

Goikoetxea Yanci, Asier (2012) Smart card security. EngD thesis.

http://theses.gla.ac.uk/3091/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior
permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining
permission in writing from the author

The content must not be changed in any way or sold commercially in any format or
medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given

Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

http://theses.gla.ac.uk/3091/
http://theses.gla.ac.uk/
http://theses.gla.ac.uk/
mailto:theses@gla.ac.uk

Smart Card Security

Volume I (of II)

Asier Goikoetxea Yanci

A themed portfolio submitted to

The Universities of

Glasgow

Edinburgh

Strathclyde

Heriot Watt

For the Degree of

Doctor of Engineering in System Level Integration

© Asier Goikoetxea Yanci

2011-February

Sponsored by:

EngD portfolio – Volume I, A. Goikoetxea Yanci ii

Abstract

Smart Card devices are commonly used on many secure applications where there is a need

to identify the card holder in order to provide a personalised service. The value of access to

locked data and services makes Smart Cards a desirable attack target for hackers of all sorts.

The range of attacks a Smart Card and its environment can be subjected to ranges from

social engineering to exploiting hardware and software bugs and features.

This research has focused on several hardware related attacks and potential threats. Namely,

power glitch attack, power analysis, laser attack, the potential effect on security of memory

power consumption reduction techniques and using a re-configurable instruction set as

method to harden opcode interpretation.

A semi-automated simulation environment to test designs against glitch attacks and power

analysis has been developed. This simulation environment can be easily integrated within

Atmel’s design flow to bring assurance of their designs’ behaviour and permeability to such

attacks at an early development stage. Previous power analysis simulation work focused on

testing the implementation of part of the cryptographic algorithm. This work focuses on

targeting the whole algorithm, allowing the test of a wider range of countermeasures.

A common glitch detection approach is monitoring the power supply for abnormal voltage

values and fluctuations. This approach can fail to detect some fast glitches. The alternative

approach used in this research monitors the effects of a glitch on a mono-stable circuit

sensitive to fault injection by glitch attacks. This work has resulted in a patented glitch

detector that improves the overall glitch detection range.

The use of radiation countermeasures as laser countermeasures and potential sensors

has been investigated too. Radiation and laser attacks have similar effects on silicon devices.

Whilst several countermeasures against radiation have been developed over the years,

almost no explicit mention of laser countermeasures was found. This research has

demonstrated the suitability of using some radiation countermeasures as laser

countermeasures.

Memory partitioning is a static and dynamic power consumption reduction technique

successfully used in various devices. The nature of Smart Card devices restricts the

applicability of some aspects of this power reduction technique. This research line has

resulted in the proposal of a memory partitioning approach suitable to Smart Cards.

EngD portfolio – Volume I, A. Goikoetxea Yanci iii

Table of Contents

Abstract __ ii

List of Figures and Tables __ vi

List of Accompanying Material ___ viii

Acknowledgements ___ ix

Author’s Declaration ___ x

Acronyms ___ xi

1 Introduction to Smart Cards and portfolio structure__________________________ 1

1.1 Portfolio structure ___ 4

2 Smart Card Industry, device background and Portfolio contribution ____________ 6

2.1 Smart Card Industry__ 6

2.2 The Device ___ 8

2.3 Threats ___ 12

2.3.1 Glitch Attacks ___ 12

2.3.2 Power Analysis__ 14

2.3.3 Laser Attacks ___ 16

2.3.4 Program code leakage__ 17

2.3.5 Security challenges introduced by new technology nodes _________________ 17

2.3.6 General comments on security and attacks____________________________ 18

2.4 Portfolio contribution ___ 19

3 Fault Tolerant Design __ 20

3.1 Simulation Environment ___ 20

3.1.1 Literature Review for Fault injection and side-channel____________________ 21

3.1.2 Glitch Attack and Power Analysis Simulation Environment ________________ 24

3.1.3 Discussion ___ 29

3.1.4 Conclusion of the simulation environment _____________________________ 35

3.1.5 Future work __ 35

3.2 Glitch Detector ___ 37

3.2.1 Literature Review __ 38

3.2.2 Design __ 39

3.2.3 Test and Results __ 42

EngD portfolio – Volume I, A. Goikoetxea Yanci iv

3.2.4 Conclusion of the glitch detector ____________________________________ 54

3.2.5 Future work __ 55

3.3 Laser Attacks __ 56

3.3.1 Literature Review __ 56

3.3.2 This Work__ 60

3.3.3 Tests ___ 62

3.3.4 Conclusions of laser attacks _______________________________________ 63

3.3.5 Future work __ 64

4 Low Power Design for Smart Card _______________________________________ 65

4.1 Literature Overview ___ 67

4.2 Memory Partitioning __ 69

4.2.1 Literature Review __ 69

4.2.2 Considerations when partitioning the memory of a Smart Card_____________ 72

4.2.3 Smart Card memory usage case study _______________________________ 74

4.2.4 A Proposed SRAM Memory Partitioning for Smart Cards _________________ 77

4.2.5 Potential power savings on SCD-A with a partitioned memory and coding

considerations ___ 80

4.2.6 Conclusions __ 82

4.2.7 Future work __ 82

4.3 Supply Voltage versus Performance _______________________________ 83

4.3.1 Results of the simulations carried out by the Memory Group ______________ 83

4.3.2 Discussion ___ 85

4.3.3 Conclusions __ 86

4.3.4 Future work __ 87

4.4 Memory Cell Hardening __ 88

4.4.1 Custom SRAM bit cell design and simulation results_____________________ 88

4.4.2 Silicon Test Methodology __ 91

4.4.3 Conclusions __ 93

4.4.4 Future work __ 93

5 Re-configurable Instruction Set CPU for Smart Cards _______________________ 94

5.1 Literature Review ___ 95

5.1.1 Re-configurable dual instruction set architecture________________________ 97

5.2 Proposed CPU de-standardisation techniques in this work ___________ 100

5.2.1 Improving Atmel’s dual instruction architecture ________________________ 100

5.2.2 Mapping valid instructions with non-valid ones ________________________ 104

5.2.3 Enabling indirect data memory addressing with variable displacement______ 105

5.3 Discussion ___ 109

EngD portfolio – Volume I, A. Goikoetxea Yanci v

5.4 Conclusion ___ 112

6 General conclusions and future work____________________________________ 113

References ___ 117

Appendix A Known Attacks Against Smartcards [15] ________________________ 123

Appendix B GAPASE file: simulation.cfg _______________________________ 142

Appendix C ___ 149

EngD portfolio – Volume I, A. Goikoetxea Yanci vi

List of Figures and Tables

Figure 1-1 Block diagram of the typical memory card ... 2

Figure 1-2 Block diagram of the typical microcontroller card... 2

Figure 2-1 Smart Card module pinout ... 8

Figure 2-2 Voltage regulator in a Smart Card device .. 9

Figure 2-3 A Smart Card's typical response to glitch attacks .. 13

Figure 2-4 Typical aimed detection range ... 14

Figure 2-5 3DES encryption and decryption processes... 15

Figure 3-1 GAPASE block diagram ... 24

Figure 3-2 GAPASE's layer division... 26

Figure 3-3 Simulation flow diagram ... 28

Figure 3-4 Examples of glitches that can be defined with GAPASE.. 29

Figure 3-5 Example of future GAPASE ... 36

Figure 3-6 Diagram block of the glitch detector... 40

Figure 3-7 Proposed glitch detector... 40

Figure 3-8 The inverter's equivalent circuit and load ... 41

Figure 3-9 The modified inverter's response to a glitch... 41

Figure 3-10 Diagram of the glitch detector test setup.. 43

Figure 3-11 Design A's response to Glitch B with high load and worst-case SPICE models .. 45

Figure 3-12 Design B's response to Glitch B with high load and worst-case SPICE models .. 46

Figure 3-13 Simulation of glitch attack detection under a high load .. 47

Figure 3-14 Block diagram of the test-chip.. 48

Figure 3-15 VR1's response to a 17V and 300ns glitch under high load, Vcc = 3V 49

Figure 3-16 VR2's response to a 17V and 300ns glitch under high load, Vcc = 3V 50

Figure 3-17 Diagram of the test environment .. 50

Figure 3-18 Glitch detection range for different detectors when Vcc = 3V: a) GD_0 3V; b)

GD_1 3V; c) GD_2 3V; d) GD_3 3V; e) VR1 3V; and f) GD_3 vs VR1 3V.............................. 51

Figure 3-19 Enclosed layout transistor .. 60

Figure 3-20 Basic light attack test circuit ... 61

Figure 3-21 Different layouts used in the test-chip .. 61

Figure 3-22 Implemented combinational block SEU mitigation logic....................................... 61

Figure 3-23 Silicon view with circuitry boundaries ... 63

Figure 4-1 Leakage contribution mechanisms [49].. 67

Figure 4-2 Logical memory usage of different applications. Blue indicates low activity, red

indicates high activity. .. 75

Figure 4-3 Physical memory usage of different applications. Logical addresses are scrambled.

Blue indicates low activity, red indicates high activity. ... 76

Figure 4-4 Typical SRAM organization showing natural partitions .. 78

EngD portfolio – Volume I, A. Goikoetxea Yanci vii

Figure 4-5 SRAM divided into two memory arrays .. 78

Figure 4-6 Example of two size partitions.. 79

Figure 4-7 Example of a two tier scrambler... 80

Figure 4-8 Simulated SRAM access time vs. supply voltage [12] ... 84

Figure 4-9 Simulated SNM vs. supply voltage... 85

Figure 4-10 Standard 6-bit transistor memory cell... 89

Figure 4-11 Half Schmitt inverter based memory cell.. 89

Figure 4-12 Schmitt inverter based memory cell ... 89

Figure 4-13 SNM graphs for different SRAM bit cell structures and supply voltages: a) SNM

of a standard bit cell powered at 1.6V; b) SNM of a standard bit cell powered at 0.7V; c) SNM

of a Schmitt half sf weak bit cell powered at 1.6v; and d) SNM of a Schmitt half sf weak bit cell

powered at 0.7v ... 91

Figure 4-14 Diagram of the SRAM robustness test setup ... 92

Figure 5-1 Typical RISP architecture, where the RFU is used to create new functions or

instructions [75].. 96

Figure 5-2 Diagram of a RISP with a re-configurable instruction decoder block 96

Figure 5-3 Diagram block of the approach proposed by Atmel ... 97

Figure 5-4 Implementation example for two secondary instructions 102

Figure 5-5 Atmel's ReDISA enabled for two secondary instructions 103

Figure 5-6 Block diagram example.. 104

Figure 5-7 Diagram of the fixed offset register scenario ... 107

Figure 5-8 Scenario with an offset value register per pointer register 107

Figure 5-9 Scenario with several offset register selected with 'q' displacement value 108

Table 3-1 Power analysis simulation results.. 31

Table 3-2 Glitch simulation results... 44

Table 3-3 Overall detection times in nanoseconds.. 52

Table 3-4 Radiation vs. laser effects on silicon ... 57

Table 3-5 Design and countermeasure relation table.. 62

Table 4-1 SNM of different bit cell designs for different Vdd values.. 90

Table 5-1 Implementation costs of two secondary instructions ... 103

EngD portfolio – Volume I, A. Goikoetxea Yanci viii

List of Accompanying Material

The following material is included in the Volume II of this portfolio

Technical Reports:

SimEnvTech1: Glitch Attack and Power Analysis Simulation Environment

SimEnvTech2: Counter Simulation Results

LaserTech1: Tartalo test-chip 01OKA

GlitchTech1: Glitch Detector Report

LowLeakageTech1: SRAM Memory Partitioning for Leakage Reduction

Publications:

GlitchPub1: Goikoetxea Yanci, A.; Pickles, S.; Arslan, T., "Detecting Voltage Glitch

Attacks on Secure Devices," ECSIS Symposium on Bio-inspired Learning and Intelligent

Systems for Security (BLISS '08), pp.75-80, 4-6 Aug. 2008.

GlitchPub2: Goikoetxea Yanci, A.; Pickles, S.; Arslan, T., "Characterization of a Voltage

Glitch Attack Detector for Secure Devices," ECSIS Symposium on Bio-inspired Learning

and Intelligent Systems for Security (BLISS '09), pp.91-96, 20-21 Aug. 2009.

GlitchPub3: Goikoetxea Yanci, Asier, “Detecting Voltage Glitches”, International Patent

Publication Number, WO 2008/033712 A2.

EngD portfolio – Volume I, A. Goikoetxea Yanci ix

Acknowledgements

I am very grateful to the Engineering and Physical Sciences Research Council (EPSRC) and

my industrial sponsor, Atmel Smart Card ICs, for their funding. Their financial support has

made this research possible. I also want to thank Atmel for providing me with the opportunity

to carry a research with them and for them.

Thank you to my academic supervisors Professor Tughrul Arslan and Dr. Ahmet Erdogan for

their advice and feedback in many aspects of the research and for encouraging me to submit

a number of publications. An especial Thanks goes to Professor Tughrul Arslan for all the time

he has dedicated to this research.

I am also grateful to my industrial supervisors Russell Hobson and Steve Pickles for their

guidance on various technical subjects, countless discussions and undivided attention.

Thanks also to Steve for proof reading all the reports and interfacing with the Security Group

to solve any confidentially issues regarding this publication. I do not forget either the help of

many Atmel employees that helped me at different stages on this research. Thank you.

I owe a big thank you to the Institute for System Level Integration for their assistance

throughout the years. Specially for allowing me to join the MSc, for their efforts on transferring

my MSc credits toward the EngD programme and for help on different topics related to the

EngD. Professor Steve Beaumont, Wendy Glendenning, Sandie Buchannan and Siân

Williams have made all this possible.

Last, but not least, I want to thank my friends and family for too many reasons to mention

them here. Special thanks to my parents for making me who I am.

Asier Goikoetxea Yanci

January 2011

EngD portfolio – Volume I, A. Goikoetxea Yanci x

Author’s Declaration

I declare that the research presented in this portfolio is entirely my own contribution, unless

otherwise stated. This research has been carried out with the assistance of my academic and

industrial supervisors.

Andrew Burnside (EngD student at Atmel) provided me with his Matlab scripts to carry a

difference of means (DOM) differential power analysis (DPA), which I adapted to for the

simulation environment covered in section 3.1.

David Dougan and Louis Frew provided me with the operational amplifier and voltage

regulators used in the process of testing the proposed glitch detector, section 3.2.

Jalib Ahmed provided me with the RTL and program code of the Cratis device, which I

adapted and used in the silicon glitch attack test environment used in section 3.2.3.3 and

section 4.4.2 and covered in detail in the technical report GlitchTech1. John Connor provided

me with the source code of his own front-end glitch attack control application (VGlitch), which I

adapted to the test needs of the mentioned silicon glitch attack test environment.

Asier Goikoetxea Yanci

January 2011

EngD portfolio – Volume I, A. Goikoetxea Yanci xi

Acronyms

3DES Triple-DES

AES Advanced Encryption Standard

ALU Arithmetic Logic Unit

AMS Analog Mixed Signal

APDU Application Protocol Data Unit

API Application Protocol Interface

ASIC Application Specific Integrated Circuit

ATM Automated Teller Machine

CC Common Criteria

CMOS Complementary Metal-Oxide Semiconductor

CPA Correlation Power Analysis

CPU Central Processing Unit

DES Data Encryption Standard

DICE Dual Interlocked storage Cell

DOM Difference of Means

DPA Differential Power Analysis

DRV Data Retention Voltage

DUT Device Under Test

DVS Dynamic Voltage Scaling

EDA Electronic Design Automation

EEPROM Electronic Erasable Programmable Read Only Memory

ELT Enclosed Layout Transistor

EMA Electromagnetic Analysis

FPGA Field-Programmable Gate Array

FSM Finite State Machine

GAPASE Glitch Attack and Power Analysis Simulation Environment

GND Ground

GSM Global System for Mobile Communications

HDL Hardware Description Language

IC Integrated Circuit

IDB Instruction Decoder Block

IDE Integrated Development Environment

IP Intellectual Property

ISA Instruction Set Architecture

ISO International Standards Organisation

LUT Look-Up Table

MOS Metal-Oxide Semiconductor

NMOS Negative Metal-Oxide Semiconductor

EngD portfolio – Volume I, A. Goikoetxea Yanci xii

NVM Non-Volatile Memory

OS Operating System

POR Power on Reset

PCB Printed Circuit Board

PIN Personal Identification Number

PMOS Positive Metal-Oxide Semiconductor

PSL Post-Simulation Layer

RC Resistor Capacitor

ReDISA Re-configurable Dual Instruction Set Architecture

RH Radiation Hardened

RHBD Radiation Hardened by Design

RHP Radiation Hardened Process

RIDB Re-configurable Instruction Decoder Block

RISP Re-configurable Instruction Set Processors

RMM Reuse Methodology Manual

ROM Read Only Memory

RS Reset-Set

RSA Rivest, Shamir & Adleman

RTL Register Transfer Level

SCD-A Smart Card Device A

SCOS Smart Card Operating System

SEE Single-Event Effect

SERT Single-Event Resistant Topology

SET Single-Event Transient

SEU Single-Event Upset

SIDB Standard Instruction Decoder Block

SIM Subscriber Identification Module

SNM Static Noise Margin

SMM Security Methodology Manual

SoC System on Chip

SPA Single Power Analysis

SPI Serial Peripheral Interface

SPICE Simulation Program with Integration Circuit Emphasis

SPM Scratch-pad Memory

SRAM Static Random Access Memory

SSOL Simulation Specific Objects Layer

TTM Time-to-Market

USB Universal Serial Bus

VR Voltage Regulator

WDDL Wave Dynamic Differential Logic

EngD portfolio – Volume I, A. Goikoetxea Yanci 1

1 Introduction to Smart Cards and portfolio structure

Smart Cards have their origin in the plastic cards commonly used for the last few decades to

identify customers and provide them with personalised services. A few examples of these

cards include national insurance cards, library membership cards or video club cards. Initially,

these cards might have included just the customer name and identification number, and,

hence, were easy to duplicate and to commit fraud.

Certain services required some security features that would make card duplication more

difficult and authenticate the rightful owner of the card. This was achieved with the addition of

a magnetic stripe, which, among other data, stored the card identification number and the

card’s expiry date. These cards were also accompanied with a personal identification number

(PIN), the purpose of which was to authenticate the user. A common example of the plastic

card with a magnetic stripe is a credit or debit card.

Despite the added security feature, these cards could still be duplicated. In fact, financial

institutions lost £505 million in 2004 due to fraud [1]. These figures demonstrate that the

security measures in place were hardly a deterrent for those committing fraud. Furthermore,

the use of the PIN number already included in the magnetic stripe was unevenly adopted or

enforced across different countries or services. For example in the UK, the PIN number of a

debit card was required only when using it in an automated teller machine (ATM). When using

a debit card in a shop, the customer would identify or authenticate himself with a hand written

signature on the receipt, which should match to the one on the reverse of the card.

On the other hand, Spain had a different approach to authenticating a card owner in a shop.

The shop tender was required by law to request the card holder provide a valid proof of

identification, such as the national identity card. Furthermore, when using debit cards, the

customer should also enter the PIN number in order to complete a purchase transaction.

Credit cards did not need the PIN number entered to complete the transaction.

Smart Cards are the next step in the evolution from the original plastic cards, and they add yet

another degree of security. Smart Cards are plastic cards with an embedded integrated circuit

(IC) and are used in a wider range of applications, such as e-money cards (e.g. for transport),

subscriber identification module (SIM) cards, e-banking (e.g. credit cards) or government (e.g.

identity cards).

Smart Cards can be classified into two different categories depending on the components or

intellectual properties (IP) they are made of. These are memory Smart Card and

microcontroller Smart Card. A memory Smart Card is based on a non-volatile memory (NVM)

EngD portfolio – Volume I, A. Goikoetxea Yanci 2

which is externally accessed to store and/or read information. These Smart Cards are usually

accessed to through a Finite State Machine (FSM), just as shown in the block diagram in

Figure 1-1. A microcontroller Smart Card, on the other hand, is a System on Chip (SoC)

device with a microcontroller, program and data memories, and a series of other IPs. A block

diagram of microcontroller Smart Cards is shown in Figure 1-2. Smart Cards are shipped to

the end user with an embedded operating system (OS) and applications tailored to the target

application needs.

RAM

OSNVM

FSM

Figure 1-1 Block diagram of the typical memory card

RAM CPU OS

NVM

bus

IPs
IPs

IPs

Figure 1-2 Block diagram of the typical microcontroller card

The key benefit of Smart Cards goes beyond the pure user authentication feature of magnetic

stripes. Firstly, the security features embedded into the IC make it harder to be duplicated

and, hence, to achieve fraud [1]. Secondly, Smart Cards can also store data and restrict the

access to this data. One common, everyday use example is the phonebook function

embedded into SIM cards. The size of these phonebooks is limited by the available NVM

within the Smart Card. The access to this phonebook is granted after entering the right PIN

EngD portfolio – Volume I, A. Goikoetxea Yanci 3

number after powering up the SIM card. This is, unless the user has disabled the PIN number

feature.

Another example where data is stored into a Smart Card is the satellite or cable TV receiver

decoder or set-top-box. Here, the Smart Card holds information on which TV channels the

customer has subscribed to and is allowed to watch. In this case, however, the access to this

information is restricted to just the service provider and the set-top-box. The end customer

does not have rightful means or needs of gaining access to this information.

Most of the environments and applications where microcontroller Smart Cards are used,

involve the need for secure and/or secretive data transactions. For this purpose, Smart Cards

are designed with built-in security measures that range from hardware to software. With an

increasing number of applications using Smart Cards, however, there is also an increased

desire to break the security brought by these devices, as it could grant access to otherwise

restricted services. In turn, this has resulted in a continuous need to improve the security of

the whole environment and application.

This portfolio does not intend to be a hacker’s manual, hence, it will not discuss how the

security might be broken nor reference any place or report where this is discussed or

explained. However, just a sample of the motivation behind could help the reader understand

the drive of hackers to break the security measures, and the need of the Smart Card industry

to enhance the security level. Consider the set-top-box case above, where the end user has

no access to the information. If the end user manages to gain access to the information stored

in the Smart Card or manages to fool the set-top-box, they could potentially watch more TV

channels than originally subscribed to.

Focusing on the Smart Card and its environment, it can be subjected to threats and attacks of

different natures. The main attacks and threats can target:

• the end user, through social engineering, behaviour analysis or even personal threats;

• the communication channels between the Smart Card device and Smart Card reader

(commonly known as reader terminal), by eavesdropping, behavioural analysis and

fault injection;

• software or OS, by exploiting any bug or faults; and

• the Smart Card itself, with fault injections such as power glitch attacks, laser attacks

or side-channel attacks such as power analysis.

Atmel, as one of the leading Smart Card manufacturer companies, has a great interest in

keeping its product portfolio secure against current and forthcoming threats. The core

business of the Atmel Smart Card division centres on designing and developing

microcontroller Smart Card devices. Therefore, this research focuses on security issues,

EngD portfolio – Volume I, A. Goikoetxea Yanci 4

threats and attacks that target the microcontroller Smart Card IC or its internal hardware.

Attacks related to their internal software and their environment are out of the scope of this

research. For the rest of the research, microcontroller Smart Card devices will be referred to

as Smart Card devices. The next section provides an overview of the structure of this portfolio,

the work carried out in this research and the main achievements.

1.1 Portfolio structure

This portfolio is divided into two volumes. This document, Volume I, covers the various

research carried out in relation to Smart Card security. The contents of this volume are

discussed next.

Chapter 2 of this volume sets the context of this research by giving an introduction to the

Smart Card device and the manufacturing industry. This chapter also links all the different

research topics carried out in this work under the ‘Smart Card Security’ umbrella, and lists the

resulting contributions. Due to the distinctive nature of the different research areas covered in

this work, Chapters 3 to 5, the literature review of each research area is covered individually

within the chapter related to each research topic.

Chapter 3 Fault Tolerant Design covers three research lines focused on improving the Smart

Card’s fault tolerance to the three main attack techniques. These are power glitch attack,

power analysis attack and laser attack. Power glitch and laser attacks are active attacks that

can be used to inject faults into the Smart Card or alter the program execution flow, which

might provide valuable behavioural information to an experienced hacker. Power analysis

attack, on the other hand, is a passive attack technique used gain knowledge on the

processed data by analysing the Smart Card’s power consumption waveforms.

The research carried out in Chapter 3 has resulted in a glitch attack and power analysis

simulation environment to enable testing designs against these two common attack

techniques at an early development stage. The second research line has produced a new

glitch detector capable of detecting fast glitches that are missed by current detectors. The

third and final research line on fault tolerance has focused on investigating the applicability of

radiation hardening techniques to Smart Cards.

Chapter 4 Low Power Design for Smart Cards looks at the applicability of several SRAM

leakage reduction techniques on a Smart Card device. The introduction of new technologies

and the adoption of new design techniques can potentially impact on the security level of a

Smart Card device. One of the two main research lines covered in this chapter is aimed at

determining the impact on SRAM robustness a few SRAM leakage reduction design

EngD portfolio – Volume I, A. Goikoetxea Yanci 5

techniques might have when the SRAM is subjected to glitch attacks. The second main

research line covered in this chapter proposes a memory partitioning approach focused on the

needs of a Smart Card. For this technique to be applicable to Smart Cards and minimising the

impact on security, the memory scrambler will need to be adapted to the chosen memory

partitioning approach.

Chapter 5 Re-Configurable Instruction Set CPU for Smart Cards covers a re-configurable

CPU proposal where the CPU’s instruction set (IS) can be partially modified on-the-fly. As

previously stated, power analysis attack can be used to discover the processed data. It can

also be used to find out instructions being executed. Furthermore, using a CPU with a publicly

known IS has a higher risk of program opcode interpretation should it be made public. This

chapter discusses several approaches, advantages and disadvantages of de-standardising

the IS to harden the power analysis and opcode interpretation.

Chapter 6 finishes this volume, Volume I, discussing general conclusions on Smart Card

security from a higher level perspective than the research covered in this work. Regarding

future work, this chapter summarises the main lines of action proposed in chapters 3 to 5.

Volume II of this portfolio includes technical reports, papers and patents presented as a result

of the research carried out and information on the work carried out to support this research.

For more information on its contents, please refer to the Volume II document.

EngD portfolio – Volume I, A. Goikoetxea Yanci 6

2 Smart Card Industry, device background and
Portfolio contribution

This chapter provides an overview of the Smart Card industry, the device and its threats. It

also presents the contributions of this research towards the Smart Card Security field.

2.1 Smart Card Industry

From its design to its usage, there are five main parties involved with Smart Cards: a)

manufacturers; b) evaluators; c) vendors; d) customers (e.g. banks); and, e) the end user (i.e.

the people that use a given service). Manufacturing companies, where we can find

semiconductor companies like Atmel, focus on designing and developing hardware devices

according to the requirements of the Smart Cards’ target applications. These requirements

include not only feature specifications but also security requirements, which are defined by the

Common Criteria (CC) framework, international standard organisation (ISO) 15408.

Each new product is evaluated by an external evaluator, such as the German Federal Office

for Information Security or the French Secretariat General for National Defence (French

Network and Information Security Agency), to determine if they actually meet the application’s

security requirements. Meeting these requirements does not mean the device is unbreakable,

instead it provides a degree of certainty that the device has been designed, tested and

documented following a certain methodology. These evaluations are very costly in terms of

time and money, and any issue highlighted at this stage, will have a big impact on the cost and

delivery dates of the device. Hence, manufacturer companies need a means of testing their

products during and after production by themselves in order to maximise the chances of

passing the evaluation process.

The Smart Card vendors, such as Gemalto, Giesecke & Devrient and Oberthur Technologies,

focus on developing the software side of the Smart Cards (OS and applications) and the

packaging according to their customers’ requirements. These customers use Smart Card

devices to identify their customers (the end user) and provide unique and personalised

services, e.g pay per view TV. More often than not, these same customers offer Smart Card

devices to the end user free of charge, which impacts the manufacturers’ selling prices.

Unlike other industries, where a company might protect its IP against industrial theft, the

Smart Card industry protects itself further by dividing the knowledge into the different parties

involved. In other words, no one party involved knows everything about a given Smart Card

EngD portfolio – Volume I, A. Goikoetxea Yanci 7

product. In fact, due to their high dependency on security, this knowledge division often

happens even at company level.

As a result, the Smart Card industry is very secretive and little information is published by the

manufacturers themselves regarding their research on threats and or countermeasures, as

otherwise it could be potentially used by attackers to target their own devices. Hence, most of

the publications related to Smart Card security have been published by third party research

institutions.

EngD portfolio – Volume I, A. Goikoetxea Yanci 8

2.2 The Device

Smart Cards are regulated by the ISO-7816 standard, which defines their physical, electrical,

communication protocols and many more aspects. There are, however, some internal aspects

not regulated by this standard, such as the actual design, what kind of CPU to use or what

kind of countermeasure should be instantiated for a given threat. These are left to the

manufacturer company to choose from and could mean the difference between gaining or

losing potential customers and impact their competitive advantage.

Smart Cards communicate with the external world via Smart Card readers (a.k.a. reader

terminals), which also have the function of powering the Smart Card. Two approaches have

been standardised to power and communicate with a Smart Card: contact and contact-less.

Contact Smart Cards are powered and communicate via physical connectors. These Smart

Cards are packaged with pins and physically connected to the reader terminal to power the

Smart Card, drive control signals (such as clock and reset), and perform data transactions.

Figure 2-1 shows the contact Smart Card module’s pin-out. Contact-less Smart Cards, on the

other hand, are powered via an electromagnetic fields and communicate by load modulation

into field.

1
Vcc

2
Reset

3
Clock

4
GND

5
Vpp

6
I/O

7
Reserved

8
Reserved

Figure 2-1 Smart Card module pinout

In contact Smart Cards, the power is supplied between the Vcc and GND pins. The ISO 7816

part 3 determines the allowed external supply voltage levels, which currently are 5V, 3V and

1.8V. However, the technology node Smart Cards are developed to operate at lower voltage

levels, hence, they require a built-in DC/DC voltage converter. The input of this DC/DC

converter is fed with the external supply voltage, Vcc, and its output provides the Smart Card’s

internal supply voltage, Vdd. For the rest of this portfolio, Vcc refers to the supply voltage

provided externally to the Smart Card, that is, the DC/DC converter’s input pin. On the other

hand, Vdd refers to the Smart Card’s internal supply voltage, which is provided by the DC/DC

converter’s output; in other words, the voltage used by the Smart Card to operate internally.

Also, for the rest of this portfolio, the DC/DC voltage converter will be referred to as a voltage

regulator. Figure 2-2 shows a diagram of how the voltage regulator links the power rails.

EngD portfolio – Volume I, A. Goikoetxea Yanci 9

Voltage regulator
VR1

Vcc (external
supply)

Vdd (internal supply)

Device

Smart Card

Figure 2-2 Voltage regulator in a Smart Card device

The Reset pin in Figure 2-1 is used to apply a hard reset to the Smart Card device. The Clock

pin is used to provide the Smart Card with a clock signal. Although originally this signal was

used to clock both the communication channel and the internal system, modern devices have

an internal clock generator, so that the system and communication channel use independent

clock signals. This is a security enhancement as any attack on the external clock pin may

affect the communication but not necessarily the internal system.

