

Steiner, Sebastian (2018) From code to molecule: a versatile, modular, lab-
scale automation strategy and platform for organic synthesis. PhD thesis.

https://theses.gla.ac.uk/30904/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

This work cannot be reproduced or quoted extensively from without first
obtaining permission from the author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,
title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

https://theses.gla.ac.uk/30904/
mailto:research-enlighten@glasgow.ac.uk

From Code to Molecule:

A Versatile, Modular, Lab-Scale Automation

Strategy and Platform for Organic Synthesis

Sebastian Steiner

A thesis submitted to the University of Glasgow

for the degree of Doctor of Philosophy

School of Chemistry

College of Science and Engineering

October 2018

The scientist merely explores that which exists,

while the engineer creates what has never existed before.

Attributed to both Theodore von Kármán and Albert Einstein

Acknowledgements

This project was carried out between May 2015 and October 2018 in the Department

of Chemistry at the University of Glasgow. Many people helped and advised me over

this period and I really appreciate it. In particular, I would like to thank:

Prof. Lee Cronin for giving me the opportunity to work in his group and for his

support, encouragement and supervision during these years.

My mentors in the group, Dr. Anna Andreou and Dr. Stefan Glatzel, who first

introduced me into the project and helped the universal synthesiser become reality.

Their work on the diphenhydramine hydrochloride chemistry, the platform

architecture, and the early software solutions provided me with a solid foundation

to build on.

My team and subgroup leaders along the way, Dr. Geoffrey Cooper, Dr. Andrew

Surman, Dr. Philip Kitson, Dr. Alon Henson and Dr. Jarosław Granda. Thank you for

your help, your guidance, and your advice.

My colleagues and predecessors on the project:

Dr. Trevor Hinkley for his work on the old device firmware. Dr. Jon Trinder and

Francis Jamieson for their help with the new device firmware. Dr. Gerardo Aragon-

Camarasa for developing ChemOS. Even though it was eventually superseded, it

helped me avoid many pitfalls. Graham Keenan for his help in developing the

ChemOS’s successor, the Chempiler, as well as for his good humour and for

recommending some amazing games. Dr. Jarosław Granda for his work on the

rufinamide synthesis, and his work on image recognition for the liquid/liquid

separator. Dr. Davide Angelone for carrying on the project. In particular, I would like

to thank my student, Jakob Wolf, for his work on the sildenafil synthesis. His

enthusiasm, work ethics, and his keen intellect were invaluably helpful.

Our glassblower, John Liddell, for the marvellous pieces of bespoke glassware he

crafted so expertly.

Our dedicated technical and administrative staff, Jim McIver, Dr. Diana Castro, Dr.

Emma Carrick, Amanda McGarvey, and soon-to-be-doctor Stuart Marshall, for

helping me with everything and anything, and in many cases going well above and

beyond the call of duty. Without you all, the group would probably collapse

spectacularly in about two and a half minutes.

My colleagues and friends in the Cronin Group, if not for keeping me sane, then at

least for tolerating my lunacy. Especially Vasilis, who dragged me to the cinema every

now and then to subject me to human contact; David, who went climbing with me

despite of being afraid of heights; James and Christoph for hitting me in the head

with swords (don’t worry, I hit them back); Sergey, for many evenings spent fixing

things that weren’t broken, improving things that worked just fine, and obsessively

organising labs that were doomed to entropic decay, and also for only occasionally

treating me like the idiot I am; Danny, for many interesting conversations, relentless

banter, and generally being a friend. Obviously, the list goes on and on and the thesis

is long enough as it is, so if you’re not in this list, this does not mean I am not happy

to have spent the time with you!

My family, in particular my parents Gerhard and Gudrun and especially my love Pia,

for always supporting me. I don’t think I would have made it through in one piece

without you, thank you for your patience and your understanding and for always

being there when I need you.

 ABSTRACT

I

ABSTRACT

The work presented in this thesis focused on the automation of multistep organic

syntheses on a laboratory scale in batch. Automation has received much attention in

the chemical sciences and many automated synthesis solutions are commercially

available or in development, yet all those solutions are focused on narrow aspects of

the wider problem of automating chemical synthesis. In particular, a gap in the

currently employed technologies was identified where synthesis in batch on a gram

scale was concerned. Furthermore, many available solutions are monolithic and

cannot easily be adapted for new applications, partially due to shortcomings of the

hardware design, and partially due to the bespoke software controlling them.

To address this need for a new approach to automated synthesis, a novel strategy

comprising hardware modules dedicated to individual unit operations (as opposed

to other solutions built around specific chemical transformations and a modular

flexible control software was developed. To enable the hardware development,

liquid handling hardware was built and optimised, and four major modules for the

unit operations of mixing under heating or cooling, liquid/liquid separation, filtration,

and evaporation as well as several auxiliary modules were developed and tested.

The control software orchestrating the operation of the synthesis platform was

modelled after a compiler in modern computer science, separating the synthetic

operations from the physical hardware of the platform. This way, synthetic

procedures can be transferred between different platforms, and new hardware

modules can be added to the system at will. To enable the average synthetic chemist

to use the system, a rudimentary scripting language for chemical operations was

developed.

To prove the capabilities of the platform, three Active Pharmaceutical Ingredients

(APIs) were synthesised in a fully automated fashion in yields and purities

comparable to those obtained by hand. The automated reactions included a Grignard

reaction and a chlorosulfonation, to name but a few. Additionally, the synthesis of

one of the APIs was repeated on two physically different platforms simply by

executing the same code on both systems.

 ABSTRACT

II

 ABBREVIATIONS

III

ABBREVIATIONS

ADC Analog-Digital Converter

API Application Programming Interface (in computer sciences), or Active

Pharmaceutical Ingredient (in chemistry)

ASCII American Standard Code for Information Interchange

ASF Atmel Software Framework

AVR A microcontroller architecture. There is no official consensus about

what the acronym stands for.

CAD Computer-aided Design

CAN Controller Area Network

CPU Central Processing Unit

DCM Dichloromethane

DHCP Dynamic Host Configuration Protocol

DMF N,N-dimethylformamide

EEPROM Electrically Erasable Programmable Read-Only Memory

FDM Fused Deposition Modelling

GPIO General Purpose Input/Output

I.D. Internal Diameter

IP Internet Protocol

ISR Interrupt Service Routine

IV intravenous

LED Light Emitting Diode

MAC Media Access Control address

 ABBREVIATIONS

IV

MCU Microcontroller Unit

MOSFET Metal Oxide Semiconductor Field Effect Transistor

O.D. Outer (external) Diameter

OSC Open Sound Control

PCB Printed Circuit Board

PEEK Polyether ether ketone

PLA Polylactic acid

PMIC Programmable Multilevel Interrupt Controller

PoE Power over Ethernet

PP Polypropylene

PVC Polyvinyl chloride

PVDF Polyvinylidene fluoride

PWM Pulse Width Modulation

RS232 Recommended Standard 232, a serial communication standard

RS485 Recommended Standard 485, a serial communication standard

SAM Smart ARM-based microcontroller. ARM stands for Advanced RISC

Machine, where RISC stands for Reduced Instruction Set Computer.

SMD Surface Mounted Device

SPI Serial Peripheral Interface

STL Stereolithography file (a file format)

TCP Transmission Control Protocol

THT Through Hole Technology

UART Universal Asynchronous Receiver-Transmitter

UDP User Data Protocol

 ABBREVIATIONS

V

UHDPE Ultra-high density polyethylene

USB Universal Serial Bus

 ABBREVIATIONS

VI

 TABLE OF CONTENTS

VII

TABLE OF CONTENTS

ABSTRACT ... I

ABBREVIATIONS ... III

TABLE OF CONTENTS ... VII

INTRODUCTION ... 1

1 Iterative Synthesis .. 1

2 Robotic Platforms ... 9

3 Flow Chemistry ... 13

4 Automated Batch Reactors ... 19

5 The Chemputer Concept ... 25

AIMS .. 28

RESULTS AND DISCUSSION.. 29

6 Hardware Development ... 29

6.1 Pumps and Valves .. 29

6.1.1 Prior State of the Art .. 29

6.1.2 Transfer to Autodesk Inventor and Initial Improvement Efforts 35

6.1.3 Improving the Alignment.. 36

6.1.4 The Evolution of the Hall Effect Sensor .. 42

6.1.5 Replacement of the Pump Motor .. 49

6.1.6 Improvements to Usability and Aesthetics 51

6.1.7 Project Documentation .. 54

6.2 Chemputer Setup ... 57

6.2.1 Reactor Module .. 57

6.2.2 Evaporation Module ... 60

6.2.3 Automated Liquid/Liquid Extractor (ALLEX) 64

 TABLE OF CONTENTS

VIII

6.2.4 Filtration Module ... 75

6.2.5 Inert Gas System .. 79

6.2.6 Reagent Storage ... 80

6.2.7 Other Modules ... 81

7 Software Development... 87

7.1 Pump and Valve Firmware .. 87

7.1.1 Existing Hardware Specifications and Firmware Requirements 87

7.1.2 General Operation and Requirements ... 89

7.1.3 MCU Initialisation and General Setup .. 90

7.1.4 Ethernet Communication ... 93

7.1.5 The Command Mapper and the Formatted Network Print Utility .. 98

7.1.6 Stepper Motor Control ... 100

7.1.7 Pump Positioning Algorithms ... 109

7.1.8 Valve Positioning Algorithms ... 115

7.1.9 Device Configuration and Errors .. 122

7.1.10 Python API .. 123

7.1.11 Firmware Testing .. 123

7.2 The SerialLabware Project ... 125

7.3 The Chempiler.. 131

7.3.1 Motivation and Requirements ... 131

7.3.2 The ChemOS and “The Script” ... 132

7.3.3 Drafting a Specification for the Chempiler..................................... 134

7.3.4 Building the Chempiler ... 136

7.3.5 Moving Liquids ... 138

7.3.6 From XML to GraphML ... 142

7.3.7 The Chemical Assembly Language ChASM 147

 TABLE OF CONTENTS

IX

7.3.8 Additional Modules and Final Structure .. 150

7.3.9 Translation of a Synthetic Procedure into ChASM 154

8 Automated Syntheses ... 169

8.1 Synthesis of Diphenhydramine Hydrochloride (1) 170

8.1.1 Prerequisites and Initial Work .. 170

8.1.2 The Journey Begins with a Bromination ... 171

8.1.3 Pressing on Towards the Williamson Ether Synthesis 175

8.1.4 Cresting the First Summit with the Grignard Reaction 177

8.1.5 Commencing the End Game with the Hydrochloride Precipitation

 180

8.1.6 Tying It All Together ... 181

8.1.7 Rebuilding the Platform and Starting Anew 183

8.1.8 Adding Purification and Cleaning ... 190

8.2 Synthesis of Rufinamide (2) ... 195

8.2.1 Prerequisites and Initial Work .. 195

8.2.2 Automation on the Small Platform .. 195

8.2.3 Transferring the Code to Another Platform 196

8.3 Synthesis of Sildenafil (3) ... 199

8.3.1 Prerequisites and Initial Work .. 199

8.3.2 Manual Replication of the Reported Synthesis 200

8.3.3 Subjecting the Platform to Chlorosulfonic Acid 204

8.3.4 Initiating the Crystallisation of the Sulfonamide 206

8.3.5 Forming the Acid Chloride and Performing the Amide Coupling ... 207

8.3.6 Closing the Cycle with Potassium tert-Butoxide 208

8.3.7 Going the Distance: Running the Full Sequence 209

CONCLUSIONS AND FUTURE WORK .. 211

 TABLE OF CONTENTS

X

EXPERIMENTAL .. 217

9 Chemicals and Instrumentation .. 217

10 Computer Controlled Instrumentation .. 218

10.1 Reactor Module ... 218

10.2 Automated Liquid/Liquid Extraction Module 220

10.3 Solvent evaporation module ... 222

10.4 Filtration Module ... 223

10.5 Inert Gas System .. 225

10.6 Reagent Storage System .. 226

11 Synthesis and Characterisation of Compounds 229

11.1 Diphenhydramine hydrochloride ... 229

11.1.1 Diphenylmethanol (4) ... 229

11.1.2 Bromodiphenylmethane (5) ... 231

11.1.3 2-(diphenylmethoxy)-N,N-dimethylethanamine

(diphenhydramine) (6) ... 232

11.1.4 2-(diphenylmethoxy)-N,N-dimethylethanamine hydrochloride (1)

 234

11.2 Rufinamide ... 236

11.2.1 1-[(2,6-Difluorophenyl)methyl]-1H-1,2,3-triazole-4-carboxamide

(rufinamide) (2) .. 236

11.3 Sildenafil ... 238

11.3.1 5-Chlorosulfonyl-2-ethoxybenzoic acid (9) 238

11.3.2 2-Ethoxy-5-(4-methyl-1-piperazinesulfonyl)benzoic Acid (10) .. 240

11.3.3 4-[2-Ethoxy-5-(4-methyl-1-piperazinylsulfonyl)benzamido]-1-

methyl-3-propyl-1H-pyrazole-5-carboxamide (12)...................................... 242

 TABLE OF CONTENTS

XI

11.3.4 1-[4-Ethoxy-3-(6,7-dihydro-1-methyl-7-oxo-3-propyl-1H-

pyrazolo[4,3-d]pyrimidin-5-yl)phenylsulfoyl]-4-methylpiperazine (Sildenafil)

(3) 244

REFERENCES ... 247

APPENDIX .. 257

I NMR Spectra .. 257

I.I Diphenhydramine Hydrochloride (1) ... 258

I.II 1-[(2,6-Difluorophenyl)methyl]-1H-1,2,3-triazole-4-carboxamide

(rufinamide) (2) .. 264

I.III 1-[4-Ethoxy-3-(6,7-dihydro-1-methyl-7-oxo-3-propyl-1H- pyrazolo[4,3-

d]pyrimidin-5-yl)phenylsulfoyl]-4-methylpiperazine (Sildenafil) (3) 268

II Engineering Drawings ... 273

III Control PCB Schematics .. 319

IV ChASM reference .. 327

IV.I.I Pumps and Valves ... 327

IV.I.II Stirrer Plates and Overhead Stirrers .. 329

IV.I.III Rotary Evaporator .. 330

IV.I.IV Vacuum Pump .. 332

IV.I.V Recirculation Chiller ... 333

IV.I.VI Camera ... 335

IV.I.VII Other ... 335

 INTRODUCTION

 1

INTRODUCTION

Organic synthesis is arguably one of the most labour-intensive branches of chemistry,

requiring an expert chemist to manually execute a multitude of relatively simple unit

operations such as mixing of chemicals, liquid-liquid extractions or filtrations. While

automated approaches for some of those unit operations exist,1 unified strategies

tying together individual technologies are underdeveloped.

Currently available synthesis automation strategies can be grouped into three key

technologies: iterative synthesis, robotic platforms and flow chemistry. A potential

fourth technology, the automation of laboratory scale batch synthesis, has been

investigated in the past, but is generally underrepresented in the modern literature.

The following pages explore those technologies and their respective advantages and

drawbacks. Automation efforts in disciplines other than bench-scale synthesis, such

as analysis, biology, or plant-scale production, are not taken into account, as they do

not apply to the challenge at hand. It must be noted that laboratory automation in

some of those areas, most notably in the area of chemical and biochemical analysis,

has progressed much further than in synthesis, with fully automated high-throughput

workflows being the state of the art.

1 ITERATIVE SYNTHESIS

Iterative synthesis type approaches can be used for the sequence-controlled

synthesis of oligo- and polymers. They employ solid support matrices to immobilise

the product and elongate the chain by repeatedly coupling protected monomers in

an iterative fashion. Examples of currently used iterative strategies include synthesis

of peptides,2 oligonucleotides,3 or oligosaccharides4 as well as iterative cross

coupling.5

The first example of a fully automated iterative synthesiser (Figure 1) was reported

by Merrifield in 1965.2 The ingenious idea that led to this development was the

concept of solid phase synthesis Merrifield published just two years earlier,6 which

utilises an insoluble resin as support for the growing peptide chain. A carboxybenzyl

 INTRODUCTION

 2

(Cbz) protected amino acid is coupled to the resin, the amino group is deprotected,

and another Cbz protected amino acid is coupled to the free amine using N,N’-

dicyclohexylcarbodiimide (DCC). This procedure is repeated in an iterative fashion

until the desired chain length is achieved, and the target peptide is eventually cleaved

from the resin support. The pivotal advantage of the resin support is that the

intermediate is immobilised on the solid resin beads and can therefore be purified

by simple filtration. Monomers and coupling agents can be employed in large excess,

driving the reaction to completion, and then be washed away.

Figure 1: Photo of the first automated peptide synthesiser built by Merrifield. From
Merrifield, R. B., Automated synthesis of peptides. Science 1965, 150 (3693), 178-

85. Reprinted with permission from AAAS.

This first automated peptide synthesiser completely transformed the discipline of

protein synthesis. Around the same time Merrifield reported his solid phase method,

Zahn7, Katsoyannis8 and the Shanghai Institutes of Biochemistry and Organic

Chemistry9 reported the synthesis of insulin, a protein consisting of 51 amino acids,

 INTRODUCTION

 3

a colossal undertaking at the time. To get a sense of the scale of the project,

Katsoyannis published over a dozen papers about the project between 196110 and

196611, and Zahn’s 1963 paper7 lists 10 authors. Using his new automated peptide

synthesiser, Merrifield and his colleague Bernd Gutte published the synthesis of

ribonuclease A, a 124-amino acid protein, in 196912 after just one year of

development, according to Merrifield.13

Nowadays, fifty years later, automated peptide synthesisers are a staple of modern

biochemistry. Numerous models are commercially available (Figure 2), as are various

different resins as well as appropriately protected amino acids, and the protecting

group chemistry and coupling agents have progressed immensely since Merrifield’s

days.14

Figure 2: The Biotage® Initiator+ Alstra™ is one example of the various commercially
available peptide synthesisers at the time of writing (image reproduced with

permission of Biotage AB).

The next class of molecules that was brought to heel by iterative synthesisers were

oligonucleotides, that is, DNA and RNA. The first successful synthesis of a

dinucleotide in the correct linkage was reported by Michelson and Todd in 1955.15

Over the following decade the coupling chemistry was greatly improved,16-18 and

following Merrifield’s work in the mid-1960s, solid supported oligonucleotide

synthesis became the obvious next step. This development was enabled by two

 INTRODUCTION

 4

fundamental discoveries. First, Letsinger and co-workers developed the phosphite

method,19 a coupling chemistry which provided short enough reaction times and high

enough yields to make large-scale oligonucleotide synthesis feasible. This was

followed by Ogilvie and Nemer20 as well as Matteucci and Caruthers21 independently

pioneering the use of silica as a suitable solid support for nucleotide chemistry. Based

on those two key technologies, a fully automated DNA synthesiser was developed by

Ogilvie in 1981.3 Figure 3 shows the chemistry used in their synthesiser.

Figure 3: Solid supported DNA synthesis using the phosphite ester method.3 B and
B’ stand for thymine, N-benzoylcytosine, N-benzoyladenine, or N-isobutyrylguanine.

Since then, the instrumentation and methodology have been refined and diversified.

By now, full artificial genes upwards of 10,000 bases are synthetically accessible.

Custom “oligos”, as shorter oligonucleotides in the range of dozens to hundreds of

bases are colloquially referred to, can be inexpensively purchased from a number of

vendors. For further reading on the subject, Kosuri and Church22 give an excellent

overview of current technologies and applications in their 2014 review.

Automated oligonucleotide synthesis is now a cornerstone of modern molecular

biology. Many fundamental methods such as PCR would not be possible without fast

and cheap access to custom DNA and RNA sequences, so the importance of this

automation technology can hardly be understated.

Twenty years after Ogilvie’s DNA synthesiser, the Seeberger group successfully

automated the iterative synthesis of the next class of biomolecules: the

 INTRODUCTION

 5

oligosaccharides.4 In his 2005 review23 on the subject, Seebeerger explains the

difficulty of automating oligosaccharide synthesis. First, oligosaccharides are not

necessarily monotonic linear molecules. Every sugar monomer has a number of

attachment sites which requires sophisticated orthogonal protecting group

strategies to ensure chemoselective assembly. Second, the glycosidic bond itself can

take one of two isomeric forms and therefore stereoselective coupling strategies are

needed.

Figure 4: First automated oligosaccharide synthesiser.23 Reprinted by permission
from Springer Nature: Nature Reviews Drug Discovery Automated synthesis of

oligosaccharides as a basis for drug discovery, Seeberger & Werz, 2005

Although the first solid phase synthesis of oligosaccharides was reported as early as

197124 and the employed methodologies were refined in the following decades,25-27

it wasn’t until 1998 that work towards fully automating the synthesis began.28

 INTRODUCTION

 6

Seeberger and his group modified a commercially available peptide synthesiser

(Figure 4), selected appropriate monomers and coupling strategies, and eventually

published the first fully automated synthesis of several oligosaccharides, including a

branched dodecamer three years later.4

The technology has matured in the meantime, with the automated assembly of a

50mer reported in 2017.29 A spin-off company named GlycoUniverse was founded by

Seeberger in 2013 and, at the time of writing, it is marketing its first commercial

oligosaccharide synthesiser, the GLYCONEER® (Figure 5).

Figure 5: The GLYCONEER® automated oligosaccharide synthesiser (image
reproduced with permission of GlycoUniverse GmbH & CO KGaA).

Iterative strategies can also be employed for the synthesis of small molecules.

Recently, the Burke group demonstrated the use of iterative cross coupling of MIDA

boronates for the synthesis of a range of natural products (Figure 6).30 This technique

involves the use of building blocks functionalised with a halogen and a boronic acid

moiety protected with N-methyliminodiacetic acid (MIDA). Those building blocks can

undergo Suzuki-Miyaura cross-coupling with an unprotected organoboronate

without the risk of uncontrolled oligomerisation. The coupling product can be

purified followed by removal of the MIDA protecting group using aqueous sodium

hydroxide, and another B-protected building block can be attached. Encouraged by

those findings, Burke et al. conducted a systematic review of a large number of

structures of known polyene natural products and claimed that 75% of those

 INTRODUCTION

 7

products could be made from just 12 building blocks.31 While this may be a somewhat

sensationalist exaggeration (vide infra), it is probably safe to say that a large number

of different molecules could feasibly be assembled from a small number of building

blocks using their methodology.

When setting out to automate their method5 in a similar way as peptide or DNA

synthesis, they encountered a problem. Solid phase synthesis requires a common

handle to attach the first monomer to the solid support, but the range of natural

products Burke et al. were targeting lacked such a handle. Instead, they made a

fortuitous discovery: MIDA boronates do not elute from silica when methanol and

diethyl ether are used as eluents, virtually regardless of the organic moiety attached

to it. However, THF would readily elute them. Thus, a catch and release type of

purification could be employed, paving the way towards fully automating the

assembly of small molecules using the iterative cross coupling methodology.

Figure 6: Burke’s iterative cross coupling machine. From Li, J.; Ballmer, S. G.; Gillis,
E. P.; Fujii, S.; Schmidt, M. J.; Palazzolo, A. M.; Lehmann, J. W.; Morehouse, G. F.;
Burke, M. D., Synthesis of many different types of organic small molecules using

one automated process. Science 2015, 347 (6227), 1221-6. Reprinted with
permission from AAAS.

All the aforementioned technologies have two things in common. First, they are

easily automated. The handling operations required are limited to pumping reagent

solutions and performing filtrations. Also, the chemistries employed are limited to

only a handful of transformations per cycle, which are repeated over and over to

 INTRODUCTION

 8

assemble virtually any target molecule of the respective class. The reagents and

conditions employed can thus be tuned and optimised to a high degree. In fact, the

key technologies enabling each of the aforementioned synthesisers were not so

much the required instrumentation, but rather the chemical strategies for support,

coupling, and deprotection.

Second, all those iterative syntheses are fundamentally limited to one class of

molecules. Martin Burke disagrees with this assessment to a certain degree, claiming

that iterative strategies are the key to a large fraction of chemical space.32 The bold

claim of synthesising most polyene natural product motifs with just 12 building blocks

and one coupling reaction31 diminishes somewhat when the qualifications “polyene”

and “motifs” are taken into account. The paper started from a database of natural

products containing 238,541 entries at the time and extracted a subset of 2,839 or

1.2% containing three or more conjugated double bonds, none of which are

contained in a ring of less than 12 members. They then removed the two olefinic

termini, and retrosynthesised the remaining substructure, arriving at 12 building

blocks required to assemble more than 75% of those substructures. However, to

finish the total synthesis, they reasoned that over 600 unique capping elements are

required to synthesise 75% of the investigated target molecules. Moreover, they did

not state the overlap between the 75% of the core motifs and the 75% of the capping

elements. Thus, at best, over 600 unique building blocks are required to assemble

less than 1% of natural product space. It can be argued that this does not satisfy the

definition of universality.

In a recent review,33 Lehmann, Blair and Burke identified a range of other iterative

syntheses giving access to classes of natural products, albeit without mentioning

useful, generalisable automation strategies for them. While it is certainly conceivable

that current technologies can be broadened in scope, and new coupling chemistries

may unlock new angles at assembling small molecules, it remains questionable if an

iterative approach could ever be general enough to access an appreciable fraction of

chemical space.

 INTRODUCTION

 9

2 ROBOTIC PLATFORMS

The next common synthesis automation strategy is the use of robotic systems. In this

context, robotic systems are characterised by being mostly driven by one or more

mechanical actuators such as a robotic arm, or an XYZ Cartesian gantry. Using a

robotic arm to replace a human chemist is a rather obvious thought, while the use of

Cartesian robots is well suited for addressing arrays of vessels. Both benefit greatly

from the large body of work done for industrial applications such as automotive

manufacturing or CNC machining, providing tried-and-true machinery as a basis for

their development.

One of the first applications of robotics in the chemistry laboratory was in analytical

chemistry,34 and to this day chemists will be most familiar with robots for analytical

equipment in the form of autosamplers. Yet, robotic arms were investigated for the

automation of compound synthesis as early as the mid-1980s (Figure 7),35 but robotic

platforms did not receive much attention until the 1990s.36

In the following years, robotic workstations became a standard tool for screening

compounds for biological activity in so-called high-throughput screenings or HTS.37

This allowed the rapid screening of a large number of chemical entities against a

variety of biological targets by using Cartesian liquid handlers to prepare assays in

well plates and robotic arms to transfer the well plates between workstations.

However, in those early days, the screening candidates were usually taken from

already existing libraries,38 thus shifting the bottleneck to synthesising more

candidates in a time-efficient manner.

Enter combinatorial chemistry. As an umbrella term, combinatorial chemistry

describes a range of techniques for the rapid preparation of large compound libraries

by systematic or random combination of building blocks.39 By now combinatorial

chemistry constitutes its own branch of organic synthesis and a full review of the field

exceeds the scope of this chapter. The important aspect with regards to this thesis is

that due to its highly parallel nature, combinatorial chemistry lends itself well to

robotic automation.40-41

 INTRODUCTION

 10

Figure 7: Synthesis robot used by Fuchs et al. to optimise an organic reaction in
1984.35 A) Robotic arm, B) reactor station, C) solvent/gas/vacuum source, D) aliquot
archive station, E) workup station, F) syringe and needle wash station, G) turntable,

H) integrator, I) reagent station, J) parking station, K) front view. Reprinted
(adapted) with permission from Frisbee, A. R.; Nantz, M. H.; Kramer, G. W.; Fuchs,

P. L., Robotic orchestration of organic reactions: yield optimization via an
automated system with operator-specified reaction sequences. Journal of the

American Chemical Society 1984, 106 (23), 7143-7145. Copyright 2018 American
Chemical Society.

Combining those two technologies in their automated form essentially yields a fully

automated medicinal chemistry laboratory. In fact, in 2013 researchers at Eli Lilly and

Co. reported building a fully automated, remote-controlled robotic med-chem lab

(Figure 8).42 Researchers could design experiments from the comfort of their desk

without even having to be on site, and a collection of interconnected robotic

workstations would perform compound synthesis, purification, characterisation, and

biological testing and report the results.

 INTRODUCTION

 11

Figure 8: Eli Lilly’s robotic med-chem lab.42 Reprinted from Godfrey, A. G.;
Masquelin, T.; Hemmerle, H., A remote-controlled adaptive medchem lab: an
innovative approach to enable drug discovery in the 21st Century. Drug Discov

Today 2013, 18 (17-18), 795-802., with permission from Elsevier

Robotic workstations are also employed in other fields, such as process research and

development43 or materials science.44 Many turnkey and customised solutions are

commercially available,45-47 and synthesis robots are by now a common sight in the

pharmaceutical industry.48

For all their potential, robotic solutions also have their drawbacks. Multistep

reactions are possible but often require specialised methodologies such as

immobilised reagents49-50 or scavenger resins.51 Also, the amount of material

obtained is usually quite small, in the milligram range. While being a boon in the early

stages of the drug development process due to reduced reagent use and waste

production, it can actually be an impediment in the later stages when material should

be isolated or process development data should be obtained.52

 INTRODUCTION

 12

 INTRODUCTION

 13

3 FLOW CHEMISTRY

The third automation strategy commonly encountered today in chemistry is

continuous flow. It is essentially a paradigm shift from the classical way chemistry is

conducted in a flask in batch, to a continuous processing of materials in a roughly

tubular reactor. This has a number of advantages over batch chemistry:53 the short

diffusion lengths inside a flow reactor ensure efficient mixing and therefore improved

homogeneity. The high surface-to-volume ratio provides superior heat transfer into

or out of the reaction mixture, allowing efficient heating, as well as safe handling of

strongly exothermic reactions. The high wall thickness of most classical flow reactors

in relation to the internal diameter allows reactions to be conducted at elevated

pressures safely, without the need for cumbersome autoclaves. Additionally, at any

given time, the reactor only contains miniscule amounts of reagents, thereby further

improving chemical safety.54

However, there are also limitations. One of the core problems of flow chemistry is its

general incompatibility with flowing solids. Although considerable effort is aimed at

handling particulates in flow,55 precipitation inside the flow reactor still presents a

major challenge. Another disadvantage is that reaction conditions obtained in batch

can’t always easily be transferred to flow without further optimisation.56

The entire field of flow chemistry is vast. The interested reader is referred to the aptly

named review “The Hitchhiker’s Guide to Flow Chemistry” by Seeberger et al.57 which

gives an excellent account of the theory, techniques and applications of modern flow

chemistry. The important consideration in the context of this work is the scope and

limitations of flow chemistry, as the fundamental design choice to focus on

automating batch processes is largely based on the belief that flow chemistry is a

specialist tool for certain applications and not readily generalisable.

Many a review has been written on the question whether to perform syntheses in

batch or in flow.53, 58-60 The generally accepted answer is: it depends. Flow chemistry

is a powerful tool where exotic or dangerous reaction conditions are required. One

such example is the catalytic hydrogenation. The handling of hydrogen gas always

 INTRODUCTION

 14

poses a safety issue. A recent publication on the subject61 elegantly sums up the

challenges of conducting laboratory scale hydrogenations in batch:

“
Fire, runaway reactions and explosions are commonly associated with

hydrogenations due to the involvement of pyrophoric catalysts, hydrogen,

flammable solvents and pressure.

“

The alternative, particularly for larger quantities, would be to use a device called the

H-Cube marketed by ThalesNano (Figure 9).62-63 This device generates hydrogen on

demand by means of water electrolysis, and safely conducts hydrogenations at

elevated pressures and temperatures in flow, thus bypassing the aforementioned

fires, runaway reactions and explosions.

Figure 9: The H-Cube by ThalesNano.63 Reprinted from Dormán, G.; Kocsis, L.; Jones,
R.; Darvas, F., A benchtop continuous flow reactor: A solution to the hazards posed
by gas cylinder based hydrogenation. Journal of Chemical Health and Safety 2013,

20 (4), 3-8, with permission from Elsevier.

Another case where flow chemistry can greatly improve safety is the use of

diazomethane. Diazomethane is one of the most versatile C1 building blocks, and

very useful due to its generally fast and clean reactions.64-65 However, the dangers

associated with it are well appreciated: it is highly toxic,66-67 carcinogenic,68 and

spontaneously explosive.69 Standard laboratory techniques70 for reactions with

 INTRODUCTION

 15

diazomethane generate it in situ either as gas, or preferably as solution in ether, and

use it right away. Alternatively, reactions with diazomethane can be conducted in a

dual channel71 or tube-in-tube72 flow reactor consisting of two flow paths separated

by a gas permeable membrane. The diazomethane is generated in one flow path and

permeates into the other flow path, where it reacts with the substrate. Effluents of

both streams are directed into a quenching solution, destroying any unreacted

diazomethane, thus limiting the amount of free diazomethane present at any one

time. Similar setups have also been demonstrated for safely conducting other

problematic liquid/gas reactions such as ozonolysis73 or reactions with hydrogen

cyanide.74

The utility of flow chemistry is not limited to the safe use of hazardous reagents. The

safe access to exotic reaction conditions such as high temperatures and pressures

can be quite attractive as well, especially in the context of green chemistry.75 Using

flow reactors, green reagents which are normally less reactive than their classical,

non-green counterparts can be used at temperatures above their boiling point, thus

reducing reaction times.76 Flow reactors also enable reactions in supercritical

solvents such as supercritical methanol, ethanol, or acetonitrile;77 or supercritical

water78 or CO2.79-80 In particular, the latter is widely regarded as an attractive green

alternative to conventional solvents due to its chemical and physical properties being

tuneable across a wide range.81

Multistep syntheses in continuous flow are possible, in principle. Sophisticated total

syntheses of natural products have been carried out partially82 or entirely83 in

continuous flow. To circumvent troublesome steps, batch processes have been

integrated with continuous flow setups.84 However, the difficulties regarding method

development are compounded in multistep continuous flow syntheses. Reaction

conditions of individual steps are no longer independent from each other as is the

case in batch, where intermediates are commonly isolated before being used in the

next step. Thus, all parameters of every reaction must be carefully considered not

only with regards to the transformation at hand, but also to operations upstream and

downstream of the step.60, 85

 INTRODUCTION

 16

Flow chemistry has been adopted in the manufacture of pharmaceutical products.86

This is partially due to the abovementioned safety aspects, and partially due to the

simple scalability. Beyond classical scale-up,87 the relatively inexpensive nature of

most flow reactors allows an alternative strategy known as numbering-up or scale-

out88 which involves running numerous small-scale reactors in parallel. Additionally,

once a flow system has reached steady state there is no limitation to how long it is

run, thus enabling a potentially indefinite continuous production of an active

pharmaceutical ingredient or API.

Figure 10: Reconfigurable flow reactor for the production of four APIs. From
Adamo, A.; et al. Science 2016, 352 (6281), 61-7. Reprinted with permission from

AAAS.

This realisation led researchers to investigate continuous end-to-end manufacturing

solutions for APIs,89 even including final dosage formulation.90 However, those

systems are usually tailored to the production of a single target compound and not

universally useful. In the most impressive technology demonstration so far, a team

at the Massachusetts Institute of Technology built a compact and reconfigurable flow

system (Figure 10) capable of manufacturing four different APIs,91 however,

 INTRODUCTION

 17

extensive reconfiguration of the system was still required in order to switch between

target molecules. Additionally, the points raised earlier regarding the finicky method

development of multistep flow syntheses remain valid.

In the author’s view, flow chemistry remains an enabling technology rather than an

all-encompassing automation strategy. Aforementioned attempts at reconciling flow

and batch or building reconfigurable flow systems are certainly promising, yet it

remains questionable that they will eventually yield a truly universal automation

strategy.

 INTRODUCTION

 18

 INTRODUCTION

 19

4 AUTOMATED BATCH REACTORS

Relative to the aforementioned strategies, the automation of a pure batch

synthesiser that is not parallelised was given very little attention. One of the first

examples approaching an automated batch synthesiser was reported by Deming and

Pardue in 197192 where they attached a number of computer controlled syringe

pumps and solenoid valves to a spectrophotometer cell which allowed them to

collect mechanistic data in an automated fashion. This work inspired other groups to

investigate automated batch synthesis. Charles Berkoff and Daniel Chodosh at Smith

Kline & French reported a system capable of formulating, conducting and sampling a

reaction in batch under full automation.93-96 Their publications are a fascinating

insight into the technology at the time, since they describe in detail the electronics

and the very limited computing power running their system. At the same time,

Legrand et al. presented a similar system with similar capabilities (Figure 11).97-98

Figure 11: Schematic of Legrand and Bolla’s apparatus.98 A = strain gauges; B =
powder dispenser; C = weighing vessel for powders; D = weighing vessel for liquid

reagent with its transfer pump; E = peristaltic pumps; F = recuperation of the
reaction mixture; G, H and I = solvent weighing and distribution; J = pneumatic jack

for cooling.

 INTRODUCTION

 20

Those early systems were essentially automated reactors, intended to optimise

reaction conditions and gather process data. Isolation of the product was not a major

design feature, and neither team even considered conducting multistep reactions in

their automated systems.

To the extent of the author’s knowledge, the first automated multistep batch

synthesis was carried out at the Conservatoire National des Arts et Métiers (CNAM)

in France in 1987.99 Their “Automated Versatile Modular Reactor” or AVMR (Figure

12) was equipped to add reagents, perform refluxing and distillation, as well as

aqueous washing and liquid/liquid separation. Using this setup, the group performed

a three-step synthesis, but did not isolate the crystalline end product automatically

as their reactor lacked the capability for filtration. They correctly identified the need

for versatility and the advantages of modular construction; however, it seems

modularity in this context meant more a distribution of tasks rather than making

individual components interchangeable. Indeed, in a 1989 paper the group presents

an automated reactor for liquid/gas reactions100 which appears to be an entirely new

system bearing little resemblance to their original AVMR.

Figure 12: Schematic of the AVMR.99

 INTRODUCTION

 21

Meanwhile researchers at Takeda Chemical Industries in Japan were developing their

own automated batch synthesisers. Their first generation system101 consisted of

three reactors with reagent delivery system, a liquid/liquid separator, a preparative

HPLC, and a freeze drying unit. They demonstrated the capabilities of their system by

performing a reductive amination in a fully automated fashion. They later improved

their setup in several iterations, arriving at a number of different platforms102 capable

of performing most operations commonly encountered in organic synthesis.

However, their system was bulky (between 180x180x40 cm and 180x200x70 cm) and

employed complicated liquid handling systems largely driven by vacuum and

solenoid valves, which required a staggering amount of tubing (Figure 13). Their

control software was advanced for the time but tailored for every instance of their

synthesiser, thus severely limiting the true modularity of the system.

Figure 13: Schematic of the reaction unit of the Takeda platform,102 one of several
subunits constituting their synthesis platform. Note the complicated tubing.

One of the researchers at Takeda, Tohru Sugawara, later joined the Takahashi

research group. Together they developed a more advanced synthesis platform, the

ChemKonzert (Figure 14).103 Their system seems to build on many of the technologies

developed at Takeda, including the liquid transfer via vacuum, and the complex

 INTRODUCTION

 22

plumbing requirements. The most noteworthy addition is a centrifugal separator to

speed up liquid/liquid separations. However, crucially, the system was not designed

to perform evaporations, therefore precluding fully automated multistep sequences.

Their control software KonzertMeister is not described in any detail, but it seems to

be tailored to the particular setup of the synthesiser as well. Overall, the setup

appears monolithic and not very flexible. The group has published numerous papers

describing natural product syntheses assisted by the platform,104-108 but no

significant advances on the instrumentation. It also has to be noted that, as

mentioned above, the published syntheses relied on manual interventions in

between the synthetic steps, thus reducing the utility somewhat. Nevertheless, it can

be argued that the work of the Takahashi group neatly illustrates the usefulness of

an automated lab-scale batch synthesiser in chemical research.

Figure 14: The Takahashi group’s ChemKonzert synthesiser.109 RF1 and RF2:
reaction flasks; SF: centrifugal separator; FF1 and FF2: glass filters; RR1-RR12:

reagent reservoirs; RS1-RS6: solvent reservoirs; DT: drying pads; CF: collection flask
(for final product solution); WT: solvent tanks.

Examining the schematic of ChemKonzert (Figure 15), what is immediately obvious is

that it lacks a dedicated evaporation module, which immediately precludes non-

telescoped multistep syntheses. Furthermore, the architecture seems very

 INTRODUCTION

 23

monolithic and purpose-built. It is hard to imagine how additional modules could be

easily added without extensive changes to the overall system, as there seems to be

no standardised expandable interfacing strategy. The authors claim a “unit concept”

behind their design strategy, yet it remains unclear how those units could be

customised independently, or how additional units could be added.

Figure 15: Schematic representation of the ChemKonzert platform. Reproduced
from Ref. 106 with permission from The Royal Society of Chemistry.

To the extent of the author’s knowledge, Takahashi’s ChemKonzert is the only fully

automated lab-scale batch synthesiser in use at the moment. The author’s best guess

is that the drive for higher throughput and the relative ease of robotic automation

shifted the attention of the mainstream automation community towards parallel

synthesisers (see chapter 2), while the automation of larger-scale batch processes

regressed to simply adding more instrumentation to a reactor, without bothering

with work-up or isolation.110 At the time of writing, a number of automated reactor

workstations are commercially available, such as the OptiMax by Mettler Toledo,111

the Mya 4 by Radleys,112 or the Atlas by Syrris,113 to name but a few. While those

systems are undoubtedly useful for process research and development, the degree

 INTRODUCTION

 24

of automation they offer is relatively insignificant (addition of reagents, stirring,

temperature programs, and the like), and unattended multistep syntheses are out of

the question.

 INTRODUCTION

 25

5 THE CHEMPUTER CONCEPT

Based on the assessment of the state of the art presented in the previous chapters,

our group set out to create a new, universal, modular, lab-scale batch synthesis

platform controlled by a flexible software suite. The working title for this platform

was “The Chemputer”. This portmanteau of “chemical computer” was chosen as a

reference to the proposed universality, similar to how the modern computer

surpassed older, specialised calculating machines. To overcome the limitations of

existing liquid handling solutions, the group started to develop new syringe pumps

and six-way valves, and also implemented a novel architecture providing maximum

modularity with minimal tubing. This “Backbone” architecture was conceived by a

number of colleagues before I joined the project. Figure 16 shows a schematic

representation of the Backbone. One pump and valve, respectively, represent a

minimal unit. The Backbone can be elongated at both ends and conceivably closed to

form a circle.

Figure 16: Schematic illustrating the Backbone architecture.

Figure 17 shows how to transfer liquid from a port on one Backbone unit to a port on

another Backbone unit. The pump on the source unit aspirates the appropriate

amount, then the valve on the source unit and the adjacent unit switch to the bridge,

and the source pump and the adjacent pump move simultaneously to transfer the

liquid contents from the source syringe to the next syringe. This process is repeated,

and the liquid is moved along the Backbone until it reaches the destination unit,

which in turn dispenses it to the destination port.

 INTRODUCTION

 26

Figure 17: Moving liquids across the Backbone.

Initial efforts focused on relatively simple operations as the system’s capabilities

were severely limited. Multistep syntheses of small molecules were envisioned but

at that point clearly beyond the capabilities of the system. The most complicated

operation attempted was the solid phase synthesis of a peptide, which did work after

significant troubleshooting, albeit at a yield that was much lower than that obtained

in a commercial peptide synthesiser.

 INTRODUCTION

 27

The control software at that point was rudimentary. Drivers for the pumps, valves,

and stirrer hotplates were implemented in Python, while the synthesis itself,

including the knowledge about connectivity and reagent placement as well as all the

transfer routines, was hard-coded in a single file containing close to 2,000 lines of

Python code. A more flexible control suite dubbed “ChemOS” was being developed

by Dr. Gerardo Aragon-Camarasa in parallel (see also chapter 7.3.2), but it wasn’t

ready by the time I started work on the project.

 AIMS

 28

AIMS

The first aim of the project was to develop the abstraction of a universal synthesis

platform discussed in chapter 5 into a physical implementation. To that end, the

aforementioned Backbone architecture should be combined with the required unit

operation modules.

Thus, the available liquid handling hardware was to be improved to guarantee

chemical resilience and general reliability. Also, the existing unit operation modules

required further development, and new modules for further operations were to be

developed.

The next aim was to improve the device firmware for the liquid handling hardware,

and to further develop the overall control software. As mentioned in chapter 5,

previous iterations of the platform used hard-coded scripts for control, so a more

flexible, modular control suite was required.

With operational hardware and software in hand, the next aim was to thoroughly

test the setup and verify the overall concept. Thus, the third aim was to perform

three multistep syntheses covering an appreciable number of reaction classes on the

platform and demonstrate the capabilities of the synthesis platform.

Beyond those immediate aims, a roadmap detailing the planned future work with

this novel synthesis platform was to be drafted In particular, the ongoing hardware

and software development, more and more diverse chemistry, and the uptake in the

group and the wider community should be assessed.

 RESULTS AND DISCUSSION

 29

RESULTS AND DISCUSSION

6 HARDWARE DEVELOPMENT

During this work, a great deal of hardware development was undertaken in order to

eventually yield a functioning synthesis platform (Figure 18). In particular, this

development effort was focused on two broad fields: the liquid handling hardware

constituting the Backbone, and the various unit operation modules. The initial state

at the beginning of the project as well as the development and eventual operation of

the individual components of the platform will be discussed in the following

subchapters.

Figure 18: Photo of the synthesis platform developed.

6.1 PUMPS AND VALVES

6.1.1 PRIOR STATE OF THE ART

The in-house development of a new syringe pump was sparked by the desire to

achieve higher flow rates than those offered by commercial pumps available at the

time. Consequently, designing a six-way selection valve was a natural extension of

that work, as a pump without a valve is arguably not very useful. Those efforts started

long before I joined the group and were undertaken mostly by Dr. Stefan Glatzel, so

I had no hand in many of the initial design choices.

 RESULTS AND DISCUSSION

 30

The principal design of the pump was very simple. A NEMA23 stepper motor with a

lead screw moved a carriage along a linear guide rail. The barrel of a glass syringe

was mounted to the motor and guide rail, while the plunger was mounted to the

moving carriage. The home position was established by a Hall effect sensor in the

base and a magnet in the carriage. The earliest prototypes featured a horizontal

syringe (Figure 19) similar to many commercially available models, while later

versions had an upright design with the outlet at the bottom (Figure 20). Control was

achieved via an Arduino and an external stepper motor driver. Early versions can be

viewed as simplistic imitations of the archetypical, commercially available syringe

pump design.

Figure 19: Early prototypes of the six-way valve and the syringe pump, together
with an Arduino and a motor driver PCB to control the devices.

All connectors were manufactured from polylactic acid (PLA) on a Fused Deposition

Method (FDM) 3D printer. While 3D printing in principle has many advantages, in this

case it negatively affected the mechanical design in fundamental ways. First, the poor

mechanical properties of 3D printed PLA parts required a bulkier design. Then, the

poor resolution of the printer required many key dimensions to be specified with

wide tolerances, leading to severe problems with misalignments in the assembly.

Additionally, the relative freedom in terms of design that 3D printing offers meant

 RESULTS AND DISCUSSION

 31

that manufacturability in a more conventional context was never a consideration

when many early design choices were made.

Figure 20: One of the first prototypes of the current pump design.

The motor connector was later modified to accommodate a range of syringes, using

inserts and cover plates of different sizes. The purchase of a Stratasys Connex 500

polyjet 3D printer allowed manufacture of the parts from a proprietary

photopolymer with mechanical properties similar to unplasticised PVC, thus

enhancing the overall mechanical properties of the device. Figure 21 shows the

components of one syringe pump. This image largely reflects the starting point of my

involvement in the project.

