potential 

pathways were discussed in previous chapters, the exact mechanism of control under the 

protein-mineral interactions is unclear. This complex probably mediates crystal formation by 

forming a template and thereafter to form the lemon-shaped structures. In this microfluidic 

screening assay, different lemon-shaped structures have been produced by the presence of 

different proteins. 

However, protein function is not only determined by the protein amino acid sequence. The 

protein secondary or tertiary structures may be as important in determining protein function 

during the biomineralisation process. Therefore, the structural proteomic information of all 
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these EP proteins will enhance the illustration of protein functions during calcium carbonate 

crystallisation. The 28 kDa WEP protein has been confirmed as a glycoprotein with a 

considerably long N-terminal carbohydrate moiety. This carbohydrate domain may influence 

the crystal formation producing well defined hollow structures composed of nano-granules. 

The chemical composition of the carbohydrate and the spatial structure of the protein may 

provide ideas for the mechanism of the pathway as to how these hollow vaterite crystals form. 

Meanwhile, the multilayer calcite structure formation is a common feature in the microfluidic 

system, when the main extrapallial proteins are added in Na2CO3 solution only. Similar 

structures have been generated by the positive control conditions with identified calcium-

binding additives. The synthesis of this type of crystal is considered to be the process of 

adsorption of protein onto the crystal surface during growth. This shows an alternative 

pathway where protein can control crystallisation. Hence, two different pathways have been 

addressed for protein influence when present in different reagents.  

As to the wild-type extrapallial complex (WCEP) proteins, its ‘upside down’ effect on 

biomineral crystallisation is really interesting and may provide a subtle key as to how 

bimineralic structures can be generated simultaneously. 

7.4 Microcontact printing patterns for CaCO3 

Microcontact printing (µCP) has previously provided organic patterns with a number of wide 

applications, such as biological assays in cell culture, DNA analysis and tissue engineering 

(Chen et al., 1997, Mrksich et al., 1997, Offenhausser et al., 2007, Rozkiewicz et al., 2007b). 

In this study, polyacrylic acid (PAA) has been used as model substrate to create the imprinted 

patterns for calcium carbonate crystallisation. The PAA patterns totally controlled the crystal 

deposition and morphology when PAA and CaCl2 are both printed on the patterns. However, 

when the same procedures were used with the EEP protein, there was no crystal precipitation 

on the substrate. This can be explained by the protein’s calcium-binding capacity or the 

protein pattern stability.  

As to further application of protein patterning for crystallisation, surface modification is 

probably needed. The immobilisation of the biomolecules can be achieved by several 

protocols, such as ‘click’ chemistry with functional carboxylated groups to immobilise proteins. 

Other improvements may also contribute to a more  useful application of µCP patterns for 

crystallisation, i.e. the positive µCP with etching techniques and employing crosslink polymers 

between the surface and organic molecules (Perl et al., 2009).  
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7.5 Future work 

Amorphous calcium carbonate (ACC) has been recognised as an important phase during 

crystallisation, aggregating to form different structures under the mediation of different 

additives (Aizenberg et al., 1996, Weiss et al., 2002, Politi et al., 2004, Ma et al., 2007, 

Cölfen, 2007, Pichon et al., 2008, Wang et al., 2009a, Njegic-Dzakula et al., 2010). The ACC 

phase has been investigated by many researchers using the slow crystallisation system. 

However, the design of the laminar flow process produces a well separated concentration 

profile for crystal growth, which, in turn, stimulates fast crystal formation without any ACC 

detection in the channel. In addition, we only focused on the on-chip crystallisation in the 

presence of different additives to analyse the biomineral protein functions. Crystal formation 

from the outlet collection solution in the different conditions has not been investigated.  

Therefore, it would be interesting to fabricate a microfluidic system that could stabilise 

amorphous calcium carbonate formation. In previous work, methanol or ethanol has been 

used to quench the crystals formed during on-chip formation. Thus, organic solvent could be 

used in microfluidic channels to stabilise ACC during the on-chip formation. A simple design 

of microfluidic device could be used, with two additional inlets to deliver ethanol into the 

channels (Figure 7.1). This device design stimulates the slow lateral diffusion of two reaction 

reagent solutions (CaCl2 and Na2CO3) in the initial stage of mixing. The target proteins or 

peptides are initially delivered into the central inlet with each reagent in each side for 

crystallisation. With the same microfluidic principles, all three streams are forming the laminar 

flow system with diffusion controlling mass transportation. After the flow runs in the channel, 

ethanol is delivered into the channel to ’free e’ the mineral phase as a stable amorphous 

phase. These ACC structures can be collected from the outlet and used for further analysis 

including SEM or TEM. During solution delivery, crystals may precipitate in the microfluidic 

channel before ethanol injection. The crystallisation in this area is modified by the localised 

micro-conditions of protein and ion concentrations, which is similar to the crystallisation in our 

existing laminar flow microfluidic system.  
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Figure 7.1. Illustration of T-junction microfluidic device for ACC formation. 

Revised T-junction laminar flow microfluidic channel system can be used for 
calcium carbonate crystallisation for stable amorphous calcium carbonate 
formation. Laminar flow system stimulates the crystallisation control with 
diffused protein and ion concentrations in the long narrow reaction channel. 
After ethanol injected into system, amorphous calcium carbonate will be 
stabilised in the main reaction chamber and collected for analysis.   
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Appendix 1: 
 

 

Materials      Supplier 

Calcium chloride     Sigma Aldrich  

Sodium carbonate     Sigma Aldrich  

Magnesium chloride     Sigma Aldrich  

Ammonium carbonate    Sigma Aldrich  

MilliQ™ water     Millipore 

Calcium binding protein    Sigma Aldrich  

Bovine serum albumin    Sigma Aldrich  

Methonal       BDH 

Acetone      BDH 

Isopropernal       BDH 

Microcon concentrators    Millport  

0.2 µm nylon filter      Whatman 

Tris buffer      Sigma Aldrich  

MOPS buffer      Sigma Aldrich  

Polydimethylsiloxane    SYLGARD® Ltd 

Polydimethylsiloxane curing agent  SYLGARD® Ltd 

Polyacrylic acid     Sigma Aldrich  

SU-8 series photoresists     MicroChem Inc 

Silicon dioxide wafer    Si-mat Ltd  

Fluorescein      Sigma Aldrich  

FITC-BSA      Sigma Aldrich  
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Appendix 2: 
 

Modelling results on Y-type laminar flow microfluidic channel 

 

Since the Y-type microfluidic channel and the T-junction channel are both laminar flow 

microfluidic system with similar flow speeds: 5.1 mm/s for T-junction channel and 5.2 mm/s 

for the Y-type channel, similar computational modelling results have been generated on either 

on-chip mass concentration profile or supersaturation ratio profile. 

 

 
 

Figure S1. On-chip concentration profile in Y-type microfluidic channel 

In the Y-type channel, ions and proteins have similar diffusion profile along flow 
rate distance (Dy) in the channel. Protein has small diffusion rate, with 
concentration gradient remaining after running long distance (Dy>10 mm). Ionic 
gradient has been eliminated after well diffused across the channel.  

 



                                                                           Appendix 

-180- 

 

Figure S2. Supersaturation ratio (S) in Y-type microfluidic channel. 

In the Y-type microfluidic channel, supersaturation ratio (S) profile varies along 
the flow rate distance (Dy). This profile has a sharp peak in the centre in the 
beginning of the channel, and boarders across the channel with Dy increasing. 
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