The I/O pin (also known as I/O 0) is a bi-directional half-duplex communication port used to

send and receive data to and from the Smart Card reader and is synchronised with the Clock

signal. Optionally, devices could have an additional I/O (usually referred to as I/O 1). More

modern devices also include a serial peripheral interface (SPI) and USB ports. These

additional ports can only be accessible by using a package different to that shown in Figure

2-1.

Regarding the device internals, the bare minimum IPs embedded into a Smart Card include: a

voltage regulator (covered above); a CPU; program memory; data memory; an I/O interface

(covered above) and some security sensors. In addition to these IPs, a Smart Card can also

include: a hardware instantiation of cryptographic algorithms and or cryptographic

accelerators; more sensors; firewalls that control the memory access.

CPUs used in Smart Cards have traditionally been 8- or 16-bit ones, although more recently

32-bit ones are being used too. The CPUs are either secure versions of commercially

available ones (e.g, AVR, C51 or ARM) or custom designed ones. The main benefits of using

versions of commercially available CPUs are that: a) software developers can have prior

knowledge of the CPU’s assembly language; and b) third party tools might be already

available to develop code for that particular CPU even before the physical device exist. In

short, its impact on the time-to-market (TTM) is minimised. However, these devices might be

more sensitive to code leakage (i.e. someone getting access to the code), as it would be

EngD portfolio – Volume I, A. Goikoetxea Yanci 10

easier to understand it. Custom CPUs, on the other hand, can be safer against code leakage,

however, the closed nature of its Instruction Set Architecture (ISA) would reduce the software

developers’ exposure to it and limit the amount of available development tools, having a

potentially greater impact on the TTM and overall cost.

The program memory space is usually occupied with a ROM and an NVM such as EEPROM

or Flash. The ROM memory might hold functions (libraries) provided by the Smart Card

vendor together with the manufacturer’s code. The NVM on the other hand usually holds the

Smart Card’s OS and any application developed by the vendor.

The data memory is occupied with both SRAM and NVM memories, where SRAM is used to

store any temporal data related to Smart Card operations, such as buffers for data

transactions and temporal storage for encryption algorithms. NVM is used to store application

and personalisation data, such as the personal identification number (PIN) number, bio-metric

data or a phone book.

Some Smart Cards also include hardware instantiations of cryptographic algorithms and or

cryptographic hardware accelerators. There are two kinds of cryptographic algorithms,

symmetric and asymmetric. Symmetric algorithms use the same key to encrypt and decrypt a

message, this is, the sender (encrypting device) and receiver (decrypting device) share the

same key. For the communication to be secure with such algorithms, the key must be kept

secret, as leaking it can result in an observer gaining access to the encrypted message. The

Data Encryption Standard (DES) and Advanced Encryption Standard (AES) are the typical

symmetric cryptographic algorithms used in Smart Cards. These algorithms can be fully

instantiated either in hardware or in software.

Asymmetric algorithms use different keys to encrypt and decrypt a message, where the

encryption key can be public and the decryption key is private. In this scheme, both devices,

i.e. Smart Card and reader terminal, only share their public keys. To communicate, the sender

encrypts the message with the receiver’s public key. Upon receiving the encrypted message,

the receiver decrypts it with its private key. For the communication to be secure with such

algorithms, all four keys should be kept secret. The private key only known by the device that

owns it (i.e. either the Smart Card or the reader) and the public key shared only between the

devices that take part in the communication. Asymmetric algorithms, such as Rivest, Shamir &

Adleman (RSA), can also be fully instantiated in hardware or in software. Hardware

accelerators may also be instantiated to speed up the software implementations.

An attacker gaining access to a public key does not compromise the integrity of any encrypted

message, as the public key cannot be used to decrypt a message. The attacker could,

however, use the public key to inject corrupt messages in the communication channel, even if

EngD portfolio – Volume I, A. Goikoetxea Yanci 11

it only can target the device owning that public key. In other words, the attacker could encrypt

messages in one direction. Such attacks could be used to perform behavioural analysis.

An attacker gaining access to a private key, on the other hand, compromises the messages

being sent to that private key owner device (either the Smart Card or the reader terminal), as

the attacker could decrypt those messages. Hence, leaking a private key has worse

implications than leaking a public one. However, in some applications, different Smart Cards

could have different private keys, meaning that gaining access to the private key of one Smart

Card device does not necessarily affect other devices nor it necessarily compromises the

application.

Other features embedded into Smart Cards are attack countermeasures and sensors.

Sensors are used to monitor the Smart Card’s environment parameters for alterations that

could affect the device’s performance and raise an alarm if any of these parameters are out of

the specification values. Typical sensors monitor for variables such as temperature, clock

frequency and glitch and voltage variations on the power rails. Sensors are also used to detect

light (such as laser beams) applied to the Smart Card die in order to inject faults into the

device. Typical countermeasures include: adding a metal mesh on the die’s top layer to avoid

micro-probing the device; and design techniques that improve cryptographic algorithm

implementations against power analysis (more about this in section 2.3.2).

In addition to all these hardware features, Smart Cards also include the software they need to

operate, which, as previously stated, includes functions or libraries provided by the Smart

Card manufacturer and the OS and applications provided by the vendors. In fact, the Smart

Card OS can be developed by the vendor or a third party company. For single application

devices, the vendor usually has its own OS. For the case of multi-application Smart Cards,

using the OS developed by third party companies such as JavaCard, MULTOS or STARCOS

is more common.

Single application devices tend to be built around 8-bit or 16-bit CPUs, whereas multi

application devices can make a better use of 32-bit CPUs. Both OS need to be secure, where

the application and OS memory spaces are kept separated. In the case of a multi application

OS, however, this memory space differentiation expands to applications, where an application

cannot access other applications’ data, as otherwise, an application developed by a hacker

could potentially access other applications’ data or even the OS data. In some cases, as with

multi-application Smart Cards, applications can be added or removed even after the device

has been deployed and while it is being used by the end user.

EngD portfolio – Volume I, A. Goikoetxea Yanci 12

2.3 Threats

Despite all the security measures embedded into a Smart Card device, they are still targeted

with a range of attack techniques to get valuable data. This section explains those threats

directly related to the work carried out in this research.

2.3.1 Glitch Attacks

Electronic devices are designed to be powered at a certain, constant voltage level that is

characterised by the technology node at which the device is built. By powering the device

outside its specification values, the device could fail to operate as expected or suffer

permanent damaged. This is especially true when the device is subject to abnormal voltage

levels for a prolonged period of time.

Electrical noise, such as glitches, are sudden temporary changes of the voltage level in the

power rails of a device. Due to the short and temporary nature of this phenomenon, electronic

devices can withstand a certain level of electrical noise; a typical specification is +/- 10% of

Vcc. However, electrical noise or glitches above certain level can inject errors, temporary

malfunctions or damage a device permanently.

Glitch attack is a technique used by attackers to disrupt a device’s normal operation in order

to analyse the device’s behaviour or gain access to otherwise secret data. These attacks are

applied on the target device’s power rails, Vcc and/or GND in the case of Smart Cards. An

alternative use could be targeting the device’s I/O or clock signal. A typical outcome of a

successful glitch attack could be skipping the execution of an instruction.

Despite the ISO standard defining the valid supply voltage levels, Smart Card manufacturers

have no control over the environment where their devices are used or how they are powered.

In other words, Smart Cards are exposed to the environment and potential abuse from an

attacker which, does not need to follow the ISO standard nor the device’s powering

specifications. Hence, they need to make their devices robust against such attacks by design.

As already mentioned, Smart Cards include a voltage regulator that converts the standard

supply voltage level into that supported by the technology node it is built in. In addition to that,

the built-in voltage regulator also provides an inherent protection against certain glitches and

electrical noise levels, as it filters out some of the undesired fluctuations present at its input,

providing a cleaner supply voltage at its output. This filtering feature, as it will be shown in

EngD portfolio – Volume I, A. Goikoetxea Yanci 13

section 3.2.3.3 Test-chip Test and Results, is highly design dependant. Despite this

protection, some glitches are still capable of injecting faults into the Smart Card device. Figure

2-3 shows the typical impact pattern of positive glitches
1
 applied to the Vcc of a Smart Card.

Figure 2-3 A Smart Card's typical response to glitch attacks

As a countermeasure to this threat, Smart Cards include glitch detection circuits located at the

input and output of the voltage regulator. The aim of these glitch detectors is to detect voltage

levels and glitches that violate the supply specifications and that can pose a threat to the

Smart Cards' correct operation whilst avoiding the detection of permissible noise.

The detection range of a typical detector should not only focus on the region that affects the

device, but it should also overlap it with the region that does not affect the device. In other

words, a detector should aim at detecting those glitches that affect the device and those that

are close to affecting it. Figure 2-4 shows a typical detection range of glitch detectors to

positive glitches on the Vcc of a Smart Card device.

Two research lines of this work have focused on glitch attacks. Firstly, a simulation

environment has been developed to test devices or parts of them against glitch attacks,

1
 Several kind of glitches can be applied. These are explained further in the Section 3.1.2.2 of

this Volume.

EngD portfolio – Volume I, A. Goikoetxea Yanci 14

section 3.1. Secondly, a glitch detector capable of detecting certain fast glitches has been

developed and patented, section 3.2.

Figure 2-4 Typical aimed detection range

2.3.2 Power Analysis

As previously stated, DES and AES are encryption algorithms commonly used in Smart

Cards. The mathematical models of these standards are strong and unbreakable, that is

unless brute force is used. The DES algorithm, with its 56-bit key length (2
56

 or over 72

quadrillion key combinations), is generally seen as a weak cipher, as it is relatively easy to

break by a brute force attack [2]. A very common DES enhancement is triple-DES (3DES),

where encryption is achieved by a consecutive chain of encryption-decryption-encryption,

using different keys for each operation, as shown in Figure 2-5. As a result, the 3DES has an

effective key length of 168 bits. The 3DES is regarded as safe against brute force attacks. In

the case of AES, no successful brute force attack has been published to date for any of its

three possible key lengths, 128, 192 or 256 bits.

However, whilst the mathematical model of these algorithms might be secure and robust, its

hardware and software implementations (which ultimately depend on hardware) can introduce

EngD portfolio – Volume I, A. Goikoetxea Yanci 15

a degree of weakness. Complementary Metal-Oxide Semiconductor (CMOS) devices

consume static and dynamic power. Static power is produced by the leakage current present

when a device is powered. This leakage current depends on the technology and the number

of transistors in the design, where the device activity has little or no impact. Dynamic power,

on the other hand, is produced by the dynamic current consumed by the device. Dynamic

current occurs when the device is active and is produced as a result of transistor switching in

the device, more switching meaning higher currents. Since the switching of transistors in a

design (e.g. a combinational block) depends on its current status and the data being

processed, it can be said that there is a link between the consumed dynamic power and the

data being processed. In other words, processed data can be leaked.

DES
Encryption

DES
Decryption

Des
Encryption

Plaintext

Key 1 Key 2 Key 3

Cipher

3DES Encryption process

DES
Decryption

DES
Encryption

DES
Decryption

Key 2

Cipher

3DES Decryption process

Plaintext

Key 1Key 3

3DES Key = Key1.Key2.Key3 (3x56 bits)

Figure 2-5 3DES encryption and decryption processes

Power analysis techniques such as simple power analysis (SPA) and differential power

analysis (DPA) exploit this link between data and current consumption to guess or estimate

the operation being performed by a device or even the data it is manipulating. SPA

techniques, which directly monitor and analyse the power consumption of a device, can be

used to identify the instruction executed by a CPU [3] or even the operand of an operation [4].

DPA techniques, which perform a statistical analysis on a series of power traces, have been

used to successfully guess the secret key of cryptographic algorithms such as DES and AES

[5, 6].

EngD portfolio – Volume I, A. Goikoetxea Yanci 16

Several countermeasures have been proposed against SPA and DPA. One research line of

this work focused on designing a re-configurable instruction decoder block (RIDB) to protect

the CPU from SPA and code leakage, Chapter 5. Another research line has focused on

developing a simulation environment to test DES modules against DPA, Section 3.1. This

simulation environment has been integrated with the glitch attack simulation environment.

2.3.3 Laser Attacks

Lasers are used in the aerospace industry to test electronic devices at terrestrial level for fault

injection events that they might face at high altitudes and/or outer space due to radiation [7].

Despite the fact that a laser beam cannot inject the full range of faults that radiation particles

can, its capability to inject faults known as single-event upset (SEU) is of great use to an

attacker, and using it correctly could result in obtaining valuable information.

The cost of the setup to inject faults with a laser, can vary as much as the range of laser

devices that can be used for this purpose. At the lower end of the scale, a photoflash was

successfully used to flip the value of an SRAM bit on a PIC microcontroller [8]. This attack was

carried out by focusing the light spot on the SRAM bit-cell it was targeting. This attack could

be used to change the value of a register indicating the state of an operation, an FSM or a

loop counter. In theory, this same attack can be applied to Smart Cards, however, and due to

the address and bit scrambling of the memories that takes place in a Smart Card device, the

effect of a similar attack could be unpredictable and also hard to repeat.

An alternative use of the laser is to scan the whole die to identify the location of specific

functions such as the arithmetic logic unit (ALU) of the CPU, the CPU registers, the

cryptographic block or memories. After that, an attacker could focus on the area of interest to

attack it.

The main drawback of the laser is the laser beam’s penetration level. Laser beams are only

capable of injecting faults on exposed areas of silicon, as the laser beam can be stopped by

physical obstacles such as packaging and metal layers. So, in order to be able to carry a laser

attack, the target device needs to be de-packaged first and no metal tracks or layers should

cover the target area.

The designs’ complexity level and the amount of layers used on modern Smart Cards makes

it difficult to achieve successful front-side attacks (through the metal layers), as metal tracks

often hide the silicon below. This task is made even more difficult if the metal mesh on the top

layer to stop from micro-probing is taken into account. However, these difficulties can be

EngD portfolio – Volume I, A. Goikoetxea Yanci 17

overcome with back-side attacks, where the laser is applied to the substrate, which could

have been previously milled. Hence, the threat imposed by the laser is still present.

This research line focused on the design of countermeasures to harden devices against light

attacks. This research was cut short due to a shift of interest by the sponsor company.

However, a test-chip with some countermeasures was produced and tested. More about this

research topic can be found in Section 3.3 of this Volume and, at a deeper level in the

Technical report LaserTech1 of Volume 2.

2.3.4 Program code leakage

Smart Cards typically use commercial CPUs or secured versions of commercially available

CPUs. Since commercial CPUs are better known than specific or non-commercial ones,

developers might already be familiar with them and more development tools might be

available. This could help with the code development. However, this also makes them

sensitive to program code leakage, as an attacker gaining access to the opcode or assembler

could easily understand it. Furthermore, different devices with the same CPU might have

similar instruction power signatures, which make the Smart Card more sensitive to SPA like

the ones used in [3] and [4]. Again, RIDB and other CPU de-standardisation techniques

focused on minimising the impact of this threat.

2.3.5 Security challenges introduced by new technology nodes

Newer technology nodes result in higher static power drain due to an increase of leakage

current. Memories are the single highest source of leakage current on Smart Card devices

due to their high transistor density. Several leakage reduction techniques have been

developed to reduce this leakage current, which mainly focus on reducing the SRAM’s supply

voltage [9-11]. A lower supply voltage means a lower static noise margin (SNM), which can

impact on the memory’s robustness and sensitivity to soft errors [12].

Smart Card devices are products designed for secure applications; reducing the power

consumption could not be done at the expense of security. This research line’s focus was on

investigating the security impact of different low power techniques, some of which were

developed by Atmel’s Memory Group based in Rousset (France), Chapter 4.

EngD portfolio – Volume I, A. Goikoetxea Yanci 18

2.3.6 General comments on security and attacks

The above mentioned attacks and threads can be more or less effective on their own

depending on the countermeasures instantiated into the Smart Card devices. However,

combining the above attacks or threads, [3, 13], can provide a hacker with new and more

complex tools to circumvent security measures and/or inject faults into the Smart Card.

A common corollary in the computing industry says that ‘the most secure device is the one

that cannot be accessed’. In reality, however, such device would be of little, if any, use, as real

world devices are designed to be used and, hence, accessed. From the minute a device can

be accessed, implementation faults, side leaks or human errors could result in exposing such

a device to attackers or unintended use of the device.

Security companies can and do invest millions of pounds securing their products and systems.

However it does not mean that those security measures are unbreakable. In some cases, the

security can be broken with a heavy financial investment and/or with time and dedication, but

on other occasions, thinking out of the box can provide surprising results too and bypass

secure technology with a small investment [14].

In the Smart Card Industry context, a device is considered secure when it meets the Common

Criteria rules related to its target application. Although this does not guarantee absolute

security, it does provide a degree of assurance that a certain methodology has been followed

during the device’s development and that the device meets the security requirements for the

target application. Also, devices are often considered secure when the security measures

cannot be (are not expected to be) broken within the device’s life time, or the cost of doing so

outweighs the benefits obtained by breaking the security measures.

With regards to attacks, one could think that the aim of an attack is to obtain some tangible

data. For example, that as a result of a glitch attack, the attacked device would provide the

attacker with the value of a given register, or hand the attacker full access to the device or

dumping its code. Although possible, this is often not the case.

A more common effect of an attack can be interrupting a process or transaction being

performed by the card, and the handling of this interruption might be providing valuable

information to the attacker. Hence, detected attacks should not abort the process, but only

provide a wrong result, that should be handled by an error handling protocol put in place for

that purpose.

EngD portfolio – Volume I, A. Goikoetxea Yanci 19

2.4 Portfolio contribution

Smart Cards can be challenged in several ways and therefore device security needs to be

tackled from several fronts. The change of focus by the sponsor company during this EngD

has resulted in a portfolio of different research areas targeted at improving the security of

Smart Card devices. These research areas have resulted in the following contributions:

• Development of a simulation tool to test designs against glitch attacks and power

analysis attack during a design’s development. This tool could easily be integrated

within Atmel’s design flow to bring assurance of their designs’ behaviour and

permeability to such attacks. Power analysis attack can be either simulated or tested

in a physical device. While physical analysis was out of the scope of this work, no

simulation environment reported being able to perform different attacks.

• A new glitch detector. By changing the detection approach, the design proposed

here achieved detecting glitches that current detectors do not.

• The use of radiation countermeasures as laser countermeasures and potential

sensors. Radiation and laser attacks have similar effects on silicon devices. Whilst

several countermeasures against radiation have been developed over the years,

almost no explicit mention of laser countermeasures was found. This research has

demonstrated the suitability of using some radiation countermeasures as laser

countermeasures.

• Memory partitioning applied to Smart Cards. Many techniques to reduce leakage

have been proposed during the last few years. However, no work was found on how

these techniques can be used on Smart Cards, where security is priority number one.

This research line has resulted in an implementation proposal of memory partitioning

focused towards Smart Cards.

EngD portfolio – Volume I, A. Goikoetxea Yanci 20

3 Fault Tolerant Design

This chapter covers the work carried out in relation to fault tolerant design. Three fronts or

research lines were covered in this topic: a) the development of a glitch attack and power

analysis simulation environment (GAPASE); b) the design of a glitch detector; and c) the test

of radiation countermeasures when targeted with laser.

Since these three research lines are highly independent from each other, the work carried out

on each research line will be covered independently in three different, self-contained, sections.

These sections include: an introduction to the research; the literature review related to that

specific research line; an explanation of the work carried out and the results; the conclusions

drawn in relation to that particular research; and future lines of actions.

3.1 Simulation Environment

Devices are designed according to specifications that define their behaviour and operational

range. A device must meet the behavioural specifications for as long as it is within its

operational range. When a device is subjected to operation conditions outside its

specifications, however, its behaviour is no longer guaranteed and might result in temporary

fault injections or even in permanent damage.

Electronic Design Automation (EDA) tool vendors provide tools that allow developers to

simulate different aspects of their designs at different stages in the development process.

These simulations can verify the design’s correct behaviour and check for timing violations,

power consumption and area. All these simulations provide developers with a degree of

confidence that their design will work in silicon as expected. However, for the most cases,

these simulations are performed within the device’s operational range.

Smart Cards can be attacked by forcing them to work out of their operational range for a short

period of time: a) by raising the supply voltage over the absolute maximum; b) by over

clocking the design; c) by subjecting it to extreme temperatures; d) by subjecting it to a source

of radiation; or by applying glitches in the power source and/or signals [3, 15]. White paper

[15] is included in the Appendix A.

Devices can be tested after their fabrication for these operation conditions. In fact, they are

tested by external evaluators when certifying their security grade. The issue with this

approach, however, is that these tests occur too late in the design flow, as fixing any security

EngD portfolio – Volume I, A. Goikoetxea Yanci 21

flaws detected at this stage will incur in high costs, as new lithography masks might be

needed. In other words, it is not cost effective.

Hence, Smart Card manufacturers and security product manufacturers in general need tools

capable of simulating a device’s behaviour under abnormal operation scenarios. The

simulation environment developed in this research line has focused on glitch attacks and

power analysis.

By integrating GAPASE within the Atmel’s design flow, designers are enabled to test their

designs and to know how they perform when attacked. The following sections cover the

literature review; the simulation environment developed in this research line; a discussion on

its usability and the conclusions of this research line. Finally, some possible future

developments are proposed.

Volume II includes the following reports related to and supporting this research line:

• SimEnvTech1 (Glitch Attack and Power Analysis Simulation Environment);

• SimEnvTech2 (Counter Simulation Results);

• LaserTech1(Tartalo test-chip 01OKA);

• GlitchTech1(Glitch Detector Report)

3.1.1 Literature Review for Fault injection and side-channel

There are several factors and features that need to be taken into account and decided when

designing a simulation environment. Some of these factors include the simulation level, the

simulation model, the kind of injected faults and the amount of circuitry to simulate.

In relation to the simulation level, the typical debate is high level simulations vs. low level

simulations, where the usual trade off is speed vs. accuracy. High level approach was taken in

the glitch attack simulation environment in [16]. Developed around SystemC, this simulation

environment allows simulating the propagation of a fault injected by a glitch attack. Since this

simulation environment runs high level simulations (i.e. behavioural level), it is capable of both

simulating complex circuits and faster than with lower level simulation tools.

Simulating a glitch attack in SystemC has, however, other kind of limitations, such as the need

for a behaviour model of a glitch attack and or presuming where the fault is injected. However,

the recent publication of the analog and mixed-signal (AMS) extension of SystemC (SystemC

AMS) [17] could help modelling a circuit’s behaviour when subjected to glitch attacks and,

hence, ease or minimise these drawbacks and or limitations.

EngD portfolio – Volume I, A. Goikoetxea Yanci 22

Low level simulation tools such as Simulation Program with Integration Circuit Emphasis

(SPICE) or Nanosim, on the other hand, might be slower to simulate, but they are more

adequate to simulate analog circuits and, hence, the response of a circuit to glitch attacks. As

a result, these simulation tools could indicate more accurately where a fault is injected after a

glitch attack and how the circuit under test responds to such fault. Ultimately, this information

could be used to enhance the security of the affected region.

Equally, the power analysis simulation environment could be subjected to the same debate,

high level simulation vs. low level. Since power consumption is the key to guess the encryption

key of DES and AES cryptographic modules, the natural assumption could be to use a

simulation tool that provides an estimated power consumption waveform, be it simulated at

gate level or transistor level.

Work [18], however, demonstrated the feasibility of register transfer level (RTL) simulations to

carry out a successful power analysis to AES cryptographic modules. The key to their success

was the definition of the power consumption model. This was the hamming weight of the

target substitution box’s (SBOX) output, which is the building block of DES and AES

cryptographic algorithm. Such power consumption model produces a single value instead of a

waveform per encryption.

This simulation level and approach has an immediate impact on power analysis speed as, on

one hand, RTL level simulation will always be faster than lower level ones. On the other hand,

producing a single value instead of a waveform reduces the amount of time the simulation tool

spends in writing to output files. Furthermore, and as a direct result of having a small power

trace data, the power analysis script will run faster than if the output was a waveform.

The simulation environment in [18] needed just 400 plaintexts to guess the key of one SBOX

of an AES instantiation without countermeasures. Despite this number might be above the

theoretical minimum (256), the time required to encrypt the additional plaintexts could be

assumed to be short enough to justify this simulation environment.

The main drawback of this simulation environment, however, is the potential limitation to test

various countermeasures. These are the reasons: a) high level simulation ignores layout and

parasitic information; and b) this simulation environment only simulates the required minimum

part of a cryptographic module for DPA simulations [18, 19].

By simulating the required minimum logic, this simulation environment focuses on one SBOX

at a time and can only test countermeasures related to the simulated logic. Testing other

countermeasures, such as dummy cycles, could still be possible with this simulation

environment by emulating these cycles in the stimulus generation step. However, this

EngD portfolio – Volume I, A. Goikoetxea Yanci 23

simulation approach excludes itself from testing certain countermeasures such as those that

aim at protecting the algorithm.

This high level simulation environment could also fail to be of any use to test so called

constant power consumption countermeasures such as dual-rail [20] and wave dynamic

differential logic (WDDL) [21] unless new power consumption models are created.

At the other end of the simulation tools’ scope is work [22], which was based on SPICE. Like

for [18], this simulation environment only simulated the required minimum logic to carry a

DPA, inheriting the same drawbacks mentioned before in regards to its ability to test certain

countermeasures.

This simulation environment needed 100 plaintexts to guess the key of the target SBOX of a

DES module without countermeasures, which was designed at the transistor level – all equally

sized and by hand – and based on domino logic. This kind of SBOX design provides a clear

and clean power signature, which facilitates the power analysis, and is contrary to the

implementation approach followed by almost all digital designs, which consists of designing

the IP in RTL using a hardware description language (HDL) and then synthesising it to a gate

level netlist. The designs resulting from this later approach produce a higher number of gate

switching, that is, a less clear signature.

Another, more recent, simulation environment is that covered in [23]. This simulation

environment also relies on SPICE as a simulation tool with some promising results, as it can

successfully guess the right key associated to a DES or AES SBOX implementation with no

countermeasures within just 2 minutes.

No simulation environment was found to cover both attack methods or threats, perhaps due to

the distinctive simulation tools used for each purpose. The simulation environment developed

in this research line, however, does just that. It targets the simulation of both threats using the

same low level simulation tool, Nanosim. Nanosim is a SPICE like simulation tool that trades

accuracy for speed.

Unlike with [18], [22] and [23], the simulation environment developed here targets the whole

DES module, which enables the possibility of testing a wider range of countermeasures. On

the other hand, despite the higher accuracy of the generated power trace means the need for

less plaintexts, the simulation speed of the simulation environment developed here might not

get close to that of the simulation environment [18], especially considering that the GAPASE

simulates the whole DES and [18] only focused on the minimum required logic.

EngD portfolio – Volume I, A. Goikoetxea Yanci 24

3.1.2 Glitch Attack and Power Analysis Simulation Environment

This research line has resulted in a simulation environment capable of testing designs against

glitch attacks and power analysis. Briefly, it could be said that GAPASE is actually a wrapper

around a simulation tool (currently Nanosim). GAPASE reads a configuration file and, from it,

it generates the required input files for the simulation. Once the simulation is completed, the

output data can be post-processed depending on the targeted simulation. A block diagram of

the current GAPASE environment is shown in the Figure 3-1. In addition to the configuration

file, GAPASE needs the design netlist and stimulus files as inputs from the user before

launching the simulation. It also needs to know the location of SPICE devices’ model library.

The path to these files is indicated in the configuration file.

The following sub-sections cover the current features of GAPASE and its implementation.

Figure 3-1 GAPASE block diagram

3.1.2.1 Features

This is a list of the features of the current version of GAPASE:

• GAPASE has been designed in a modular architecture, providing flexibility and

enabling future extensions.

• It currently supports Nanosim as the only simulation tool. Only SPICE netlists of the

target designs can be simulated. Back-annotated netlists with parasitic information

can also be loaded.

EngD portfolio – Volume I, A. Goikoetxea Yanci 25

• The simulation can be detached from the console to allow the simulation to run in the

background, i.e. even if the user logs out.

• Simulations are configurable with up to 51 parameters, divided in three groups:

parameters applicable to all simulations; parameters applicable to glitch attack

simulations, and parameters applicable to power analysis simulation. The full

parameter list is available in Appendix B.

• GAPASE targets three kinds of simulations:

1. Normal simulations, which are effectively simulations without any

disturbance. These simulations only use general configuration

parameters.

2. Simulations of a circuits’ response to glitch attacks. These simulations

use general and glitch specific configuration parameters. Glitches and

noise can be applied to any input source of the design under test.

3. Power analysis simulations on DES cryptographic modules. Power

analysis simulations use general and power analysis related configuration

parameters. The GAPASE environment is used to generate power

consumption traces that are later analysed in Matlab on a post-simulation

step.

3.1.2.2 Implementation

At the first instance, the requirement was to develop a simulation environment capable of

running a glitch attack simulation. Since the associated tasks for such simulation were not too

complex, this initial simulation environment was achieved with some Bash scripts. The later

requirement to add the power analysis feature, however, resulted in the need for a major

rework. This was carried out by porting the whole simulation environment to Perl and adopting

a modular approach by using Object Oriented Perl programming style –currently totalling

about 2,800 lines of code. Figure 3-2 shows a layer diagram of the latest implementation.

In its current implementation, GAPASE can be divided in three layers: 1) the core layer at the

bottom; 2) the simulation specific objects layer (SSOL) in the middle; and 3) the post-

simulation layer (PSL) at the top. The core layer carries out some generic operations, such as

parsing the configuration file, checking and generating general parameters and files. On top of

that, it also provides an application protocol interface (API), so that the layers above can send

messages to a log file and access simulation environment variables. This layer also provides

the simulation_type class, which defines the methods to be inherited by the objects in the

SSOL.

EngD portfolio – Volume I, A. Goikoetxea Yanci 26

Figure 3-2 GAPASE's layer division

Each simulation type is instantiated as an object that inherits the methods in the

simulation_type class. Some of the inherited methods are modified by the target simulation

object. The function of these objects is to check the parameters specific to the target

simulation, to create support files for this task and to generate the commands that would

launch the simulation.

Post-simulation layer currently implements just one module. When Nanosim completes the

simulation, this module is called by the power analysis object to extract the power

consumption waveform into individual power trace waveforms. These power traces can later

be used by Matlab scripts to perform DPA by either a difference-of-means or correlation

power analysis.

The process of running a simulation is as shown in the diagram in Figure 3-3. The user would

first edit the GAPASE configuration file, which defines the simulation conditions as well as

pointing to the location of the required input files. After this, GAPASE could be launched and

the whole process started. Initially, GAPASE would load all parameters and check the generic

ones. Next, simulation specific parameters will be checked, and if any error is found in any

parameter, the simulation is aborted. The user can check the errors in the log file. If, on the

other hand, no errors are found, GAPASE will create first all generic input files followed by

simulation specific ones. At this point Nanosim simulation will be launched and no further

action will be taken by GAPASE until the simulation is finished. After the simulation, GAPASE

will gain control over the environment. If the target attack was power analysis, the post-

simulation functions would be executed, wavex in this case. Otherwise, GAPASE will

terminate and the user will be able to check the results. The section 4 of the report

SimEnvTech1 covers this flow in more detail, including a description of the configurable

parameters shown in the Appendix B.