 RESULTS AND DISCUSSION

 32

Figure 21: Components of the syringe pump, late 2014.

The valve design is based on the commercially available V-240 six-way selection valve

manufactured by IDEX Health & Science. This valve features a central inlet and six

selectable outlet ports fitted with ¼-28 UNF threads. Originally the valve comes with

a hand wheel which is attached to the shaft with a grub screw. This hand wheel was

replaced with a 3D printed connector that allowed mounting the valve onto a

NEMA23 stepper motor. A 3D printed housing held the valve body in place relative

to the motor (see Figure 22). Positioning was achieved by six magnets embedded in

the motor connector, and a Hall effect sensor integrated into the housing.

 RESULTS AND DISCUSSION

 33

Figure 22: Early prototype of the six-way valve. Left: full assembly. Right: partially
disassembled, showing the motor connector and the positioning magnets.

Only a few alterations were made to this design before I joined the project. The size

of the magnets was decreased to improve positioning accuracy. The overall shape of

the motor connector was initially optimised for minimal material use, but later

simplified to a plain cylindrical shape. The most noteworthy change was made to the

way the Hall effect sensor was held in place. Initially, a through hole technology (THT)

type sensor was used (see Figure 28). The sensor body was press-fitted into the valve

housing, the pins were extended through holes to the outside, and connected to a

cable either by direct soldering, or some sort of female connector. However,

mechanical strain on the cable would regularly damage the sensor, and exchanging

it proved difficult when it was simply embedded into the housing. Thus, a holder for

the sensor was designed in such a way that it would slip into a corresponding slot in

the housing from below and be held in place by the motor. In case of a sensor failure,

the whole piece could be discarded and replaced. This system, and the wider issue of

the Hall effect sensor, will be discussed at length in chapter 6.1.4.

Figure 22 and Figure 23 show, except for the abovementioned changes, the state of

the six-way valve when I joined the project.

 RESULTS AND DISCUSSION

 34

Figure 23: Components of the six-way valve, late 2014.

The Arduino controlling the devices was later replaced with a custom PCB using

Power over Ethernet (PoE) to both power and control the boards. This interesting

design choice meant that only one cable was required per device, and multiple

devices could be connected to a commercially available PoE switch, thus making the

overall experimental setup neater and tidier. The PCB went through multiple design

iterations both in-house and externally, the currently used model was designed by a

contractor.

The basic design of the PCB follows the successful Arduino design.114 It consists of

two boards, a mother board and a motor driver shield. The mother board features

an Atmel ATxmega128A4U microcontroller, a WIZnet W5500 ethernet chip, an RJ45

socket for the ethernet connection, and periphery for power control and distribution.

It also features two rows of female pin headers which allow the connection of various

daughter boards or shields. The motor driver shield features a Trinamic TMC262

stepper motor driver and the associated MOSFET stage.

 RESULTS AND DISCUSSION

 35

6.1.2 TRANSFER TO AUTODESK INVENTOR AND INITIAL IMPROVEMENT EFFORTS

The initial development work described above was largely done in Autodesk

AutoCAD, which is a CAD application initially developed for 2D applications; and

OpenSCAD, which is an open source 3D CAD application which uses a scripting

language to build solid bodies. Neither application is suitable for a larger engineering

project as the 3D modelling capabilities of both programs are limited, and neither

offers an assembly feature. Thus, the parts were ported to a suitable engineering

CAD package. After some consideration Autodesk Inventor was chosen, which offers

parametric and freeform modelling, assembling components and inspecting fit and

function digitally, as well as the creation of construction drawings, among many

other features. It directly competes with SolidWorks or Solid Edge, but in this case

previous experience with Inventor made it the best solution.

Instead of simply importing the existing STL files as solid bodies, it was decided to

draft every part from scratch, as this would allow easy alterations later on. Also, a

preliminary assembly of just the printed components was created to verify fit and

alignment. This flagged up several problems with the existing models, as some key

features on the pump carriage and the pump motor connector did not line up

properly. After fixing those problems, a version number was embossed onto every

part and a set of proofs was printed. The version number turned out to be an

invaluable feature, as previous design iterations left a plethora of old parts in their

wake, which led to some confusion. It was also found that many clearances were

wider than required, presumably because of the inferior performance of the FDM

printer used before, which further complicated proper alignment of all parts during

assembly. Thus, most clearances were tightened to around 50-100 µm and

experimentally verified a snug fit by printing proofs.

The pump design initially used a number of different screw lengths without any

justification (see Figure 21). This in turn meant a larger number of screws had to be

sourced and stocked, complicating the life cycle management of the pump. The block

of the linear guide rail was mounted to the pump carriage using two M3x10 and two

M3x30 for no apparent reason (see Figure 24). It was decided to deepen the lower

holes in the pump carriage to allow the use of four M3x10 instead (Figure 27), as this

 RESULTS AND DISCUSSION

 36

screw size was already used for mounting the guide rail to the motor connector. The

cover plate holding the syringe in place was mounted by two M4x35 and two M4x50.

Again, the geometry was adapted to allow the use of four M4x35 instead, further

reducing the overall number of different components.

6.1.3 IMPROVING THE ALIGNMENT

As mentioned before, the early models of both the pump and the valve suffered from

a range of problems due to improper alignment of the components. If the valve

housing (Figure 25 C) was not carefully aligned with the motor prior to assembly, a

process which was done largely by eye, the rotating connector would scrape against

the housing. The motor connector itself had to be carefully positioned at a precise

height using a calliper or feeler gauge so the magnets were positioned at the same

height as the Hall effect sensor, otherwise the positioning accuracy would drop

significantly. Tightening the screws holding the motor connector to the shaft had to

be done carefully to ensure the motor connector wasn’t tilted, which would lead to

it scraping against the housing and potentially getting stuck. Nevertheless, the motor

connector would still often precess, which made the valve head move around visibly.

To make matters worse, the vibrations caused by heavy use, exacerbated by

mechanical forces caused by this precession or scraping, would regularly loosen the

screws holding the assembly together. This would lead to increased movement

within the assembly, worsening the condition, sometimes up to a point where the

valve would cease to function entirely.

The pump was suffering from similar problems. The motor had to be centred by eye

as well. Additionally, earlier models used a stepper motor with a plain shaft, and a

mechanical coupler to attach the lead screw. Those connections were rarely coaxial,

leading to eccentricity and precession of the lead screw. The plunger of the syringe

was attached to the carriage with a screw in a slot, allowing adjustments along one

axis (Figure 24). This was found to be necessary in early design iterations, as the FDM

printer simply lacked precision. Unfortunately, this meant that the plunger had to be

carefully aligned by eye and feel, and improper alignment would often cause the

plunger to scrape against the syringe barrel and get damaged. Inevitable

misalignments would again lead to unwanted mechanical forces and excessive

 RESULTS AND DISCUSSION

 37

vibration, working screws loose to the point where they fell out of the device after

several hundreds of moves.

Figure 24: Section view of the old pump carriage. Note the slot for the screw
holding the syringe plunger (top left), the dissimilar screw lengths for the linear

guide block, and the hexagonal lead screw nut which is just clamped in place by a
thin plate.

For the valve, three critical alignments were identified. First, the internal cylinder of

the housing must be coaxial with the motor shaft. Second, the motor connector must

be coaxial with the motor shaft. Third, the distance between motor connector and

motor must be correct. To address the first alignment, the base of the housing was

widened, and a raised skirt snugly fitting the faceplate of the motor was added

(Figure 25 D). Thus, the housing could no more be translated or rotated in relation to

 RESULTS AND DISCUSSION

 38

the motor. In the course of this design iteration, nut traps were added to the housing

to simplify assembly. Previously, the screws would be inserted from above and the

nuts placed on the motor side (Figure 25 A). This way, the nuts had to be secured

against rotation when tightening the screws. The confined space made the nuts

awkward to hold with a spanner, so mostly a large flathead screw driver was wedged

between the nut and motor, which was a fiddly and awkward operation. In the new

design, the nuts would be inserted into hexagonal recesses in the housing

(Figure 25 B), and the screws would be inserted from below and could be comfortably

tightened.

Figure 25: Valve housing. A) initial design, showing the plain mounting holes
(arrow). B) improved design, showing the hexagonal nut traps (arrow) as well as the

embossed version. C) initial design, showing the plain underside (arrow). D)
improved design showing the raised skirt (arrow) for locating the motor. The large

openings in the new design allow easy access to the motor connector for
monitoring and trouble shooting.

 RESULTS AND DISCUSSION

 39

The motor connector alignment was improved by decreasing the clearances, and by

repositioning the D cut. Initially, the central bore of the motor connector had a

nominal diameter of 6.5 mm. The NEMA standard specifies a nominal outer diameter

of .250’’ or 6.35 mm for the shaft of a NEMA23 motor, which leaves a 75 µm gap all

around, which is enough to visibly tilt the connector. Practical experience with the

Connex 500 3D printer showed that tolerances as small as ± 10 µm were achievable,

so the nominal diameter of the bore was decreased to 6.4 mm. This provided a very

snug fit of the motor connector and eliminated any angular play.

The motor used for the valve features a D cut to efficiently transfer the torque to the

valve via a matching feature in the motor connector. This D cut could also serve as

datum point for the vertical alignment of the motor connector by repositioning the

ridge of the feature inside the connector to rest on the feature in the motor shaft.

During assembly, the connector now just had to be pushed all the way down and

secured by tightening the screws.

Figure 26: Section view of the new motor connector. Note how the printed part sits
on the D cut in the motor shaft.

 RESULTS AND DISCUSSION

 40

Those alterations greatly simplified the assembly of the valves, and at the same time

improved the reliability. Strong vibrations were still a concern, though, particularly

because the screws in the motor connector regularly worked themselves loose and

subsequently were propelled outwards by centrifugal forces during valve

movements, leading to jams. To address this particular issue, thread locker was

specified for all screws inside the motor connector, while the screws connecting the

housing to the motor were fitted with locking washers. This strategy successfully

mitigated the detrimental effect of vibrations and led to highly reliable operation for

thousands of moves.

For the pump, the central axes of the motor and the syringe were identified as critical

alignments. To properly line up the centre points for both components on both the

carriage and the motor connector, the linear guide rail and block provided two

convenient datum surfaces. The motor connector was fitted with a skirt as described

above for the valve housing, precisely locating the motor. The motor itself was

replaced with a model featuring an integrated lead screw, thus eliminating the linear

coupler. The hexagonal lead screw nut used previously was replaced with a flanged

lead screw nut featuring four threaded M3 holes. This in turn allowed simplification

of the carriage.

The position of the syringe barrel relative to the motor connector is determined by

the cover plate. The end cap of the syringe is wider than the glass barrel, so the sleeve

insert has to provide sufficient clearance to allow the end cap to pass through. The

cover plate however could be accurately moulded to fit the flange of the syringe,

providing accurate positioning. In order to accurately and repeatably position the

cover plate relative to the motor connector, locator pegs were added to the

connector, while corresponding recesses were added to the cover plate. Shape and

location of those pegs went through some iterations, but the overall concept was

found to work well. On the carriage, the slot for the screw holding the syringe barrel

in place was replaced with a tight clearance hole (Figure 27).

 RESULTS AND DISCUSSION

 41

Figure 27: Section view of the new pump carriage. Note the new lead screw nut, the
clearance hole for the syringe bolt, and the locking washers on most screws.

To address the vibration issue, all permanent screws were fitted with locking

washers. Only the four screws securing the cover plates and the screw holding the

syringe barrel were left without locking washers as they have to be undone when the

syringe should be swapped. With those safeguards in place, stress tests with several

thousand random moves did not dislocate any screws.

 RESULTS AND DISCUSSION

 42

6.1.4 THE EVOLUTION OF THE HALL EFFECT SENSOR

Both pump and valve used analog bipolar Hall effect sensors for positioning. The first

versions of the devices used a three pin through hole package sensor (Figure 28). The

cover plate of the pump and the valve housing were fitted with a small recess to hold

the sensor and three small holes to keep the pins separate. The earliest designs had

only a slot, so short circuits of the sensor were a common occurrence.

Figure 28: Allegro Microsystems A1302 analog bipolar hall effect sensor, through
hole package.

This mode of mounting the sensor had numerous disadvantages. First, if the recess

was too large, the sensor could move, and the reading would shift. This was

sometimes counteracted by gluing the sensor in place (Figure 29), which produced

problems when the sensor malfunctioned. If, however, the recess was too tight,

excessive force was required to push in the sensor, often damaging the fragile

component. Furthermore, there was no convenient way of interfacing the pins with

a cable leading to the control PCB. The most reliable connection was directly

soldering the pins to the wires; however, the sensors were known to break or

malfunction frequently, and replacing them would entail desoldering and resoldering

the wires every time. Alternatively, various female connectors were used, however,

the small diameter of the sensor pins made most of those connections unreliable.

Also, neither the pump nor the valve design at the time provided any means to firmly

attach any connector to the device, so any mechanical strain on the cable would

either unplug it or tear out the pin. As the pins simply protruded from the side of the

devices in a rather exposed location, the cable got commonly snagged or squashed

during handling, damaging the sensor.

 RESULTS AND DISCUSSION

 43

Figure 29: Old cover plate with the Hall effect sensor glued in place. The
disadvantages of this mode of mounting the sensor are readily apparent from the
poor condition on the sensors: the pins of the right sensor are bent, while the pins

on the left sensor are sheared off. This sort of malfunction was commonly
encountered even after little use.

The least unreliable and inconvenient of the abovementioned ways of contacting the

sensor was the use of a three-pin female crimp connector which was then glued to

the side of the device. Although the pins were too thin for the connector, when fully

inserted the mechanical forces would bend them against the sides of the female

connector and ensure a somewhat durable electrical connection. By gluing the

connector to the device, mechanical strain on the cable would not be translated to

the pins. Obviously, this was a rather permanent solution, and in case of a sensor

malfunction the entire part had to be discarded.

 RESULTS AND DISCUSSION

 44

Clearly, a better solution was needed. The obvious way of fixing many of the

problems was to continue using the female crimped connectors, but to encase the

entire assembly consisting of connector and sensor within the device. To that end,

the cover plate of the pump and the holder insert of the valve were redesigned.

The holder insert for the valve was split along the centre, and a cavity was added to

accommodate the sensor and connector (Figure 30). The wires were routed out

through three circular openings on the side which firmly held the cable in place and

thus absorbed any mechanical strain. When assembling the valve, the sensor was

inserted into the connector of the cable, both were then inserted into the holder,

and the whole holder assembly was slid into the housing. It was found that this

mounting mode held the sensor in place reliably and protected it against mechanical

damage. In case of a malfunction, the sensor and/or the cable could be replaced

easily.

Figure 30: Section view of the valve showing the Hall effect sensor (black)
embedded inside the two halves of the holder.

 RESULTS AND DISCUSSION

 45

The pump cover plate was elongated towards the back and a shaped recess was

added to accommodate the sensor and connector. A shaped wedge was then

inserted from below to hold the assembly in place, and the plate was mounted onto

the pump (Figure 31). While developing this solution, another design flaw was

discovered. The home position of the pump is determined by the distance between

the top of the syringe barrel and the top of the plunger. Unfortunately, when

ordering the custom-made syringes, no attention was given to unifying this distance

across different syringe sizes. Consequently, the home position was different for

every syringe size. This is the reason why the Hall effect sensor had to be mounted

into the cover plate rather than directly onto the motor connector, as the different

thicknesses of the plate would position the sensor at the appropriate height. An

inquiry with the syringe manufacturer revealed that unifying the plunger lengths

would be prohibitively expensive, so instead of keeping the position of the barrel

constant and varying the home position of the carriage, it was decided to keep the

home position constant and vary the height of the barrel via the different sleeve

inserts.

 RESULTS AND DISCUSSION

 46

Figure 31: Section view of the pump showing the Hall sensor and crimp connector
encased in the cover plate.

The design of the new cover plate went through a few iterations because early

designs were prone to crack when the carriage crashed against the base, which

happened occasionally when the sensor malfunctioned. By carefully sculpting the

sensor cavity, reinforcing the plate surrounding it, and reshaping the motor

connector to support the plate all around, this cracking problem was eventually

solved.

This new solution performed significantly better than the previous, but sensor-

related malfunctions were still a common occurrence, and particularly in the case of

the valves it often took a while to pinpoint the failure and initiate repair. Also,

integrating the sensor into the cover plate of the pump meant that every time the

syringe was swapped, the sensor had to be repositioned, which was a fiddly process.

Still not satisfied, another, completely different solution was devised.

 RESULTS AND DISCUSSION

 47

The particular Hall effect sensor used was also available in a surface mounted device

(SMD) form factor. Therefore, it was decided to design a small PCB featuring the Hall

effect sensor, three 2.54 mm pitch pin headers which were designed to fit the female

connector previously used, and two M2 mounting holes. This PCB could then be

mounted onto the pump using the mounting holes (Figure 32) or slid into the valve

housing similar to the holder used previously (Figure 33). The pin headers provided

reliable electrical connection, while the sensor was positioned properly without

suffering mechanical strains. Since the position of the sensor relative to the pump

body was now harmonised due to the different sleeve inserts, the sensor could now

be mounted directly onto the motor connector. This allowed the cover plate to be

shrunk significantly and made swapping the syringe a more straightforward process.

Figure 32: Hall effect sensor breakout board mounted onto a pump.

This solution performed exceptionally well and devices featuring this Hall sensor

breakout board were used in all successful syntheses (see chapter 8). It was found,

however, that crimping the connectors, while in principle a straightforward process,

 RESULTS AND DISCUSSION

 48

proved challenging to some. Multiple batches of cables were thus ordered from a

contract manufacturer, but the cost was significant. Suitable ready-made cable

assemblies containing appropriate connectors could unfortunately not be sourced.

Thus, it was decided to instead buy cable assemblies consisting of two Molex

MicroClasp connectors, cut the cables in half, and directly solder the leads to the Hall

sensor breakout boards. Previous experience showed that with the breakout boards,

the sensor itself was relatively reliable, so a permanent connection to the cable was

warranted.

Figure 33: Hall effect sensor breakout board mounted into a valve.

 RESULTS AND DISCUSSION

 49

6.1.5 REPLACEMENT OF THE PUMP MOTOR

A common mode of failure encountered often during the early stages of the

development of the chemistry was rupture of the syringes (Figure 34). When the

pump was dispensing liquid and the flow path got blocked due to precipitation or

valve malfunction, or a larger amount of solid accumulated inside the syringe, the

NEMA23 motor was strong enough to just break the syringe. This could happen in a

benign way such as tearing the glass barrel out of the flange, or in a less benign way

such as the glass shattering, sending shards and chemicals flying. In addition to the

safety aspect of this bug, the syringes were costly, and exchanging them took time.

Figure 34: Shards of a syringe which was destroyed because a valve failed to switch.

 RESULTS AND DISCUSSION

 50

The motor driver chip used provides a sensorless stall detection which should

supposedly enable the user to detect a motor overload and subsequently stop the

motor. Significant effort was invested into trying to adopt this feature, unfortunately

to no avail. After corresponding with the chip manufacturer, it was concluded that

the rotation speeds used in this application were too low to allow the measurement

principle to work. Additionally, the NEMA23 was so strong that the glass syringe did

not constitute a significant load for it. No torque curve for the motor was provided,

but a rough estimation based on the limited data available showed that the torque

was sufficient to produce multiple times the maximum rated pressure of the syringe.

Thus, it was decided to replace the motor with a smaller NEMA17 model from the

same manufacturer. The lead screw dimensions remained the same, so the only

changes required were minor alterations of the motor connector. The recess locating

the motor was resized to fit the smaller face plate, and the opening for the lead screw

was resized to fit the raised circular section of the face plate, in order to further

improve the alignment. The protruding feature for mounting the guide rail was

shortened so as to sit flush with the bottom surface of the motor, to allow the pump

to sit flat on a surface. This required the top screw of the guide rail to be moved into

the main body of the connector, which made it harder to access, but as a side effect

improved the rigidity of the assembly. Unfortunately, the smaller motor now meant

that every syringe would protrude beyond the bottom surface. Various options for

avoiding this problem were investigated, but ultimately abandoned. The pumps

would usually sit on a shelf, so the protruding syringe wasn’t too much of an issue.

Syringes were officially rated to 7 bar, but only tested up to 5 bar. Tests with 25 mL

syringes and different backpressure regulators showed that a pump using the

NEMA17 motor could produce 5 bar, but would stall against 7 bar backpressure, thus

rendering the devices intrinsically safe. Indeed, day to day use later on showed that

blockages would lead to a harmless stall rather than a rupture.

With the smaller motor in place, the stall guard was revisited. It was found that at

high pumping speeds (corresponding to 50 mL/min with 25 mL syringes, and above)

the stall guard could detect a stall correctly, however, at lower speeds the chip would

report a stall constantly, thus rendering the feature useless for normal pumping

 RESULTS AND DISCUSSION

 51

operation. However, a hard homing algorithm was implemented using the stall

guard. The pump would stall itself against its base, thereby establishing a hard home

point, then back up a predefined number of steps, and then record the Hall effect

sensor reading as new working home position. To protect the syringe and the sensor

a thick ring was added to the motor connector to provide a strong surface to stall

against. For day to day use, a habit of hard homing the pumps at the beginning of

every experiment was adopted to ensure a consistent home position. It was found

that this algorithm performed flawlessly.

6.1.6 IMPROVEMENTS TO USABILITY AND AESTHETICS

In the course of the design iterations described above, some shortcomings regarding

the overall look and feel of the devices were addressed as well (Figure 38). The initial

designs were very minimalistic, which is mainly due to the inappropriate tools used

to model them. The older devices looked awkward and blocky and not very

professional. Moreover, the sharp edges and pointy corners made them

uncomfortable to pick up and handle. Thus, all edges were broken with fillets and

corners were rounded where possible. The overall design was simplified, legacy

features were removed, and attention was given to making the cleaning of the 3D

printed parts as easy as possible. An example of this simplification is the syringe

sleeve. Initially, the sleeve was held in position by three locator pegs with angled

contact surfaces (Figure 35). This means the entire mechanical strain exerted onto

the syringe is ultimately channelled through three tiny features, while the matching

grooves in the motor connector were notoriously hard to clean after printing. Yet,

the sleeve itself is rotationally symmetric, so there is no point at all in avoiding

rotation. Thus, the three locator pegs were replaced with one continuous rim (Figure

35), providing ample contact surface all around. All edges were chamfered, making

cleaning of the 3D printed parts easier. In principle, this part could now be turned

rather than printed, or if a small draft angle is added, it could be injection moulded.

 RESULTS AND DISCUSSION

 52

Figure 35: Renderings of the old (A) and the new (B) syringe sleeve.

A logo for the project was designed (Figure 36) and embossed in a different colour

(mostly black on transparent yellow) onto the front of the devices.

Figure 36: Logo of the Chemputer project.

Swapping the syringe of the pump was previously an inconvenient operation. When

the M4 screws holding down the cover plate were undone, the hex nuts would fall

out, and in order to fasten the screws again, the nuts had to be inserted into the nut

 RESULTS AND DISCUSSION

 53

traps and properly aligned so the screw could bite. To simplify the process, tapered

nut traps allowing to press-fit a conventional nut were investigated, but ultimately

press-in nuts were used (Figure 37). Those hex nuts feature a knurled rim and can be

easily pressed into a circular hole of appropriate size. Replacing the previously used

hex nut with press-in nuts made swapping the syringe significantly easier.

Figure 37: Press-in nut (image reproduced with permission of Accu Limited).

Another shortcoming of the initial design was that it did not provide any means of

mounting the control board. In fact, the hardware and the boards were designed

independently of each other, with no design specification for fit or compatibility.

Previously, the boards were mostly just attached to the devices using zip ties. This

produced some problems, because if the blank pins on the back of the board touched

any metallic parts such as the motor, the resulting short circuit would often destroy

the board. Unfortunately, the boards could not be changed, but mounting points

were added to both pump and valve, allowing the existing boards to be screwed

securely onto the devices.

 RESULTS AND DISCUSSION

 54

Figure 38: Renderings of the current versions of the pump and valve.

6.1.7 PROJECT DOCUMENTATION

Initially, no formal documentation regarding the earlier iterations of the devices was

available. Thus, to assist in future development efforts, the design process was

captured in detail.

To that end, 3D models of all third-party components such as the syringes, valve

heads, motors, guide rail, etc. were obtained or created and used in full detail

assembly files of both the pump and valve. Using Autodesk Inventor’s Presentation

environment, exploded views of the assemblies were created and annotated to show

how to assemble the physical device. Engineering drawings of the 3D printed parts

and a Bill of Materials for both devices were compiled as well. Critical features of

parts or assemblies were also annotated using the Engineer’s Notebook within

Inventor.

To explain the overall workflow of printing, assembling, programming and using the

devices, an extensive article on the group’s internal Wiki was written. The

 RESULTS AND DISCUSSION

 55

documentation has since been given to several other group members, who were able

to independently build and use pumps and valves.

All engineering drawings can also be found in appendix II.

 RESULTS AND DISCUSSION

 56

 RESULTS AND DISCUSSION

 57

6.2 CHEMPUTER SETUP

6.2.1 REACTOR MODULE

At the outset of my thesis work, the reactor module was a simple two-necked round-

bottomed flask fitted with an air condenser. Heating was achieved via a computer

controllable hotplate stirrer and a commercially available aluminium heating block.

The air condenser was either open to the atmosphere or closed with a rubber septum

pierced with a hypodermic needle to ensure pressure equilibration. This precluded

the use of air sensitive reagents, an issue that was ultimately addressed by the

inception of the inert gas supply system (see chapter 6.2.5).

The side arm of the flask was equipped with another rubber septum fitted with a long

hypodermic needle which was in turn connected to the Backbone. While rubber

septa and hypodermic needles are commonly used to perform reagent additions in

synthetic organic chemistry, it quickly became apparent that for the platform they

were an inadequate solution. First, the relatively thin lumen of the needle frequently

led to blockages. Secondly, and more importantly, it was found that the stainless

steel of the hypodermic needles is corroded heavily if immersed in aggressive

reaction media for extended periods of time.

Thus, a solution for directly routing the PTFE tube into the reactor was conceived.

Directly pushing the tubing through a rubber septum was investigated, however, a

gas tight seal couldn’t be established, and the tube often twisted in a way that made

it hard to reliably position the tip at the bottom of the reactor. Instead, DURAN®

offers the GL 45 and GLS 80 connection systems, which allow the user to connect

tubing of various diameters to either GL14 or GL18 threads (Figure 39). Glass

adapters from both of those thread types to standard ground glass joints of various

sizes are commercially available. This assembly offers a gas tight seal, holds the tube

in place reliably, and all wetted surfaces are either glass or PTFE, thus satisfying the

requirements regarding chemical stability.

 RESULTS AND DISCUSSION

 58

Figure 39: Schematic of DURAN® GL 45 connection system (image reproduced with
permission of DWK Life Sciences GmbH).

Based on those findings, and particularly based on the poor performance of the

stainless steel needles, the design philosophy for the system was amended to include

a strict imperative regarding chemical compatibility: all surfaces that may

conceivably come in contact with chemicals should be glass, PTFE, or VitonTM. If none

of these materials are available, PEEK, PVDF, or PP are acceptable.

As chemical development progressed, it became increasingly clear that the volumes

used even within one contiguous synthesis varied significantly. Any reactor vessel

had to be dimensioned for the largest volume encountered in the synthesis but

should perform equally well for smaller volumes. The classic piece of glassware used

 RESULTS AND DISCUSSION

 59

in such a scenario is the pear-shaped flask. The bottom of this type of flask tapers

down to a point, which makes it suitable for very small volumes, and also allows

reliable quantitative withdrawal of the reactor contents. To the extent of the author’s

knowledge, no aluminium heating blocks accommodating pear shaped flasks are

commercially available at the time of writing, so a custom heating block was designed

in house and manufactured by a contractor (Figure 40). The dimensions and shape of

pear shaped flasks are guided by DIN 12 383, an old German industry standard. While

diverging shapes exist, it was decided to comply with DIN 12 383 to make it easier to

replicate the setup. An engineering drawing with all dimensions can be found in

appendix II.

Figure 40: Autodesk Inventor rendering of the custom heating block for 250 mL
pear shaped flasks.

For the Grignard step of the Nytol synthesis (see chapter 8.1.4), the previously

employed air condenser, a CondenSyn by Asynt Ltd. (Figure 41, left) did not perform

satisfactorily, due to the high exothermicity of the reaction and the low boiling point

of the ether. Thus, it was replaced with a Findenser by Radleys (Figure 41, right),

 RESULTS AND DISCUSSION

 60

which successfully contained all ether inside the reactor vessel. For the other

syntheses, the slightly cheaper and less bulky CondenSyn was found to be sufficient.

Figure 41: Asynt CondenSyn (left) and Radleys Findenser (right)

6.2.2 EVAPORATION MODULE

Concentrating a product solution in vacuo is a pivotal step at the end of nearly every

synthetic procedure, and it can be argued that automating this unit operation is the

key to unlocking automated multistep syntheses in batch. While solutions for

continuous flow exist,115 to the best of the author’s knowledge, at the time of writing

no other automated batch synthesis platform implements fully automated solvent

evaporation. Initially, no evaporation module for the platform existed, and solvent

evaporation had to be performed manually.

While automated rotary evaporators are commercially available, at the time of

writing they were mostly optimised for continuous operation, allowing the

 RESULTS AND DISCUSSION

 61

evaporation of large quantities of solvent. After evaluation of various commercial

alternatives, none was found to precisely fit the requirements, especially regarding

computer control. Therefore, it was decided to build a custom solution.

The base platform for the development was the IKA RV 10 digital rotary evaporator.

This device offers computer control through an RS232 connection, and comes with

sufficient documentation to allow us to write bespoke driver software (see

chapter 7.2). The original, plastic coated receiver flask was replaced with a custom

flask fitted with a threaded glass adapter at the bottom (see Figure 89). This ¼’’ UNF

adapter allowed it to be interfaced with standard tubing using a fluidic union fitting.

However, it was found that in this configuration, the vacuum was poor, even if the

fitting was plugged with a blanking plug. This issue was solved by introducing a

VitonTM O-ring between the glass adapter and the PEEK fitting.

To allow product to be introduced into and withdrawn from the distillation flask, a

length of PTFE tubing was routed through the vapour duct. To that end, the tap on

the condenser was replaced with a B19 to GL18 adapter, allowing the use of a DURAN

GL connector to hold the tubing in a gas-tight way. Leak tests revealed this solution

to be sufficiently vacuum tight for this application.

A problem was encountered during the first tests with reaction mixtures. When the

internal pressure was decreased for the evaporation, the pressure inside the tube

dipping into the distillation flask decreased accordingly. Thus, upon venting the

system to ambient pressure, any liquids or oils inside the distillation flask were forced

back into the tube. This undesirable behaviour became particularly troublesome if

the oil subsequently crystallised, leading to a catastrophic blockage of the tube.

To combat this behaviour, a simple strategy was developed. A small, PTFE coated

magnetic stirring bar was attached to the tube using PTFE shrink wrap so that it was

positioned inside the B29 ground glass joint of the vapour duct. Then, a strong

neodymium magnet was mounted above the joint so as to attract the magnetic

stirring bar, and thus lift the tube high enough to avoid material being pushed into

the tube. Figure 42 shows an image of the assembly. In order to withdraw material

from the evaporator, the computer controllable lift of the evaporator was simply

 RESULTS AND DISCUSSION

 62

lowered down. This moved the stirring bar away from the magnet, and the tube

dropped to the lowest point of the distillation flask, allowing quantitative aspiration

of the contents.

Figure 42: Detail view of the inlet tube. Note the neodymium magnet mounted
above the flask, and the magnetic stirring bar attached to the tube.

Another consideration was the ability to flush out the entirety of the product with

small amounts of solvent. Removing all solvent from a mixture will in most cases

deposit the desired product more or less evenly over the entire inner surface of the

flask. With a round bottomed flask, a smaller amount of solvent will only wash a ring

out of the deposit due to the curved surface (Figure 43, A and B). Once again, the

humble pear-shaped flask proved to be the ideal solution. When aligned in such a

way that the straight lower section of the flask was horizontal, a small amount of

solvent would cover the entire straight section (Figure 43, C). When the flask was

rotated along its axis, the solvent would wash over most of the internal surface area,

dissolving the maximum possible amount of material (Figure 43, D). It was found that

the flask allowed volumes as low as 5-10 mL of solvent to sufficiently remove solid

residue.

 RESULTS AND DISCUSSION

 63

Figure 43: 10 mL of acetone dyed with Sudan I in a 250 mL flask on a rotary
evaporator. A) round bottomed flask, standing still. B) round bottomed flask,

rotating at 100 rpm. Some of the solvent is dragged up the wall, but the bulk pools
at the bottom, only reaching a small fraction of the internal surface. C) pear shaped
flask standing still, levelled so the straight part is horizontal. D) pear shaped flask,

rotating at 100 rpm. Note how the solvent washes over most of the internal
surface.

As vacuum pump the Vacuubrand MD1C vario was chosen; a compact, powerful,

variable speed diaphragm pump. It is fitted with the fully computer controllable

CVC3000 vacuum controller. In principle, it features an automated boiling point

finder which should make it possible to evaporate any solvent or mixture

autonomously. However, after extensive experimentation with various pure solvents

as well as reaction mixtures, this feature could not be successfully utilised.

Ultimately, empirically obtained values for the pressures and times were hard-coded

for every operation.

 RESULTS AND DISCUSSION

 64

6.2.3 AUTOMATED LIQUID/LIQUID EXTRACTOR (ALLEX)

The liquid/liquid separation, being one of the most common isolation techniques,

was also the most challenging task to automate in a robust fashion. In continuous

flow, membrane technologies can be utilised.116 The biphasic mixture is flowed past

a microporous PTFE membrane, and as long as the pressure difference across the

membrane is appropriate, the organic phase will permeate the membrane, while the

aqueous phase will be retained.

However, this particular solution was not anticipated to work in the platform, for a

number of reasons. First, it was questionable if the pumps could reliably deliver the

pressure required to operate such a device. Then, under millifluidic conditions,

biphasic mixtures either segregate into a slug flow, or travel along as a parallel

flow.117 Either way, both organic and aqueous phase travel alongside each other, at

a relatively stable volume ratio. However, in the system at hand it was observed that

most biphasic mixtures settle down quickly once they reach the syringe of the pump,

so rather than pushing a micromixed biphasic mixture through the separator, a large

bolus of aqueous phase should be expected, followed by an equally large bolus of

organic phase, and so forth. It was unknown how a flow separator would react to

such an operational mode. Lastly, it was questionable how a separator optimised for

continuous flow would cope with small, discrete volumes as is the case in the

platform. All those concerns are entirely hypothetical; however, the substantial cost

of commercially available flow membrane separators precluded any practical testing.

Another method similar to membrane separators is the use of hydrophobic frits

made from materials such as UHDPE or PTFE. Unlike microporous membranes, those

macroporous frits allow organic liquids to pass through under gravity alone, while

retaining the aqueous layer. They are commercially available, and commonly used in

analytical sample preparation. However, the most common design, a syringe barrel

with a frit at the bottom,118 necessarily only works with organic solvents that are

heavier than water. Fortuitously, Biotage® supplies a product named Universal Phase

Separator. It consists of a vertical, tubular hydrophobic frit situated inside a larger

plastic tube with a Luer fitting at the bottom (Figure 44). The biphasic mixture is

introduced into the space between the two concentric tubes. The organic phase

 RESULTS AND DISCUSSION

 65

permeates into the inner tube under gravity and can be collected through the Luer

fitting. This geometry means both organic phases heavier than as well as lighter than

water can be separated.

Figure 44: The Universal Phase Separator (image reproduced with permission of
Biotage AB).

In order to interface this device with the platform, a short length of PTFE tubing was

fitted with a ¼’’ UNF to Luer lock adapter and placed atop a three-necked round

bottom flask using a DURAN connector and GL18 to B19 adapter. Another tube

reaching the bottom of the flask was secured using a second DURAN connector and

glass adapter. This tube was connected to the Backbone and allowed emptying of the

permeate. The Universal Phase Separator was connected to the Luer lock adapter

and supported by a clamp. A tube leading to the Backbone was secured to the inner

tube of the Universal Phase Separator so that it reached the lowest point, allowing

the introduction of biphasic mixture, and withdrawal of aqueous retentate. Figure 45

shows an image of the setup.

 RESULTS AND DISCUSSION

 66

Figure 45: Universal Phase Separator setup.

This setup was tested extensively during the development of the Williamson ether

synthesis in the Nytol synthesis (see chapter 8.1.3). Unfortunately, it was found to

perform rather poorly. The separation was slow, and small amounts of organic phase

always remained in the separator. Moreover, after the first separation, the separator

often started to leak on subsequent separations, allowing copious amounts of

aqueous layers through. The reason for this poor performance could never be

determined, even though Biotage kindly provided us with replacements, and gave us

advice on how to improve the performance. It was thought the chosen separators,

whilst designed for single use, would be able to sustain multiple identical uses in

rapid succession. This would be required, for example, during extraction of an

 RESULTS AND DISCUSSION

 67

aqueous layer multiple times, however the units failed during this process.

Furthermore, the separator sometimes even broke down on the very first separation.

Commonly, the mode of failure would be a leakage of aqueous layer through the frit.

Initially, small amounts of water were observed in the collected organic phase. Then,

after some minutes, the aqueous phase would flow almost freely through the

separator. Ultimately, the approach was abandoned in favour of a more conservative

solution.

The way a human chemist discerns a phase boundary in a separatory funnel is by

visual inspection. Thus, it was decided to attempt to use machine vision to automate

liquid/liquid separation. This approach had several advantages. First, it is agnostic to

which layer is organic and which is aqueous, as long as they are visually different, a

separation can be performed. Second, it was a non-invasive method that did not

require any sensors to be in contact with potentially aggressive media, thereby

increasing reliability. Additionally, a camera-based solution was hoped to not only

find the phase boundary and perform the separation, but also determine if and when

the settling process was complete. Based on the densities and compositions of the

two layers, the time it takes for a biphasic mixture to settle into two clearly

delineated layers varies quite significantly. If the system could dynamically determine

the end of the settling process, the overall operation would become both faster and

more reliable.

There is literature precedent for the use of coloured floaters119 as well as direct

recognition of the boundary based on edge detection.120 Additionally, the group had

experience with classifiers for image recognition121, so it was reasoned that a

classifier could be trained to directly spot phase boundaries in an image.

To test those methods, a custom-made separatory funnel was designed for the

application. The initial module was based on a standard 100 mL separatory funnel.

The tap and bottom outlet were replaced with a ¼’’ UNF threaded glass adapter to

allow convenient interfacing with the PTFE tubing and the Backbone. Two B14 side

arms were added, and an inlet tube was mounted to one of the side arms via the

usual DURAN adapter assembly. At first, the coloured floater approach was

investigated. Green polypropylene balls (5 mm diameter) were obtained from The

 RESULTS AND DISCUSSION

 68

Precision Plastic Ball Company Ltd. (UK). A simple Python script using OpenCV

allowed reliable detection of the green ball by applying a filter removing everything

outside a narrow colour range and detecting closed contours in the resulting image.

The bottom of the separatory funnel was covered with brown electrical tape, so the

green ball disappeared from the camera’s view once it dropped below the tape.

After giving the biphasic mixture sufficient time to settle, a small volume (1 mL) was

withdrawn from the bottom outlet. Then, a frame was captured, and the image

recognition function was run on it. If a green ball was detected, another portion was

withdrawn, and another frame was captured, and so forth. Once the green ball

disappeared, the residual dead volume of the separator and tubing was withdrawn,

and the upper layer was transferred to the target vessel. This algorithm was relatively

inefficient, but the exceedingly simple implementation (just over 30 lines of Python

code) developed by Dr. Jaroslaw Granda yielded a working prototype ready for

testing.

The algorithm worked well in a test system consisting of pure water and diethyl ether

or ethyl acetate. Unfortunately, it quickly reached its limits when confronted with a

real reaction mixture. First, when the mixture was strongly coloured or cloudy, the

green ball would often become invisible if it floated at the far side of the separatory

funnel. Since the horizontal position of the floater is essentially random, this proved

to be a big problem. Even strong lighting from various angles did not resolve the

issue. Another unexpected complication was encountered during the development

of the Williamson step of the Nytol synthesis (see chapter 8.1.3). The original

protocol used p-xylene as reaction solvent, which has a higher density than the

polypropylene ball, so the ball would float on top of the organic layer instead of

between the aqueous and organic. Even though the solvent was later changed to

toluene, this problem clearly demonstrated the limitations of the approach.

Additionally, while the polypropylene worked in principle for organic solvents lighter

than water, no workable solution for solvents heavier than water was available at

that point. Considering all of these issues, the approach was eventually abandoned.

Next, the line of work was bifurcated. While I proceeded to investigate sensor-based

solutions (vide infra), Dr. Granda set out to employ a deep convolutional neural

 RESULTS AND DISCUSSION

 69

network to classify images of the separatory funnel into “phase boundary present”

and “phase boundary absent”. This method was first reported by Krizhevsky,

Sutskever and Hinton in 2012122 and at the time of writing their paper had been cited

over 25,000 times. Since sensor-based approaches were being investigated at the

same time (vide infra), nearly two and a half thousand images were aggregated as

training set for the classifier. Unfortunately, it turned out that in a practical

application there are a number of difficult and ambiguous cases which in some

instances make it hard even for a human to discern a phase boundary, or the absence

thereof. Figure 46 shows some examples. Case A) shows deposits left on the inside

of the separator. In truth, the vessel is empty, but it looks like there is a phase

boundary and may lead to false positives. Case B) illustrates the opposite, in this case

both phases are strongly coloured, and even with strong backlight they look like just

one phase. Visual inspection of the separatory funnel at this point did however

confirm that there were in fact two layers present. Case C) shows poor settling

leading to clumps of emulsion clinging to the separator. This makes it very hard to

judge if there is a boundary present. Case D) illustrates a rather common case where

the volume of the upper layer is significantly smaller than the volume of the bottom

layer. This may confuse a neural net trained on cases where the volumes were more

equal. Cases E) to H) are taken from one single separation. First, the initial volume

was too large for the vessel, leading to an atypical appearance. After withdrawing

some of the lower phase, it became apparent that there was some emulsion in

between the layers, leading to what looks like two boundaries. Case G) is an advanced

stage of the separation, with all of the bottom layer withdrawn, and only the top

layer and the emulsion remaining in the separatory funnel. Now it looks like a regular

case, with one boundary. After withdrawing all the emulsion as well, only one phase

remains, but with some specks of emulsion still clinging to the walls (case H). Beyond

those irregularities and complications, a wide variety of colours was observed for

both phases, which further complicated the matter.

Admittedly, the frames selected for Figure 46 were extreme examples, and by tuning

the chemistry of the extractions matters were improved a bit, but the difficulties

encountered discouraged further pursuit of a computer vision based approach.

 RESULTS AND DISCUSSION

 70

Figure 46: Examples of difficult or ambiguous frames for phase boundary detection.
A) false positive due to deposits on the glass. B) false negative due to strongly and
similarly coloured phases. Visual inspection of the separator did indeed show two

layers, but the poor image quality and angle of view obscure the fact. C) fluffy
emulsion deposits due to poor phase separation. D) small organic volume. E)

overfilling. F) poor separation leading to two boundaries. G) same separation a bit
later, organic phase and emulsion are visible. H) same separation, only organic

phase remains, but with emulsion clinging to the side.

As the image recognition proved to be more challenging than anticipated, attention

was shifted to sensor-based approaches. Literature precedent for conductivity

sensors used in a very similar application was found,103 however, given prior adverse

experiences with the stainless steel needles, contactless measurement principles

were investigated first.

Thus, a fluid and bubble sensor for 1/8’’ tubing manufactured by TT Electronics plc.

was sourced. This sensor was originally designed for medical applications such as

monitoring haemodialysis machines or IV drips and consists of an LED and a

phototransistor mounted in a plastic housing moulded to fit around a tube with 1/8’’

outer diameter. Figure 47 shows a photo of the sensor with a short length of tubing

inserted for illustrative purposes. The idea was to clip the sensor onto the tube

 RESULTS AND DISCUSSION

 71

between the bottom outlet and the Backbone, withdraw liquid from the separator in

a stepwise fashion, and collect measurements after each step similar to the algorithm

described above.

Figure 47: Bubble sensor mounted on an Arduino prototyping shield for testing.

A quick-and-dirty voltage divider circuit implemented on an Arduino prototyping

shield allowed us to quickly conduct some initial experiments. First attempts using

pure water and organic solvents yielded small, but consistent differences in the

sensor reading. Encouraged by those findings, real reaction mixtures obtained from

the Grignard or the Williamson step of the Nytol synthesis (see chapters 8.1.4 and

8.1.3) were tested. Unfortunately, those mixtures were often found to be turbid due

to particulates or tiny droplets suspended in the bulk liquid. Those mixtures yielded

almost random sensor readings. It was reasoned that in the case of a turbid solution,

light scattering becomes the dominant effect determining the sensor reading, and

the absorption response gets blotted out. Investigating more robust circuitry to

smooth the response and improve performance was briefly considered, but

ultimately optical sensing for phase boundary detection was abandoned.

Next, capacitive sensors were investigated. In the briefest of descriptions, a capacitor

consists of two conductive surfaces separated by an insulating layer. A capacitor can

hold an electric charge when a voltage is applied between the two conductive

 RESULTS AND DISCUSSION

 72

surfaces. The physics of capacitors is beyond the scope of this chapter, suffice to say

that the amount of charge (Q) a specific capacitor can hold is proportional to the

voltage (V) across it, and a specific property called capacitance (C) which can be

measured:

 𝑄 = 𝐶 ∗ 𝑉 Equation 1

Ultimately, the capacitance of a capacitor is a function of three parameters123:

distance between the plates (d), area of the plates (A), and dielectric constant of the

material between the plates (r):

 𝐶 = 𝑓(𝑑, 𝐴, 𝜀𝑟) Equation 2

The dielectric constant is a material property and a dimensionless number. For the

application in question, the geometry of the capacitor (d and A) is kept constant,

while the material and therefore the dielectric constant changes, which allows us to

infer the material by measuring the capacitance. This approach was seen as

particularly promising since the dielectric constants of most common organic

solvents are about one order of magnitude smaller than that of water:

Table 1: Dielectric constants of common laboratory solvents at 20°C124

Solvent Dielectric constant

Water 80.37

Dichloromethane 9.08

Diethyl ether 4.34

Ethyl acetate (25°C) 6.02

Capacitive sensing is widely used in various industries. Position and distance sensors,

liquid and solid level sensors, certain touchscreen technologies, and many more

applications use capacitive sensing. Unfortunately, finding or building appropriate

instrumentation for the application in question proved to be more difficult than

anticipated.

 RESULTS AND DISCUSSION

 73

Most cheap commercially available capacitive sensors operate as switches, i.e. an

output lead changes its state if a predetermined capacity threshold is crossed. This

mode proved unsuitable for determining phase transitions, as the threshold would

have to be tuned for every new separation. True analog capacitive sensors were

prohibitively expensive. Custom built sensors were devised, but a geometry that

allowed laminar flow through an appropriate diameter and still provided useful

readings could not be achieved.

Since at this point a working solution for the liquid/liquid separation was the major

bottleneck of the entire project, a decision was made against investing more time

into developing a capacitive sensor, and instead settled for a conductivity sensor.

The two major design considerations for a flow conductivity sensor for the

application in question were the following. First, it was required to be easily

interfaced with standard 1/8’’ tubing. Second, the dead volume should be minimal.