Regarding the GAPASE’s internal operation, it powers the circuit under test by applying the

supply voltage value specified in the configuration file (VOLTAGE parameter) to the circuit’s

EngD portfolio – Volume I, A. Goikoetxea Yanci 27

power rail. The default power rail (VOLTAGE_NODE parameter) is Vdd!. This is the device’s

internal supply rail, once rectified by the voltage regulator. Setting VOLTAGE_NODE to Vdd!

allows a faster simulation by avoiding the simulation of the voltage regulator. However,

GAPASE also allows simulating the voltage regulator if required.

The simulation environment allows applying glitches to both power rails, Vdd and GND, of the

circuit under test. A built-in glitch generator function allows the user applying any glitch

definable with up to four points. The first and last points of the glitch would usually represent

Vdd! or GND! just before and after the glitch. Examples of the glitches that can be applied with

the built-in glitch generator function are shown in Figure 3-4. For more complex glitches,

repetitive glitches and or noisy supplies, GAPASE allows defining power supply waveform

vectors. Noise and glitches can also be applied to any input signal through waveform vectors.

The power analysis is divided in two parts; power trace generation and power trace analysis.

GAPASE is responsible of generating the power traces, which are later analysed in Matlab.

Currently, the power analysis is only enabled for the DES cryptographic algorithm, and the

whole DES design is simulated regardless of the targeted SBOX.

Despite DES having 64-bit data and key registers, the CPU and the DES module

communicate via an 8-bit wide interface. The implication of this interface is that in order to run

an encryption, 16 clock cycles are needed in order to setup the plaintext and the key.

GAPASE avoids this non-productive simulation by directly forcing the input or output of data

and key registers. To further save on simulation time, GAPASE can also limit the number of

rounds to be simulated, as not all rounds are used to perform DPA. Typically, only the first two

rounds are simulated. After these rounds have been simulated, the DES block is forced to a

reset status before the next plaintext encryption process is started.

Finally, only SBOX1 can be targeted on the current implementation and, consequently, only

the 64 plaintexts that exercise this SBOX should be used during the simulation. The

processing of all 64 plaintexts is based on the Atmel’s security group approach. This approach

consists on feeding all plaintexts in a sequential order, from the smallest to the highest

hexadecimal value. Each plaintext is followed by a reset status. This set of plaintexts can be

simulated several times one after the other.

EngD portfolio – Volume I, A. Goikoetxea Yanci 28

Params. OK?

Load and check
general

parameters

Check simulation
specific

parameters

Create generic
files

Create simulation
specific files

Run simulation

Power
Analysis?

Extract waveform

Log Errors and
Exit

User
launches
GAPASE

Exit

No

Yes

No

Yes

Figure 3-3 Simulation flow diagram

EngD portfolio – Volume I, A. Goikoetxea Yanci 29

Figure 3-4 Examples of glitches that can be defined with GAPASE

After the simulation is completed, the post-simulation module is launched so that the recently

generated simulation-long power trace can be divided into individual power traces

corresponding to each ciphered plain text. These power traces are then analysed in Matlab.

Current Matlab scripts allow carrying out two type analyses on this data, difference-of-means

(DOM) [5] and correlation power analysis (CPA) [24]. Matlab scripts to perform DOM are

based on the scripts developed by Andrew Burnside for the Security Group, whereas CPA

scripts were developed exclusively for this simulation environment. These Matlab scripts can

be found in the Appendix C of the report SimEnvTech1.

3.1.3 Discussion

The initial requirement of a glitch attack simulation environment, where the focus was on

finding out how a glitch attack can affect a circuit or a design, implied the use of simulation

tools capable of simulating the analogue behaviour of digital designs. This meant moving

away from RTL or pure logic level simulators where the information they work with is either a

logic 0 or a logic 1.

Two SPICE based simulation tools were available at Atmel, HSPICE and Nanosim. Nanosim

trades accuracy for simulation speed; in fact, an HSPICE simulation of a glitch that takes over

eight hours to complete, it could be completed in around half the time when simulated in

Nanosim. Since the simulation speed was a priority, Nanosim was chosen over HSPICE as a

simulation tool. Still, due to the input stimulus compatibility between both simulation tools,

GAPASE could be easily adapted to simulate on HSPICE when higher accuracy is required.

Creating a glitch attack simulation environment around a SPICE based simulation tool is not

very hard. Proof of it was the fact that the initial version was developed as a Bash script. The

main requirements for the script were being able to define: a) the target design; b) the SPICE

device model; and c) an easy way to define glitches.

EngD portfolio – Volume I, A. Goikoetxea Yanci 30

Rather, the limitation of the glitch simulation environment is the SPICE device model itself.

The behaviour of passive and active elements of a given technology node, e.g. transistors and

resistors, are modelled so that they can be simulated using tools such as SPICE. These

elements could be modelled to a wide range of operation parameters, such as temperature

ranges from -40 to 125 or Vds of a transistor from 0V to 20V, even when its normal operation

value is around 1.6V. However, since the use of these elements in such a wide range is

unrealistic and the modelling very time consuming, in reality, they are accurately modelled for

a short operation range only.

The impact of a limited model is that, out of range simulations might not be accurate enough

and as a result, unrealistic glitches might be needed to inject a fault. This was the case when

simulating test glitches for low and medium simulation accuracy levels in the report

SimEnvTech2. On these cases, Vdd! should be raised as high as 6.4V in order to be able to

inject a fault. However, on real silicon and SPICE simulated behaviour of a voltage regulator,

on the other hand, Vdd! would rarely rise above 3.5V or 4V, see Figure 3-15 and Figure 3-16.

Section 5.1 of the report SimEnvTech1 covers the work made on validating the glitch attack

feature of GAPASE, which includes the design of the test-chip covered in LaserTech1.

Another aspect to consider when setting up a simulation environment is the resistivity in the

power rails, which results in an uneven distribution of the power supply fluctuations. This

feature could create circumstances where nearby circuitry is powered at voltage levels

different enough to inject faults. This is a feature not simulated by GAPASE, among other

reasons, because taking into account the resistivity in the power supply would increase the

complexity the target design’s mathematical model and it would take far longer to simulate.

Later simulations fixed the unrealistic glitch issue by setting the following simulation

parameters: set_sim_eou sim=4 model=4 net=4. Subsequent simulations produced results

comparable to real glitch attacks.

Regarding the DPA feature of the simulation environment, several power analysis attacks

were performed with GAPASE on a DES module with no countermeasures, commonly known

as a vanilla implementation, and on a secure DES module with a countermeasure.

Simulations were run with different simulation resolution settings (time and current amplitude)

and encryption key values.

Table 3-1 collects the main power analysis simulation results, which are expanded in more

detail in the section 5.2 of the report SimEnvTech1. GAPASE has shown the feasibility of

correctly guessing the key bits associated to the SBOX1 of a vanilla DES cryptographic

module. The electrical noise free environment provided by GAPASE allows guessing the key

bits associated to the SBOX1 using only the theoretical 64 plaintexts.

EngD portfolio – Volume I, A. Goikoetxea Yanci 31

When performing DPA on a silicon implementation of a vanilla DES module, one or two order

of magnitude more plaintexts might be needed to guess the key bits associated to the SBOX1.

The need for additional plaintexts is to filter out the electrical noise introduced by: a)

measurement instruments; b) electronic components; and c) other IPs in use within the target

device, such as a CPU. This difference in the plaintexts requirement to crack the key was also

shown in the RTL based DPA simulation in [18], where 10 times more plaintexts were needed

in silicon than in simulation to crack the key.

Table 3-1 Power analysis simulation results

DES
module

Key
Number of
plaintexts

Samples
per trace

(s/t)

Simulation
time

Used
CPUs

Right
key

guess

30000 13h12m 1 �
75 26m 1 �

3000 6h12m 1 �
2E3A44BB4248D774 64

75 16m 1 �

940AEBA0604CF479 64 3000 4h58m 1 �

Vanilla
DES

83373F5D2CF55BC8 64 3000 5h29m 1 �
64 3000 14h10m 1 �

2E3A44BB4248D774
1024 3000 2d2h53m 4 � Secure

DES
0000000040008010 1000 3000 2d2h32m 4 �

The discrepancy between the required amounts of plaintexts to crack the key can only reflect

one thing. While the typical behavioural simulation is run to model a circuit’s behaviour as

accurate and realistically as possible, DPA simulation results should not be taken as absolute

ones, but as an index or reference of how secure a particular DES implementation is.

Any DES implementation that takes more than 64 plaintexts to compromise its key will,

inherently, be more secure than the vanilla implementation. However, the important

information is not only whether a given implementation is more secure or not than the vanilla

one, but by how much and how does it translate into silicon implementations.

For instance, given a DES implementation, say DES Secure1, that takes in simulation 200

times more plaintexts than the vanilla implementation to crack the key, it could be considered

200 times more secure than the vanilla implementation. DES Secure1 could have a security

index of 200. The difficulty here is on translating this simulated security index into a silicon

security index, which depends on the noise sources of the silicon DPA setup and the

technology node of the silicon die.

One approach of estimating the index translation function would be applying the minimum

mean square error to a series of DPA results in several DES implementations in silicon and

EngD portfolio – Volume I, A. Goikoetxea Yanci 32

simulation for different key values. Subsequent simulations could use the index translator to

estimate the real security index of a given DES implementation. Furthermore, if silicon DPA

data is generated, this data could be used to improve the index translator.

Regarding the simulations run with GAPASE and which results are shown in Table 3-1 above,

two out of three encryption keys were correctly guesses with the vanilla DES implementation

with just 64 plaintexts, whereas simulations on the secure DES implementation failed to guess

the encryption key. The encryption key that was not correctly guessed in vanilla DES

simulation is 83373F5D2CF55BC8. Perhaps, this failure could be explained by the fact that,

for this encryption key, all the key bits to be used in the SBOX1 were logic zero, causing a

particular case were the analysis failed. This case needs to be studied further in order to

determine whether more plaintexts are needed for these cases, higher simulation accuracy or

the power analysis algorithm needs being improved. The real impact of resetting the DES

module after each encryption should also be analysed.

A total of 2024 random plaintext encryptions with a secure DES were simulated without

guessing the right key. At first instance, this could indicate that the countermeasure used in

this DES implementation results in a security index of over 31 (2024/64). More plaintexts could

be used with the aim of guessing the key, say another 3000 or 8000, totalling 5000 and 10000

respectively. There are two possible outcomes: a) eventually guessing the right key and,

hence, determining a more accurate security index of the target DES module; or b) still not

guessing the right key. This last case is necessary but not enough to prove that a design is

immune against power analysis, as it only proves that the correct key was not guessed within

a given practical amount of time and plaintexts. Spending any more time on guessing the key

is no longer practical.

On the GAPASE case, the practicality is measured in the combination of simulation accuracy

and the time required to run the power analysis. So much so, that it can be a key factor when

determining its feasibility as a production power analysis tool.

Encrypting 64 plaintexts with a silicon implementation of a DES module running at 50MHz

takes under a second, and running enough encryptions to guess the SBOX1 key bits of a

vanilla DES would take few minutes. Running the same operation on a DES module within a

Smart Card takes longer due to the communication overhead.

Simulating the DES module in GAPASE does not have the Smart Card communication

overhead. Still, running successful power analysis attacks simulating the first two rounds of 64

plaintext encryptions with GAPASE took around 5 hours. The accuracy set for these

simulations was 0.001ns simulation time resolution, and 3000 sample points per trace (s/t).

Lower accuracy simulations did not yield successful power analyses. A 5-hour simulation can

EngD portfolio – Volume I, A. Goikoetxea Yanci 33

be common for certain analogue simulations, but for a vanilla DES module it could be

considered excessive.

Adding countermeasures implies the need to more plaintexts to begin with, which increases

the simulation time. Furthermore, the increasing circuit complexity of some countermeasures

could result in increasing the simulation time per round. This is, having a double impact on the

overall simulation time.

This is the case of the secure DES, where 2 days and 5 hours were employed to simulate

1000 plaintexts divided in 4 CPUs. This is, if all plaintexts where simulated on a single CPU, it

would have taken about 11 days to complete the power analysis and not guessing the right

key bits of the SBOX1. While 5 hour or even 2 day long simulations could be manageable,

especially if as a result the key is correctly guessed, running additional 3000 or 8000 plaintexts

would take around 6 or 16 days respectively using four CPUs. Taking this amount of time to

run power analysis, which is what DES modules with countermeasures might need, is no

longer practical. The limiting factor here is the simulation tool, Nanosim, and or its

configuration.

The power traces used on real power analysis might be less accurate and with less sample

points per power trace than those used here, yet the key can be successfully guessed from

them. One approach to speed up the power analysis could be reducing the simulation

accuracy and increasing the number of plaintexts or power traces. In fact, the recent work [25]

has achieved successful power analysis on Nanosim with resolutions of 1uA and 10ps. The

resolutions used in GAPASE simulations are of 1pA and 10ps. With the simulated DES

modules consuming in the order of few mA, peaking around 12 to 20mA, reducing the current

resolution to 1uA could still produce current consumption values of up to 4 digits. In principle,

high enough to carry a successful power analysis.

Reducing the current consumption simulation resolution by a factor of 10
6
 would no doubt

speed up the simulation process. The work [25] does not provide any information on

simulation times, hence, unless new simulations are run, this performance improvement

cannot be quantified. Anyway, for this performance improvement to be meaningful, it should

reduce the simulation time of generating 1000 power traces with the secure DES module with

countermeasures from 2 days to just few hours.

Regarding the simulation tool itself, the Nanosim versions up to Z-2007.03 are not capable of

multi-threading the simulation. In other words, a simulation would use only one CPU or core

on a multi-CPU platform or a multi-core CPU, which could be considered as an important

limitation or drawback when multi-cores are common even on modern low end consumer

rated desktops. This multi-thread limitation is the result of the mathematical model of the

EngD portfolio – Volume I, A. Goikoetxea Yanci 34

circuitry to be simulated that is generated by Nanosim and could still affect newer Nanosim

version.

The only work around to this limitation and to increase overall simulation time is, dividing a

long simulation into smaller ones and launching several simulations concurrently as different

processes. This was done when performing power analysis to the DES module with

countermeasure.

Finally, Nanosim is an RTL to transistor level simulation tool, allowing the co-simulation of RTL

and SPICE netlist. Simulating part of the DES module as a SPICE netlist (e.g. SBOX1) and

the rest of the design in RTL could dramatically shorten the simulation time, however, this

feature requires an additional license. Such license was not available when this research was

carried out, hence, GAPASE does not take advantage of this feature.

The current power analysis approach comes with its share of drawbacks, namely simulation

speed or performance, which could limit its use as a production tool. Other power analysis

simulation alternatives could be considered, for instance field-programmable gate array

(FPGA) emulation. This approach would allow instantiating the target DES module into an

FPGA and using the same power analysis setup as the one used for production devices. An

indirect benefit of this approach is that any setup improvement or development of new

analysis techniques can be easily and equally applied to development and production devices.

However, FPGA and application specific integrated circuit (ASIC) instantiation will yield

different power traces. This might not have major implications, other than considering FPGA

analysis results as a security index or security degree. Furthermore, FPGA emulation might

not be able to test certain countermeasures, certainly not layout based ones.

Coming back to the simulation results, the work done in [18] seems promising too. Similar

techniques could be used, perhaps, with tools such as PrimePower, which is capable of

generating dynamic and static power consumption waveforms of simulations at gate and RTL

levels. PrimePower would result in faster simulation than Nanosim, although loosing on some

accuracy. Work [18] showed that this needs not to be an issue though.

Furthermore, PrimePower can simulate the design in RTL and as a gate level netlist.

Generating the gate level netlist is a common task for digital designers, and avoids the extra

step of generating the SPICE netlist needed by GAPASE, making the workflow simpler. Also,

it would allow using simple RTL test benches or even the ones used during the development

process as a source of stimulus to generate the power traces for the power analysis. Using

PrimePower as a simulation tool would also allow embedding glitch attack and power analysis

tests within the actual design cycle and test flow.

EngD portfolio – Volume I, A. Goikoetxea Yanci 35

3.1.4 Conclusion of the simulation environment

Simulation tools and environments are a requirement for IC manufacturers, as they can help

them determining the quality and fidelity of their products. GAPASE allows Atmel designers to

test their designs against glitch attacks and power analysis. The glitch attack feature is

functional. The power analysis feature needs further improvements in the performance side.

The down side of high level simulation tools, such are RTL, is that they not be capable of

testing certain countermeasures, such as those that focus on the layout, e.g. WDDL and

differential routing [21], and perhaps dual-rail or similar. Nanosim, on the other hand, is more

suited for this kind of countermeasures.

3.1.5 Future work

This simulation environment can be considered to be in continuous development, hence, there

is still room for development and improvement, especially on the power analysis side. The

following, lines of work are proposed here, divided in what is need and/or desirable at

immediate, short and long terms.

Immediate future, the consolidation of the simulation tool. The following points should be

accomplished:

• Determine whether the encryption key of a vanilla DES module can still be correctly

guessed by reducing the resolution of the current consumption and, if so, determine

the obtained simulation performance to test vanilla DES modules and modules with

countermeasures. The results of these simulations could indicate the feasibility of

Nanosim as a simulation tool for power analysis.

• If applicable, test the performance of co-simulating RTL level and SPICE level netlists

in Nanosim.

• Test other alternative tools such as FPGA emulation or PrimePower.

• The simulation environment’s performance should be benchmarked against the

results from a commercial silicon power analysis tool. The new secure DES block

being designed Atmel could be used for this purpose.

These are the suggestions for the short term future:

• Enable running power analysis on AES cryptographic blocks. This would make the

whole simulation environment more useful to Atmel for their current and future needs.

EngD portfolio – Volume I, A. Goikoetxea Yanci 36

• Integrate the current Matlab based post-simulation analysis into the GAPASE

simulation environment. This would allow running the whole analysis on a single

computer, rather than forcing to run the analysis only on computers loaded with

Matlab.

• On the post-simulation side, the simulation environment should also generate output

data readable by the RisCure
TM

 software, so that readily available post-simulation

analysis tools could be used, allowing running other analyses more complex than

difference of means and correlation power analysis without having to develop these

for GAPASE.

Finally, for the long term, following points should be studied:

• Updating the simulation environment to adopt other attacks, such as laser or

electromagnetic analysis (EMA). By keeping the simulation environment up-to-date on

attack techniques, Atmel would benefit from extending this tool’s life.

• Target of additional cryptographic blocks, such as RSA. By adding further targets,

Atmel could test other IPs used in their chips against these attacks.

• Designing a graphical front-end. Although this has a lower priority, this feature could

make the simulation environment easier to use.

Figure 3-5 shows a block diagram of how GAPASE could be formatted in the long term future.

Figure 3-5 Example of future GAPASE

EngD portfolio – Volume I, A. Goikoetxea Yanci 37

3.2 Glitch Detector

As covered in Section 2.3.1 Glitch Attacks of this Volume, glitch attacks aim at fault injection

by means of fast alterations of the supply’s voltage level. The effect of these attacks can be

minimised by designing a robust built-in voltage regulator, however, this is often not enough or

possible, due to the negative impact on cost in terms of design effort, area or price of the final

product. Instead, glitch detector circuits are used to monitor the power rails’ voltage level to

make sure the supply voltage is within the allowed operation range. Glitch detectors are,

hence, a fundamental part of the Smart Card design, as in the event of a glitch detection,

measures can be taken to correct or avoid the fault [26].

Smart Cards have a built-in voltage regulator, whose output powers the device and, by design,

cannot be accessed by an attacker. Hence, glitch attacks on Smart Cards focus on injecting

voltage level alterations on the device’s Vcc and GND pins. Glitches applied to Vcc or GND

can still propagate to the internal Vdd power rail and into the system. This implies two

requirements [27]:

1. Voltage regulators design can have a great impact on how glitches are

propagated into the system.

2. Detectors have to monitor Vcc and GND power rails as well as Vdd.

There are two glitch detection approaches: a) direct; and b) indirect. The direct approach

monitors the power rails to detect supply voltage anomalies as they are happening. The

indirect approach detects glitches by monitoring the status of a circuit sensitive to power

supply voltage fluctuations. This is, a circuit prone to error injection by fluctuations in the

power supply voltage.

Since the width of a glitch (the time it can be present on the power rails) ranges from

hundreds of nanoseconds to just few nanoseconds, the direct detectors’ response time is key

to detect fast glitches. So much so, that glitch detectors with shorter response time, not only

can detect fast glitches that those with longer response time cannot, but also, they detect

glitches quicker. However, the detection of fast glitches can be challenging with this approach,

as making the detector too fast or sensitive could result in detecting legitimate supply noise as

a glitch. This leads to false detections.

Unlike with the direct approach, where the supply voltage level anomaly is present only for the

duration of the glitch, with the indirect approach, the effect of a glitch on a sensitive circuit can

be present for longer that the glitch itself. So, by playing with this circuit’s sensitivity, it is

possible to detect fast glitches with longer response time monitors whilst minimising false

detections. In other words, indirect approach detectors can achieve safer detection of fast

EngD portfolio – Volume I, A. Goikoetxea Yanci 38

glitches but with slower detection times than direct approach detectors. The glitch detector

proposed in this research falls into the indirect detector category.

The following sections cover the literature review; the proposed glitch detector; simulations

and test carried out on this detector; a discussion on its usability and the conclusions of this

research line. Finally, some possible future developments are proposed.

Volume II includes the following reports related to and supporting this research line:

• GlitchTech1(Glitch Detector Report);

• GlitchPub1(Paper: Detecting Voltage Glitch Attacks on Secure Devices);

• GlitchPub2(Paper: Characterization of a Voltage Glitch Attack Detector for Secure

Devices);

• GlitchPub3(Patent WO 2008/033712 A2: Detecting Voltage Glitches)

3.2.1 Literature Review

Glitch detectors are key components to protect devices, such as Smart Cards, against glitch

attacks. Publishing any kind of information in regards to these circuits can compromise the

device's robustness or security. Hence the lack of relevant publications on this topic,

especially about current glitch detector circuit designs. Fortunately, two glitch detector patents

were found [28, 29], both falling into the indirect category.

The detector in patent [28] detects glitches by monitoring fault injections into single-bit

registers and the read operation of a SRAM. These components are usually designed to

operate at the silicon technology node’s nominal voltage level (e.g. 1.8V for 0.18um

technology node, 1.6V for 0.13um, 0.9V for 90nm). Hence, by the components used in this

design, it is safe to assume that this detector has been designed to detect glitches at the

output of a voltage regulator. This design is capable of detecting positive and negative glitches

in Vdd and positive glitches in GND. This is a fast detector, as the fault injection can be

detected within/after a clock cycle. The drawbacks with this detector, however, are the fact

that it requires a clock signal and the registers' sensibility to glitch attacks.

Simulation results in the technical report SimEnvTech2 demonstrated that glitches could have

an instantaneous impact on combinational logic depending on the data being operated at the

time the glitch is applied. Storage units, such as registers, however, were only affected when

updating data, especially if the data was already corrupted in the preceding combinational

logic. The design in [28] shows the registers being fed directly from the power rails. For these

registers to latch the wrong value, two factors need to be involved. One is that the voltage

difference between the original and the abnormal supply levels need to be high enough to

EngD portfolio – Volume I, A. Goikoetxea Yanci 39

change in logic values. In other words, Vdd should fall low enough to be interpreted as a logic

zero or setting the register, at which point the power on reset (POR) could kick in too. The

second factor is that the glitch has to happen close to the positive clock edge of the registers'

clock signal, which takes us to the other drawback of this detector.

Glitches are asynchronous supply voltage alterations. Despite an attacker trying to apply them

in reference to certain time or clock signal (external or internal), the truth is that they are an

uncontrolled phenomenon. So, for an error injected into a combinational logic to be latched

into a register, the error needs to be propagated throughout the combinational logic. The

propagation time depends on where the error has been injected. If it has been injected at the

end of the data generation path, for this error to be registered, the glitch needs to happen

close to the clock's positive edge. Design [28] could detect these glitches. However, if the

error is injected at the very beginning of the data generation path and propagated through to

its output, then, for this error to be registered, the glitch should be applied earlier on. Design

[28] would miss this glitch all together. This issue could be minimised by using a faster clock

frequency for the detector, but it would increase the area and complexity of the device and,

hence, its cost.

The detector in patent [29] is more suited for the asynchronous nature of glitches, as it detects

glitches by continuously comparing the response to glitches of three different resistor-

capacitor (RC) filters. With this detector, the glitches would be detected regardless of their

likeliness to inject faults. By its components, this design is capable of detecting glitches at

both sides of the voltage regulator (Vcc or Vdd) as well as glitches in the ground rail. This

detector is capable of detecting positive and negative glitches in both power rails.

Two drawbacks can be identified with this design too. Firstly, due to the RC circuits' design,

they will drain current continuously. This continuous current drainage is particularly undesired

for battery powered applications due to the limited current budget. The drainage can be

reduced by increasing the resistors’ values; however, doing so would impact negatively on the

area and slow down the capacitor's charge speed, potentially missing some fast glitches.

Secondly, is its dependency on the correct instantiation of resistors and capacitors, as process

variations can result in a mismatch of the real value and, hence, not behaving as expected.

Despite the drawbacks, this detector seems to be relatively fast at detecting glitches too,

although probably not as fast as detector [28].

3.2.2 Design

The glitch detector proposed in this research is a mono-stable circuit which is always set to a

given state. This state will only change as a result of a fault injection, in this case by a glitch

EngD portfolio – Volume I, A. Goikoetxea Yanci 40

attack. The mono-stable circuit designed in this work is based on the comparison between a

reference voltage and a function of this reference voltage, as it is shown in the block diagram

in Figure 3-6. The function block is characterised as a non-linear transfer function, where the

transient response to a pulse differs from the reference voltage’s transient.

Comparison

Reference
voltage

Alarm

F(Vref.)

Figure 3-6 Diagram block of the glitch detector

The actual design of the glitch detector developed in this work is shown in Figure 3-7. Three

parts compose it: a) a modified inverter, which is the non-linear transfer function; b) an

operational amplifier (OpAmp) setup as a comparator; and c) an RS latch to register any

detected glitch. This detector was designed to detect glitches at the output of the voltage

regulator, hence, the reference voltage is the voltage regulator’s output. Despite being

designed to detect glitches at the voltage regulator’s output, and as it will be covered in the

discussion section, this design could also be used to detect glitches at the voltage regulator’s

input.

set

Vdd

gnd

Vout

P1

N1

reset

alarm

D1

OpAmp

reset

modified
inverter

RS latch

+
-

Figure 3-7 Proposed glitch detector

In normal supply conditions and when the circuit is disabled (the reset input is logic one), Vout

is a logic zero. It results in the OpAmp’s output being set to a logic zero and resetting the RS

latch to a logic zero. When the circuit is enabled (the reset input is a logic zero), the modified

inverter sub-circuit provides a constant voltage at its output, which is lower than Vdd due to

the voltage drop in the diode D1. As Vout is lower than Vdd, the OpAmp’s output is a logic

zero. As a result, the value stored in the RS latch is unchanged.

EngD portfolio – Volume I, A. Goikoetxea Yanci 41

When the detector is enabled, the inverter circuit can be substituted by its equivalent circuit in

Figure 3-8. Here the inverter’s transistor P1, which is conducting, is substituted by its

equivalent RonP (in the order of ohms). The inverter’s transistor N1, which is not conducting, is

substituted by its equivalent RoffN (in the order of mega ohms) in parallel with CN, the parasitic

capacitance between its source and drain. In addition to the inverter sub-circuit, Figure 3-8

also shows the equivalent load seen by the inverter’s output, the OpAmp’s input, represented

by the Zin.a.o impedance and which is in the order of mega ohms.

Vdd

gnd

Vout

gnd

RonP

RoffN

CN

Zin.a.o

gnd

D1

Figure 3-8 The inverter's equivalent circuit and load

The proposed glitch detector’s response to a glitch attack when the detector is enabled is

shown in Figure 3-9 and can be described as follows. When Vdd is stable, Vout is stable too

and set to Vdd minus the voltage drop in the diode D1, which is around the diode’s threshold

voltage (Vt). If, as a result of a glitch, Vdd rises, the parasitic capacitor CN is charged further,

raising the voltage level at Vout. When Vdd falls, CN starts to leak its charge through RoffN and

Zin.a.o, hence, lowering Vout. If Vdd falls at a higher rate than CN is discharged, the diode D1

will, eventually, become inversely polarized. As a result, Vout will become higher than Vdd and

stay higher even after the glitch’s effects on Vdd have disappeared. This phenomenon can be

detected by the comparator, which sets its output to a logic one, setting the RS latch to a logic

one and triggering the glitch detection alarm. Upon a glitch detection, the CPU can run the

appropriate routine or procedure related to glitches on the supply power. A Smart Card’s

typical response to a glitch detection is resetting the whole device.

Figure 3-9 The modified inverter's response to a glitch

EngD portfolio – Volume I, A. Goikoetxea Yanci 42

After detecting a glitch, the glitch detector would have to be reset in order to detect more

glitches. This is achieved by setting the reset input to a logic one and back to logic zero. This

process will discharge the capacitor CN and reset the RS latch. If no action is taken after

detecting a glitch, CN will gradually discharge due to the leakage current, gradually reducing

Vout to its previous level, i.e. below Vdd. However, the RS latch would continuously indicate

the detection of a glitch, and no further glitch would be detected.

The diode D1 plays an important role in this design, as without it, the parasitic capacitor Cn

could also be discharged through the power supply. This additional leakage source would

result in faster discharge rates and, hence, reduce the chances of glitch detections, as it

would be harder for Vout to become higher than Vdd and, when becoming higher, it would

stay that way for shorter periods of time. Ultimately, this design would require a faster

comparator.

This glitch detector is patented under the International Publication Number WO 2008/033712

A2. This patent is included in the Volume II of this portfolio, GlitchPub3.

3.2.3 Test and Results

A series of simulations and silicon tests were conducted, to determine the performance of this

design and whether it is capable of detecting a series of fast glitches that currently go

undetected by the glitch detectors used by Atmel. Two different versions of the proposed

design were simulated and four versions of this design were instantiated and tested in the

test-chip 01VGA. Following subsections cover the simulation and silicon test and results.

3.2.3.1 Simulation Test and Results

In order to test this glitch detector’s performance, a simulation environment was setup, which

emulated the conditions in which this detector would operate. The setup in particular, shown in

Figure 3-10, consisted of a voltage regulator powering the glitch detectors under test and a

variable resistive load and a fixed capacitive load. The voltage regulator used in this setup

was designed for low security applications such as global system for mobile communications

(GSM). The variable load, connected to Vdd, was designed to emulate the typical loads the

voltage regulator can be subject to during normal Smart Card operation. The load values

were: high load (80 Ohms); medium load (1K6 Ohms); and low load (3K2 Ohms). The

capacitive load was of 2.2nF. The glitch detectors were connected to the voltage regulator’s

output, Vdd.

EngD portfolio – Volume I, A. Goikoetxea Yanci 43

Two versions of the proposed glitch detector were designed and simulated; they differed in the

transistor type they were built with. The first glitch detector, Design A, had its diode and RS

latch made of low leakage transistors and the inverter and OpAmp made of high voltage

transistors. The second glitch detector, Design B, was made out entirely of low leakage

transistors. The section 3 of the GlitchTech1 covers the transistor sizes of the modified

inverter of both designs.

Figure 3-10 Diagram of the glitch detector test setup

Low leakage transistors are designed with a higher threshold voltage (Vt) than their normal

counterparts. Increasing the Vt helps reducing a transistor’s leakage current when it is in the

cut off region, an increasing issue with deep-submicron technologies. However, it also

reduces the transistor performance when comparing to transistors with lower Vt. The diode

was designed with a low leakage transistor in both designs to minimise the leakage through

the diode and, hence, to isolate Vout as much as possible from Vdd. High voltage transistors

should allow the OpAmp to operate within its specified voltage range even when the effects of

a glitch is present.

The above setup was simulated with HSPICE where the designs were tested for the following

power supply scenarios:

• clean external Vcc supply, 3v and 5v;

• noisy external Vcc supply, 3v and 5v with a +/-10% ripple noise at 100Hz (the

standard for this application states that +/-10% ripple at 50Hz is a valid supply

source)
2
;

• two fast positive glitches; one that went from 2.7v to 7v and back to 2.7v in 100ns

(Glitch A), and the other that went from 3v to 15v and back to 3v in 10ns (Glitch B)

Each of these power supply scenarios were repeated with three different load values (i.e. high,

medium and low) and two different SPICE models of transistors. Only extreme SPICE models

were simulated, i.e. worst-case and best-case. Worst-case model had the following

2
 Knowledge gained at Atmel

EngD portfolio – Volume I, A. Goikoetxea Yanci 44

parameters: mos_wcs, rlow, clow, temp=125. Best-case model had the following

paramenters: mos_bcs, rhigh, chigh, temp=-40.

In total, 12 different noisy scenarios and 12 different glitch scenarios were simulated for each

detector design version. For the clean power supply cases, only medium load was used, as

repeating the test with different load values would not provide further valuable data. Hence,

only 4 different clean power scenarios were tested per design.

None of the simulations with a clean source supply, or the simulations with a noisy supply

source triggered the glitch detector. Out of the 12 glitch scenarios each design was subjected

to, Design A managed to detect the glitch in 11 scenarios with an average detection time of

1,073ns. Design B managed to detect the glitch in 9 scenarios with an average detection time

of 7,657ns. The time results of both designs for each glitch scenario simulations are collected

in Table 3-2. The report GlitchPub1 shows more simulations results.

Table 3-2 Glitch simulation results

Applied glitch Design version Load SPICE model
Glitch A Glitch B

worst-case not detected 741ns high load
best-case 571ns 611ns
worst-case 1,375ns 1,281ns mid load
best-case 1,015ns 990ns
worst-case 1,508ns 1,394ns

A

low load
best-case 1,252ns 1,062ns

worst-case 629ns 8,273ns high load
best-case not detected not detected
worst-case 2,093ns 1,947ns mid load
best-case 1,359ns 25,522ns
worst-case 2,163ns 2,170ns

B

low load
best-case not detected 24,755ns

3.2.3.2 Simulation Discussion

When comparing glitch detectors, the comparison needs to focus on two axis, detection range

and detection time. In general terms, these simulation results demonstrate that this glitch

detector is capable of detecting glitches that detectors used with the instantiated voltage

regulator are not capable of. The detection time ranges from 571ns to 25,522ns, depending

on the simulation scenario. Not so immediate in computing terms as, in the worst case

scenario, an AVR CPU running at 50MHz could execute up to 50 instructions per

microsecond.

EngD portfolio – Volume I, A. Goikoetxea Yanci 45

Comparing the simulated designs, Design A excels over Design B in terms of amount of

successful detections and detection times. This is primarily due to the different composition of

each design. Low Vt transistors have a lower performance, and that is reflected in Design B’s

amount of detections and detection times. Furthermore, during a glitch, low Vt transistors

might be subject to voltage levels outside their specifications, and this can temporally affect

the circuit’s ability to detect such glitch. When it comes to high voltage devices, however, the

voltage levels they are subject to during the glitch are likely to be within or not that far of their

operational specifications, hence, having a lower impact.

The transistor choice can explain one design taking longer than the other to detect or

detecting more or less glitches. However, the detection time divergences between Glitch A

and Glitch B needs further explanation. Analysing the evolution of Vdd and Vout in both

designs during and after a glitch, it can be noticed that the voltage difference between Vout

and Vdd is lower in the case of the Design B. This difference is particularly small when

applying the Glitch B, Figure 3-11 and Figure 3-12. The smaller the voltage difference

between Vout and Vdd, the longer the OpAmp takes to trigger the alarm and the more

chances of missing that particular glitch. This indicates that Glitch B sits in the detection range

limit of Design B. Furthermore, it seems that the closer a glitch is from a detector’s detection

range limit, the longer it takes to be detected.

Figure 3-11 Design A's response to Glitch B with high load and worst-case SPICE
models

Design A, again, performs better than Design B in these simulations. It is also capable of

detecting glitches that detectors used with the instantiated voltage regulator cannot. However,

its average detection time, 1,073ns, is longer than the direct approach detectors’ typical

EngD portfolio – Volume I, A. Goikoetxea Yanci 46

detection time, in the order of tens of nanoseconds. This is, Design A takes one to two orders

of magnitude longer to trigger the alarm signal. For obvious reasons, it is better to detect a

glitch than not detecting it at all, but in terms of detection time, what is the detection time

boundary after which, the detection can be considered too late? This is, when the fault

injection can be considered irreversible and raising the alarm would not provide any security

benefit.

Figure 3-12 Design B's response to Glitch B with high load and worst-case SPICE
models

Looking at a Smart Card from a high level perspective, the following two aspects can be

identified. Firstly, a Smart Card is a device that carries out transactions, where it first receives

a command, it executes that command, and then transmits the result back. Secondly, a Smart

Card has both, volatile memory (i.e. SRAM) and non-volatile memory (e.g. EEPROM), where

volatile memory is used to store temporal data and the NVM is used to store Smart Card

software applications and application and user data.

Command transfer and result transfer are made in a serial mode at a maximum clock speed

of 5MHz, according to the ISO standard. In this context, a transaction will require in the order

of milliseconds to seconds to be completed. If a glitch is applied aiming to disturb a

transaction, with an average detection of just over 1 microseconds, the glitch could be

detected before the transactions has been completed and act in consequence, such as

invalidating the transaction by producing an erroneous response and or resetting the Smart

Card.

EngD portfolio – Volume I, A. Goikoetxea Yanci 47

It be could argued that the execution of transaction commands is not atomic, as it takes

several CPU instructions to execute the transaction command. This is correct and, in this

context, a glitch attack might result in diverting the program flow and/or corrupting data stored

in the registers and/or SRAMs, which takes us to the second aspect mentioned above, the

memory. An attack that corrupts the SRAMs and registers is an attack that the device can

recover itself from by resetting itself, as it would result in an initialisation of certain registers

and the SRAM memory to a known status. If an attack resulted in corrupting the NVM,

however, the matter would be different, as it would be virtually impossible for the Smart Card

to know which data has been affected and what its previous value was. However, with NVM

writing times in the order of 2 milliseconds, with the proposed detectors, the Smart Card could

still reset itself in time to stop the write operation and avoid corrupting the NVM.

Another interesting feature that can be noticed in Table 3-2 is the load’s impact on the

detection time. Overall, there is a trend of longer detection times for lower loads, which is

more noticeable with Design A. To understand this feature, let us focus on the evolution of

Vdd and Vout when the voltage regulator is under a glitch attack, Figure 3-13. The simulations

have shown that the time required to detect a glitch can be divided in two parts: a) t1, the time

needed for Vout to become higher than Vdd; and b) t2, the time between Vout becoming

higher than Vdd and the raise of the alarm signal. When subjecting the voltage regulator to

different loads, the time t1 suffered significant variations, whereas time t2 did not. Higher

loads resulted in shorter t1 times than lower loads. In synthesis, a voltage regulator subjected

to higher loads, outputs a higher current. This means that when subjected to a glitch attack, its

output tends to correct itself faster (Vdd raises and falls faster), hence, Vout becoming higher

than Vdd earlier on and allowing the glitch detection sooner than with low loads.

Figure 3-13 Simulation of glitch attack detection under a high load

EngD portfolio – Volume I, A. Goikoetxea Yanci 48

Looking at the bigger picture, the detector proposed in this research is capable of detecting

glitches that current detectors cannot. However, it could only be used as a complement to

current detectors due to its prolonged detection time. This way, in the range where both

detectors can detect glitches, current detectors would trigger the alarm immediately. Whereas

the proposed design would be left in charge of detecting glitches that current detector cannot.

3.2.3.3 Test-chip Test and Results

Two instances similar to the glitch detector simulation setup were instantiated into a test-chip

to characterise the proposed detector’s detection range and time for different voltage regulator

and load scenarios. Each instance included a different voltage regulator, capacitive and

resistive loads and four different versions of the proposed glitch detector. The obtained

characterisation data was compared against the detection range and time of the glitch

detectors embedded in the instantiated voltage regulators. The aim of this comparison is to

determine the detection range improvement provided by the proposed detector. A block

diagram of the test-chip is shown in Figure 3-14, where GD_0, GD_1, GD_2 and GD_3

represent the different glitch detector versions and VR1 and VR2 represent the different

voltage regulators.

Figure 3-14 Block diagram of the test-chip

EngD portfolio – Volume I, A. Goikoetxea Yanci 49

The instantiated versions differ in the following: GD_0 was designed using low leakage

transistors for the diode D1 and the RS latch and high voltage transistors for the inverter and

the OpAmp, same as the simulated Design A; GD_1 was designed using low leakage

transistors throughout, same as the simulated Design B; GD_2 was designed using high

voltage transistors throughout; and GD_3 was designed using high voltage transistors

throughout too but with a different OpAmp design.

The voltage regulators instantiated in this test-chip differ in their target product and, hence,

their performance. VR1 is the same voltage regulator as the one used in the previous

simulation setup, which was designed for products with low security requirements. VR2, in the

other hand, was designed for high security products. These voltage regulators were

instantiated with their corresponding glitch detectors, so that they could be characterised too

and compared against the proposed detector. Since the simulation results already determined

that the proposed detector could only be used in conjunction with existing ones, and the aim is

to determine the detection range improvement provided by the proposed detector, only the

voltage regulator’s Vcc, Vdd and GND glitch detector’s combined detection signal was

monitored. A side effect of this comparison approach is not being able to establish a direct

comparison between the proposed designs against those built-in ones monitoring Vdd.

These voltage regulators have different responses to a glitch attack, as shown in Figure 3-15

and Figure 3-16, where the amber waveform shows the glitch applied to Vcc and the pink

waveform shows the impact on the voltage regulators’ output, Vdd. As in the simulation setup,

each voltage regulator also powered a fixed capacitive load of 2.2 nF and an independently

controllable variable resistive load, which could be set to: high load (80 Ohms); medium load

(1K6 Ohms); and low load (3K2 Ohms).

Figure 3-15 VR1's response to a 17V and 300ns glitch under high load, Vcc = 3V

EngD portfolio – Volume I, A. Goikoetxea Yanci 50

Figure 3-16 VR2's response to a 17V and 300ns glitch under high load, Vcc = 3V

Each glitch detector version was characterized for detection range and detection delay using

both voltage regulators, four resistive load combinations (high, medium, low and variable) and

two base voltage levels, 3V and 5V. Furthermore, these tests were repeated in four different

test-chips. Figure 3-17 shows a block diagram of the test environment. The characterisation

was run by applying positive glitches of different amplitudes and widths on Vcc with the

HP81110A pulse generator, which higher pulse is limited 20V. In total, 416 different glitches

were applied for the 3V base supply, and 364 glitches for the 5V base supply. The test

environment and test board are covered in detail in the section 4 of the report GlitchTech1.

Figure 3-17 Diagram of the test environment

Figure 3-18 shows the detection characterisation of the proposed glitch detectors when

powered with the VR1 for high and low loads, as well as the combined characterisation of the

glitch detectors embedded into the VR1 and how it compares to GD_3. All these figures focus

on glitch widths between 10ns and 150ns as this is where the most useful information lies.

The proposed detectors monitoring the VR2’s output hardly detected any glitch at all. Hence

no valid characterization or comparison could be done for the VR2 case.

EngD portfolio – Volume I, A. Goikoetxea Yanci 51

Finally, Table 3-3 presents the maximum, minimum and average detection time for each

detector when VR1 is subject to high and low loads. The longest detection times are

associated to glitches in the detectors’ detection limit, whereas short detection times are

associated to glitches far from the detectors’ detection limit.

a)

b)

c)

d)

e)

f)

Figure 3-18 Glitch detection range for different detectors when Vcc = 3V: a) GD_0 3V; b)
GD_1 3V; c) GD_2 3V; d) GD_3 3V; e) VR1 3V; and f) GD_3 vs VR1 3V

EngD portfolio – Volume I, A. Goikoetxea Yanci 52

Table 3-3 Overall detection times in nanoseconds

Detection time
Detector Load

Min average max

High 870 1200 1640
GD_0

Low 910 1310 2460

High 1100 1400 2005
GD_1

Low 1250 1600 2020

High 310 420 1250
GD_2

Low 320 470 1380

High 310 440 1300
GD_3

Low 310 460 1370

High 40 55 400
VR1

Low 50 60 440

The technical report GlitchPub2 also covers the characterisation work of the glitch detectors

and the results.

3.2.3.4 Test-chip Discussion

Several deductions can be made from these results. Firstly, these results corroborate the

simulation results. The best detectors’ maximum detection time is around 1,300ns, and in

general it takes between 3.10 and 8.5 times longer to trigger the alarm than the current

detectors. However, this is well within the typical Smart Card transaction time as well as the

typical NVM write time. Hence, the statement made in the simulation analysis still holds valid:

the proposed detector could be used only in conjunction with current detectors due to their

slower detection time.

Also, it is clear that the load and voltage regulators play a key part on the detectors’ detection

range and time, although the load impact is not as severe as initially indicated from the

simulation results. The voltage regulator, in the other hand, had a massive impact on the

detector’s performance, as detectors coupled with the VR2 hardly detected any glitch. The

explanation can be found in the voltage regulator’s response to a glitch.

The VR1’s output behaviour when a glitch is present in Vcc can be very dramatic. In Figure

3-15, the voltage regulator’s output raises almost immediately from 1.8V to about 3.5V and

then it drops it back very quickly too. On the other hand, the VR2’s output behaviour is much

more controlled. In Figure 3-16, the VR2’s output raises to just over 2V but then it drops it

gradually back to 1.8V. This VR2’s behaviour does not allow the modified inverter’s output,

EngD portfolio – Volume I, A. Goikoetxea Yanci 53

Vout, to become higher than the nominal Vdd, 1.8V. Without this first step, the glitch detector

is not capable of detecting a glitch. Furthermore, even if a glitch could raise Vout over 1.8V,

Vdd’s gradual drop is too slow to allow it becoming lower than Vout. Hence, dissipating at

once any chance of detecting a glitch on Vdd with this detector when is paired with the VR2.

Focusing on the VR1 scenario’s results, detectors GD_0 and GD_1 performed worse than

GD_2 and GD_3 when it comes to detection range. Their timing performance was the poorest

too. This is directly related with the detectors’ design decisions. GD_0 and GD_1 used low

leakage transistors, which are characterized by their low speed.

Detectors GD_2 and GD_3 showed a similar behaviour both in terms of detection range and

time, where GD_3 has a slightly better detection range, whereas, at times, GD_2 is a slightly

faster detector. Since in this work, expanding the detection range is a priority, detector GD_3

is considered marginally better than detector GD_2. The detection range improvement

provided by the GD_3 over the VR1’s combined detection range in shown in Figure 3-18.f),

where the dashed line represents the VR1’s combined detection range and the continuous line

is GD_3’s detection range. This improvement is repeated across most of the tests carried out

in this work.

Looking at the effect the load has in the detection range and time, it can be noticed that when

VR1 is subject to lower loads, all detection ranges are expanded at the cost of speed. This

same phenomenon can be seen too in the VR1’s built-in detectors. Section 3.2.3.2 Simulation

Discussion explains why a higher load results in faster detection times, and why it takes longer

to detect a glitch when it sits in a detector’s detection range limit. The phenomenon highlighted

here works as a combination of the two previous ones.

When it comes to detecting glitches, at the detection range limit, the evolution of Vdd

becomes crucial. Vdd not raising high enough or falling before Vout has risen above the

nominal Vdd (1.8V) could easily mean missing the glitch, and this is what actually happens. As

previously explained, Vdd shows a faster recovery when subjected to higher loads and, at the

detection range limit, this is translated by not letting Vout becoming higher than Vdd. Low load,

on the other hand, allows more severe changes on Vdd after a glitch, which, at the detection

range limit is translated as still detecting the glitch.

Finally, characterising the combined detection range and time of the detectors built into VR1

and VR2, makes it impossible to know each individual detector’s performance both, at the

voltage regulators’ input and output. Whilst the individual comparison was not the objective of

this work, having that information could have helped with discerning each detector’s

contribution to the combined detection range and time. Furthermore, it could have helped on

determining the performance improvement introduced by the proposed detector when

comparing it to glitch detectors at the VR1’s and VR2’s output.

EngD portfolio – Volume I, A. Goikoetxea Yanci 54

3.2.4 Conclusion of the glitch detector

Detectors currently used in Smart Cards primarily focus on detecting glitches in real time by

directly monitoring the power rails. Detecting fast glitches with this approach is challenging, as

legitimate noise could be mistaken for a glitch, triggering false detections. Instead, the glitch

detector proposed in this work, and for which a patent has been granted (see GlitchPub3 in

Volume 2), allows the safe detection of those fast glitches by monitoring the glitches’ effect on

a sensitive circuit.

Test results have demonstrated the usability of the proposed detector and how it improves the

overall detection range and, hence, the security. However, and due to the high detection delay

comparing with direct approach detectors, the currently proposed detector could only be used

in conjunction with current detectors. This is, as a supplement to the other detectors.

There has been a limitation on the comparison between the proposed glitch detector and the

current ones. This limitation was produced by the combined monitoring of the built-in

detectors’ behaviour, which did not allow us to make any further analysis on how the

instantiated versions compare against the individual built-in detectors, especially the internal

ones.

The instantiation of different versions of the proposed glitch detector has proved that small

changes in the design can result in faster glitch detection and bigger detection range. There

might still be room for improvement. By making the comparator even faster and more

sensitive, the detection range could be expanded and the detection time reduced, whilst still

avoiding detecting noise as a glitch.

Furthermore, it has been corroborated that the same glitch might affect a design differently

depending on the environment parameters. The voltage regulator was the single factor with

the highest impact on their detection capabilities, to the point where in one of the cases, no

detections were registered. Other two factors affecting the detection capabilities included: a)

the detector’s design; and b) the voltage regulator load, although this last factor had a lower

impact than the previous two.

Finally, throughout all this work, the glitch detector has been designed to detect glitches at the

voltage regulator’s output. However, the design principle could still apply if designed to detect

glitches applied in Vcc, and it would be interesting to see how it performs at detection range

and time, especially for the case of the VR2.

EngD portfolio – Volume I, A. Goikoetxea Yanci 55

3.2.5 Future work

As with many other detectors and analog circuits, this detector might need tweaking for each

new technology node. Hence, the design will need to be constantly reviewed. In addition to

this iterative improvement, three lines of action could be suggested: a) adapting the glitch

detector to detect glitches in Vcc; b) characterise the voltage regulators’ internal and external

detectors separately and compare them to the Vcc and Vdd glitch detector versions; and c)

testing the current detector with negative glitches on the ground and redesigning it to detect

negative glitches in Vcc.

EngD portfolio – Volume I, A. Goikoetxea Yanci 56

3.3 Laser Attacks

Silicon devices’ susceptibility to lasers is well known by the aerospace community, since they

used a laser beam for the first time in 1965 [7] to simulate the effects of ionising radiation on

semiconductors. Nowadays the laser technology is more affordable, making laser attacks

more likely. In fact, in [8], a successful attack on a SRAM was achieved with a camera flash,

which shows the potential threat posed by this attack technique.

Unlike consumer devices, aerospace devices are developed to withstand these kind of

threats. This research line analysed the applicability of a few radiation hardening

countermeasures to Smart Card devices and developed the understanding of laser attack

effects. The following section reviews the state of art of different laser attacks techniques and

radiation countermeasures. The next section covers the instantiated countermeasures and the

tests carried out. This is followed by the conclusions and future work.

The following sections cover the literature review; the countermeasures tested in this work;

and the conclusions of this research line. Finally, some possible future developments are

proposed.

Volume II includes the following reports related to and supporting this research line:

• LaserTech1(Tartalo test-chip 01OKA)

3.3.1 Literature Review

The impact of energy particles (radiation) on microelectronic circuits produces a phenomena

commonly referred to as single-event effect (SEE), which can cause temporal or permanent

changes on microelectronic devices [30, 31]. A full list of SEEs can be found in Appendix C.

Lasers have a similar behaviour but with some key differences: a) test repeatability; b) needs

direct access to silicon; and c) only induces a subset of the radiation SEEs. The actual

differences between radiation and laser hits are collected in Table 3-4.

A particle’s hit size and energy are determined by the particle itself; as different particle types

might have different sizes or energy levels. A particle hit is also random in the temporal and

spatial domains. Even if particle accelerator chambers used for radiation tests, such as [30],

allow defining a variable target area and radiation level, the actual hit cannot be controlled.

EngD portfolio – Volume I, A. Goikoetxea Yanci 57

Table 3-4 Radiation vs. laser effects on silicon

Feature/Property Radiation Laser

Hit location random controlled

Hit time random controlled

Hit duration in the order of pico seconds controlled

Hit size particle’s size laser spot size (controlled)

Hit energy particle’s energy controlled

Barriers
Penetrates the whole chip

(package, metal layer and die)

Needs direct access to the silicon.

Package and metal layers act as

barriers

Induced upsets (SEE)
SEU, SEL, SEB, SEGR, SETD,

SET
SEU, SEL, SET, SETD

Laser beams, on the other hand, are far more controllable, as the beam can be directed to a

specific area and the hit time controlled and even synchronised with a particular event in the

device under test (DUT). The laser beam’s spot size and energy level can also be controlled,

and enables targeting anything from an individual transistor to the whole device.

Although in theory a laser beam could be on for an undetermined amount of time, in practice,

short pulses are used. Applying a laser beam for a long time might render the targeted area

unusable for as long as the laser is present, and depending on the laser energy level it could

even damage it permanently. After all the aerospace industry’s aim is to emulate the

radiation’s behaviour, and an attacker aims to inject some sort of temporal fault that produces

valuable behavioural information. A short pulse is enough for that.

Controllability of laser beam parameters allows test repeatability, making laser beams

desirable for the aerospace industry to tests electronic devices’ response to a space like

environment. Controllability also allows carrying a series of attacks not possible with radiation,

such as synchronising the laser beam to the DUT’s system clock. Another attack option could

be using big laser spots to comb the device and identify the location of IPs. Then, a small

laser spot could be used to target specific parts of the IP, such as registers. These test

scenarios makes laser attacks desirable to an attacker.

One of the laser beam limitations is barriers. The laser needs to target the silicon in order to

induce a SEE, and packaging and metal layers act as barriers to laser beams. Furthermore,

with the increasing design complexity, the silicon gets buried under several metal layers and

successful front-side attacks are harder to achieve [32]. This can be worked around, however,

with back-side attacks [33], although substrate milling is often required first to improve the

laser penetration.

EngD portfolio – Volume I, A. Goikoetxea Yanci 58

Comparing to radiation, laser beams can only induce a subset of SEEs, of which SEU and

single event transient (SET) are the ones an attacker would aim for. SEUs cause a change of

the data stored in registers and memory cells. SETs cause short duration effects that could

result in error injection. These errors are temporary in nature.

A lot of effort has been put towards hardening devices against radiation. Radiation

countermeasures include those proposed in [34-40], where the use of radiation hard

processes (RHP) has been the most commonly used countermeasure. Devices built on RHPs

are inherently more robust than commercial ones, however, the use of RHPs is in decline, as

they are more expensive and power hungry than commercial CMOS processes and usually

lag two generations behind commercial ones [41].

Foundry level countermeasures are out of the scope of this research. However, RHP would be

hard to justify in a commercial environment such as that of Smart Cards, were size, power

consumption and price are major constraints. More adequate than RHP are the

countermeasures based on radiation hardening by design (RHBD), which rely on specific

circuit design techniques to increase the radiation resistance of a device [30, 34]. RHBD

techniques include: a) redundancy; b) memory immunity [35, 38]; and c) transistor layout [37].

Memory immunity RHBD focuses on sequential logic and storage, whereas redundancy and

transistor layout are applicable to both, sequential and combinational. Hardening data storage

cells is important to avoid corrupting the information they hold, but with soft errors in

combinational logic increasing exponentially with the clock frequency [39, 41], hardening

combinational logic is also becoming a need.

There are two main kinds of redundancies [3]: time redundancy and hardware redundancy.

Time redundancy is based at computing the same input data at different times and comparing

the results. This countermeasure could potentially help detecting laser pulses that last less

than the whole cycle of processing and comparing the data. Although [3, 36, 39, 40] cover the

hardware instantiation of this countermeasure, it could actually also be instantiated in software

for some functions such as cryptographic operations.

One intrinsic feature of this technique is, however, the time delay penalties it incurs on, as the

same data needs to be processed at least twice within the same cycle. The imposed delay

might be prohibitive on applications or ICs which are already struggling to meet timing

specifications or where applying this technique implies reducing the device’s maximum

performance.

Hardware redundancy countermeasure is based on instantiating the same block several times

and comparing the outputs of these blocks [3]. The time penalty associated to these

techniques is not that severe, as all blocks will process the data at the same time; the voting

EngD portfolio – Volume I, A. Goikoetxea Yanci 59

circuit will be the only additional time delay to the design. The main drawback of this approach

is, however, the area penalty it incurs on, as the same block needs to be instantiated at least

twice for a fault to be detected, and at least threes times for a fault to be corrected.

By using hardware redundancy, a circuitry’s or blocks immunity against radiation or laser

attacks could be improved greatly, as all redundant blocks would have to be attacked at the

same time and inject the same error in order to work around this countermeasure.

Redundancy blocks can be located apart from each other in order to improve the immunity

further.

There is, though, a question on how well protected the voting circuit will be against laser

attacks. The voting system improves a block’s immunity to laser attacks, but unless the voting

circuit’s immunity is matched to the block’s one, an attacker could potentially target the voting

circuit to inject a fault, bypassing then the voting technique itself. And, if the voting circuit can

be designed in such a way, other than redundancy, that hardens it against laser attacks, would

it be possible to design the block following the same approach in first instance and avoiding

the use of redundancy?

Given a radiation resistant voting circuit, hardware redundancy could be used in Smart Cards

to enhance the immunity of certain critical blocks or functions, such as FSMs, the CPU’s ALU

or the crypto engine. The area and power consumption penalty resulting from the use of

hardware redundancy would suggest against extensive use of this technique though.

Radiation hardened cells like dual interlocked storage cell (DICE) [38] and SERT SEU

immune register [42] improve the cell’s stability and robustness against radiation effects by

duplicating the feedback paths. A particle hitting one transistor in a DICE structure most likely

will not inject any upset, and the stored value will remain unchanged [38]. This hit, however,

could result in two nodes or transistors driving a net or wire simultaneously and with different

voltages for as long as the hit effect is present, which would increased power consumption.

Also multiple simultaneous particle hits might result in fault injection in the memory cell.

Low power SERT SEU structure improves on the DICE’s disadvantages. By design, a single

hit could not result in two nodes driving a wire concurrently, and it can handle up to two

simultaneous particle hits. The downside of SERT SEUs is their size, as the amount of

transistors needed for a standard latch cell is 4, the transistors for a DICE latch cell is 8 and

the number of transistors for a SERT SEU latch can be as high as 12.

In any case, it might only be suitable for specific registers or latches. Instantiating a SRAM

with any of these two countermeasures would dramatically increase the area overhead, hence

it should be avoided. Instead, error detection and correction circuitries or policies such as

EngD portfolio – Volume I, A. Goikoetxea Yanci 60

parity and Hamming code should be added to further increase the device’s robustness against

radiation or laser attacks.

Finally, radiation induces edge current leakage on affected transistors, which in turn can inject

a fault into adjacent devices [30]. Enclosed layout transistors (ELT), also known as edge-less

transistors, mitigate the radiation effects by designing transistors with no edges, as shown in

Figure 3-19. The main drawback of these transistors is their size, as they can be three times

bigger than standard transistor layout. In addition to the size, these transistors also have a

higher parasitic capacitance, which makes them slower and more dynamic power hungry.

Drain

Source

Gate

Figure 3-19 Enclosed layout transistor

3.3.2 This Work

A test-chip (01OKA) was designed with some of the countermeasures described above

instantiated into simple 4-bit adders, as the one shown in Figure 3-20. These

countermeasures included:

• Layout alterations: A laser attack success depends not only on the timing, i.e. when

a specific transistor is illuminated, but also on the transistors that can be targeted

individually or as a group, which might be affected by its layout. Three register layouts

shown in Figure 3-21 were instantiated to determine how the layout can influence on

the effects of a laser attack.

• Enclosed layout transistor: ELT transistors were designed and instantiated to test

their performance against light attacks.

• Low power radiation hardened register: SERT registers were designed to test their

response to laser attacks.

• Radiation mitigation on combinational logic: The radiation countermeasure

presented in [36] was instantiated at the output of all adders, as shown in Figure 3-22.

• Parity error detection: This simple error detection technique was used to calculate

the addition’s parity and storing it in a register.

EngD portfolio – Volume I, A. Goikoetxea Yanci 61

• Covering the silicon with a metal layer: This technique was used to completely

cover a test circuitry with a metal layer. This metal plate was grounded to avoid it

getting charged with static electricity.

Figure 3-20 Basic light attack test circuit

Figure 3-21 Different layouts used in the test-chip

delay

Vdd

GND

+
reg

m
u
x

a[n]

b[n]
co[n]

o[n]

clk
on/off

register
output

Figure 3-22 Implemented combinational block SEU mitigation logic

EngD portfolio – Volume I, A. Goikoetxea Yanci 62

Six adders were designed in total, each of them targeting a particular set of countermeasures.

The relationship between the adder design and the instantiated countermeasures is shown in

Table 3-5. All designs except for ELT design were built using normal MOS transistors. The

ELT design was fully built of ELT transistors, so their performance in the registers and the

combinational blocks could be measured.

Table 3-5 Design and countermeasure relation table

Layout version
Design name

a b c
RHBD ELT

Combinational

mitigation
Parity

Metal

layer

Layout_a design x - - - - x x -

Layout_b design - x - - - x x -

Layout_c design - - x - - x x -

RHBD design - - - X - x x -

ELT design - - - - x x x -

Metal design x - - - - x x x

3.3.3 Tests

The test consisted of targeting the adder circuitries with laser pulses when the registers stored

a fixed value and whilst exercising the adder circuitries. The actual test methodology is

covered in the report LaserTech1. The test-chip was fabricated with a fibre glass coating that

hid the designs, see Figure 3-23, which made it difficult to target individual transistors. Hence,

laser pulses were set to target the combinational block of all circuitries, the registers

associated to each circuitry in Table 3-5, referred here as direct attack, and the registers of all

circuitries at once.