Additionally, time was a consideration as well since the project was stalled until a

working solution was found. Unfortunately, extensive research did not yield a single

suitable, commercially available sensor. Thus, a custom solution was built (Figure 48).

Figure 48: Autodesk Inventor rendering of an exploded view of the conductivity
sensor. Two pieces of 1/8” O.D. stainless steel tubing are separated by insulating

fluidic unions. Wire rope grips connect the steel tubes to wires. The phase is
determined by measuring the resistance across the two steel tubes.

 RESULTS AND DISCUSSION

 74

To minimise cost and lead time for a working prototype, it was decided to assemble

a sensor from off-the-shelf millifluidic supplies available at the time. The sensor

consisted of two lengths of stainless steel tubing separated by a non-conductive

spacer. Stainless steel was a controversial choice due to chemical compatibility

concerns. However, it was reasoned that, unlike the hypodermic needles in the

reactor, the sensor would only be in contact with aggressive media for a short time,

and only at room temperature. Thus, corrosion was expected to be less of an issue.

Transition metal ion contaminants leaching from the stainless steel were a concern

as well, but it was judged unlikely that such contamination would interfere with the

chemistry investigated at the time. Based on those assessments the shortcomings of

stainless steel were weighed against the low price and ready availability and it was

decided to test the setup with stainless steel tubes. The reasoning at this point was

that a working prototype was more desirable than a perfect solution, and due to the

modular nature of the setup, more suitable sensors could be introduced at any time

during further development.

To ensure a reliable electric connection to the tube, wire rope grips were employed

in conjunction with crimp-on ring terminals for the wires. A simple voltage divider

circuit on an Arduino prototyping shield completed the setup. The sensor assembly

could be connected directly to the bottom of the separating funnel via the threaded

glass adapter. The size of the separatory funnel was increased to 250 mL.

This admittedly crude solution performed surprisingly well and was used extensively

for both the Nytol and the Sildenafil synthesis. Initially, irregularities due to deposits

inside the sensor assembly were sometimes encountered, but those were easily

resolved by adhering to a strict cleaning regime after every separation. The

withdraw-and-measure algorithm was employed again since it was proven to work

well, and also because the structure of the control software made any more

sophisticated approach relatively difficult to implement. However, it was found that

moving the bulk of the lower layer to the destination vessel based on an estimation

of its volume was a simple way to greatly decrease the overall separation time, so a

decision was made against investing even more time to implement an intrinsically

more efficient algorithm.

 RESULTS AND DISCUSSION

 75

With a working liquid/liquid separator in hand, the development of the syntheses

could finally progress. However, another shortcoming of the system was soon

noticed. The mixing during extraction processes was achieved by pumping both

phases into a dedicated round bottomed flask, and magnetically stirring the

contents. Unfortunately, the mixing efficiency was decidedly unsatisfactory, leading

to poor extraction efficiency. Also, having to move large quantities to the holding

flask and back for every extraction prolonged the operation significantly. To address

this problem, an overhead stirrer was introduced into the separator. To that end, the

central B29 joint was replaced with a wider B45 joint to allow the insertion of a

stirring rod. This improvement not only increased extraction efficiency, but also

allowed us to improve the settling efficiency by slowly stirring the contents during

settling of the layers. This slow stirring broke up foamy emulsions and detached

droplets stuck to the glass wall, similar to how a human chemist would gently swirl a

separating funnel to improve settling.

A full description of the liquid/liquid separation module in its most current state can

be found in chapter 10.2.

6.2.4 FILTRATION MODULE

At the outset of my thesis, filtration was performed using a sintered glass Büchner

funnel with a B19 ground glass joint at the top and bottom, respectively, and a B19

sidearm (Figure 49). The Büchner funnel was placed onto a round bottomed flask,

the sidearms of the flask were fitted with rubber septa, and a stainless steel

hypodermic needle was inserted through one of the septa to connect the flask to the

Backbone. The two ground glass joints at the top of the Büchner funnel were fitted

with rubber septa as well, and two stainless steel hypodermic needles were inserted.

The needle in the sidearm was connected to the Backbone to allow material to be

introduced, while the needle in the central port was open to the atmosphere for

pressure equilibration.

 RESULTS AND DISCUSSION

 76

Figure 49: Initial filtration module.

Aside from the material compatibility considerations mentioned in chapter 6.2.1, this

setup performed rather poorly, as it was very hard to establish a gas-tight seal for the

round bottomed flask, so withdrawing a volume from the flask would not necessarily

produce enough vacuum to facilitate an efficient filtration. Additionally, the dead

volume under the filter frit was considerable. It was already found in previous

experiments that for any operation that led to crystallisation inside the filter, the

dead volume underneath the frit had to be filled with solvent to avoid solution

leaking through the frit under gravity, which would in turn lead to loss of yield at best,

or blockage of the filter at worst. With the comparatively large flask, this filling

operation was very slow and inefficient.

 RESULTS AND DISCUSSION

 77

Thus, a new Büchner funnel was designed (Figure 50, left). The overall concept was

retained, but instead of placing it onto a flask, a threaded glass adapter was fused

directly to the bottom outlet, allowing a direct interface with the Backbone, and

minimising the dead volume. The adapter was bent at a 90° angle to allow the vessel

to be suspended above a hotplate stirrer and be magnetically stirred. The top B19

joint was replaced with a wider B29 joint to allow convenient emptying of solids from

the vessel, while the sidearm was reduced to B14 and fitted with a DURAN adapter.

Figure 50: Custom made Büchner funnel. Left: unjacketed. Right: jacketed.

 RESULTS AND DISCUSSION

 78

This new filter performed exceptionally well for the hydrochloride precipitation in

the Nytol synthesis (see chapter 8.1.5). The small dead volume below the filter frit

(10 mL, including the tubing) could conveniently be filled with diethyl ether to avoid

any hydrochloride crystallising inside the frit and potentially blocking the filter. The

filtration could be conducted by simply withdrawing liquid from the bottom port.

However, some problems were encountered during the development of the

Rufinamide synthesis (see chapter 8.2). The last step of the synthesis produced the

title compound as precipitate and transferring the resulting suspension to the filter

module led to blockage of the fluidic system. Unfortunately, this step required

heating of the reaction mixture for several hours, so it could not be performed inside

the filter vessel.

It was reasoned that being able to heat and cool the contents of the filter would be

generally desirable, since this would not only facilitate reactions performed inside

the filter vessel, but also enable recrystallisations, which are a commonly employed

purification technique. Thus, a jacketed version of the filter was designed (Figure 50,

right) which could be used in conjunction with a recirculation chiller. Due to the

added bulk of the jacket, magnetic stirring was not an option anymore, so an

overhead stirrer had to be employed. Since the B29 joint was henceforth occupied

by the stirrer gland, a second B14 sidearm was added to allow pressure equilibration,

and the introduction of inert gas (see also chapter 6.2.5).

The jacketed Büchner funnel performed well for the Rufinamide synthesis and the

recrystallisation of the crude Nytol (see chapters 8.2 and 8.1.8) and proved to be

invaluable for the Sildenafil synthesis (chapter 8.3).

Initially, precipitate collected in the filter was only dried superficially by sucking air

or argon through the filter cake using the Backbone pump. Full drying was performed

manually and offline. However, the Sildenafil synthesis required proper drying of

some intermediates, so ways to vacuum dry the filter cake were investigated. After

some experimentation, a six-way valve (chapter 6.1) was used to switch the bottom

outlet of the filter between the Backbone and vacuum. To that end, the filter outlet

was connected to the central inlet of the valve with a short length of tubing. One

 RESULTS AND DISCUSSION

 79

outlet of the valve was then connected to the Backbone, while another outlet was

connected to a Woulff bottle which was connected to the laboratory vacuum. During

normal operation, the six-way valve would connect the filter bottom to the

Backbone, allowing the introduction and withdrawal of liquid. For drying the filter

cake, the valve would be switched to vacuum, and argon would be sucked through

the filter cake. Without another actuator to close off the inert gas supply, the

pressure inside the filter would not drop significantly, but the stream of dry gas,

especially in conjunction with external heating through the jacket, was found to be

enough for efficiently drying the product.

6.2.5 INERT GAS SYSTEM

At the beginning of my PhD, the entire platform was essentially open to the

atmosphere. However, many useful reactions in organic chemistry require dry or

oxygen-free conditions (or both), so an inert gas manifold was highly desirable.

The classic way of handling air-sensitive reagents is the Schlenk line. This piece of

glassware consists of two manifolds, one for vacuum, the other for inert gas. They

are connected by three-way valves, allowing the experimenter to switch a vessel

connected to the Schlenk line between the two states. Automating this setup was

judged to be feasible, but too complicated a task to be tackled at that point.

Instead, for a simpler setup was devised (Figure 91, left, on page 225). The task of

supplying inert gas to the system could be subdivided into two distinct parts. First,

the reactor and the filtration unit required inert gas input, as well as a means of

pressure equilibration to cope with varying temperatures and internal volumes.

Second, a variable number of reagent bottles required an inert gas input. As those

bottles were not expected to experience significant temperature fluctuations or

reactions taking place inside, and volume would only ever be withdrawn from them,

a simple non-return valve to prevent vapours diffusing back into the manifold would

be sufficient.

Based on this assessment, a simple, two-tiered inert gas system was designed. A flow

regulator was mounted directly into the argon tap of the fume hood, allowing the

 RESULTS AND DISCUSSION

 80

experimenter to dial in an appropriate argon flow. This regulator was connected to

the first tier of the system, a pneumatic manifold with ten outlets. Every outlet was

fitted with a pneumatic check valve to avoid contamination with air. Those check

valves could then be either plugged with blanking plugs if not required or fitted with

a tubing assembly consisting of a chemically resistant polypropylene check valve and

a length of VitonTM tubing (Figure 91, right). This tubing assembly would then be

connected to the reagent storage bottle (see chapter 6.2.6) via a DURAN GL 45

connection system bottle top.

After the manifold and another pneumatic check valve, the second tier consisted of

8 mm I.D. PVC tubing connected to the reactor and filter, followed by an

overpressure bubbler (Figure 91, centre).

This simple, inexpensive setup reliably kept the entire platform under inert gas and

enabled us to perform a number of air-sensitive reactions under full automation.

6.2.6 REAGENT STORAGE

The reagents and solvents required for a given synthesis were stored in GL45 bottles

(Figure 92 on page 227) of varying sizes, fitted with DURAN GL 45 connection system

bottle tops (Figure 39). A length of PTFE tubing leading to the Backbone was inserted

through one of the two ports. The other port was left open to the atmosphere where

appropriate. For reagents that required an inert gas blanket, a short (approx. 2 cm)

length of PTFE tubing was inserted into the other port through a second DURAN

adapter, and the 3 mm I.D. VitonTM tube coming from the inert gas system (see

chapter 6.2.5) was pushed onto the 3.2 mm O.D. PTFE tube, supplying argon to the

bottle.

The slight overpressure inside the reagent bottles led to some unexpected

difficulties. Because of the check valves, bottles containing chemicals with higher

vapour pressure would consequently have a higher internal pressure as a result.

When liquid was aspirated from any given bottle, the internal pressure inside the

syringe of the pump would equilibrate with the internal pressure of the bottle. Since

there are almost inevitably small gas bubbles inside the syringe at all times, this

 RESULTS AND DISCUSSION

 81

means that when the valve switched to another position and passed over outlets

connected to bottles with lower internal pressure, some liquid would be pressed into

that outlet. This led to cross-contamination, and in some cases even to blockages.

To avoid chemicals getting pushed back into the wrong tubes, all Backbone outlets

connected to reagent bottles were fitted with non-return valves (Figure 51). The

model used consisted of a PEEK body and a VitonTM membrane and was fitted with a

male ¼’’ UNF thread on one end and a female ¼’’ UNF thread on the other end. The

bore size was specified as 0.060’’ or 1.5 mm. Those check valves reliably solved the

cross-contamination issue and reduced blockage-related issues. The increased flow

resistance required some of the lower boiling solvents to be aspirated at a reduced

rate to avoid cavitation, but this was never an issue.

Figure 51: Photo of the Backbone showing the beige non-return valves screwed into
some ports of the red six-way valves.

6.2.7 OTHER MODULES

During development of the abovementioned major modules, a number of smaller

add-ons were developed as well. One noteworthy development is the introduction

of a solenoid valve into the flow path of the recirculation chiller. Initially, the platform

 RESULTS AND DISCUSSION

 82

for the Nytol development used its recirculation chiller exclusively for the condenser

of the rotary evaporator. When the Sildenafil platform was constructed, it was fitted

with a SnowStorm cooling module as well as a jacketed filter, so it was decided to

daisy-chain those two modules and use tap water for the rotary evaporator.

However, it quickly became apparent that the daisy chain had the significant

disadvantage that both the reactor and the filtration module always shared a

temperature. This proved to be an issue for the quench of the first step of the

Sildenafil synthesis (see chapter 8.3). The filter had to be kept near zero degrees to

avoid hydrolysis of the chlorosulfonyl moiety (see Figure 83 on page 199). However,

with the reactor near zero degrees as well, the viscosity of the reaction mixture was

increased to a point where pumping became near impossible. In order to allow us to

heat or cool the two units selectively, a three-way solenoid valve was introduced into

the flow path. The driving circuit was implemented on an Arduino prototyping shield.

This simple solution worked remarkably well and was later introduced for the Nytol

rig as well, in this case allowing switching between the filter and the rotary

evaporator. The distinct disadvantage is that one valve only allows switching

between two modules. Ultimately, a computer controllable manifold should be

developed and implemented, allowing all modules that require temperature control

to be serviced by one chiller.

A common laboratory operation that was initially disregarded is the drying of organic

phases before evaporation. Usually a human chemist would use anhydrous

magnesium sulfate or a similar desiccant to remove moisture in the form of both

heterogeneous droplets and homogeneous solutions. During development of the

Nytol synthesis, small amounts of water never posed a problem and would normally

be removed by extended drying under vacuum on the rotary evaporator, so a drying

module had not been implemented. However, during development of the Sildenafil

synthesis it became apparent that there was an urgent need for this operation to be

incorporated. It was reasoned that the simplest way of drying organic phases would

be to pack a cartridge with desiccant and insert it into the flow path to the rotary

evaporator. However, concerns were raised that having such a cartridge permanently

 RESULTS AND DISCUSSION

 83

attached to the rotary evaporator may lead to unforeseen problems during transfer

of material into and out of the distillation flask when drying is not required.

Thus, two six-way valves were used together to form a cartridge carousel (Figure 52).

The central input of one valve was connected to the Backbone, while the central

input of the other valve was connected to the rotary evaporator. The six output ports

could then be connected to cartridges containing desiccant or be shunted using a

length of tubing. This allowed interacting with the rotary evaporator as if it was

connected by a simple tube as long as drying was not required. For drying operations,

both valves would be switched to one of the cartridges, thereby inserting it into the

flow path.

Figure 52: Photo of the cartridge carousel (left) and schematic of the connectivity
(right).

Initially, magnesium sulfate and calcium chloride were investigated as desiccants,

however, those salts tended to clump and block the cartridge. Therefore, molecular

sieve (4 Å, 1-2 mm beads) was employed instead. The relatively large beads provided

little flow resistance and would undergo no morphological changes during water

uptake. Packing a 20 x 80 mm polypropylene column with freshly activated 1-2 mm

 RESULTS AND DISCUSSION

 84

diameter beads of molecular sieve was found to reliably dry every organic layer it

was tested with. In the future, similar columns could also feasibly be used for

activated charcoal or similar treatments.

An unexpected beneficial side effect of this cartridge carousel is that ports not used

for cartridges could be used as additional chemical inputs. The code resulting from

such a secondary use is unfortunately rather opaque. It involves switching the

cartridge carousel to a position and then moving a volume from the rotary

evaporator to a target vessel, which can be misleading if not commented properly.

Also, it potentially interferes with the internal volume tracking. Thus, this approach

should only be used in emergencies, if adding another Backbone unit is a substantial

effort. However, as a quick-and-dirty workaround for method development is has

been proven to be very useful.

To save space, the Backbone units were always placed on shelves at the back of the

fume hood. Initially, those shelves were constructed from support rods and plastic

sheets, which didn’t make for a very professional and tidy appearance. As more

platforms were built, and it became apparent that the Backbone architecture was

not going to be changed in the near future, a custom shelf was designed and

manufactured (Figure 53).

The shelf was dimensioned to fit the mounting studs already present in the fume

hoods. The shelves consisted of two sheets of polypropylene stacked on top of each

other. Polypropylene was chosen for its high chemical resilience. The lower sheet

provided mechanical stability, while the upper sheet had cut-outs to fit either pumps

or valves, thus keeping the units in place and neatly aligned. The shelf for the pumps

was also fitted with a thinner plate in front separating the syringes from the pump

body. This sheet served two purposes. First, it protected the pump in the case of a

leakage or explosion of the syringe, which is not an entirely unprecedented scenario.

Second, it kept the pumps from toppling over, as their centre of gravity was just

about supported by their footprint.

 RESULTS AND DISCUSSION

 85

Figure 53: Custom shelf for pumps and valves. Left: Autodesk Inventor rendering.
Right: photo of the shelf mounted in a fume hood.

The two sheets were joined by a number of bolts, forming a very rigid assembly. This

assembly was then mounted to the studs using wire rope grips. Admittedly, this

might not be the most efficient way of mounting the shelves, but it has the distinct

advantage that these wire rope grips are inexpensive and readily available, therefore

no complicated custom solution had to be designed and manufactured.

To make cable management easier, a slot was added for every device position,

allowing the user to clip ethernet cables into the back of the shelf. A number of cable

cradles was mounted to the bottom of the shelf, so the cables could be conveniently

routed to the edge of the fume hood.

All polypropylene components were designed strictly two-dimensional, so they could

be cut out from sheet stock on a waterjet cutter. Engineering drawings can be found

in appendix II, , DXF files and a bill of materials are available from the Cronin Group

upon request.

 RESULTS AND DISCUSSION

 86

 RESULTS AND DISCUSSION

 87

7 SOFTWARE DEVELOPMENT

In parallel to the hardware development discussed in the previous chapter and the

development of the chemistry discussed in the next chapter, the software controlling

the devices as well as the entire platform had to be developed as well. This

development effort broadly fell into three categories, which will be discussed in

detail in the following subchapters. First, the firmware controlling the pumps and

valves rewritten to improve reliability. Second, an interfacing strategy for the various

third-party instruments had to be implemented. Third, an overarching control

software had to be developed in order to execute chemical syntheses on the

platform.

The firmware project was written largely in C, with some parts written in AVR

Assembly code. The other two projects were written entirely in Python 3.

7.1 PUMP AND VALVE FIRMWARE

7.1.1 EXISTING HARDWARE SPECIFICATIONS AND FIRMWARE REQUIREMENTS

As was already mentioned in chapter 6.1 the pumps and valves were controlled by a

custom PCB. This PCB had been designed earlier, and a major redesign was not

possible due to time constraints, so it had to be used as-is. The board featured three

major components: an Atmel ATxmega128A4U microcontroller (Figure 54), a WIZnet

W5500 network chip, and a Trinamic TMC262 stepper motor controller. Circuit

diagrams of the boards can be found in appendix III.

 RESULTS AND DISCUSSION

 88

Figure 54: Block diagram of the Atmel® ATxmega128A4U microcontroller. Copyright
held by Microchip Technology, Inc. Reproduced under the “fair use” exemption.

A firmware for the board had been written by Dr. Trevor Hinkley before I joined the

project. This firmware was built on some peculiar choices, which will be introduced

and discussed in the following sub-chapters. Overall, it was mostly operational, but

had some bugs which severely hampered the usefulness of the devices. The most

important issue was that, at random times, the devices would simply disconnect from

the computer, and enter a state where only power cycling them would render them

operational again. This was extremely inconvenient as it would regularly interrupt an

 RESULTS AND DISCUSSION

 89

automated synthesis, with no way of recovering from the error except for manually

restarting the devices and resuming the sequence. Other problems were

encountered as well, but the disconnection issue was by far the most severe.

Significant debugging effort was invested by several people, but ultimately to no

avail. Thus, it was decided to abandon the old firmware and write an entirely new

firmware from scratch.

7.1.2 GENERAL OPERATION AND REQUIREMENTS

On a top level, the requirements for the firmware were simple. The first functional

block was communication with a controlling PC. The ethernet communication was

largely handled by a dedicated network chip, the WIZnet W5500, which

communicates with the MCU via SPI. Drivers for the chip were available from the

manufacturer online, so the firmware merely needed to appropriately configure the

chip on bootup, receive commands and send replies via SPI, and map incoming

commands to their respective functions.

The second functional block was the control of the stepper motor. This was largely

handled by a dedicated stepper driver chip, the Trinamic TMC262. Again, drivers

were available from the manufacturer online. The chip required a sophisticated setup

in order to optimally control a specific model of stepper motor, yet once this

configuration was done, the interaction was limited to sending signals to three pins:

Enable, STEP and DIR. The Enable pin would power the motor when pulled to low and

cut off power when pulled high. The DIR pin controlled the direction of the rotation.

The absolute direction of rotation depended on the wiring of the motor, but the pin

state of DIR would toggle between the two directions. The STEP pin would advance

the motor by one full, half or microstep, depending on the current configuration, on

every rising edge detected at the pin.

The third and most important functional block was the control of device specific

movements. This means for the pump, moving the plunger by a given volume, and

for the valve, finding and moving to a given valve port. This block included algorithms

 RESULTS AND DISCUSSION

 90

for movement and position finding, counting motor steps, and reading the Hall effect

sensor to determine valve ports or the home position of the pump.

Based on this assessment, it was decided that a real-time operating system was not

required and would only represent an unwarranted complication. Most operation

could be offloaded to the peripherals, which meant that a simple interrupt-driven

design would be sufficient.

7.1.3 MCU INITIALISATION AND GENERAL SETUP

Before taking on any of those functional blocks, the microcontroller required some

basic setup itself. After bootup, the system clock had to be initialised, and all GPIO

pins had to be configured. The SPI interface used for communication with the

network and motor driver chip needed to be initialised, as did the UART interface

used for serial communication with the PC for debugging.

In the old firmware, all those tasks were accomplished by custom code writing the

required bit masks to the appropriate registers. While this is, in principle, a perfectly

valid approach, it leaves some room for errors. More importantly, however, it is

unnecessary since the chip manufacturer Atmel (now Microchip Technology Inc.)

provides drivers for its microcontrollers.

Atmel offers a specialised Integrated Development Environment (IDE) named Atmel

Studio.125 It is based on Microsoft’s Visual Studio, it contains a readily set up compiler

toolchain for AVR and SAM architectures, and a vast range of libraries for all chip

families. It supports C/C++ and assembly code. A cloud-based code repository, the

Atmel Software Framework or ASF allows the user to download and include libraries

for many basic tasks like sending and receiving data through SPI or UART, using

peripherals such as counters or the ADC, or controlling GPIO pins.

Using those ASF functions, the initialisation after bootup commences with initialising

the Programmable Multilevel Interrupt Controller (PMIC) and disabling all interrupts

until the setup is complete. Then, the system clock is initialised, followed by the GPIO

ports.

 RESULTS AND DISCUSSION

 91

Next, the motor controller board is enabled after a 500 millisecond delay. As

mentioned in chapter 6.1.1 the control board consists of two independent boards, a

mother board featuring the MCU and network chip, and a motor driver board

featuring the stepper controller and the associated MOSFET stage. As driving the

stepper motor requires controlling the current through “chopping”, which essentially

means switching it on and off really fast, a considerable level of high frequency noise

is generated by the motor driver board. As the power is supplied through the same

physical wires as the data, this noise would severely impair data communication.

Therefore, an LC low-pass filter containing four capacitors of 220µF each is

implemented on the motor controller board. The distinct disadvantage of this design

is that this large capacitance requires charging upon power-on, which results in a

large inrush current, which may overload the power supply, especially if multiple

devices are powered on simultaneously.

To counteract this behaviour, a normally closed power MOSFET is inserted into the

circuit. The transistor is shorted by a 680 resistor which acts as a current limiter

and allows the capacitors to charge slowly. After MCU bootup and an additional 500

milliseconds, the MOSFET would open and allow the motor controller board to draw

maximum current. Figure 55 shows a typical charging process by plotting the voltage

across the capacitor (which is proportional to the charge of the capacitor according

to Equation 1) against the time. The graph shows slow charging at first, followed by

a steep increase once the MOSFET is opened.

 RESULTS AND DISCUSSION

 92

Figure 55: Oscilloscope measurement of the charging of the capacitors by
measuring the voltage across the capacitor. X axis increments are 200 ms per

square, Y axis increments are 10 V per square.

After enabling the motor controller board, all GPIO pins are configured and set to

their initial values. Then the UART and the SPI connection are initialised. This is

followed by configuring the PWM counters used for stepping, as well as configuring

the ADC. Those two configuration steps will be discussed in detail in chapter 7.1.6.

Subsequently, the device configuration is read from the EEPROM (see chapter 7.1.9).

While doing so, the motor profile is read from the EEPROM as well and sent to the

TMC262. Stepper driver configuration and motor profiles will be discussed in detail

in chapter 7.1.6. This is followed by initialising the network configuration which will

be discussed in detail in chapter 7.1.4.

As last setup action, the watchdog timer is initialised to 4 seconds. The watchdog

timer continually counts down from its defined interval, and when it reaches zero, it

resets the chip. Some regular event, in this case a UDP broadcast coming from the

PC, has to reset the timer before it runs out. The purpose of this timer is to stop the

 RESULTS AND DISCUSSION

 93

device operation should the connection to the PC be lost, or the control software

hang. At this point, however, the Watchdog is not yet started, as this would otherwise

result in a four second boot loop as long as the device is not connected to a PC, or

the PC is not yet attempting to communicate.

After successfully completing the entire initialisation, interrupts are globally enabled,

and the firmware enters a loop where it waits for commands received either through

the UART or the ethernet connection.

7.1.4 ETHERNET COMMUNICATION

On a physical level, the ethernet communication is handled by a dedicated chip, the

WIZnet W5500. In a nutshell, it handles the low-level aspects of the TCP/IP

implementation as a black box and offers a high-level interface which enables the

user to send and receive messages through TCP, UDP, or a number of other

communication protocols. It offers eight sockets, so a maximum of eight distinct

connections can be maintained simultaneously, and 32 Kbyte buffer memory, which

is shared among all sockets. Communication with the MCU is handled via SPI.

The previous firmware used TCP to receive commands from the PC, and UDP to

receive a “keepalive” broadcast to regularly reset the Watchdog timer. TCP, or

Transmission Control Protocol, is a reliable peer-to-peer communication protocol. It

features a range of message verification tools and redundancies which make it

resilient against data loss or corruption, at the expense of speed. This makes it ideal

to transmit commands which must be delivered faithfully. UDP, or User Data

Protocol, however, is a faster protocol lacking those safeguards, which allows peer-

to-peer connections as well as broadcasts (i.e. one sender, multiple recipients). This

makes it ideal for transmitting Watchdog resets. A PC can just broadcast those

keepalive messages into a subnet without necessarily having to worry about

connecting to each device individually, and as long as those broadcasts happen

frequently enough, a device can cope with the occasional lost or corrupted message.

So far, this made sense. However, the old firmware layered an additional

communication protocol on top of the TCP. This layer, Open Sound Control or OSC,

 RESULTS AND DISCUSSION

 94

is a communication protocol originally conceived for the communication with

musical instruments and sound synthesisers.126 It remains unclear to the author why

this particular protocol was chosen, or for that matter why another layer of

complication was introduced at all. Furthermore, the implementation of the OSC

standard used in the old firmware project seems to have been written by my

predecessor from scratch, so there might well be errors hidden in the (largely

undocumented) code.

Another peculiar choice regarding the network communication was the use of DHCP.

This Dynamic Host Control Protocol dynamically assigns IP addresses to devices in a

network. DHCP is a standard tool routinely used to manage computer networks, and

in and of itself it is not unusual. What makes it unusual with regards to the pumps

and valves is that it seems entirely unnecessary. Every device requires a unique

identifier in order to be addressable by the control PC, and a fixed individual IP

address appears to be a straightforward solution. The old firmware instead featured

individual device IDs and dynamically assigned IP addresses. DHCP is advantageous

in large networks where manual IP management becomes unwieldy, or for mobile

devices such as laptops or phones which regularly travel between multiple different

networks. Either case appears unlikely for the pumps and valves, so there is no

readily apparent advantage to using DHCP. The distinct disadvantage, however, is

that it adds considerable overhead to the firmware. The ATxmega family is one of the

most powerful 8 bit microcontrollers on the market, but it is still a constrained system

with limited resources, so additional loads should only be added after careful

consideration. Furthermore, it again appears as if the DHCP implementation in the

old firmware was written by my predecessor rather than taken from a tested library,

so it is entirely conceivable that the disconnection problems encountered earlier are

related to the use of DHCP.

Based on this assessment it was decided to retain the use of TCP for commands and

UDP for keepalive broadcasts, but without an additional intermediate layer. It was

also decided to assign static IPs to every device and implement a mechanism to

change the IP at runtime without having to reprogram the MCU.

 RESULTS AND DISCUSSION

 95

WIZnet provides a driver package on their website, which offers high-level interfaces

for all important functions. In order to initialise the W5500, several tasks have to be

completed. First, several functions related to SPI communication have to be

registered with the driver library. The user passes pointers to the functions in

question to the library, which in turn uses those pointers to perform communication

tasks in a chip-agnostic way.

Then, the 32 Kbyte buffer memory has to be partitioned between the sockets. For

reasons of simplicity, the memory was distributed evenly, resulting in 2 Kbyte of

buffer for both transmit and receive on every socket. Since ultimately only two

sockets are in use, the available memory could in principle be allocated in full to

them. However, it was reasoned that first of all 2 Kbyte ought to be enough for

anybody, given that the intended data consists of merely a handful of ASCII

characters per command, and second of all, leaving space for future expansion is a

prudent approach.

Next, the network configuration is read from the EEPROM and sent to the W5500.

The network configuration consists of the IP and MAC addresses as well as a few

other less important parameters, which all have to be loaded into their respective

registers on bootup. This data is stored in the EEPROM as opposed to the program

memory in order to enable the user to safely change the addresses during runtime.

A default value is loaded into the EEPROM when the MCU is programmed, so the

device is immediately network enabled. After programming the device, the user is

encouraged to assign a unique IP using the API (see chapter 7.1.10).

Next, the interrupts have to be configured. The W5500 features one pin which is

pulled to low if any of a number of predefined events happen. This pin is connected

to an input pin of the MCU, which generates an interrupt if the pin is low, thereby

prompting the MCU to deal with the network event. The W5500 uses a system of bit

masks to determine which events result in a low pin state. One bit mask determines

which of the eight sockets may trigger an interrupt, while one bitmask per socket

determines the type of event that is permitted to trigger an interrupt. If both bits are

set for any given event, and the event occurs, a bit is set in the global interrupt

register, and the pin is pulled to low. It falls to the MCU to clear the bit after servicing

 RESULTS AND DISCUSSION

 96

the interrupt, and the pin will remain low until all bits in the interrupt register are

cleared. The Interrupt Service Routine associated with the W5500 will be described

in detail a bit later. For this firmware, the interrupts associated with two sockets were

enabled, one for the TCP communication, and one for the UDP broadcast. For the

TCP socket, connection of a new client, disconnection, receiving a message, and

socket timeout were enabled to send interrupts. For the UDP socket, merely the

receiving of a new message was enabled.

As last step, the two sockets were configured for TCP and UDP, respectively, and

assigned a port number. Then, the TCP port was set into listening mode. In this mode,

the device would act as a passive server, allowing exactly one PC to connect to it as

a client and issue commands.

Having been set up this way, the W5500 will now listen for incoming TCP connections

or UDP messages. Once a TCP connection is established, or a UDP message is

received, it will trigger an interrupt for the MCU. The ATxmega family features a

Programmable Multilevel Interrupt Controller or PMIC, which allows the user to

assign one of three priorities to an interrupt source, low, medium, and high. Any

Interrupt Service Routine (ISR) can be interrupted by sources with higher priorities,

while interrupts with equal or lower priority are logged by the PMIC and are serviced

once the current ISR returns. The W5500 interrupt is assigned medium priority. The

reasoning here is that interrupts for the movement routines are more time critical

and must be serviced at the earliest convenience. Since the W5500 drivers globally

disable interrupts during critical transactions, and the movement routines share no

memory with the network communication, the W5500 ISR can be safely interrupted.

Said ISR, when executed, will first request a copy of the interrupt register of the

W5500 in order to determine which event caused the interrupt. To that end, it will

then go through each enabled case and check if the corresponding bit is set, and if

so, service the event and clear the bit. This will continue iteratively until all bits are

cleared. This is to avoid a deadlock if another event occurs while one interrupt is

serviced.

 RESULTS AND DISCUSSION

 97

The first possible event is a new TCP connection. In that case, a debug message

containing the client IP is sent through the UART connection. Then, the Watchdog

timer is enabled. The reason is that as soon as a TCP connection is established, a

move command could feasibly be issued, so the safety mechanism has to be armed

by that point. As a visual cue to signify a successful connection, an LED on the board

is illuminated.

The next case is if data is received via TCP. This means a command has been issued

and needs to be dealt with. After verifying that data is available and that it fits into

the allocated buffer on the MCU, the command is read from the W5500 and passed

to the command parser (see chapter 7.1.5).

The next case is a client disconnecting from the device. In this case, the LED is

switched off and a debug message is logged to UART. If the firmware is compiled in

debug mode, the Watchdog timer is disabled to aid development and debugging. The

release version, however, would leave the Watchdog timer enabled, to ensure safe

operation throughout. The TCP socket is then returned to listening mode, which

means as long as the UDP keepalive is sustained, another client could connect and

continue operating the device.

The last case for the TCP socket is a timeout, in which case a debug message is logged.

Since the Watchdog timer ensures safe operation in case the client hangs, this was

deemed sufficient.

For the UDP socket, only a new message is enabled to issue interrupts. In this case,

after checking if data is available and if it fits into the buffer on the MCU, the data is

read from the W5500 and compared against the Watchdog reset keyword

reset_wdt. If it compares positively, the Watchdog timer is reset. Otherwise,

nothing happens. The incoming data will only be compared up to the length of the

reset keyword to conserve CPU time. While a synthesis platform can reasonably be

expected to be a dedicated, closed network, in modern computers it should be

assumed that other background programs might send messages into any available

network. This may be counteracted by locking the network down using firewall

settings, but the easier path is to design the firmware in a way that simply ignores

 RESULTS AND DISCUSSION

 98

any and all transmissions that are not the expected keyword. Yet, there is still the

remote danger of consuming all CPU time if UDP transmissions are received faster

than they can be serviced. The time it takes to clear a UDP keepalive interrupt was

measured at 2.7 ms, at a default frequency of one keepalive message every half

second, this utilises around 0.5% of all CPU time. Thus, it seems unlikely an interfering

application could overwhelm the device, and even if it would, the Watchdog timer

would run out and safely stop operation.

7.1.5 THE COMMAND MAPPER AND THE FORMATTED NETWORK PRINT UTILITY

It was decided to use human-readable strings as commands as that would make it

easy to debug misbehaviour, and also enable people to conveniently implement APIs

for interfacing with the devices. In the course of this work, an API in Python 3 was

developed, but should anyone require device control in a different language, a

simple, string-based protocol makes this as straightforward as possible.

The difficulty on the microcontroller side is to implement an efficient function that

parses a string containing a variable-length command and a variable number of

arguments of varying types and executes the associated routines. After some

research it was decided to adopt an approach published by Mark McCurry.127

The problem of the varying argument types was solved by defining a union of all

possible types, called arg_t. That would be: signed and unsigned integers of 8, 16,

32, and 64 bits of length; floating point numbers; and strings (char pointers). Those

types were assigned single letters according to the following scheme: c, i, l, e stand

for char (8 bit integer), int (16 bit integer), long (32 bit integers) and extra long (64

bit integer), f for float (floating point numbers) and s for string. For the integers,

lowercase letters denote signed types, uppercase letters denote unsigned types.

All routines which should be exposed to the user were cast into functions of a

uniform structure, which take an arg_t pointer as argument and return void. This

might be as simple as defining appropriate functions that return a call to an internal

function which returns void. In other cases, like for writing device configurations,

the arguments had to be unpacked and passed to a function explicitly. Either way,

 RESULTS AND DISCUSSION

 99

those uniform functions where then arranged into a dispatch table. This table

consists of structures containing the following pieces of information: a command

keyword in the form of a string, a pointer to the associated function, a string defining

the number and type of the associated arguments encoded in the single letter code

described above, and a short docstring explaining the command and associated

routine.

An incoming command consisting of a keyword and a number of arguments

separated by a delimiter (by default a space character) is tokenised into substrings

by splitting it at the delimiters. The first substring containing the keyword is matched

against the keywords in the dispatch table. If a match is found, the rest of the tokens

are parsed into their appropriate data types using the argument string obtained from

the dispatch table and the results are stored in a list of arg_t unions. If the number

of arguments provided does not match the expected number of arguments, or if an

argument cannot be converted according to the required type, an error is raised. If

the arguments parse without error, the function obtained from the dispatch table is

called with the parsed arguments. All string-related operations such as tokenising or

matching was accomplished using the <string.h> standard library.

Being able to parse and execute incoming commands, a simple way of sending replies

was required. To that end, a function was written which allows the user to send

formatted strings via TCP similar to how the printf() function of the <stdio.h>

library sends formatted strings via a serial interface. This utility, named

netprintf(), uses the vsnprintf() function of the <stdio.h> library to

compile a string with format specifiers and a list of arguments into a formatted string,

which is subsequently sent to the client via TCP using the W5500 driver library. This

function was used extensively across the firmware wherever replies via the ethernet

connection were required.

 RESULTS AND DISCUSSION

 100

7.1.6 STEPPER MOTOR CONTROL

Both the pump and the valve use bipolar stepper motors for movement and

positioning. Those motors are controlled by a dedicated chip, the Trinamic TMC262.

Before going into the details of this chip, let us briefly discuss the operating principle

of stepper motors. Unlike other electric motors, stepper motors do not revolve

continuously, but instead advance in a stepwise fashion in one direction or the other,

hence the name. The step angle is known, so in order to move a motor by a given

amount, the user merely needs to advance it by a given number of steps. Figure 56

shows a simplified model of a bipolar stepper motor. A bar magnet is mounted on a

shaft (small circle in the middle) and surrounded by four electromagnets. The

windings of the electromagnets A and A1 as well as B and B1, respectively, are

connected in series in such a way that the directions of their magnetic fields align.

Consider energising the coils of A and A1. The bar magnet will line up as shown in the

figure. Now consider de-energising A and A1, and energising B and B1. The bar

magnet will rotate by 90° clockwise or counter-clockwise depending on the direction

of the current and hence the magnetic field and align itself with the B coils. De-

energising B and B1, and energising A and A1 again, but this time with the current

and hence the magnetic field in the opposite direction, will cause the bar magnet to

continue its rotation by another 90°. Thus, the shaft can be rotated in 90° increments.

Now consider instead of de-energising one pair of windings when energising the

other, both pairs are energised at the same time. The bar magnet will orient itself

between the windings at a 45° angle. When one winding is de-energised, the bar

magnet will align itself fully with the other winding, thus travelling by 45°. Re-

energising the first winding again in the opposite direction will cause the bar magnet

to align itself between the windings again, travelling by another 45°, and so forth.

So far, all cases assume the same current in all windings. However, by applying

different currents to the two winding pairs, the bar magnet can be made to align

itself closer to one pair or the other, with the angle being proportional to the current

ratio. This way, rather than advancing 90° or 45° at once, the shaft can be moved

smoothly to any position. This mode of operation is called microstepping. Practically,

 RESULTS AND DISCUSSION

 101

the current is not tuned continuously, but rather increased or decreased in small

increments, resulting in a number of microsteps between the full steps.

Figure 56: Simplified model of a bipolar stepper motor.

The configuration shown in Figure 56 is merely a model to explain the principle. Real

stepper motors are built slightly differently, but the general mode of advancing it

through the steps remains the same. Real stepper motors have step angles

significantly smaller than 90°, a commonly encountered value is 1.8° or 200 steps per

revolution. The number of microsteps is usually a power of two, with 256 microsteps

per full step being a commonly used resolution. Practically, the maximum resolution

of a stepper motor depends on many factors, and microstepping has advantages and

disadvantages compared to full stepping. A designer has to weigh those against each

 RESULTS AND DISCUSSION

 102

other and decide on an operating mode, and in the case of microstepping, on a

sensible microstep resolution. In this work, with more zeal than judgement, a

microstepping resolution of 256 microsteps per full step was chosen.

In order to tune the coil current when only a constant voltage is supplied, the

controller chip switches the power on and off in fast succession and makes use of the

fact that a coil, being an inductor, can store energy for a short time. When voltage is

applied the current in the coil rises, until it reaches the target current. Then, the

voltage is switched off, and because the coils have an inductance, the current will fall

only slowly. When it crosses a defined lower threshold, the energy stored in the coil

is “topped up” by briefly applying voltage again. This way, the average current in a

coil can be held near the desired value. The TMC262 uses eight external MOSFETs for

that task, which form two H bridges, one per coil. An H bridge is a circuit of four

switches which allows a source voltage to be applied to a load in either direction. In

fact, the TMC262 uses an even more involved switching cycle than described above

to optimally shape the current, but those details reach beyond the scope of this work.

The interested reader is referred to the datasheet of the chip. Practically, the chip

handles microstepping as a black box, and the user only needs to supply pulses to

one of the TMC262’s pins in order to advance the motor.

In addition to microstepping and current control, the TMC262 also offers features

related to load measurement. By measuring how the coil current reacts to the

voltage switching cycle, the chip is able to deduce the motor load. Based on that, in

theory it can dynamically adjust the current to compensate for increased load, and

thereby decrease the overall power consumption and associated heating for low

loads. It can also, in theory, report a stall, that is when the maximum load is

exceeded, and the motor gets stuck. Practically, in this particular application the

move speeds were generally too slow to allow for reliable operation of those

features. Thus, the dynamic power scaling was turned off entirely, and the stall

detection was only used for hard homing the pump (see chapter 7.1.7).

In order to perform all those functions, the TMC262 required a number of settings.

A full list of all parameters is available in the chip’s datasheet. Some parameters like

the microstep resolution are user defined. Settings related to optimally shaping the

 RESULTS AND DISCUSSION

 103

coil current depend on the characteristics of the motor and can be approximated

using calculator tools provided by Trinamic. Fine tuning could be performed by

monitoring the coil current with an oscilloscope, but for the purpose of this work it

was found that the default values provided by the calculator worked satisfactorily.

The stall detection required experimental tuning. In the firmware, all parameters

were stored in a structure called a motor profile. Upon bootup, those settings were

sent to the TMC262 via SPI.

Once this setup is complete, driving the motor requires three pins as described in

chapter 7.1.2. The Enable pin is used to switch the power to the motor on or off.

During operation, Enable must be pulled low to switch on the power. When the

motor is idle, Enable is pulled high to switch off the current and reduce energy

consumption, as well as avoid excessive heating. The DIR pin determines the relative

rotation direction. The absolute direction, i.e. clockwise or counter-clockwise, is also

determined by the polarity of the motor cables, so the device configuration (see

chapter 7.1.9) holds a variable denoting the positive direction. If a device is found to

work the wrong way, i.e. a pump aspirates when it should dispense, or a valve rotates

through the positions in the wrong order, the user can change the variable in the

configuration and the DIR pin polarity is inverted.

The STEP pin senses digital pulses and causes the TMC262 to advance the motor by

one full/half/microstep, depending on the settings, every time an edge is detected.

The user can choose whether only rising edges or rising and falling edges are

considered. Since this application only requires low stepping frequencies, the

firmware uses rising edges only.

In order to generate those edges, one of the ATxmega’s timer/counters was used to

generate a Pulse Width Modulation (PWM) signal. The frequency of this signal is

equal to the desired stepping frequency, and the duty cycle is arbitrarily set to 50%.

Those timer/counters are peripheral devices on the microcontroller which count

pulses of an input waveform. The input waveform can be a clock signal, or any

arbitrary signal generated by other components on the PCB. A user may set a

maximum value and up to four compare values, and the timer/counter will generate

an interrupt or an event once those values are reached. Generating PWM signals is a

 RESULTS AND DISCUSSION

 104

standard application of timer/counters, and the ATxmega provides a dedicated mode

for it. The main advantage of using timer/counters for this task is that they operate

entirely independent of the CPU. Once the required parameters are loaded into the

corresponding registers, the peripheral will continue to produce a PWM waveform

until told otherwise, without any further involvement of the CPU. This conserves

processor time and frees up resources for other tasks.

In order to position the motor accurately, those pulses have to be counted. To do so,

another timer/counter was used in conjunction with the event system. Events are a

feature of the ATxmega family used for signalling between different peripherals. In

this case, the timer/counter producing the PWM would signal a second

timer/counter every time a rising edge is emitted and thus a step is made, and the

second timer/counter would count up by one step. The timer/counters of the

ATxmega128A4U can hold up to 16 bit of information or 65,536 steps. At a resolution

of 256 microsteps per step, and a step angle of 1.8°, this works out to 460.8° of

movement or roughly one and a quarter revolution. This is adequate for the valve,

but not for the pump. The solution recommended by Atmel for this problem is to

concatenate two 16 bit timer/counters. This is done by leveraging the event system

much in the same way as for counting pulses. Once the “low” counter overflows, the

“high” counter is incremented, thus effectively creating one 32 bit timer/counter.

This allows for a total of 232 or 4,294,967,296 steps or not quite 84,000 revolutions.

For reference, the lead screw used in the pump has a pitch of 2 mm, so this would

equate to almost 168 m of travel.

Using this setup, an algorithm for moving the motor by a defined number of steps

can be devised as follows. During bootup, the PWM timer/counter was set into

waveform generation mode and configured to output the waveform to the STEP pin.

The low side of the step counter was set up to count rising edges as described above,

and the high side was configured to count low side overflows. To initiate the move,

the PWM timer/counter was set to the desired stepping frequency and 50% duty

cycle. If fewer than 65,536 steps were required, the low side step counter was

zeroed, the maximum value was set to the required number of steps, and the

overflow interrupt was enabled. Then, the Enable pin was pulled to low, the DIR pin

 RESULTS AND DISCUSSION

 105

was set as required, and the PWM was started. From that point on, the peripherals

would step the motor without CPU involvement. Once the last required step was

made and the step counter overflowed, an interrupt would be generated to signal

that the move is done. The associated ISR would contain the device-specific

positioning algorithm, which will be discussed in chapters 7.1.7 and 7.1.8, and the

CPU would issue the next command as required.

If more than 65,535 steps were required, the 32 bit counter had to be used. Here,

things were a bit more complicated as both counters had to reach a target value. To

understand the algorithm, consider Figure 57. It shows the number 500,000 encoded

in binary, separated into two 16 bit chunks, representing the high side counter and

the low side counter. Note how the high side counter alone reads binary 111 while

the low side counter alone reads 1010 0001 0010 0000.

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0

High Side Low Side

Figure 57: The number 500,000 encoded in binary. “High Side” and “Low Side” refer
to the leftmost 16 bit and the rightmost 16 bit, respectively.

Both counters start at zero. The maximum value of the low side counter is set to

216-1 or binary 1111 1111 1111 1111. Every time it reaches this value and tries to

increment again, it overflows and starts at zero again. At the same time, an event is

generated which increments the high side counter. This procedure is repeated until

the high side counter reaches binary 111. Then, the low side counter counts until it

reaches 1010 0001 0010 0000. Then, an interrupt should be generated to signal the

successful completion of the 500,000 steps.