The setup only allowed front-side attacks, which only Metal design and radiation hardened

(RH) registers demonstrated to be immune against when they were targeted directly. No other

countermeasure withstood direct attacks. ELT was expected to pass the tests, however it

failed and was weaker than MOS circuitry. Leaving the reasons for ELT’s failure aside, which

could be design related or not, the area penalty resulting from using these transistors is too

high to justify their use even if they were immune against laser attacks.

As expected, parity error detection only detected a limited amount of error injections and the

combinational SEU mitigation circuitry failed to protect the combinational logic against error

injections. Combinational SEU mitigation was designed to mitigate single particle impacts, and

EngD portfolio – Volume I, A. Goikoetxea Yanci 63

hence it failed when targeted with a spot size that affected several transistors or the whole

countermeasure.

Initially it was expected that a laser attack would almost always set all registers to the same

value, say logic 0. This would ease detecting error injections by defining the right parity policy

for the adder registers, either even or odd parity. In reality however, the errors injected in

registers changed for different stored values, laser energy level and laser target areas.

Figure 3-23 Silicon view with circuitry boundaries

The injected error value was more consistent for ELT transistor based registers; especially

with high energy laser attacks. The injected error value would almost always be 0x1F when all

registers are targeted at once, and 0x10 when only ELT registers were targeted.

An interesting behaviour was noticed when targeting the registers of all circuitries. In this case

all registers became affected, including those in the Metal design and the RH registers. In

other words, otherwise immune registers were prone to error injections when a high enough

number of neighbouring transistors were attacked with a laser. This behaviour could be

explained by the laser producing temporary localised shortcuts when a high enough energy

level targets a high enough number of P and N transistors.

3.3.4 Conclusions of laser attacks

Only one usable countermeasure was immune to direct laser attacks, SERT SEU immune

registers; although even this one would be affected when attacking enough neighbouring

EngD portfolio – Volume I, A. Goikoetxea Yanci 64

transistors. This means that no single countermeasure might be adequate as a universal

remedy.

Metal layer countermeasure also succeeded in protecting the design against direct front-side

attacks. However, the drawbacks of this technique discard it as a valid option in commercial

devices. In one side is the raise of fabrication costs. The primary function of metal layers in a

semiconductor device is connecting the different building blocks (e.g. transistors, capacitors,

resistors). Placing metal plates to cover parts of an IC will consume valuable routing space,

and could force the device to grow in area and/or using an additional metal layer.

Laying down metal layers in a semiconductor device is an expensive process, and so, designs

must use the least amount of metal layers. A bigger die minimises the number of devices that

can be fabricated in a given wafer. Hence, any of these two growing approaches minimise the

benefit margin per device and could potentially force Atmel to increase price per die.

The other important drawback of a metal plate is its lack of protection to back-side laser

attacks. These kind of attacks, not tested in this research, consist of milling the die substrate

and applying the laser to the die’s back side. Milling the substrate increases the laser

penetration depth and enables fault injection through back-side attacks. A metal plate can

protect a circuitry from a front-side attack but would fail to protect it from a back-side attack.

Hence, back-side attacks would make this countermeasure redundant. Back-side attacks also

force to focus on structure and/or architecture based countermeasures such as RHBD.

A design’s sensitivity to neighbouring circuitry should be studied further, as it could provide

clues as to how to harden certain critical functions, such as crypto blocks. It could also help

defining sensors and design strategies to detect attacks on neighbouring circuitry.

3.3.5 Future work

This research line was cut short by a shift of interest; however, it would be interesting to test

other radiation hardening structures similar to the SERT SEU, including custom ones.

Alternatively, the commercial viability for using the same RH register tested here could be

studied.

Again, an in depth knowledge of a design’s sensitivity to its neighbouring circuitry could be

crucial to the success of any particular countermeasure and detection strategy. Finally due to

the sensitivity shown by ELT transistors, its use as a laser sensor could be considered or

analysed.

EngD portfolio – Volume I, A. Goikoetxea Yanci 65

4 Low Power Design for Smart Card

With every new technology node, transistors get faster, smaller and more complex designs

can be integrated in the same area. With new technologies nodes, the nominal supply voltage

level is also reduced, which in turn lowers the dynamic power. However, deep-sub micron

technologies are accompanied by other challenges, such as process variations (e.g. random

doping) and an increase of the leakage current [43]. The leakage current is the direct

contributor to static power consumption, which wastes valuable energy. This is an undesired

side-effect, especially on mobile applications and devices with a tight energy budget, such as

contact and contactless Smart Cards.

Despite the leakage current being still manageable at 180nm and 150nm technology nodes,

smaller technology is already suffering severely from it. As a result, several techniques have

been developed to minimise leakage or static power consumption, such as adapting

dynamically the threshold voltage [44], power gating [45] or reducing Vdd [46], each with

different success rates.

In Smart Cards, as with most SoCs, SRAMs are the main contributors towards leakage

current, generating over 80% of the overall leakage current [47]. Hence, this research line was

initiated to: a) look at SRAM leakage reduction techniques; and b) test the robustness and

possible security issues related to the proposed techniques. This research line was carried out

in collaboration with Atmel’s Memory Group based in Rousset, France.

Three lines of work were initiated in relation to low power. The first one focused on the

impacts and approach to enable memory partitioning, where a memory is divided into different

sections or partitions and each powered independently according to their usage and contents.

This work resulted in a proposal and design considerations when adapting the Smart Card

SRAM to enable memory partitioning.

The second approach consisted of powering the SRAM continuously to a supply level lower

than its nominal value, in order to reduce the static power consumption. Initial simulations

carried out by the Memory Group suggested against this approach.

The third and final line of work focused on the security impact of a few leakage reduction

techniques. This work was divided in two parts, one developing custom SRAM bit cells and

another one testing SRAM memories with different leakage reduction techniques developed

by the Memory Group when subjected to power attacks commonly used against Smart Card

devices. Test setup issues prevented from carrying out the planned tests.

EngD portfolio – Volume I, A. Goikoetxea Yanci 66

The three research lines are highly related to each other, and so, the next section provides a

common literature overview. The next three sections cover the work carried out on each

research line, including an introduction to the research line, the obtained results, the

conclusions drawn in relation to that particular research; and future lines of actions. In addition

to this, the memory partitioning research line expands the literature review.

EngD portfolio – Volume I, A. Goikoetxea Yanci 67

4.1 Literature Overview

One of the side effects of smaller technology nodes is the increase of leakage current. This

leakage is the result of shorter channel distances and geometries and, as shown in [48], the

static power consumption is set to offset the dynamic power unless measures are taken to

minimise the leakage. This increase of leakage current is especially critical for battery

powered applications, as more energy will be wasted, resulting in a shorter battery life. This is

added to the fact that the batteries’ capacity has increased at a slower rate than the power

requirements of portable devices.

Six different mechanisms contribute to the leakage; these are shown in Figure 4-1, where gate

tunnelling oxide (a.k.a. gate oxide) and sub-threshold leakage are the major contributors [49].

Gate oxide leakage is the result of thin gate oxides, thus, this leakage mechanism needs to be

tackled at foundry level and is out of the scope of this research line. Current proposals focus

on using high K dielectrics [50]. The sub-threshold leakage appears when the gate is in weak

inversion.

Gate

Source Drain

Gate-oxide

Bulk

1 2

3

4

1 Gate tunnelling oxide
2 Hot Carrier Injection
3 Subthreshold
4 Punchthrough

65

5 PN junction
6 Gate-Induced Drain
 Leakage

N+ N+

Figure 4-1 Leakage contribution mechanisms [49]

Several techniques have been developed to help reducing leakage current, ranging from low

level (e.g. foundry and/or transistor level) to high level (e.g. system and/or software level) [46,

49]. On the low end, one approach is enabling the technology process having transistors with

different Vt. This allows using high Vt transistors throughout the design, which are less leaky

but slower, and reserving lower Vt transistors for critical paths, which are leakier but faster

[51]. This approach, already used by Atmel, enables reducing the leakage of any design, be it

a memory or logic.

On a typical device, its resources or functions are used on demand. This implies that some of

these resources might sit idle for long periods of time. One approach to reduce the leakage on

EngD portfolio – Volume I, A. Goikoetxea Yanci 68

the unused functions is power gating them, and powering them on or off depending on

whether they are needed or not [45]. This is achieved with the addition of sleep transistors,

which are placed between the main power rails and each function, block or area’s power rails

or ring [45]. Power gating is the most effective approach to minimise leakage current, as it can

reduce a function’s leakage by a 97%, however, it comes with its share of issues. Powering up

and down a block or function takes time and, unless it is managed carefully, it can impact on

the device’s performance.

Sizing the power gates correctly is crucial, as they need to be able to conduct the maximum

current needed by the block powered through them. However, designing too big power gates

would result in higher area overhead, but more importantly, longer power up and power down

times, which reduces the number of times the block or function can be powered down.

When powering down a block or function, its outputs are left floating, which can cause

leakage in the circuitry that reads these outputs. This can be fixed easily by driving the outputs

to either a logic one or logic zero when the function is powered down, e.g. by using pass-

gates. Another issue to consider is that when a circuitry is powered down, loses its current

status, it is reset. If preserving the status is desired, the desired data storage units, e.g.

registers, should not be powered down. In other words, data storage and combinational logic

should have different sources of power. Alternatively, the circuit’s current status could be

stored to a memory, e.g. main data memory, before powering it down, and restored it once the

circuit is powered back up again.

A similar approach to minimise the leakage when a function or block is not active is reducing

its supply voltage, Vdd, instead of powering it down. Although this approach does not reduce

leakage current as much as power gating, recovering from a low power mode is much

quicker, hence reducing the impact on performance [52]. Furthermore, if Vdd is not lowered

below the data retention voltage (DRV), the registers or memories within the block or function

would not lose the stored data, hence, preserving its status.

However, lowering Vdd implies the need for a variable supply source. This could mean an

additional, controllable, voltage regulator, or powering the functions or blocks through power

gates with a sophisticated management or control.

This leakage reduction technique is very common when reducing an SRAM’s leakage [46, 53-

55]. However, reducing the supply voltage not only reduces memory’s performance, but also

its static noise margin (SNM), which determines the memory’s robustness. New SRAM cells

have been presented to improve the SNM. In [56] it was achieved with bulk biasing, whereas

in [57-59] it was achieve by changing the SRAM bit cell’s structure.

EngD portfolio – Volume I, A. Goikoetxea Yanci 69

4.2 Memory Partitioning

Extensive research has been carried out on SRAM memories aiming to reduce their power

consumption and leakage current. Leakage reduction techniques have primarily focused at

the foundry level, transistors’ design and SRAM architecture [49, 60]. The common factor in

these techniques is that they focus at the hardware level, ignoring software’s impact on power

consumption. Other techniques, such as memory partitioning and power management [61,

62], not only allow saving power via hardware techniques, but also through analyzing the

software applications’ use of the memory, dividing a monolithic memory into different smaller

memories and redistributing the data to minimise power consumption.

Memory partitioning and power management have been primarily used with the on-chip

memory of 16-/32-bit CPU based devices, where the main memory is external. This work

focuses on the unique challenges involved when applying memory partitioning to Smart Card

devices, which are mostly designed around 8-bit CPUs with on-chip memory only.

The following sections cover the literature review of the memory partitioning approach and a

description of the main issues when applying this approach to Smart Card devices. This is

followed by a description of the simulated test cases to analyse a Smart Card SRAM memory

usage and the obtained results. The next section covers the proposed memory partitioning

implementation, followed by the discussion section. The last two sections draw some

conclusion and suggest a few lines of action for future work.

Volume II includes the following reports related to and supporting this research line:

• LowLeakageTech1(SRAM Memory Partitioning for Leakage Reduction)

4.2.1 Literature Review

Memory partitioning and independently powering individual partitions has extensively been

used on Cache and Scratch-pad Memories (SPMs) for reducing both, dynamic and static

power [61, 62]. The dynamic power consumed by a circuit is defined by its effective capacitive

load, the supply voltage and the frequency the circuit is exercised at, just as defined in (1).

Smaller memory arrays have a smaller capacitive load for read/write operations than bigger

ones, hence, partitioning or dividing a monolithic memory into smaller size memories results in

reducing the dynamic power consumption [61]. The static power consumed by a circuitry, on

the other hand, depends on the supply voltage and its leakage current. Hence, by reducing the

supply voltage of the non accessed partitions, the static power of these partitions is reduced

EngD portfolio – Volume I, A. Goikoetxea Yanci 70

too [62, 46]. The reduced supply voltage needs to be above the DRV to avoid loss of data [46,

52].

clockeffdynamic FVddCP ⋅⋅=
2

 (1)

When partitioning a memory, it is important to know: (a) the partitioning approach to be

targeted; (b) partition sizes or granularity; and (c) the partitions’ powering policy. Programming

software tools also play a key role on the effective usage of partitioned memories.

4.2.1.1 Partitioning

Two partitioning approaches are possible: uniform and non-uniform. Uniform consists of

dividing the memory into equally sized partitions. Whilst this is the simplest approach, it does

not necessarily maximize the energy savings; especially on mono-application systems [61].

Non-uniform partitioning consists of dividing the memory into different size partitions, so that

the most used variables can be stored in the smaller partition in order to further reduce the

dynamic power. This partitioning approach is better suited for mono-application systems and

the cases where there is a prior knowledge of the code to be run. The main drawback of this

approach is the need to know the code to define the partition sizes; this is, before designing

the device.

4.2.1.2 Partition sizing or granularity

Partitioning a memory increases the area overhead, as the periphery overhead increases with

the number of partitions [62]. This penalty is more significant when partitioning smaller

memories. Furthermore, additional control logic and power management registers will be

needed. Hence, the optimum partition sizes would be determined by those sizes where the

difference between energy savings and area cost is maximized.

The energy efficiency of a partitioned memory is determined by its usage, in other words, by

the code run by the CPU. When the code is available, optimum [63] or sub-optimum [62]

partition sizes can be determined by analyzing the memory usage and grouping the most used

variables into one small partition, and the least used variables into the biggest partition. The

amount and size of each partition required to maximise power reduction is, hence, application

dependant.

EngD portfolio – Volume I, A. Goikoetxea Yanci 71

For the cases where the code is not available, the number of partitions and their size can be

determined by comparing the cost of different partitions and their impact on the dynamic

power.

4.2.1.3 Powering policy

Partitioned memories can be defined by their contents and use as: a) being accessed; b) not

accessed but with valid data; or c) not accessed and without valid data. An accessed partition

contributes towards dynamic and static power, whereas not accessed partitions only

contribute towards static power. Based on these definitions, accessed partitions are powered

to nominal Vdd so that they can be read and written to without losing on performance; not

accessed partitions but with valid data are powered at a lower supply, so that their static

power consumption is reduced; and partitions without valid data are powered off to avoid their

contribution towards static power [61, 62, 58, 64].

Techniques to low power a partition include dynamic voltage scaling (DVS) and power

switching. Since all partitions can be powered independently, this technique requires a more

complex voltage regulator and/or supply power distribution mechanism. This technique is

mainly targeted at the partitioning level, although it can also be used at individual address

level. DVS must be used with care on noise prone environments, as low powered memories

are susceptible to soft errors and fault injection [65]. This weakness can be minimized with bit

cell architecture modifications such as [57, 58]. An alternative static power reduction

technique is to reduce leakage current by forward/reverse biasing. Although this technique

could target address level more easily, the decreasing effectiveness of forward biasing with

smaller technologies [66] and the need of triple-well for reverse biasing makes them inefficient

or too expensive.

Powering off partitions can be achieved through power gating. Two approaches are possible,

positive metal-oxide semiconductor (PMOS) or negative metal-oxide semiconductor (NMOS)

transistors. Although power gating does not fully eliminate the leakage current, the work

carried out in [45] shows that it achieved up to 97% of energy savings.

Switching power states results in a power consumption and a performance penalty [62], which

is worst for higher voltage differences between states. These penalty effects are usually

mitigated with timing policies that determine the maximum number of cycles between

accesses before a partition goes to low power mode.

EngD portfolio – Volume I, A. Goikoetxea Yanci 72

Despite the timing policy missed accesses will still occur, where accessing a not ready

partition is attempted. For these events, the CPU and memory should be provided with a

wait/ready signal, which is usually a standard in a CPU.

4.2.1.4 Software techniques

Software tools, compilers especially, also play an important role in saving power, as these can

greatly impact on the memory usage [63, 67-69]. Two main approaches have been proposed

to manage data in non-uniform SPMs: static and dynamic allocation. A static approach

consists of placing the overall most used variables in the smallest partition for the whole

execution time [70]. Dynamic approach, on the other hand, consists of moving the contents

between the partitions and the main memory in order to maximize the usage of the smallest

partition. This is, in order to maximize power saving [69].

A static approach can result in a high enough power saving for mono-application software

codes, whereas a dynamic approach is more suited to multi-application codes. In any of the

cases, new software tools are required to allow programmers develop code abstracting from

the memory layout and in order to exploit the benefits obtained from partitioning the memory.

This requirement might also mean that for a particular IC, there are less available software

tools than for others. This is particularly important when taking into account studies such as

[71], which showed the importance of the available software development tools when deciding

which CPU to use on a project.

4.2.2 Considerations when partitioning the memory of a Smart
Card

When applying memory partitioning to Smart Cards, there are three main aspects that differ

from other cases where this technique has been applied and which can impact on its use or

implementation. The first difference is that previous works focused on either cache and/or

SPM memories, leaving system the memory aside. In Smart Cards, there is not cache or SPM

memory; instead, the leakage reduction approach targets the whole system memory. This fact

limits the amount of memory that can be set in lower power mode or even powered off.

Furthermore, the data space of an 8-bit CPU is usually limited to 64Kbytes, although

accessing more memory is still possible by using memory pagination. Nevertheless, an 8-bit

CPU based Smart Card’s internally SRAM memory is usually below 8Kbytes. Since the

EngD portfolio – Volume I, A. Goikoetxea Yanci 73

periphery overhead is higher for smaller memories, partitioning a memory into separated

smaller memories might not be cost effective for a Smart Card.

The second difference is that some previous works required prior knowledge of the target

application and or applications to be run in the system to optimise the memory partitioning.

Due to the security level required with Smart Cards, manufacturers have no access to the OS

nor the applications run by their customers. Furthermore, different customers can use the

same device in different ways. This diversity makes it difficult to estimate the memory usage

and the partitioning formulation for any one product. Also, optimising a particular device for a

particular application or customer might not provide other applications or customers with extra

benefit.

Instead, studying a Smart Card’s general behaviour and software architecture could help

estimating a memory usage pattern and formulating a memory partitioning approach. For

example, a Smart Card usually stays idle until it receives a command. It then executes the

command and sends back the appropriate response. The Smart Card could then go to an idle

mode again if no further commands are received within a certain amount of time. With this

behaviour example, a partition could be assigned to act as a communication buffer, and power

it on or off to save on static power consumption depending on the Smart Card’s status.

Regarding the software architecture, the OS is likely to allocate certain memory sections

dedicated to different OS related functions. If these OS functions can be related certain

memory partitions, the static power consumption could be reduced by powering off those

partitions related to the unused OS functions. Since the OS and application are likely to locate

their data in different memory regions, a similar memory behaviour and or usage analysis

could also be applied to the application data.

Finally, Smart Cards use a memory scrambler that interfaces between the CPU and the data

memory. The scrambler maps logical memory addresses into random physical ones, where

logical memory addresses are the ones the CPU is aiming at and physical memory addresses

are the ones the CPU is actually accessing. The relationship between the physical and logical

memory can be changed over time, which can make it harder to implement some previously

stated techniques. One example would be non-uniform partitioning, as with the current

scrambler, two addresses belonging to the same logic partition could end up in different

physical partitions.

Although the scrambler is capable of scrambling the whole memory as one unit, a typical

scrambler implementation approach is to divide the memory into identical sections and

scramble the addresses within each section. Further security can be achieved by scrambling

these sections.

EngD portfolio – Volume I, A. Goikoetxea Yanci 74

These aspects are covered in more detail in the section 3 of the report LowLeakageTech1.

The next case study provides a better inside of the memory usage for different operations and

how the scrambler can impact on the physical memory usage.

4.2.3 Smart Card memory usage case study

When it comes to studying the memory usage of a Smart Card under normal operation

circumstances, ideally, customers’ OS and applications should be run. However, as previously

stated, this is not possible. Instead, for this case study in-house developed OS and

applications were used. The OS, which for confidentially reasons will be referred to as Smart

Card OS (SCOS), was designed to run on a Smart Card which, again, for confidentiality

reasons will be referred to as Smart Card Device A (SCD-A). The Smart Card in particular is

unimportant for this test, as the accessed addresses will depend on the OS and applications,

not the Smart Card.

SCD-A has built-in cryptographic capabilities and comes with 6Kbytes of SRAM memory

divided into two 3Kbytes memories. Built in 0.18µm technology and powered at 1.8V, each

memory had a leakage current of 2.1µA and a dynamic power consumption of 17µW/MHz.

The SCOS was statically linked–with fixed size variables and in fixed locations. The memory

needed by the OS and applications ranged from 512 to 3Kbytes, leaving another 3Kbytes of

unused memory at all times. Furthermore, taking this device to low power mode would result

in losing all the SRAM contents but the first 128 bytes.

At first glance, the memory’s leakage current could be approximately halved if one of the two

3Kbytes memory instances could be powered down. Additional power savings could be

achieved by dynamically enabling and disabling SRAM partitions according the application’s

needs. Finally, and considering that setting the device to low power mode results in the loss of

all but 128 bytes, further power savings could be achieved if all but the first 128 bytes can be

powered down when the Smart Card is set into low power mode.

Despite this case study only uses a portion of the available memory (50%), and one could

expect that other OS and applications might have a higher memory usage, this case study is

still a good indicator of the potential benefits of this technique.

The section 4 of the report LowLeakageTech1 analyses in detail the memory usage of the

SCOS and SCD-A combo running three different applications:

• Application 1; basic application protocol data unit (APDU) commands

• Application 2; Smart Card personalisation

EngD portfolio – Volume I, A. Goikoetxea Yanci 75

• Application 3; several consecutive random number generations

The impact of a scrambler can be appreciated clearly by comparing Figure 4-2 with Figure

4-3. Figure 4-2 shows the logical memory addresses used by the three applications. Figure

4-3, in the other hand, shows how these logical addresses are spread across the physical

memory. In the case of Figure 4-2, the memory distribution is compact and localised, whereas

in the case of Figure 4-3, the memory is spread by inserting gaps in un-used memory. This

clearly indicates that the scrambler will impact on the memory partitioning policies for Smart

Card devices, and that these policies might also have an impact on the scrambler.

Figure 4-2 Logical memory usage of different applications. Blue indicates low activity,
red indicates high activity.

EngD portfolio – Volume I, A. Goikoetxea Yanci 76

Figure 4-3 Physical memory usage of different applications. Logical addresses are
scrambled. Blue indicates low activity, red indicates high activity.

These figures also show how the memory usage both in spatial and frequency terms vary for

different applications. Here, the blue colour indicates small amount of accesses. The red

colour indicates a high amount of accesses.

EngD portfolio – Volume I, A. Goikoetxea Yanci 77

4.2.4 A Proposed SRAM Memory Partitioning for Smart Cards

Based on the awareness raised by the previous sections, this section highlights the main

aspects of the SRAM memory partitioning approach and powering policy for Smart Card

applications proposed in this research line. The aim of which is saving on the static power

consumed by the SRAM memory.

The aspects covered here include the partitioning method, the partition size, the powering

policy, the memory scrambler and considerations to be taken when coding for such memories.

4.2.4.1 Partitioning

Two partitioning approaches can be suggested. Firstly uniform partitioning. This approach is

mandated by potential memory usage differences from different customers and applications.

Also, this partitioning approach would ease the memory scrambling and the scrambler’s

design. The second option could be non-uniform partitioning. Here though, the bigger

partition’s size should be a multiple of the smaller one (e.g. 256 and 512 byte partitions). Such

non-uniform partitioning could be easily managed by the same scrambler used for the uniform

partitioning approach.

4.2.4.2 Sizing

Partitioning an already small memory into smaller independent instances has a high area

overhead. The alternative here is partitioning only the memory array, where the minimum

partition size is determined by the array’s natural partition. Natural partitions are considered

those sections of the memory array surrounded by power tracks, just as depicted in Figure

4-4.

The amount of partitions and their sizes will depend on the total amount of available memory

and the device’s target application. Each partition will need a control bit to turn it on and off,

which could be located with the CPU’s special function registers. The more available

partitions, the more registers are needed to control their state; hence, limiting to a maximum

of 8 partitions is suggested (one additional special function register).

EngD portfolio – Volume I, A. Goikoetxea Yanci 78

Column decoder

Row
dec.

Ctrl

Natural Partition

mux

b
u
ff

e
rs

Figure 4-4 Typical SRAM organization showing natural partitions

Another aspect of partitioning the memory array instead of the whole memory is that, for the

memory in Figure 4-4, it does not necessarily result in a reduction of the dynamic power, as

the pre-charge logic still sees the same capacitive load. Some read/write capacitive load

values can be reduced by embedding the column decoder block into the memory array, as

shown in Figure 4-5, and isolating the bit-line and bit-line# wires of the north and south

partitions. Still, even in this case, the capacitive load might not be reduced to its minimum, as

the sub-arrays could be grouped into several partitions. This case is shown in Figure 4-6,

where the north sub-array consists of four partitions and the south one consists of two. In this

scenario, accessing Partition 1 or Partition 6 would result in similar dynamic power

consumption, although less than accessing the same size partitions in the memory unit in

Figure 4-4.

Column decoder

Row
dec.

Ctrl

Row
dec.

b
u
ff

e
rs

b
u
ff

e
rs

Figure 4-5 SRAM divided into two memory arrays

EngD portfolio – Volume I, A. Goikoetxea Yanci 79

Column decoder

Row
dec.

Ctrl

Row
dec.

Partition 1

Partition 2

Partition 3

Partition 4

Partition 5

Partition 6

Figure 4-6 Example of two size partitions

4.2.4.3 Powering policy

Ideally a powering policy with three power states would be used:

• fully powering a partition being accessed;

• low power partitions with valid data but not being accessed;

• and, powering off empty partitions

However, partitions in low power mode are potentially susceptible to soft-error injections by

glitch attacks. Hence, only two possible power states are suggested:

• Power ON: this mode should be used with all partitions with valid data, whether they

are being accessed or not.

• Power OFF: this mode should be used with empty partitions.

Each partition should have its own power ring so that they can be powered independently.

Work [52] shows that PMOS power gates resulted in 86% energy saving when in standby with

no impact on area or relative read time. Hence, using PMOS transistors for power gating is

suggested.

4.2.4.4 Scrambler

The memory partitioning approach should be reflected on the scrambler circuitry. Logical and

physical memories should have the same number of partitions and of the same size. The best

EngD portfolio – Volume I, A. Goikoetxea Yanci 80

solution here is having a two tier scrambler, where one tier scrambles the addresses within a

memory partition, and the other tier scrambles the partition order. Figure 4-7 shows an

example of how the scrambler could work. Here, the first tier scrambles the partitions’ order,

and the second tier scrambles the addresses within each partition. In this example all

partitions share the second tier scrambler; hence, their contents are scrambled in the same

way.

Partitioned SRAM

1 KByte

1 KByte

1 KByte

1 KByte

a
d
d
re

s
s
 d

e
c
o
d
e
r

4 Kbytes

add_sc[11:10]

add_sc[9:0]

add[11:10]

2nd tier
scrambler

add[9:0]

1st tier
scrambler

Figure 4-7 Example of a two tier scrambler

4.2.5 Potential power savings on SCD-A with a partitioned memory
and coding considerations

High level programming language compilers for Atmel Smart Cards are developed by third

party companies. Whilst ideally compilers should take care of the memory management,

adapting the compilers to accommodate a partitioned memory might be costly and might not

be guaranteed.

For the case that there is not compiler support, software developers should manage the

memory power state. Two approaches could be used to control the partitions’ power state: a)

initialisation only; and b) ad-hoc mode. Initialisation consists of powering off the partitions that

will not be used under any circumstance. This approach can only be used in the cases where

there is more memory available than needed, such as in the case study covered before.

EngD portfolio – Volume I, A. Goikoetxea Yanci 81

The SCD-A’s SRAM is made of two 3-Kbyte memory units. When running the SCOS on the

SCD-A, only less than half the available SRAM memory is used. With the proposed memory

partitioning approach, all the required memory could be concentrated into a single memory

unit and power off the non-used memory unit. Based on the power saving figures of [45], the

proposed partitioning approach could result in saving up to 43% of the 6-Kbyte SRAM’s

current static power. This power saving figure could be achieved within a few instruction after

powering up the SCD-A by just commanding the memory power management unit (MPMU) to

disable or power off the unused memory unit. This is a limited yet simple approach to reduce

power consumption with a minimal code overhead.

Ad-hoc approach can result in further power reduction by powering memory partitions on or off

as they are needed. Powering partitions on and off increases the dynamic power consumption

[62], so this technique should be used with care. The energy cost of powering off a partition

should be lower than energy cost of keeping it powered on.

Carefully analysing the OS memory usage shows that certain memory blocks could be linked

to certain functions. Some functions are needed for specific tasks and/or for a determined

amount of time. After these tasks have been completed, the value of these memory blocks

can be ignored. Powering off the partitions related to these memory blocks could help further

reducing the static power consumption. An obvious example is the APDU communication

buffer. Once an APDU command is received and decoded, if no further access is required to

the communication buffer until the command has been executed and a replay is being

constructed, then, the communication buffer could be powered off to save on static power.

Again, the energy cost of either power state would determine the applicability of this policy.

Another example could be the case of the execution of a routine or function which has a

considerable need of memory (e.g. a complex arithmetic function). Instead of using the heap,

a partition could be assigned to this function, so that the partition is powered on just before the

function begins its execution, and powered off after completing it. For this case, powering the

partition on and off could be done from within the function.

Yet another method to save energy is when the Smart Card goes into IDLE state, where all

data in the SRAM is lost except for the lower 128 bytes. With the proposed memory

partitioning approach, when the Smart Card goes into IDLE state, only the logical partition 0,

P0L, would remain powered on (automatically controlled by the MPMU). Again, taking the work

[45] as a reference, this partitioning approach could save up to 86% of the static leakage of

the periphery logic and up to ((n-1)*86/n)% of the static leakage generated by the partitions,

where n is the number of partitions. On the SCD-A case, with 8 partitions per 3KB memory

instantiation (i.e. 16 partitions in total), the partition leakage reduction could be around 80.63%

EngD portfolio – Volume I, A. Goikoetxea Yanci 82

All power saving figures are based on hypothesis and estimations, hence simulations need to

be run to validate these values. An environment similar to that described in [72] could be used

to simulate the energy savings by the proposed memory partitioning approach.

4.2.6 Conclusions

It has been shown that memory usage is highly application specific. The effectiveness of

memory partitioning as a leakage reduction technique, then, depends on the thorough study of

the memory usage by these and other applications, as well as by understanding how variables

are used by the OS and applications. The case study has also shown the potential power

savings by just powering embedded monolithic memories independently.

Also, the pros and cons of this technique have been argued, and possible solutions to the

different issues here discussed have been presented too. Undertaking such approach will

have an impact to the whole system and process, starting from the SRAM module itself, the

Smart Card system, the compiler and even the programming approach. The success of this

approach is tied to the success at each of these levels.

4.2.7 Future work

Atmel’s Memory Group should decide on the feasibility of the proposed partitioning approach

and the continuation of this research. Also, the memory access analysis could be refined so

that OS SRAM accesses could be differentiated from application ones. If necessary, additional

applications could be simulated too.

Finally, if this topic is to be followed, methods for managing the partitions at compile time

should be investigated, and compiler designers approached to integrate these methods in

their compilers.

EngD portfolio – Volume I, A. Goikoetxea Yanci 83

4.3 Supply Voltage versus Performance

Supply voltage reduction is being used to minimise the leakage current. Reducing the supply

voltage of a device, however, also reduces its performance. Applied to SRAMs, the main

approach aims to reduce the memory’s supply voltage when it is not accessed (idle mode),

and raising the memory’s supply voltage back to normal when it is being accessed (active

mode). Accessing the memory in low power mode could reduce the device’s performance, but

more importantly result in a read/write failure.

Some recent works have solved this memory access limitation and achieved successful read

and write cycles with SRAMs in low power mode and even at sub-threshold voltage levels [56-

58, 73]. Their key achievement is, undoubtedly, the ability to access the SRAM at such low

supply voltages without incurring on a read/write failure.

On Atmel Smart Cards, the maximum performance of the SRAMs can be up to double of the

maximum performance they can be subject to. In other words, these SRAMs can be clocked

at up-to twice as fast the AVR can be. This raised the question of the feasibility of powering

the SRAMs constantly to a voltage level below their nominal value in order to reduce the

leakage current but without losing performance.

The initial analysis of this proposal was made by the Memory Group, as the SRAMs needed to

be characterised and they already had the right environment to do so. The contributions in this

work relate to its proposal and the analysis of the Memory Group’s results. The following

sections highlight the Memory Group’s work and conclusions, followed by my discussion on

the results and possible future lines of action.

The following sections cover the results obtained by the Memory Group; a discussion on these

results and the validity of this leakage reduction technique; and the conclusions of this

research line. Finally, some possible future developments are proposed. Since the simulations

were carried out by the Memory Group, there are no supporting reports in the Volume II.

4.3.1 Results of the simulations carried out by the Memory Group

The Atmel Memory Group carried out some simulations of the critical path of a 3Kx9 SRAM

typically used in Smart Card devices. The SRAM was modelled on a 0.13µm technology node

and the simulations where run on the following two corners:

• Typical parameters at 25C

EngD portfolio – Volume I, A. Goikoetxea Yanci 84

• Worst-case parameters at 125C

The simulations looked at the access time and the read SNM of a SRAM cell for different

supply voltages, ranging from 0.5V to 1.2V. The relationship between the access time and the

supply voltage of the 3Kx9 SRAM is shown in Figure 4-8. The SNM variations in relation to the

supply power are presented in Figure 4-9.

Figure 4-8 Simulated SRAM access time vs. supply voltage [12]

In their report, [12], they concluded that these results show a trend in the access time in

relation to the supply voltage. A key difference between the simulation results and a real

device, mainly at 0.13µm and below, is the effects that random doping fluctuations have on

transistor mismatches and threshold voltage variations. These process variations would be

the limiting factor for the lowest possible supply voltage, not the access time.

Finally, they proposed to run Monte-Carlo simulations with random doping fluctuations.

However, the transistor models of the technology used for these simulations did not allow this

feature.

Access time versus supply voltage

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

supply voltage

a
c

c
e

s
s

 t
im

e
 (

n
s

)

mos nom, 25C

mos wcs, 125C

EngD portfolio – Volume I, A. Goikoetxea Yanci 85

Figure 4-9 Simulated SNM vs. supply voltage
3

4.3.2 Discussion

Reducing the supply voltage increases the access time and reduces the read SNM. An

increase of the access time impacts solely on the system’s performance, whereas decreasing

the SNM impacts on the SRAMs robustness. From data retention and security perspective,

the latter one is more important that the former one. As the Memory Group report highlighted,

the SNM can be particularly bad for lower supply voltages and, while this is true, it is also true

that simulation results depend on the model characterisation. In fact, the use of better models

was suggested in their report, so that simulations could produce more accurate SNM results.

This can offset the actually available SNM data in any direction, for good and for bad.

The main limiting factor raised in their report against the proposed leakage reduction

technique was the process variation. However, SRAM designs capable of running below its

nominal supply voltage have been presented, [56]. This could imply several things. On the one

side, that the characterisation model used in these simulations is not accurate enough at

voltage levels below their theoretical nominal supply voltage. This can result in misleading the

simulation readings. If this is the case, this would be an issue that needs to be tackled; as with

each new technology process, low power becomes more and more important, and the use of

3
 Figure generated from the SNM data available in the report [12]

SNM versus supply voltage

70

90

110

130

150

170

190

210

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

supply voltage

S
N

M
 (

m
V

)

mos nom, 25C

mos wcs,
125C

EngD portfolio – Volume I, A. Goikoetxea Yanci 86

several power sources could eventually become a standard even for Smart Card devices.

Hence, the libraries or models should expand their characterisation range.

It could also mean that Atmel’s process variations are too high in comparison to their

competitors or other commercial processes. Process and foundry changes are out of the

scope of this research. Hence, this has not been looked further. However, and if this is the

case, the trade-offs and benefits from developing a tighter process control should be balanced

out. How does tightening the process affect the yield? How does it benefit the low power

design? Would it be possible to develop a process focusing on low power or improving current

ones?

It might also imply the need to develop new SRAM bit cell architectures to improve the read

SNM at lower voltages. This approach has actually been followed on several works where

they have powered the SRAM well below their nominal supply power. Some of these works

have even achieved read and write cycles at sub-threshold voltage. This seems to imply that,

after all, the leakage reduction technique proposed here might still hold valid for a few

technology generations to come.

Finally, and in addition to these technology limitations, the implementation costs should also

be analysed. This leakage reduction technique implies the Smart Card needing two internal

voltage regulators; one for the SRAM and another one for the rest of the device. Like the main

voltage regulator, the SRAM voltage regulator should also have built-in glitch detectors. All this

additional circuitry not only increases the area, but also offsets the power consumption.

Furthermore, the need for voltage level shifters on the SRAM’s address and data buses would

increase the memory access time. Hence reducing the SRAM performance and limiting the

minimum voltage level it can be powered at without reducing the Smart Card’s overall

performance.

4.3.3 Conclusions

Despite initial simulation results and analysis, that imply the unsuitability of this approach,

recent papers have shown that it is possible to access SRAM memories when powered at a

lower voltage level than their nominal value. There are three possible reasons why initial

simulation results might have induced to think the unsuitability of this approach: a) library

models not being accurate enough at lower supply voltages; b) Atmel having a technology that

suffers a relatively high process variation; and c) the need of designing a new SRAM bit cell

that results in better SNM when powered even at low supply voltage.

EngD portfolio – Volume I, A. Goikoetxea Yanci 87

4.3.4 Future work

Three main lines of action could be considered for future work: a) determine the accuracy

level of the simulation models when running at low voltage level; b) simulate the memory’s

critical path modelling process variations; and, c) estimate the implementation costs in terms

of power and memory access time overhead.

EngD portfolio – Volume I, A. Goikoetxea Yanci 88

4.4 Memory Cell Hardening

As already covered, reducing a SRAM’s supply voltage reduces its performance and SNM,

and this last parameter determines a memory’s robustness. In the Smart Card business,

losing out on robustness is not an acceptable trade-off. Some leakage reduction techniques

have boosted the SNM when in low power mode so that successful read and write operations

can be achieved even when the memory is in low power mode [57]. The SNM obtained by

these techniques is, however, still below the 200mV defined by [12] as the minimum safe

value.

This research line was initiated to: a) evaluate how different leakage reduction techniques

would respond to attacks Smart Cards can be subjected to; and b) determine how a custom

SRAM bit cell impacts the memory's robustness. The first part would use a test-chip

developed by the Atmel Memory Group, 01HLB. Unfortunately, constant delays in

manufacturing another test-chip needed for the test, the 01VGA, and later issues with the test

setup impeded the evaluation of the different leakage reduction techniques instantiated in

01HLB.

The following subsections provide a better idea of what was achieved and what was intended

to be achieved in this research. The first subsection covers the custom SRAM bit cells and

their simulated SNM for different supply voltage levels. The next subsection discusses the

tests intended to be run on the SRAM memories with leakage reduction techniques

instantiated in the 01HLB test chip. Finally the future lines of action are laid-out. There are no

supporting reports in the Volume II.

4.4.1 Custom SRAM bit cell design and simulation results

Custom cell bits were designed, all revolving around the same principle, increasing the cell's

hysteresis as an approach to minimise undesired flips and increasing the SNM. These custom

SRAM cells were based on Schmitt triggers instead of standard inverters as Schmitt triggers

have build-in hysteresis, which in theory should harden the cells against undesired bit flips.

Four designs where instantiated in total:

• Standard cell, a standard 6 transistor cell, such as the one depicted in Figure 4-10,

was instantiated for comparison purposes.

• Schmitt half, Figure 4-11, where partial Schmitt triggers were used instead of

inverters.

EngD portfolio – Volume I, A. Goikoetxea Yanci 89

• Schmitt half sf weak feedback, same as the previous one but with a weakened

feedback.

• Schmitt 2, Figure 4-12, where both SRAM cell bit inverters were replaced with a

Schmitt inverter.

Figure 4-10 Standard 6-bit transistor memory cell

BL BLB

LWL LWL

A B

Figure 4-11 Half Schmitt inverter based memory cell

BL BLB

LWL LWL

A B

Figure 4-12 Schmitt inverter based memory cell

Simulations were run to calculate the read SNM of each of these four memory cells. These

results are collected in Table 4-1. Graphical representations of the SNM for the standard cell

and the Schmitt 2 cell for Vdd supplies of 1.6v and 0.7v are shown in Figure 4-13.

EngD portfolio – Volume I, A. Goikoetxea Yanci 90

Table 4-1 SNM of different bit cell designs for different Vdd values

Vdd SRAM cell type

1.6v 0.8v 0.7v 0.4v 0.2v 0.1v

Standard 0.3159v 0.1795v 0.1505v 0.0753v 0.0291 0.0042v

Schmitt half 0.5087v 0.2371v 0.2047v 0.1032v 0.0358v 0.0027v

Schmitt half sf weak

feedback
0.5001v 0.2485v 0.2151v 0.1135v 0.0418v 0.0029v

Schmitt 2 0.5138v 0.2416v 0.2034v 0.1019v 0.0334v 0.00082v

Figure 4-13 a) and b) show the standard memory’s SNM when Vdd is set to 1.6v and 0.7v

respectively. Figure 4-13 c) and d) show the Schmitt 2 memory’s SNM when, again, Vdd is set

to 1.6v and 0.7v respectively.

Simulation results show how custom SRAM bit cells provide a better SNM than the standard

one. Taking 200mv as the absolute lower limit [12], standard cells would struggle when Vdd

goes to half the nominal supply voltage, whereas custom cells could achieve supply voltage

lower than half the nominal one. This can also be seen in the SNM diagrams in Figure 4-13,

where the custom cell has a higher switching point than standard one.

The use of Schmitt inverters for the custom SRAM cell has resulted in increasing the SNM.

However, there are other aspects where an SRAM has to excel on too; these are area and

power consumption. Schmitt inverters are bigger than normal ones, and hence, the custom

SRAM cells using in these simulation are also bigger than a standard one. The custom SRAM

cells' sizes are 10 and 14 transistors, whereas standard cell's are made of 6 transistors.

The current consumption for the custom cells was not measured. However, it is well known

that Schmitt inverters can be leaky when the input value gets close to the switching point.

From the SRAM's point of view, when the value of a bit cell is to be changed, the bit cell inputs

would be set to voltage values close to Vdd and GND and away from the switching point.

Hence, the hysteresis of the Schmitt inverters might not affect the write access, yet hardening

it against undesired flips.

However, if the cell inputs are set to values close to the switching point, the leakage reduction

achieved by any other technique could be offset by the leakage added by this memory cell.

EngD portfolio – Volume I, A. Goikoetxea Yanci 91

Figure 4-13 SNM graphs for different SRAM bit cell structures and supply voltages:
a) SNM of a standard bit cell powered at 1.6V; b) SNM of a standard bit cell powered at
0.7V; c) SNM of a Schmitt half sf weak bit cell powered at 1.6v; and d) SNM of a Schmitt

half sf weak bit cell powered at 0.7v

4.4.2 Silicon Test Methodology

The Memory Group designed a test-chip, 01HLB, which instantiated six different 64KByte

memory, one standard and five with different leakage reduction techniques .These memories

were evaluated by the Memory Group for behaviour and power consumption. However, their

robustness when subjected to typical Smart Card attacks was not tested. In fact there is no

available data regarding the behaviour of standard Smart Card SRAM’s when subjected to

glitch attacks either. Hence, the standard SRAM instantiation in 01HLB would be tested

against glitch attacks too and used as a reference or benchmark. In order to consider any of

these leakage techniques valid for Smart Card applications, they should produce similar

results to the standard SRAM.

EngD portfolio – Volume I, A. Goikoetxea Yanci 92

A Smart Card emulation environment was setup to evaluate the robustness of these

memories, Figure 4-14. The PC configured the pulse generator to apply different glitches. It

also communicated with the FPGA to perform the tests and trigger the glitches. Two different

Smart Card voltage regulators were setup, one designed for GSM applications and another

one used for more secure applications.

Figure 4-14 Diagram of the SRAM robustness test setup

This setup aimed at characterising each memory’s behaviour when subjected to a series of

glitches. Three test scenarios were considered: a) applying glitches while holding data (i.e. not

accessing the SRAM); b) applying glitches while writing data to the memory; and c) applying

glitches while reading data from the memory. All SRAMs were to be tested at nominal Vdd

when running read and write tests. When running hold test, low leakage techniques would be

used where applicable.

However, a printed circuit board (PCB) layout mistake first and a communication failure later

between the FPGA and the SRAMs did not allow carrying the intended tests. Several basic

access tests were performed, on all SRAMs and three 01HLB dies. These tests consisted of

writing data to the memory and reading it back. Read operations produced erroneous data. A

lack of time did not allow diagnosing the source of the communication error and completing

the intended tests.

The PCB layout mistake was fixed with the design of an adaptor for the 01HLB. The FPGA

communicated with the SRAMs through some level shifters. Either the 01HLB test chips and

or the level shifters might have been affected by the initial layout error.

EngD portfolio – Volume I, A. Goikoetxea Yanci 93

4.4.3 Conclusions

An SRAM bit cell's SNM can be improved by adding elements of hysteresis to its design.

However, the increase of area and potential offset of the reduced leakage consumption could

make it an unlikely approach to be used in real designs.

4.4.4 Future work

The issue or fault in the test environment should be fixed to test the SRAM leakage reduction

techniques’ robustness against typical attacks Smart Cards are subjected to. The results

obtained from these tests will determine the real need for more robust SRAM designs for

secure and low power applications such as Smart Cards. These results will also determine

what steps would follow this research line, which could be for example, improving the SRAM

cell or looking for error detection and correction techniques.

EngD portfolio – Volume I, A. Goikoetxea Yanci 94

5 Re-configurable Instruction Set CPU for Smart
Cards

Smart Cards typically use a secured version of commercially available CPUs (e.g. AVR,

8051), whose instruction set could be adapted to include a few Smart Card specific

instructions. The main advantages of using such CPUs include the programmer’s prior

knowledge of the instruction set and the minimal impact on existing programming tools. This

approach reduces Smart Card software application development times and, ultimately, the

time to market.

Paradoxically, using a CPU with a publicly known instruction set can introduce a degree of

weakness, as in the event of the program code (opcode) is leaked, anyone could understand

it. This includes hackers and crackers. Another potential weakness comes from using power

analysis techniques to identify instructions being executed [3] or even to guess the value of an

operand [4]. Reconstructing the program code by monitoring instructions’ current signature

can be a daunting task, and perhaps even not possible. However, these techniques can still

be used to guess the executed instructions in certain critical circumstances.

One alternative to harden the program code interpretation and power analysis is using an

application specific or a non-commercial CPU, which instruction set is kept in secret.

However, the security level provided by this alternative depends on the instruction set’s

secrecy; and leaking it would jeopardise all the devices using the same or derivative CPUs.

Hence, technically speaking, the added security provided by this approach is arguable.

Another hardening alternative is using a CPU with a re-configurable instruction set. Such CPU

would allow mapping a given opcode to different instructions, hence, hardening the program

code interpretations and, potentially, current signature too. This alternative, however, would

require new, appropriate, development tools and developers familiarising with the architecture.

These drawbacks are harder to overcome when marketing such devices for first time.

Atmel proposed in [74] a re-configurable instruction set architecture targeted at the AVR CPU

and capable of executing two instructions in parallel. Their approach hardens the opcode

interpretation and current signature analysis. The current work proposes an improvement to

Atmel’s re-configurable AVR, an additional instruction de-standardisation technique and a

new, hidden, instruction.

This chapter is divided as follows: section 5.1 covers the need for reconfigurable instruction

set processors (RISPs) and Atmel’s approach to re-configurable CPU. Section 5.2 collects the

EngD portfolio – Volume I, A. Goikoetxea Yanci 95

improvement, the instruction de-standardisation technique and the instruction proposed in this

work. Section 5.3 analyses the impacts and feasibility of de-standardising a CPU and section

5.6 draws the final conclusions on re-configurable CPUs.

This research line was initiated and dropped by Atmel’s Marketing Department. Due to the

short period of time this research line was active, only few de-standardisation techniques were

proposed, one of which is Atmel’s re-configurable instruction set architecture introduced

above. No proposal was ever instantiated nor simulated. Due to Atmel’s lack of interest on

pursuing this research line, there are no future work proposals.

The outcome of this research line is a single report which content is presented in this chapter

in almost all its integrity. Sections of this report with little relevance such as the proposal

discussed in the section 5.2.2 have been summarised. Volume II does not include any

supporting report for this research line.

5.1 Literature Review

Generic CPUs have a fixed, standard, instruction set that allows them executing a set of

instructions of limited complexity. Performing certain complex or application specific functions

with these CPUs would require the execution of several instructions. In some cases, RISPs

are used to increase the CPU’s overall performance [75]. Unlike generic CPUs, RISPs can

adapt their instruction set to execute not only typical branch, arithmetic and data transfer

instructions, but also complex or application specific instructions or functions. Hence, needing

fewer instructions and increasing the performance.

The re-configurability level of a RISP depends on its architecture. Typical RISPs have a limited

re-configurability level, which is achieved by adding a number of re-configurable functional

units (RFUs) to a fixed instruction set CPU, as shown in Figure 5-1 [75]. In this architecture,

the CPU’s standard instruction set is extended with a re-configurable one. That is, for any

instruction set configuration, the CPU’s original instruction set remains unmodified. This

architecture’s aim is to increase the CPU’s overall performance.

From the security standpoint, expanding the CPU’s standard instruction set only helps

hardening the code interpretation partially. Partially, as the standard instruction set is not

modified and can still be interpreted. To really harden a RISP against opcode interpretation,

the different instruction set configurations should also change the CPU’s standard instruction

set. This can be achieved by making the instruction decoder block (IDB) re-configurable, as

shown in Figure 5-2.

EngD portfolio – Volume I, A. Goikoetxea Yanci 96

Figure 5-1 Typical RISP architecture, where the RFU is used to create new functions or
instructions [75]

Figure 5-2 Diagram of a RISP with a re-configurable instruction decoder block

A RIDB enables not only creating new instructions, but also defining different opcodes for the

same instruction at different memory locations, i.e. different contexts. Hence, it hardens the

opcode interpretation. It also brings some interesting challenges to the programming approach

and software development tools, covered in the discussion section.

The IDB is an essential part of the CPU and part of the sequential process of executing an

instruction. Making it re-configurable would hence impact on the CPU’s behaviour. In a one-off

configuration or single context setup, where the whole program code shares the same RIDB

configuration, such an IDB would delay the CPU’s power-up process to allow the RIDB to be

configured. On a dynamically re-configurable scenario, however, where different memory

regions use different contexts (i.e. different RIDB configurations), re-configuring the RIDB

could result in halting the CPU for the duration of the configuration process, which would

impact on the CPU’s performance and make the program execution less deterministic.

There are the costs associated to the configuration level. The cost of creating a fully re-

configurable RIDB can be too high for most applications. On one hand are the hardware

costs. A higher configuration level requires more area and power consumption. It also

increases the configuration file size. On the other hand are the actual RIDB configuration

costs, as whatever the instruction set configuration, basic branch, arithmetic and data transfer

instructions will be needed. On a dynamically reconfigurable RISP, this could mean

EngD portfolio – Volume I, A. Goikoetxea Yanci 97

reconfiguring or re-mapping several times the same instruction. Furthermore, basic

instructions’ configuration data could be duplicated on different configuration files, taking even

more space needlessly.

Atmel proposed in [74] an architecture that tackles these two issues, the re-configurable dual

instruction set architecture (ReDISA). The next section covers Atmel’s ReDISA.

5.1.1 Re-configurable dual instruction set architecture

Atmel’s solution to the context switching issue was the ReDISA, shown in Figure 5-3, where a

standard IDB (SIDB) is coupled with a re-configurable one. The architecture in Figure 5-3

allows switching between code compiled with the AVR standard instruction set and code

compiled with a non-standard or re-configurable one without halting the CPU. Hence, allowing

re-configuring the RIDB without halting the CPU or reducing its performance.

Standard IDB

Reconfigurable IDB

Instruction word
CPU

flag_1

flag_n

glue logic

...

...

...

Figure 5-3 Diagram block of the approach proposed by Atmel

With this architecture, the AVR SIDB is operational at all times, this is, it decodes all

instructions read from the program memory and asserts the corresponding flag to execute it.

The RIBD, on the other hand, is enabled or disabled as required and it can be configured to

produce interpretations of a given opcode different to the standard one. The glue logic in this

architecture allows both IDBs driving concurrently the instruction flags.

Since the SIDB and the RIDB can have different interpretations of the same opcode, enabling

the RIDB results in executing a re-configurable non-standard instruction set where two

instructions can be executed in parallel. Disabling the RIDB results in executing the standard

instruction set and allowing the RIDB being configured. This feature is what allows the CPU to

EngD portfolio – Volume I, A. Goikoetxea Yanci 98

process instructions while configuring the RIDB. The instruction decoded by the SIDB is

referred to as the primary instruction. The instruction decoded by the RIDB is referred to as

the secondary instruction.

Atmel’s ReDISA would, hence, not only solve the context switching issue, but it would also

harden the program code interpretation, as a hacker gaining access to the program code

could easily interpret the primary instructions but would miss on the secondary ones.

Furthermore, since two different instructions are executed concurrently, this architecture

would harden the current signature analysis too.

However, if the impact on the CPU core is to be minimised, only instructions that use different

resources should be paired to run concurrently, e.g. data transfer instructions with branch

instruction but not data transfer and arithmetic ones. Following are some code examples with

parallel instructions, where secondary instructions are in square brackets:

Hidden update on a routine

 --

 rjmp somewhere [bset C]

somewhere:

 adc r0, r1

Loading a value from the SRAM

my_routine:

 --

 xor r3, r4

 st z, r3

 clr r3

 ret [ld r3, z]

Hidden move instructions

 --

 sbra 10, 3 [mov r0, r16]

 --

EngD portfolio – Volume I, A. Goikoetxea Yanci 99

A simple example program using some secondary instructions (note:

setting of parameters for secondary instruction has been omitted):

 ldi r16, $(HIGH_ADDRESS) ;

 ldi r17, $(LOW_ADDRESS) ;

 ldi r18, $05 ;

 rjmp step1 [mov r31, r16];

 --

step1:

 --

 rjmp step2 [mov r30, r17];

 --

step2:

 --

 rjmp step3 [mov r0, r18] ;

 --

step3:

 ldi r16, $00 ;

 ldi r17, $07 ;

step4:

 cpi r0, $00 ;

 breq cont [bset C] ;

 ;

 add r16, r17 ;

 rjmp step4 [subi r0, $01];

cont:

 adc r3, r16 ;

 jmp somewhere [st Z, r3] ;

 ;

somewhere:

What a hacker would see from the code on the left (note: darker grey

colour indicates instructions with hidden secondary instructions):

 ldi r16, $(HIGH_ADDRESS) ;

 ldi r17, $(LOW_ADDRESS) ;

 ldi r18, $05 ;

 rjmp step1 ;

 --

step1:

 --

 rjmp step2 ;

 --

step2:

 --

 rjmp step3 ;

 --

step3:

 ldi r16, $00 ;

 ldi r17, $07 ;

step4:

 cpi r0, $00 ;

 breq cont ;

 ;

 add r16, r17 ;

 rjmp step4 ;

cont:

 adc r3, r16 ;

 jmp somewhere ;

 ;

somewhere:

EngD portfolio – Volume I, A. Goikoetxea Yanci 100

5.2 Proposed CPU de-standardisation techniques in this

work

Three different AVR de-standardisation techniques were proposed in this research line. The

first one is an improvement to Atmel’s proposed dual-instruction set architecture [74]. The

next two techniques explore other AVR de-standardisation methods, one by making use of

invalid instruction codes (or opcodes) and the other one by adding a new data indirect

addressing mode.

5.2.1 Improving Atmel’s dual instruction architecture

According to Atmel’s ReDISA’s instruction pairing requirements [74], the AVR’s branch

instructions can be paired with all other instruction types; instructions that manipulate the

STATUS register, instructions that use the file register, and bit instructions. The usage of

conditional branch instructions are common to all programs, they determine which action

should be taken when a given condition is met and which when the condition is not met. A

typical example could be the following if-else statement:

C code:

..

if(var1==80)

 var2=var3;

else

 var2=var4;

..

AVR assembler code:

 ..

 cpi r0, $50; $50=80 decimal

 brne else;

 mov r1, r2;

 rjmp cont:

else:

 mov r1, r3;

cont:

 ..

A conditional branch would, usually, be followed by different instructions depending on

whether the prior condition was met or not. However, when pairing two instructions with

Atmel’s current ReDISA, executing the primary instruction will always result in executing the

secondary one. In other words, the follow up instruction would be the same regardless of the

branch condition.

One approach of executing different follow up instructions depending on the branch condition

is to enable two different secondary instructions, where the actual secondary instruction to be

executed would be determined by the branch condition. The assembler code below illustrates

the AVR if-else assembler code when using one secondary or two secondary instructions.

EngD portfolio – Volume I, A. Goikoetxea Yanci 101

AVR assembler code: 1 secondary

 cpi r0, $50;

 brne cont [mov r1, r3];

 mov r1, r2;

cont:

 ..

AVR assembler code: 2 secondary

 cpi r0, $50;

 brne cont [mov r1, r3] [mov r1, r2];

cont:

 ..

In the case of one secondary instruction (left), the secondary instruction paired or associated

to the branch instruction (mov r1, r3) will be executed regardless of the branch condition. On

the case of two secondary instructions (right), if the branch condition is met, the first

secondary instruction (mov r1, r3) will be executed. However, if the condition is not met, then,

the second secondary instruction (mov r1, r2) will be executed.

Here is another example where having two secondary instructions might be useful. On this

example, the instruction inc r19 would be executed if the condition is met and mov r3, r2

when the condition is not met.

 ldi r19, $0

loop:

 add r1, r0

 sub r2, r1

 cpi r19, 9

 brne loop [inc r19] [mov r3, r2]

In order to enable two secondary instructions, the RIDB should assert two instruction flags

instead of one; one flag per secondary instructions. Additional logic would then determine the

actual secondary instruction to be executed depending on whether a given condition has been

met or not. Figure 5-4 shows an implementation that allows pairing two secondary instructions

to a primary one.

This design is made of two parts, a shared condition checking circuitry and the circuitry for

each individual secondary instruction. The condition source in this case is the STATUS

register, although other sources could be used too. The STATUS register would enable

pairing conditional branch instructions with two secondary instructions and selecting between

them depending on whether the branch condition has been met or not. Instruction bits 0, 1

and 2 define the particular STATUS bit to be checked, whereas bit 10 defines its polarity.

The individual instruction circuitry shown here allows enabling or disabling each secondary

instruction and, if enabled, setting it as the first or second secondary instruction. When

disabled, the primary instruction would be paired with only one secondary instruction (either

first or second secondary instruction), which will be executed only and only if, the condition

has been met, or vice versa, if the condition has not been met. This property can be exploited

if the RIDB is configured to flag a single secondary instruction at a time instead of two.

EngD portfolio – Volume I, A. Goikoetxea Yanci 102

S1

S8

D

C1 ENBC3C2

Multiplexer

S1

S2

D

C ENB

Multiplexer

Q

Q
SET

CLR

D

S1

S2

D

C ENB

Multiplexer

Q

Q
SET

CLR

D

e
n

a
b

le
 o

r
d

is
a
b
le

 f
e

a
tu

re

1
s
t o

r
2

n
d
 s

e
co

n
d
a
ry

 in
s
tr

u
ct

io
n

1

PLD_ins_a

ins_a’

condition met

condition not met

a instruction’s individual logic

S1

S2

D

C ENB

Multiplexer

Q

Q
SET

CLR

D

S1

S2

D

C ENB

Multiplexer

Q

Q
SET

CLR

D

e
n
a
b

le
 o

r
d
is

a
b
le

 f
e
a
tu

re

1
st
 o

r
2

n
d
 s

e
c
o
n

d
a

ry
 in

s
tr

u
c
ti
o
n

1

PLD_ins_b

ins_b’

condition met

condition not met

b instruction’s individual logic

ins[2]

ins[1]

ins[0]

ins[10]

C
Z
N
V
S
H
T
I

condition polarity

shared logic

Figure 5-4 Implementation example for two secondary instructions

EngD portfolio – Volume I, A. Goikoetxea Yanci 103

A block diagram of Atmel’s ReDISA enabled for two secondary instructions is shown in Figure

5-5. Here the AND gates of the individual logic have been moved to the glue logic area. Table

5-1 shows the impact that two secondary instructions feature might have on power, area and

performance when instantiating it on 150nm technology node. These are simulation results.

Due to the lack of information on the RIDB instantiation costs, the information shown in Table

5-1 refers to the instantiation cost of the shared logic, the individual logic and the glue logic in

Figure 5-5. For comparison purposes, this instantiation cost is compared with the SIDB.

The performance of the ReDISA will be determined by the instruction decode time. In the best

case scenario, the RIDB delay will be lower than the SIDB delay, ‘Performance min’ in Table

5-1. In the worst case scenario, the RIDB delay will be higher than the SIDB delay,

‘Performance max’ in Table 5-1. In any case, maximum delay of the design in Figure 5-4 is

shorter than the minimum decode delay of the SIDB.

Standard IDB

Reconfigurable
IDB

Instruction word CPU

flag_1

flag_n

glue logic

...

...

...
Shared logic

Individual
logic

Individual
logic

. . .

Figure 5-5 Atmel's ReDISA enabled for two secondary instructions

Table 5-1 Implementation costs of two secondary instructions

Parameter Value Unit Relative to SIDB (%)

Area 52.5 µ
2
 16

Performance max

(max instruction

decode delay)

tRIDB + tAND + tOR

(unknown + 0.2 + 0.2)
ns unknown

Performance min

(min instruction

decode delay)

tSIDB + tOR

(6.56 + 0.2)
ns 3.05

1

Static Power 71.89 pW 14.23

Dynamic Power 441.8 uW 25

tRIDB longest RIDB decode delay (unknown)

tSIDB longest SIDB decode delay

tAND AND gate delay

tOR OR gate delay

1. Overall, this additional instruction decode delay would reduce the CPU’s maximum clock frequency in

between 0Hz to 500Hz.