To that end, the ATxmega’s timer/counters allow the user to set a compare value. If

the current counter value matches this compare value, an interrupt is generated.

Thus, the low side counter compare value was set to 1010 0001 0010 0000. However,

on its own, this compare match would trigger an interrupt every time the counter

 RESULTS AND DISCUSSION

 106

reaches this value, and not just once the high side counter had reached 111. Thus,

the compare value and the corresponding interrupt were set up during the

initialisation of a move, but not activated. The high side of the counter was then

configured to generate an interrupt once it reached 111, and the corresponding ISR

written in Assembly would activate the interrupt on the low side counter. Thus,

during operation, the low side counter would run from zero to maximum until the

high side counter reached 111, then the compare interrupt would be enabled, the

low side counter would continue to run until it reached 1010 0001 0010 0000 and

then create an interrupt, precisely after 500,000 steps.

Practically, this algorithm worked very well. Tests with a logic analyser capturing the

generated pulses showed that the requested number of steps was generated

faithfully, and the ISR switching on the compare match interrupt was very fast. The

ISR itself clocked in at less than half a microsecond, and the overall time between the

rising edge and the end of the ISR was measured at around 2.7 µs, which is fast

enough to not cause any delays or step losses during normal operation.

When operating a stepper motor, it is advisable to gently ramp up the speed at the

beginning of the move and ramp it back down at the end. This is to overcome the

inertia of the rotor, and any inertia or friction in the system. Without gentle

acceleration, the motor can lose steps before it starts moving, thus decreasing the

positioning accuracy, or if the step change is too drastic, even fail to move at all and

instead just oscillate in place. A similar principle applies to the deceleration, where

the inertia of the moving system has to be absorbed. An energised stepper motor

can resist turning only up to a certain limit, the so-called holding torque. If the inertia

of the moving system is greater than the holding torque, the motor is jerked past its

current position and the system moves one or more full steps past the theoretical

step count. Those inaccuracies can mount up and eventually lead to significant

positioning problems.

The old firmware used a complicated, adaptive, non-linear acceleration and

deceleration curve which was calculated in real time. This curve required advanced

mathematics which put unreasonable load on the CPU. The acceleration and

deceleration phases are particularly time critical tasks, so the CPU load should be

 RESULTS AND DISCUSSION

 107

kept to a minimum. One practical problem which was encountered with pumps

running the old firmware was that the device would sometimes hang at the beginning

or the end of a step, leading to the Watchdog eventually resetting the device. While

never unequivocally proven, the most plausible working hypothesis was that the

calculation of the acceleration curve took so much time that interrupts kept piling up

until the backlog got longer than the Watchdog interval and the device was reset.

Thus, a simple linear acceleration and deceleration curve (Figure 58) was

implemented and all required calculations were performed before commencing the

move. Loading values from memory is considerably faster than performing divisions,

so pre-calculating the acceleration and deceleration profile and storing it in memory

is a much more efficient approach.

To that end, a safe starting frequency, a fixed number of acceleration steps, and a

fixed acceleration resolution (W in Figure 58) were stored in the device configuration

(see chapter 7.1.9). The acceleration steps describe the overall number of motor

microsteps over which the motor should accelerate, while the acceleration

resolution specifies the number of microsteps per plateau. Thus, those two numbers

together specify a number of plateaus over which the motor is accelerated. Using a

fixed number of speed plateaus over which the motor is accelerated and decelerated

results in a variable acceleration rate depending on the travel speed, but it ensures

short acceleration and deceleration phases. A fixed acceleration rate may perform

better in some regards, but it would also mean moves at high speeds have long

phases of lower and generally poorly defined speeds at the beginning and end which

was seen as undesirable for the application in question.

When a move over a given number of steps at a certain speed was requested, the

firmware would calculate the number of plateaus during the acceleration and

deceleration from the acceleration steps and resolution. It would then calculate the

speed increment (H in Figure 58) from the starting speed and the travel speed and

store the speed increment and number of plateaus in memory.

The movement routine would then set the PWM timer/counter to the starting

frequency and the step counter to the acceleration resolution W and start the move.

 RESULTS AND DISCUSSION

 108

Once W steps were made, the step counter ISR would increment the speed by the

stored value, decrement the number of remaining plateaus by one, and start the

PWM again for another W steps, and so forth. Once the remaining speed increments

reached zero, the ISR would instead set the speed to the requested travel speed and

the step counter to the (pre-calculated) number of travel steps. At the end of the free

travel, the acceleration procedure would be repeated in the opposite direction to

decelerate the motor below the safe speed, before the move was concluded. The

exact operation of the step counter ISR differed a bit between the pump and the

valve and will be discussed in detail in the following chapters 7.1.7 and 7.1.8.

Figure 58: Diagram showing the acceleration, travel and deceleration profile for the
stepper motor. W = Acceleration resolution. H = Speed increment. “Steps” refers to

the motor microsteps.

The performance of the algorithm was tested by toggling a GPIO pin at the beginning

and end of the step counter ISR and capturing the pin state as well as the generated

PWM waveform with a logic analyser. The tests showed that the ISR execution time

was short enough to not cause excessive delays between the plateaus (generally in

the 60-80 µs range), and that the number of rising edges generated was precisely the

 RESULTS AND DISCUSSION

 109

number of microsteps requested. The capture files in question are available from the

Cronin Group upon request.

7.1.7 PUMP POSITIONING ALGORITHMS

For the pump, three movements were required: move absolute, move relative, and

move home. A fourth movement, hard homing, was included later. Absolute

movement should position the pump at a given volume between zero and the

maximum syringe volume. In contrast, relative movement should move the pump by

a given volume up or down, as long as the command would not move it below zero

or above the maximum volume. While in practical applications this mode is rarely

used, it was decided to implement it nonetheless as the extra effort was negligible.

Move to home should prompt the pump to move towards zero without counting

steps, and to stop when the Hall effect sensor detected the home position. Hard

homing would work much the same way, except that it should stall the pump against

the base and use the TMC262’s stall detection to establish a true zero position. It

should then back away from this hard stop by a predefined number of steps and

record the resulting position as new home position. This algorithm should counteract

sensor drift or shifts in reading due to different magnetic environments.

The old firmware used a globally set move speed for all movements, and changing

that speed involved writing to the EEPROM. This meant sending a separate command

every time a different flow rate was required, which was clearly inconvenient. Thus,

it was decided that all movements should take the movement speed as parameter.

Furthermore, the old firmware handled move speeds strictly in steps per seconds.

Experimentalists however are usually interested in achieving a flow rate in millilitres

per minute, or in order to avoid floating point numbers, microlitres per minute. For

the old firmware the conversion from mL/min to steps per second had to be done by

the calling software which was inconvenient and error-prone, so for the new

firmware the conversion should instead be handled by the device itself. The added

benefit of this approach was that the data required for the conversion, such as step

angle, lead screw pitch, and syringe size would be contained in the device

configuration, and therefore travel with the device.

 RESULTS AND DISCUSSION

 110

The absolute movement routine would first check if the device had any errors (see

chapter 7.1.9) and if the device was in the quiescent state. The latter was to avoid

interrupting an ongoing move. Then it would check if the supplied position in µL was

zero, in which case a call to move_home() would be returned. Otherwise, the

target volume was converted to a position in steps and the result was checked

against the maximum position of the syringe. If the move would exceed the

maximum position an error would be raised. Otherwise, the current position and the

target position would be used to determine by how many steps the device had to

move, and in which direction.

Here, two flaws of the old firmware should be highlighted. First, due to a complicated

conversion structure, it inadvertently used two different step counters for relative

and absolute moves. This meant if the user mixed those two movement modes, the

device would move to an arbitrary position and often crash or fall off the rail. Second,

in addition to those two counters, it would also save the current position to the

EEPROM after every move for no apparent reason. EEPROM is a type of non-volatile

memory which supports only a limited number of write cycles, in the case of the

ATxmega only 100,000 write cycles are guaranteed. During the diphenhydramine

hydrochloride synthesis, most pumps would execute around 700-800 moves over the

course of the entire procedure, and the pump servicing the liquid/liquid separator

would execute exactly 1784 moves. This would mean that the pump would exceed

the number of guaranteed write cycles after a mere 56 syntheses. It is not certain

that the EEPROM will fail after exactly 100,000 cycles and it may well hold up

significantly longer, but writing to the EEPROM after every single move still seems

like an unnecessary shortening of the overall life span of the devices.

If the move was a very short one, and the overall number of required steps was

smaller than the acceleration and deceleration phase, the routine would just issue a

move over the entirety of required steps at the starting speed. Otherwise, the

acceleration and deceleration phases were subtracted to yield the travel steps (see

chapter 7.1.6), the travel speed in steps per second was calculated from the provided

flow rate in µL/min, and the acceleration curve was prepared.

 RESULTS AND DISCUSSION

 111

Since there is always some play in the system, partially due to manufacturing

tolerances in the lead screw, and partially due to the system not being infinitely rigid,

if the direction of a move was opposite to the direction of the last executed move, a

small number of steps was added to the travel steps to compensate for this play.

Those backlash compensation steps were chosen arbitrarily. An experimental

determination of the required backlash steps was always planned, but ultimately

there was never enough time for this experiment.

With all move parameters in hand, the move routine was started as described in

chapter 7.1.6. The PWM frequency was set to the starting speed, the step counter

was set to the first acceleration increment, and the DIR pin was set as required. Then

the motor was enabled and the PWM generation started.

As mentioned in the previous chapter, the step counter would create an interrupt

once the number of required steps had been taken, and the attached ISR would

govern the further behaviour of the device. This ISR is structured as a state machine

in order to guide the device through the motions in a concerted fashion. Figure 59

shows all states and transitions as a reference.

Regardless of the state, at the very beginning of the ISR, the PWM is disabled to avoid

additional steps while the ISR is being processed. While the ISR would generally

execute very fast, measurements showed that if the PWM continued throughout the

ISR, a few additional pulses were sent, particularly at higher stepping frequencies.

Thus, every move would be a few steps further than required. This effect is negligible

for single moves, but over the course of hundreds or even thousands of moves the

inaccuracy would add up and eventually throw off the positioning.

The old firmware used a similar approach, utilising a state machine inside the ISR, but

it did not deactivate the PWM during ISR execution. When investigating the

disconnection issues experienced with the old firmware, tests of several thousand

random moves back to back were conducted without re-homing the pump in

between. During those tests, the pump position was found to be completely off after

some time, and the device would regularly crash against the base or fall off the rail.

 RESULTS AND DISCUSSION

 112

Regularly re-homing the pumps would somewhat mitigate that problem, but

precision by design was still preferable.

Figure 59: Full state machine of the pump.

Calling the absolute movement routine as described above would put the pump into

the ACCELERATING state. In this state, the ISR would either initiate the next

acceleration plateau as described in chapter 7.1.6, or if the number of remaining

plateaus had reached zero, set the PWM to the travel frequency and the step counter

to the travel steps and initiate free travel. This would transition the pump into the

TRAVELING state.

 RESULTS AND DISCUSSION

 113

The next time the ISR would be called when the device was in the TRAVELING state

was when the free travel had concluded. Thus, the ISR would initiate the first

deceleration step, and transition into the DECELERATING state. This state worked

much like the ACCELERATING state except if the number of plateaus had reached

zero. In this case, the ISR would deactivate the PWM and disable the motor, update

the global position counter, and transition into the QUIESCENT state. In this state,

the device was ready to receive another movement command.

Relative movement worked exactly the same way as absolute movement except for

the determination of the required steps, which of course could now be done by

directly converting the requested volume to steps. Other than that, the same sanity

checks were executed, the move was initiated, and the ISR would transition through

the state machine as described above.

Moving the pump to home worked slightly differently. The home position was

determined by a magnet in the carriage and a Hall effect sensor in the base as

described in chapter 6.1.4. When far away from home, the sensor would read close

to 4095 (212-1 as the ATxmega ADC had 12 bit resolution). This reading would

decrease as the carriage approached the home position, with readings at home of

around 700-800 depending on the exact sensor and magnet used. The old firmware

employed an algorithm that would move the pump by a small amount, then query

the ADC value, followed by another small move, and so on. In another display of

misguided sophistication, the width of every move was dynamically calculated based

on the distance from home. While in principle this should allow for precise

positioning, practically it would result in overly long ISR execution times with all the

associated problems.

The alternative was to use the compare function of the ATxmega’s ADC. This function

allowed the user to store a value in a compare register, and if the ADC reading

crossed this threshold in either direction, an interrupt would be generated. Thus, a

move towards home could be initiated without counting steps and continued until

the ADC interrupt signalled successful homing. To increase accuracy, a two-stage

approach was adopted, where the pump moves towards home at the requested

 RESULTS AND DISCUSSION

 114

(generally fast) speed until it reaches the edge of the magnetic field and the ADC

reading starts to dip, followed by slow movement until the home position is reached.

When move_home() was called, the firmware would perform the usual sanity

checks, followed by setting up the ADC to take readings continually and generate the

compare interrupt once the compare threshold was crossed. The compare threshold

was set to a value corresponding to the edge of the magnetic field. Then the

movement was started directly at the requested move speed without acceleration.

As the end point of the move would be determined by the sensor reading and not by

counting steps, step loss is not a concern. A complete failure to move was not

expected due to the generally low revolution speeds and the low loads and was

indeed never encountered. The device would then transition into the

HOMING_FAST state.

Once the ADC interrupt was triggered, the state machine ISR would decrease the

move speed to a slow approach and set the ADC compare value to the home position.

It would then resume movement, and transition into the HOMING_SLOW state. Once

the home position was reached, the ISR would enter again, deactivate the PWM and

disable the motor, and zero the step counter. The ADC was returned into a single

read state where readings were only taken upon explicit request. This was done to

avoid any unwanted interrupts to be generated and interfere with other movement

routines. At the end, the device would again transition into the QUIESCENT state.

The home reading value used in this algorithm was stored in the device configuration

(see chapter 7.1.9) and could be updated in one of three ways. An arbitrary value

could be passed to the device while updating the device configuration. This mode is

not recommended. Second, the pump could be manually positioned in a satisfactory

way, followed by calling a function which would read the ADC and store the result as

new home position.

This third and most elegant way was to use hard homing. This algorithm worked the

same way as the normal homing routine, but rather than using an ADC interrupt to

determine the end of the move, the TMC262’s stall detection was used. Thus, the

pump would move towards home, in the HARD_HOMING state, until a stall was

 RESULTS AND DISCUSSION

 115

reported. Then, the pump would back up by half a millimetre to create a safety

margin, read the ADC, and record the current position as home.

This procedure was found to work reasonably well. The stall detection was

unfortunately not overly reliable, in particular it seems the abrupt hard stop against

the base would sometimes elude the TMC262. In those cases, gently twisting the lead

screw by hand would usually make the device recognise its situation and proceed to

back up. The hard homing was usually called once at the start of a synthesis, to make

sure all devices had correct home positions, and then from there on only normal

homing was employed.

7.1.8 VALVE POSITIONING ALGORITHMS

For the valve, two movements were required, moving to an arbitrary position, and

moving to home. As described in chapter 6.1.4 the positioning was achieved via a

Hall effect sensor and magnets. Without a magnet present, the sensor would yield

an ADC reading of around 2000 (half the maximum of 4095), and if a magnet is passed

in front of the sensor, the reading would increase or decrease depending on the

magnet direction.

Figure 60 shows a typical sensor response for a full revolution of the valve. The

voltage is measured at the ADC input pin. The Hall sensor used in the devices has a

quiescent voltage of 2.5V, and minimum and maximum voltages close to 0V and 5V,

respectively, but the input circuitry on the board includes a voltage divider which

halves the input voltage. The curve clearly shows the five “negative” magnets

indicating the output ports 1-5, and the one “positive” magnet indicating output

port 0, the home position. The curve also shows that the maximum readings of the

positions are somewhat different, likely either due to varying quality of the magnets,

or because some magnets are inserted further into the motor connector than others.

In either case, though, the magnetic field appears to be reasonably symmetric. One

of the peaks was fitted with an asymmetric double sigmoidal function using

OriginPro 2016 (red line, see Figure 61 for fitting parameters), and the results showed

that the peak was almost perfectly symmetrical.

 RESULTS AND DISCUSSION

 116

Figure 60: Hall effect sensor reading of one full revolution of a valve. The red line
represents a double sigmoidal curve fitted to one of the peaks.

Thus, in order to find a valve position, the firmware had to find the maximum (or

minimum) value of the sensor response. The old firmware employed an algorithm

which repeatedly moved the motor by a small amount and polled the ADC, similar to

how it determined the pump home position, a solution which was plagued by the

same inefficiencies. Furthermore, the positioning would fail at random times.

Extensive investigation into this issue by multiple persons could not pinpoint the

reason for this failure. The failures seemed to happen more often the longer a valve

had been in use, and some findings hinted at a heat related problem, but no single

cause could be determined to any degree of certainty. Overly long ISRs were

suspected to be causing trouble, but this theory was never confirmed.

Sceptical of such a step-and-measure approach, an algorithm leveraging the ADC

interrupt was devised instead. The ADC compare value was set to an arbitrary

threshold which was chosen to be roughly at half height of a typical response peak

 RESULTS AND DISCUSSION

 117

(Figure 61). The ADC was set up to generate an interrupt if the measurement dropped

below the threshold (or rose above for positive peaks), and the motor was set in

motion. Once the interrupt was received, the step counter was zeroed, the ADC was

configured to send an interrupt once the measurement rose above the threshold

again (or dipped below for positive peaks), and the motor was set in motion again.

Once this second interrupt was received, the motor was stopped and the step

counter, representing the width of the peak, was read. Finding the centre of the peak

was then a simple matter of moving the motor back by half the peak width.

This algorithm was implemented in the form of a state machine inside the step

counter ISR, similar to the state machine for the pump. Figure 62 shows all states and

transitions. The simplest case was a movement to the home position. After checking

whether the device was error free and in the QUIESCENT state, the routine checked

if it was already homed, in which case “actuation success” and “move done” were

reported. Otherwise, the ADC interrupt was configured as described above. To

determine the direction of the threshold crossing, the known direction of the home

magnet (vide infra) was used, which was stored in the device configuration. However,

the interrupt was not yet enabled to avoid a premature triggering if the valve

happened to be close to the home position already. Then the devices would

transition to the ACCELERATING state and perform the acceleration routine as

described at length for the pump (see chapter 7.1.7).

Once the acceleration ramp was concluded, the ISR would set up a move at travel

speed for 112.5% of a full revolution, the value of which was stored in the device

configuration (see chapter 7.1.9). This was to avoid a deadlock where the valve would

rotate perpetually if no magnet was detected for whichever reason. The additional

12.5% of a revolution were added as safety margin in case the device was precisely

at home when the move started. 12.5% was chosen as it represents 1/8 of a

revolution or a bit shift by three positions, which is significantly faster than a division

by an arbitrary value.

 RESULTS AND DISCUSSION

 118

Figure 61: Detail view of the reading in Figure 60 showing the threshold and the
two interrupts used in the positioning algorithm.

At that point, the ISR would also set up an auxiliary compare value for the step

counter, which was set to a clearing distance. The compare match ISR, written in

Assembly for performance reasons, would then turn on the ADC interrupt. As

mentioned above, the purpose of this exercise was to avoid a premature triggering

of the ADC interrupt if the device started close to home. For moving to home, this is

more of an academic consideration, but for moving to a position (vide infra) this was

a vital precaution as the valve would likely start any move from a position. If the ADC

interrupt were active from the outset, it would trigger immediately and stop the

move before it began. Thus, the ADC interrupt was set up but remained inactive until

the valve had cleared the current position by a number of steps.

From there on the device, now in the MAGNET_FOUND state, would travel freely

until the ADC detected the leading edge of a magnetic field. In this case, the ADC

would be reconfigured to detect the opposite edge but would again remain inactive.

 RESULTS AND DISCUSSION

 119

This was done to avoid an immediate triggering due to noise. The ISR would then

zero the step counter, set up a move by another full revolution and set the auxiliary

compare register to a number of blanking steps. This would ensure the sensor was

well within the magnetic field and away from the noisy edges before the interrupt

was reactivated by the compare match ISR. The device would then transition into the

EDGE_FOUND state and continue movement at a slow speed.

Once the ADC detected the opposite edge on the magnetic field, the ISR would stop

the motor, disable the ADC, and read the step counter to obtain the width of the

magnetic field. The device would then slowly move back half of the width, transition

into the CENTRE_FOUND state, and once the move was concluded turn off the

motor and transition into the QUIESCENT state.

Moving to a certain position worked much the same way as moving to home, but for

one difference. While there was only one home position, so the first magnet which

was detected was assumed to be home, there were five positional magnets. Thus,

before commencing the move, the routine would use the current position stored in

memory to determine by how many positions the valve had to move. It would also

determine which direction (clockwise or counter-clockwise) provided a shorter

move. For moves by 180° it would arbitrarily choose a positive move (counter-

clockwise when viewed from above).

Then, the move was initiated as described for moving to home. However, once the

leading edge of a magnet was detected, the algorithm would check the number of

positions to go, and if the current magnet is not the target, the algorithm would just

skip it by remaining in the MAGNET_FOUND state, clearing the magnet using the

auxiliary compare value, and looking for the next edge. This would go on until the

target was reached, in which case the valve was moved to the centre of the position

as described above.

 RESULTS AND DISCUSSION

 120

Figure 62: Full state machine of the valve.

As briefly mentioned above, the direction of the home position magnet was saved in

the device configuration. However, evidently it had to be identified once in the first

place. This could have been done by manually moving the valve to home and reading

 RESULTS AND DISCUSSION

 121

the ADC, and additionally a workmanship standard was adopted demanding that all

valves were assembled in the same way, i.e. the directions of the magnets to be the

same for every device, but both solutions were unsatisfying.

Thus, a self-configuration routine was devised. In this mode, the valve would perform

two full revolutions and count all positive and all negative magnets, respectively. The

routine used the ADC interrupt as described above, and after registering one magnet

it cleared it by a number of steps much the same as the other movement routines.

Once the counting was done, there were, in essence, three possible cases: first, one

positive and five negative magnets, which signified a positive home position. Second,

one negative and five positive magnets, signifying a negative home position. Third,

any other count, which signified a problem. In this case the magnet counts were

reported back to the user and the device would flag an error (see chapter 7.1.9).

A commonly encountered error scenario was five magnets in one direction and two

in the other. This happened if the valve started counting when centred on a position,

in which case it would sometimes count this position twice. Other scenarios included

six magnets in total, but more than one (or none) opposing the others. That was

usually due to operator error during assembly. Similarly, fewer than six magnets in

total were either due to a magnet missing, or due to demagnetising a magnet during

assembly by use of concussive force. Any other error was most likely to be attributed

to a faulty Hall effect sensor.

Self-configuration was normally done only once after programming the MCU. From

there on, the home position direction was preserved in the device configuration, and

re-running the self-configuration was unnecessary.

 RESULTS AND DISCUSSION

 122

7.1.9 DEVICE CONFIGURATION AND ERRORS

The previous paragraphs frequently mentioned the device configuration, so it might

be worthwhile to explain in detail what that is. In a nutshell, all important variables

describing the current setup of the devices, such as syringe size for the pump,

number of positions for the valve, step counts for the movement algorithms, and

sensor reading thresholds, are stored in a structure called globalConfig. As

pumps and valves require different information, there are two different

configuration structures for them. During compilation, a pre-processor macro would

determine which structure to incorporate depending on whether a symbol PUMP or

VALVE was defined.

The configuration would be written to the EEPROM whenever it was changed.

Practically, this happened rarely enough. Upon bootup, it would be read from the

EEPROM and stored in RAM. The advantage of keeping it in the EEPROM was that it

could be changed during runtime and those changes were preserved when the device

was powered off. This made it a self-contained system, allowing the user to use it

without having to configure it every time.

Similar to the device configuration, the devices also held a structure named

networkConfig which contained all relevant information for the W5500 such as

IP and MAC address. The network configuration was stored in the EEPROM as well

and was read during bootup to be sent to the W5500.

Furthermore, one byte signifying the error state of the devices was stored in the

EEPROM. Every bit represented one particular type of error. If an error condition

occurred, the corresponding bit was set and the whole byte was written to the

EEPROM in order to be preserved even if the device reboots. Multiple error bits could

be set at any given time, and the error state could be queried by the PC, and errors

could be cleared. The only error which could not be cleared by the user was the

configuration error. This bit was set by default after programming the MCU and

would only be cleared by supplying a device configuration. Otherwise movement

routines could be called without having any of the required information, leading to

undefined behaviour.

 RESULTS AND DISCUSSION

 123

7.1.10 PYTHON API

Once the firmware was completed and preliminary testing had concluded, a

colleague was tasked with writing an API in Python based on a specification sheet.

After he delivered the first version, thorough testing and some further development

was performed, and eventually the API was converted into an installable Python

package. This way, any user can simply install the package and use the pumps and

valves.

The API consists of a function providing a UDP keepalive, and three classes. The

function starts a daemon thread which continually broadcasts the keepalive message

into the specified subnet every half second and has to be called once at the beginning

of any script using the API.

The first class is a generic parent class providing basic communication. Child classes

for pump and valve provide methods for performing all practical operations required,

such as moving the devices, writing configurations, or reading and clearing errors.

The entire package, including example files demonstrating the use as well as

extensive documentation, is available from the Cronin Group upon request.

7.1.11 FIRMWARE TESTING

In order to thoroughly test the firmware and API, both a pump and a valve were

subjected to a random move stress test. This test executed random moves back to

back continually and logged the responses to a file. For the valve, random positions

including home were performed. For the pump, moves to random absolute positions

at random speeds were performed without moving to home. The values for position

and speed were limited to sensical values, and new positions were required to be at

least slightly different from the old position.

As the reliability of the network communication was a concern, the connection was

monitored using Wireshark, and the Windows ping utility was used to send pings to

the devices throughout the entire test.

 RESULTS AND DISCUSSION

 124

The pump successfully performed 11,875 moves before the test was terminated,

which is more than any pump had ever managed with the old firmware before

breaking down. Even without re-homing, the position was still accurate, no crash was

observed. Out of 237,786 packages sent by the ping utility, 55 or 0.02% were lost.

The valve performed 24,150 moves before the test was terminated, and lost 5 out of

8,755 packages, or 0.06%. Neither device failed. To put those numbers in perspective:

during the diphenhydramine hydrochloride synthesis, pumps performed between

500 and 1800 moves, and valves performed between 500 and 2100 moves. Thus,

both pump and valve were tested to around ten times the number of moves in a real-

world application. The packet loss can’t directly be correlated to the likelihood of a

failure event since the TCP protocol will detect lost or corrupted packages and

retransmit them as required. Every move consists of three network interactions: the

PC sends a command, the device acknowledges receipt, and later on the device

reports successful completion of the move. Based on that, a simplistic calculation

would suggest that such a TCP retransmission would have to occur once or twice per

synthesis which is perfectly acceptable.

In addition, the stability of an idle connection was tested. The old firmware would

sometimes lose connection when the devices were just standing idle for several

hours. Thus, the devices with the new firmware were connected to a PC and a TCP

connection was initiated. The devices were then left idle over the course of a

weekend, and the network was monitored using Wireshark. Neither pump nor valve

dropped the connection.

Emboldened by those test results, the firmware was released for routine use. Since

then, four synthesis platforms totalling over 50 devices were built and used, and all

three syntheses described in chapter 8 were performed without any device failure.

 RESULTS AND DISCUSSION

 125

7.2 THE SERIALLABWARE PROJECT

Aside from the pumps and valves which were using ethernet protocols for

communication as discussed in the previous chapter, most other computer

controllable lab equipment used a serial connection of some description. The most

common ones are USB, RS232, and RS485. CAN bus would be another serial interface,

but it is rarely encountered in laboratory equipment. All equipment used in this work

was controlled via either USB, or RS232 in conjunction with an RS232-to-USB

converter.

From a software perspective, most devices (and all devices used in this work) are

recognised by the operating system as serial ports. Communication is achieved by

sending commands as strings and receiving replies in the same way. There is no

generally observed standard for the format of those strings, with every manufacturer

defining their own communication standard specific to their products. The German

User Association of Automation Technology in Process Industries (NAMUR) has

published a suggestion for standardising serial communication with small lab

equipment128 which is more or less observed by many German manufacturers such

as IKA®-Werke GmbH & CO. KG, Heidolph Instruments GmbH & CO. KG,

VACUUBRAND GMBH + CO KG, or JULABO GmbH. Other equipment manufacturers

such as Huber Kältemaschinenbau AG, however, developed their own standard

instead. Generally, the communication protocol is described in the user manuals of

the equipment. Thus, a user can implement their own control software if required,

although most manufacturers will also sell turnkey software solutions.

In this work, several different classes of equipment sourced from a range of

manufacturers were used. Using the proprietary software solutions was immediately

out of the question as that would greatly increase software bloat and also would

require obtaining permission from the developing companies. Thus, it was decided

to implement Python drivers for every device and use them as a base layer for the

overall control suite (see chapter 7.3).

Up until this point it was common practise in our research group to write specialised

pieces of software to control lab equipment, which were usually hard-coded to serve

 RESULTS AND DISCUSSION

 126

the immediate purpose at hand. Transferability between projects, and general code

reusability were not commonly observed design objectives. This not only meant an

unnecessary multiplication of effort, it also produced a host of mostly poorly written

and undocumented code snippets which would often be re-used by new group

members in a prime example of cargo cult programming.129

Unsatisfied by the available solutions and driven by the need for reliable device

drivers in order to build the synthesis platform, a code base for commonly used

devices was created, which could then also be included in other projects developed

in the group, and possibly made available as open source package to aid the wider

scientific community.

The first device that was investigated was the IKA® RET control-visc hotplate stirrer

(Figure 63). This computer controllable hotplate stirrer had been in use in our group

for a while and featured in several automated platforms built at the time. A Python

class was written using the pySerial package130 to establish a connection to the device

and allowed the user to read and write setpoints for the various functions like heating

and stirring, as well as to read current process values.

Figure 63: IKA® RET control-visc computer controllable hotplate stirrer.

This script was later refined by a colleague by moving the sending and receiving of

commands into their own private methods. He also incorporated all communication

codes into the class and created discrete methods for every function. Previously, a

generic read_setpoint() method would take the respective function as an

 RESULTS AND DISCUSSION

 127

argument, while in the new version, stir_rate_sp() and

temperature_sp(), for example, were separate, distinct methods. The new

structure also made use of the Python @property decorator, which allows a calling

script to handle those methods as properties like so:

>>> hotplate.temperature_sp = 50

>>> print(hotplate.temperature_sp)

50

Where the first line would send the appropriate command to the hotplate and set

the temperature setpoint to 50°C, and the second line would query the current

setpoint and print it to the console.

This hotplate stirrer class was used in some early iterations of the synthesis platform,

and in some other projects in the group. However, as further devices were added to

the platform, it became clear that a more general solution was required.

As establishing a serial connection as well as sending and receiving commands are

universal operations required for all types of devices, a generic parent class called

SerialDevice was created to take care of those operations. For the settings of

the serial port such as baud rate, bytesize, or parity, default values are defined as

class attributes which can be overridden by device specific child classes. Similarly,

default values for encoding the string to bytecode (UTF-8 by default) and for

termination characters (carriage return – line feed by default) are defined as

attributes.

When working with the IKA® RV 10 digital rotary evaporator (Figure 64) another

requirement was found. The heating bath features a watchdog timer which triggers

an error if the bath is in use, and no command has been received from the PC for

some time. Thus, a regular keepalive function had to be implemented. This function

had to exist in a separate thread for obvious reasons, but it also needed to be

coordinated with regular command interactions. Thus, the entire communication

was moved into a daemon thread. Henceforth, a method call in the main thread

would place the appropriate command in a queue which passes it to the

 RESULTS AND DISCUSSION

 128

communication thread. There, the command would be dispatched, and any replies

were put into another queue to be received by the caller in the main thread.

Figure 64: IKA® RV 10 digital rotary evaporator.

If no commands are waiting in the queue, the communication thread would execute

a keepalive method. In the parent class, this method was merely a 100 millisecond

wait, and any device specific child classes requiring a keepalive tick would override

this method accordingly.

In order to pass a method call to the communication thread as described above, a

decorator was created. In Python, decorators are wrapper functions that are applied

to a function or method before execution. This wrapper function can be applied by

using a special notation:

@spam

def foo(bar):

 # do stuff

 RESULTS AND DISCUSSION

 129

Here, the decorator @spam above the definition of foo() means every time foo()

is called, it results in a call to spam(foo()), where spam() is a function defined

elsewhere.

In this project, an @command decorator was defined, which checks whether a

method is called in the main thread or the communication thread. If it is called in the

main thread, it is enqueued and passed to the communication thread. If it is called

from within the communication thread, it is executed as is. Thus, in a device-specific

child class, any method resulting in communication with the device must be

decorated with @command.

Another feature implemented in the SerialDevice parent class was syntactic

checking of responses using Regular Expressions (RegEx). Usually, when a command

is sent to a device and an answer is expected, the general format of that answer is

known. This might be as simple as expecting an integer when a setpoint is queried,

or as complicated as expecting a response consisting of several characters signifying

error codes, status messages, and queried values.

To ensure the answer is sensical, the user may define a RegEx pattern for the

anticipated response, and if the answer does not satisfy the pattern, an error is

raised. Furthermore, by using capture groups, the string returned by the device could

be deconstructed within the communications thread, and an already sanitised

version could be returned. Consider the IKA® RET control-visc hotplate stirrer for

example. The device is able to report a range of values, including stirring speed,

temperatures of multiple sensors, relative viscosity of the medium, and pH (if a pH

probe is attached). When querying any of those numbers, the expected response is

a floating-point number representing the value, and an integer representing the

function (stir rate for example is represented by the number 4). The answer is

consequently matched against a RegEx pattern “(\d+\.\d+) (\d)\r\n“ (read:

one or more digits, a decimal point, one or more digits, a space, and another digit,

followed by a carriage return and a line feed). Everything within parentheses, i.e. the

two numbers, is captured, and the calling method will return a list of the two

numbers as strings.

 RESULTS AND DISCUSSION

 130

The whole project was named SerialLabware and converted into an installable

Python package. Subsequently, classes for ten devices from six different vendors

were implemented and used successfully in the synthesis platform. The source code

is available from the Cronin Group upon request.

At the time of writing, curatorship of the project was being transferred to a colleague

for continued development. Several changes are planned, most importantly the

removal of the @command decorator. This structure, while perfectly functional, was

found to be confusing for other users, and in hindsight it is not entirely necessary, so

it is scheduled to be removed. We also hope to be able to publish the project in an

open source format to enable other researchers to more easily interface with their

lab equipment.

 RESULTS AND DISCUSSION

 131

7.3 THE CHEMPILER

7.3.1 MOTIVATION AND REQUIREMENTS

At the outset of the project, it was quickly realised that, in order to fully utilise the

modularity of the hardware, any software solution controlling the platform needed

to be equally modular and adaptive. If a control suite is tied to one particular

implementation of the platform, this effectively hamstrings the modularity and

reconfigurability of the platform.

From this, two requirements arise. First, the addition of new modules must be

possible with as little change to the overall software as possible. Adding more

Backbone units, swapping hardware such as stirrers or chillers for equivalent devices

from other vendors, or implementing entirely new unit operation modules should all

be readily doable without major coding effort. Secondly, the code must have a level

of awareness of the physical configuration in order to direct commands to the

appropriate modules. To give two examples: if the user wants to move a given

chemical from, say, a feedstock bottle to the reactor, the system must know the

location of those two vessels as well as the fluidic connectivity of the pumps and

valves in between, so it can orchestrate the move and issue the right commands in

the right order. If the user then wants to stir the reactor, the software should have

knowledge of the make and model of the stirrer in order to send the appropriate low-

level commands, and it should have knowledge of the communication protocol and

address of the stirrer servicing the reactor in particular, so commands can be

dispatched to the correct end point.

The awareness of the physical structure of the platform is also a great boon in terms

of usability. It enables an operator to issue high-level commands such as “move a

chemical from A to B” or “stir and heat a vessel” which reflects the way an

experimental chemist is thinking about a synthetic procedure. This lowers the barrier

of entry as a user doesn’t need in-depth knowledge of the inner workings of the

system in order to successfully script and execute a synthesis.

 RESULTS AND DISCUSSION

 132

7.3.2 THE CHEMOS AND “THE SCRIPT”

Based on this assessment, Dr. Gerardo Aragon-Camarasa set out to program a

software solution dubbed “ChemOS”. Its central module was a message passing

service implemented in Erlang, a programming language developed for

telecommunication applications.131 This ChemOS core would then connect various

processes written in Python, which would perform tasks such as controlling

hardware, scheduling operations, or parsing a rudimentary scripting language.

The development of the ChemOS suite was delayed repeatedly, so as a workaround,

a pure Python solution referred to simply as “The Script” was implemented. This

consisted of a single Python script for every synthesis, containing hardcoded

implementations of all the required operations. Every script imported drivers for the

pumps and valves (see chapter 7.1.10) as well as for the hotplate stirrers and other

labware using serial communication (see chapter 7.2). The physical setup of the

platform was captured in several large dictionaries which were maintained manually.

This regularly led to problems when entries did not match up, and generally was a

laborious and inconvenient solution. Variables for all volumes, times, temperatures

and other parameters were also defined at the start of the script.

A number of functions were defined, most importantly an

add_from_to(source, destination, volume) directive which would

find the provided source and destination flasks, work out a fluidic pathway based on

the aforementioned dictionaries, and compile a series of atomic pump and valve

commands which would eventually result in moving fluid across the Backbone as

described in chapter 5. Other helper functions included a waiting routine which

would periodically log a status message to assure the user the script is still running,

and the functions for liquid/liquid separation as described in detail in chapters 6.2.3

and 8.1.3.

All this setup effort was then followed by a lengthy if/elif structure providing the

actual synthetic instructions. The idea behind this state machine was to enable a user

to run the script from any arbitrary point onwards and skip steps at will. A variable

reaction_stage kept track of the current code block. Every elif statement tested

 RESULTS AND DISCUSSION

 133

reaction_stage, and at the end of every elif statement reaction_stage was

reassigned to point to the next code block.

This monolithic architecture goes to show that “The Script” was only a temporary

solution as chemical development (see chapter 8) had to progress. At some point,

the entire diphenhydramine hydrochloride synthesis (chapter 8.1) was encoded in

one script totalling over 2,000 lines. It successfully performed the synthesis, but it

was unwieldy and near impossible to maintain. A better solution was sorely needed.

At this point, the status of the ChemOS was roughly as follows. The architecture of

the platform was captured in an XML file compiled from a number of XML source files

using xacro,132 an extension to the XML standard allowing the definition of macros

inside an XML file. In a nutshell, a number of primitives such as a flask, a pump, or a

tube were defined as individual XML files. The relationships between the individual

nodes (flasks, pumps, valves) and edges (tubing) of the graph were defined in

additional XML files. Xacro would then compile those source files into one XML file

describing the platform. One Chempiler module would then parse this XML file into

a Python graph object using the NetworkX package.133

There are a number of issues with this approach. First, the user is required to

carefully maintain the XML source files and ensure everything matches up, otherwise

nodes that are supposed to be connected will instead have two outgoing edges to

nowhere. As there was no graphical representation available at that point, visualising

the configuration and checking for errors was near impossible. Every small edit had

the potential of breaking the entire file. Also, parsing the custom XML structure into

a NetworkX-graph was a complicated process requiring a dedicated Python module.

As NetworkX-graphs are, in essence, dictionaries of dictionaries, the parser was full

of hard-to-follow references to values inside multiple nested dictionaries. This led to

numerous bugs which were extremely hard to pinpoint and fix.

Instructions for operations were provided in a pseudo-scripting language containing

“S” or “P” as keywords to denote sequential or parallel operations; the name of the

software module in question; the name of the operation, and any parameters. Those

 RESULTS AND DISCUSSION

 134

instructions were parsed by a scheduler module in Python, and then passed to the

Erlang core.

With the platform architecture and the instructions in hand, yet another Python

module handled liquid movement. For every move instruction, NetworkX was used

to determine the shortest pathway. A stack of individual pump commands was then

compiled and dispatched to the devices. Control of anything other than pumps and

valves was not initially implemented.

ChemOS introduced many important ideas and also showed many potential pitfalls,

however, unfortunately it never came to fruition. As it became clearer that it did not

meet the requirements of the platform it was decided to abandon the ChemOS

project and instead re-write a control software from scratch, drawing on the lessons

learned from ChemOS.

7.3.3 DRAFTING A SPECIFICATION FOR THE CHEMPILER

Having learned from the mistakes made with the ChemOS, a coherent plan was

drafted. To that end, the features implemented in ChemOS were evaluated and

classified as useful/desirable or useless/undesirable. Based on that assessment, a

number of requirements were formulated.

First, the entire project should be written entirely in Python 3 to enable independent

development and maintenance of the application as well as greatly simplify

debugging. No need for another language could be identified as all required

operations (vide infra) could be comfortably implemented in Python.

The separate files for the physical layout and the synthetic operations were deemed

a useful feature, as this would largely disconnect the scripting of the procedure from

the layout of the platform. Operations could be specified similarly to a classical,

published experimental procedure in prose, describing the manipulations involved

without over-specifying the hardware. It was also decided to retain NetworkX for

handling the graph, as it is an established Python module offering all required

capabilities. Information regarding serial devices such as hotplate stirrers should

 RESULTS AND DISCUSSION

 135

henceforth be contained in the graph, allowing the user to address them via the

vessels they are attached to.

From the previous experiences with “The Script”, volume tracking was found to be a

highly desirable feature. Previously, when quantitatively transferring the contents of

a flask, the liquid contents of the vessel at that point were manually calculated, which

was understandably prone to error. By storing the volume of each flask as a node

property in the graph and updating it every time volume is added or removed, a

“move all” operation could be implemented, and the aforementioned potential for

errors could be eliminated. While this automated dead reckoning approach is still far

from ideal, and at some point, a sensor based active feedback system will have to be

implemented, it is still preferable to the alternative.

The control software was also intended to produce as much diagnostic data as

possible in order to aid with trouble shooting. Besides, with the advent of machine

learning and data mining techniques in chemical research,134 detailed logs of

successful and failed experiments might one day become a valuable resource. The

ChemOS featured some basic logging capabilities on the Erlang side and also

produced some independent debug print on the Python side, but on both sides,

logging was more of an afterthought. With “The Script”, good experiences were

made with Python’s inbuilt logging module, and a hierarchical logging approach. Low-

level information capturing almost each and every hardware operation was directly

logged to a file, while high-level, user relevant information was also displayed on

screen. Thus, this approach was retained.

Based on those requirements, a rough architecture for the control suite was drafted

(Figure 65). For reasons of clarity, it was not called “ChemOS”, mainly to avoid

confusion. Also, the operation of the application bears little resemblance with an

operating system (OS). Instead, the operation of this new control suite resembled

the operation of a compiler. Modern high-level programming languages contain

logical operations and procedures which are agnostic of the processor architecture.

A compiler toolchain parses the text a programmer writes and produces machine

code which runs on one specific processor. Programs can therefore be compiled to

run on many different computers without having to be re-written every time. In the

 RESULTS AND DISCUSSION

 136

case of the synthesis platform, the physical setup would represent the processor

architecture, and the synthetic operations form a crude, high-level programming

language. Consequently, the individual commands being sent to the devices

correspond to machine code in computer science. Thus, and given that the working

title for the synthesis platform was “Chemputer”, it was decided to call this software

the Chempiler, a portmanteau of “chemical compiler”.

Figure 65: General architecture proposed for the Chempiler.

7.3.4 BUILDING THE CHEMPILER

Based on the aforementioned specifications, Graham Keenan started building the

Chempiler and provided me with a basic implementation (Figure 66) which I could

test and expand. The XML and command file formats and the respective parsers were

initially retained to facilitate development. Figure 66 shows an overview of the

structure of the first Chempiler implementation. The graph object obtained from the

XML file and parser was passed to a setup script. This script extracted all references

to devices, i.e. pumps, valves, and all serial devices such as hotplate stirrers. Using

the pump and valve API (see chapter 7.1.10) and the SerialLabware package (see

chapter 7.2), it instantiated objects for every device and stored those objects in the

graph.

 RESULTS AND DISCUSSION

 137

The list of operations was passed to a command dispatcher which used the graph

object to send the individual commands to so-called executioners. Those are

modules dedicated to one class of device and provide an intermediate layer which

can take a range of device drivers (for example for different models of hotplate

stirrers) and expose uniform methods to be called by the command dispatcher.

The executioner layer serves two purposes. First, as described above, it homogenises

the interfaces provided by different device drivers. Thus, adding another model of

any device is, at best, as simple as providing driver software and instantiating the

device in the setup script. At worst, a few more lines of code have to be added to the

executioners. In either case, a high-level instruction such as “start stirring” remains

valid, which means the synthetic operations don’t have to be changed. The other

purpose is to allow simple addition of entirely new classes of devices. If a user wants

to implement a device not yet included in the Chempiler suite, they can develop an

executioner for it, unit test the code, and add it to the command dispatcher by just

adding a few more lines of code. Admittedly, a mechanism by which new

executioners and their methods are automatically recognised and included would be

preferable, but robustly implementing such a mechanism was deemed too

complicated for too little a return. It was reasoned that entirely new device classes

would only be added infrequently, so this manual approach was deemed sufficient.

 RESULTS AND DISCUSSION

 138

Figure 66: General architecture of the first Chempiler implementation. Files
containing the physical layout of the platform (architecture.xml) and the synthetic

operations (operations.txt) are parsed by modules adapted from ChemOS. The
graph object representing the platform is used in conjunction with the device

drivers to instantiate all devices. A command dispatcher used the graph object to
direct the operations to the respective executioners.

7.3.5 MOVING LIQUIDS

The most important executioner was the pump executioner, as it included all the

routines for moving liquid around the platform. The algorithm employed by ChemOS

for this purpose was unclear to the author and was also found to produce incorrect

movements on occasion. Thus, a new algorithm was developed. Figure 67 shows the

first part of the algorithm. The command dispatcher would use the graph object to

obtain a path between the source flask and the destination flask. A path length of 0

would mean the source and destination are connected to each other directly without

liquid handling equipment in between, which would raise an error. A path length of

1 signifies that both source and target are connected to the same valve. In this case,

moving liquid is a simple case of switching the valve and moving the pump.

 RESULTS AND DISCUSSION

 139

Figure 67: Flow chart detailing the new liquid transfer algorithm. Cases in red were
deemed unlikely or not useful and therefore not implemented.

A path length greater than one means material is to be transferred along the

Backbone. As a quick sanity check, the algorithm makes sure that all nodes in the

path are valves, otherwise the scheme would not work. Then it initiates the

movement routine depicted in Figure 17.

Two cases were identified that are, in principle, possible but not useful. One case is

where the source or target is a pump. This case was dismissed as not useful, as just

filling a pump doesn’t serve any immediately obvious purpose. Another case

identified was a tree-like architecture, where the input of one valve is connected to

an output on another valve. Logically, this can be resolved by switching all valves to

the appropriate position, except for the “root” valve which is connected to the pump.

Then, the rest of the move routine can be executed as normal. A tree architecture

may in theory be useful because it multiplies the number of reagent inputs. However,

practically, problems associated with cross-contamination and dead volumes greatly

outweigh the advantages. Thus, a decision was made against using such setups, and

 RESULTS AND DISCUSSION

 140

therefore no need for implementing the associated move logic was recognised. A

case not represented in Figure 67 is if source and target are identical. Initially this

case was dismissed as not useful, however, it was later found that for viscous or

reactive compounds, priming the syringe by aspirating a small amount and

dispensing it back into the same vessel could improve accuracy, so a check against

that case before entering the decision tree was later added to the function.