EngD portfolio – Volume I, A. Goikoetxea Yanci 104

5.2.2 Mapping valid instructions with non-valid ones

CPUs only use a limited number of all the possible opcode combinations allowed by their

instruction word, where the used opcodes are referred to as valid (or legal) opcode and

unused ones are referred to as non-valid (or illegal) opcode. Under normal circumstances,

when an instruction decoder block reads an illegal opcode, it could either ignore it or trigger an

illegal instruction violation alarm.

The second de-standardisation technique covered in this work proposed disguising the

execution of legal opcode under a set of illegal ones. By storing illegal opcode in the program

memory and providing the CPU with a mechanism to convert illegal opcode back into a legal

one, this de-standardisation technique could harden the program code against code analysis.

This technique would not alter legal instructions in any way, keeping their interpretation true at

all times. In fact, disguised or mapped instructions could be executed in either their original,

legal, form or their mapped, illegal form. In other words, it allows the use of legal and illegal

opcodes when desired rather than forcing its usage.

As well as previous de-standardisation techniques, this one could also be designed to be

enabled or disabled as required; so that attempting to execute a non-valid opcode when this

feature is disabled results in the response expected on the standard CPU.

The conversion between mapped instructions could be achieved with a look-up table (LUT) or

any other circuit designed for that purpose. Figure 5-6 shows an approach suggested in this

proposal. It uses a 16-combination LUT, which allows mapping up to 16 different legal

opcodes with illegal ones; the odd opcode values between $0001 and $001F on this case.

When enabled, this design would allow mapping the illegal opcodes with legal ones and

executing the later. When disabled, all illegal opcodes would bypass the mapping logic and

would be fed into the instruction decoder block, which would result in an illegal instruction

violation alarm.

LUT

Program
Memory

In
st
ru

ct
io
n

w
or

d

ins[15:0]

ins[4:1]

ins[15:5]

ins[0]

mapped instruction

instruction from ROM

use mapped instruction

to decoder block

enable/disable

S1

S2

D

C ENB

Multiplexer

Figure 5-6 Block diagram example

EngD portfolio – Volume I, A. Goikoetxea Yanci 105

This design has not been instantiated nor simulated, so there is no data on its impact on area,

power and performance.

5.2.3 Enabling indirect data memory addressing with variable
displacement

The AVR’s current instruction set allows 5 modes of accessing the external data memory [76].

These modes are: data direct; data indirect; data indirect with post-increment; data indirect

with pre-decrement; and data indirect with displacement. Data direct addressing mode

embeds the target address as the operand value of the instruction; hence, the same opcode

would always access the same data from any location in the program memory. This

addressing mode can only be used for global static variables, where their location is

predetermined.

Indirect addressing modes, on the other hand, use special function registers (pointer

registers) to generate the base of the target address. For data indirect addressing mode, the

target address is the value stored in the pointer register. This addressing mode allows

accessing not only the global static variables, but also the non-static ones. The target address

of the data indirect approach with post-increment addressing mode is, again, the value stored

in the pointer register. After accessing the data, though, the pointer value (i.e. the base

address) is incremented by one. This addressing mode can be very useful when working with

arrays or a list of variables need to be accessed on a sequential mode. Data indirect with pre-

decrement addressing mode works in a similar way to the last one. Here, though, the base

address is decremented by one before using it as the target address. The pointer register is

updated with the target address for future use. Like with the previous case, this addressing

mode is very handy to access arrays or a list of sequential variables.

The last addressing mode currently available in the AVR instruction set is data indirect with

displacement. Again, this addressing mode uses a pointer register as the base address. The

actual target address, though, is generated by adding an offset value to the base address. The

offset value is embedded into the opcode (i.e. it is fixed) and the pointer value, or base

address, is not altered by this addressing mode. This addressing mode could be useful for

accessing the n
th
 element of different arrays or metadata variables, e.g. the header of a file.

The next logical addressing mode, but not implemented in the AVR instruction set, would be

data indirect with variable displacement. Such addressing mode, used in older CPUs such as

EngD portfolio – Volume I, A. Goikoetxea Yanci 106

the 8086 based indexed addressing modes
4
, would allow generating the target address by a

combination of the base address and an offset register. This addressing mode could be used

in ‘for loop’ operations, where the loop index value can be used as the offset value. With the

current addressing modes pre-decrement and post-increment modes are the more likely ones

to be used in ‘for loops’. This is the addressing mode proposed as an additional CPU de-

standardisation technique.

Instantiating another addressing mode would help hiding or obscuring external data access for

as long as the attacker is not aware of the new addressing mode or its implementation. The

main aspects to take into account when instantiating this new addressing mode are:

• defining an opcode, using a new opcode versus sharing a currently available one

(i.e. enabling two interpretations of a current opcode);

• defining the possible base pointer registers, the AVR has three pointer registers,

X, Y and Z. All indirect addressing modes, except for indirect data with displacement,

can use any of them as a base address. Indirect data with displacement can only use

Y and Z; and

• defining the possible offset registers, using fixed register(s) versus any register in

the CPU File Register.

Several implementation approaches were studied covering the three points above. The main

emphasis was related to minimising the impact on the current CPU architecture and blocks.

The conclusion of this study was to:

a) share a valid opcode between a valid, original, instruction and the data indirect with

variable displacement instruction. Due to the similarity of this instruction and the data

indirect with fixed displacement, using the later instruction’s opcode was proposed.

Switching between opcode interpretations would be achieved by the use of an I/O

register, which could be accessed only from a given program memory range;

b) use only Y and Z pointer registers, since data indirect with fixed displacement only

uses them too, and enabling the use of register X would require a change to the

instruction decoder block when using the non standard interpretation of the opcode;

and

c) three offset value storage scenarios, which are covered next.

All three scenarios will impact on the CPU’s Register File, as an additional read port will be

needed to enable the variable displacement. The impact level will however vary for each

scenario. The first one, diagram shown in Figure 5-7, uses a fixed register as the offset

register. This is the scenario with the lower impact on the CPU in general and the Register

File, as only the output of one register would have to be routed to the address generator logic.

4
 mov al, [bx][si] move into al the value of the memory location pointed by bx + si.

EngD portfolio – Volume I, A. Goikoetxea Yanci 107

RAM address
generator

Instruction
Decoder

Block

ALU

/ 16
/
8

select

ramadr

dis

/ 8

/ 8

/ 8

8
/

'1'

'-1'

R0

'q'

- Existing HW
- New HW

Figure 5-7 Diagram of the fixed offset register scenario

When the original opcode interpretation is enabled (i.e. fixed displacement), the displacement

multiplexor would feed the opcode’s ‘q’ field into the address generator logic. When enabling

the variable displacement interpretation, the displacement multiplexor would feed the offset

register’s value into the address generator logic.

The second scenario, diagram shown in Figure 5-8, uses a fixed offset register per pointer.

This scenario would need an additional output from the Register File. The instruction bit 3

would select the offset register to feed the address generator logic, since this is the bit that

indicates the pointer register (Y or Z) to be used by the instruction.

Instruction
Decoder

Block

ALU

/ 16

select

dis

/ 8

/ 8

/ 8

8
/

inst[3]

R1

R0

'q'

inst[3]

- Existing HW
- New HW

RAM address
generator

/
8

ramadr
'1'

'-1'

Figure 5-8 Scenario with an offset value register per pointer register

The third and final scenario, diagram shown in Figure 5-9, uses the ‘q’ displacement value as

a selector to a series of offset registers. The more offset registers are enabled, the more ‘q’

EngD portfolio – Volume I, A. Goikoetxea Yanci 108

bits and Register File outputs would be needed. Out of the presented three scenarios, this one

would have the greatest impact to the Register File, but it would also be the more flexible one

and, by allowing the use of several offset registers, potentially the one that hardens the code

interpretation the most.

Instruction
Decoder

Block

ALU

/ 16

select

dis

/ 8

/ 8

/ 8

8
/

R1
R0

'q'

‘q’

- Existing HW
- New HW

...

RAM address
generator

/
8

ramadr
'1'

'-1'

Rn

Figure 5-9 Scenario with several offset register selected with 'q' displacement value

EngD portfolio – Volume I, A. Goikoetxea Yanci 109

5.3 Discussion

The proposed CPU de-standardisation techniques will enhance the CPU’s security as long as

they harden the opcode interpretation and power signature analysis. Hiding or obscuring the

execution of an instruction by executing two instructions in parallel or, by executing an

instruction under a different one’s opcode could lead hardening the opcode interpretation. This

is, if the attacker has access only to the mnemonic or the assembler code. Code written with

higher level languages, such C or Java, would not be affected by these techniques, making

the code understandable.

However, even with access to only the opcode, there might be usage conditions of these

features that could highlight their existence to an attacker and provide information of how to

enable or disable them. Hence, the implementation of these techniques and the mechanisms

to enable and disable them should be carefully studied and designed by the Smart Card

manufacturer. Likewise, the use of these techniques should be carefully planned by the Smart

Card vendors too.

Storing the de-standardisation configuration data, e.g. the ReDISA configuration data, into a

memory location only accessible by a configuration unit, not even the CPU, could help

securing the implementation of the de-standardisation techniques, as even on the event of an

attacker knowing the presence of a given de-standardisation technique, the data required to

fully interpret code would be non-accessible to him or her.

Executing two instructions concurrently would, in principle, result in a current signature

different to each instruction’s current signature, but most likely different to the sum of both

current signatures too. This difference could be the result of two factors: a) the additional

required logic to enable parallel execution; and b) both instructions sharing the decode stage

and operand values.

Executing an instruction under another opcode, however, might not provide any security

enhancement, as some key power consumption patterns might still remain identifiable to an

attacker.

The Marketing Department’s early decision to terminate this research did not allow for an in

depth research of the AVR de-standardisation techniques. However, from the above analysis,

parallel execution of instructions and the additional memory addressing modes are the only

de-standardisation techniques that could be considered fit to investigate further.

EngD portfolio – Volume I, A. Goikoetxea Yanci 110

As per the above analysis, the two secondary instructions technique would have a

considerable impact on the power consumption waveform when this technique is used.

However, it would have a considerable impact on the IDB in terms of area (16%) and power

(25%). Its impact to performance in relation to the ReDISA, in the other hand, would be

negligible or none at all.

The impact to the current signature of the variable displacement addressing mode would be,

however, limited and highly dependant on the chosen implementation, as the only hardware

difference between the original setup and those shown in Figure 5-7 to Figure 5-9 is the

addition of one or two multiplexers. The approach shown in Figure 5-7 would be the one with

less impact to the current signature. In fact, variable displacement and fixed displacement

instructions with the same r0 and q values respectively could result in almost identical power

consumption patterns.

However, this similarity could be an advantage, as it would allow an attacker inadvertently

interpreting original meaning of the opcode. Hence, this new addressing mode could

potentially be successfully disguised under the current one.

In addition to the security enhancement, there are other aspects to bear in mind that were not

considered within allowed time-frame. Usability and tools are the main two.

The similarities between variable and fixed displacement addressing modes and the little

hardware changes required to enable the new addressing mode are an indicator of its

usability. A simple change of a bit, select in Figure 5-7 to Figure 5-9, is enough to change

between addressing mode interpretations, virtually allowing the programmer to switch

between interpretations at any time.

The usability of the ReDISA, on the other hand, is determined by the usefulness of the paired

instructions and how easy it is to change the context or configuration. The proposed

architecture is limited to pair together only instructions that use different resources, and in

some circumstances executing concurrently both paired instructions might not be desired. The

two-secondary instruction circuitry allows deciding whether executing a secondary instruction

is desired or not. It could even be altered to introduce more flexibility, however, the higher the

desired flexibility the higher the circuit complexity.

Another alternative to change the paired instructions is to switch contexts. However, the

higher the number of contexts, the more memory is required to store the configurations and

the likelier the context changes would impact the CPU’s overall performance.

EngD portfolio – Volume I, A. Goikoetxea Yanci 111

Yet another feature of the ReDISA that can impact on the usability is the current hardwired

relationship between the operands of the primary and secondary instructions. Currently, the

operands of the secondary instruction are determined by the operands of the primary

instruction. This dependency reduces the techniques flexibility and, hence, its usability.

Regarding tools, a new CPU architecture implies the need of new, tailored, tools such as

compilers and assemblers. In addition to these needs, and due to the introduced re-

configurability features, the here proposed techniques might impact even the integrated

development environment (IDE).

C and Java compilers for AVR processors are developed by third parties. Atmel Smart Card

customers are also likely to use third party IDEs. Adapting these tools to the new architecture

would require the disclosure of the instantiated techniques to third parties other than the direct

customers. For this disclosure to be viable, these techniques should be implemented in such

way that their mere disclosure does not jeopardise the code nor does it provide an attacker

with any substantial information.

The high dependency on the software development tools might prove to be conclusive on the

usability of some de-standardisation techniques.

EngD portfolio – Volume I, A. Goikoetxea Yanci 112

5.4 Conclusion

These proposals show that a few hardware changes and additions enable the possibility of

introducing de-standardisation to commercial CPUs used in Smart Cards, which have the

potential of improving the CPU’s security against power analysis and opcode interpretation.

This is especially useful in the scenario where an attacker gets access to the program code,

either in assembler or binary format, or identifies the execution of critical instructions by

monitoring the CPU’s power consumption.

Security through obscurity should be avoided. Just as with cryptographic algorithms, where

the algorithm is public and the cipher text is protected by keeping the encryption/decryption

key secret, any CPU de-standardisation technique should focus on protecting the re-

configurable instruction set by securing the access to the CPU de-standardisation

configuration data. So that gaining access to the instantiated CPU de-standardisation

technique does not compromise the opcode. Out of the presented CPU de-standardisation

techniques, ReDISA is the only one that could fit into this description.

One major drawback of the re-configurable instruction set is the impact these features can

have on the software development tools. Since Atmel does not develop these tools itself, the

right implementation and support of IDEs from third parties might play a critical part on the

success and marketability of a CPU with the proposed de-standardisation techniques.

EngD portfolio – Volume I, A. Goikoetxea Yanci 113

6 General conclusions and future work

The security level of a system is determined by the security level of its components or parts. A

weak component could compromise the security of the whole system. In the Smart Card

context, Smart Cards are a small part of a complex system, which has several sources of

potential weakness, such as the communication channel between a Smart Card and the

reader; the hardware; the software; or the end user just to name a few. Even the most secure

Smart Card can be fooled if the end user carries the PIN number attached to the card. Anyone

having access to it could easily misuse the card.

Smart Cards are designed to meet the security requirements of their target applications. The

security of a Smart Card has to be looked at from a holistic point of view to ensure the highest

levels of security for the Smart Card and its IP. That is, from the hardware perspective, the

software perspective, taking usage patterns into account and identifying possible

interdependences of several factors and how they might affect the security. The different

topics covered in this research help with this.

Simulations are an intrinsic part of the development process of any device and help minimise

errors and development costs. With Smart Cards, simulations can be beneficial not only for

behavioural simulations, but also for testing devices and countermeasures against certain

attacks even before they are manufactured. The two major attacks Smart Cards can be

subjected to include glitch attack and power analysis.

The GAPASE simulation environment research line covered in Chapter 3 focused on

providing Atmel with an additional simulation tool to test their designs against these common

Smart Card attacks. This simulation environment is functional, although the power analysis

feature needs performance improvements in order to make it usable. The simulation tool

chosen in this research, Nanosim, might be more restrictive on the maximum possible

performance than other higher level simulation tools. However, Nanosim is better suited for

testing layout related countermeasures or dual-rail designs. Several suggestions were made

to improve the simulation environment’s performance, which included reducing the Nanosim

simulation resolution and testing gate level simulation tools.

Regarding glitch attacks, a device can be hardened against glitch attacks with an appropriate

design of voltage regulator. This was demonstrated in the glitch detector research line

covered in Chapter 3, where different voltage regulator designs had a dramatically different

response to glitch attacks. However, despite the controlled response of a voltage regulator

restricting fault injection to the device, glitch detectors are still needed as, these glitches could

still inject faults in the communication channel.

EngD portfolio – Volume I, A. Goikoetxea Yanci 114

The glitch detector proposed in Chapter 3 has shown how a change on the detection

approach can result in detecting fast glitches that current detectors were unable to detect.

Despite the detection speed of the proposed glitch detector can be one order of magnitude

slower than detectors currently used, it is also a few orders of magnitude faster than data

transactions between the Smart Card and the terminal or the time taken to update the NVM.

Avoiding the completion of any of these two tasks after a glitch event is mandatory to avoid

unrecoverable errors or faults. The current detection times (up to 2µs depending on the

design) allows aborting these operations.

Security threats could come from unsuspecting sources. Cryptographic algorithms, despite

being mathematically strong, can be subjected to weaknesses introduced by the technology

they are implemented in, CMOS in our case. The implementation of these algorithms can be

hardened by using design techniques such as WDDL or dual-rail. Following this line of

thought, new design techniques adopted to provide solutions to specific issues, such as

reducing the static and dynamic power consumption in SRAM memories, should be adopted

with care as, unless proven otherwise, these could be a source of new weaknesses and,

hence, threats to Smart Cards.

The research line covered in Chapter 4 aimed at evaluating the impact that certain leakage

reduction techniques might have on SRAM immunity to glitch attacks. Test setup issues

prevented us from generating any data in this respect; hence, for the time being, the use of

leakage reduction techniques that potentially reduce the static noise margin of an SRAM are

not recommended. This recommendation was reflected in the powering policy suggested for

the memory partitioning approach proposed for Smart Cards.

The memory partitioning research line covered in Chapter 4 focused on applying to Smart

Cards this partitioning technique used elsewhere. Other than the partition powering policy

mentioned above, this research line also minimised the impact on security by proposing a two

tier scrambler and uniform partitions. This approach allows not only scrambling the data within

a given partition, but also scrambling the partitions.

Simulation results and data usage analysis demonstrated the potential power saving with a

partitioned memory. However, the real power savings will be subjected to programming styles

and how available development tools manage the partitioned memory.

Despite the effort made to secure Smart Cards, the constant evolution of attacks and threats

makes it impossible to develop a device robust enough against current and forthcoming

threats. As a result, improving the security of a device is continuous work.

EngD portfolio – Volume I, A. Goikoetxea Yanci 115

Currently, the Smart Card industry seems to be playing a cat and mouse game with hackers,

leaving to hackers the job of finding new weaknesses and threats and the Smart Card industry

developing countermeasures to those threats. Smart Card manufacturers should consider

researching for new threats or weaknesses by themselves, as it would help them to not only

further the security of their products, but it would also provide them with a competitive

advantage. The re-configurable logic research line covered in Chapter 5 could be considered

a step forward in this respect.

A re-configurable instruction set CPU would no doubt harden its opcode interpretation and

perhaps the simple power analysis too. There are two main challenges for this technique to

succeed. The first one is its implementation. The same as with cryptographic algorithms, the

security enhancement brought by this technique should rely on keeping the configuration data

secret and restricting the access to this configuration data. In other words, making the re-

configurable architecture public should not jeopardise the use of this technique.

The other main challenge key for the success of this technique is highly tied to the availability

of software development tools that support the re-configurable instruction set feature. These

tools are developed by third party companies, hence, all the more reason for this security

technique not to rely on keeping it secret.

Finally, the same way as IC manufacturers can use a Reuse Methodology Manual (RMM) to

support them on the IC development process, security companies and Smart Card

manufacturers could benefit from a Security Methodology Manual (SMM). Even if such a

manual is company dependent and access is limited to a number of employees, it could

provide guidelines on the best security practices, countermeasure implementations and help

cross-referencing security dependencies.

The SMM could include recommendations that go beyond the purely hardware focus of this

research and take a more holistic approach by including techniques for securing data

transactions and the software. Ultimately, it could have the potential to fast track the adoption

of new design techniques and technologies, such as low power memory. The Open Source

Security Test Methodology Manual (OSSTMM) published by the Institute for Security and

Open Methodologies (ISECOM) [77] could be a starting point or a reference for the SMM. The

lessons learned with this research and the general knowledge of the Security Group could

also be included in the SMM.

Atmel could take this research forward with the following proposed future actions:

• Atmel should consider putting together an SMM which summarises all their current

knowledge and expertise on security approaches and techniques. With time, this

manual or reference could cross-reference security dependencies.

EngD portfolio – Volume I, A. Goikoetxea Yanci 116

• For practical reasons, power analysis based on RTL simulations should be

considered. A behavioural level simulation environment (RTL) might not be as

accurate as transistor level one (Nanosim), but it will have a faster run time. For

further accuracy, RTL simulations could be run with gate delay information. The

power consumption resulting from each gate switching or the amount of total gate

switches per time unit could then be used to generate the power trace to be analysed

with DPA.

• Improve the glitch detector. Study the use of faster operational amplifiers to achieve

faster detection. Other design alterations could achieve a bigger detection range.

• Test the glitch detector against negative glitches and glitches on the ground

rail. Tests whether the current design provides additional protection in these

circumstances too, even when using a secure voltage regulator.

• Study the actual need of using radiation/laser hardened registers. The SERT

SEU immune cell has proved to be robust against laser attacks. Consider using it or a

custom hardened register to protect key registers of the Smart Card.

• ELT transistors as a laser countermeasure. A number of close ELT transistors

around a fixed value register could be used as an enhanced laser detector. For

certain spot sizes and energy levels, surrounding the fixed value register with ELT

transistors will make it more sensitive to lasers, resulting in better detector.

• Analyse the proposed memory partitioning technique’s worthiness for

production devices. The proposed memory partitioning approach should be

implemented on silicon and tested for effective leakage reduction. The impact on

development tools should be analysed further. This partitioning approach could be

expanded to other commercial AVR microcontrollers. Doing so, could help the

development of libraries and development tools required to exploit the benefits of this

feature.

• Test the leakage reduction techniques’ sensitivity to Smart Card threats such

as glitch attacks. This was originally intended in this research but not achieved due

to issues with the test setup.

EngD portfolio – Volume I, A. Goikoetxea Yanci 117

References

1. S. Burns, and G.R.S. Weir, “Trends in Smartcard Fraud”, in Proceedings 4th

International Conference in Global E-Security, CCIS12, Springer, pp.40-47, 2008

2. Federal Information Processing Standards Publication, Data Encryption Standard

(DES), FIPS PUB 46-3.

3. H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan, “The Sorcerer’s

Apprentice Guide to Fault Attacks”, Proceedings of the IEEE, Vol. 92 Issue 2, pp 370-

382, Feb. 2006

4. J. Courrege, B. Feix, M. Roussellet, “Simple Power Analysis on Exponentiation

Revisited” in Smart Card Research and Advanced Application, LNCS 6035, Springer-

Verlag, pp. 65-79, 2010

5. P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis” in Advances in

Cryptology – CRYPTO ’99, LNCS 1666, Springer-Verlag, pp. 388-397, 1999.

6. Y. Han, X. Zou, Z. Liu and Y. Chen, “Efficient DPA Attacks on AES Hardware

Implementations” in International Journal in Communications, Network and System

Sciences, 2008, Vol. 1, pp. 68-73

7. Origins of Laser Testing for Single-Event Effects. Crosslink, Summer 2003, [cited

16/05/2005]; Available from:

http://www.aero.org/publications/crosslink/summer2003/04_sidebar1.html

8. S.P. Skoroboatov, R.J. Anderson, “Optical Fault Induction Attacks” in Workshop on

Cryptographic Hardware and Embedded Systems – CHES 2002, LNCS 2523,

Springer-Verlag, pp. 2-12, 2002

9. T. Kawahara, “Low-voltage embedded RAMs in the nanometer era” in IEEE

Conference on Electronic Devices and Solid-State Circuits, pp. 333-338, Dec. 2005

10. Jinhui Chen, L.T. Clark, Tai-Hua Chen, “An Ultra-Low-Power Memory With a

Subthreshold Power Supply Voltage” in IEEE Journal of Solid-State Circuits, Vol. 41,

Issue 10, pp. 2344-2353, Oct. 2006

11. T. Suzuki, Y. Yamagami, I. Hatanaka, A. Shibayama, H. Akamatsu, H. Yamauchi, “A

sub-0.5-V Operating Embedded SRAM” in IEEE Journal of Solid-State Circuits, Vol.

41, Issue 1, pp. 152-160, Jan. 2006

12. S. Léomant, “Simulation Study on supply voltage reduction in SRAM 3Kx9”, Atmel

Memory Group (Rousset) Internal Report, 2007

13. E. Vetillard, A. Ferrari, “Combined Attacks and Countermeasures” in Smart Card

Research and Advanced Application, LNCS 6035, Springer-Verlag, pp. 65-79, 2010

14. Marker pens, sticky tape crack music CD protection. The Register, [cited 14/05/2002];

Available from

http://www.theregister.co.uk/2002/05/14/marker_pens_sticky_tape_crack

EngD portfolio – Volume I, A. Goikoetxea Yanci 118

15. Known Attacks Against Smartcards. Discretix, [cited 08/02/2005]; Available from

http://www.discretix.com/PDF/Known%20Attacks%20Against%20Smartcards.pdf

16. K. Rothbart, U. Neffe, Ch. Steger, R. Weiss, E. Rieger, A. Muehlberger, "High Level

Fault Injection for Attack Simulation in Smart Cards" in Asian Test Symposium,

pp.118-121, 2004

17. OSCI Completes First Analog/Mixed-Signal Standard for SystemC-based Design.

SystemC, [cited 06/12/2010]; Available from

http://www.systemc.org/news/pr/view?item_key=8a9239a446e452ce040b0f8cfc3fab2

a30d29e75&comp=osci

18. S. B. Ors, F. Gurkaynak, E. Oswald, B. Preneel, “Power-Analysis Attack on an ASIC

AES implementation” in Proceedings of the International Conference on Information

Technology: Coding and Computing, Vol. 2, pp. 546-522, Apr. 2004

19. K. Tiri and I. Verbauwhede, “Securing Encryption Algorithms against DPA at the Logic

Level: Next Generation Smart Card Technology” in Workshop on Cryptographic

Hardware and Embedded Systems – CHES 2003, LNCS 2779, Springer-Verlag, pp.

125-136, 2003

20. T. Popp and S. Mangard., “Masked Dual Rail Pre-Charge Logic: DPA Resistance

without Routing Constraints” in Workshop on Cryptographic Hardware and Embedded

Systems – CHES 2005, LNCS 3659, Springer-Verlag, pp. 172–186, 2005

21. K. Tiri, D. Hwang, A. Hodjat, B.-C. Lai, S. Yang, P. Schaumont, and I. Verbauwhede,

“Prototype IC with WDDL and Differential Routing—DPA Resistance Assessment” in

Workshop on Cryptographic Hardware and Embedded Systems – CHES 2005, LNCS

3659, Springer-Verlag, pp. 354-365, 2005

22. Lin, L. Simple power analysis by Hspice - A quick start. [cited 27/02/2006]; Available

from: http://www-unix.ecs.umass.edu/~llin/lab4report.html

23. G. Di Natale, M.-L. Flottes, B. Rouzeyre, “An Integrated Validation Environment for

Differentail Power Analysis” in IEEE International Symposium on Electronic Design,

Test & Applications (DELTA 2008), pp. 527-532, Jan. 2008

24. E. Brier, C. Clavier and F. Olivier, “Correlation Power Analysis with a Leakage Model”

in Workshop on Cryptographic Hardware and Embedded Systems – CHES 2004,

LNCS 3156, Springer-Verlag, pp. 135-152, 2004

25. F. Regazzoni et al., “Evaluating Resistance of MCML Technology to Power Analysis

Attacks” in Transaction on Computational Science IV, LNCS 5430, Springer-Verlag,

pp. 230-243, 2009

26. Frew, L., Informal discussion on glitches, Atmel Smart Card ICs. 2005.

27. Frew, L., Informal discussion on glitch detectors, Atmel Smart Card ICs. 2006.

28. E.S. Kim and J.H. Kim, “Voltage glitch detection circuits and methods thereof” in US

Patent Office, US 2007/0058452 A1

EngD portfolio – Volume I, A. Goikoetxea Yanci 119

29. C.Y. Kim, S.J. Jun, and E.S. Kim, “Voltage-glitch detection device and method for

securing integrated circuit device from voltage glitch attack” in US Patent Office, US

7,085,979 B2

30. S. Crain and R. Koga. Heavy-Ion Testing for Single-Event Effects. Crosslink, Summer

2003, [cited 16/05/2005]; Available from:

www.aero.org/publications/crosslink/summer2003/05.html

31. Humphrey, S., S. LaLumondiere, and S. Moss, Lasers Simulate Space Radiation

Effects. Crosslink, Winter 2000, [cited 16/05/2005]; Available from

www.aero.org/publications/crosslink/winter2000/03.html

32. Huixian Wu and James Cargo, “Backside Failure Analysis and Case Studies for

Cu/Low k Technology” in Int. Symposium on the Physical Failure Analysis of

Integrated Circuits (IPFA), pp. 127-134, Jul. 2004

33. T. Ishii, M. Inoue, N. Asatani, K. Naitoh, J. Mitsuhashi, “Functional Failure Analysis of

Logic LSIs from Backside of the Chip and Its Verification by Logic Simulation” in Int.

Symposium on the Physical Failure Analysis of Integrated Circuits (IPFA), pp. 27-32,

Jul. 1997

34. Mayer, D.C. and R.C. Lacoe. Designing Integrated Circuits to Withstand Sapce

Radiation. Crosslink, Summer 2003, [cited 16/05/2005]; Available from:

www.aero.org/publications/crosslink/summer2003/06.html

35. D. Wiseman, J. Canaris, S. Whitaker, J. Venbrux, K. Cameron, K. Arave, L. Arave,

N.M. Liu, K. Liu, “Design and Testing of SEU-SEL Immune Memory and Logic Circuits

in a Commercial CMOS Process”, in Radiation Effects Data Workshop, pp. 51-55, Jul.

1993

36. P. Mongkolkachit and B. Bhuva, “Design Technique for Mitigation of Alpha-Particle-

Induced Single-Event Transients in Combinational Logic” in IEEE Transactions on

Device and Materials Reliability, Vol. 3, Issue 3, pp. 89-92, Sep. 2003

37. D.G. Mavis and D.R. Alexander, “Employing Radiation Hardness by Design

Techniques with Commercial Integrated Circuit Processes” in Digital Avionics

Systems Conference, Vol. 1, pp. 2.1 15-22, 1997

38. T. Calin, M. Nicolaidis, and R. Velazco, “Upset Hardened Memory Design for

Submicron CMOS Technology” in IEEE Transactions on Nuclear Science, Vol 43,

Issue 6, pp. 2874-2878, Dec. 1996

39. K.J. Hass, J.W. Gambles, B. Walker, M. Zampaglione, “Mitigating Single Event

Upsets From Combinational Logic” in Proceeding of the 7th NASA Symposium on

VLSI Design,. pp. 4.1.1-4.1.10, 1998

40. M.P. Baze and S.P. Buchner, “Attenuation of Single Event Induced Pulses in CMOS

Combinational Logic” in IEEE Transactions on Nuclear Science, Vol. 44, Issue 6, pp.