The synchronised pumping routine (see Figure 17) used in the case of path lengths

greater than one had been in use for a long time and was found to work very well for

volumes smaller than the syringe volume. For larger volumes, initially the movement

was just repeated until the entire volume was transferred. Unfortunately, this was

very inefficient, and moving larger volumes for example for cleaning purposes took a

very long time.

Therefore, a staggered movement routine was implemented (Figure 68). Once the

first pump in the path had passed its contents on to the next pump, it aspirated the

next bolus in the next cycle, and passed it on, and so forth. This intensification made

maximum use of the hardware and reduced the time required to move large volumes

significantly. From a programming standpoint, the beauty of this approach was that

it followed a simple, two-stroke rhythm, and could therefore be implemented in just

a few lines of code.

 RESULTS AND DISCUSSION

 141

Figure 68: Staggered movement scheme. Once the first fill of the first syringe has
been passed on to the second syringe, the first syringe refills itself again in the next
cycle, and so forth. In this particular case, two full syringes were transferred in six

movement cycles as opposed to eight required cycles if a normal move (four cycles
in this case) is repeated twice.

 RESULTS AND DISCUSSION

 142

7.3.6 FROM XML TO GRAPHML

Having served its purpose as proxy for testing, the ChemOS XML was now due to be

replaced. Unsurprisingly, drawing, editing, and encoding graphs is not an entirely

unprecedented problem. Numerous data formats dedicated to representing graphs

exist, and an even greater number of editing programs are available, many of them

as freeware.

After reviewing some options, GraphML was chosen as the new format to represent

the physical setup of the platforms. GraphML is an open-source standard based on

XML.135 The NetworkX module can import GraphML files directly, and a range of

graph drawing programs can export to GraphML. yEd136 was chosen to draw and edit

the architectures, a free graph editor which natively works in GraphML. This allowed

the user to quickly draw a graph that represents the physical setup of the platform,

visually verify its accuracy, and import the file directly into the Chempiler.

Figure 69 shows an example of a graph created with yEd. The entire graph of a six

Backbone unit platform is too big to be usefully displayed on an A4 page, so one

Backbone unit is enlarged to show the details. The size is not an issue during normal

use, as the graph is only handled on screen where zooming and panning is possible.

The nodes are pictures representing the individual modules, so even without the

labels they can be identified at a glance. The images are purely for the benefit of the

user and have no relevance once the GraphML file is imported into the Chempiler.

All tubing on the physical platform is labelled with clip-on labels displaying a number

and a corresponding colour as can be seen in Figure 51, and in the graph, the edges

are automatically coloured to match that label. This way, the graph file can be

compared against the real platform at a glance as well. Those optical features, while

functionally superfluous as far as the program is concerned, were found to

tremendously improve the user experience.

 RESULTS AND DISCUSSION

 143

Figure 69: Example of a graph used in the synthesis of diphenhydramine
hydrochloride. Top: overview over the entire graph. Bottom: Detail of one

Backbone unit.

 RESULTS AND DISCUSSION

 144

All graphs created with yEd are directed graphs. While converting them to undirected

graphs only requires a single line of Python, the advantages of the directed edges, as

long as strict rules were applied, was quickly realised. In particular, it helps with

distinguishing pumps and valves from vessels and flasks while orchestrating moves.

While this could be performed on an undirected graph just as well, only having to

iterate over successors or predecessors rather than all neighbours makes the code

more efficient, and most importantly, more legible.

The rules for the number and direction of the edges are as follows:

• Pumps may have exactly one edge going out

• Valves may have one edge coming in representing the central inlet

• Valves may have one edge going out per outlet port, those edges have a

“port” property between 0 and 5

• If two valves are connected to each other outlet port to outlet port, two edges

must exist between them, where the “port” properties of each edge

represent the port from which they originate

• Any other nodes may have only edges coming in, except for:

• Filters, separators and rotary evaporators may have one edge going out

connecting it to their respective “other end” (i.e. distillate flask for RV,

bottom outlet for filter or separator)

• Other than that, no two nodes that are both not valves may be connected

In addition to those rules, no two nodes may have identical names. yEd assigns

unique labels to every node and stores the name as a node property, but for

numerous reasons the Chempiler accesses the nodes by name. Thus, two identically

named nodes will create undefined behaviour.

yEd allows an arbitrary number of data fields (called “properties”) to be assigned to

nodes and edges. By default, both have two fields “URL” and “Description”, both of

which are not used. For use with the Chempiler, the following custom properties are

defined:

 RESULTS AND DISCUSSION

 145

Table 2: Custom node properties of the yEd graph.

Name Type Default Value Description

class Text none Used by the Chempiler to

distinguish pumps, valves,

flasks, etc.

max_volume Decimal -1 Used by the volume tracker

to issue warnings if a vessel is

overfilled. max_volume of

pumps is also used for the

movement routine.

current_volume Decimal -1 Used by the volume tracker.

Chemical Text none Reserved for future use.

IP_address Text none Address of a pump or valve.

serial_device_1_type Text none Make and model of serial

devices.

serial_device_1_port Text none Serial port of the device.

Table 3: Custom edge properties of the yEd graph.

Name Type Default Value Description

volume Decimal -1 Dead volume of the tube.

Used for priming the tube.

chemical Text none Reserved for future use.

port Integer -1 Valve port the tube is

attached to (0-5).

The node properties for serial device type and port exist three times to allow more

than one serial device per node (e.g. a rotary evaporator consists of the evaporator

itself, and the vacuum pump). The corresponding properties “serial_device_2_type”,

“serial_device_2_port”, “serial_device_3_type”, and “serial_device_3_port” are

omitted in Table 2 for reasons of brevity. Should any node require more than three

serial devices, additional fields can be added. The setup script that parses the graph

 RESULTS AND DISCUSSION

 146

and instantiates serial devices will iterate over all serial device fields regardless of the

number.

Data fields must be populated where applicable, i.e. pumps and valves require an IP

address, and all attached serial devices have to be listed. Edges require the ports

except for those between pumps and valves. The Chempiler will raise an error if

required data is not present, but the user is encouraged to check all nodes and edges

prior to running a synthesis.

The most convenient way to construct a graph for a new synthesis, or even a new

platform, is to edit an existing graph. This minimises the potential for error, and in

most practical use cases the only information that changes between different

syntheses is the name and placement of the reagent.

There are some physical devices which have two connections to the Backbone. Those

are: the rotary evaporator (evaporation flask and distillate flask), the separator, and

the filter (top and bottom inlets). The two connections are separate nodes in the

graph, but they are mapped to each other. In yEd, the “top” and “bottom” nodes are

connected with an edge. When the graph is loaded into the Chempiler, this edge is

removed and the mapping is stored as node properties inside the graph object.

When the graph is loaded by the Chempiler, it is passed to the setup script. This

module replaces the unique labels assigned by yEd with the node names in order to

simplify the graph for further manipulations. It then iterates over the nodes, finds all

pumps and valves, instantiates them, and stores the pump or valve object as node

property in the graph object. This process is then repeated for serial devices. If one

serial device, for example a recirculation chiller, is attached to more than one node,

it is not instantiated again but rather the existing object is attached to both nodes.

As last step, the script finds devices with two connections and sets them up as

discussed above. The resulting graph object is then passed to the command

dispatcher for further use.

 RESULTS AND DISCUSSION

 147

7.3.7 THE CHEMICAL ASSEMBLY LANGUAGE CHASM

ChemOS featured a limited scripting language to spell out synthetic instructions, and

an improvised parser. While this was good enough for initial testing, the limitations

of this approach were quickly realised. The most sensible solution at this point would

have been to implement a top level Chempiler class which exposes all operations as

methods, so a user could start a Python file, import the Chempiler, and script a

synthesis using the full extent of the Python interpreter’s capabilities. However,

having a dedicated “chemical programming language” was seen as desirable by

some. Thus, a rudimentary scripting language was developed based on the current

capabilities of the system. This scripting language turned out to superficially look

similar to assembly code (commonly abbreviated as “ASM”), thus it was dubbed

“chemical assembly language” or ChASM.

ChASM was designed to be a rudimentary scripting language acting as a thin layer on

top of the Chempiler operation. It supports the definition of variables and re-usable

functions, as well as loops, and comments. The following explanations use the

Backus-Naur form (BNF)137 to describe the grammar of the language. The basic

element is the instruction, which has the following syntax:

<instruction> ::= <PS_TOK> <OPCODE> "(" <arg_list> ")" ";"

 | <PS_TOK> <OPCODE> "(" ")" ";"

<OPCODE> refers to a keyword recognized by the Chempiler as a module operation,

which is associated with a list of arguments <arg_list> specific to the command.

A Markdown file detailing all currently implemented commands can be found in the

Chempiler documentation and in appendix IV. <PS_TOK> simply refers to the

uppercase letters “P” and “S” for “parallel” or “sequential” operations, respectively.

Instructions marked with an “S” are carried out in sequence. A number of consecutive

instructions marked with a “P” are carried out in parallel by spawning an individual

thread for every operation. Before the next “S” operation is carried out, the

Chempiler waits for completion of all parallel operations. This notation was taken

from the original ChemOS instructions, but unfortunately, this approach was found

to be fundamentally flawed. First, issuing multiple commands to the same piece of

equipment simultaneously from different threads usually results in undefined

 RESULTS AND DISCUSSION

 148

behaviour, or outright crashing. Furthermore, parallelism in the scripting language

demands at least rudimentary control structures such as semaphores to be of any

use. Lastly, adding parallelism introduces all the challenges associated with

concurrent programming, which directly counteracts the intended purpose of

providing a simple interface for scripting syntheses. While at some point, parallelism

should be implemented in some way in order to improve the efficiency of the

platform, for the time being strictly sequential operation is mandatory.

To improve code legibility, maintainability and reuse, variables can be defined.

Variables may be strings or numbers. The syntax for variable assignments is as

follows:

<variable> ::= "DEF" <name> "=" <value> ";"

The language does not allow reassignment of a variable once it is defined. However,

since the script is parsed once at the beginning of program execution and all logic

happens within the Chempiler, the utility of reassignments is severely limited and did

not warrant the effort of implementation.

Since many operations are repetitive, the definition of functions was deemed useful.

The syntax is as follows:

<function> ::= "DEF" <name> "(" <arg_list> ")" "{" <body> "}" ";"

 | "DEF" <name> "(" ")" "{" <body> "}" ";"

Where <body> may contain instructions and other functions. Any variables and

functions used within the body have to be defined beforehand.

Loops are useful for repeated operations. ChASM only provides a simplistic version

of a “for” type loop, where the content of the loop is executed a number of times

stated in the loop definition (i.e. “FOR(3)” executes it three times). The syntax is as

follows:

<loop> ::= "FOR" "(" <integer_literal> ")" "{" <body> "}" ";"

The same rules for the <body> as for function bodies apply here. Having a “while”

type loop was deemed unnecessary, since the parsing of the script is concluded

before any feedback comes in, rendering the concept of a conditional obsolete.

 RESULTS AND DISCUSSION

 149

Once all variables and functions have been defined, the synthesis script commences

with the “MAIN” keyword:

<script> ::= "MAIN" "{" <body> "}" ";"

Everything within the main body is what actually gets executed.

The parsing of the ChASM source code is accomplished using PLY,138 a pure Python

implementation of the popular Lex and YACC utilities. During lexical analysis prior to

parsing, anything between a “#” and the end of a line is ignored, allowing both in-

line comments and line-spanning comments. After lexical analysis, functions and

variables are resolved by simple replacements, and loops are resolved by copying the

content as required. Ultimately, a list containing only instructions is compiled, which

is then executed one by one by the Chempiler.

 RESULTS AND DISCUSSION

 150

7.3.8 ADDITIONAL MODULES AND FINAL STRUCTURE

During development of the Chempiler it became increasingly clear that being able to

execute ChASM files on any computer without having to connect all the hardware of

the platform was highly desirable. To that end, dummy classes mirroring the device

classes provided by the driver packages were implemented. Those dummy classes

had identical methods, but rather than connecting to hardware, they just logged the

method call and the parameters via the Python logging module. By introducing a

“simulation” switch in the user interface, ChASM scripts could now be executed with

platform graphs, but without the physical platform. The result of such a simulation

run would be a file with a long list of method calls.

While the overall diagnostic value of the simulation output is debatable as the files

are very large (simulating the diphenhydramine hydrochloride synthesis results in

22,545 lines of output), any problems with the ChASM, the graph, or the general

synthetic operations would raise an error. Thus, a user can at least rule out failures

due to a missing semicolon halfway through the synthesis. Also, changes to the

Chempiler itself can be tested easily, which aids ongoing development efforts.

During the development of the diphenhydramine hydrochloride synthesis using “The

Script”, the state machine structure of the experimental section allowed the user to

halt the execution at certain points, for example to allow the experimenter to

determine yields, or oversee critical operations. To retain this valuable capability a

“BREAKPOINT” keyword was added to ChASM. A breakpoint would suspend the

execution of the script until a user prompted it to continue.

For diagnostic purposes all platforms were fitted with networked surveillance

cameras which could be accessed from anywhere within the university intranet. This

allowed us to constantly monitor the operation. The videos were also recorded and

stored as research data. This approach was well suited for general observations, but

the low resolution of those cameras was found to obscure many details. Using a high-

resolution USB webcam would provide sufficiently clear images but recording full HD

footage at 24 frames per seconds for several days would result in unmanageably

 RESULTS AND DISCUSSION

 151

large files. A potential solution would be to reduce the frame rate, but too low a

frame rate would again mean loss of potentially important details.

Ultimately, another module for the Chempiler was implemented which records

variable speed video. By adding a “SET_RECORDING_SPEED” keyword to ChASM,

the user could now control the frame rate of an HD camera dynamically. Crucial

operations could be recorded in real time, while non-critical operations or wait times

could be sped up at will, creating a time lapse. This was implemented by using

OpenCV139 for Python to grab frames from the camera at specified intervals, and add

them to a video file. Furthermore, a time stamp, the current recording speed, and

the most recent debug message were added to the frames, so the video could be

easily correlated to the ChASM and log file.

Using this module, videos of reasonable size and length of all three syntheses were

recorded. Those videos can be obtained from the Cronin Group upon request.

During early testing an issue with the volume tracking was experienced. If the

synthesis was stopped for some reason, all the information regarding the current

volumes was lost. In order to resume correct operation, the original graph had to be

updated manually, which was inconvenient and error-prone. Furthermore, failing to

reset those volumes in the graph to the proper starting volumes before running

another synthesis led to obvious inaccuracies. Thus, a crash dump was implemented

which would write all current node volumes to a file after every successful operation.

When resuming a synthesis, the user could opt to read from the crash dump, thereby

restoring the current volumes.

The structure and operation of the current version of the Chempiler at the time of

writing is depicted in Figure 70. The Chempiler client provides a rudimentary user

interface. The user is asked for an experiment code, which is used to label all output,

as well as paths to a graph and ChASM file. Then the script asks if a video should be

recorded, if the crash dump should be loaded, and if this run is a simulation. The

client then invokes the Chempiler and passes the user information.

The Chempiler loads the graph and instantiates and initialises the devices. It then

parses the ChASM file into a list of commands, which are passed to the command

 RESULTS AND DISCUSSION

 152

dispatcher one by one. The dispatcher determines the target executioner and

prompts it to execute the command.

The code repository contains a detailed readme file detailing how to install and use

the Chempiler suite. All requirements are collated in a requirements file, so the user

can conveniently install all dependencies by invoking

pip install -r requirements.txt

from the command line. The code repository including all documentation as well as

all files used in the syntheses described in chapter 8 are available from the Cronin

Group upon request.

 RESULTS AND DISCUSSION

 153

Figure 70: Module Dependency Graph of the final Chempiler suite.

 RESULTS AND DISCUSSION

 154

7.3.9 TRANSLATION OF A SYNTHETIC PROCEDURE INTO CHASM

The process of translating a given procedure into executable ChASM code always

follows the same basic workflow, demonstrated in the following example. Consider

the first step of the diphenhydramine hydrochloride synthesis (chapter 8.1.4), a

Grignard reaction. The starting point is a written scheme of work, as would be found

in a publication. The following procedure has been adapted from Ahmadi et al. 140:

A 250 mL round bottomed flask with reflux condenser and argon inlet was charged

with magnesium grit (2.50 g, 102.7 mmol) and diethyl ether (40 mL).

Bromobenzene (neat, 2.95 g, 2.0 mL, 18.8 mmol) was added slowly under stirring.

The mixture was heated to reflux (50°C) and stirred for 20 minutes to initiate the

Grignard formation.

After cooling below 25°C the rest of the bromobenzene (12.75 g, 8.65 mL,

81.2 mmol) was added dropwise under stirring. The mixture was then stirred for

20 minutes at room temperature followed by 20 minutes at reflux (50°C).

After the Grignard formation was finished, benzaldehyde (2 M in diethyl ether,

50 mL, 0.1 mol) was added slowly. The mixture was then held at reflux and stirred

for 5 hours.

After the mixture cooled below 30°C, the reaction was quenched with water

(25 mL) and hydrochloric acid (2 M, 100 ml). The layers were separated and the

organic layer was washed with water (50 mL), transferred to the rotary evaporator

and concentrated in vacuo (700 mbar), yielding 15.88 g (86%) of crude

diphenylmethanol as a yellow solid.

First, the required chemicals and solvents and their corresponding amounts (green

highlight) as well as the physical parameters (blue highlight) are identified:

A 250 mL round bottomed flask with reflux condenser and argon inlet was charged

with magnesium grit (2.50 g, 102.7 mmol) and diethyl ether (40 mL).

Bromobenzene (neat, 2.95 g, 2.0 mL, 18.8 mmol) was added slowly under stirring.

The mixture was heated to reflux (50°C) and stirred for 20 minutes to initiate the

Grignard formation.

 RESULTS AND DISCUSSION

 155

After cooling below 25°C the rest of the bromobenzene (12.75 g, 8.65 mL,

81.2 mmol) was added dropwise under stirring. The mixture was then stirred for

20 minutes at room temperature followed by 20 minutes at reflux (50°C).

After the Grignard formation was finished, benzaldehyde (2 M in diethyl ether,

50 mL, 0.1 mol) was added slowly. The mixture was then held at reflux and stirred

for 5 hours.

After the mixture cooled below 30°C, the reaction was quenched with water

(25 mL) and hydrochloric acid (2 M, 100 ml). The layers were separated and the

organic layer was washed with water (50 mL), transferred to the rotary evaporator

and concentrated in vacuo (700 mbar), yielding 15.88 g (86%) of crude

diphenylmethanol as a yellow solid.

Those parameters are then defined as variables at the beginning of the ChASM file:

volumes

DEF volume_ether_grignard = 30; # mL

DEF volume_bromobenzene_1 = 2; # mL

DEF volume_bromobenzene_2 = 8.65; # mL

DEF volume_ether_bromobenzene_flush = 10; # mL

DEF volume_benzaldehyde = 50; # mL, for a 2M solution

DEF volume_water_quench = 25; # mL

DEF volume_acid_dilution = 100; # mL

DEF volume_ether_sweep_up = 5; # mL

DEF volume_water_wash = 50; # mL

stirring rates

DEF grignard_stirring_rate = 250; # rpm

temperatures

DEF grignard_temperature = 50; # °C

times

DEF wait_time_grignard_initiation = 1200; # in s, actually 20min

DEF wait_time_grignard_formation = 900; # in s, actually 15min

DEF wait_time_grignard_reaction = 18000; # in s, actually 5h

DEF wait_time_grignard_extraction = 1800; # in s, actually 30min

 RESULTS AND DISCUSSION

 156

The stirring rate is not explicitly stated, but usually empirical values for appropriate

stirring speeds are known to the experimenter, or a common default value may be

used. Note how the 40 mL of ether are split into two portions, the reason for which

will become apparent a bit later on. Magnesium grit is a solid, so it will have to be

charged manually. Ergo, there is no need to define a variable for it. Benzaldehyde is

a liquid and could in principle be added neat, but due to the exothermic nature of

the reaction, adding it as a pre-made solution is preferred. The variable

volume_ether_sweep_up will be used for flushing to ensure quantitative

transfer, much as a human chemist would do by hand.

Then, the required unit operation modules are identified. The reaction itself

demands a mixing/heating module. The workup requires a liquid/liquid separation

(cf. “The layers were separated…”) and an evaporation (cf. “concentrated in vacuo”).

Those modules, as well as storage vessels for the required chemicals, are then

arranged in the graph. Practically, this mostly means just distributing the reagents

sensibly, as the modules are already present and connected. The rules for the graph

are described in chapter 7.3.6. For drawing the graph, it is recommended to use an

existing graph as template. The arrangement of the modules and chemicals in the

graph is governed by a number of considerations. First, chemicals that react

adversely when mixed should not share a valve due to the risk of cross-

contamination. For example, it was found that that having acidic and basic reagents

on the same valve often leads to salt precipitation and subsequent blockage.

Aqueous reagents should be separated from organic ones if dryness is a concern. In

the diphenhydramine hydrochloride synthesis, a layout was devised where the right

half of the platform deals with aqueous solutions, while the left half is exclusively

reserved for organic materials. Appropriate washing solvents (i.e. water; a water-

miscible organic solvent such as acetone, ethanol, or isopropanol; and a dry organic

solvent such as diethyl ether or dichloromethane) should be placed on the outermost

valves to facilitate Backbone cleaning. Last but not least, transfer lengths should be

minimized, especially for small quantities.

It is imperative that nodes are given unique, expressive, and memorable names. In

this work, the prefix “flask_” was used for all reagent bottles to clarify that this refers

 RESULTS AND DISCUSSION

 157

to the node, as opposed to the chemical inside. However, this is not technically

necessary.

The GraphML files used by the Chempiler have a number of additional data fields as

described in chapter 7.3.6. Those must be populated with the appropriate metadata

such as vessel volume, as well as with all data required to interface with attached

hardware. Empty fields are disregarded by the Chempiler software.

With a graph in hand, the individual operations required to carry out the synthesis

are identified. Consider the first paragraph:

A 250 mL round bottomed flask with reflux condenser and argon inlet was charged

with magnesium grit (2.50 g, 102.7 mmol) and diethyl ether (40 mL).

Bromobenzene (neat, 2.95 g, 2.0 mL, 18.8 mmol) was added slowly under stirring.

The mixture was heated to reflux (50°C) and stirred for 20 minutes to initiate the

Grignard formation.

Charging the magnesium grit has already been done by hand. This means the real

first step is moving ether to the reactor. The ChASM reference (see appendix IV)

specifies the MOVE command as follows:

MOVE({src}, {dest}, {volume}, {move_speed}, {aspiration_speed},

{dispense_speed});

In this case {src} is flask_ether, the name for the ether bottle as defined in

the graph. {dest} is reactor_reactor, again as defined in the graph. For

{volume} the previously defined variable volume_ether_grignard is

provided. This way, tweaking the synthesis in the future only involves changing the

variable definition. The three speed values are optional as described in the ChASM

reference, and default to values specified in the Chempiler constants file. However,

since diethyl ether has a high vapor pressure and tends to cavitate when aspirated

too quickly, the aspiration speed should be decreased. To that end, it is advisable to

define a few different default pumping speeds at the top of the ChASM file. One then

has to provide the {move_speed} and the {aspiration_speed} since

arguments in ChASM are strictly positional. {dispense_speed} may be omitted

 RESULTS AND DISCUSSION

 158

and will then default to the standard pump speed. Thus, the first line of the synthesis

looks like this:

S MOVE(flask_ether, reactor_reactor, volume_ether_grignard, \

default_speed_fast, default_speed_slow);

The ChASM grammar demands that every line ends with a semicolon. The line break

(signified by a backslash) in the above example was introduced to improve readability

on an A4 page, in the original ChASM file, this would be one line.

Next, the recipe demands slow addition of the first portion of bromobenzene under

stirring. The ChASM reference provides two commands required to stir the reactor:

SET_STIR_RPM({name}, {rpm});

START_STIR({name });

Consequently, the next two lines of the ChASM script are:

S SET_STIR_RPM(reactor_reactor, grignard_stirring_rate);

S START_STIR(reactor_reactor);

The addition of the bromobenzene works similar to the ether with the only difference

that now aspiration and move speed may remain fast, but the dispense speed is set

to slow:

S MOVE(flask_bromobenzene, reactor_reactor, volume_bromobenzene_1, \

default_speed_fast, default_speed_fast, default_speed_slow);

At this point it is to be reasoned that some of the bromobenzene will still be in the

tube leading to the reactor, rather than in the reactor itself. To rectify this, another

small portion of ether is pumped into the reactor. Similarly, if a chemist were to

perform this reaction by hand, they would most likely use some solvent to flush all

the bromobenzene into the reactor as well. This is the reason why the 40 mL of ether

specified in the recipe were split into two smaller portions,

volume_ether_grignard (30 mL) and

volume_ether_bromobenzene_flush (10 mL). This addition works exactly as

the first ether portion.

 RESULTS AND DISCUSSION

 159

Now the recipe specifies refluxing the mixture for 20 minutes. Starting the heating

function of the hotplate works analogous to the stirring. To make sure the mixture is

refluxing before the wait time commences, the STIRRER_WAIT_FOR_TEMP

command may be used. This command monitors the current temperature and delays

execution of the script until the temperature is within a margin around the setpoint

temperature. Once temperature has been reached, an additional WAIT command is

used. Thus, the first paragraph of the recipe translates into ChASM as follows:

charging reactor and initiating Grignard

S MOVE(flask_ether, reactor_reactor, volume_ether_grignard, \

default_speed_fast, default_speed_slow);

S SET_STIR_RPM(reactor_reactor, grignard_stirring_rate);

S START_STIR(reactor_reactor);

S MOVE(flask_bromobenzene, reactor_reactor, volume_bromobenzene_1, \

default_speed_fast, default_speed_fast, default_speed_slow);

S MOVE(flask_ether, reactor_reactor, volume_ether_bromobenzene_flush, \

default_speed_fast, default_speed_slow);

stirring and waiting

S SET_TEMP(reactor_reactor, grignard_temperature);

S START_HEAT(reactor_reactor);

S STIRRER_WAIT_FOR_TEMP(reactor_reactor);

S WAIT(wait_time_grignard_initiation);

The lines beginning with the # symbol are comments and will be ignored by the

Chempiler parser. It is advisable to add comments like those describing what

operation a code block accomplishes. This makes it a lot easier to read and

understand a script, and to track down problems.

The next paragraph works much the same as the previous one:

After cooling below 25°C the rest of the bromobenzene (12.75 g, 8.65 mL,

81.2 mmol) was added dropwise under stirring. The mixture was then stirred for

20 minutes at room temperature followed by 20 minutes at reflux (50°C).

After the Grignard formation was finished, benzaldehyde (2 M in diethyl ether,

50 mL, 0.1 mol) was added slowly. The mixture was then held at reflux and stirred

for 5 hours.

 RESULTS AND DISCUSSION

 160

Again, the operations are identified one by one and translated into ChASM

commands as demonstrated above. The only notable difference is that after addition

of the reagents, it is advisable to wash the Backbone, to avoid cross-contamination

or blockage. This is accomplished by repeatedly pumping ether across the entire

Backbone. For repeated operations, the ChASM language provides a primitive FOR

loop syntax. Pumping ether across the Backbone three times is written as:

FOR(3){

 S MOVE(flask_ether, waste_reactor, 5, default_speed_fast, \

 default_speed_slow);

}

Note the use of the number “5” to specify the volume. This is called a “literal”. Ideally,

this should be defined as a variable as well to improve code maintainability, but in

this case, it serves as an example. Also note how the Backbone is only cleaned up

until the reactor. The valves to the right of the reactor have not yet been used in the

synthesis and are assumed to be clean, so in order to save time, only the

contaminated section is cleaned.

After having cleaned the Backbone with ether, it is advisable to empty the lines again

by pumping air through. This reduces cross-contamination and material exposure to

solvents. Air may be obtained from the waste outlet. The waste tubes should never

reach to the bottom of the waste container, thus allowing the user to draw air

through them. In this case, flushing with air means pumping a volume from the

rightmost valve back to the leftmost valve:

S MOVE(waste_reactor, waste_reagents_1, 5); # flush lines with air

For cooling to room temperature, the STIRRER_WAIT_FOR_TEMP command is

used again. Since that command always waits until the current setpoint is reached,

the setpoint first has to be set to room temperature:

cool to room temperature

S STOP_HEAT(reactor_reactor);

S SET_TEMP(reactor_reactor, room_temperature);

S STIRRER_WAIT_FOR_TEMP(reactor_reactor);

 RESULTS AND DISCUSSION

 161

Where room_temperature is a variable defined at the top of the script. Other

than that, the same considerations as discussed for the first paragraph apply, yielding

the following code for the second and third paragraph:

cool to room temperature

S STOP_HEAT(reactor_reactor);

S SET_TEMP(reactor_reactor, room_temperature);

S STIRRER_WAIT_FOR_TEMP(reactor_reactor);

add rest of the bromobenzene

S MOVE(flask_bromobenzene, reactor_reactor, volume_bromobenzene_2, \

default_speed_fast, default_speed_slow, 1); # dispense dead slow

S MOVE(flask_ether, reactor_reactor, volume_ether_bromobenzene_flush, \

default_speed_fast, default_speed_slow);

wash Backbone

FOR(3){

 S MOVE(flask_ether, waste_reactor, 5, default_speed_fast, \

 default_speed_slow);

}

S MOVE(waste_reactor, waste_reagents_1, 5); # flush lines with air

wait for formation to complete

S WAIT(wait_time_grignard_formation);

heat to reflux and wait again

S SET_TEMP(reactor_reactor, grignard_temperature);

S START_HEAT(reactor_reactor);

S WAIT(wait_time_grignard_formation);

add the benzaldehyde

S SET_STIR_RPM(reactor_reactor, 250);

S MOVE(flask_benzaldehyde, reactor_reactor, volume_benzaldehyde, \

default_speed_fast, default_speed_slow, 1); # dispense dead slow

wash Backbone

FOR(3){

 S MOVE(flask_ether, waste_reactor, 5, default_speed_fast, \

 default_speed_slow);

}

S MOVE(waste_reactor, waste_reagents_1, 5); # flush lines with air

waiting for reaction completion

S WAIT(wait_time_grignard_reaction);

 RESULTS AND DISCUSSION

 162

The last paragraph of the recipe describes the quench and isolation, a

straightforward aqueous workup followed by solvent evaporation:

After the mixture cooled below 30°C, the reaction was quenched with water

(25 mL) and hydrochloric acid (2 M, 100 ml). The layers were separated and the

organic layer was washed with water (50 mL), transferred to the rotary evaporator

and concentrated in vacuo (700 mbar), yielding 15.88 g (86%) of crude

diphenylmethanol as a yellow solid.

The quench consists of moving water and hydrochloric acid to the reactor as has been

described already. Additionally, to ensure an efficient quench, the stirring rate is

increased. Also, it takes a while for the magnesium salt to dissolve, so an additional

waiting period is introduced before transferring the mixture to the separator. Those

two pieces of information are not mentioned in the recipe, which is a good example

of hidden knowledge required to successfully replicate a synthetic procedure. A

human chemist might increase the stirring rate regardless of the recipe, as well as

recognize the sluggish dissolution and compensate for it. Those observations are

sometimes captured in the lab notebook, but they rarely are mentioned in published

procedures. Scripting syntheses in ChASM alleviates this problem, as every step is

necessarily described in full detail.

The transfer to the separator is also worth mentioning. After transferring the bulk of

the mixture, there are in all likelihood still small amounts of product remaining in the

flask. A human chemist would flush them over using small amounts of solvent. Thus,

in the automated procedure, small amounts of ether and hydrochloric acid are added

to the reactor, the reactor is stirred briefly, and the mixture is transferred to the

separator. This is repeated three times using a FOR loop. Again, this is not explicitly

mentioned in the recipe, but any practicing synthetic chemist would attempt to flush

out all residues of product in some fashion. This goes to show that a certain level of

laboratory experience and attention to detail is necessary to successfully encode a

synthesis.

Taking into account all those hidden steps, the complete code for the quench would

be:

 RESULTS AND DISCUSSION

 163

cooling down

S STOP_HEAT(reactor_reactor);

S SET_TEMP(reactor_reactor, room_temperature);

S STIRRER_WAIT_FOR_TEMP(reactor_reactor);

aqueous workup

S SET_STIR_RPM(reactor_reactor, extraction_stirring_rate);

S MOVE(flask_water, reactor_reactor, volume_water_quench);

S WAIT(60);

S MOVE(flask_HCl, reactor_reactor, volume_acid_dilution);

S WAIT(wait_time_grignard_extraction);

S STOP_STIR(reactor_reactor);

S WAIT(60);

move to separator

S MOVE(reactor_reactor, flask_separator_top, all, default_speed_fast, \

default_speed_slow); # aspirate more slowly

FOR(3){

 S MOVE(flask_HCl, reactor_reactor, 5);

 S MOVE(flask_ether, reactor_reactor, 5, default_speed_fast, \

 default_speed_slow);

 S START_STIR(reactor_reactor);

 S WAIT(60);

 S STOP_STIR(reactor_reactor);

 S MOVE(reactor_reactor, flask_separator_top, all, \

 default_speed_fast, default_speed_slow);

}

Note the use of the all keyword instead of a volume in the line that moves the

contents of the reactor to the separator. all takes advantage of the internal volume

tracker and prompts the Chempiler to move however much volume currently

occupies a given vessel. This is a handy feature every time the entire contents of a

vessel should go somewhere.

Next, the procedure simply states, “The layers were separated”. A human chemist

would probably shake the separating funnel before separating the layers to ensure

an efficient extraction. To replicate this good practice, it is advisable to stir the

separator. Although the separator uses an overhead stirrer instead of the hotplate

stirrer of the reactor, due to the way the Chempiler handles hardware modules, the

same commands to set the stirring speed and start and stop the stirrer apply:

 RESULTS AND DISCUSSION

 164

S SET_STIR_RPM(flask_separator_top, extraction_overhead_stirring_rate);

S START_STIR(flask_separator_top);

S WAIT(60);

A common laboratory trick to improve phase separation in a separatory funnel is to

gently swirl it, in order to detach droplets clinging to the walls, and encouraging

foamy interphase layers to collapse. This strategy can be replicated by gently stirring

the separator at a very low RPM:

S SET_STIR_RPM(flask_separator_top, extraction_settling_stirring_rate);

S WAIT(wait_time_settling);

S STOP_STIR(flask_separator_top);

The actual phase separation is handled below the user level; therefore, it is a single

command:

SEPARATE({lower_phase_target}, {upper_phase_target})

Since the separation process is a slow one, it is advisable to move the majority of the

lower layer out first, based on a rough estimation of the amounts. This speeds up the

whole operation considerably. Thus, the code for the separation is as follows:

do the separation, keep the organic layer in the separatory funnel

S MOVE(flask_separator_bottom, waste_workup, 100);

S SEPARATE(waste_workup, flask_separator_top);

Next, the recipe calls for the organic layer to be washed with water. This consists of

the operations of moving water into the separator, stirring the mixture, letting it

settle, disposing of the bulk of the aqueous layer, and running a separation; all of

which have been discussed before. It has been found to be advantageous to add

aqueous washes through the bottom of the separator rather than the top, to avoid

trapping organic solvent in the outlet, which might impede sensor readings, or

decrease yield.

add water

S MOVE(flask_water, flask_separator_bottom, volume_water_wash);

vigorous stirring, then settling

 RESULTS AND DISCUSSION

 165

S SET_STIR_RPM(flask_separator_top, extraction_overhead_stirring_rate);

S START_STIR(flask_separator_top);

S WAIT(60);

S SET_STIR_RPM(flask_separator_top, extraction_settling_stirring_rate);

S WAIT(wait_time_settling);

S STOP_STIR(flask_separator_top);

do the separation, transfer the top layer to the rotavap

S MOVE(flask_separator_bottom, waste_workup, 40);

S SEPARATE(waste_workup, rotavap);

Note how this time the upper phase target is the rotary evaporator, as the next step

is evaporation to dryness.

As discussed for the transfer from reactor to separator, there will be some material

left in the separator after this operation. A human chemist would undoubtedly flush

the remainder out of the separating funnel with small portions of solvent, so the

same approach should be taken here. Using a FOR loop, ether is moved to the

separator, stirred, and then moved to the rotary evaporator:

sweeping up

FOR(3){

 S MOVE(flask_ether, flask_separator_top, 5, default_speed_fast, \

 default_speed_slow);

 S SET_STIR_RPM(flask_separator_top, 1000);

 S START_STIR(flask_separator_top);

 S WAIT(60);

 S STOP_STIR(flask_separator_top);

 S MOVE(flask_separator_bottom, rotavap, all, default_speed_fast, \

 default_speed_slow);

}

Having successfully transferred the organic layer to the rotary evaporator, the ether

now needs to be removed. In the course of this work, a library function

evaporate_to_dryness was developed which takes care of that. A detailed

description of the process and the rationale behind it can be found in chapter 6.2.2,

but here this function can be used as a black box. As of yet, ChASM does not support

import of other files, so the function definition has to exist in the same file. However,

 RESULTS AND DISCUSSION

 166

it may just be copy-pasted from an existing synthesis. evaporate_to_dryness

takes the following arguments, in that order:

• Distillate volume

• End vacuum

• Vacuum pump speed

• Distillation time

• Drying time (at max. vacuum)

For the time being, those parameters have to be found empirically. In future

iterations of the platform, improved instrumentation may enable the Chempiler to

evaporate solvent autonomously, but for now a certain level of guesswork is

required. For this synthesis, the following parameter set was found to be suitable:

rotating off solvent

evaporate_to_dryness(115, 700, 100, 1800, 3600);

After the product is obtained successfully, one last task has to be taken into

consideration, that is cleaning of the used glassware in order to prime it for the next

use. Due to the nature of the Grignard chemistry, in this case it is advisable to first

clean both vessels with dilute HCl to remove residual magnesium salt. This is achieved

by moving hydrochloric acid and water into the reactor, stirring, then moving the

mixture into the separator, stirring again, and then moving the contents to waste.

Once the magnesium salt is taken care of, the library functions clean_reactor

and clean_separator may be used to properly clean out the vessels:

cleaning out the remaining salt

S MOVE(flask_HCl, reactor_reactor, 25);

S MOVE(flask_water, reactor_reactor, 75);

S START_STIR(reactor_reactor);

S WAIT(900); # wait for 15min for all solid to dissolve

S STOP_STIR(reactor_reactor);

S MOVE(reactor_reactor, flask_separator_top, all);

S SET_STIR_RPM(flask_separator_top, 1000);

S START_STIR(flask_separator_top);

S WAIT(60);

S STOP_STIR(flask_separator_top);

 RESULTS AND DISCUSSION

 167

S MOVE(flask_separator_bottom, waste_workup, all);

clean_reactor();

clean_separator();

Ultimately, the code obtained has to be validated experimentally, and sometimes

requires optimization. The ChASM file used in the successful diphenhydramine

hydrochloride syntheses for example was slightly different from what is described in

here, for various practical reasons. Nevertheless, the methods described above

provide a good starting point. It was found to be helpful to picture the steps one

would take in the laboratory if one would manually reproduce a synthesis. Breaking

down those manual operations into their fundamental constituents and typing them

up using the ChASM notation is a very natural way of digitising a given synthesis.

Once a ChASM file is successfully scripted, the Chempiler offers a simulation mode

(see chapter 7.3.8) which allows the user to run the ChASM on a platform graph and

see if any errors occur. After successfully simulating the synthesis, workflow was

adopted whereby the code would first be executed using an empty platform without

chemicals or solvents. This was called a “dry run”, the purpose of which is to verify

correct operation without wasting chemicals and risking potential adverse reactions.

When satisfied with the dry run, one would then normally follow up with a

“breakpoint run” where breakpoints (see chapter 7.3.8) are inserted at neuralgic

points in the sequence. This would allow observation of critical operations, sampling,

determination of yields and purities of intermediates and so forth. Once the

breakpoint run completed without problems, the breakpoints were removed, and

the entire synthesis was executed in one automated full run.

 RESULTS AND DISCUSSION

 168

 RESULTS AND DISCUSSION

 169

8 AUTOMATED SYNTHESES

Three targets were chosen to demonstrate key capabilities of the synthesiser

(Figure 71): diphenhydramine hydrochloride (1), rufinamide (2), and sildenafil (3).

Diphenhydramine hydrochloride (1) is an ethanolamine derivative used as

antihistamine and mild sleep aid and is marketed as NytolTM in the UK and Benadryl®

in the US. The synthesis is a four-step sequence starting with a Grignard reaction,

which was deemed a worthwhile challenge to automate. Rufinamide (2) is a triazole

derivative used as an anticonvulsant to treat various seizure disorders. It is marketed

as Inovelon® in the EU and as Banzel® in the US. The synthesis is a three step one pot

procedure featuring a triazole click reaction. It was chosen it for its relatively simple

synthesis, to demonstrate the capabilities of a minimal setup, as well as the

interoperability between two different platforms arising from the Chempiler concept

(see chapter 7.3). To that end, the same ChASM file was successfully executed on two

physically different platforms, obtaining comparable yields and purities. Sildenafil (3)

is prescribed to treat erectile dysfunction and is best known under the brand name

VIAGRA®. The industrial synthesis route141 features a chlorosulfonation with highly

aggressive chlorosulfonic acid and thionyl chloride. In the author’s view this step both

demonstrates the robustness of the platform and highlights the safety benefit arising

from automating dangerous procedures.

Figure 71: The three target molecules.

 RESULTS AND DISCUSSION

 170

8.1 SYNTHESIS OF DIPHENHYDRAMINE HYDROCHLORIDE (1)

8.1.1 PREREQUISITES AND INITIAL WORK

The antihistamine drug diphenhydramine was first discovered by Rieveschl and

Woods in 1944142 and various derivatives have been shown to possess similar

activity.143 Figure 72 shows one synthetic route adapted from Ahmadi et al.140

Automating the initial Grignard step was especially intriguing, since it is not a trivial

operation. Grignard reactions require dry conditions, initiating them can be a

challenge, and the exothermic nature makes them challenging from a safety

standpoint. Thus, an automated Grignard reaction would constitute a powerful

display of the system’s capabilities.

Figure 72: Synthetic sequence for diphenhydramine hydrochloride, adapted from
Ahmadi et al.140 The original procedure reported in the paper called for benzene as

the solvent for the second step, and xylene for the third.

A colleague successfully replicated the synthesis manually, thereby producing

valuable information and experience for me to build on. Additionally, all

intermediates except for the diphenhydramine free base were commercially

available, so the automation of the sequence could commence at any point and every

step could be optimised in isolation before tying them all together into one

automated multistep synthesis.

Based on the published synthetic procedure, all required reagents and solvents were

identified, as well as the required unit operations of mixing/refluxing, liquid/liquid

 RESULTS AND DISCUSSION

 171

separation, evaporation, and filtration. Subsequently a platform initially consisting of

five Backbone units, a reflux reactor (see chapter 6.2.1), and the automated rotary

evaporator (see chapter 6.2.2) was built.

8.1.2 THE JOURNEY BEGINS WITH A BROMINATION

Of all steps in the sequence, the transformation of the diphenylmethanol 4 to

bromodiphenylmethane 5 was the simplest in terms of unit operations. The initial

recipe called for a benzene solution of 4 to be added to neat acetyl bromide, refluxed

for 11 h, and evaporated to dryness to yield 5 as brown oil. As moving material

around the platform was a solved problem (see chapter 7.3.5), the main

development required for this step was the automated evaporation.

At this point all software control was achieved through one monolithic Python script

containing both the various required functions, and the actual synthesis code. This

was always meant to be a temporary hack and it was meant to be replaced by what

would later become the Chempiler (see chapter 7.3). However, due to repeated

delays in the development of the control suite this single Python script was used for

most of the development work on the diphenhydramine synthesis and would

eventually grow to over 2,000 lines. Nevertheless, it allowed me to run the synthesis

nearly end-to-end, and in the process to learn how to do chemistry on the platform.

The initial idea was to manually charge diphenylmethanol into the rotavap flask to

simulate a successful first step. Then, the system was to pump acetyl bromide into

the reactor, and automatically dissolve and transfer the diphenylmethanol to the

reactor as well. To that end, three portions of xylene were pumped into the rotavap,

and the flask was rotated in interval mode to facilitate dissolution. This rather

unusual feature of the IKA rotary evaporator allows the user to specify an interval in

seconds, after which the rotation stops and reverses direction. After another interval

has passed, the rotation stops and reverses again, and so forth. While clearly not

useful for evaporations, for tasks such as redissolving solids or drying powders this

interval mode was found to perform better than continuous rotation.

 RESULTS AND DISCUSSION

 172

After successfully formulating the reaction mixture, the heating and stirring of the

hotplate stirrer was switched on, and the mixture was held at reflux overnight. To

subsequently evaporate the solvent, the plan was to transfer the mixture to the

rotary evaporator, lower the flask into the heating bath, and distil off the bulk of the

solvent. Once the distillation is finished, the rotavap could be vented and the

distillate could be transferred to waste. This was then to be followed by drying of the

residue at full vacuum.

After adjusting the volumes and dissolution times a bit, the first operations worked

surprisingly well. One finding was that the hypodermic needle used in the reactor

was corroded heavily by the aggressive acetyl bromide. This was corroborated by

broad line shapes due to poor shimming in the NMR of the product, suggesting the

presence of paramagnetic iron salts. The needle was subsequently replaced with a

PTFE tube directly inserted into the reactor, as described in detail in chapter 6.2.1.

Since the reflux condenser was open to the atmosphere, a significant amount of

acetyl bromide, or decomposition products thereof, escaped into the fume hood,

heavily corroding metal parts in the vicinity. The reaction mixture was also dark

brown, almost black. All this would later be addressed by the addition of an inert gas

system (see chapter 6.2.5). Aside from those minor issues, the reaction itself

proceeded uneventfully.

The evaporation, however, posed a bigger challenge. First of all, a major flaw in the

design was revealed when upon venting, the oily residue was forced back into the

inlet tube, subsequently crystallising and blocking the tube. This problem was easily

solved by addition of a magnetic lifting system as described in chapter 6.2.2.

A more persistent issue was experienced with regards to the evaporation itself. The

vacuum pump employed, a Vacuubrand MD1C Vario plus (Figure 73) provides a so-

called “Auto mode”, which supposedly finds the boiling point of a solvent or mixture

automatically and adjusts the vacuum to provide optimal distillation.

 RESULTS AND DISCUSSION

 173

Figure 73: Vacuubrand MD1C Vario plus vacuum pump. Image reproduced with
permission from Asynt Ltd.

Unfortunately, in our hands this feature never worked properly. Manual

investigations revealed that at 40°C, the benzene distilled over satisfactorily at

around 150 mbar. However, automatic boiling point determination would identify

distillation at pressures as high as 700 mbar. Furthermore, the pressure would not

remain at that level but rather be slowly reduced over the course of ten to fifteen

minutes to below 100 mbar, at which point the mixture would boil and foam violently

and bump uncontrollably.

After spending significant time tweaking parameters, corresponding with the pump

manufacturer, and experimenting with different solvents, this feature still could not

be utilised properly, so it was ultimately abandoned for a hard-coded approach.

Henceforth, pressures and times for every evaporation were determined

experimentally prior to automation, and then passed to the evaporation function as

variables. Thus, the following procedure was established for evaporating a product

solution to dryness.

Solvent evaporation started with pumping the solution to be evaporated into the

distillation flask of the rotary evaporator. The flask was then lowered into the heating

bath, and the rotation was started. The vacuum pump was started, lowering the

 RESULTS AND DISCUSSION

 174

pressure to 900 mbar in order to degas the solution and avoid excessive foaming later

on. The heating bath and the recirculation chiller servicing the condenser were

switched on, the target temperatures were set, and execution of the script was

suspended until the target temperatures were reached. The vacuum setpoint was

then changed to the target distillation pressure, and the vacuum pump speed was

adjusted according to the solvent, in order to avoid bumping. Then, the execution of

the script was suspended for a user-defined amount of time to allow the main

distillation to finish.

After the distillation was complete, the flask was lifted up which caused the inlet tube

to be attracted by the magnet (Figure 42), lifting it out of the remaining solution. The

vacuum pump was subsequently stopped, and the vacuum was vented. Then, a user-

defined amount of distillate was removed from the distillate flask and discarded.

At this point, it was found that proceeding directly to drying the product under

maximal vacuum would often lead to a few millilitres of residual solvent distilling

over, which decreased the drying efficiency. Thus, the flask was lowered back into

the bath and the vacuum pump was set to maximum power for two minutes, drawing

out any residual solvent. The sequence of raising the flask, venting the vacuum, and

emptying the distillate flask was then repeated.

Next, the flask was lowered once again, the vacuum pump was set to maximum

power and started, and the cooling of the condenser was switched off. The product

was then dried for a user-defined amount of time.

After the drying was complete, the flask was lifted up once more, the vacuum was

vented, and the rotation and heating bath were switched off.

Having successfully mastered the solvent evaporation, crude

bromodiphenylmethane was obtained as dark brown oil in quantitative yields. The

product still contained small quantities of acetic acid, but it was later found that this

did not interfere with the subsequent Williamson ether synthesis, so no further

purification was attempted.

 RESULTS AND DISCUSSION

 175

8.1.3 PRESSING ON TOWARDS THE WILLIAMSON ETHER SYNTHESIS

Emboldened by the successful automation of the bromination step, the subsequent

Williamson ether synthesis was tackled next. The main reasoning behind this decision

was that, in addition to the already established unit operations of mixing/refluxing

and solvent evaporation, the Williamson step demands extensive aqueous workup,

thereby giving us an opportunity to study liquid/liquid separations.

The description of the workup procedure provided by Ahmadi et al.140 was somewhat

cryptic to us:

“
The reaction mixture was cooled, treated with water before the aqueous layer

was extracted with ether, re-extracted with 10% HCl, neutralized with 10%

NaOH, dried over MgSO4, and evaporated under vacuum to obtain the desired

oily compound.

“

It is not entirely clear to us whether this is just poorly phrased, or whether the

procedure was fundamentally ill-conceived. A colleague tested several

interpretations of those instructions, but always found that the product would be

distributed between the various layers, and therefore could not achieve quantitative

recovery of reasonably pure product. Thus, a work-up procedure was designed

independent of the literature description. As the product is a basic amine, it should

be extracted with aqueous hydrochloric acid, forming the water-soluble

hydrochloride, and leaving behind organic impurities. This was to be followed by

neutralisation with aqueous sodium hydroxide, liberating the free base, which could

then be extracted with diethyl ether, leaving behind water-soluble impurities.

Arguably, the literature procedure might very well be describing this very procedure,

just very poorly worded.

The initial operations for formulating the reaction mixture proceeded uneventfully.

Again, the rotavap flask was manually charged with pure starting material to simulate

a successful previous step, and the reactor was charged with

 RESULTS AND DISCUSSION

 176

N,N-dimethylaminoethanol. It was found that the high viscosity of the neat

dimethylaminoethanol required a decreased pump speed, which was subsequently

implemented into the transfer routine. The bromodiphenylmethane was

subsequently transferred to the reactor as described above, and the mixture was

refluxed.

For the liquid/liquid separation though, problem after problem was encountered.

First, the reaction itself creates a highly viscous, sticky second layer. Later

considerations suggested this to be diphenhydramine hydrobromide. When the alkyl

bromide reacts with the alcohol, HBr is liberated, which in turn is quenched by the

highly basic amino group. The resulting salt is insoluble in organic solvents, but oddly

it is also poorly soluble in water. Primarily, it clogged the tubing, making it nearly

impossible to transfer any product out of the reactor. This issue was addressed by

pumping the first portion of aqueous hydrochloric acid directly into the reactor,

although this often led to the diphenhydramine hydrochloride and/or hydrobromide

crystallising. Ultimately, it was found that when the reaction was held at 30°C during

quenching rather than being cooled to room temperature, the salt would dissolve

completely.

The actual separation of the organic and the aqueous layer was initially attempted

by utilising a Universal Phase Separator by Biotage (Figure 44). A detailed description

of the setup for this separation can be found in chapter 6.2.3. However, the Universal

Phase Separator was slow and unreliable. Crucially, it often admitted copious

amounts of aqueous layer to leak through. At the time, this was rectified simply by

transferring leaked aqueous layer back into the separator with a pipette. As it

became clear that an entirely new solution for the liquid/liquid separation had to be

developed anyway, this was accepted as a temporary workaround to allow us to carry

on with the chemistry development.

The evaporation was attempted in automated mode at first, but after multiple

failures, the same hard-coded approach that was successful for the bromination was

adopted here as well.

 RESULTS AND DISCUSSION

 177

So far, the Williamson step was a mixed success. While the chemistry worked fine,

and the new workup procedure seemed to work as well, the crucial liquid/liquid

separation could not be achieved. Therefore, the focus was shifted to computer

vision based solutions for the phase separation (see chapter 6.2.3 for a detailed

discussion). A colleague volunteered to work on it, so it was decided to let the

Williamson rest for now and instead push on to the most ambitious reaction so far,

the Grignard reaction.

8.1.4 CRESTING THE FIRST SUMMIT WITH THE GRIGNARD REACTION

Grignard reactions are infamous for being fickle beasts. The reason is that starting

the reaction can be tricky as metallic magnesium quickly forms an inert oxide layer,

and small quantities of moisture or oxygen can quench the reaction before it takes

off. Once started, however, Grignard reactions (both the formation of the reagent,

and the subsequent coupling) tend to be strongly exothermic.144 Combined, those

two properties can easily lead to a thermal runaway.145 A well-meaning experimenter

may add too much of the organohalide to the magnesium metal because the reaction

won’t start, but then it takes off and reacts violently. As the Grignard formation

requires an etheric solvent146 and the most popular reaction solvent in the lab is

diethyl ether, this can represent a substantial fire hazard. Therefore, on a plant scale,

THF is usually favoured.

There are a number of well-established ways to activate the magnesium metal to

facilitate a smooth initiation, such as iodine,147 1,2-dibromoethane,146-147 DIBAH,146

crushing the magnesium,148 or sonication.149 The latter was immediately discarded

as the required instrumentation would be unwieldy. As the Grignard formation

constitutes the first step of the sequence, and solid handling was not implemented

in the platform, the magnesium had to be charged by hand anyway, so it was decided

to first test a combination of mechanically tearing and scraping the magnesium, and

iodine. Both operations can be performed offline before the automated sequence

starts, thus avoiding the need for yet another reagent input. However, initial tests

were not successful. The reaction would initiate on some occasions, but the

reproducibility was low, and without any process analytical techniques implemented

 RESULTS AND DISCUSSION

 178

in the platform, the abovementioned thermal runaway scenario played out on

several occasions.

Eventually, the laborious and not very successful iodine activation was abandoned

altogether and magnesium ribbon was replaced with magnesium grit. The grit was

heated to 150°C under slow stirring and a gentle stream of argon, followed by cooling

to room temperature under slow stirring. The heating and the argon flow dried the

magnesium and the reaction vessel, while the stirring caused the magnesium

particles to grind against each other, thereby scratching the surface oxide layer. This

simple procedure could be done with little effort in parallel while preparing the other

reagents, and reliably activated the magnesium.

To ensure initiation at the beginning of the automated sequence, a small portion of

bromobenzene was added and the mixture was heated to reflux. After cooling to

room temperature, the Grignard formation had started every time, so the rest of the

bromobenzene could be added slowly at a rate that maintained a gentle reflux. Here,

another advantage of the automated platform became apparent. Unlike with

dropping funnels, addition speeds can be precisely controlled and accurately

reproduced, so maintaining control of highly exothermic reactions is significantly

easier.

After successful formation of the Grignard reagent, benzaldehyde solution in diethyl

ether was added slowly, again at a rate maintaining gentle reflux. Subsequently, the

mixture was refluxed for another five hours to ensure complete conversion. A large

amount of precipitate was formed upon addition of the aldehyde which made the

solution very hard to pump. The initial plan was to transfer the reaction mixture into

an excess of saturated aqueous ammonium chloride in order to quench it safely, but

this was found to be impossible. Instead, the ammonium chloride solution had to be

slowly added to the reaction mixture. The exothermic quench heated the diethyl

ether to reflux once more, but no detrimental effect on yield or purity was observed.

Since no robust automated phase separation was available at this point, a semi-

automated approach was used instead. Ongoing investigations of both computer

vision based and sensor-based systems (see chapter 6.2.3 for details) utilised an

 RESULTS AND DISCUSSION

 179

algorithm by which a small amount of the lower phase was transferred to a target

vessel. Then either a camera or a sensor would determine whether the phase

boundary had been crossed. If so, the remainder of the content would be transferred

to the appropriate target vessel, if not, the cycle would be repeated. To mimic this

operation, a function was added to the control script that would withdraw a small

portion and record a frame from the camera which was later used to train the

classifier model (see chapter 6.2.3). Then, the experimenter had to press a key on the

keyboard to indicate whether the phase boundary was reached or not. Once the user

indicated that the boundary was reached, the script would continue the process

under full automation. This approach allowed us to carry on with the chemistry

development, and also generated a large number of pictures which could be used in

the ongoing development of a computer vision based separator.

Using this semi-automated approach, crude diphenhylmethanol was recovered in

excellent yield as yellowish crystalline solid (Figure 74). The colour indicated some

impurities, but the NMR showed only traces of benzaldehyde and very minor

impurities in the aromatic region. Thus, further purification was not attempted.

 RESULTS AND DISCUSSION

 180

Figure 74: Crude diphenylmethanol 4.

The liquid/liquid separation was still an unsolved problem, but other than that full

automation of a Grignard reaction was achieved, which is no small feat. Confident

that the liquid/liquid separation would be solved soon, the last remaining step in the

sequence was commenced.

8.1.5 COMMENCING THE END GAME WITH THE HYDROCHLORIDE PRECIPITATION

The filtration module was an unsolved problem at this point as well. Previous

instances of the platform had used a relatively impractical contraption consisting of

a flask, a filter, and some stainless-steel hypodermic needles (see chapter 6.2.4 for a

detailed description). A number of potential solutions were proposed, and the

modified Büchner funnel (Figure 50, left) was chosen as the most feasible approach.

The two inputs this module required were not factored into the initial count, so the

Backbone had to be extended by one unit, to a total of six Backbone units.

 RESULTS AND DISCUSSION

 181

In the manual pre-experiments the hydrochloride precipitation posed no major

challenge. Different solvents were investigated, and in methanol the recovery was

rather low, but in diethyl ether the procedure worked fine.

Thus, the rotavap flask was charged with crude diphenhydramine free base obtained

in earlier experiments. The dead volume of the filter was filled with diethyl ether in

order to avoid hydrochloric acid leaking through the sinter plate, which could lead to

precipitation inside the frit and subsequent blockage. The filter was then charged

with the appropriate amount of etheric hydrochloric acid. The free base was

dissolved in diethyl ether and slowly dripped into the hydrochloric acid. Initially,

precipitation was sluggish, but upon prolonged stirring, a beige solid started to

precipitate. Subsequently, the supernatant solution was removed through the

bottom port, yielding the title compound as a moist, beige filter cake. After manual

drying in vacuo, NMR revealed only minor impurities in the crude product. A

recrystallisation was not feasible at that point due to limitations of the equipment,

yet being able to obtain crude product after four steps without human intervention

followed by manual recrystallisation was still seen as preferable to manually

executing the entire synthesis.

8.1.6 TYING IT ALL TOGETHER

Having more or less successfully automated all four steps in isolation, it was now time

to launch an attempt at running the entire sequence end-to-end. Still no workable

solution for the liquid/liquid separation was in place, so the first attempt to run a full

sequence utilised the previously tested semi-automatic approach.

During this first attempt, a number of things became clear. First of all, as the batch

sizes of all reactions had to be coordinated, it turned out that the Grignard reaction

required a 250 mL flask rather than the 100 mL flask used in the other steps. This

meant that for the subsequent reactions the flask was overdimensioned. Initially this

problem was circumvented by manually swapping the 250 mL flask for a 100 mL flask

after the first step. The next lesson learned was that proper cleaning of the system

in between operations was of paramount importance. Previously, little attention was

 RESULTS AND DISCUSSION

 182

given to cleaning as the experiments always started from a clean rig, but for the

entire four-step sequence this laissez-faire approach frequently led to blockages of

tubing.

It also became clear that a solvent which was miscible with both water and ether was

missing. Previously, lines were first flushed with water and then with ether, but this

approach only displaced the water mechanically, and droplets would remain in the

Backbone, interfering with water-sensitive reagents. Thus, a solvent such as acetone

or isopropanol was required to flush the lines between water and ether. Alas, no free

input was available anymore. Rather than adding yet another Backbone unit, it was

instead decided to perform the bromination step in xylene as well. At this point there

was no chemical reason for using benzene, therefore replacing it with xylene not only

freed up a port on the Backbone, it also alleviated concerns regarding the toxicity of

benzene.

Establishing a strict regime of cleaning the Backbone after handling reagents or

reaction mixtures greatly improved the resilience of the system. However, cleaning

of the modules themselves was still challenging, because the only feasible way of

cleaning them was to fill them with solvent and drain it again. With the 10 mL

syringes employed at the time, and the rather inefficient transfer routines (see

chapter 7.3.5), this took a lot of time. Therefore, the modules were manually cleaned

when they were not in use.

Enhanced understanding of the platform’s behaviour led to further experimentation

with various sensors for the liquid/liquid extraction. At that point, the view on

computer vision was dim, so sensor-based approaches were investigated instead.

Chapter 6.2.3 gives a detailed account of the evaluated sensors, until eventually a

conductivity sensor was chosen. While the early prototype employed in those first

full runs was crude and not very reliable, it worked well enough to suggest a properly

built conductivity sensor would be a robust solution for this recalcitrant problem.

While those problems related to the chemistry and the operations could be

overcome, the lack of reliability of the pumps and valves was a severe struggle. At

that point, hardware with encased Hall effect sensors (see chapter 6.1.4 for a detailed

 RESULTS AND DISCUSSION

 183

explanation) and running the old firmware (see chapter 7.1) was employed.

Therefore, the platform frequently suffered Hall sensor malfunctions and device

disconnects. Furthermore, when the devices disconnected, the only way to recover

them was to power cycle them, so recovery from this type of malfunction by

improving the control software was not possible. Additionally, the pumps were

employing the NEMA23 motor (see chapter 6.1.5 for a discussion of the motor

problems) and almost a dozen syringes were lost to overpressure events.

Ultimately, the author found himself with a working procedure, but hardware

incapable of carrying it out. Additionally, the preliminary control script had grown to

a point where maintaining it became incredibly hard, yet the ChemOS control suite

(see chapter 7.3.2) was still not ready. Therefore, the chemical development was

paused and the focus was shifted to fixing all the hardware and software problems.

The pump and valve hardware was reworked (see chapter 6.1), the entire firmware

of the devices was completely re-written (see chapter 7.1), and in collaboration with

colleagues the ChemOS control software was replaced with the Chempiler (chapter

7.3). After essentially re-building the entire platform from scratch, the setup was

finally reliable enough to carry out the ambitious task of synthesising

diphenhydramine hydrochloride without human interference.

8.1.7 REBUILDING THE PLATFORM AND STARTING ANEW

The Backbone of the old platform was replaced with newly built pumps and valves of

the latest design, running the new firmware. All reagent inlet ports were fitted with

non-return valves to avoid reagent cross-contamination. The pumps were fitted with

25 mL syringes to make transfers of larger volumes more efficient. The placement of

the modules and reagents on the Backbone was revised. Reagents that could react

with each other were kept on separate valves. Transfer lengths were minimised

where possible. Ether, isopropanol and water were kept on the leftmost or rightmost

valve to allow efficient cleaning of the Backbone.

The reactor flask was replaced with a pear-shaped flask and a custom heating block

(see also chapter 6.2.1). This way, the different volumes of all the steps could be more

 RESULTS AND DISCUSSION

 184

easily accommodated. The separator was fitted with a reliable conductivity sensor

(see chapter 6.2.3).

All procedures developed before were transcribed into ChASM code, and the steps

were tested individually. Everything worked reasonably well, so a full run was

attempted. However, the aqueous workup of the Grignard reaction proved

troublesome.

Unfortunately, the ammonium chloride didn’t seem to be acidic enough to dissolve

the Mg(OH)Br formed in the quench, leaving behind solid residues and complicating

phase separation (Figure 75).

Figure 75: Solid residues left after quenching the Grignard reaction with saturated
ammonium chloride.

Thus, it was ultimately decided to quench the reaction with dilute hydrochloric acid

instead. The product contains no acid labile groups, and elimination of the alcohol is

impossible as it is neighboured by two sp2 carbons. Thus, there was no reason to

believe that using a stronger acid for the quench would be in any way detrimental.

 RESULTS AND DISCUSSION

 185

As expected the hydrochloric acid dissolved all precipitate and formed two clear

layers.

It was also found that the magnetic stirring in the reactor did not mix the layers very

efficiently. A shallow vortex was formed, and the phase boundary bobbed around a

bit, but the intimate contact between the two phases that shaking them in a

separatory funnel would produce could not be achieved. To address this

shortcoming, a computer controllable overhead stirrer was mounted into the

liquid/liquid separator, allowing vigorous mixing of the two layers. Figure 76 shows

the quality of the extraction using hydrochloric acid for quenching and overhead

stirring.

Figure 76: Separation of the phases during the workup of the Grignard reaction.

The previously encountered issues regarding the precipitation of diphenhydramine

hydrobromide during the workup of the Williamson step resurfaced as well. After

several more attempts to run a full sequence, the p-xylene eventually ran out and it

 RESULTS AND DISCUSSION

 186

was decided to substitute it for toluene. It is unclear if this change in solvent

exacerbated the problem, or if in previous, successful attempts were merely a matter

of luck. In any case, severe precipitation issues upon addition of water or

hydrochloric acid were experienced. When the aqueous phase was added while the

reaction mixture was still warm (30°C), the salt would initially dissolve, but crash out

upon cooling (Figure 77).

Figure 77: Diphenhydramine hydrobromide crystallising upon addition of water.
Left: catastrophic blockage of the reactor inlet. Right: blockage of the separator.

However, if the reaction mixture was cooled to room temperature before adding the

aqueous layer, the gelatinous second layer that was formed in the course of the

reaction would become so highly viscous that the magnetic stirring bar was trapped,

and no mixing occurred (Figure 78).

 RESULTS AND DISCUSSION

 187

Figure 78: Williamson reaction mixture after cooling and addition of water. The
bottom layer is gelatinous diphenhydramine hydrobromide with the stirrer bar

trapped inside. The middle layer is water, the top layer is toluene.

Ultimately, the workup protocol had to be adjusted. Instead of adding water or

hydrochloric acid to the reaction mixture, equimolar aqueous sodium hydroxide was

added to the reaction mixture. This would neutralise and dissolve the

diphenhydramine hydrobromide, thus liberating the free base. After separation of

the layers, the organic layer could be extracted with aqueous hydrochloric acid thrice

as usual. The aqueous layers were then combined and neutralised with more sodium

hydroxide and extracted with three portions of diethyl ether. The overhead stirrer

ensured efficient extraction, and the layers were always clearly delineated. This

adjusted protocol finally enabled us to reliably isolate the diphenhydramine free

base.

 RESULTS AND DISCUSSION

 188

With robust workup procedures for the troublesome steps in hand, the final

hydrochloride precipitation was tackled. The filter module was now attached to the

inert gas system and kept under argon. Also, further flushing steps were added

before commencing the precipitation to ensure no impurities were introduced into

the mixture. Those precautions, together with the high purity of the free base,

ensured a smooth precipitation.

Figure 79: Crude diphenhydramine hydrochloride obtained at the end of the fully
automated synthesis.

Having finally solved all problems, 18 months after the very first experiment, the

four-step synthesis of diphenhydramine hydrochloride had thus been performed

twice under full automation without human intervention. The syntheses yielded 56%

and 70%, respectively, of crude, beige powder. This corresponds to an average yield

 RESULTS AND DISCUSSION

 189

of 87% and 91% per step, respectively. Why those two yields were significantly

different could not be determined. The NMR of the product was remarkably pure,

with the main impurity being dimethylaminoethanol hydrochloride.

 RESULTS AND DISCUSSION

 190

8.1.8 ADDING PURIFICATION AND CLEANING

As mentioned previously, meticulous cleaning of the Backbone was found to be very

important. The 25 mL syringes used in the new platform, together with the vastly

more efficient transfer routine (see chapter 7.3.5) now enabled us to clean the

modules as well by filling them with washing solvents and stirring the solvent for a

while, followed by emptying the solvent to waste. Usually the reactor and separator

were cleaned with water, isopropanol and diethyl ether after every step. At the end

of the entire sequence the rotavap flask was also cleaned, followed by another flush

of the Backbone, in order to immediately ready the system for another reaction. This

procedure worked surprisingly well, leaving the modules in pristine condition after

every step (Figure 80).

Figure 80: Automated Liquid/Liquid Separator after automated cleaning, ready for
the next step.

 RESULTS AND DISCUSSION

 191

At the outset of automating this synthesis, further purification of the product was

not intended as it was thought be to be too complicated at the time. However, the

capabilities of the platform had increased significantly since its humble beginnings.

Crucially, the syntheses of rufinamide and sildenafil described in the following

chapters forced us to develop a temperature-controlled filtration module. This

jacketed filter vessel brought a recrystallisation of the crude diphenhydramine

hydrochloride within reach.

Ahmadi et al. recrystallised their product from isopropanol.140 Refluxing liquid inside

the filter as would be required for a proper recrystallisation was seen critically, since

there was no feasible way of adding a condenser. However, Jensen et al.91 reported

that, in their flow setup, they only heated the crude product in isopropanol (B.P.

82.6°C) to 60°C, followed by crystallisation and filtration.

This procedure was tested with a batch of material obtained in previous, successful

runs. Sure enough, the material dissolved rapidly at 60°C, but crystallisation was

sluggish. Curiously, if the mixture was cooled under stirring, the pure product would

readily crystallise as fine powder which could easily be collected by filtration.

Thus, with a proven procedure in hand, the recrystallisation was tested on the

platform, again using previously obtained crude product. To that end, the filter

module was replaced with a jacketed filter (Figure 50 right). The recirculation chiller

previously servicing the rotary evaporator was fitted with a solenoid valve (see

chapter 6.2.7 for more details) and connected to the filter vessel. This way, the user

could switch between heating or cooling the rotary evaporator, or the filter.

The filter was then charged with isopropanol through the bottom port. Isopropanol

was already present in the setup as cleaning solvent, thus no additional input was

required. The mixture was then heated to 60°C, followed by slow cooling to room

temperature under stirring. The product dissolved and crystallised as was expected.

To ensure maximum recovery, the mixture was then cooled to -20°C and stirred for

five minutes. The isopropanol was subsequently removed through the bottom port.

This had to be done very slowly due to the high viscosity of isopropanol at that

 RESULTS AND DISCUSSION

 192

temperature, otherwise the pump would simply cavitate. To wash the precipitate,

fresh isopropanol was added through the bottom port, the mixture was stirred at

-20°C for another five minutes to allow temperature equilibration and filtered off

once more.

In order to dry the product, the filter module was fitted with a vacuum valve (see

chapter 6.2.7 for more details). The valve was switched to vacuum, and the filter was

heated to 60°C for fifteen minutes to dry the filter cake. Eventually, the filter was

cooled to room temperature again to allow convenient collection of the product

(Figure 81).

Figure 81: Jacketed filter module containing pure diphenhydramine hydrochloride
after recrystallisation.

 RESULTS AND DISCUSSION

 193

This procedure was exceptionally successful. An NMR spectrum of the recrystallised

product was compared with an NMR spectrum of pure (≥98%) diphenhydramine

hydrochloride obtained from Sigma-Aldrich, and except for a small amount of

residual isopropanol the spectra were indistinguishable (see appendix I.I).

With a proven purification procedure in hand, the fully automated procedure was

successfully repeated once more, yielding 58% of pure diphenhydramine

hydrochloride (an average of 87% per step). A manual repetition of the new synthetic

procedure yielded 68% overall or 91% per step in comparison. While the overall yield

of the automated synthesis is ten percentage points lower than the manual

execution, the yields are still seen as comparable because of the way yields

compound over multiple steps. The average yields per step (87% vs. 91%) are very

similar.

 RESULTS AND DISCUSSION

 194

 RESULTS AND DISCUSSION

 195

8.2 SYNTHESIS OF RUFINAMIDE (2)

8.2.1 PREREQUISITES AND INITIAL WORK

The antiseizure drug rufinamide (2) was first reported in 1986150 and gained FDA

approval as medication against certain types of epilepsy in 2008.151 As a triazole

derivative, it is most commonly prepared via a click reaction between the

corresponding azide and alkyne. Figure 82 shows a synthetic route patented by

Kankan et al.152

Figure 82: Synthetic sequence for rufinamide, adapted from Kankan et al.152

Dr. Jaroslaw Granda manually replicated the synthesis and found it to work as

published. Based on those initial findings, he built a smaller synthesis platform

consisting of four Backbone units, a reactor module, and a filter module, and

proceeded to automate the synthesis under my guidance.

8.2.2 AUTOMATION ON THE SMALL PLATFORM

The synthesis commences with the azide formation using 2,6-difluorobenzyl bromide

and an aqueous solution of sodium azide at 75°C for 12 hours. The reactor was

manually charged with the solid difluorobenzyl bromide, followed by automated

addition of an aqueous solution of sodium azide and heating to 75°C. The whole step

proceeded uneventfully.

In the initial attempts, the subsequent triazole click and the amide formation were

performed in the reactor vessel as well, but pumping the resulting suspension of

rufinamide in water into the filter module was found to be unreliable. Therefore, the

difluorobenzyl azide solution was instead transferred into the filter module and the

subsequent steps were performed in the filter. To that end, the filtration module was

 RESULTS AND DISCUSSION

 196

equipped with a jacketed filter (Figure 50 right) to allow heating of the reaction

mixture.

Addition of methyl propiolate solution and heating to 65°C initiated the triazole click.

Subsequent addition of ammonia solution and further heating at 75°C for another 12

hours led to precipitation of the target compound. Filtration followed by three

washes with water yielded pure rufinamide at 46 ± 4 % isolated yield, which is slightly

better than the manual synthesis (38%).

Due to the smooth operation and short overall reaction time, the synthesis was

repeated multiple times to gauge the reproducibility of the yield. Table 4 shows the

yields obtained on the small platform.

Table 4: Yields obtained for the automated synthesis of rufinamide.

Run 1 2 3 4 5 6

Yield [g] 4.24 4.20 3.73 3.42 4.35 4.12

Yield [%] 50 49 43 39 51 48

8.2.3 TRANSFERRING THE CODE TO ANOTHER PLATFORM

Due to the simplicity of the synthesis, it could be developed on the smaller platform,

which lacked an evaporation and liquid/liquid separation module, and employed

different stirrers and a different recirculation chiller. To demonstrate the power of

the Chempiler software, the same ChASM file was then executed on the “full scale”

platform used for the synthesis of diphenhydramine hydrochloride (see chapter 8.1).

A graph was drafted for the bigger platform, placing the reagents roughly on the

same ports as on the smaller platform. The connectivity of the modules was reused

from the diphenhydramine development without changes. The ChASM file that

successfully produced rufinamide on the smaller platform was then run without

changes.

On the first try, old reagent solutions from previous syntheses on the smaller

platform were used. The synthesis worked without problems, but only yielded 29%

 RESULTS AND DISCUSSION

 197

which was significantly lower than on previous tries. The purity by NMR was

comparable with previous runs.

Thus, the reagent solutions were suspected to have degraded. All reagents were

discarded, fresh solutions were prepared, and the synthesis was repeated. This time,

the sequence yielded 44% which is within one standard deviation of the previously

obtained yields.

This finding also suggests that the experienced variation in yields might be a result of

reagent degradation. Since the reagents were not discarded and freshly prepared for

every try, some runs that were conducted with older reagents would consequently

yield less product than the ones that had largely fresh reagents loaded.

Overall, the simple one-pot procedure was a well-conceived synthesis pathway and

had little potential for automation problems. Still, it was gratifying to see that not

only could the whole synthesis be automated smoothly, but also be transferred to

another physical setup with ease.

 RESULTS AND DISCUSSION

 198

 RESULTS AND DISCUSSION

 199

8.3 SYNTHESIS OF SILDENAFIL (3)

8.3.1 PREREQUISITES AND INITIAL WORK

Sildenafil (3), better known under its brand name VIAGRA®, was first reported in 1992

by Pfizer.153 Famously, it was first investigated as cardiovascular medication, but then

showed to be a potent agent for the treatment of erectile dysfunction,154 and

subsequently became a blockbuster drug. In 2000, Dale et al. published their

development of the commercial synthesis route (Figure 83) as a case study.141 This

paper gave a detailed account of the synthesis, so manual replication was

commenced. The original scheme is a convergent synthesis, preparing pyrazole 11 in

two steps, a nitration and subsequent reduction of the nitro group. However,

pyrazole 11 was commercially available, so it was decided to avoid the hydrogenation

step. That said, tackling catalytic hydrogenations and automating the pyrazole

preparation is certainly a worthwhile goal in any future work.

Figure 83: Synthetic sequence for sildenafil, adapted from Dale et al.141 The original
procedure reported in the paper called for carbonyldiimidazole (CDI) as coupling

reagent for the third step.

 RESULTS AND DISCUSSION

 200

Sildenafil was chosen as a target molecule while the development of the

diphenhydramine synthesis was still work in progress. This decision coincided with

the arrival of a Master’s student, Jakob Wolf, so the development and automation of

the sildenafil synthesis was assigned to him. He completed his project under my

direct supervision and guidance. He performed the lab work, while problems were

addressed together in a cooperative fashion.

8.3.2 MANUAL REPLICATION OF THE REPORTED SYNTHESIS

The synthesis commences with a chlorosulfonation in chlorosulfonic acid and thionyl

chloride. When handling it using standard disposable polypropylene syringes it

quickly became apparent that the corrosive nature of chlorosulfonic acid was

understated in the safety data sheet. The acid corroded the syringe, leaked past the

plunger, and attacked the fume hood surface, leaving a shallow hole. In subsequent

tries, the chlorosulfonic acid was handled with the same glass and PTFE syringes used

in the syringe pumps, which proved to be resistant against attack.

The temperature of the water for the quenching of the reaction mixture was also

found to be very important. Quenching in ice water produced near quantitative

yields, while quenching in room temperature water decreased the yield below 50%.

The reason seems to be that the water-insoluble sulfonyl chloride formed undergoes

hydrolysis to the water-soluble sulfonic acid, which is washed away during filtration.

If the quench is performed near 0°C with plenty of ice to take up the reaction heat

produced by the highly exothermic hydrolysis of the remaining chlorosulfonic acid

and thionyl chloride, the rate of the sulfonyl chloride hydrolysis is slow enough to

recover most of the product. This finding was a key incentive for the design of the

jacketed filter module (see chapter 6.2.4), which has since proven to be a very useful

addition to the system.

The subsequent sulfonamide formation with N-methylpiperazine proceeded

smoothly. However, the crystallisation of the product would only work after seeding

with product. It precipitated spontaneously once, but after this one serendipitous

event it never again happened without seeding. Dale et al. mention similar woes in

 RESULTS AND DISCUSSION

 201

their discussion, stressing the importance of seeding. In fact, they stipulate that their

initial, more complicated route via a double salt of the compound was abandoned

only after a similarly serendipitous crystallisation event was observed. Later

experiments with antisolvents, cooling below 0°C, and different stirring rates all

failed to induce precipitation. Curiously, even the rough surface of a sintered glass

plate, or even unreacted starting material which was sometimes present as a solid,

would not initiate crystallisation. Only seeding with the product would reproducibly

yield crystalline product.

Furthermore, the amount of N-methylpiperazine was found to be crucial, as too

much or too little piperazine would also compromise the crystallisation. Dale et al.

talk about adjusting the pH to the isoelectric point of the zwitterionic compound in

their discussion, however they fail to mention where this point lies, and make no

further mention in their experimental procedures. A decision was made against

adjusting the pH as this would require significant instrumentation, and instead a

proportion of piperazine was found which would guarantee crystallisation upon

seeding.

With sulfonamide 10 in hand, coupling it with pyrazole 11 was attempted next. Alas,

in our hands the CDI coupling reported by Dale et al. gave inconsistent and generally

low yields. Furthermore, the CDI was poorly soluble in ethyl acetate, forcing us to

increase the solvent volume to allow us to add the CDI as a solution. Then, the

formation of the activated carboxylic acid proceeded sluggishly. Crucially, the

subsequent coupling with the pyrazole did not seem to proceed at all. After several

days, TLC and NMR showed virtually no conversion.

At some point an important observation was made: Dale et al. directly use the

reaction mixture obtained from the hydrogenation of the nitro group (Figure 84). This

hydrogenation produces two equivalents of water for every equivalent of amine,

thus likely saturating the ethyl acetate with moisture. In this work, on the other hand,

dry ethyl acetate was used to dissolve the dry piperazine, and the reaction was

carried out under water-free conditions.

 RESULTS AND DISCUSSION

 202

Figure 84: Hydrogenation to form the pyrazole 11.141

Researchers at Astra Zeneca had previously reported similar problems related to CDI

couplings when the water content was too low.155 They stipulated that the coupling

of the amine to the activated carboxylic acid benefits from acid catalysis, and

reported the use of imidazolium hydrochloride as catalyst.

Consequently, the influence of water and imidazolium hydrochloride on the reaction

was investigated. Adding small amounts of water to the pyrazole solution improved

the conversion somewhat, but the yield was still low. Imidazolium hydrochloride

didn’t seem to have any effect on the reaction.

Ultimately, abandoning the CDI was the economical approach. Dale et al. used CDI

on scale due to process chemical considerations, namely the ability to telescope the

nitro reduction into the coupling using only one solvent, and the operational

simplicity of the coupling. For this project, however, the pyrazole was bought; and

the coupling was found troublesome. Thus, it was decided to activate the carboxylic

acid as acid chloride instead. This approach was insofar advantageous as all reagents

were liquids and therefore simple to handle in the automated setup.

Literature precedent156 was found for this reaction. The published method (Figure

85) called for N,N-dimethylformamide (DMF) as catalyst and was performed in

dichloromethane (DCM). The authors did not isolate the acid chloride, but rather

used triethylamine to quench unreacted thionyl chloride as well as the hydrogen

chloride byproduct. This straightforward procedure was very appealing to us.

 RESULTS AND DISCUSSION

 203

Figure 85: Acid chloride mediated amide coupling.

This coupling worked well in our hands. Two important observations were made,

informing the later automation of the procedure. First, the starting material had to

be dried properly as it was crystallised from water, and residual moisture would

hydrolyse the thionyl chloride. Second, following aqueous workup the DCM layer

contained a lot of water, which would interfere with the subsequent cyclisation.

Normally, a human chemist would routinely dry any organic layers using anhydrous

sodium or magnesium sulfate prior to evaporation. In the automated setup, this had

yet to be implemented.

With amide 12 in hand, the base catalysed cyclisation of the purine scaffold was

commenced. The original procedure called for refluxing the amide 12 with tert-

butoxide in tert-butanol. Initial concerns about the high melting point of the tert-

butanol, specifically about crystallisation inside the tubing, were unfounded as the

dissolved potassium tert-butoxide would lower the melting point significantly,

rendering a 0.5M solution liquid at room temperature.

The cyclisation reaction proceeded uneventfully. The subsequent neutralisation with

aqueous HCl and crystallisation was found to work very well, yielding the title

compound as pure white powder. The overall yield was 47% over four steps, which

corresponds to an average yield of 83% per step.

 RESULTS AND DISCUSSION

 204

8.3.3 SUBJECTING THE PLATFORM TO CHLOROSULFONIC ACID

With a successful experimental procedure in hand, once again the sequence was

automated. My student assembled a platform initially consisting of four Backbone

units, a reactor module and a filtration module. The reactor was fitted with a DrySyn

SnowStorm heating and cooling block, and a 250 mL round bottomed flask. The

filtration module was fitted with a jacketed filter. Initially, the SnowStorm and the

jacketed filter were connected in series to allow both to be heated and cooled by one

recirculation chiller.

Aspirating the chlorosulfonic acid proved more problematic than anticipated. The

high viscosity demanded slow aspiration speeds, but the main problem was that it

would react violently with even traces of water, producing large volumes of gas,

which in turn would displace the liquid. Thus, the pump would only aspirate gas. This

undesirable behaviour was counteracted partly by flushing the Backbone with

acetone and diethyl ether to make sure it was very dry, and partly by aspirating

multiple full syringes of chlorosulfonic acid and dispensing them directly to waste

prior to charging the reactor. This way, if any traces of water are present, the

chlorosulfonic acid itself would reactively dry the flow path. This strategy proved to

be highly successful and allowed us to formulate the reaction mixture. The

ethoxybenzoic acid (m.p. 19.3-19.5°C) could be added as a liquid as well and was

flushed into the reactor with an additional portion of chlorosulfonic acid.

There were concerns about the resilience of the valve heads against the

chlorosulfonic acid, but it was found that they were only attacked very slowly.

Thoroughly flushing the Backbone after handling it helped prolong their life span, yet,

after several runs, some of the valves had to be exchanged. The rest of the platform,

however, showed no signs of deterioration due to handling chlorosulfonic acid.

Replacing the valve heads with more resilient models was investigated, yet

unfortunately, at the time of writing, no suitable six-way selection valves fabricated

entirely from PTFE were commercially available. In the medium to long term, it might

be advisable to design a custom valve head and have it manufactured to spec. For

the time being, however, the current valve heads were deemed good enough.

 RESULTS AND DISCUSSION

 205

Another complication was encountered when the reaction mixture was to be

transferred into the filter module for quenching. As the water had to be cooled to

near zero degrees, and the filter and the reactor were both connected to the chiller,

the reaction mixture was consequently cooled to near zero as well. Unfortunately,

this rendered the already highly viscous solution all but unpumpable. Thus, a solenoid

valve was introduced into the chiller flow path, to enable the user to switch the chiller

between either the reactor, or the filter. This way, the reaction mixture remained at

room temperature, where it could be aspirated very slowly, while the filter was

cooled appropriately.

During later runs, precipitate forming inside the tube from the Backbone to the

reactor was encountered during the chlorosulfonation reaction, leading to blockage.

This problem was not encountered in earlier runs, and the identity of the solid could

not be ascertained. It was reasoned that maybe the temperature played a role, as

during earlier tries the lab was heated, while during later runs in spring and summer

the heating was switched off and the laboratory was noticeably cooler. However, this

could not be verified experimentally.

During the reaction, chlorosulfonic acid was standing in the tube for many hours. The

solid could not be chlorosulfonic acid itself which has a melting point of

-80°C,157 and all decomposition products of chlorosulfonic acid that come to mind

are gaseous. Thus, the identity of the precipitate remains unclear. In any event, it had

to be avoided. Flushing the acid into the reactor with solvent risked losing yield after

the subsequent quench due to partial dissolution of product. Using more thionyl

chloride to flush in the chlorosulfonic acid was not a preferred solution as this would

likely lead to the conversion of the carboxylic acid to the corresponding acid chloride

and the implications for the workup and yield were unknown. Thus, flushing the tube

with air was tried instead.

Flushing tubes with air had become a standard practise to empty them. The air in

question was commonly drawn from one of the waste ports, after flushing the

corresponding tube. Unfortunately, in this case this strategy was unsuccessful since

the reactor was kept under a slight overpressure of argon, while the waste container

resided at ambient pressure. Thus, whenever the pump was filled with ambient

 RESULTS AND DISCUSSION

 206

pressure air and the valve switched to the pressurised reactor, some liquid would be

pushed back into the syringe. Therefore, a small amount of chlorosulfonic acid would

always remain in the tube, no matter how many portions of air were pumped in. It

should be noted here that the internal pressure of the system was miniscule, but a

slight overpressure had to be maintained at all times to ensure the integrity of the

inert atmosphere, similar to a conventional Schlenk line. This conundrum was

ultimately solved by connecting one Backbone port directly to the inert gas system

via a Woulff bottle, thus providing argon at the same pressure as inside the reactor.

This pressurised argon could be pumped into the reactor and would successfully

displace the acid in the tube to prevent clogging.

With all those precautions in place sulfonyl chloride 9 was ultimately obtained in

excellent yields.

8.3.4 INITIATING THE CRYSTALLISATION OF THE SULFONAMIDE

For the next step, the still wet sulfonyl chloride was slurried in water again, the

mixture was cooled to 0.5°C, and N-methylpiperazine was added. A clear solution

was formed after a few minutes. As expected from previous manual investigations,

the product would not spontaneously crystallise at that point.

Initially, the solution was seeded with product by hand, in order to facilitate further

development. Later, layering acetone over the aqueous solution was explored since

acetone is an antisolvent for the product. Unfortunately, crystallisation did not occur.

The stirring rate was modulated as well, hoping that either high or low rates, or no

stirring at all, or abrupt changes in stirring rate would trigger crystallisation. However,

the stirring rate seemed to have no effect whatsoever. Ultimately, it was decided to

pump in a small volume of a slurry of product in water. To that end, a reagent bottle

containing product in water was placed on a magnetic stirring plate to keep the solid

suspended, and after the reaction had finished, a small volume of the suspension was

pumped into the reactor. This was found to be a robust solution for the problem,

guaranteeing a reliable crystallisation of the product.

 RESULTS AND DISCUSSION

 207

8.3.5 FORMING THE ACID CHLORIDE AND PERFORMING THE AMIDE COUPLING

With sulfonamide 10 in hand, automation of the amide coupling commenced. The

first challenge was to dry the precipitate to avoid immediate hydrolysis of the thionyl

chloride. To that end, a vacuum system for the filter was developed (see chapter

6.2.4). The bottom outlet of the filter was connected to the central inlet of a six-way

valve with a short length of tubing. One outlet of the valve was connected to the

Backbone, the other outlet was connected to a Woulff bottle which in turn was

connected to the laboratory vacuum supply. This contraption, together with gentle

heating provided by the jacketed filter, allowed drying the solid sufficiently for the

subsequent acid chloride formation.

The dry material was then slurried in dry dichloromethane which was pumped in

through the bottom of the filter and the mixture was cooled to 5°C. Thionyl chloride

and DMF were added, and the mixture was stirred at room temperature overnight.

The reaction progress could be estimated visually as the initial slurry turned into a

clear solution.

Once the acid chloride formation was complete, the reactor was charged with a

solution of pyrazole 11 in DCM and triethylamine, and the mixture was cooled to

10°C. The acid chloride solution was transferred into the reactor and the mixture was

stirred again overnight at room temperature to ensure full conversion.

After the reaction was complete, the mixture was quenched with water under

cooling, and the layers were separated (see chapter 6.2.3 for a detailed description

of the liquid/liquid separation module). At this point the organic layer was found to

contain a large amount of water. Dichloromethane does not form an azeotrope with

water,158 so the organic phase had to be dried prior to evaporation, or else the water

would interfere with the subsequent cyclisation. To that end, a drying cartridge and

a switching system were developed (see chapter 6.2.7 for a detailed discussion). This

cartridge allowed us to pass the wet organic phase over activated molecular sieve

prior to moving it to the rotary evaporator. After evaporation to dryness, crude

carboxamide 12 was obtained as off-white solid.

 RESULTS AND DISCUSSION

 208

The NMR of the crude product contained signals tentatively assigned to sulfonamide

12a (Figure 86). The impurity was never isolated, so the structure could not be

assigned unequivocally. However, it was reasoned that unreacted sulfonyl chloride 9

remaining after the second step could react with the pyrazole to form sulfonamide

12a. Sulfonyl chloride 9 was known to undergo hydrolysis at moderate temperatures,

forming the water soluble sulfonic acid. Thus, it was decided to briefly heat the wet

precipitate formed in the second step to 35°C before washing it with water. Adopting

this procedure eliminated the observed side product.

Figure 86: Proposed structure of the impurity found after the amide coupling,
where R is either OH or another pyrazole moiety.

8.3.6 CLOSING THE CYCLE WITH POTASSIUM TERT-BUTOXIDE

The endgame commenced with transferring the crude carboxamide 12 back into the

reactor. To that end, the rotavap flask containing the crude mixture was charged with

a 0.5M solution of tBuOK in tBuOH. To facilitate dissolution, the heating bath of the

rotary evaporator was set to 60°C and the flask was rotated in interval mode. Once

the material was fully dissolved, the entire mixture was transferred to the reactor

and heated to reflux for eight hours. Subsequently the reaction was cooled to 10°C

and quenched with water. The mixture was transferred to the filter and neutralised

with dilute hydrochloric acid, causing the title compound to crystallise.

 RESULTS AND DISCUSSION

 209

After filtration and washing with water, the solid was dried under gentle heating and

a stream of argon by switching the filter bottom to vacuum, yielding sildenafil as

white powder.

8.3.7 GOING THE DISTANCE: RUNNING THE FULL SEQUENCE

As with the diphenhydramine hydrochloride, once every individual step had been

successfully automated, the entire sequence was attempted under full automation.

In order to accommodate all required modules and reagents, the Backbone had to

be extended to six units. Cleaning procedures were added between the steps, and

the volumes of solvents and reagents were adjusted to fit the obtained yields.

Breakpoints were added after every step (see chapter 7.3.8), to allow assessment of

yields and purities of the intermediates.

Due to the highly corrosive nature of some of the materials handled, as well as the

sheer length of the sequence, some minor problems were encountered along the

way. Most were simple equipment breakdowns which could be fixed easily. Some

issues were related to degradation of the valve heads, which was usually fixed by

exchanging it for a fresh one. None of the issues encountered posed a significant,

conceptual obstacle warranting further discussion.

After fixing all encountered errors, eventually the entire sequence was completed

with breakpoints after every step under full automation, end-to-end, yielding 46% of

pure sildenafil over four steps. This corresponds to an average yield of 82% per step

and is consistent with the yields obtained by hand.

Emboldened by this positive result, the breakpoints were removed, and the synthesis

was started once more. This time 44% (81% per step) yield were obtained, which is

entirely comparable to the previously obtained 46%, as well as the 47% obtained

manually. The purity by NMR was also comparable to that of the manually produced

sildenafil (see appendix I.I).

 RESULTS AND DISCUSSION

 210

 CONCLUSIONS AND FUTURE WORK

 211

CONCLUSIONS AND FUTURE WORK

The development of this synthesis platform has been a challenging project. The

strong interdependence between the hardware performing the chemical operations,

the chemistry performed using the hardware, and the software controlling the

platform mandated parallel development in all three areas, which was a taxing

experience at times. The existing hardware and software solutions were suffering

from severe problems and required substantial improvement.

The optimisation of the pumps and valves in particular required a disproportionately

large amount of effort, especially considering that the devices, at the end of the day,

are not really superior to commercially available solutions by a wide margin, if at all.

However, there is some merit to the wider concept of developing a framework of

standardised hardware using a common, interchangeable interface, and the exercise

was of considerable educational value to me, so the effort was not entirely wasted.