2217-2223 Dec. 1997

EngD portfolio – Volume I, A. Goikoetxea Yanci 120

41. S. Buchner, M. Baze, D. Brown, D. McMorrow, J. Melinger, “Comparison of Error

Rates in Combinational and Sequential Logic” in IEEE Transactions on Nuclear

Science, Vol. 44 Issue 6, pp. 2209-2216, Dec. 1997

42. J.W. Gambles, K.J. Hass, S.R. Whitaker, “Radiation Hardness of Ultra Low Power

CMOS VLSI” in Proceeding of the 11th NASA Symposium on VLSI Design,. May 2003

43. S. Asai, and Y. Wada, “Technology Challenges for Integration Near and Below 01.um”

in Proceedings of the IEEE, Vol.85, Issue 4, pp. 505-520, Apr. 1997

44. F. Assaderaghi, D. Sinitsky, S.A. Parke, J. Bokor, P.K. Ko, Chenming Hu, “Dynamic

threshold-voltage MOSFET (DTMOS) for ultra-low voltage VLSI” in IEEE Transactions

on Electronic Devices, Vol. 44, Issue 3, pp. 414-422, Mar. 1997

45. M. Powell, S.H. Yang, B. Falsafi, K. Roy and T.N. Vijaykumar, “Gated-Vdd: A Circuit

Technique to Reduce Leakage in Deep-Submicron Cache Memories” in Proceedings

of the 2000 International Symposium on Low Power Electronics and Design, pp. 90-

95, 2000

46. H. Qin, Y. Cao, D. Markovic, A. Vladimirescu, J. Rabaey, “SRAM Leakage

Suppression by Minimizing Standby Supply Voltage” in International Symposium on

Quality Electronic Design, pp. 55-60, Aug. 2004

47. S. Pickles, “Submicron leakage reduction techniques”, Atmel Smart Card ICs Internal

Report, 2006

48. N.S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J.S Hu, M.J Irwin, M.

Kamdemir, V. Narayanan, “Leakage Current: Moore's Law Meets Static Power” in

Computer, Vol. 36, Issue 12, pp. 68-75, Dec. 2003

49. K. Roy, S. Mukhopadhyay, and H. Mahmoodi-meimand, “Leakage Current

Mechanisms and Leakage Reduction Techniques in Deep-Submicrometer CMOS

Circuits” in Proceedings fo the IEEE, Vol. 91, Issue 2, pp. 305-327, Apr. 2003

50. S. Datta, G. Dewey, M. Doczy, B.S. Doyle, B. Jin, J. Kavalieros, R. Kotlyar, “High

Mobility Si/SiGe Strained Channel MOS Transistors with HfO/sub 2/TiN Gate Stack” in

IEEE Int. Electron Devices Meeting, pp. 28.1.1-28.1.3, Dec. 2003

51. M. Ashouei, A. Chatterjee, A. D. Singh and V. De, “A Dual-Vt Layout Approach for

Statistical Leakage Variability Minimization in Nanometer CMOS”, in Proceedings of

the International Conference on Computer Design, pp. 567-573, Oct. 2005

52. K. Flautner, N.S. Kim, S. Martin, D. Blaauw and T. Mudge, “Drowsy Caches: Simple

Techniques for Reducing Leakage Power”, in Proceedings of International

Symposium on Computer Architecture, pp. 148-157, Aug. 2002

53. K. Zhang, U. Bhattacharya, Zhanping Chen, F. Hamzaoglu, D. Murray, N. Vallepalli,

Yih Wang, B. Zheng, M. Bohr, “SRAM Design on 65-nm CMOS Technology With

Dynamic Sleep Transistor for Leakage Reduction” in IEEE Journal of Solid-State

Circuits, Vol. 40, Issue 4, pp. 895-901, Apr. 2005

EngD portfolio – Volume I, A. Goikoetxea Yanci 121

54. K. Osada, Y. Saitoh, E. Ibe, K. Ishibashi, “16.7fA/cell Tunnel-Leakage-Suppressed

16Mb SRAM for Handling Cosmic-Ray-Induced Multi-Errors” in IEEE Journal of Solid-

State Circuits, Vol. 38, Issue 11, pp. 1952-1957, Oct. 2003

55. M. Powell, Se-Hyun Yang, B. Falsafi, K. Roy, N. Vijaykumar, “Reducing Leakage in a

High-Performance Deep-Submicron Instruction Cache” in IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, Vol. 9, Issue 1, ppl 77-89, Aug. 2002

56. Y. Wang, H. Ahn, U. Bhattacharya, T. Coan, F. Hamzaoglu, W. Hafez, C.-H. Jan, R.

Kolar, S. Kulkarni, J. Lin, Y. Ng, I. Post, L. Wel, Y. Zahng, K. Zahng, M. Bohr, “A

1.1GHz 12uA/Mb-Leakage SRAM Design in 65nm Ultra-Low-Power CMOS with

Integrated Leakage Reduction for Mobile Applications” in IEEE International Solid-

State Circuits Conference, pp. 324-325, Feb. 2007

57. T.H. Kim, J. Liu, J. Keane, C.H. Kim, “A High-Density Subthreshold SRAM with Data-

Independent Bitline Leakage and Virtual Ground Replica Scheme” in IEEE

International Solid-State Circuits Conference, pp. 330-331, Feb. 2007

58. N. Verma, A.P. Chandrakasan, “A 65nm 8T Sub-Vt SRAM Employing Sense-Amplifier

Redundancy” in IEEE International Solid-State Circuits Conference, pp. 328-329, Feb.

2007

59. S. Lin, Yong-Bin Kim, F. Lombardi, “Design and analysis of a 32nm PVT tolerant

CMOS SRAM cell for low leakage and high stability” in Integration the VLSI Journal,

Vol. 43, Issue 2, pp. 176-187, Apr. 2010

60. L. Benini, A. Macii and M. Poncino, “Energy-Aware Design of Embedded Memories: A

Survey of Technologies, Architectures, and Optimization Techniques” in ACM

Transactions on Embedded Computing Systems, Vol. 2, Issue 1, pp. 5-32, Feb. 2003

61. O. Oztruk and M. Kandemir, “Nonuniform Banking for Reducing Memory Energy

Consumption” in Proceedings of the conference on Design, Automation and Test in

Europe, Vol. 2, pp. 814-819, 2005

62. O. Golubeva, M. Loghi, M. Poncino and E. Macii, “Architectural Leakage-Aware

Management of Partitioned Scratchpad Memories” in Proceedings of the conference

on Design, Automation and Test in Europe, pp. 1665-1670, 2007

63. M. Kandemir, M.J. Irwin, G. Chen and I. Kolcu, “Compiler-Guided Leakage

Optimization for Banked Scratch-Pad Memoried” in Transactions of Very Large Scale

Integration Systems, Vol. 13, Issue 10, pp. 1136-1146, Oct. 2005

64. A.Dominguez, S. Udayakumaran and R. Barua, “Heap Data Allocation to Scratch-Pad

Memory in Embedded Systems” in Journal of Embedded Computing, Vol. 1, Issue 4,

pp. 521-540, Dec. 2005

65. V. Degalahal, L. Li, V. Narayanan, M. Kandemir and M.J. Irwin, “Soft Errors Issues in

Low-Power Caches” in IEEE Transactions of Very Large Scale Integration Systems,

Vol. 13, No. 10, pp. 1157-1166, Oct. 2005

66. A. Keshavarzi, S. Ma, S. Narendra, B. Bloechel, K. Mistry, T. Ghani, S. Borkar and V.

De, “Effectiveness of Reverse Body Bias for Leakage Control in Scaled Dual Vt

EngD portfolio – Volume I, A. Goikoetxea Yanci 122

CMOS ICs” in Proceedings of International Symposium on Low Power Electronics and

Design, pp. 207-212, 2001

67. O. Golubeva, M. Loghi, E. Macii and M. Poncino, “Locality-Driven Architectural Cache

Sub-banking for Leakage Energy Reduction” in Proceedings of International

Symposium on Low Power Electronics and Design, pp. 274-279, 2007

68. K.D. Cooper and T. J. Harvey, “Compiler-Controlled Memory” in ACM Special Interest

Group on Operative Systems (SIGOPS) Operating Systems Review, Vol. 32, Issue 5,

pp. 2-11, Dec. 1998

69. S. Udayakumaran, A. Dominguez and R. Barua, “Dynamic Allocation for Scratch-Pad

Memory Using Complie-Time Decisions” in ACM Transactions on Embedded

Computing Systems, Vol. 5, No. 2, pp. 472-511, May 2006

70. M. Verma, L. Wehmeyer and P. Marwedel, “Dynamic Overlay of Scratchpad Memory

for Energy Minimization”, in Proceedings of the International Conference on

Hardware/Software Codesign and System Synthesis (CODES+ISSS), pp. 104-109,

Sep. 2004

71. J. Turley, “Survey says: software tools more important than chips”, EETimes, [cited

07/11/2005]; Available from

http://www.eetimes.com/discussion/other/4025524/Survey-says-software-tools-more-

important-than-chips

72. F.R. Cordeiro, A.G. Silva-Filho, C.C. Araujo, M. Gomes, E.N.S. Barros, M. E. Lima,

“An Environment for Energy Consumption Analysis of Cache Memoires in SoC

Platforms”, in Southern Programmable Logic Conference, pp. 35-40, Mar. 2010

73. Bo Zhai, D. Blaauw, D. Sylvester, S. Hanson, “A Sub-200mV 6T SRAM in 0.13µm

CMOS”, in IEEE International Solid-State Circuits Conference, pp. 332-333, Feb.

2007

74. J. Ahmed, “Re-configurable AVR Report”, Atmel Smart Card ICs Internal Report, 2005

75. F. Barat, R. Lauwereins, “Reconfigurable Instruction Set Processors: A Survey” in

IEEE International Workshop on Rapid System Prototyping, pp.168-173, Jun. 2000

76. 8-bit AVR Instruction set. Atmel [cited 2006]; Available from

http://www.atmel.com/atmel/acrobat/doc0856.pdf

77. The Open Source Security Testing Methodology Manual. Institute for Security and

Open Methodology [cited 18/12/2010]; Available from

http://www.isecom.com/mirror/OSSTMM.3.pdf

EngD portfolio – Volume I, A. Goikoetxea Yanci 123

Appendix A Known Attacks Against Smartcards [15]

EngD portfolio – Volume I, A. Goikoetxea Yanci 124

EngD portfolio – Volume I, A. Goikoetxea Yanci 125

EngD portfolio – Volume I, A. Goikoetxea Yanci 126

EngD portfolio – Volume I, A. Goikoetxea Yanci 127

EngD portfolio – Volume I, A. Goikoetxea Yanci 128

EngD portfolio – Volume I, A. Goikoetxea Yanci 129

EngD portfolio – Volume I, A. Goikoetxea Yanci 130

EngD portfolio – Volume I, A. Goikoetxea Yanci 131

EngD portfolio – Volume I, A. Goikoetxea Yanci 132

EngD portfolio – Volume I, A. Goikoetxea Yanci 133

EngD portfolio – Volume I, A. Goikoetxea Yanci 134

EngD portfolio – Volume I, A. Goikoetxea Yanci 135

EngD portfolio – Volume I, A. Goikoetxea Yanci 136

EngD portfolio – Volume I, A. Goikoetxea Yanci 137

EngD portfolio – Volume I, A. Goikoetxea Yanci 138

EngD portfolio – Volume I, A. Goikoetxea Yanci 139

EngD portfolio – Volume I, A. Goikoetxea Yanci 140

EngD portfolio – Volume I, A. Goikoetxea Yanci 141

EngD portfolio – Volume I, A. Goikoetxea Yanci 142

Appendix B GAPASE file: simulation.cfg

simulation.cfg : Configuration file for simulation.
This file is used by run_simulation script to simulate a design on nansim.

Created by Asier Goikoetxea Yanci <asier.goikoetxea@ekb.atmel.com>
2004

Version 1.7: 2008-I-16
* Variable ROUNDS added
* Variable FULL_RESET added
* Variable FORCE_NETS added
* Variable LOAD_RUN_CYCLES added
* The example of KEY_NET and DATA_NET changed

Version 1.6: 2007-VI-19
* Variable VOLTAGE_NODE added
* Variable TEMPERATURE added
* Variable MODEL_LIB added
* Variable MODEL_LIB_CALLS added
* Variable LOG_LEVEL added

Version 1.5: 2006-VI-24
* Variable TARGET_KEY_BITS added to decide which bits are going to be targeted

Version 1.4: 2006-V-24
* DESIGN_RC_TYPE, DETACH and CPU_NUMBER variables added

Version 1.3: 2005-XI-16
* SAMPLE variable added

Version 1.2: 2005-IX-xx
* Required variable OUTPUT_DIR replaced with SIMULATION_NAME
* Variable SIMULATION_TYPE created
* Optional simulation parameters grouped according to simulation type
* Simulation parameters reordered
* Power analysis simulation enabled
* Optional parameter R removed
* Forgotten Ground pulse variables added (previously it was implemented)

Version 1.1: 2005-I-21
* It creates a directory in SIMVISION directory, where simulation's output
and configuration are stored.

Version 1.0: 2004-XII-16
* File created

Required information for the simulation ##
####VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV####
####VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV####

This parameter defines the simulation's name and the name of a directory to be
created on simvision directory, where simulation's output is going to be moved
to and this file copied to, so simulation settings are also stored.
SIMULATION_NAME=

Enter design's hspiceS netlist file name
#DESING_NETLIST=cmos/hspiceFinal
DESIGN_NETLIST=

Enter a value to indicate the voltage to which the design is going to be
powered. If POWER is not set, design would be powered with a constant source
(to which noise and/or a pulse could be applied by setting POWER_NOISE and
PULSE_* variables)
VOLTAGE=

Enter the name of the supply node. This is the node used to power the circuit.
It will be powered at VOLTAGE volts and POWER, if set.
#VOLTAGE_NODE=vdd!
VOLTAGE_NODE=

EngD portfolio – Volume I, A. Goikoetxea Yanci 143

Enter name of stimulus file. Note, when running a PA simulation, the contents
of the file pointed by this parameter are not used during the simulation and
they are overwritten instead, so if you want to keep a copy of this stimulus
inputs, make sure that this is not the only copy you have of this file or
create a file that you are happy to overwrite.
#STIMULUS=stimulus_in.sp
STIMULUS=

Enter an integer to indicate the simulation time. Expected required
simulation time will be calculated by the simulation environment when running
a power analysis. If the provided simulation time is shorted than the expected
one, the simulation environment may update it at the user's discretion.
SIMULATION_TIME=

Enter a value to indicate the temperature in Celsius degrees to which the
design is going to be exercised.
TEMPERATURE=

Enter the model library name, path inclusive.
MODEL_LIB=

Enter a comma separated list of the required library calls by the model.
#MODEL_LIB_CALLS=process_tolerances,mos_wcs,techno,nonmc,nonmatching,model_58k8,rlow,c
high
MODEL_LIB_CALLS=

Define which kind of simulation is going to be performed. Possible values
are: {NORMAL,GLITCH,PA}
NORMAL -> only DESIGN_RC_ optional parameters are checked too
GLITCH -> DESIGN_RC_ and glitch related parameters are checked too
PA -> DESIGN_RC_ and power analysis parameters are checked too
SIMULATION_TYPE=

Indicate whether the Nanosim simulation should be detached from the console.
By enabling detaching the simulation, on the event of closing the console
where the simulation environment is called from, on-going Nanosim simulations
won't be killed. Possible values are: {YES,NO}
NOTE: with this option, ONLY Nanosim simulations are detached. This option
does not detach the simulation environment itself. This must be done by the
user.
DETACH=

####^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^####
####^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^####
Required information for the simulation ##

#---#

General optional information for the simulation ##
####VVV####
####VVV####

Enter the desired message log level for this simulation. This is an optional
parameter. Possible values are: {HIGH,LOW}
LOG_LEVEL=

Enter design's RC parasitic netlist file name. This is an optional parameter.
#DESING_RC_NETLIST=
DESIGN_RC_NETLIST=

Enter design's RC netlist format type. Two are the valid formats for this
file: SPEF and HSPICE. Default format is HSPICE. If this parameter is left
undefined or set to HSPICE, HSPICE format will be understood. For SPEF
formatted files, this parameter should be defined with SPEF. This is an optional
parameter, only to be entered if DESIGN_RC_NETLIST is defined.
#DESING_RC_TYPE=
DESIGN_RC_TYPE=

####^^^####
####^^^####
General optional information for the simulation ##

#---#

EngD portfolio – Volume I, A. Goikoetxea Yanci 144

Glitch optional information for the simulation ##
####VV####
####VV####

Enter name of power file which defines the power source for the design. Power
vector must be called vpower_waveform and nominal VOLTAGE values used. As this
waveform would be added to original VDD, a 1 on vpower_waveform would be
interpreted as 2*VOLTAGE, a 0 would be interpreted as VOLTAGE, a -1 would be
interpreted as 0v and so on. This is an optional parameter.
#POWER=power.sp
POWER=

Enter time to start applying the power waveform. POWER_START time is
calculated as DELAY_FOR_PULSE. This parameter is only looked at if POWER
parameter is defined. If POWER is defined and this parameter is not defined,
it will be set to default value (i.e. 0 nano-seconds).
#POWER_START=0n
POWER_START=

Define a pulse to be applied to power line. Parameter DELAY_FOR_PULSE must be
defined in order to parse pulse definition parameters. If DELAY_FOR_PULSE is
not defined, remaining pulse definition parameters will be ignored. Use
absolute time values. Use nominal values of VOLTAGE. This pulse would be added
to VDD, therefore a nominal voltage of 1 would be interpreted as 2*VOLTAGE, a 0
would be interpreted as VOLTAGE, a -1 would be interpreted as 0v and so on.
Parameters PULSE_START_VALUE and PULSE_END_VALUE are the only optional ones,
all other parameters must be defined if a pulse is desired. If optional
parameters are not defined, they would be interpreted as 0, i.e. VOLTAGE.
DELAY_FOR_PULSE value can be setup to refer the pulse to a particular clock
edge, e.g. positive-edge of clock number 14 (it is also possible to refer to a
neg-edge). The formula to calculate delay value for a neg-edge is:

(n_clocks * period) --> to set pulse's origin at beginning of neg-edge
(n_clocks * perios) + tfall/2 --> to set pulse's origin at midway of neg-edge

The formula to calculate delay value for a pos-edge is:

(n_clocks * period) + period/2 --> to set pulse's origin at beginning of
pos-edge
(n_clocks * period) + period/2 + trise/2 --> to set the pulse's origin at midway
of pos-edge

All pulse times are relative times, i.e. an offset value to DELAY_FOR_PULSE,
also, all time must be positive numbers. Therefore, if applying a pulse just
before clock 'z' starts is desired, DELAY_FOR_PULSE should be calculated for
clock 'z-1'. If clock 'z' is used instead, the earliest the pulse could start
is DELAY_FOR_PULSE, and only on the case that PULSE_START_TIME is 0n.

When setting a time value, use n for nanoseconds; u for microseconds; and m for
milliseconds. This is an optional parameter.
required pulse parameter
DELAY_FOR_PULSE=

required pulse parameter
PULSE_START_TIME=

optional pulse parameter (optional)
PULSE_START_VALUE=

required pulse parameter
PULSE_P1_TIME=

required pulse parameter
PULSE_P1_VALUE=

required pulse parameter
PULSE_P2_TIME=

required pulse parameter
PULSE_P2_VALUE=

required pulse parameter
PULSE_END_TIME=

optional pulse parameter (optional)
PULSE_END_VALUE=

Enter name of file that defines GND waveform source for the design. Vector

EngD portfolio – Volume I, A. Goikoetxea Yanci 145

must be called vgnd_waveform and use nominal VOLTAGE values. As this waveform
would be added to original GND, a 1 on vpower_waveform would be interpreted as
VOLTAGE, a 0 would be interpreted as 0, a -1 would be interpreted as -VOLTAGE
and so on. This is an optional parameter.
#GND=gnd.sp
GND=

Enter time to start applying the GND waveform. GND_START time is calculated
as GND_DELAY_FOR_PULSE. This paremeter will be looked at only if parameter GND
is defined. If parameter GND is defined and this one is not, it will be set to
default value (i.e. 0 nano-seconds).
#GND_START=0n
GND_START=

Define a pulse to be applied to GND line. Parameter GND_DELAY_FOR_PULSE must
be defined in order to parse pulse definition parameters. If
GND_DELAY_FOR_PULSE is not defined, remaining pulse definition parameters will
be ignored. Use absolute time values. Use nominal values of VOLTAGE. This
pulse would be added to GND, therefore a nominal voltage of 1 would be
interpreted as VOLTAGE, a 0 would be interpreted as 0, a -1 would be
interpreted as -VOLTAGE and so on. Parameters GND_PULSE_START_VALUE and
GND_PULSE_END_VALUE are the only optional ones, all other parameters must be
defined if a pulse is desired. If optional parameters are not defined, they
would be interpreted as 0, i.e. 0v. GND_DELAY_FOR_PULSE value can be setup to
refer the pulse to a particular clock edge, e.g. positive-edge of clock number
14 (it is also possible to refer to a neg-edge). The formula to calculate
delay value for a neg-edge is:

(n_clocks * period) --> to set pulse's origin at beginning of neg-edge
(n_clocks * period) + tfall/2 --> to set pulse's origin at midway of neg-edge

The formula to calculate delay value for a pos-edge is:

(n_clocks * period) + period/2 --> to set pulse's origin at beginning of
pos-edge
(n_clocks * period) + period/2 + trise/2 --> to set pulse's origin at midway
of pos-edge

All pulse times are relative times, i.e. an offset value to
GND_DELAY_FOR_PULSE, also, all time must be positive numbers. Therefore, if
applying a pulse just before clock 'n' starts is desired, GND_DELAY_FOR_PULSE
should be calculated for clock 'n-1'. If clock 'n' is used instead, the
earliest the pulse could start is GND_DELAY_FOR_PULSE, and only on the case
that GND_PULSE_START_TIME is 0n.

When setting a time value, use n for nanoseconds; u for microseconds; and m
for milliseconds. This is an optional parameter.
required pulse parameter
GND_DELAY_FOR_PULSE=

required pulse parameter (optional)
GND_PULSE_START_TIME=

optional pulse parameter
GND_PULSE_START_VALUE=

required pulse parameter
GND_PULSE_P1_TIME=

required pulse parameter
GND_PULSE_P1_VALUE=

required pulse parameter
GND_PULSE_P2_TIME=

required pulse parameter
GND_PULSE_P2_VALUE=

required pulse parameter
GND_PULSE_END_TIME=

optional pulse parameter (optional)
GND_PULSE_END_VALUE=

Enter file name of noise to be applied to stimulus. Again, use nominal values.
Prefixing signal name is recommended. Prefixes 'org_' and 'nom_' are forbidden
on noise signal's vector names. This is an optional parameter.
#STIMULUS_NOISE=noise.sp
STIMULUS_NOISE=

Enter time to start applying the noise to the stimulus. STIMULUS_START is

EngD portfolio – Volume I, A. Goikoetxea Yanci 146

calculated as DELAY_FOR_PULSE. This parameter will be looked at only if
parameter STIMULUS_NOISE is defined. If parameter STIMULUS_NOISE is defined
this one is not, it will be set to default value (i.e. 0 nano-seconds).
#STIMULUS_NOISE_START=0n
STIMULUS_NOISE_START=

####^^####
####^^####
Glitch optional information for the simulation ##

#--#

Power analysis optional information for the simulation ##
####VV####
####VV####

How simulation will be performed

____ ____ ____ ____ ____ ____
#clk ____/ ____/ ____/ ____/ ____/ ____/ *

#reset_/________/________/________/________/________/_______**

_____ _____ _____ _____ _____ ____
#run -----/ \---/ \---/ \---/ \---/ \---/ **

_______ _______ _______ _______ _______ ______
#key ---<_______>-<_______>-<_______>-<_______>-<_______>-<______**

_______ _______ _______ _______ _______ ______
#data ---<_______>-<_______>-<_______>-<_______>-<_______>-<______**

* Note: Clock signal will be automatically generated by simulation environment
** Note: Although some registers have asynchronous reset input, external reset
signal will be generated considering that such input does not exist
or that it is synchronous.
*** Note: Data, key, enable and run registers' input and outputs will be
forced only after reset and before next positive clock edge, being
released during positive clock cycle.

Enter cryptographic block identifier. Possible values are:
{DES, AES-128, AES-192, AES-256}
This parameter is mandatory when performing a Power Analysis.
#CRYPT=DES
CRYPT=

#DOM, CORRELATION
#ANALYSIS_TYPE=

#YES or NO
#GENERATE_D_FUNC=

#AMOUNT_OF_PLAIN_TEXT=

Enter clock frequency at which the cryptographic block will be exercised.
Provide clock frequency in KHz. Note that this entry is required even when
cryptographic block is asynchronous. On such case, this signal will not affect
it. This parameter is mandatory when performing a Power Analysis.
#CLOCK=12000
CLOCK=

Enter the number of rounds to be simulated. In order to carry a normal DPA on
a DES module, getting the power trace of the first round is enough. For more
complex power analysis (e.g. second order DPA), the power trace of two rounds
is required. This parameter lets you configure the amount of rounds to be
simulated and extracted. The higher the number of rounds, the longer it will
take the simulation process.
#ROUNDS=1
ROUNDS=

Enter the desired number of times each data should be run. The more samples

EngD portfolio – Volume I, A. Goikoetxea Yanci 147

are taken the better. However, different crypto blocks may require different
amount of samples to expose their weaknesses, were very weak/unsecure block
require less samples than those theoretically secure blocks.
#SAMPLES=10
SAMPLES=

Deprecated. It wont be used in future versions
CPU_NUMBER=

Enter the name of clock input signal. This parameter is mandatory when
performing a Power Analysis.
#CLOCK_IN_NAME=clkCpu
CLOCK_IN_NAME=

Enter the name of reset input signal. This parameter is mandatory when
performing a Power Analysis.
#CRYPT_RESET=reset
CRYPT_RESET=

Determine whether the cryptographic module should be fully reset or not
after generating power consumed by each plaintext. When fully resetting the
cryptographic module, all registers and nets will be force to a reset status.
When not fully resetting it, only registers will be forced to a reset status.
On this later case, KEY and DATA registers are excluded. This parameter is
mandatory when performing a Power Analysis. Possible values are:
{YES, NO}.
#FULL_RESET=YES
FULL_RESET=

Determine whether the KEY and DATA registers' inputs or outputs should be
forced at the beginning of each plaintext encryption. This parameter is
mandatory when performing a Power Analysis. If not defined, a warning message
will be generated and it will be set to INPUT. Possible values are:
{INPUT, OUTPUT}.
#FORCE_NETS=INPUT
FORCE_NETS=

Determine whether KEY and DATA load operation and launching the encryption
should happen in the same clock cycle or not. If they happen in the same
clock cycle, encryption simulation will be launched straight away. If they
happen on different clock cycles, one clock cycle will be used to load KEY
and DATA and the following one will launch the encryption. This parameter is
valid only when forcing the inputs of KEY and DATA registers (FORCE_NETS). In
such case, this parameter is mandatory. If not defined, a warning message
will be generated and it will be set to DIFFERENT. Possible values are:
{SAME,DIFFERENT}
#LOAD_RUN_CYCLES=DIFFERENT
LOAD_RUN_CYCLES=

Enter the name of the register that triggers encryption loop/run. This
parameter is mandatory when performing a Power Analysis.
#START_CRYPT=run
START_CRYPT=

Enter hex key for cryptographic modules. This parameter is mandatory when
performing a Power Analysis.
#KEY=1234DEF
KEY=

Enter target key bits. This parameter is mandatory when performing a Power
Analysis. Possible values are:
SBOX_1 -target bits on SBOX 1;
SBOX_2 -target bits on SBOX 2;
SBOX_3 -target bits on SBOX 3;
SBOX_4 -target bits on SBOX 4;
SBOX_5 -target bits on SBOX 5;
SBOX_6 -target bits on SBOX 6;
SBOX_7 -target bits on SBOX 7;
SBOX_8 -target bits on SBOX 8;
#TARGET_KEY_BITS=ALL
TARGET_KEY_BITS=

Deprecated. It wont be used in future versions
Enter the name of registers used to store the key. This is an optional
parameter. This or KEY_NET parameter must be defined. If this parameter is
defined, parameter KEY_NET will be ignored. If this parameter is not defined,
then parameter KEY_NET will be checked.
#KEYREG=keyreg
KEYREG=

Deprecated. It wont be used in future versions

EngD portfolio – Volume I, A. Goikoetxea Yanci 148

Enter the name of registers used to store the data. This is an optional
parameter. This or DATA_NET parameter must be defined. If this parameter is
defined, parameter DATA_NET will be ignored. If this parameter is not defined,
then parameter DATA_NET will be checked.
#DATAREG=desreg
DATAREG=

Deprecated. It wont be used in future versions
Enter each key registers' input and output data net's name. These names can be
found in design's netlist. If left empty, run_simulation script will
automatically search for appropriate net names. This is an optional parameter.
This or KEYREG parameter must be defined. If KEYREG parameter is defined, this
parameter will be ignored. If KEYREG parameter is not defined, then this
parameter will be checked.
#KEY_NET= KEY0_0in KEY0_0enn KEY0_0out KEY0_1in ... KEYn_nenn KEYn_nout
| | | | | | |
#KEY_NET= NET53 NET55 NET123 NET125 ... NET155 NET150
KEY_NET=

Deprecated. It wont be used in future versions
Enter each data registers' input and output data net's name. These names can
be found in design's netlist. If left empty, run_simulation script will
automatically search for appropriate net names. This is an optional parameter.
This or DATAREG parameter must be defined. If DATAREG parameter is defined,
this parameter will be ignored. If DATAREG parameter is not defined, then this
parameter will be checked.
#DATA_NET= DATA0_0in DATA0_0enn DATA0_0out DATA0_1in ... DATAn_nenn DATAn_nout
| | | | | | |
#DATA_NET= NET53 NET55 NET123 NET125 ... NET155 NET150
DATA_NET=

####^^####
####^^####
Power analysis optional information for the simulation ##

EngD portfolio – Volume I, A. Goikoetxea Yanci 149

Appendix C

These are the different types of Single Event Effects inducible by radiation as covered in [34]:

• Single Event Upset: Generally a transient condition in which the output state of a digital

device is affected (e.g., a bit-flip in a memory cell or a change of state of an inverter). The

state recovers after being rewritten, causing no permanent damage.

• Single Event Latchup: Condition characterized by an anomalous high current state,

where the current can go from picoamps (10
-12

) to amps. If the power is cycled before

damage occurs, SEL may only be transient.

• Single Event Burnout: Permanent failure due to maintaining a high current state for an

extended period of time.

• Single Event Gate Rupture: Permanent failure caused by dielectric breakdown in the

semiconductor oxide layer.

• Single Event Total Dose: Permanent failure caused by a single particle that produces

enough ionization or displacement damage in a transistor to permanently degrade its

performance. SETD are more significant now because technology advances have led to

very small transistor sizes, making it possible for a particle's path to encompass much of

an entire transistor.

• Single Event Transient: Effects (e.g., current spikes in operational amplifiers) of short

time duration that may lead to other effects downstream of the affected site that are longer

in duration.