Perhaps the biggest challenge was to learn how to do chemistry in an entirely new

and unfamiliar way. Many operations that are second nature to a skilled organic

chemist turned out to be fiendishly complicated when performed on the platform

rather than by hand. Yet once the capabilities and limits of the platform were well

enough understood, and standard operating procedures were developed, the

automation of new chemistry became relatively frictionless.

In summary, the multistep syntheses of three active pharmaceutical ingredients in

batch were fully automated at yields and purities entirely comparable to those

obtained by a skilled synthetic chemist by hand. Modules for the unit operations of

mixing under heating or cooling, liquid/liquid separation, evaporation and filtration

were developed, as well as a number of auxiliary modules. Those unit operations are

anticipated to be sufficient to perform a large fraction of organic synthesis.

Furthermore, a modular software package to control the platform, and a

rudimentary scripting language to describe chemical operations were developed.

The technology is already starting to spread. At the time of writing, a total of four

platforms have been built within the group, and several researchers are performing

 CONCLUSIONS AND FUTURE WORK

 212

experiments on them. Furthermore, collaborators from both academia and industry

have expressed interest in the platform.

The key novelties of the platform are the unit operation centric view, the modularity,

and the software architecture. By looking at the physical unit operations being

performed in the course of a synthesis and realising that those operations tend to fall

into one of only very few classes regardless of the nature of the chemical

transformations, a universal automation strategy for in principle all of organic

chemistry could be devised. Unlike many other previously reported solutions which

tend to focus on isolated aspects of individual problems, this platform encompasses

the entirety of the synthetic process, from the reaction over workup and isolation to

purification.

By strictly segregating the hardware into modules dedicated to a single class of unit

operations, and by developing an efficient solution for transferring material between

the modules, a platform which can be reconfigured and expanded as required was

created. If not yet implemented unit operations are needed, a corresponding module

can be developed and added to the platform with ease. If certain capabilities are not

required in everyday use at all, the corresponding module can be omitted in order to

save space and money. Furthermore, individual modules can be improved on without

affecting the operation of the rest of the platform.

Evidently, this high degree of flexibility is only useful if coupled with equally modular

software. The concept of separating the description of the physical layout of the

platform from the synthetic operations allows the experimenter to script operations

in a way that is very similar to how synthetic procedures are reported in the

literature, and which is familiar to practising chemists. Furthermore, it enables the

user to execute a synthesis developed on one platform to be performed on another

platform, even if the employed hardware and the layout of the platform are very

different. This innate portability could potentially benefit the larger community, as

syntheses can be curated and distributed online, version controlled, or even

developed collaboratively between multiple contributors in a fashion similar to open

source coding projects.

 CONCLUSIONS AND FUTURE WORK

 213

Hopefully this work is just the beginning. The successful proof of principle herein

demonstrated opens many avenues for further development in the areas of

hardware, unit operations, software, and chemistry. In terms of hardware, one of the

most pressing issues is the continued development (or replacement) of the pumps

and valves. As mentioned earlier, the control boards urgently need attention. The

valves would benefit from a new type of valve head which is more resistant to

chemical attack. The reliability of the pumps could be improved by adding position

sensing and stall detection.

Yet, for all the shortcomings of the pumps and valves, the idea of a single interface

standard for lab equipment is worth exploring further. Power over Ethernet will likely

not be the technology used as it only delivers DC voltage at one level and relatively

low wattage. Trying to power a hotplate stirrer through PoE is likely futile. However,

a novel interfacing standard providing data communication, a DC source capable of

delivering variable voltages of 5-48 V based on negotiation, and a 230 V AC source

capable of delivering around 10 A combined in one cable, fitted with ATEX compliant

connectors, could replace the conventional power lead. A fume hood could feature

a built-in data hub and power supply servicing a number of outlets for this new

standard. The entire fume hood could be connected to a PC, or contain a computer

itself, allowing the experimenter to control the equipment safely from outside via for

example a touch screen. If the communication protocol is standardised as well and if

equipment manufacturers start using this interface, such an intelligent fume hood

would unlock a wide range of possibilities.

Regarding the unit operation level, there are two fundamental directions for

improvements. One is the development of entirely new modules. Here, one of the

most useful additions would definitely be a solid handler. This work focused on

reactions that used liquid or dissolved reagents, and solids were charged by hand at

the beginning. While this is not a tremendous limitation, the ability of adding solids

automatically would be valuable. Unfortunately, constructing a contraption that

works for a wide range of solids under a wide range of conditions is not a

straightforward task. Preliminary tests were performed on a very simplistic solution

with very limited success. Other desirable capabilities include a module for the

 CONCLUSIONS AND FUTURE WORK

 214

introduction of gases such as hydrogen, a chromatography module, or the addition

of flow reactors.

Regarding the improvement of the existing modules, several ideas come to mind.

First of all, an improved washing system could be beneficial. The current mode of

pumping solvents into and out of the modules using the Backbone is slow and does

not always reach all internal surfaces. A separate system for cleaning could utilise

reduced pressure and solenoid valves similar to systems reported in the literature,

and nozzles shaped to direct the solvent onto the inner walls. The reduced pressure

could then also be used for drying the modules.

The reactor module in its current form could feasibly be replaced by a jacketed glass

reactor with an overhead stirrer and a bottom drain valve. Such reactors are

commercially available from a number of manufacturers and would offer superior

temperature control and agitation. The bottom drain valve would also make

emptying it easier. Feasibly, a system like MettlerToledo’s OptiMax111 could be

integrated with the overall architecture and replace the current pear shaped flask.

Using common laboratory glassware has its merits, but so does using appropriate

technical solutions.

The rotary evaporator in its current form is working well, but the inability to perform

evaporations autonomously under sensor control is a clear limitation. Appropriate

sensors could be developed in house, or existing solutions could be adapted. Büchi,

for example, offers a solution capable of fully autonomous distillation159 which has

even been evaluated in the course of this project, but an agreement for joint

development could not be reached.

Furthermore, all current modules would greatly benefit from liquid level sensors. The

current dead reckoning approach to volume tracking works reasonably well, but real

time feedback would in any case be preferable.

The software in its current form is at a relatively completed state and running stable.

All major components perform satisfactorily, so any development here would be

focused on details. One aspect which could potentially be improved is the ChASM.

While it has enabled us to automate those syntheses, it is still a relatively limited

 CONCLUSIONS AND FUTURE WORK

 215

language. Developing it into a complete scripting language or replacing it with a more

adequate solution will become necessary at some point in the future.

Perhaps the largest potential for future work is in the chemistry. More and different

syntheses should be performed on the platform, and the library of standard

operating procedures should be expanded. For this work three active pharmaceutical

ingredients were chosen merely because their syntheses were well described and

reproducible. However, any small molecule could and should be made using the

platform. Furthermore, the iterative syntheses described in chapter 1 could all be

feasibly performed by the platform as well. While dedicated synthesisers will likely

always outperform such a general setup in their own class, being able to perform

peptide, DNA, RNA, and oligosaccharide synthesis as well as iterative cross coupling

AND general small molecule synthesis in one setup would be of great value to

laboratories with broader interests or constrained budgets.

To summarise, the author truly believes this platform could become a transformative

enabling tool in synthetic chemistry, boosting the productivity of bench chemists,

increasing lab safety and greatly improving reproducibility, finally advancing the field

of synthetic chemistry into the 21st century.

 CONCLUSIONS AND FUTURE WORK

 216

 EXPERIMENTAL

 217

EXPERIMENTAL

9 CHEMICALS AND INSTRUMENTATION

Solvents and reagents were used as received from commercial suppliers unless

otherwise stated. Magnesium grit was activated prior to use by heating to 150 °C

under a gentle stream of argon for 15 minutes. All NMR measurements were

performed with a Bruker Avance III HD 600 spectrometer operating at 600.1 and

150.9 MHz for 1H and 13C, respectively. Unless otherwise noted, the samples for NMR

experiments were prepared in CDCl3. Spectra were collected at 298 K, and chemical

shifts are reported in ppm relative to TMS (1H) or residual solvent (13C) (multiplicities

are given as s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet, with coupling

constants reported in Hz). The spectra were processed with the Bruker Topspin 3.5

software package.

HRMS was analysed on a Fusion Lumos Orbitrap (Thermo, San Diego, CA, USA) by

direct infusion at a flow rate of 5ul/min. MS1 Data was acquired at an Orbitrap

resolution of 120000. The heated electrospray ion source was heated to 350°C with

3.5 kV applied to the emitter. A total of 10 MS1 scans were acquired per compound.

Raw data files were converted to text files using MS Convert.160

In the automated syntheses, liquids were transferred at 50 mL/min unless stated

otherwise. Volatile liquids like diethyl ether were aspirated at 20 mL/min to avoid

cavitation, and then moved at 50mL/min unless stated otherwise. Precise rates for

every step can be found in the code used (available from the Cronin Group upon

request).

 EXPERIMENTAL

 218

10 COMPUTER CONTROLLED INSTRUMENTATION

The following paragraphs describe the hardware modules used in the various

platforms in their most recent configuration. For previous versions, development

history, and design rationale refer to chapter 6.

10.1 REACTOR MODULE

The reactor (Figure 87) consists of a commercially available two-necked, pear-shaped

flask (DIN 12383) equipped with a CondenSyn air condenser (Asynt Ltd. UK) or a

Findenser waterless condenser (Radleys, UK). Heating and stirring is accomplished

using an IKA RET® control-visc computer controllable stirrer hotplate (IKA® Werke

GmbH & Co. KG, Germany) and a custom manufactured aluminium heating block for

the pear-shaped flask. A 1/8” O.D. PTFE tube is held in place by a ground glass joint

to GL18 thread adapter with a GL18 screw cap and insert (DURAN GROUP, Germany)

so that its end reaches the bottom of the flask. A slight argon overpressure is

maintained by the inert gas system (see chapter 10.5).

For the sildenafil synthesis, cooling of the reactor is required as well. To that end, a

DrySyn SnowStorm ONE (Asynt Ltd. UK) and a 250 mL round bottomed flask are used.

In conjunction with a recirculation chiller the DrySyn SnowStorm offers a

temperature range of -30°C to 160°C and allows precise temperature control of the

reactor.

 EXPERIMENTAL

 219

Figure 87: Photo of the reactor module.

 EXPERIMENTAL

 220

10.2 AUTOMATED LIQUID/LIQUID EXTRACTION MODULE

The conductivity sensor consists of two lengths of 304 stainless steel tubing

(1/8” O.D., 2.1mm I.D., Supelco Analytical), and an assortment of standard fluidic

fittings and unions. An exploded view and a bill of materials can be found in appendix

II. The sensor is connected to a custom-made separating funnel with a B45 ground

glass joint at the top and two B14 side arms. Instead of a tap it has a glass ¼-28 UNF

male threaded connector fitted to the bottom. An Arduino Due is used to read the

sensor via a simple voltage divider circuit. A 1/8” O.D. PTFE tube is suspended by a

ground glass joint to GL18 thread adapter with a GL18 screw cap and insert (DURAN

GROUP, Germany). To facilitate efficient extractions through thorough mixing, a

computer controlled overhead stirrer (Heidolph RZR2052 control by Heidolph

Instruments GmbH & CO. KG, Germany; or IKA microstar 7.5 control by IKA® Werke

GmbH & Co. KG, Germany) with a PTFE stirrer shaft and blade is fitted above the

separator. A three-necked round bottomed flask with a tube fitted with a GL18 screw

cap and insert (DURAN GROUP, Germany) is suspended over an IKA RET® control-visc

computer controllable stirrer hotplate (IKA® Werke GmbH & Co. KG, Germany) as

holding vessel.

 EXPERIMENTAL

 221

Figure 88: Photo of the liquid/liquid extraction module ALLEX.

 EXPERIMENTAL

 222

10.3 SOLVENT EVAPORATION MODULE

For the solvent evaporation, a computer controllable IKA RV 10 digital rotary

evaporator with HB 10 heating bath (both IKA® Werke GmbH & Co. KG, Germany)

and a computer controllable MD1C vario PLUS vacuum pump with CVC3000 vacuum

controller (Vacuubrand GmbH & Co. KG, Germany) is modified by routing a piece of

PTFE tubing through the vapour duct into the evaporation flask to pump product into

and out of the flask. The receiver flask is fitted with a glass ¼-28 UNF male threaded

connector and a PTFE tube (via a straight union piece and a VitonTM O ring), allowing

it to be emptied in situ. A magnetic stirrer bar (COWIE Technology, UK) is affixed to

the tube using PTFE shrink wrap. A neodymium magnet (first4magnets, UK) is

mounted to a support rod, which in turn is mounted directly into the base of the

rotary evaporator. To that end, an M10 hole is drilled and tapped into the die-cast

aluminium base plate. The magnet is positioned above the magnetic stirring bar, so

it lifted the inlet tube when the flask is lifted up (Figure 42).

Figure 89: Photo of the solvent evaporation module.

 EXPERIMENTAL

 223

10.4 FILTRATION MODULE

The filtration unit consists of a custom-made sintered glass Büchner funnel (made in-

house, see Figure 50 and appendix II) fitted with a B29 ground glass joint at the top,

a B14 side arm, and a glass ¼-28 UNF male threaded connector at the bottom. The

top inlet tube is suspended by a ground glass joint to GL18 thread adapter with a

GL18 screw cap and insert (DURAN GROUP, Germany) while the bottom outlet tube

is connected to the threaded connector with a straight union piece and a VitonTM O-

ring. The top B29 joint is fitted with a cone to tubing adapter connected to the inert

gas system (see chapter 10.5). The filter is suspended over an IKA RET® control-visc

computer controllable stirrer hotplate (IKA® Werke GmbH & Co. KG, Germany) to

allow magnetically stirring the contents. To ensure efficient magnetic coupling, the

bottom outlet tube is bent at 90°, thus minimising the distance between the glass frit

and hotplate stirrer. A jacketed version of the filter module is used when heating or

cooling the content is required. In that case, the magnetic stirrer is replaced with a

computer controllable overhead stirrer (Heidolph RZR2052 control by Heidolph

Instruments GmbH & CO. KG, Germany; or IKA microstar 7.5 control by IKA® Werke

GmbH & Co. KG, Germany). The jacketed version is fitted with two B14 sidearms, one

for the inlet tube as described above, and the other for the inert gas.

To allow efficient drying of the precipitate, the bottom outlet of the filter is

connected to the central inlet of a six-way valve. One outlet of that valve is in turn

connected to the Backbone, while another outlet is connected to the laboratory

vacuum system via a Woulff bottle (assembled from a 250 mL GL 45 pressure plus+

bottle, a GL connection system bottle top, a GL14 screw cap and insert, and a GL14

barbed hose connector, all from DURAN GROUP, Germany). This allows the user to

switch the filter bottom between the Backbone (for liquid addition or withdrawal)

and vacuum (for drying).

 EXPERIMENTAL

 224

Figure 90: Photo of the filtration module.

 EXPERIMENTAL

 225

10.5 INERT GAS SYSTEM

To supply inert gas to the various parts of the system in a modular fashion, a

distribution system was assembled from pneumatic fittings and hoses. A pneumatic

flow regulator (SMC Corporation, Japan) controls the flow of argon from the

laboratory supply into a pneumatic manifold with two inlets and ten outlets (SMC

Corporation, Japan). The outlet ports are fitted with non-return valves to avoid any

cross-contamination. Those valves can then either be fitted with a barbed hose

connector to connect reagent bottles to the inert gas supply or plugged shut if not in

use. The second inlet is used as an outlet as well and fitted with a non-return valve.

This valve is fitted with a barbed hose connector and subsequently connected to the

inlet of an overpressure bubbler (Chemglass Life Sciences, USA). The outlet of the

bubbler is connected to the top of the reactor and/or filter module, while the exhaust

port is routed into the fume hood extract. A schematic and bill of materials can be

found in appendix II.

Figure 91: Inert gas system. Left: complete view. Middle: detail view of the bubbler.
Right: detail view of the manifold for the reagent bottles.

 EXPERIMENTAL

 226

10.6 REAGENT STORAGE SYSTEM

All solvents and reagents are stored in 100 mL or 250 mL GL45 bottles (Fisherbrand,

Fisher Scientific UK Ltd.) fitted with GL connection system bottle tops

(DURAN GROUP, Germany), providing two GL14 threaded ports. A 1/8” O.D. PTFE

tube is fitted into one port with a GL14 screw cap and insert (DURAN GROUP,

Germany). For air sensitive materials the second port is fitted with another GL14

screw cap and insert (DURAN GROUP, Germany) and a polypropylene diaphragm

check valve (Cole-Parmer Instrument Company, LLC; UK) which is connected to the

inert gas system (see chapter 10.5) via silicone rubber or VitonTM tubes, maintaining

a slight argon overpressure inside the bottle. To avoid bottles toppling over,

hexagonal brackets with feet were designed and 3D printed. The brackets are

mounted onto the bottles and held in place by friction. Small magnets are fitted into

the sides allowing individual hexagons to be assembled into an orderly, modular rack

holding the bottles in place.

 EXPERIMENTAL

 227

Figure 92: Reagent storage bottle. The left (black) tube is connected to the inert gas
system, the right (white) tube to the Backbone.

 EXPERIMENTAL

 228

 EXPERIMENTAL

 229

11 SYNTHESIS AND CHARACTERISATION OF COMPOUNDS

11.1 DIPHENHYDRAMINE HYDROCHLORIDE

11.1.1 DIPHENYLMETHANOL (4)

Manual:

A 250 mL round bottomed flask was charged with magnesium grit (2.5047 g,

103.1 mmol) and diethyl ether (40 mL). A dropping funnel was charged with

bromobenzene (11 mL, 103.3 mmol), and a small portion was added to the

magnesium grit under stirring. Once the Grignard formation was initiated, the rest of

the bromobenzene was added over the course of half an hour, maintaining gentle

reflux. The dropping funnel was flushed with a small amount of diethyl ether and the

reaction mixture was heated to reflux for half an hour.

After cooling to room temperature, a solution of benzaldehyde (10.542 g,

99.3 mmol) in 50 mL of diethyl ether was slowly added to the reaction over the

course of 20 min. After the addition was complete, the dropping funnel was flushed

with a small amount of diethyl ether and the mixture was heated to reflux for four

hours.

The reaction was subsequently put on an ice bath and quenched with dilute

hydrochloric acid (2 M, 100 mL). The layers were separated, the organic layer was

washed with 100 mL of water and evaporated to dryness, yielding 17.85 g (98%) of

crude diphenylmethanol as yellow solid.

Crude 1H and 13C NMR spectra were in agreement with those reported in the

literature.

 EXPERIMENTAL

 230

Automated:

The reactor flask was charged manually with magnesium grit (2.50 g, 102.7 mmol)

and automatically with diethyl ether (40 mL). Bromobenzene (neat, 2.95 g, 2.0 mL,

18.8 mmol) was added under stirring, followed by diethyl ether (10 mL) to ensure

quantitative transfer. The mixture was heated to reflux (50°C) and stirred for 20

minutes to initiate the Grignard formation.

After cooling below 25°C the rest of the bromobenzene (12.75 g, 8.65 mL,

81.2 mmol) was added slowly (1 mL/min) under stirring, followed by another portion

of diethyl ether (10 mL) to ensure quantitative transfer. The mixture was then stirred

for 20 minutes at room temperature followed by 20 minutes at reflux (50°C).

After the Grignard formation was finished, benzaldehyde (2 M in diethyl ether,

50 mL, 0.1 mol) was added slowly (1 mL/min). The mixture was then held at reflux

and stirred for 5 hours.

After the reaction cooled below 30°C, saturated ammonium chloride solution (30 mL)

was added under vigorous stirring. After successful quench the mixture was diluted

with 20 mL of 2 M hydrochloric acid and stirred for 15 minutes. The layers were

separated and the organic layer was washed with water, transferred to the rotary

evaporator and concentrated in vacuo (700 mbar, 30 minutes), yielding crude

diphenylmethanol as a yellow solid.

Crude 1H and 13C NMR spectra were in agreement with those reported in the

literature.

 EXPERIMENTAL

 231

11.1.2 BROMODIPHENYLMETHANE (5)

Manual:

A 250 mL round bottomed flask was charged with crude diphenylmethanol (17.85 g,

97 mmol), acetyl bromide (16 mL, 216 mmol), and toluene (125 mL) and the mixture

was heated to reflux for 4 hours. After cooling to room temperature, the mixture was

concentrated in vacuo, yielding crude bromodiphenylmethane (24.16 g, 101%) as

brown oil.

Crude 1H and 13C NMR spectra were in agreement with those reported in the

literature.

Automated:

The reactor flask was charged automatically with acetyl bromide (14.83 g, 8.94 mL,

120.6 mmol) and the lines were cleaned with toluene (3x) and air (1x). The crude

diphenylmethanol remaining in the rotary evaporator flask (15.88 g, 86.2 mmol) was

transferred to the reactor flask with three portions of toluene (20; 10 and 5 mL) and

the mixture was heated to reflux (130°C) for 4 hours.

Upon completion of the reaction the mixture was transferred to the rotary

evaporator with two portions of toluene (10 mL) and concentrated in vacuo, yielding

crude bromodiphenylmethane as brown oil.

Crude 1H and 13C NMR spectra were in agreement with those reported in the

literature.

 EXPERIMENTAL

 232

11.1.3 2-(DIPHENYLMETHOXY)-N,N-DIMETHYLETHANAMINE (DIPHENHYDRAMINE) (6)

Manual:

A 250 mL round bottomed flask was charged with crude bromodiphenylmethane

(24.16 g, 98 mmol), 2-(dimethylamino)ethanol (12.5 mL, 124 mmol), and toluene

(50 mL) and the mixture was heated to reflux for 18 hours.

After cooling to room temperature, the reaction was quenched with aqueous sodium

hydroxide solution (4M, 25 mL) and water (25 mL). The layers were separated, and

the organic layer was extracted with three portions of dilute hydrochloric acid (2M,

3x 20 mL) and water (3x 20 mL). Aqueous sodium hydroxide solution (4M, 50 mL)

was added to the combined aqueous layers, and the resulting mixture was extracted

three times with diethyl ether (3x 20 mL).

The combined etheric layers were concentrated in vacuo, yielding the title compound

(22.5 g, 90%) as brown oil.

Crude 1H and 13C NMR spectra were in agreement with those reported in the

literature.

 EXPERIMENTAL

 233

Automated:

The reactor flask was charged automatically with 2-(dimethylamino)ethanol

(12.43 mL, 11.02 g, 123.6 mmol, 20 mL/min) and toluene (10 mL). The crude

bromodiphenylmethane remaining in the rotary evaporator flask (20.36 g,

82.4 mmol) was transferred to the reactor flask with three portions of toluene (15;

10 and 10 mL) and the mixture was heated to reflux (130°C) for 20 hours.

Upon completion of the reaction the reaction mixture was allowed to cool below

40°C and diluted with toluene (25 mL). Aqueous sodium hydroxide (4 M, 25 mL) was

added and the mixture was stirred for 15 minutes.

The layers were separated and the organic layer was extracted with three portions

of hydrochloric acid (2 M, 3x 20 mL). The aqueous layers were combined, the organic

layer was discarded.

Subsequently sodium hydroxide solution (4 M, 50 mL) was added to the combined

aqueous layers under vigorous stirring. The alkaline aqueous layer was then

extracted with three portions of diethyl ether (3x 20 mL).

The combined etheric layers were transferred to the rotary evaporator and

concentrated in vacuo, yielding crude diphenhydramine as brown oil.

Crude 1H and 13C NMR spectra were in agreement with those reported in the

literature.

 EXPERIMENTAL

 234

11.1.4 2-(DIPHENYLMETHOXY)-N,N-DIMETHYLETHANAMINE HYDROCHLORIDE (1)

Manual:

A 250 mL round bottomed flask was charged with hydrogen chloride in diethyl ether

(2M, 45 mL). A solution of 2-(diphenylmethoxy)-N,N-dimethylethanamine (22.54 g,

88 mmol) in diethyl ether (60 mL) was added slowly. The resulting precipitate was

stirred for one hour and collected by filtration.

The crude product was slurried in 2-propanol (120 mL), heated to 70°C, and stirred

until fully dissolved. The mixture was then slowly cooled to room temperature and

the product was allowed to crystallise. Subsequently the mixture was kept at -20°C

overnight to ensure complete crystallisation.

The solid was collected by filtration, washed with one portion of cold 2-propanol, and

dried in vacuo, yielding the title compound as off-white powder (19.80 g, 77% for the

hydrochloride precipitation only; or 68% over all four steps, corresponding to an

average yield of 91% per step).

 EXPERIMENTAL

 235

Automated:

The dead volume of the filter module was filled with diethyl ether from the bottom.

Then the top of the filter was charged with etheric hydrochloric acid (2 M, 41.20 mL,

82.4 mmol). The crude diphenhydramine remaining in the rotary evaporator flask

(14.03 g, 82.4 mmol) was transferred to the filter with three portions of diethyl ether

(3x 20 mL) under stirring, slowly dripping it into the acid. The hydrochloride was

allowed to crystallise for 30 minutes, and the solvent was subsequently removed via

the bottom port. The product was then dried in vacuo, yielding crude

diphenhydramine hydrochloride as pale-yellow solid.

Crude 1H and 13C NMR spectra were in agreement with those reported in the

literature.

The crude product was automatically recrystallized from isopropanol (110 mL). The

isopropanol was added through the bottom port and the suspension was heated to

60°C, yielding a clear, yellow solution. The solution was then slowly cooled to 30°C

under stirring, at which point the pure product crystallized. The filter was then cooled

to -20°C, and the suspension was stirred for another five minutes. Then the stirring

was stopped, and the supernatant solution was withdrawn through the bottom port.

The solid was washed with isopropanol (50 mL) at -20°C and dried under argon flow

at 60°C for 15 minutes, yielding the title compound (16.85 g, 58% over four steps,

corresponding to an average yield of 87% per step) as white, crystalline powder.

1H NMR (600 MHz, DMSO-d6) δ 10.87 (s(br), 1H), 7.43 (d, 4H, J = 7.32 Hz), 7.34

(t, 4H, J = 7.65 Hz), 7.26 (t, 2H, J = 7.35 Hz), 5.56 (s, 1H), 3.72 (t, 2H, J = 5.04 Hz),

3.33 (t, 2H, J = 4.95 Hz), 2.76 (s, 6H).

13C NMR (151 MHz, DMSO-d6) δ 141.86, 128.37, 127.43, 126.59, 82.85, 62.89,

55.70, 42.55.

HRESI-MS: [C17H22NO]+ calculated 256.1696 found 256.1685.

 EXPERIMENTAL

 236

11.2 RUFINAMIDE

11.2.1 1-[(2,6-DIFLUOROPHENYL)METHYL]-1H-1,2,3-TRIAZOLE-4-CARBOXAMIDE (RUFINAMIDE) (2)

Manual:

A 100 mL round bottom flask was charged with 2,6-difluorobenzyl bromide (2.5 g,

12.0 mmol) and sodium azide (0.845 g, 13.0 mmol, solution in 25 mL of water). The

mixture was heated to 70-75°C overnight. The formation of the product can be

monitored by TLC using n-hexane as an eluent. After 12 h TLC showed complete

conversion of the starting material. The reaction mixture was cooled to room

temperature, methyl propiolate (1.07 mL, 12 mmol) was added, and the mixture was

heated to 60-65°C. After 4h TLC (n-hexane / AcOEt 1:1) indicated complete

conversion of the azide to triazole. A yellowish precipitate of the product can be also

observed. After cooling to room temperature, ammonia (25% in water, 20 mL) was

added and the mixture was heated to 75°C for 12 h. After cooling to room

temperature, the product was filtered off, washed with water, and dried in vacuo at

75°C, yielding the title compound (1.11 g, 38%) as a white precipitate.

 EXPERIMENTAL

 237

Automated:

The reactor flask was charged with 2,6-difluorobenzylbromide (7.5 g, 39 mmol), the

tubing to the sodium azide bottle was primed with sodium azide solution (10.12 g in

240 mL of water), and sodium azide solution (60 mL, 39 mmol) was added to the

reactor. After the addition was complete, the Backbone was cleaned with two

portions of water. The reaction mixture was stirred and heated to 75°C for 12 h, and

then allowed to cool below 30°C. The bottom inlet of the filtration module was

primed with 15 mL of water, and the reaction mixture was transferred to the

filtration module. After priming the inlet tubing, methyl propiolate (3.21 mL,

36 mmol) was added. The mixture was stirred and heated to 65°C for 4 h. After

cooling to 30°C, another portion of water (15 mL) was pumped into the bottom inlet

of the filtration module to purge the frit and prevent precipitation. Aqueous

ammonia (25%, 60 mL) was added to the stirred reaction mixture at 20 mL/min. The

reaction mixture was then heated to 75°C for 12 hours, followed by cooling to 30°C.

The precipitate formed was subsequently filtered off by removing the supernatant

solution through the bottom port at 5 mL/min.

The precipitate was washed with water (3x 20 mL) and dried in vacuo at 75°C for

4 hours. After cooling to room temperature, pure Rufinamide (46 ± 4 %, see Table 4)

was obtained as a white powder.

1H NMR (600 MHz, DMSO-d6) δ 8.55 (s, 1H), 7.84 (s, 1H), 7.55 – 7.49 (m, 1H),

7.47 (s, 1H), 7.19 (t, J = 8.0 Hz, 2H), 5.72 (s, 2H).

13C NMR (151 MHz, DMSO-d6) δ 161.28, 160.80 (dd, J = 249.5, 7.4 Hz), 142.83,

131.83 (t, J = 10.5 Hz), 126.78, 111.97 (dd, J = 20.5, 4.4 Hz), 111.04 (t, J = 19.1 Hz),

41.20 (t, J = 3.8 Hz).

HRESI-MS: [C10H8F2N4O+Na]+ calculated 261.0558 found 261.0557.

 EXPERIMENTAL

 238

11.3 SILDENAFIL

11.3.1 5-CHLOROSULFONYL-2-ETHOXYBENZOIC ACID (9)

Manual:

2-Ethoxybenzoic acid (7.53 mL, 50 mmol) was added to a mixture of thionyl chloride

(3.66 mL, 50.18 mmol) and chlorosulfonic acid (13.74 mL, 206.7 mmol) while cooled

on an ice-bath. The resulting solution was stirred over night at room temperature

before it was quenched in 110 mL of ice-cooled water. The formed precipitate was

stirred for 1h, filtered off, and washed with little cold water, yielding the title

compound as white powder. A small aliquot was dried in vacuo to estimate the yield

(12.01 g, 45.4 mmol, 90%).

 EXPERIMENTAL

 239

Automated:

To dry the Backbone, it was flushed with 10 mL of chlorosulfonic acid. The reactor

flask was cooled to 15°C and charged with chlorosulfonic acid (10.31 mL,

154.96 mmol) and thionyl chloride (2.75 mL, 37.70 mmol). To this mixture

2-ethoxybenzoic acid (5.65 mL, 37.57 mmol) was added slowly (0.5 mL/min) which

was flushed into the reactor with further chlorosulfonic acid (4 mL). The reaction was

stirred for 30 min at 15°C, after which it was stirred for 12 hours at room

temperature. The dead volume beneath the sinter plate was filled with 25 mL of

water. Subsequently, the jacketed filter flask was filled with 31.5 mL of water from

the bottom and allowed to equilibrate to 0.5 °C for 20 min. After flushing the

Backbone with further chlorosulfonic acid, the reaction mixture from the reactor

flask was transferred slowly (2 mL/min) to the filter flask to be quenched under

vigorous stirring. After completion of the quench, the precipitate was crystallised for

1 hour, isolated by filtration and washed with two portions of water (8 mL). The title

compound was obtained as a wet, white powder which was directly used in the next

step without purification.

Crude 1H and 13C NMR spectra were in agreement with those reported in the

literature.

 EXPERIMENTAL

 240

11.3.2 2-ETHOXY-5-(4-METHYL-1-PIPERAZINESULFONYL)BENZOIC ACID (10)

Manual:

Wet 5-chlorosulfonyl-2-ethoxybenzoic acid (11.8 g dry calculated, 44.6 mmol)

obtained from the previous step was suspended in 40 mL of water and placed in an

ice bath. N-methylpiperazine (11.4 mL, 102.8 mmol) was added and the reaction was

stirred for 5 min. After seeding with a little bit of product, the solution turned cloudy.

The precipitate was stirred for 2h at 0 °C, collected by filtration, washed with cold

water and dried in vacuo, yielding the title compound as white powder (10.08 g, 30.7

mmol, 69%).

 EXPERIMENTAL

 241

Automated:

The dead volume beneath the sinter plate was filled with 25 mL of water and the wet

precipitate of the previous step was suspended in water (31 mL, 0.5°C).

N-Methylpiperazine (8.634 mL, 77.8 mmol) was added slowly (0.5 mL/min). Residues

were flushed in with water (1 mL). The ensuing clear solution was seeded with a

suspension of product in water (4 mL, 3 w% in HPLC grade water) after 5 min. The

solution turned turbid after one minute and the solid was filtered off after 2 hours of

stirring at 0.5°C. The precipitate was heated for 10 min to 35°C to hydrolyse residual

starting material. After cooling back to 0.5°C the product was washed twice with

water (6 mL) and dried under a stream of argon (6 hours, 50°C) to yield a white

powder (8.996 g, 27.4 mmol, 73% over step one and two).

1H NMR (600 MHz, DMSO-d6): δ 7.89 (d, J = 2.3 Hz, 1H), 7.81 (dd, J = 8.8 Hz,

2.3 Hz, 1H), 7.34(d, J = 8.9 Hz, 1H), 4.21 (q, J = 6.9 Hz, 2H), 2.87 (s(br), 3.7H), 2.38

(s(br), 3.7H), 2.15 (s, 3H), 1.36 (t, J = 6.9 Hz, 3H).

13C NMR (151 MHz, DMSO-d6): δ 166.1, 160.5, 132.3, 130.0, 125.7, 122.2, 113.9,

64.7, 53.4, 45.6, 45.2, 14.3.

HRESI-MS: [C14H20N2O5S+H]+ calculated 329.1166 found 329.1155

 EXPERIMENTAL

 242

11.3.3 4-[2-ETHOXY-5-(4-METHYL-1-PIPERAZINYLSULFONYL)BENZAMIDO]-1-METHYL-3-PROPYL-1H-

PYRAZOLE-5-CARBOXAMIDE (12)

Manual:

Dry DCM (50 mL) was added to 2-Ethoxy-5-(4-methyl-1-piperazinesulfonyl)-benzoic

acid (10.01 g, 30.05 mmol). The suspension was put on an ice bath and thionyl

chloride (2.67 mL, 36.8 mmol) was slowly added. Subsequently, catalytic amounts of

N,N-dimethylformamide (0.09 mL, 1 mmol) were added and the mixture was stirred

overnight at 25°C.

A solution of 4-amino-1-methyl-3-n-propyl-1H-pyrazole-5-carboxamide (5.278 g,

28.96 mmol) in dry DCM (54 mL) was put on an ice-bath and triethylamine (17.1 mL,

122.7 mmol) was added. The acid chloride solution was added dropwise and reacted

for 30 min. After warming the mixture to 25°C and stirring overnight it was quenched

and washed with water (90 mL). The organic layer was dried over magnesium sulfate

and the solvent removed in vacuo to give a slightly brownish solid (13.5155 g,

27.44 mmol, 90%).

 EXPERIMENTAL

 243

Automated:

The involved parts of the Backbone and the dead volume of the filter flask were

flushed with little thionyl chloride and DCM for drying. The dead volume beneath the

sinter plate was filled with 25 mL of dry DCM. The sulfonamide in the filter module

was suspended in dry DCM (22 mL) pumped into the filter from the bottom. At 5°C

thionyl chloride was added (2.68 mL, 4.37 g, 36.7 mmol) very slowly (0.5 mL/min)

and flushed in with further DCM (2 mL) to prevent reaction with DMF. DMF was

added in catalytic amounts (0.09 mL) followed by DCM (2 mL) to ensure quantitative

transfer. The mixture was then stirred for 5 hours at 25°C. After drying the Backbone

with little thionyl chloride and DCM again, the reactor was charged with

triethylamine (5 mL, 35.9 mmol) followed by a 0.5 M solution of 4-amino-1-methyl-

3-n-propyl -1H- pyrazole-5-carboxamide in DCM (57 mL, 28.5 mmol), cooled to 10°C

and basified with triethylamine (17.2 mL, 123.4 mmol). The crude acid chloride

solution was added slowly (0.5 mL/min) and under stirring to the basified pyrazole

solution. Upon completion of the transfer, the mixture was warmed to 25°C and

stirred for 16 hours. Water (84 mL) was added for quenching after cooling back to

10°C and the mixture was stirred for 10 min. DCM (50 mL) was added to ensure

complete dissolution of products. The phases were separated, and the organic phase

dried over activated molecular sieve, which was washed twice with DCM (10 mL) to

ensure quantitative transfer. The combined organic phases were evaporated to

dryness (700 mbar, 45 min followed by full vacuum, 45 min) to yield a yellow-greyish

solid. (12.2365 g, 24.78 mmol, 91%).

1H NMR (600 MHz, CDCl3): δ 9.26 (s(br), 1H), 8.63 (d, J = 2.3 Hz, 1H), 7.91 (dd, J =

8.7 Hz, 2.3 Hz, 1H), 7.67 (s(br), 1H), 7.17 (d, J = 8.8 Hz, 1H), 5.64 (s(br), 1H), 5.30

(s, 0,2H), 4.39 (q, J = 7.0 Hz, 2H), 4.06 (s, 2.8H), 3.06 (s(br), 4H), 2.54 (t, J = 7.6 Hz, 2H),

2.49 (s(br), 4H), 2.27 (s, 3H), 1.66 (m, 2H), 1.59 (t, J = 7.0 Hz, 3H), 1.3 (t, 0.4H) 0.95 (t,

J = 7.4 Hz, 3H).

13C NMR (151 MHz, CDCl3): δ 165.0, 161.5, 160.2, 146.9, 133.8, 133.2, 133.1, 128.8,

120.9, 115.2, 113.0, 66.3, 54.1, 46.2, 45.8, 39.4, 27.8, 22.5, 14.8, 14.1

HRESI-MS: [C22H32N6O5S+H]+ calculated 493.2228 found 493.2215.

 EXPERIMENTAL

 244

11.3.4 1-[4-ETHOXY-3-(6,7-DIHYDRO-1-METHYL-7-OXO-3-PROPYL-1H-

PYRAZOLO[4,3-D]PYRIMIDIN-5-YL)PHENYLSULFOYL]-4-METHYLPIPERAZINE

(SILDENAFIL) (3)

Manual:

4-[2-Ethoxy-5-(4-methyl-1-piperazinylsulfonyl)-benzamido]-1-methyl-3-propyl-1H-

pyrazole-5-carboxamide (13.32 g, 27.04 mmol) was added to a 0.5 M solution of

tBuOK in tBuOH (64.95 mL, 1.2 eq) and the mixture was heated to reflux for 8 hours.

After cooling to room temperature 67.6 mL of water were added, followed by

dropwise addition of 67.5 mL of dilute HCl (0.447 M, 30.2 mmol) over 2 hours. The

precipitated product was stirred and allowed to crystallise at pH 7 on an ice-bath for

another hour. The title compound was filtered off, washed with cold water, and dried

under reduced pressure to yield a white solid (11.262 g, 23.7 mmol, 88%).

 EXPERIMENTAL

 245

Automated:

The Backbone was flushed with little tBuOK in tBuOH (0.5 M) to remove traces of

water. The crude carboxamide (12.1365 g, 24.6 mmol) was transferred from the

rotary evaporator flask to the reactor with one portion of tBuOK in tBuOH (53.5 mL,

0.5 M, 1.1 eq.) at 60°C and held at reflux (105°C) for 8 hours. The dead volume

beneath the sinter plate was filled with 25 mL of water. After cooling to 10°C the

solution was quenched with water (55.5 mL) and transferred to the filter flask. At

10°C, a dilute solution of HCl (54.83 mL, 0.447 M, 1 eq.) was added dropwise

(0.5 mL/min). The resulting suspension was stirred for 60 min, filtered off, washed

twice with water (10 mL) and dried under a stream of argon (6 hours, 50°C). A

yellowish powder was obtained (8.2 g, 70%, 46% overall yield).

1H NMR (600 MHz, CDCl3): δ 10.91 (s(br) 1H), 8.83 (d, J = 2.4 Hz, 1H), 7.84 (dd, J =

8.7 Hz, 2.4 Hz, 1H), 7.15 (d, J = 8.8 Hz, 1H), 4.37 (q, J = 7.0 Hz, 1H), 4.27 (s, 3H), 3.11

(s(br), 4H), 2.93 (t, J = 7.6 Hz, 2H), 2.50 (m (br), 4H), 2.27 (s, 3H), 1.86 (hex, J =

7.4 Hz, 2H), 1.65 (t, J = 7.0 Hz, 4H), 1.02 (t, J = 7.4 Hz, 3H).

13C NMR (151 MHz, CDCl3): δ 159.4, 153.8, 147.2, 146.5, 138.5, 131.8, 131.3, 129.2,

124.7, 121.2, 113.2, 66.2, 54.2, 46.1, 45.9, 38.4, 27.9, 22.4, 14.7, 14.2.

HRESI-MS: [C22H30N6O4S+H]+ calculated 475.2122 found 475.2112.

 EXPERIMENTAL

 246

 REFERENCES

 247

REFERENCES

1. Ley, S. V.; Fitzpatrick, D. E.; Ingham, R. J.; Myers, R. M., Organic synthesis:
march of the machines. Angew Chem Int Ed Engl 2015, 54 (11), 3449-64.
2. Merrifield, R. B., Automated synthesis of peptides. Science 1965, 150 (3693),
178-85.
3. Alvarado-Urbina, G.; Sathe, G. M.; Liu, W. C.; Gillen, M. F.; Duck, P. D.; Bender,
R.; Ogilvie, K. K., Automated synthesis of gene fragments. Science 1981, 214 (4518),
270-4.
4. Plante, O. J.; Palmacci, E. R.; Seeberger, P. H., Automated solid-phase
synthesis of oligosaccharides. Science 2001, 291 (5508), 1523-7.
5. Li, J.; Ballmer, S. G.; Gillis, E. P.; Fujii, S.; Schmidt, M. J.; Palazzolo, A. M.;
Lehmann, J. W.; Morehouse, G. F.; Burke, M. D., Synthesis of many different types of
organic small molecules using one automated process. Science 2015, 347 (6227),
1221-6.
6. Merrifield, R. B., Solid Phase Peptide Synthesis. I. The Synthesis of a
Tetrapeptide. Journal of the American Chemical Society 1963, 85 (14), 2149-2154.
7. Meienhofer, J.; Schnabel, E.; Bremer, H.; Brinkhoff, O.; Zabel, R.; Sroka, W.;
Klostermeyer, H.; Brandenburg, D.; Okuda, T.; Zahn, H., Synthesis of the insulin chain
and the combination to insulin active preparation. Z. Naturforsch. 1963, 18b (12),
1120-1.
8. Katsoyannis, P. G.; Tometsko, A.; Fukuda, K., Insulin Peptides. IX. The
Synthesis of the A-Chain of Insulin and its Combination with Natural B-Chain to
Generate Insulin Activity. Journal of the American Chemical Society 1963, 85 (18),
2863-2865.
9. Sun, Y., The creation of synthetic crystalline bovine insulin. Protein Cell 2015,
6 (11), 781-83.
10. Katsoyannis, P. G., Insulin Peptides. I. Synthesis of Cysteine-Containing
Peptides Related to the A-Chain of Sheep Insulin. Journal of the American Chemical
Society 1961, 83 (19), 4053-4057.
11. Katsoyannis, P. G., Synthesis of Insulin. Science 1966, 154 (3756), 1509-1514.
12. Gutte, B.; Merrifield, R. B., The total synthesis of an enzyme with ribonuclease
A activity. J Am Chem Soc 1969, 91 (2), 501-2.
13. Merrifield, B., The chemical synthesis of proteins. Protein Sci 1996, 5 (9),
1947-51.
14. Jaradat, D. M. M., Thirteen decades of peptide synthesis: key developments
in solid phase peptide synthesis and amide bond formation utilized in peptide
ligation. Amino Acids 2018, 50 (1), 39-68.
15. Michelson, A. M.; Todd, A. R., Nucleotides part XXXII. Synthesis of a
dithymidine dinucleotide containing a 3′: 5′-internucleotidic linkage. J. Chem. Soc.
1955, 0 (0), 2632-2638.
16. Letsinger, R. L.; Mahadevan, V., Stepwise Synthesis of
Oligodeoxyribonucleotides on an Insoluble Polymer Support. Journal of the American
Chemical Society 1966, 88 (22), 5319-5324.
17. Letsinger, R. L.; Ogilvie, K. K., Convenient method for stepwise synthesis of
oligothymidylate derivatives in large-scale quantities. Journal of the American
Chemical Society 1967, 89 (18), 4801-4803.

 REFERENCES

 248

18. Khorana, H. G., Some recent developments in the chemistry of phosphate
esters of biological interest. Wiley: 1961.
19. Letsinger, R. L.; Finnan, J. L.; Heavner, G. A.; Lunsford, W. B., Nucleotide
chemistry. XX. Phosphite coupling procedure for generating internucleotide links.
Journal of the American Chemical Society 1975, 97 (11), 3278-3279.
20. Ogilvie, K. K.; Nemer, M. J., Silica-Gel as Solid Support in the Synthesis of
Oligoribonucleotides. Tetrahedron Lett 1980, 21 (43), 4159-4162.
21. Matteucci, M. D.; Caruthers, M. H., The synthesis of oligodeoxyprimidines on
a polymer support. Tetrahedron Lett 1980, 21 (8), 719-722.
22. Kosuri, S.; Church, G. M., Large-scale de novo DNA synthesis: technologies and
applications. Nat Methods 2014, 11 (5), 499-507.
23. Seeberger, P. H.; Werz, D. B., Automated synthesis of oligosaccharides as a
basis for drug discovery. Nat Rev Drug Discov 2005, 4 (9), 751-63.
24. Schuerch, C.; Frechet, J. M., Solid-phase synthesis of oligosaccharides. I.
Preparation of the solid support. Poly[p-(1-propen-3-ol-1-yl)styrene]. Journal of the
American Chemical Society 1971, 93 (2), 492-496.
25. Danishefsky, S. J.; McClure, K. F.; Randolph, J. T.; Ruggeri, R. B., A strategy for
the solid-phase synthesis of oligosaccharides. Science 1993, 260 (5112), 1307-9.
26. Seeberger, P. H.; Haase, W. C., Solid-phase oligosaccharide synthesis and
combinatorial carbohydrate libraries. Chem Rev 2000, 100 (12), 4349-94.
27. Liang, R.; Yan, L.; Loebach, J.; Ge, M.; Uozumi, Y.; Sekanina, K.; Horan, N.;
Gildersleeve, J.; Thompson, C.; Smith, A.; Biswas, K.; Still, W. C.; Kahne, D., Parallel
synthesis and screening of a solid phase carbohydrate library. Science 1996, 274
(5292), 1520-2.
28. Seeberger, P. H., Automated carbohydrate synthesis to drive chemical
glycomics. Chem Commun (Camb) 2003, (10), 1115-21.
29. Naresh, K.; Schumacher, F.; Hahm, H. S.; Seeberger, P. H., Pushing the limits
of automated glycan assembly: synthesis of a 50mer polymannoside. Chem Commun
(Camb) 2017, 53 (65), 9085-9088.
30. Gillis, E. P.; Burke, M. D., A simple and modular strategy for small molecule
synthesis: iterative Suzuki-Miyaura coupling of B-protected haloboronic acid building
blocks. Journal of the American Chemical Society 2007, 129 (21), 6716-7.
31. Woerly, E. M.; Roy, J.; Burke, M. D., Synthesis of most polyene natural product
motifs using just 12 building blocks and one coupling reaction. Nature Chemistry
2014, 6, 484.
32. Service, R., Billion-dollar project would synthesize hundreds of thousands of
molecules in search of new medicines. Science 2017.
33. Lehmann, J. W.; Blair, D. J.; Burke, M. D., Toward Generalization of Iterative
Small Molecule Synthesis. Nat Rev Chem 2018, 2 (2).
34. Dessy, R., Robots in the Laboratory: Part I. Analytical Chemistry 1983, 55 (11),
1100A-1114A.
35. Frisbee, A. R.; Nantz, M. H.; Kramer, G. W.; Fuchs, P. L., Robotic orchestration
of organic reactions: yield optimization via an automated system with operator-
specified reaction sequences. Journal of the American Chemical Society 1984, 106
(23), 7143-7145.

 REFERENCES

 249

36. Emiabata-Smith, D. F.; Crookes, D. L.; Owen, M. R., A practical approach to
accelerated process screening and optimisation. Organic Process Research &
Development 1999, 3 (4), 281-288.
37. Kenny, B. A.; Bushfield, M.; Parry-Smith, D. J.; Fogarty, S.; Treherne, J. M., The
application of high-throughput screening to novel lead discovery. In Progress in Drug
Research, Jucker, E., Ed. Birkhäuser Basel: Basel, 1998; pp 245-269.
38. Mellor, G. W.; Fogarty, S. J.; OBrien, M. S.; Congreve, M.; Banks, M. N.; Mills,
K. M.; Jefferies, B.; Houston, J. G., Searching for chemokine receptor binding
antagonists by high throughput screening. Journal of Biomolecular Screening 1997, 2
(3), 153-157.
39. Szostak, J. W., Introduction: Combinatorial Chemistry. Chem Rev 1997, 97 (2),
347-348.
40. DeWitt, S. H.; Czarnik, A. W., Automated synthesis and combinatorial
chemistry. Curr Opin Biotechnol 1995, 6 (6), 640-5.
41. Cargill, J. F.; Lebl, M., New methods in combinatorial chemistry - robotics and
parallel synthesis. Current Opinion in Chemical Biology 1997, 1 (1), 67-71.
42. Godfrey, A. G.; Masquelin, T.; Hemmerle, H., A remote-controlled adaptive
medchem lab: an innovative approach to enable drug discovery in the 21st Century.
Drug Discov Today 2013, 18 (17-18), 795-802.
43. Rubin, A. E.; Tummala, S.; Both, D. A.; Wang, C.; Delaney, E. J., Emerging
technologies supporting chemical process R&D and their increasing impact on
productivity in the pharmaceutical industry. Chem Rev 2006, 106 (7), 2794-810.
44. Potyrailo, R.; Rajan, K.; Stoewe, K.; Takeuchi, I.; Chisholm, B.; Lam, H.,
Combinatorial and high-throughput screening of materials libraries: review of state
of the art. ACS Comb Sci 2011, 13 (6), 579-633.
45. Chemspeed Technologies. http://www.chemspeed.com/ (accessed
23/03/2017).
46. TECAN Group. http://www.tecan.com/ (accessed 22/03/2017).
47. Zinsser Analytic. http://www.zinsser-analytic.com/ (accessed 23/03/2017).
48. Schneider, G., Automating drug discovery. Nat Rev Drug Discov 2017.
49. Vickerstaffe, E.; Warrington, B. H.; Ladlow, M.; Ley, S. V., Fully automated
multi-step solution phase synthesis using polymer supported reagents: preparation
of histone deacetylase inhibitors. Organic & Biomolecular Chemistry 2003, 1 (14),
2419-22.
50. Bartlett, P. A.; Entzeroth, M., The Use of Polymer-Assisted Solution-Phase
Synthesis and Automation for the High-Throughput Preparation of Biologically Active
Compounds. In Exploiting Chemical Diversity for Drug Discovery, 2006; pp 1-32.
51. Kirschning, A.; Monenschein, H.; Wittenberg, R., Functionalized Polymers-
Emerging Versatile Tools for Solution-Phase Chemistry and Automated Parallel
Synthesis. Angew Chem Int Ed Engl 2001, 40 (4), 650-679.
52. Van Loo, M. E.; Lengowski, P. E., Automated Workstations for Parallel
Synthesis. Organic Process Research & Development 2002, 6 (6), 833-840.
53. Hartman, R. L.; McMullen, J. P.; Jensen, K. F., Deciding whether to go with the
flow: evaluating the merits of flow reactors for synthesis. Angew Chem Int Ed Engl
2011, 50 (33), 7502-19.

http://www.chemspeed.com/
http://www.tecan.com/
http://www.zinsser-analytic.com/

 REFERENCES

 250

54. Kockmann, N.; Thenee, P.; Fleischer-Trebes, C.; Laudadio, G.; Noel, T., Safety
assessment in development and operation of modular continuous-flow processes.
React Chem Eng 2017, 2 (3), 258-280.
55. Hartman, R. L., Managing Solids in Microreactors for the Upstream
Continuous Processing of Fine Chemicals. Organic Process Research & Development
2012, 16 (5), 870-887.
56. Plouffe, P.; Macchi, A.; Roberge, D. M., From Batch to Continuous Chemical
Synthesis—A Toolbox Approach. Organic Process Research & Development 2014, 18
(11), 1286-1294.
57. Plutschack, M. B.; Pieber, B.; Gilmore, K.; Seeberger, P. H., The Hitchhiker's
Guide to Flow Chemistry parallel. Chem Rev 2017, 117 (18), 11796-11893.
58. Roberge, D. M.; Zimmermann, B.; Rainone, F.; Gottsponer, M.; Eyholzer, M.;
Kockmann, N., Microreactor Technology and Continuous Processes in the Fine
Chemical and Pharmaceutical Industry: Is the Revolution Underway? Organic Process
Research & Development 2008, 12 (5), 905-910.
59. Valera, F. E.; Quaranta, M.; Moran, A.; Blacker, J.; Armstrong, A.; Cabral, J. T.;
Blackmond, D. G., The flow's the thing..or is it? Assessing the merits of homogeneous
reactions in flask and flow. Angew Chem Int Ed Engl 2010, 49 (14), 2478-85.
60. McQuade, D. T.; Seeberger, P. H., Applying flow chemistry: methods,
materials, and multistep synthesis. J Org Chem 2013, 78 (13), 6384-9.
61. Chandra, T.; Zebrowski, J. P., Hazards associated with laboratory scale
hydrogenations. Journal of Chemical Health and Safety 2016, 23 (4), 16-25.
62. Jones, R. V.; Godorhazy, L.; Varga, N.; Szalay, D.; Urge, L.; Darvas, F.,
Continuous-flow high pressure hydrogenation reactor for optimization and high-
throughput synthesis. J Comb Chem 2006, 8 (1), 110-6.
63. Dormán, G.; Kocsis, L.; Jones, R.; Darvas, F., A benchtop continuous flow
reactor: A solution to the hazards posed by gas cylinder based hydrogenation. Journal
of Chemical Health and Safety 2013, 20 (4), 3-8.
64. Maas, G., New syntheses of diazo compounds. Angew Chem Int Ed Engl 2009,
48 (44), 8186-95.
65. Black, T. H., The preparation and reactions of diazomethane. Aldrichimica
Acta 1983, 16 (1), 3-10.
66. Lewis, C. E., Diazomethane Poisoning. Report of a Case Suggesting
Sensitization Reaction. J Occup Med 1964, 6, 91-2.
67. LeWinn, E. B., Diazomethane poisoning; report of a fatal case with autopsy.
Am J Med Sci 1949, 218 (5), 556-62.
68. Schoental, R., Carcinogenic action of diazomethane and of nitroso-n-methyl
urethane. Nature 1960, 188, 420-1.
69. de Boer, T. J.; Backer, H. J., Diazomethane. Organic Syntheses 1956, 36, 16-
19.
70. Sigma-Aldrich. Diazald® and Diazomethane Generators Aldrich Technical
Bulletins [Online], 2004. https://www.sigmaaldrich.com/content/dam/sigma-
aldrich/docs/Aldrich/Bulletin/al_techbull_al180.pdf (accessed 18/07/2018).
71. Maurya, R. A.; Park, C. P.; Lee, J. H.; Kim, D. P., Continuous in situ generation,
separation, and reaction of diazomethane in a dual-channel microreactor. Angew
Chem Int Ed Engl 2011, 50 (26), 5952-5.

https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Aldrich/Bulletin/al_techbull_al180.pdf
https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Aldrich/Bulletin/al_techbull_al180.pdf

 REFERENCES

 251

72. Mastronardi, F.; Gutmann, B.; Kappe, C. O., Continuous flow generation and
reactions of anhydrous diazomethane using a Teflon AF-2400 tube-in-tube reactor.
Org Lett 2013, 15 (21), 5590-3.
73. O'Brien, M.; Baxendale, I. R.; Ley, S. V., Flow ozonolysis using a
semipermeable Teflon AF-2400 membrane to effect gas-liquid contact. Org Lett
2010, 12 (7), 1596-8.
74. Acke, D. R. J.; Stevens, C. V., A HCN-based reaction under microreactor
conditions: industrially feasible and continuous synthesis of 3,4-diamino-1H-
isochromen-1-ones. Green Chemistry 2007, 9 (4), 386-390.
75. Newman, S. G.; Jensen, K. F., The role of flow in green chemistry and
engineering. Green Chemistry 2013, 15 (6), 1456-1472.
76. Tilstam, U., A Continuous Methylation of Phenols and N,H-Heteroaromatic
Compounds with Dimethyl Carbonate. Organic Process Research & Development
2012, 16 (12), 1974-1978.
77. Adeyemi, A.; Bergman, J.; Branalt, J.; Savmarker, J.; Larhed, M., Continuous
Flow Synthesis under High-Temperature/High-Pressure Conditions Using a
Resistively Heated Flow Reactor. Organic Process Research & Development 2017, 21
(7), 947-955.
78. Hamley, P. A.; Ilkenhans, T.; Webster, J. M.; Garcia-Verdugo, E.; Venardou, E.;
Clarke, M. J.; Auerbach, R.; Thomas, W. B.; Whiston, K.; Poliakoff, M., Selective partial
oxidation in supercritical water: the continuous generation of terephthalic acid from
para-xylene in high yield. Green Chemistry 2002, 4 (3), 235-238.
79. Banister, J. A.; Lee, P. D.; Poliakoff, M., Flow Reactors for Preparative
Chemistry in Supercritical Fluid Solution: "Solvent-Free" Synthesis and Isolation of
Cr(CO)5(C2H4) and (.eta.5-C5H5)Mn(CO)2(.eta.2-H2). Organometallics 1995, 14 (8),
3876-3885.
80. Han, X.; Poliakoff, M., Continuous reactions in supercritical carbon dioxide:
problems, solutions and possible ways forward. Chem Soc Rev 2012, 41 (4), 1428-36.
81. Licence, P.; Ke, J.; Sokolova, M.; Ross, S. K.; Poliakoff, M., Chemical reactions
in supercritical carbon dioxide: from laboratory to commercial plant. Green
Chemistry 2003, 5 (2), 99-104.
82. Newton, S.; Carter, C. F.; Pearson, C. M.; de C. Alves, L.; Lange, H.;
Thansandote, P.; Ley, S. V., Accelerating spirocyclic polyketide synthesis using flow
chemistry. Angew Chem Int Ed Engl 2014, 53 (19), 4915-20.
83. Lin, H.; Dai, C.; Jamison, T. F.; Jensen, K. F., A Rapid Total Synthesis of
Ciprofloxacin Hydrochloride in Continuous Flow. Angew Chem Int Ed Engl 2017, 56
(30), 8870-8873.
84. Fitzpatrick, D. E.; Ley, S. V., Engineering chemistry: integrating batch and flow
reactions on a single, automated reactor platform. React Chem Eng 2016, 1 (6), 629-
635.
85. Bana, P.; Orkenyi, R.; Lovei, K.; Lako, A.; Turos, G. I.; Eles, J.; Faigl, F.; Greiner,
I., The route from problem to solution in multistep continuous flow synthesis of
pharmaceutical compounds. Bioorg Med Chem 2016.
86. Porta, R.; Benaglia, M.; Puglisi, A., Flow Chemistry: Recent Developments in
the Synthesis of Pharmaceutical Products. Organic Process Research & Development
2015, 20 (1), 2-25.

 REFERENCES

 252

87. Laue, S.; Haverkamp, V.; Mleczko, L., Experience with Scale-Up of Low-
Temperature Organometallic Reactions in Continuous Flow. Organic Process
Research & Development 2016, 20 (2), 480-486.
88. Styring, P.; Parracho, A. I., From discovery to production: scale-out of
continuous flow meso reactors. Beilstein J Org Chem 2009, 5, 29.
89. Monbaliu, J. C. M.; Stelzer, T.; Revalor, E.; Weeranoppanant, N.; Jensen, K. F.;
Myerson, A. S., Compact and Integrated Approach for Advanced End-to-End
Production, Purification, and Aqueous Formulation of Lidocaine Hydrochloride.
Organic Process Research & Development 2016, 20 (7), 1347-1353.
90. Mascia, S.; Heider, P. L.; Zhang, H.; Lakerveld, R.; Benyahia, B.; Barton, P. I.;
Braatz, R. D.; Cooney, C. L.; Evans, J. M.; Jamison, T. F.; Jensen, K. F.; Myerson, A. S.;
Trout, B. L., End-to-end continuous manufacturing of pharmaceuticals: integrated
synthesis, purification, and final dosage formation. Angew Chem Int Ed Engl 2013, 52
(47), 12359-63.
91. Adamo, A.; Beingessner, R. L.; Behnam, M.; Chen, J.; Jamison, T. F.; Jensen, K.
F.; Monbaliu, J. C.; Myerson, A. S.; Revalor, E. M.; Snead, D. R.; Stelzer, T.;
Weeranoppanant, N.; Wong, S. Y.; Zhang, P., On-demand continuous-flow
production of pharmaceuticals in a compact, reconfigurable system. Science 2016,
352 (6281), 61-7.
92. Deming, S. N.; Pardue, H. L., Automated instrumental system for fundamental
characterization of chemical reactions. Analytical Chemistry 1971, 43 (2), 192-200.
93. Winicov, H.; Schainbaum, J.; Buckley, J.; Longino, G.; Hill, J.; Berkoff, C. E.,
Chemical process optimization by computer — a self-directed chemical synthesis
system. Analytica Chimica Acta 1978, 103 (4), 469-476.
94. Chodosh, D. F.; Wdzieckowski, F. E.; Schainbaum, J.; Berkoff, C. E., Automated
chemical synthesis. Part 2: Interfacing strategies. J Automat Chem 1983, 5 (2), 99-
102.
95. Chodosh, D. F.; Levinson, S. H.; Weber, J. L.; Kamholz, K.; Berkoff, C. E.,
Automated chemical synthesis. Part 3: Temperature control systems. J Automat
Chem 1983, 5 (2), 103-7.
96. Chodosh, D. F.; Kamholz, K.; Levinson, S. H.; Rhinesmith, R., Automated
chemical synthesis. Part 4: Batch-type reactor automation and real-time software
design. J Automat Chem 1986, 8 (3), 106-21.
97. Legrand, M.; Foucard, A., Automation on the laboratory bench. J Chem Educ
1978, 55 (12), 767.
98. Legrand, M.; Bolla, P., A fully automatic apparatus for chemical reactions on
the laboratory scale. J Automat Chem 1985, 7 (1), 31-7.
99. Porte, C.; Roussin, D.; Bondiou, J. C.; Hodac, F.; Delacroix, A., The 'Automated
Versatile Modular Reactor': construction and use. J Automat Chem 1987, 9 (4), 166-
73.
100. Porte, C.; Hamdan, F.; Delacroix, A., Automated medium-pressure modular
liquid-gas reactor. J Automat Chem 1989, 11 (4), 168-73.
101. Hayashi, N.; Sugawara, T.; Shintani, M.; Kato, S., Computer-assisted automatic
synthesis II. Development of a fully automated apparatus for preparing substituted
N-(carboxyalkyl)amino acids. J Automat Chem 1989, 11 (5), 212-20.
102. Sugawara, T.; Kato, S.; Okamoto, S., Development of fully-automated
synthesis systems. J Automat Chem 1994, 16 (1), 33-42.

 REFERENCES

 253

103. Machida, K.; Hirose, Y.; Fuse, S.; Sugawara, T.; Takahashi, T., Development
and application of a solution-phase automated synthesizer, 'ChemKonzert'. Chem
Pharm Bull (Tokyo) 2010, 58 (1), 87-93.
104. Doi, T.; Fuse, S.; Miyamoto, S.; Nakai, K.; Sasuga, D.; Takahashi, T., A formal
total synthesis of taxol aided by an automated synthesizer. Chem Asian J 2006, 1 (3),
370-83.
105. Tanaka, Y.; Fuse, S.; Tanaka, H.; Doi, T.; Takahashi, T., An Efficient Synthesis of
a Cyclic Ether Key Intermediate for 9-Membered Masked Enediyne Using an
Automated Synthesizer. Organic Process Research & Development 2009, 13 (6),
1111-1121.
106. Fuse, S.; Okada, K.; Iijima, Y.; Munakata, A.; Machida, K.; Takahashi, T.; Takagi,
M.; Shin-ya, K.; Doi, T., Total synthesis of spiruchostatin B aided by an automated
synthesizer. Org Biomol Chem 2011, 9 (10), 3825-33.
107. Fuse, S.; Machida, K.; Takahashi, T., Efficient Synthesis of Natural Products
Aided by Automated Synthesizers and Microreactors. In New Strategies in Chemical
Synthesis and Catalysis, 2012; pp 33-57.
108. Fuse, S.; Ikebe, A.; Oosumi, K.; Karasawa, T.; Matsumura, K.; Izumikawa, M.;
Johmoto, K.; Uekusa, H.; Shin-ya, K.; Doi, T.; Takahashi, T., Asymmetric Total
Synthesis of ent-Pyripyropene A. Chemistry 2015, 21 (26), 9454-60.
109. Masui, H.; Yosugi, S.; Fuse, S.; Takahashi, T., Solution-phase automated
synthesis of an alpha-amino aldehyde as a versatile intermediate. Beilstein J Org
Chem 2017, 13, 106-110.
110. Orita, A.; Yasui, Y.; Otera, J., Automated synthesis: Development of a new
apparatus friendly to synthetic chemists (MEDLEY). Organic Process Research &
Development 2000, 4 (5), 333-336.
111. MettlerToledo OptiMax.
https://www.mt.com/gb/en/home/products/L1_AutochemProducts/Chemical-
Synthesis-and-Process-Development-Lab-Reactors/Synthesis-Reactor-
Systems/optimax.html (accessed 19/07/2018).
112. Radleys Mya 4. https://www.radleys.com/products/our-products/mya-4-
reaction-station (accessed 19/07/2018).
113. Syrris Atlas. https://syrris.com/families/atlas-hd/ (accessed 19/07/2018).
114. Badamasi, Y. A. In The working principle of an Arduino, 2014 11th
International Conference on Electronics, Computer and Computation (ICECCO), Sept.
29 2014-Oct. 1 2014; 2014; pp 1-4.
115. Deadman, B. J.; Battilocchio, C.; Sliwinski, E.; Ley, S. V., A prototype device for
evaporation in batch and flow chemical processes. Green Chemistry 2013, 15 (8),
2050-2055.
116. Adamo, A.; Heider, P. L.; Weeranoppanant, N.; Jensen, K. F., Membrane-
Based, Liquid-Liquid Separator with Integrated Pressure Control. Industrial &
Engineering Chemistry Research 2013, 52 (31), 10802-10808.
117. Dessimoz, A.-L.; Cavin, L.; Renken, A.; Kiwi-Minsker, L., Liquid–liquid two-
phase flow patterns and mass transfer characteristics in rectangular glass
microreactors. Chemical Engineering Science 2008, 63 (16), 4035-4044.
118. Grzyb, J. A.; Batey, R. A., Achieving functional group diversity in parallel
synthesis: solution-phase synthesis of a library of ureas, carbamates,

https://www.mt.com/gb/en/home/products/L1_AutochemProducts/Chemical-Synthesis-and-Process-Development-Lab-Reactors/Synthesis-Reactor-Systems/optimax.html
https://www.mt.com/gb/en/home/products/L1_AutochemProducts/Chemical-Synthesis-and-Process-Development-Lab-Reactors/Synthesis-Reactor-Systems/optimax.html
https://www.mt.com/gb/en/home/products/L1_AutochemProducts/Chemical-Synthesis-and-Process-Development-Lab-Reactors/Synthesis-Reactor-Systems/optimax.html
https://www.radleys.com/products/our-products/mya-4-reaction-station
https://www.radleys.com/products/our-products/mya-4-reaction-station
https://syrris.com/families/atlas-hd/

 REFERENCES

 254

thiocarbamates, and amides using carbamoylimidazolium salts. Tetrahedron Lett
2008, 49 (36), 5279-5282.
119. O'Brien, M.; Koos, P.; Browne, D. L.; Ley, S. V., A prototype continuous-flow
liquid-liquid extraction system using open-source technology. Org Biomol Chem
2012, 10 (35), 7031-6.
120. Eppel, S.; Kachman, T. Computer vision-based recognition of liquid surfaces
and phase boundaries in transparent vessels, with emphasis on chemistry
applications arXiv.org e-Print archive [Online], 2014. http://arxiv.org/abs/1404.7174.
121. Krizhevsky, A.; Sutskever, I.; Hinton, G. E., ImageNet Classification with Deep
Convolutional Neural Networks. Communications of the Acm 2017, 60 (6), 84-90.
122. Krizhevsky, A.; Sutskever, I.; Hinton, G. E. In Imagenet classification with deep
convolutional neural networks, Advances in neural information processing systems,
2012; pp 1097-1105.
123. Terzic, E.; Terzic, J.; Nagarajah, R.; Alamgir, M., Capacitive Sensing
Technology. In A Neural Network Approach to Fluid Quantity Measurement in
Dynamic Environments, 2012; pp 11-37.
124. Weast, R. C.; Astle, M. J.; Beyer, W. H., CRC Handbook of Chemistry and
Physics: A Ready-reference Book of Chemical and Physical Data. CRC Press: 1983.
125. Microchip Technology Inc. Atmel Studio 7.
http://www.microchip.com/mplab/avr-support/atmel-studio-7 (accessed
17/08/2018).
126. Open Sound Control. http://opensoundcontrol.org/osc (accessed
20/08/2018).
127. McCurry, M. Simple Interpreter - C. http://fundamental-code.com/interp/
(accessed 20/08/2018).
128. NAMUR Interessengemeinschaft Automatisierungstechnik der
Prozessindustrie, Ausführung von elektrischen Steckverbindungen für die analoge
und digitale Signalübertragung an Labor-MSR-Einzelgeräten. 1992; Vol. NE 28.
129. Raymond, E. S., The new hacker's dictionary (3rd ed.). MIT Press: 1996; p 547.
130. Liechti, C. pySerial. https://pythonhosted.org/pyserial/ (accessed
16/08/2018).
131. Erlang. https://www.erlang.org/ (accessed 13/08/2018).
132. xacro. http://wiki.ros.org/xacro (accessed 13/08/2018).
133. NetworkX. http://networkx.github.io/ (accessed 14/08/2018).
134. Raccuglia, P.; Elbert, K. C.; Adler, P. D. F.; Falk, C.; Wenny, M. B.; Mollo, A.;
Zeller, M.; Friedler, S. A.; Schrier, J.; Norquist, A. J., Machine-learning-assisted
materials discovery using failed experiments. Nature 2016, 533 (7601), 73-7.
135. Brandes, U.; Eiglsperger, M.; Kaufmann, M.; Lerner, J.; Pich, P. The GraphML
file format. http://graphml.graphdrawing.org/index.html.
136. yWorks yEd Graph Editor. https://www.yworks.com/products/yed (accessed
16/08/2018).
137. Backus, J. W.; Wegstein, J. H.; van Wijngaarden, A.; Woodger, M.; Bauer, F. L.;
Green, J.; Katz, C.; McCarthy, J.; Perlis, A. J.; Rutishauser, H.; Samelson, K.; Vauquois,
B., Report on the algorithmic language ALGOL 60. Communications of the ACM 1960,
3 (5), 299-314.
138. Beazley, D. PLY (Python Lex-Yacc). http://www.dabeaz.com/ply/ (accessed
15/08/2018).

http://arxiv.org/abs/1404.7174
http://www.microchip.com/mplab/avr-support/atmel-studio-7
http://opensoundcontrol.org/osc
http://fundamental-code.com/interp/
https://pythonhosted.org/pyserial/
https://www.erlang.org/
http://wiki.ros.org/xacro
http://networkx.github.io/
http://graphml.graphdrawing.org/index.html
https://www.yworks.com/products/yed
http://www.dabeaz.com/ply/

 REFERENCES

 255

139. OpenCV. https://opencv.org/ (accessed 15/08/2018).
140. Ahmadi, A.; Khalili, M.; Hajikhani, R.; Safari, N.; Nahri-Niknafs, B., Anti-
inflammatory effects of two new methyl and morpholine derivatives of
diphenhydramine on rats. Medicinal Chemistry Research 2011, 21 (11), 3532-3540.
141. Dale, D. J.; Dunn, P. J.; Golightly, C.; Hughes, M. L.; Levett, P. C.; Pearce, A. K.;
Searle, P. M.; Ward, G.; Wood, A. S., The chemical development of the commercial
route to sildenafil: A case history. Organic Process Research & Development 2000, 4
(1), 17-22.
142. Rieveschl, G., Jr. Dialkylaminoalkyl benzhydryl ethers. US2421714, June 3,
1947, 1947.
143. Rieveschl, G., Jr. 2-Dimethylaminoethyl p-halobenzhydryl ethers and their
salts. US2527963, October 31, 1950, 1950.
144. am Ende, D. J.; Clifford, P. J.; DeAntonis, D. M.; SantaMaria, C.; Brenek, S. J.,
Preparation of Grignard Reagents: FTIR and Calorimetric Investigation for Safe Scale-
Up. Organic Process Research & Development 1999, 3 (5), 319-329.
145. Yue, M. H.; Sharkey, J. J.; Leung, J. C., Relief Vent Sizing for a Grignard
Reaction. Journal of Loss Prevention in the Process Industries 1994, 7 (5), 413-418.
146. Tilstam, U.; Weinmann, H., Activation of Mg metal for safe formation of
Grignard reagents on plant scale. Organic Process Research & Development 2002, 6
(6), 906-910.
147. Lai, Y. H., Grignard-Reagents from Chemically Activated Magnesium.
Synthesis-Stuttgart 1981, 1981 (8), 585-604.
148. Williamson, K. L., Starting the Grignard Reaction. J Chem Educ 1988, 65 (4),
376-376.
149. Tuulmets, A.; Kaubi, K.; Heinoja, K., Influence of Sonication on Grignard-
Reagent Formation. Ultrasonics Sonochemistry 1995, 2 (2), S75-S78.
150. Meier, R. Preparation of fluorinated phenylalkyltriazoles as anticonvulsants
and pharmaceutical compositions containing them. EP199262A2, 1986.
151. Wheless, J. W.; Vazquez, B., Rufinamide: a novel broad-spectrum antiepileptic
drug. Epilepsy Curr 2010, 10 (1), 1-6.
152. Kankan, R. N.; Rao, D. R.; Birari, D. R. Process for the preparation of
rufinamide. US8183269B2, 2012.
153. Bell, A. S.; Brown, D.; Terrett, N. K. Preparation of pyrazolo[4,3-d]pyrimidin-
7-ones as cardiovascular agents. EP463756A1, 1992.
154. Ellis, P.; Terrett, N. K. Pyrazolopyrimidinones for the treatment of impotence.
WO9428902A1, 1994.
155. Woodman, E. K.; Chaffey, J. G. K.; Hopes, P. A.; Hose, D. R. J.; Gilday, J. P., N,N′-
Carbonyldiimidazole-Mediated Amide Coupling: Significant Rate Enhancement
Achieved by Acid Catalysis with Imidazole·HCl. Organic Process Research &
Development 2009, 13 (1), 106-113.
156. Wang, Z.; Wang, Y.; Cheng, Q.; Zhao, X. Method for preparing sildenafil.
CN104211705A, 2014.
157. Robert Sanger, C.; Raymond Riegel, E., Pyrosulfurylchlorid und
Chlorsulfonsäure. Zeitschrift für anorganische Chemie 1912, 76 (1), 79-128.
158. Horsley, L. H., Table of Azeotropes and Nonazeotropes. Analytical Chemistry
1947, 19 (8), 508-600.

https://opencv.org/

 REFERENCES

 256

159. Büchi Solution «Rotavapor® Dynamic Pro». https://www.buchi.com/gb-
en/products/laboratory-evaporation/solution-rotavapor-dynamic-pro (accessed
24/08/2018).
160. Adusumilli, R.; Mallick, P., Data Conversion with ProteoWizard msConvert. In
Proteomics, 2017; pp 339-368.

https://www.buchi.com/gb-en/products/laboratory-evaporation/solution-rotavapor-dynamic-pro
https://www.buchi.com/gb-en/products/laboratory-evaporation/solution-rotavapor-dynamic-pro

 APPENDIX

 257

APPENDIX

I NMR SPECTRA

 APPENDIX

 258

I.I DIPHENHYDRAMINE HYDROCHLORIDE (1)

Figure 93: 1H NMR of diphenhydramine hydrochloride 1 produced manually

 APPENDIX

 259

Figure 94: 13C NMR (DEPTQ) of diphenhydramine hydrochloride 1 produced
manually

 APPENDIX

 260

Figure 95: 1H NMR of diphenhydramine hydrochloride 1 produced automatically

 APPENDIX

 261

Figure 96: 13C NMR (DEPTQ) of diphenhydramine hydrochloride 1 produced
automatically

 APPENDIX

 262

Figure 97: 1H NMR of diphenhydramine hydrochloride 1 obtained from Sigma-
Aldrich

 APPENDIX

 263

Figure 98: 13C NMR (DEPTQ) of diphenhydramine hydrochloride 1 obtained from
Sigma-Aldrich

 APPENDIX

 264

I.II 1-[(2,6-DIFLUOROPHENYL)METHYL]-1H-1,2,3-TRIAZOLE-4-CARBOXAMIDE

(RUFINAMIDE) (2)

Figure 99: 1H NMR of rufinamide 2 produced manually

 APPENDIX

 265

Figure 100: 13C NMR (DEPTQ) of rufinamide 2 produced manually

 APPENDIX

 266

Figure 101: 1H NMR of rufinamide 2 produced automatically

 APPENDIX

 267

Figure 102: 13C NMR (DEPTQ) of rufinamide 2 produced automatically

 APPENDIX

 268

I.III 1-[4-ETHOXY-3-(6,7-DIHYDRO-1-METHYL-7-OXO-3-PROPYL-1H-

PYRAZOLO[4,3-D]PYRIMIDIN-5-YL)PHENYLSULFOYL]-4-METHYLPIPERAZINE

(SILDENAFIL) (3)

Figure 103: 1H NMR of sildenafil 3 produced manually

 APPENDIX

 269

Figure 104: 13C NMR (DEPTQ) of sildenafil 3 produced manually

 APPENDIX

 270

Figure 105: 1H NMR of sildenafil 3 produced automatically

 APPENDIX

 271

Figure 106: 13C NMR (DEPTQ) of sildenafil 3 produced automatically

 APPENDIX

 272

 APPENDIX

 273

II ENGINEERING DRAWINGS

 APPENDIX

 274

 APPENDIX

 318

 APPENDIX

 319

III CONTROL PCB SCHEMATICS

NOTA BENE: Control boards were designed by an external contractor. The Cronin

Group holds all copyrights. The following schematics are enclosed for information

only and DO NOT constitute original work performed for this thesis!

 APPENDIX

 320

 321

 322

 323

 324

 325

 326

 APPENDIX

 327

IV CHASM REFERENCE

Command arguments for the Chemical Assembly Language have the following

structure:

• {CMD}({ARGS});

All commands are capitalised. Arguments are in parentheses and separated by

commas. A line is terminated by a semicolon. See below for a full list of supported

commands.

IV.I.I PUMPS AND VALVES

NOTE The pump names are the names as defined in the GraphML definition of the

platform.

Command: MOVE ({src}, {dest}, {volume}, {move_speed}, {aspiration_speed},

{dispense_speed});

Moves a specified volume from one node in the graph to another. Moving from and

to the same node is supported.

• {src} is the name of the source flask

• {dest} is the name of the destination flask

• {volume} can be a float or "all" in which case it moves the entire current

volume

• {move_speed} is the speed at which it moves material across the Backbone.

This argument is optional, if absent, it defaults to 50mL/min

• {aspiration_speed} is the speed at which it aspirates from the source. This

argument is optional, if absent, it defaults to {move_speed}. It will only be

parsed as {aspiration_speed} if a move speed is given (argument is

positional)

• {dispense_speed} is the speed at which it aspirates from the source. This

argument is optional, if absent, it defaults to {move_speed}. It will only be

parsed as {aspiration_speed} if a move speed and aspiration speed is given

(argument is positional)

 APPENDIX

 328

Command: HOME ({pump_name, {move_speed});

Moves a given pump to home.

• {pump_name} is the name of the pump to be homed.

• {move_speed} is the requested speed in mL/min.

Command: SEPARATE ({lower_phase_target}, {upper_phase_target});

Launches a phase separation sequence. The name of the separator is currently

hard-coded!

• {lower_phase_target} is the name of the flask the lower phase should be

transferred to.

• {upper_phase_target} is the name of the flask the upper phase should be

transferred to. If "separator_top" is specified, the upper phase is left in the

separator.

Command: PRIME ({aspiration_speed});

Moves the tube volume of every node with "flask" as class to waste.

• {aspiration_speed} is the speed in mL/min at which material should be

withdrawn.

Command: SWITCH_VACUUM ({flask}, {destination});

Switches a vacuum valve between Backbone and vacuum.

• {flask} is the name of the node the vacuum valve is logically attacked to (e.g.

"filter_bottom")

• {destination} either "vacuum" or "Backbone"

Command: SWITCH_CARTRIDGE ({flask}, {cartridge});

Switches a cartridge carousel to the specified position.

• {flask} is the name of the node the vacuum valve is logically attacked to (e.g.

"rotavap")

• {cartridge} is the number of the position the carousel should be switched to

(0-5)

 APPENDIX

 329

Command: SWITCH_COLUMN ({column}, {destination});

Switches a fractionating valve attached to a chromatography column.

• {column} is the name of the column in the graph

• {destination} either "collect" or "waste"

IV.I.II STIRRER PLATES AND OVERHEAD STIRRERS

NOTE The parameter {name} refers to the node the device is attached to (e.g.

reactor_reactor)

Command: START_STIR ({name});

Starts the stirring operation of a hotplate or overhead stirrer.

• {name} is the name of the node the device is attached to.

Command: START_HEAT ({name});

Starts the stirring operation of a hotplate stirrer. This command is NOT available for

overhead stirrers.

• {name} is the name of the node the device is attached to.

Command: STOP_STIR ({name});

Stops the stirring operation of a hotplate or overhead stirrer.

• {name} is the name of the node the device is attached to.

Command: STOP_HEAT ({name});

Starts the stirring operation of a hotplate stirrer. This command is NOT available for

overhead stirrers.

• {name} is the name of the node the device is attached to.

 APPENDIX

 330

Command: SET_TEMP ({name}, {temp});

Sets the temperature setpoint of a hotplate stirrer. This command is NOT available

for overhead stirrers.

• {name} is the name of the node the device is attached to.

• {temp} is the required temperature in °C

Command: SET_STIR_RPM ({name}, {rpm});

Sets the stirring speed setpoint of a hotplate or overhead stirrer.

• {name} is the name of the node the device is attached to.

• {rpm} is the speed setpoint in rpm.

Command: STIRRER_WAIT_FOR_TEMP ({name});

Delays the script execution until the current temperature of the hotplate is within

0.5°C of the setpoint. This command is NOT available for overhead stirrers.

• {name} is the name of the node the device is attached to.

IV.I.III ROTARY EVAPORATOR

NOTE The parameter {name} refers to the node representing the top flask of the

roti (e.g. rotavap)

Command: START_HEATER_BATH ({name});

Starts the heating bath of a rotary evaporator.

• {name} is the name of the node representing the rotary evaporator.

Command: STOP_HEATER_BATH ({name});

Stops the heating bath of a rotary evaporator.

• {name} is the name of the node representing the rotary evaporator.

 APPENDIX

 331

Command: START_ROTATION ({name});

Starts the rotation of a rotary evaporator.

• {name} is the name of the node representing the rotary evaporator.

Command: STOP_ROTATION ({name});

Stops the rotation of a rotary evaporator.

• {name} is the name of the node representing the rotary evaporator.

Command: LIFT_ARM_UP ({name});

Lifts the rotary evaporator up.

• {name} is the name of the node representing the rotary evaporator.

Command: LIFT_ARM_DOWN ({name});

Lifts the rotary evaporator down.

• {name} is the name of the node representing the rotary evaporator.

Command: RESET_ROTAVAP ({name});

Resets the rotary evaporator.

• {name} is the name of the node representing the rotary evaporator.

Command: SET_BATH_TEMP ({name}, {temp});

Sets the temperature setpoint for the heating bath.

• {name} is the name of the node representing the rotary evaporator.

• {temp} is the temperature setpoint in °C.

Command: SET_ROTATION ({name}, {rotation});

Sets the rotation speed setpoint for the rotary evaporator.

• {name} is the name of the node representing the rotary evaporator.

• {rotation} is the speed setpoint in rpm.

 APPENDIX

 332

Command: RV_WAIT_FOR_TEMP ({name});

Delays the script execution until the current temperature of the heating bath is

within 0.5°C of the setpoint.

• {name} is the name of the node representing the rotary evaporator.

Command: SET_INTERVAL ({name}, {interval});

Sets the interval time for the rotary evaporator, causing it to periodically switch

direction. Setting this to 0 deactivates interval operation.

• {name} is the name of the node representing the rotary evaporator.

• {interval} is the interval time in seconds.

IV.I.IV VACUUM PUMP

NOTE The parameter {name} refers to the node the device is attached to (e.g.

rotavap)

Command: INIT_VAC_PUMP ({name});

Initialises the vacuum pump controller.

• {name} is the name of the node the vacuum pump is attached to.

Command: GET_VAC_SP ({name});

Reads the current vacuum setpoint.

• {name} is the name of the node the vacuum pump is attached to.

Command: SET_VAC_SP ({name}, {set_point});

Sets a new vacuum setpoint.

• {name} is the name of the node the vacuum pump is attached to.

• {set_point} is the vacuum setpoint in mbar.

 APPENDIX

 333

Command: START_VAC ({name});

Starts the vacuum pump.

• {name} is the name of the node the vacuum pump is attached to.

Command: STOP_VAC ({name});

Stops the vacuum pump.

• {name} is the name of the node the vacuum pump is attached to.

Command: VENT_VAC ({name});

Vents the vacuum pump to ambient pressure.

• {name} is the name of the node the vacuum pump is attached to.

Command: SET_SPEED_SP ({name}, {set_point});

Sets the speed of the vacuum pump (0-100%).

• {name} is the name of the node the vacuum pump is attached to.

• {set_point} is the vacuum pump speed in percent.

IV.I.V RECIRCULATION CHILLER

NOTE The parameter {name} refers to the node the device is attached to (e.g.

rotavap)

Command: START_CHILLER ({name});

Starts the recirculation chiller.

• {name} is the name of the node the chiller is attached to.

Command: STOP_CHILLER ({name});

Stops the recirculation chiller.

• {name} is the name of the node the chiller is attached to.

 APPENDIX

 334

Command: SET_CHILLER ({name}, {setpoint});

Sets the temperature setpoint.

• {name} is the name of the node the chiller is attached to.

• {setpoint} is the temperature setpoint in °C.

Command: CHILLER_WAIT_FOR_TEMP ({name});

Delays the script execution until the current temperature of the chiller is within

0.5°C of the setpoint.

• {name} is the name of the node the chiller is attached to.

Command: RAMP_CHILLER ({name}, {ramp_duration}, {end_temperature});

Causes the chiller to ramp the temperature up or down. Only available for Petite

Fleur.

• {name} is the name of the node the chiller is attached to.

• {ramp_duration} is the desired duration of the ramp in seconds.

• {end_temperature} is the final temperature of the ramp in °C.

Command: SWITCH_CHILLER ({name}, {state});

Switches the solenoid valve.

• {name} is the name of the node the solenoid valve is attached to.

• {state} is either "on" or "off"

Command: SET_COOLING_POWER ({name}; {cooling_power});

Sets the cooling power (0-100%). Only available for CF41.

• {name} is the name of the node the chiller is attached to.

• {cooling_power} is the desired cooling power in percent.

 APPENDIX

 335

IV.I.VI CAMERA

Command: SET_RECORDING_SPEED ({speed});

Sets the time-lapse speed of the camera module.

• {speed} is the factor by which the recording should be sped up, i.e. 2 would

mean twice the normal speed. 1 means normal speed.

IV.I.VII OTHER

Command: WAIT ({time});

Delays execution of the script for a set amount of time. This command will

immediately reply with an estimate of when the waiting will be finished, and give

regular updates indicating that it is still alive.

• {time} is the wait time in seconds.

Command: BREAKPOINT ({});

Introduces a breakpoint in the script. The execution is halted until the operator

resumes it.

• {} Breakpoints take no arguments.

	Thesis cover sheet
	2018SteinerPhD
	Abstract
	Abbreviations
	Table of Contents
	Introduction
	1 Iterative Synthesis
	2 Robotic Platforms
	3 Flow Chemistry
	4 Automated Batch Reactors
	5 The Chemputer Concept
	Aims
	Results and Discussion
	6 Hardware Development
	6.1 Pumps and Valves
	6.1.1 Prior State of the Art
	6.1.2 Transfer to Autodesk Inventor and Initial Improvement Efforts
	6.1.3 Improving the Alignment
	6.1.4 The Evolution of the Hall Effect Sensor
	6.1.5 Replacement of the Pump Motor
	6.1.6 Improvements to Usability and Aesthetics
	6.1.7 Project Documentation

	6.2 Chemputer Setup
	6.2.1 Reactor Module
	6.2.2 Evaporation Module
	6.2.3 Automated Liquid/Liquid Extractor (ALLEX)
	6.2.4 Filtration Module
	6.2.5 Inert Gas System
	6.2.6 Reagent Storage
	6.2.7 Other Modules

	7 Software Development
	7.1 Pump and Valve Firmware
	7.1.1 Existing Hardware Specifications and Firmware Requirements
	7.1.2 General Operation and Requirements
	7.1.3 MCU Initialisation and General Setup
	7.1.4 Ethernet Communication
	7.1.5 The Command Mapper and the Formatted Network Print Utility
	7.1.6 Stepper Motor Control
	7.1.7 Pump Positioning Algorithms
	7.1.8 Valve Positioning Algorithms
	7.1.9 Device Configuration and Errors
	7.1.10 Python API
	7.1.11 Firmware Testing

	7.2 The SerialLabware Project
	7.3 The Chempiler
	7.3.1 Motivation and Requirements
	7.3.2 The ChemOS and “The Script”
	7.3.3 Drafting a Specification for the Chempiler
	7.3.4 Building the Chempiler
	7.3.5 Moving Liquids
	7.3.6 From XML to GraphML
	7.3.7 The Chemical Assembly Language ChASM
	7.3.8 Additional Modules and Final Structure
	7.3.9 Translation of a Synthetic Procedure into ChASM

	8 Automated Syntheses
	8.1 Synthesis of Diphenhydramine Hydrochloride (1)
	8.1.1 Prerequisites and Initial Work
	8.1.2 The Journey Begins with a Bromination
	8.1.3 Pressing on Towards the Williamson Ether Synthesis
	8.1.4 Cresting the First Summit with the Grignard Reaction
	8.1.5 Commencing the End Game with the Hydrochloride Precipitation
	8.1.6 Tying It All Together
	8.1.7 Rebuilding the Platform and Starting Anew
	8.1.8 Adding Purification and Cleaning

	8.2 Synthesis of Rufinamide (2)
	8.2.1 Prerequisites and Initial Work
	8.2.2 Automation on the Small Platform
	8.2.3 Transferring the Code to Another Platform

	8.3 Synthesis of Sildenafil (3)
	8.3.1 Prerequisites and Initial Work
	8.3.2 Manual Replication of the Reported Synthesis
	8.3.3 Subjecting the Platform to Chlorosulfonic Acid
	8.3.4 Initiating the Crystallisation of the Sulfonamide
	8.3.5 Forming the Acid Chloride and Performing the Amide Coupling
	8.3.6 Closing the Cycle with Potassium tert-Butoxide
	8.3.7 Going the Distance: Running the Full Sequence

	Conclusions and Future Work
	Experimental
	9 Chemicals and Instrumentation
	10 Computer Controlled Instrumentation
	10.1 Reactor Module
	10.2 Automated Liquid/Liquid Extraction Module
	10.3 Solvent evaporation module
	10.4 Filtration Module
	10.5 Inert Gas System
	10.6 Reagent Storage System

	11 Synthesis and Characterisation of Compounds
	11.1 Diphenhydramine hydrochloride
	11.1.1 Diphenylmethanol (4)
	11.1.2 Bromodiphenylmethane (5)
	11.1.3 2-(diphenylmethoxy)-N,N-dimethylethanamine (diphenhydramine) (6)
	11.1.4 2-(diphenylmethoxy)-N,N-dimethylethanamine hydrochloride (1)

	11.2 Rufinamide
	11.2.1 1-[(2,6-Difluorophenyl)methyl]-1H-1,2,3-triazole-4-carboxamide (rufinamide) (2)

	11.3 Sildenafil
	11.3.1 5-Chlorosulfonyl-2-ethoxybenzoic acid (9)
	11.3.2 2-Ethoxy-5-(4-methyl-1-piperazinesulfonyl)benzoic Acid (10)
	11.3.3 4-[2-Ethoxy-5-(4-methyl-1-piperazinylsulfonyl)benzamido]-1-methyl-3-propyl-1H-pyrazole-5-carboxamide (12)
	11.3.4 1-[4-Ethoxy-3-(6,7-dihydro-1-methyl-7-oxo-3-propyl-1H- pyrazolo[4,3-d]pyrimidin-5-yl)phenylsulfoyl]-4-methylpiperazine (Sildenafil) (3)

	References
	Appendix
	I NMR Spectra
	I.I Diphenhydramine Hydrochloride (1)
	I.II 1-[(2,6-Difluorophenyl)methyl]-1H-1,2,3-triazole-4-carboxamide (rufinamide) (2)
	I.III 1-[4-Ethoxy-3-(6,7-dihydro-1-methyl-7-oxo-3-propyl-1H- pyrazolo[4,3-d]pyrimidin-5-yl)phenylsulfoyl]-4-methylpiperazine (Sildenafil) (3)

	II Engineering Drawings
	III Control PCB Schematics
	IV ChASM reference
	IV.I.I Pumps and Valves
	IV.I.II Stirrer Plates and Overhead Stirrers
	IV.I.III Rotary Evaporator
	IV.I.IV Vacuum Pump
	IV.I.V Recirculation Chiller
	IV.I.VI Camera
	IV.I.VII Other

